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iii
Abstra
tPETER JONATHAN LORENZEN: Multi-Modal Image Registration andAtlas Formation.(Under the dire
tion of Sarang C. Joshi, D.S
..)Medi
al images of human anatomy 
an be produ
ed from a wide range of sensorte
hnologies and imaging te
hniques resulting in a diverse array of imaging modalities,su
h as magneti
 resonan
e and 
omputed tomography. The physi
al properties ofthe image a
quisition pro
ess for di�erent modalities eli
it di�erent tissue stru
tures.Images from multiple modalities provide 
omplementary information about underly-ing anatomi
al stru
ture. Understanding anatomi
al variability is often important instudying disparate population groups and typi
ally requires robust dense image regis-tration. Traditional image registration methods involve �nding a mapping between twos
alar images. Su
h methods do not exploit the 
omplementary information providedby sets of multi-modal images.This dissertation presents a Bayesian framework for generating inter-subje
t largedeformation transformations between two multi-modal image sets of the brain. The es-timated transformations are generated using maximal information about the underlyingneuroanatomy present in ea
h of the di�erent modalities. This modality independentregistration framework is a
hieved by jointly estimating the posterior probabilities asso-
iated with the multi-modal image sets and the high-dimensional registration transfor-mations relating these posteriors. To maximally use the information present in all themodalities for registration, Kullba
k-Leibler divergen
e between the estimated posteri-ors is minimized. This framework is extended to large deformation multi-
lass posterioratlas estimation. The method generates a representative anatomi
al template from anarbitrary number of topologi
ally similar multi-modal image sets. The generated atlasis the 
lass posterior that requires the least amount of deformation energy to be trans-formed into every 
lass posterior (ea
h 
hara
terizing a multi-modal image set). Thismethod is 
omputationally pra
ti
al in that 
omputation times grows linearly with thenumber of image sets.The multi-
lass posterior atlas formation method is applied to a database of multi-modal images from ninety-�ve adult brains as part of a healthy aging study to produ
e4D spatiotemporal atlases for the female and male subpopulations. The stability of the



ivatlases is evaluated based on the entropy of their 
lass posteriors. Global volumetri
trends and lo
al volumetri
 
hange are evaluated. This multi-modal framework haspotential appli
ations in many natural multi-modal imaging environments.
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Chapter 1Introdu
tion
1.1 MotivationMedi
al image analysis assists 
lini
ians in many tasks, in
luding the following:evaluating a patient's disease state, evaluating the e�
a
y of a pres
ribed treatment,or studying illness through population studies. In their analyses, 
lini
ians draw upontheir knowledge of anatomy and their experien
e viewing medi
al images and tissuesdire
tly. Histori
ally, anatomists have en
oded this prior knowledge of anatomy inthe form of an atlas. Su
h an atlas may be a set of drawings rendered by experts,su
h as [75℄, or a photographi
 study as in [83℄. Digital atlases, the subje
t of thisdissertation, naturally require 
omputers. Several types of digital atlases, in
ludingintensity-based, label-based, and probabilisti
, are des
ribed in [99℄. This dissertationfo
uses on building atlases from multi-modal images.Brain atlases are often used to study stru
tural neuroanatomy: for surgi
al plan-ning (e.g., in the planning of tumor rese
tion where statisti
al atlases provide priorprobability models to 
onstrain segmentation to lo
alize 
riti
al stru
tures [55℄); forinstru
tional purposes [55℄; for group studies where atlases are used to study stru
turaldi�eren
es between populations (e.g., s
hizophreni
s and normal 
ontrols [18, 19, 96℄);and to study morphologi
al 
hange su
h as in generative pro
esses (e.g., neonatal braindevelopment [78℄) and degenerative pro
esses (e.g., gray matter loss due to Alzheimer's[97, 96℄).The fundamental impetus driving this dissertation is the desire to in
orporate asmu
h anatomi
al information as possible into the problems of medi
al image registra-tion and atlas formation. Mono-modality images do not 
apture all the informationrepresenting the underlying tissue stru
ture. The information that is provided by a



2medi
al image is dependent on the physi
s and parameterization of the a
quisitionpro
ess. For example, in 
omputed tomographi
 imaging the attenuation of x-rays ismeasured, resulting in ex
ellent delineation of dense bone stru
ture. Magneti
 reso-nan
e imaging relies on the relaxation properties of the dipole moments of hydrogenatoms under the in�uen
e of magneti
 �elds. The resulting images are, typi
ally, basedon three basi
 tissue parameters (proton density, T1 relaxation time, and T2 relax-ation time) as well as �ow 
hara
teristi
s. The pro
ess involves 
orrelating a series ofradio frequen
y signal measurements with spatial lo
ation of the various tissue types.Consequently, magneti
 resonan
e images provide good soft tissue segmentation. Thedi�erent imaging modalities of magneti
 resonan
e imaging provide 
omplementary in-formation about pathologi
al stru
tures. In the 
ase of 
ertain tumors, T1-weightedimages present good fat-tumor 
ontrast whereas T2-weighted images show good tumor-mus
le 
ontrast [59℄. In multiple s
leroris, 
ontrast-enhan
ed T1-weighted images showthe a
tive lesions, T2-weighted images show both new and old lesions, and proton den-sity images highlight lesions near the �uid-�lled ventri
les [25℄. In this dissertation, toutilize the 
omplementary information from multi-modal images, a model-based frame-work is de�ned in terms of multi-
lass posterior probability maps where the 
lassesrepresent underlying tissue stru
tures.This dissertation presents a novel framework for multi-
lass atlas formation fromsets of multi-modal images. This framework is extended to the unbiased atlas settingof [49℄. These atlases represent anatomi
al variation present in populations [69, 32, 94℄.Many images are mapped into a 
ommon 
oordinate system to study intra-populationvariability and inter-population di�eren
es, to provide voxel-wise mapping of fun
tionalsites, and to fa
ilitate tissue and obje
t segmentation via registration of anatomi
allabels. Atlas formation from a population of medi
al images is an important problemthat is naturally expressed within the subje
t of 
omputational anatomy.1.2 Computational Anatomy and Atlas FormationComputational anatomy [32℄ is the study of anatomi
al shape variability. Relatinganatomi
al shape to biologi
al growth and fun
tion has roots in the seminal work ofD'Ar
y Thompson in 1917 [93℄. Thompson was interested in the 
omparison of relatedforms through mathemati
al transformations rather than in the pre
ise de�nition ofea
h form. This notion was extended to deformable templates [31℄ in whi
h the spa
eof anatomi
al imagery is interpreted as the orbit under the group of transformations.



3Spe
i�
ally, 
omputational anatomy belongs to the dis
ipline of geometry governed bypattern theoreti
 prin
iples whose kinemati
s, that 
hara
terize the transformations, isdes
ribed in terms of 
on
epts borrowed from 
ontinuum me
hani
s.In the framework of 
omputational anatomy, the atlas represents the 
ommon in-variant stru
ture in a population and the transformations relating the 
oordinate spa
eof the atlas to the 
oordinate spa
es of the individual members of the population en
odethe variability. This variability represents lo
al stru
ture under deformation or warp-ing. An example of this devision into invarian
e and variability 
onsider the healthyhuman brain: in every su
h brain there exist pre
isely two lateral ventri
les with notwo pair the same. Therefore, under the 
omputational anatomi
al framework, anatlas of healthy human brains should represent pre
isely two lateral ventri
les and 
ap-ture the variability through mathemati
al transformations that relate them. The atlasformation method proposed in this dissertation falls within this framework.Understanding anatomi
al variability requires high-dimensional image registrationwhere the number of parameters used to des
ribed the transformations are on the or-der of the number of spatial elements des
ribing the underlying spa
e of the images.There are many 
hoi
es in this regard. In terms of ability to 
apture anatomi
 variabil-ity, transformation models 
an be loosely di
hotomized into small deformation models,whi
h asso
iate energy to distan
e, and large deformation models, whi
h asso
iate en-ergy to velo
ity on �uid �ows. This dissertation applies the theory of large deformationdi�eomorphisms [22, 70, 68℄ to generate transformations. An important property ofdi�eomorphi
 transformations is that they preserve topology. That is, these transfor-mations do not fold or tear spa
e and hen
e, preserve lo
al stru
ture.An important 
omponent of image registration and, hen
e, atlas formation, is the
hoi
e of image dissimilarity distan
e fun
tion. This is typi
ally a s
alar-valued fun
tionde�ned on the Cartesian produ
t X × X where X is the feature spa
e of the image.The dissimilarity fun
tion provides a number indi
ating how far apart two images areand is 
hosen based on assumptions about the relationship between the features in theimages. When two images are in perfe
t registration this distan
e assumes its smallestvalue. The most natural form of a distan
e fun
tion is a metri
.De�nition 1.1 (Metri
). Given a set X, a metri
 on X is fun
tion d : X × X → R.For all x, y, z ∈ X, this fun
tion satis�es the following 
onditions:1. Non-negativity: d(x, y) ≥ 02. Identity of indis
ernables: d(x, y) = 0 if and only if x = y.



43. Symmetry: d(x, y) = d(y, x)4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)A simple example of a metri
 is the Eu
lidean distan
e between two points.This dissertation uses multi-modal images where a statisti
al relationship is assumedbetween image features. This suggests the use of information theoreti
 distan
es basedon Shannon entropy. These distan
es are typi
ally not true metri
s, typi
ally failingproperty (4) and, often, property (3).1.3 Thesis and ContributionsThesis: A sharp unbiased multi-tissue 
lass atlas 
an be 
onstru
ted from apopulation of multi-modal image sets, 
omprised of an arbitrary number ofimages per subje
t, using a Bayesian framework and large deformation dif-feomorphi
 registration. Multi-modal image set 
orresponden
e 
an furtherbe a
hieved via 
omposition of transformations asso
iated with the unbiasedatlas.The 
ontributions of this dissertation are the following:1. A theoreti
al development showing that minimizing sum-of-Kullba
k-Leibler di-vergen
es, in either ordering of parameters, maximizes a lower bound on Bayesprobability of error, a measure of indistinguishability between probability distri-butions.2. A novel multi-modal image set registration method is presented. To the author'sknowledge this is the only method that in
orporates an arbitrary number of multi-modal images per subje
t. An advantageous 
onsequen
e of this framework isinverse-invariant (symmetri
) registration.3. An extension of the above framework to unbiased multi-
lass atlas formation1.4. The use of information theory to evaluate atlas stability.5. An appli
ation of the atlas formation to an aging study involving multi-modalbrain image data from ninety-�ve subje
ts.1The work presented in this 
hapter was done in 
ollaboration with Dr. Sarang Joshi and BradDavis at the University of North Carolina at Chapel Hill. This work is heavily based on previouspapers [63, 49℄.



51.4 Overview of ChaptersThe remainder of this dissertation is organized as follows:Chapter 2 presents motivates the distan
es used to drive the multi-modal imageset registration and the unbiased multi-
lass posterior atlas formation. This in
ludes adis
ussion of Bayes probability of error and the bounds thereof in terms of the sum-of-Kullba
k-Leibler divergen
es.Chapter 3 presents the main theoreti
al 
ontribution of this dissertation: model-based multi-modal image set registration. The �uid me
hani
al framework for 
on-straining the resulting transformations to the spa
e of di�eomorphisms is des
ribed.Existing information theoreti
 te
hniques for image registration will be des
ribed withspe
ial attention given to multi-variate interpretations of mutual information.In Chapter 4, using information theoreti
 distan
es developed in Chapter 2, the
on
ept of multi-modal image set registration is generalized to unbiased multi-
lassposterior atlas formation. Existing unbiased atlas formation methods are also dis
ussed.In Chapter 5, atlas stability, with respe
t to the number of 
onstituent subje
ts, isexplored.In Chapter 6, the method from Chapter 4 is applied to MR images from a databaseof 100 healthy subje
ts.Chapter 7 
on
ludes with a dis
ussion of the 
ontributions of this dissertation andpossible future work.Appendix A presents the information theoreti
 ba
kground for Chapter 2.Appendix B prodives a dis
ussion on the likelihood of the a
tual optimum in themulti-modal image set registration 
ost fun
tion being a
hieved.



