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ABSTRACT

Tracking has proven a difficult problem to solve accurately without limiting the user or the application.
Vision-based systems have shown promise, but are limited by occlusion of the landmarks. We introduce a
new approach to vision-based tracking using structured light to generate landmarks. The novel aspect of this
approach is the system need not know the 3D locations of landmarks. Thisimplies that motion within the
field of view of the camera does not disturb tracking as long as landmarks are reflected off any surface into
the camera

This dissertation specifies an a gorithm which tracks acamera using structured light. A simulator demon-
strates excellent performance on user motion datafrom an application currently limited by inaccurate tracking.
Further analysis reveal s directionsfor implementation of the system, theoretical limitations, and potential ex-
tensionsto the agorithm.

Theterm augmented reality (AR) hasbeen given to applicationsthat merge computer graphicswithimages
of the user’s surroundings. AR could give a doctor “X-ray vision” with which to examine the patient before
or during surgery. At thispoint intime, AR systems have not been used in place of thetraditional methods of
performing medical or other tasks.

Oneimportant problem that limits acceptance of AR systemsislack of precise registration—alignment—
between real and synthetic objects. There are many components of an AR system that contributeto registra-
tion. One of the most important is the tracking system. The tracking data must be accurate, so that the real
and synthetic objects are aligned properly.

Our work in augmented reality focuses on medical applications. These require precise aignment of med-
ical imagery with the physician’s view of the patient. Although many technologies have been applied, in-
cluding mechanical, magnetic, optical, et a, we have yet to find a system sufficiently accurate and robust to
provide correct and reliable registration.

We believe the system specified here contributesto tracking in AR applicationsin two key ways: it takes
advantage of equipment aready used for AR, and it has the potentia to provide sufficient registration for de-



manding AR applicationswithout imposing the limitations of current vision-based tracking systems.
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Chapter 1

| ntroduction

In this chapter, | will introduce virtual and augmented reality, including the components of these
systems. The component of particular interest is the tracking subsystem; the tracking problem
will be discussed in further detail. Finaly, | will discuss the contribution of this project to the
problem of tracking.

The term virtual reality (VR) has been used in the popular press to describe systems that completely re-
place the user’s view with computer graphics, aview of asynthetic world. Such systems allow building de-
signersto visualize the“ completed” building and potentia problemsin the design before construction. A VR
system might allow scientiststo view environments as large as galaxies or as small as atoms as if they were
human-sized. The primary benefit in these cases would be to interact in more natural ways with objects that,
dueto their size, are usually beyond our reach.

Threekey hardware components comprise such systems: adisplay subsystem throughwhichtheuser looks
into the synthetic world, an image generation subsystem that paints the proper image onto thisdisplay, and a
tracking subsystem that determinesthe user’ sviewpoint and view directionin order to paint thecorrect picture.
The goalsareto present anew world that is“real” totheuser’s senses, and to givethe user asense of presence
inthat environment. “Rea” inthiscontext impliesin that the environment exhibitsaconsistent and believable
appearance and behavior.

A variant on thisideais not to completely replace the user’s view of the surrounding environment, but
rather to add to it. Thus the user’s sense of “reality” is“augmented” with synthetic imagery. Since the user
sees real objectsinthe environment, the sense of immersion changes from presence in a different environment
to added awareness or insight to the user’s actual surroundings. However, the merging of synthetic objects
with real imagery requires a consistent, believabl e depiction of the appearance and behavior of the synthetic
objects.

Synthetic objects must behave astheir real counterpartswould behave. They must be situated in—and stay



in—the proper place as the user moves through the environment. In other words, they must be properly aigned
with the real objects. They must disappear when another object (real or synthetic) obstructs the user’s view.
These are two of the most difficult tasksin merging real and synthetic imagery. For most implementations of
thistype of system, achieving alignment reduces to acquiring accurate tracking data for the user’s viewpoint
and properly depicting occlusion between real and synthetic objects reduces to knowing the rel ative distance
of thereal and synthetic objects from the user.

Achieving alignment and depicting occlusion have been difficult problemsto solve. Most proposed solu-
tionshave either limited success or alimited domain of application. The major motivation behind thisdisser-
tationwasto create asystem that could achieve alignment without restricting theuser inthewaysthat previous
approaches had. We did thisin a framework that provides a good basis from which to solve the problem of
correctly depicting occlusion relationships as well.

To introduce the current work to the reader, | will discuss, in the remainder of this chapter, the history of
these merged environments and the types of tasks for which researchers have built systems. We've aready
noted above one of themost difficult problemsin these systems—achi eving alignment—and the need for accu-
rate tracking of the user’s viewpoint; thus the discussion movesto tracking subsystems. To close thischapter,

| will propose an aternate strategy to current tracking subsystems.

1.1 Augmented Reality

The term augmented reality (AR) has been given to applicationsthat merge computer graphics with images
of thereal world [Caudell92]. We have noted the ahility of aVR system to present a different environment to
the user. AR, on the other hand, has the ability to givethe user further information about the surrounding en-
vironment. For example, AR could give adoctor “X-ray vision” with which to examine the patient before or
during surgery. AR could also guide a manufacturing worker through a process with a series of visua demon-
strations of the next step in the manufacturing process. Both of these applications have been demonstrated
with AR [Bajura92, Caudel92].

Figure 1.1 gives an example of a simple environment which has been augmented with virtual objects; in
thisimage, the chairs and the lamp are synthetic. Note that the lamp appears to be resting on the table and
the chairs appear to be resting on the floor. Thisisan example of the type of alignment such systems seek to
depict. Also note that the lamp occludes the portion of the table that is behind it and that the table partially
occludes both of the chairs. Figure 1.2 gives another example in which a synthetic teapot is overlaid on a

desktop scene of cube shapes. Note the reflection of the surrounding environment in the teapot, achieved by



Figure 1.1: A simple AR environment. The walls, floor, table, and telephone are al real objects. The two
chairs and the lamp on the table are all synthetic. Note how the lamp is aligned with the table top; it neither
floats abovethetable nor sinksinto thetable. Also notethat the synthetic lamp occludes part of thered table,
while the real table occludes the two synthetic chairs. These two tasks are frequently difficult to perform in
AR systems. Image (©)1995 David Breen, Eric Rose, European Community Research Center.

placing areflective metal sphere at that location on the table and capturing video of the reflection.

Thus far, AR systems have not been used in place of the traditional methods of performing these tasks.
Thelack of acceptance of AR systemsisdueto a series of technica challenges that have yet to be overcome.
VR systems are more often accepted, and thecomponentsof an AR system aresimilar tothoseinaVR system.
The difficultiesthat hinder current AR systems are primarily in two categories. The display devicefor AR is
necessarily different than for VR, and thedesign of such devicesisaformidabletask. At UNC we have chosen
to mount cameras near the user’s eyes and display the images from those cameras to the user on an opaque
display, a method known as a video see-through (V ST) display. Display devices for AR will be discussed
further in Section 2.1.1.1. The demands on the tracking subsystems are somewhat different for AR than for
VR, and most tracking subsystems are not designed to meet these demands.

The basic notion of AR isto add sensory cues to the user’s experience in the real world, so that the user
perceives synthetic objectsto be present in thereal world. In theory, any of the senses could receive synthetic
input, but the vast majority of work has been directed at the visual sense. The haptic (touch) and audio senses
have al so received some attention; however, | will discuss only thevisual presentation of AR in specific terms.

The following discussion assumes that the reader isfamiliar with the basic technology of VR, dso known



Figure 1.2: A tabletop AR environment in which a synthetic teapot reflects the real world that surroundsit.
Thiseffect isachieved by placing areflective metal sphereat the appropriatel ocation onthetable, capturingthe
reflection map of that sphere by accurately knowing the projection of the spherein theimage, then rendering
the reflection map onto the synthetic teapot. Thisimage was created to demonstrate a vision-based tracking
system developed at UNC [State96a] and described in Section 2.2.3.

asvirtual environment (V E). Recent texts [Rheingold91, Sherman98] provide a complete discussion of VE.
Further details about AR can be found in survey articles [Azuma97, Klinker97], but the primary sources are

il the various papers describing specific implementations cited bel ow.

1.1.1 Historical Context

The concept of a display system indistinguishablefrom redity wasintroduced by Ivan Sutherland in The Ul-
timate Display [Sutherland65]. A preliminary redization of thisgoa for the visual sense was described in
A Head-Mounted Three-Dimensional Display [Sutherland68]. The system included not only a head-mounted
display (HM D), but a so animage generation subsystem and atracking subsystem for the user’shead and one
of theuser’shands. It isinterestingto notethat thisfirst HMD was an AR display, not acompletely immersive
display suitablefor VE. (Design of displaysfor AR isdiscussed in Section 2.1.1.)

The early work quickly revealed the technical hurdles that need to be cleared in order to realize useful
applications of the technology. | motivate discussion of these problems with a brief description of a series
of increasingly more demanding applications. These applications have in some cases been implemented; in
others, they have merely been suggested or are similar to suggested applications. Withthisbasic understanding
of the goals and requirements of the AR system, | describe in Section 2.1 the hardware and software used to



build AR systems. | list in Section 2.1.2 the types of applicationsthat have been suggested.

1.1.2 A SampleApplication Set

Let usconsider aseries of increasingly more challenging AR applicationsthat will introducethe difficult prob-
lemsin constructing an AR system. The challengein these applicationswill come from the number and com-
plexity of tasks that must be solved in order to realize a useful system. The taskswill thusbeintroduced here,
although detailed discussion of them will wait until Section 2.1.1. | will useamedica theme for these exam-
ples, since my experience lies primarily with medica AR systems.

Suppose that a physician wants to monitor a patient’s vital statistics while performing an examination.
One easy solutionisto place the monitorsthat display the statisticsin the physician’sfield of view during the
course of the examination. This approach, however, would require making assumptions about the position of
the physician and of the patient during the examination, which would limit the applicable procedures. A more
complex solutionisto automatically have the monitorsappear inview at all times. Thiswould require having
adisplay fixed on the physician’s head, with sufficient resolution to enable the reading of text. Observe that
although the information added into the physician’sdisplay is connected to the object (the patient) within the
field of view, it is not important where in the field of view the added information appears, except that it not
obstruct the physician’sview of the patient. Also observethat there isno depth associated with the synthetic
imagery—that is, there is no question whether the text should disappear behind the patient; it is dways in
front.

Now suppose that the physician is examining a pregnant patient. The physician uses an ultrasound scan-
ner to provideimages of the interna anatomy. In order to understand the rel ationship between the ultrasound
data and the patient’s exterior anatomy, the physician must mentally align the shape visible in the data with
the external shape. It isnot in genera an easy task to establish these relationships mentally. However, the
physician’s display could simply overlay the medical image data on top of the view of the patient’s exterior
anatomy with the proper alignment. The accuracy required for this aignment would be enough to place the
medical imagery near the proper location, but a high degree of precision would not be necessary simply to
eva uate the development of the fetus. However, since there are now two sets of three-dimensiona (3D) im-
agery (thereal world view of the patient and the ultrasound data) in the visual input, the merged image should
correctly represent the rel ative depth of thereal and the synthetic imagery. The HMD needs sufficient quality
to show medical imagery in enough detail. This depends on the physician and thetask. Sincethe physician’s
goal isonly to examinethe patient, not perform an interventional procedure, the requirements of visual quality

and accuracy of alignment and relative depth are moderate in degree, in the sense that they are within reach



of current AR systems.

Now suppose that the physician needs to insert a needle into the womb in order to extract some fluid for
evaluation, a procedure known as amniocentesis. The task of aigning the medical imagery and the exterior
anatomy remains, but now the accuracy required has increased dramaticaly. The medical imagery must be
aligned towithinafew millimeters, if not closer, inorder to avoidinserting the needleintothefetus. Similarly,
the quality of the display must increase. The need to establish the depth relationship between the rea and
synthetic imagery also remains. Current tracking and display subsystems are unable to meet these increased
requirementsfor AR systems.

Fromthisdiscussion, it should be evident that the application greatly affectstherequirementsof thevarious
pieces of the AR system. Section 2.1.1 will continue this discussion with a description of how AR systems
and technology can be implemented. For now, let us turn our attention to the tracking subsystem, which we

have identified as one on which AR places significant demands.

1.2 Tracking

The tracking problem can be stated as follows.

Determine the position and orientation angles of a given object with respect to a reference pose
in the environment.

The position and orientation together describe the six degrees of freedom (DOF) offset between two dis-
crete 3D objects. Thissix DOF quantity isreferred to as pose in the foll owing discussion.

The tracking system in an AR or VE application determines the viewpoint and view direction for render-
ing the synthetic imagery. For monitor-based computer graphics applications, the tracking system is often a
joystick or mouse controller, or perhaps a set of keys on the standard keyboard. In this case, the viewpointis
fixed until the user takes action. This action, however, is not an intuitive viewpoint control method.

Part of the novelty of AR and VE as a user interface is to provide a natural and intuitive method of in-
teraction. The most intuitive method for controlling the viewpoint is for the user to physically move into the
desired viewing location relative to the environment. In order to alow the user this natural interface, a more
sophisticated tracking system must measure the user’s posein the environment in rea -time. This enablesthe
application to use a spatially immersive display, such as projection displays or HMDs.

| discuss tracking of the user’s head only; however, many applications track other objects, such as the
user’shands or objectsthat the user may want to move arbitrarily but are otherwise fixed. For example, inthe

ultrasound-guided needl e biopsy application described in Section 2.1.2.4, the physician needs the ultrasound



probe tracked during scanning, but might leave the probe positioned in a fixed pose while performing the
biopsy. However, | concentrate on tracking the eyepoint since that is the topic of this dissertation.

Tracking for AR has proven to be avery difficult problem to solve. In anaive implementation of AR, the
synthetic imagery is rendered with the measured pose and simply overlaid on the real imagery with the as-
sumption that the tracking system will provide enough accuracy in its measurement of the pose to accurately
align rea and synthetic imagery. However, aignment has rarely been achieved to sufficient accuracy in the
demanding medical applications. Thisis partially due to the stringent requirements which various applica-
tions carry, and partialy due to inadequate technol ogiesthat have been applied to the problem. Hardware and

algorithmsfor tracking are discussed further in Chapter 2.

1.3 Thess

1.3.1 History of Proposed System

Theideafor thiswork comes from severa concurrent projectsat UNC. In my work as aresearch assistant, |
hel ped implement the AR system for needl e bi opsy and laparoscopic visuaization described in Section2.1.2.4.
As noted, these applicationsrequire very precise aignment of medical data with the physician’sview of the
patient. Without this alignment, the surgeon can not properly perceive the 3D structure of the medical data
within the patient. We have not yet found an existing system that provides the required accuracy.

Aspart of thiseffort, we are devel oping ahybrid tracking system [ State964a] consi sting of amagnetic track-
ing system and tracking of aset of painted markers which are visiblein an image of the environment acquired
and displayed to the user. This system, described more fully in Section 2.2, achieves very good registration,
but at the cost of limiting the surgeon’s movements to maintain that precise registration. The limitsarein the
view position and direction, which must be such that the landmarks are in the view frustum of the physician,
and in theplacement of the physician’shands and surgical instruments, which must be such that thelandmarks
are not occluded from the surgeon’s viewpoint. These restrictions defeat the system for practical use. We be-
lieve the answer to these problems is to have the landmarks not be physical objects, but projected patterns.
This scheme introduces similar geometric constrai ntsto those used in many al gorithmsin the computer vision
community. In the computer vision literature, the technique of projected light patterns to acquire geometric
informationis known as structured light.

Prof. Henry Fuchs suggested to me the possibility that a limited version of structured light that consisted
only of dots might be suitableto replace the physical dotswe had been using for the vision-based portion of

the hybrid tracking system. After some consideration of the constraintsthat such a system would place on the



location (position and orientation) of the camera, | wroteasimplelinear system that theoretically would solve
thesystemtowithinascalefactor. Atthesametime, Prof. Gary BishopwasadvisingLeonard McMillanon his
dissertation on image-based rendering. Thiswork requiresknowing how an image taken from one camerawill
look from another viewpoint. Prof. Bishop noticed the similarity of the knowninformationinthat work andin
my proposed tracking algorithm. He suggested asingle constraint at atime (SCAAT) [Welch96] approach to
the system that formsthe basis of the algorithm presented in Chapter 3. The SCAAT framework is behind the
algorithmfor the current version of the UNC optical ceiling tracker, which achieves very good performance.

Prof. Fuchs had been discussing the generation of structured light patterns for depth extraction with Prof.
Bishop. They believed that the new digital micromirror device (DM D) [Hornbeck95] available from Texas
Instruments would be suitable for projecting precise light patterns across a surface. Such patterns have long
been used in computer vision to acquire scene structure. Their hope was that a real-time depth-extraction
system could be developed that would allow the AR surgical system to know where the patient’s skin was
at all times. Thisin turnwould alow proper depiction of occlusion with synthetic models of interior patient
anatomy, exterior patient anatomy, and tracked medica instruments. Eventualy, the physicians hands would
be added to this computation, though tracking of deformable objects such as human hands would be a more
difficult task.

Profs. Fuchs and Bishop had al so noted that the structured light patterns when generated by fast-switching
DMD could then be inverted and projected again, in order to keep the amount of light in the scene constant
across the image captured by the cameras. Fast switching would make the patterns of light imperceptible to
the human eye. Thisisbecause the human visua system integratesthe amount of light seen over timein order
toacquire animage. Many of us experience thiseffect every day in our offices. A fluorescent light flickerson
and off, even though that flicker is not noticeable to observersin the room. On the other hand, strobe lights
such asare popular indance hall sflash at much s ower speeds and can have adizzying effect on people. For the
proposed tracking system, imperceptible structured light would imply that the landmarks would not interfere
physicaly with the user, and not interfere perceptually with the user or othersin the environment.

Ininitial experiments, we have demonstrated that imperceptible patterns consisting of a single point, of
asingleline, or of aset of text are barely noticeable to human users [Raskar98]. More complex patterns are
somewhat noticeable, although we believe we can reduce this by constructing a direct interface to the DMD
chip, rather than communicating via the ana og video interface we currently use. The crucia component in
determining whether a pattern is imperceptible is the amount of change in the image on the viewer’s retina.
Any change that occurs completely within theinterval over which the eye isintegrating light will not be per-
ceived. Thus a high-speed flicker will be unnoticed. We have noticed that saccadic movement of the eye or



rapid occlusion-unocclusion events (such as rapidly waving your hand in front of your eyes, then out of the
field of view) will create enough change in the retina image to enable a human to perceive a pattern that was

not otherwise perceptible.

1.3.2 Thesisand Contribution

The motivation for thiswork was to design atracking system suitablefor VST AR systems that would over-

come the key limitations of previous vision-based tracking systems. Specifically, we wanted a system that
¢ reduced restrictionsintroduced by physical landmarks.
¢ reduced problemsresulting from landmark occlusion.

As discussed in the previous section, we postul ated at the beginning of thisresearch that we could over-
come these two limitationsby using projected light patterns as landmarksinstead of brightly painted markers.
Thus the landmarks would no longer be physicd entities, and we neither need nor want to know their 3D lo-
cations. Instead, the landmarks are identifiable points in projected patterns of light. With the projectors at
known locations, the camera detects those landmarks, allowing the algorithm to constrain its estimate of the

pose of the camera. This observation and system design lead us to the following thesis statement.

A redl-time estimate of the camera pose can be computed by projecting and detecting
light patternsonto an unknown, dynamically changing surface geometry. Thisreal-time
estimate is sufficiently accurate to enabl e precise registration in video see-through aug-

mented reality applicationsin which the user performs a task demanding hand-eye co-

ordination at arm’s length.

The most significant aspect of thenew algorithmisthat, unlikeall current optical tracking systems, knowl-
edge of the 3D locationsof thelandmarksisnot required for tracking. While some systems have demonstrated
the ability to caibrate thelocations of landmarks during tracking [Wel ch96, Neumann98], thissystem isfun-
damentally different than those approaches in that it avoids knowing or computing the location at al. This
can be a significant advantage for vision-based tracking systems when applied to dynamic environments for
augmented reality. In our work, we have had difficulty maintaining accurate registration in dynamic environ-
ments (i.e. when objectsare moving withinthe user’sfield of view). Since our new algorithm does not require
knowledge of the 3D locations of the landmarks, it does not restrict the static or dynamic geometry of the en-
vironment. Since our algorithm is vision-based, it does not require placing additiona sensors on the user’s

head beyond the video cameras that would already be there to establish the VST view.
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This type of constraint is not new; it iscommon in computer vision algorithms. However, in those algo-
rithms the constraint is generated by tracking features in the environment in an image stream. This config-
uration is susceptible to the problem of landmark occlusion in the same way as the tracking of colored dots
described above. Our configuration does not assume that the landmarks are fixed in the environment (or even
are the same from frame-to-frame). Thus we trade tempora coherence of landmarks for the potentia to de-
tect landmarks more consistently in dynamic environments. Webelievethat thiswill overcome thelimitations
of our current vision-based tracking system listed above. Thiswill, we believe, benefit AR systemsin both
accuracy and robustness. Performance testsin Chapter 4 support the claims of accuracy with a user study of
motion paths acquired in our primary intended AR application.

One unforeseen, but important, advantage is the potential to add capabilities to the tracking system that
arevauableto a VST AR system. Namely, it can track the intrinsic parameters of the cameras used for the
VST view, and it can acquire surface information which can be used to hel p resolve occlusion. These are not
implemented even in simulation; however, they demonstrate that the new algorithmis an elegant framework
for solving other important problemsin VST AR, occlusion and camera calibration. Further details about
both of these features will appear in Section 5. Another advantage isthat the proposed system eliminates one
difficult calibration step required in previous AR systems by estimating the camera pose through the camera
that acquiresthe AR view.

This agorithm derives from both current vision-based tracking systems applied to AR and research in
computer vision. Compared to previous vision-based tracking systemsin AR, our algorithm places few re-
gtrictions on the user and the environment and is more robust to landmark occlusion. Compared to previous
work in computer vision, our agorithm identifies corresponding points more directly via the use of dynamic
structured light, provides a simple recursive agorithm for estimating the camera pose, and demonstrates a

real -time system capable of six DOF measurements.



Chapter 2

Related Wor k

This chapter discusses the issues involved in implementing augmented redlity: display devices,
registration, occlusion, and latency. It surveys the range of applications for which AR has been
suggested or demonstrated. The discussion then moves into a detailed examination of tracking
devices. We look at the requirements of tracking subsystems, the hardware that has been used
to create such devices, and the tracking algorithms relevant to the a gorithm proposed in Chap-
ter 3. Also, thisdissertation uses conceptsthat are well-known in thefield of computer visionand
summarized here.

2.1 Augmented Reality

2.1.1 Implementation of Augmented Reality

With the exampl e applicationsof Section1.1.2 in mind, let usnow look in greater detail at theregquirementsfor
some of thehardware and software componentsof an AR system. | concentrate onfour requirementswhichare
different for AR systems as compared to VE systems:. the display device, registration, occlusion, and latency

management.

2.1.1.1 Providing a See-through Display Device

While many hardware requirements are shared with VE systems, AR presents unique challenges for the de-
vice that displays merged rea and synthetic imagery. | discuss AR displays only; complete discussions of
displaysfor VE are available [Melzer97]. Designing a display device for augmented redlity is not asimple
task. Theissues range from technological to perceptua in nature, and have long been a subject of study in our

lab [Rolland94]. This subsection briefly discusses some of these issues.
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Figure2.1: Conceptual design for an OST HMD. The merging of real and syntheticimagery isdone by an op-
tical combiner such asahalf-silvered mirror. This means that the real world is dimmed when viewed through
the combiner, regardless of whether any synthetic imagery is presented to the user. The syntheticimagery is
displayed by a monitor which isaimed at the combiner. The partialy reflective coating of the combiner re-
flects the synthetic imagery to the user’'s eye. Like therea imagery, less intensity than the source intensity
of the synthetic imagery reaches the user’s eye. This design also does not permit full occlusion of the real
imagery by synthetic imagery, since the combiner is partialy transmissive everywhere.

Optical See-Through Augmented views of theworld have traditionally been generated by one of two tech-
nologies. Thefirst method isknown as optical see-through (OST) . Here themerging is performed by having
the user see through (in a literal sense) half-silvered mirrors, as described for Sutherland’s original imple-
mentation [Sutherland68]. The synthetic imagery is projected onto the mirrors' surfaces and reflected into
the user’s eyes. An example design is shown in Figure 2.1. Another implementation of an OST HMD isthe
Augeye display [Manhart93], which uses a dightly different arrangement of lenses to direct images into the
eye.

OST blendsrea and synthetic imagery without reducing the user’s visual acuity of the real world. This
comes, however, at the cost of not being able to fully occlude the red world with the synthetic imagery, and
at the cost of reduced brightness of the portion of the real world that is seen through the mirrors. The lack of
complete occlusion can severely hamper the user’s ability to believein the merged environment. This might
not be a problem in an application that merely provides atextua overlay of information, but would be a big
problem in establishing depth rel ationshi psbetween, for example, medica image dataand the patient surface.

Another, more recently proposed approach to OST is to scan images directly on the user’s retina using
a low-power laser. This device, known as the Virtual Retinal Display [Viirre98], was developed primarily
to overcome macular degeneration, keratoconus, and other common vision problems. However, the authors
note its potentia to be used as a display for AR, since it can produce bright images even in the presence of

bright ambient light. It still lacksthe ability to completely occlude abright portion of thereal view withadark
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Figure 2.2: Design schematic for one eye pod of a VST HMD designed by our research group at UNC in
collaboration with the University of Utah. The camera on the top (in two pieces) acquires a view of the real
world by looking down an optical path that is twice folded by mirrors. This folding alows the camera to
acquire the same image that the eye would acquire if the display were not occluding it. The display screen
isnested inside asmall cube just in front of the user’s eye. With custom optics, this display appears further
away thanit really is, matching the distance of the optica path of the camerato therea world. Thedisplay is
opaque, but by loading the image from the camerainto the display, the user sees the surrounding environment.

syntheticimage. The authors point out that the power levels are well within the American National Standard

for safety, but the long-term effects of such displays merit further study.

Video See-Through The second method for generating an AR view isknown as VST, inwhich themerging
isperformed by having theuser “ see through” (inametaphorical sense) video cameras that acquire an image of
thereal world [Bajura92]. Thedisplay itself isastandard opague HMD, but by positioning the video cameras
at or near the eyes and placing theimages they acquire in the display, the VST AR system allowsthe user to
view the surrounding environment (Figure 2.2). This VST view comes at a cost of reducing the user’s visual
acuity of thereal worldtothat allowed by theresolution of the cameras and the resol ution of the display screen
in the HMD. Currently the highest resolution available in a commercialy available HMD is 1280 x 1024
pixelswith full color [Kaiser98], and this quality comes at a significant cost. Less expensive displays have a
resolution of up to 640 x 480 pixelswith full color in recently available models.

VST iscurrently implemented with raster-scan cameras and displays. Thisimplementation introducesla
tency between user motion and perception of that motion inthe display of thereal world. Latency is currently
asignificant problem in AR, and isdiscussed in Section 2.1.1.4. Other technological problemsin VST have
been partially solved or seem with reach. For example, stereo VST assumes the avail ability of video acquisi-
tion equipment for two real -time video streams, which requires greater bandwidth than existsin many current
architectures. However, multiplexing of video signa s can make efficient use of the available bandwidth. The
VST design assumes that the center of projection of the camerais precisely aligned with the user’s eye. Any
offset in thisalignment leads to an offset between visua cues and other sensory cues and affect depth percep-
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tion. The designin Figure 2.2 overcomes this offset with an arrangement of mirrors.

Field of View Another mgjor issueisthefield of view. For aVST ARHMD, thefield of view acquired from
the cameras defines thefield of view used for rendering the synthetic imagery. There are currently no designs
capable of acquiring awidefield of view for VST. Thisis afundamental problem for VST systems.

Most HMDs achieve afield of view that coversonly afraction of the normal human field of view. Typica
values for a human’s total field of view are [Barfield95] 180° to 200° horizontally (150° in each eye with
around 120° overlap) and 125° verticaly. HMDs for VE systems have fields of view ranging from 20° to
140° horizontally and 20° to 40° vertically. Thisshrinking of thefield of view makesthe user fed asif heis

wearing blinders. This can be very disturbingif the user isto movein an AR environment.

Display Screen  There areother issuesrelated to HM Dsthat affect AR and VE systemsand prevent AR from
reaching end users. The most important of these is the display screen itself. Most HMDs use liquid crystal
display (LCD) for the display. Until very recently, these devices could not be made with sufficiently high
resolution and sufficiently small physical sizeto provide a suitable HMD. Other HMDs use cathode-ray tube
(CRT) for the display device, which amounts to a standard television screen. While such devices can have
very high resolution in asmall unit, they tend to be too heavy to hang on a user’s head. Such systems have
been constructed, however, and put to limited use.

The standard design of HMDs for both VE and AR has become to place optical elements between the
display screens and the user’s eyes in order to make the display appear asif it occupies alarger field of view.
This has the side effect of reducing the apparent resolution of the display by making the individual pixels
appear larger.

Clearly, the resolution required varies from application to application. If the physicianin our earlier ex-
ample were merely reading text, then the resolution may affect the size of the synthetic imagery, but would
not severely limit the ability to read text of an appropriate size in pixels. Thisis because there is no depth
associated with such atwo-dimensiona (2D) overlay. Thus the number of pixelswe devote to the text does
not change with the user’s viewpoint, and we can choose to use a sufficient number of pixels. Thismay come
at acost of occluding an important portion of the real world, depending on the user’sviewpoint. If, in another
application, the physician were trying to view ultrasound data that is aligned to the patient in depth, then the
resol ution would affect the acuity with which the physician sees the data. Features in medical images can be

quite small, thus already requiring a high resolution display.



