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Abstract
PETER JONATHAN LORENZEN: Multi-Modal Image Registration and

Atlas Formation.
(Under the direction of Sarang C. Joshi, D.Sc..)

Medical images of human anatomy can be produced from a wide range of sensor
technologies and imaging techniques resulting in a diverse array of imaging modalities,
such as magnetic resonance and computed tomography. The physical properties of
the image acquisition process for different modalities elicit different tissue structures.
Images from multiple modalities provide complementary information about underly-
ing anatomical structure. Understanding anatomical variability is often important in
studying disparate population groups and typically requires robust dense image regis-
tration. Traditional image registration methods involve finding a mapping between two
scalar images. Such methods do not exploit the complementary information provided
by sets of multi-modal images.

This dissertation presents a Bayesian framework for generating inter-subject large
deformation transformations between two multi-modal image sets of the brain. The es-
timated transformations are generated using maximal information about the underlying
neuroanatomy present in each of the different modalities. This modality independent
registration framework is achieved by jointly estimating the posterior probabilities asso-
ciated with the multi-modal image sets and the high-dimensional registration transfor-
mations relating these posteriors. To maximally use the information present in all the
modalities for registration, Kullback-Leibler divergence between the estimated posteri-
ors is minimized. This framework is extended to large deformation multi-class posterior
atlas estimation. The method generates a representative anatomical template from an
arbitrary number of topologically similar multi-modal image sets. The generated atlas
is the class posterior that requires the least amount of deformation energy to be trans-
formed into every class posterior (each characterizing a multi-modal image set). This
method is computationally practical in that computation times grows linearly with the
number of image sets.

The multi-class posterior atlas formation method is applied to a database of multi-
modal images from ninety-five adult brains as part of a healthy aging study to produce

4D spatiotemporal atlases for the female and male subpopulations. The stability of the



v

atlases is evaluated based on the entropy of their class posteriors. Global volumetric
trends and local volumetric change are evaluated. This multi-modal framework has

potential applications in many natural multi-modal imaging environments.
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Chapter 1

Introduction

1.1 Motivation

Medical image analysis assists clinicians in many tasks, including the following:
evaluating a patient’s disease state, evaluating the efficacy of a prescribed treatment,
or studying illness through population studies. In their analyses, clinicians draw upon
their knowledge of anatomy and their experience viewing medical images and tissues
directly. Historically, anatomists have encoded this prior knowledge of anatomy in
the form of an atlas. Such an atlas may be a set of drawings rendered by experts,
such as [75], or a photographic study as in [83]. Digital atlases, the subject of this
dissertation, naturally require computers. Several types of digital atlases, including
intensity-based, label-based, and probabilistic, are described in |99|. This dissertation
focuses on building atlases from multi-modal images.

Brain atlases are often used to study structural neuroanatomy: for surgical plan-
ning (e.g., in the planning of tumor resection where statistical atlases provide prior
probability models to constrain segmentation to localize critical structures [55]); for
instructional purposes |55]; for group studies where atlases are used to study structural
differences between populations (e.g., schizophrenics and normal controls |18, 19, 96]);
and to study morphological change such as in generative processes (e.g., neonatal brain
development |78]) and degenerative processes (e.g., gray matter loss due to Alzheimer’s
[97, 96]).

The fundamental impetus driving this dissertation is the desire to incorporate as
much anatomical information as possible into the problems of medical image registra-
tion and atlas formation. Mono-modality images do not capture all the information

representing the underlying tissue structure. The information that is provided by a



medical image is dependent on the physics and parameterization of the acquisition
process. For example, in computed tomographic imaging the attenuation of x-rays is
measured, resulting in excellent delineation of dense bone structure. Magnetic reso-
nance imaging relies on the relaxation properties of the dipole moments of hydrogen
atoms under the influence of magnetic fields. The resulting images are, typically, based
on three basic tissue parameters (proton density, T1 relaxation time, and T2 relax-
ation time) as well as flow characteristics. The process involves correlating a series of
radio frequency signal measurements with spatial location of the various tissue types.
Consequently, magnetic resonance images provide good soft tissue segmentation. The
different imaging modalities of magnetic resonance imaging provide complementary in-
formation about pathological structures. In the case of certain tumors, T1-weighted
images present good fat-tumor contrast whereas T2-weighted images show good tumor-
muscle contrast [59]. In multiple scleroris, contrast-enhanced T1-weighted images show
the active lesions, T2-weighted images show both new and old lesions, and proton den-
sity images highlight lesions near the fluid-filled ventricles [25]. In this dissertation, to
utilize the complementary information from multi-modal images, a model-based frame-
work is defined in terms of multi-class posterior probability maps where the classes
represent underlying tissue structures.

This dissertation presents a novel framework for multi-class atlas formation from
sets of multi-modal images. This framework is extended to the unbiased atlas setting
of [49]. These atlases represent anatomical variation present in populations [69, 32, 94].
Many images are mapped into a common coordinate system to study intra-population
variability and inter-population differences, to provide voxel-wise mapping of functional
sites, and to facilitate tissue and object segmentation via registration of anatomical
labels. Atlas formation from a population of medical images is an important problem

that is naturally expressed within the subject of computational anatomy.

1.2 Computational Anatomy and Atlas Formation

Computational anatomy [32] is the study of anatomical shape variability. Relating
anatomical shape to biological growth and function has roots in the seminal work of
D’Arcy Thompson in 1917 [93|. Thompson was interested in the comparison of related
forms through mathematical transformations rather than in the precise definition of
each form. This notion was extended to deformable templates [31] in which the space

of anatomical imagery is interpreted as the orbit under the group of transformations.



Specifically, computational anatomy belongs to the discipline of geometry governed by
pattern theoretic principles whose kinematics, that characterize the transformations, is
described in terms of concepts borrowed from continuum mechanics.

In the framework of computational anatomy, the atlas represents the common in-
variant structure in a population and the transformations relating the coordinate space
of the atlas to the coordinate spaces of the individual members of the population encode
the variability. This variability represents local structure under deformation or warp-
ing. An example of this devision into invariance and variability consider the healthy
human brain: in every such brain there exist precisely two lateral ventricles with no
two pair the same. Therefore, under the computational anatomical framework, an
atlas of healthy human brains should represent precisely two lateral ventricles and cap-
ture the variability through mathematical transformations that relate them. The atlas
formation method proposed in this dissertation falls within this framework.

Understanding anatomical variability requires high-dimensional image registration
where the number of parameters used to described the transformations are on the or-
der of the number of spatial elements describing the underlying space of the images.
There are many choices in this regard. In terms of ability to capture anatomic variabil-
ity, transformation models can be loosely dichotomized into small deformation models,
which associate energy to distance, and large deformation models, which associate en-
ergy to velocity on fluid flows. This dissertation applies the theory of large deformation
diffeomorphisms [22, 70, 68] to generate transformations. An important property of
diffeomorphic transformations is that they preserve topology. That is, these transfor-
mations do not fold or tear space and hence, preserve local structure.

An important component of image registration and, hence, atlas formation, is the
choice of image dissimilarity distance function. This is typically a scalar-valued function
defined on the Cartesian product X x X where X is the feature space of the image.
The dissimilarity function provides a number indicating how far apart two images are
and is chosen based on assumptions about the relationship between the features in the
images. When two images are in perfect registration this distance assumes its smallest

value. The most natural form of a distance function is a metric.

Definition 1.1 (Metric). Given a set X, a metric on X is function d : X x X — R.

For all x,y,z € X, this function satisfies the following conditions:
1. Non-negativity: d(z,y) >0

2. Identity of indiscernables: d(z,y) = 0 if and only if x = y.



3. Symmetry: d(z,y) = d(y, )
4. Triangle inequality: d(z,2) < d(z,y) + d(y, 2)

A simple example of a metric is the Euclidean distance between two points.

This dissertation uses multi-modal images where a statistical relationship is assumed
between image features. This suggests the use of information theoretic distances based
on Shannon entropy. These distances are typically not true metrics, typically failing

property (4) and, often, property (3).

1.3 Thesis and Contributions

Thesis: A sharp unbiased multi-tissue class atlas can be constructed from a
population of multi-modal image sets, comprised of an arbitrary number of
images per subject, using a Bayesian framework and large deformation dif-
feomorphic registration. Multi-modal image set correspondence can further
be achieved via composition of transformations associated with the unbiased

atlas.
The contributions of this dissertation are the following:

1. A theoretical development showing that minimizing sum-of-Kullback-Leibler di-
vergences, in either ordering of parameters, maximizes a lower bound on Bayes
probability of error, a measure of indistinguishability between probability distri-

butions.

2. A novel multi-modal image set registration method is presented. To the author’s
knowledge this is the only method that incorporates an arbitrary number of multi-
modal images per subject. An advantageous consequence of this framework is

inverse-invariant (symmetric) registration.
3. An extension of the above framework to unbiased multi-class atlas formation!.
4. The use of information theory to evaluate atlas stability.

5. An application of the atlas formation to an aging study involving multi-modal

brain image data from ninety-five subjects.

!The work presented in this chapter was done in collaboration with Dr. Sarang Joshi and Brad
Davis at the University of North Carolina at Chapel Hill. This work is heavily based on previous
papers [63, 49].



1.4 Overview of Chapters

The remainder of this dissertation is organized as follows:

Chapter 2 presents motivates the distances used to drive the multi-modal image
set registration and the unbiased multi-class posterior atlas formation. This includes a
discussion of Bayes probability of error and the bounds thereof in terms of the sum-of-
Kullback-Leibler divergences.

Chapter 3 presents the main theoretical contribution of this dissertation: model-
based multi-modal image set registration. The fluid mechanical framework for con-
straining the resulting transformations to the space of diffeomorphisms is described.
Existing information theoretic techniques for image registration will be described with
special attention given to multi-variate interpretations of mutual information.

In Chapter 4, using information theoretic distances developed in Chapter 2, the
concept of multi-modal image set registration is generalized to unbiased multi-class
posterior atlas formation. Existing unbiased atlas formation methods are also discussed.

In Chapter 5, atlas stability, with respect to the number of constituent subjects, is
explored.

In Chapter 6, the method from Chapter 4 is applied to MR images from a database
of 100 healthy subjects.

Chapter 7 concludes with a discussion of the contributions of this dissertation and
possible future work.

Appendix A presents the information theoretic background for Chapter 2.

Appendix B prodives a discussion on the likelihood of the actual optimum in the

multi-modal image set registration cost function being achieved.



Chapter 2

Probability Averages

Central to the image registration and atlas formation framework presented in this
dissertation is the creation of the average or most representative probability from a
given collection of probabilities. In this framework, the average probability distribution

p is defined in terms of minimizing a dispersion measure I' for a set of distributions
N
{pi}izla

p = argmin[’ ({pi}f\;l,p) . (2.1)
p

This dispersion measure takes the form of a sum of individual distances between p and

each p;,

N

I ({p:}is,p) = ZV ({pi,p}) - (2.2)

i=1
The distance ~y is chosen to be the Kullback-Leibler divergence, as there exists a
lower bound on Bayes probability of error P, between p and the individual p; in terms
of I'. More specifically, minimizing the sum-of-Kullback-Leibler divergences between
p and each p; maximizes a lower bound on indistinguishability between the p;. Since
Kullback-Leibler divergence is an asymmetric distance, two sum-of-Kullback-Leibler

divergences are considered. The two dispersion measures are

N

D ({p}allp) = Y D(pillp) (2.3)

i=1

and



N

D (pll{p:}ily) =D D(pllp).- (2.4)

i=1

Kullback-Leibler divergence D(:||-) and other fundamental information theoretic mea-
sures are defined in Appendix A.

This chapter is organized as follows: Section 2.1 shows that the generalized average
p= arg;nin D ({p;}}4]lp)
is the arithmetic mean and that the generalized average
p = argmin D (plH{p:}is)

is the normalized geometric mean; Section 2.2 defines Bayes probability of error; and
Section 2.3 presents bounds on Bayes probability of error in terms of the dispersion

measures D ({p;},]|p) and D (p||{p;}/L,) with their respective p minimizers.

2.1 Averages from Kullback-Leibler Divergence Sums

This section presents the sum-of-Kullback-Leibler divergence minimizers for the
dispersion measures in Equation 2.3 and Equation 2.4. These minimizers have been
presented in the literature, for example in [45] for the N = 2 case. The derivation for

the general case via the method of Langrange multipliers is included for completeness.

2.1.1 Arithmetic Mean from D ({p;}*,|[p)

Theorem 2.1 (D({p;}}¥,||p) Minimizer). Given a set of probability mass functions

{p},, the minimizer

13 = argminD ({pz}i\ial) )
peEP



where P s space of probability mass functions, is the arithmetic mean

1 N
= —Zpi(i’fj)~
N i=1

Proof. This can be shown via the method of Lagrange multipliers. First note that the

minimization described can be equivalently expressed as

N

subject to constraint ijeXﬁ(a:j) =1.

Set up the Lagrange multiplier expression to find the minimizer p

Zsz 1p2 ))_A<Zp($k)—1>. (2.5)

i=1 z;eX rrEX

Solving %L(p, A) = 0 for p in terms of A, yields

0 o 9
oy N = 2 gy o) ) = i )] = s\l = 1)
pz(xy
; p(z;)
1 N
= bl ;pw -

>/|+—‘

Z (2.6)

As \is chosen to satisfy the constraint that p(x) is a probability mass function, —% = %

That is,

Z p(x;) =1

SCjEX

S NIE

z;€X i=1



Therefore,

1
J:NZ U

With this minimizer the dispersion in Equation 2.3 can be further specified as

D ({pi}illp) = i <p1|| Zpg>

=N -JS({p:}ily) (2.7)
where JS; is the generalized Jensen-Shannon divergence with uniform prior m; = %

Jensen-Shannon divergence is defined in Appendix A.

2.1.2 Normalized Geometric Mean from D (p||{p:}}X,)

Theorem 2.2 (D(p||{p;}}¥,) Minimizer). Given a set of probability mass functions

{Pi}f\;l, the minimizer
p = argmin (p|[{p:}1L,) ,
peP

where P s space of probability mass functions, is the normalized geometric mean

B(z;) = <Hi:1 pi(xj)) .

D rex <H£V:1 pz’(xk)) "

Proof. This can also be shown via the method of Lagrange multipliers. First note that

the minimization described can be equivalently expressed as

= argmin Z Z p(z xx

pEP i=1 xeX

subject to constraint ijex p(x;) = 1. Notice that in this formulation the logarithm
used in the definition of D(-||-) has been changed from base two to base e. This refor-

mulation places the minimization problem in a natural setting for variational analysis.



10

Set up the Lagrange multiplier expression to find minimizer p

L(p,\) = Zplng —A <Z plar) — 1)

zreX
= p(z;)
=3 pla;)n @y (Z plax) — 1) : (2.8)
i=1 z;€X pilT; zpeX
Solving %L(p, A) = 0 for p in terms of A, yields

9 AR p(z;)
-3 apij)pm) i 28 ij)w(xj) -1)

=1 pl(xj)
1 ~op(a;) B
=1 (Epi(xj)) + (N =)
=0
= In ﬁp(%) (A — N)
paly pi(x;)
In (HM%)) =(A=N)+h (H%(%))

= p(z;) = e(x—1) (sz(xj)> ) (2.9)
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Continuing with the Lagrange multiplier method, next let

L
N

I = (HM%’))

21

and, hence, p(z;) = (¥ )Fj. Substituting this expression back into Equation 2.8,

yields

L(p,\) = f: 3 el3-Ury lnm Y (Z (v, — 1)

i=1 z;€X p’(xﬂ) zRE€X
N N
= e(%_l) Z Z I'; lne(%_1> + e(%_l) Z Z ['InTy
=1 z;eX =1 z;eX
N
—el3Y) Z Z [;Inpi(z;) — A Z e(%_l)Fk + A
=1 z;eX TREX
= (% — 1) e(%_l)N Z I+ Ne(%_l) Z [InT;
z;€X z;€X
N
—el3Y) Z [;In (sz(xj)) —eln) Z Iy + A\
z;€X i=1 rreX

Note that since

z;€X z;€X

=N ) Il

IEjGX

the above equation simplifies to
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Taking the variation with respect to A\, note that

0 0 v
51)(]9, A) = B\ _Nelw Z (le T, )

z;€X

Z(H)

z;€X

Setting %L(p, A) = 0 implies

A1) Z (le(x])> =1

1 -

D asex (Hi\il Pz’(%‘)) "

A
Finally, substituting this expression for e(ﬁ_l) back into Equation 2.9 results in

p(x;) = (H pi(z;) )

1

(HiNzl Pi(%’)) "

_ . O

ZxkeX (Hi\il pz(l'k)> v

With this minimizer the dispersion in Equation 2.4 can be further specified as
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D (pl{p:}L Z D(plIp:)

:ZZ p(x;) log ))

_ 5 . o p(;)
—m;p( ]>;1 gpl(xj)
=) p(z;)log H D x;j)))

. N

= Z p(z;) log [12, pil=) — ﬁ 193
z;€X <Zxk€X (HZZL pz(fl?k)) N) i=1 pz( J)

= =N plzj)log > (Hpi(xk))

z;€X rreX

= | —Nlog Z (H}h(m)) Z p(x;)

rpeX ZBjEX

s (i) a0

rreEX

2.2 Bayes Probability of Error

This section defines Bayes probability of error in terms of an N-hypothesis decision-
theory problem. In the probability average estimation setting, the hypotheses are the
individual probabilities of a population and their probability average. In the Section 2.3,
bounds on Bayes probability of error in terms of the dispersion measures D ({p;},]|p)
and D (p||{p;}/L,) with their respective p minimizers is presented.