Chapter 2Probability Averages
Central to the image registration and atlas formation framework presented in thisdissertation is the 
reation of the average or most representative probability from agiven 
olle
tion of probabilities. In this framework, the average probability distribution

p̂ is de�ned in terms of minimizing a dispersion measure Γ for a set of distributions
{pi}

N
i=1,

p̂ = argmin
p

Γ
(

{pi}
N
i=1, p

)

. (2.1)This dispersion measure takes the form of a sum of individual distan
es between p andea
h pi,
Γ
(

{pi}
N
i=1, p

)

=

N
∑

i=1

γ ({pi, p}) . (2.2)The distan
e γ is 
hosen to be the Kullba
k-Leibler divergen
e, as there exists alower bound on Bayes probability of error Pe between p̂ and the individual pi in termsof Γ. More spe
i�
ally, minimizing the sum-of-Kullba
k-Leibler divergen
es between
p̂ and ea
h pi maximizes a lower bound on indistinguishability between the pi. Sin
eKullba
k-Leibler divergen
e is an asymmetri
 distan
e, two sum-of-Kullba
k-Leiblerdivergen
es are 
onsidered. The two dispersion measures are

D̄
(

{pi}
N
i=1||p

)

=

N
∑

i=1

D(pi||p) (2.3)and
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D̄
(

p||{pi}
N
i=1

)

=
N
∑

i=1

D(p||pi). (2.4)Kullba
k-Leibler divergen
e D(·||·) and other fundamental information theoreti
 mea-sures are de�ned in Appendix A.This 
hapter is organized as follows: Se
tion 2.1 shows that the generalized average
p̂ = argmin

p

D̄
(

{pi}
N
i=1||p

)is the arithmeti
 mean and that the generalized average
p̂ = argmin

p

D̄
(

p||{pi}
N
i=1

)is the normalized geometri
 mean; Se
tion 2.2 de�nes Bayes probability of error; andSe
tion 2.3 presents bounds on Bayes probability of error in terms of the dispersionmeasures D̄
(

{pi}
N
i=1||p̂

) and D̄
(

p̂||{pi}
N
i=1

) with their respe
tive p̂ minimizers.2.1 Averages from Kullba
k-Leibler Divergen
e SumsThis se
tion presents the sum-of-Kullba
k-Leibler divergen
e minimizers for thedispersion measures in Equation 2.3 and Equation 2.4. These minimizers have beenpresented in the literature, for example in [45℄ for the N = 2 
ase. The derivation forthe general 
ase via the method of Langrange multipliers is in
luded for 
ompleteness.2.1.1 Arithmeti
 Mean from D̄
(

{pi}
N

i=1
||p
)Theorem 2.1 (D̄({pi}

N
i=1||p) Minimizer). Given a set of probability mass fun
tions

{pi}
N
i=1, the minimizer

p̂ = argmin
p∈P

D̄
(

{pi}
N
i=1||p

)

,



8where P is spa
e of probability mass fun
tions, is the arithmeti
 mean
p̂(xj) =

1

N

N
∑

i=1

pi(xj).Proof. This 
an be shown via the method of Lagrange multipliers. First note that theminimization des
ribed 
an be equivalently expressed as
p̂ = argmin

p∈P

N
∑

i=1

∑

x∈X

pi(x) ln
pi(x)

p(x)subje
t to 
onstraint ∑xj∈X p̂(xj) = 1.Set up the Lagrange multiplier expression to �nd the minimizer p̂

L(p, λ) =
N
∑

i=1

∑

xj∈X

pi(xj) ln
pi(xj)

p(xj)
− λ

(

∑

xk∈X

p(xk) − 1

)

. (2.5)Solving ∂
∂p(xj)

L(p, λ) = 0 for p in terms of λ, yields
∂

∂p(xj)
L(p, λ) =

N
∑

i=1

∂

∂p(xj)
[pi(xj) ln pi(xj) − pi(xj) ln p(xj)] −

∂

∂p(xj)
λ(p(xj) − 1)

= −
N
∑

i=1

pi(xj)

p(xj)
− λ

⇒
1

p(xj)

N
∑

i=1

pi(xj) = −λ

⇒ p(xj) = −
1

λ

N
∑

i=1

pi(xj). (2.6)As λ is 
hosen to satisfy the 
onstraint that p(x) is a probability mass fun
tion, − 1
λ

= 1
N
.That is,

∑

xj∈X

p(xj) = 1

⇒
∑

xj∈X

N
∑

i=1

pi(xj) = N.



9Therefore,
p(xj) =

1

N

N
∑

i=1

pi(xj).With this minimizer the dispersion in Equation 2.3 
an be further spe
i�ed as
D̄
(

{pi}
N
i=1||p̂

)

=
N
∑

i=1

D

(

pi||
1

N

N
∑

j=1

pj

)

= N · JSπ({pi}
N
i=1) (2.7)where JSπ is the generalized Jensen-Shannon divergen
e with uniform prior πi = 1

N
.Jensen-Shannon divergen
e is de�ned in Appendix A.2.1.2 Normalized Geometri
 Mean from D̄

(

p||{pi}
N

i=1

)Theorem 2.2 (D̄(p||{pi}
N
i=1) Minimizer). Given a set of probability mass fun
tions

{pi}
N
i=1, the minimizer

p̂ = argmin
p∈P

(

p||{pi}
N
i=1

)

,where P is spa
e of probability mass fun
tions, is the normalized geometri
 mean
p̂(xj) =

(

∏N
i=1 pi(xj)

) 1
N

∑

xk∈X

(

∏N
i=1 pi(xk)

)
1
N

.Proof. This 
an also be shown via the method of Lagrange multipliers. First note thatthe minimization des
ribed 
an be equivalently expressed as
p̂ = argmin

p∈P

N
∑

i=1

∑

x∈X

p(x) ln
p(x)

pi(x)subje
t to 
onstraint ∑xj∈X p̂(xj) = 1. Noti
e that in this formulation the logarithmused in the de�nition of D(·||·) has been 
hanged from base two to base e. This refor-mulation pla
es the minimization problem in a natural setting for variational analysis.



10Set up the Lagrange multiplier expression to �nd minimizer p̂

L(p, λ) =
N
∑

i=1

p ln
p

pi

− λ

(

∑

xk∈X

p(xk) − 1

)

=
N
∑

i=1

∑

xj∈X

p(xj) ln
p(xj)

pi(xj)
− λ

(

∑

xk∈X

p(xk) − 1

)

. (2.8)Solving ∂
∂p(xj)

L(p, λ) = 0 for p in terms of λ, yields
∂

∂p(xj)
L(p, λ) =

∂

∂p(xj)





N
∑

i=1

∑

xj∈X

p(xj) ln
p(xj)

pi(xj)
− λ

(

∑

xk∈X

p(xk) − 1

)





=

N
∑

i=1

∂

∂p(xj)
p(xj) ln

p(xj)

pi(xj)
−

∂

∂p(xj)
λ(p(xj) − 1)

=

N
∑

i=1

[

ln
p(xj)

pi(xj)
+ p(xj)

pi(xj)

p(xj)

1

pi(xj)

]

− λ

=
N
∑

i=1

ln
p(xj)

pi(xj)
+ (N − λ)

= ln

(

N
∏

i=1

p(xj)

pi(xj)

)

+ (N − λ)

= 0

⇒ ln

(

N
∏

i=1

p(xj)

pi(xj)

)

= (λ − N)

ln

(

N
∏

i=1

p(xj)

)

= (λ − N) + ln

(

N
∏

i=1

pi(xj)

)

⇒ p(xj)
N = e(λ−N)

N
∏

i=1

pi(xj)

⇒ p(xj) = e(
λ
N
−1)

(

N
∏

i=1

pi(xj)

)
1
N

. (2.9)



11Continuing with the Lagrange multiplier method, next let
Γj =

(

N
∏

i=1

pi(xj)

)
1
Nand, hen
e, p(xj) = e(

λ
N
−1)Γj . Substituting this expression ba
k into Equation 2.8,yields

L(p, λ) =
N
∑

i=1

∑

xj∈X

e(
λ
N
−1)Γj ln

e(
λ
N
−1)Γj

pi(xj)
− λ

(

∑

xk∈X

e(
λ
N
−1)Γk − 1

)

= e(
λ
N
−1)

N
∑

i=1

∑

xj∈X

Γj ln e(
λ
N
−1) + e(

λ
N
−1)

N
∑

i=1

∑

xj∈X

Γj ln Γj

− e(
λ
N
−1)

N
∑

i=1

∑

xj∈X

Γj ln pi(xj) − λ
∑

xk∈X

e(
λ
N
−1)Γk + λ

=

(

λ

N
− 1

)

e(
λ
N
−1)N

∑

xj∈X

Γj + Ne(
λ
N
−1)

∑

xj∈X

Γj ln Γj

− e(
λ
N
−1)

∑

xj∈X

Γj ln

(

N
∏

i=1

pi(xj)

)

− λe(
λ
N
−1)

∑

xk∈X

Γk + λ.Note that sin
e
∑

xj∈X

Γj ln

(

N
∏

i=1

pi(xj)

)

=
∑

xj∈X

Γj ln ΓN
j

= N
∑

xj∈X

Γj ln Γjthe above equation simpli�es to
L(p, λ) =

[(

λ

N
− 1

)

N − λ

]

e(
λ
N
−1)

∑

xj∈X

Γj + λ

= −Ne(
λ
N
−1)

∑

xj∈X

Γj + λ

= −Ne(
λ
N
−1)

∑

xj∈X

(

N
∏

i=1

pi(xj)

)
1
N

+ λ



12Taking the variation with respe
t to λ, note that
∂

∂λ
L(p, λ) =

∂

∂λ



−Ne(
λ
N
−1)

∑

xj∈X

(

N
∏

i=1

pi(xj)

)
1
N

+ λ





= −e(
λ
N
−1)

∑

xj∈X

(

N
∏

i=1

pi(xj)

)
1
N

+ 1.Setting ∂
∂λ

L(p, λ) = 0 implies
e(

λ
N
−1)

∑

xj∈X

(

N
∏

i=1

pi(xj)

)
1
N

= 1

⇒ e(
λ
N
−1) =

1

∑

xj∈X

(

∏N

i=1 pi(xj)
)

1
N

.Finally, substituting this expression for e(
λ
N
−1) ba
k into Equation 2.9 results in

p(xj) = e(
λ
N
−1)

(

N
∏

i=1

pi(xj)

)
1
N

=

(

∏N

i=1 pi(xj)
)

1
N

∑

xk∈X

(

∏N

i=1 pi(xk)
)

1
N

.With this minimizer the dispersion in Equation 2.4 
an be further spe
i�ed as
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D̄
(

p̂||{pi}
N
i=1

)

=
N
∑

i=1

D(p̂||pi)

=
N
∑

i=1

∑

xj∈X

p̂(xj) log
p̂(xj)

pi(xj)

=
∑

xj∈X

p̂(xj)
N
∑

i=1

log
p̂(xj)

pi(xj)

=
∑

xj∈X

p̂(xj) log

(

N
∏

i=1

p̂(xj)

pi(xj)

)

=
∑

xj∈X

p̂(xj) log

(

p̂(xj)
N

N
∏

i=1

1

pi(xj)

)

=
∑

xj∈X

p̂(xj) log











∏N
i=1 pi(xj)

(

∑

xk∈X

(

∏N

i=1 pi(xk)
)

1
N

)N

N
∏

i=1

1

pi(xj)











= −N
∑

xj∈X

p̂(xj) log
∑

xk∈X

(

N
∏

i=1

pi(xk)

)
1
N

=



−N log
∑

xk∈X

(

N
∏

i=1

pi(xk)

)
1
N









∑

xj∈X

p(xj)





= −N log
∑

xk∈X

(

N
∏

i=1

pi(xk)

)
1
N

. (2.10)2.2 Bayes Probability of ErrorThis se
tion de�nes Bayes probability of error in terms of an N-hypothesis de
ision-theory problem. In the probability average estimation setting, the hypotheses are theindividual probabilities of a population and their probability average. In the Se
tion 2.3,bounds on Bayes probability of error in terms of the dispersion measures D̄
(

{pi}
N
i=1||p̂

)and D̄
(

p̂||{pi}
N
i=1

) with their respe
tive p̂ minimizers is presented.Consider the N-hypothesis de
ision-theory problem of 
lassifying an observationas 
oming from one of N possible hypotheses {Hi}
N
i=1. Let {πi}

N
i=1 denote the prior



14probabilities asso
iated with these N hypotheses, and let {p(x|Hi)}
N
i=1 denote the event
onditional probability distributions given the hypotheses. Using Bayes' Rule, for anobserved event, x, the posterior probability of Hi is

p(Hi|x) =
p(x|Hi)πi

p(x)

=
p(x|Hi)πi

∑N

k=1 p(x|Hk)πk

.To minimize the probability of sele
ting the in
orre
t hypothesis, 
hoose the hy-pothesis with the largest posterior probability. This has the asso
iated 
onditionalprobability of error
Pe(x|Hi) = 1 − max

i
{p(Hi|x)}.With this notion of 
onditional probability of error the Bayes probability of error (orindistinguishability) 
an be de�ned.De�nition 2.1 (Bayes Probability of Error). Bayes probability of error is the expe
ted
onditional probability of error

Pe

(

{pi, πi}
N
i=1

)

= Ep [Pe(x|Hi)]

=
∑

x∈X

p(x)
(

1 − max
i

{p(Hi|x)}
)

=
∑

x∈X

p(x) −
∑

x∈X

p(x) max
i

{

p(x|Hi)πi

p(x)

}

= 1 −
∑

x∈X

max
i

{p(x|Hi)πi}.This error results when one has 
omplete knowledge of the probability distributionswith whi
h to 
onstru
t the optimal de
ision rule, that is, to sele
t the hypothesis Hi forwhi
h the posterior p(Hi|x) is maximal. Figure 2.1 graphi
ally shows Bayes probabilityof error for a set of four distributions. In pra
ti
e, real distributions are not known so
Pe 
annot be dire
tly 
omputed. Therefore bounds on Pe are desired.
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0.16

←{p(x|H
i
)π

i
}
i=1...4

P(error)

Event xFigure 2.1: Bayes Probability of Error ExampleLet {πi}i=1...4 be the a priori probabilities of hypotheses {Hi}i=1...4 beingtrue and {p(x|Hi)}i=1...4 be the hypothesis-
onditional likelihoods for event
x. In this example, the distributions are 
ontinuous and the prior proba-bilities are taken to be equal. The blue shaded area represents the Bayesprobability of mis
lassi�
ation error. In the 
ontext of neuroanatomi
almat
hing, Hi 
ould represent individual subje
ts, and x 
ould representtissue stru
tures su
h as grey matter, white matter, and 
erebrospinal �uid.