15

Peripheral Vision and Alignment to User’s Head Since the user is not immersed in the synthetic world,
the HMD might want to allow the user to have peripherd vision around the display. If so, then the border be-
tween the peripheral vision and the augmentabl e vision should ideal ly be seamless, and objects should appear
continuousthroughthisborder. Latency and poor calibration of the HM D both accentuate the boundary. Most
OST systems have a seamless border, but it has been difficult to achieve thisin aV ST system.

Another issue for VST display design is the offset between the user’s eyes and the cameras’ centers of
projection. This offset creates a seam in thereal world objects, which can be disturbing. It also hinders depth
perception, and conflictswith the user’ smeasurement of depth achieved by touchingobjects. Thisisobvioudy
not a problemin OST.

Once aV ST system achieves alignment between the cameras and user’s eyes, the alignment is presumed
to remain correct. However, if the HMD shifts on the user’s head, then a small error would be introduced in
the transformation from the user’s eye (or the camera) to the tracker sensor rigidly affixed to the HMD. Most
AR systems track the user’s head and infer the position of the user’s eyes with respect to the displays. This
approach can work, although it can be tedious to measure this offset, as discussed in Section 2.1.1.2.

Discussion Most commercially available HMDs are not ready off the shelf for AR. Those devicesthat are
available are, to our knowledge, currently all OST devices. We believed that the occlusion resolution of-
fered by VST was important enough to select it over OST for our application, after having first attempted
OST [Bgjurad2]. Thus we were left to custom-design our own VST HMD for our research in medica AR
systemsfor performing interventional medical tasks. (Our research issimilar to thelast application mentioned
in Section 1.1.2 and isdescribed in Section 2.1.2.4.) We used a 640 x 480 grayscale display, the highest res-
olution available at the time. Even this resolution was too low for much of the synthetic imagery, especidly
medical datadisplayed at arm’slength. We a so found that adjusting the deviceto each individual user in order
to maintain good aignment to the user and a good display focus was a never-ending task.

All these reasons make AR systems difficult to design, build, and deliver to clients. Design issues and

calibration issues [Edwards93, Janin93] for HM Ds have both received attention in the literature.

2112 Registration

Another magjor technical problem that has limited acceptance of AR systems by clientsis the lack of regis-
tration, or the alignment between real and synthetic objects on the image plane. There are many pieces of
an AR system that contribute to registration of the fina image. Those relating to HMDs were discussed in
Section 2.1.1.1. One of the most important, however, isthe tracking subsystem. The output of this subsystem
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is passed to the image generation subsystem in order to generate aview of the synthetic objects that matches
the user’sview of therea world. Thisdata must be accurate, so that thereal and synthetic objects are aigned
(spatialy registered), and this data must be timely (temporally registered) [Jacobs97], so that the synthetic
objects do not appear to “swim” back and forth in relation to the real world objects.

Generally, registrationin AR isaccomplished by having aprecise model of thevirtua object, knowingthe
location of the virtual object(s) in the real world, and knowing the pose of thered viewpoint—beit theuser’s
eyesin OST or the camera viewpoint in VST—precisdy. The rendering engine can then simply rasterize the
object at itslocation, using thereal viewpoint, on top of the video background provided by the video camera.
Thisrequiresalengthy and accurate calibration procedure, which remains error-prone. Thus, recent work has
attempted to apply computer vision techniques or projective geometry to the problem of aligning synthetic
imagery withitsrea counterpart.

Cdlibration is aso important for registration [ Tuceryan95, Whitaker95]. This encompasses a variety of
non-continuous measurements of system parameters, such off sets between coordinate systems or camera pro-
jection parametersin VST. These measurements are frequently tedious, computationally expensive, or inher-
ently difficult to perform accurately. Here are some of the coordinate systems that may be included in the

system parameters.
¢ the coordinate systems of the tracking subsystem reference and sensor(s)
o the coordinate system(s) in which the synthetic objects are defined
o the coordinate system of the eyes or cameras

Note that hidden in the last coordinate system is an offset between the user’stwo eyesin an OST system or
between the two cameras in aV ST system. Also, the parameters that control the projection of the world onto
the user’sretina (OST) or the camera image plane (V ST) must be measured and used for generating the syn-
theticimagery. For VST, thismeasurement isaclassic problem in computer vision, known as camera calibra-
tion [Faugeras93].

With the tedious nature by which most of these measurements are acquired, caibration is an area that
requires further research. Vision-based tracking systems have been applied to automatic calibration because
of the non-intrusivenature of their acquisition, but frequently non-intrusiveimplies tracking natural features,
adifficult and computationally intensive task. The SCAAT dgorithm [Welch96] discussed in Section 2.2.3.3
provides a good framework for moving system parameters into the set of parameters estimated in real-time

rather than in an initial calibration phase.
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Alternateimage-based techniquesfor achieving proper registration don’t explicitly computethe viewpoint
and view direction with a tracking system. A principle of projective geometry states that for a set of four
or more non-coplanar pointsin 3D, the projection of all of the pointsin the set can be computed as a linear
combination of the projections of just four of the points. This impliesthat by simply tracking four fiducia
points on an object in the video image, the entire object can be registered to the real image [Kutulakos9g].
This avoids having to know the position and orientation of the object relative to some fixed coordinate basis,
inwhich the cameraisasotracked. The camera-to-object transformationiseffectively computed directly, but
not explicitly. It isonly determined how it projectsinto the final (augmented) image.

It is possibleto track a set of features on an object without explicitly establishing correspondence. This
requires tracking a set of features on an object and minimizing an error function. Such a function might be
based on the moments of the di stance between the noi sy measurements for the 2D image | ocati onsof the points
ordered arbitrarily and the pointsordered in some standard order [|u96]. This presumes an accurate model for

the object.

2.1.1.3 Occlusion

If precise alignment is achieved, then (and only then), can proper occlusion relationships be established be-
tween real and synthetic objects. Thisisthe second major technical problem that most AR systems must over-
come. The problem can be stated as follows.

Portions of real objects that are behind portions of synthetic objects in the merged world must
be obscured by those synthetic objects in the final image. Synthetic objects that are behind real
objects in the merged world must similarly be obscured by those real objects.

Not al AR applications require occlusion resolution to accomplish their goals. Annotation applications
clearly want to block out the real imagery with the annotation, so that it is clearly visible and legible. Repair
and design tasks may or may not need proper occlusion in order to give clear instructions. For example, an
unoccluded view of an object that is to be extracted from behind other objects might help the user better vi-
sualize the path necessary to freeit. Then while the object isbeing moved, correct occlusion would probably
improve the user’s understanding.

In order to correctly represent the occlusion relationships between real and synthetic objects, an AR ap-
plication needs to consider the depth of the real imagery in the rendering of the synthetic imagery. Synthetic
image generation for AR isthe same as for VE [Foley90]. Of particular interest in this discussionisthe depth
buffer, or z-buffer. Thisis a standard way that occlusion relationships are established for objectsin VE. The
way that AR should differ isthat the AR system needs to measure or infer depth for thereal imagery and com-
pare this datawith the computed depth for the syntheticimagery. The AR system can then display exactly the
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synthetic imagery that is closer than the real imagery, and not paint over real imagery that is closer.

Performance of either version of thistask requiresthat the system know the depth of the real objectsfrom
the camera. Effectively, the rendering engine must assign avaluein the depth buffer to each pixel correspond-
ing tothereal objectsin the scene. Notethat no informationiswrittenin to the color buffer; the color fromthe
see-through display (video or optical) appears in the final image. One option isto acquire the depth data be-
fore the system runs and assume that the scene is static. |n some applications, thisassumption isnot valid, so
the object’s depth must be recomputed or reacquired in real timein order to maintain the illusion of amerged
world.

Knowing the depth at the pixel s containing syntheticimagery isnot enough. Our visual system uses other
cues to determine depth rel ationships. The context around those objects must be correct aswell. For example,
in the ultrasound application, the synthetic data consists of a set of small objects. If these objects are merely
overlaid onto thereal scene, they appear to float in front of patient’s skin, since we are accustomed to seeing
a human form as a continuous smooth surface. The proper depth relationship at the pixels of the synthetic
imagery must be complemented with a surrounding synthetic object that gives 3D context to the depth rela
tionship, such as a synthetic depiction of a hole [Bajurad2].

The most common method of resolving occlusionin AR isto simply render models of real world objects
into the depth buffer. These objects must either be static in the world or tracked in real time. Assuming the
model isaccurate, the rendering engine can rasterize depth and use these values in the z-buffer computations
that are standard in computer graphics architectures. Severa systems have used this approach [Whitaker95s,
State96h, Breen96).

If ared -time depth map from the camera s poseisavail abl e, then thisdepth data can beloaded directly into
the z-buffer for itsusua computations during rendering of the synthetic imagery. Acquisition of area-time
depth map is a classic computer vision problem which has proven to be very difficult to solve in an accurate
and robust fashion, let aloneinreal time. Some systems have used this approach [WIoka95, Breen96].

Another approach to resolving occlusion isto compute amask based on the occluding contours of the real
objects[Berger97]. Thisrequirescomputing theoutlineof the synthetic object, finding any contoursinthereal
image within this outline, labeling the contour points as behind or in front of the virtual object, then building
the mask from the contour pointsthat are in front.

The new a gorithm we proposefor tracking also has exactly the information needed to compute the depth
of the nearest real object at the pixelsat whichthelight patternsare detected. Thus our approach hasthe ability

to compute a partial depth map inreal time. Thisideaisdiscussed further in Section 5.2.
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2114 Latency

Inany AR system, there are multipleinput sources from the environment; at aminimum, there are the eyesor
cameras acquiring aview of therea worldand thetracking system acquiring the pose of theuser’shead (OST)
or of thecamera (VST). In order to properly align rea and syntheticimagery, these systems must agree on not
only a spatia reference so that registration can be achieved (Section 2.1.1.2), but also atempora reference.
Temporal displacement of input sourcesiscaled latency.

Theimage generation system must know where the user will be when theimageisdisplayed. If it doesnot
and cannot estimate it, then there will be latency between thereal and syntheticimagery, and theillusion of a
the synthetic objects existing in the real environment would be lost. For OST, the system must know where
the user’s eye will be when the synthetic imagery is displayed. For VST, the system must know where the
camera was when it acquired itsimage in order to render the synthetic imagery from the same viewpoint. If
the total time required to present a merged image istoo long, then there will be delay introduced between the
user’s motion and the user’s opportunity to see the effect of that motion on the real world.

For raster scan hardware, used for most current AR implementations, the time limit for producing a new
syntheticimage dependson therate at which thedisplay device can display new imagery. InaV ST system, the
timeal so depends on thevideo acquisitionrate. 1deally, the AR system would generate new images (including
the digitization of the video datain V ST) fast enough so as not to miss data from the video stream or to have
the display device present the same image twice. If too many frames of video data are missed, then the user
will notice delay between the sensation of head motion and the apparent motion of the world (i.e. changed
imagery of the world in the display). If the synthetic image generation consumes significant time, this may
cause loss of input video frames. This can limit the complexity of the synthetic imagery. As noted, current
display and acquisition systemsfor AR arerater-scan devices. Current technology for both display and acqui-
sitionisraising the speed. Currently available equipment can acquire and digitizevideo at 1000 Hz [AOA9g],
although | have not heard of this equipment being used for VST. Using it would require resolving issues of
brightness and image quality.

Delay can dso be introduced by the tracking subsystem. If the data from the tracking subsystem is not
timely, then there will be relative latency between the apparent motion of the real world and the apparent
motion of the syntheticimagery. Thistypeof latency can be managed [Jacobs97] by calibrationand techniques
such asinterleaving data acqui sition and computation, predictive tracking [Azuma95], and in cases where the
need for spatia alignment justifiesallowing delay, by interpolating past data [ Jacobs97].

Delay in presentation of images and in tracking subsystems can be very disturbing to the user, to the point
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of inducing physical sickness. Users can tolerate some latency, however, depending on the user and the ap-
plication. In viewing a dynamic stream of ultrasound datain order to perform amniocentesis, for example,
latency of the data directly affects the confidence with which the physician can insert the needle. While not
optimal, when visudizing a static data set, the physician could wait for theimage to “settlein” to place, then
move slowly to view the data from different angles. (Slow head motion will limit the displacement on the

image plane.)

2115 Other Issuesin Merging Imagery

There are numerous other cues that our visual system uses in order to perceive shape and depth, including
stereo, lighting, shadows, and focus (accommodation). Any mismatch between these cues for the rea and
virtual objects will diminish theillusion that the synthetic objects exist in the same space as therea objects.
Despite the knowledge of how to compute and render computationally expensive features such as depth of
field and lighting, these features are not nearly as critical as other issues, and so have yet to be incorporated in
many AR systems. However, there are systems that do compute these effects. Real and synthetic objects can
collidein the merged environment. Thisphysica event should be computed and arealistic response should be
displayed [Aliaga94]. One non-real-time system computes many typesof interactionssuch asinter-reflections
between real and synthetic objects, shadows, and collisions[Jancened5]. By combining image-based render-
ing techniqueswith traditional geometric and material modeling, one can realistically render synthetic objects
into real scenes [Debevec98]. With computer vision techniques and ray tracing [Fournier95] or 3D scene cal-
ibration and radiosity preprocessing [Loscos98], accurate shadows can be pre-computed, then displayed at

interactive rates.

212 Applicationsof Augmented Reality

The range of applicationsthat could potentially benefit from this kind of technology iswide and continues
to expand as the hardware used to build such systems improves. Numerous proof-of-concept systems have
been demonstrated, though as noted, few systems are currently used in place of the traditional methods to
accomplish therespective tasks. Thissection will describe several types of applicationsand specific examples

of these types. The types of applications are ordered by increasing requirements on registration accuracy.

2.1.2.1 Annotation

Textua annotation is perhaps the simplest method of augmenting the real world. Such annotation might take
the form of a head-up display for pilots [Furness86], automobile drivers [Weintraub92], or manufacturing
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workers [Caudel192]. In these applications, however, the placement of the synthetic imagery within the dis-
play or worldisoften arbitrary, significantly reducing the complexity of the problem. More sophisticated sys-
tems might guide the user through a library [Fitzmaurice93], label the parts of an engine model [Rose95] or
computing equipment [Kakez97], or display personal notes[Feiner93]. Such applicationsplace only loosere-
strictionson the placement of the syntheticimagery within theworld, requiring only that it be aligned closely
enough to convey the necessary information. In fact, some systems that simply provide textua information
prefer to place the syntheticimagery out of the user’scentral field of view, which presumably containstheresl
objectsthat the text discusses. Registration error on the order of several centimetersin world space or severa
dozen pixelsin image space is acceptable. However, the merging might have to occur over alarge range of

viewpointsand view directions.

2.1.2.2 Repair, Manufacturing, and Design

From applications that merely place labels in the world, it is but a small step to use such labels to perform
tasks. Indeed, if labels constitute user manuals, then the user should be able to perform simple manipulation
tasks with the assistance of syntheticimagery. The system can go beyond textual labelsto providing synthetic
images that represent a sequence of |ocations through which areal object should be manipulated or the final
arrangement of a set of real objects. Thisidea has been applied to laser-printer maintenance [Feiner93] and
computing equipment [Kakez97], and suggested for automobile engines [ Tuceryan95].

A similar suggested application [Drascic93] is to have the user manipulate the synthetic object in order
to plan atask that will subsequently be performed with the real object. This basically shifts control of the
synthetic object from the application to the user, but till allows the application to constrain the object motion
to physically redizable situations.

Itisanother small step frominstructionsfor repair to instructionsfor buildingaproduct. A system at Boe-
ing [Sims94] guides manufacturing workersthrough assembly of wiring harnesses. This system al so deserves
credit for being placed in the hands of assembly workers. However, none of the wiring bundles constructed
with this system are in use in planes. Still, thisis among the most advanced AR systems, in terms of being
closest to being used for “real” work. According to one of the designers, the system merely “needs some en-
gineering details worked out before it's deployed on alarge scale in the Boeing factory.” [Mizel198]

A variant on the same ideaisto show the location of hidden objects such as the infrastructure of a build-
ing [Feiner95, Webster96]. The ARGOS [Drascic93] system tackles such tasks under difficult viewing con-
ditions, including viewing of a space shuttlebay interior. Designers could visualize a proposed room arrange-

ment [KIlinker97] or even a proposed renovation to a building.
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2.1.2.3 Entertainment

Another application of AR is entertainment. While VE have often been suggested for entertainment applica
tionsintheform of video games, AR offersthe advantage of the ability to use rea objects as part of the game.
One example of thisisthe AR air hockey game [Ohshima98] in which the players play on a physica table
with physical mallets, but a synthetic puck. Thiswould benefit grestly from force feedback devices. This
application a so emphasizes the collaborative potential of AR.

Another entertainment applicationisthat of virtual studios. Thisproductiontechnique combinesreal video
of actors or hostswith syntheticimagery of a setting or studio. Thiscan be aless expensive form of building a
uniqueenvironment for alivetelevision production. Thisapplicationisusualy made easier by aways having
the real imagery appear in the foreground—i.e. in front of—the synthetic imagery, eiminating the occlusion
problem. Also, the real imagery is generally of actors standing in the midst of a large synthetic studio. Thus

an alignment error of even several feet is often not significant.

2.1.24 Medical Care

Perhaps the AR applications with the most powerful potentia are in the medical field. Surgical simulations
might help teach anatomy [Rolland97] or identify organs and specify objectsto avoid [Durlach95 (Chap. 5)]
by giving a physician or medical student “X-ray vision.”

Perhapsthe most challenging set of applications, however, triesto assistinasurgical procedure. AR can be
used to display features visiblein standard medical imagery such as computed tomography (CT) or magnetic
resonance imaging (MRI) that are not visible to the naked eye or require lengthy training to identify. It also
offersthe potential to perform the difficult task of mentally reconstructing the (often) inherently 2D standard
imagery intothreedimensionsautomatically. Currently, the physician must learn to performthistask mentally.
The AR system can further display the resulting 3D imagery in the proper place with respect to the exterior
anatomy of the patient. This should provideamore direct and more natura interface to the procedure, similar
to thelook of open surgery, without requiring the risks of open surgery. It could aso alow more efficient use
of non-real-time medical imagery such as CT and traditional MRI. These features have yet to be proven, but
these systems described below have demonstrated the potentidl .

Application to MRI and CT Visualization Three systems have combined synthetic MRI or CT imagery
with views acquired from an operating microscope. Two independently developed systems aided the physi-
ciansin planning and performing the delicate neurosurgery interventions [Kelly86, Lorensen93]. Work con-

tinues on the latter project [Grimson95, Mellor95]. Figure 2.3 shows the work of the most recent systems
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Figure2.3: Image from the AR system for performing neurosurgery, devel oped at the Massachusetts Ingtitute
of Technology. In this system, pre-acquired and segmented CT data is overlaid on the view of the patient in
order to guidethe surgeon. Image courtesy of the Massachusetts | nstituteof Technology Artificial Intelligence
Lab and Brigham and Women's Hospital Surgical Planning Lab.

developed at the Massachusetts I nstitute of Technology. A similar system was applied to both neurosurgery
and otolaryngol ogy [Hawkes97].

These three systems are notabl e because they are in fact being used by physiciansto provide treatment for
patients. However, in order to achieve this goal, these systems have used less demanding configurations of
the AR technol ogies than the description given in Section 2.1.1. The displays used in these systems are not
HMDs, but rather a conventional monitor or an operating microscope. Neither of these displays move signif-
icantly or often during the procedure, simplifying the registration task immensely. Also, these applications
can make assumptions about the environment. For example, the patient in neurosurgery isliteraly fastened
to a stereotactic frame, whichisin turn fastened to the table, to prevent movement during surgery.

Registration of real and synthetic imagery in neurosurgery is performed by manually aligning the stereo-
tactic frameto thetable. Laser measuring systems are used to have arepeatable location for the frame relative
the the microscope. In AR otolaryngol ogy, the registrationis assisted by a conventional optical tracking sub-
system. This decreases the accuracy of registration compared to the laser system, but not by a significant
amount. Also, the microscope does not move much in thisapplication, simplifying the registration problem.
Occlusion relationships are not a significant concern since the primary goa of the task isto assist with the
drilling into the patient’sskull or in peeling back the next layer of the skull tissue; thusthe synthetic imagery
of the next layer of the medical data can aways be placed in front of the real imagery.
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Figure 2.4: (a) Observer’s view of the UNC AR ultrasound visuaization system in use. The physician is
examining the patient prior to successfully inserting the needle into the target lesion. (b) View presented to
the physician through the HMD at the time the observer’sview was taken. Note the alignment between the
physician’s finger, positioned with tactile feedback, and the lesion, which is visible as the dark circle in the
lower-center region of the ultrasound data beneath the ultrasound probe.

Application to Ultrasound Visualization The group in which | have been working at UNC, under the di-
rection of Prof. Henry Fuchs, has been working on AR ultrasound visualization since 1990. The principlesare
the same as those used in the overlay of CT or MRI data. Applicationsthusfar have consisted of fetal exam-
inations and ultrasound-guided needle biopsies. The ultrasound datais received as a video stream, digitized,
and registered inreal timeto the patient. In order for the physician to be able to view the dynamic datafrom
any direction, the physician’s head must be tracked. In order to register the discrete ultrasound data slices to
each other, the ultrasound probe must be calibrated to determine the location of the datawith respect to the ex-
ternal shape of the probe. In order to register the ultrasound data set to the patient, the probe must be tracked.
The use of separate tracking subsystems in the current implementation creates a difficult calibration task.
The visualization of ultrasound datais more difficult since the ultrasound imagery isacquired inreal time
and thetarget can move, decreasing confidencein previously collected data. Successiveimplementationshave
used rea-time, non-reconstructed data [Bajurad2], off-line reconstruction [State94], and most recently real-
time volume visualization [ State96b]. Images of this most recent system in action are visiblein Figure 2.4.
The patient in thisapplicationis allowed to move; shewill breathe and can shift her weight for comfort. This
creates a demand for rea-time depth data to provide proper occlusion. This has not been an significant prob-
lem, however, since thismotionissmall. In order to provide better relative depth cues, we use the metaphor

of avirtua pit within the patient’s body.
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Figure 2.5: View presented to the physician through the HMD in the AR laparoscopic visualization system.
This proof-of-concept image was taken early in the work. The AR paradigm is similar, but this application
also requires acquisition of a 3D model of the patient anatomy, a very difficult task.

Application to L aparoscopic Visualization The UNC ultrasound visualization system is currently being
expanded to integrate real-time | aparoscopy data[Fuchs98]. A custom-designed adaptation to a conventional
|aparoscope enabl es the acquisition of range images of the interna patient anatomy, which are reconstructed
into a synthetic model and registered to the patient (Figure 2.5). This application has similar requirements
for tracking of the physician’s head and the probe, and a so has the challenge of a dynamic data set. Thisis
made more difficult by the dynamic nature (due to breathing, blood flow, and patient shifting) of the interna
anatomy imaged by the | aparoscope.

2.2 Tracking

Tothispoint, | have mentioned tracking devices as aparticular subsystem of an AR system. However, tracking
devices have numerous applicationsin computer graphics providing interactive control of the viewpoint and
of objects. Not surprisingly, there has been a significant amount of research to solve the problem of tracking.
Notethat | will slightly change terminology in this discussion and use “system” to refer to atracking device,
since | am for the moment not discussing complete “AR systems’ asin the previous section.

This section surveys the hardware and software technology of tracking systems. | list in Section 2.2.1
the features that are sometimes desired in tracking systems. Technologies that have been applied to build
tracking systems are discussed in Section 2.2.2. Details of algorithms relevant to this dissertation and more
recent research on tracking systems appears in Section 2.2.3. Severa good surveys of tracking systems are

recommended [Durlach95 (Chap. 5), Mulder94, Meyer92, Ferrin9l].
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2.2.1 Propertiesof Tracking Systems

Thissection listspropertiesof tracking systems and discusses therel ati onshi psbetween the various properties.

e Accuracy: the degreetowhich thereported datamatches thetruevalues. Thisassumesthe existence of
a“gold standard” to which the data can be compared. Accuracy can be very difficult to measure, except
by another tracking system which is assumed to be of higher accuracy. Even then, the tracking system
that is being tested can only be determined to be “less accurate than” or “at least as accurate as’ the
second system, but not “more accurate.” Obvioudy, in general we want as much accuracy as possible.

In apractical sense, however, the application determines the accuracy required of the tracking system.

Accuracy can be limited by several factors. The measurement resolution of the system is the small-
est possible change in the reported data. Clearly, a system can only be accurate to within its ability to
perceive a change in the data. A tracking system might be susceptible to interference from the envi-
ronment. Interference takes many forms, depending on the technology of the tracker. Examples will
be given in Section 2.2.2. Fortunately, loss of accuracy due to environmental interference can often be

reduced by mapping the interference and providing a corrective inverse mapping [Livingston97].

Accuracy can belost dueto noise, whichisunexplained, random, zero-mean error inthedata. Of course,
more complete characterizations of the physical or eectrical behavior can offer explanations of noise.
The degree to which abehavior can be characterized determines the degree to which the error it causes
can be corrected. For example, electrical interference is frequently considered a source of noise, but
onceitismodeled, it should be considered a systematic loss of accuracy dueto interference. Noise can
in effect reduce the resol ution of the device by consistently corrupting thelow-order bits of the reported

data.

¢ Robustness: the system’s ability to continueto functionin adverse conditionsor with missing or incor-
rect measurements. Some systems make assumptions about the surrounding environment during oper-
ation. Also, asystem may be unable to take a measurement at a particular time. Specific examples of

these problems depend on the technol ogy and will be discussed in Section 2.2.2.

Related to the robustnessisrepeatability in the reported data. If thereported values are consistent over
time and over operating conditions and environment, then measuring the accuracy (or the lack thereof)

is possible, and corrective a gorithms can be applied.

¢ Range: the space withinwhich the system can measure enough datain order to computearesult. Some-

times the usable range can be reduced by environmenta interference, loss of accuracy, or noise.
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One important issue connected to the range iswhether it is scalable. That is, whether the range can be
extended easily with additiona hardware and how well the system can continueto satisfy the other de-
sired features with thisextended range. Also related to therange isthe number of degrees of freedom
that a system can measure. Some systems can measure only position (three DOF), some measure po-
sition and direction (five DOF), while most measure position and orientation (six DOF). Also, systems

vary inthenumber of targetsthat can betracked simultaneoudly.

¢ Speed: thefrequency a which measurements can be obtained from the tracking system. There are two
significant numbersto consider. Thefirstistheupdaterate, whichistheraw speed a which thetracker
generates new datareports. This may or may not be equd to the rate a which the device makesitsraw
measurements from the sensors, be they magnetic, optical, mechanical, or any other technology. This
“raw measurement rate”’ isnot necessarily aconcern to the application; it istheagorithmthat generates

tracking datafrom the raw measurements that determinestherate at which dataissent to theapplication.

The second number to consider the latency, which is the delay between the time the tracked object
was (first) at a given pose and the time at which the application on the host computer (first) receives
the corresponding data. Both depend on the technology and on the number of new measurements the
device must take in order to compute anew pose. As with the accuracy, the application determinesthe
required update rate and maximum tolerable latency. In general, the tracker’s update rate must be at
least as high as the display rate of the graphics. AR is known to tolerate very little latency before it
causes registration error [Holloway95]. Recent algorithmsthat can reduce the difficulty of using slow

measurement technology are discussed in Section 2.2.3.3.

¢ Hardware: the physicd realization of the components of the tracking system. The important issues are
the number of components, and the size and weight of those components, especially thosethat the user
isrequired to carry (or wear). Some systems may have a significant amount of hardware that must be

set up in the environment, although it may need no further attention from the user once in position.

Idedlly, the application would like to give the user complete freedom of movement. Some devices
tether the user to afixed object. Some systems may have a heavy or unwieldy device which the user
must manipulate in order to move. Some devices have a tendency to pull the user back to a “resting

position” for the device.

Depending on the application, some of these features may be vital, while others may be of minimal con-
cern. In AR applicationsfor surgery assistance, for example, accuracy is of utmost concern whilelarge range

isnot usualy crucia. For an spatial planning application, less accuracy may be acceptable whilelarge range
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(e.0. thesize of aroom) isvery important. In aflight simulator, ahigh updaterate is paramount because pilots

can move their heads very fast, whiletethering the pilot’s helmet may not be of great concern.

2.2.2 Tracking Technologies

From the preceding discussion of the desired features of tracking systems, the reader should begin to realize
that it is difficult for any single technology to satisfy all these (frequently conflicting) requirements at once.
Most tracking systems are considered to have at best a limited application domain. Numerous methods have
been tried to solvethe problem. Thefollowingdiscussion of technologiesisordered by decreasing commercial
success for AR and VE applications, although optical systems, which are most closely related to this disser-

tation, are reserved for last.

2221 Magnetic

Magnetic tracking systems measure the strength of a set of magnetic fields generated by a fixed transmitter.
The transmitter and the sensors consist of three coilsmounted in mutually orthogonal directions. The sensors
rangein size, but tend to be around a few cubic centimeters. The transmittersrange in size with the power of
thefield they are expected to generate, and range from several cubicinchestoacubicfoot. There arefour mag-
netic fields that must be measured: the environmental field (including the Earth’s magnetic field), and three
orthogonal fields in the transmitter’s coordinate directions. Each of these fields is measured in the sensor’s
three coordinate dimensions for atotal of twelve measurements for each sensor. From this information, the
position and orientation of the sensor with respect to the transmitter can be computed [Kuipers80, Raab79].
Magnetic systemsare robust, fast, and inexpensivecompared to most other technol ogi es, making them one
of the most popular choices for both VE and AR [Ascension98, Polhemus98]. However, magnetic trackers
are inaccurate in practical environments, due to distortion of the magnetic field caused by ferrous metalsin
theenvironment. |f themeta isfixed, thisisacorrectable typeof interference[Livingston97]. Most magnetic
trackers can track at |east several sensors, though for some systems, the communication required for reporting

data of several sensors slowsthe report rate for each sensor.