Consider the N-hypothesis decision-theory problem of classifying an observation

as coming from one of N possible hypotheses {H;}¥ . Let {m}¥, denote the prior
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probabilities associated with these N hypotheses, and let {p(x|H;)}¥, denote the event
conditional probability distributions given the hypotheses. Using Bayes’ Rule, for an
observed event, x, the posterior probability of H; is
J(E ey — Pl
p(z)
_ plalf)m,
Zivzlp(ﬂHk)Wk‘

To minimize the probability of selecting the incorrect hypothesis, choose the hy-
pothesis with the largest posterior probability. This has the associated conditional
probability of error

P (el ;) = 1 — max{p(H,|)}.

With this notion of conditional probability of error the Bayes probability of error (or
indistinguishability) can be defined.

Definition 2.1 (Bayes Probability of Error). Bayes probability of error is the expected

conditional probability of error

P. ({pi, m}ily) = & [Pe(x|H;)]
= >~ pl) (1 - max{p(Hil2)})

= T) — x) max plz| )
= 30~ Lo plemp { TS
=1- Z miax{p(x|Hi)7r,~}.

This error results when one has complete knowledge of the probability distributions
with which to construct the optimal decision rule, that is, to select the hypothesis H; for
which the posterior p(H;|x) is maximal. Figure 2.1 graphically shows Bayes probability
of error for a set of four distributions. In practice, real distributions are not known so

P, cannot be directly computed. Therefore bounds on P, are desired.
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Figure 2.1: Bayes Probability of Error Example

Let {m;}i=1..4 be the a priori probabilities of hypotheses {H;};—1.4 being
true and {p(z|H;)}i=1..4 be the hypothesis-conditional likelihoods for event
x. In this example, the distributions are continuous and the prior proba-
bilities are taken to be equal. The blue shaded area represents the Bayes
probability of misclassification error. In the context of neuroanatomical
matching, H; could represent individual subjects, and z could represent
tissue structures such as grey matter, white matter, and cerebrospinal fluid.

15
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Under the uniform prior m; = % condition the Bayes probability of error becomes

1

Pe({pimibily) =1 = ) max{p(a|Hi) -}
- %;{mﬁx{pmﬂi)}.

If the p(z|H;) are identical, then the probability of error assumes its greatest value at
P, = % For example, if N = 4, then the probability of selecting p(x|H;) from the
set of identical probabilities {p(z|H;)}i=1..4 is P. = %. In this case, as N — oo, P, — 1.

2.3 Bounds on F.

2.3.1 D ({p:i}\,]|p) Bounds on P,

Theorem 2.3 (Jensen Shannon P, Bounds). Given a set of probability mass functions

{piYY, and associated priors {m;}N | with SN m =1,

1

v ()’ < 2 (e md) < 50 ()

where J ({pi, m}iLy) = H(m) — JSx ({pi}iy) and H(mw) = — SV mlog .
Proof. See |60] for an argument involving conditional entropy bounds on P, [41].

It immediately follows from Equation 2.7 and Theorem 2.3 that

1

v (0 = D (@I9)) < P (b < () - D (1)

N —
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Therefore, minimizing the sum-of-Kullback-Leibler divergence, D ({p;},]|p), maxi-
mizes (H(m) — D ({p; f\;1||f)))2, and, hence, maximizes the lower bound on P., or
indistinguishability between the p;.

Under the uniform prior 7; =  condition with D ({p;},[|p) = 0 the lower bound

becomes

! L~ N (1A 2_ (log N)?
m <H(7T) - ND ({pz z‘:al)) = m

In this case,

lim M = lim log N
N—x4(N —1) N—owo 2N
o L

Although, for a given N, minimizing D ({p;},||p) maximizes a lower bound on P, as
(log N)?
)
on P, can be defined using D (p|[{p:}i\,)

N — o0, that lower bound — 0. A much tighter, and more meaningful, bound

2.3.2 D (p|/[{p:}¥,) Bounds on P,

To find a lower bound on Bayes probability of error based on D (p||{p;}X;) it is
convenient to consider the average of pair-wise probability of errors between individual

p;. That is, a bound on
_ 1 N
Fe ({pl i\il) - N Z Pe({pivp(i mod N)+1})
i=1

is desired where P.({p;,p;}) is the Bayes probability of error when only p; and p; are

involved. From equation 2.10, note that

D (pl{pi, p;}) = D(p.p:) + D(p, p;)

=—2log > \/pi(x)p;(z)

zeX
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where

sy — /P
Zz’eX vV pi(x)p;(z’) ’

the normalized geometric mean of p; and p;.

Define the sum of pair-wise distances

=z

{pz Z p||{pzap(2 mod N)—I—l})

=1

= _2210gz \/pl T)Pi( mod )+1(T).

zeX

The next section will show that D* ({p;}X;) is bounded above by D (p|H{pi}y). The
implication is that any optimization problem that minimizes D (p||{p;};) also min-
imizes D* ({p;}I,). Additionally, it will be shown that D* ({p;}},) provides bounds
on P,.

2.3.21 D" ({p:},) < D (pl{p:}))

Theorem 2.4 (Generalized Holder’s Inequality). Let r; > 1 such that Zfilr—ll = 1.
Then the following inequality holds for fi(z) >0,

N 1
1

Il <[ (S se)
zEX i=1 i=1

Proof. For an argument using generalized arithmetic means see [37]. O]

Proposition 2.1. Let {p;(z)}, be a set of probability mass functions defined on ran-
dom variable X. Then

for anyi,j € {1,..., N} where i # j.
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Proof. By applying Theorem 2.4,

Z}(ﬂp<x>:2{<m)— I ot
k‘k;lj
(sin) T (ge)
i

Using the fact that each pg(z) sum to one,
2
N N
1
STy = (X futomo) -
rzeX k=1 reX

Using the inequality in Proposition 2.1, one can now show that D* ({p;}Y,) <

D (pl{pi}iLs).

Theorem 2.5 (Dp||{p;}Y,) Lower Bound). Let {p;(z)}¥, be a set of probability mass
functions defined on random variable X. Then

D* ({p:}X) < D (pll{p}y) -

Proof. This immediately follows from Proposition 2.1 and the definitions of D* ({p;} 1)
and D (p|[{p:}}L,).

> [lntn? = (5 bt

zeX

= Z Hpk(l")% < (Z \/Pi(l")P(i mod N)+1(93)>

2l
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Taking the logarithm of both sides of the above inequality and simplifying yields

NlogZHpk(I)% QZlogZ\/pz p(zmodN—l—l()

zeX k=1 zeX
N
1
= —2 Z IOg Z \/pz p(zmodN +1( ) S —NlOg Z Hpk(x) N
zeX reX k=1
N
= ZD@Hpiap(imodN)H) < D (pl{pi}ily) - O
=1

2.3.2.2  D(p||pi, Pimoan)+1) Bounds on P.({p;, p;})

Definition 2.2 (Bhattacharyya Coefficient). The Bhattacharyya coefficient for two
densities p(z) and q(x) is defined by

=S V@),

The Bhattacharyya coefficient is a divergence-type measure which can be geomet-

rically interpreted as the cosine of the angle between n-dimensional vectors.

Theorem 2.6 (Bhattacharrya Bounds on P(error)). Let py and ps be two probability
distributions and p = p(p1,p2) be the Bhattacharrya coefficient defined by them. Then
the Bayes probability of error for py and ps is bounded as follows:

% (1 — m> < P. ({p1,p2}) <

1
2
Proof. See [53] for an argument involving Kolmogorov variational distance. O]

The D(p||{p:,p;}) bounds on P. ({p;,p,;}) can now be computed as

D(pll{pi,p;}) = —2logp

1

= b D0l —

and, by Theorem 2.6,

o~ 3 D6I{pip;})

(1 — V1= e PilrD) < P, ({pi,ps}) <

l\Dli—‘
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When D(p||{pi,p;}) = 0, P. {pi,p;}) = % which is what is expected, namely p;(x) =
p;(z) for all x.
2.3.2.3 D (p||{p;},) Bounds on P,

The following inequality is useful in providing bounds on P, based on D (p||{p;} ;).

Proposition 2.2 (Bounds on €*). For x > 0,

1
1—x§e‘””§1—x+§x2.

Proof. The proof follows from considering the Taylor expansion of e™*. O
With Proposition 2.2, the following theorem can now be proven.

Theorem 2.7 (D(p||{p;},) Bounds on P,). Let {p;(x)}Y, be a set of probability mass

functions on random variable X. Then

1 1

== ==/ DEI{p ) < P ({p) <

R N \2
- D (5{p})

!
216N

where

N

_ 1

P, ({pz i\il) = N E Pe({pwp(z mod N)+1})7
=1

with P, ({pi,p;}) the Bayes probability of error between p; and p;, and

D (ﬁ“{pz}i\i1> = —Nlog Z ( ]%(%)) :

rpeX 1=

Proof. Lower Bounds:



% (1 _V1- e—D(ﬁn{pi,pj})) < P.({pi,p;})

1 a1 —
N — — — e ( H{ %P (i mo })
= N E 5 (1 \/1 e PIPi»P(i mod N)+1 )

IN

P. ({pi}ily)

N
_ % S V1 = e Pl ) < B, ({p}Y,)
i=1

N
SN 1 — ¢~ D@IPiP moa N)H})) < B, ({p}N
2 2N ;( ‘ < P (fpidin)

N
1 1 (o _
= ____ |N= —D@IRPiPimoa m+1}) < P, ({p AN )) .

Using the second inequality of Proposition 2.2, note that

N
11 - )
573N N = (1= D(®|{pi, i moa Ny41})) < P ({pz ,]il)

=1
N D ({pi},) < P. ({pi}iy)
2 2N 1 i=1) = e 1Ji=1
11 [ 2 N
=5~ v VD @IHPIL) < B ((p})

since D (pl[{pi}}L1) = D* ({pi}ks)-
The first inequality of Proposition 2.2 yields an upper bound on P, ({pl f\il),

22
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P. ({pi;p;}) < %e 3 D@IHpi ;)
11
D . N _ _ _l (II{ %P (i mo })
= P, ({p, i:l) < N ; 26 7 DGIHPiP( moa N)+1
R
— ﬁ Ze % (pll{pl »yP(i mod N)+l})
i=1
N 2
1 1_ 1/1_~
< — 1— - iy D (¢ mo | =D 75 (i mo
S 5N ; ( 3 D(P|{pis P mod N)+1}) + 5 (2 (BI{ps> 2 dN)+1})) )
N
1 1, 1 2
= 3~ WD ({pl i —N ; pH{pi,p(i mod N)+1})
11 al i
< 5 . WD* ({pz el (2_: p||{pzap(z mod N +1})>
11 .
=5 oyY e >+16—ND ()’
1 1 2
—+—D" ({p}X
=5 6N ({p =)
1 1 2
<=+ —D(p|l{p, ¥
since D* ({p:}X,) < D (p|{pi}Y,). =

Therefore, minimizing D (p|[{p;}}*,) maximizes the lower bound on P, ({p;},),
which, in turn, maximizes the Bhattacharrya lower bound on P, in Theorem 2.6. When

D (p|{p:}X;) = 0 the lower bound becomes 3, which is the Bayes probability of error

27
between two equally weighted and identical probabilities. Recall that P, is an average

of N pair-wise Bayes probability of errors so this lower bound is tight.



Chapter 3

Multi-Modal Image Set Registration!

In this chapter the main methodological contribution of this dissertation is pre-
sented: a framework for the registration of multi-modal image sets. The chapter be-
gins by defining multi-modal image sets and motivating their use. The registration
method is driven by the sum-of-Kullback-Leibler divergences, D (p||{p:}i\,), intro-
duced as Definition 2.10 in Chapter 2. Although D (p||{p;},) was defined for the
general N-observation setting, for clarity first consider the N = 2 case for registration
between two sets of multi-modal images. In Chapter 4, this framework is extended to
general N —way registration for atlas formation.

Modern imaging techniques provide an array of imaging modalities that enable
the acquisition of complementary information representing an underlying anatomy. To
utilize this information, numerous multi-modal image registration algorithms have been
developed. Most of these algorithms find a mapping between two scalar images. To
utilize multiple scalar multi-modal images of a single anatomy, however, define a multi-
modal image set, I, as a collection of m co-registered multi-modal images where, for a
given spatial location x, I(x) € R™. Figure 3.1 is a cartoon depicting two image sets
each with a different number of constituent scalar multi-modal images. Throughout
this dissertation, it is assumed that, for a given subject, the multi-modal images of that
subject are co-registered.

The problem of multi-modal image set registration is defined as follows: find a
mapping between two subjects for each of which is defined a tuple of multi-modal
scalar-valued images, I; and I,. More specifically, find a mapping that best matches
structure, subject to certain penalties, typically smoothness of the transformations.

Mathematically, find the mappings f : 2; — s and g : Qy — Q; where €2y and {2

'This chapter is an extension of portions of the recent MedIA paper on the topic [63].
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are the domains of image sets I; and I, respectively. This arrangement is depicted in
Figure 3.2. For the registration to be symmetric or inverse-invariant, the transformation
compositions f o g and g o f must result in the identity map.

The multi-modal image set registration has potential significance in various appli-
cations in medical image analysis that rely on the measurement of image sets. Multi-
modal MR imaging is standard in the protocol for evaluating pathologies such as tumors
and lesions. In this dissertation, results from T1-weighted, T2-weighted, and MR an-
giography are presented. Other, intrinsically multi-modal modal environments such as
combined inter-operative CT/PET acquisitions would provide such a setting for multi-
modal image set registration. Registration between images of individuals presenting
pathology and images of healthy subjects is a challenging task since space-occupying
lesions have to be treated differently from infiltrating lesions. Specifically, the reg-
istration needs to accommodate both local spatial deformation and local change of
image intensity. Existing registration methods involving scalar images based on image
brightness do not accommodate pathologies. Another potential application for image
set registration is the registration of images acquired from scanners of different field
strength. Image set registration across different scanners becomes an increasingly im-
portant component in multi-center studies which investigate developmental changes
covering multiple years and follow-up studies of diseases with change of scanner tech-
nology. Images acquired from different scanners potentially have different contrasts
and different spatial distortions. In functional studies, it is often desirable to register
functional data with structural data. Typically, a time series average is registered to an
anatomical image of the same subject. However, in producing the average functional
image, some information is lost. Therefore, a multivariate approach is desired [2]. The
registration method presented in this dissertation may address these problems as the
registration is based on underlying anatomical structure (e.g., tissue) rather than on
image intensities. These anatomical structures are modeled as class-conditional proba-
bility maps where, at each spatial location, a class-conditional probability mass function
is defined. In the formation of the class probabilities, classes can be explicitly assigned
to the various healthy and pathological tissues. This allows us to potentially model the
behaviors of the different tissues during the registration process.

Before discussing the problem of multi-modal image set registration, common meth-
ods for multi-modal scalar image registration in Section 3.1 are reviewed. Particular
attention is given to image registration based on mutual information in Section 3.1.1.

Multi-modal image set registration and the implications of using multivariate mutual
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SFLASH

I

Figure 3.1: Two Sample Image Sets

An image set is a collection of co-registered multi-modal scalar images.

information are developed in Section 3.2. Existing multiple image registration methods
and joint segmentation and registration methods are presented in Sections 3.2.2 and
3.2.3 respectively. In Section 3.2.4, the multi-modal image set registration framework
is described. Finally, in Section 3.3, results from several 3D multi-modal image set
registration experiments are presented. Next follows a brief overview of information

theoretic image registration algorithms.

3.1 Multi-Modal Image Registration Background

Many image registration techniques for multi-modal images involve information
theoretic distance measures on the space of probability distribution functions. Conse-
quently, a probability mass function is the typical feature to be matched during registra-
tion. Mutual information is one method that is typically used to register multi-modal
images and will be discussed in Section 3.1.1.

A method that minimizes Kullback-Leibler divergence between expected and ob-
served joint class histograms is presented in |13]|. A joint class histogram between the
image pairs is estimated by assigning each bin value equal to the total number of occur-
rences of the corresponding class label pairs. This technique, however, estimates class
labels as a preprocessing step and is used only for rigid registration between scalar
images. Another class-label approach uses joint voxel class distribution matrices that
represent local fuzzy correspondence of object class labels for pairs of corresponding
voxels is presented in [20]. This method also uses Kullback-Leibler divergence as a dis-
similarity criterion and is presenting in a non-linear fluid registration framework with

Gaussian regularization of the estimated transformations. The method presented in
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Figure 3.2: Image Set Registration

Registration of image sets I; and I,: finding a forward transformation f that
maps the domain of I; to the domain of I, and a reverse transformation g
that maps the domain of I to the domain of I;.

this dissertation is more general in that registration is performed on sets of images, of

arbitrary number, and is not constrained by an initial class labeling.

3.1.1 Mutual Information-Based Image Registration

The application of mutual information to image registration involving two scalar
images has been well studied. Mutual information, defined in Appendix A, measures
the statistical dependence between two random variables, or the amount of information
one random variable contains about the other. In the context of image registration,
the random variables represent image intensities. Multi-modal images of the same
scene, e.g., a human brain, represent measurements of different properties of objects
in that scene, e.g., white matter. These image intensities are not typically statistically
independent observations of the underlying physical reality. When multi-modal images
are aligned, measurements from one modality reduce the uncertainty in others; at
alignment, the mutual information between two images is considered to be maximal.