16Under the uniform prior πi = 1
N

ondition the Bayes probability of error be
omes

Pe

(

{pi, πi}
N
i=1

)

= 1 −
∑

x∈X

max
i

{p(x|Hi)
1

N
}

= 1 −
1

N

∑

x∈X

max
i

{p(x|Hi)}.If the p(x|Hi) are identi
al, then the probability of error assumes its greatest value at
Pe = N−1

N
. For example, if N = 4, then the probability of sele
ting p(x|Hj) from theset of identi
al probabilities {p(x|Hi)}i=1...4 is Pe = 3

4
. In this 
ase, as N → ∞, Pe → 1.2.3 Bounds on Pe2.3.1 D̄

(

{pi}
N

i=1
||p̂
) Bounds on PeTheorem 2.3 (Jensen Shannon Pe Bounds). Given a set of probability mass fun
tions

{pi}
N
i=1 and asso
iated priors {πi}

N
i=1 with ∑N

i=1 πi = 1,
1

4(N − 1)
J
(

{pi, πi}
N
i=1

)2
≤ Pe

(

{pi, πi}
N
i=1

)

≤
1

2
J
(

{pi, πi}
N
i=1

)where J
(

{pi, πi}
N
i=1

)

= H(π) − JSπ

(

{pi}
N
i=1

) and H(π) = −
∑N

i=1 πi log πi.Proof. See [60℄ for an argument involving 
onditional entropy bounds on Pe [41℄.It immediately follows from Equation 2.7 and Theorem 2.3 that
1

4(N − 1)

(

H(π) −
1

N
D̄
(

{pi}
N
i=1||p̂

)

)2

≤ Pe

(

{pi, πi}
N
i=1

)

≤
1

2

(

H(π) −
1

N
D̄
(

{pi}
N
i=1||p̂

)

)where
p̂(x) =

1

N

N
∑

i=1

pi(x).



17Therefore, minimizing the sum-of-Kullba
k-Leibler divergen
e, D̄
(

{pi}
N
i=1||p̂

), maxi-mizes (H(π) − 1
N

D̄
(

{pi}
N
i=1||p̂

))2, and, hen
e, maximizes the lower bound on Pe, orindistinguishability between the pi.Under the uniform prior πi = 1
N

ondition with D̄

(

{pi}
N
i=1||p̂

)

= 0 the lower boundbe
omes
1

4(N − 1)

(

H(π) −
1

N
D̄
(

{pi}
N
i=1||p̂

)

)2

=
(log N)2

4(N − 1)
.In this 
ase,

lim
N→∞

(log N)2

4(N − 1)
= lim

N→∞

log N

2N

= lim
N→∞

1

2N

= 0.Although, for a given N , minimizing D̄
(

{pi}
N
i=1||p̂

) maximizes a lower bound on Pe, as
N → ∞, that lower bound (log N)2

4(N−1)
→ 0. A mu
h tighter, and more meaningful, boundon Pe 
an be de�ned using D̄

(

p̂||{pi}
N
i=1

)2.3.2 D̄
(

p̂||{pi}
N

i=1

) Bounds on P̄eTo �nd a lower bound on Bayes probability of error based on D̄
(

p̂||{pi}
N
i=1

) it is
onvenient to 
onsider the average of pair-wise probability of errors between individual
pi. That is, a bound on̄

Pe

(

{pi}
N
i=1

)

=
1

N

N
∑

i=1

Pe({pi, p(i mod N)+1})is desired where Pe({pi, pj}) is the Bayes probability of error when only pi and pj areinvolved. From equation 2.10, note that
D̄ (p̂||{pi, pj}) = D(p̂, pi) + D(p̂, pj)

= −2 log
∑

x∈X

√

pi(x)pj(x)



18where
p̂(x) =

√

pi(x)pj(x)
∑

x′∈X

√

pi(x′)pj(x′)
,the normalized geometri
 mean of pi and pj.De�ne the sum of pair-wise distan
es

D∗
(

{pi}
N
i=1

)

=
N
∑

i=1

D̄(p̂||{pi, p(i mod N)+1})

= −2

N
∑

i=1

log
∑

x∈X

√

pi(x)pi( mod )+1(x).The next se
tion will show that D∗
(

{pi}
N
i=1

) is bounded above by D̄
(

p̂||{pi}
N
i=1

). Theimpli
ation is that any optimization problem that minimizes D̄
(

p̂||{pi}
N
i=1

) also min-imizes D∗
(

{pi}
N
i=1

). Additionally, it will be shown that D∗
(

{pi}
N
i=1

) provides boundson P̄e.2.3.2.1 D∗
(

{pi}
N
i=1

)

≤ D̄
(

p̂||{pi}
N
i=1

)Theorem 2.4 (Generalized Hölder's Inequality). Let ri ≥ 1 su
h that ∑N
i=1

1
ri

= 1.Then the following inequality holds for fi(x) ≥ 0,
∑

x∈X

N
∏

i=1

fi(x)
1
ri ≤

N
∏

i=1

(

∑

x∈X

fi(x)

)
1
ri

.Proof. For an argument using generalized arithmeti
 means see [37℄.Proposition 2.1. Let {pi(x)}N
i=1 be a set of probability mass fun
tions de�ned on ran-dom variable X. Then

∑

x∈X

N
∏

k=1

pk(x)
1
N ≤

(

∑

x∈X

√

pi(x)pj(x)

) 2
Nfor any i, j ∈ {1, . . . , N} where i 6= j.



19Proof. By applying Theorem 2.4,
∑

x∈X

N
∏

k=1

pk(x)
1
N =

∑

x∈X

(

√

pi(x)pj(x)

)
2
N

N
∏

k = 1

k 6= i, j

pk(x)
1
N

≤

(

∑

x∈X

√

pi(x)pj(x)

)
2
N N

∏

k = 1

k 6= i, j

(

∑

x∈X

pk(x)

)
1
N

Using the fa
t that ea
h pk(x) sum to one,
∑

x∈X

N
∏

k=1

pk(x)
1
N =

(

∑

x∈X

√

pi(x)pj(x)

)
2
N

.Using the inequality in Proposition 2.1, one 
an now show that D∗
(

{pi}
N
i=1

)

≤

D̄
(

p̂||{pi}
N
i=1

).Theorem 2.5 (D̄(p̂||{pi}
N
i=1) Lower Bound). Let {pi(x)}N

i=1 be a set of probability massfun
tions de�ned on random variable X. Then
D∗
(

{pi}
N
i=1

)

≤ D̄
(

p̂||{pi}
N
i=1

)

.Proof. This immediately follows from Proposition 2.1 and the de�nitions ofD∗
(

{pi}
N
i=1

)and D̄
(

p̂||{pi}
N
i=1

),
∑

x∈X

N
∏

k=1

pk(x)
1
N ≤

(

∑

x∈X

√

pi(x)pj(x)

)
2
N

⇒
∑

x∈X

N
∏

k=1

pk(x)
1
N ≤

(

∑

x∈X

√

pi(x)p(i mod N)+1(x)

) 2
N



20Taking the logarithm of both sides of the above inequality and simplifying yields
N log

∑

x∈X

N
∏

k=1

pk(x)
1
N ≤ 2

N
∑

i=1

log
∑

x∈X

√

pi(x)p(i mod N)+1(x)

⇒ −2

N
∑

i=1

log
∑

x∈X

√

pi(x)p(imodN)+1(x) ≤ −N log
∑

x∈X

N
∏

k=1

pk(x)
1
N

⇒

N
∑

i=1

D̄(p̂||pi, p(imodN)+1) ≤ D̄
(

p̂||{pi}
N
i=1

)

.2.3.2.2 D̄(p̂||pi, p(imodN)+1) Bounds on Pe({pi, pj})De�nition 2.2 (Bhatta
haryya Coe�
ient). The Bhatta
haryya 
oe�
ient for twodensities p(x) and q(x) is de�ned by
ρ(p, q) =

∑

x∈X

√

p(x)q(x).The Bhatta
haryya 
oe�
ient is a divergen
e-type measure whi
h 
an be geomet-ri
ally interpreted as the 
osine of the angle between n-dimensional ve
tors.Theorem 2.6 (Bhatta
harrya Bounds on P (error)). Let p1 and p2 be two probabilitydistributions and ρ = ρ(p1, p2) be the Bhatta
harrya 
oe�
ient de�ned by them. Thenthe Bayes probability of error for p1 and p2 is bounded as follows:
1

2

(

1 −
√

1 − ρ2
)

≤ Pe ({p1, p2}) ≤
1

2
ρ.Proof. See [53℄ for an argument involving Kolmogorov variational distan
e.The D̄(p̂||{pi, pj}) bounds on Pe ({pi, pj}) 
an now be 
omputed as

D̄(p̂||{pi, pj}) = −2 log ρ

⇒ e−
1
2
D̄(p̂||{pi,pj}) = ρand, by Theorem 2.6,

1

2

(

1 −
√

1 − e−D̄(p̂||{pi,pj})
)

≤ Pe ({pi, pj}) ≤
1

2
e−

1
2
D̄(p̂||{pi,pj}).



21When D̄(p̂||{pi, pj}) = 0, Pe ({pi, pj}) = 1
2
whi
h is what is expe
ted, namely pi(x) =

pj(x) for all x.2.3.2.3 D̄
(

p̂||{pi}
N
i=1

) Bounds on P̄eThe following inequality is useful in providing bounds on P̄e based on D̄
(

p̂||{pi}
N
i=1

).Proposition 2.2 (Bounds on ex). For x ≥ 0,
1 − x ≤ e−x ≤ 1 − x +

1

2
x2.Proof. The proof follows from 
onsidering the Taylor expansion of e−x.With Proposition 2.2, the following theorem 
an now be proven.Theorem 2.7 (D̄(p̂||{pi}

N
i=1) Bounds on P̄e). Let {pi(x)}N

i=1 be a set of probability massfun
tions on random variable X. Then
1

2
−

1

2N

√

D̄ (p̂||{pi}N
i=1) ≤ P̄e

(

{pi}
N
i=1

)

≤
1

2
+

1

16N
D̄
(

p̂||{pi}
N
i=1

)2where
P̄e

(

{pi}
N
i=1

)

=
1

N

N
∑

i=1

Pe({pi, p(i mod N)+1}),with Pe ({pi, pj}) the Bayes probability of error between pi and pj, and
D̄
(

p̂||{pi}
N
i=1

)

= −N log
∑

xk∈X

(

N
∏

i=1

pi(xk)

)
1
N

.Proof. Lower Bounds:
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1

2

(

1 −
√

1 − e−D̄(p̂||{pi,pj})
)

≤ Pe ({pi, pj})

⇒
1

N

N
∑

i=1

1

2

(

1 −
√

1 − e−D̄(p̂||{pi,p(i mod N)+1})
)

≤ P̄e

(

{pi}
N
i=1

)

⇒
1

2
−

1

2N

N
∑

i=1

√

1 − e−D̄(p̂||{pi,p(i mod N)+1}) ≤ P̄e

(

{pi}
N
i=1

)

⇒
1

2
−

1

2N

√

√

√

√

N
∑

i=1

(

1 − e−D̄(p̂||{pi,p(i mod N)+1})
)

≤ P̄e

(

{pi}
N
i=1

)

⇒
1

2
−

1

2N

√

√

√

√N −
N
∑

i=1

e−D̄(p̂||{pi,p(i mod N)+1}) ≤ P̄e

(

{pi}
N
i=1

)

.Using the se
ond inequality of Proposition 2.2, note that
1

2
−

1

2N

√

√

√

√N −

N
∑

i=1

(1 − D̄(p̂||{pi, p(i mod N)+1})) ≤ P̄e

(

{pi}
N
i=1

)

⇒
1

2
−

1

2N

√

D∗ ({pi}N
i=1) ≤ P̄e

(

{pi}
N
i=1

)