2.2.2.2 Mechanical

Jointed mechanical arms were among the earliest tracking systems [Sutherland68] and continue to be used
today. They use a variety of rotary transducers or shaft encoders to track the orientation or position of each
joint of an articulated arm. Because each of these measurements tendsto be very accurate, the total accuracy

of the system isusually excellent when compared to magnetic systems. Early mechanica systemsused reels



29

of string together with a rotary measurement to determine radial distance from afixed point [ Sutherland68].
Several measurements can form athree DOF mechanica tracker.

Mechanical systems suffer from limited range and from being able to track only one object. Many are
clumsy for tracking HM Ds due to the tethering of the user’s head to a device that may restrict movement or
pull on the user. A notable exception to this is the BOOM, which is an integrated mechanical tracker and
display system [Fakespace98]. Two displaysare housed in abox that lookslike a ssimple HMD, however, the
weight of the display system is supported by the mechanical arm, whichiscounterbalanced in order to support
the weight and protect the display system from falling to the ground or burdening the user.

It isvery difficult to use more than one mechanica tracking system, since the arms or strings get tied up
with each other. Mechanica systems have found agood commercia niche as measurement devices and hand

tracking systems [Faro98, Immersion98].

2.2.2.3 Acoustic

Acoustic systems typical ly measure the time of flight for ultrasonic soundsand relate the timeto the speed for
agiven room temperature. An aternate strategy isto measure the phase difference between multiple waves.
Generdly theuser carriesthetransmitter, and aseries of sensorsaround theroom determinethelinear distance
tothetransmitter. Some systems havethe user carry areceiver and listen to a series of transmitters positioned
around the volume. An agorithm akin to sphere intersection can then determine the position of the user’s
transmitter (or receiver). Other variationsare possible, including multipletransmitters alternating the sending
of asignal. Acoustic trackers frequently provide only position measurements (three DOF tracking), however,
some systems do infer orientation data by tracking multiple points. Acoustic systems are of limited accuracy
and speed. They suffer from environmental interference (e.g. temperature variations), inter-reflections, and
obstruction between emitter and receiver. Despite this, there are systems that have used acoustic systems for

real-time tracking or for measurement [Sowizral 93, Logitech98, FoxIin9§].

2.2.24 RadioWaves

The measurement principlesof time of flight and phase difference also apply to radio waves. The Global Po-
sitioning System [Parkinson96] is an example of thistype of system which allowstracking over the entiresur-
face of the Earth, solong as asufficient number of theorbiting satellitesthat transmit theradiowavesarewithin
range. Until recently, commercidly available hardware was limited to an accuracy of approximately 100 me-
ters. However, researchers found ways to work around the military’s encoding of time stamps to achieve ac-

curacy reportedly on the order of afew millimeters [Herring96]. Indoor systems based on time-of -flight mea-
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surements of radio waves have a so been suggested. However, the accuracy and speed of measurements are

likely to be insufficient, and the inter-reflections could pose a significant problem.

2.2.25 Inertial

Rate gyroscopes and accelerometers directly measure velocity and acceleration. If theinitia poseis known,
then the equationsfor rigid-body kinematicswill computethe current pose. Thisformulationwithinertial sen-
sors can measure only the change in position and orientation. To provide acomplete 6-DOF tracking system,
we require an initial estimate, which we must obtain with an aternate technology. When used in combina-
tion with another technology, inertial sensors provide afast and accurate system. Such multi-sensor tracking
systems are discussed in Section 2.2.3.4. Because they directly measure velocity and/or accel eration, inertia
sensors are well-suited to predictive tracking schemes [Azuma95].

The mgjor drawback of inertial sensorsis that they can also make relative measurements. Thus they ac-
cumulate error over time, and appear to “drift” in space. The acceleration dueto gravity must be subtracted
from the readings of an accelerometer. Thisisnon-trivid; it requires calibration of the relative orientation of
three accelerometers, and it requires that each accelerometer have alarge dynamic range in order to not be
overwhelmed by acceleration dueto gravity and still be able to discern subtle changes in acceleration. Com-

mercia systems are just beginning to include inertial trackers [Intersense98, Foxlin9g].

2226 Optical

Perhaps the oldest form of optical tracking is “navigation by the stars.” The basic notion is that if a sailor
sees known constellations whose positions and orientations in the sky are known, then he can compute his
position and orientationon the globe. A variety of modern technol ogies have been applied, butin dl systems,
the mathematical principlethat places constraints on the pose of the user istriangulation.

| shall categorize optical systems in two ways, and then place the current work in this context. The first
delineation between optica systemsisthe sensor technology. It can be one-dimensional (1D) or 2D, and may
or may not form an image. If theimaging technology is 2D and image-forming, then the system isfrequently
referred to as vision-based, especidly if the same images that are used for tracking are aso used to provide
the user an image of the real world, asin VST AR. The second difference is the type of landmarks that are
employed. Landmarks can be broken into categories of active and passive. The former category generaly
implies light-emitting diode (LED), while the latter includes a variety of features, such as colored shapes,
reflective markers, or even natural features like edges and corners. Various combinations are represented in

Table 2.1.
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Landmark type
Sensor type Active Passive
2D image-forming [NDI9§g] [State96d]
[Selspot98] | [Neumann98]
[Koller97]
[ACA9g]
2D non-image-forming || [Ward92]
[Welchog]
[Kim97]
1D image-forming [Fuchs77]
[IGT98]

1D non-image-forming

Table 2.1: Fitting together sensor and landmark technologies to build optical tracking systems.

Thiswork uses 2D imaging technol ogy and proj ective geometry to creste a 1D non-image forming sensor.
Thelandmarksin thiswork are qualitatively different from the systemscited here. The systemsdiscussed here
use physical landmarks placed in the scene, whereas my thesisisthat using reflections of light for landmarks
with unknown positions can be used to track a moving sensor. The physical manifestations of landmarks in
the new system are passive in the sense that they merely reflect light. But the landmarks are projections of
light and could aso be considered active in the sense that they move and flash under control of the tracking
system’s host.

Optica systems are among the most accurate, along with mechanical systems, if not more accurate. As
noted in Section 2.2.1, it can be hard to measure the accuracy of such systems. Depending on the sensor tech-
nology, optical systems can also be among the fastest systems. For example, the UNC opto-€electronic ceiling
tracker useslaterd effect photo-diode (L EPD) and runsat speeds of up to 2000 Hz [Wel ch96], while systems
that use charged-coupled device (CCD) are limited to the speed of standard video signals, which is usually
30 Hz inthe United States, although faster systems are becoming available [AOA98].

One problem with conventional optical approaches is that the landmarksimpose constraints on the user’s
interaction withtheworld. The user must keep thelandmarksin view in order to benefit from the vision-based
tracking, but must avoid them while performing the task at hand. As noted above, it is not always practical
to assume the environment to be static. Also, the user cannot be expected to keep the landmarksin view as
his viewpoint changes. This can lead to occlusion of the landmarks from the user’s view. The problem can
be reduced by using numerous landmarks, but thisis not always a practica solution. A primary goal of this
research is to overcome the limitations imposed by the use of physica landmarks and develop a red-time

tracking agorithm using projected light.
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There are other issues surrounding optical tracking systemsthat are yet to be answered for our new algo-
rithm. Optica systems frequently place restrictions on the lighting of the scene. There have frequently been
guestions raised about the stability and repeatability of measurements, especiadly in 2D image-forming de-
vices. Systemsthat distributefixed landmarks around the environment and track sensorsthat move withinthe
volume suffer from poor accuracy of position measurements. Systems that distributefixed sensors around the
environment and track moving landmarks suffer from poor accuracy of orientation measurements of the as-
sembly carrying the landmarks. The proposed system more closely resembles the former category, since the
landmarks are fixed instantaneously to the environment.

Optical tracking methods have been used to track the user’'s head pose or the structure of a scene, but in
arelative sense only. That is, either the landmarks or the cameras are assumed to be static, and the other can
therefore be tracked relative to the static object. The “tracking” of the scene, or more precisaly, determination
of thestructure of the scene, isaclassic problemin computer visionand outsi dethe capabilitiesof conventional
tracking systems. Onerecent development counter to thisisthe UNC optical ceiling tracker withthea gorithm
described in Section 2.2.3. It has demonstrated the ahility to refine gross errorsin the estimated |ocations of
its LEDs, and the algorithm could be extended to compute LED positionswithout use of a prior estimate.

The dua nature of the problems of recovery of camera pose and recovery of scene geometry should be
clear, however. Computer vision algorithmswill bediscussed in Section 2.3. Computer vision hasa so offered
algorithmsto compute both tracking of cameras and scene structure simultaneously. Thisisconsidered avery
difficult task, but a possible extension to this work that moves toward a solution for thistask is discussed in

Section 5.2.

2.2.3 Related Tracking Algorithms

In the previous section, | gave a description of a variety of tracking technologies. Here | concentrate on a-
gorithmsthat pertain to the current work. Most optical systems apply the geometric concept known as trian-
gulation. One example of thisideais known as collinearity and was implemented for the initid version of
the UNC optical ceiling tracker. The current algorithm for the new UNC optical ceiling isknown as SCAAT,
which uses the concept in a somewhat different manner. It has been postulated that hybrid tracking systems

will further the capabilities of tracking systemsin the future, and preliminary work backs up thisclaim.

2231 Optical Triangulation

The basic principle of optical triangulation isthat if you have two views of a scene and can establish corre-

spondence between pointsthat are visible in both images, then you can determine avariety of parameters of
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Figure 2.6: The triangulation algorithm used in the UNC vision-based tracking system [State96g]. The land-
mark locations L1, Lo, and L3 are known, and thus so are the distances between them. We can a so express
the distance as a distance between two vectors at some unknown depths «, y, and =z aong those vectors. The
view vectors Vi, V-, and Vs are known in the camera coordinate system (calibrated cameras) and the transfor-
mation /" between isknown. The only remaining unknownsare the six degrees of freedom between theworld
(tracking device) coordinate system and the camera coordinate system. These parameters determine the view
vectors in the tracker’s coordinate system. We can solve the quadratic equations on the right for these six
parameters and the three depths along the view vectors.

the two images, including the offset in position and orientation between the two cameras, the parameters of
the projection operations performed by the cameras, and the precise locations of the pointsin space. There

are two ways constraints can be placed on the pose of theimaging device, which are dua to each other.

1. The correspondence of two images of a single static feature defines a triangle with the feature and the
two centers of projection of theimaging device asthe corners. In thiscase, thelength of the side of the

triangle between the two centers of projection is known.

2. Images of multiple landmarks from one pose forms a triangle with an apex at the center of projection

and a known length of the opposite side (the relative location of the landmarks).

Either of these basic facts can be used in numerouswaysto create asystem of constraintsinvolving the param-
eters of the pose of the camera or system of cameras. Numerous vision-based tracking systems have recently
appeared intheliterature, using aslandmarks LED [Bajura95, Madritsch96], colored circles [ State96a] or col-
ored circles and triangles[ Neumann96], or black squares [Koller97]. Anexample of atriangulationagorithm
isgiveninFigure 2.6.

Another variation isto determine the direction cosines of alandmark with respect to a photodetector. This
approach is used in the UNM tracker [Kim97]. Using the direction cosines, a series of tetrahedra can be
formed. Thisissimilar to setting up a series of triangles which locates the aperture point of the photodiode.

A minimization procedure hel ps to choose from among the various solutionsthat are possible.
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2232 Cadllinearity

Theoptical cellingtracker [Ward92] demonstrated at UNC relieson knowing the 3D locationsof aset of LEDs
mounted on the ceiling and imaging those LED with a set of LEPD fixed on the user’shead. The collinearity
algorithm[Azuma91] used intheinitial version of the UNC optical ceiling tracker, is, according to itsauthors,
“nothing more than similar triangles.” The algorithm expresses the observation that the vector in the camera
coordinatesystem from thefront principal point of the LEPD to the LED must be collinear withthevector from
the rear principal point to the image location of the LED. For a set of LED sightings, this places a system of

constraints on the pose of the camera, which can then be solved for the parameters of camera pose!.

2233 Single-Constraint-At-A-TimeTracking

Theformulation of the constraintsin collinearity assumes that the optical sensor does not move duringthetime
it takestoimage sufficient landmarksto fully constrain thepose. However, thiscondition cannot be guaranteed
in practice. To overcome this requires afiltering mechanism that can integrate a set of measurements made
over time. Thisneed and a desire to provide a high update rate for an accurate tracking system inspired the
idea of SCAAT. Thisalgorithm has been applied to amoving LEPD assembly attached to the user’s head and
pointed towards a ceiling with LED at known locations. One of the nove features of SCAAT isto be ableto
integrate asingle new constraint to update a previous estimate of the pose. SCAAT uses a predi ctor-corrector
framework to accomplish this.

The same concept that rel ates the parameters of the camera pose through multipleimages of asinglefeature
can also be applied to predict the image location of that feature, given the last known (or estimated) camera
position and orientation, vel ocity, and acceleration, by the equations of rigid-body kinematics. If the feature
does not appear in the predicted location, then the estimates for the parameters must be incorrect (or out of
date).

The Kamanfilter (KF) [Kaman60, Brown92, Welch95] providesaminimum mean squared error estimate
to a set of parameters which affect a series of measurements. The filter maintains a current estimate of the
values of interest (“the state”), their error covariances, and a model of the behavior and noise of the system
over time. “Behavior” in this sense includes afunction that determines the measurement from the state and a
method of mapping the measurement onto the state.

The KF operatesin a predictor—corrector fashion. The prediction step consists of pushing the state and er-

ror covariance matrix forward in time according to the system behavior model. From this predicted state, the

LIn reality, the implementation uses not a single camera, but multiple LEPD. The mathematical constraints are the same, however,
since therelative poses of the LEPD are known.
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filter predicts a single measurement, then takes a measurement and computes the error. This error is mapped
back onto the state to determine a corrective update to the state and the error covariance matrix. Thisissimilar
to adding a new constraint to a system of constraints and computing a new solution, except that the computa
tionisnot donein batch, and thusthe previous constraintsneed not be retained in memory, only the previous
estimate. The basic KF worksonly for discrete, linear processes. However, an extended Kaman filter (EKF)
appliesto a continuous, non-linear process with discrete measurements. In thiscase, the mapping of the error
onto the state is determined by the Jacobian matrix of the measurement function.

A SCAAT filter based on an EKF is simple in implementation, and has severa benefits. It allows fast
refinement of a current estimate, which provides a high update rate. A high update rate in turn reduces the
time between measurements, thusincreasing the likelihood that the current estimate will reflect the true state
of thesystem—i.e. bemoreaccurate. It a so allowsnoiseinthe measurementsto befiltered, thoughthisfiltering

induces a delay.

2.2.3.4 Multi-sensor approaches

Section 2.2.2 described the limitations of various technologies that have been applied to tracking. However,
some systems have complementary sets of limitations. Such systems can be combined into a single system
that overcomes the limitations of each of the component systems. For example, the UNC ultrasound team
implemented a tracking system that used a conventional magnetic tracking system and a custom vision-based
tracking system to yield a robust system and that achieved accuracy in the crucia portion of thetracking vol-
ume|[State96d]. The SCAAT formulationa so providesagood framework for integrating multi pledatasensors
into asingletracking system. Other systems[Fox|in96, Emura94] have used an EKF in order to integratedif-
ferent types of measurements into a single estimate of a set of parameters and to reduce latency through the

inherent prediction mechanism of the EKF.

2.3 Computer Vision

The tracking approach introduced in this dissertation can be thought of in two ways. Thefirst isas an optica
tracking system with projected landmarks. Thisisthe view givenin Section 1.3.1. It largely ignoresthe view
of thisalgorithmas asolutionto aclassic problemincomputer vision. Thesecond way tothink of our approach

to tracking is as a solution to the motion-from-structureproblem. This problem can be stated as follows.

Given two (or more) images of a scene and alist of corresponding pointsor lines, determine the
relative camera pose used to acquire the second (and succeeding) images.
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The two basic steps of such algorithms are (1) to establish correspondence and (2) to determine offsets
with a linear or non-linear system. Severa agorithms suggested for this problem have shown to be quite
sensitiveto noise, and correspondence can be difficult or expensiveto establish unambiguously [Faugeraso3].
Our agorithmis similar to algorithms presented in the computer vision literature to solve this problem.

In Chapter 3, we present a SCAAT tracking algorithm that uses point-to-point correspondences between
two image planes, a constraint that is familiar in computer vision agorithm. For the new tracking a gorithm,
thismeansthat we need to know what the pattern from the projector |ookslikein theimage plane of thecamera.
Thisin turn requiresthe same projective geometry operationsthat are used in computer vision to describe the
six DOF offset of two cameras looking at the same scene. Thusin the course of discussing the related work
in computer vision, numerous concepts and terms from computationa projective geometry are introduced.

The problem of tracking the camera with respect to the projector thus reduces to the problem in computer
vision of determining the pose (rotation and trandation) of the camera with respect to another camera. The
constraints are given in the form of images of the same scene from the two cameras—or more generdly, the
two image planes-in which pairs of features, onefrom each image, are identified as correspondingto asingle
object in the environment. “Features’ in this case can be points, lines, or arrangements of pointsand lines.
In our work to thistime, we have used only points. Indeed it is unclear whether line correspondences could
be generated in auseful manner. Thus | discuss only point-correspondence algorithmsin detail. In computer
vision, thetwo image planes considered frequently belong to asingle moving camera. 1n our work, oneimage
plane bel ongs to the tracked camera, and one image plane bel ongsto fixed projector. Only one projector a a
timefiresaray.

Two concepts from computer vision deserve early mention in this discussion. First is a classification of
the parameters that affect vision. The position and orientation of a camera relative to some fixed reference
are known asthe extrinsic parameters. In 3D space, thisrequires six parameters to describe. The parameters
of the perspective projection performed by the camera are known as the intrinsic parameters of the camera
These can include the field of view, aspect ratio, focal distance, vertical and horizontal offsets between the
image plane origin and the central optical ray, and distortion coefficients. Many agorithms assume that the
intrinsic parameters are known and previously accounted for in the coordinates—thus designated normalized
coordinates. Methods to measure the intrinsic parameters have been presented in the literature [ Faugeras93,
Davies97].

The second concept is that no computer vision agorithm can solvefor the six DOF rel ative pose without
some external measurement to account for the scale factor that cannot be accounted for in an image sequence.

This measurement can be the absol ute distance of the trand ation (including the di stance between a stereo pair
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of cameras), adistance of two identified pointsin theworld, or the depth to an identified point measured. This
ambiguity of scale can be visuaized by considering the change in the camera' simageif the entire structure of
the environment, including the camera’s position in that environment, were scaled equally in al dimensions.
There would be no change. The miniature camerawould capture the same image of the miniature scene asthe

large camera would capture of the large scene.

23.1 TheEight Point Algorithm and Essential Matrix

While many iterative, non-linear techniques were developed for thisin early work, Longuet-Higgins intro-
duced the Eight-Point Algorithm in a classic 1981 paper [Longuet-Higgins81]. He showed that eight point
correspondences were necessary and sufficient to determine the rel ative pose up to a scale factor with alinear
agorithm?, and gave aformulation of expressing that difference in terms of the essential matrix. In hisfor-
mulation, the depths of the eight pointsare simultaneously computed. These are a so only to withinacommon
scale factor.

The essentia matrix can be shown [Faugeras93] to be composed of the rotation matrix and the skew-
symmetric matrix derived from the trandation vector between the two image planes. This skew-symmetric
matrix isthe matrix 7" derived from the vector ¢ so that T'x = t A x for any vector z. Notethat 7" isarank
two matrix, and like ¢, can only be determined up to a scale factor. These properties are thus a so true of the
essential matrix.

Certain geometric configurationsof thereal world pointscan produceadegenerate system of constraintson
the elements of the essential matrix [Longuet-Higginsd4]. Thus the Eight Point Algorithm will fail in these
situations, such as when the eight 3D pointslie on a quadric surface that passes through the two centers of
projection. Degenerate forms of thiscondition may occur if four pointsare collinear, six pointslie on aconic,
seven pointsare coplanar, or al eight pointsconstitutea cube. Oncethe essentia matrix between the projector
and the camerais determined, it can be factored into a skew-symmetric matrix that determinesthe trandation
vector and a3 x 3 rotation matrix [Longuet-Higgins31].

Many researchers criticized the Eight Point Algorithmas sensitiveto noise. However, by introducing nor-
malization of the image plane coordinates [Hartley95], the conditioning of the constraint matrix isimproved.
Also, it is necessary to force the essential matrix computed by the Eight Point Algorithm to be of rank two.
By forcing the smallest singular value of the computed matrix to zero, a*“close” singular (rank two) matrix

can be found [Hartley95].

2 Five correspondencesare necessary for non-linear, iterative methods.



38

P>

C; e; €z 2

Figure2.7: The offset between two cameras is given by the epipolar geometry. Using uppercase to denote 3D
pointsand lowercase to denote 2D points, we can express the epipolar constraint. The 3D lineCy M intersects
theimage plane P; at m;. The projection of line C1 M onto image plane P istheline e;msy. Similarly, the
3D lineCy M projectstothelinee;m; in plane P;. Notethat e; and e; need not be in the visible portion of
theimage plane.

In order to determine the scale factor associated with the trandlation, one would need to either be given
the scale factor directly or be given ameasurement that rel ates an image metric to areal world metric. For ex-
ample, the real-world distance of two pointsknown in the scaled coordinates would allow computation of the
scale factor. Thiswouldinturn require that theimage pointsbeidentified in correspondence between two im-
ages so that the positionin scaled coordinates could be computed viatriangulation with the estimated camera

poses for those two images. Computation of the scale factor requires a calibration on starting the system.

2.3.2 TheFundamental Matrix

Faugeras, Luong, and Maybank generalized the work of Longuet-Higginsto include cameras for which the
intrinsic parameters are unknown. Thisremoved the restriction that image-plane coordinates be expressed in
anormalized coordinate system [Faugeras92]. By composing the essential matrix with a projection matrix
that reflects the intrinsi c parameters of the projection operation performed by the camera, they create asimple
mapping between the pixelsin one image plane and epipolar linesin the other image plane. They refer to the
generalized matrix as the fundamental matrix [Luong95] and the collection of epipolar lines and constraints
as the epipolar geometry.

The epipoleis defined as the image-plane location of the center of projection associated with the other
image plane-that is, where the other center of projection projects to in our image plane. An epipolar line
is the projection of the ray emanating through a given pixel in one image plane onto a second image plane
(Figure 2.7).

Let M bea3D pointimaged at pixel m; onthefirstimage plane. The epipolar constraint saysthat every

3D point M; imaged at pixel m, on thefirst image plane will lie on the 2D line exm5 in the second image
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plane, where e, isthe epipole and m- istheimaged location of M in the second image plane. Formulas for
the fundamental matrix will be given in the description of the tracking algorithm in Chapter 3.

The basic observation isthat if two image-plane points are determined to correspond to the same point in
3D, then each image point will lie on the epipolar line determined by the point in the other image plane. Note
that thisdescription is symmetricin the twoimage planes. The fundamenta matrix that maps from the second
image planeto thefirst is the transpose of the matrix that maps from the first image plane to the second. The

fundamental matrix, like the essential matrix, is defined only to within a scale factor.

2.3.3 Recursive Motion Estimation Algorithms

Several agorithmshave attempted to solvethe motion estimation problemin arecursive fashion using an EKF
or asimilar filter.

Since the origina Eight Point Algorithm leads to noise-sensitive implementations, you might consider a
|east-squares method to compute the essential matrix [Faugeras87]. From displacements of pointsand lines
on theimage plane, you can compute the camera motion, then “back-solve’ for the static scene structure. For
the case of point correspondences, Faugeras et al minimized the vector norm of the constraint matrix Longuet-
Higgins had used. In thisway, they had a framework in which any number of measurements could be used
to determine the essential matrix. They also used the anal ogous system for line correspondences and applied
an EKF to minimize the mean-squared error of the predicted and actua sequences of rotations of the camera.
Their “measurement” in the EKF formulation was a distance metric between the measured lines and the pre-
dicted lines. Using the values computed for the rotations, they solved for the trand ation using asimplelinear
algorithm.

Viévilleand Faugeras used line matches amongst three frames to estimate camera displacement and scene
structure in a static environment. They used a measurement equation that states that the three views of aline
must be collinear when expressed (i.e. rotated) inasinglecoordinatesystem, say that of the second of thethree
views[Viévilled0]. They minimized the Maha anobis distance of the measurement functionthat weightseach
measurement with itscovariance matrix. Instead of an EKF, they used a non-iterativenumerical method. The
previous" second-to-third view” matrix and the new “first-to-second view” matrix were combinedintoasingle
estimate for the rotation parameters. (They again were directly measuring only the rotation.) The trandation
was computed after the rotation was known. Finaly, they computed the structura parameters of the lines
(again assuming that the real world lines are static).

Jezouin and Ayache applied an EKF to use detected and predicted locations of both points and lines to

estimate camera displacement and scene structure over an unknown, static environment. Their measurement
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equations explicitly account for the projection matrix, but they do not attempt to estimate the parameters of
this projection [Jezouin90]. They also fused points and lines into line segments when possible and use line
segments as features.

The essential filter enforces the epipolar geometry on the estimated camera pose [Soatto944d]. Thisfilter
issimilar in structure to an EKF. However, Soatto et a did not use the EKF to directly estimate the motion
parameters. Rather, they used it as a smoothing operator on the parameters of motion. At each time step, they
computed the difference pose, determined by the essentia constraint and expressed by an essentia matrix,
to update the estimated pose. They extended this idea [ Soatto94b] to account for the intrinsic parameters,
implying use of the fundamental matrix. The difference fundamental matrix isfundamental by construction,
thusthe structure required need not be explicitly enforced. They had previoudly applied the same approach of
measuring adifference pose using optical flow to update an estimated pose[Soatto93]. All of these approaches
need an external measurement at onetimeinstant, which can then be propagated to other time steps, to compute
the missing scale factor.

Azarbayejani and Pentland used an EKF to estimate motion, pointwise structure, and focal length. Their
measurements were the image locations of the points. They aso directly measured the incremental rotation,
since this is better approximated by a linear function (as required in the EKF formulation) than is the com-
plete rotation [Azarbayejani95]. This prevents the equivalence of 360° to 0° from invalidating the linearity
assumptions. The complete orientation is maintained externally. To account for the unknown scale factor,

they fixed the depth of asingle point.

234 Structured Light

The current work proposesto determine correspondences by asimplevariant of structured light—thatis, asin-
gledot. Structuredlight, however, haslong been used incomputer visionto acquiredepthinformation[Bes 89,
Daley95, DePiero96], dating back to at least 1932 [ Schmaltz32]. Note that thisis before the advent of com-
puters. In fact, structured light is rumored to have a 200-yesar history, athoughthisis not verified [Daley95].

A variety of patterns have been tried [Besl89], including points, lines, multiple points, multiple lines,
grids [Bhatnagar91], circles, cross-hairs, thick stripes, coded binary patterns, color-coded stripes [Chen90],
and random textures. Pseudo-random binary arrays [Lavoie96] are grids with recognizable points based on a
pattern of “large” and “small” intersection points. Patterns can be time-encoded as well [Daley95]. Hybrid
vision techniques[Nandhakumar92] can use the strengths of different formsof structured light [Bhatnagar91]
or of structured light and other techniques such as stereo vision [Chen90] to produce systems that improve

robustness, accuracy, or both over each method separately, much like hybrid techniques for tracking. In any
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of these methods, the basic notionisthat the light structure establishes a correspondence, which isthen used
in atriangulation method with a known offset between the projection device and the detector (camera or pho-
todiode).

Structured light has become a useful technique for mobile robots and other situationsin which humans
will not view the environment. The regular, flashing patterns in structured light tend to disorient a human
user. One of the novel aspects of structured light research at UNC isto present imperceptible structured light
inthevisiblespectrum. Theimperceptibility comes from flashing the pattern and itsinversein rapid sequence.
This balances the amount of light across the image and, if the pattern display rate is above the flicker fusion
frequency of theobserver, then thelight will beintegrated over timeby the human visua system to compl etely
hide the pattern from the user. A camera with its shutter synchronized to the display system, however, could
detect the pattern. Since the pattern could be displayed as a binary image, theimage processing may be more

robust than trying to process imagery of the fully-illuminated environment.