Rigid image registration by maximizing mutual information was first proposed in-
dependently by [15] and [103] and extended to affine image registration by [91]. Mutual
information-based image registration can generally be defined as finding the transfor-
mation that maximizes the mutual information similarity criterion subject to some

geometric constraint on that transformation, typically smoothness. For example, con-
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sider the problem of finding a transformation, A, that maps a moving image [, into
the space of a fixed image [;. Let X and Y be the random variables associated with
the image intensities in I,,, and Iy respectively. Estimates of the joint and marginal
distributions, pgy,(if,%m), pr(if), and py,(im), required by mutual information can be
obtained by simply normalizing the joint and marginal histograms of the overlapping
parts of both I,,, and Iy. These techniques are, naturally, sensitive to sampling issues.
The intensities iy and i,, are related by the transformation h. The mutual information
similarity criterion states that Iy and I,,, are aligned by the transformation iz, for which
I(X;Y) is maximal:

7 3 . . pfym(lf7 zm)
h = argmin Prm(if,im)log —F—————.
h 2.2 Py (i) pm (i)

ir im

Multi-modal image registration using mutual information is particularly attractive
in that no image preprocessing other than computing the marginal and joint distri-
butions is required and there are no functional assumptions regarding the relationship
between the intensities in both modalities. This suggests an automated approach where
neither segmentation nor landmarks are required. The mutual information similarity
criterion does, however, suffer from a few weaknesses: no geometric prior information
is incorporated, no assumptions about the data (e.g., known intensity relationships be-
tween modalities for certain structures) are incorporated, and there are sampling issues
to be addressed (e.g., probability distributions are derived from discrete histograms,
the smaller the scale the less robust the histograms).

A comprehensive survey of image registration via mutual information maximization
is given in [76]. The authors cover the major considerations: preprocessing, similarity
measure (entropy definition choice, normalization, and whether computed locally or
globally), transformation group (rigid, affine, and non-linear), implementation (proba-
bility distribution estimation and optimization techniques), image dimensionality (e.g.,
2D/3D and 3D/3D), number of images, modalities (mono-, multi-, and modality to
model), and applications to various human organs. High-dimensional image registra-
tion in the context of mutual information and other dissimilarity measures has also been
studied. A thorough investigation of these dissimilarity measures in high-dimensional
image registration is presented in [42].

A number of methods have been developed to refine the mutual information-based

image registration further through generalized versions of Shannon entropy, see |77| for
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a review. The most common extension is based on Rényi-Entropy [81, 113]. These
divergence measures are typically parameterized by a single continuous variable whose
optimization is believed to provide more accurate registration, through control of the
measurement sensitivity of the joint histogram, and faster convergence than traditional
mutual information [40, 74, 64, 65|.

3.2 Multi-Modal Image Set Registration

This subsection examines two topics directly related to the multi-modal image set
registration method presented in this dissertation: multiple-image registration methods,
beginning with multivariate mutual information, and joint segmentation and registra-
tion methods. In the final portion of this subsection, multi-modal image set registration

is presented.

3.2.1 Multivariate Mutual Information in Image Registration

As traditional mutual information has successfully been applied to the problem of
scalar multi-modal image registration, it is natural to consider applying multivariate
mutual information, defined in Section 7?7, to the problem of multi-modal image set
registration. To that end, consider the redundancy interpretation of multivariate mu-
tual information, defined in Section A.5.2. The scalar multi-modal registration example
of Section 3.1.1 is extended as follows: consider the problem of finding a transforma-
tion h that maps a moving image set I, into the space of a fixed image set I;. Let
X = {X;}ie1.p and Y = {Y;}i—1_ s be the random vectors associated with image in-
tensities in I; and I,, respectively. Further let ps (if,,...,3¢.), Pm (imys- - - s %my, ) and
Dim (ifys -y ifpyimys- - im,, ) be the probabilities associated with X and Y. The image
intensities {is} and {i,,} are related by the transformation h. The multivariate mutual
information (redundancy interpretation) criterion states that I; and I, are brought

into register by the transformation h for which the following is maximized:

~

h = argininH(pf ('éfv s ’ifF)) + H(pm (imv s ’imM))
- H(pfm (’éfl,. .. ,ifF,’éml, .. .,imM)) .

This image set registration formulation is problematic in that it requires main-

taining enormous sparsely populated joint histograms [9]. Most entries in the joint
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histogram will be populated with a zero or one, resulting in a very flat histogram.
Thus, multivariate mutual information should give a constant value for many transfor-
mations, leading to many local minima in the optimization cost function. Consider a
multi-modal image set registration involving four twelve-bit DICOM (Digital Imaging
and COmmunications in Medicine) images, an example of which is provided in Sec-
tion 3.3.2. Using multivariate mutual information would require the construction of
a 2412 ~ 2.8 x 10'-bin joint histogram, which is impractical. The number of spatial
elements for each image is 256 x 256 x 170 ~ 1.1 x 107 voxels yielding an average bin
count of % ~ 4 x 1078 voxels/bin. Given these difficulties, this dissertation
introduces a model-based approach where the registration is performed using underly-
ing anatomical structures. These anatomical structures are incorporated as a prior in a
Bayesian framework. Before describing the proposed framework, several several related

methods for multiple image registration are considered.

3.2.2 Existing Multiple Image Registration Methods

To address the challenges posed by extending mutual information to multiple image
registration, several groups have developed different approaches. An early example of
multivariate mutual information image registration involves co-registration of a time
series of PET images illustrating various stages of a radio tracer uptake [2|. This is an
example of the use of dissimilar images within the same imaging modality. The method
simplifies the joint histogram problem through data reduction via principal component
analysis to produce eigen-images. Another approach incorporates local spatial relation-
ships by extending mutual information to consider a neighborhood of pixels around each
point in the image space [85]. The idea is to use local spatial information in a tradition-
ally global statistical approach. The authors make the simplifying assumptions that
the intensity distributions are multivariate Gaussians and are independent. The inde-
pendence assumption allows for entropy to be summed along each direction in feature
space. A recently introduce method uses linear combinations of conditional entropies
to drive the registration [110, 111|. Upper bounds on the the conditional entropies are
developed based on joint histograms of lower dimensionality. All of these multivariate
methods have been developed in the linear registration setting. The method presented
in this dissertation is unique among these in that it is the only algorithm that performs
fully 3D non-rigid multi-modal image set registration and does not require computing

joint histograms.
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3.2.3 Existing Joint Segmentation and Registration Methods

As the proposed multi-modal image set registration framework, described in the
next section 3.2.4, involves the joint estimation of segmentation and registration, sim-
ilar current methods are briefly reviewed. Central to many of these methods is the
consideration of local structure which leads to more robust registration and, hence,
improved segmentation. A minimax entropy-based registration framework to simulta-
neously and iteratively segment 2D portal images and register them to 3D CT data is
presented in [6]. This method relaxes the independent and identically distributed image
pixel intensity assumption associated with mutual information by incorporating corre-
lation among neighboring pixels. Another approach involves a geometric, variational
framework that uses active contours to simultaneously segment and register multiple
features [109|. Multiple images are segmented by evolving a single contour as well
as mapping that contour to each image. A distinctly different approach builds upon
the previous method by using logic models while relaxing the requirement that images
be completely registered [72|. Markov random fields have been applied in Bayesian
maximum aposteriori model segmentation estimation and registration [106]. A Markov
random field model-based approach that incorporates a pixel attribute vector based on
a pharmacokinetic model is presented in [108, 107]. This method uses a Gaussian data
likelihood model and provides spatial coherence and smoothness through the use of a
prior. A framework that combines segmentation, bias field correction, and registration
into a generative approach is presented in [3]. This method also uses a Gaussian data
likelihood model. Iterated conditional modes, introduced by [8], is used to minimize
their mixture objective function where each iteration involves alternating between es-
timating different groups of parameters while holding the others fixed. The method
most similar to the one proposed in this dissertation incorporates tissue class infor-
mation into non-rigid registration by using Kullback-Leibler divergence as a similarity
measure between ideal and actual joint voxel class distribution matrices [20]. These
matrices represent local fuzzy correspondence of object class labels for pairs of corre-
sponding voxels. The method presented in this dissertation differs from most of these

approaches in that it involves fully 3D non-rigid registration.

3.2.4 Multi-Modal Image Set Registration

Given the aforementioned difficulties with using multivariate mutual information

in the image set registration setting, a novel model-based approach is proposed where
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the registration is performed using underlying anatomical structures. These structures
are incorporated as a geometric prior in a Bayesian framework. From the theory of
pattern classification [21], it is known that the use of a Bayesian classifier for decision
making is optimal in that it corresponds to minimizing the average probability of error
associated with the decision. Thus, Bayesian classification using a geometric prior
provides a goodJos approach for generating class-conditional densities that describe
the anatomical structures.

This framework is based on the assumption that human brain anatomy consists of
finitely enumerable structures such as grey matter, white matter, and cerebrospinal
fluid. These structures present with varying radiometric intensity values across dis-
parate imaging modalities. Given two multi-modal image sets, the underlying struc-
tures are captured by estimating, for each image set, the class-conditional posterior
maps associated with each structure. These class posteriors are then used to produce a
coordinate-independent average posterior by estimating dense diffeomorphic registra-
tion maps relating the domains of the two class posteriors. The sum-of-Kullback-Leibler
divergences D (p||{p;}/L,) with N = 2 distributions is used as a distance function on the
space of probability mass functions to estimate the transformations. The use of class
posteriors provides an image intensity-independent approach to image registration.

Specifically, consider the problem of finding a mapping between image sets I; and
I, (Figure 3.3). That is, find the mappings f : Q; — Qy and g : Q5 — Q) where Q; and
), are the domains of image sets I; and I, respectively. To facilitate the registration, a
new domain €2, independent of €); and {2, is introduced. Let transformations h; and hs
map €2 to Q; and Q, respectively. By construction, f = hyoh;' and g = hy ohy*. This
registration method is inverse consistent as fog = go f = e, the identity map. Having
described the transformation framework the Bayesian framework for representing the

anatomical class structures is presented next.

3.2.4.1 Bayesian Framework

The underlying neuroanatomy, represented in two acquired sets of multi-modal im-
ages, is assumed to consist of a set, C, of separate anatomical structure classes, c;.
From the multi-modal image sets I; and I, for each class ¢; € C jointly estimate the
posterior mass functions p1(z) = p(c;(hi(x))|I1) and pa(x) = p(c;(ha(z))|l2) along with
the registration maps hy(x) and hy(z), that map the independent domain Q C R3,
into the domain of I;, ; C R3, and I, 3 C R3, respectively. This method is in-

dependent of the number of images comprising each image set. Optimal inter-subject
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Figure 3.3: Inverse-Invariant Registration

Registration of image sets I; and I, through the unbiased domain ).

multi-modal image set registration is estimated by an alternating iterative algorithm
which is motivated by an expectation maximization method used in |80, 102|. The
proposed algorithm interleaves the estimation of the posteriors associated with I; and
I, and the estimation of the registration maps hy : Q — ; and hy : Q — Q. Figure
3.4 depicts this Bayesian framework.

For each class ¢;, the associated data likelihoods p(If1 2y (2)|cj(z), pj, 2;), are mod-
eled as multivariate normal distributions with means p;, and covariances ;. Given
the transformations i, and hy and the current estimates p; and XJ; for both image sets,
the posteriors of I; and I, are associated with the independent coordinate probability
mass function pg by using Bayes’s Rule with pg as the prior for both posteriors p;(x)
and po(x). Having defined the posteriors, the parameters ;; and ¥; are updated by
their expected values. An alternative approach is the non-parametric kernel density

estimation described in [79].

3.2.4.2 Large Deformation Diffeomorphic Registration

With the model-based Bayesian framework defined, now consider the problem of
estimating a class posterior average, p, from p; and p,, representing image sets I; and
I, respectively. The average p is neither p; nor p,. Consider the problem of constructing
a mapping between p and each of p; and p,. That is, estimate the mappings hy : Q —
and h; : Q — Qy where Q C R?, Q; C R3and Q, C R? are the domains of the class

posteriors p, p; and py respectively. The domain €2 is chosen to be independent of the
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Figure 3.4: Model-Based Image Set Registration

Registration of image sets I; and I, through the unbiased domain .

individual subject class posterior domains, £2; and 25. This framework is depicted in
Figure 3.5.

The desired average class posterior p is the one that requires the minimum amount of
energy to be deformed into both p; and p,. More precisely, given a transformation group
S with associated metric D : S? — R, along with a probability density dissimilarity
measure F(p, q), to find the class posterior map p such that

{}Az{m},p} = }?rgmgn [E(p1 0 hi,p) + E(p2 0 ha,p) + D(e, h1)* + D(e, hs)*] (3.1
{1,2}€5,P

where e(z) = x is the identity transformation.

Within the framework of computational anatomy a commonly used transformation
group is the group of diffeomorphisms [48]. Central to this framework, therefore, is the
assumption of homogeneous anatomy between subjects |32|. As diffeomorphic maps
preserve topology they are ideal for the quantitative study of shape since they neither
bend nor tear space. The fluid image registration method used in this dissertation is
motivated by the image matching problem formulated via fluid flows introduced by [14]
and posed a control formulation in [22]. In this formulation, the optimal diffeomorphic
match is constructed to minimize a running smoothness cost on the velocity field gen-

erating the diffeomorphism, further described below, while simultaneously minimizing
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Figure 3.5: Image Registration Through Class Posteriors

Associated with each image set I; is a class-conditional probability map p;
and is related to the unbiased domain €2 through the transformation h;.

an image dissimilarity term. A gradient descent approach is taken where a variational
cost is measured in terms of a velocity field.

In this dissertation, the class-posterior map matching involves the particular trans-
formation h that maps the space of a class-posterior representing a subject, p;, to the
space of the class-posterior map representing the average, p, p;(h;(x)) = p(z). In the
large deformation setting, a given h is estimated as the end point point of the flow
associated with a smooth time-dependent vector field. More specifically, the approach
is to construct diffeomorphisms h : Q C R? < Q in terms of solutions to the ordinary

differential equation defined by the nonlinear transport equation

d
hia,t) =o(h(xt),1) te 0.1 (3:2)

with boundary condition,

h(z,0) =2 x€Q

as presented in [70, 48]. The boundary condition corresponds to no deformation. The

solution to Equation 3.2 is the function h(z,t) that satisfies

h(z,t) = h(z,0) +/0 v(h(x,T),T)dT. (3.3)
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The final time diffeomorphism h(z, 1) mapping the anatomy is therefore controlled via
the velocity field v(-,t), x € , ¢t € [0, 1],

h(z,1) ==z +/0 v(h(x,T),T)dT.

Before discussing how the diffeomorphic transformations are generated, it is impor-
tant to know that they do exist in this setting. In his dissertation, Joshi proves the

following theorem.

Theorem 3.1 (Diffeomorphism Existence). Let Q = [0,1]> C R? and v : (z,t) €
Q x [0,1] — v(x,t) € R be a continuously differentiable vector field with compact
support contained in Q for each t € [0.1]. Let h be the solution to the system of

ordinary differential equations

d

%h("% t) = U(h(l’, t)> t)

with the initial condition h(0,x) = x. Then for eacht € [0,1], h(-,t) is a diffeomorphism
of O Q.

Proof. See [48]. O

The boundary condition h(x,0) = x represents the Lagrangian interpretation of
fluid flow. The existence of diffeomorphisms under the Eulerian interpretation of fluid
flow where h(x,1) = z is shown in [22]. Conditions are formulated under which the
12

regularity of v(-,¢) imposed by finiteness of the the norm ||v||* guarantees that the

associated flow, h, is supported on the space of diffeomorphisms. The key issue is the
choice of norm || - ||%.

Following |7|, one choice to ensure existence of solutions in the space of diffeo-
morphisms in Equation 3.2 has been to construct V as the completion of the space
of smooth, compactly-supported vector fields for the inner-product defined through a

differential operator L given by

<f> g)V = <L.fa Lg>2 = <LTLf> g>2 f>g ev (34)

where LT denotes the adjoint of L, and (-,-)> is the usual L2-product for square inte-
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grable vector-fields on 2. That is,

1 1
/0 o(-, D)2 dt = / 1L Lo (-, )| 2dt.

With V defined in this way, the flow v € L*(V, [0, 1]) generates the sub-group of diffeo-
morphisms G = {¢ € V|p(h(x,1),1), v e L*(V,[0,1])} [22]. From these assumptions
on V, a compact self-adjoint operator K : L*(Q,R%) — V is uniquely defined by
(x,y)e = (Kz,y)y. That is, any smooth vector field f € V' can be obtained such that

K(L'L)f = f.

In summary, the norm ||v(-, t)||y generates an inner product on the space of continuous
vector fields C*°(Q)3, and ||v(-,)||v needs to be finite to ensure regularity in each
component of v. Smoothness in v is induced by adding ||Lv(-,t)||* as a regularizing
cost penalty term in the optimization.

The choice of operator L is typically governed by the notion of a prior, in the
Bayesian sense, on the transformations obtained by driving a fluid or elastic media or
by a noise process. In such a case L is determined by the statistics of the noise and the
constitutive laws of the media. Following [14], in this dissertation a modified Navier-
Stokes operator L = aV? + fV(V-) + v is used where pressure gradient and inertial
terms are neglected and a low Reynold’s number is assumed.

A differential operator L is completely characterized by its Green’s function G(z, y)
where LG(x,y) = 0(x — y). Under the noise process model, the induction of prior
through constant coefficient local (bounded support), positive definite (invertible) dif-
ferential operator L satisfying Lu(z) = e(z) where e(z) is white noise. Then, as shown

in [52], u(x) is a zero-mean Gaussian process with covariance

K(z,y) = /G(x,u)G(y,u)du.

Throughout assume the compact setting Q = [0, 1]> with the operator and boundary
conditions chosen so that the Green’s function is non-singular and continuous in both
variables so that the matrix K (x,y) = G(x,y)G(z, y)! is positive definite as an operator.

Having chosen a linear differential operator to define the inner-product (-,-)y and
having established the conditions under which the solution to Equation 3.2 generates

diffeomorphic transformation, the image registration optimization problem in Equation
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y=h(z,1)

9(y,0)

v(z,0)

z = ¢(y,1)

Figure 3.6: Velocity Fields

3.1 is further specified. The transformations h; are generated by integrating velocity
fields forward in time, and h; ' are generated by integrating velocity fields backward
in time. The relationship between spatial locality, velocity fields, and time is shown in
Figure 3.6. The spatial location y is described in terms of the forward integration of

the velocity field v starting from spatial location x. That is,

y=h(z,1)=x +/0 v(h(x,T),T)dT.

