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Abstract
Yuanxin Liu: Computations of Delaunay and higher order triangulations, with

applications to splines.
(Under the direction of Jack Snoeyink.)

Digital data that consist of discrete points are frequently captured and processed by scientific and engineering

applications. Due to the rapid advance of new data gathering technologies, data set sizes are increasing, and

the data distributions are becoming more irregular. These trends call for new computational tools that are both

efficient enough to handle large data sets and flexible enough to accommodate irregularity.

A mathematical foundation that is well-suited for developing such tools is triangulation, which can be

defined for discrete point sets with little assumption about their distribution. The potential benefits from

using triangulation are not fully exploited. The challenges fundamentally stem from the complexity of the

triangulation structure, which generally takes more space to represent than the input points. This complexity

makes developing a triangulation program a delicate task, particularly when it is important that the program

runs fast and robustly over large data.

This thesis addresses these challenges in two parts. The first part concentrates on techniques designed for

efficiently and robustly computing Delaunay triangulations of three kinds of practical data: the terrain data

from LIDAR sensors commonly found in GIS, the atom coordinate data used for biological applications, and

the time varying volume data generated from from scientific simulations.

The second part addresses the problem of defining spline spaces over triangulations in two dimensions. It

does so by generalizing Delaunay configurations, defined as follows. For a given point set P in two dimensions,

a Delaunay configuration is a pair of subsets (T, I) from P , where T , called the boundary set, is a triplet and

I, called the interior set, is the set of points that fall in the circumcircle through T . The size of the interior

set is the degree of the configuration. As recently discovered by Neamtu (2004), for a chosen point set, the

set of all degree k Delaunay configurations can be associated with a set of degree k + 1 splines that form the

basis of a spline space. In particular, for the trivial case of k = 0, the spline space coincides with the PL

interpolation functions over the Delaunay triangulation. Neamtu’s definition of the spline space relies only on

a few structural properties of the Delaunay configurations. This raises the question whether there exist other

sets of configurations with identical structural properties. If there are, then these sets of configurations—let us

call them generalized configurations from hereon—can be substituted for Delaunay configurations in Neamtu’s

definition of spline space thereby yielding a family of splines over the same point set.
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Chapter 1

Introduction

Digital data that consist of discrete points are frequently captured and processed by scientific and

engineering applications—for example, digital images captured by cameras, atom coordinates of a

protein molecule produced by x-ray crystallography, sample points of a surface in 3D gathered by laser

scanning devices, and sample points in fluid dynamic simulation. Due to the rapid advance of new

data gathering technologies, data set sizes are increasing, and the data distributions are becoming more

irregular. These trends call for new computational tools that are both efficient enough to handle large

data sets and flexible enough to accommodate irregularity.

A mathematical foundation that is well-suited for developing such tools is triangulation. For a set

of points P in the plane, a two dimensional triangulation is a set of triplets in P whose corresponding

triangles form a tiling in the plane; analogously, a three dimensional triangulation is a set of quadruples

such that the corresponding tetrahedra form a tiling in the 3-space ( Figure 1.1b). For a chosen point

set, many possible triangulations exist. A particularly well known one is the Delaunay triangulation,

which, in two dimensions, satisfies the property that the circumcircles through each triplet has no other

point of P inside (See Figure 1.1a).

a) b) c)

Figure 1.1: a) Delaunay triangulation; the dotted circle circumscribes the vertices of a triangle and is empty of
other vertices. b) A three dimensional triangulation in 3-space. c) A two dimensional triangulation on a sphere.

Triangulations are used for a wide variety of applications. For example, they are used in molec-



ular biology for analyzing neighboring relations (Ban et al., 2004; Liang et al., 1998; Bandyopadhyay

and Snoeyink, 2004), in geo-sciences and CAD/CAM to represent and analyze surfaces (Edelsbrunner

et al., 2003) and in fluid dynamics to tessellate the domain of simulation (Bern and Eppstein, 1992;

Shewchuk, 2002). These applications benefit from two properties of triangulations: First, a triangula-

tion decomposes the space into simple regions of fixed complexity, which localizes the computation on

data; second, it can be constructed around any set of points, which accommodates irregularity.

To appreciate more concretely the benefit of using triangulation, consider the application of terrain

modeling in geo-sciences, where data are following the trend of becoming larger and more irregular:

Gigabytes-size data sets are now routinely gathered by sensors such as LIDAR; irregular data are

generated both by sensors and by integration of data from different sources. A terrain surface is

modeled as a bivariate (two-variable) function, so that the domain of the function represents the

latitude-longitude coordinate plane, the range represents the elevations and the plot of the function

represents the terrain surface. For a particular piece of terrain, its model function is constructed from

a set of 3D points sampled from its surface. One possible function that can be constructed is the

piecewise linear (PL) interpolation function. To construct such a function, f , the locations of the data

in the planar domain are triangulated. Then, for a point x in the domain, the function value f(x) is

the linear combination of three data points whose triangle contains x (See Figure 1.2). Several nice

features of the PL interpolation function follow directly from the properties of triangulation:

- The function is defined locally: Evaluating the function references precisely three nearby points.

- The function can represent the data more compactly: Suppose that the terrain has a large piece of

flat region—from a lake, for example—then, the PL-interpolation can represent the region using

only the few data points around the the boundary of the region.

- The function can be generalized to handle data in non-planar domains, thanks to the well-known

topological fact that a triangulation can be constructed over any surfaces in 3D (See figure 1.1c).

The potential benefits from using triangulation are far from being fully exploited. The challenges

fundamentally stem from the complexity of the triangulation structure, which generally takes more

space to represent than the input points. This complexity makes developing a triangulation program

a delicate task, particularly when it is important that the program runs fast and robustly over large

data. Specifically,

- Many computer programs are designed with the assumption that the memory required by the

program will not exceed the main memory size. When this assumption is violated, programs
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thrash, slowing down dramatically as the operating system starts to page memory pages out to

disks. Thrashing is particularly pronounced for triangulation programs because the size of a

triangulation is about 10 times as large as the input point set.

- In designing triangulation algorithms, it is common to assume that the input points are drawn

from the ideal Euclidean plane, so that special point configurations, such as a triplet of points

that are collinear, rarely occur. It is also common to assume that geometric tests, such as testing

which side of the line a point is on, can always be performed exactly. Because neither of these

assumptions are true in practice, before an algorithm can be translated to a working program,

careful analysis must be done to show how to handle the situations when these assumptions are

violated. If this is not done, the resulting program can produce inconsistent output or even crash.

Mathematically, the complexity of the triangulation structure makes it challenging to build additional

structure “on top of” triangulation. Consequently, there only a few types of function spaces defined

over triangulation—one example is the Bezier patch, which includes the PL interpolation as a special

case—and none of them uses more than the basic tiling property of triangulation. The lack of variety

of mathematical functions makes it difficult for triangulation to meet the modeling needs of many

applications. For example, although terrain modeling could benefit from the ability of triangulation to

handle large and irregular data, it often resorts to other tools that provide a better variety of functions,

at the expense of handling irregularity or speed. In particular, if speed is more critical than handling

irregularity, then it borrows from the large number of tools available for image processing, which require

that the data to lie on a grid; if handling irregularity is more important than speed, then it uses various

radial basis functions (Mitasova and Mitas, 1993; Wendland, 2004), which are slow for large data sets

because they are globally defined.

This thesis addresses these challenges in two parts. The first part concentrates on techniques

designed for efficiently and robustly computing Delaunay triangulations of three kinds of practical

x

f(x)

Figure 1.2: Left: The PL interpolation function over a triangulation. Right: The PL interpolation of terrain
data from Crater Lake (Garland and Heckbert, 1995).
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data: the terrain data from LIDAR sensors commonly found in GIS, the atom coordinate data used for

biological applications, and the time varying volume data generated from from scientific simulations.

The second part addresses the problem of defining spline spaces over triangulations in two dimen-

sions. It does so by generalizing Delaunay configurations, defined as follows. For a given point set P

in two dimensions, a Delaunay configuration is a pair of subsets (T, I) from P , where T , called the

boundary set, is a triplet and I, called the interior set, is the set of points that fall in the circumcircle

through T . The size of the interior set is the degree of the configuration. As recently discovered by

Neamtu (2004), for a chosen point set, the set of all degree k Delaunay configurations can be associated

with a set of degree k +1 splines that form the basis of a spline space. In particular, for the trivial case

of k = 0, the spline space coincides with the PL interpolation functions over the Delaunay triangula-

tion. Neamtu’s definition of the spline space relies only on a few structural properties of the Delaunay

configurations. This raises the question whether there exist other sets of configurations with identical

structural properties. If there are, then these sets of configurations—let us call them generalized config-

urations from hereon—can be substituted for Delaunay configurations in Neamtu’s definition of spline

space thereby yielding a family of splines over the same point set. This has the following applications:

- Framework of splines. When choosing a basis for spline representation, an important criteria is

its generality. In the univariate setting, the popularity of B-splines can be partly attributed to its

ability to represent a variety of splines. In the bivariate setting, the splines from the generalized

configurations hold the promise to provide an analog of B-splines in providing a general spline

representation, because the definition has no restrictions on the positions of the input points and,

for a fixed point set, admit a large number of spline bases.

- Data dependent configurations. Delaunay triangulation is the canonical triangulation to use for

PL-interpolation, because it has a number of optimal interpolation properties (Shewchuk, 2002).

However, if certain characteristics of the data is available, such as the preferred gradient direction

of the true function, non-Delaunay triangulations can achieve better PL-interpolation. This is

referred to in the literature as data dependent triangulation (Dyn and Rippa, 1993). The gener-

alization of Delaunay configurations could support “data-dependent configurations”: Guided by

knowledge about the data, non-Delaunay configurations can be constructed to improve the data

fitting.

It can be observed that, for the trivial case of k = 0, the generalized configurations are simply sets of

triangles that form planar triangulations. Therefore, this generalization problem can be more broadly

considered as one of generalizing triangulations. The relation of Delaunay triangulations, configurations,
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planar triangulations, and the solution of the generalization problem is depicted by the diagram below:

Delaunay triangulations 

 triangulations 

Delaunay configurations

generalized configurations

The following summarizes the main results of the thesis, many of which have been published.

- [Chapter 4] I define a sentinel point for computing Delaunay triangulations that allows perturba-

tion methods to enforce general position. The work is accepted to a special issue of IJCGA from

the 2nd Voronoi Diagram conference (Liu and Snoeyink, 2006a).

- [Chapter 5] I show how to reduce the memory usage of a Delaunay triangulation program to a

fraction by exploiting the fact that huge data sets tend to be in spatially coherent order—spatially

near points are also near in their ordering. This work is done in collaboration with Martin Isenburg

and presented in SIGGRAPH ’06 (Isenburg et al., 2006).

- [Section 3.4] I give techniques to efficiently compute 3D Delaunay triangulations of protein data

and compare the performances of several 3D Delaunay triangulations programs which implement

similar algorithms but make different decisions on how to meet the algorithm assumptions. Parts

of the work is published in a volume of papers from the MSRI special year on computational

geometry (Liu and Snoeyink, 2005a) and parts of the work was presented in the 2nd Voronoi

Diagram conference (Liu and Snoeyink, 2005b).

- [Section 3.6] I give techniques to efficiently compute 4D Delaunay triangulations of time varying

volume data. The work was presented in the 3rd Voronoi Diagram conference (Liu and Snoeyink,

2006b).

- [Chapter 7.4] I generalize two dimensional Delaunay configurations through a computational pro-

cedure. This procedure takes a planar triangulation as input and iteratively compute configu-

rations of one degree higher. The procedure can be varied by varying a polygon-triangulation

subroutine. This subroutine may be specialized to produce Delaunay configurations, but other

subroutines can be designed to suit application needs. Preliminary results of the work were

presented in Symposium of Computational Geometry ’06 (Liu and Snoeyink, 2007).

- [Chapter 8] I give examples of applications of quadratic bivariate splines from the generalized

configurations. Parts of the work were presented published in Symposium of Computational

Geometry ’06.
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Chapter 2

Geometric Preliminaries

I review foundamental geometric objects in s dimensional Euclidean space, which include oriented

hyperplanes, affine and convex hulls, convex cell complexes, triangulations, and, finally, Delaunay

diagrams and triangulations.

2.1 Geometric primitives

The affine hull of a set of points generalizes the notion of the line through a set of points: For a set of

points P ⊂ R
s, the affine hull of P , denoted aff(P ), is defined:

aff(P ) : {
∑

p∈P

λpp |
∑

p

λp = 1}. (2.1)

The dimension of an affine hull aff(P ) one less than the size of the smallest subset of P that still gives

the same hull. A set of n points P are affinely independent if the dimension of aff(P ) is n − 1.

In R
s, an s − 1-dimensional affine hull is called a hyperplane. A hyperplane h divides the space

into two open half spaces. If one side of h is labeled positve and the other negative, h is oriented.

The positive and negatives side of h are denoted h+ and h−, respectively. The closed positive and

negative side are denoted h+ ≡ h ∪ h+ and h− ≡ h ∪ h+, respectively. An oriented hyperplane h can

be represented by an s+1-tuple of reals: There exists a tuple of reals (h0, h1, . . . , hs) ∈ R
s+1 such that

for a point p ∈ R
s, p belongs to h, or h− or h+ if and only if (h0, h1, . . . , hs) · (1, p1, . . . , ps) = 0 or < 0

or > 0. Positive multiples of the tuple represent the same oriented hyperplane.

The tuple representing a hyperplane can be computed by first choosing s affinely independent points



(A1, . . . , As) ⊂ R
s on the hyperplane, and compute a (s + 1)-tuple of s × s determinants:

H(A1, . . . , As) :=




(−1)i

∣∣∣∣∣∣∣∣∣∣

(A0)0 . . . (A0)i−1 (A0)i . . . (A0)s

...
. . .

...
...

. . .
...

(As)0 . . . (As)i−1 (As)i . . . (As)s

∣∣∣∣∣∣∣∣∣∣




0≤i≤s

(2.2)

The convex hull of a set of points generalizes the notion of the line segment between two points:

For a set of points P ⊂ R
s, its convex hull conv(P ) is defined:

conv(P ) := {
∑

p∈P

λpp |
∑

p

λp = 1, λp ≥ 0}. (2.3)

The dimension of a convex hull conv(P ) is the dimension of the affine hull aff(P ).

The convex hull of a finite set of points is called a polytope. The most interesting thing about a

polytope is its boundary, which consists of faces: Given a polytope P, a subset F ⊂ P is a face of P

if there is a hyperplane h such that F = h ∩ P and h− ∩ P = ∅. The faces are themselves polytopes

(of lower dimension). The zero dimensional faces are called vertices; the highest dimensional (s − 1)

faces are called facets. The empty set is also considered a face, of dimension −1. The set of all faces of

polytope P is denoted F(P),

A polytope can be represented by either its vertex set or the set of hyperplanes that support its

facets(one proof can be found in (Ziegler, 1994)):

Fact 2.1.1. Let P be a polytope with vertices V and facet support hyperplanes H. Then,

P = conv(V ) =
⋂

h∈H

h+.

For problems that take points as input, it is natural to use the vertex sets to represent polytopes.

When using vertex sets, it is convenient to speak of “polytope V ”, when V is a set of vertices, but this

can be confusing when it is necessary to choose a point from conv(V ). To avoid such confusion, and

still be brief, the notion [V ] is used, so that [V ] ≡ conv(V ).

2.2 Convex cell complexes and triangulations

A set of polytopes C form a convex cell complex if it satisfies that, for any polytope P ∈ C, all faces of

P also belong to C, and that, for a pair of polytopes P, Q ∈ C, their intersection, P ∩ Q, is a face for

both.
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In R
s, a simplex is the convex hull of any 1 ≤ r ≤ s+1 affinely independent points. It is easy to see

that the set of vertices of a simplex is the same as the point set defining it, and that the convex hull of

any subset of the vertices is its face.

A useful geometric measure for a simplex is its signed volume. Given a simplex with vertex tuple

T = (T0, . . . , Ts) ⊂ R
s, its signed volume d(T ) can be computed as a determinant:

d(T ) =
1

s!

∣∣∣∣∣∣∣∣∣∣

1 (T0)1 . . . (T0)s

...
...

. . .
...

1 (Ts)1 . . . (Ts)s

∣∣∣∣∣∣∣∣∣∣

.

A set of simplices that form a convex cell complex is called a simplicial complex. A member of the

simplicial complex that is not a face of another member in the complex is called inclusion-maximal. A

simplicial complex C can be represented compactly by its inclusion-maximal subset C′, since C can be

generated from C′ by taking all-subsets: C = {S | S ⊆ T, T ∈ C′}.

A simplicial complex whose inclusion-maximal simplices have the same dimension is called a trian-

gulation. The dimension of a triangulation is the dimension of its inclusion-maximal simplices. The

underlying space of a triangulation is the union of its simplices. The following common kinds of trian-

gulations differ mainly in their underlying spaces:

- The face complex of a polytope. For a finite set of points P ⊂ R
s+1 in general position—every

s+1-subset of P is affinely independent, the faces of the polytope conv(P ) are simplices therefore

they form an s-dimensional triangulation whose underlying space is the polytope boundary.

- Point-set triangulation. For a finite set of points P ⊂ R
s that are fully dimensional, a triangulation

whose vertices are precisely P and whose underlying space is the polytope conv(P ) is a point-set

triangulation and, in particular, a triangulation of the points P . Note that a point set triangulation

of P induces a triangulation of the boundary of conv(P ), and if P are in general position, this

induced triangulation is exacly the face complex of the convex hull of P .

- Triangulation of simple polygons. A simple polygon is a 1 dimensional triangulation whose under-

lying space is a topological circle. The triangulation of a simple polygon P is a two dimensional

triangulation that satisfies that the boundary of its underlying space is P.
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2.3 Delaunay diagrams and triangulations

For a finite set of point sites P ⊂ R
s, a Delaunay diagram of P , denoted D(P ), is a convex cell complex

defined as follows: For a set of points f ⊂ P , the polytope conv(f) is a face of the Delaunay diagram

if there is a sphere S such that the points of f are on S and the points of P\f are outside of S. If the

general position assumption is made that no s+2 sites are cospherical, then the diagram is a simplicial

complex, often just called a triangulation.

Since, by definition, every site is a vertex in the Delaunay diagram, a face conv(f) ∈ D(P ) can be

represented by the vertex set f , so that D(P ) is represented as a set of subsets of P .

Delaunay diagrams are related to convex hulls in one dimension higher via a lifting map, introduced

by Brown(1980). To show this relation, let us study the representations of spheres and derive the lifting

map.

Geometrically, a sphere in R
s is the set of points that is some fixed distance away from a chosen

point. Simple algebra shows that for any sphere S, there is a tuple (S0, . . . , Ss+1) ∈ R
s+2, where

Ss+1 > 0, such that a point x ∈ R
s is on, inside or outside the sphere if and only if the dot product

(S0, . . . , Ss+1) · (1, x1, . . . , xs, x · x) = 0, < 0 or > 0. The tuple (S0, . . . , Ss+1) therefore can be taken as

a representation of the sphere; any positive multiple clearly represents the same sphere.

If a tuple S representing a sphere in R
s is regarded as the representation of a hyperplane in R

s+1,

then the sidedness relation between a point and a sphere can be viewed as the sidedness relation of a

“lifted” point against a hyperplane in one dimension higher. Formally, let ` : R
s → R : x 7→ x ·x denote

the unit paraboloid function. Let the caret (̂ ) denote the lifting map that takes R
s to the plot of ` in

R
s+1, i.e. ˆ: R

s → R
s+1 : x 7→ (x; `(x)). Then, for a point p ∈ R

s and a tuple S representing a sphere,

p is inside, on or outside the sphere S if and only if p̂ is on the negative side, on or on the positive side

of the hyperplane represented by S.

By viewing spheres as hyperplanes in one dimension higher, it is easy to see that circumspheres can

be derived by computing a hyperplane after lifting: For a tuple of positively oriented points s+1 points

P = (P0, . . . , Ps) ⊂ R
s, i.e. d(P ) > 0, the tuple H(P̂0, . . . , P̂s) represents the circumsphere through

the points P0, . . . , Ps. The positive orientation condition is to guarantee that last entry in the tuple is

positive so that the computed tuple is a valid representation of a sphere. In general, for a hyperplane

H in tuple representation, call H down-facing if Hs+1 > 0. Then, the set of polytopes

{conv(f) | f̂ = H ∩ P̂ ,H is a down-facing hyperplane,H− ∩ P̂ = ∅} (2.4)
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is preciely the Delaunay diagram. Therefore, the above set can be used as the lifting definition of the

Delaunay diagram.

The lifting definition makes it clear that the Delaunay diagram can be viewed as the “lower half”

of the convex hull P̂ : If H in Eq. 2.4 is allowed to be vertical and up-facing, then the resulting set

includes all the faces of the convex hull conv(P̂ ). The view of Delaunay diagrams as convex hulls imply

that the bound on the size of Delaunay diagrams can be established by the known bound on the size

of convex hulls: By the upper bound theorem (McMullen, 1970), the size of a Delaunay diagram is

O(nds/2e) (there are examples of Delaunay diagrams that achieves the bound). This bound implies that

in three dimension, Delaunay diagrams have size O(n2). However, practitioners have always observed

size O(n) Delaunay diagrams. This discrepency is explained by many theoretical works that make

various realistic assumptions about the input, such as that they are uniformly randomly sampled from

space or from surfaces (Attali et al., 2003; Dwyer, 1991; Erickson, 2002).

The lifting definition also makes it easy to generalize Delaunay diagrams: Replacing the lifting

function ` by any convex function produces another diagram. This generalized Delaunay diagram is

known by different names in slightly different contexts. In the dual setting, it is known as the power

diagram (Aurenhammer, 1987). If general position is assumed, it is a regular triangulation (Edelsbrunner

and Shah, 1996).
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Chapter 3

Engineering Delaunay Tessellation Programs

In implementing an incremental Delaunay triangulation algorithm, there are a number of engineering

decisions that must be made by implementors, including the type of arithmetic, degeneracy handling,

data structure representation, and low-level algorithms. In Section 3.1, I compare how these decisions

are made by a number of publicly available 3D Delaunay triangulation programs. These programs

include my own program tess3, which is designed to work well with atom coordinates data from

biological applications. The details of tess3 is described in Section 3.4. The engineering ideas from

tess3 also goes into my 4D Delaunay diagram program, dd4, which is designed to work well with

time-varying volume data from scientific simulations. The details of dd4 and performance comparison

is presented in Section 3.6.

3.1 Incremental construction of Delaunay triangulation

In R
s, assuming that a set of sites P = {P1, . . . , Pi} are in general position—P has no s + 2-subsets

that are cospherical, the Delaunay triangulation D{P1 . . . , Pi} can be computed from the Delaunay

triangulation D{P1, . . . , Pi−1} as follows:

- Delete all d-simplices in D{P1, . . . , Pi−1} whose circumsphere have Pi inside. These simplices are

said to be in conflict with Pi.

- For each (s − 1)-simplex F in D{P1, . . . , Pi−1} that is a common facet between a d-simplex in

conflict with Pi and one that is not—a hole facet, construct a new simplex F ∪ {Pi}.

Therefore, the Delaunay triangulation of n sites can be constructed by initializing with a single s-

simplex and run the above incremental construction n−(s+1) times. The simplicity of this incremental

construction scheme makes it a popular basis for designing Delaunay triangulation algorithms.



An incremental Delaunay triangulation algorithm usually represents a Delaunay triangulation not

only by its set of d-simplices but also by their neighbor relations: Two d-simplices are neighbors if

they share a common d − 1-simplex. Given the neighbor relations of a Delaunay triangulation, to find

the simplices in conflict with Pi, it is necessary to search only for one simplex that is in conflict with

Pi—the rest can be identified by performing a graph search from that one simplex.

An incremental Delaunay triangulation algorithm usually randomizes the insertion order, i.e., {P1, . . . , Pn}

is a random permutation of the points in P . Randomizing guarantees that the expected cost of the

ith incremental step is the size of D{P1, . . . , Pi} divided by i—the best that can be hoped for. In

particular, in two dimensions, randomizing the insertion order guarantees that the expected cost of an

incremental step is six.

Incremental algorithms differ from each each other mainly in how they locate the first simplex

in conflict with Pi—the point location proecdure—and and how they create the new simplices around

Pi—the update procedure. Let use survey the existing solutions for these procedures.

For point location, if its performance is measured by worst case time, then, in two dimensions,

the fastest procedure uses a history DAG, which takes O(log(i)) expected worst case time (Guibas

et al., 1992); in higher dimensions, the fastest procedure uses linear programming and takes O(i)

expected time (Seidel, 1991). In practice, however, these procedures are often not used because they

are complicated to implement and impose a large computational overhead. Instead, a more practical

procedure locates a point by performing a walk: Start from some initial simplex and keep stepping into

a neighboring simplex until a simplex is found to be in conflict with Pi. There are two main variants

on the walk:

- Straight-line-walk. The walk starts from some point x in the initial simplex and visits the simplices

stabbed by the line between x and Pi. For uniformly distributed points, the expected number of

steps is O(n1/s).

- Remembering-stochastic-walk (Devillers et al., 2002). Suppose that the walk pauses at a simplex

T , to decide the next simplex to step into, choose a facet F of T so that Pi and T are on the

opposite side of the hyperplane aff(F )—there are at most d of them—and step to the neighboring

simplex across F . The walk always terminates by the acyclic theorem by Edelsbrunner (1989).

For the update step, there are mainly the following two ways:

- Bowyer-Watson (Bowyer, 1981; Watson, 1981). The update is performed in three phases: Deleting

the simplices in conflict; creating the new simplices; and establish the neighboring relations among

the new simplices.
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- Flipping (Edelsbrunner and Shah, 1992). In two dimensions, for two neighboring triangles {a, b, u}

and {a, b, v} in a triangulation such that the quadrilateral [a, b, u] ∪ [a, b, v] is convex, a flip

operation replaces the triangles {a, b, u} and {a, b, v} by {u, v, a} and {u, v, a}. To perform the

update procedure with flips, locate an old Delaunay triangle that contains Pi, split this triangle

into three new triangles abutting on Pi, and keep applying flip operation to a neighboring pair of

new and old triangles whenever the old triangle is in conflict with Pi. This process is guaranteed

to terminate in a number of steps proportional to the number of triangles incident on Pi in

D{P1, . . . , Pi}. In higher dimensions, flipping can be defined analogously and the result on the

number of flips holds.

3.2 Exact predicate computation

In geometric computations, a predicate is an algebraic expression whose sign is used by an algorithm to

make decisions. The most common predicate used for Delaunay triangulation is the InSphere predicate.

For a set of s+1 points {A0, . . . , As} ⊂ R
s, the InSphere predicate is some expansion of the determinant

d(Â, . . . , Âs), which is a polynomial of degree s + 2 in terms of the input coordinate.

It is important that the signs of the predicates are computed correctly, since an error can cause a

program to make a wrong branching decision and, from that point on, behave unpredictably. Unfortu-

nately, on one hand, the fast floating point arithmetics commonly built into the computer hardwares

have round-off errors therefore can not guarantee that the signs are always evaluated correctly; on the

other hand, exact arithmetics—such as those provided by the GMP library—are slow. To use the fast

floating point arithmetic in a way that still guarantees the correct evaluation of predicates, two main

approaches are often used:

- Floating point filter. Let f denote the predicate expression. Replacing the arithmetic operation in

f by the floating point operation gives another expression f̃ . Then, |f̃ − f | represents the round-

off error from floating point arithmetics. A floating point filter is an upper bound on |f̃ − f |.

If a filter B is derived for |f̃ − f | before a program run, then during the program run, every

evaluation f̃ is compared with B: If f̃ < B, then the sign of f̃ must be correct; otherwise, an

exact arithmetic operation is used to evaluate the sign. There are several variants on the floating

point filters, depending on how much run time information is used. In particular, the filters that

do not use any run time information are called static filters (For example, the filters used by the

computational geometry library CGAL (Melquiond and Pion, 2005)).
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- Exact algorithms. Although the exact evaluation of a degree k polynomial requires k times the

number of input bits, the exact evaluation of the sign of the polynomial can require less. Examples

include the algorithms by Clarkson (1992) and Avnaim et al. (1997).

3.3 Handling of degeneracies

Delaunay triangulation is well defined only after assuming general position—the input point set does not

contain cospherical (s + 2)-subsets, or degeneracies. However, this assumption is frequently violated in

the real world. For example, in a set of points positioned on an integer grid, every subset around a grid

cell is cospherical. In order to compute a triangulation, the degeneracies must be removed. This can

be done either by actual perturbation of the coordinates or by symbolical perturbation, which perturbs

the input coordinates by functions of ε that goes to zero as ε goes to zero. Of these two methods,

the symbolic perturbation is superior: It guarantees that no degeneracy exists after the perturbation

and its alteration on the input data is only infinitesmal. The simplest symbolic perturbation can be

performed implicitly during an incremental construction: At an incremental construction step for a

new point Pi, if Pi is found to be a sphere, simply treats Pi as if it is inside (or outside) the sphere.

Since the perturbation depends on the order of the input points, the output of a triangulation program

can be different for different ordering of the input, which might not be desirable for some applications.

For these applications, two alternatives are available:

- Perturbing the world (Alliez et al., 2000). An infinitesimal affine transform is applied to the

coordinate system so that cospherical points disappear.

- Simulation of simplicity (Edelsbrunner and Mücke, 1990). The coordinates of each input point is

translated by symbolic expressions defined with respect to the index of the point. The indexing

of the points therefore can be used to control the perturbation.
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Figure 3.1: Perturbing
b to b′ produces the
shaded flat triangle.