2.3.5 Our Approach’sRelationship to Computer Vision

Normally, in computer vision, the problem of motion-from-structureis to find the offset between two cam-
eras or between a single camera that moves between acquisition of two images. Thus the correspondenceis
established between two different views of a single set of 3D landmarks with unknown coordinates. These
landmarks must be located in both camera images, and then correspondence established between the two sets
of 2D landmarks, or equivaently, between a set of epipolar linesin the second image (determined by the co-
ordinates of landmarks in the first image) and the set of detected landmarks in the second image. Instead of
two cameras, however, we use one camera (attached to the user’s head in the VST system) and a projector
mounted statically (pointing down from the ceiling or at some other known, fixed pose) in the environment.
The epipolar geometry described in Section 2.3.2 isacommon approach to placing constraintson relative
geometry in computer vision algorithms. Such constraints are used to solve not only motion-from-structure,
but also structure-from-motion (the dual problem, that of determining the scene structure from images taken
along aknown camera motion path), or motion-and-structure (determining both quantities simultaneoudly).
Our approach to solving the tracking problem can thus be viewed as using epipolar geometry to establish
rel ationshi ps between the camera and projector (Figure 2.8). Epipolar geometry describes the relative pose,
particularly how images in the projector image plane will appear on the camera image plane. The epipolar
geometry remains the same as in the case of two cameras, however. Thisissimilar in spirit to triangulation
algorithms, including the collinearity algorithm that forms the basis of the constraints of the old UNC opto-
electronic ceiling tracker [Azuma91] and including the UNC vision-based tracking system for AR using col-
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Figure2.8: Thebasic design of our agorithmisto constrainthe estimated camera pose with epipolar geometry.
Thelinesbetween the cameramodel (lower |eft) and thetwo projector model srepresent two pencil sof epipolar
planes on which the camera lies. More detail s about the geometric constraints can be found in Chapter 3.

ored landmarks [State96d]. In Section 3.3, | will present the epipolar geometry as it is used in the proposed

tracking system.



Chapter 3

Structured Light-Based Tracking Algorithm

This chapter summarizes the new tracking algorithm. We can identify characteristics of which
we can take advantage in the augmented reality (AR) applications with which we intend to use
this new tracking system. These assumptionswill refine the nature of the tracking problem and
guideour designdecisions. Then the algorithmis presented intwo stages. First isanintuitivede-
scription of the geometric technique for estimating the pose of the camera. Second, the compl ete
algorithmis presented in a sufficiently detailed description, including equations, that the reader
should be able to implement the algorithm. Analysis of the performance of the agorithmwill be
left for Chapter 4.

3.1 Characteristicsof Our Applicationsof Interest

Recall the UNC ultrasound visualization system discussed in Section 2.1.2.4. This system is one example of
AR inwhich theuser isindoorsand workingin asmall portion of the volume of the room. The same could be
said of systemsfor office equipment repair or certain manufacturing tasks. An exampleconfigurationisshown
inFigure3.1. Thethreecharacteristicswewant to emphasi ze, in order of most important first, are given bel ow.

Along with each characteristic is the implication that we use in the design of the tracking system.

1. Theenvironment isindoorsand under a controlled lighting system.

Control in thissense means only that the purpose of thelightsistoilluminatethework environment and

surrounding areas.

ImplicationWe can integratetheroom lightingto generate structured light and illuminationfor thework
environment, as mentioned in Section 1.3.1 and discussed further in this section. Thuswe want to con-
vert projectorsinto “smart” work lights and substitute them for conventiona lights. For example, we
can fix the projectorsin the ceiling much as conventional lightstypically are, and have the projectorsil-

[uminate thework volume. In order to both light the environment and providetracking information, the



projectors must be synchronized with the camera. Thiswill alow the camera to know when and how
long to open itsshutter in order to acquire an image for exactly thetimeinterval during which a pattern
isdisplayed, and when and how long to acquire an image during which lighting suitablefor performing
the task is projected.

2. Theuser viewsthereal world through video cameras, defined asa VST AR system.

Thuswe are aready processing areal-timevideo stream of the environment as viewed from each of the
user'seyes. Figure 2.2 presented one implementation that allowsthe VST AR system to capture such

aview. Cameras on an older prototypeV ST display are visiblein Figure 2.4.

Implication We have real -time video imagery from which we acquire not only aview of therea world,
but al so datathat we can usein thetracking system. For example, at UNC and el sewhere, systems have
been implemented to track acamera using viewsof landmarks of known color and shape. These systems

were discussed in Section 2.2.2.

3. Theuser isinterested in adding synthetic objectsto only a small portion of the surrounding scene.

For example, in the ultrasound application, the patient is lying on an examination table. For repair of
office equipment, the machineisfrequently placed on atable or comes integrated into asmall cart, such

as a photocopier.

Implication Whilethe user may moveto or look at any region of the environment, theinterest in precise
registration of synthetic imagery (and thus precise tracking) islimited to a small subset of the possible
viewpointsand view directions. Ideally, thislimitation would not enforced by the tracking system, but
would rather be a natural characteristic of the task to be performed. In practice, however, there are
frequently poses the tracking system may be unableto reach physicaly (e.g. a“stop” in amechanical
arm, or theend of atether in many magnetic and optical trackers) or cannot providetracking data (e.g.
an optica system missing measurements when not looking at its beacons). We can use features in the
application to minimize the del eterious effects of such limitations. For example, if the task ishiopsy of
atumor, then thereislittleinterest in augmenting the view of the walls of the room. An optica system
would thus not need to have beacons on thewalls. The syntheticimagery will consist of medical image

datato be aligned with the patient, or perhapsvisual cues related to the physician’stray of instruments.

The controlled lighting and small volume of interest imply that we can use conventional projectorsto gen-
erate structured light patterns over this volume to generate tracking information. The VST paradigm implies

that we can acquire these patternsand extract the tracking information, but we will need some method of gen-
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Figure 3.1: A sample environment for which the proposed tracking system iswell-suited. In thisapplication,
aphysician examines a patient lying on the table using AR visuaization. The region of interest is small, the
lighting under control, and the viewpointsand view directionsfor which computer-augmented images will be
needed are determined by the physician’sreach and by the surgical field.

erating correspondence between features in the projected pattern and in the detected pattern. Of course, we
must al so ensure that humans (whether users of the system or observers) will not be adversely affected by this

system. Let’s now examine theseissues.

3.1.1 Applyingthe Characteristicsto Design for our System

Since the region of interest is a small volume, we can aim the projectors at this volume and expect that the
user will usually be looking at thisvolume. Accurate tracking is only necessary when the user is looking
at thisvolume. Thus we want to replace the conventional lightsin the environment with projectors, mounted
gtatically inthe ceiling, much as conventional lightswould be, and proj ecting structured light onto and near the
objectswith which registration must be achieved. When the user islookingat thisvolume, the VST paradigm
impliesthat we will acquire aview of the pattern from the user’s viewpoint.

The system will of course alow the user to look anywhere, but it need not provide preci se estimates of the
camera pose at such times. This attention to a small volume leads us to believe that the projectors can illu-
minate the environment and provide tracking information. They must light the volume in which the synthetic
imagery will be merged, but they don’t need to be able to light the entire environment. These projectorswill

provideat least most of thelight for workingin theaugmented volume, but the environment may contain other,
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conventional sources of light that are not integrated with the tracking system. Thiswould not prohibit the use
of our proposed system, athough the tracking system would need to measure the amount of light generated
by other sources so that it can be subtracted from the images of patternsthat are acquired.

The projectorswill give us the ability to control to some degree where the light fallsin the scene. When
we want to acquire tracking information, we project a pattern of light—for example, a checkerboard or a set
of non-adjacent pixels. The appearance of that pattern from the user’s viewpoint will tell us something about
the user’s pose. We can then use this information to establish geometric relationships between the camera's

pose and the projectors poses. The next question to address iswhat the patterns should be.

3.1.2 Choosing Patternsfor Structured Light

Asnoted in Section 2.3.4, using patterns of light has along history in thefield of computer vision, where the
techniqueis known as structured light. These methods work by establishing correspondence between land-
marks in the projected pattern and in the detected pattern. Thisis not unlike the problem in the vision-based
tracking systems discussed in Section 2.2.2. The systems discussed there and structured light techniques use

avariety of methods to identify landmarks.

e color

local shapes, such as pixels, triangles, or circles

global patterns, such as checkerboards, grids, or grey codes

temporal coherence

dynamic patterns
o time-sequential measurements

In order to be able to recognize the pattern of light falling on the scene, we use dynamic structured light
patterns. The “structure” we use in the current implementation is pixels. From thispoint on in the disserta-
tion, we will need to differentiate between three manifestations of the landmarks. In previous systems, the
landmarks were always physical objects, and thuswere in the 3D environment a which the user looks. Now
we have landmarks on the projector image plane, the camera image plane, and in the 3D environment. In
discussing the agorithm, then, | will refer to “projected landmarks’ on the projector image plane, “ detected
landmarks’ on the cameraimage plane, and “3D landmarks’ on the surfaces in the environment.

Single-pixel landmarks are good for projected landmarks since they are easy to identify. Since they are
small and symmetric, partial occlusion will not severely change the detected location. We will need multiple
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detected landmarks in order to compute the camera pose. The question then becomes how to identify the
correspondence between the set of projected landmarks and the set of detected landmarks.

Our experience [ State96a] and computer vision research [Davies97] has shown that reliably detecting the
colors in the environment is difficult. For example, the detection agorithm needs to be robust to specular
highlights, which can change the apparent color of the surface that reflected thelight. We could also uselocal
shape, including more complex patternsthan used in current vision-based systems, although without knowing
the surface geometry, it would be difficult to guarantee that the pattern will be recogni zable when reprojected
(and possibly partialy occluded) from another viewpoint. The same argument appliesto globa patterns, es-
pecialy when the surfaces are potentially self-occluding.

Since we want to be able to move the landmarks around the 3D environment to decrease thelikelihood of
consistent occlusion, temporal coherence—assuming that a detected landmark moves by only asmall amount
on the camera image plane from one image to the next—seems difficult to establish without also knowing
the surface motion. Time-segquential measurements—e.g. projecting a single landmark at a time—are more
reliable for establishing correspondence. To stay within our design criteria and make it as easy as possible
to maintain a rea-time system, we have opted in the current implementation to use a single landmark and
time-sequential measurements. Thus at a given time step, a single projector displays a pattern that consists
of asingle pixel. By projecting asingle pixd at atime, we avoid having to establish correspondence among
severa detected landmarksto the set of projected landmarks' . The disadvantage of thismethod isthat it yields
only asingle new constraint at each frame. We observed aready that the minimum number of constraintsto
solve the motion-from-structure problem using point-to-point correspondences isfive. Thusin Section 3.2.5,
we will present a method to integrate time-sequential measurements with a previous estimate of the camera
posein order to compute an updated estimate of the camera pose.

Projecting asinglelandmark at atimeismerely achoicewe have made at the current time; thereisnothing
fundamental that preventsthe system from projecting and detecting multiplelandmarks simultaneously. It can
beadifficult problem to determinethe correct correspondence amongst multiplelandmarks. We could use any
of the strategieslisted above to determine this correspondence. We have chosen what we considered to be the
easiest method—projecting a single landmark at atime—in order to simplify theinitial system design. Inthe
future, we envision a system that uses temporal coherence, color, and other properties to identify multiple
landmarksin asingleframe. Then theinformation at each time step becomes a vector of measurements, each

of which is essentialy equivalent to the (single) measurement we get now. More complicated patterns such

1t ispossiblethat asingle projected point landmark can be split over scenegeometry into multiple fragments, but the correspondence
isstill established between all such detected fragments and the single projected landmark.
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as lines or polygons could a so be incorporated into the framework.

3.1.3 Dynamic Structured Light for Humans—I mper ceptible Structure

One other concern with this approach is that display of structured light in the visible spectrum can be dis-
orienting to humansin the environment. Structured light in the visible spectrum is used for robot vision, and
infrared structured light isfrequently used in computer visionand conventional tracking systems, as discussed
in Section 2.2.2.

Asmentioned in Section 1.3.1, the structurein projected patterns can be made imperceptiblewith thefol-
lowing strategy. If these patterns are projected for a short time, followed by projection of theinverse pattern
for a short time, then the variation in lighting over the scene becomes imperceptible to a human user. Thus
the limitation implied here is a minimum speed of projection. Fluorescent lights alternate between unstruc-
tured light and dark at 120 Hz without (the vast mgjority of) humans noticing the effect. In preliminary work
in our lab [Raskar98], we have displayed simple structured light patterns consisting of pixels, lines, or text
at 180 Hz without humans noticing the effect. This has been demonstrated with display surfaces as varied as
white walls, human skin, and internal anatomy of recently deceased animals. For all surfaces, we have has
success extracting features in the structured light patterns.

We are continuing to improve the system for projecting and detecting imperceptible structured light. Our
current focusisto eiminate the need for an encoded identifier in the projected pattern. Thisis necessary be-
cause we cannot yet achieve a consi stent el apsed time between the moment weinstruct the projector to display
a pattern and the moment we receive the image of that pattern from the camera. We are developing a more
tightly coupled interface between the projector and camera that can synchronize the two video streamsin this

manner.

3.2 Overview of Algorithm

The data that the structured light patterns generate when viewed from a camera is fundamentally different
than the data used in current real-time tracking systems for virtual environments. Recall from Section 2.2.2
that one set of data crucia to most optical and vision-based tracking systems is the 3D locations of the set of
landmarks or the set of sensors. Some systems need this data to a high degree of accuracy [State96a]; some
need only agood initial approximation of thisdata[Welch96]. The 3D locationsof thelandmarkswere not on

thelist of features that we want to usein designing atracking system for VST AR. In adynamic environment,
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it would be difficult to maintain the 3D model of the environment necessary to know the 3D locations?. If
we are using projected light, viewed from a second (unknown) pose, as the basis of the tracking system, then
weare placing a qualitatively different type of constraint on the user’s posethan in previous optical or
vision-based tracking systems.

Whereas previous systems view a set of 3D landmarks in space, the proposed system will see a set of
landmarksthat lie on aset of raysin space (Figure 3.2). The big difference isthat in the proposed system, the
3D locationsof the landmarks al ong the respectiveraysisunknown; it isonly known that thelandmarkslieon
therays. Thisisafundamentally different geometry than that experienced by systems that see a set of known
3D landmarks. We need to develop some intuition about this geometry, from which we can go on to express

geometric relationships regarding the projectors and the camera.

- %

Figure 3.2: The geometry experienced in the new tracking algorithmis fundamentally different than that ex-
perienced in current vision-based optical tracking systems. Current systems see landmarks that are at known
3D locations and thus can know the correct 2D location of landmark in the image plane of the sensor (1€ft).
The new algorithm does not use the 3D location of the landmark, only the 2D location of the projected land-
mark on the image plane of the projector. Thisresultsin the system only knowing the correct location of the
detected landmark in the cameraimage planeto withinaline, but not knowing where on that linethe landmark
belongs (right).

3.21 Expressing the Geometry of Raysin Space

So the question we must ask is, “What do the landmark correspondences tell us about the camera pose?’ To
answer this, let us begin by listing what we know about the landmarks. In this sense of “know,” | mean that

these are quantities for which we could write geometric coordinates.
o the 2D location of the projected landmark on the image plane of the projector
o theray in world space defined by the projected landmark and the center of projection of the projector?

o the 2D location of the detected landmark on the image plane of the camera

2That would be a fundamental change to the system, but it is theoretically possible. This variation on the system is discussed in
Section 5.2.

3 Since the landmark on the image plane has afinite area, it definesa pyramid in space, which can be represented by the central axis
of that pyramid.
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Figure 3.3: The geometry of detecting landmarks projected onto the scene and viewed by the camera. This
geometry generatesinformation about the pose of the camera through the correspondence between landmarks
projected on the environment by the projectors and landmarks detected by the camera.

o theray in camera space defined by the detected landmark and the center of projection of the camera

You might visualizetheray emanating from the projector by thinking about theilluminated cone of light from
acar's headlight on afoggy night, although the rays here will have a narrower beam and a sharper fal-off at
the edges of the beam. The camera sees the landmark in a 3D location in the environment, although the 3D
locationisunknown. We do havethe 2D location on the camera'simageplane. Thisalowsusto definetheray
emanating from the camera (Figure 3.3). Notethat thisray is only known relative to the camera, as opposed
to the ray emanating from the projector, which isknown relative to the world since the projector pose in the
world is known.

We can now answer the question of what we know by expressing the rel ationship of thelandmarks. This
relationship isthe fundamental observation that makesthe algorithm work.

We know that the two optical rays defined by the two 2D locations must meet at the 3D landmark (the
surface patch) onto which thelight falls. Thislandmark will project to asmall shape on theimage plane of the
camera, the central point of which will be the point where the ray from the camera intersectsitsimage plane.
The ray emanating from the projector will project to alinein the cameraimage plane. Sincethe 3D landmark
lies on both of these rays, the 3D landmark’s projection must lie on the ray’s projection in the camera image

plane. This expresses again the epipolar constraint discussed in Section 2.3.2.
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Figure 3.4: We predict linesin the camera image plane on which the landmarks will be detected. If we know
the camera pose perfectly, then the landmarkswill lie precisely on the respective lines. However, camera mo-
tion will introduce error into our estimate, and the landmarks will be separated from the linesby a (hopefully
small) distance.

Another observation should be made immediately. We can compute the line on which the detected land-
mark will lie—if our estimate of the camera pose is perfect. Since thiswill rarely be the case, the detected
landmark will be some (hopefully small) distance from the line. This implies that we have a good pattern
with which to search the cameraimage. We know to start looking in a band around the line, then expand the
search outward from there. This can dramatically reduce the image processing requirements of the system,
which can be significant without specia -purpose hardware.

There are three remaining questions regarding the rays and detected landmarks. The first is“How many
corresponding pairs of landmarks do we need to have for thisto completely constrain the camera pose?’ This
question will be examined in Sections 3.2.2 and 3.2.3. The second is“How can we decrease the sensitivity
of the algorithmto errorsin our estimate of the known geometry parameters?’ Thiswill be discussed in Sec-
tion 3.2.4. Thethird questionis*“What constraints must the 3D configuration of thelandmarks satisfy to allow
the algorithm to compute a solution?’ This question requiresinsightsinto the mathematical constraints, and

will be addressed in Section 4.2.

3.22 From Raysin Spaceto Determination of Camera Pose

In Section 3.2.1, we specified amethod by which we can generate a singlecorrespondence between the camera
and projector. The immediate question is, of course, how many of these correspondences between projected
and detected landmarks are necessary inorder to compl etely determine camera pose. To answer this, we should
consider what information we get from each such correspondence. We are expressing the epipolar constraint:
if we know the camera pose perfectly, then we can identify aline in the camera image plane on which the
detected landmark will lie. Thiswasthecasefor Figure3.3. Sincetherewill beerror introducedin our estimate
when the camera moves, the detected landmark will be dlightly off the line we compute (Figure 3.4). The

information we get, then, isthe distance of the center point of the detected landmark from theline.
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Several algorithmsin computer vision literature, discussed in Section 2.3, use the epipolar constraint to
determine camera pose. Since we use the same constraint, the minimum number of landmarks necessary for
our agorithm to determine the pose of the camera is five, the same as the number necessary in the genera
cases of those agorithms?. (Certain agorithms use other assumptions, such as that all the 3D landmarks are
contained in asingle plane, to reduce the number of landmarks necessary.)

In 3D there are six DOF for pose, and we have five constraints. These constraints are scalar; we do not
get the distance along both coordinate axes within the image plane, only the distance along the normal to the
line. Thisis because we do not know where aong the line the detected landmark should lie. With five scalar
constraints, weare clearly not abletofully computethe six DOF camerapose. Thereisstill something missing.

The remaining problem isthe concept of scale, well-knownin thefield of computer vision. How isoneto

determine whether a picture of a houseis of adoll house or a human house?

3.2.3 Resolving the Ambiguity of Scale

There are a variety of methodsthat we could use to determine the scale, or the absolute size, of objectsin the
image. We could place an object of known size, for examplea 12’ ruler or an 8.5” x 11" sheet of paper, inthe
scene and detect its boundariesin the cameraimage. Alternatively, with the tracking equipment we have in
our lab a UNC, we could measure the distance between any two 3D landmarks in the scene that are detected
in the cameraimage. Since thiswould be a one-time measurement upon starting the system, we need not be
quite as concerned about the difficulty of keeping an object in view as we are during rea -time operation of
the system. (Recall that the difficulty of keeping specific objectsin view during real-time operation prompted
this dissertation on tracking with structured light patterns.)

In a system with two cameras mounted rigidly on the user’s head, such as our VST AR system, we could
use the distance between the two cameras to measure the scale factor. This would require seeing a single
landmark in both cameras’ images. Thistechniqueisknown as stereo vision and isvery common in computer
vision. One of the most difficult problemsin stereo visionis automatically determining which landmarks cor-
respond. Thisisnot unlikethe situation discussed in Section 3.1.2, in which we explained our choice to solve
the correspondence problem by projecting and detecting only a single landmark at atime. Thus this would
appear to be a good option for computing the scale. However, we believe that using two projectorsisabetter
choice, for reasons we now explain.

We place at |east two projectors at known poses in the environment. In particular, we will know the dis-

4 Asnoted earlier, in computer vision, the image planeswould belong to two cameras, not to acameraand a projector. The geometry,
however, isthe same.
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Figure 3.5: Triangulation of the distances from the camera to two projectorsfrom known angles and aknown
length between the projectors. Theknown length between thetwo proj ectorsis used to determinethe unknown
lengthsfrom the camera to each of thetwo projectors. The angles are known since the directionsin the world
are known.

tance between the projectors. Thiswill give us the information necessary to compute the scale factor, which
reduces to determining the size of the sides of a triangle with known angles (Figure 3.5). The disadvantage
of thisapproach isthat multiple projectors complicate the system hardware. The projectors must be synchro-
nized, and we must measure the relative pose of each additiona projector with respect to the first projector.
We have chosen multiple projectors, however, largely because this solution has the potentia to improve the
stability of the agorithm. Thisisdiscussed further in Section 3.2.4.

To conclude our discussion of resolving scale, we need to consider how requiring two projectors affects
the number of corresponding pairs of landmarks we need. We know we need at least five from one projec-
tor to compute the pose with respect to that projector. We could use another five from the other projector to
compute the pose, and complete thetriangle. Another optionisto directly generate correspondences between
the two projectors and thereby compute 3D locations of landmarks aso visible to the camera. This would
require two 3D locations for landmarks, which could also be used for corresponding projected and detected
landmark pairs, however, it would be very expensive to generate such three-way correspondences. Thus it
appears preferable to use multiplelandmarks over time, with at least five from each projector, to measure the

six DOF pose of the camera

3.24 Advantagesof Using Two Projectors

As noted in the previous section, using two projectors alows us to determine the missing scale factor. How-
ever, there are stronger reasons for choosing a system design involving multiple projectors.

The strongest argument for using two projectorsinvolvesthe lines that we computein the cameraimage
plane. If thereis only one source (projector) of the rays in space, then for a given pose of the camera, the
lines in the camera image plane that correspond to these rays will al look very similar (Figure 3.6). If the
camera and the surface both move, for example, in the direction towards the projector within theimage plane

(Ieft image of Figure 3.6), then the image of the landmarks will not change much. This creates an unstable
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Figure 3.6: In the left image, the camera sees landmarks from only one projector. If the camera and surface
moveintheindicated directionwith respect to theimage plane of the camera, then theimage of thelandmarks
will not change much. In the right image, the camera sees landmarks from two projectors. Now the same
motion will produce a large change in the image of the landmarks from the second projector, alowing us to
determine the camera pose reliably. It would be difficult, though not impossible, to find a direction of motion
that would not yield much change in the image of either set of landmarks.

situation for measuring the camera pose. There are other motion paths for which the image does not change.
We can improve this situation significantly by using a second projector and getting a very different direction
for the lines mapped to the cameraimage plane. By a“ different direction” we mean to imply that the camera
(i.e. theuser) isin some sense “ between” thetwo projectors®. Inthat case, motionin the directiontowardsthe
first projector will create alarge change in theimage of the landmarks that correspond to the second projector
(right image of Figure 3.6). There are till sets of 3D landmarks and motions for which the image will not
change very much even for two projectors, but we believe these 3D configurations of landmarks are unlikely
to occur once the system isimplemented. The shape of such critical surfacesis discussed in Section 4.2.3.

Another nice property of using two projectorsto determinethe scal e factor isthat thismeasurement ismost
amenable to autocalibration. Thisideais discussed in Section 5.4. Simply put, autocalibration estimates an
internal system parameter in rea-time. The problemisthat thereisan unknown interaction between errorsin
the one-timemeasurements, not only for the scalefactor, but a sofor theinterna camera geometry andinternal
projector geometry. Thisrelationship is unknown, but autocalibration has the potential to refine the estimate
of al the parameters simultaneously. To autocalibrate the scale factor with an object of known size, it would
have to aways bein the field of view, which reduces us to the primary problem that this dissertation tried to
avoi d—detecting a physical object in the camera's view of a small, dynamic environment. To autocalibrate
the rel ative pose between two cameras would be possible, but sensitiveto errors since the two head-mounted
cameras will see very similar images of the corresponding landmarks and lines.

One question regarding the use of two projectors for resolving the scale is what effect, if any, this has
on the sengitivity of the algorithm to errors in the one-time measurement (assuming that the autocalibration

scheme mentioned above is not enabled). The one-time measurement when using two projectors to resolve

5Note that Figure 3.3 was laid out to best express the geometric quantities, not to represent the “best” configuration.
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scale would be the relative pose of the projectors. The one-time measurement when using two cameras would
betherelative pose of the cameras, and the one-time measurement when using an object of known size would

be the localization within the image plane and the size of the object.

3.25 Integrating Time-Sequential M easurements

In Section 3.1.2, we argued that, for reasons of simplicity, we plan in the first implementation to project a
singlelandmark at atimein order to easily establish the correspondence between projected and detected land-
marks. We have said that we want to use multiple landmarks, since we have decided to use two projectors
to determine the scale of the world, and it takes five landmarks from each projector. At standard video rates,
however, detecting even the minimum number of landmarks (ten) one at a time would require a long time.
For example, at the standard video rate of 30 Hz, acquiring ten frames requires one-third of a second. Itis
unreasonabl e to expect the user to be still for thislong. Even with higher-speed cameras, we could never re-
ally diminatethis problem except by solving the correspondence of ten projected and ten detected landmarks.
One could al so imagine strategi esin which avariable number of landmarks, based on confidencein thecurrent
estimate, are projected. Correspondence could then be solved with the assumption that the error in the cur-
rent estimate isbounded. We' ve aready noted that solving correspondence in any form can beavery difficult
problem, and thus we have chosen to implement the simplest possiblesituation of asingle projected landmark
and “automatic” correspondence.

Any motion of the user whilethese measurements are taken will introduce error into the computed pose if
we compute the pose with an agorithm that assumes the camera does not move while the measurements are
taken. (Many agorithms do make this assumption.) Also, recall from Section 2.2.1 that a high update rateis
among thefeaturesthat we desirefrom atracker. In VST AR applications, we clearly want the most up-to-date
estimate of the pose whenever we are to begin rendering synthetic imagery onto a new frame of video. We
thus need a way to combine multiple previous measurements with new measurements that allows for motion
of the camera between measurements and computes an estimate for the current time.

A common strategy to performing incremental computationsof all kindsisto maintain acurrent estimate
of the solution, then at each step compute an update to the current estimate. A specific class of algorithms
that use thisstrategy is known as predictor-corrector agorithms. This strategy appears to be applicableto the
problem as described above. Refer back to Figure 3.3. Theright side of that figure showed the camera's view
of the structured light patterns. Thisisaview that would occur only if the parameters of the camera pose are
correct; only in this case would the detected landmarks lie exactly on the corresponding lines. We can make

this our prediction, however, and compute a correction based on the distance of the point from theline. This
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cyclerepeatsinorder to either further refine the estimate or ssimply keep the estimate updated whilethe camera
is moving.

We aretrying to estimate a set of parameters that could be changing over time. The extended Kalman filter
(EKF) isagood tool for thistype of estimation, in part because it is a predictor-corrector algorithm. There
are other good tools available, such as Covariance Intersection [CIWG97]. We chose the EKF because we
have had success using an EKF in the tracking algorithm for the UNC optical ceiling tracker (discussed in
Section 2.2.3.3). Werefer to thisas the single-constraint-at-a-time method (SCAAT) [Welch96]. Thisframe-
work alows us to project and detect a single landmark each frame and compute an updated estimate for the
camera pose.

We need abasi sfor combining the previousinformationwith new informationat each cycle of theiteration.

To do this requires maintaining certain information from one time step to the next.
¢ the current estimate of the pose of the object
o egtimates of any parameters necessary to predict its behavior over time
o ameasure of confidence in the estimates of pose, of velocity, and, if present, of acceleration
o ameasure of confidence in the measurements of point-to-linedistance in the camera image plane

The measures of confidence are new items; their roles are discussed below. 1n addition to these quantities, we

need to know some other fixed quantities and some relationships between the various quantities.

o a“forward” mapping from the camera pose, location of the projected landmark, and the detected loca-
tion of the landmark to the measurement of the point-to-linedistance
The mapping we need for projected landmarksisto compute theline equation with the geometry of rays

in space, as described in Section 3.2.1.

o geometric information about the projectors and the camera that enables us to compute this mapping of
point-to-line distance
Methodsfor acquiring thisinformationare discussed in Section 3.3.2. Methodsfor real-time acquisition
of these values are discussed in Chapter 5.

o amapping from distance between the detected |andmark and the predicted lineto error in the pose and
velocity
This“inverse” mapping is derived from the forward mapping of the pose and velocity to the distance
in the cameraimage plane, in away that is defined by the EKF.



57

/7’l

Figure 3.7: In the camera image, we see the projected line (solid line near right) based on the correct camera
pose, which isdrawn in 2D but alignswith the 3D drawing of the projector ray (dashed line near right). The
camera detects the landmark (circle) and predicts the equation of the line based on the current estimated pose
(Ieft). The distance d is computed as the shortest distance between the detected landmark and the predicted
line. If the estimate of the camera pose were correct, then d would be equal to zero. Contrast this with the
camera view depicted in Figure 3.3.