Similarly,  can be described in terms of integrating the reverse velocity field v starting
at y. That is,

r= o) =y+ [ 26l 7)ir
From Figure 3.6, note that
v(h(z,t),t) = —0(o(y,1 —1t),1 — 1)
and hence
| Zo(z, )] * = ||Lo(y, 1 - t)[]”
where
L=aV*+pBV(V:)+7y

is, again, a modified Navier-Stokes operator.
The metric on the space of diffeomorphisms is induced using a Sobolev norm via
the partial differential operator L on the velocity fields v. Let h be a diffeomorphism

isotopic to the identity transformation e. Define the squared distance D?*(e, h) as



39

1
D2(e,h):min/ /||Lv(:v,t)||2dxdt (3.5)
v Jo Ja

subject to

h(z) =z + /01 v(h(z,t),t)dt.

The distance between any two diffeomorphisms is defined by

D(hl, hg) = D(€, hl_l o hg)

The construction of h and h™1, as well as the properties of D, are described in |68, 71].

This distance satisfies all of the properties of a metric. Namely it is non-negative,
symmetric, and satisfies the triangle inequality. The distance D is trivially non-
negative. Symmetry follows from the fact that h~! is generated by integrating back-
wards in time the negative of the velocity field that generates h. Hence the minimizer is
the same for both i and h™!, implying that D(e,h) = D(e,h™'). A detailed discussion
of D, including a demonstration of how it satisfies the triangle inequality, is given in
[71].

Having defined a metric on the space of diffeomorphism and a regularization op-
erator L, the energy minimization problem described in Equation 3.1 is formulated

as

{hpoy, P} = argmin E(py 0 h1,p) + E(ps 0 ha, p)
{1,2},P

1 1
+/ /||Lv1(x,t)||2dxdt+/ /||Lv2(a:,t)||2dxdt (3.6)
0 Q 0 Q

subject to

3.2.4.3 Registration

At a given spatial location x € ), the dissimilarity between image sets I;(z) and
I,(x) is measured by the dissimilarity between the posterior mass functions modeling
them, p;(x) and py(z). Minimizing the D (]5||{pZ f\il) between p; and p, maximizes a

lower bound on the Bayes’ probability of error and thus renders the probability mass
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functions more indistinguishable. That is, it brings them closer together. The following
distance, using Equation 2.10 with N = 2, is used to drive the registration at position
x e

E(pi(x),pa(2)) = D (p()||[{p1(2), p2(2)})
= —2log > (p1(ha(cj(@))[11)pa(halc;(2))| 1))

cj eC

[NIES

With this result, the minimization problem stated in Equation 3.1 is rewritten as

follows:

01,09 = argmin/ logz (p1(ha(cj(@))|1)pa(ha(c;(x))|12))

v1,V2 ¢j cC

1 1
+/ /||Lvl(:v)||2d:)3dt+/ /||ng(x)||2d:£dt.
0 Jo 0o Jo

3.2.4.4 Implementation

[SIE

dx

The method proposed in this dissertation uses Christensen’s greedy algorithm for
propagating templates [14]. The variation for h; of the average E(pi(x), p2(z)) term is

computed as

ST L DOt} de =~ 1og2 pr(es () pa(es(2)))? de

N[

T

e /zcjeca—hl<p1<cj<x>>p2<cj<x>>> ]
Q0 Jo Y, o (ilen(@))pa(en())
L1 [ Xeec (ii%ijiéiii VDL (s ) o
Qo 32, o (m(cw(@))pa(en()))?

N

[N

The variation for hy is computed in a similar manner. The velocity fields v oy at each

iteration are updated by solving the partial differential equations
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o 1 [
Ohy12y 19 /Q D (p(2)|[{p1(2), pa(2)}) d.

LU{LQ} (l’, t) =

The velocity fields v; are computed at each iteration by applying the inverse of the differ-
ential operator L to the body force function f;(z) = %ﬁ Jo D (6(2)|{p1(2), p2(2)}) dz,
i.e. v;(x) = L' fi(x) . This computation is performed in the Fourier domain [50| using
the Fast Fourier transform.

The forward and inverse integration are described as follows. At time ¢, the trans-

formations h; are described as

t+0
h(et+8) = hiet) + / vs(ha(a, 7), 7)dr
t
~ hi(x,t) + ov;(hi(x,t),t)

for small §. At iteration k of the algorithm, the transformations h; become the tele-
scoping compositions h; = h¥ o K1 o ... o hl. At time t, the inverse transformations

h; ! are described as

t—§
Wt = kil — / vily, 7).t — )
t
~ Iy — vy, £),t— 6)

for small §. At iteration k of the algorithm, the transformations h;' become the
telescoping compositions h;t = h; " o by oo o by R
Appendix B discusses the likelihood of the actual optimum in the multi-modal image

set registration cost function being achieved.

3.3 Results

To evaluate the image set registration method, a collection of image sets of increasing
complexity was defined. For each image subject, the image sets were created using 3D
scalar images from a population of four imaging modalities: MRA, T1-FLASH MR,
T1-MPRAGE MR, and T2 MR. The composition of these image sets is described in
Section 3.3.2.1. The individual MR images were acquired at UNC Chapel Hill using
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a Siemens head-only 3-Tesla system (Allegra, Siemens Medical Systems Inc.) and a
Siemens 1.5-Tesla system (Sonata, Siemens Medical Systems Inc.) with a head coil.
Imaging parameters for the T1 and T2 image acquisitions are as follows, for the T1
images, a TR of 15msec, a TE of 7Tmsec, a TH of 1mm, and an in-plane resolution of
1x 1 mm? and for the T2 images, a TR of 7730msec, a TE of 80msec, a TH of 1mm, and
an in-plane resolution of 1 x 1 mm?2. Additionally, a 3D time-of-flight MRA sequence
was acquired. Velocity compensation along both the frequency and the phase encoding
direction was used to maximize signal de-phasing induced by the flowing spins. A
magnetization transfer pulse was used to suppress signal from brain parenchyma while
maintaining signal from flowing spins. The acquired voxel spacing for the MRA images
was 0.5134 x 0.5134 x 0.78 mm?® and 1 x 1 x 1mm? for the T1 and T2 images. The

MRA images were resampled to 1 x 1 x 1 mm?.

3.3.1 Data Preprocessing

The tissue exterior to the brain was removed using a mask generated by a brain
segmentation tool based on the statistical classification method described in [79]. The
geometric prior used to initialize the algorithm was also produced using this tool. Mid-
axial, mid-coronal, and mid-sagittal slice views for subjects 1 and 2 are presented in
Figures 3.7 and 3.8 respectively. These four modalities provide complementary informa-
tion. For example, the T1-FLASH and T1-MPRAGE images have contrast differences,
and the MRA images exhibit missing information due to grey matter/white matter
washout and axial slab effect. In these examples, the set of structural classes is taken
to be

C' = {c; = grey matter, co = white matter, c3 = cerebrospinal fluid, ¢, = other}.

3.3.2 Registration Experiments

To evaluate this image set registration framework, the transformations, f; and g,
relating the domains of subject 1 and subject 2 were estimated by applying the multi-
modal image set method to a mono-modal registration. These two transformations
were then used as “ground truth” for the purpose of evaluating an increasingly com-
plex collection of image set registrations. Inverse-consistency error was computed to

quantitatively evaluate the results.



Mid-Axial Mid-Coronal Mid-Sagittal

Figure 3.7: Subject One

The orthogonal slice views into the four multi-modal scalar images for sub-
ject one: MRA (a), T1-FLASH (b), T1-MPRAGE (c), and T2 (d).
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Mid-Axial Mid-Coronal Mid-Sagittal

Figure 3.8: Subject Two

The orthogonal slice views into the four multi-modal scalar images for sub-
ject two: MRA (a), T1I-FLASH (b), TI-MPRAGE (c), and T2 (d).
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3.3.2.1 Setup

The following eight registration experiments were performed:

1. Mono-modal/Mono-modal (common): I; = T1-FLASH of subject 1 and I, =T1-
FLASH of subject 2.

2. Mono-modal/Mono-modal (mutually exclusive): I; = T1-FLASH of subject 1
and I, =T2 of subject 2.

3. Bi-modal/Bi-modal (fully common): I; = T1-FLASH and T2 of subject 1 and
I, = T1-FLASH and T2 of subject 2.

4. Bi-modal/Bi-modal (single common): I; = T1-FLASH and T2 of subject 1 and
I, = TI-MPRAGE and T2 of subject 2.

5. Bi-modal/Bi-modal (mutually exclusive): I; = T1-FLASH and T2 of subject 1
and I, = TI-MPRAGE and MRA of subject 2.

6. Bi-modal/Mono-modal (mutually exclusive): I} = T1-FLASH and T2 of subject
1 and I, = MRA of subject 2.

7. Tri-modal /Tri-modal (fully common): I, = T1-FLASH, TI-MPRAGE, and T2
of subject 1 and I, = T1-FLASH, T1-MPRAGE, and T2 of subject 2.

8. Quad-modal/Quad-modal (fully common): I} = T1-FLASH, T1-MPRAGE, T2,
and MRA of subject 1 and I, = T1-FLASH, T1-MPRAGE, T2, and MRA of
subject 2.

From each of these experiments, transformations f; and g; were obtained. The first
experiment provides the “ground truth” transformations, f; and g,. The T1-FLASH
modality was chosen for the first experiment due to its relatively good white mat-

ter/grey matter contrast.

3.3.2.2 Bi-Modal/Bi-Modal (Mutually Exclusive) Registration

For the purposes of brevity, only qualitative results for the most interesting of these
experiments, the bi-modal /bi-modal mutually exclusive registration are presented. In
this experiment, I; represents the T1-FLASH and T2 images acquired from subject one
and I, represents the TI-MPRAGE and MRA images acquired from subject two. The
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T1-FLASH T1-FLASH

T1-MPRAGE MRA T1-MPRAGE MRA T1-MPRAGE

Figure 3.9: Forward Mapping

The top row shows mid-axial, mid-coronal, and mid-sagittal views of image
set I;. The bottom row shows the same views for the deformed image set

]_2Of,

estimated forward, f, and inverse, g, transformations are depicted, in three orthogonal
views, in Figures 3.9 and 3.10 respectively. In Figure 3.11, a qualitative assessment of
the registration is made by examining axial slices of I; and I, in greater detail through
a checkerboard pattern. The mismatch between the image sets is clearly evident in
the top row of the figure. The second and third rows illustrate the effectiveness of the

registration under the estimated forward and inverse transformations respectively.

3.3.2.3 Inverse-Consistent Image Registration

A by-product of using the unbiased domain €2 in the multi-modal image set reg-
istration framework is inverse-consistent (or inverse-invariant) image registration. A
registration framework is inverse consistent if image ordering does not affect the regis-
tration result. Many image registration algorithms are not inverse consistent because
their image dissimilarity metrics are computed in the coordinate system of one of the
images being registered. The choice of such a reference image can bias the result of the
registration. Inverse consistent registration is desired when there is no a priori reason
to choose one image over another as a reference image.

In traditional techniques for image registration, solutions may be systematically
biased with respect to expanding and contracting regions in the estimated transforma-

tion [12]. Existing methods for generating inverse consistent registration approximate
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<

T1-MPRAGE MRA

T1-MPRAGE MRA

T1-FLASH T1-FLASH

T1-FLASH

Figure 3.10: Inverse Mapping

The top row shows mid-axial, mid-coronal, and mid-sagittal views of image
set Iy. The bottom row shows the same views for the deformed image set
]_1 0g.

inverse consistency by adding an inverse consistency penalty to the optimization cost
function. The registration frameworks formulated in these methods are not intrinsically
symmetric. Methods for approaching this problem, involving algorithms that estimate
incremental transformations while approximating inverse consistency constraints on
each incremental transformation, are presented in |34, 66, 39|. The approach presented
in this dissertation is intrinsically inverse consistent as the registration problem is for-
mulated symmetrically. Therefore, no correction penalty for consistency is required.
More specifically, a registration, characterized by a transformation, A, is inverse-
consistent (symmetric) if, for images I; and Iy, the following holds: h(Iy, I5) = h™ (I, I,).
A registration for which this property does not hold is considered to be asymmetric.

The following is a list of potential sources for asymmetry in non-rigid registration:

e Order non-preservation: Many image registration algorithms are not inverse-
consistent since their (dis)similarity metrics are computed in the coordinate sys-
tem of either one of the images involved in the registration. This leads to or-
der non-preservation of energy cost functions. That is, for an energy function
E(I;, I3, h) and two estimates, h; and hg, for the transformation h, the following
may hold, E(I1, I, h) < E(Iy, Iy, hy) but E(Iy, [, hi') > E(Iy, I, hyt).

e Non-linearity in models: Continuum mechanical methods are used to model de-



Figure 3.11: Qualitative Assessment

The top row shows a checkerboard blending of an axial slice of the image
sets I; and I,. The middle row shows a blending between I; and I, o f,
the forward mapping, and the bottom row shows a blending between I, and
I, o g, the inverse mapping. The left column is composed of the T1-FLASH
of I, and the MRA of I,, and the right column is composed of the T2 of I,
and the TI-MPRAGE of I,. The registration has accommodated the local
variability between the two image sets, especially in the cortical region (e.g.,

point A), and in the ventricular region (e.g., point B).
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formations (e.g., thin-plate splines may be non-linear).

e Non-stable transformation space: The space of allowable transformations may not
form a group, GG, and, hence, may not be stable by inversions. That is, h € G
but =t ¢ G.

e Local minima: The optimization algorithm used for estimating h may get stuck
in different local minima of the energy function £ when the images I;and I, are

exchanged.

The L, difference norm, ||fi1(g;(x)) — x||]2, was used to evaluate inverse consistency
between each experiment i, and the first experiment for each spatial location = € .
For numerical stability, these inverse-consistency errors were computed via telescoping
compositions as described in Section 3.2.4.4. Over all eight experiments, the maximum
computed inverse-consistency error was 3.12x 10~ voxels with an average of 5.04 x 1075

voxels.



Chapter 4

Multi-Class Posterior Atlas

Formation!

This chapter extends the framework for multi-modal image set registration from
Chapter 3 to multi-class posterior atlas formation. Consider the important problem in
computational anatomy introduced in Section 1.2, the construction of an exemplar atlas
from a population of medical images. Such atlases represent the anatomical variation
present in populations [69, 32, 94]. Many images are mapped into a common coordi-
nate system to study intra-population variability and inter-population differences, to
provide voxel-wise mapping of functional sites, and to facilitate tissue and object seg-
mentation via registration of anatomical labels. Common techniques for creating atlases
often include choosing a template image, which inherently produces a bias. Motivated
by the atlas construction framework presented in [49], unbiased multi-class atlases are
constructed from populations of anatomical class posteriors using large deformation dif-
feomorphic registration. When applied to two image sets, this atlas formation method
yields the inverse-consistent image set registration of Chapter 3.

Digital atlases of humans are prominent in image segmentation algorithms. For
example, a method for automatically segmenting images of normal healthy human
brains, based on statistical classification theory [21], is presented in [102, 101]. An
extension to human brains with pathology is described in [80|. These methods rely on
multi-modal images that have been affinely registered to the coordinate space of the

chosen atlas. The registration pre-processing step uses mutual information, described

!The work presented in this chapter was done in collaboration with Dr. Sarang Joshi and Brad
Davis at the University of North Carolina at Chapel Hill. This chapter is heavily based on previous
papers [63, 49].
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in [16], as a similarity measure for computing distances between probability mass func-
tions representing joint and marginal product distributions of image intensities. Global
transformations, such as affine transformations, are insufficient to accommodate the
local variability that exists in any population of human brains. For example, although
all humans possess a cerebellum and cortical grey matter enclosing white matter, the
location and manner of cortical and cerebellar folding are highly variable across a pop-
ulation.

Most digital atlases involve features that are single numbers (e.g., Hounsfield units
in computed tomography (CT) images). Unbiased atlas formation from such scalar
images, using the squared-error image dissimilarity measure, is described in [49]. This
chapter focuses on multi-class posterior atlas formation from multi-modal image sets.
Specifically, the Bayesian framework from Section 3.2.4.1 is applied to a collection of im-
age sets. From a population of N multi-modal image sets {I;}¥,, for each class ¢; € C,
estimate the class posterior mass functions p;(c;(z)|L;) for each image set i where ¢;(z)
is the class associated with the voxel at spatial position z € Q C R3. This method is
independent of the number of images comprising each image set. These class poste-
riors are produced using the expectation maximization method described in |80, 102].
Following [102], for each class ¢; the associated data likelihood, p(I;(x)|c;(x), uj, 3;), is
modeled as a normal distribution with mean, p;, and covariance, ;.

This chapter reviews existing atlas construction methods in Section 4.1. Using the
large deformation diffeomorphic framework requires a more general notion of averaging
transformations. This generalized notion of averaging to metric spaces is discussed in
Section 4.2. The multi-class atlas construction method is then presented in Section 4.3

with a some results comparing affine and diffeomorphic averaging in 4.4.