A common issue of the perturbation scheme is that it might produce ar-

tificial flat simplices—simplices whose actual volume (without perturbation)

is zero, as illustrated in Figure 3.1. For example, Mücke (1998), using the

simulation-of-simplicity perturbation, observed that for 3D grid points, more

than one third of the tetrahedra were flat. One ad-hoc way to avoid flat

simplices is to be vigilant in the incremental update and never create them,

but this requires special cases in the code. Devillers (2003) suggests avoiding flat simplices by a simple

“vertical” perturbation scheme. Recall that Delaunay triangulation can be considered more generally

as a regular triangulation defined by first lifting the points to one dimension higher. If the perturbation

is applied only to the lift coordinates, the resulting regular triangulation can not have flat simplices

because the input coordinates are not altered. This vertical perturbation, however, does not completely

resolve the issue, due to the way the boundary of Delaunay triangulation is usually handled. I will fully

resolve this issue in Chapter 4.

3.4 Tess3: A Delaunay triangulation program for protein molec-

ular data

Biological applications often model the atoms of a protein molecules as points in R
3 and analyze

the geometric structure of a protein molecule by first computing the Delaunay triangulation of its

atoms (Richards, 1974; Liang et al., 1998). This motivates me to engineer a Delaunay triangulation

program, tess3, that is designed to be fast for protein molecular data.

All available protein molecule data sets are stored in the PDB (Protein Data Bank) (Berman et al.,

2000). They have the following characteristics:

- Even distribution. The atoms in a protein are well-packed. Therefore, the points representing the

atoms tend to be evenly distributed, with physically-enforced minimum separation distances.

- Limited precision. By PDB file format, atom coordinates have an 8.3f field specification in units

of Ångstroms; they may have three decimal digits before the decimal place (four if the number is

positive), and three digits after. Thus, an atom coordinate has at most 24 bits, with differences

between neighboring atoms usually needing 12 bits. Since the experimental techniques do not

give accuracies of thousandths or even hundredths of Ångstroms, these limites may be further

reduced.
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Since the coordinates have limited precision, I decide to see if it is possible to stretch the use of

standard IEEE 754 double precision floating point arithmetic (1985) to evaluate predicates, which can

produce errors because of round-offs. Specifically, I try to partition the points by the coordinate bits

to reduce the precision needed to evaluate predicates. Because the data are evenly distributed, I try

to speed up the point location procedure—the bottle neck of an incremental construction—by ordering

the points in a spatially coherent manner. The rest of this section describe these techniques in details

and show results of testing the program against all available PDB files.

3.4.1 Bit-leveling and Ordering with Space filling curves

Point location, if not implemented carefully, becomes the bottleneck in 3d Delaunay construction. In

the literature, algorithms designed for optimal worst-case performance may use randomization to avoid

“bad” point orders and may maintain separate point locations structures on top of the tessellation.

With the evenly distributed points encountered in practice, it is simpler and more efficient to

spatially sort the points and use some form of walk in the tessellation from a recently created tetrahedron

to a tetrahedron or sphere containing the new point. By spatially sorting the input points, the “cache

coherence” of an incremental construction program is also improved. This is particularly important

considering the memory hierarchies of modern computer architectures and the large size of the data

input frequently encountered in practice, such as point clouds from laser scans.

There is a tension between wanting to insert points near previously inserted points, so that the walk

is short, and wanting to insert points evenly across space so that local clusters do not increase the size

of the tessellation by creating long, skinny tetrahedron. This tension was seen in the construction “con

BRIO” of Amenta et al. (2003), which first partition input randomly to exponentially larger sets, and

order points spatially within each random partition.

I partition the input points by an approach that I call “bit leveling,” which is designed to reduce

the number of floating point bits needed to perform the computations correctly. While computing the

bounding box of the input sites P , I take histograms of the 8-bit suffixes for the sites’ x, y, and z

coordinates. Then we determine the most common 1-bit suffix for all three coordinates, and the most

common k-bit suffix, given the common (k−1)-bit suffix. The level of a point is the number of common

suffixes it matches, from 0 to 8. To avoid the histogram computation, simply assign the level k of a

point p as the minimum number of trailing zero bits in px, py, and pz. Note that if the least-significant

coordinate bits are random, one would expect 7/8 of the points to appear at the bottom level and 1/8

to be passed up. If more are passed up, that means more correlation among their coordinates. During
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the incremental Delaunay computation, the levels are inserted in the reverse order, i.e., the points on

the 0th level are inserted first and those on the 8th level last.

Bit leveling ensures that all points inserted in levels k and above share k least significant bits; in the

InSphere() computation, these will be subtracted off from the mantissa, so that fewer bits of precision

are needed for correct evaluation. At the lower levels, if the assumption of even distribution of points is

valid, then one can hope that the InSphere predicate is performed on nearby points, so that higher-order

bits will be subtracted off.

Within each level, tess3 orders the input points by bucketing them into a

Figure 3.2: Hilbert
curve for an
8 × 8 × 8 grid.

grid so that only a small number of points remain in each grid cell and then

ordering the grid cells. I experimented with a number of grid cell orderings, which

includes row-major ordering, Z-ordering, Gray code (Gray, 1953) and Hilbert

curve (Figure 3.2), which is known to have good locality-preserving properties

when used for indexing a grid (Moon et al., 2001; Niedermeier et al., 2002). I

found that indeed, the Hilbert curve gives the best result, but the winning margin

is small. Figure 3.3 shows the running time comparison using 10 sets of randomly generated 100K points

and five ordering, as one typical example. Bit leveling was used with each example.
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Figure 3.3: Running times of incremental Delaunay tessellation for ten input sets of 100K randomly
distributed points under four spatial orders: Hilbert, row-major, Gray, Z-order and random order

3.4.2 Selected implementation details

For point location, tess3 uses the remembering stochastic walk ( defined in Section 3.1). tess3 uses

Bowyer-Watson update, so the point location walk stops when it finds a tetrahedron whose sphere has

p inside. I have observed that the walk performs remarkably well in practice: With spatial sorting, it

usually terminates after 2-3 steps.

I speed up point location in tess3 by storing the sphere tuple for each tetrahedron. Even though

17



spheres are not tested too many times in our point location, it is still faster to compute and store

the sphere equations so the point-in-sphere test becomes a simple dot product. I have compared

implementations of tess3 with and without storing sphere equations and found that the version storing

spheres is faster by about 20 percent.

I notice that the InSphere computations can be reused in the point location walk. Consider a single

step of the walk that goes from the tetrahedron t1 = {a, b, c, v1} to tetrahedron t2 = {a, b, c, v2}, whose

spheres, in tuple representation, are S1 and S2, respectively. Suppose that point p needs to be tested

against the plane through aff{a, b, c}. Let q1 and q2 be the lift coordinates of v1 and v2. An equation

for H is q1(S2) − q2(S1). Therefore, the sign of the orientation determinant of p with respect to H

can be computed by computing the weighted difference of the two already-computed InSphere values:

q1(S2 · p)− q2(S1 · p). This is cheaper than performing the determinant computation with {a, b, c} and

p. When the spheres of t1 and t2 are identical, i.e., S1 and S2 differ only by a multiple, the vertices

of t1 and t2 are in degenerate position and a determinant computation has to be performed, but this

happens rarely enough that tess3 simply chooses the side randomly.

To order a set of points with a Hilbert curve, tess3 subdivides a bounding cube into (2i)3 boxes

and reorders the points using counting sort on the index of the box on the Hilbert curve that contains

each point. Points in a box can be reordered recursively until the number of points in each subbox is

small. Parameter i is chosen large enough so that few recursive steps are needed, and small enough

that the permutation can be done in a cache-coherent manner. We find that having (23)3 = 512 boxes

works well; ordering 1 million points takes between 1–2 seconds on common desktop machines.

3.4.3 Accuracy limitations

Since tess3 uses floating point arithmetics to evaluate predicates, there is no guarantee that the output

is a true Delaunay triangulation. In particular, in PDB data, the coordinates have 16 bits—more than

the 10 bits that can be computed exactly with double precision floating point arithmetic. I therefore

decide to measure the amount of errors in the output, by running tess3 against all the 20393 files

present in the PDB at the time of the experiment. We measure two types of errors: the percentage

of tetrahedra that are not positively oriented and the percentage of tetrahedra whose spheres are not

empty. I find that, of all these files, there is only one for which tess3 produced errors, namely the PDB

file 1H1K, shown in Figure 3.4. In the tessellation for 1H1K, 266 tetrahedra, out of the total 263K,

have non-empty sphere. The reader can see in the figure that the assumption of even distribution

is egregiously violated. This violation is explained by the comments in the 1H1K file: “This entry
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corresponds to only the RNA model which was built into the blue tongue virus structure data. In order

to view the whole virus in conjunction with the nucleic acid template,

Figure 3.4: The atoms from the PDB file 1H1K. The tetrahedra drawn are those whose spheres are not empty.

To further study the errors in the output of tess3, I generate random input points with fixed

number of bits and measure the amount of errors in the output in relation to the number of input

coordinates bits. The findings are reported in table 3.1. From this table, I observe that the bit number

threshold beyond which tess3 produces large number of Delaunay errors is 16, but the percentage of

errors observed by the floating point auditing is quite small, even when the bit number is large. I also

observe that a large portion of the errors in the incorrect output would not be detectable if the auditing

is implemented with floating point arithmetic. Perhaps a triangulation that can be viewed as Delaunay

by floating point arithmetic can be useful for applications that do not require the exact output.

# of bits ≤ 16 17 18 19 20 21 22 23

exact
Delaunay 0 0.1 15.5 81.9 96.7 98.9 99.2 99.3

orientation 0 0 0 0 0 0 0 0

float
Delaunay 0 0 0 0 0 0 0 0

orientation 0 0 0 0 0 0 0 0

Table 3.1: The percentage of Delaunay tetrahedra with neighboring points inside or on their spheres
using 100K random points as input.

I investigate how much ordering points along a Hilbert curve and bit-leveling helps speed up tess3

and make it more resistant to numerical problems. Figure 3.5 shows a log-log plot of the percentage

of InSphere tests that contain round-off errors with three different orderings: random, Hilbert ordering

only, and Hilbert ordering combined with bit-leveling. The percentages of errors are affected by both

the number of coordinate bits and the number of points in the input; the plot illustrates variations

in both of these controls. Given an input with a certain number of coordinate bits, one can see that

the combined ordering has the lowest amount of numerical errors—and the difference becomes more

dramatic as the number of input points increases.

Figure 3.5 shows a log-log plot of the percentage of InSphere tests that contain round-off errors
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Figure 3.5: Semilog plot showing percentage of InSphere tests with round-off errors by number of points n

and number of coordinate bits, for three orderings. A dot is plotted for each of 10 runs
for given n and bit number, and draw lines through the averages of 10 runs.

with three different orderings: random, Hilbert ordering only, and Hilbert ordering combined with bit

leveling. The percentages of errors are affected by both the number of coordinate bits and the number of

points in the input; the plot illustrates variations in both of these controls. Given an input with a certain

number of coordinate bits, we can see that the combined ordering has the lowest amount of numerical

errors—and the difference becomes more dramatic as the number of input points increases. It should

be emphasized that the InSphere errors here are observed during the incremental construction, not the

errors reported by the auditing of the output, which do not appear until the number of coordinate bits

reaches 17.

3.5 Comparison of five Delaunay triangulation programs

I compare the implementations of five 3D triangulation programs:

- cgal (Boissonnat et al., 2002; Devillers, 1998) is a C++ geometric algorithm library that includes

a Delaunay triangulation 3 class that encapsulates functions for Delaunay triangulation. It

also supports vertex removal (Devillers and Teillaud, 2003).

- hull by Clarkson (1992) is a convex hull program for dimension up to four, which inclues routines

for computing Delaunay triangulations.
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- qhull (Barber et al., 1996), initially developed at the geometry center of University of Minnesota,

is a popular program for computing convex hulls in arbitrary dimensions.

- pyramid by Shewchuk (1998a) is designed to construct triangulation of a solid shape. In addition

to taking points as input, it also can take line segments and triangles and compute a constrained

Delaunay triangulation which include the line segments and triangles as faces.

- tess3 is engineered to work with protein molecular data. Its implementation is described in

Section 3.4.

There are many other programs that can compute the Delaunay triangulation: deltri by Edels-

brunner (1994), nnsort by Watson (1981; 1992) and Proshape (Koehl et al., 2002), to cite just a few.

The above programs are selected because of their comparable speeds and their interesting implementa-

tion choices. All of these programs constructs a Delaunay triangulation incrementally, as described in

Section 3.1, but make different implementation choices regarding point location, update, and predicates.

In Section 3.5.1, I compare the implemetation choices of the programs, ending with a summary table

that allow side-by-side comparisons. In Section 3.5.2, we compare the performance of these program.

The speed of computer programs in general are strongly affected by whether they make coherent

memory references: A sequence of memory references are coherent if adjacent ones in the sequence

reference nearby memory addresses. Therefore, randomizing the input points, as often done by a

theoratically optimal algorithm to defeat worst time cases, often lead to poor performances. This

observations means that, for Delaunay triangulations, inserting points in a spatially coherent manner—

by ordering them along a space filling curve, for example—often improves the speed of the program.

Amenta, Choi and Rote (2003) study how their Biased Randomized Insertion Order (BRIO) preserves

enough randomness in the input points so that the performance of a randomized incremental algorithm

is unchanged but orders the points by spatial locality to improve memory coherence. In Section 3.5.2,

I compare how their ordering improve the speed of Delaunay triangulation against other ordering such

as using space filling curves.

3.5.1 Implementation Comparison

For representation of Delaunay triangulations, all five program use variations of the basic representation

discussed in Section 3.1, i.e., they store the set of tetrahedra and their neighboring relations. The

difference of the program are how they refine the neighbor relations to establish correspondence between

vertex references—or corners—of neighboring tetrahedra. For two neighboring tetrahedron T = F ∪{v}
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and T ′ = F ∪{v}′, vertices v and v′ are the opposite corners of T and T ′. Knowing the opposite corners

of neighboring tetrahedra allow their shared triangle to be immediately recovered. It is also useful to

know, for operations such as cycling around an edge, how the rest of the corners of T and T ′ correspond,

i.e. given vertex v in the shared triangle F , which corners in T and T ′ reference v. pyramid and tess3

have special ways to do this: pyramid stores four bits with each opposite corner pointer to indicate

the orientation of the neighboring tetrahedron and location of the vertices of the shared triangle. tess3

uses a representation that is a refinement of the structure of Paoluzziet al. (Paoluzzi et al., 1993) or

Kettner et al. (2003): Each tetrahedra stores its vertex references as an array in lexicographic order,

except that the first two may be swapped to keep the orientation positive. The correspondence between

vertices in neighboring tetrahedra, where vertex 0 ≤ i < 4 is replaced by vertex at position 0 ≤ j < 4,

can be recorded in a table indexed by i, j.

The boundary triangles in a Delaunay triangulation cause special cases to appear. All the programs,

except, pyramid, handle the boundary by using a point at infinity e, so that for every triangle {a, b, c}

on the boundary, there is a tetrahedron {a, b, c, e}.

In theory, point location is not the bottleneck for devising optimal 3D Delaunay algorithms. In

practice, however, the size of the neighborhood updated by inserting a new point is close to constant,

and point location to find the tetrahedron containing a new point p can be more costly than updating

the triangulation if not done carefully.

hull and qhull implement the two standard ways to perform point location in randomized incre-

mental constructions of the convex hull: Hull maintains the history of all simplices, and searches the

history DAG to insert a new point. QHull maintains a conflict list for each facet of the convex hull

in the form of an outside set, which is the set of points yet to be processed that can “see” the facet.

These are equivalent in the amount of work done, although the history dag is larger, and the conflict

list requires that all points be known in advance.

CGAL implements the Delaunay hierarchy scheme invented by Devillers (2002). It combines a hier-

archical point location data structure with the remembering stochastic walk. The Delaunay hierarchy

first creates a sequence of levels so that the 0th level is P , and each subsequent level is produced by

random sampling a constant fraction of the points from the previous level. Next, Delaunay triangu-

lation is created for each level, and the tetrahedra that share vertices between levels are linked. To

locate p, at each step, a walk is performed within a level to find the vertex closest to p. This vertex is

then used as the starting point for the next step. The hierachical triangulation makes the asymptopic

point location time to be Ø(log(n)), which is optimal, while the walk, along with appropriately chosen
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parameter for the sizes of the levels, allow the space used the data structure to be small.

pyramid uses the jump-and-walk introduced by Mücke et al. (1996). To locate p in a mesh of m

tetrahedra, it measures the distance from p to a random sample of m1/4 tetrahedra, then walk from the

closest of these to the tetrahedron containing p. Each step of the walk visits a tetrahedron t, shoots a

ray from the centroid of t towards p, and go to the neighboring tetrahedron intersected by the ray. In

the worst case, this walk may visit almost all tetrahedra, but under some uniformity assumptions the

walk takes O(n1/4) steps, which is an improvement over O(n1/3) steps that a walk would have required

without the initial sampling.

Contrasting the asymptotic behavior of the Delaunay hierarchy and the jump-and-walk, it should

be noted that the difference between (n1/4) and log(n) is small for practical value of n; the Delaunay

hierarchy, however, makes no assumption about the point distribution.

CGAL has many options for evaluating predicates exactly. It can use interval arithmetic (Pion,

1999), without or with static filtering (Devillers and Pion, 2003) or an adapted filtering that guarantees

correctness for integers of no more than 24 bits. We list these options in increasing speed, though static

filtering is usually recommended because it makes no assumption about the input and is still quite

competitive in speed.

hull uses a low bit-complexity algorithm for evaluating the sign of an orientation determinant that

is based on Graham-Schmidt orthogonalization. The idea is that since only the sign of the determinant

is important, the determinant can be transformed so far as its sign does not change. The implementation

uses only double precision floating operations and is able to compute the signs of InSphere determinants

exactly for input whose coordinates have less than 26 bits.

pyramid uses multilevel filtering (Shewchuk, 1996a) and an exact arithmetic to implement its

geometric tests.

qhull and tess3 use floating point operations exclusively, and are written so that they do not

crash if the arithmetic is faulty, but they may compute incorrect structures. Qhull checks for structural

errors, and can apply heuristics to repair them in postprocessing. tess3 assumes that input points

have limited precision and are well distributed, and uses bit-leveling and Hilbert curve orders to try to

reduce the precision needed to evaluate predicates (see Section 3.4 for details.) Since a tetrahedron’s

sphere can be used repeatedly in the InSphere predicate, tess3 stores spheres so that the InSphere

predicate can be expressed as a dot product instead of a determinant.

The update step in the Delaunay triangulation can be performed either in the Bowyer-Watson

style or with flipping. All the programs, except pyramid, chooses the Bowyer-Watson style. tess3
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uses Bowyer-Watson update because have observed in our experiments that flipping assigns neighbor

pointers to twice as many tetrahedra, since many tetrahedra created by flips with a new vertex p are

almost immediately destroyed by other flips with p.

To handle degeneracies, qhull allows the user to select a policy when the input contains degeneracies

or the output contains errors: either it perturbs the input numerically and tries again, or it attempts to

repair the outputs with some heuristics. CGAL uses the vertical perturbation scheme (Devillers and

Teillaud, 2003). The perturbation of a point is determined by its index and guarantees that there are

no flat tetrahedra. tess3 also perturbs the points vertically, but the perturbation is implicit.

Program flip? point location exact? caching
spheres?

degeneracy prog.
lang.

CGAL (version
2.4)

no Delaunay hierarchy yes no perturbing E3
C++

hull (obtained in
3/2004)

no history DAG yes yes perturb points into hull
in E4

C

pyramid (ob-
tained in 3/2004)

yes jump-and-walk yes no Perturb points into hull
in E4. Remove flat tetra-
hedra by post-processing

C

qhull (version
2003.1)

no outside set no no Perturb points into hull
in E4. Remove flat tetra-
hedra by post-processing.

C

tess3 (last re-
vised in 9/2003)

no Hilbert ordering,
zig-zag walk

no yes Perturbation in E4 with
no flat tetrahedra.

C

Table 3.2: Program comparison summary.

3.5.2 Performance comparison

This section reports experiments running the five programs on randomly generated points and on PDB

files: First on running times; Then, because tess3 uses only standard floating point arithmetic, on the

(small number of) errors that it makes.

At the time of testing, I used the latest available codes of these programs. hull and pyramid

codes were given to us by the authors. CGAL and Qhull codes were downloaded from their web sites.

The latest version of CGAL in April, 2004 is 3.0.1; however, I found that it is more than two times

slower than CGAL 2.4 due to compiler issues. (Sylvain Pion, an author of the CGAL code, has found a

regression in the numerical computation code generated by gcc that probably explains the slow-down.)

I therefore proceed to use CGAL 2.4. Qhull 2003.1 is the latest version.

The plots in Figures 3.6 and 3.7 show the running time comparisons using random data and PDB

data as input, respectively, using a logarithmic scale on the x axis and the running time per point in

micro-seconds on the y axis. Hull’s running time is much slower than the rest of the programs, with
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Figure 3.6: Running time of the programs with 10 bit random points.

time per point between 0.4–0.6 ms. In Figure 3.7, I omitted it so other plots can be compared more

easily. The timings are performed on a single processor of an AMD Athlon 1.4GHZ machine with 2GB

of memory, running Red Hat Linux 7.3. Using time per point removes the expected linear trend and

allows easier comparison across the entire x-coordinate range. Lines indicate the averages of ten runs;

individual runs are plotted with markers. it should also be mentioned that CGAL’s running time seems

to be affected most by compiler changes, with the slowest as much as 2.5 times slower than the fastest

(the timing plots are produced with a version that is roughly 1.5 times slower than the fastest I have

seen).

I generated random data by choosing coordinates uniformly from 10-bit non-negative integers. This

ensures that the floating point computations of both Qhull and tess3 are correct. For the PDB data,

for each input size n that is indicated on the x-axis, I try to find 10 files whose number of atoms are

closest to n, though there is only one (with the indicated name) for each of the three largest sizes.

There are a few immediate conclusions: The ordering of programs, tess3 < CGAL (fp) < pyramid

(fp) < pyramid(ex) & CGAL < Qhull < hull, is consistent, although hull is particularly slow with the

PDB files in comparison and is therefore not shown. In Figure 3.6 and 3.7, one can see a clear penalty

for exact arithmetic, because even when an exact arithmetic package is able to correctly evaluate a

predicate with a floating point filter, it must still evaluate and test an error bound to know that it was

correct. Time per point shows some increase for everything but CGAL and tess3, which I believe is

due to point location.
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Figure 3.7: Running time of the programs with PDB files.

To further explain the difference in these programs’ running time, I used the gcc profiler to de-

termine the time-consuming routines. There are caveats to doing so; function level profiling turns off

optimizations such as inlining, and adds overhead to each function call, which is supposed to be factored

out, but may not be. (This affects CGAL the most. With its templated C++ functions, I could not

get reasonable profiler numbers, so I also tried to time its optimized code, but this has problems with

clock resolution.) The table shows some of our findings for running the programs against the same 100k

randomly generated points with 10 bit coordinates.

The “total created spheres/tetra” column shows that flipping must initialize many more tetrahedra.

“MakeSphere” and “InSphere” columns, which record time to make sphere equations and test points

against them, indicate that there are speed advantages to using native floating point arithmetic for

numerical computations. Even simple floating point filters must check error bounds for computations.

Note that for the programs that do not cache spheres, the InSphere test is a determinant computation.

The “Update” column indicates the time to update the tetrahedral complex and does not include any

numerical computation time. The “Point Location” column indicates the percentage of time a program

spends in point location (for tess3, this number includes the time for sorting the points along the

Hilbert curve). The ”Memory” column indicates the total amount of memory the programs occupy in

the end.

As can be seen from the table, tess3 benefited particularly from its fast point location. Caching
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total created MakeSphere InSphere (µs) Update Point Location Memory

spheres/tetra (µs) fl. pt. exact (µs) fl. pt. exact (MB)

CGAL

(2.4)
2,760,890 – 0.06p

0.24t
18.5p

1.72t
0.1p

16.1t
21.8%p

22.1%t
25.3%p

27.9%t
39

hull 2,316,338 10.02 0.14 – 2.40 – 73.1% 401

pyramid 5,327,541f

2,662,496n
- 0.21 0.72 2.44 50.2% 38.1% 57

qhull

(2003.1)
2,583,320 0.65 0.12 > 4.39 9.0% – 172

tess3 2,784,736 0.13 0.04 – 2.42 3.88%h

0.43%w
– 77

Table 3.3: Summary of timings and memory usage, running the programs against the same 100k
randomly generated points with 10 bit coordinates. Notes: For pyramid tetrahedra creation, numbers
marked f include all initialized by flipping and marked n include only those for which new memory is allocated—
equivalently, only those not immediately destroyed by a flip involving the same new point. For CGAL timings,
p indicates profiler and t direct timing. For tess3 point location, h includes the preprocessing to order the
points along a Hilbert curve; w is walk only.

sphere equations also helped speed up the numerical computation. A version of tess3 that does not

cache sphere equations is about 20 percent slower. I observed some bottlenecks of the other programs:

qhull’s data structure is expensive to update and the code contains debugging and option tests; Hull’s

exact arithmetic incurs a significant overhead even when running on points with few bits; pyramid

was bogged down mainly by its point location, which samples many tetrahedra.
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Figure 3.8: Running time of the CGAL Delaunay
hierarchy using random, BRIO and Hilbert point orders.

I close by comparing BRIO insertion order with a Hilbert curve order. A BRIO order first partitions
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the input points into O(log n) sets as follows: Randomly sample half of the input points and put them

into the first set; repeatedly make the next set by randomly sampling half of the previous set. Order

the sets in the reverse order they are created. Finally, the points within each set are ordered by first

bucketing them with an octree and traverse the buckets in a depth-first order. Figure 3.8 compares

the running times of CGAL, which uses a randomized point location data structure, under the BRIO

and Hilbert insertion orders. The Hilbert curve is faster on average and has a smaller deviation. This

suggests that for input points that are uniformly distributed, adding randomness into the insertion

ordering perhaps will only slow down the program.

3.5.3 Conclusion

I have surveyed five implementations of 3D Delaunay triangulation and compared their speed on PDB

files and randomly generated data. The experiments show that Hull and QHull, the two programs that

solve the more general problem of convex hull construction in 4D, are slower, penalized by not doing

point location in 3D. Amongst the other three programs, tess3 is the fastest because its point location

is carefully engineered for input points that are uniformly distributed in space. Exact arithmetic with

filtering is quite efficient, as demonstrated by CGAL and pyramid, but still incurs an overhead. I show

that it is possible to have an implementation that works well even when straightforward bit-complexity

analysis suggests otherwise.

3.6 Computation of Delaunay Diagrams on Points from 4d

Grids

Time-varying volume data, from scientific computations or engineering simulations, are produced on

space-time grids that may range in size from 303×150 to 10243×1000 or larger. To visualize the data, one

may wish to use the following computational pipeline that invokes the Delaunay triangulation: sample

the grid points irregularly, perhaps using more samples in regions with special interests; Delaunay

triangulate the sample locations to interpolate the samples; finally, for display, extract isosurfaces from

the triangulation.

In order to use the Delaunay triangulation, the degeneracies in the input must be handled. A

common approach to handle the degeneracies is to perturb the input sites infinitesimally so that all

degeneracies disappear. An alternative approach, one suggested here, is to compute the Delaunay

diagram exactly without perturbation. Because the cells in a Delaunay diagram are generally not
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simplicial, they must be further triangulated to support piecewise linear interpolation. For example,

they can be triangulated with barycentric subdivision, which is particularly simple and symmetrical. At

first, the requirement for “post-processing” non-simplicial cells seem to be a shortcoming of computing

Delaunay diagrams. However, it also can be seen as an advantage: instead of letting the triangulations

of the cells be induced by an perturbation policy, the user directly control the triangulations. When

the input contains many degeneracies, there is another advantage: The size of the Delaunay diagram

is much smaller than that of the Delaunay triangulation of the perturbed sites. The sites from time-

varying volume data are highly degenerate, because they contain many sets of points sampled from the

corners of a grid cell, which are cospherical. Figure 3.9 demonstrates this by plotting the size of the

the Delaunay diagram and the size of the Delaunay triangulation over a sequence of input; the input

sequence is produced by randomly sampling an increasing fraction of a 10 × 10 × 10 × 10 grid in order

to mimic the time varying volume data. The degenerate characteristics of time-varying volume data

motivated new techniques to compute the Delaunay diagrams in four dimensions. In Section 3.6.4, I

give a simple incremental algorithm for constructing the Delaunay diagram that maintains only the

cells and their neighboring relations.
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Figure 3.9: Growth in the number of data structure elements against the number of points inserted in ran-
domized incremental construction for the Delaunay diagram (gray) and Delaunay triangulation (black). The
number of data structure elements is the sum of cells, faces and vertex references

Our geometric predicates are based on representation of spheres as tuples as opposed to determi-

nants. In d dimensions, our predicates and sphere construction use O(d) arithmetic operations, which

compares favorably with the O(d!) arithmetic operations used for computing determinants. In four

dimensions, the actual running time advantage is not significant. Nonetheless, I choose to use the

sphere-based approach because it simplifies the implementation. We describe our sphere construction

in Section 3.6.3.

I have implemented our algorithm in C++. Section 3.6.5 shows experimental results with my

program.
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3.6.1 Preliminaries

I review Delaunay diagrams and representations of points and spheres.