⇒
1

2
−

1

2N

√

D̄ (p̂||{pi}N
i=1) ≤ P̄e

(

{pi}
N
i=1

)sin
e D̄
(

p̂||{pi}
N
i=1

)

≥ D∗
(

{pi}
N
i=1

).The �rst inequality of Proposition 2.2 yields an upper bound on P̄e

(

{pi}
N
i=1

),
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Pe ({pi, pj}) ≤

1

2
e−

1
2
D̄(p̂||{pi,pj})

⇒ P̄e

(

{pi}
N
i=1

)

≤
1

N

N
∑

i=1

1

2
e−

1
2
D̄(p̂||{pi,p(i mod N)+1})

=
1

2N

N
∑

i=1

e−
1
2
D̄(p̂||{pi,p(i mod N)+1})

≤
1

2N

N
∑

i=1

(

1 −
1

2
D̄(p̂||{pi, p(i mod N)+1}) +

1

2

(

1

2
D̄(p̂||{pi, p(i mod N)+1})

)2
)

=
1

2
−

1

4N
D∗
(

{pi}
N
i=1

)

+
1

16N

N
∑

i=1

D̄(p̂||{pi, p(i mod N)+1})
2

≤
1

2
−

1

4N
D∗
(

{pi}
N
i=1

)

+
1

16N

(

N
∑

i=1

D̄(p̂||{pi, p(i mod N)+1})

)2

=
1

2
−

1

4N
D∗
(

{pi}
N
i=1

)

+
1

16N
D∗
(

{pi}
N
i=1

)2

≤
1

2
+

1

16N
D∗
(

{pi}
N
i=1

)2

≤
1

2
+

1

16N
D̄
(

p̂||{pi}
N
i=1

)2sin
e D∗
(

{pi}
N
i=1

)

≤ D̄
(

p̂||{pi}
N
i=1

).Therefore, minimizing D̄
(

p̂||{pi}
N
i=1

) maximizes the lower bound on P̄e

(

{pi}
N
i=1

),whi
h, in turn, maximizes the Bhatta
harrya lower bound on Pe in Theorem 2.6. When
D̄
(

p̂||{pi}
N
i=1

)

= 0 the lower bound be
omes 1
2
, whi
h is the Bayes probability of errorbetween two equally weighted and identi
al probabilities. Re
all that P̄e is an averageof N pair-wise Bayes probability of errors so this lower bound is tight.



Chapter 3Multi-Modal Image Set Registration1
In this 
hapter the main methodologi
al 
ontribution of this dissertation is pre-sented: a framework for the registration of multi-modal image sets. The 
hapter be-gins by de�ning multi-modal image sets and motivating their use. The registrationmethod is driven by the sum-of-Kullba
k-Leibler divergen
es, D̄

(

p̂||{pi}
N
i=1

), intro-du
ed as De�nition 2.10 in Chapter 2. Although D̄
(

p̂||{pi}
N
i=1

) was de�ned for thegeneral N-observation setting, for 
larity �rst 
onsider the N = 2 
ase for registrationbetween two sets of multi-modal images. In Chapter 4, this framework is extended togeneral N−way registration for atlas formation.Modern imaging te
hniques provide an array of imaging modalities that enablethe a
quisition of 
omplementary information representing an underlying anatomy. Toutilize this information, numerous multi-modal image registration algorithms have beendeveloped. Most of these algorithms �nd a mapping between two s
alar images. Toutilize multiple s
alar multi-modal images of a single anatomy, however, de�ne a multi-modal image set, Ī, as a 
olle
tion of m 
o-registered multi-modal images where, for agiven spatial lo
ation x, Ī(x) ∈ R
m. Figure 3.1 is a 
artoon depi
ting two image setsea
h with a di�erent number of 
onstituent s
alar multi-modal images. Throughoutthis dissertation, it is assumed that, for a given subje
t, the multi-modal images of thatsubje
t are 
o-registered.The problem of multi-modal image set registration is de�ned as follows: �nd amapping between two subje
ts for ea
h of whi
h is de�ned a tuple of multi-modals
alar-valued images, Ī1 and Ī2. More spe
i�
ally, �nd a mapping that best mat
hesstru
ture, subje
t to 
ertain penalties, typi
ally smoothness of the transformations.Mathemati
ally, �nd the mappings f : Ω1 → Ω2 and g : Ω2 → Ω1 where Ω1 and Ω21This 
hapter is an extension of portions of the re
ent MedIA paper on the topi
 [63℄.



25are the domains of image sets Ī1 and Ī2 respe
tively. This arrangement is depi
ted inFigure 3.2. For the registration to be symmetri
 or inverse-invariant, the transformation
ompositions f ◦ g and g ◦ f must result in the identity map.The multi-modal image set registration has potential signi�
an
e in various appli-
ations in medi
al image analysis that rely on the measurement of image sets. Multi-modal MR imaging is standard in the proto
ol for evaluating pathologies su
h as tumorsand lesions. In this dissertation, results from T1-weighted, T2-weighted, and MR an-giography are presented. Other, intrinsi
ally multi-modal modal environments su
h as
ombined inter-operative CT/PET a
quisitions would provide su
h a setting for multi-modal image set registration. Registration between images of individuals presentingpathology and images of healthy subje
ts is a 
hallenging task sin
e spa
e-o

upyinglesions have to be treated di�erently from in�ltrating lesions. Spe
i�
ally, the reg-istration needs to a

ommodate both lo
al spatial deformation and lo
al 
hange ofimage intensity. Existing registration methods involving s
alar images based on imagebrightness do not a

ommodate pathologies. Another potential appli
ation for imageset registration is the registration of images a
quired from s
anners of di�erent �eldstrength. Image set registration a
ross di�erent s
anners be
omes an in
reasingly im-portant 
omponent in multi-
enter studies whi
h investigate developmental 
hanges
overing multiple years and follow-up studies of diseases with 
hange of s
anner te
h-nology. Images a
quired from di�erent s
anners potentially have di�erent 
ontrastsand di�erent spatial distortions. In fun
tional studies, it is often desirable to registerfun
tional data with stru
tural data. Typi
ally, a time series average is registered to ananatomi
al image of the same subje
t. However, in produ
ing the average fun
tionalimage, some information is lost. Therefore, a multivariate approa
h is desired [2℄. Theregistration method presented in this dissertation may address these problems as theregistration is based on underlying anatomi
al stru
ture (e.g., tissue) rather than onimage intensities. These anatomi
al stru
tures are modeled as 
lass-
onditional proba-bility maps where, at ea
h spatial lo
ation, a 
lass-
onditional probability mass fun
tionis de�ned. In the formation of the 
lass probabilities, 
lasses 
an be expli
itly assignedto the various healthy and pathologi
al tissues. This allows us to potentially model thebehaviors of the di�erent tissues during the registration pro
ess.Before dis
ussing the problem of multi-modal image set registration, 
ommon meth-ods for multi-modal s
alar image registration in Se
tion 3.1 are reviewed. Parti
ularattention is given to image registration based on mutual information in Se
tion 3.1.1.Multi-modal image set registration and the impli
ations of using multivariate mutual



26C TT 2 � M R IT 1 � M R IS F L A S HI 1 P D � M R IT 1 � M R IS p i n E c h oI 2Figure 3.1: Two Sample Image SetsAn image set is a 
olle
tion of 
o-registered multi-modal s
alar images.information are developed in Se
tion 3.2. Existing multiple image registration methodsand joint segmentation and registration methods are presented in Se
tions 3.2.2 and3.2.3 respe
tively. In Se
tion 3.2.4, the multi-modal image set registration frameworkis des
ribed. Finally, in Se
tion 3.3, results from several 3D multi-modal image setregistration experiments are presented. Next follows a brief overview of informationtheoreti
 image registration algorithms.3.1 Multi-Modal Image Registration Ba
kgroundMany image registration te
hniques for multi-modal images involve informationtheoreti
 distan
e measures on the spa
e of probability distribution fun
tions. Conse-quently, a probability mass fun
tion is the typi
al feature to be mat
hed during registra-tion. Mutual information is one method that is typi
ally used to register multi-modalimages and will be dis
ussed in Se
tion 3.1.1.A method that minimizes Kullba
k-Leibler divergen
e between expe
ted and ob-served joint 
lass histograms is presented in [13℄. A joint 
lass histogram between theimage pairs is estimated by assigning ea
h bin value equal to the total number of o

ur-ren
es of the 
orresponding 
lass label pairs. This te
hnique, however, estimates 
lasslabels as a prepro
essing step and is used only for rigid registration between s
alarimages. Another 
lass-label approa
h uses joint voxel 
lass distribution matri
es thatrepresent lo
al fuzzy 
orresponden
e of obje
t 
lass labels for pairs of 
orrespondingvoxels is presented in [20℄. This method also uses Kullba
k-Leibler divergen
e as a dis-similarity 
riterion and is presenting in a non-linear �uid registration framework withGaussian regularization of the estimated transformations. The method presented in
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I 1 I 2f� 1 � 2g

Figure 3.2: Image Set RegistrationRegistration of image sets Ī1 and Ī2: �nding a forward transformation f thatmaps the domain of Ī1 to the domain of Ī2 and a reverse transformation gthat maps the domain of Ī2 to the domain of Ī1.this dissertation is more general in that registration is performed on sets of images, ofarbitrary number, and is not 
onstrained by an initial 
lass labeling.3.1.1 Mutual Information-Based Image RegistrationThe appli
ation of mutual information to image registration involving two s
alarimages has been well studied. Mutual information, de�ned in Appendix A, measuresthe statisti
al dependen
e between two random variables, or the amount of informationone random variable 
ontains about the other. In the 
ontext of image registration,the random variables represent image intensities. Multi-modal images of the sames
ene, e.g., a human brain, represent measurements of di�erent properties of obje
tsin that s
ene, e.g., white matter. These image intensities are not typi
ally statisti
allyindependent observations of the underlying physi
al reality. When multi-modal imagesare aligned, measurements from one modality redu
e the un
ertainty in others; atalignment, the mutual information between two images is 
onsidered to be maximal.Rigid image registration by maximizing mutual information was �rst proposed in-dependently by [15℄ and [103℄ and extended to a�ne image registration by [91℄. Mutualinformation-based image registration 
an generally be de�ned as �nding the transfor-mation that maximizes the mutual information similarity 
riterion subje
t to somegeometri
 
onstraint on that transformation, typi
ally smoothness. For example, 
on-



28sider the problem of �nding a transformation, h, that maps a moving image Im intothe spa
e of a �xed image If . Let X and Y be the random variables asso
iated withthe image intensities in Im and If respe
tively. Estimates of the joint and marginaldistributions, pfm(if , im), pf(if ), and pm(im), required by mutual information 
an beobtained by simply normalizing the joint and marginal histograms of the overlappingparts of both Im and If . These te
hniques are, naturally, sensitive to sampling issues.The intensities if and im are related by the transformation h. The mutual informationsimilarity 
riterion states that If and Im are aligned by the transformation ĥ, for whi
h
I(X; Y ) is maximal:̂

h = argmin
h

∑

if

∑

im

pf,m(if , im) log
pf,m(if , im)

pf(if )pm(im)
.Multi-modal image registration using mutual information is parti
ularly attra
tivein that no image prepro
essing other than 
omputing the marginal and joint distri-butions is required and there are no fun
tional assumptions regarding the relationshipbetween the intensities in both modalities. This suggests an automated approa
h whereneither segmentation nor landmarks are required. The mutual information similarity
riterion does, however, su�er from a few weaknesses: no geometri
 prior informationis in
orporated, no assumptions about the data (e.g., known intensity relationships be-tween modalities for 
ertain stru
tures) are in
orporated, and there are sampling issuesto be addressed (e.g., probability distributions are derived from dis
rete histograms,the smaller the s
ale the less robust the histograms).A 
omprehensive survey of image registration via mutual information maximizationis given in [76℄. The authors 
over the major 
onsiderations: prepro
essing, similaritymeasure (entropy de�nition 
hoi
e, normalization, and whether 
omputed lo
ally orglobally), transformation group (rigid, a�ne, and non-linear), implementation (proba-bility distribution estimation and optimization te
hniques), image dimensionality (e.g.,2D/3D and 3D/3D), number of images, modalities (mono-, multi-, and modality tomodel), and appli
ations to various human organs. High-dimensional image registra-tion in the 
ontext of mutual information and other dissimilarity measures has also beenstudied. A thorough investigation of these dissimilarity measures in high-dimensionalimage registration is presented in [42℄.A number of methods have been developed to re�ne the mutual information-basedimage registration further through generalized versions of Shannon entropy, see [77℄ for