4.1 Atlas Formation: a Review

Since Brodmann, nearly a century ago, began mapping areas of the cerebral cortex
based on cytoarchitectural boundaries [11|, the construction of brain atlases has been
central to understanding the variability of brain anatomy. More recently, since the
advent of modern computing and digital imaging techniques, intense research has been
directed towards the development of digital three-dimensional atlases of the brain.
Most digital brain atlases so far are based on a single subject’s anatomy [43, 104].
Although these atlases provide a standard coordinate system, they are limited because

a single anatomy cannot represent faithfully the complex structural variability between
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individuals. A major focus of computational anatomy has been the development of
image mapping algorithms [29, 68, 84, 98] that can map and transform a single brain
atlas onto a population. In this paradigm, the atlas serves as a deformable template |31].
The deformable template can project detailed atlas data such as structural, biochemical,
functional, and vascular information onto the individual or an entire population of brain
images. The transformations encode the variability of the population under study. A
statistical analysis of the transformations can also be used to characterize different
populations |18, 44, 92|. For a detailed review of deformable atlas mapping and the
general framework for computational anatomy, see |98, 32|. One of the fundamental
limitations of using a single anatomy as a template is the introduction of bias, as the
selected group member may not well specify the population as a whole.

The unbiased atlas represents an average anatomical configuration of a population.
Unbiased atlas construction is an active area of research in image registration. Thomp-
son and Toga [97] very elegantly address the bias problem by mapping a new data set
onto every scan in a brain image database. This approach addresses bias by forgoing
the formal construction of a representative template image. Although this framework
is mathematically elegant and powerful, it results in a computationally prohibitive ap-
proach in which each new scan has to be mapped independently to all datasets in a
database. This is analogous to comparing each subject under study to every previously
analyzed image. As brain image databases grow, the atlas formation problem grows
combinatorially.

Previous work in atlas formation has focused on the small deformation setting in
which arithmetic averaging of displacement fields is well defined, e.g., in [9]. Studholme
minimizes an energy functional involving uncertainty in joint histograms of intensities,
elastic deformation, and sum of displacements |90|. Kovacevic et al. present a multi-
resolution method that is initialized by averaging pairwise affine transformations and
finalized by centering based on averaging estimated non-linear transformations to this
affine average [57|. An iterative averaging algorithm to reduce the bias has been de-
veloped by [34]. In the latest work of [9], explicit constraints requiring that the sum
of the displacement fields add to zero are enforced in the proposed atlas construction
methodology. These small deformation approaches are based on the assumption that
transformations of the form h(z) = z + u(x), parameterized via a displacement field,

u(x), are close enough to the identity transformation such that the composition of any
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two transformations can be approximated via the addition of their displacement fields:
(hl o hg) (ZL’) ~ T+ Ul(ZL') + UQ(ZL')

Using a hidden probabilistic model of the common spatial distribution of anatomi-
cal tissues, De Craene et al. create atlases of probability distributions using STAPLE
[17]. The Simultaneous Truth and Performance Level Estimation (STAPLE) method,
developed by Warfield and Zou [104, 112|, calculates a composite gold standard esti-
mate from multiple manual segmentations. Given a set of binary segmentations of the
same object, STAPLE calculates the maximum likelihood estimate of the composite
“gold standard” or the best estimate of the unknown gold standard. The STAPLE
algorithm calculates the specificity and sensitivity of each segmentation in an iterative
way. In the work of De Craene et al., a generalized expectation maximization method is
used where, in the expection step, atlas labels (hidden data) are estimated given fixed
transformations and, in the in the maximization step, transformations that maximize
a similarity criterion are estimated.

In a more recent and related work, Avants and Gee [5| develop an algorithm in
the large deformation diffeomorphic setting by averaging velocity fields and evolving
mean geodesic flows. The focus of this chapter is on the development of a methodology
that simultaneously estimates the transformations and an unbiased template, in the
large deformation setting. This method does not assume the above approximation
and, thus, is capable of building atlases of populations with large geometric variability.
The method proposed in this dissertation is intrinsically unbiased in that it involves no
penalty terms in the optimization process. The method is also computationally efficient
in that it scales linearly with the number of images. Before formally defining the atlas
formation problem, this chapter explores averaging large deformation diffeomorphic

transformations.

4.2 Averaging Diffeomorphisms

Given a collection of anatomical images, a natural problem is the construction of
a statistical representative of the population. If the data associated with the popula-
tion under study can be easily parameterized by a Euclidean space, classical statistical
methods of simple averaging can be applied to generate such a representative. An im-

age under the Gaussian noise assumption can itself be easily represented as a member
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of a flat space. The image can be represented as a member of a very large dimensional
Euclidean space R, where N is the number of voxels in the image. Alternatively, using
appropriate interpolation assumptions the image can be assumed to be a square inte-
grable function, that is a member of the Hilbert space L?(£2) where (2 is the underlying
coordinate space, usually a compact subset of R3.

The geometric variability of the anatomy itself usually cannot be represented by
elements of a flat space. If the geometry of the underlying anatomy can be adequately
represented by a finite number of landmarks, representative template landmark config-
uration can be estimated using the Procrustes method pioneered by Kendal [54] and
championed by Bookstein [10]. The study of anatomical shape is inherently related
to the construction of transformations of the underlying coordinate space that map
one anatomy to another. Various transformation groups of R? have been studied for
understanding anatomical geometry. These groups vary in dimensionality from simple
global translations, R3, and rigid rotations, SO(3), to the infinite dimensional group of
diffeomorphisms, H, [71].

In this chapter, the problem of building an anatomical template is posed as a sta-
tistical estimation problem. For anatomical representations in which the underlying
geometry is parameterized as a Euclidean vector space, training data can be repre-
sented as a set of vectors, e.g., {x,}f\il in a vector space V.

In the small deformation elastic image mapping setting, this is assumed to be true,
as the deformations are assumed to be close enough to the identity mapping. Under
this assumption, the displacement vector fields parameterizing the transformations can
be assumed to be elements of the Hilbert space of square integrable functions L?(€2).

In a vector space, with addition and scalar multiplication well defined, the average

representation of the training set is the linear average

1 N
T Linear = N ; Z;. (41)

In terms of computing statistics, the group of diffeomorphic transformations presents
a challenge. Linear averaging cannot be directly applied to the large deformation
setting, as under the large deformation model the space of transformations is not a
vector space but rather the infinite dimensional group H of diffeomorphisms of the
underlying domain Q.

In the group of diffeomorphisms, the addition of two diffeomorphisms is not generally
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a diffeomorphism and hence a template based on linear averaging of transformations
is not well defined. To address this difficulty, the notion of averaging is extended to
general metric spaces first proposed by Fréchet [27|. For a general metric space M,
with a distance d : M x M — R, the intrinsic mean for a collection of data points
x; can be defined as the minimizer of the sum-of-squared distances to each of the data

points. That is
N

T Frechet = al;genﬂzin ; d(x,2;)°. (4.2)
In previous work at UNC Chapel Hill, these concepts have been used to extend first
and second order statistical analysis to finite dimensional Riemannian Manifolds for
statistical analysis of medial representations of objects [26]. This chapter applies this
approach to the construction of large deformation diffeomorphic templates. The work
here builds heavily on the mathematical metric theory of diffeomorphisms developed
by Miller and Younes [68].

Given a metric on a group of transformations, the atlas construction problem can be
stated: estimate a class probability p that requires the minimum amount of deformation
energy to be transformed into every member of the population of class posteriors, p;.
More precisely, given a transformation group § with associated metric D : § x§ — R,
along with a probability dissimilarity metric E(p, ps), to find the probability p such

that
N

{hi,p} = argmin | > E(p; o hi,p) + D(e, hs)’ (4.3)

h;€S,p i=1
where e is the identity transformation and D(e, h) is measure of how far from the
identity transformation h is as descibed in Chapter 3.
This chapter addresses the problem of anatomical template construction as the
joint the estimation of the most representative, average, image and, as encoded in

transformations, the associated anatomical geometry given a database of brain images.

4.3 Large Deformation Diffeomorphic Atlas Estima-
tion

Given the generalized notion of averages for diffeomorphic transformations, the
class-conditional atlas estimation is defined as the probability mass function that min-

imizes an image dissimilarity measure and requires the least amount of energy, based
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Figure 4.1: Atlas Formation

Unbiased atlas constructed as the intrinsic mean of a population of class
posteriors.

on a metric on diffeomorphisms, to deform into the each member of the population.
Specifically, consider the problem of estimating an atlas class posterior p that is the
best representative for a population of N class posteriors, {p;}¥, , representing the N
individual image sets {I;}Y,. The atlas p is not a member of the set {p;}. To this end,
consider the problem of constructing a mapping between p and each class posterior in
the set {p;}. That is, estimate the mappings h; : Q — ; where Q C R® and ; C R3
are the domains of the class posteriors p and p; respectively. The domain €2 is cho-
sen to be independent of the individual population class posterior domains, €2;. This
framework is depicted in Figure 4.1.

Using the metric on the space of diffeomorphisms with regularization operator L
defined in Equation 3.5, the minimum energy atlas estimation problem expressed in

Equation 4.3 is formulated as

N

> Ewonn+ [ [ ||Lv,-<a:,t>||2da:dt] (4.4)

{hi,p} = argmin

hi,p i=1
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subject to

Note that the solution to this minimization problem is independent of the ordering
of the N images. This atlas construction framework produces transformations h; such
that iL, : Q — ;. Since each iL, is a diffeomorphism, its inverse iz;l :Q, — Q
exists and can be calculated by integrating the negative velocity fields backwards in
time, see Figure 3.6. Image to image correspondences can be computed from these

transformations using the composition rule
hij=hjohi':Q — Q. (4.5)

4.3.1 Dispersion Functions on the Space of Probability Mass

Functions

The argmin, Zﬁil E(p; o h;,p) term in Equation 4.4 represents the dispersion be-
tween the class-posteriors {p; o h;};—1. . Consider three such dispersion terms on the
space of probability mass functions. Two of these are information distances presented

in Chapter 2 and one is an extension of a well-known metric.

1. Sum-of-Kullback-Leibler Divergences I

D (p(x)[{pi(hi(x)) }iL,) = ZD(ﬁ(af)llpi(hi(af)))

where p is the normalized geometric mean of {p;}¥ ;.

2. Sum-of-Kullback-Leibler Divergences I1
D ({pi(hi(2)) YL, 1[p(x)) = Y D(pi(hi())|[p(x))

where p is the arithmetic mean of {p;},
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3. Sum-over-Class Squared FError

Dsp({pi(hi( > (i — p(c(x)))”

ceC i=1

The first two dispersions are sum-of-Kullback-Leibler divergences defined in Chapter 2.

Minimizing either D (ﬁ(l’)“{p,(hz(l’)) ol 1) or D ({p,( hi(z)) fil||ﬁ(a:)) between {pi}i]L
, maximizes a lower bound on Bayes’ probability of error P, and thus renders the prob-
ability mass functions more indistinguishable. That is, it brings them closer together.
The third dispersion is the extension of the squared error dissimilarity measure used for

scalar images used in [49] to probability mass functions. Although the author has not

found a relationship between Dgr and P,, one can see that when Dgp = 0, P, = %

and is maximal. Moreover, Dgg is a true metric.

4.3.2 Registration

With these results, the minimization problem stated in Equation 4.4 can be further

specified in one of three ways corresponding to the choice of distance function.

1. Sum-of-Kullback-Leibler Divergence [

6 = argnin [/ZD ) pi(hs )))da:+/01/Q||Lvi(:r,t)||2da:dt] (4.6)

subject to h;(x) =z + fo v;i(hi(z,t))dt.

2. Sum-of-Kullback-Leibler Divergence I1

= argmm [/ ZD (pi(hi(z))|[p(x d:)s—l—/ / || Lv;(x, t ||2dzvdt] (4.7)

subject to hi(z) = x + [ vi(h(x, t))dt.

3. Sum-over-Class Squared FError

/ZZ il p(c(x)))zdx+/01[2||Lv,~(:v,t)||2da:dt (48)

ceC =1

subject to h;(x) =z + fo v;i(hi(z,t))dt.
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Note that the solution to any of these three minimization problem is independent of
the ordering of the NV image sets and increases linearly as image sets are added, thus,

making the algorithm scalable.

4.3.3 Variation of Dispersion With Respect to Transformations

A gradient descent approach to optimizing the estimation problems in Section 4.3.2
is used. To that end, the variation of the dispersion function with respect to the

transformation h; can be computed as follows:

1. Sum-of-Kullback-Leibler Divergences I

8?“1) ()| {p; (R (z))}Y,) = a% ; D(p(z)]|p;j(h;(x)))

= 05 plefa)) oAU

Oh; et pi(hi(c(z)))
B p(c(x)) T
. cezc pi(hi(c(2))) VPilheta
2. Sum-of-Kullback-Leibler Divergences I1
o - . 0 +
a3 D (Pa D) = 53 Dl 1) o)
R )
on, Cechl(hl( (z))) log p(e(z))
i hl c(x T
= Z; {logp <p(c((:£))))) + 1] VDilh (e(a))

3. Sum-over-Class Squared Error

- Dsol{pi () r) = o 33 () = plete))
=Y o () — ple(a)*
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4.3.4 Implementation

Given one of the three minimization problems, the iterative greedy fluid algorithm
of propagation templated described in [14] is used to approximate the solution. At each
iteration k, the updated transformation hf“, for each class-conditional probability p;,
is computed using the update rule ™" = ¥ (z + cvf(2)). h¥ and vf are the current
estimated transformation and velocity for the i¢th probability, and ¢ is the step size.
In other words, each final transformation h; is built up from the composition of k&
transformations.

The velocity vf for each iteration k£ is computed as follows. First, compute the
updated template estimate. For the optimization in Equation 4.6, this is normalized

geometric mean,
1

(T, pi () ™

P (e(x)) = o

Yoee (I pilh @) "

for each class component c. For the optimizations in Equations 4.7 and 4.8, this is

the arithmetic mean,

7 (ela)) = DA ele),

for each class component c¢. Next, define the body force functions as the variation of

the class posterior dispersion terms with respect to the transformation h;.

1. Sum-of-Kullback-Leibler Divergences I

oy ) o
B0 == 2 bt

T
hi(c(z))

2. Sum-of-Kullback-Leibler Divergences I

X i hf clx T
Fi(z) = ; {bg% + 1] VPil e (efay)

3. Sum-over-Class Squared FError

Ei @) =2 (pi(hi(c(2)) = p(e(2))) Vilhi )

ceC
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The velocity fields are estimation and integrated to produce subsequent forward
and inverse transformations as before. The velocity field v¥ is computed at each iter-
ation by applying the inverse of the differential operator L to the force function, i.e.
vF(x) = L7'FF(z), where L = aV? + 8V(V:) + v is the Navier-Stokes operator. This
computation is carried out in the Fourier domain [51].

For each iteration the dominating computation is the Fast Fourier Transform. Thus,
the order of the algorithm is M Nnlogn where M is the number of iterations, N is the
number of images to be registered, and n is the number of voxels in each image. The
complexity increases only linearly as images are added, making the algorithm extremely
scalable. Satisfactory correspondence is typically achieved after 100-200 iterations. In
practice, a multi scale approach that initializes the fine (voxel) scale registration is used
with the up-sampled correspondence computed at a coarser scale level. The finer scale
levels only need to account for residue from coarser scale levels and thus require far

fewer iterations to converge.

4.4 Affine and Diffeomorphic Atlas Results

To evaluate the performance of the atlas formation method, the algorithm, with
sum-over-class squared error distance in Equation 4.8, was applied to a set of ten class-
posterior mass function maps the database of healthy normal adult brains described in
Chapter 6. A mid-axial slice from each class-posterior is shown in Figure 4.2. There is
noticeable variation between these anatomies, especially in the ventricular region.

Figure 4.3 shows the arithmetic mean of the class posterior population following
affine alignment and the final large deformation diffeomorphic average atlas estimate.
The arithmetic mean is blurry since it is an “average” of the varying individual neu-
roanatomies. Ghosting is evident around the lateral ventricles and near the boundary
of the brain. In the final estimate of non-linear atlas, these variations have been ac-

commodated by the high-dimensional diffeomorphic registration.



Figure 4.2: Sample Class Posterior Population

Axial views of ten class-posteriors. These images clearly indicate large inter-
subject variability, especially in the ventricular system.
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(b) Large Deformation Diffeomorphic Average

Figure 4.3: Affine and Diffeomorphic Atlases

Axial views of the simple linear averaging of ten class-posteriors (a) and
large deformation diffeomorphic averaging of the same ten class-posteriors.
The diffeomorphic averaging produces a sharper atlas.



Chapter 5

Atlas Stability!

An important question to ask of the atlas formation method in Chapter 4 is the
following: how many subjects are required to represent a population? That is, how
many images are necessary to form a stable atlas? For a given population of images
and corresponding atlas, there are a number of ways to determine if an additional image
would result in a sufficiently different atlas. In this dissertation, entropy and variance
of scalar fields, e.g. image intensities in T1-weighted MR images and the white matter
class in a multi-class posterior map, is used to assess the stability of atlases. This
chapter focuses primarily on the entropy of scalar intensity images. For atlas stability,
it is the entropy introduced by the atlas creation method that is of interest rather than
the intrinsic entropy associated with images of individual brain anatomy.

Entropy, defined in Appendix A, has often been proposed as a good measure of
image quality [33, 4] where sharp images have relatively low entropy. A distribution
Psingte(1) = {1} for a single event random variable, e.g. an image with constant intensity,
has minimal entropy, H (psinge) = 0. The uniform distribution punis(i) = {=, -+, %},
for a random variable with at least two events, corresponding to an image with multiple
intensities occurring with equal frequency, maximizes entropy, H (punir) = log N [16].
That is, a blurry image, with a relatively flat histogram, will have greater entropy than
a sharp image. Using multiple permutations of images from a database of images, the
stability of atlases produced by proposed atlas formation method is studied by building
atlases of increasing population size. An atlas is considered stable when the entropy
of its intensities or class-posterior maps is stable with respective to the number of
constituent images.

The remainder of this chapter is organized as follows. For illustrative purposes, the

'This chapter is an extension of portions of the recent MICCAI paper [61].
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entropy computation for a simple intensity image is provided in Section 5.1. Image
intensity entropy is explored in terms of interpolation and scale in Section 5.2. In
Section 5.3, a random permutation test is used to study atlas stability with respect
to the number of images used in the atlas formation. The chapter concludes with a

summary in Section 5.4.