The Delaunay diagram is a collection of convex hulls, defined with empty spheres. These convex

hulls form what is known as a cell complex (Boissonnat and Yvinec, 1998, page 245) and the convex

hulls in a cell complex are called faces. The set of faces of a cell complex has the property that the

intersection of any subset belongs to the set. Faces of the highest dimension are called cells; faces of the

second highest dimension are called facets; and faces of the third highest dimension are called ridges.

The faces of a Delaunay diagram of a finite set of sites partitions the convex hull of the sites. A facet

in the Delaunay diagram is always the intersection of two neighboring cells, except for those on the

boundary. To avoid the boundary, it is convenient to place a sentinel point infinitely far away from the

sites and define “infinite spheres” through it so that the Delaunay diagram partitions the whole space.

For the sentinel point, I choose to use the faraway point introduced in Chapter 4. The faraway point

requires no special treatment in the code other than one conditional in the point-sphere sidedness test.

To represent a point, I use lifting (Brown, 1980) and homogenizing (Riesenfeld, 1981). I represent

a point p by a (d + 2)-vector [p0, . . . , pd+1], where [p1, . . . , pd] are the Cartesian coordinates, p0 = 1 is

the homogenizing coordinate, and pd+1 =
∑d

i=1 p2
i is the lifting coordinate.

Delaunay triangulation often implements the point-sphere sidedness test with the Orientation de-

terminant and the InSphere determinant. Given a simplex represented with by a tuple of vertices,

v0, . . . , vd, the Orientation determinant computes the signed volume of the simplex; if the sign is pos-

itive, the simplex is positively oriented. Given a positively oriented simplex, the sign of the InSphere

determinant gives the sidedness of a point p with respect to the sphere of the simplex.

Orientation(v0, . . . , vd) InSphere(v0, . . . , vd; q)

:=

∣∣∣∣∣∣∣∣∣∣

v0
0 . . . v0

d

...
. . .

...

vd
0 . . . vd

d

∣∣∣∣∣∣∣∣∣∣

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣

v0
0 . . . v0

d v0
d+1

...
. . .

...
...

vd
0 . . . vd

d vd
d+1

p0 . . . pd pd+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

I implement the point-sphere sidedness test more directly using spheres. A sphere S is represented

by a (d+2)-vector such that S ·p = 0 for all points on the sphere, with the sign chosen so that S ·p < 0

for all points inside the sphere. Any positive scalar multiple represents the same sphere. Planes can be

considered and represented as special spheres whose last entry is zero.

A sphere can be constructed from a tuple of positively oriented d + 1 affinely independent points
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(v0, . . . , vd) by using the minors of the InSphere determinant InSphere(v0, . . .

, vd;x) with respect to a symbolic point x.

Alternatively, a sphere can be constructed from spheres by linear combinations. The affine combi-

nation of two spheres, λS1 + (1 − λ)S2 for real λ, is a one parameter family of spheres called a pencil

of spheres. The linear combination of two spheres, βS1 + γS2 for reals β and γ that do not sum to

zero, is actually the same pencil—since scalar multiples of a tuple represent the same sphere, one can

set λ = β/(β + γ) and 1 − λ = γ/(β + γ).

When two distinct spheres, S1 and S2, intersect in a lower-dimensional sphere C = {p | S1 · p =

0, S2 ·p = 0}, then all spheres in their pencil contain C. Each point v 6∈ C is on a unique (up to a scalar

multiple) sphere Sv in the pencil:

Sv = (S1 · q)S2 − (S2 · q)S1. (3.1)

It is easily checked that Sv · v = 0, and that Sv · p = 0 for all p ∈ C.

Let e be the n + 1-vector [0, . . . , 0, 1]. The plane that contains the intersection between two spheres

is

P12 = (S1 · e)S2 − (S2 · e)S1. (3.2)

3.6.2 Arithmetic complexity and algebraic degree

Computers perform computations on integers with limited precision. Therefore, it is important to

analyze the largest integer required—measured in bits—to perform arithmetic operations. In particular,

with Delaunay computation, we assume that the point coordinates are represented by b-bit integers

and want to know how large the numbers in our arithmetics can grow as a function of b, and d, the

dimension.

Liotta et al. (1997) gave a simple algebra for estimating the precision of a computation by tracking

the degree of the polynomials involved. Recall the representation of a point p by a d + 2 tuple,

pd+1 =
∑d

i=1 p2
i . The degree of these coordinates are [0, 1, . . . , 2]. When computed from determinants

of point coordinates, spheres have degrees [d + 2, d + 1, . . . , d + 1, d], and planes have degrees [d, d −

1, . . . , d−1, 0]. The expression S ·p is therefore a degree d+2 polynomial when S is a sphere and degree

d when S is a plane. Each term of the expression could be evaluated with db-bit integers. Potential

carries from summing dO(1) terms may require additional O(dlog2 de) bits.
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3.6.3 Sphere construction

For Delaunay diagram or triangulation algorithms, the most important geometric predicate is the point-

sphere sidedness test. The common way to implement the test is to use the InSphere determinant. We

avoid using any determinants: given a point p to test sidedness against a sphere S, we compute the dot

product S · p; to compute spheres, we use equation 3.1, which only have dot products. In d dimensions,

our sphere computations use O(d) arithmetic operations, compared with the O(d!) arithmetic operations

used by a InSphere determinant. There is also an implementation advantage of our sphere-based

approach: For direct computation of Delaunay diagrams, the InSphere determinant requires finding

d + 1 affinely independent vertices of a cell, but this is expensive when a cell has many vertices; also,

ordering the d + 1 vertices to give positive orientation determinant complicates the code.

The caveat of the sphere-based approach is that a new sphere, constructed using equation 3.1 takes

twice the number of bits to represent as an old sphere. Repeated applications of equation 3.1 therefore

would exponentially increase the storage size for the sphere vectors. However, we know that, when

computed from determinants of point coordinates, the components of the spheres are polynomials

of fixed degree: [d + 2, d + 1, . . . , d + 1, d]. Therefore, the components of a sphere computed using

equation 3.1 must have some common scalar multiple that can be factored out. For points in general

position, we derive a formula for computing this factor, as stated in Theorem 3.6.1. The formula

uses only a dot product of an old sphere and a point, which requires O(d) arithmetic operations.

Unfortunately, if there are degeneracies, Theorem 3.6.1 cannot be used for finding the common factor.

Therefore, more expensive procedures, such as Euler’s GCD algorithm, have to be used.

Theorem 3.6.1. In Ed, suppose that Sa and Sb are circumspheres of neighboring simplices with com-

mon vertices f and opposite vertices a and b such that Sa ·b 6= Sb ·a. Let p be any point. The expression

Sp = ((Sa · p)Sb − (Sa · p)Sb)/V , where V = (Sb · a) = (Sb · a), is the sphere computed from the points

f and p using the InSphere determinant.

Proof. This is immediate from the determinant identity in Lemma 3.6.4.

3.6.4 Incremental construction of 4d Delaunay diagrams

I describe an algorithm to construct a Delaunay diagram incrementally. The algorithm is based on

Edelsbrunner’s beneath-beyond method Edelsbrunner (1987). However, we simplify it for the special

case of four dimensional Delaunay diagram construction, maintaining no more data structures than for

typical Delaunay triangulation algorithms. We do not analyze our algorithm but will show later actual

running times with our implementation.
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The algorithm maintains a cell complex, representing each cell as a set of vertices and each facet as

an arc in the neighbor graph: the nodes are the cells; each arc is between two cells that have the same

facet.

The cell complex is initialized by constructing the simplex of six site–the sentinel faraway point and

five points that are affinely independent.

Inserting a point p follows the procedures listed below. Using a terminology from Edelsbrun-

ner Edelsbrunner (1987), the cells are said to have colors with respect to p: A cell is red, green,

or blue if its sphere has p inside, on or outside.

- Locate finds a red cell by performing a walk in the neighbor graph. The walk visits one cell c1

at each step and proceeds to a neighboring cell c2 such that p and c2 are on the same side of the

plane through the facet between c1 and c2. The walk always terminates by the acyclic theorem

from Edelsbrunner Edelsbrunner (1989).

- Search finds all the red cells. Starting from the cell located by the locate procedure, a depth

first search of the neighbor graph is performed. A branch of the search terminates when a blue

cell is found. Each pair of red-blue or red-green cells identifies a horizon facet.

- Update deletes all red cells and create new cells. Two kinds of new cells are created: For each

yellow cell, a new cell is created by inserting p into the vertices of the yellow cell; for each horizon

facet between red-blue cells, a new cell is created by instantiating a new vertex set that includes

p and the vertices of the horizon facet.

- Connect updates the neighbor graph. The new neighboring relations are either between the old

and the new cells or amongst the new cells. The former case is easy to handle: For each horizon

facet between red-blue cells, the blue cell and the new cell created from the facet become new

neighbors. For the latter case, three steps are performed.

1. Associate each horizon facet to a new cell. For each horizon facet between red-blue cells,

associate it to the Delaunay cell created from it; for each of the other horizon facets, which

are between red-green cells, map it to the new cell created from modifying the green cell.

2. Compute horizon ridges—the two dimensional faces of the horizon facets. Each horizon ridge

is shared by exactly two horizon facets.

3. For each horizon ridge, connect the cells associated with the two facets sharing the ridge.
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Each step in the procedures above is simple except the computation of horizon ridges in the connect

procedure. To compute the ridges of a horizon facet f , choose a cell c containing f , e.g. the red cell;

for each neighbors c′ of c, collect the vertex set c′ ∩ f as a ridge if their affine span is two dimensional.

The last dimension check is easy because testing dimension—dim aff c′ ∩ f = 2—is the same as testing

cardinality—#(c′ ∩ f) ≥ 3, as justified by Observation 3.6.2.

As an implementation detail, the point-plane sidedness test needed by the locate procedure can be

implemented using spheres. Consider the neighboring cells c1 and c2 in the locate procedure. Let their

respective spheres be S1 and S2. To decide whether to terminate the walk, first compute S2 ·p. To test p

against the plane between c1 and c2, use equation 3.2 and compute the sign of (S1·e)(S2·p)−(S2·e)(S1·p).

In this expression, S2 · p is already computed; S1 · p was saved from a previous walk step. Since S1 · e

and S2 · e just extract vector components, the only additional arithmetics left are scalar multiples and

additions.

Lemma 3.6.2. For a face with vertices f in a four dimensional Delaunay diagram, if #f ≥ 3, the

dimension of the face is at least two.

Proof. Consider the lifted sites f̂ from f . If their affine span is a line, then the line intersects at the

unit paraboloid in five dimensions at more than two points, which is impossible.

3.6.5 Implementation and experiments

I have implemented our algorithm in C++. The program is named dd4. Each cell stores its vertex and

neighbor pointers in STL (Standard Template Library) vectors, to allow them to have variable length.

Testing and constructing spheres uses double precision floating point arithmetics. Finding the common

factor among the vector components of a sphere invokes the GCD function six times.

As candidates for comparison, I have looked at a popular convex hull program, Qhull Barber

et al. (1996), and our own program, tess4 Kettner et al. (2003). Qhull performs Delaunay trian-

gulation after the sites are lifted and can output Delaunay diagrams with a post-processing step that

merges simplices with identical spheres. tess4 was implemented with many similar techniques as

dd4. For example, tess4 uses a walk for point location and computes spheres for geometric predicates

predicates—although, unlike dd4, the spheres are computed with determinants. The biggest difference

between tess4 and dd4 is the manipulation of ridges: tess4, which maintains a triangulation, can

identify a horizon ridge in constant time, while dd4 has to perform set intersections to identify a horizon

ridge, which uses time proportional to the total number of cell vertices around the ridge. Therefore, I

expect dd4 to perform slower than tess4 when there are few degeneracies in the input.
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For input data, I randomly sample an increasing fraction of a 164 grid to mimic the time varying

volume data. The experiments are performed on a Linux machine with Intel Pentium III 700MHz

processor, with 1MB cache and 2.5GB RAM. The results are shown in Table 3.4. When input contains

few degeneracies, as expected, dd4 is slower than tess4. Furthermore, dd4 uses more memory because,

to manage the vertex and neighbor reference for each cell, it uses the STL vector class, which has

overhead and often allocates twice the amount of memory than used; on the other hand, tess4 allocates

fixed memory blocks for its simplices. When there are many degeneracies, the speed of dd4 catches up

with tess4 because it maintains fewer cells. For comparison of memory use, I show both the process

memory and the output size. For dd4, its cell representation in the output differs slightly from that

for the running process: instead of using STD vectors, a cell’s vertex or cell list is stored as a length

followed by an array. For tess4, the cell representation in the output is identical to that used for the

running process.

input (% size (MB)
of grid) time (sec.) process output

Qhull tess4 dd4 Qhull tess4 dd4 tess4 dd4

10 21.5 2.8 10.1 39.5 14.3 16.2 6.4 5.4 (0.2)
20 69.7 6.4 19.1 72.3 27.1 26.1 12.2 9.0 (0.3)
40 245.0 14.0 32.2 124.8 52.5 35.0 23.7 12.4 (0.6)
80 665.3 35.4 48.9 150.0 97.1 39.9 43.9 8.7 (0.9)

100 824.1 51.2 54.4 161.1 116.3 39.6 52.5 6.9 (1.0)

Table 3.4: Comparing running time and memory of Qhull and dd4 with tess4. The input for each row is a
fraction of the 164 grid. Both the size of the process memory and the output are reported. The output includes
each cell’s vertex and neighbor references, stored as integers. For the output size of dd4, the number in the
parenthesis is the fraction of cells that are not simplicial.

3.6.6 Conclusion

I have shown a simple algorithm to compute 4d Delaunay diagrams directly. The implementation is

competitive against a Delaunay triangulation program when there are many degeneracies. On the

down side, the price paid for handling non-simplicial cells is high: traversing the simplices around a

ridge is not efficient so the update procedure becomes the bottleneck of our program; dynamic arrays

must be used to maintain vertex and neighbor references, which adds a substantial amount of storage

overhead. It will be interesting to find some representation of cell complex “in between” a minimalist

data structure as we use and a full face lattice as used by many convex hull algorithms that do not

assume general position.

The common way of constructing spheres, implicit in the evaluation of InSphere determinants, is

based on point coordinates; I choose to construct spheres based on spheres, which is asymptotically
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faster with respect to dimension than the point-based approach. The main difficulty for the sphere-based

approach is to control the size of the sphere representation. I have tackled this difficulty by deriving

a simple factor-finding formula in Theorem 3.6.1. Unfortunately, the formula is most useful when the

input is in general position. It will be interesting to find alternative ways for sphere construction that

do not compute full determinants but provide guarantees on the size of the spheres.

3.6.7 Factoring the expression for spheres

To show that the expression for spheres factors according to Theorem 3.6.1, two determinant identities

can be established.

Lemma 3.6.3. Let M be a real, symmetric d × d matrix, and let e, f , g, and h be column vectors in

R
d. The following determinant identity holds for (d + 2) × (d + 2) matrices:

det

∣∣∣∣∣∣∣∣∣∣

M e h

fT 0 0

gT 0 0

∣∣∣∣∣∣∣∣∣∣

− det

∣∣∣∣∣∣∣∣∣∣

M f h

eT 0 0

gT 0 0

∣∣∣∣∣∣∣∣∣∣

= det

∣∣∣∣∣∣∣∣∣∣

M g h

eT 0 0

fT 0 0

∣∣∣∣∣∣∣∣∣∣

.

Proof. Recall that a matrix determinant is a sum in which each term is product taking one entry per

column according to some permutation of the rows, with positive or negative sign depending on whether

the permutation has an even or odd number of transpositions.

Since our matrices have zeros in the lower right corner, any non-zero term from our determinants

has one entry from each of e, f , g, and h. Let’s express both sides as polynomials in eifjgkhl for indices

i, j, k, l ∈ {1, 2, . . . , d}, then show that the coefficients are equal. We can divide into cases based on the

number of distinct indices in {i, j, k, l}.

First, consider four distinct indices, as in the term e1f2g3h4. Note that we need d ≥ 4 to have this

case. In fact, we may assume that these are the indices in this case, since by interchanging both rows

and columns we can bring the four indices {i, j, k, l} to {1, 2, 3, 4} without changing the value of the

determinant or the symmetry of the upper left block. If d > 4 then the coefficients of e1f2g3h4 in each

of the three matrices of 3.6.3 has a common factor of det |M1234|, which is the matrix minor formed by

striking rows and columns 1 through 4. The remaining factors are 2 × 2 minors of the first four rows
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and columns of M . They can be shown to satisfy the desired equation using the symmetry of M :

det

∣∣∣∣∣∣∣

m21 m41

m23 m43

∣∣∣∣∣∣∣
− det

∣∣∣∣∣∣∣

m12 m42

m13 m43

∣∣∣∣∣∣∣
(3.3)

= m21m43 − m23m41 − m12m43 + m13m42 (3.4)

= m12m34 − m32m41 − m12m34 + m31m42 (3.5)

= det

∣∣∣∣∣∣∣

m31 m41

m32 m42

∣∣∣∣∣∣∣
. (3.6)

In verifying the signs, the reader will note that, in each matrix, the calculation of the coefficient for

e1f2g3h4 involves an even number of minus signs.

Second, consider terms eifjgkhl with i = j or k = l. Note that these do not arise on the right-hand

side of the equation. On the left-hand side, when i = j we take minors by striking rows and columns

containing ei and fj , and what remains, in both cases, is det

∣∣∣∣∣∣∣

Mi h

gT 0

∣∣∣∣∣∣∣
. These determinants cancel, as

they appear with opposite signs. When k = l we obtain det

∣∣∣∣∣∣∣

Mk f

eT 0

∣∣∣∣∣∣∣
and its transpose, which also

cancel with opposite signs.

Third, consider terms eifjgkhl with i 6= j and k ≤ l, but with i = k or j = l. In either case,

the leftmost determinant has no contribution. When i = k, the second determinant equals the minor

det

∣∣∣∣∣∣∣

Mi h

fT 0

∣∣∣∣∣∣∣
, which is negated and so equals the right-hand minor. When j = l the second determinant

is det

∣∣∣∣∣∣∣

Mj e

gT 0

∣∣∣∣∣∣∣
, again negated and so equal to the transpose of the right-hand minor.

Fourth, consider terms eifjgkhl with i 6= j and k ≤ l, but with i = l or j = k. Now the second

determinant has no contribution. The first equals the right-hand determinant when j = k and its

transpose when i = l.

Every term eifjgkhl falls into one of these four cases, so the lemma is established.

Let M be a (d+2)×d matrix whose columns are the d points defining the intersection of spheres Sa

and Sb. Let us assume that Sa = det |MaP| and Sb = −det |MbP| are the canonical spheres through

these points. Theorem 3.6.1 claims that (Sa · q)Sb − (Sb · q)Sa factors into (Sb · a) and the canonical

sphere Sq. To prove this, it is sufficient to establish the following determinant identity.

Lemma 3.6.4. Let M be a (d + 2) × d matrix, and let a, b, q and P be (d + 2) vectors.
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Proof.

det

∣∣∣∣M a q

∣∣∣∣ ∗ −det

∣∣∣∣M b P

∣∣∣∣

− det

∣∣∣∣M b q

∣∣∣∣ ∗ det

∣∣∣∣M a P

∣∣∣∣

= det

∣∣∣∣M a b

∣∣∣∣ ∗ det

∣∣∣∣M q P

∣∣∣∣
.

By using the properties of determinants of matrix transpose and product, namely det |AT | = det |A|

and det |A| · det |B| = det |A · B|, it is equivalent to show that

det

∣∣∣∣∣∣∣∣∣∣

MT M MT b MTP

aT M aT b aTP

qT M qT b qTP

∣∣∣∣∣∣∣∣∣∣

− det

∣∣∣∣∣∣∣∣∣∣

MT M MT a MTP

bT M bT a bTP

qT M qT a qTP

∣∣∣∣∣∣∣∣∣∣

= det

∣∣∣∣∣∣∣∣∣∣

MT M MT q MTP

aT M aT q aTP

bT M bT q bTP

∣∣∣∣∣∣∣∣∣∣

.

The terms of the first two determinants that involve aT b = bT a or qTP cancel because they have

opposite signs and multiply identical minors (formed by striking rows and columns with a or b) or

transposed minors (formed by striking rows and columns with q or P. Thus, we obtain an equivalent

expression if we replace these entries with zeros.

Likewise, the terms on the left-hand side that involve aT q, aTP, bT q, and bTP cancel with the

corresponding terms on the right-hand side, since they have appropriate signs and multiply identical

or transposed minors. Again, we obtain an equivalent expression if we replace these entries with zeros:

det

∣∣∣∣∣∣∣∣∣∣

MT M MT b MTP

aT M 0 0

qT M 0 0

∣∣∣∣∣∣∣∣∣∣

− det

∣∣∣∣∣∣∣∣∣∣

MT M MT a MTP

bT M 0 0

qT M 0 0

∣∣∣∣∣∣∣∣∣∣

= det

∣∣∣∣∣∣∣∣∣∣

MT M MT q MTP

aT M 0 0

bT M 0 0

∣∣∣∣∣∣∣∣∣∣

Lemma 3.6.3 establishes this equality, and completes the proof.
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Chapter 4

Faraway Point: A Sentinel Point for Delaunay

tessellation

For a set of points P ⊂ R
s, a Delaunay diagram of P is bounded by the convex hull of P . The Delaunay

faces that belong to the boundary of the convex hull of P are called boundary faces. If general position

is assumed—there are no coplanar (s + 1)-subsets nor cospherical (s + 2)-subsets—then the boundary

faces are the same as the convex hull faces. If there are degeneracies, however, the boundary faces

subdivide the convex hull faces (see Figure 4.1.)

Because boundary faces are not “surrounded” by higher dimensional faces in the diagram as the

non-boundary faces are, they must be treated specially in computation. One simple way to avoid

special treatments for the boundary is to lift the points P to P̂ and compute the Delaunay diagram

as lower faces of conv(P̂ ), but this leads to computing all the upper faces, which can be undesirable.

A good alternative is to compute conv(P̂ ∪ {e}), where e is a point at infinity that can be thought of

as the intersection of all vertical upward rays. If the points are in general position, then the faces of

conv(P̂ ∪ {e}) satisfy that each face F which does not correspond to a Delaunay face is incident on

e and the face F\{e} projects to a boundary Delaunay face. This simple correpondence between the

boundary faces of a Delaunay triangulation and the sentinel faces for computing it is attractive for

implementation.

The point at infinity e has issues when there are degeneracies in the input. First, if the Delaunay

diagram is to be computed exactly, then the simple correspondence between the sentinel faces and the

boundary Delaunay faces no longer holds; second, recall from Section 3.1 that, to avoid “flat simplices”

in a perturbation scheme, the points in P̂ should be perturbed only in the vertical perturbation, but

this can not remove degeneracies involving e, since e lies on all vertical rays. In order to preserve

the simplicity of implementation with e, but resolve the issues with degeneracies, I define a faraway



point q and propose computing conv(P̂ ∪ {q}) instead of conv(P̂ ∪ {e}). In an oriented projective

geometry, this faraway point differs from the point at infinity only infinitesimally. Therefore, if general

position is assumed, the replacement makes no difference in the output. However, for degenerate input,

the replacement brings two improvements. First, to compute a triangulation, a vertical perturbation

scheme is sufficient to simulate general position. This is because, as Lemma 4.3.5 will show, the support

hyperplanes of polytope conv(P̂ ∪ {q}) are down-facing so an incremental algorithm never encounters

vertical hyperplanes. Second, for computing the exact diagram, faces incident on e correspond to the

boundary Delaunay faces, by Theorem 4.3.6. In comparison, the extra faces with the point at infinity

match the convex hull faces, which can introduce complicated relations between the boundary faces

and the extra faces. A two dimensional example of this is shown in Figure 4.1.

point at infinity faraway point

Figure 4.1: The Delaunay diagram of a 4×4 grid with two different sentinel points. Left: conv(P̂ ∪{e}),
where e is the point at infinity. Right: conv(P̂ ∪ {q}), where q is the faraway point. Dashed segments
connect to the point at infinity or the faraway point.

Replacing the point at infinity with our faraway point has a simple implementation policy in code.

It adds just one conditional to the sphere inside/outside test. I provide the pseudocode of the sphere

sidedness test in Section 4.4, and discuss how it simplifies algorithms based on flipping in Section 4.5.

4.1 Geometric Preliminaries

I review representations of points, hyperplanes and polytopes in an oriented projective space, which

contains the familiar Euclidean space. This is neeeded to define the faraway point, which exists in the

non-Euclidean portion of oriented projective space.

Geometric problems in the Euclidean space regarding sidedness relations between points and hy-

perplanes can be stated in the more general oriented projective setting. Doing so often remove special

cases in the solution. I sketch the basics; see also Chapter 7 of Boissonnat and Yvinec(1998), or Stolfi’s
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Figure 4.2: The two dimensional oriented projective space P
2 can be identified with a sphere. Through

central projection, the upper open hemisphere maps to the Euclidean plane H, and the lower one maps
to H ′—the antipodes of the Euclidean plane. The shaded region on the sphere is a polytope in which
one vertex is antipodal to an Euclidean point—drawn as a hollow dot. The projection of the polytope
onto the two Euclidean planes are two open polygons.

work(1991) for more mathematical details and artistic drawings.

The points in an n dimensional oriented projective space P
n are represented by n+1-tuples of reals

called homogeneous coordinates. Let 0 := [0, . . . , 0] be the origin of R
n+1. Any tuple p = [p0, . . . , pn] ∈

R
n+1\{0} is the homogeneous coordinates representation of a point in P

n; any positive multiple of p

represents the same point.

The points in P
n can be identified with the points on an n-dimensional unit sphere centered at the

origin in R
n+1. The points on the sphere, except those lying on a great circle, can be central-projected

to two parallel hyperplanes H and H ′, as shown in Figure 4.2. One of these hyperplanes, say H, can

be identified with the n dimensional Euclidean space R
n, and partition the oriented projective space

into three sets: R
n, the antipodes of R

n, and the set of points at infinity, which corresponds to the

great circle that project to neither H nor H ′. Canonically, H is chosen to be the hyperplane of points

whose first coordinate—the homogenizing coordinate—is equal to unity. A point p ∈ P
n, therefore,

represents the Euclidean point (p1

p0
, . . . , pn

p0
) if the homogenizing coordinate p0 > 0, a point at infinity

in the direction of vector (p1, . . . , pn) if p0 = 0, and an antipode to the Euclidean point (p1

p0
, . . . , pn

p0
)

if p0 < 0.

The affine hull of a set of points P ⊂ P
n, denoted aff(P ), is the subspace of P

n generated by taking

all linear combinations of the coordinate tuples of P and identifying the tuples that differ by scalar

multiples. The dimension of aff(P ) is the rank of the matrix constructed by listing the coordinate

tuples from P as columns. An n − 1 dimensional affine hull is called a hyperplane.

Identifying P
n with an n-sphere, a hyperplane H in P

n is a great circle that divides the sphere

to two open hemispheres. If the open hemispheres are labeled as the positive and negative sides of

H, denoted H+ and H− respectively, then a hyperplane can be oriented in two ways, which reverse

its positive/negative sides. Algebraically, a hyperplane H is represented by an n + 1-tuple of reals
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〈H0, . . . ,Hn〉, so that each a point p ∈ P
n, satisfies p ∈ H, or H+, or H− , if the dot product

[p0, . . . , pn] · 〈H0, . . . ,Hn〉 = 0, or > 0, or < 0.

The tuple representing a hyperplane can be computed by first choosing n affinely independent points

(A1, . . . , An) on the hyperplane, adding a symbolic point p, and computing the n + 1 minors of the

determinant

∣∣∣∣A1, . . . , An, p

∣∣∣∣ with respect to p0, . . . , pn. The resulting tuple is denoted by H(A1, . . . , An).

If one continues to identify P
n with an n-sphere, any two points a, b ∈ P

n that are not anti-podal

define a line segment ab as the shortest geodesic curve between a and b. Therefore, in the oriented

projective space, the notion of convexity is well-defined for point sets that lie to one side of some

halfplane. An oriented projective polytope is the convex hull of such a set of points. The faces of a

polytope are defined as follows.

Definition 4.1.1. Let P ⊂ P
n be a set of points. A subset f ⊂ P forms a face conv(f) of conv(P ) if

there is a hyperplane H such that H ∩ P = f and one side of H is empty of points in P .

The defining hyperplanes of the faces of a polytope are called support hyperplanes. If the non-empty

side of a support hyperplane is designated its positive side, then the support is positive; otherwise the

support is negative.

4.2 The lifting map

The goal of this section is to study points and hyperplanes in s and s + 1 dimensions that are related

by a lifting map. For a real function f over R
s, the lifting mapˆ : R

s → R
s+1 : x 7→ (x; f(x)) takes

points in s dimensions vertically to the plot of f in s + 1 dimensions. The vertical direction in s + 1

dimensions can be formally established by the point at infinity e := [0, . . . , 0, 1], so that a hyperplane

H is vertical whenever e ∈ H.

Lifting a point set either retains its affine dimension or increase it by at most one: If there is a

non-vertical hyperplane through P̂ , then the affine dimension of P is the same as P̂ . Otherwise, the

affine dimension of P is one smaller than that of P̂ .

If the lifting function is the unit paraboloid, then the hyperplanes whose positive sides contain e—the

down-facing hyperplanes—correspond to spheres: For a sphere S with equation 〈S0, . . . , Ss+1〉[1;x;x ·

x] = 0, a point p ∈ R
s is on, inside or outside S if and only if p̂ is on, on the positive side, or on the

negative side of the hyperplane represented by the tuple S. The hyperplane is down-facing because

〈S0, . . . , Ss+1〉 · e = Ss+1 > 0.