29a review. The most 
ommon extension is based on Rényi-Entropy [81, 113℄. Thesedivergen
e measures are typi
ally parameterized by a single 
ontinuous variable whoseoptimization is believed to provide more a

urate registration, through 
ontrol of themeasurement sensitivity of the joint histogram, and faster 
onvergen
e than traditionalmutual information [40, 74, 64, 65℄.3.2 Multi-Modal Image Set RegistrationThis subse
tion examines two topi
s dire
tly related to the multi-modal image setregistration method presented in this dissertation: multiple-image registration methods,beginning with multivariate mutual information, and joint segmentation and registra-tion methods. In the �nal portion of this subse
tion, multi-modal image set registrationis presented.3.2.1 Multivariate Mutual Information in Image RegistrationAs traditional mutual information has su

essfully been applied to the problem ofs
alar multi-modal image registration, it is natural to 
onsider applying multivariatemutual information, de�ned in Se
tion ??, to the problem of multi-modal image setregistration. To that end, 
onsider the redundan
y interpretation of multivariate mu-tual information, de�ned in Se
tion A.5.2. The s
alar multi-modal registration exampleof Se
tion 3.1.1 is extended as follows: 
onsider the problem of �nding a transforma-tion h that maps a moving image set Īm into the spa
e of a �xed image set Īf . Let
X̄ = {Xi}i=1...F and Ȳ = {Yi}i=1...M be the random ve
tors asso
iated with image in-tensities in Īf and Īm respe
tively. Further let pf (if1, . . . , ifF

), pm (im1 , . . . , imM
), and

pfm (if1 , . . . , ifF
, im1 , . . . , imM

) be the probabilities asso
iated with X̄ and Ȳ . The imageintensities {if} and {im} are related by the transformation h. The multivariate mutualinformation (redundan
y interpretation) 
riterion states that Īf and Īm are broughtinto register by the transformation ĥ for whi
h the following is maximized:
ĥ = argmin

h

H (pf (if1 , . . . , ifF
)) + H (pm (im1 , . . . , imM

))

− H (pfm (if1 , . . . , ifF
, im1 , . . . , imM

)) .This image set registration formulation is problemati
 in that it requires main-taining enormous sparsely populated joint histograms [9℄. Most entries in the joint



30histogram will be populated with a zero or one, resulting in a very �at histogram.Thus, multivariate mutual information should give a 
onstant value for many transfor-mations, leading to many lo
al minima in the optimization 
ost fun
tion. Consider amulti-modal image set registration involving four twelve-bit DICOM (Digital Imagingand COmmuni
ations in Medi
ine) images, an example of whi
h is provided in Se
-tion 3.3.2. Using multivariate mutual information would require the 
onstru
tion ofa 24·12 ≈ 2.8 × 1014-bin joint histogram, whi
h is impra
ti
al. The number of spatialelements for ea
h image is 256 × 256 × 170 ≈ 1.1 × 107 voxels yielding an average bin
ount of 1.1×107 voxels
2.8×1014 bins

≈ 4 × 10−8 voxels/bin. Given these di�
ulties, this dissertationintrodu
es a model-based approa
h where the registration is performed using underly-ing anatomi
al stru
tures. These anatomi
al stru
tures are in
orporated as a prior in aBayesian framework. Before des
ribing the proposed framework, several several relatedmethods for multiple image registration are 
onsidered.3.2.2 Existing Multiple Image Registration MethodsTo address the 
hallenges posed by extending mutual information to multiple imageregistration, several groups have developed di�erent approa
hes. An early example ofmultivariate mutual information image registration involves 
o-registration of a timeseries of PET images illustrating various stages of a radio tra
er uptake [2℄. This is anexample of the use of dissimilar images within the same imaging modality. The methodsimpli�es the joint histogram problem through data redu
tion via prin
ipal 
omponentanalysis to produ
e eigen-images. Another approa
h in
orporates lo
al spatial relation-ships by extending mutual information to 
onsider a neighborhood of pixels around ea
hpoint in the image spa
e [85℄. The idea is to use lo
al spatial information in a tradition-ally global statisti
al approa
h. The authors make the simplifying assumptions thatthe intensity distributions are multivariate Gaussians and are independent. The inde-penden
e assumption allows for entropy to be summed along ea
h dire
tion in featurespa
e. A re
ently introdu
e method uses linear 
ombinations of 
onditional entropiesto drive the registration [110, 111℄. Upper bounds on the the 
onditional entropies aredeveloped based on joint histograms of lower dimensionality. All of these multivariatemethods have been developed in the linear registration setting. The method presentedin this dissertation is unique among these in that it is the only algorithm that performsfully 3D non-rigid multi-modal image set registration and does not require 
omputingjoint histograms.



313.2.3 Existing Joint Segmentation and Registration MethodsAs the proposed multi-modal image set registration framework, des
ribed in thenext se
tion 3.2.4, involves the joint estimation of segmentation and registration, sim-ilar 
urrent methods are brie�y reviewed. Central to many of these methods is the
onsideration of lo
al stru
ture whi
h leads to more robust registration and, hen
e,improved segmentation. A minimax entropy-based registration framework to simulta-neously and iteratively segment 2D portal images and register them to 3D CT data ispresented in [6℄. This method relaxes the independent and identi
ally distributed imagepixel intensity assumption asso
iated with mutual information by in
orporating 
orre-lation among neighboring pixels. Another approa
h involves a geometri
, variationalframework that uses a
tive 
ontours to simultaneously segment and register multiplefeatures [109℄. Multiple images are segmented by evolving a single 
ontour as wellas mapping that 
ontour to ea
h image. A distin
tly di�erent approa
h builds uponthe previous method by using logi
 models while relaxing the requirement that imagesbe 
ompletely registered [72℄. Markov random �elds have been applied in Bayesianmaximum aposteriori model segmentation estimation and registration [106℄. A Markovrandom �eld model-based approa
h that in
orporates a pixel attribute ve
tor based ona pharma
okineti
 model is presented in [108, 107℄. This method uses a Gaussian datalikelihood model and provides spatial 
oheren
e and smoothness through the use of aprior. A framework that 
ombines segmentation, bias �eld 
orre
tion, and registrationinto a generative approa
h is presented in [3℄. This method also uses a Gaussian datalikelihood model. Iterated 
onditional modes, introdu
ed by [8℄, is used to minimizetheir mixture obje
tive fun
tion where ea
h iteration involves alternating between es-timating di�erent groups of parameters while holding the others �xed. The methodmost similar to the one proposed in this dissertation in
orporates tissue 
lass infor-mation into non-rigid registration by using Kullba
k-Leibler divergen
e as a similaritymeasure between ideal and a
tual joint voxel 
lass distribution matri
es [20℄. Thesematri
es represent lo
al fuzzy 
orresponden
e of obje
t 
lass labels for pairs of 
orre-sponding voxels. The method presented in this dissertation di�ers from most of theseapproa
hes in that it involves fully 3D non-rigid registration.3.2.4 Multi-Modal Image Set RegistrationGiven the aforementioned di�
ulties with using multivariate mutual informationin the image set registration setting, a novel model-based approa
h is proposed where



32the registration is performed using underlying anatomi
al stru
tures. These stru
turesare in
orporated as a geometri
 prior in a Bayesian framework. From the theory ofpattern 
lassi�
ation [21℄, it is known that the use of a Bayesian 
lassi�er for de
isionmaking is optimal in that it 
orresponds to minimizing the average probability of errorasso
iated with the de
ision. Thus, Bayesian 
lassi�
ation using a geometri
 priorprovides a goodJos approa
h for generating 
lass-
onditional densities that des
ribethe anatomi
al stru
tures.This framework is based on the assumption that human brain anatomy 
onsists of�nitely enumerable stru
tures su
h as grey matter, white matter, and 
erebrospinal�uid. These stru
tures present with varying radiometri
 intensity values a
ross dis-parate imaging modalities. Given two multi-modal image sets, the underlying stru
-tures are 
aptured by estimating, for ea
h image set, the 
lass-
onditional posteriormaps asso
iated with ea
h stru
ture. These 
lass posteriors are then used to produ
e a
oordinate-independent average posterior by estimating dense di�eomorphi
 registra-tion maps relating the domains of the two 
lass posteriors. The sum-of-Kullba
k-Leiblerdivergen
es D̄
(

p̂||{pi}
N
i=1

) with N = 2 distributions is used as a distan
e fun
tion on thespa
e of probability mass fun
tions to estimate the transformations. The use of 
lassposteriors provides an image intensity-independent approa
h to image registration.Spe
i�
ally, 
onsider the problem of �nding a mapping between image sets Ī1 and
Ī2 (Figure 3.3). That is, �nd the mappings f : Ω1 → Ω2 and g : Ω2 → Ω1 where Ω1 and
Ω2 are the domains of image sets Ī1 and Ī2 respe
tively. To fa
ilitate the registration, anew domain Ω, independent of Ω1 and Ω2 is introdu
ed. Let transformations h1 and h2map Ω to Ω1 and Ω2 respe
tively. By 
onstru
tion, f = h2 ◦h−1

1 and g = h1 ◦h−1
2 . Thisregistration method is inverse 
onsistent as f ◦ g = g ◦ f = e, the identity map. Havingdes
ribed the transformation framework the Bayesian framework for representing theanatomi
al 
lass stru
tures is presented next.3.2.4.1 Bayesian FrameworkThe underlying neuroanatomy, represented in two a
quired sets of multi-modal im-ages, is assumed to 
onsist of a set, C, of separate anatomi
al stru
ture 
lasses, cj.From the multi-modal image sets Ī1 and Ī2, for ea
h 
lass cj ∈ C jointly estimate theposterior mass fun
tions p1(x) = p(cj(h1(x))|Ī1) and p2(x) = p(cj(h2(x))|Ī2) along withthe registration maps h1(x) and h2(x), that map the independent domain Ω ⊂ R

3,into the domain of Ī1, Ω1 ⊂ R
3, and Ī2, Ω2 ⊂ R

3, respe
tively. This method is in-dependent of the number of images 
omprising ea
h image set. Optimal inter-subje
t
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Figure 3.3: Inverse-Invariant RegistrationRegistration of image sets Ī1 and Ī2 through the unbiased domain Ω.multi-modal image set registration is estimated by an alternating iterative algorithmwhi
h is motivated by an expe
tation maximization method used in [80, 102℄. Theproposed algorithm interleaves the estimation of the posteriors asso
iated with Ī1 and
Ī2 and the estimation of the registration maps h1 : Ω → Ω1 and h2 : Ω → Ω2. Figure3.4 depi
ts this Bayesian framework.For ea
h 
lass cj, the asso
iated data likelihoods p(Ī{1,2}(x)|cj(x), µj , Σj), are mod-eled as multivariate normal distributions with means µj , and 
ovarian
es Σj . Giventhe transformations h1 and h2 and the 
urrent estimates µj and Σj for both image sets,the posteriors of Ī1 and Ī2 are asso
iated with the independent 
oordinate probabilitymass fun
tion pΩ by using Bayes's Rule with pΩ as the prior for both posteriors p1(x)and p2(x). Having de�ned the posteriors, the parameters µj and Σj are updated bytheir expe
ted values. An alternative approa
h is the non-parametri
 kernel densityestimation des
ribed in [79℄.3.2.4.2 Large Deformation Di�eomorphi
 RegistrationWith the model-based Bayesian framework de�ned, now 
onsider the problem ofestimating a 
lass posterior average, p̂, from p1 and p2, representing image sets Ī1 and
Ī2 respe
tively. The average p̂ is neither p1 nor p2. Consider the problem of 
onstru
tinga mapping between p̂ and ea
h of p1 and p2. That is, estimate the mappings h1 : Ω → Ω1and h1 : Ω → Ω2 where Ω ⊂ R

3, Ω1 ⊂ R
3and Ω2 ⊂ R

3 are the domains of the 
lassposteriors p̂, p1 and p2 respe
tively. The domain Ω is 
hosen to be independent of the
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Figure 3.4: Model-Based Image Set RegistrationRegistration of image sets Ī1 and Ī2 through the unbiased domain Ω.individual subje
t 
lass posterior domains, Ω1 and Ω2. This framework is depi
ted inFigure 3.5.The desired average 
lass posterior p̂ is the one that requires the minimum amount ofenergy to be deformed into both p1 and p2. More pre
isely, given a transformation group
S with asso
iated metri
 D : S2 → R, along with a probability density dissimilaritymeasure E(p, q), to �nd the 
lass posterior map p̂ su
h that

{ĥ{1,2}, p̂} = argmin
h{1,2}∈S,p

[

E(p1 ◦ h1, p) + E(p2 ◦ h2, p) + D(e, h1)
2 + D(e, h2)