5.1 Simple Intensity Example

Consider the square 2D intensity image involving twenty-five voxels and associated
height field interpretation shown in Figure 5.1. As a random variable, this image has
five events corresponding to the image intensities, £ = {50, 100, 150,200, 250}. The
probability mass function associated with this random variable is computed as the
normalized histogram of the image intensities. For the intensities of this simple image,
the normalized histogram is shown in Figure 5.2. The entropy of image intensities is
computed from the probability mass function p = {0.48,0.32,0.04,0.08,0.08} as

5
H(p) = - p(i)logpl(i)
i=1
~ 1.8 bits/event.

That is, on average, the minimum number of bits to represent an intensity value in this

simple image is [H (p)| = 2.

5.2 Entropy: Interpolation and Scale Effects

This section focuses on quantifying the effects on entropy of both the choice of inter-
polation method for image resampling and viewing images through various apertures
or at scale. In this, and subsequent results in this chapter, 256 histogram bins were
used to define the probability mass functions. Therefore, log, 256 = 8 bits is the upper
limit for the entropy computation in these experiments.

To examine the effects of interpolation on entropy, a simple binary image was con-
structed and translated over a range of distances using four different interpolation
methods during the resampling. After each resampling, the entropy of image intensi-
ties was computed. The simple image was chosen to be a uniformly white disk on a

uniformly black background. To reduce bias in the entropy computation, the areas of



50 | 50 | 250 | 50 | 50
50 | 100 | 100 | 100 | 50
200 | 100 | 150 | 100 | 200
50 | 100 | 100 | 100 | 50
50 | 50 | 250 | 50 | 50

Figure 5.1: Simple Intensity Image

A simple 5 x 5 image with five distinct intensities and corresponding scalar
height field interpretation are shown on the left and right respectively.

Event (Intensity) | Count | Frequency
50 12 0.48
100 8 0.32
150 1 0.04
200 2 0.08
250 2 0.08

Figure 5.2: Image Intensity Histogram

The five intensities in the image, the associated histogram, and normal-
ized (to unity) histogram are shown in the left, middle, and right columns

respectively.
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Entropy: Translation via Interpolation
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Figure 5.3: Translated Disk Entropy

Entropy plots for the disk image translated over a range of forty distances,
uniformly spaced over four voxels, using four interpolation methods: nearest
neighbor, linear, cubic, and spline.

the disk and background were constructed to be equal. The results of translating this
disk are shown in Figure 5.3. The higher order interpolation methods induce greater
entropy. Any evaluation of entropy for image quality will, therefore, have to consider
the method of interpolation used during image resampling.

To examine the effects on entropy of viewing an image at scale, the same binary
disk image was low-pass filtered with fifteen Gaussian kernels of increasing scale. The
original image and the fifteen blurred versions thereof are shown in Figure 5.4. The
entropy of the original and blurred disks is presented in Figure 5.5. For this example,
entropy grows linearly with scale o. The slope of the line is approximately 0.2 bits/o.
The entropy of the base image is appropriately one bit. That is, a pixel is either white

or black in equal proportions.
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Figure 5.4: Disk at Scale

The original disk, 256 x 256 voxels, (upper right) and the fifteen blurred
versions produced by convolution with a Gaussian filter with scale param-
eters 0 = 1...15 pixels. The kernel width was defined to be 20 + 1 pixels
wide.
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Entropy: Disk at Scale
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Figure 5.5: Disk at Scale Entropy

5.3 Random Permutation Test

To address the question of how many images are required to construct a stable atlas
random permutation tests involving 2D scalar T1-weighted images were investigated.
In that work [61], rigid-based and diffeomorphic-based atlases were compared in terms
of stability through entropy of image intensities and variance in image intensities. The

results from that prior work are reproduced in this section.

5.3.1 Atlas Formation

Atlases were created from an image database containing fourteen brain images pro-
vided by the UNC Chapel Hill autism image analysis group. These images were inten-
sity normalized and rigidly aligned. Due to the high memory demands of the imple-
mentation, the algorithm was applied to 2D mid-axial slices. This database of images
is shown in Figure 5.6. There is noticeable large deformation variation between these

anatomies, especially in lateral ventricles.



Figure 5.6: 2D Population Data

2D mid-axial slices from MR images of fourteen subjects.
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To quantify the stability of the estimated atlases, eleven atlas cohorts, {C;}!2,, were
generated each with twenty atlases derived from i images randomly selected from the
original database of fourteen images. Two mutually exclusive atlases from C7 are shown
in Figure 5.7 for both simple averaging and with the large deformation diffeomorphisms.
The rigidly aligned atlases are blurry since they are arithmetic averages of varying
individual neuroanatomies. Ghosting is evident around the lateral ventricles and near
the boundary of the brain. In the final diffeomorphic atlases, these regions appear much

sharper.



Atlas of 7 images Atlas of 7 images

Figure 5.7: Mutually Exclusive Atlases

Both columns represents an individual atlas constructed by both arithmeti-
cally averaging rigidly aligned images (top row) and estimating a diffeomor-
phic atlas after 100 iterations (bottom row). These two atlases were formed
from completely separate sets of images.
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Entropy: Translational Shift via Linear Interpolation
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Figure 5.8: Translated T1 Image Entropy

Entropy plots for the fourteen images in the database over a range of forty
distances, uniformly spaced over four voxels, using linear interpolation.

5.3.2 Interpolation and Scale Effects on Entropy

As in Section 5.2, the effects on entropy of both interpolation, as used in image
resampling, and viewing images at scale are considered.

To examine the effects of interpolation on entropy, each of the fourteen images in
the database were a translated over a range of distances using linear interpolation.
After each resampling, the entropy of image intensities was computed. The mean and
standard deviation of entropy of these fourteen images over the range of distances is
shown in Figure 5.8. The fourteen images were intensity normalized and from subjects
of similar age which may explain the rather tight variance observed in the entropy
computation.

To examine the effects on entropy of viewing an image at scale, a single image taken
from the database was low-pass filtered with fifteen Gaussian kernels of increasing scale.
The original image and the fifteen blurred versions thereof are shown in Figure 5.9. The
entropy of the original and blurred images is presented in Figure 5.10. As with the disk
example, entropy grows linearly with scale o, but after o0 = 1 voxel. The slope of the
line is approximately 0.1 bits/o, half that of the disk example. It is interesting to note
that, for this image, using linear interpolation increases the entropy to approximately

4.43 bits of entropy which is similar to the 4.59 bits observed by blurring the image



with o = 1 voxels.
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Figure 5.9: T1 Image at Scale
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Figure 5.10: T1 Image at Scale Entropy

5.3.3 Atlas Stability

To evaluate the robustness and stability of the atlases, the mean and standard
deviation of the entropies of the original fourteen images were first computed. To this
end, the mean and standard deviation of the atlas cohort entropies created both by
simple arithmetic averaging of the rigidly aligned images and those produced by the
diffeomorphic method were compared. These results are summarized in Figure 5.11.
From this plot, one can notice that as atlas size increases, the average atlas entropy
increases for atlases formed by simple intensity averaging, whereas the average entropy
decreases for atlases created via diffeomorphism. The atlases also become more stable
with respect to entropy as the standard deviation decreases with atlas size. After cohort
Cho, the atlas entropy means appear to converge. Note that the entropy of the large
deformation diffeomorphic atlases converges to about 4.5 bits, approximately same
entropy of any of the shifted original images in the database. That is, to within the
choice of interpolation method, the large deformation diffeomorphic atlases are sharp.

Another measure of atlas stability is the variance in image intensities. For each
atlas cohort, point-wise intensity mean and variance images were created. For a given
cohort C; representing the N = 20 atlases {Af(x)}Y, of size s, the mean and variance

images were computed as follows

M) = S A1)
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Figure 5.11: Cohort Average Entropy

For comparison, the average entropy of the original fourteen images is 3.91
bits with standard deviation 0.08 bits. The error bars represent one stan-
dard deviation from the mean.

7
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and

V) = 5 30 (i) M),

Cohort variance images for the large deformation diffeomorphic average and rigid av-
erage atlases are shown in Figures 5.12 and 5.13 respectively. These images show
reduction of image intensity variation with the increase in the number of subjects per

atlas. This reduction can be quantitatively observed through the relative variance sum

Vs

Ve where

e

This measure was computed for both averaging methods and is shown in Figure 5.14.

Both methods show convergence in variance, which, as with the entropy measure,
indicate atlas stability is achieved with about ten subjects for this dataset. That is,
given these fourteen subjects, about ten images are needed to create a stable, with

respect to the entropy and variance measures, atlas representing neuroanatomy.

5.4 Summary

In this chapter, entropy of image intensities was used to quantify atlas sharpness.
A blurry image will exhibit greater entropy of intensities than a sharper image. Using
this measure, it was shown that resampling an image using linear interpolation adds
entropy to the image comparable to that of blurring the image with Gaussian kernel
with a width ¢ = 1 voxels. For atlas formation, entropy and image intensity variance
was used to address the question of how many subjects are required to produce a stable
atlas. Random permutation tests were conducted to study atlas entropy and intensity
variance as a function of the number of images used to produce an atlas. It was shown
that, within the choice of interpolation method, the large deformation diffeomorphic
atlases were sharp after the inclusion of ten or more subjects. This number is certainly
dependent on the particular population used. Atlas stability for larger and more varied
databases may require more subjects. The results in this chapter exemplify the atlas

stability methodology rather than provide an answer for all image databases.
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Chapter 6

Aging Study via Atlases of Normal
Healthy Brains

An important area of medical image analysis is the development of methods for
automated computer-assisted assessment of disease. For example, methods for ana-
lyzing local structural brain change over time can provide markers for understanding
disease progression (e.g., Alzheimer’s disease and schizophrenia). Early detection of
disease-specific brain changes is important for therapeutic response. This requires the
establishment of healthy norms to which test subjects can be compared. These norms
typically take the form of a digital atlas constructed from data derived from many
healthy subjects generally from a wide age range. Healthy aging, however, induces
structural changes in the brain |67, 36]. In young, healthy adults |35] and in non-
demented older persons [82], analysis demonstrates that the aging process is a contin-
uum with changes evident before senescence. A comprehensive discussion of techniques
used to examine the temporal dynamics of brain anatomy is provided in [100|. Be-
fore analyzing atlas-based brain change studies, the construction of brain databases is
reviewed.

The design of brain databases can be categorized into two main types: longitudinal
design and cross-sectional design. In longitudinal studies, the same subjects are scanned
over time, typically with interscan intervals of one year. Cross-sectional studies, by
contrast, involve scanning many subjects of different ages only once. While these studies
capture brain changes of longer time periods, underlying brain changes are harder to
detect. This is a result of intersubject variability. Multivariate modeling is often used
in cross-sectional studies to partition variance observed in the database into specific

effects such as age and sex. To account fully for these effects, the Computer-Assisted
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Surgery and Imaging Laboratory (CASILab) at UNC Chapel Hill has constructed an
age-grouped MR image database of healthy subjects [73|. A potentially diseased subject
can then be appropriately age- and sex-matched to the image database.

Temporal brain change has been studied using a number of methods. An approach
that models brain deformation in Alzheimer’s disease is presented in [28|. This method
uses longitudinal data with one-year intervals. Pair-wise, in time, 3D non-linear im-
age registration was performed for nine control subjects and nine Alzheimer’s patients.
Warping images from one time point to the next provides some measure of tempo-
ral smoothing. Another longitudinal method that analyzes transformations between
cortical maps of adolescent subjects using elastic image registration is described in [95].

A voxel-based morphometric analysis of white matter, grey matter, and cerebrospinal
fluid volume change using a large, 465-adult-subject cross-sectional database is pre-
sented in [30]. This method involves mapping each subject’s anatomy to a template
followed by performing statistics on the resulting volumetric changes. The choice of a
single reference template may introduce a bias. Although four times larger and cover-
ing a similar age range to the UNC database, this database is skewed to a young adult
population in their twenties and thirties.

The above 3D methods may be sensitive to noisy longitudinal measurements. To
address this issue, a fully 4D approach that simultaneously estimates longitudinal cor-
respondence (intra-subject) and inter-subject correspondence between template and
subject is presented in [89]. The method is a generalization of the 3D method that
uses image intensity, edge, and geometric moment information as a feature vector pro-
posed by the authors in [88]. A 4D match is obtained by mapping a set of “active”
points. A “distinctiveness” measure is used to select these “active” points. During the
registration, a hierarchical approach is taken beginning with a smaller number of more
distinct points and progressing to a larger number of less distinct points. This method
was applied to nine subjects taken from the Baltimore Longitudinal Study of Aging
[82] where each subject was scanned once a year for five years.

An age-continuous 4D spatiotemporal atlas would address the need for sufficient
temporal resolution. In this chapter, the multi-class posterior atlas formation method
developed in Chapter 4 is used to produce time sequences by age of atlases, resulting
in 4D spatiotemporal atlases. These discrete 4D atlases provide a step toward building
age-continuous 4D spatiotemporal atlases. A continuous 4D spatiotemporal atlas would
provide the ideal age-based match for a new subject. By examining the Jacobian maps

of dense transformations relating the space of the first atlas in the sequence to the
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space of each subsequent atlas, local volumetric change through time can be studied.
For this purpose, a program called PMFAtlasBuilder was written using C-++ libraries
developed at the radiation oncology department at UNC Chapel Hill.

The rest of this chapter is organized as follows. In Section 6.1, the database of
multi-modal MR brain images is detailed. The creation of the class-conditional pos-
terior maps representing the anatomical structures in the MR database is described
in Section 6.2. The construction of individual spatial atlases is detailed in Section 6.3
with spatiotemporal atlas results presented in Section 6.4. The chapter concludes with

a summary in Section 6.5.

6.1 Brain MR Image Database

For this dissertation, MR image data from the CASILab Healthy Subject Database!
was used. The database has 100 subjects, with twenty subjects in each of five age ranges:
19-29, 30-39, 40-49, 50-59, and 60+ years of age. The subjects are evenly split between
females and males. Age distribution of the female and male subjects are shown in Figure
6.1. All subjects were screened for the presence of disease. Additionally, handedness
and race were also recorded. For each subject, several 3-Tesla 3D MR images were
acquired: a T1-weighted image (FLASH or MPRAGE or both), a T2-weighted image,
a magnetic resonance angiogram (MRA), and a diffusion tensor image (DTT). The voxel
spacing and dimensions of this data is presented in Figure 6.2. The image acquisition
details can be found in Section 3.3.

The multi-modal nature of this database is depicted in Figure 6.3 where the mid-
axial slices of the youngest and oldest subjects of both sexes are shown. It is important
to note the cross-sectional nature of this data. A spatiotemporal atlas constructed from
this database represents many subjects at different ages rather than a single subject
at many ages. Therefore, any assessment of volumetric change over time may have the

confound of inter-subject variability.

!The CASILab Healthy Subject Database was produced by Dr. Elizabeth Bullitt, head of CASILab
at UNC Chapel Hill. The work was funded by NIBIB-NIH grant RO1 EB000219, 3D Cerebral Vessel
Location for Surgical Planning.
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Figure 6.1: Database Subject Ages

Age distribution for the (a) female and (b) male subjects in the database.

Voxel Spacing (mm) | Dimensions (voxels)
T1-FLASH Ix1x1 176 x 256 x 176
T1-MPRAGE Ix1x1 208 x 256 x 128
T2 I1x1x1 192 x 256 x 128
MRA 0.5 x0.5x0.8 448 x 448 x 128

Figure 6.2: Image Size

Interior image size (voxel spacing) and exterior image size (dimensions).
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(a)

(b)
T1-FLASH  T1-MPRAGE T2 MRA

(c)
MRA

(d)

T1-FLASH T1-MPRAGE T2

Figure 6.3: Image Database Samples

Mid-axial slices from the (a) youngest (20 year old) subject, (b) the oldest
(68 year old) female subject, (¢) the youngest (22 year old) male subject,
and (d) the oldest (79 year old) male subject.
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6.2 Class-Conditional Posterior Maps

To provide direct input to the PMFAtlasBuilder tool, class-conditional posterior
maps were created from the T1-weighted and T2-weighted images from the database
described in Section 6.1, following a protocol similar to the one presented in a previous
study [73] using the same database. Three tissue classes (white matter, gray matter,
and cerebrospinal fluid) were defined using an expectation-maximization segmentation
method? based on an algorithm developed by van Leemput et al. [102, 101]. In addition
to the T1 and T2 images, a spatial probabilistic brain atlas [24] representing expert
prior knowledge about brain structures was used to drive the segmentation.

Each segmentation was produced in the space of the T1 image resulting in prob-
ability maps. For ease of algorithm implementation, an additional background tissue
class was added, resulting in four total classes. The class-conditional posterior maps

are represented mathematically as

pilcj(z)|1;)

where the subscript 4 indicates the subject number, ¢ the tissue class, and I the multi-
modal image set. For the results presented in this chapter, ¢ = {gray matter, white
matter, cerebrospinal fluid, and background}, and I — {T1 image, T2 image}. Floating

point numbers were used to represent the data. Therefore, each posterior map comprises

number of voxels x number of classes x data type size = 176 x 256 x 176 x 4 x 4 Bytes
= 126,877,696 Bytes
= 121 MBytes.

6.3 Atlas Formation

This section details the preprocessing of the images in the Healthy Subject Database
of Section 6.1 and provides algorithmic analysis of PMFAtlasBuilder. PMFAtlasBuilder
was run using the sum-over-class squared error distance described in Section 4.3.1. All
preprocessing and experiments described in Section 6.4 were performed in the Neuro-
Image Analysis Laboratories (NIAL) at UNC Chapel Hill using a SunFire V40z with

?The expection maximization segmention method used to produced the multi-class posteriors was
developed by Marcel Prastawa et al. at the University of North Carolina at Chapel Hill [79].
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four AMD Opteron CPUs, 16GB of memory, and two 76GB hard drives.