A vertical hyperplane in P
s+1 vertically projects to a hyperplane in P

s. Testing sidedness of lifted
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points with vertical hyperplanes is equivalent to testing sidedness of the original points with the pro-

jection of the vertical hyperplanes. To be precise, for a point p ∈ P
s and a set of affinely independent

points {f1, . . . , fd} ⊂ P
s, the following equality holds:

∣∣∣∣f1, . . . , fd, p

∣∣∣∣ = −

∣∣∣∣f̂1, . . . , f̂d, e, p̂

∣∣∣∣ .

The set of down-facing hyperplanes through a non-vertical (s−1)-flat, i.e., the affine hull of s affinely

independent points, is a one-parameter family. A point on the vertical hyperplane through the flat lies

on the same side of all members of the family.

Lemma 4.2.1. Let f ⊂ P
s be a set of points whose affine dimension is s−1. Let He denote the vertical

hyperplane though f . A point p ∈ He is on the same side of all down-facing hyperplanes through f .

Proof. Let v ∈ P
s be a point such that v 6∈ aff(f). Choose a set of affinely independent points

{f1, . . . , fd} ⊂ f . Any down-facing hyperplane can be represented as a tuple H(f̂1, . . . , f̂d, [v;λ]), for

some λ ∈ R. The sidedness of p with respect to this hyperplane is decided by the determinant:

∣∣∣∣f̂1, . . . , f̂d, [v;λ], p

∣∣∣∣ =

∣∣∣∣f̂1, . . . , f̂d, [v; 0], p

∣∣∣∣ + λ

∣∣∣∣f̂1, . . . , f̂d, e, p

∣∣∣∣ =

∣∣∣∣f̂1, . . . , f̂d, [v; 0], p

∣∣∣∣ .

Since the value of the determinant is independent of λ, the claim is proved.

4.3 The Polytope with a Faraway Point

q : antipode of the faraway point

Figure 4.3: Computing Delaunay diagram using the lifting map and the faraway point q. The shaded
planar subdivision is the Delaunay diagram. The open polyhedron is the Euclidean portion of an
oriented projective polytope with vertex q. Since q is not in Euclidean space, its antipode −q is drawn,
as an unfilled circle.

I define the faraway point as follows: For a set of points P ⊂ R
s such that aff(P ) is s-dimensional,

the faraway point with respect to P is a projective point q ∈ P
s+1 with coordinates [q0, . . . , qs+1] such

that q0 = −1, −(q1, . . . , qd) is interior to the convex hull of P , and qs+1 is a symbol ∞ that is a place
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holder for a large enough number.

For a set of points P with faraway point q, I propose computing its Delaunay diagram by computing

the oriented projective polytope P := conv(P̂ ∪ {q}). The polytope P is well-defined because:

- P̂ belong to the Euclidean half space of P
s+1, defined by the hyperplane at infinity 〈1, 0, . . . , 0〉. If

we perturb the hyperplane slightly to 〈1, 0, . . . , 0, 1
∞ 〉, the corresponding half space contains both

P̂ and q.

- For large enough ∞, the sidedness relations of q with respect to the hyperplanes determined by

points in P̂ do not change.

The structural properties of the polytope P are stated formally in Lemma 4.3.5 and Theorem 4.3.6.

Lemma 4.3.5 says that the support hyperplanes of P are all down-facing. Therefore a vertical pertur-

bation scheme, which removes any non-vertical degeneracies, is enough for its incremental construction.

Theorem 4.3.6 says that, regardless of whether general position is assumed or not, the non-Delaunay

faces of this polytope correspond one-to-one to the boundary Delaunay faces.

The rest of this paper contains proofs of the main results. The standing assumption will be made

that P is a set of points such that aff(P ) is s-dimensional, that q is its faraway point, and that P is

the polytope conv(P̂ ∪ {q}.

For a Delaunay diagram, its boundary faces can be formally defined as follows:

Definition 4.3.1. For a set of points P ⊂ R
s, a Delaunay face conv(f ⊂ P ) is a boundary face if the

hyperplane H through f is a support of conv(P ), i.e. H ∩ P ⊃ f and H− ∩ P = ∅ or H+ ∩ P = ∅.

The faraway point q satisfies the following properties:

- Because of the arbitrarily large coordinate ∞, the faraway point q must be a vertex of P and can

not belong to any affine flat from P̂ . Therefore, for any n-dimensional face conv(f̂ ∪ {q}) of P,

conv(f̂) is an n − 1 dimensional face.

- q is an infinitesimal perturbation of the point at infinity e: [q0, . . . , qd,∞] represents the same

projective point as [ q0

∞ , . . . , qd

∞ , 1], which, as ∞ increases, converges to [0, . . . , 0, 1]. The statement

that q differs from e only infinitesimally can also be expressed in terms of sidedness relations: If

the points are in general position, the faraway point q can be replaced by the point at infinity e

without changing any sidedness relations, as formally stated in Lemma 4.3.1.

Lemma 4.3.1. Let {f1, . . . , fs+1} ⊂ P
s be a set of affinely independent points. Then sign

∣∣∣∣f̂1, . . . , ˆfs+1, e

∣∣∣∣ =

sign

∣∣∣∣f̂1, . . . , ˆfs+1, q

∣∣∣∣.
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Proof. Because of the affine independence of the set {f1, . . . , fs+1},

∣∣∣∣f1, . . . , fs+1

∣∣∣∣ =

∣∣∣∣f̂1, . . . , ˆfs+1, e

∣∣∣∣ 6= 0.

Thus, the determinant

∣∣∣∣f̂1, . . . , ˆfs+1, [q0, . . . , qd,∞]

∣∣∣∣ =

∣∣∣∣f̂1, . . . , ˆfs+1, [q0, . . . , qd, 0]

∣∣∣∣ + ∞

∣∣∣∣f̂1, . . . , ˆfs+1, e

∣∣∣∣

is dominated by the determinant

∣∣∣∣f̂1, . . . , ˆfs+1, e

∣∣∣∣. Therefore, the signs of the determinants are the

same.

Lemma 4.3.2. The support hyperplanes of P through q are not vertical.

Proof. Let o := −[q0, . . . , qd], so that o represents an Euclidean point interior to conv(P ). Any vertical

hyperplane He through q projects to a hyperplane H through o. Since o is interior to conv(P ), H has

points of P on both sides. Therefore He does not support conv(P̂ ∪ {q}).

Lemma 4.3.3. Let conv(f̂ ∪ {q}) be a facet incident on q in P. Then, there is a hyperplane through

f that is a support of conv(P ).

Proof. Since the affine dimension of f̂ is s and, by Lemma 4.3.2, f̂ are on a non-vertical hyperplane,

the affine dimension of f is s.

Choose a set of points {f1, . . . , fd} ⊂ f such that H(f̂1, . . . , f̂d, q) is the support of conv(f̂ ∪ {q}).

Then, for any point p ∈ P ,

∣∣∣∣f̂1, . . . , f̂d, q, p̂

∣∣∣∣ ≥ 0. Then, by Lemma 4.3.1,

∣∣∣∣f̂1, . . . , f̂d, e, p̂ ≥ 0

∣∣∣∣. Equiva-

lently,

∣∣∣∣f1, . . . , fd, p

∣∣∣∣ ≤ 0. Therefore, H(f1, . . . , fd) is a support of conv(P ).

Lemma 4.3.4. Let conv(f) denote a boundary Delaunay facet. Then, conv(f̂ ∪ {q}) is facet of P.

Proof. Let o := −[q0, . . . , qd] so that o is interior to conv(P ). Choose {f1, . . . , fd} ⊂ f so that

H(f1, . . . , fd) represents the negative support of conv(f) in conv(P ). Then,

∣∣∣∣f1, . . . , fd, o

∣∣∣∣ < 0.

Let Hq := H(f̂1, . . . , f̂d, q). Hq is down-facing because Hq · e =

∣∣∣∣f̂1, . . . , f̂d, q, e

∣∣∣∣ =

∣∣∣∣f1, . . . , fd,−o

∣∣∣∣ >

0. Let H denote the Delaunay support for conv(f).

Choose any p ∈ P . Consider two cases. Case I: p is on the hull support H(f1, . . . , fd). Then, by

Lemma 4.2.1, the sidedness of p with respect to Hq is the same as the Delaunay support H. Therefore,

if p̂ ∈ f̂ , p̂ ∈ Hq and otherwise, p̂ ∈ (Hq)+.
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Case II: p is on the negative side of the hull support H(f1, . . . , fd). Then,

∣∣∣∣f1, . . . , fd, p

∣∣∣∣ < 0. Then,
∣∣∣∣f̂1, . . . , f̂d, e, p̂

∣∣∣∣ > 0. Then, by Lemma 4.3.1,

∣∣∣∣f̂1, . . . , f̂d, q, p̂

∣∣∣∣ > 0.

By these two cases, Hq supports the facet conv(f̂ ∪ {q}) in P.

Lemma 4.3.5. Let P ⊂ R
s be a finite set of points such that aff(P ) is s-dimensional. Let q be

the faraway point with respect to P . Then, the positively oriented support hyperplanes of the polytope

conv(P̂ ∪ {q}) are down-facing.

Proof. Let o := −[q0, . . . , qd] so that o is interior to conv(P ). Let H denote a positive facet support of

conv(P̂ ∪ {q}).

If H is not vertical and does not contain q, then, because q ∈ H+, by Lemma 4.3.1, e ∈ H+.

Otherwise, either H is vertical or H contains q. In either case, there exists a set of affinely independent

points {f1, . . . , fd} such that H(f1, . . . , fd) supports conv(P ). The set exists in the first case because

H is vertical and in the second by Lemma 4.3.3. Then, for any p ∈ P ,

∣∣∣∣f1, . . . , fd, p

∣∣∣∣ ≤ 0 Then, since

o is interior to conv(P ),

∣∣∣∣f1, . . . , fd, o

∣∣∣∣ < 0. Then,

∣∣∣∣f̂1, . . . , f̂d, [−o;∞], e

∣∣∣∣ =

∣∣∣∣f̂1, . . . , f̂d, q, e

∣∣∣∣ > 0. The

last inequality implies that, first, if q belongs to H, then H is down-facing, and, second, H can not

be vertical otherwise q will be on its negative side, which violates the condition that H is a positive

support. Therefore H is down-facing.

Theorem 4.3.6. Let P ⊂ R
s be a finite set of points such that aff(P ) is s-dimensional. Let q be the

faraway point with respect to P . Then, for a set of points f ⊂ P ,

1. conv(f) is in the Delaunay diagram of P if and only conv(f̂) is a face of the polytope conv(P̂∪{q}).

2. conv(f) is a boundary face of the Delaunay diagram of P if and only if conv(f̂ ∪ {q}) is a face of

the polytope conv(P̂ ∪ {q}).

Proof. It is enough to show that the theorem is true for the highest dimensional faces.

Let conv(f) be a Delaunay facet. Its support hyperplane H is down-facing, i.e. e ∈ H+. By

Lemma 4.3.1, q ∈ H+. Therefore, H supports the facet conv(f̂) in conv(P̂ ∪ {q}).

Let conv(f) be a boundary Delaunay facet, by Lemma 4.3.3, conv(f̂∪{q}) is a facet of conv(P̂∪{q}).

Let conv(f̂ ∪ {q}) be a facet of conv(P̂ ∪ {q}). By Lemma 4.3.5, its support hyperplane H is

down-facing. Therefore H is a Delaunay support for conv(f).

As a corollary of Lemma 4.3.5 and Theorem 4.3.6, the vertical projection of the faces of conv(P̂ ∪ q)

subdivide the space R
s. This property does not hold for either conv(P̂ ) or conv(P̂ ∪ {e}): the vertical
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projection of conv(P̂ ) has two overlapping subdivisions, and the vertical projection of conv(P̂ ∪ {e})

is not well defined since the the point at infinity e projects to [0, . . . , 0], which does not represent any

point.

4.4 Implementation policy for sidedness test

Computing Delaunay diagrams via convex hulls needs only one geometric predicate—the point/hyperplane

sidedness test. Since the hyperplanes of the polytope conv(P̂ ∪ q) are down-facing, and hence represent

spheres, these are the InSphere tests (Boissonnat and Yvinec, 1998). I now describe an implementation

policy for the InSphere test consistent with the symbolic coordinate ∞ in the faraway point q. The

“spheres” touching q are arbitrarily large because of the symbolic coordinate in q. To test a point p

against such a sphere through q and a Delaunay facet conv(f), first test whether p is on the hyperplane

through f . If p is not on the hyperplane, by Lemma 4.3.1, the sidedness of p with respect to this

hyperplane can be returned. Otherwise, by Lemma 4.2.1, any other sphere through f can be chosen

for testing sidedness. For example, the following implementation choices are possible.

- When s = 2 only, the s − 1 sphere through f is a line segment. Instead of choosing a circle

through f , it is easy to test whether p is interior to the line segment determined by f .

- Choose any point v not on the hyperplane through f ; test p against the sphere through f and v.

- Let conv(f, v) be the neighboring Delaunay cell across the facet conv(f); test p against the sphere

through f and v.

The last implementation is particularly efficient. This is because an incremental algorithm often has a

search phase that looks for Delaunay spheres invaded by p, and the search phase might have already

performed the sidedness test with respect to the neighboring sphere. I provide pseudocode for the last

approach in Table 4.1. In the pseudocode, by choosing one of the two return statements, a programmer

can choose whether to implement the test exactly or simulate general position in a way consistent with

an incremental vertical perturbation scheme. Unlike Devillier’s vertical perturbation scheme, which

assigns perturbation to the input points prior to insertion, the perturbation here is simpler, returning

“inside” whenever an “on” is encountered, but is dependent on the insertion order.
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The InSphere Test

global variables and subroutines pseudocode

//the faraway point,
// represented by its limit
q := (0, . . . , 0, 1)

//Toggle perturbation
PERT := True; // False for exact

Neighbor(c: cell, f : facet)
Let c′ be the neighbor cell of c

across f ;
return c′;

Sphere(c: cell)
return H, the tuple representing

the support hyperplane of c;

//Test whether a point is inside (−1), on(0)
// or outside(1) the sphere for a Delaunay cell.
InSphere(c: cell, p: lifted site in

homogeneous coordinates
d := Sphere(c)·p; // Orientation determinant
if (d 6= 0) return sign(d); // non-zero (not on)
if (q 6∈ c) // c does not have the faraway point

if (PERT)
return -1; // vertically perturb

else

return sign(d); // no perturbation
else // c has faraway point

c′ := Neighbor(c, c\q);
return InSphere(c′, p); // test neighbor

Table 4.1: The InSphere test requires little change with the faraway point q, whether perturbation is
used or not. The code assumes that the cells are represented by point sets. When it discovers a cell
using q, it obtains a neighbor cell c′ from the data structure and tests q against the sphere for c′.

4.5 Discussion

In this work, Delaunay triangulations are computed as convex hulls in one dimension higher. An-

other way to compute Delaunay triangulations, without explicitly using a higher dimension, is called

flipping(Edelsbrunner and Shah, 1996; Shewchuk, 1996b), so named because it applies flip operations

to small groups of simplices. Flipping uses two geometric predicates, point-sphere sidedness test and

point-hyperplane sidedness, used to determine whether a flip is possible and in a routine to locate a

point inside a simplex. To avoid special cases for the boundary, the flipping approach places s + 1

“points at infinity” in s dimensions away from the convex hull of the sites (these have symbolic coor-

dinates and are not to be confused with the projective points at infinity) and use special codes in the

predicates to handle their symbolic coordinates.

I observe that a single faraway point may be substituted for the s+1 “points at infinity” to implement

a flipping algorithm: The point-sphere sidedness test can be performed as described in Section 4.4; the

point-hyperplane sidedness can be performed with respect to the projection of faraway point, which

becomes an antipode to a point in the s dimensional Euclidean space. The substitution of the faraway

point simplifies the implementation considerably: Not only is the number of special points reduced from

s + 1 to one, but the one special point, when projected to s-dimensions, does not even have a symbolic

coordinate so needs no special codes for point-plane sidedness test. However, the correctness analysis
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of the flipping algorithm in (Edelsbrunner and Shah, 1996) is carried out for a bounded triangulation.

It will be interesting to check whether the correctness holds when the flip operations are applied to

maintain a triangulation in which some simplices are infinite.
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Chapter 5

Streaming Delaunay Triangulations

In the previous chapter, we have seen that, when the input points follow some spatially coherent order,

the speed of an incremental Delaunay triangulation improves because of faster point location times and

improved memory coherence. In this chapter, we further exploit the spatial coherence in the input by

enginnering a streaming Delaunay triangulation program, which, instead of letting the operating system

decide when to swap out infrequently used memory onto disks, monitors its own memory and recycles

memories that will no longer be needed by the triangulation algorithm. Doing so, on one hand, further

improves the cache coherence of the program, and on the other hand, dramatically reduces the total

memory claimed by the triangulation program, which enables processing of giggantic data sets too large

to fit into the main memory. Furthermore, the streaming triangulation program can generate output

as the input is still being read. Therefore, it can be pipelined with another program that consumes the

triangulation.

In order for our streaming Delaunay triangulation program to recycle its memories, it must be

able to determine whether a piece of data structure will be needed in the future. This requires the

program to have knowledge of the future points that are yet to be processed. This necessiates some

preprocessing of the raw input data points. We have designed a preprocessing method called spatial

finalization, which inserts finalization flags into the input point sequence and performs limited amount

of reordering, by taking a few passes over the data using only a small amount of memory.

The effiency of our programs—one for spatial finalization, the other for triangulation—is demon-

strated with large 2D scattered data sets from LIDAR, including the Neuse River Basin data, which has

over 500 million points (double-precision x, y, and height coordinates). This data comes from the NC

Floodplain Mapping project (http://www.ncfloodmaps.com), begun after Hurricane Floyd in 1999.

Our programs triangulate the 11.2 GB Neuse River Basin data in 50 minutes using 132 MB of memory



and output a 16.9 GB mesh. This is about a factor of twelve faster than the previous best out-of-core

Delaunay triangulator, by Agarwal, Arge, and Yi (2005).

5.1 Previous work

The problem of Delaunay triangulating large data sets has been addressed in a number of ways. Some

focus on improving the memory use of traditional Delaunay triangulation programs: Blandford et

al. (2005) describe data structures for dynamically maintaining compressed triangulations in two or

three dimensions, thereby increasing the size of triangulation that fits in memory by a factor of three to

five; Amenta, Choi, and Rote (2003) design a point ordering called biased randomized insertion order

(BRIO) for incremental Delaunay triangulation that is random enough that the algorithm is still worst

case optimal but is biased enough—towards spatial coherence—-that the resulting program has good

memory coherence. Other work design algorithms that explicitly use disks. These algorithms, called

external memory algorithms, assume that the memory comprise a bounded but fast RAM and a slow but

unbounded disk storage and try to minimize the number of disk accesses. The first such algorithm for

Delaunay triangulation is the divide-and-conquer algorithm by Crauser et al. (2001). Their algorithm is

subsequently modified by Agarwal et al. (2005) to compute constrained Delaunay triangulations, who

also give an implementation that gives the previous fastest performance for Delaunay triangulating

large data sets.

Let us review Agarwal et al.’s result. Given a set of n points, a machine whose RAM is of size M

and disk blocks are of size B, Agarwal et al.’s algorithm runs in O((n/B) logM/B n/B) disk operations.

This running time can be translated as the time of taking a small number of scans of the input file on

disks, because logM/B n/B is small for reasonably large M and O(n/B) is the time to scan the input

file once. In fact, Agarwal et al. point out that, because for realistic M , logM/B n/B is no more than

two, the algorithm can be simplified so that it takes precisely three scans: The first scan sample a

fraction of the input points, small enough so that its Delaunay triangulation D can be computed in the

main memory; the second scan distribute the rest of the input points over the edges of D; finally, on

the third scan, for each edge of D, its distribution of points are triangulated and a certain subset of

them are certified to be in the final output.

The main differences between our approach and Argawal’s are that, first, for computing Delaunay

triangulations, our program only takes a single pass over the input points and theirs take three; second,

our program uses the disks only for input and output while theirs use the disks to store intermediate

data structures.
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5.2 Spatial finalization

Figure 5.1: Three terrain data sets: the 6 million-point “grbm” (LIDAR data of Baisman Run at Broadmoor,
Maryland, left), the 67 million-point “puget” (middle) and the 0.5 billion-point “neuse” data set (right). Colors
illustrate spatial coherence in selected grid cells: each cell’s center is colored by the time of its first point, and
each cell’s boundary is colored by the time of its last point, with time increasing from black to white along the
color ramp (bottom).

Real-world huge data sets are usually spatially coherent—if not, the programs that created them

would have been slowed down. In Figure 5.1, we examine the spatial coherence of a few example huge

data sets. There, each data set is bucketed into the cells of a spatial grid and their coherence is shown

both locally and globally: For a single cell, its width measures the difference between the first point in

the cell and the last, so that a smaller width means better coherence; The cells are themselves indexed

according to the first points that fall in them, so that small index differences between adjacent cells

means better coherence. The widths of the cells and the cell indices are represented by colors in the

Figure 5.1 so we can clearly see the coherence. We should note that the measures we use here for

spatial coherence are quite natural. The maximum cell width measures roughly the memory footprint

of a program whose work can be divided by cells. Similar notion of width has been used to measure the

coherence of meshes (Isenburg and Lindstrom, 2005). The relation between index differences of grid

cells and their Euclidean distances are commonly used to measure the spatial coherence of space filling

curves (Alber and Niedermeier, 1998).

The fact that real-world huge data sets are usually spatially coherent leads to two observations: First,

the programs that created the data should document the coherence in some way; second, ignoring the

coherence in a huge data set then fully sorting it seems to be wasteful. These two observations lead

to two ideas for preprocessing huge data points: The first idea is to document the coherence by what

we call spatial finalization; the second idea is to perform limited amount of reordering we call chunking

to repair the “incoherence” in the data caused by a small number of points. The chunking is simple

enough that it can be coded as a small add-on to the spatial finalization program.

For a chosen subdivision of the space into cells, a finalization tag is represented by a cell ID. Given
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an input point sequence, inserting a finalization tag c into the sequence signals that no point after

the tag falls into the cell c—the cell is finalized. Formally, we call a point sequence augmented with

finalization tags, together with a header specifiying the spatial subdivision, a spatially finalized point

stream. The spatial finalization tags in the stream allows an application that has read a prefix of the

stream to construct a bounding region of the future points. This may be useful for many applications.

In particular, we will demonstrate how to use it for incremental Delaunay triangulations.

Our implementation of spatial finalization is called finalizer. The finalizer uses a rectangular 2k ×2k

grid of cells for spatial subdivision, where k is chosen beforehand by a user. The finalizer’s first pass

over the input stream simply computes the smallest axis-parallel bounding box of the input, which is

then subdivided into grid cells. The second pass counts how many points fall into each cell. The third

pass is like the second pass, except that the finalizer decrements these counters instead of incrementing

them. When a cell’s counter reaches zero, the finalizer inserts a finalization tag for that cell into the

stream.

Although huge data sets are mostly coherent, they can have a small number of points that seriously

degrade its coherence measures. In particular, the maximum width of the cells used by a spatially

finalized point stream can be increased by a few cells of large width. To repair this “incoherence” in

the data caused by a small number of points, our finalizer, during the third pass, buffers all the points

in each cell until the cell’s counter reaches zero, then it releases all the cell’s points into the output

stream, followed by the cell’s finalization tag. We call this act chunking. Clearly, chunking requires far

less work than fully sorting the input.

An observant reader might object that a point-creating application could destroy the coherence that

our finalizer is expecting simply by delaying one point in each cell to the end of the stream. Indeed, the

“grbm” data set makes the finalizer buffer many points, because there is a diagonal stripe across the

terrain at the end of the file. (It appears that the airplane was still collecting data on the way home.)

This vulnerability is not an inherent limitation of streaming, only of our current implementation of the

finalizer. Although we did not find it necessary with our current data sets, we could reorder such points

by identifying them during the second pass, and storing them in a memory buffer or a temporary file.

Table 5.1 documents the time and memory requirements for spatial finalization of the largest two

point sets depicted in Figure 5.1. The 67 million points of “puget” are the vertices of an unstructured

TIN model of the Puget Sound, generated by Yoon et al. (2005) through adaptive simplification of a

regular triangulation derived from a USGS digital elevation map. The “neuse” point set is described

in Section ??. The “neuse 3 × 3” point set is nine tiles of “neuse” arranged in a non-overlapping grid.
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input
k

time/pass, m:ss
MB

points occupied points per cell
points 1 2 3 buffered cells avg max

puget 6 0:27 0:27 0:41 25 2,018,478 4,096 16,387 41,681
67M pts 7 0:27 0:27 0:39 16 1,101,576 16,384 4,097 12,103
768 MB 8 0:27 0:27 0:40 13 653,058 65,536 1,024 3,290

neuse 8 5:55 5:56 9:12 93 3,842,202 19,892 25,142 66,171
500M pts 9 5:55 5:54 8:23 60 2,249,268 77,721 6,435 20,208
11.2 GB 10 5:55 5:55 8:05 59 1,396,836 306,334 1,633 6,544

neuse 3 × 3 10 52:58 53:18 – : – 136 4,617,984 314,797 14,299 41,135
4.5B pts 11 52:58 53:04 – : – 152 2,169,216 1,234,615 3,645 13,430
110 GB 12 52:58 53:20 – : – 425 978,390 4,880,173 922 4,267

Table 5.1: Running times (minutes:seconds) and maximum memory footprints (MB) for the three passes of
spfinalize when finalizing three terrain point sets using 2k × 2k grids. Each pass reads raw points from a
firewire drive, and the third pass simultaneously writes finalized points to the local disk. We also report the
maximum number of points buffered in memory at one time, the number of occupied grid cells, and the average
and maximum points per occupied cell. Third pass timings are omitted for the “neuse” tiling, because we
cannot store the output; but see Table 5.2.

The points in all three sets are distributed fairly uniformly—the maximum number of points in a grid

cell is a small multiple of the average.

5.3 Streaming 2D Delaunay triangulations

Conventional Delaunay triangulation programs output triangles after all the input points have been

processed. By taking as input a spatially finalized point stream, our triangulator spdelaunay2d con-

structs a Delaunay triangulation incrementally and outputs a triangle whenever it determines that the

triangle is final—that its circumcircle does not touch or enclose an unfinalized cell. Such a triangle

must be in the Delaunay triangulation, since no point arriving in the future can be inside the triangle’s

circumcircle. We call a triangle active if it is not final.

We created spdelaunay2d by modifying an existing Delaunay triangulator so that it keeps in mem-

ory only the active triangles and their vertices. This change dramatically reduces the program’s memory

footprint. The main addition to the triangulator is a component that discovers when active triangles

become final, writes them to the output stream, and frees their memory. This component uses a small

fraction of the total running time.

5.3.1 Delaunay triangulation with finalization

Our triangulator maintains two data structures: a triangulation, and a dynamic quadtree that remem-

bers which regions have been finalized. Both are illustrated in Figure 5.2. The purpose of the quadtree

is to identify final triangles, as described in Section 5.3.3. If the quadtree were fully expanded, its

leaves would be the cells of the finalization grid; but there is no need to store the descendants of a

quadrant unless it contains both finalized and unfinalized cells. Thus, our quadtree’s branches extend
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Figure 5.2: A closeup of streaming Delaunay in 2D. The points on the left have been processed, and their
triangles written out. All triangles in this figure are active. We have drawn a few

representative circumcircles, all of which intersect unfinalized space. At this moment,
points are being inserted into the leftmost cell, which will be finalized next.

and contract dynamically to maintain the finalization state without consuming more memory than

necessary.

When spdelaunay2d reads a point, it inserts it into the Delaunay triangulation. When it reads a

finalization tag, it notes the finalized cell in the quadtree, determines which active triangles become

final, writes them to the output stream, and frees their memory. Before a final triangle is written out,

any vertex of that triangle that has not yet been output is written out. (Each vertex is delayed in the

output stream until the first triangle that depends on it.) After a final triangle is written out, each of

its vertices has its memory freed if it is no longer referenced by active triangles.

5.3.2 Delaunay triangulation with finalization

We use a triangle-based (not edge-based) data structure. Each triangle stores pointers to its three

corners and its three neighbors. If a neighboring triangle is final, the corresponding pointer is null. The

point insertion is done with Bowyer-Waterson style and the point location is done by walking along a

straight-line (See Section 3.1 for details of these procedures.)

The point location walk might fail because of finalization. It might attempt to walk through final

triangles, which are no longer in memory. The active triangles do not, in general, define a convex region.

We modified the walking point locator so when it walks into a final triangle (i.e., a null pointer), the

walk is restarted from a different starting point. For reasons described in the next section, each leaf of
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Figure 5.3: Skinny temporary triangles (left) are avoided by lazily sprinkling one point into each unfinalized
quadrant at each level of the evolving quadtree (right).

the quadtree maintains a list containing some of the triangles whose circumcircles intersect the leaf’s

quadrant. We find the quadrant enclosing p and start a new walk from one of the triangles on the

quadrant’s list. If this walk fails as well, we first try starting from another triangle, and then from

triangles on neighboring quadrants’ lists, before resorting to an exhaustive search through all the active

triangles. In theory we could do better than exhaustive search, but in practice these searches account for

an insignificant fraction of our running times. Fewer than 0.001% of point insertions require exhaustive

search, and because we retain comparatively few triangles in memory and maintain a linked list of them

with the most-recently created triangles at the front of the list, the exhaustive searches are faster than

you would expect.