2
] (3.1)where e(x) = x is the identity transformation.Within the framework of 
omputational anatomy a 
ommonly used transformationgroup is the group of di�eomorphisms [48℄. Central to this framework, therefore, is theassumption of homogeneous anatomy between subje
ts [32℄. As di�eomorphi
 mapspreserve topology they are ideal for the quantitative study of shape sin
e they neitherbend nor tear spa
e. The �uid image registration method used in this dissertation ismotivated by the image mat
hing problem formulated via �uid �ows introdu
ed by [14℄and posed a 
ontrol formulation in [22℄. In this formulation, the optimal di�eomorphi
mat
h is 
onstru
ted to minimize a running smoothness 
ost on the velo
ity �eld gen-erating the di�eomorphism, further des
ribed below, while simultaneously minimizing
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Figure 3.5: Image Registration Through Class PosteriorsAsso
iated with ea
h image set Īi is a 
lass-
onditional probability map piand is related to the unbiased domain Ω through the transformation hi.an image dissimilarity term. A gradient des
ent approa
h is taken where a variational
ost is measured in terms of a velo
ity �eld.In this dissertation, the 
lass-posterior map mat
hing involves the parti
ular trans-formation h that maps the spa
e of a 
lass-posterior representing a subje
t, pi, to thespa
e of the 
lass-posterior map representing the average, p̂, pi(hi(x)) = p̂(x). In thelarge deformation setting, a given h is estimated as the end point point of the �owasso
iated with a smooth time-dependent ve
tor �eld. More spe
i�
ally, the approa
his to 
onstru
t di�eomorphisms h : Ω ⊂ R
3 ↔ Ω in terms of solutions to the ordinarydi�erential equation de�ned by the nonlinear transport equation

d

dt
h(x, t) = v(h(x, t), t) t ∈ [0, 1] (3.2)with boundary 
ondition,

h(x, 0) = x x ∈ Ωas presented in [70, 48℄. The boundary 
ondition 
orresponds to no deformation. Thesolution to Equation 3.2 is the fun
tion h(x, t) that satis�es
h(x, t) = h(x, 0) +

∫ t

0

v(h(x, τ), τ)dτ. (3.3)



36The �nal time di�eomorphism h(x, 1) mapping the anatomy is therefore 
ontrolled viathe velo
ity �eld v(·, t), x ∈ Ω, t ∈ [0, 1],
h(x, 1) = x +

∫ 1

0

v(h(x, τ), τ)dτ.Before dis
ussing how the di�eomorphi
 transformations are generated, it is impor-tant to know that they do exist in this setting. In his dissertation, Joshi proves thefollowing theorem.Theorem 3.1 (Di�eomorphism Existen
e). Let Ω = [0, 1]3 ⊂ R
3 and v : (x, t) ∈

Ω × [0, 1] → v(x, t) ∈ R
3 be a 
ontinuously di�erentiable ve
tor �eld with 
ompa
tsupport 
ontained in Ω for ea
h t ∈ [0.1]. Let h be the solution to the system ofordinary di�erential equations

d

dt
h(x, t) = v(h(x, t), t)with the initial 
ondition h(0, x) = x. Then for ea
h t ∈ [0, 1], h(·, t) is a di�eomorphismof Ω ↔ Ω.Proof. See [48℄.The boundary 
ondition h(x, 0) = x represents the Lagrangian interpretation of�uid �ow. The existen
e of di�eomorphisms under the Eulerian interpretation of �uid�ow where h(x, 1) = x is shown in [22℄. Conditions are formulated under whi
h theregularity of v(·, t) imposed by �niteness of the the norm ||v||2 guarantees that theasso
iated �ow, h, is supported on the spa
e of di�eomorphisms. The key issue is the
hoi
e of norm || · ||2.Following [7℄, one 
hoi
e to ensure existen
e of solutions in the spa
e of di�eo-morphisms in Equation 3.2 has been to 
onstru
t V as the 
ompletion of the spa
eof smooth, 
ompa
tly-supported ve
tor �elds for the inner-produ
t de�ned through adi�erential operator L given by

〈f, g〉V
.
= 〈Lf, Lg〉2 = 〈L†Lf, g〉2 f, g ∈ V (3.4)where L† denotes the adjoint of L, and 〈·, ·〉2 is the usual L2-produ
t for square inte-



37grable ve
tor-�elds on Ω. That is,
∫ 1

0

||v(·, t)||2V dt =

∫ 1

0

||L†Lv(·, t)||22dt.With V de�ned in this way, the �ow v ∈ L1(V, [0, 1]) generates the sub-group of di�eo-morphisms G
.
= {φ ∈ V |φ(h(x, 1), 1), v ∈ L1(V, [0, 1])} [22℄. From these assumptionson V , a 
ompa
t self-adjoint operator K : L2(Ω, Rd) → V is uniquely de�ned by

〈x, y〉2 = 〈Kx, y〉V . That is, any smooth ve
tor �eld f ∈ V 
an be obtained su
h that
K(L†L)f = f.In summary, the norm ||v(·, t)||V generates an inner produ
t on the spa
e of 
ontinuousve
tor �elds C∞(Ω)3, and ||v(·, t)||V needs to be �nite to ensure regularity in ea
h
omponent of v. Smoothness in v is indu
ed by adding ||Lv(·, t)||2 as a regularizing
ost penalty term in the optimization.The 
hoi
e of operator L is typi
ally governed by the notion of a prior, in theBayesian sense, on the transformations obtained by driving a �uid or elasti
 media orby a noise pro
ess. In su
h a 
ase L is determined by the statisti
s of the noise and the
onstitutive laws of the media. Following [14℄, in this dissertation a modi�ed Navier-Stokes operator L = α∇2 + β∇(∇·) + γ is used where pressure gradient and inertialterms are negle
ted and a low Reynold's number is assumed.A di�erential operator L is 
ompletely 
hara
terized by its Green's fun
tion G(x, y)where LG(x, y) = δ(x − y). Under the noise pro
ess model, the indu
tion of priorthrough 
onstant 
oe�
ient lo
al (bounded support), positive de�nite (invertible) dif-ferential operator L satisfying Lu(x) = e(x) where e(x) is white noise. Then, as shownin [52℄, u(x) is a zero-mean Gaussian pro
ess with 
ovarian
e

K(x, y) =

∫

G(x, u)G(y, u)du.Throughout assume the 
ompa
t setting Ω = [0, 1]3 with the operator and boundary
onditions 
hosen so that the Green's fun
tion is non-singular and 
ontinuous in bothvariables so that the matrixK(x, y) = G(x, y)G(x, y)† is positive de�nite as an operator.Having 
hosen a linear di�erential operator to de�ne the inner-produ
t 〈·, ·〉V andhaving established the 
onditions under whi
h the solution to Equation 3.2 generatesdi�eomorphi
 transformation, the image registration optimization problem in Equation
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y = h(x, 1)

v(x, 0)

ṽ(y, 0)

Figure 3.6: Velo
ity Fields3.1 is further spe
i�ed. The transformations hi are generated by integrating velo
ity�elds forward in time, and h−1
i are generated by integrating velo
ity �elds ba
kwardin time. The relationship between spatial lo
ality, velo
ity �elds, and time is shown inFigure 3.6. The spatial lo
ation y is des
ribed in terms of the forward integration ofthe velo
ity �eld v starting from spatial lo
ation x. That is,

y = h(x, 1) = x +

∫ 1

0

v(h(x, τ), τ)dτ.Similarly, x 
an be des
ribed in terms of integrating the reverse velo
ity �eld ṽ startingat y. That is,
x = φ(y, 1) = y +

∫ 1

0

ṽ(φ(y, τ), τ)dτ.From Figure 3.6, note that
v(h(x, t), t) = −ṽ(φ(y, 1− t), 1 − t)and hen
e

||Lv(x, t)||2 = ||Lṽ(y, 1 − t)||2where
L = α∇2 + β∇(∇·) + γis, again, a modi�ed Navier-Stokes operator.The metri
 on the spa
e of di�eomorphisms is indu
ed using a Sobolev norm viathe partial di�erential operator L on the velo
ity �elds v. Let h be a di�eomorphismisotopi
 to the identity transformation e. De�ne the squared distan
e D2(e, h) as
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D2(e, h) = min

v

∫ 1

0

∫

Ω

||Lv(x, t)||2dxdt (3.5)subje
t to
h(x) = x +

∫ 1

0

v(h(x, t), t)dt.The distan
e between any two di�eomorphisms is de�ned by
D(h1, h2) = D(e, h−1

1 ◦ h2).The 
onstru
tion of h and h−1, as well as the properties of D, are des
ribed in [68, 71℄.This distan
e satis�es all of the properties of a metri
. Namely it is non-negative,symmetri
, and satis�es the triangle inequality. The distan
e D is trivially non-negative. Symmetry follows from the fa
t that h−1 is generated by integrating ba
k-wards in time the negative of the velo
ity �eld that generates h. Hen
e the minimizer isthe same for both h and h−1, implying that D(e, h) = D(e, h−1). A detailed dis
ussionof D, in
luding a demonstration of how it satis�es the triangle inequality, is given in[71℄.Having de�ned a metri
 on the spa
e of di�eomorphism and a regularization op-erator L, the energy minimization problem des
ribed in Equation 3.1 is formulatedas
{ĥ{1,2}, p̂} = argmin

h{1,2},p

E(p1 ◦ h1, p) + E(p2 ◦ h2, p)

+

∫ 1

0

∫

Ω

||Lv1(x, t)||2dxdt +

∫ 1

0

∫

Ω

||Lv2(x, t)||2dxdt (3.6)subje
t to
hi(x) = x +

∫ 1

0

vi(hi(x, t), t)dt.3.2.4.3 RegistrationAt a given spatial lo
ation x ∈ Ω, the dissimilarity between image sets Ī1(x) and
Ī2(x) is measured by the dissimilarity between the posterior mass fun
tions modelingthem, p1(x) and p2(x). Minimizing the D̄

(

p̂||{pi}
N
i=1

) between p1 and p2 maximizes alower bound on the Bayes' probability of error and thus renders the probability mass
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tions more indistinguishable. That is, it brings them 
loser together. The followingdistan
e, using Equation 2.10 with N = 2, is used to drive the registration at position
x ∈ Ω:

E(p1(x), p2(x)) = D̄ (p̂(x)||{p1(x), p2(x)})

= −2 log
∑

cj∈C

(

p1(h1(cj(x))|Ī1)p2(h2(cj(x))|Ī2)
)

1
2 .With this result, the minimization problem stated in Equation 3.1 is rewritten asfollows:

v̂1, v̂2 = argmin
v1,v2

∫

Ω

log
∑

cj∈C

(

p1(h1(cj(x))|Ī1)p2(h2(cj(x))|Ī2)
)

1
2 dx

+

∫ 1

0

∫

Ω

||Lv1(x)||2dxdt +

∫ 1

0

∫

Ω

||Lv2(x)||2dxdt.3.2.4.4 ImplementationThe method proposed in this dissertation uses Christensen's greedy algorithm forpropagating templates [14℄. The variation for h1 of the average E(p1(x), p2(x)) term is
omputed as
∂

∂h1

1

|Ω|

∫

Ω

D̄ (p̂(x)||{p1(x), p2(x)}) dx = −
2

|Ω|

∂

∂hi

log
∑

cj∈C

(p1(cj(x))p2(cj(x)))
1
2 dx

= −
2

|Ω|
·

∫

Ω

∑

cj∈C
∂

∂h1
(p1(cj(x))p2(cj(x)))

1
2

∑

ck∈C (p1(ck(x))p2(ck(x)))
1
2

dx

= −
1

|Ω|

∫

Ω

∑

cj∈C

(

p2(cj(x))

p1(cj(x))

) 1
2
∇p1|

T
cj(h1(x))

∑

ck∈C (p1(ck(x))p2(ck(x)))
1
2

dx.The variation for h2 is 
omputed in a similar manner. The velo
ity �elds v{1,2} at ea
hiteration are updated by solving the partial di�erential equations
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Lv{1,2}(x, t) =

∂

∂h{1,2}

1

|Ω|

∫

Ω

D̄ (p̂(x)||{p1(x), p2(x)}) dx.The velo
ity �elds vi are 
omputed at ea
h iteration by applying the inverse of the di�er-ential operator L to the body for
e fun
tion fi(x) = ∂
∂hi

1
|Ω|

∫

Ω
D̄ (p̂(x)||{p1(x), p2(x)}) dx,i.e. vi(x) = L−1fi(x) . This 
omputation is performed in the Fourier domain [50℄ usingthe Fast Fourier transform.The forward and inverse integration are des
ribed as follows. At time t, the trans-formations hi are des
ribed as

hi(x, t + δ) = hi(x, t) +

∫ t+δ

t

vi(hi(x, τ), τ)dτ

≈ hi(x, t) + δvi(hi(x, t), t)for small δ. At iteration k of the algorithm, the transformations hi be
ome the tele-s
oping 
ompositions hi = hk
i ◦ hk−1

i ◦ · · · ◦ h1
i . At time t, the inverse transformations

h−1
i are des
ribed as

h−1
i (y, t) = h−1

i (y −

∫ t−δ

t

vi(y, τ)dτ, t− δ)