The first step in preprocessing the data involved selecting a coordinate system to
which all the class posteriors (produced in Section 6.2) were affinely normalized. For
this purpose, a scalar T1-atlas produced from five healthy adult subjects® using the
unbiased scalar atlas formation method presented in [49] was used. As with the raw
T1 and T2 images, this five-subject atlas has isotropic 1mm spacing with dimensions
of 160 x 208 x 163 voxels.

Using a program, called areg, for affine registration of multi-modal images, we regis-
tered intensity normalized T1 images from each subject to the space of the five-subject
T1-atlas. This program was developed by Daniel Rueckert and Julia Schnabel at Impe-
rial College London for their Image Registration Toolkit [86]. This registration tool uses
normalized mutual information as the similarity criterion. Cubic spline interpolation
was used to resample the resulting images.

The affine transformation parameters from the above registrations were then applied
to the class posteriors from Section 6.2, again using cubic spline interpolation. These
images were converted from their original unsigned short data type format to single
floating point format for convenience in the algorithm implementation, resulting in

class posterior maps of the size

PMF Data Size = Number of Voxels x Number of Classes x Data Type Size
= 160 x 208 x 163 x 4 x 4 bytes
= 86, 794, 240 bytes
~ 82.8 MBytes.

6.4 Results

Spatiotemporal atlases were created for both the female and male populations using
the PMFAtlasBuilder tool. While preprocessing the database, the segmentation tool
failed to produce class-conditional probability maps for one female subject and four
male subjects. This appears to be a result of registration failure between the spatial
prior used in the segmentation process and the individual subjects. This is most likely
due to the affine registration failing to accommodate widely disparate skull shapes.

For each sex, the class-conditional probability maps were ordered by subject age.

3These subjects participated in the Schizophrenia First Episode Study at UNC Chapel Hill.
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For the female population, this resulted in the set {p/“"*(¢|z)}i—1. 49 where p/“"* and
plemale yepresent the youngest and oldest female subjects respectively. Similarly, for

the male population, the ordering resulted in the set {p7"*(c|z)}i=1. 46 where p{"®® and

prale represent the youngest and oldest male subjects respectively. The spatiotemporal
atlases were then created by building a sequence of atlases, each derived from a fixed
number of subjects in that ordering. The number of subjects used to build one of the
individual atlases is called the atlas window width w. The jth atlas in the sequence is
generated from the sub-population {p;(c|x)};=i itw—1-

Due to time constraints atlas stability analysis for this database was not conducted.
In the absence of that analysis, spatiotemporal atlases were created using window
widths of w = 10 and w = 15. PMFAtlasBuilder was run for 100 iterations to build
each individual atlas. The female and male spatiotemporal atlases for window width
w = 10 are presented in Figure 6.4 and Figure 6.5 respectively. Similarly, the female
and male spatiotemporal atlases for window width w = 15 are presented in Figure 6.6
and Figure 6.7 respectively. Greater detail of the youngest and oldest individual female
atlases for window widths of w = 10 and w = 15 are shown in Figures 6.8, 6.9, 6.10,
and 6.11. Similarly, greater detail of the youngest and oldest individual male atlases is
shown in Figures 6.12, 6.13, 6.14, and 6.15.

The average age of the sub-populations used to create each individual atlas was
computed to gain an understanding of how well-spaced in time the 4D spatiotemporal
atlases are. These atlas ages and corresponding age differentials are presented in Figure

6.16 and Figure 6.17 for window widths of ten and fifteen subjects respectively.

6.4.1 Spatiotemporal Atlas Stability

To measure spatiotemporal intra atlas stability across constituent individual 3D
spatial atlases, the sharpness and population variance of each individual spatial atlas
was measured. Using the approach described in Chapter 5, entropy was computed for
each class-posterior map using 256 bins. The inter-time entropy trends are shown for
female and male spatiotemporal atlases for window widths of w = 10 and w = 15
in Figures 6.18 and 6.19 respectively. These trends indicate stability with respect to
individual atlas sharpness. Individual atlas sub-population variance was measured by
considering the distance on the transformations relating each constituent member of
the sub-population to the atlas. This distance is the velocity norm in Equation 3.5.

These trends for window widths of w = 10 and w = 15 are presented in Figures 6.20
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and 6.21 respectively.

6.4.2 Volumetric Analysis

When viewed as a time sequence of 3D spatial atlases, spatiotemporal atlases provide
information regarding volumetric change over time. To analyze this change, per-class
volumes were computed for each tissue class using two methods. In the first method,
the per-channel volume V] of a class ¢ was computed as the sum of class-posterior values

over the whole spatial volume €2,

Vi(e) =Y p(cl).
e
This approach assumes partial voluming of tissue classes in each voxel. In the second
method, the per-channel volume V5 of a class ¢ was computed as the sum of maximum

a posteriori labels,

Va(e) = 3 Uel))

e

where

1 h = n /
Z(C(l’)) — { where ¢ argmin, E{WM,GM,C’SEBackground}p(c |ZL’)

0 otherwise

This approach assumes a voxel is comprised of a single tissue class. Volume trends using
both V; and V5 are presented for female and male atlases of width w = 10 subjects in
Figures 6.22 and 6.23 respectively. Similarly, volume trends for the atlases of width
w = 15 are shown in Figures 6.24 and 6.25.

The volume trends show a loss of grey matter and an increase in cerebrospinal fluid
over time. The global loss of grey matter with age is well documented, for example
in aforementioned 465-adult-subject cross-sectional study presented in [30]. In the
Good et al. study, the authors report no significant global decrease in white matter
volume with age. While this appears to be true for the female data presented in this
dissertation it holds for only the younger half of the male data. For the older half of
the male population there is a noticeable decrease in white matter volume. There also

appears to be a general decrease in the total intracranial volume with age for the entire
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male population. Additionally, Good et al. report a steeper decline in grey matter
volume in males than in females whereas, in this dissertation, the grey matter loss
appears to be similar for the female and male populations. One possible explanation
for the greater than expected white matter loss and lower than expected grey matter
loss for second half of the male population is the progressively poorer contrast over
time between grey matter and white matter. For example, consider occipital region in
the T1-FLASH and T2 images for the oldest male in Figure 6.3.

There is agreement between the white matter volume of the individual atlases and
the average white matter volume of the sub-populations from which those atlases where
created. While this consistency holds for the gray matter class, it does not hold for the
cerebrospinal fluid class. The computed cerebrospinal fluid volumes for the individual
atlases fall well below their corresponding sub-population averages. This is due to the
thinning and, in places, destruction of cortical cerebrospinal fluid voxels during the
linear interpolation used to resample the images during the registration process. Since
much of the cerebrospinal fluid is cortical, this effect is quite pronounced. The effect
of linear interpolation on atlas volumes can be studied by computing the volume of a
single class-posterior map at scale. The class-posterior map representing the youngest
female subject was blurred with a Gaussian kernel with ¢ = 0.5 and ¢ = 1.0 voxels.
The class volumes of these two blurred class-posterior maps are compared with the
class volumes of the original class-posterior maps in Figure 6.26. As the class-posterior
maps are blurred, the cerebrospinal fluid volume decreases.

Local volumetric change can be studied by analyzing the logarithm of Jacobian maps
derived from the transformation relating the youngest and oldest spatial atlases within
a given spatiotemporal atlas. Figures 6.27 and 6.28 show these log-Jacobian maps for
the female and male populations for window widths w = 10 and w = 15 respectively.
In these images, blue represents a volumetric contraction, green no change, and red

volumetric expansion.

6.5 Summary

In this chapter, the multi-class posterior atlas formation method was applied to
a database of multi-modal images from ninety-five adult brains as part of a healthy
aging study. In this study, 4D spatiotemporal atlases were created for the male and
female populations. This work is unique in that Fréchet mean atlases were created

for a number of time points. These mean atlases suggest an approximation for the
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line of best fit class posteriors over time. Based on the results in Chapter 5, sliding
windows of ten and fifteen subjects were used to ensure temporal smoothness. All of
this was facilitated by the good age distribution of the subjects in the database used.
Volumetric analysis of white-matter, grey-matter, and cerebrospinal fluid change over
time were consistent with results from previous studies involving large databases. The
use of sharp spatiotemporal atlases provides an opportunity to analyze local volumetric

change over time.



Figure 6.4: Female Spatiotemporal Atlas, w = 10

Mid-axial slice view of the forty individual female atlases generated using a
window width of ten subjects.
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Figure 6.5: Male Spatiotemporal Atlas, w = 10

Mid-axial slice view of the thirty-seven individual male atlases generated
using a window width of ten subjects.
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Figure 6.6: Female Spatiotemporal Atlas, w = 15

Mid-axial slice view of the thirty-five individual female atlases generated
using a window width of fifteen subjects.
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Figure 6.7: Male Spatiotemporal Atlas, w = 15

Mid-axial slice view of the thirty-two individual male atlases generated using
a window width of fifteen subjects.
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(c) Mid-Sagittal Slice

Figure 6.8: Youngest Female Atlas, w = 10

The mid-axial (a), mid-coronal (b), and mid-sagittal (c) slices of the atlas
built from the class posteriors representing the ten youngest females in the
database.
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(c) Mid-Sagittal Slice

Figure 6.9: Oldest Female Atlas, w = 10

The mid-axial (a), mid-coronal (b), and mid-sagittal (c) slices of the atlas
built from the class posteriors representing the ten oldest females in the
database.
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(c) Mid-Sagittal Slice

Figure 6.10: Youngest Female Atlas, w = 15

The mid-axial (a), mid-coronal (b), and mid-sagittal (c) slices of the atlas
built from the class posteriors representing the ten youngest females in the
database.
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(c) Mid-Sagittal Slice

Figure 6.11: Oldest Female Atlas, w = 15

The mid-axial (a), mid-coronal (b), and mid-sagittal (c) slices of the atlas
built from the class posteriors representing the ten oldest females in the
database.
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(c) Mid-Sagittal Slice

Figure 6.12: Youngest Male Atlas, w = 10

The mid-axial (a), mid-coronal (b), and mid-sagittal (c) slices of the atlas
built from the class posteriors representing the ten youngest males in the
database.
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(c) Mid-Sagittal Slice

Figure 6.13: Oldest Male Atlas, w = 10

The mid-axial (a), mid-coronal (b), and mid-sagittal (c) slices of the at-
las built from the class posteriors representing the ten oldest males in the
database.
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(c) Mid-Sagittal Slice

Figure 6.14: Youngest Male Atlas, w = 15

The mid-axial (a), mid-coronal (b), and mid-sagittal (c) slices of the atlas
built from the class posteriors representing the ten youngest males in the
database.
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(c) Mid-Sagittal Slice

Figure 6.15: Oldest Male Atlas, w = 15

The mid-axial (a), mid-coronal (b), and mid-sagittal (c) slices of the at-
las built from the class posteriors representing the ten oldest males in the
database.
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Figure 6.16: Atlas Age Trends, w = 10

Average age of subjects used to create the (a) female atlases and the (b)
male atlases. Differential age for plots (a) and (b) is shown in (c¢) and (d)
respectively.
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Figure 6.17: Atlas Age Trends, w = 15

Average age of subjects used to create the (a) female atlases and the (b)
male atlases. Differential age for plots (a) and (b) is shown in (c¢) and (d)
respectively.
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Entropy: Male Atlases
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Figure 6.18: Entropy Trends, w = 10

Class-posterior entropy trends for the female (a) and male (b) atlases.
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Velocity norm trends for the female (a) and male (b) atlases.
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Velocity norm trends for the female (a) and male (b) atlases.
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Figure 6.22: Female Volume Trends, w = 10
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Volume trends for (1a-1d) V; and (2a-2d) V5 for the female atlases of width
of ten subjects for (la&2a) white matter, (1b&2b) grey matter, (lc&2c)
cerebrospinal fluid, and (1d&2d) total brain volume.
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Figure 6.23: Male Volume Trends, w = 10

Volume trends for (1a-1d) V; and (2a-2d) V5 for the male atlases of width
of ten subjects for (la&2a) white matter, (1b&2b) grey matter, (lc&2c)
cerebrospinal fluid, and (1d&2d) total brain volume.
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Figure 6.24: Female Volume Trends, w = 15

Volume trends for (1a-1d) V; and (2a-2d) V5 for the female atlases of width
of fifteen subjects for (1a&2a) white matter, (1b&2b) grey matter, (1c&2c)
cerebrospinal fluid, and (1d&2d) total brain volume.
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Male Volume Trends, w = 15

Volume trends for (1a-1d) V; and (2a-2d) V5 for the female atlases of width
of fifteen subjects for (1a&2a) white matter, (1b&2b) grey matter, (1c&2c)
cerebrospinal fluid, and (1d&2d) total brain volume.
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Figure 6.26: Volume at Scale

Class volumes for the youngest female and two blurred versions of the same.
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(b)

Figure 6.27: Log-Jacobian Map: Oldest to Youngest, w = 10

Log-Jacobian maps of the transformation relating the coordinate spaces of
the (a) oldest to youngest female and (b) oldest to youngest male. The color
in these figures represents volumetric change, with respect to the original,
of 32% or less for blue, 100% for green, 316% or more for red.
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(b)

Figure 6.28: Log Jacobian Map: Oldest to Youngest, w = 15

Log-Jacobian maps of the transformation relating the coordinate spaces of
the (a) oldest to youngest female and (b) oldest to youngest male. The color
in these figures represents volumetric change, with respect to the original,
of 32% or less for blue, 100% for green, 316% or more for red.



Chapter 7

Conclusion

This chapter reviews and discusses the contributions of this dissertation and presents
future work possibilities. The contributions are revisited and discussed in Section 7.1
and a discussion of future research goals and new application areas is presented in

Section 7.2. This chapter concludes with a summary in Section 7.3.

7.1 Review of Contributions

This section summarizes the contributions of this dissertation. The contributions
are restated in the order presented in the dissertation along with a discussion of how

they were accomplished.

1. A theoretical development showing that minimizing sum-of-Kullback-Leibler di-
vergences, in either ordering of parameters, mazrimizes a lower bound on Bayes
probability of error, a measure of indistinguishability between probability distribu-

tions.

Multi-class conditional posteriors were the model chosen to represent underly-
ing tissue structure for the multi-modal image set registration and atlas forma-
tion. Chapter 2 investigated two methods for producing probability distribu-
tion averages via minimizing sum-of-Kullback-Leibler divergences. It was shown
that p = argminpl_) ({p, Z]\L1||p) produced the arithmetic mean and that p =
argmin, D (p||{p:}L,) produced the normalized geometric mean. Both averaging

methods were determined via the method of Lagrange multipliers.
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Using the arithmetic mean, the sum-of-Kullback-Leibler dispersion D ({p;}/,|p)
was directly related to generalized Jensen-Shannon divergence. Existing Bayes
error bounds on Jensen-Shannon divergence presented in [60| therefore provided
Bayes error bounds on the population-centric dispersion measure. Minimizing
D ({p,}f\ilHﬁ) maximizes a lower bound on Bayes probability of indistinguisha-

bility error.

Using the normalized geometric mean, the sum-of-Kullback-Leibler dispersion
D (]5||{pZ f\;1) was found to provide an upper bound to a dispersion function for
interpreting pair-wise Bayes error. Specifically, bounds on Bayes error in terms of
the Bhattacharrya coefficient were used to show that minimizing D (]5||{Pz}fi1)

also maximizes a lower bound on Bayes probability of indistinguishability error.

. A novel multi-modal image set registration method is presented. To the author’s
knowledge this is the only method that incorporates an arbitrary number of multi-
modal images per subject. An advantageous consequence of this framework is

inverse-invariant (symmetric) registration.

A Bayesian framework for generating inter-subject large deformation transforma-
tions between two multi-modal sets of images was presented in Chapter 3. Fun-
damental to this method was the assumption that human brain anatomy consists
of finitely enumerable structures. These structures are captured by estimating
a class-conditional posterior map for each structure. The modality independent
registration framework was achieved by jointly estimating the posterior prob-
abilities associated with the multi-modal image sets and the high-dimensional
registration transformations mapping the posteriors. To drive the registration,
relative entropy between each of the posteriors and an evolving posterior average,
in an independent coordinate space, was minimized. Using the posterior average
provided an intrinsically inverse-invariant registration framework. The registra-
tion framework was based on the matching problem formulated via fluid flows
introduced by [14].

. An extension of the above framework to unbiased multi-class atlas formation.

The multi-modal image set registration framework was extended to large defor-

mation multi-class posterior atlas estimation in Chapter 4. The method generates
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a representative anatomical template from an arbitrary number of topologically
similar multi-modal image sets. The definition of the average atlas follows from
the notion of Fréchet means. The generated atlas is the class posterior that re-
quires the least amount of deformation energy to be deformed into every class
posterior. The method is computationally practical in that computation time
grows linearly with the number of image sets. To the author’s knowledge this
is first unbiased atlas building method that is based on a population of sets of
multi-modal images. Constructing such an atlas provides pair-wise correspon-

dence between any two image sets via transformations through said atlas.

. The use of information theory to evaluate atlas stability.

Entropy of image intensities was used to quantify atlas sharpness in Chapter
5. A blurry image will exhibit greater entropy of intensities than a sharper im-
age. Using this measure, it was shown that resampling an image using linear
interpolation adds entropy to the image comparable to that of blurring the image
with Gaussian kernel with a width ¢ = 1 voxels. For atlas formation, entropy
was used to address the question of how many subjects are required to produce a
stable atlas. Random permutation tests were conducted to study atlas entropy as
a function of the number of images used to produce an atlas. It was shown that,
within the choice of interpolation method, the large deformation diffeomorphic
atlases were sharp after the inclusion of ten or more subjects. This number is

certainly dependent on the particular population used.