Final triangles pose no problem for the Bowyer-Watson update. We simply modified the depth-first

search so it does not try to follow null pointers. For numerical robustness, we use the robust geometric

predicates of Shewchuk (1997) to perform circle tests (deciding whether a circle encloses a point) and

orientation tests (deciding which side of a line a point lies on). These tests suffice to produce a robust

Delaunay triangulator.

5.3.3 Identifying final triangles

When spdelaunay2d reads a finalization tag, it needs to check which active triangles become final—that

is, which triangles have circumcircles that no longer touch or enclose an unfinalized cell. We first check

whether the circumcircle of a triangle is completely inside the cell that was just finalized—this cheap

test certifies many newly created triangles as final. If that test fails, we use the fast circle-rectangle

intersection checking code by Shaffer (1990) to test circumcircles against cells. We exploit the quadtree

hierarchy to minimize the number of circle-box intersection tests—if a circumcircle does not intersect

a quadrant, then it cannot intersect the quadrant’s descendants. When it does intersect, we recurse on
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finalized input points spdelaunay2d output mesh

name
# of points op- max active h:mm:ss

MB
# of triangles

file size tions triangles disk pipe file size

puget
(single)

67,125,109

768 MB

l6 56,163 4:41 5:10 6 (single)

l7 48,946 4:23 4:43 7 134,207,228
l8 49,316 4:24 4:45 7 2.3 GB

neuse
(double)

500,141,313

11.2 GB

l8e4 76,337 37:42 39:41 10 (single)

l9e4 60,338 34:27 36:12 10 1,000,282,528
l10e4 54,802 31:57 33:46 7 16.9 GB

neuse
3 × 3
(double)

4,501,271,817

101 GB

l10e5 75,081 – : – 5:30:56 11 (single)

l11e5 67,497 – : – 4:54:40 11 9,002,543,628
l12e5 68,854 – : – 4:48:47 11 152 GB

Table 5.2: Performance of spdelaunay2d on large terrains. The spfinalize option “li” selects a quadtree of
depth i, and “ej” finalizes all empty quadrants in the bottom j levels of the tree at the beginning of the stream.
Rows list spdelaunay2d’s memory footprint (MB) and two timings: one for reading pre-finalized points from
disk, and one for reading finalized points via a pipe from spfinalize. Timings and memory footprints do not

include spfinalize, except that the “pipe” timings include spfinalize’s third pass, which runs concurrently.
For total “pipe” running times, add pass 1 & 2 timings from Table 5.1. For total “pipe” memory footprints,
add the footprint from Table 5.1. For “disk” mode, add the running times of all three finalizer passes, and take
the larger memory footprint. Disk timings for the “neuse” tiling are omitted—we do not have enough scratch
disk space.

each child quadrant that intersects the circle.

When a triangle’s circumcircle is found to intersect or enclose an unfinalized cell, it would be wasteful

to check the triangle again before that cell is finalized. Thus, we link the triangle into a list maintained

with the unfinalized cell, and ignore it until the cell’s finalization tag arrives (or until a point insertion

deletes the triangle). When we check the triangle again, we do not test it against the entire quadtree;

we continue searching the quadtree (in preorder traversal) from the cell it is linked with, where the

check last failed.

For our algorithm to be correct, circle-box intersection tests cannot report false negatives. False

positives are acceptable because they only cause final triangles to stay longer in memory, though we

prefer not to have too many of them. Rather than resorting to exact arithmetic (which is slow), we make

the intersection tests conservative by computing error bounds Ex, Ey, and Er on the center coordinates

and radius of a triangle’s circumcircle. These error bounds are derived in Section 5.7. Before we invoke

Shaffer’s code (or the simpler circle-inside-last-finalized-cell test), we enlarge the box by Ex and Ey and

the circle by Er.
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5.4 Streaming 3D Delaunay triangulation

From the stunning performance of streaming Delaunay trian-

Figure 5.4: Points sampled on a
closed curve. Most of space has
been finalized, yet few triangles are
final—most circumcircles intersect
the unfinalized region.

gulation in 2D, one would hope for a similar success story for tetra-

hedralizing points in 3D. Unfortunately, many gigantic data sets in

3D come from scans of surface models, and these are not amenable

to a straightforward extension of the finalization procedures we

developed for 2D. Delaunay tetrahedra of 3D surface points of-

ten have large cirumspheres that touch many cells; only when all

touched cells are finalized do such tetrahedra become final. Fig-

ure 5.4 illustrates the 2D analog of this circumstance.

Nonetheless, we extended spfinalize to produce finalized points

based on a octree, and implemented spdelaunay3d to construct a

Delaunay tetrahedralization, using the same techniques described

in Sections 5.2 and 5.3. Table 5.3 shows the performance of spdelaunay3d on pre-finalized points on the

laptop described in Section 5.5. The “ppmk” input points consist of every kth vertex of an isosurface

mesh extracted from one timestep of a simulation of Richtmyer–Meshkov instability. In this turbulent

surface, the points distribute somewhat evenly over a 3D volume and are more suitable for streaming

tetrahedralizaton than surface scans. The table shows that the memory for spdelaunay3d is 5–10% of

the output size.

finalized input points spdelaunay3d output mesh
name # of points MB opt max active h:mm:ss MB # tetrahedra GB

ppm16 11,737,698 136 l4 951,683 7:42 137 80,751,131 1.4
ppm8 29,362,621 341 l5 1,903,241 22:19 306 201,721,882 3.5
ppm4 58,725,279 686 l6 4,010,296 56:23 592 405,940,587 7.0
ppm2 117,450,465 1,422 l7 6,907,250 2:41:06 795 815,321,347 14

Table 5.3: Performance of spdelaunay3d tetrahedralizing pre-finalized 3D points sampled from the ppm isosur-
face. The output is a streaming tetrahedral mesh. Option “li” indicates that the points are spatially finalized
with an octree of depth i. The middle third of the table shows the maximum number of active tetrahedra, the
running time (hours:minutes:seconds), and the memory footprint (MB).

Results on two smaller data sets, “sf1” and “f16,” appear in Table 5.4. Each comes from volumetric

data used for finite element analysis: points in “sf1” are from a postorder traversal of an adaptive octree

mesh used in CMU’s Quake earthquake simulation project. “sf1” is tetrahedralized slowly because its

points lie on a grid, often forcing the robust geometric predicates (Shewchuk, 1997) to resort to exact

arithmetic. The points in “f16” are the vertices of a tetrahedral mesh ordered along a space-filling

z-order curve. Figure 5.5 depicts spdelaunay3d as it triangulates “f16.”
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Figure 5.5: Streaming Delaunay tetrahedralization of the f16 point set. Sprinkle points are turned off for
clarity. Most of this model’s points are clustered near its center.

5.5 Comparisons

Here we compare the performance of our streaming triangulators with in-core triangulators and with

the previous fastest external memory Delaunay triangulator, by Agarwal, Arge, and Yi (2005), which

also constructs constrained Delaunay triangulations.

Agarwal et al. “process 10 GB of real-life LIDAR data”—the 500 million point Neuse Basin point

set (see Table 5.2), plus 755,000 segments that constrain the triangulation—“using only 128 MB of

main memory in roughly 7.5 hours.” This timing omits a preprocessing step that sorts the points along

a space-filling Hilbert curve, taking about three additional hours. Their total time is thus 10–11 hours,

compared to our 48 minutes to triangulate the unsorted points. This comparison is skewed (in opposite

directions) by two differences. First, our triangulator does not read or respect the segments (we plan

to add that capability and expect it will cost less than 20% more time for the Neuse data). Second,

Agarwal et al. used a slightly faster processor, and much faster disks, than we did.

Our streaming Delaunay triangulators do more work than standard in-core algorithms, because

they must identify final Delaunay triangles and tetrahedra. Nevertheless, Table 5.4 shows that they

can outperform state-of-the-art in-core triangulators even for data sets that fit in memory. We compare

them with the 2D triangulator Triangle (Shewchuk, 1996c) and the 3D triangulator Pyramid (Shewchuk,
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input spfinalize spdelaunay2d total Triangle output
name MB

opt
old

MB
old

MB
old

MB
old

−I/O MB
MB

# of points new new new new triangles

grbm 69
l6

0:04
15

1:07
3

1:11
18

1:47 1:02
495

208
6,016,883 0:04 0:23 0:27 0:34 0:17 12,018,597

puget5 154
l6

0:10
7

2:17
4

2:27
11

thrash
863

460
13,423,821 0:10 0:55 1:05 3:45 1:22 26,840,720

input spfinalize spdelaunay3d total Pyramid output
name MB

opt
old

MB
old

MB
old

MB
old

−I/O MB
MB

# of points new new new new tetrahedra

f16 13
l9m5

0:01
5

1:16
28

1:17
33

2:53 2:46
262

125
1,124,648 0:01 0:34 0:35 1:37 1:26 7,027,642

sf1 29
l6m5

0:02
16

9:57
29

9:59
45

thrash
537

251
2,461,694 0:02 4:15 4:17 5:16 4:57 13,980,309

Table 5.4: Running times (minutes:seconds) and memory footprints (MB) of triangulators on an old lap-
top (top of each time box) with 512 MB memory and a new laptop (bottom of each time box) with 1 GB
memory, for several 2D and 3D point sets. spfinalize pipes its output to spdelaunay2d or spdelaunay3d;
timings for spfinalize reflect only the first two passes over the input stream, and timings for spdelaunay2d or
spdelaunay3d reflect the combined times for the triangulator and the finalizer’s third pass. The “total” column
lists the start-to-end running time and memory footprint of the triangulation pipe. For the in-core triangulators
Triangle and Pyramid, we report total running time and the running time excluding I/O (“−I/O”). Option
“m5” means subtrees with less than 5K points are collapsed into their root cell.

1998b), modified to read input points from and write output meshes to the same binary format as

our triangulators. Triangle, based on a divide-and-conquer algorithm, is the fastest sequential 2D

implementation. Pyramid uses an incremental algorithm.

We used two laptops for our timings to get a sense of when the in-core triangulators start to thrash:

a newer laptop described in Section 5.5, with 1 GB of memory, and an older laptop with a 1.1 GHz

mobile Pentium III processor and 512 MB of memory. Four data sets appear in Table 5.4: The two 2D

data sets, “grbm” and “puget,” are described in Section 5.2 and depicted in Figure 5.1. The smaller

“puget5” is obtained by sampling every fifth point from “puget.” The two 3D data sets, “f16” and

“sf1,” are described in Section 5.4.

The most striking differences are the memory footprints. spdelaunay2d uses less than 1% of the

space of Triangle; spdelaunay2d and spfinalize together use less than 5%. spdelaunay3d uses

less than 11% of the space of Pyramid; spdelaunay3d and spfinalize together use less than 13%.

Moreover, Triangle and Pyramid’s memory footprints increase linearly with the size of the triangulation,

whereas the streaming triangulators’ memory footprints increase more slowly with the stream size. Of

course, the in-core triangulators begin thrashing long before the streaming triangulators would. Triangle

begins to thrash on the new laptop at about 14 million input points. Compare this with the 4.5 billion

points we have triangulated by streaming.

The running times are more surprising. How can the streaming triangulators, with the extra work of

finalization, run faster than dedicated in-core triangulators? First, they offset the extra work by over-
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lapping computation with file I/O, whereas Triangle and Pyramid do not. The speed of the streaming

triangulators on pre-finalized points is almost entirely CPU-bound. If spdelaunay2d, while triangulat-

ing the Neuse Basin point stream (recall Table 5.2), discards the 16.9 GB output mesh stream instead

of writing it to disk, it saves only three minutes of the 35-minute processing time.

Second, the streaming triangulators benefit from improved cache performance because of their much

smaller memory footprints.

5.6 Conclusions

Researchers with whom we have discussed external memory triangulation suggest, almost by reflex,

sorting the points first. For data sets with no spatial coherence at all, we too advocate sorting. But

in our experience, large, real-world data sets have plenty of spatial coherence. The power of exploiting

that spatial coherence is perhaps best illustrated by two facts. First, it takes Agarwal et al. (2005)

three hours to Hilbert sort the same point set we triangulate in 50 minutes. Second, our triangulator

runs as quickly on the original Neuse point data as on the Hilbert-sorted Neuse points (both kindly

provided by Agarwal et al.)

We realize the benefits of sorting, at much less cost, by documenting the existing spatial coherence

with spatial finalization and enhancing it by reordering points. In analogy to aikido, we use the data’s

spatial coherence to control and direct the data with small efforts, rather than fight it head on (by

sorting it). One advantage is speed. Another advantage is that we can visualize the early output of a

large pipeline of streaming modules soon after starting it.

We have described just one method of spatial finalization for point sets. We choose a depth-k

quadtree/octree because we can describe it succintly with a bounding box and integer k, and it is

relatively simple to determine which cells a sphere intersects. Binary space partitions, k-d trees, and

many other spatial subdivisions would work too. If a point stream is sorted along a space-filling

curve like a Hilbert or z-order curve, the stream is chunked, and finalization can be implicit—a cell is

finalized when the next point leaves it. Sweepline algorithms, such as Fortune’s (1992) for Delaunay

triangulation, generate a point stream with implicit spatial finalization: they sort the points by one

coordinate, thereby partitioning the plane into slabs. At each event, they finalize a slab, and could

potentially produce partial output and free data structures. Likewise, Pajarola’s (2005) streaming k-

neighbor computation finalizes slabs of space with a sweep plane. But these methods bring with them

the disadvantages of sorting discussed above.

The Achilles’ heel of our 3D streaming triangulator is that it performs poorly on point clouds
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sampled from surfaces. The Delaunay triangulations of these point clouds have many tetrahedra with

large circumspheres, which intersect many cells and are thus long-lived. We believe this problem can

be solved by using more sophisticated, non-disjoint finalization regions computed by a randomized

divide-and-conquer technique of Clarkson (1988). Clarkson’s method covers space with overlapping

spherical regions tailored to the point set, and guarantees that each Delaunay circumsphere is covered

by a constant number of these regions; yet no region contains too many points. (Agarwal et al. use

the same random sampling technique to divide a constrained Delaunay triangulation into subproblems.

We propose to use it for spatial finalization instead.)

Implementations of traditional 2D divide-and-conquer Delaunay algorithms (Shamos and Hoey,

1975) are faster than incremental implementations, and even run in expected linear time on random

points from some distributions (Katajainen and Koppinen, 1988). 2D divide-and-conquer algorithms

seem amenable to a streaming implementation using our spatial finalization method. The key to fast

streaming is to merge adjacent triangulations in an order dictated by the data, instead of an a priori

order. Unfortunately, this rules out the best-known generalization of the divide-and-conquer approach to

dimensions above two, the Delaunay Wall algorithm (Cignoni et al., 1998), which constructs tetrahedra

in an inflexible, predetermined order. We do not know how to create a 3D streaming divide-and-conquer

Delaunay algorithm.

As huge data sets become ubiquitous in geometry processing, we hope that streaming geometry with

finalization information and low width will become common. If point-creating programs would include

finalization tags in their output streams, we could pipe them directly to our Delaunay triangulators,

and begin producing triangles or tetrahedra even before all the points are created. The advantages of

stream processing are so strong that we believe the producers of huge geometric data sets will have a

profound incentive to make the modest efforts required to improve their spatial coherence and include

finalization information.

5.7 Error bounds for computing sphere centers and radii

In order for the circle-box intersection test to be conservative, round-off errors in computation of

circle center and radius must be bounded. This section gives the technical details of the error bound

derivation.

Let a, b and c be three non-collinear points in the plane. The circumcircle through them has center

o and radius r.

I assume that the points are single precision IEEE 754 floating point numbers, and that double
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precision computations satisfy the IEEE 754 requirement that the result of a floating point operation

equals the result of the true mathematical operation on double precision input, correctly rounded to

double precision. Thus, for a point p = (px, py), we assume that we correctly compute pq := p2
x + p2

y in

double precision.

The equation for the circle through {a, b, c},

m1 + mxx + myy + mq(x
2 + y2) = 0, (5.1)

has coefficients that are are determinants of the point coordinates:

m1 = (axby − bxay)cq − (axcy − cxay)bq + (bxcy − cxby)aq (5.2)

mx = (ay − cy)(bq − cq) − (by − cy)(aq − cq) (5.3)

my = (ax − cx)(bq − cq) − (bx − cx)(aq − cq) (5.4)

mq = (ax − cx)(by − cy) − (bx − cx)(ay − cy). (5.5)

All expressions within parentheses can be evaluated exactly in double precision. We can easily derive

that the center coordinates o• = − m•

2mq
and squared radius r2 = −m1

mq
+ ox

2 + oy
2.

Suppose that real number a is defined by an algebraic expression on floating point numbers using

operations +,−,×, /. We use a to denote the floating point number that results from computing a with

the corresponding floating point operations, ⊕,	,⊗,�. The error in representing a by a is denoted

a := a − a. We use the following results from Shewchuk (1997): mq ≤ ε|mq| + (3ε + 16ε2)nq, where nq

is the permanent of the absolute values of the matrix for mq, which equals (|ax| + |cx|)(|by| + |cy|) +

(|ay| + |cy|)(|bx| + |cx|).

5.7.1 Center error bound

For the center coordinate ox, we derive an error bound of the form ox ≤ ox +ε(|ox|+C), where ε ≈ 2−52

is the machine epsilon, and C is an expression in intermediate terms of the circle equation that can be

thought of as a “condition number.”

First, let T = mxmq − mxmq and B = mq(mq + mq). Then ox = (1 + ε)ox − T
2B . We can bound

B from below if we assume that |mq| � |mq| and mq 6= 0. This assumption is almost always valid,

because mq is twice the area of the triangle abc; when the assumption fails we simply declare that the

error in ox is infinite.
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|B| = |mq(mq + mq)|

≥ |mq|(|mq| − (ε|mq| + (3ε + 16ε2)nq))

≥ |mq|(|mq| − (ε|mq| + 4εnq))

≥ |mq|(|mq| − ε(|mq| + 4nq))

≥ |mq|(|mq| − ε(1 + ε)(|mq| ⊕ 4nq))

≥ |mq|(|mq| − 2ε(|mq| ⊕ 4nq))

≥ (1 − ε)3|mq| ⊗ (|mq| 	 2ε ⊗ (|mq| ⊕ 4nq))

(5.6)

Now we bound T from above.

|T | = |mxmq − mxmq|

≤ |mxmq| + |mxmq|

≤ |mx|(ε|mq| + (3ε + 16ε2)nq) + |mq|(ε|mx| + (3ε + 16ε2)nx)

= ε (2|mxmq| + (3 + 16ε)|mxnq| + (3 + 16ε)|mqnx|)

≤ 2ε (|mxmq| + 2|mxnq| + 2|mqnx|)

≤ 2ε(1 + ε)3 ⊗ (|mx ⊗ mq| ⊕ 2|mxnq| ⊕ 2|mqnx|)

≤ 4ε (|mx ⊗ mq| ⊕ 2|mxnq| ⊕ 2|mqnx|)

(5.7)

Denote the above bound for |T | as 4εET and the bound for |B| as (1 − ε)3EB . We are now ready

to bound the error |ox|

|ox| = ε|ox| +
1

2

∣∣∣∣
T

B

∣∣∣∣

≤ ε|ox| +
1

2

4ε

(1 − ε)3
ET

EB

≤ ε

(
|ox| +

2(1 + ε)

(1 − ε)3
ET � EB

)

≤ ε (|ox| + 3ET � EB)

≤ 2ε (|ox| ⊕ 3 ⊗ ET � EB)
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5.7.2 squared radius error bound

Denote m1/mq by A. The squared radius

r2 = −
m1

mq
+ ox

2 + oy
2 = −(A + A) + (ox + ox)2 + (oy + oy)2

= −A + ox
2 + oy

2 − A + 2oxox + 2oyoy + ox
2 + oy

2

= (1 + ε)3
(
−A ⊕ ox ⊗ ox ⊕ oy ⊗ oy

)
− A + 2oxox + 2oyoy + ox

2 + oy
2

= (1 + ε)3r2 − A + 2oxox + 2oyoy + ox
2 + oy

2

We already upper bounded the errors |ox| and |oy|. We need to bound the error |A| before bounding

|r2|. Bounding |A| is similar to that for |ox|, except that the bound for |m1| is slightly different from

that for |mx|.

m1 = cx(aybq − byaq) − cy(axbq − bxaq) + cq(axby − bxay)

≤ (1 + ε)5 ( cx ⊗ (ay ⊗ bq 	 by ⊗ aq) 	 cy(ax ⊗ bq 	 bx ⊗ aq)

⊕ cq ⊗ (ax ⊗ by 	 bx ⊗ ay) )

= (1 + ε)5m1 ≤ (1 + 6ε)m1

|A| = |A − A|

≤ εA +
|m1mq| + |m1mq|

|mq|(|mq| − |mq|)

≤ εA +
6ε|m1mq| + ε|m1(|mq| + 4nq)|

(1 − ε)3EB

≤ εA +
ε

(1 − ε)3
7|m1mq| + 4|m1nq|

EB

≤ εA +
ε(1 + ε)2

(1 − ε)3
(7|m1mq| ⊕ 4|m1nq|) � EB

= ε

(
A +

(1 + ε)2

(1 − ε)3
(7|m1mq| ⊕ 4|m1nq|) � EB

)

= ε
(
A + 2 (7|m1mq| ⊕ 4|m1nq|) � EB

)

= 2ε
(
A ⊕ 2 (7|m1mq| ⊕ 4|m1nq|) � EB

)

Denote the upper bounds we established for |ox|, |oy| and |A| as εEx, εEy and εEA, respectively.

Now we are ready to bound |r2|.
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|r2| = |r2 − r2|

≤ 2εr2 + |A| + 2|oxox| + 2|oyoy| + ox
2 + oy

2

≤ 2εr2 + ε
(
EA + 2|ox|Ex + 2|oy|Ey + εEx

2 + εEy
2
)

≤ 2εr2 + ε(1 + ε)6 (EA ⊕ 2|ox| ⊗ Ex ⊕ 2|oy| ⊗ Ey ⊕ ε ⊗ Ex ⊗ Ex ⊕ ε ⊗ Ey ⊗ Ey)

≤ 2εr2 + 2ε (EA ⊕ 2|ox| ⊗ Ex ⊕ 2|oy| ⊗ Ey ⊕ ε ⊗ Ex ⊗ Ex ⊕ ε ⊗ Ey ⊗ Ey)

≤ 3ε
(
r2 ⊕ 2 (EA ⊕ 2|ox| ⊗ Ex ⊕ 2|oy| ⊗ Ey ⊕ ε ⊗ Ex ⊗ Ex ⊕ ε ⊗ Ey ⊗ Ey)

)
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Chapter 6

Multivariate B-splines

This chapter prepares for the second part of the thesis by reviewing concepts of splines.

Univariate B-splines are representations of smooth piecewise polynomials—or splines. (The reader

should be note that, in literature, the word “spline” has been used for two kinds of mathematical

objects. Besides the splines just defined, there are also thin plate splines, which are solutions to a type

of data fitting problem that asks for fitting functions that maximize certain smoothness measures. In

the multivariate setting, thin plate splines are not polynomials.)

I first review basic concepts related to B-splines, and review their multivariate generalizations. In

particular, we describe an elegant construction by Marian Neamtu (2004). His construction reveals an

interesting connection between splines and certain geometric properties in triangulations. In the coming

chapters of this thesis, we will study these properties in detail and show how they may be relaxed to

obtain a more general construction.

The following standard notation for real-valued functions will be used:

- For a set S, χS(x) is the membership function for S, i.e. 1 if x belongs to S and 0 otherwise.

- For an s-variate degree k polynomial p, the polar form P for p is the unique k-variate function

of k vector variables x1, . . . , xk ∈ R
s such that P is symmetric—P does not change if we reorder

its parameters, multi-affine—P is linear with respect to each variable xi when the other variables

are fixed, and, for x ∈ R
s, if x = x1 = . . . = xk, then P (x1, . . . , xk) = p(x). For example, the

polar form of the univariate polynomial ax2 + bx + c is ax1x2 + bx1

2 + bx2

2 + c.



6.1 Univariate B-splines

This section reviews univariate B-splines, which are piecewise polygonomials generated by taking the

linear combination of a set of B-spline basis functions. Before proceeding, a terminology needs to be

clarified: The word “B-spline” can mean either a single B-spline basis function or a function chosen

from the space spanned by a B-spline basis. The context usually resolves the ambiguity.

For degree k ≥ 0 and k + 2 reals X0 ≤ X1 . . . ≤ Xk+1 called knots, the B-spline with respect to the

knots is defined recursively as follows:

M(x | X0, . . . ,Xk) :=
x − X0

Xk+1 − X0
M(x | X1, . . . ,Xk+1) +

Xk+1 − x

Xk+1 − X0
M(x | X0, . . . ,Xk). (6.1)

In the special case k = 0, the B-spline is the constant function over the interval from X0 to X1:

M(x | X0,X1) :=





1
X1−X0

if X0 ≤ x < X1,

0 otherwise.

A degree k B-spline satisfy the following important properties:

- Locally and compactly supported. It is non-zero over the interval [X0,Xk+1].

- Optimally smooth. Assuming that the knots are distinct, it is Ck−1—it is continuous and can be

differentiated k − 1 times.

The optimal smoothness property assumes distinct knots. If the knots are not distinct, B-splines are

still well-defined but have lower smoothness around the duplicate knots: Each time a knot is duplicated,

the smoothness at the knot is lowered by one. Lowering the smoothness by duplicating knots gives a

way to introduce sharp corners along a smooth curve, which can be useful for designing curves in CAD.

Figure 6.1: In counter-clockwise order: B-splines of degree 0, 1 and 2 and quadratic B-spline basis.

A set of B-splines can be constructed and combined linearly to form the basis of a function space.

Given a universe of knots {. . . ≤ Ki−1 ≤ Ki ≤ Ki ≤ . . .}, for each i ∈ Z, construct the normalized
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B-spline function (Ki+k+1 − Ki)M(· | Ki, . . . ,Ki+k+1) (See Figure 6.1). The function space spanned

by the B-spline basis reproduces polynomials: For a degree k polynomial p with polar form P ,

p =
∑

i∈Z

P (Ki+1, . . . ,Ki+k)(Ki+k+1 − Ki)M(· | Xi, . . . ,Xi+k+1). (6.2)

This polynomial reproduction property is the “. . . sine qua non in the consideration of the approximation

order of spline spaces” (Neamtu, 2004). It not only shows that B-splines can represent a rich family of

functions, but is also essential to establish the accuracy of function approximation.

6.2 Multivariate B-splines and Delaunay configurations

Given the nice properties of univariate B-splines, one naturally desires their multivariate analog. How-

ever, finding an analog is not straightforward. In particular, the fundamental problem of choosing the

“right” basis functions is still not settled: For k ≥ 0, s ≥ 1 and a universe of knots K ⊂ R
s (in arbitrary

positions), we would like to construct a set of degree k basis splines that resemble univariate B-splines

“as much as possible”. It seems reasonable that they should at least possess the following properties:

i. Each basis spline is a locally and compactly supported, and optimally smooth.

ii. The spline space contain all polynomials of degree k.

iii. For s = 1, the spline space should coincide with the B-spline space over K.

There have been a number of works (Dahmen and Micchelli, 1983; Dahmen et al., 1992; Neamtu,

2004) that address this problem, but only the last solution, by Neamtu (2004), achieves all of the

above properties. His solution, like all of the earlier ones, relies on the so called simplex splines as

generalizations of single univariate basis splines and focus on solving the combinatoric problem of

finding the right simplex spline sets to form bases. His rule of choosing simplex spline sets is based on

the so called Delaunay configurations. I review the basics of simplex splines and then review Delaunay

configurations. Neamtu proves that his simplex splines reproduce polynomials. The special case of

reproducing polynomials is reproducing constants—or partition of unity. I present a proof of partition-

of-unity proof by trimming from Neamtu’s proof the technical portions that involve polar forms. The

goal of my presentation is to highlight how a combinatoric property of Delaunay configurations plays

the essential role in establishing the polynomial-reproduction property of the spline basis.
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6.2.1 simplex splines

De Boor (1976) defined a simplex spline, which for a set of k + s + 1 points, with s ≥ 1 and k ≥ 0,

gives a piecewise polynomial of s variables and degree k that can serve as a basis function for splines.

The univariate B-splines are special cases of simplex spines. Geometrically, the simplex splines can be

considered as “shadows” of simplices, as Figure 6.2 illustrates. In the figure, the shadow of a tetrahedron

in one dimension is a univariate B-spline.

More precisely, for a set of k + s + 1 knots X ⊂ R
s, the simplex spline with respect to X, M(· | X),

is defined as follows. Let π denote the vertical projection map π : R
k+s → R

s : (x1, . . . , xk+s) 7→

(x1, . . . , xs). Let Y be any set of k + s + 1 points in R
k+s such that π(Y ) = X. Then,

M(x | X) :=
volk{y | y ∈ [Y ], π(y) = x}

volk+s[Y ]
.

In the special case k = 0, the simplex spline is the membership function over the simplex [X] normalized

by its volume:

M(x | X) :=
1

|d(X)|
χ[X](x).

Figure 6.2: Simplex splines as shadows. The heavy dots are the defining knots. The length of the vertical
segment, or the area of the vertical polygon, is the value of the function at the point x.