We now begin the discussion of how these quantities and relationships combine to yield a tracking al-
gorithm. We noted above that the predictor-corrector framework has demonstrated successful estimation of
pose for the UNC ceiling tracker. Let us now examine the “predictor” phase of one cycle. Simple prediction
of the future location of moving objects is something that people do quite naturally, since the mechanics of
motion are everyday occurrences. Even when performing an action as simple as crossing the street, we esti-
mate (without consciously thinking) the current location and velocity of an approaching car. We judge very
quickly and perhaps to a reasonable degree of accuracy whether we can safely cross the road before the car
passes, or whether we are not quite certain that we will make it across, and thus should wait.

In introductory physics courses, thissimple model is known as rigid body kinematics. It saysin general
that from the last estimate of pose and velocity we can estimate the current pose. Returning to the problem
of tracking the camera, thisimplies that if we maintain an estimate of the most recently observed pose and
velocity, or perhaps the pose, velocity, and accel eration, we can compute a good estimate of the current pose.
We can combinethiswith our understanding of the geometry of theraysin space emanating fromthe projector
to determine the line on which the currently projected landmark should lie, as described in Section 3.2.2. We
compute the distance d of the detected landmark from the computed line, as shown in Figure 3.7.

The following describes the way the EKF works at each time step.

1. Predict the camera pose based on the previous pose and vel ocity and on the “forward” mapping of the

pose and the projected landmark locations.
2. Messure the distance of the detected landmark from the line.

3. Map the distance onto the parameters of pose with the “inverse” mapping to get potential error in the

current estimate.
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4. Combinethe previous estimate with the newly computed potentia error.

Note that the computation produces potential error inthe estimate. “Potential” impliesthat we are not yet
ready to attributetheerror we saw between the predicted and actual measurement to error in the parameterswe
areestimating. Weare only stating what might bethecase. Inthe*corrector” phase of the cycle, weintroduce
the measures of confidencein our estimate into the merging of the potentia error with our previous estimate.
The potentia error indicates the parameters to which the distance measurement is currently sensitive. This
sensitivity ismeasured by the partial derivatives of the distance measurement function. At each step, we know
that if we are sensitiveto a parameter, then a small change in that parameter will make a large differencein
the measurement. |f we are unsure about a parameter’s val ue, then we know that we want to update that value
with new information. If we are confident that our current estimate of a given parameter is accurate, then we
can dismiss the computed potential error as due to either noisein the detected landmark location or to error
in another parameter. We can thus provide a weighting (based on the relative confidence) between the old
data and the new data, in which the new data consists of potential changes to the parameters (based on the
sensitivity data) and the old data consists of our current estimate updated for time according to the model of
dynamic behavior.

One fina noteabout thisalgorithmisthat given the above description, one could imagine complementing
the data acquired via detected landmarks with other sources of data, such as accelerometers. Incorporating
accel erometers would provide a direct measurement of a quantity that our vision-based system can only esti-
mate. An EKF framework providesan excellent method for i ntegrating measurements from such qualitatively
different sensors [Welch96, Foxlin9g].

The preceding description gave an general overview of the method chosen to implement the proposed
tracking system, in order to enable understanding of how and why the algorithm works. The next section will
givethe equations of the geometry and of the EKF, with the intention of enabling the reader to implement the
algorithm.

3.3 A Detailed Description of the Algorithm

With the overview of the tracking agorithm we propose using structured light and the intuition behind it as

an introduction, we need to describe the algorithm in sufficient detail that the reader could implement it.
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Figure 3.8: The geometry of rays in space, as depicted in Figure 3.3, with the notation introduced in Sec-
tion 3.3.

3.3.1 Geometric Quantities

The quantitiesand notation that describe the geometry of raysin space as depicted in Figure 3.3 arelabeled in
Figure3.8. The system consistsof two projectors(althoughthedescription scal esto any number of projectors),
labeled P, and P, , and the camera mounted on the user’s head.

Whenever you want to relate image plane coordinates of a camera or projector that to the 3D geometry
of the environment, you need to cdibrate the parameters of the projection operation performed by these de-
vices. Methods to do so are discussed in Section 3.3.2.1. This calibration can be expressed witha3 x 3
meatrix [Faugeras93, McMillan97] that maps image plane coordinatesto 3D coordinates rel ative to some Eu-
clidean coordinate system that travels with the camera or projector. Denote the projection matrix associated
with the camera by U« and the projection matrix associated with the ith projector by Up ;.

The projectors are mounted statically in the environment. We can express the pose of these projectorsin
the world with rotation matrices Ry p; and translation vectors 7y p ;. For simplicity, the first projector can
be considered to define the world coordinate system; thus Ry p,o isthe identity matrix and Ty p o isthe zero
vector. For smplicity of description, let usassumethat al translationvectors 7y p ; are expressed intheworld
coordinate system of thefirst projector. Measuring these quantitieswill be discussed in Section 3.3.2.2.

Once we have placed the projectors in the environment, we can begin to project landmarks. We express

thelandmarksintwo coordinate systems, that of the projector image plane and that of the cameraimage plane.
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Rwp: = 3 x 3 rotation matrix from theworld to P;
Twp: = translation vector from theworld to P;, measured in meters
Uc = 3 x 3 matrix description of camera
Up: = 3 x 3 matrix description of P;
(nj,v;) =  the(selected) projector coordinates of the jth landmark, measured in pixels
(uj,v;) = the(detected) cameracoordinates of the jth landmark, measured in pixels
Twe = trandlation offset from Py to camera, measured in meters
(8,¢,p) = incremental orientation offset of camerathistime step, measuredin radians
Rwe = 3 x 3 rotation matrix from the world to the camera

Figure 3.9: Symbolsused in expressing the epipolar geometry between the camera and the set of projectors.

For the 1 landmark, denotethe projected coordinatesby (p;, v;) and the detected coordinatesby (u;, v;).

The only remaining quantity involved in the operations is the pose of the camera. We can express the
camera pose relativeto P, with the rotation matrix Ry ¢ and trandation vector Ty = [z y z ], where the
superscript ¢ denotes transpose and vectors are expressed as column vectors. For reasons that will be made
clear in Section 3.3.3.4, we will also want to be able to express the detected rotation of the camera since the
last update to our estimate. Thisisa small offset that we can express with Euler angles. Denote the Euler
angles of yaw, pitch, and roll by 4, ¢, and p.

These quantities are summarized in Figure 3.9. Using these raw quantities, we will be able to write for-

mulas (in Section 3.3.3.4) for the epipolar geometry of the camera and the various projectors.

3.3.2 Calibration of the System

Several of the quantitiesin Figure 3.3 arelisted as known. What thismeans isthat these values must be mea-
sured prior torunningthesystem. Therearetwo classes: intrinsicparameters of the camera and projectors, and
extrinsic parameters of the projectorsrelative to each other. Note that the parameters associated with the pro-
jectorsare not likely to change whilethe tracking system isrunning. The intrinsic camera parameters also do
not usually change during operation of an AR system. Thismay be due moreto the difficulty of re-estimating
the camera intrinsic parameters rather than alack of applications that need to be able to change the camera
intrinsic parameters. One could imagine AR applicationsin which the camera intrinsic parameters must be
estimated in rea time. One of the interesting benefits of the a gorithmic framework using the EKF isthat it
provides a method to estimate these parameters in real time. We do not envision thisin thefirst implementa-
tion, however. These possibilitieswill be discussed further in Sections 5.3 and 5.4. For now, we need methods

to measure these parameters oncein an off-line calibration step.
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3.3.2.1 Calibration of Camera and Projector Intrinsic Parameters

The matrix descriptions of camera models can be analyzed in avariety of ways [McMillan97]. One method
to describe a symmetric frustum with the view direction perpendicular to the image planeisto build the ma-
trix from three column vectors. The first column represents a step in the image-plane « direction, the second
column represents a step in theimage-plane v direction, and the third column represents the trand ation from
the camera's center of projection (camerd's origin) to the image-plane origin. This method requires three pa
rameters, frequently considered to befield of view, aspect ratio, and focal distance, though other formulations
are equivaent. Other parameters may include an offset between the central optical ray and the image plane,
an angle between the “horizontal” and “vertical” coordinate axes of the image plane (allowing for deviation
from perpendicular, due to manufacturing tolerance), and distortion coefficients.

For a simple three-parameter camera model that consists of the width w and height ¢ of the image plane

and the horizontal field of view &, the matrix U, iswritten as follows.

10 —-%
Uc=10 1 —4 where f = arctan %
2

00 —f

In this simple camera model, the only thing we need to compute is the foca length, which we compute
from the field of view. We assume that the aspect ratio is equal to the ratio of the image width to image
height—i.e. that the pixels are square. Camera caibration is a well-studied and much larger topic in com-
puter vision [Davies97, DePiero96, Faugeras93]. Since the projector is geometrically equivalent, we can use
the same principlesto calibrate a projector as well. For our structured light system, we selected from the lit-
erature calibration techniques based on vanishing points [Wang90, Capril€90].

3.3.22 Calibration of Projector Extrinsic Parameters (Pose)

There are many methods that can be applied to measure the pose of the second projector (and succeeding
projectors) in the system. Two are suggested here®. Thefirst is based on the idea of motion from point corre-
spondences, just likethe algorithmfor tracking, and the second is similar to the triangul ation a gorithms used
in conventiona optical tracking techniques.

To calibrate therotational and trangl ational offsets between the second projector and thefirstisan equiva

lent problem to computing the offset between a camera and a projector, and al gorithms such as the Eight-Point

6 As noted in Chapter 4, the proposed system has not yet been implemented. Thus neither of these two calibration techniques have
been implemented.
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Algorithm and its variations can compute this offset [Longuet-Higgins81, Hartley95]. The problem is made
more difficult by thefact that neither device can be used as asensor, but the same basi ¢ techni que of generating
correspondences between landmarks in the two image planes can be applied. Thisimpliesthat the projectors
must have some overlap of surfacesthat arein their respective fields of view.

In order to generate correspondences, the following procedure can be used. 1lluminate a single landmark
in both projector image planes. Hold the landmark fixed in theimage plane of thefirst projector and movethe
landmark in the image plane of the second projector until the centers of the two 3D landmarks are precisely
aligned. Thiswill have to be done visualy, but once near alignment has been achieved, it can be refined by
aternating between projecting only the landmark from the first projector and projecting only the landmark
from the second projector. It may be that the number of pixels used to create the second landmark needs to be
changed in order to precisdly align the centers of the two landmarks, and a temporary physica marker may
also be of assistance.

This generates one correspondence. As noted previoudly, at least five such correspondences are needed
to determine the pose to within a scale factor. More landmarks should be used in this one-time calibration to
reducetheeffects of noise. The scalefactor can be determined by measuring the 3D distances between some of
thelandmarkswith adigitizingwand or aconventiona measuring device such asaruler. These measurements
should be between two landmarksthat are far apart. Again, several such measurements of the scale factor can
reduce the effects of noise.

The second suggested method for calibrating the pose of the projector isto use a single digitizing wand
as an intermediary device. With such a device, the 3D locations of the landmarks can be determined. Then
astandard triangul ati on-based pose computation [ State96a] can be independently performed for each projec-
tor. These algorithms generally require three landmarks to compute the pose to within asign, but again more
landmarks can reduce the effects of noise. These independent computations will each yield the pose of the
projector with respect to the intermediary device, and then the pose from one projector to the other can be
computed as the composite transformation from one projector to the intermediary device then to the other

projector.

3.3.3 Operation of the System

We are now ready to examine the operation of the tracking system. There are two basic components to this,
obtainingan initial estimate, and then updatingthisestimatein red time. Asnotedin Section 2.2.3.3, theUNC
opto-electronic celling tracker has had success with using an EKF to perform this type of update to a set of

parameters. | have adopted the EKF as the method of estimating the set of parameters that describe the pose
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of the camera
In KF literature, the set of parameters to be estimated is known as the state. With any estimate, thereis
some amount of uncertainty about the estimate. The EKF maintains an estimate of the uncertainty of each

element of the state. The EKF requires the following for operation:
e ann x 1 dtatevector s of the parameters to be estimated

e ann x n Statetransition matrix A that describes the dynamic behavior of the state s (linear for a KF,

Jacobian of anon-linear function in an EKF)
e amesasure of uncertainty in the state, i.e. an n x n process covariance matrix P
e amode of the noisein the dynamic process model, an n x n process noise matrix
e aninitial estimate s, of the state vector and P, of the process covariance matrix

o afunction i (linear for KF, can be non-linear for EKF) that maps the state vector to the m x 1 output

vector of the measuring device

o amap fromthe measurement space to state space; inthe EKF, the Jacobian H of h, i.e. them x n matrix

of partia derivatives of 1 with respect to the elements of s
e anm x m measurement noise covariance matrix R
The assumption is that the noisein both the measurements and the dynamic process model is Gaussian and
zero-mean, and thus our model consists of the variances of these respective Gaussians.
3.3.31 StateVector and System Behavior

We maintain the position, orientation, trandationa velocity, and angular velocity of the camera as the state

vector. We will denote the state as

s=lx y z 0 ¢ p ve vy v, Vs Vy Y

Following previous works [Azarbayejani 95, Welch96], we maintain the complete orientation externally and
maintain theincremental orientation as small rotationsé, ¢, and p. Thisalowsusto linearize theincremental
orientation for the EKF without introducing significant error. We want to ignore the eguivalence of 360° to
0° and create alinear orientation description. The model of dynamic behavior isasimple, first-order model

of rigid-body kinematics. That is, the camera is predicted to rotate and trandlate with constant velocity in
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all six dimensions of motion. We could also augment the state vector with acceleration in each of these six
dimensionsand assume, for example, constant accel eration.

Note that this assumption of “constant” velocity does not imply that we always have the same numerical
valuefor theestimated vel ocity, only that our predictionisthat thisvel ocity does not change during theinterval
between measurements. Any change will be estimated, however.

At each time step, the EKF predicts the upcoming measurement. In order to do this, it must predict the
value of the parameters in the state. With our model for the dynamic behavior of these parameters, this be-
comes straightforward. We need the following matrix that describes the rigid-body kinematics equations,
given the state vector above.

Thus our prediction for the new state after time At has passed since our last updateis s~ = As, where the
superscript — denotes a predicted value. With thisrecursive formulation, we need aninitial estimate s, of the

state vector to initialize the computation.

3.3.3.2 Noiseinthe Mode of the Dynamic Process

We usethe n x n process noise covariance matrix ¢ in the EKF to represent the uncertainty in the behav-
ior model. Using the equations used for the uncertainty of user motion in the UNC opto-electronic ceiling
tracker [Welch96], we assume that the process noiseis atime stationary random process, and thus a function
only of theinter-sampletime. We further simplify the matrix by assuming that the trand ation offsets have the

same variance and that the rotation off setshave the same variance. Thisreducesthe number of free parameters
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Qez = Quy = Q22 %qp(At)B

Qoo = Qopp = Qpp %%(At)?’
Quov, = Quyv, = Qu.v, qp AL
Quove = Quyvy = Qu,u, qo Al

Qev, = Quu, = Quv. = %qpmt)z

Qoue = Qv = Qu, = (AN

All other dements of () are 0.
We al so need to express the uncertainty each time we update the state according to our model of dynamic

behavior. This projection of the error covariance forward in time is done with the following formula

P = APA' 4+ Q

Thefirst term merely projectsthe error covariance in time, while the second term introduces new uncertainty
that is dueto noisein the dynamic modedl. Again, thisisarecursive formulation of P; thuswe need an initia

estimate P, of the covariance matrix in order to begin the algorithm.

3.3.3.3 Initial Estimates and Re-initialization

We can compute an initial approximation by placing the cameraat an arbitrary but fixed pose and determining
the offset to each projector independently. This can be done with anumber of algorithmsin computer vision,
including the Eight-Point Algorithm [Longuet-Higgins81] discussed in Section 2.3.1. These offsets can of
course only be determined to within a scale factor using a single projector. However, since we know therel-
ative poses of the projectors, we can determine the absol ute scale (of each offset) by simple vector geometry.
This gives a method to completely determine an initial approximation. The uncertainty of an initial estimate
obtained with such an agorithmis a property of that agorithm, and analyses of these algorithms are avail-
able [Maybank92a, Faugeras93, Kumar94, Maybank98]. We have not implemented any of these agorithms

for usein the simulations described in Chapter 4.
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3.3.34 Updatingthe Stateand Error Covariance from Measurements

The EKF requires a measurement function (s) that predicts the upcoming measurement given the current
state. We define afunction that determinesthe distance of the detected landmark from the epipolar line, shown
inFigure3.7. Itusestheprojector’sposein theworld, the camerad' s estimated posein theworld, and theimage-
plane coordinates of the projected landmark to determinethe epipolar line. Simple 2D analytic geometry gives
the distance from the detected landmark to the line. The predicted measurement is never really computed in
thisfunction; ~(s) isidentically 0. That is, we expect the detected landmark to lie on the epipolar line. The
distance then constitutes the error (residual, in KF literature). The following set of equations computes the
distance from the detected landmark to the epipolar line. Included inthislist are the formulas we need for the
epipolar geometry, specifically, for computing the epipolee and the fundamental matrix . Thejth measure-

ment z; taken using the ith projector is computed with the following set of equations[Luong95, Faugeras93].
z; = h(s;) = mt Fm’

where

t
m = |:Uj vj 1:|

r = EUC_VlR%/VCRWP,i Up,;
t
m' = [uj vj 1]
€1
e = UM Twe +RBweTwei) = | e,
€3
0 —€3 €9
E = [e], = matrix Esuchthat Ex =eAx = | eg 0 —e
—€2 €1 0
10 -%
Uc = 01 -2
00 —f

Note that the symbol A denotes the vector or cross product of two vectors. The only unitsin the above equa

tions are pixels, associated with m, m’, and e. However, the units are obscured by the fact that £/ and there-
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fore I' are defined only to within a scale factor. Thus the distance computed by the above equations must be
normalized such that the unitsin which the distance is expressed are pixels. The normalizing factor for the

epipolar line

Fm' =

QO W

isvVA? + B2
The correction to the state is based on the residual and afactor A', known as the Kalman gain. The gain
factor iscomputed as awel ghted average of the old and new data, using the relative uncertai ntiesfor weights,

and is computed with the foll owing equation.

K=P HY (HP H'+ R)™*

R reflects the noise of the measurements. Inthiscase, itissimply thevariance of thelandmark localization on
the cameraimage plane. H P~ H® can be thought of as mapping the uncertainty in the current estimate into
the measurement space. Thusthe denominator givesatota confidence measure, and the numerator shearsthe
potential correction according to the uncertainty in the current estimate and in the measurement.

H mapstheerror between the predicted distance i (s) = 0 and theactual distance z; to theelements of the
state vector. For the EKF, it isthe Jacobian of 4(s), or thematrix of partial derivativesof 2(s) with respect to
each of the elements of s. This means that the correction term is alinear approximation to the change in the
state.

It isadaunting task to write an analytical expression for the Jacobian of &(s). Wethus compute thevalue
of the partial derivativesonly at the current state vector. These derivatives are computed numerically with
PDV C++ classes written by Prof. Gary Bishop. The code re-implements (overloads) the primitive operations
of addition, subtraction, multiplication, division, sine, cosine, and square root. For each operation, the code
computesthe numerical value of theanaytical partial derivativethat resultsfromthegiveninput values. Each
partial derivativeisinitializedto 1.0, sincethe derivative of any variablewith respect toitself is1.0. The ana
Iytical formulafor each primitive operationiseasily implemented. Each variablefor which partial derivatives
areto be computed must be assigned adlot inthearray of al partial derivatives. For example, to computethe
partial derivativeof f = a - b with respect to both a and b, onewould create the PDV instance for « and assign
the partia derivativein thefirst array ot to be 1.0, and al others to be 0.0. Then one would creste the PDV

instancefor b and assign the partial derivativein the second array slot to be 1.0, and al othersto be 0.0. When
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the multiplication operation occurs, the function value is computed. Then for each dot in the array of partial

derivatives, the product rule is used to compute the partia derivative.

6f_b6f_

oa _ ob
Thus the array of partia derivativeswould be[ b « ]. But the code cannot assume that « and b were scalar
variables; they could have been functionsof other variables. Thusthe chain ruledictatesthat we must multiply
thepartial derivative of f with respect to each of these functionsby the derivative(s) of a and b with respect to
their component functions and variables. Effectively, thisrequires that the PDV class copy both arrays. The
initiadizationhastaken care of thisbookkeeping, however. Similarly, we can implement the constant rule, sum
rule, quotient rule, and rules for trigonometric functionsand the square root function.

We can now add a correction term to the state. The distance aong the direction in state space that we are
going to move (given by K) is determined by the residual, which since our predicted measurement is zero

distance between the detected |andmark and the epipolar line, isequa to the measurement.
s=s5" + Kz

where” denotes an updated value. This provides an update to the trans ation components and vel ocity com-
ponents in the estimate, and computes an incrementa rotation that we must apply to our current estimated
orientation. We update this portion of the estimate by computing the rotation matrix determined by theincre-

mental rotation parametersin the state.
Rwe = Rwe Rot(d, ¢, p)

where Rot(#, ¢, p) isthe3 x 3 rotation matrix determined by the Euler angles [Foley90]. Note that the com-
putation of the Jacobian must account for the current total orientation, and thus must reconstruct Ry ¢ with
the correct inverse for the chosen definition of Euler angles. After thisupdate, the incremental Euler angles
8, ¢, and p arereset to 0.0.

Since we' ve updated our estimate, we must again update the error covariance associ ated with the estimate.

This updateis given by the foll owing equation.

P=(I-KH)P~
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where I istheidentity matrix. The updated values are used to continuetheiteration at the next time step.

3.3.35 Filter Tuning

It isdifficult to analytically determine the correct variances that constitute the matrix ¢ for amotion path of a
human user. Thus we tune the EKF by adjusting the parameters that determine the non-zero values of ). To
do this, we need a metric measurement for the error. We choose a set of 16 points distributed over the envi-
ronment. We run the algorithm with a pre-programmed motion path for the true camera. For each estimated
camera psoe over this run, we compute the total squared error between the projection of this set of pointsinto
the true cameraimage plane and the projection of this set of pointsinto the estimated cameraimage plane. At
the end of therun, we computetheroot-mean-square (RM S) error for theentirerun. Thisvaluegivesametric
measure of the filter performance. We minimize this error measure with respect to the two variance parame-
ters, ¢, and ¢,,. If our pre-programmed motion path isrealistic (i.e. closely reflects the path that the physician
will take during operation), then the parameters found with this method will yield the best performance of the
EKF for the motion. The experiments to perform thistuning are described in Section 4.1.3. We could imple-
ment thisprocedure with ametric other than RM Serror. We chose RM Serror so that consi stent behavior from
one frame to the next with a dightly higher average would be preferred to a sequence of estimates in which

occasional frames exhibited high error.

3.4 Visualizingthe Algorithm using Epipolar Geometry

We can think of the algorithm as constraining the camera to lie on the intersection of epipolar planes. In this
section, | will expand on the description of our approach as a solution using epipolar geometry to create a
visualization of the algorithm. This visualization aso underlies the construction in Figure 2.8. Any plane
is determined by aline and a point not on that line. An epipolar planeis defined by the line which contains
the optica ray through which one camera sees a given point and the center of projection of the other camera.
Noticethat the line containing the optical ray necessarily containsthe center of projection of the first camera.
The same definition appliesto aprojector and acamera, except that thedirection of the optical ray isreversed.
The line, however, remains unchanged.

We can equivalently think of the epipolar plane being defined by the line that contains the two centers of
projection (cameraand projector) and the point inwhich the optical ray emanating from the projector intersects
the scene. This more directly represents the behavior of the algorithm, since the centers of projection are

always the same point on the camera and projector, respectively, while the third point changes as we select a
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Figure 3.10: A pencil of planes can be visuaized by arectangle rotated around aline contained in that rect-
angle.

Figure 3.11: With two projectors,
we construct two pencils of epipolar
planes. We can thus constrain our es-
timate of the camera pose to a single
point, which the intersection of those
two pencils of planes. That intersec-
tion point must be the true pose of the
camera

new ray to project from the projector. For each ray, then, we form an epipolar plane.

The series of epipolar planesforms a pencil of planes (Figure 3.10). A pencil of planesisthe set of planes
that share aline of intersection and can be visualized by rotating a square around some line that it contains.
The pencil isdefined by thisline of intersection. In the configuration of our tracking system, thislinecontains
the centers of projection of both the camera and the projector.” Thus with one projector we can constrain the
camera poseto aline in space and fully constrain the camera orientation. With two projectors, we constrain

the camera pose to theintersection of two lines—apoint, since the projectorsare at distinct poses. Thuswe can

fully constrain the six-DOF camera pose (Figure 3.11).

" Thisline of course changesas the cameramoves, but for purposes of explanation, visualization of asingle lineis sufficient.
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Createinitial estimate of pose, velocity, and covariance.
while( TRUE)
Choose projector and pixel and project alandmark.
Acquire camera image and measure €l apsed time.
Predict pose of camera at thistime.
Update covariance matrix for time step.
Search camera image for the landmark.
if( landmark successfully detected )
Compute epipolar line corresponding to projected landmark.
Measure the distance between the detected landmark and the epipolar line.
Compute correction factor with extended Ka man filter.
Update estimated pose and vel ocity.
Update covariance matrix to reflect new measurement.
end if
end while

Figure 3.12: Pseudocode for the new tracking agorithm.
3.5 Summary

The agorithm can thus be summarized as follows. We begin with an estimate of the pose and our confidence
inthat. At each step, we project a landmark and compute the corresponding epipolar line. We correct the
estimated pose by a distance that is proportional to the distance of the detected landmark from that epipolar
line. Thedirectionfor correctioniscomputed through the Kal man filter mechanism using the Jacobian and the
confidences of the prediction model for dynamic behavior and the detection algorithm. Figure 3.12 presents

the agorithm in pseudocode.



Chapter 4

Experimental Performance and Analysis

Now that we have specified the al gorithm, we want to assess its performance. There are two ap-
proaches wetake, thefirst amore practica approach grounded in theory, and the second a purely
theoretical analysis of conditionswhich, if they occur, will make it difficult for the algorithm to
produce accurate estimates of the camera pose. To perform the first of these, we implement a
simulator and test the algorithm with user head motion data recorded from our primary intended
application, the ultrasound augmented reality system described in Section 2.1.2.4. The simulator
and user experiments are described in this chapter. The second approach for anaysis examines
geometric configurations of the cameras and projector under which the algorithm’s performance
could suffer or under which thealgorithm could fail. The simulationsreved that thea gorithm as
specified in Chapter 3 workswell for the intended application with fast cameras, while performs
below our requirements for normal-speed cameras. Methods to overcome this limitation will be
discussed in Chapter 5.

4.1 Performancein Simulation

4.1.1 Implementation of Simulator

The simulator consists of two pieces of code: code to run the algorithm as specified in Chapter 3, and code
to simulate the actions of the projectors and cameras inthe system. The former is a direct implementation of
the pseudocode in Figure 3.12 and the equations presented in Section 3.3. The latter requires some simple
geometric processing which we now describe.

Refer again to thelist of symbolsin Figure3.9. The list consisted of posesfor the projectorsin the world
(rotations Ry p; and trandations Ty p;), calibration matrices for the camera (Uc) and projectors (Up,;),
image-plane coordinates of the projected landmarks (u;, v;) and detected landmarks (u;, v;), and the esti-
mated pose of the camera (rotation Ry ¢ and trandation Tiv ). In order to compute the data necessary for

the algorithm and to measure the performance of the algorithm, the simulator must keep track of the true pose
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of thecamera. Fundamentally, we define system performance by how well the estimated camera pose matches
the true camera pose. Let us now discuss how we select or compute each of these valuesin the simulator.

One of our goals for the simulator is to get results that will directly apply to an implementation for our
primary intended application, that of ultrasound-guided needle biopsy. Thisimpliesthat we want to select the
poses(Rw p,i, Tw p,;) of theprojectorsinthesimul ator to be projecting onto the surgical environment depi cted
in Figure 3.1. Recall that this configuration had the projectors mounted on the ceiling, pointing down at an
operating table. Thisgoal aso impliesthat wewant to select valuesfor the intrinsic parameters of the camera
(Uc¢) that match the cameras that we currently usein our AR system (and that are similar to what we envision
using for the foreseeable future) and values for the intrinsic parameters of the projectors (Up ;) to match the
DMD-based projectors mentioned in Section 1.3.1 that we envision using in the first implementation. The
dimensions of both image planesare 640 x 480. The horizontal field of view for the camerais 28.64° and for
the projector is40.1°.

The selections of which projector to use for the next projected landmark and the image-plane coordinates
(uj, v;) for that projected landmark are part of the algorithm, as shown in Figure 3.12. For the simulator, we
use asimpl e pseudo-random distributionover the portion of theimage planethat projectsonto the approximate
volume over which we know we will want to view augmented imagery. Moresophisticated strategiesfor these
selection algorithms are discussed in Section 6.2.

To simulate the detection of landmarks at location (u;, v;) in the cameraimage plane, we must project the
pixel from the projector into the environment, then project the i ntersection point into the cameraimage plane.
The former operation is a simple ray casting operation, similar to that implemented in ray tracing software.
This assumes amodel of the geometry of the environment. Thisisexactly the information we do not want to
knowinthereal system, but thesimulator must know itinorder toaccurately depict theinteractionof lightwith
thescene. The second step requiresatransformati on of the coordinates of theintersection point fromtheworld
coordinate system to the camera coordinate system. Notethat thisoperation uses thetrue camera pose, not the
estimated pose (Rw ¢, Tw ). This point is projected into the camera image plane. The simulator computes
the estimated pose of the camera with the algorithm in Section 3.3. This completes the list of quantitiesin
Figure3.9.