≈ h−1
i (y − δvi(y, t), t− δ)for small δ. At iteration k of the algorithm, the transformations h−1

i be
ome theteles
oping 
ompositions h−1
i = h−1,1

i ◦ h−1,2
i ◦ · · · ◦ h−1,k

i .Appendix B dis
usses the likelihood of the a
tual optimum in the multi-modal imageset registration 
ost fun
tion being a
hieved.3.3 ResultsTo evaluate the image set registration method, a 
olle
tion of image sets of in
reasing
omplexity was de�ned. For ea
h image subje
t, the image sets were 
reated using 3Ds
alar images from a population of four imaging modalities: MRA, T1-FLASH MR,T1-MPRAGE MR, and T2 MR. The 
omposition of these image sets is des
ribed inSe
tion 3.3.2.1. The individual MR images were a
quired at UNC Chapel Hill using



42a Siemens head-only 3-Tesla system (Allegra, Siemens Medi
al Systems In
.) and aSiemens 1.5-Tesla system (Sonata, Siemens Medi
al Systems In
.) with a head 
oil.Imaging parameters for the T1 and T2 image a
quisitions are as follows, for the T1images, a TR of 15mse
, a TE of 7mse
, a TH of 1mm, and an in-plane resolution of
1×1 mm2 and for the T2 images, a TR of 7730mse
, a TE of 80mse
, a TH of 1mm, andan in-plane resolution of 1 × 1 mm2. Additionally, a 3D time-of-�ight MRA sequen
ewas a
quired. Velo
ity 
ompensation along both the frequen
y and the phase en
odingdire
tion was used to maximize signal de-phasing indu
ed by the �owing spins. Amagnetization transfer pulse was used to suppress signal from brain paren
hyma whilemaintaining signal from �owing spins. The a
quired voxel spa
ing for the MRA imageswas 0.5134 × 0.5134 × 0.78 mm3 and 1 × 1 × 1 mm3 for the T1 and T2 images. TheMRA images were resampled to 1 × 1 × 1 mm3.3.3.1 Data Prepro
essingThe tissue exterior to the brain was removed using a mask generated by a brainsegmentation tool based on the statisti
al 
lassi�
ation method des
ribed in [79℄. Thegeometri
 prior used to initialize the algorithm was also produ
ed using this tool. Mid-axial, mid-
oronal, and mid-sagittal sli
e views for subje
ts 1 and 2 are presented inFigures 3.7 and 3.8 respe
tively. These four modalities provide 
omplementary informa-tion. For example, the T1-FLASH and T1-MPRAGE images have 
ontrast di�eren
es,and the MRA images exhibit missing information due to grey matter/white matterwashout and axial slab e�e
t. In these examples, the set of stru
tural 
lasses is takento be

C = {c1 = grey matter, c2 = white matter, c3 = cerebrospinal fluid, c4 = other}.3.3.2 Registration ExperimentsTo evaluate this image set registration framework, the transformations, f1 and g1,relating the domains of subje
t 1 and subje
t 2 were estimated by applying the multi-modal image set method to a mono-modal registration. These two transformationswere then used as �ground truth� for the purpose of evaluating an in
reasingly 
om-plex 
olle
tion of image set registrations. Inverse-
onsisten
y error was 
omputed toquantitatively evaluate the results.
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(a)
(b)
(
)
(d) Mid-Axial Mid-Coronal Mid-SagittalFigure 3.7: Subje
t OneThe orthogonal sli
e views into the four multi-modal s
alar images for sub-je
t one: MRA (a), T1-FLASH (b), T1-MPRAGE (
), and T2 (d).
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(a)
(b)
(
)
(d) Mid-Axial Mid-Coronal Mid-SagittalFigure 3.8: Subje
t TwoThe orthogonal sli
e views into the four multi-modal s
alar images for sub-je
t two: MRA (a), T1-FLASH (b), T1-MPRAGE (
), and T2 (d).



453.3.2.1 SetupThe following eight registration experiments were performed:1. Mono-modal/Mono-modal (
ommon): Ī1 = T1-FLASH of subje
t 1 and Ī2 =T1-FLASH of subje
t 2.2. Mono-modal/Mono-modal (mutually ex
lusive): Ī1 = T1-FLASH of subje
t 1and Ī2 =T2 of subje
t 2.3. Bi-modal/Bi-modal (fully 
ommon): Ī1 = T1-FLASH and T2 of subje
t 1 and
Ī2 = T1-FLASH and T2 of subje
t 2.4. Bi-modal/Bi-modal (single 
ommon): Ī1 = T1-FLASH and T2 of subje
t 1 and
Ī2 = T1-MPRAGE and T2 of subje
t 2.5. Bi-modal/Bi-modal (mutually ex
lusive): Ī1 = T1-FLASH and T2 of subje
t 1and Ī2 = T1-MPRAGE and MRA of subje
t 2.6. Bi-modal/Mono-modal (mutually ex
lusive): Ī1 = T1-FLASH and T2 of subje
t1 and Ī2 = MRA of subje
t 2.7. Tri-modal/Tri-modal (fully 
ommon): Ī1 = T1-FLASH, T1-MPRAGE, and T2of subje
t 1 and Ī2 = T1-FLASH, T1-MPRAGE, and T2 of subje
t 2.8. Quad-modal/Quad-modal (fully 
ommon): Ī1 = T1-FLASH, T1-MPRAGE, T2,and MRA of subje
t 1 and Ī2 = T1-FLASH, T1-MPRAGE, T2, and MRA ofsubje
t 2.From ea
h of these experiments, transformations fi and gi were obtained. The �rstexperiment provides the �ground truth� transformations, f1 and g2. The T1-FLASHmodality was 
hosen for the �rst experiment due to its relatively good white mat-ter/grey matter 
ontrast.3.3.2.2 Bi-Modal/Bi-Modal (Mutually Ex
lusive) RegistrationFor the purposes of brevity, only qualitative results for the most interesting of theseexperiments, the bi-modal/bi-modal mutually ex
lusive registration are presented. Inthis experiment, Ī1 represents the T1-FLASH and T2 images a
quired from subje
t oneand Ī2 represents the T1-MPRAGE and MRA images a
quired from subje
t two. The
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T1-FLASH T2 T1-FLASH T2 T1-FLASH T2

T1-MPRAGE MRA T1-MPRAGE MRA T1-MPRAGE MRAFigure 3.9: Forward MappingThe top row shows mid-axial, mid-
oronal, and mid-sagittal views of imageset Ī1. The bottom row shows the same views for the deformed image set
Ī2 ◦ f .estimated forward, f , and inverse, g, transformations are depi
ted, in three orthogonalviews, in Figures 3.9 and 3.10 respe
tively. In Figure 3.11, a qualitative assessment ofthe registration is made by examining axial sli
es of Ī1 and Ī2 in greater detail througha 
he
kerboard pattern. The mismat
h between the image sets is 
learly evident inthe top row of the �gure. The se
ond and third rows illustrate the e�e
tiveness of theregistration under the estimated forward and inverse transformations respe
tively.3.3.2.3 Inverse-Consistent Image RegistrationA by-produ
t of using the unbiased domain Ω in the multi-modal image set reg-istration framework is inverse-
onsistent (or inverse-invariant) image registration. Aregistration framework is inverse 
onsistent if image ordering does not a�e
t the regis-tration result. Many image registration algorithms are not inverse 
onsistent be
ausetheir image dissimilarity metri
s are 
omputed in the 
oordinate system of one of theimages being registered. The 
hoi
e of su
h a referen
e image 
an bias the result of theregistration. Inverse 
onsistent registration is desired when there is no a priori reasonto 
hoose one image over another as a referen
e image.In traditional te
hniques for image registration, solutions may be systemati
allybiased with respe
t to expanding and 
ontra
ting regions in the estimated transforma-tion [12℄. Existing methods for generating inverse 
onsistent registration approximate
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T1-MPRAGE MRA T1-MPRAGE MRA T1-MPRAGE MRA
T1-FLASH T2 T1-FLASH T2 T1-FLASH T2Figure 3.10: Inverse MappingThe top row shows mid-axial, mid-
oronal, and mid-sagittal views of imageset Ī2. The bottom row shows the same views for the deformed image set

Ī1 ◦ g.inverse 
onsisten
y by adding an inverse 
onsisten
y penalty to the optimization 
ostfun
tion. The registration frameworks formulated in these methods are not intrinsi
allysymmetri
. Methods for approa
hing this problem, involving algorithms that estimatein
remental transformations while approximating inverse 
onsisten
y 
onstraints onea
h in
remental transformation, are presented in [34, 66, 39℄. The approa
h presentedin this dissertation is intrinsi
ally inverse 
onsistent as the registration problem is for-mulated symmetri
ally. Therefore, no 
orre
tion penalty for 
onsisten
y is required.More spe
i�
ally, a registration, 
hara
terized by a transformation, h, is inverse-
onsistent (symmetri
) if, for images I1 and I2, the following holds: h(I1, I2) = h−1(I2, I1).A registration for whi
h this property does not hold is 
onsidered to be asymmetri
.The following is a list of potential sour
es for asymmetry in non-rigid registration:
• Order non-preservation: Many image registration algorithms are not inverse-
onsistent sin
e their (dis)similarity metri
s are 
omputed in the 
oordinate sys-tem of either one of the images involved in the registration. This leads to or-der non-preservation of energy 
ost fun
tions. That is, for an energy fun
tion

E(I1, I2, h) and two estimates, h1 and h2, for the transformation h, the followingmay hold, E(I1, I2, h1) < E(I1, I2, h2) but E(I2, I1, h
−1
1 ) ≥ E(I2, I1, h

−1
2 ).

• Non-linearity in models: Continuum me
hani
al methods are used to model de-
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Figure 3.11: Qualitative AssessmentThe top row shows a 
he
kerboard blending of an axial sli
e of the imagesets Ī1 and Ī2. The middle row shows a blending between Ī1 and Ī2 ◦ f ,the forward mapping, and the bottom row shows a blending between Ī2 and
Ī1 ◦ g, the inverse mapping. The left 
olumn is 
omposed of the T1-FLASHof Ī1 and the MRA of Ī2, and the right 
olumn is 
omposed of the T2 of Ī1and the T1-MPRAGE of Ī2. The registration has a

ommodated the lo
alvariability between the two image sets, espe
ially in the 
orti
al region (e.g.,point A), and in the ventri
ular region (e.g., point B).



49formations (e.g., thin-plate splines may be non-linear).
• Non-stable transformation spa
e: The spa
e of allowable transformations may notform a group, G, and, hen
e, may not be stable by inversions. That is, h ∈ Gbut h−1 /∈ G.
• Lo
al minima: The optimization algorithm used for estimating h may get stu
kin di�erent lo
al minima of the energy fun
tion E when the images I1and I2 areex
hanged.The L2 di�eren
e norm, ||f1(gi(x)) − x||2, was used to evaluate inverse 
onsisten
ybetween ea
h experiment i, and the �rst experiment for ea
h spatial lo
ation x ∈ Ω.For numeri
al stability, these inverse-
onsisten
y errors were 
omputed via teles
oping
ompositions as des
ribed in Se
tion 3.2.4.4. Over all eight experiments, the maximum
omputed inverse-
onsisten
y error was 3.12×10−4 voxels with an average of 5.04×10−5voxels.



Chapter 4Multi-Class Posterior AtlasFormation1
This 
hapter extends the framework for multi-modal image set registration fromChapter 3 to multi-
lass posterior atlas formation. Consider the important problem in
omputational anatomy introdu
ed in Se
tion 1.2, the 
onstru
tion of an exemplar atlasfrom a population of medi
al images. Su
h atlases represent the anatomi
al variationpresent in populations [69, 32, 94℄. Many images are mapped into a 
ommon 
oordi-nate system to study intra-population variability and inter-population di�eren
es, toprovide voxel-wise mapping of fun
tional sites, and to fa
ilitate tissue and obje
t seg-mentation via registration of anatomi
al labels. Common te
hniques for 
reating atlasesoften in
lude 
hoosing a template image, whi
h inherently produ
es a bias. Motivatedby the atlas 
onstru
tion framework presented in [49℄, unbiased multi-
lass atlases are
onstru
ted from populations of anatomi
al 
lass posteriors using large deformation dif-feomorphi
 registration. When applied to two image sets, this atlas formation methodyields the inverse-
onsistent image set registration of Chapter 3.Digital atlases of humans are prominent in image segmentation algorithms. Forexample, a method for automati
ally segmenting images of normal healthy humanbrains, based on statisti
al 
lassi�
ation theory [21℄, is presented in [102, 101℄. Anextension to human brains with pathology is des
ribed in [80℄. These methods rely onmulti-modal images that have been a�nely registered to the 
oordinate spa
e of the
hosen atlas. The registration pre-pro
essing step uses mutual information, des
ribed1The work presented in this 
hapter was done in 
ollaboration with Dr. Sarang Joshi and BradDavis at the University of North Carolina at Chapel Hill. This 
hapter is heavily based on previouspapers [63, 49℄.