The simplex spline can be evaluated by the Miccelli recurrence: For x ∈ R
s, let {λv}v∈X be a set

of reals such that
∑

v∈X λvv = x and
∑

v∈X λv = 1. Then,

M(x | X) =





χ[X](x) if#X = s + 1

∑
v∈X λvM(x | X\{v}) otherwise

(6.3)

The Miccelli recurrence leaves some freedom in choosing the coefficients {λv}v∈X . A canonical choice

can be made: First select a set of s + 1 affinely independent points Y ⊂ X; then, for each v ∈ V , if v
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belongs to the set Y , set λv to be the barycentric coordinate d(x
vY )/d(Y ), otherwise set λv to be zero.

We should note that, if we specialize this canonical Miccelli recurrence to the univariate setting and

take the first and last knots in X to form the Y set, we get precisely the recurrence that has been given

as the computational definition of the B-splines (Eq. 6.1).

Simplex splines possess many properties that are multivariate analogs of those possessed by B-

splines. In particular, for a set of k + s + 1 knots X in generic position—X has no affinely dependent

s + 1-subsets, The simplex spline M(· | X) satisfies that

- it is a piecewise polynomial of degree k;

- it is Ck−1;

- it is supported over the polytope conv(X).

These properties are multivariate analogs of those of the (individual) univariate B-splines. Therefore,

if simplex splines are used for basis, the problem of constructing multivariate B-splines is reduced to

one of choosing knot subsets: Given a knot universe K, choose a set of k + s + 1-subsets—or degree k

configurations —∆, so that the function space spanned by the set of simplex splines {M(· | X)}X∈∆

satisfy properties ii and iii.

6.2.2 Delaunay configurations

The last section shows that simplex splines generalize individual univariate B-splines and that the re-

maining task is choosing subsets of size k + s + 1 from a given point set—or choosing configurations.

Historically, the first construction uses all possible k+s+1-subsets—the complete configurations (Dah-

men and Micchelli, 1983). This construction satisfies ii but not iii; also, the size of the basis,
(

#K
k+s+1

)
,

makes it impractical. Most other solutions avoid the large size but do not fulfill property iii (For

a more thorough comparison between the existing solutions, the readers may refer to the survey by

Neamtu (2001).) The only solution that attains all of the properties is Neamtu’s construction that uses

Delaunay configurations.

For a knot set K ⊂ R
s in generic position—K has no s + 2 subsets that are cospherical, a pair

of disjoint subsets (B, I), of size s + 1 and k respectively, is a degree k Delaunay configuration if the

circumsphere of B has, of all knots in K, strictly I inside. The set of all degree k Delaunay configurations

for K is denoted ∆k(K).

For a Delaunay configuration (B, I), a normalized simplex spline with respect to the configuration,
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N(· | B, I) is defined:

N(· | t, I) := d(t)M(· | B ∪ I).

The simplex spline basis associated with ∆k(K) is

{N(· | B, I)}(B,I)∈∆k(K).

We should note that, since we union the pair (B, I) for the construction of simplex splines, a degree k

Delaunay configuration—defined as a pair of sets—serves as a degree k configuration described earlier

as a single set of k + s + 1 points.

We should note that, in the univariate setting, ∆k(K) are precisely the set of all consecutive k + 2-

sequences in K. Then, the simplex spline basis associated with ∆k(K) is exactly the univariate B-spline

basis, as desired.

The simplex spline basis from ∆k(K) reproduces polynomials:

Theorem 6.2.1. (Neamtu, 2004) Let K ⊂ R
s be an infinite, locally finite set of knots in generic

position—K has no s + 2 cospherical subsets. Then, for an s-variate, degree k polynomial p with polar

form P ,

p =
∑

(B,I)∈∆k(K)

P (I)N(· | B, I). (6.4)

For the rest of the section, we will prove partition of unity, the special case of the above theorem

when the polynomial is a constant, i.e. p(·) = 1 and P (·) = 1.

I will make the standing assumption about K as in Theorem 6.2.1 (The “infinite and locally finite”

set assumption is made so that function properties can be stated for any point x ∈ R
s. In practice,

when K is finite, x has to be sufficiently far from the boundary (I will discuss what this boundary is in

Chapter 7).) For brevity, I let ∆n := ∆n(K) for any n.

Let us first see two equalities that express a normalized simplex spline as a sum of simplex splines

of either the same degree or one degree lower. From simple algebra, we have the equality

N(x | B, I) =
∑

0≤i≤s

d(x
i B)M(x | B ∪ I). (6.5)

From Micchelli’s recurrence (Eq.6.3), we have the equality

N(x | B, I) =
∑

0≤i≤s

d(x
i B)M(x | B ∪ I\{Bi}). (6.6)
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Define a degree k Delaunay facet configuration to be a pair (F, I) where F , the boundary set, is

an s-subset of K, and I, the interior set, is a k-subset of K such that there is a sphere F that has I

inside and K\I outside. The following proposition relates the degree k Delaunay facet configurations

to Delaunay configurations of degree k − 1 and k:

Proposition 6.2.1. Let K ⊂ R
s be an infinite, locally finite set of knots in generic position—K has no

s+2 cospherical subsets. Let (F, I) be a disjoint pair of subsets of K such #F = s and there is a sphere

through F that has exactly I inside, of all points in K. Then, there are exactly two points, say p1 and p2,

with the property that the closed ball Bi := ball(F ∪{pi}) contains just the points F ∪I ∪{pi} = Bi∩K.

Furthermore, we can observe three cases by whether these points are in I:

i. Neither belongs to I; they are on the opposite sides of aff(F ).

ii. Exactly one belongs to I; they are on the same side of aff(F ).

iii. Both belong to I; they are on the opposite sides of aff(F ).

Figure 6.3: Illustration of Proposition 6.2.1. The dotted circle goes through two points and has a pair of points
I inside. The solid circles are circumcircles of three points—indicated by triangles. The un-shaded triangles
abut on points from I, while the colored triangles do not.

The proposition declares a relation between ∆k−1 and ∆k via the facet configurations. This relation

allows the following recurrence to be derived.

∑

(B,I)∈∆k

N(· | B, I) =
∑

(B,I)∈∆k−1

N(· | B, I) (6.7)

Proof. Let us consider the oriented version of facet configurations: For each facet configuration (F, I),

we get its two oriented versions by ordering the boundary set F into tuples of two different parities.

Let us extend the ∼ notation for opposite and equivalent tuples to the oriented facet configurations:
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For two oriented facet configurations (F, I), (F ′, I ′)

(F, I) ∼ (F ′, I ′) ⇔ F ∼ F ′, I = I ′

(F, I) ∼ −(F ′, I ′) ⇔ F ∼ −F ′, I = I ′

Equivalent or opposite facet configurations give rise to equal or opposite expressions of real numbers:

For any x ∈ R
s,

(F, I) ∼ (F ′, I ′) ⇒ d(xF )M(x | F ∪ I) = d(xF ′)M(x | F ∪ I ′) (6.8)

(F, I) ∼ −(F ′, I ′) ⇒ d(xF )M(x | F ∪ I) = −d(xF ′)M(x | F ∪ I ′) (6.9)

Given a degree n configuration (B, I) and an integer 0 ≤ i ≤ s, two oriented facet configurations,

of degree n and n + 1, can be derived: (iB, I) and (iB, I\{Bi}). Proposition 6.2.1 can be read as

describing the converse: Given a degree k facet configuration, three cases describe how its oriented

versions can be derived from configuration in ∆k−1 or ∆k:

i. Both of its oriented versions can be derived from ∆k−1;

ii. Only one oriented version of it can be derived, but from both ∆k and from ∆k−1.

iii. Both of its oriented versions can be derived from ∆k

Let F denote the set of oriented facet configurations in the last case. Let
∑

denote the formal addition

operation over a set of oriented configurations that “cancels” opposites. Then, F can be computed

either from ∆k−1 or from ∆k:

F =
∑

{(iB, I) | (B, I) ∈ ∆k, 0 ≤ i ≤ s}

=
∑

{(iB, I ∪ {Bi}) | (B, I) ∈ ∆k−1, 0 ≤ i ≤ s}

The above equalities, together with equalities 6.8 and 6.9 imply that

∑

(F,I)∈F

d(xF )M(x | F ∪ I) =
∑

(B,I)∈∆k

∑

0≤i≤s

d(x
i B)M(x | B ∪ I) (6.10)

=
∑

(B,I)∈∆k−1

∑

0≤i≤s

d(x
i B)M(x | B ∪ I\{Bi}) (6.11)
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By equality 6.5,

Expression 6.10 =
∑

(B,I)∈∆k

N(· | B, I)

By equality 6.6,

Expression 6.11 =
∑

(B,I)∈∆k−1

N(· | B, I)

By the above two equalities and equality 6.11, we have

∑

(B,I)∈∆k

N(· | B, I) =
∑

(B,I)∈∆k−1

N(· | B, I)

Then,

∑

(B,I)∈∆k

N(· | B, I) =
∑

(B,I)∈∆k−1

N(· | B, I) = . . . =
∑

(B,I)∈∆0

N(· | B, I) =
∑

(B,∅)∈∆0

χ[B] = 1

Thus, I have proved that the constant can be reproduced. It should be noted that the proof relies on

only two geometric properties of the Delaunay configurations: First, degree zero configurations form a

triangulation; second, configurations of adjacent degrees satisfy the property stated in Proposition 6.2.1.

This proof in fact can be easily extended to Neamtu’s proof of polynomial reproduction: The only

additional ingredient needed is an algebraic identify involving polar forms.
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Chapter 7

Generalization of Delaunay Configurations

In the previous chapter, Delaunay configurations are introduced as the geometric elements in building a

simplex spline space. Two essential properties of the Delaunay configurations establish the polynomial

reproduction property of the simplex spline space: First, the degree zero configurations form a trian-

gulation; second, the facets of degree k and degree k + 1 configurations correspond in the way stated

in proposition 6.2.1. In this chapter, I generalize Delaunay configurations by constructing generalized

configurations in two dimensions that retain the two essential properties. The direct application of the

result is that the generalized configurations can be substituted for Delaunay configurations in building

simplex spline spaces. Furthermore, it initiates the study of the problem of generalizing Delaunay

configurations, which is interesting in its own right.

I describe two approaches to generalization. The first approach views the Delaunay configurations

in one dimension higher by using a lifting map and then varies this lifting map to produce generalized

configurations. This approach is fairly obvious but deserve to be described because it connects Delaunay

configurations to well studied objects in computational geometry, namely k-sets and boundary-interior

configurations, and gives a general setting to study properties of Delaunay configurations, such as the

number of Delaunay configurations in two dimensions. The second approach views the Delaunay config-

urations as the output of an iterative computational procedure, which takes the Delaunay configurations

of some fixed degree as input and output the Delaunay configurations of one degree higher (This pro-

cedure is dual version of Lee’s algorithm (Lee, 1982).) Varying a polygon-triangulation subroutine of

this procedure output the generalized configurations. The main challenge for using this approach is

to show that the procedure is indeed well-defined. More specifically, it must be shown what rules—if

any—must be obeyed by the polygon triangulation subroutine in order for one application of the pro-

cedure to generate output that are valid input of the next application of the procedure. I am able to



show that no rule is required for at least three iterations. Whether this is true for higher degree cases

remains a conjecture, although computer experiments show that this is likely to be true.

While writing this thesis, I learned that Neamtu had similar ideas regarding the generalized con-

figurations. He has communicated to me that the result is in manuscript form, and is expected to be

published soon. I do not know whether his results establish or refute the conjecture.

The rest of the chapter is organized as follows. Section 7.1 reviews the fundamental geometric

concepts related to Delaunay configurations, namely k-sets and k-set polytopes. Much of the material

in this section is taken from (Andrzejak and Welzl, 2003). Section 7.2 presents a property of the k-sets

in three dimensions and a counting of the number of k-sets, which generalizes Lee’s theorem. Section 7.3

describes the generalization of Delaunay configurations through the lifting map. Section 7.4 presents

the iterative procedure for generalizing Delaunay configurations.

The following set notation will be used. For a discrete set X,

- let #X denote the size of X;

- let
(
X
k

)
denote the set of all subsets of size k ≥ 1 from X;

- let X denote the centroid of X, which is the weighted sum of the points
∑

p∈X
p

#X .

7.1 k-sets and boundary-interior configurations

In s dimensional Euclidean space, for a point set P , a subset of k points X ⊂ P is a k-set if X can be

separated from P\X be a hyperplane. A k-set can be further partitioned: A pair of subsets (B, I) of

P is said to be a boundary-interior configuration if there is a hyperplane h such that h ∩ P = B and

h+ ∩ P = I.

k-sets and boundary-interior configurations are fundamentally important objects in computational

geometry that have been studied in various settings. For example, in the study of hyperplane arrange-

ments: If one applies a point-hyperplane duality transform, a k-set in P become the k hyperplanes

facing a chosen point in an arrangement of hyperplanes (that are dual to P ); and the boundary-interior

configurations correspond to faces in this arrangement. The structural properties of the k-sets and

boundary-interior configurations are studied most extensively by Andrzejak (2003), who assumes that

P are in general position, and by Schmitt (2006), who does not assume that P are in general position.

It should be noted that the term boundary-interior configuration is not standard. In fact, the same

object has been named differently in literature—for example, as (i, j)-partitions in (Andrzejak and

Welzl, 2003) or k-couples in (Schmitt and Spehner, 2006).
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The goal of this section is to describe a number of structural properties of the configurations, and in

particular, Theorem 7.1.2 (Andrzejak and Welzl, 2003) that connects boundary-interior configurations

to the faces of the so called k-set polytope. In the dual setting, k-set polytopes are called k-levels (Edels-

brunner, 1987).

For the following discussion, I make the standing assumption that P ⊂ R
s is a set of points in general

position—every s + 1-subset of P is affinely independent. I use the following notation throughout:

- ∆(P ) denotes the set of all configurations from P .

- For an integer k ≥ 1, Vk(P ) denotes the set of all k-sets from P .

- For integer i and set X, ∆i,X(P ) means the configurations in ∆(P ) whose boundary set has size

i and interior set is X.

- For integers i and j, ∆i,j(P ) means the configurations in ∆(P ) whose boundary set has size i and

interior set has size j.

The first important structural property relates the configurations around a chosen k-set. Choose a

k-set X ∈ Vk(P ). The hyperplanes that separate X from the rest of P—either strictly or touching—

support a set of simplices:

F (X,P ) := {f | f = h ∩ P, h+ ⊃ X,h+ ⊃ P\X}. (7.1)

These simplices—I will call them the separating simplices for X—can be viewed as the faces of an

oriented projective polytope: Let Y := P\X, and consider X and Y as matrices of homogeneous

coordinates tuples; then, the simplices in F (X,P ) correspond the faces of the oriented projective

polytope conv(−X ∪ Y ). More formally, for a set of points f ⊂ P ,

f ∈ F (X,P ) ⇔ −(f ∩ X) ∪ (f ∩ Y ) ∈ F (conv(−X ∪ Y )). (7.2)

For proof, observe that, for an Euclidean point x ∈ R
s and a hyperplane h , the oriented projective

point (1, x) and its antipode −(1, x) are on the opposite sides of h.

The second important structural property relates the configurations around a chosen number k.

It turns out that subsets of the configurations whose degrees are “around k” form a certain polytope

called the k-set polytope, defined as follows. For an integer k ≥ 1, the k-set polytope with respect to
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P , denoted Qk(P ), is the convex hull of the centroids of all k-subsets in P :

Qk(P ) := conv{X | X ∈

(
P

k

)
}.

Note that the 1-set polytope Q1(P ) is precisely the convex hull of P . Therefore, k-set polytopes

generalize convex hulls.

The vertices of a k-set polytope correspond 1-1 to the k-sets:

Lemma 7.1.1. For a set of k points X ⊂ P , X is a k-set if and only if X is a vertex of Qk(P ).

Proof. The proof can be reduced to one dimension: For a set of real numbers P ⊂ R and integer k,

prove that the k-subset of P whose sum is the largest is precisely the set of k largest numbers in P .

The proof for this is easy.

The correspondence implies that, when describing the faces of a k-set polytope, it does not matter

whether a vertex is represented as a centroid point or a set of k points. If the latter is used, the face

description is called the combinatorial description of the k-set polytope.

The relations between all configurations from P and the faces of all k-set polytopes from P (for

all possible k) can be established by a combinatorial map, defined as follows. Let P denote a set of

n ≥ 2 elements. Given a pair of disjoint subsets (B, I) from P such that #B ≥ 2, and an integer

1 ≤ i < #B − 1, the union map U returns a set of (i + #I)-subsets of P :

U((B, I), i) := {X ∪ I | X ∈

(
B

i

)
}. (7.3)

It can be easily checked that the union map is injective and that its inverse satisfies the following

equality: Let V be an element from the range of U , so that V is a set of k-subsets of P , then

U−1(V ) = ((
⋃

V \
⋂

V,
⋂

V ), k − #
⋂

V ). (7.4)

Theorem 7.1.2. Let P be a set of n points in R
s. The ≥ 1 dimensional faces of the [1..n)-set polytopes

of P , described combinatorially, is precisely the image of the following set under the union map:

{((B, I), i) | (B, I) ∈ ∆(P ),#B ≥ 2, 1 ≤ i < #B}.

79



This theorem implies that, for a chosen k, the k-sets and the following configurations

face dimension configurations

1 ∆2,k−1(P )

2 ∆3,k−1(P ),∆3,k−2(P )

...
...

s ∆s,k−1(P ),∆s,k−2(P ), . . . ,∆s,k−s(P )

correspond to the faces of a k-set polytope through the union map and taking centroids.

This theorem also implies that in dimensions greater than three, a k-set polytope include non-

simplicial faces. For example, a configuration ({a, b, c, d}, ∅) in four dimensions corresponds to the

three dimensional facet U(({a, b, c, d}, ∅), 2) = {{a, b}, {a, c},

{a, d}, {b, c}, {b, d}, {c, d}}, which is not simplicial.

7.2 Boundary-interior configurations for convex sets in three

dimensions

I study boundary interior configurations for convex point sets in three dimensions. These point sets

are important because, as will be seen in Section 7.3, their respective configurations correspond to

Delaunay configurations in two dimensions. I prove two properties: First, the configurations with a

common interior set give a triangulation of a simple polygon (Lemma 7.2.1); second, the number of

k-sets is linear with respect to the number of points and the degree k (Theorem 7.2.3).

I continue to make the standing assumption that P is a set of points in R
3 in general, convex

position.

For a chosen a k-set X ∈ Vk(P ), consider its separating simplices F (X,P ) (defined in Eq.7.1.) The

set can be partitioned into three types: Those using only vertices in P\X:

F+(X,P ) := {F | F ∈ F (X,P ), F ⊂ P\X};

those using only vertices in X:

F−(X,P ) := {F | F ∈ F (X,P ), F ⊂ X};
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and the rest:

F0(X,P ) := F (X,P )\F+(X,P )\F−(X,P ).

For brevity, let F+ := F+(X,P ), F− := F−(X,P ) and F0 := F0(X,P ). By definition, the set F+

and F− are simplicial complexes, but the set F0 is not. F0 consists of edges and triangles: Each edge

has one vertex in F+ and one vertex in F−; each triangle has one edge in F+ or F− and two edges in F0.

The edges and triangles in F0 can be ordered into a belt, by the following proposition ((See Figure 7.1).

Note that this proposition is actually stated for faces of a polytope in R
3 but becomes applicable if we

view the faces F (X,P ) as a polytope in the oriented projective 3-space (in the sense of Eq. 7.2).

Proposition 7.2.1. Let X ⊂ R
3 and Y ⊂ R

3 be two set of points that can be separated by a plane h.

Let F0 be the polytope edges and triangles “between” X and Y ,

F0 := {f | f ∈ F (conv(X ∪ Y )), f ∩ X 6= ∅, f ∩ Y 6= ∅}

or, equivalently,

F0 := {f | f ∈ F (conv(X ∪ Y )), [f ] ∩ h 6= ∅}.

Then, F0 can be ordered cyclically (by their intersection along h) into a belt: Triangles and edges

alternate in this ordering and satisfy that for an adjacent triangle-edge-triangle triplet (T,E, T ′), E =

T ∩ T ′, and for an adjacent edge-triangle-edge triplet (E, T,E′), T = E ∪ E′.

F+

F0

F-

Figure 7.1: The edges and triangles in F0 form a belt.

The simplices in F+(X,P ) are either a single edge (and its vertices) or the triangulation of a simple

polygon with no internal points. The formal statement and the proof can be found in Lemma 7.2.1. I

should point out that the proof uses a simple but useful Lemma 7.2.2 that analyzes the faces of F (X,P )

incident upon a single vertex.

Lemma 7.2.1. For a set of points P ⊂ R
3 in convex position and a chosen k-set X ⊂ P , the simplicial

complex F+(X,P ) is either a single edge or the triangulation of a simple polygon with no internal vertex.

Proof. Let F+ := F+(X,P ). Let F0 := F0(X,P ). Let Y := P\X.
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i. A vertex link is connected. Choose a vertex v ∈ F+. Denote the cycle of vertices around v

in F (X,P ) by L, i.e., L = (. . . , Li, . . .) such that the cycle of triangles (. . . , [Li, Li+1, v], . . .) are

precisely those incident on v in F+. The subsequence of L restricted to Y , L|Y , is precisely

the link of v in F+. We prove that L|Y is a non-empty proper subsequence of L. Let L|X

denote subsequence of L restricted to X, so that the vertices in L|X and L|Y partition L. By

Lemma 7.2.2, there is a map π such that π(L) becomes the cycle of vertices of the polytope

conv(π(P )) in a plane h. Furthermore, the lemma implies that, because v ∈ V (conv(P )), π(X)

and π(Y ) can be separated by a line in h. This implies that π(L|X) and π(L|Y ) are disjoint

non-empty subsequences in π(L). Therefore, L|X is non-empty proper subsequence of L.

ii. The boundary complex is connected. By Proposition 7.2.1, we can assume that F0 can be ordered

into a belt. Let T denote the sub-cycle of triangles in F0 that are incident on two points in Y :

T := ({u, v, a} | {u, v, a} ∈ F0, {u, v} ⊂ Y, a ∈ X),

and B denote the associated edge cycle:

B := ({u, v} | {u, v, a} ∈ F0, {u, v} ⊂ Y, a ∈ X)

Choose two adjacent triangles {u, v, a} and {v′, w, b} in T , so that a ∈ X, b ∈ X and the triangles

after {v, a} and before {v′, b} in F0 do not belong to T . These triangles then all have only one

vertex incident on Y . The belt property implies that this vertex must be v = v′. Therefore, B

is a cycle of edges in which adjacent pair shares a vertex. Then, since B is precisely the edges in

the boundary complex, the boundary simplex is connected.

If F+ only a single edge, then the hypothesis is trivially true. Suppose F+ has more than a single

edge. Let β denote the boundary complex of F+. By part 1, each vertex in β is incident on exactly two

edges so β must consist of topological circles, but there is only one, by part 2. Also by part 2, F+ has

no internal vertex. Therefore, F+ is the triangulation of a simple polygon with no internal vertex.

Lemma 7.2.2. Let X, Y and {v} be point sets in R
s such that there is a hyperplane h through v that

separates X and Y . Let n(h) denote the unit length normal of h; Let h′ denote the hyperplane with

normal n(h) through the point 0+n(h). Let π denote the central projection map: π : R
s\h → h′ : x 7→

x−v
(x−v)·n(h) . Then,

i. A hyperplane through v supports a face of F (X,P ) if and only if its restriction to h′ supports a
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face of conv(π(X ∪ Y )).

ii. v ∈ V1(X ∪ Y ∪ {v}) if and only if there is a hyperplane separating π(X) and π(Y ) in h′.

v v

h'

h

Figure 7.2: Illustration for Lemma 7.2.2. The balls above and below the hyperplane h represent the X and Y

sets. The red and green dots represent the projections of X and Y sets. For each bounding edge of the convex
hull (shaded), the triplet of points whose plane goes through it gives a triangle in F (X, P ). Left: The red and
green dots can not be separated by a line; v 6∈ V1(X ∪Y ∪{v}). Right: the red and green dots can be separated
by line; v ∈ V1(X ∪ Y ∪ {v}).

Theorem 7.2.3. Let P be a set of n points in R
3 in general and convex position. Then, for 1 ≤ k < n,

the degree k-configurations are linear to both n and k. Specifically, let vk := #Vk(P ), e(k) := #∆2,k(P )

and fk := #∆3,k(P ) denote the number k-sets, edge and triangle configurations. Then, k ≥ 1, fk =

2nk − 8k + 4. The expressions for vk and ek can be can be derived from fk by equality 7.5 and 7.2.

Proof. Since the configurations ∆0,{2,3}(P ) and P triangulate the boundary of a polytope, we have

3f0 = 2e0, and, by Euler’s equation, v1 + f0 − e0 = 2. Combining these two equalities gives:

f0 = 2n − 4; e0 = 3n − 6.

Lemma 7.2.1 implies that the degree 0 edges correspond one-to-one to 2-sets. Therefore,

v2 = e0 = 3n − 6.

Theorem 7.1.2 implies that, for k > 2, the k-sets, the degree k − 1 edge configurations and the degree

k − 1 and k − 2 triangle configurations correspond to the faces of a polytope. Therefore,

vk + fk−1 + fk−2 − ek−1 = 2;

3(fk−1 + fk−2) = 2ek−1.
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Combining the above two equalities gives

vk =
fk−1 + fk−2

2
+ 2. (7.5)

To derive the next equality 7.6, let us consider the following set of oriented degree k edge configu-

rations derived from the degree k triangle configurations.

L := {ti
t, I ∪ {ti}) | i ∈ {0, 1, 2}, (t, I) ∈ ∆3,k−1(P )}.

Let LX denote the subset of L with interior set X, so that L =
⋃

X∈Vk(P ) LX . Then, by Lemma 7.2.1,

LX is either a pair of oppositely oriented edges of the single edge in F+(X,P ) or the edges that bound

the simple polygon represented by F+(X,P ). In either case, we have #LX −2 = #triangles(F+(X,P )).

Then, we have the equality

fk =
∑

X∈Vk(P )

#triangles(F+(X,P )) =
∑

X∈Vk(P )

#LX − 2 = #L − 2vk

= 3fk−1 − 2vk. (7.6)

Combining equalities 7.6 and 7.5 gives

fk − fk−1 = fk−1 − fk−2 − 4. (7.7)

The above recurrence relations for fk can be solved, since f1 and f0 are known:

fk = 2nk − 8k + 4.

7.3 Projective boundary-interior configurations: A generaliza-

tion of Delaunay configurations

Recall that a Delaunay triangulation can be constructed by first lifting the input points to a unit

paraboloid and then computing the faces of the convex hull of the lifted points. This construction

reveals a simple generalization of Delaunay triangulations to the so called regular triangulations via
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varying the lifting function. This section explains the analogous construction and generalization for

Delaunay configurations.

Let f : R
s → R denote a convex function. Let the caret (̂ ) denote the lifting map that takes R

s

to the plot of f in R
s+1. Then, for a set of points points P ⊂ R

s in general position—there is no

s + 2-subset of P̂ on the same non-vertical hyperplane,

- A set of k points X ⊂ P is a projective k-set with respect to P if X̂ is a k-set with respect to P̂

and the separating hyperplane for X̂ is a down-facing

- A pair of disjoint subsets (B, I) of P is a projective boundary-interior configuration if (B̂, Î) is a

boundary-interior configuration with respect to P̂ with a down-facing support hyperplane.

Therefore, according to the above definition, the projective k-sets and configurations correspond to

the “lower half” of the k-sets and configurations in one dimension higher. The boundary configurations

shared between the lower and upper half can be characterized in two ways:

- A projective boundary-interior configuration has a support hyperplane that is arbitrarily close to

being vertical.

- Suppose the general position assumption is strengthened to forbid any linearly dependent s + 1-

subsets of P . Then, a boundary projective configuration is the same a configuration defined

without the lifting map.

Let Vk(P ) denote the projective k-sets and ∆i,k(P ) denote the projective boundary-interior config-

urations of degree k and dimension i − 1. The configurations ∆s+1,k(P ) generalize Delaunay configu-

rations: If the unit paraboloid function is used as the lifting functions, they are precisely the degree

k Delaunay configurations defined earlier. Also, for any lifting function, the set ∆s+1,k(P ) satisfy the

facet-matching property stated in proposition 6.2.1. Therefore, these projective configurations can be

substituted for Delaunay configurations in the proof of Theorem 6.2.1.

In two dimensions, by Theorem 7.1.2, for k ≥ 2, the set of points {X | X ∈ Vk(P )}, the set of edges

{U((B, I), 1) | (B, I) ∈ ∆2,k−1(P )}, and the two sets of triangles {U((B, I), 1) | (B, I) ∈ ∆3,k−1(P )}

and {U((B, I), 2) | (B, I) ∈ ∆3,k−2(P )} form a planar triangulation. This will be called an order k

Delaunay triangulation.
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7.4 Generalized configs in two dimensions by computational

procedures

In two dimensions, point-set triangulations can be considered as generalization of Delaunay triangles

by dropping the circumcircle property but retaining the tiling property. The triangulations that are

not Delaunay are actually prefered by some applications—consider the data-dependent triangulations in

terrain modeling (Dyn and Rippa, 1993). It is natural to wonder whether similar kinds of generalizations

exist for higher degree Delaunay configurations. To look for a generalization, first, one must be clear

what properties of Delaunay configurations are useful for applications therefore should be retained;

second, one must answer a fundamental question that seems to be rather difficult: How do we define

k-sets—if not by separating hyperplanes?

I present one possible asnwer to this question. I generalize Delaunay configurations as the output of

iterative applications of a computational procedure(Definition 7.4.1). This procedure (Table 7.1) has a

step that performs polygon triangulation. The exact choice of the polygon triangulation is left open.