There are ill other quantities that we need to begin a simulation, however. We next turn to the initial
values for the EKF. Recall that the filter requires an initial estimate for the state—the camera pose in the
algorithm—and for the covariance matrix associated with those estimates. Briefly, the covariance matrix con-

tainsaongitsdiagonal the variance of the estimates of the el ements of the state vector and off itsdiagonal, the

L All these parameterscould of course be chosen arbitrarily, but we opted for as much realism aswe could achievefor these parameters.
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covariance of the estimates. These numbers reflect the presumed distributionof thevalue, or moreinformally,
our confidence in the current estimate.

Thetrueinitia pose of the camera with respect to the projector can be used to create the initia estimate
with perfect accuracy, or an arbitrary set of parameters can be used to create an initia estimate with some er-
ror. Inthe latter case, the filter converges after a small number of measurements. How many measurements
are required to converge depends on theinitia error and whether (and how much) the camera moves during
thisinterval. We choose theinitial covariance matrix to give a small amount of uncertainty, for example one
millimeter for position and one milliradian for orientationin each Euler angle, to each parameter with no cor-
relation. In this case, the initia covariance matrix is 10=°7, where I is the identity matrix. Recall that the
elements of thediagond of I are variances, and thus are the square of the standard deviation of the Gaussian
that represents our initial estimate of the distribution of the true parameter value. Thisdistributionfrequently
does not enclose the true pose, but since thefilter injects noisein the error covariance matrix P through @@ at
each time step, the filter will not ignore measurements. This enables the filter to overcome poor initial esti-
mates of both the state vector s and P.

Inany real implementation of such asystem aswe propose, there will be noisein the detection of theland-
mark. We simulate this by adding Gaussian white noise to the (u;, v;) coordinates computed for the detected
landmark. The variance of this Gaussian distributionis the quantity that we call R in the EKF algorithm.

Another issue in the simulator is the control of the true camera pose. We gathered real user motion data
from the ultrasound visualization system, using the UNC optical ceiling tracker described in Section 2.2.2.6.
All the application can do is sample the user’'s head pose at discrete intervals. There is some noise present
in this data that we eliminate by resampling with alow-pass noncausa filter [KSC-TR]. In order to provide
a continuous motion path, we build a series of Catmull-Rom curves that interpol ate these samples smoothly.

Thisisthe path along which the camera moves during experiments.

412 Peformance Metrics

Asnoted in Section 2.2.1, we generally want as much accuracy as possible from atracking system. For most
tracking systems, the only way to measure the accuracy isin millimeters of position error and degrees of ori-
entation error. Certainly, those metrics apply to this system as well.

But since thisagorithmis designed to be applied to a VST AR system, there is another error metric that
we want to consider. That is pixels of registration error on the image plane of the camera. After all, registra-
tion error isthe manifestation of tracking error that affects the user of aVST AR system, not the position error

and orientation error directly (although they of course determine the registration error). Thisisamore toler-
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ating error metric, since position error and orientation error can frequently cancel out registration error in the
critical portion of thefield of view, a phenomenon we have witnessed with our current vision-based tracking
system [State96g]. Only in the worst case will the errors be additive.

Also, we want to examine the rate of convergence and itsimplicationsfor thelatency of the new tracking
algorithm. Latency isonethelargest sources of registration error for an AR system. A detailed anaysisof the
sources of registration error [Holloway95] revealed the following “rule of thumb” relationshipsthat apply to

our VST configuration.
1. Onemillimeter of positionerror resultsin one millimeter of registration error a arm’slength (500 mm).
2. Onetenth of adegree of orientation error resultsin one millimeter of registration error at arm’s length.
3. One millisecond of latency resultsin one millimeter of registration error at arm’s length.

Using these results, we will be able (in Section 4.1.6) to bound the registration error that will result for given
amounts of position error, orientation error, and latency. We will then compare this value to the registration

error measured in the experiments described in Section 4.1.5).

4.1.3 Tuning Experiment

In Section 3.3.3.2 we discussed the noisein the model of the dynamic process. The process noise covariance
matrix ¢ was specified interms of two variances, one associated with thetrand ation components of thecamera
pose and one associated with the rotation components. Since our dynamic behavior model represented by the
state transition matrix A does not account for acceleration, we are effectively saying that we can treat the
acceleration as a source of noise in the dynamic process, and then we re-estimate the current position and
velocity taking thisinto account. The accounting is done by adding uncertainty into the process covariance

matrix P each timewe perform an update of the state for the passing of time.

P = APA' 4+ Q

We need a method to determine the best parameters for these two variances. To do thiswe select a“typica”
motion path from the set of user head motion datafrom the application of interest. Wethen run an optimiza:
tion procedure to minimizethe error with respect to those parameters. We can think of thisprocess asfinding
the best balance between “believing” the measurements of the point-to-line distance and “believing” in the

dynamic process model.
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This user study is described below. Prior to that description, let us note two important points. First, the
fact that the data comes from the application to which we are targeting the system isimportant; it impliesthat
the optimal valueswefind for that path will apply when weimplement the system. The primary physician user
of the ultrasound-guided needle biopsy system was not among the usersin the user study. It may be that the
motion path shetakeswhile performing the procedure differsin asignificant manner from the motion recorded
and the parameters would change significantly, but thisis unlikely and not crucia to the theory behind the
algorithm.

The second important note isthat the best val ues for these parameters depend on the acquisition speed of
the camera. Thisis because theinterval over which the simple dynamic model (rigid-body kinematics with
only position and velocity) isequal to thetime between acquisition of images from the camera. Ananalysisof
head-motion prediction [Azuma95] shows how the error in this prediction grows with the length of the time
interval. Thus with an increase in theinterval over which we must predict the user motion, we know that we
will want to decrease our confidence in the accuracy of the dynamic model and increase our belief that the
measurements are giving us accurate information.

The tuning experiment consisted of two phases. Inthefirst phase, we recorded several users head motion
while performing an ultrasound-guided needle biopsy task. The biopsy procedure requires the physician to
insert aneedleintoasmall lesion. We simulated this procedure by asking theuser toinsert atracked needleinto
amedica phantom? with simulated lesions (Figure 4.1). The view presented to the user was entirely virtua
(Figure4.2); however, the calibrated scene geometry from the AR ultrasound visualization system (described
in Section 2.1.2.4) was used so that the imagery was accurately displayed to the user. The user saw the patient
torso, asphere placed at the location of thelesionin the medical phantom, and the tracked needle. In addition,
the physical model used for the AR system was registered to the visual feedback, so that the tactile feedback
the usersin this experiment received was the same as that which the physician receives while performing the
procedure. Theuse of only asynthetic view (as opposed to an AR view) aso alowed the system to run faster,
which we hoped would alow the user to gain the full effect of head motion on a more timely basis than if
the system had to wait for the video digitizationinto the frame buffer. We hope theincreased speed produced
more realistic motion paths for afast, unobtrusivetracking system such as we propose to build with the new
algorithm.

The second phase of the tuning experiment consisted of running an optimization procedureto find the best

2 These and similar phantoms are used by medical schoolsfor training physicians. The phantom consists of a gel-like substancethat
appears similar to human tissue when imaged with ultrasound. Embedded in this gel are liquid-filled and solid-filled sacs that emulate
the appearance of cysts and tumors, respectively, in ultrasound. We mount this phantom in a store mannequin to simulate the geometry
of the human torso.
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Figure4.1: (left) A re-crestion of the scene of the user
experiment. Theuser wearsan HMD that lacks see-through
capability. The user inserts a tracked needle into a target
mes \Within the medical phantom in the mannequin torso. The
location of the target and the needle were both depicted in
thevirtual world presented to the user (Figure4.2).

Figure4.2: (below) The view presented to the user dur-
ing the user study of head motion while simulating a nee-
{ dle biopsy. The line was aligned with the tracked needle
and the sphere with alesion in the medical phantom. This
givescorrect tactilefeedback, hel ping overcomethelack of
visual feedback from the real world.

values for the parameters. We need a function to minimize. Since our primary application for this tracking
system isan AR system, we want to minimize the registration error metric described in Section 4.1.2 over
the duration of the user’s motion. We selected one motion path to represent the set and computed the RMS
registration error for the compl ete motion path. This error metric was returned to the optimizer asthefunction
value. Using the multi-dimensional minimization strategy known as Powell’s method [ Press88], we searched
the parameter space for the best values for that path. By assuming that path to be representative, we assumed
that we found the best parameters for all paths. We tested the algorithm’s performance with the remaining
paths. Resultsfrom those tests are presented in Section 4.1.5 and analyzed in Section 4.1.6.

The optimizer needs to have the range in which to search. We choose the range by selecting a reason-
ablevauefor R, the uncertainty of the measurements, and then examining the relative magnitudes of R and
H P~ H. These two terms determine the total weight of the process model and the measurements when the
Kaman gain K is computed.

K=P H' (HP H'+R)”

Knowing the possible magnitude for H gives us arange in which P~ should fall so that the order of mag-
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nitude of H P~ H* does not vary greatly from the order of magnitude of R. If it does, then one of the terms
is rendered irrelevant in the computations, which implies that either the EKF is ignoring the measurements
(when H P~ H' islarge) or ignoring the dynamic behavior model (when /7 P~ H* issmall). Neither of these
Situationsis desirable.

We sdlected R = 1.0, which says that we believe we can find the centroid of the detected landmark to
within 1.0 pixelson the camera image plane. Thisis pessimistic for many sophisticated image processing al-
gorithms, but preliminary experiments with simple implementations of this system did not achieve the accu-
racy of thosea gorithms; further experimentation will be necessary when the proposed systemisimplemented
to determinethe proper value. The elements of the Jacobian are in pixels-per-meter or pixels-per-radian since
we express the tranglation in meters and the rotation in radians. We experimentally determined the range of
the order of magnitude of the elements of the Jacobian to be 10%3. When the EKF converges, we see in the
simulator that the variances and covariances in the P matrix are of order 10~°. This steady-state value of P
dependslargely on the order of magnitude of elements of ¢, which we need to determine. To do this, wewrite

the total weight factor in /A in terms of the P matrix that begins each predictor-corrector cycle.

HP H'4+ R=H(APA'+Q)H'+ R

Now we write out the order of magnitude of each matrix as powers of ten, and recall the formulas for the
dements of (Q from Section 3.3.3.2. Since timeis measured in seconds and is on the order of milliseconds,

the elements of @2 can range in order of magnitude from 10=3 to 106,

H(APA" + Q)H' + R~ 10°(10°107°10° 4 [g,, ¢o] x 107%)10? 4- 10"

Despite the abuse of notation, it follows from the above expression that the order of magnitude of both ¢,
and ¢, should be between 10~2 and 102 to keep the weights within aratio of 100:1. At greater ratios, €ither
the measurements or the dynamic process model will not affect the estimate. Initia valuesin the optimizer’s
search procedure for the variance parameters in the () matrix were selected tobe ¢, = 1.0 and ¢, = 1.0.
The optimizer was run for measurements at several camera acquisition rates, since as noted above, this speed
determines the interval over which we predict with the dynamic model, which in turn determines the error in
the prediction for agiven user motion. Theresultsarein Table 4.1.

With these valuesin hand for the parameters of the ¢ matrix, we now have everything we need to simulate

the agorithm.
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Camera speed (H2) I qo
200 1.304400 3.37088
150 1.078860 2.04517
120 0.901545 1.55981
90 0.905117 1.31833
60 0.598406 1.24759
30 0.376259 1.13971

Table 4.1: Table of variance parameters computed for the process noise for several camera acquisition rates.

414 Testsof Convergenceand Stability

First we test whether the algorithm converges to the correct answer from an initial error. To test this, we set
the initial estimate to a pose with moderate initial error and run the smulator. In this experiment, the true
camera pose remained fixed. The resultsare shownin Figure4.3. We observe the a gorithm reduces the error
in position, orientation, and registration to zero. Note that these vaues do not decrease monotonically. An
EKF cannot guaranteethat at each step it will reduce the error in the estimate. However, the graphs show that
thegeneral trend of thea gorithmisto reducetheerror. Theagorithm oscillatesaround the correct pose briefly
because the estimated velocity built up in the state causes the a gorithm to overshoot the correct pose. This
could be dleviated (but not eliminated) by adjusting the process noise parameters to place less confidencein
the dynamic process model during the time when the algorithmis converging from a poor initia estimateto a
fixed camera pose. This could aso be alleviated by changing the model of dynamic behavior using semantic
knowledge supplied by a system operator or using statistics about the error in prediction [Brown92].

Figure4.4 showssimulated VST views as the a gorithm convergesfrom apoor initial estimate (1.8 meters
of positionerror and 28° of orientation error) to the correct solution, athough again the algorithm overshoots
the correct answer and then converges. The real camera then moves through the scene, and the algorithm
mai ntai ns good regi stration on theimage plane. When the camera comes to a sudden stop, thealgorithmagain
shoots past the correct answer, but only to aregistration error of 6.2 pixels, then quickly converges again.

A more advanced and less obvious consideration appliesthe genera conditionsfor stability of an EKF to
the algorithm. The following conditionsimply that the EKF will be globally observable and stable [Deyst68,
Maybeck79, Welch9g].

¢ the set of measurements must form a complete set of constraints

o thesystem must sampleat aratethat istwicethehighest frequency of thetruesigna (thecameramotion

path)
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Figure 4.3: The algorithm converges from an initia pose with moderate error. Although the algorithm does
not (and cannot guarantee) to reduce the error on each step, the general trend is clearly to reduce the error.
Note that after initially approaching the correct answer, the algorithm oscillates briefly before converging to
the correct answer. Thisis because the estimated vel ocity that the EKF implementation computesis proneto
having noise when the true camera pose is fixed, but we did not adjust the process noise parameters.

¢ the dynamic change over the time between estimates and the corresponding uncertainty is bounded

o the measurement noiseis bounded

The first condition is relatively straightforward. It merely says that the problem must be solvablein any
form before the EKF can solveit. There are geometric configurations in which the constraints applied in the
new agorithm are not sufficient; they will be addressed in Section 4.2.

The second condition gives aversion of the condition on the minimum sample rate, known as the Nyqui st
rate in sampling theory [Foley90, pgs. 627—628]. This implies that we have a minimum sampling rate to be

able to accurately estimate a given motion path. Indeed, we shall see in a moment that the agorithm’s per-
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Figure 4.4: The camera view of asimulated VST system while the algorithm runs. The camera image plane
is640 x 480 pixels. The black lines simulate the synthetic imagery; they are rendered from the estimated
pose. The gray shapes simulate the real imagery; they are rendered from the true pose. The initial estimate
(upper row, left) is poor, but the algorithm quickly beginsto converge (upper row, middle), and athough it
overshootsthe true answer (upper row, right), it does converge to the correct solution (center row, left). This
required 1.5 seconds of simulated time (about 300 measurements). Then the camera beginsto move through
the scene (center row, middle) and the algorithm maintains good registration (center row, right). When the
camera stops suddenly, the algorithm again overshootsthe correct pose, but only to 6.2 pixels of registration
error (bottom row, left) and then quickly reconverges (bottom row, right).

formance degrades when the sampling rate drops. However, those same experiments will also justify that we
are sampling at asufficient rate, or at least closetoit. Of course, we can never know the maximum frequency
for al possible paths. In the simulator we measured the maximum frequency for the pathsin the user study
to be 10 Hz. We assume the minimum sampling rate we will use is 30 Hz, the standard video rate for NTSC
cameras. Thus we are sampling at a sufficient rate to reconstruct the motion path.

The third condition says that the error in the dynamic process must be bounded both above and bel ow.
A bound from above limits the amount of error in the predictor phase, which is ana ogous to requiring an
iterative agorithm to be given an initial estimate that is by some definition “close enough” to a solution in
order to converge. A bound from below impliesthat we never believe that the dynamic process is perfect; if

the EKF were to bein that situation, then it would ignore future measurements.
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The fourth condition says that over some finite set of measurements, there must be sufficient information
content (signal, inthe sense that wetal k about signal -to-noiseratio) in the measurements for the EK F to extract
the correct answer.

We found boundsto satisfy the third and fourth conditionsfor the motion pathsin the user study, implying
that these conditions are satisfied. These bounds may not be the tightest that could be found, but al that the

condition requiresisthat the bound exist, not that it satisfy some closeness criterion.

415 Numerical Results

With thefilter tuned to its best performance on the path sel ected for tuning and with some confidence that the
filter will indeed converge to the correct answer, we can now test thefilter’s performance on the motion paths
of the other usersin the study. This consists of simply running the filter using the process noise parameters
determined by the optimization process described in Section 4.1.3.

We can use any of the error metricslisted in Section 4.1.2 to measure the performance of the algorithmin
simulation, but since the proposed systemisaimed at VST AR, we are primarily interested in the registration
error on the image plane.

The simulator adds random noise to «; and v; a each camera frame, distributed on a Gaussian with a
standard deviation that represents the amount of noise we can expect in the location of the landmark on the
image plane of the camera. We conducted an experiment to determine how much noisewe can expect in these
measurements. The experiment consisted of fixing a projector in the environment to project onto a surface.
A camera was then fixed in the environment to view this surface. Four trials were conducted to measure the
variance of the v and v coordinates of the landmark location. The same camera acquired al the images used
for al trials. The images in this experiment consisted of one field of video, which reduces the vertica res-
olution to 240 pixels. For the first trial, the surface was a white cardboard plane and the shutter time was
set to normal speed, approximately 16 ms for one field of video. For the second and third trias, the shutter
time of the camera was set to 4 ms and the surface remained the white cardboard plane. For the fourth tria,
the shutter time remained 4 ms, and the surface consisted of a hanging beige curtain and a medical training
model with approximately human (Caucasian) skin color, although with brightly colored models of internal
anatomy exposed. In thefirst three trids, thirteen landmarks were imaged. In the fourth tria, ten landmarks
were imaged. The reduction in the number of landmarks was due to arefinement in the experimental design,
selecting ten landmarks which werein view in thefirst threetrials. (Inthefirst three trids, fifteen landmarks
were projected, in order to improvethe chances of at least ten landmarks being withinthe field of view.)

The resulting images, when composited as in Figure 4.5, show clusters of landmarks. The variances of the
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clustersof thelandmarksare givenin Table 4.2. Theimportant result hereisthat the variancein the horizontal
directionisunder onepixel, and thevariancein thevertica directionisgeneraly under 0.65 pixels, which may
well doubleat higher resolution, but is still closeto withinone pixel of noise. Thethreshold for what intensity
is considered “white” must be adjusted for the lower shutter time. For a 16 ms shutter time, an intensity of
more than 240 (on a scal e of 0-255) was considered white. For a4 ms shutter time, an intensity of more than
48 was considered white. Thisis where the fact that we can largely control the lighting in the environment
helps in creating structured light patterns. The room was darkened for this experiment, athough not al the
light wasturned off. Wedid not subtract background (ambient) light in the environment from theimage before

processing. This may improve the accuracy and robustness of landmark location.
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Figure 4.5: Clusters of landmark locations within the camera image plane in the experiment to verify the
amount of noisein landmark locations. The axes represent the principal axes of the cameraimage plane, mea-
sured in pixels. Onthe upper |eft, the clusters of landmarks projected onto awhite planar surface for acamera
shuttered at 16 ms. Inthe upper right, atria with the camera shutter time set to 4 mswith landmarks projected
onto awhite planar surface. On the lower |eft, a second trial with the shutter time equal to 4 ms with land-
marks projected onto awhite planar surface. Inthelower right, atrial with a4 msshutter time and landmarks
projected onto a beige curtain and medical training model. These models are visiblein Figure 4.6.

The first three trids (using the white planar surface) may seem to be performed in an environment that
is greatly to the advantage of the system. Thus we set up an environment more similar in reflectance to the
environment in the ultrasound-gui ded needl e biopsy application. We draped a diffusebeige curtain onthewall
such that its surface was non-planar. Itscolor iscloser tothat of light-col ored human skin. We placed infront

of thiscurtain a standard anatomical training model with exterior (skin) color matching that of afair-skinned



human and interior anatomy colored with bright colors (Figure 4.6). The shutter time remained 4 msin this
trial. Wethen ten selected landmarks from the first trial s that were within the field of view of the camera and
ran the experiment a fourth time. In this experiment, we also measured the percentage of attempts to detect
the landmark that were successful. The results show that the landmark detectionis still quite robust, with the
noisein al trials below 0.32 pixels horizontally and 0.20 pixels vertically. Most landmarks were found on

every attempt, and all were found on at least the vast mgjority of attempts. (Table 4.3).

Figure 4.6: Scene of the experiment to measure landmark detection noise in an environment similar to the
primary intended application, ultrasound-guided needle biopsy. A curtain hangsin the environment, yielding
a non-planar, diffusely reflective surface. The medical training model in the foreground is life-size and has
an exterior color of afair-skinned human. Itsinterior consists of brightly colored models of interior anatomic
structures.

In the simulator, we approximate thisnoise by setting R = 1.0 in the EKF. Adding the noisegivesamore
realistic simulation of the measurements an implementation would get from acamera. Table 4.4 listsall three
types of errors.

The results shown in Table 4.4 revea two things upon first glance. First, with 200 Hertz cameras, we get
excellent performance from the a gorithm—under 1.0 pixelsRM S registration error for all users.

Table 4.4 aso reved s that for each user, the performance degrades by more than an order of magnitude
when the speed of the cameras equal sthe standard rate for NTSC video, 30 Hertz. We know from experience
that the registration error listed for the algorithm running with 30 Hertz cameras will be too much for usewith
the ultrasound visualization AR system described in Section 2.1.2.4. Sincethisisalso the system from which
the user motion data comes, we need to ook for explanationsfor the error. Thiswill be donein Section 4.1.6,
but we look for some clues to the answer first.

We can illustrate the performance of the algorithm by graphing the error over time as the a gorithm per-

forms its real-time estimation. We select User 6 running at 200 Hertz, for reasons that will be made clear
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momentarily. Figure 4.7 shows the registration error, position error, as well as the trandationa velocity and
trand ational acceleration. Figure4.8 show theregistrationerror, orientationerror, aswell astheangular vel oc-
ity and angular acceleration. Both graphs show the variables as afunction of time, and the individua graphs
are digned vertically so that the ordinate axes are synchronized.

With the synchronization of the time axis in these graphs, we can see that the registration error grows just
after the velocity and acceleration in either position or orientation become large. This phenomenon aso ap-
pearsin the same performance graphsfor the algorithm running with the motion path for User 1 with 30 Hertz,
shown in Figures 4.9 and 4.10.

Now that we have noted this phenomenon, we need to review the method of the EKF and the equations
in our implementation to understand why there would be a connection between the registration error and the

velocity or acceleration.

4.1.6 A Performance Analysis M odel

Section 3.2 discussed the intuition behind the new tracking algorithm. Summarizing that discussion, we see
that the algorithm works by integrating constraints over time into a single estimate of the camera pose. The
advantage this algorithm has over many algorithms presented until recently in the computer vision literature
(wherethe constraintiswell-known) isthat it uses the EKF, inwhich thereisan explicit model of noise. Since
in the simulator this noise model holds, the performance is excellent. We have also given evidence that the
noise model will continueto hold in an implementation of the system. Once thefilter isintegrating numerous
constraints, the performance is similar to the performance of batch agorithmsin computer vision literature
to determine camera pose, when used with similar numbers of constraints with low noise (the noise model in
those algorithms).

However, we want to have a deeper understanding of precisely how the new agorithm and system per-
forms. Asdiscussed in Section 3.2.5, the EKF isa predictor-corrector algorithm. One strai ghtforward way to
analyze thefilter performance and its behavior against variousinterna system parameters, then, isto analyze
the error incurred in the predictor phase and the error overcome by the corrector phase.

Thisisagenera strategy that can in theory be applied to any implementation of an EKF. There are some
advantages that make this strategy for analysis appropriate, some particularly for this dissertation.

1. It givesadirect method of measuring exactly those quantitiesthat are important in an AR system: reg-

istration error and latency.

2. Theanaysisisintuitivefor the understanding the performance of the EKF.
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Figure4.7: Position statisticsfrom User 6intheuser study. All four graphshave thetime of the motion path as
the abscissa. Thetop graph shows registration error, measured with the metric described in Section 4.1.2 ona
per-framebasis. The second graph showspositionerror in millimeters. Thethird graph showsthetrandationa
velocity in meters per second, and the fourth graph shows the trand ational accel eration in meters per second
squared.
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3. Itrequiresknowledgeof only the equationsof motion of arigid body in 3D. These can be used to bound
the poseerror incurred in the predictor phase. We can a so ater the prediction scheme without requiring

significant additional effort to analyze the extended agorithm.

4. We can anayze the performance of the corrector phase numerically much more readily than we can

anaytically.

5. We know how head tracking errors and latency contribute to registration error in AR [Holloway95].

These error models alow us to convert the pose error bounds to registration error bounds.

In order to bound the pose error that results from the predictor phase, we need to know severa things. We
would redly like to know the true motion path, but of course, thisis unavailable. We can sample it in the
simulator. We must, however, understand the error that can result because our prediction model does not ac-
curately reflect the behavior of the user’s head (and the camera), even if the values we use in the model are
correct. And therewill naturally be errorsin our estimates of these parameters. In the simulator, we measure
the error in the velocity estimates that are generated in the EKF algorithm described in Section 3.3. We are
not using acceleration in the predictor phase, so we measure the amount of acceleration. These will give us
the information necessary to analyze the error in prediction.

The analysis a so indicates how we might improve the algorithm by improving the predictor phase. For
example, if weweretoadd accel erometersto the system, thenall wewould need to know to extend theanalysis
would be the accuracy of the accelerometers and the rate at which the acceleration may change. This latter

guantity can also be easily measured in the simulator. This extension is presented in Section 5.1.

4.16.1 Error Analysisof the Predictor Phase

In Section 3.3.3.1, we specified the state vector and the dynamic system model that we maintain in the EKF
implementation. This model assumes that the user (and thus the camera) moves with constant vel ocity over
thetime interval for which we must predict the new pose. In thissimple model, it will help if we separate the
position and orientation into separate expressions. Thus our prediction for the new pose of the camerais

s, =g, tv, At, s

- O:sao—l—vo_At

where s, , isthe estimated current position, s; , the estimated current orientation, v, the estimated current
trandational velocity, v, the estimated current angular velocity, and At the time interval. These quantities

determine the predicted position s, and the predicted orientation s .
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We compute the true pose of the camera after atimeinterval of At passes using the classical second-order

equation rigid-body kinematics.

1
sp = soyp—i—vat—|—§ap(At)2

1
s, = 5070+v0At—|—§ao(At)2

The second-order equations include the trandlational acceleration a,, and the angular acceleration a,. Note
that without the superscript —, we denote the true val ues, not estimates of them. We then subtract to compute

the error incurred by the prediction with thissimple model of rigid body motion.

1
sp—s, = (sop— Sap) + (vp — vp_)At + §ap(At)2

"3

1
So— 5, = (S0,0— 55,0) + (vo — v, )At + §ao(At)2

Let usnow look at the symbolsthat we have accumul ated in these formul as and see what we can say about
each of these. We know that all the estimated values are currently computed in the algorithm. Thisis exactly
what the EKF maintains in its state vector, denoted simply by s in Section 3.3. We don't have precise val-
ues for the true values of the pose, velocity, and acceleration (each of which are six values for motionin 3D).
These are the variables for which we are trying to solve in the EKF. However, we can run the simulator with
the motion paths acquired in the user study (described in Section 4.1.3) to bound the errors in estimating the
position and vel ocity, and we can measure the maximum and average accel eration factors by sampling theac-
celeration aong the paths. Inthe simulator, these values are the truevalues, and thusthisanaysisissufficient
to analyze the performance of the EKF in the application of interest for these motion paths. For reasons noted
in Section 4.1.3, we assume these paths to be redlistic for the ultrasound visualization application. Average
and maximum values for the relevant quantities appear in Tables 4.5 and 4.6.

Theonly remaining variableis At, thetimeinterval between measurements. Thisisafunction of the speed
of the camera and projectors. Thisis exactly what we wanted; we now have a mapping between an intrinsic
(though adjustable) property of the hardware and the amount of error we can expect in an implementation of

the system.

4.16.2 Error Analysisof the Corrector Phase

The measure of the corrector phaseishow much of the current error is eliminated by the update to the current

estimate. Thisisvery difficult to analyzein purely theoretical terms. The factorsthat affect thisare
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o thequality of fit that the Jacobian givesto the measurement function 4 (s) givenin Section 3.3.3.4

o the balance between confidence in the dynamic process model, expressed by the matrix @, and confi-

dence in the measurements, expressed by the matrix R
o theamount of information available in each measurement

Thefirst of theseisvery difficult to determinein any form with the complex function (s) that consists of the
projection operation from the projector to the unknown surface, then projection up to the camera image plane,
in addition to the numerous parameters of the poses of the camera and projectors and the intrinsic parameters
of the camera and projectors. The second depends heavily on the motion paths that were used to tune the
EKF for the best performance. According to that experiment, these parameters are already the optimum in
the sense that they minimize the objective function of registration error for the control motion path in the
tuning experiment. The third depends on the mathematical constraints, a subject to which we will returnin
Section 4.2.

Since we aready anayze the performance on the motion paths from the user study, a more accessible
method of determining the amount of correction is to simply measure it in the simulator. Fortunately, this
number isvery consistent across all experiments, which gives us confidence that thistype of measurement is
an approximation of sufficient quality that we can perform the analysis we desire. Table 4.7 gives the per-
centage of the three types of error described in Section 4.1.2 remaining after the corrector phase for the user
experiments.

Also note that al of the numbersin Table 4.7 are less than one. Thisisgood evidence that the agorithm
will converge in some finite number of predictor-corrector cycles so long as we can bound the velocity and
acceleration of the user’s head. This bound can be determined, as evidenced by the statistics from the user
study. Formal proof of the convergence of theal gorithmwould requireamoredetail ed anaysis of the corrector
phase, which we leave as future work. We next turn to the question of the number of cycles necessary for the

algorithm to converge.