. An application of the atlas formation to an aging study involving multi-modal

brain image data from ninety-five subjects.

In Chapter 6, the multi-class posterior atlas formation method was applied to a
database of multi-modal images from ninety-five adult brains as part of a healthy
aging study. In this study, 4D spatiotemporal atlases were created for the male
and female populations. This work is unique in that Fréchet mean atlases were
created for a number of time points. These mean atlases suggest an approxi-
mation for the line of best fit class posteriors over time. Based on the results
in Chapter 5, sliding windows of ten and fifteen subjects were used to ensure
temporal smoothness. All of this was facilitated by the good age distribution

of the subjects in the database used. Volumetric analysis of white-matter, grey-
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matter, and cerebrospinal fluid change over time were consistent with results from

previous studies involving large databases.

7.2 Future Work

This section presents several extensions to this dissertation and discusses areas for
future research. This section is divided into three sections: Section 7.2.1 describes the
creation of continuous 4D spatiotemporal atlases, Section 7.2.2 proposes the extension
of multi-modal image set registration to images of subjects with pathology, and Section
7.2.3 describes the application of multi-modal image set registration to multi-center

studies were MR images are acquired from scanners of different field-strength.

7.2.1 Continuous 4D Spatiotemporal Atlas

Can regression methods be applied to the 3D spatial atlases at discrete time points?
What notion of distance, and subsequently interpolation (particularly temporal), are
appropriate in this setting? This dissertation has attempted to provide an approximate
solution by moving average windows. The main idea is to overcome the limitations of

viewing data as belonging to age groups by approximating a continuous process.

7.2.2 Registration of Images Involving Pathologies

The multi-modal image set registration as presented here might be potentially sig-
nificant in various applications which rely on the measurement of image sets. For
example, multi-modal imaging is standard in the imaging of pathologies such as tu-
mors and lesions. Registration between images presenting pathology and images of
healthy subjects is a challenging task since space-occupying lesions have to be treated
differently from infiltrating lesions. Specifically, the registration needs to accommodate
both local spatial deformation and local change of image intensity. Existing registra-
tion method involving scalar images based on image brightness do not accommodate
pathologies. In the formation of the class posteriors, one can explicitly assign classes

to the various healthy and pathological tissues.
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7.2.3 Multi-Center Studies

Another potential application for this method is the registration of images acquired
from scanners of different field-strength. Image set registration across different scanners
becomes an increasingly important component in multi-center studies. For example,
in studies of developmental changes covering multiple years, and in follow-up studies
of diseases with change of scanner technology. Images acquired from different scanners
potentially have different contrasts and different spatial distortions. The method pre-
sented in this dissertation may help address these problems as the registration would be
based on underlying anatomical structures rather than simply image intensities. This
assumes a robust segmentation method capable of handling the output from scanners
of different field strength.

7.3 Summary

This dissertation presented a Bayesian framework for generating large deformation
transformations between multi-modal image sets. An image set may be comprised
of an arbitrary number of multi-modal images. To the author’s knowledge, this is
the first such method capable of exploiting the complementary information provided
by multi-modal image sets. This modality independent registration framework was
achieved by jointly estimating the multi-class posterior probability maps associated
with the multi-modal modal image sets and large deformation diffeomorphisms mapping
these posterior maps. This framework was extended to large deformation multi-class
posterior map atlas estimation. The method generates an unbiased sharp representative
anatomical template from an arbitrary number of topologically similar multi-modal
image sets. This method was applied to an aging study involving ninety-five subjects
to study global and local volumetric change. This research shows promise for future
work in building 4D spatiotemporal atlases, image registration involving subjects with

pathologies, and multi-center studies.
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Appendix A

Information Theoretic Measures

In this appendix, the basic quantities of information theory: entropy, relative en-
tropy, and mutual information, are presented in their discrete form. These measures are
functionals of probability distributions and, hence, are not dependent on actual values
assumed by random variables. Additionally, a more recent measure, Jensen-Shannon
divergence, is also presented. This measure is used in Chapter 2 to define inequalities
involving Bayes probability of error P.. In the medical image analysis context, image
intensities can be interpreted as random variables whose behavior can be characterized
in terms of probability distributions upon which the basic quantities of information
theory can be applied. This dissertation focuses on tissue class-conditional probability

mass function maps.

A.1 Entropy

The concept of entropy was first developed in the field of thermodynamics as its
second law which states that the entropy of an isolated system is non-decreasing. In
searching for a quantity which measures how much, or at what rate, information is
produced by a process, Shannon [87|, building on the work of Hartley [38|, developed

the concept of entropy to measure the average uncertainty of a random variable.

Definition A.1 (Uncertainty). The uncertainty, U, of a random variable X is given
by
U(x) = —logp(x)

where the probability p(x) is the probability distribution characterizing X .

U(x) is monotonic in p(x) and positive for all values of p(x), since 0 < p(z) < 1.
Both of these properties are desirable features of a measure. Also, the least and greatest
uncertainty occur when p(x) = 1 and p(z) = 0 respectively. This presents an intuitive
understanding for the measure, since if X = x happens with probability 1 then one is

certain of X and, hence, have the least uncertainty.
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Definition A.2 (Entropy). The entropy of a random variable X, H(X), is defined as

the average uncertainty over all possible values X may assume:

H(X) = &[U(x)]

= &~ log p(z)]
==Y plx)logp(x

Entropy is typically measured in bits, nats, and Hartleys for logarithms of bases two,
e, and ten respectively. Unless otherwise stated, entropies stated in this dissertation
will be measured in bits. For an axiomatic derivation of entropy see |87].

There are several important properties of entropy noted below:
e Non-negativity: H(X) > 0.

e Upper bound: H(X) < log(N). Entropy is maximum when all probabilities are

equally likely; equivalently, when the average uncertainty is greatest.
e Chain rule: H(X,Y) = H(X)+ H(X|Y).
e Conditioning reduces entropy: H(X|Y) < H(X).

e Concavity: H({p(z;)}) is concave in p.

The notion of entropy can be extended to multiple random variables as shown below.

Definition A.3 (Joint Entropy). The joint entropy, H(X,Y), of a pair of discrete
random variables X and Y with joint distribution p(x,y) is defined by

> plx,y)logp(z,y).

zeX yeY

Definition A.4 (Conditional Entropy). Let X and Y be discrete random variables
with joint distribution p(x,y) and conditional distribution p(x|y). Then the entropy

conditioned on a single event is defined by

H(X|Y =y) ==Y plxly) log p(|y).

zeX
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The conditional entropy, or equivocation, is then defined by

H(X|Y)=> py)H(X|Y =y)

yey

== p)Y_ p(zly)logp(z[y)

yey zeX

==>" pla,y)logp(aly).

zeX yeYy

A.2 Kullback-Leibler Divergence

With this well-defined notion of entropy, Kullback and Leibler |58| define a distance

measure between two distributions.

Definition A.5 (Kullback-Leibler Divergence). The Kullback-Leibler divergence (or
relative entropy) between two probability distributions p and q over the same discrete

random variable X is defined by the expected logarithm of likelihood ratio of p to q

D(pllq) = [log qui]

=> plx) log

zeX

In a signal model, this measure can be interpreted as the inefficiency of assum-
ing that ¢ is true when p is true. That is, given a model expressed as a probability
distribution p, one can then measure how far an observation, also expressed by a prob-
ability distribution, ¢, deviates from p using relative entropy. Additionally, D(p||q)
can be viewed as the average number of bits that are wasted by encoding events from
distribution p with a code based on distribution gq.

The Information Inequality theorem provides the basic properties of Kullback-

Leibler divergence.

Theorem A.1 (Information Inequality). Let p(z) and q(x) be two probability mass
functions associated with random variable X. Then Dy (p||q) > 0 with equality if and
only if p(z) = q(z) for all x € X.

Proof. See [16], page 26, for an argument based on Jensen’s Inequality and fact that

the function — log is convex. O
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Although a useful distance function, Kullback-Leibler divergence is not a metric. By
Theorem A.1, D(-||-) satisfies the non-negativity and identity of indiscernables prop-
erties of a metric, Definition 1.1. D(:||-), however, is not a metric since it does not
obey the symmetry and triangle inequality properties. Consider the following simple

counterexample.

Example A.1 (Kullback-Leibler divergence is not a metric.). Consider the following

three probability mass functions,

o ={35p w0=-{31} o-{5z}

In computing Kullback-Leibler divergences between these probability mass functions,
note that

and

That is, D(p||lq) > D(q||p), and, hence, D(:||-) is not symmetric. In computing two
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more Kullback-Leibler divergences, one finds that

Digllr) = ¥ gl) log%

B0 (2.8 L e (L8
1% \17) 1% \1

3 6 1
=—log=+ -log?2
4og7+40g
1

3 3 3
=—log2+ -1 — -1 + -
4og 4og3 4og? 1

3 3
—1+110g3—110g7

and

Now consider the expression

1 3 3 1
D(pllq) + D(q||r) — D(p||r) =1 — 510g3+ 1~|—Zlog3— Zlog7—2+§log7
1
=1 (log3 —log7)
<0

= D(pllq) + D(ql|r) < D(pl|r).

That is, D(-||) does not obey the triangle inequality.

A.3 Jensen-Shannon Divergence

A generalized notion of Kullback-Leibler divergence, Jensen-Shannon divergence,

will be used in Chapter 2 to provide bounds on Bayes probability of error. The
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Kullback-Leibler divergence is always non-negative, but can be unbounded (e.g., when
p1(z) # 0 and po(z), D(p1]|p2) = oo) and is, as noted above, not symmetric. A more
recent measure between two probability distributions is the Jensen-Shannon divergence

introduced by [60] which is both bounded and symmetric.

Definition A.6 (Jensen-Shannon Divergence). Let m = {m,mo} with m,m > 0 and
1 + me = 1 be prior probabilities on two probability distributions pi(x) and pe(x). The

Jensen-Shannon divergence between p; and py defined by

JSx(p1]|p2) = H(mip1 + maps) — mH (p1) — maH (p2)
= m D(p1||Mz) + 72D (pa|| M)

where M, = mip1 + mops is called the mutual source of p; and py 23]

Definition A.7 (Generalized Jensen-Shannon Divergence). The Jensen-Shannon di-
vergence can be generalized to measure the distance between any finite number of prob-

ability distributions as

JSw({pz' 5\41) =H <Z Wipz) - ZWiH(Pi)
= — Z (Z mipi(x ) log (Zﬂjp] ) + Zm Zp, ) log pi(x

rzeX i=1 = reX
N
S e [ g (z e ) 1oz >]
i=1 xeX
N
pi\T
i=1 z€X Z]—l m;p;()

where M, = Zjvzl mjp; with m; > 0 and sz\il m = 1.

Although not used in the framework proposed by this dissertation, for completeness,
this section concludes with the definition of the last of three fundamental information
theoretic measures, mutual information. Mutual information will be discussed later in

the context of related work.
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A.4 Mutual Information

The last of the three basic information theoretic measures is mutual information:

the measure of the amount of information one random variable X has about another
Y.

Definition A.8 (Mutual Information). Mutual information is defined as the relative

entropy between the joint distribution and the product of two probability mass functions:

I(X;Y) = D(p(x,y)|lp(x)p(y))
_ s lo p(7,y)
=22 plw)log s

zeX yeYy

Mutual information measures the dependence of random variables X and Y. When
X and Y are independent p(z,y) = p(z)p(y) and I(X;Y) = 0. Mutual information

can also be expressed in terms of entropy as follows:

[(X;Y)=H(X)— H(X|Y) (A.1)
=H(Y) - H(Y|X)
= H(X)+H(Y) - H(X,Y).

In equation A.1, mutual information is viewed as the reduction in the uncertainty
of X due to the knowledge of Y. There are several important properties of mutual

information noted below:

e Non-negativity: 1(X;Y) > 0.

Symmetry: 1(X;Y) =1(Y; X).

Self-information: I(X;X) = H(X).

Independence: 1(X;Y) =0 < X LY.

Information explanation:1(X;Y) < H(X) and I(Y; X) < H(Y).

A.5 Multivariate Mutual Information

The two notions of mutual information in Section A.4 can be extended to the mul-

tivariate setting.
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A.5.1 Entropy Reduction

The first extension follows the “entropy reduction” idea espoused by [1] which is a

generalization of Equation A.1,
N
I(Xy5..:Xn) =) (=) H(pi, ... ps,)-

In this context, multivariate mutual information amount N > 2 random variables can
be interpreted as the measure of their simultaneous interaction [105, 56]. It can be
equivalently interpreted as a multi-way similarity measure among random variables.
If the value is zero, the N random variables do not simultaneously interact. This
generalization of mutual information can result in negative values. As an example,

consider the three random variable case, {X;}7_,,

I(Xy, X5, X3) = H(Xy) + H(X2) + H(X3)
— H(Xy,Xy) — H(X1,X3) — H(X,, X3)
+H(X17X2aX3)'

Note that the symmetry property still holds.

A.5.2 Redundancy Measure

The generalization of mutual information based on Definition A.8 preserves the
non-negativity property. This is the approach of [105] where they extend the relative

entropy concept to a “redundancy measure”
N
k=1

= ZH(p(a:k)) — H (p(x1,...,2n)) -

By the Information Inequality Theorem, TheoremA.1, this measure is non-negative
and equal to zero if the X; are stochastically independent. The higher the redundancy

among the random variables, the stronger their functional dependency |46, 47|
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Appendix B

Study of Convergence

B.1 Introduction

How likely is it that the actual optimum in the multi-modal image set registration
cost function is achieved? It is impossible to know for real data, since there is no way
to know the true correspondence. For synthetic transformations and synthetic image
intensities, the algorithm comes close to the global minimum of the cost function. Using
synthetic data, this document presents a qualitative evaluation of the registration and a
quantitative evaluation of the data likelihood estimation under the multi-variate normal

distribution model.

B.2 Synthetic Data Example!

To evaluate the performance of the algorithm, a synthetic 2D dataset was gener-
ated. Specifically, a geometric prior, a known transformation, and two synthetic images
whose radiometric characteristics are statistically similar to actual T1- and T2-weighted
MR images were defined. A four-class atlas prior comprised of concentric ellipses was
generated using Matlab. The subsequent composite label image was generated by the
superposition of the individual classes. Both the atlas and composite label image are
shown in Figure B.1. Additionally, a transformation was constructed using sinusoidal
displacements, which was then applied to the composite label image to produce the
foundation for the synthetic image set. The multi-modal synthetic image set was cre-
ated from two images that were simulated by sampling from a multi-variate Gaussian
distribution with different means and covariances for each of the classes in the deformed
label image. The deformed label image and the corresponding multi-modal images are
shown in Figure B.2. The algorithm was run for fifty iterations with ten steps of the
large deformation diffeomorphic registration per iteration. The final segmentation and

deformation estimates are also shown in Figure B.3.

'"This section represents portions of the WBIR 2003 paper [62].
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(a) (b) (c) (d)

(e)

Figure B.1: Geometric Atlas Prior

The manually generated geometric four-class atlas prior (a-d) and the cor-
responding composite labeled image (e).

(a) (b)

Figure B.2: Synthetic Image Set

The deformed label image (a), the synthetic image derived from T1 samples
(b), and the synthetic image derived from T2 samples (c).
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(b)

Figure B.3: Estimated Deformation

The estimated deformation expressed as a warped regular grid (a) and the
estimated segmentation (b) following fifty iterations of the algorithm.

To evaluate the registration the algorithm was run, again with fifty iterations, hold-
ing the transformation fixed to the identity map. With the transformation fixed to
the identity map, the expectation maximization provided the maximum likelihood so-
lution. The final estimated segmentation was then compared to the registration-based
segmentation, with results shown in Figure B.4. By examining the regions where the
two segmentations differ from the ground truth label image, it is clear the registration
has improved the segmentation.

In both invocations of the algorithm, the class means and covariances were collected
and compared. Figure B.5 shows the final relative norms for the estimated and actual
means and covariances at the final iteration. For all classes, the registration has im-
proved estimates for both the means and covariances. The convergence of the mean
and covariance estimates using registration is shown in Figure B.6. This figure shows
that the estimates of the means and covariances have converged quickly when the trans-
formation is fixed to the identity map. When registration is added, the estimates of
the means and covariances continue to improve as the estimation of the transformation
between the atlas and the subject converges. This exemplifies the effectiveness of the
alternating nature of the algorithm. These results show that the registration improves

the segmentation by accommodating local variability.



(a) (b)

(d)

Figure B.4: Final Segmentation

The top row shows the ground truth label image (a), the final segmentation
estimation using registration (b), and the regions where this segmentation
differs from the ground truth (c). The bottom row shows the final seg-
mentation estimation without using registration (d), and regions where this
segmentation differs from the ground truth (e).

132
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Class %W/ reg. ”ﬁ%ﬁfi”w/o reg. %W/ reg. %W/o reg.
c1 0.0047 0.1216 0.0450 7.0588
C2 0.0152 0.1168 0.2104 1.8164
C3 0.0960 0.0939 0.0206 0.0811
C4 0.0046 0.0046 0.0081 0.0266

Figure B.5: Relative Norm Statistics

The first two columns of numbers are the means at the final iteration /.,
relative to the actual means p., using registration and fixed identity map.
The last two columns show the same for the relative covariances using the

Frobenius norm, ||A||r = /tr (AAT).
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Relative Mean Norms (w/o reg)

Class 1
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— - Class 3 |/
Class 4

10 20 30 40 50
Iteration

Relative Covariance Norms (w/o reg)
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Class 4

10 20 30 40 50
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Figure B.6: Convergence

The left column shows the convergence of means and covariances using

registration.
transformation.

The right column shows the same using the fixed identity
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