When Delaunay polygon triangulations are chosen, the procedure generates Delaunay configurations.

When non-Delaunay polygon triangulations are chosen, the procedure generates configurations that

satisfy a facet-matching property of Delaunay configurations described in Proposition 6.2.1. Therefore,

they can be used to build bivariate simplex spline basis. The simplicity of the construction procedure

means that, unlike with Delaunay configurations, a builder of simplex spline bases needs not to worry

about how to satisfy the in-circle conditions and can concentrate better on building the desired basis

functions. I will demonstrate examples of this in Chapter 8.

The main technical challenge for using this generalization is to find conditions—if any—that must be

satisfied for the non-Delaunay polygon triangulations so that the procedure can be iterated to generate

configurations of any degree. I show that, for arbitrary polygon triangulations, the procedure can be

iterated for up to three times (Theorem 7.4.2) to generate configurations of degree up to three. Beyond

three times, experiments suggests that arbitrary polygon triangulations “still work”, but presently I

have no proof.

In addition to the facet-matching property, the generalized configurations retain other properties of

the Delaunay configurations. For example, k-sets correspond to edge-configurations(Lemma 7.4.3), and

the degree 0-1, 1-2 and 2-3 configurations form centroid triangulations of the k-set polytope (defined

with separating lines) ??. These results suggest that the generalization may be an appropriate way

to generalize Delaunay configurations for “general purposes”—and are not only for the purpose of
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constructing splines.

The rest of the section defines the generalized configurations and presents Theorem 7.4.2.

Let us first establish some simple notation

- Our objects will be constructed from a discrete set of points P ⊂ R
2 called knots. To simplify the

generalization, we temporarily assume that P is an infinite set. This assumption will be removed.

- A pair of knot sets, X := (B, I), is called a configuration (config for short) if B and I are disjoint.

If #B = 2, (B, I) is an edge-config. If #B = 3, (B, I) is a triangle-config.

- We use ] to denote the multiset union operation. For two sets A and B, A]B has size #A+#B

and each element in A ∩ B is repeated twice in A ] B.

The following operations construct objects from a set of triangle-configs of fixed degree .

- Let ∆ be a set of triangle-configs. For a set of points I, we let ∆I denote the set of triangles

{T | (T, I) ∈ ∆}. It is also convenient to adopt the following convention: For a set of degree k

configurations ∆k, and a set of k points I, we write ∆I for (∆k)I . Dropping k does not cause

ambiguity because we always consider one set of triangle-configs of a chosen degree.

- The corners of a set of triangle-configs ∆ is defined:

C(∆) := {(v, I) | (T, I) ∈ ∆, v ∈ T.}

- The set of k-sets of a set of degree k − 1 triangle-configs ∆ is defined:

V (∆) :=
⋃

(v,I)∈C(∆)

{{v} ∪ I}

- The set of corners of a set of triangle-configs ∆ are partitioned by the k-sets of ∆:

C(∆) =
⊎

J∈V (∆)

{(v, I) | (v, I) ∈ C(∆), {v} ∪ I = J}.

For a generalized k-set J ∈ V (∆), we let CJ (∆) denote its corner partition.

- A k-set link is a multiset of edges defined for chosen k-set: For a k-set J ∈ V (∆), the link of J is

the multiset:

Lk(J,∆) :=
⊎

(v,I)∈CJ (∆)

Lk(v,∆I).
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If a link consists of two oppositely oriented edges, we say that a link bounds a null polygon; the

link bounds a simple polygon if its edges form a simple closed polygonal curve in counter clockwise

order.

The following link triangulation procedure takes a set of triangle-configs of degree k whose
links bound either null or simple polygons, triangulates the links and outputs a set
of triangle-configs of degree k + 1. This procedure should be more aptly called a
procedure template, since the choices of the polygon triangulations are left unspecified.
LinkTriangulate

Input: ∆: a set of triangle-configs of degree k whose links bound null or simple polygons.
Output: ∆′: a set of triangle-configs of degree k + 1.

For each I ∈ V (∆), ∆I :=

{
∅ , if #Lk(I,∆) = 2

polygon-triangulate Lk(I,∆) , otherwise
∆′ :=

⋃
I∈V (∆),T∈∆I

(T, I)

Table 7.1: The link triangulation procedure

We can now define the generalized triangle-configs:

Definition 7.4.1. Let ∆ be a set of triangle-configs of degree k ≥ 1 with respect to a set of knots

P ⊂ R
2. We say that ∆ generalizes Delaunay triangle-configs if ∆ can be generated by k iterations of

the link triangulation procedure, starting with a planar triangulation, i.e., there is a triangulation ∆0

of P such that

∆ = LinkTriangulate . . . LinkTriangulate︸ ︷︷ ︸
k

∆0.

The definition is indeed a generalization: If we initialize with the Delaunay triangulation of P , use

Delaunay polygon triangulations for the link triangulation procedure and apply the procedure k times,

we get the degree k Delaunay configurations of P . In fact, in the Voronoi-dual setting, this algorithm for

generating Delaunay configurations becomes essentially Lee’s algorithm for constructing higher order

Voronoi diagrams (Lee, 1982).

The generalized triangle-configs retain the facet property of the Delaunay configurations stated in

Proposition 6.2.1:

Lemma 7.4.1. Let ∆ and ∆′ be the input and output set of the link triangulation procedure.

i. For (S, I) ∈ ∆, u ∈ S, either there are (T, J) ∈ ∆, v ∈ T , such that uS ∼ −vT , {u}∪ I = {v}∪J

or there are (S′, I ′) ∈ ∆′, u′ ∈ S′, such that u′S′ ∼ uS, {u} ∪ I = I ′.

ii. For (S′, I ′) ∈ ∆′, u′ ∈ S′, either there are (T ′, J ′) ∈ ∆′, v′ ∈ T ′, such that u′S′ ∼ −v′T ′, I ′ = J ′,

or there are (S, I) ∈ ∆, u ∈ S, such that u′S′ ∼ uS, {u} ∪ I = I ′.
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Figure 7.3: Illustration of the link triangulation algorithm. The first iteration takes a triangulation of the knots
(top left), triangulates the link of each knot (for example, the second of the top row shows the triangulation for
the link of knot 9), and outputs a set of degree 1 configs. The output degree 1 configs, along with the input
degree 0 configs, are transformed by the union map to the centroid triangulation on the first of the bottom
row, in which the triangles from degree 0 configs are colored green and the shaded part is the transformed
link triangulation for knot 9. Each centroid is labeled by its corresponding set of knots; these labels are more
legible if magnified. The second iteration is illustrated the same way: The third of the top row shows the link
triangulation for a knot pair {9, 12} and the picture below it shows the centroid triangulation formed by the
output degree 2 configs and the input degree 1 configs. The third iteration is not completed. To complete
it, take each knot set corresponding to a vertex in the second centroid triangulation and triangulate its link,
for example, the link of the knot set {4, 8, 9} on the top right. Some of these links bound null polygons, for
example, the link of {12, 15, 16}, colored orange.

Proof. For a configuration (S, I) ∈ ∆ and a chosen vertex u ∈ S, the edge uS belongs to the link

Lk(I∪{u},∆), which either bounds a null polygon or a simple one. In the former case, an opposite edge

−uS also belongs to the link, which implies that there is a knot v ∈ I such that (−v
uS, I∪{u}\{v}) ∈ ∆.

In the latter case, the edge uS is incident to exactly one triangle in the polygon triangulation. This

triangle implies that there is a knot v so that (v
uS, I ∪ {u}) ∈ ∆.

A configuration (S′, I ′) ∈ ∆′ is constructed from the triangulation of a simple polygon bounded by

edges Lk(I ′,∆). Therefore, for any u′ ∈ S′, the edge u′S′ either belongs to the set Lk(I,∆) or is a

diagonal in the polygon triangulation. In the former case, by definition of link edges, there is a knot

v′ ∈ I ′ such that (
v′

u′S′, I ′\{u′}) ∈ ∆; in the latter case, the neighboring triangle across u′S′ in the

polygon triangulation implies that there is a knot v′ such that (−v′

u′S′, I ′) ∈ ∆′.

By observing the role that the facet-matching property plays in the proof of Eq. 6.7, it is easy

to check that the simplex splines associated with the degree k generalized configuratio ns reproduce

polynomials of degree k.

To construct generalized configurations, the obvious way is to initialize with a planar triangulation

and iterate the link triangulation procedure. By varying the choices of polygon triangulation in the
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procedure, one may construct configurations that suit application needs. However, it is not immediate

clear that the link triangulation procedure can indeed be iterated: It must be shown that the output

configs of one iteration satisfy the input condition of the next iteration—the links in the configs must

bound either null of simple polygons. In Section 7.4.2, with Lemma 7.4.6 and 7.4.7, we show that this

is indeed the case up for at least three iterations, using arbitrary polygonal triangulations. Therefore,

we will establish the following theorem.

Theorem 7.4.2. Starting from a planar triangulation, the link triangulation procedure can be iterated

at least three times for any choices of polygon triangulation in the link triangulation procedure.

7.4.1 Preliminaries

We adopt the convention that whenever we consider a set of degree k generalized configs ∆k, the

symbols ∆0, . . . ,∆k−1 denote the config sets of degree 0 to k− 1 that are generated in the construction

of ∆k.

Let us first describe a few simple properties of the generalized triangle-configs that come directly

from the definition: Let ∆k be a set of generalized triangle-configs of degree k, then

- For a corner (v, I) ∈ C(∆k), the vertex v belongs to the triangulation boundary ∂∆I . Let a and b

be the vertices before and after v in ∂∆I . Then, the vertex link Lk(v,∆I) forms a simple polygon

curve that starts at b and ends at a.

In the projective setting, a set of k points X is a k-set if and only if there is an edge config (E, I)

such that E ∪ I = X. The same is true for the generalized k-sets:

Lemma 7.4.3. Let J be a set of k knots and ∆k−1 denote a set of degree k − 1 generalized triangle-

configs. Then, J ∈ V (∆k−1) if and only if there is a pair {u, v} ⊂ J such that {u, v} is an edge in the

polygon triangulation ∆J\{u,v}.

Proof. Let {u, v} be a pair of knots and I be a set of k − 2 knots such that {u, v} is an edge of ∆I .

Either the vertex link Lk(u,∆I) or Lk(v,∆I) has at least two edges. Withuot loss of generality, assume

it is Lk(u,∆I). Since Lk(u,∆I) has two edges that are not opposite, Lk({u} ∪ I,∆k−2) is not a pair of

opposite edges. Therefore, ∆{u}∪I 6= ∅. Since Lk(u,∆I) 3 v, ∆{u}∪I 3 v. Therefore, (v, {u} ∪ I) is a

corner in ∆k−1. Therefore, {u, v} ∪ I ∈ V (∆k−1).

Conversely, choose J ∈ V (∆k−1). Let v ∈ J be the knot such that (v, J\{v}) is a corner of ∆k−1.

Therefore, v is a vertex of the polygon triangulation ∆J\{v}. Then, there must be a knot u ∈ J\{v}

such that v ∈ Lk(u, J\{u, v}). Therefore, {u, v} is an edge of the polygon triangulation ∆J\{u,v}.
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Let us present a useful technical lemma that will be used repeatedly. The lemma refers to objects

called wedges: For points v,a and b in the plane, define Wedge(v; a, b) as the region swept by rotating

the the ray a − v to b − v counter clockwise around v.
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Figure 7.4: Illustration for the proof of Lemma 7.4.4.

Lemma 7.4.4. Let {u, v, a, b} be a set of four points in the plane. Let [S] and [T ] be two line segments.

If

i. Points a and b are on the left and right side of the directed line (u, v).

ii. For vertex x ∈ S ∪ T , x 6∈ ([u, v, a] ∪ [u, v, b]\{a, b}).

iii. [S] ⊂ Wedge(v; a, b) and [T ] ⊂ Wedge(u; b, a).

Then, the intersection of the line segments [S] and [T ] satisfies that either [S] = [T ] = [a, b], or,

[S] ∩ [T ] ∈ {a, b}.

Proof. We consider two cases, depending on if one of the angles in ∠a, u, b and ∠b, v, a is concave. The

illustration of the proof is found in Figure 7.4.

We construct the following points at infinity: va := a − v, vb := b − v, ua = a − u and ub = b − u.

Case I: ∠a, u, b < π and ∠b, v, a < π.

If S = T , which can indeed be true, then the claim is trivially true. Otherwise, there must be one

vertex pair, among S and T , that uses a point not in {a, b}. Assume it is S. Then, S ∩ {a, b} ∈ {a, b}.

Then, by condition 2, [S] ∩ [a, b]} ∈ {a, b}.

Let R1 denote the open polygon with vertices (va, vb, b, a). Let R2 denote the open polygon with

vertices (ub, ua, a, b). By the case assumption, R1 and R2 are convex and R1 ∩ R2 = [a, b].
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By condition 2 and 3, the vertices S ⊂ R1, and the vertices T ⊂ R2. Therefore, since R1 and R2 are

convex, [S] ⊂ R1 and [T ] ⊂ R2. Then, [S]∩ [T ] ⊆ R1 ∩R2 = [a, b]. Therefore, since [S]∩ [a, b] ∈ {a, b},

[S] ∩ [T ] ∈ {a, b}.

Case II: ∠a, u, b ≥ π

Let R1 denote the open polygon with vertices (va, vb, b, u, a). Let R2 := Wedge(u; b, a). By the

case assumption, R1 is convex, and R1 ∩ R2 = [a, u] ∪ [b, u]. Also, because R2 is a concave wedge and

condition 2, [T ] ∩ ([a, u] ∪ [b, u]) ∈ {a, b}.

By condition 2 and 3, the vertices S ⊂ R1. Therefore, since R1 is convex, [S] ⊂ R1. Then,

since [T ] ⊂ R2, [S] ∩ [T ] ⊆ R1 ∩ R2 = [a, u] ∪ [b, u]. Therefore, since [T ] ∩ ([a, u] ∪ [b, u]) ∈ {a, b},

[S] ∩ [T ] ∈ {a, b}.

Lemma 7.4.5. Let T be the planar triangulation of a simple polygon—with or without internal vertices.

Let {u, v} denote a pair of vertices of T . If {u, v} is a planar 2-set with respect to the vertices of T and

the segment [u, v] belongs to the region T , then [u, v] is an edge of T .

Proof. If [u, v] is a boundary edge of T , then the claim is trivially true. Otherwise, the interior of [u, v]

belongs to the interior of the region of T . Assume that [u, v] is a not a diagonal, then, by property of

triangulations, there must be an edge [a, b] that crosses [u, v]. Then, any half space that contains [u, v]

must also contains either a or b. This contradicts the fact that {u, v} is a planar 2-set. Therefore, [u, v]

must be a diagonal of T .

7.4.2 ≤ 3-set links bound null or simple polygons

The set of 1-sets V1 is clearly the same as the knot set, i.e., V1 = {{p} | p ∈ P}. Therefore, for any

1-set {v} ∈ V1, the link Lk({v},∆0) is the same as the vertex link in a planar triangulation. Therefore,

it bounds a star-shaped simple polygon. Also, it is clear that each triangle in ∆v contains at most one

knot, namely v.

Lemma 7.4.6. For a generalized 2-set I ∈ V (∆1), the collection of edges Lk(I,∆1) bound a null or

simple polygon.

Proof. By Lemma 7.4.3, {u, v} is a an edge of the triangulation ∆0. Let {a, b} be the pair of knots

such that (u, v, a), (v, u, b) ∈ ∆0. Then, Lk(u,∆v) represents a simple polygonal curve that starts at

b and ends at a, and Lk(v,∆u) represents a simple polygonal curve that starts at a and ends at b, as

shown in Figure 7.5.

Choose S ∈ Lk(u,∆v) and T ∈ Lk(v,∆u). Because
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Figure 7.5: Illustration for the proof of Lemma 7.4.6. The gray edges are edges of the triangulation ∆0. The
red and green edges are diagonal edges of the triangulations ∆u and ∆v, respectively.

- a and b are on the left and right side of the line (u, v), because (u, v, a) and (v, u, b) are opposite

triangles in ∆0..

- The vertices of S and T , except for {a, b}, do not belong to the triangle [u, v, a] or [u, v, b], since

they are triangles of the knot triangulation ∆0.

- [S] ⊂ Wedge(u; b, a) and [T ] ⊂ Wedge(v; a, b), by the property of vertex links in polygon-

triangulations.

, by Lemma 7.4.4, either S = (b, a) and T = (a, b), or [S] and [T ] intersect only at either a or b.

Therefore, we have that either Lk(u,∆v) = {(b, a)} and Lk(v,∆u) = {(a, b)}, or, the only common

points of the curves Lk(v,∆u) and Lk(u,∆v) are a and b. Therefore, Lk({u, v},∆1) = Lk(u,∆v) ]

Lk(v,∆u) is either a pair of opposite edges or bounds a simple polygon.
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Figure 7.6: Illustration for the proof of Lemma 7.4.7. The gray edges are edges of the triangulation ∆0. The
dark edges are edges of the diagonals in ∆1. Left: Case I. Center and right: Case II.

Lemma 7.4.7. For a generalized 3-set I ∈ V (∆2), the collection of edges Lk(I,∆2) bound a null or

simple polygon.

Proof. By Lemma 7.4.3, we can assume without loss of generality that {u, v} is an edge of the polygon

triangulation ∆w. The edge {u, v} is either a diagonal or boundary edge of the polygon triangulation.
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The second case implies that {u, v, w} is a triangle in ∆0. Let us consider these two cases separately.

The basic idea is to set up the conditions so that Lemma 7.4.4 can be invoked.

The illustration for the proof is shown in Figure 7.6.

Case I: {u, v} is a diagonal edge of ∆w.

Let {a, b} be the pair of knots such that (u, v, a) ∈ ∆w and (v, u, b) ∈ ∆w. Therefore, a and b are

on the left and right side of the line (u, v).

Choose S ∈ Lk(u,∆v,w) and T ∈ Lk(v,∆u,w). Because

- a and b are on the left and right side of the line (u, v).

- The vertices of S and T , except for {a, b}, do not belong to the triangle [u, v, a] or [u, v, b], by the

property of ∆1.

- [S] ⊂ Wedge(u; b, a) and [T ] ⊂ Wedge(v; a, b), by the property of vertex links in polygon-

triangulations.

, by Lemma 7.4.4, either S = (b, a) and T = (a, b), or [S] and [T ] intersect only at either a or b.

Therefore, either Lk(u,∆v,w) = {(b, a)} and Lk(v,∆u,w) = {(a, b)}, or, the only common points of

the curves Lk(v,∆u,w) and Lk(u,∆v,w) are their end points, a and b. Therefore, Lk({u, v, w},∆2) =

Lk(u,∆v,w) ] Lk(v,∆u,w) bounds a null or simple polygon.

Case II: {u, v, w} is triangle of ∆0.

Assume that (u, v, w) is positively oriented. Let a, b and c be the three points such that (u, v, a) ∈

∆w, (v, w, b) ∈ ∆u and (w, u, c) ∈ ∆v. Therefore, a, b and c are on the left of the lines (u, v), (v, w)

and (w, u), respectively.

Let w′ be the knot such that (v, u, w′) ∈ ∆0. Therefore,

- w′ is on the right side of the line (u, v).

- Wedge(u; c, a) ⊆ Wedge(u;w′, a), because c is left of or on the line (u,w′).

- Wedge(v; a, b) ⊆ Wedge(v; a,w′), because b is right of or on the line (v, w′).

The points a, b and c are not necessarily distinct. Suppose that b = c. Then, we have Lk(v,∆u) ⊇

{(w, b)} and Lk(u,∆v) ⊇ {(b, w)}. By Lemma 7.4.6, Lk({u, v},∆1) = {(w, b), (b, w)} and b is the same

point as w′. To be precise,

b = c = w′ ⇔ Lk({u, v},∆1) = {(w,w′), (w′, w)}
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Without loss of generality, we assume from now on that a 6= b and a 6= c, but it maybe that

b = c = w′.

Choose S ∈ Lk(u,∆v,w) and T ∈ Lk(v,∆u,w). Because

- a and w′ are on the left and right side of the line (u, v), respectively.

- The vertices of S and T , except for {a,w′}, do not belong to the triangle [u, v, a] or [u, v, w′],

because (u, v, w′) contains no knot, and (u, v, a) contain at most one knot, namely w, but w does

not belong to S and T because they are the boundary sets of the configs with interior sets {v, w}

and {u,w}.

- [S] ⊂ Wedge(u; c, a) ⊆ Wedge(u;w′, a) and [T ] ⊂ Wedge(v; a, b) ⊆ Wedge(v; a,w′).

, by Lemma 7.4.4, either S = (w′, a) and T = (a,w′), or [S] and [T ] intersect only at either a or w′.

We now prove the claim of the lemma by considering two cases b 6= c or b = c. First suppose

b 6= c. There must be one point among {b, c} that is not identical to w′. Then, [S] and [T ] can only

intersect at the knot a. Therefore, the curves Lk(v,∆u,w) and Lk(w,∆u,v) intersect at exactly at the

knot a. Similarly, the curves Lk(v,∆u,w) and Lk(w,∆u,v) intersect at exactly the knot b and the curves

Lk(w,∆u,v) and Lk(u,∆v,w) intersect at exactly at the knot c. Therefore, the edges Lk({u, v, w},∆2) =

Lk(u,∆v,w) ] Lk(v,∆u,w) ] Lk(w,∆u,v) bound a simple polygon.

Suppose b = c = w′. Then, either S = (w′, a), T = (a,w′) or the edges [S] and [T ] intersect

at a or w′. Therefore, the curves Lk(v,∆u,w) and Lk(w,∆u,v) is either a pair of opposite edges

or intersect at exactly at the knots a and w′. Because of this, and because ∆u,v = ∅, the edges

Lk({u, v, w},∆2) = Lk(u,∆v,w) ] Lk(v,∆u,w) bound a null or simple polygon.
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Chapter 8

Simplex Splines from Generalized Delaunay

Configurations

In this chapter, I apply the generalization of Delaunay configurations presented in Chapter 7 to con-

struction problems of certain bivariate splines. The basic ingredients are the simplex splines associated

with generalized configurations. However, these simplex splines are not used directly. Instead, they are

first collected into sets and summed to give a new basis function called bivariate B-spline, following

Neamtu (2004). The details and the reason for using this coarser basis will be explained in Section 8.1.

In Section 8.2 and 8.3, I specialize the generalized configurations so that the associated bivariate B-

splines reproduce Zwart-Powell (ZP) elements, a textbook example of smooth box splines (de Boor et al.,

1993), and Bezier patches, a widely used piecewise smooth spline defined over triangulations (Prautzsch

et al., 2002). The results are interesting for two reasons: First, they provide evidence that bivariate

B-splines provide a general frame work for bivariate splines; second, the reproduction rules for these

splines can be used to mix splines of different types, which can be useful for blending patches of smooth

box splines (Section 8.2.5) or to model sharp features on an otherwise smooth surface (Section 8.3.1).

In Section 8.4, the quality of bivariate B-splines for scattered data interpolation is studied ex-

perimentally. I find that, just as in the PL setting, the Delaunay configurations generally give good

interpolation but for data from anisotropic functions, properly aligned non-Delaunay configurations can

improve the interpolation.

8.1 Collecting simplex splines to B-splines

Recall that the simplex spline basis from the generalized configurations generalize the univariate B-

splines. In this section, the simplex spline basis is modified in a simple way so that the resulting



basis satisfy even more generalization property. This construction is discovered by Neamtu (2004), who

names the resulting basis a bivariate B-spline basis.

For a set of degree k generalized configurations ∆k, let V denote the set of all interior sets of ∆k,

and, for each interior set I ∈ V , let ∆I denote the set of all configurations whose interior set is I. The

B-spline basis with respect to ∆k is defined by summing the normalized simplex splines associated with

each ∆I . More precisely, for each I ∈ V , there is a B-spline

BI(·) :=
∑

t∈∆I

N(· | t, I).

Collecting the simplex splines into B-splines preserves the polynomial reproduction property: For a

polynomial p ∈ Πk with polar form P , the polynomial reproduction formula in Theorem 6.2.1 for

simplex splines can be rewritten to become the reproduction formula for B-splines:

p =
∑

(t,I)∈∆k

P (I)N(· | t, I) =
∑

I∈V

P (I)
∑

t∈∆I

N(· | t, I) =
∑

I∈V

P (I)BI(·).

Therefore, the bivariate B-splines are indeed generalization of univariate B-splines.

The bivariate B-spline basis holds one more generalization property than the simplex spline basis:

They generalize control polygons for univariate B-splines. For some real coefficients {λI}I∈V , the plot

of a B-spline function
∑

I∈V λIBI , can be expressed as the parameterized surface in R
3

{∑

I∈V

(I;λI)BI(x)
}

x∈R2 ,

in which the set of 3D points {(I;λI)}I∈V can be called the control points (This can be easily estab-

lished by reproducing the linear polynomial x with Eq. 8.1). Since the projections of the control points,

{I}I∈V , are precisely the vertices of the centroid triangulation obtained by transforming the configura-

tions ∆k−1 and ∆k−2 (See Section 7.3), the control points can be connected by a PL surface—a control

mesh—constructed by lifting the centroid triangulation from the plane. This generalizes the control

polygon for a B-spline curve and gives a visualization of the spatial relations between the B-spline basis

functions (See Figure 8.1). Note that, in the linear case, the control mesh is identical to the plot of the

(linear) B-spline function.

A computational advantage of using B-splines, rather than the finer simplex splines, is that they can

be expressed in terms of configurations of one degree lower, therefore they requires less computation.

To be precise, for I ∈ V , let ∆k−1 denote the set of degree k − 1 configurations such that ∆k =
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Figure 8.1: Left: The control polygon for a univariate B-spline. Right: The control mesh for a bivariate
B-spline.

LinkTriangulate(∆k−1). Then,

BI(x) =
∑

f∈Lk(I,∆k−1)

d(xf)M(x | I ∪ f) (8.1)

Proof.

BI(x) =
∑

t∈∆I

N(· | t, I) =
∑

t∈∆I

∑

0≤i≤2

d(x
i t)M(x | I ∪ t\{ti}) =

∑

f∈∂∆I

d(xf)M(x | I ∪ f)

=
∑

f∈Lk(I,∆k−1)

d(xf)M(x | I ∪ f)

Expressed in this form, it is clear that the linear B-splines, defined over a planar triangulation ∆0,

are precisely the basis of the PL interpolation function over ∆0.

Thus, B-splines, rather than simplex splines, will be used for the rest of the chapter, which study

applications of quadratic B-splines. A quadratic B-spline basis will be specified by a diagram that shows

the planar triangulation of the knots and how the vertex links of the triangulation are triangulated.

A single quadratic B-spline will be expressed in one of three forms: As a sum of simplex splines, as a

basis function indexed by some edge e in the triangulation, denoted Be(·), or as B(· | P, I), where P is

the link polygon and I is a set of two knots.

8.2 Reproduction of ZP elements

Box splines were introduced by de Boor (1976) as a generalization of univariate B-splines. Bivariate

box splines—in particular their generalizations via subdivision schemes are widely used in CAD/CAM
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to represent surfaces.

A bivariate box spline of degree k is defined as the “shadow” of a unit cube in R
k+2. A ZP-element

is a quadratic box spline that is the “shadow” of a unit cube in R
4. A ZP-element basis is generated

by translating a single ZP-element over the integer grid.

I show that B-splines reproduce ZP-element basis in the following sense: Construct a set of quadratic

B-splines associated with the configurations over the integer grid points as shown in Figure 8.3; then,

each ZP-element can be expressed as a weighted sum of the B-splines. The formal statement is presented

in Theorem 8.2.4. The basic idea of the proof is to first express both the ZP-element and the B-splines

as sums of simplex splines and show that the sums match. The rest of the section presents the proof

and is organized as follows

- As preparation, I introduce polyhedron splines. Polyhedron splines generalize both the simplex

and box splines and their notation can be specialized for either.

- I define the B-splines and ZP elements over the integer grid Z × Z.

- I review the tessellation of an 4-cube by prisms.

- I prove the main theorem.

8.2.1 Polyhedron splines

Consider the spaces R
m and R

n, where m ≤ n. Let Ξ denote an m × n matrix, whose columns span

R
m. Ξ represents a projection map from R

n to R
m, i.e., a point y ∈ R

n is taken to Ξy ∈ R
m.

Let P denote a polyhedron in R
n. The polyhedron shadow function, MΞ(· | P) : R

m → R, is the

measure of P that projects onto a point x ∈ R
m:

MΞ(x | P) := voln−m{y | y ∈ P,Ξy = x}.

Two important examples of polyhedron splines are simplex and box splines:

- Box splines. The box spline MΞ : R
m → R is the shadow of an n-cube [0, 1]n : MΞ(x) := MΞ(x |

[0, 1]n).

- Simplex splines. Let X ⊂ R
m denote a set of n + 1 points. Let Ξ be the matrix that projects a

point (x1, . . . , xm, . . . , xn) ∈ R
n “vertically” to the point (x1, . . . , xm) ∈ R

m. Let Y denote a set

of points such that ΞY = X and the simplex [Y ] has unit volume. Then, the simplex spline with

respect to X, M(· | X), is the shadow of an n-simplex: M(x | X) := MΞ(x | [Y ]).
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By this definition, a box spline can be expressed as a weighted sum of simplex splines, by first trian-

gulating the box into simplices. The weight of a simplex spline is the reciprocal of the volume of the

simplex.