4.1.6.3 Rateof Convergence

To predict the expected convergence of thealgorithm, we expresstheerror after acompl ete predictor-corrector
cycle of the algorithm has run. We use the expression for the error after the predictor phase and multiply by
the percentage of correction we expect in the corrector phase. The former requires numbers from Tables 4.5

and 4.6; the latter was presented in Table 4.7.
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Take as an example User 6 runningwith 200 Hz cameras, whichisthetrial that had the highest accel eration.
Using the expressions above for error in prediction, we can write the expected error after the predictor phase
for both the position and orientation components of the pose. Also, for thistria, wehave At = 0.005 seconds.
Note that we must convert the units for position error to meters from millimeters and for orientation error to
radiansfrommilliradians, respectively, for theintermediate cal cul ations. Attheend, weconvert to millimeters

for position error and degrees for orientation error.

m m
sp— s A~ 0.903mm-0.001 = +0.0300 2 - 0.0055+ 0.5 - 14970 . (0.0059? ~ 1.07mm
L mm s s

rad rad ad
so— s, A LLASMN-0.001—-40.0537—— - 0.0055+ 0.5 - 0.643;—2 -(0.0058)? & 0.082°

Borrowing ideas on the analysis of the causes of registration error [Holloway95], we can bound the expected
registration error by examining the contribution of position error and orientation error to registration error.
Sincewe have a640 x 480 display with a28.64° horizontal field of view (and square pixels)?, each degree of
thefield of view subtends 22.35 pixels. At aworking distance of 500 mm, a 28.64° horizontal field of view
subtends500 mm-tan 28.64° = 273.1 mm. Thuseach millimeter at theworking distance subtends2.34 pixels
in the center of thefield of view*.

40 pi .
640 pix +0.0820.640p|x

Registrationerror < 1.07 mm- ————
= - 273.1 mm 28.64°

/s 4.33 pixels

Suppose we define convergence of the algorithm as achieving a registration error of under 2.0 pixels on the
image plane. For User 6 at 200 Hz, Table 4.7 tells us that we expect to reduce the registration error after the
predictor phase to 0.834 times its current value after the corrector phase. Then the number » of corrector
phases we can expect the algorithm to need before achieving this goal is determined by solving the following
expression for n.

In (55)
4.33-0.834" <2.0=—=n > - — n > 4.3 frames
In0.834

Thusit will takefive frames on average for the algorithmto converge for the motion path of User 6 if the mea-
surements are taken at 200 Hz. But thisanalysis explains what would happen if the predictor phase incurred
the error only in thefirst frame and were then perfect in the subsequent four frames. Only in that case would
the a gorithm actually converge to the correct vaue. Indeed, in the simulator, if the camera poseisfrozen for

afinite number of frames, the estimated pose does converge to the true pose, as seen in Section 4.1.4.

3 These numbers are our best estimates for our current implementation of the AR ultrasound visualization system.
4\We will use this number despite the fact that the tangent is a nonlinear function and lengths are stretched towards the edges of the
field of view.
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One way to view thisanalysis is as bounding the number of frames the agorithm requires estimate the
pose with under 2.0 pixels of registration error. By the time the agorithm produces that estimate, however,
the current pose will have presumably changed. Thuswhat thisanalysisredly tellsusisthe number of frames
of latency that we expect from the algorithm. Since in this example, the frames were at 5 ms intervals, this
implies 40 ms of latency to reach an accuracy of 2.0 pixels of static registration error. Thisiscomparable to
thelatency we get with several commercia tracking systemsin our lab [Jacobs97]. However, according tothe
analysis of registration error [Holloway95], that could imply as much as 40 mm of dynamic registration error,
which for our working distance would be amost 94 pixels of registration error. For such high registration
error to occur under the conditionsin this example, however, all threetypes of (position, orientation, latency)
would have to create registration error in the same direction on theimage plane, which isan unlikely event.

Another way we could view thisanalysisis as away to determine what accelerationsin position and ori-
entation the camera can undergo before the a gorithm’ s performance suffers. Supposewe arein asteady-state
of 1.0 pixels of registration error. The error in registration due to acceleration experienced during the next

X + O.s}a(ﬂ . X

Bayt? . ——PX :
05,1 o m Trad 28.64°

If wewish to have no morethan 1.0 pixelsof error remaining, then we must have thefollowing expression be
true.

[1.0+ error] - correction < 1.0

where “error” is given by the expression above and “correction” is given by the numbersin Table 4.7. For

User 6 running with 200 Hz cameras, the left-hand side eva uates to

640 - 180
+0.5-0.643 - 0.0052 -

) 640 - 180
[1.0+0,5 1497 0.005% - o= 98.64 7

] -0.834 =0.879

and we see that performance isgood, whereas for User 3 running with 30 Hz cameras, the left-hand side eval-

uatesto

640 5 640180
02731 +0.5-0.5612-0.033" - 9864 x

[1.0+0.5~ 1.062 - 0.033% - ] -0.854 = 2.346

and we see that performance is poor. By selecting an intersample time ¢, one could compute the maximum
acceleration. Thiswould require selecting a priori the amount of registration error due to position error and

the amount of registration error dueto orientation error, whichis, at best, adifficult task. Still, thiscaculation
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would give some insight to the maximum acceleration that the algorithm could tolerate without degrading
performance.
These registration error calculations for User 1 with 30 Hz cameras will serve to motivate discussion of

future directionsin Section 5.1.

m m m
sp—s, ~ 17.553mm-0.001——+ 0.0591—-0.0333s+ 0.5 - 0.406 - (0.03333)2
mm s S
~ 19.75mm
ad rad rad
So— s, A 24.226mr- 0'001:n7 +0.0797—-0.03335+ 0.5 0.244 5 - (0.03339)?
~ 1.55°
. . 640 pix 640 pix .
< . e .55 - ~ &80.
Registrationerror < 19.75 mm 573 L mm 28 640 80.9 pixels
80.9-0.878" < 20
In (&%)
> 8097 > 28.4 frames
=" 2 Toosm 7

This analysisignored two important factors in determining dynamic registration error. When the camera
is moving, the algorithm will try to push the estimated pose towards the current pose, not poses from which
past measurements were taken. Also, thisexample used average errorsin the factors affecting predictor error.
The registration error at each frame depends on the distribution of these errors, which we have not measured.

Thisanalysisdoesnot offer formal proof of thelatency of thefilter. To dothis, determinethetransfer func-
tionsfor the filter and examine the phase difference as afunction of the signal frequency [Maybeck79]. Still,
thisanalysissheds someinsight on the convergence of thea gorithm. We have shown how to bound thelatency
with which the algorithmwill converge to the correct solution on average. A similar analysis using maximum
errorsin the factors affecting prediction would yield abound for that case. Thiswill be very pessimistic, since
weare unlikely to reach themaximain these errors at every frame. The number of measurements required for

each of thetrialsin the user study isgivenin Table 4.8.

4.2 Theoretical Analysisof Unobservable Configurations

In KF literature, a system isreferred to as unobservable if one or more parameters cannot be estimated from
the constraints. In the linear system Az = b (where A isann x n matrix and z and b aren x 1 vectors),
the anal ogous condition would be that A hasrank less than », and thus has no inverse. There are a variety of

situations from which such a condition might arise. It may be that a parameter included in the state does not
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influence the measurements. Such a parameter cannot be estimated from the measurements, which should be
an intuitivestatement. This argument will be applied to one situation bel ow.

Also of interest in this section, however, will be situations in which the parameters may dl be affecting
the measurement, yet still there are multiple solutionspossible. It isone of the big advantages of the SCAAT
formulation of tracking systems[Welch96] that at each timestep, theconstraintissimple, whichwill in general
also mean that the constraint is not enough to fully constrain the six DOF of posein the world of the tracked
object. It may also be, however, that no amount of constraintswill be sufficient to constrain the object’s pose.
In this condition, the tracking problem is underconstrained—that is, unobservable.

There arefive specific situationsthat will be examined in thissection. Thefirstisaconfigurationin which
the epipolar line degenerates to a point. The second is a configuration of cameras and projectors for which
thereis an infinite number of solutions. The third is a configuration of pointsin the world for which thereis
a finite number of solutions. The fourth and fifth are examples of numbers of correspondences between the
camera and projector image planes for which there are a finite number of solutions.

| want to emphasize two things before undertaking this discussion. First, all of these problems can be
overcome by simply avoiding these configurationsor adding further constraints. Evidence for why a specific
problem can be avoided or overcomewill be presented in each discussion. Second, theseproblemsareunlikely
to occur or affect the accuracy in implementations of the system. These are selected as specific exampl es of

the kind of problems of which an implementation must be vigilant.

421 Epipolar Line Degeneratesto a Point

The epipolar lineisthe projection onto the camera's image plane of aray emanating from the projector. Itis
theoretically possible for thisline to degenerate to a point. Algebraically, the equation Ax + By + C' = 0
of the epipolar linewill degenerateto C' = (. Given the measurement equation described in Section 3.3.3.4,
thisimplies that the normalization factor applied to the epipolar line will vanish. Thus the measurement and
its derivatives are undefined. Recall that the normalization factor is applied to ensure that the distance from
theimaged landmark isin a consistent unit (e.g. pixels). The geometric condition in which thiswill occur is
if the camera’s center of projection and the camera s image-plane normal are collinear with the ray emanating
fromthe projector. Inaphysical realization of the proposed system, however, thisevent isextremely unlikely,
if not impossible.

When this configuration occurs, the camera is unlikely to image anything from the projector. Either the
camera would be behind the projector and thusthe camera’ s view of the surface patch containing thelandmark

would be blocked by the projector, or the camera would be in front of the projector and thus the landmark
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would fall on the back of the camera housing.

However, it ispossiblewith small equipment to be near this condition and thus be in an unstabl e configu-
ration. Thiswouldimply that the noisein the measurements model ed by the R matrix would beincorrect for a
measurement taken inthis“ near-degenerate”’ configuration. Clearly, thiswould not beameasurement that one
would want to useinthe EKF without at least modifyingthe R matrix in order to wel ght the measurement |ess.
Fortunately, this conditionis easily detectable by measuring the 2D distance between the epipole (computed
with an equation given in Section 3.3.3.4 as part of determining the epipolar ling) and the imaged landmark.
If this distance is below athreshold, then the projection of the epipolar line can be considered too short for a
reliable measurement. The parameter of the R matrix can be adjusted to reflect the increased uncertainty, or
the measurement can simply be ignored. We implemented this in the simulator, athough the problem does

not occur frequently enough to reliably measure the improvement offered by increasing the uncertainty.

4.2.2 Two Projectorsand Camera Are Collinear

We have aready seen that the algorithm requires at least two projectorsto provide six DOF tracking. Let us
supposethat the systemisimplemented with exactly two projectors. If thecamera’s center of projectionlieson
the line defined by the centers of projection of the two projectors, then the camera pose can only be estimated
tolieonthat line, but its position aong that line cannot be estimated.

Hereis oneintuitiveargument supporting thisclaim. Refer back to the visualization of the a gorithm pre-
sented in Section 3.4. Thisconfiguration would correspond to the two lines specified in that visualization (one
line between the camera’s center of projection and each respective center of projection of the two projectors)
becoming the same line. The point of that visualization was that the estimate of the camera’s pose would
converge to the intersection of the two lines. However, in this case, the two lines are the same, and thusthe
intersection isthe entire line.

A more rigorous argument uses the fact (noted in Section 2.3.2) that the fundamental matrix is defined
only to within a scale factor. In one sense, this scale factor is a parameter of the state that is not reflected in
the measurements. We can think of the state with the scale factor « explicitly indicated:

s=|[ax; ayr az G 1 p1 Ve vy U Vg Vg U,

Itisalso truethat thematrices U, and U, that describe theintrinsic parameters of the camera and projector
(respectively) are defined only to within a scale factor [McMillan97]. Let us denote these two scale factorsby

~1 and v2. The combined effect of these three scaling factorswill result in a scale factor a+y; v, being applied
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to the matrix F' as compared to some normalized form of F' (e.g. normalized such that the entry in the third

column of thethird row is 1.0). This scale factor will also multiply the coefficients of the epipolar line.

avy1y2 A
Fm/ = 0471')/23

avy1y2C

The normalizing factor for the epipolar linewill then be

Ve1mA) + (01172B)? = a2V A% + B?

and thusthe scaling factor will have no effect on thefinal, computed lineeguation. Thisargument alsoimplies
that the scale factors associated with the matrices U, and U, do not affect the line equation. This latter result
isgood; these scale factors are arbitrary, as noted above. The former result, however, impliesthat so long as
these scal e factors are the only ones applied to the state, they cannot be estimated, since they do not affect the
measurements. That is, if only the projector that gives rise to this scale factor is used, the scale factor cannot
be estimated, and thus the estimate of the camera can be constrained only to within aline in space, which
is the line defined by the projector’s center of projection (a point) and the computed offset to the projector
[z ay; az; )b (@vector, indicating a direction of trandation but not a magnitude).

With a second projector a a known pose, however, there is a second way that we think of the state every
timethat second projector isused to add a constraint. That isastate with adifferent offset in both the position

and orientation.

S=| Bra PByz Bza 0 ¢ p ve vy v, Vs Vs Uy

If the camera is collinear with both projectors, then we can write

T2 L1
3 Y2 =(a hn
Z9 Z1

and by an argument anal ogous to the previousone, the multiplier ¢ between o and 3 will not affect measure-
ments. Thus we are again only measuring [ z; y; z1 ], which defines the direction to the projector. We still

have no information with which to measure «, the magnitude of trandation.
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This gives an argument for the necessity of two projectors and to the condition that the system is unob-
servableif there are exactly two projectorsand the true camera pose lieson theline defined by thetwo centers
of projection of those projectors. Thisargument should be tempered by noting that unlessthe camera stayson
or near thisline (as opposed to merely passing throughit), the unobservable condition is not maintained, and
the tracking will not be disturbed. We can define “staying on the ling” more precisely by using the P matrix
which contains the uncertainty of the current estimates of the state parameters. Only if the valuesin the P
matrix that give the uncertainty of the position parameters grow continuously will the tracking be affected.

A final comment isnecessary onthisconfiguration. Given that the configurationisunobservable, it follows
that configurations“near” thisone, such asthe camera being near the line contai ning thetwo projector centers
of projection, are necessarily unstable. If the cameraisasmall distance away from thisline, there will be very
little information about where the camera lies aong the direction of the line. This could lead to problemsin
tracking the pose of the camera along the line, sincethere will belittleinformation inthat direction. Thiswill
be evidenced by greater uncertainty in that directionin the P matrix). This may lead the EKF to attributethe
error to theother parameters and make correctionsin asuboptimal direction at agiventimestep. Thisproblem
can be avoided by adding more projectorsin such away that no threeare collinear, or by placing the projectors

in poses that the user cannot reasonably reach, such as on the ceiling.

4.2.3 World-space Pointson a Critical Surface

It can be shown that three di stinct camera off setsfrom the projector can be computed from the correspondence
of aset of pointsthat lieon certain quadric surfaces[Maybank92g]. A summary of that proof (which discusses
reconstruction of motion of asingle, calibrated camera) is given here and adapted for the case of determining
pose of the camera with respect to a projector.

Recall the epipolar constraint m” F'm/ = (. Suppose that we are given a set of pointsin correspondence
m <+ m’. Let us suppose that we have two candidate solutionsfor the pose of the camera, described by the
fundamenta matrices F' and . Notethat the only difference between /" and G isin that portion of the matrix
determined by the essential matrix—i.e. not to adifference in theintrinsic parameter matrices for the camera
or for the projectors.

Let us assume, without loss of generality, that the projector islocated at the origin. It follows from the
epipolar geometry that

(Fm A Gm) || m'.

That is, since m’ is perpendicular to both F'm and Gm (by the epipolar constraint), it must necessarily be
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parallel to another vector that isitself perpendicular to both Fm and Gm. If wewritethetwo candidatecamera
poses as (1) rotation R and trandation @ and (2) rotation .S and trandation b, then the proj ective expansion of

thisparale conditionis

m’ = R[((Sb A Sm) - Ra)m — ((Sb A Sm) - Rm)a]

We want to place conditions on the world space point M that generates the correspondence m <> m’. Let us
use the scale factor » to denote the distance from the projector pose to the point M, am = M and the scale
factor y to denote the distance from the first candidate camera poseto M, ym’ = M. Another way of stating

the epipolar constraint isto express that the point M isfixed in space:

ym’ = R(xm — a)

If we solvethisequation for « and substitute M = xm, we get a quadric surface.

(SbASmM)-Rm—(SbASmM)-Ra=0

This surface is known as the critical surface. It expresses an arrangement of pointsin the world that, when
used asthe pointsof correspondence between two i mage planes (thecameraand projector), yieldstwo different
poses for the camera. A second equation is obtained by interchanging the roles of the displacements (R, a)
and (S, b).

Note that this surface contains the origin (the projector position), and both candidate camera positions a
and b. It aso containsthe linesfrom the originto « and . Of the quadrics that are non-singular under affine
collineations, only hyperboloidsof one sheet can contain lines®. Certain degenerate forms of hyperboloids of
one sheet, such as dliptic cones and hyperbolic parabol oids, can also be critical surfaces.

The questionthen arises of how many candidate posesfor the camerathere can be. Theanswer isthat there
can bethree such poses. Thisis proven by showing that two candidate poses uniquely determine athird pose.
Thisinturnisdoneby expressing the quadric surface with the three displacements and proving equality of the
surfaces [Maybank92a]. An alternate method of proof isto use the space of essential matrices [Faugeras93].
Thisisamanifold embedded in an eight-dimensional projective space (i.e. the projective space described by
anine-tuple of numbers, which is only defined up to asingle scale factor). The shape of the projective space

comes fromthe structureof the essential matrix: a3 x 3 matrix defined up to ascal e factor. Themanifoldisde-

5Virtual quadrics contain no real points. Ellipsoids, lliptic paraboloids, and hyperboloids of two sheets cannot contain lines.
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fined by propertiesof essential matrices, notably that the determinant of an essential matrix must be zero. This
implies that the equations defining the manifold are of degree three, there can be at most three intersections
of the manifold with alinein the eight-dimensiona projective space.

This conditionisof course unlikely to occur in practical operation of the proposed tracking system. How-
ever, by definition of the projection operator that defines the projector (and the camera) geometricaly, if the
points (or » most recent points) selected in the projector image planeform an elipsein that image plane, then
the world-space points must lie on an eliptic cone. In addition, it isknown [Maybank92d] that if the world-
space pointsare “near” acritical surface, then the computation of the camera motion is unstable. This could
create difficultiesfor an EKF, which will need to disambiguateamong the possible solutions. It may bethat the
EKF will aready be close enough to the correct solution that it will convergeto it, but the multiple solutions
could be close enough to lead the EKF to an incorrect solution.

Also notethat for this condition to occur over some finite length of time, the camera must remain on the
critical surface. Also note unlessthe projectorsare aligned in restricted geometric configurations (e.g. shar-
ing the optical axis), this condition cannot occur simultaneously for multiple projectors. 1t may be that the
constraints from a second projector eliminate one or both of theincorrect candidate solutions.

Even if thisreduces the potential solutions, the fact remains that at a given timeinstant, it may be impos-
sibleto tell which of as many as three solutionsis correct. This ambiguity could cause the EKF to move the
estimate of the camera parameters towardsan incorrect solution, affecting therate of convergence and stability

of the agorithm.

4.24 Fivelmage-plane Correspondences

Another configuration that can demonstrate the types of difficultiesthat an agorithm using the epipolar con-
straint must overcomeisto look at a restricted set of projected landmarks. Thisis not a practical case in the
sense that an implementation would never purposefully limit itself in this manner, but this discussion does
lead to greater insight of the issues presented in the discussion of theoretical limitations.

Suppose we are restricted to using only five points in the image plane of each projector. Then there are
ten solutionsavailable for the direction between the camera and each projector. Notethat | say “direction” to
indicate that the scale factor that is unobservable between a camera and a single projector is neither observ-
ablein this situation nor accounting for the multiplesolutionsin thiscase. Thisfact wasfirst provenin 1913,
although an error in that proof was not corrected until later [Faugeras93]. The proof involvesthe construction
two sixth-degree curves in the homogeneous plane. Two curves of degree m and n will have in generd mn

intersections. Thuswe will have 36 potential solutions, and we will eliminate some of those asimpossible.
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Let us express the five pairs of corresponding points as follows [Faugeras93].

awa bbb cod,dedese

We aso have the (unknown) epipoles » and z’ in the two images. There isin each plane an image of the
absolute conic, the conic that isinvariant under affine transformations [Faugeras93]. To this conic from the
epipolethere are two tangents, say v and v inthefirst image plane and ' and v’ in the second. We know that
these tangents are in correspondence, although whether v « v andv < v',oru < v andv < u'is
unknown. Finally, we have the epipolar lines associated with each of theten points, five in each image plane.

We want to consider the intersections of the epipolar lines and the tangents with the line defined by « and
b inthefirst image plane and thelinedefined by «’ and &’ in the second image plane. These intersections must

be related by a homography H . This homography has the following form for corresponding pointsy and v/ .

, a 0
py = Hy = y
0 g
We apply thishomography to the intersection points of the three epipolar lines defined by ¢, d, and e (and the
corresponding pointsin the other image plane), and to the intersection points of the tangents to the absolute
conic. Taking ratios of these five equations gives us four quartic equations that express ratios between the
coordinates of the points. Some simplification and substitution yields two sextic equations [ Faugeras93].
The last step isthen to eliminate spurious solutions. In the simplification process, there were ratios taken.
We eliminateseven sol utionsthat make thedivisorsvanish. Wehave acollineati on between two homogeneous
planes. We eliminate twelve solutionsthat fall in the nullspace of this collinegtion. There are denominators
in the two sextic equationswhich we cannot allow to vanish. Thisyieldssix more solutionsto eliminate (plus
two solutions that made the divisors vanish and were already eliminated). That leaves36 — 7 — 12 — 6 =
11 solutions. It turns out that one of these solutionsis of multiplicity two, leaving us with ten solutions. A
complete proof of this number of solutionsincludes an a gorithm to compute the solutions[Faugeras93].
Again, it should be noted that thisconditionwould not occur in apractical implementation of the proposed
system, sinceit would use many more than five points. Even configurations*“near” thisoneof only five points
in each image—say five clusters of points—are unlikely to occur in any practical implementation. But note
that we take measurements one at a time. Thisimplies that the five most recent measurements (landmarks)
projected from a single projector and imaged by the camera will not yield a unique solution to the offset be-

tween that projector. If we assume that measurements are taken from the set of projectorsin an aternating (or,
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for more than two projectors, round-robin) manner, then it will require six full rounds with one measurement
from each projector to fully constrain the camera position. (Of course, an implementation need only find the
camera pose with two projectors, but a round-robinimplementation may proveto be more stable. It may also
eliminate the configurations discussed earlier inthissection, in the unlikely event that they occur.) Thisgives
usinsight into therate of convergence of thetracking algorithm. Thereisalimit to the amount of information

that existsin each constraint. Thislimit causes the algorithm to be slow to converge.

4.2.5 Six Image-plane Correspondences

Thisisin asense the limiting case between the case in which there as many as ten solutions given five point
correspondences and the case of ambiguous surfaces, inwhich there may be as many asthree solutions. Using
geometric invariants, it can be shown [Quan94] that with six correspondences, there are three invariantsin
the image plane which can be computed. By writing the sixth point as a projective linear combination of the
other five points (which without loss of generality form thecanonical basisof thethree-dimensional projective
space”) we can see that thethreeinvariantsare theratios of the four coordinates of the sixth (projective) point.

With an image of these six points, one can write three quadrati c equationsin these four coordinatesthat use
the six image-plane coordinates as coefficients, but none of these quadratic termsare squared terms [Quan94].
These three quadratic surfaces must intersect in 23 = 8 points. Four of these points are vertices of the tetra-
hedron of reference (which by construction are the first four pointsin the canonical basis). The fifth pointis
determined by thefact that for each quadratic equation, thereisaconstrai nt (repetitive between each quadratic)
that the it coordinates of each point must sum to zero. Thisimpliesthat the fifth point in the canonica basis
isalso an intersection point. Thisleaves uswith 8 — 5 = 3 solutionsremaining.

Given the methods for computing the invariants, thisimplies that with six pairs of image-plane pointsin
correspondence, we can compute the offset between the projector and camera up to, in some cases, a three-
way ambiguity. This establishes the minimum number of pairs of pointsin correspondence to achieve the
minimum number of solutionsfor any configuration of points. (Note that some configurations of pointswill
yield a unique solution or only two solutions.)

This three-way ambiguity is maintained as long as the camera remains on the critical surface (the hyper-
boloid of one sheet or its degenerate form) [Maybank98]. It can d so be determined by image metrics whether

anew image of the same six pointswill bresk the ambiguity or not.

6The canonical basisis[1000]7,[0100]7,[0010]7,[0001]7,[1111]7.



Shutter Location Variance
time u v ou Oy
16ms | 4812 438 | 05 0.6
479.6 451|102 03
457.1 63|11 08
4257 449 | 06 03
3143 1155|109 04
2516 1218 | 13 0.6
573.7 193|104 04
4328 230|06 04
5904 379 |06 05
2431 312|109 09
4165 392 |06 03
5357 250 |07 04
4796 452 |03 03
4ms 472.7 52506 05
5822 453 |05 0.6
4185 528 |04 05
4096 469 | 05 0.6
437.9 89|05 02
4489 152 | 06 0.6
3080 1235 |04 03
2467 1303 |05 04
565.1 27006 04
4257 309 |04 06
5823 452 |05 03
236.8 404 |05 04
527.4 334 (04 03
4ms | 4826 525|05 05
5920 455 |07 05
4200 465 |06 04
4286 524 |05 06
447.8 87|05 02
458.7 148 | 0.7 05
3179 1231 |05 0.3
2565 129.7 | 0.5 05
5746 266 | 05 0.3
4358 305|05 05
501.7 452 |1 04 03
2468 396 | 06 0.3
5372 332 |05 03
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Table 4.2: Variance of the landmark locationsin the detection experiment using both normal and fast shutter
times. Thisdemonstrates that our assumption that we can locate the pixel to within 1.0 pixels of noise should

hold with the strategy for imperceptible structured light presented in Section 1.3.1.
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Location Variance | Percentage

U v oy oy detected
4193 1145|032 0.18 100%
2321 1893|016 011 100%
2974 1831 | 0.17 0.10 100%
400.2 112.8 | 021 0.09 96%
4102 1188 | 029 0.9 100%
4189 955|023 0.05 100%
4300 755|026 0.03 96%
4419 810|022 0.05 100%
5304 885|019 0.12 96%
5718 787|029 0.19 100%

Table 4.3: Landmark noise on the non-planar, non-white surface shown in Figure 4.6. This environment was
constructed to be similar to the primary intended application, that of ultrasound-guided needle biopsy. Land-
marks 2, 4, 5, 8, and 10 imaged inside the medical model; the other landmarksimaged on the curtain.
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User CameraSpeed | RegistrationError  Position Error  Orientation Error
Hertz pixels mm (avg) mr (avg)
1 200 0.84 1.18 141
120 1.96 252 2.95
60 5.56 6.94 8.15
30 15.66 17.55 24.23
2 200 0.69 1.46 172
120 1.39 2.98 3.60
60 4.60 8.64 10.63
30 10.83 22.66 28.38
3 200 0.84 1.38 172
120 1.98 295 3.72
60 5.43 8.02 10.22
30 14.23 18.20 23.15
4 200 0.54 0.92 111
120 115 185 2.34
60 3.12 4.94 6.42
30 7.78 12.24 16.60
5 200 0.92 1.40 1.58
120 1.87 2.85 3.24
60 6.02 8.58 9.78
30 12.18 16.69 20.62
6 200 0.64 0.90 115
120 137 1.93 250
60 3.61 5.30 6.87
30 8.05 11.73 15.78
7 200 0.48 0.89 1.03
120 1.00 1.86 221
60 2.63 4.95 5.78
30 6.76 12.39 14.95

Table 4.4: Performance metricsfor the user study. Each metric was measured at four different camera speeds,
using the optimal noise parameters determined for that speed givenin Table 4.1. The registration error isthe
RMS error over dl frames, which is higher than the per-frame average. One could argue that thisis unneces-
sarily pessimistic sincetheuser will see error in unitsof the per-frame average, notin RMSunits. Theposition
error isgiven in millimeters and isthe per-frame average of the position error. Similarly, the orientation error
listed isthe per-frame average of the orientation error, in milliradians.