8.2.2 ZP elements and B-splines

This section defines two quadratic spline bases over the integer grid Z × Z: the ZP elements and the

B-splines.

The integer grid Z × Z can be refined by axis aligned and diagonal segments to form a mesh, as

shown in Figure 8.2. The edges in the mesh follow four directions: (1, 0), (0, 1), (1, 1) and (1,−1). These

four directions define the quadratic box spline M[
1 0 1 1
0 1 1 −1

] , named ZP-element. The ZP-element is C1

and has support over a polygon centered around the grid cell with lower left corner (1, 0). Translates

of this ZP-element by integer coordinates generate a basis.

(0,0)

Figure 8.2: The four directional mesh over Z × Z and the ZP-element.

To form the B-spline basis, the first step is to refine the integer grid by diagonal edges to form

a triangulation, ∆0, as shown in Figure 8.3. The second step is to compute a set of degree one

configurations ∆1, as specified by Figure 8.3. The B-spline basis are then defined over ∆1. It is not

diffcult to check that the B-splines over ∆1 are indexed only by the axis aligned edges of ∆0. Let E

denote the axis aligned edges of ∆0. Then, the quadratic B-spline basis over ∆1 is

{B{u,v}}{u,v}∈E . (8.2)

Note that there are two types of these B-splines, as shown in Figure 8.3: One type is indexed by vertical

edges in E and will be called P type; the other is indexed by horizontal edges in E and will be called

Q type.

100



����
Figure 8.3: The triangulation of Z × Z, ∆0, the degree one configurations ∆1. Left: ∆0 and a link triangu-
lation. Middle: centroid triangulation from ∆1 and ∆0, in which the shaded portion corresponds to the link
triangulation on the left. Right: the P and Q type B-splines associated with ∆1; the knot pairs that index
them are colored black.

8.2.3 Tessellation of the 4-cube

An n-dimensional prism is an n-polytope in R
n constructed by taking the Cartesian product of an

(n − 1)-polytope [P ] ⊂ R
n with an interval I ⊂ R. More specifically, we write a prism in the form

[P ] × [0, 1], with [0, 1] “multiplied into” [P ] as the second coordinate:

[P ] × [0, 1] := {(x1 . . . , xn) | (x1, x3, . . . , xn) ∈ [P ], x2 ∈ [0, 1]}.

[P ] will be referred to as the cross section of the prism [P ] × [0, 1]. The prism facets [P ] × {0} and

[P ] × {1} will be referred to as the bottom and the top, respectively.

Observation 8.2.1. If a set of polytopes Π tessellate a polytope P in R
n, then the set of prisms

{T × [0, 1]}T∈Π tessellate the prism P × [0, 1] in R
n+1.

Observation 8.2.2. Let [A] be an n-simplex in R
n with vertices {A0 . . . , An}. Consider the prism

[A] × [0, 1], with bottom A′ := A × [0] and top A∗ := A × [1]. The prism can be triangulated with the

following n+1-simplices, generated by taking n+1 consecutive vertices in the list A′
0 . . . , A′

n, A∗
0 . . . , A∗

n:

[ A′
0, A

′
1, . . . , A

′
n, A∗

0 ]

[ A′
1, . . . , A

′
n, A∗

0, A
∗
1 ]

[ . . . ]

[ A′
n, A∗

0, A
∗
1, . . . , A

∗
n ]

.
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Figure 8.4: Illustration for the proof of Lemma 8.2.3. Left: the pyramid [C0] and tetrahedron [D0] in the
tessellation of a cube; the symmetrical polytopes [C1] and [D1], which tessellate the half of the cube drawn in
light gray, are not shown. Center: the bottom and top of the 4-prism [C0] × [0, 1] are drawn in two colors; the
coordinates are those of P ′

0. Right: the bottom and top of the 4-prism [D0]× [0, 1] are drawn in two colors; the
coordinates are those of Q′

0.

Corollary 8.2.3. Choose vertex subsets of a 3-cube:

C0 := {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0)} (8.3)

C1 := {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (0, 1, 1)} (8.4)

D0 := {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 0, 0)} (8.5)

D1 := {(1, 0, 1), (1, 0, 0), (0, 0, 1), (0, 1, 1)}. (8.6)

Then, the prisms in four dimensions [C0] × [0, 1], [C1] × [0, 1], [D0] × [0, 1], and [D1] × [0, 1] tessellate

the 4-cube.

Proof. As illustrated on Figure 8.4, a 3-cube can be tessellated by [C0], [C1], [D0] and [D1]. By

Observation 8.2.1, the four prisms stated in the claim tessellate the 4-cube.

8.2.4 Main result

This section presents the following theorem:

Theorem 8.2.4. Let E denote the horizontal and vertical edges of the integer grid Z×Z. Let {Be}e∈E

denote the set of B-splines associated with the degree one configurations over Z × Z, as specified in

Figure 8.3. Let M[
1 0 1 1
0 1 1 −1

] denote the ZP-element. Let e1, e2, e3 and e4 denote the bounding edges of

the grid cell that the ZP-element is centered around, which has lower left corner (1, 0). Then,

M[
1 0 1 1
0 1 1 −1

] =
1

4!

(
Be1

+ . . . + Be4

)
.
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Figure 8.5: Illustration for the proof of Lemma 8.2.5.

Lemma 8.2.5. Let Ξ be the projection map for the ZP element. Let P ′ = C0 × {0, 1} and Q′ =

D0 × {0, 1}, where C0 and D0 are specified in (8.3) and (8.5). Then, the projection of P ′ and Q′ can

be partitioned into sets—F ] I = ΞP ′ and G ] J = ΞQ′ so that 1
4!B(· | F, I) = MΞ(· | [P ′]), and

1
4!B(· | G, J) = MΞ(· | [Q′]).

Proof. A notation convention: To relate points in R
4 to their projection in R

2, the same letter will be

used for a point a′ ∈ R
4 and its projection a = Ξa′, with the superscript ′ as the distinguishing symbol.

Name the vertices in [P ′] by F ′
1..6, u′, u′

∗, v′, and v′
∗ with the help of Figure 8.5. Let the projection

of these points in R
2 be F := ΞF ′, u := Ξu′ = Ξu′

∗, v := Ξv′ = Ξv′
∗.

The triangles ∆(F ) = {[F1,3,4], [F1,4,5], [F1,2,3], [F1,5,6]} form a triangulation of the polygon F . Then,

the B-spline B(· | F, I) satisfies the following equalities, with the first expressing it as a sum of simplex
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splines.

B(· | F, I) =
∑

[t]∈∆(F )

d(t)M(· | t ∪ {u, v})

=3M(· | F1, F3, F4, u, v) + 3M(· | F1, F4, F5, u, v)

+M(· | F1, F2, F3, u, v) + M(· | F1, F5, F6, u, v)

= M(· | u, v, F4, F3, F1) + M(· | u, v, F4, F5, F1)

+M(· | v, F4, F3, F1, u) + M(· | v, F4, F5, F1, u)

+M(· | F4, F3, F1, u, v) + M(· | F4, F5, F1, u, v)

+M(· | F3, F1, u, v, F2) + M(· | F5, F1, u, v, F6)

=
1

4!

(
MΞ(· | [u′, v′

∗, F
′
4, F

′
3, F

′
1, ])+MΞ(· | [u′, v′

∗, F
′
4, F

′
5, F

′
1, ])

+MΞ(· | [ v′
∗, F

′
4, F

′
3, F

′
1, u

′
∗ ])+MΞ(· | [ v′

∗, F
′
4, F

′
5, F

′
1, u

′
∗ ])

+MΞ(· | [ F ′
4, F

′
3, F

′
1, u

′
∗, v

′ ])+MΞ(· | [ F ′
4, F

′
5, F

′
1, u

′
∗, v

′ ])

+MΞ(· | [ F ′
3, F

′
1, u

′
∗, v

′, F ′
2])+MΞ(· | [ F ′

5, F
′
1, u

′
∗, v

′, F ′
6])

)

The simplices whose associated polyhedron splines tessellate the prism [P ′], as the following argu-

ment proves. By Observation 8.2.2, the first column of simplices triangulates a prism with bottom

tetrahedron [u′, v′
∗, F

′
4, F

′
3] and top tetrahedron [F ′

1, u
′
∗, v

′, F ′
2]; the second column of simplices triangu-

lates the prism with bottom tetrahedron [u′, v′
∗, F

′
4, F

′
5] and top tetrahedron [F ′

1, u
′
∗, v

′, F ′
6]. Denoting

the prisms corresponding to the first column and second column by [S] × [0, 1] and [T ] × [0, 1], it can

be checked that S and T triangulate the pyramid [C0] (Eq. 8.3), which is the cross section of the prism

[P ′]. Then, by Observation 8.2.1, [S]× [0, 1] and [T ]× [0, 1] tessellate [P ′]. Finally, it can be concluded

that the simplices in the sum tessellate [P ′].

Name the vertices in [Q′] by F ′
1..4, u′, u′

∗, v′, and v′
∗ with the help of Figure 8.5. The projections

of these points in R
2 are: F := ΞF , u := Ξu′ = Ξu′

∗, v := Ξv′ = Ξv′
∗. It can be checked that

F ∪ {u, v} = Q.

The triangles ∆(F ) = {[F1,2,3], [F1,3, v], [F1,4,v]} form a triangulation of polygon F . Then, the
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B-spline B(· | F, I) can be expressed as a sum of simplex splines.

B(· | F, I) =
∑

[t]∈∆(F )

d(t)M(· | t ∪ {u, v})

=2M(· | F1, F2, F3, u, v) + M(· | F1, F3, v, u, v) + M(· | F1, F4, v, u, v)

=
1

4!

(
MΞ(· | [u′, F ′

2, F
′
3, v

′, F ′
1 ])

+MΞ(· | [ F ′
2, F

′
3, v

′, F ′
1, u

′
∗ ])

+MΞ(· | [ F ′
3, v

′, F ′
1, u

′
∗, v

′
∗ ])

+MΞ(· | [ v′, F ′
1, u

′
∗, v

′
∗, F

′
4]).

)

By Observation 8.2.2, the simplices in the sum triangulate a prism with bottom tetrahedron

[u′, F ′
2, F

′
3, v

′] and top tetrahedron [F ′
1, u

′
∗, v

′
∗, F

′
4]. Furthermore, recalling that [D0] is the cross sec-

tion of [Q′] (Eq. 8.5), one can check that this prism is [D0] × [0, 1] = [Q].

By Lemma 8.2.3, the unit 4-cube can be tessellated into four polytopes, either of type P or Q.

By Lemma 8.2.5, the polyhedron splines from the P and Q polytopes are exactly the P and Q type

B-splines, which proves the main theorem.

8.2.5 Application: patch-blending

A common problem in computer aided geometric design is how to join patches of box splines smoothly.

Common solutions either use subdivision schemes, which treat certain extraordinary vertices along the

boundary specially, or require that some degrees of freedom from the patches are used to satisfy the

smoothness conditions along the boundaries. The drawback of the first approach is that the surface is

generally not a polynomial around the extraordinary surfaces and has lower smoothness than elsewhere;

the drawback of the second approach is that it is often complicated and requires special cases for different

patch connectivities. The approach suggested here is to form a single triangulation of the patch meshes

and construct B-splines over the triangulation in such a way that the box splines are reproduced within

each patch. The reproduction leaves a set of B-splines around the boundary “free” so that they can be

used to blend between box splines. This approach has the advantage that it is mathematically simple

and works the same way for any connectivity of the patches. The purpose of this section is present

examples of this approach.

Patch blending with ZP-elements is based on the following basic construction of a quadratic spline

space. The input is a set of rectlinear mesh-patches, assumed to be non-overlapping and infinite (the
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latter is assumed only to simplify the description and can be removed in practice with some care.)

i. Stich patches. Refine the collection of patches to form a subdivision, by adding just enough edges

so that the induced faces are triangular and the subdivision covers the plane. The details depend

on how the patches fit. For example,

- If the patches join seamlessly,then there is nothing to do;

- If the patches are separated by gaps or holes, then add edges to triangulate these gaps or

holes—for example, by using constrained Delaunay triangulation ();

- If the patches meet at T-junctions (Figure ??c), then add edges to triangulate the faces

around the T-junctions.

ii. Construct configurations.

(a) For each patch, label a face internal if all its surrounding faces are rectangular. For each

rectangular face in the patch, if it is not labeled internal, split it into two triangles by

inserting a diagonal in the subdivision along some canonical direction; otherwise, draw a

hidden diagonal on the face along the same direction but do not actually alter the subdivision.

(b) Assuming the presence of hidden diagonals, triangulate the links of each vertex. If a vertex

belongs to the boundary of the patch, an arbitrary triangulation can be be used; otherwise,

triangulate it in the way as directed in Figure 8.3.

iii. Construct basis. For each edge in the subdivison incident to at least one patch-boundary vertex,

construct a B-spline according to the triangulations the two vertex links. For each internal face

of some patch of the subdivision, construct a ZP-element according to the directions of the grid

lines of the patch. The union of the B-splines and ZP-elements is the basis.

8.3 Reproduction of Bezier patches

Triangular Bezier patches are a popular spline representation and have been used by both CAD/CAM

applications to model surfaces of 3D solids, as parametric surfaces (Farin, 1997), and by GIS applications

to model terrain surfaces, as plots of bivariate functions (Haber et al., 2001).

The theories and applications of triangular Bezier patches can be found in many textbooks and

surveys (Prautzsch et al., 2002). The following presents the basic definition of a single quadratic Bezier

patch and the C0 condition for a set of quadratic Bezier patches from a triangulation. Let T = [a, b, c]
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be a triangle in R
2. For a point x ∈ T , denote the barycentric coordinates of x in T by αT,a(x), αT,b(x),

and αT,c(x). The basis of the quadratic Bezier patch is the set of polynomials from expanding the

expression (αT,a(x) + αT,b(x) + αT,c(x))2:

{
(αT,a(x))2, (αT,b(x))2, (αT,c(x))2, 2αT,a(x)αT,b(x), 2αT,a(x)αT,c(x), 2αT,b(x)αT,c(x)

}
. (8.7)

Given a planar triangulation ∆0, the function from joining the Bezier patches associated with the

triangles in ∆0 is C0 if and only if:

- Whenever two triangles S, T ∈ ∆0 share a vertex a, then the coefficients of the basis functions

(αS,a(x))2 and (αT,a(x))2 are equal.

- Whenever two triangles S, T ∈ ∆0 share an edge [a, b], the coefficients of the basis functions

2αS,a(x)αS,b(x) and 2αT,a(x)αT,b(x) are equal.

Equivalently, let V (∆0) and E(∆0) denote the vertex and edge set of ∆0; For each vertex v ∈ V (∆0),

define the vertex tent function tentv(x) :=
∑

T∈St(v,∆0)

(
αT,v(x)

)2
; for each edge [u, v] ∈ E(∆0), let S

and T be the triangles incident on [u, v] and define the edge tent function tentu,v(x) := 2αS,u(x)αS,v(x)+

2αT,u(x)αT,v(x), then, the set of C0 functions constructed by joining the Bezier patches is the linear

span of all vertex and edge tents (illustrated in Figure 8.6):

{
tentv(·)

}
v∈V

⋃{
tentu,v(·)

}
[u,v]∈E

. (8.8)

Figure 8.6: A triangulation and examples of its associated vertex and edge tent functions. The functions on
the right are indexed by the highlighted vertex and edge on the left.

In the rest of the section, I construct a B-spline basis over ∆0 to reproduce the Bezier basis in

(8.8). The formal statement is presented in Theorem 8.3.1. The construction first pulls apart the

vertices infinitesmally, which introduces degenerate edges and triangles, then triangulates the vertex

107



links specially as specified in Figure 8.7. The introduction of degeneracy is necessary because any

quadratic B-spline function over ∆0 is C1 but the Bezier patch function is only C0. It should also

be noted that pulling apart vertices is analogous to duplicating knots in the univariate setting, which

reproduces Bezier basis locally in a B-spline basis.

Theorem 8.3.1. Let ∆0 be a planar triangulation. Denote the basis of C0 quadratic Bezier patches

associated with ∆0 by {tentv(·)}v∈V (∆0)∪{tentu,v(·)}{u,v}∈E(∆0). Denote the triangulation from pulling

apart vertices of ∆0 by ∆̃0. Triangulating the vertex links of ∆̃0 as specified by Figure 8.7 gives a set

of degree one configurations. Denote its associated B-splines by {Be}e∈E(∆̃0)
. Then, for a vertex

v ∈ V (∆0), denoting the edge from pulling apart v by {v0, v1},

Bv0,v1
(·) = tentv(·);

for an edge {u, v} ∈ E(∆0), denoting the edges from pulling apart u and v by {u0, u1} and {v0, v1},

∑

{ui,vj}∈E(∆̃0)

Bui,vj
(·) = tentu,v(·).

{
Figure 8.7: Left: a pulled apart triangulation ∆̃0 with a vertex and edge magnified; note that there are three
possible number of duplicate edges between two pulled apart vertices. Right: the link triangulations of a pair
of duplicate vertices; the triangulation edges of ∆̃0 are drawn as thick gray edges while the edges of the link
triangulations are drawn as think black edges.

The first step of the construction is to pull apart the vertices of ∆0 infinitesimally: For each vertex

v ∈ V (∆0), an edge (v0, v1) is constructed, where v0 and v1 are infinitesimally close to v. Pulling

apart the vertices causes duplicate edges to appear: For each original edge {u, v} ∈ ∆0, pulling apart

u and v induces one to three duplicate edges from the pair {u0, u1} to the pair {v0, v1}, as illustrated

in Figure 8.7.

Denote the pulled-apart triangulation by ∆̃0. The second step is to triangulate the vertex links of

∆̃0 in the following way. For each vertex pair {v0, v1} of ∆̃0, triangulate the polygon Lk(v0, ∆̃0) by
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drawing diagonals from v1 to all the other vertices (See Figure 8.7); and, symmetrically, triangulate the

polygon Lk(v1, ∆̃0) by drawing diagonals from v0 to all the other vertices. Denote the resulting degree

one configurations by ∆1. The link polygons in ∆1 have four types:

- For an infinitesimal edge {v0, v1}, the link polygon Lk({v0, v1}, ∆̃0) is infinitesimally close to

Lk(v,∆0).

- For an edge (u, v) in the original triangulation ∆0, Let [a, u, v] and [b, u, v] denote the two triangles

incident on edge {u, v}. If the set of edges from {u0, u1} to {v0, v1} contains

– a single edge, namely {u0, v0}, then the polygon Lk({u0, v0},∆1) is infinitesmally close to

the quadrilateral (a, u, v, b).

– two edges, namely {u0, v0} and {u0, v1}, then the polygon Lk({u0, v0},∆1) and Lk({u0, v1},∆1)

are infintesmally close to the triangles [a, u, v] and [b, u, v], respectively.

– three edges, namely {u0, v1},{u1, v0} and {u, v}, where {u, v} is the diagonal of the quadri-

lateral (u0, u1, v0, v1), then the polygons Lk({u0, v1},∆1) and Lk({u1, v0},∆1) are infinites-

mally close to the triangle [a, u, v] and [b, u, v], respectively, and the polygon Lk({u, v},∆1)

is null.

Then, the following equalities between the B-splines defined with respect to ∆1 and the vertex and edge

tents from ∆0 are satisfied, as can be easily checked by expanding the expression for B-spline using

Michelli recurrence (6.3):

- For a vertex v of ∆0, let {v0, v1} be the edge from pulling apart v. Then, in the limit,

Bv0,v1
(·) = tentv(·);

- For an edge [u, v] of ∆0, let {u0, u1} and {v0, v1} be the edges from pulling apart u and v,

respectively. Then, if there is one edge between {u0, u1} and {v0, v1}, namely, {u, v}, then, in the

limit,

Bu,v(·) = tentu,v(·);

otherwise, there are two exactly two edges between {u0, u1} and {v0, v1} whose links in ∆1 are

not null, namely {u0, v1} and {u1, v0} and

Bu0,v1
(·) + Bu1,v0

(·) = tentu,v(·)
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The above equalities proves that the B-splines reproduce the C0 Bezier patches.

8.3.1 Application: representing sharp features

In the univariate setting, B-splines are optimally smooth over knots in generic position—i.e. with no

duplicates allowed—but have reduced smoothness where knots are in degenerate position. Specifically,

if a knot has multiplicity i, then the smoothness of the B-spline at the knot is lowered by i. For

a curve designer, this means that B-splines are “generically smooth” but can be made sharp locally

by duplicating knots. Analogous properties in the bivariate setting should also be useful for a surface

designer. Imagine a bivariate spline representation that is “generically smooth” but allows sharp corners

or creases to appear by introducing degenerate configurations. I show how this can be achieved, in the

quadratic case, using bivariate B-splines.

The main idea is to locally apply variations of the reproduction rule for C0 Bezier patches described

earlier. For the rest of the section, I describe scenarios of modeling sharp features and show how to

realize the scenarios with B-splines. I continue to make the standing assumption that ∆0 denotes

a triangulation whose vertices are in generic position; ∆1 denotes a set of configurations from ∆0;

Whenever ∆0 is modified, the result is denoted ∆̃0.

Scenario 1: Modeling a sharp corner on the B-spline surface at vertex v of ∆0. First, pull apart the

vertex v to an edge {v0, v1}. This creates a pulled-apart triangulation ∆̃0. The degree one configurations

∆1 over ∆0 is modified by deleting all configurations with the interior set v and triangulating the links

of v0 and v1 as directed by Figure 8.7. The B-splines are then collected around v to reproduce the

vertex tent for v and the edge tents for all edges incident on v, so that the resulting basis is:

{
Be

}
e∈E(∆0),e 63v

⋃{
tente

}
e∈E(∆0),e3v

⋃{
tentv

}

It should be noted that the function space spanned by the above splines is interpolatory at v: If the

coefficient of tentv is set to λ, then evaluating any function from the space gives precisely λ.

Scenario 2: Modeling a crease along an edge {u, v} of ∆0. This can be done most simply by

performing the operations in Scenario 1 for both vertex u and v, which gives a crease that is sharp at

both ends. To make a crease that is not sharp at both ends, first choose a point w in the interior of the

edge {u, v}, subdivides the edge {u, v} to {u,w} and {w, v} and the two triangles {u, v, a} and {u, v, b}

incident on {u, v} to four: {u,w, a}, {u,w, b}, {v, w, a} and {v, w, b}. Second, retriangulate the vertex

links of u, v, w, a and b in the new triangulation ∆̃0, treating w specially: the vertex link of w, which

is the quadrilateral (u, a, v, b), is triangulated by drawing the diagonal from u to v. The, the following
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set of splines from collecting the B-splines {Be}e∈E(∆̃0)
, is used as basis:

{
Be

}
e∈E(∆̃0),e 6={u,w},e 6={v,w}

⋃{
Bu,w + Bv,w}

The set has exactly one member that is not smooth, namely, Bu,w + Bv,w, which is sharp along the

edge {u, v}.

Scenario 3: Interpolating linear elements. One can imagine scenarios where it is necessary to create

linear elements on an otherwise smooth B-spline—for example, to represent man-made structures on a

natural terrain. Such scenarios can be supported by locally reproducing C0 quadratic Bezier patches.

The input linear elements, L, are represented as a set of edges and triangles in a triangulation, where

each vertex v of L is associated with a height value λv. To interpolate the 3D line segments and

triangles represented by L, the first step is to pull apart the vertices of L to reproduce the vertex

and edge tent functions as specified in the previous section. The second step is to modify the tent

functions as follows: For each edge {u, v} of L—whether {u, v} is an isolated edge in L or belongs

to a triangle in L, replace the functions tentu, tentv and tentu,v by the functions tentu +tentu,v /2

and tentv +tentu,v /2 (Note that there is no longer a basis function associated with the edge). Then,

setting the coefficients of tentu +tentu,v /2 and tentv +tentu,v /2 to be λu and λv interpolate the 3D

line segment {(u;λu), (v;λv)}. If three edges, say {u, v}, {v, w} and {u,w}, surround a triangle, then

the 3D triangle {(u;λu), (v;λv), (w;λw)} will also be interpolated.

8.4 Data fitting with bivariate B-splines

A scattered data fitting problem is typically described as follows: In s dimensions, for a set of data

locations P ⊂ R
s and a set of data values {fp}p∈P ⊂ R, first choose an appropriate space of s-variate

functions span{gv}v∈V , where V is the index set of the basis, and then choose a function from this

space by solving the system of equations {
∑

v∈V λvgv(p) = fp}p∈P for the coefficients {λv}v∈V .

Common choices of function spaces used for this problem include interpolatory functions, such as

PL interpolations and Lagrange polynomials, and radial basis functions, where each basis function is

centered about a point and is parametrized by the Euclidean distance to the center point. For both

of these spaces, the basis is naturally associated with the data points, i.e. V = P . In other words, it

is easy to construct the basis according to the data locations, which is important for fitting scattered

data.

B-splines can also be used for scattered data fitting. Compared with interpolatory or radial basis
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functions, B-splines have the advantage that they have compact and local support, which means that

both the evaluation of B-splines and solving the system of interpolation equations can be performed

efficiently. However, it is more difficult to construct the B-spline basis according to the data points.

Specifically, for a given data set, one must choose an appropriate set of knots K ⊂ R
s so that the B-

splines from K satisfy certain interpolation properties with respect to the data set. A basic interpolation

property is that the system of interpolation equations with the B-splines has a unique solution. In the

univariate setting, for the unique solution to exist, the following necessary and sufficient condition in

the well known Schoenberg-Whitney Theorem must be satisfied: denoting the ordered knot set and

data locations by K = {. . . < Ki < Ki+1 ≤ . . .}i∈Z and P = {. . . < Pi < Pi+1 ≤ . . .}i∈Z, for any

i ∈ Z, the inequality Ki ≤ Pi ≤ Ki+k must hold. Additional interpolation properties can be stated

in terms of some measure of the fitted function—for example, the total curvature. Such measures

naturally lead to the study of optimization problems which try to achieve the best measure over all

possible placement of knots (Jupp, 1978). In the bivariate setting, because the B-splines are so new,

not much is known about their interpolation properties—not even the analog of Schoenberg-Whitney

Theorem. So far, the only study is carried out by Dembart et al. (2004), who study experimentally the

goodness of the new B-splines for data fitting. For that purpose, they forgo the more difficult problem

of knot positioning and study a more restricted data fitting problem, where the data locations are the

Greville sites. The work in this section extends their experimental study to B-splines associated with

non-Delaunay configurations.

Greville sites are the centroids of the k-sets that index B-splines: For a set of B-splines {BI}I∈V , its

Greville sites are the set of points {I}I∈V . The restricted data fitting problem requires that the data

locations are the same as the Greville sites, i.e. P = {I}I∈V . Another way to describe the restricted

problem is that, instead of assuming that the input for interpolation is a discrete set of points, assume

that the input is a continuous function f : R
s → R and the goal is to interpolate f at a discrete set of

points P with a B-spline to obtain an approximation. In this setting, the points P are called collocation

sites. It is well-known that using Greville sites as the collocation sites gives good interpolation, although

there is no proven optimal property. To understand why Greville sites give good interpolation, it is

helpful to look at a picture of B-splines to usee why: A B-spline BI , whether in the univariate or

bivariate setting, typically achieves the maximal around the Greville site I.

It should also be mentioned that while it is tempting to use the data locations for knots, this

generally does not lead to good interpolation. In particular, in the bivariate setting, for degree k, there

are roughly k times as many B-splines as knots therefore, using data locations for knots lead to severely
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under-determined system of interpolation equations.

In Dembart et al.’s study (2004), the knots are either positioned on a grid or randomly; the input

function f is chosen to be either sin(xy)ex+y or the Franke function; the interpolation (with B-splines

at Greville sites) is measured in two ways: the approximation error, defined as the maximal over a set

of test locations on a grid, and the condition number of the interpolation matrix. They found that the

converge rate, calculated from the measured approximate errors, is in the order of h3.

As a continuation of the study, I perform similar experiments with B-splines associated with the

generalized configurations. The main objective is to study the effect of element shapes on the quality

of the B-splines for interpolation. For this purpose, two input data are used: The bivariate functions

sin(xy)ex+y and sin(πx) over the domain [0, 1]× [0, 1]. The second function is anisotropic—Its gradients

have a dominant direction, namely the direction of the x-axis. The results are shown in Figure 8.8.

There, for sin(xy)ex+y, three basis are used for interpolation: The first comes Delaunay configurations;

the second and third are constructed by first randomly flipping edges of the Delaunay triangulation.

For sin(πx), the first basis comes Delaunay configurations; the second basis is constructed by first

flipping edges of the Delaunay triangulation to align with the y-axis. To reduce the boundary effect,

the configurations around the boundaries are constructed in a special way in order to locally reproduce

Bezier patches, as described in Section 8.3, so that each boundary vertex or edge is associated with an

interpolatory basis function.

The results show that, just as in the PL case, although Delaunay configurations generally give good

interpolation, for anisotropic functions, aligning the configurations orthogonal to the dominant gradient

direction gives better interpolation.
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Figure 8.8: Interpolating the bivariate functions sin(xy)ex+y, above, and sin(πx), below, with B-splines defined
over the knot set {1..6} × {1..6}. For each interpolation, shown from left to right on a row are: the knot
triangulation, the centroid triangulation from the knot triangulation and the degree one configurations, the
error measured over a grid, the maximum error and the condition number of the interpolation matrix.
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Edelsbrunner, H. and Mücke, E. P. (1990). Simulation of simplicity: A technique to cope with degenerate
cases in geometric algorithms. ACM Trans. Graph., 9(1):66–104.
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