User Camera Average Maximum
Speed | spp — Sop  Up— Uy ap S0p —Sgp, Vp — U, ap
Hz mm uL a mm uL a
1 200 1.18 0.0711 0,514 14.35 0.517 8.21
120 2.52 0.0707 0.497 23.48 0.490 754
60 6.94 0.0679 0.463 65.88 0.511 6.78
30 17.55 0.0591 0.406 103.64 0.395 492
2 200 1.46 0.0653 1.066 9.47 0.280 15.90
120 2.98 0.0660 0.985 21.50 0.290 14.00
60 8.64 0.0639 0.806 B55.77 0.275 11.89
30 22.66 0.0624 0.593 109.79 0.209 7.52
3 200 1.38 0.0663 1.062 16.10 0.426 36.30
120 2.95 0.0667 0.998 27.64 0.437 30.92
60 8.02 0.0671 0.871 77.03 0.421 21.05
30 18.20 0.0617 0.677 138.17 0.275 5.77
4 200 0.92 0.0357 1.090 10.29 0.391 14.30
120 1.85 0.0362 0.993 16.36 0.267 12.61
60 494 0.0357 0.829 30.74 0.249 9.71
30 12.24 0.0329 0.567 81.30 0.150 554
5 200 1.40 0.0590 0.892 13.48 0.595 7.01
120 2.85 0.0589 0.836 39.94 0.559 577
60 8.58 0.0586 0.731 104.76 0.520 5.27
30 16.69 0.0447 0.562 110.69 0.311 4.49
6 200 0.90 0.0300 1.497 531 0.259 25.66
120 1.93 0.0315 1.351 12.23 0.252 19.93
60 5.30 0.0331 1.080 31.88 0.243 13.49
30 11.73 0.0316 0.656 66.33 0.226 6.23
7 200 0.89 0.0280 1.043 9.56 0.274 29.87
120 1.86 0.0284 0.955 16.87 0.276 18.57
60 495 0.0296 0.794 52.53 0.240 14.90
30 12.39 0.0283 0.556 113.41 0.207 10.91
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Table 4.5: Average and maximum values of the parameters of position estimation error from the user experi-
ments. Notethat the unitsfor the position error are millimeters, to avoid printing unnecessary decimal places,
whilethe units for the velocity and accel eration terms are meters per second and meters per second squared,

respectively.



User Camera Average Maximum
Speed | sgo— Sy, Vo — U, a, 50,0 — 55, Vo— U, a,
Hz mr % % mr % %
1 200 1412 0.0788 0.274 1541 0.5195 3.44
120 2.945 0.0783 0.270 33.29 0.5151 3.19
60 8.150 0.0785 0.261 61.45 0.5067 2.26
30 24.226 0.0797 0.244 123.62 0.4715 1.98
2 200 1.720 0.0833 0.467 13.43 0.6627 6.23
120 3.595 0.0821 0.441 25.19 0.6602 5.38
60 10.626 0.0812 0.375 82.40 0.6708 3.93
30 28.384 0.0808 0.321 169.77 0.5378 3.68
3 200 1.723 0.0983 0.512 19.84 0.9309 11.04
120 3.715 0.0965 0.490 41.42 0.9520 9.35
60 10.219 0.0954 0.448 87.76 0.8369 6.10
30 23.146 0.0892 0.383 190.11 0.7170 421
4 200 1.106 0.0447 0.451 14.47 0.7500 8.89
120 2.338 0.0431 0.417 21.52 0.6694 547
60 6.424 0.0430 0.361 53.92 0.5102 4.15
30 16.604 0.0431 0.270 103.36 0.2084 2.22
5 200 1.580 0.0585 0.456 14.12 0.4910 4.43
120 3.239 0.0569 0.435 44.30 0.4550 3.39
60 9.782 0.0555 0.394 112.30 0.4265 3.18
30 20.620 0.0479 0.329 136.22 0.2716 291
6 200 1.148 0.0537 0.643 7.73 04557 12.84
120 2.503 0.0535 0.584 18.49 0.4465 1231
60 6.866 0.0550 0.470 56.48 0.4209 5.91
30 15.780 0.0541 0.307 106.01 0.3926 2.69
7 200 1.026 0.0319 0.450 11.24 0.4868 8.35
120 2.212 0.0313 0414 20.74 0.4759 7.07
60 5.782 0.0316 0.352 50.24 0.3685 6.79
30 14.947 0.0331 0.257 86.62 0.2817 4.84
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Table 4.6: Average and maximum values of the parameters of orientation estimation error from the user ex-
periments. Again, take note of the units of orientation error, milliradians, and the units for angular velocity

and angular acceleration, radians per second and radians per second squared, respectively.



User Camera | Position  Orientation Registration
Speed | Correction Correction  Correction

1 200 0.903 0.908 0.875
120 0.899 0.898 0.872

60 0.920 0.922 0.872

30 0.939 0.918 0.878

2 200 0.910 0.911 0.855
120 0.923 0.929 0.858

60 0.953 0.948 0.863

30 0.958 0.955 0.872

3 200 0.905 0.902 0.853
120 0.912 0.915 0.856

60 0.938 0.938 0.861

30 0.950 0.946 0.854

4 200 0.896 0.889 0.840
120 0.914 0.920 0.841

60 0.957 0.960 0.850

30 0.971 0.963 0.856

5 200 0.904 0.906 0.859
120 0.907 0.912 0.861

60 0.937 0.946 0.872

30 0.952 0.954 0.879

6 200 0.898 0.903 0.834
120 0.924 0.936 0.838

60 0.967 0.969 0.856

30 0.976 0.974 0.869

7 200 0.898 0.892 0.832
120 0.914 0.918 0.839

60 0.960 0.965 0.845

30 0.965 0.969 0.860
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Table 4.7: Percentage of error after a predictor phase that remained after the subsequent corrector phase mea-
sured in the user experiments for each of the three types of error.

8

Camera Speed

200

120

60

30

~NoOUNWNRC

81
8.0
7.8
44
7.6
4.3
3.7

13.0
126
126
8.4
12.3
8.5
8.0

20.1
20.1
195
14.9
21.2
16.0
14.0

284
28.5
235
21.3
27.8
234
217

Table 4.8: Number of frames with landmarks successfully detected in order to achieve convergence to under
2.0 pixels of registration error. These numbers are according to the performance model for the user experi-
ments. With the camera speed, these numbers can be converted to a bound on the number of milliseconds of

latency.



Chapter 5

Extensions

In this chapter, | discuss extensions to the proposed system. This chapter is separated from the
previous two since none of the work described here has been implemented, even in simulation.
However, the specification is complete enough to separate it from amere listing of future direc-
tions for research, as appears in Chapter 6. There are two quditative types of extensions. One
extension, suggested by the analysisin Section 4.1.6, analyzes the performance improvement we
could expect by adding other sensors, such as accel erometers or rate gyroscopes, to animplemen-
tation using normal-speed cameras. The other extensions allow the algorithm to estimate quanti-
ties, such as the cameraintrinsic parameters, projector parameters, and surface geometry, in real
time. All these parameters will affect the measurements. In theory, any or al of these parameters
can be added to the state and estimated simultaneously. | will discuss each of thesein turn and
give new state vectors and state transition matrices for each of these quantities.

5.1 Adding Inertial Sensorsto Decrease Dynamic Error

The user study in Section 4.1.5 showed that the a gorithm performed well in simulation with 200 Hz cameras.
It may not be practica to requirethis specialized equipment in order to achievethelow registrationerror were-
quirein our intended application. Thusthefirst extension we consider isthe addition of inertia sensors. Such
devices have been demonstrated to reduce dynamic registration error in AR systems [Azuma95, Foxlin9g].
With the analysis in Section 4.1.6, we see that there can be significant error in the predictor phase of the
EKF-based a gorithm. While most of thiserror onagiveniteration can beattributedto poseerror that remained
after the previous corrector phase, this does explain how the error arose after having reached a converged
(correct) solution. That poseerror resulted from being unableto correct theerror incurredin previouspredictor
phases. We incur such error even on the first iteration in which the camera moves after the pose has been
correctly estimated. The error in pose prediction resultsfrom not having accurate estimates of the vel ocity and
acceleration of the components of the camera pose. This can occur in two ways: applying the “best” model

of dynamic motion with poor estimates of the velocities and/or accelerations, or in applying a higher-order
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model than is necessary. That is, if the user is nearly still, then amodel that incorporates velocity is proneto
introduce error until it can properly estimate the vel ocity to be nearly zero. Thus one appealing direction for
further research isto improve the predictor phase of the agorithm by incorporating inertial sensors into the
system.

Suppose we add trand ational accel erometers to directly measure components of trand ational acceleration
or angular rate gyroscope (ARG) to directly measure angular velocity. That should reduce the error in the
pose that is predicted. Work in our lab [Weber98] has shown that the devices can be read at rates of 60 to
100 Hz without introducing a phase shift. At higher rates, the datais out of phase, athough this error can
be corrected with filtering. Even the moderate rates for which the device can be read without introducing the
phase shift allow the accel eration to be integrated to accurately compute relative position.

By reducing the error of the predictor phase, we should be able to reduce the error that remains after the
corrector phase. Thiswould reducethefinal registration error in agiven iteration that resultsfromerror in the
predicted pose. It isalso possible to infer a change in orientation by measuring multiple independent com-
ponents of translational accel eration, since the accel erometers will not measure accel eration around the same
point. We do not have experimenta evidence of the accuracy we could expect in measuring orientation with
this strategy, however, and thus we will leave analysis of such a system for future work.

By incorporating the accelerometers, we should also be able to reduce the error in the estimated transla-
tional velocity; however, we are not yet sure by what amount. We will thus assume that the error in trans-
lationd velocity is no worse than when we estimate it only from the camera’s view of the structured light.
Finally, we of course would have a better estimate of the acceleration than the numerical differentiation of
position that would occur in the EKF. The accel eration error would be due only to error in the accel erometers
(around 0.06 meters per second squared for many commercia accelerometers[Titterton97, Verplaetse9d5]) and
to changein the acceleration since the previous accel erometer measurement. We measure thislast quantity in
the simulator, at 0.0336 meters per second squared per second.

If wewereto add ARGsto theuser’shead, we coul d expect to reduce theorientation component of theerror
that we incur in the predictor phase. Commercial ARGs achieve errorsin angular velocity of as low as 0.5°
per second [Titterton97, Crossbow98]. Additionaly, thechangein velocity duringthetimeinterval will cause
error in our prediction. Thisof course, isthe accel eration, so we have already measured this quantity. Similar
to the case of estimating trandational velocity from trand ational accel erometers, we would expect the use of
ARGs to improve the estimation of angular accel eration, but we have no evidence of what the improvement
or final accuracy might be.

Let usreturn to the example of User 1 with 30 Hz cameras we examined in Section 4.1.6. Previous work
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in our lab has applied tranglational accel erometers to tracking of the user’'s head position [Azuma95]. That
system combined the origina version of the UNC optical ceiling tracker (with the hardware described in Sec-

tion 2.2.2.6 and the algorithm described in Section 2.2.3.2) with inertial sensorsin two ways simultaneously:
o with accelerometers in order to predict head position
e with rate gyroscopesin order to predict head orientation

That system reduced the error in position predictionto 1.1 mm and the error in orientation predictionto 0.18°
on average for a60 ms prediction interval. Another simulation tracked a missile with an EKF-based inertial
navigation system aided by one of alaser range finder, a multi-function radar detector, or an infrared tracker,
fixed on the ground [Titterton97]. That simulation found that the standard deviation of the error in pitch and
yaw would each be under 0.14° and the standard deviation of the error in position transverse to the direction
of motionwould riseto eleven meters after ten seconds, which isten percent above the noise of ten meters as-
sumed in theauxiliary sensor measurements. (Ten percent above our noise of one pixel with % millimeters
per pixel isabout 0.5 millimeters.)

Thusif werepeat thecal culation of theaverage errorsin positionand in orientation after the predictor phase

for the case in which we have accel erometers and ARGs on the user’s head, we get the following equations.

m m
sp—s, =~ 0.0006m+0.0591 m -0.0333s+ 0.5 (0.06 = T 0.0336 — - 0.0333 s) - (0.03335)2
S [ 3
~  2.5mm
D% 13.98° 13.98°
So—s, =~ 0.14°+ (0 55 + 3. -0.03339) - 0.0333s+ 0.5 - . (0.03335)2

0.18°

X

We then convert this to registration error and to latency as before. We assume that we maintain the same
reduction of registration error during the corrector phase as before (to 0.878 timestheerror before the corrector

phase, according to Table 4.7). We get aresult of the number

640 pix 640 pix

Registrationerror < 2.5 mm « 73 1mm T ° 58 640 9.9 pixels
9.9-0.878" < 2.0
=n > In (5:5) = n > 12.3 frames
=~ In0.878 -

Thisis far less registration error than we previously computed as the expected bound, and we have cut the

expected dynamicregistrationerror (i.e. thelatency) tolessthan half thepreviousamount. Notethat according
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to Figures 4.9 and 4.10, we rarely experience the amount of registration error this analysis predicts, since it
assumes that the position error and orientation error yield registration error in the same direction.

If we wereto add accel erometers to the system, we would need to change the state vector and state tran-
sition matrix, as well as write a new measurement function. The state vector and state transition matrix for

adding estimated accel eration would be as follows.

s=lzx y z 0 ¢ p ve vy V. Vg Vp U, Gp Ay G, dg dy Gp
TAL- I
A _
Aacc = At - I
O¢ | Og Is

In order to improve the readability, we give the state transition matrix in block form, using thematrix A given
in Section 3.3.3.1 for the state transitionin the basic a gorithm as a submatrix. I,, representsthen x n identity
matrix and 0,, then x n zero matrix.

Let us assume that we have threetrand ational accel erometers mounted in amutually orthogonal arrange-
ment. The new measurements are simply the accel erations given by the three accelerometers. These accel-
erations are given in a coordinate system that is relative to the camera coordinate system. Thus far, we have
tacitly assumed that we are storing in the state the position and velocity relative to the world coordinate sys-
tem. Thus our prediction for the measurements would be the current estimated accel erations rotated into the

world coordinate system.

@pred = Rye | ay

az
If the accelerometers are not mounted orthogonally to each other, then the above equation would need to be
modified to account for thisdistortion. This difference between orthogonality and thetrue directionscould be

reflected by applying the same difference to the rotation matrix.
Similarly, if we add ARGs to the system, then we need to predict their velocity measurements. Again, if

we assume that the ARGs are mounted orthogonally, then we use the vel ocity components stored in the state,
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add in the accel eration, and rotate it into the world coordinate system.

vg + At ay
vpred = Rwe | vs+Atay
v, + Ata,

The measurements given above are vectors. Note that thistill fitsinto the EKF framework, even though
in Chapter 3, the measurement was in fact a scalar. The addition of accelerometers and ARG could also be
specified with a series of scalar measurements. This may more accurately reflect the relative times a which
the devices can be read in a particul ar implementation.

Angular accel erometers can directly measure one of the quantitiesmissing in the above example. Current
technology can achieve errorsin the range of 0.07 radians per second squared [Titterton97]. However, if we
use thiserror in angular accel eration to recompute the expected worst-case registration error, it drops only to
9.75 pixels, and the latency dropsonly to 12.2 frames. Thus, one would not expect angular accel erometers to
improve performance greatly over trand ational accelerometers and ARG. If the ARG were removed from the
system and use of both trangl ational and angular accel erometers were considered, one would expect improved
performance over usingjust thetrang ational accelerometers. However, the accuracy of estimating the angular
velocity from the optica measurements and the angular accel erometer measurements is an open question.

Thisanalysisismeant merely to provideinsight to futureresearch. Theanaysisshowsthat withastandard
rate camera, the system would be greatly improved by using at least trandlational accelerometers and one of

ARG or angular accelerometers.

5.2 Estimating Surface Geometry

The most interesting quantity that can be estimated with this technique isthe geometry of the surface patches
that contain landmarks. | have said repeatedly throughout this dissertation that we do not want to rely on a
priori knowledge of the surface shape. However, if we accurately compute the camera pose, then we can use
that data with the correspondence determined to triangul ate the position of the surface point. The uncertainty
estimates of the state variablesin the EKF can tell us whether we can expect to accurately computethe surface
geometry.

This would imply that we maintain a surface model and update it with points. Of course, if the surface
is dynamic, then we would need to account for thisin the surface model. However, we have aready seen a

good tool for estimating thistypeof variable—the extended Ka man filter. We could incorporatevariablesinto
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the state specified in Chapter 3 or use a separate EKF to estimate the surface geometry. A sinusoidal dynamic
model that simul atesthe motion of the skin surface of abreathing patient could be measured by aconventional
tracking system and a set of LED affixed to a human subject.

The most interesting aspect of thisextensionistheimplicationit hasfor an AR system. Withthisinforma:
tion, the AR system would have exactly the data it needs to properly depict occlusion relationships between
real and synthetic elements of the scene. Thisisbecause with the surface model it becomestrivial to compute
depth to therea surface at any pixel of the cameraimage. A particularly clever agorithm for selecting pro-
jector pixels might predict where in the camera image alandmark might be detected and provide depth data
at exactly those pixels at which the system needs to paint synthetic imagery. This would avoid the expense
of computing a complete depth map that some AR systems have computed, as discussed in Section 2.1. With
even afew points, a2D convex hull algorithm and a rasterization a gorithm with an intelligent interpol ation
scheme might provide a reasonable image of thereal surfaces in the depth buffer.

It should be stated very clearly that thisisan extremely complex task. Whilesimilar tasksare attempted in
computer vision under the name of motion-and-structure algorithms, it isnot clear that the error propagation
fromthe“motion” portion of the computation to the* structure”’ portion of the computation can be managed, or
that a simultaneous computation in thisframework would be stable. These a gorithms have not to my know!-
edge used multiple sensors to determine the camera pose, so it islikely that an implementation of this system
that incorporates accel erometers or rate gyroscopes would be abl e to perform these computations. Because of
thevital importance of thedatato creating aconvincing AR environment, | believethisisapromisingdirection

for future research, as discussed in Section 6.2.

5.3 Estimating Intrinsic Camera Parameters

Theintrinsic camera parameters are those parameters that are invariant to the pose of the camerain the envi-
ronment, but determine the projection operator that maps the world onto the camera image plane, as defined
in Section 2.3. Camera calibration, or determining these parameters, is adifficult problem with even the best
off-line methods [Faugeras93]. However, at least one recursive algorithm to estimate the focal lengthin real-
time has been presented [Azarbayegjani95]. Simultaneously estimating the intrinsic parameters and the pose
(extrinsic parameters) is known in the computer vision literature as self-calibration.

In order to incorporate these parameters into the current framework for estimating the pose, we must ex-
tend the state vector and correspondingly add rows and columns to the state transition matrix, the process

covariance matrix, and the process noise covariance matrix. Of course, the size of the Kalman gain matrix
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will aso change, but since thismatrix isdefined by the equations of thefilter, | will not consider it here. Also,
the measurement function 2 (s~ ) remains the same, since the parameters added to the state here were aready
properly accounted for in the function given in Section 3.3.3.4. In that discussion, however, these parameters
were regarded as known, fixed constants. We now are regarding them as constantsto be estimated, with some
initial estimate given. Thus the system must now compute derivatives with respect to these parameters and
extend the Jacobian to include them.

Cameramodelsvary widely [McMillan97]. Ataminimum, thefield of view, aspect ratio*, and focal length
must be included. | will include image-plane offsets between the image-plane origin and the central optical
ray. Asnoted in Section 2.3, other parameters may be included. Including those parametersin the following
equationswould be littleextraeffort conceptually, but would significantly add to the density of the equations.

The following is an exampl e state vector and dynamic model to include the camera intrinsic parameters.
¢ theimage-planewidth w¢
¢ theimage-plane height g

o thehorizonta field of view &~

s=lzx y z 0 ¢ p ve vy v, v Vg v, Wc gc Ec
A | 03
Ajntr =
03 | I3

The intrinsic parameters for an AR system are quite likely to be constants or change infrequently, in which
case the dynamic model can treat them as constants.

Camera cdibrationis arequirement for VST AR. Although the camera parameters likely do not change
during operation of most systems today, focus can be a powerful depth cue and the ability to change it during
aperformance of atask may well provebeneficial. It would beaworthwhileeffort to allow the camera’sfocal
lengthto beadjusted inreal-timein order to determine whether thereisbenefit in allowingthis. Currently, this
would be atime-consuming procedure given the difficulty of camera calibration. The agorithm proposed in
this dissertation, however, providesan excellent framework for real-time estimation of focal length and other
intrinsic parameters. However, thisagorithm has not been tested, and self-calibration is sometimes regarded

as an unstable process. Also notethat this change has introduced (further) non-linearity to 4(s). What affect,

1 The aspect ratio isthe ratio of the horizontal to vertical imagesize. Specifying the horizontal and vertical fields of view is equivalent
to specifying asinglefield of view and the aspect ratio. The single field of view can be the horizontal, vertical, or diagonal.
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if any, thishas on the convergence or stability of the algorithmisadirection for further research. Aswiththe
surface computation, it isunclear how (or whether) multiple sensors that give information regarding camera

pose would improvethe stability of self-calibration.

5.4 Estimating Intrinsic and Extrinsic Projector Parameters

Autocalibrationrefers to the measurement of parameters that are internal to the tracking system (i.e. that the

user need not know), but affect the operation of the system. In this case, these parametersinclude the follow-
ing.

o thematrices U; that describe theintrinsic parameters of the projectors

o thematrices Ryw p,; that rotate the world to

o thevectors Ty p,; that trandate theworld to £

Like the intrinsic parameters of the camera, these parameters are also already properly incorporated into the
measurement function, so once again all that is necessary isto extend the state vector and the matrices of the

EKF with the appropriate symbols and expressions. These parameters can be considered constants.
s=lx y 2z 0 ¢ p ve vy v, vy vy v, wi ¢ & xi Y oz 0; b p;

Aproj =
proj 00 | 1o

Once again, the extrarows of the state transition matrix have 1.0 on the diagona and 0.0 el sewhere, reflecting
the dynamic model which assumes these extra values to be constant.
Autocaibration has shown to work for both the old [Gottschalk93] and new [Welch97] versions of the

UNC optical ceiling tracker, although in theinitia version, it was an off-line process.



Chapter 6

Summary

This chapter summarizes the results of the dissertation, directions for further research, and its
contributionto AR.

6.1 Summary

AR, as noted in Section 1.1, has yet to receive acceptance for many applications, principally because of the
problems achieving registration and designing a suitable HMD. The goal of this dissertation was to find a
better way to solve the problem of achieving registration than existing solutions. Two significant drawbacks
of our current vision-based tracking system are that it restricts scene movement and that it restrictslandmark
placement.

While no optical system can eliminate these restrictions, we have significantly reduced them with an ap-
proach that does not require the landmarks to be at known 3D locations. By requiring knowledge of only
the 2D positions of the landmarks, we have significantly reduced restrictions on motion within the environ-
ment. Since the landmarks are no longer physical objects but projected objects, we can move them around
the environment dynamically. We have removed the landmarks from the set of physical obstacles that might
impede the user’s progress in the application. For example, certain placements of the colored landmarks for
our vision-based system required the physician to reach around a target in order to perform a biopsy. Other
placements were susceptible to having the landmarks occluded during the course of the procedure, degrading
the quality of the registration achieved. These were clearly problemswe needed to overcome.

Thishasbeen donewithout sacrificing theaccuracy of thesystem. Weare till relying only on our ability to
accurately detect landmarks on the image plane of the camera, which isexactly the measurement on which we

currently rely. The algorithm uses the current estimated pose to predict aline on which the detected landmark
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should lie, and makes a correction to that estimate depending on the distance of the detected landmark from
theline. If the distanceis zero—i.e. the point isindeed on the line—then we learn no new information about
thecamera pose fromthat measurement. This predictor-corrector framework comes from our choiceto usethe
EKF. The correction mechanism withinthe EKF uses the Jacobian of the point-to-linedistance function along
with estimates of the covariance of the parameters to determine the direction in which to move the estimate
in the multi-dimensional parameter space.

We believethiswork has built asolidfoundation on whichwewill be ableto extend our work with tracking

systems. We now address future research.

6.2 Futurework

First and foremost, we plan to implement the system. We currently have projectors and cameras that we be-
lieve are suitable. Accounting for the delay between the time we instruct the projector to display a pattern
and the time we receive the corresponding image from the camera, however, has proven to be a somewhat
more difficult engineering problem than we had anticipated. This will enable us to implement the strategy
for imperceptible structured light described in Section 1.3.1. We plan to test the tracking system with the AR
ultrasound visualization system described in Section 2.1.2.4.

Using multiple point landmarks per frame or small 2D landmarks might improve the stability of the al-
gorithm. Intuitively, one might think that multiplelandmarks or 2D landmarkswould offer more information
content per frame than a single point landmark. Whether thisinformation could be distributed in such away
astotruly add useful datato the computations remains an open question. Recdl that one intuitive argument
for two projectors was that the epipolar lines associated with multiple landmarks generated by one projector
were closeto being paralld. Thusmorelandmarks per frame may not add much more useful information. The
distribution of epipolar lines varies significantly with the relative pose of the camera with respect to the pro-
jector. Thusthisstrategy may be useful only when the cameraisin certain poses with respect to the projector.
Also note that thisideawould reguire the algorithm to be able to solve the correspondence problem. Thisis
not trivial, but it may be that certain geometric rel ationshi ps between the camera and projector make the task
easier. If not, color or shape may be of use.

The analysis of the algorithm presented in Section 4.1.6 did not attempt to use semantic i nformation about
thetask or analysisof thecollected motion datato analyze the quality of themotion prediction. A more detailed
theoretical analysisof motion prediction[Azuma95] might improvetheaccuracy of theanaysis. A theoretical

analysis of the corrector phase might tell us whether there ismore information to be had in the cameraimages
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we get, something that we have felt intuitively but cannot see how to do—e.g. can we extract theangletowards
the “correct” 2D location for the landmark on the camera image plane?

Chapter 5 gave four extensionsto the system. Thefirst was the addition of inertial sensorsto improvethe
accuracy of the system, which appears to be necessary according to the analysisin Section 4.1.6. Given the
specialized nature of the cameras the system would require without inertial sensors, this extension offersthe
potential for a cost-effective implementation.

The method allows the incorporation self-calibration. This term is defined in computer vision literature
as the simultaneous calibration of the intrinsic and extrinsic parameters of the camera. These terms were de-
fined in Section 2.3. This task has been performed successfully with similar algorithms [Azarbayejani95,
Maybank92b].

The framework also allows for auto-calibration [Wel ch96] of the pose of the second (and successive) pro-
jector(s) and theintrinsic parameters of the projector(s). These values arefixed, but difficult to calibrate accu-
rately. They areinternal tothesystem, and should not be of concern totheuser. With the proposed framework,
however, we can refine the estimates of these parameters. This can reduce the calibration effort required to
Set up the system.

The proposed system already possesses exactly the information required to determine point-wise scene
structuredynamically: relative poseand correspondence between image planepoints. Thisenablesthe system
to compute depth relationshipsfor the AR system to properly determine occlusion between real and synthetic
objects a every camera pixel which has (recently) seen a projected landmark. Given the success of similar
filter-based a gorithmsfor scene reconstruction, one could imaginethe inclusion of scene structurein the state
to be estimated by thisalgorithm. However, for an AR system, itisonly necessary to know the depth for pixels
at which synthetic objects are painted. The a gorithm could select projector pixelswhich, based on computed
surfaceinformation, arelikely to image at the camera pixel sthat synthetic objects occupy. Thiswould givean
efficient depth map that, whilenot necessarily compl ete, would cover (inthe best case), exactly those (camera)
pixels at which the system needs the depth. A hole-filling a gorithm similar to aflood fill painting agorithm
might be a useful tool in the case of afew scattered pixels of depth data.

The ability to dynamicaly move landmarks within the scene opens up the possibility to try to place land-
marks at scene locations or at camera image locations that are most likely to give new information (in direc-
tionsthat have not recently been sampled) or to improve the stability. Automatic selection of landmarks can
lead to a high frequency of landmark sightings. Infrequent landmark sightings have limited previous vision-

based systems.
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6.3 Contribution

Asaby-product of our design, we require no information about the geometry of the surface at which the user
islooking, and we allow the surface to change shape arbitrarily. The only requirement isthat the surface must
reflect enough light from the projector into the camerain order to accurately detect thelandmark inthe camera
image. According to our plansto use imperceptible structured light and the preliminary experiment to deter-
mine the expected noise (described in Section 4.1.5), this should reduce to finding a single bright point in a
binary image. Thisisamuch simpler task than the search for landmarks of a specific color or pair of colors
that we now use [State96a]. The search in the proposed system is aided by the epipolar geometry and the
prediction mechanism in the a gorithm.

We have aso increased the range of viewpoints for which we can acquire tracking data. The landmarks
must be in view to acquire tracking information, but with the strategy for dynamic placement of landmarks,
we increase the area over which landmarks can be distributed without recalibration of the system. Also, the
systemiscompletely scal ableinthe number of projectors, so one could easily add another projector toincrease
the tracking volume. Thiswould require another instance of the projector-to-projector calibration described
in Section 3.3.2.2.

Compared to our previous vision-based tracking system, landmark occlusion isless disruptive. With the
recursive formul ation based on the EKF and acquiring a single measurement at atime, failureto detect aland-
mark is not a catastrophic error. It merely fails to reduce the error covariance that results after the time-step
update to the estimated state.

An AR system must cdibrate the tracking sensor to the video cameras that provide the VST view. By
adding the tracking role to the cameras, we remove this difficult procedure from the requirements of an AR
system. Thiscomes at the cost of increasing the complexity of thetracking system, but thisseems areasonable
sacrifice given the lack of success we have had achieving registration in AR with current tracking systems.

With the strategy of dynamic structured light patterns, we create away to avoid the expensive task of iden-
tifying correspondence between landmarks that limits the performance of many computer vision algorithms
that use poi nt-to-point correspondence datato compute the camera pose. Thisalowsour systemtorunin real
time, which is beyond the speed of most computer vision agorithmsthat use this constraint. The simplicity
of the computation at each time step in the EKF is a strength of the proposed a gorithm.

The update rate of the system is limited only by the acquisition rate of the camera and the refresh rate of
the projectors. Both types of devices have witnessed great performance improvements recently. We believe

therewill be numerous inexpensive devices suitablefor this system in the near future.
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We are hopeful of building this system soon, given the impressive potential of the algorithm that we have
seeninsimulation. We believethat oncethesystemisimplemented, it will open many doorsto futureresearch,

not only the ideas given above, but a so by enabling new applications of augmented reality.
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