51in [16℄, as a similarity measure for 
omputing distan
es between probability mass fun
-tions representing joint and marginal produ
t distributions of image intensities. Globaltransformations, su
h as a�ne transformations, are insu�
ient to a

ommodate thelo
al variability that exists in any population of human brains. For example, althoughall humans possess a 
erebellum and 
orti
al grey matter en
losing white matter, thelo
ation and manner of 
orti
al and 
erebellar folding are highly variable a
ross a pop-ulation.Most digital atlases involve features that are single numbers (e.g., Houns�eld unitsin 
omputed tomography (CT) images). Unbiased atlas formation from su
h s
alarimages, using the squared-error image dissimilarity measure, is des
ribed in [49℄. This
hapter fo
uses on multi-
lass posterior atlas formation from multi-modal image sets.Spe
i�
ally, the Bayesian framework from Se
tion 3.2.4.1 is applied to a 
olle
tion of im-age sets. From a population of N multi-modal image sets {Īi}
N
i=1, for ea
h 
lass cj ∈ C,estimate the 
lass posterior mass fun
tions pi(cj(x)|Īi) for ea
h image set i where cj(x)is the 
lass asso
iated with the voxel at spatial position x ∈ Ω ⊂ R

3. This method isindependent of the number of images 
omprising ea
h image set. These 
lass poste-riors are produ
ed using the expe
tation maximization method des
ribed in [80, 102℄.Following [102℄, for ea
h 
lass cj the asso
iated data likelihood, p(Īi(x)|cj(x), µj , Σj), ismodeled as a normal distribution with mean, µj, and 
ovarian
e, Σj .This 
hapter reviews existing atlas 
onstru
tion methods in Se
tion 4.1. Using thelarge deformation di�eomorphi
 framework requires a more general notion of averagingtransformations. This generalized notion of averaging to metri
 spa
es is dis
ussed inSe
tion 4.2. The multi-
lass atlas 
onstru
tion method is then presented in Se
tion 4.3with a some results 
omparing a�ne and di�eomorphi
 averaging in 4.4.4.1 Atlas Formation: a ReviewSin
e Brodmann, nearly a 
entury ago, began mapping areas of the 
erebral 
ortexbased on 
ytoar
hite
tural boundaries [11℄, the 
onstru
tion of brain atlases has been
entral to understanding the variability of brain anatomy. More re
ently, sin
e theadvent of modern 
omputing and digital imaging te
hniques, intense resear
h has beendire
ted towards the development of digital three-dimensional atlases of the brain.Most digital brain atlases so far are based on a single subje
t's anatomy [43, 104℄.Although these atlases provide a standard 
oordinate system, they are limited be
ausea single anatomy 
annot represent faithfully the 
omplex stru
tural variability between



52individuals. A major fo
us of 
omputational anatomy has been the development ofimage mapping algorithms [29, 68, 84, 98℄ that 
an map and transform a single brainatlas onto a population. In this paradigm, the atlas serves as a deformable template [31℄.The deformable template 
an proje
t detailed atlas data su
h as stru
tural, bio
hemi
al,fun
tional, and vas
ular information onto the individual or an entire population of brainimages. The transformations en
ode the variability of the population under study. Astatisti
al analysis of the transformations 
an also be used to 
hara
terize di�erentpopulations [18, 44, 92℄. For a detailed review of deformable atlas mapping and thegeneral framework for 
omputational anatomy, see [98, 32℄. One of the fundamentallimitations of using a single anatomy as a template is the introdu
tion of bias, as thesele
ted group member may not well spe
ify the population as a whole.The unbiased atlas represents an average anatomi
al 
on�guration of a population.Unbiased atlas 
onstru
tion is an a
tive area of resear
h in image registration. Thomp-son and Toga [97℄ very elegantly address the bias problem by mapping a new data setonto every s
an in a brain image database. This approa
h addresses bias by forgoingthe formal 
onstru
tion of a representative template image. Although this frameworkis mathemati
ally elegant and powerful, it results in a 
omputationally prohibitive ap-proa
h in whi
h ea
h new s
an has to be mapped independently to all datasets in adatabase. This is analogous to 
omparing ea
h subje
t under study to every previouslyanalyzed image. As brain image databases grow, the atlas formation problem grows
ombinatorially.Previous work in atlas formation has fo
used on the small deformation setting inwhi
h arithmeti
 averaging of displa
ement �elds is well de�ned, e.g., in [9℄. Studholmeminimizes an energy fun
tional involving un
ertainty in joint histograms of intensities,elasti
 deformation, and sum of displa
ements [90℄. Kova
evi
 et al. present a multi-resolution method that is initialized by averaging pairwise a�ne transformations and�nalized by 
entering based on averaging estimated non-linear transformations to thisa�ne average [57℄. An iterative averaging algorithm to redu
e the bias has been de-veloped by [34℄. In the latest work of [9℄, expli
it 
onstraints requiring that the sumof the displa
ement �elds add to zero are enfor
ed in the proposed atlas 
onstru
tionmethodology. These small deformation approa
hes are based on the assumption thattransformations of the form h(x) = x + u(x), parameterized via a displa
ement �eld,
u(x), are 
lose enough to the identity transformation su
h that the 
omposition of any



53two transformations 
an be approximated via the addition of their displa
ement �elds:
(h1 ◦ h2) (x) ≈ x + u1(x) + u2(x).Using a hidden probabilisti
 model of the 
ommon spatial distribution of anatomi-
al tissues, De Craene et al. 
reate atlases of probability distributions using STAPLE[17℄. The Simultaneous Truth and Performan
e Level Estimation (STAPLE) method,developed by War�eld and Zou [104, 112℄, 
al
ulates a 
omposite gold standard esti-mate from multiple manual segmentations. Given a set of binary segmentations of thesame obje
t, STAPLE 
al
ulates the maximum likelihood estimate of the 
omposite�gold standard� or the best estimate of the unknown gold standard. The STAPLEalgorithm 
al
ulates the spe
i�
ity and sensitivity of ea
h segmentation in an iterativeway. In the work of De Craene et al., a generalized expe
tation maximization method isused where, in the expe
tion step, atlas labels (hidden data) are estimated given �xedtransformations and, in the in the maximization step, transformations that maximizea similarity 
riterion are estimated.In a more re
ent and related work, Avants and Gee [5℄ develop an algorithm inthe large deformation di�eomorphi
 setting by averaging velo
ity �elds and evolvingmean geodesi
 �ows. The fo
us of this 
hapter is on the development of a methodologythat simultaneously estimates the transformations and an unbiased template, in thelarge deformation setting. This method does not assume the above approximationand, thus, is 
apable of building atlases of populations with large geometri
 variability.The method proposed in this dissertation is intrinsi
ally unbiased in that it involves nopenalty terms in the optimization pro
ess. The method is also 
omputationally e�
ientin that it s
ales linearly with the number of images. Before formally de�ning the atlasformation problem, this 
hapter explores averaging large deformation di�eomorphi
transformations.4.2 Averaging Di�eomorphismsGiven a 
olle
tion of anatomi
al images, a natural problem is the 
onstru
tion ofa statisti
al representative of the population. If the data asso
iated with the popula-tion under study 
an be easily parameterized by a Eu
lidean spa
e, 
lassi
al statisti
almethods of simple averaging 
an be applied to generate su
h a representative. An im-age under the Gaussian noise assumption 
an itself be easily represented as a member



54of a �at spa
e. The image 
an be represented as a member of a very large dimensionalEu
lidean spa
e R
N , where N is the number of voxels in the image. Alternatively, usingappropriate interpolation assumptions the image 
an be assumed to be a square inte-grable fun
tion, that is a member of the Hilbert spa
e L2(Ω) where Ω is the underlying
oordinate spa
e, usually a 
ompa
t subset of R

3.The geometri
 variability of the anatomy itself usually 
annot be represented byelements of a �at spa
e. If the geometry of the underlying anatomy 
an be adequatelyrepresented by a �nite number of landmarks, representative template landmark 
on�g-uration 
an be estimated using the Pro
rustes method pioneered by Kendal [54℄ and
hampioned by Bookstein [10℄. The study of anatomi
al shape is inherently relatedto the 
onstru
tion of transformations of the underlying 
oordinate spa
e that mapone anatomy to another. Various transformation groups of R
3 have been studied forunderstanding anatomi
al geometry. These groups vary in dimensionality from simpleglobal translations, R

3, and rigid rotations, SO(3), to the in�nite dimensional group ofdi�eomorphisms, H, [71℄.In this 
hapter, the problem of building an anatomi
al template is posed as a sta-tisti
al estimation problem. For anatomi
al representations in whi
h the underlyinggeometry is parameterized as a Eu
lidean ve
tor spa
e, training data 
an be repre-sented as a set of ve
tors, e.g., {xi}
N
i=1 in a ve
tor spa
e V .In the small deformation elasti
 image mapping setting, this is assumed to be true,as the deformations are assumed to be 
lose enough to the identity mapping. Underthis assumption, the displa
ement ve
tor �elds parameterizing the transformations 
anbe assumed to be elements of the Hilbert spa
e of square integrable fun
tions L2(Ω).In a ve
tor spa
e, with addition and s
alar multipli
ation well de�ned, the averagerepresentation of the training set is the linear average

x̄Linear =
1

N

N
∑

i=1

xi. (4.1)In terms of 
omputing statisti
s, the group of di�eomorphi
 transformations presentsa 
hallenge. Linear averaging 
annot be dire
tly applied to the large deformationsetting, as under the large deformation model the spa
e of transformations is not ave
tor spa
e but rather the in�nite dimensional group H of di�eomorphisms of theunderlying domain Ω.In the group of di�eomorphisms, the addition of two di�eomorphisms is not generally



55a di�eomorphism and hen
e a template based on linear averaging of transformationsis not well de�ned. To address this di�
ulty, the notion of averaging is extended togeneral metri
 spa
es �rst proposed by Fré
het [27℄. For a general metri
 spa
e M,with a distan
e d : M × M → R, the intrinsi
 mean for a 
olle
tion of data points
xi 
an be de�ned as the minimizer of the sum-of-squared distan
es to ea
h of the datapoints. That is

x̄Frechet = argmin
x∈M

N
∑

i=1

d(x, xi)
2. (4.2)In previous work at UNC Chapel Hill, these 
on
epts have been used to extend �rstand se
ond order statisti
al analysis to �nite dimensional Riemannian Manifolds forstatisti
al analysis of medial representations of obje
ts [26℄. This 
hapter applies thisapproa
h to the 
onstru
tion of large deformation di�eomorphi
 templates. The workhere builds heavily on the mathemati
al metri
 theory of di�eomorphisms developedby Miller and Younes [68℄.Given a metri
 on a group of transformations, the atlas 
onstru
tion problem 
an bestated: estimate a 
lass probability p̂ that requires the minimum amount of deformationenergy to be transformed into every member of the population of 
lass posteriors, pi.More pre
isely, given a transformation group S with asso
iated metri
 D : S ×S → R,along with a probability dissimilarity metri
 E(p1, p2), to �nd the probability p̂ su
hthat

{ĥi, p̂} = argmin
hi∈S,p

[

N
∑

i=1

E(pi ◦ hi, p) + D(e, hi)
2

] (4.3)where e is the identity transformation and D(e, h) is measure of how far from theidentity transformation h is as des
ibed in Chapter 3.This 
hapter addresses the problem of anatomi
al template 
onstru
tion as thejoint the estimation of the most representative, average, image and, as en
oded intransformations, the asso
iated anatomi
al geometry given a database of brain images.4.3 Large Deformation Di�eomorphi
 Atlas Estima-tionGiven the generalized notion of averages for di�eomorphi
 transformations, the
lass-
onditional atlas estimation is de�ned as the probability mass fun
tion that min-imizes an image dissimilarity measure and requires the least amount of energy, based
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Figure 4.1: Atlas FormationUnbiased atlas 
onstru
ted as the intrinsi
 mean of a population of 
lassposteriors.on a metri
 on di�eomorphisms, to deform into the ea
h member of the population.Spe
i�
ally, 
onsider the problem of estimating an atlas 
lass posterior p̂ that is thebest representative for a population of N 
lass posteriors, {pi}
N
i=1 , representing the Nindividual image sets {Īi}

N
i=1. The atlas p̂ is not a member of the set {pi}. To this end,
onsider the problem of 
onstru
ting a mapping between p̂ and ea
h 
lass posterior inthe set {pi}. That is, estimate the mappings hi : Ω → Ωi where Ω ⊂ R

3 and Ωi ⊂ R
3are the domains of the 
lass posteriors p̂ and pi respe
tively. The domain Ω is 
ho-sen to be independent of the individual population 
lass posterior domains, Ωi. Thisframework is depi
ted in Figure 4.1.Using the metri
 on the spa
e of di�eomorphisms with regularization operator Lde�ned in Equation 3.5, the minimum energy atlas estimation problem expressed inEquation 4.3 is formulated as

{ĥi, p̂} = argmin
hi,p

[

N
∑

i=1

E(pi ◦ hi, p) +

∫ 1

0

∫

Ω

||Lvi(x, t)||2dxdt

] (4.4)



57subje
t to
hi(x) = x +

∫ 1

0

vi(hi(x, t), t)dt.Note that the solution to this minimization problem is independent of the orderingof the N images. This atlas 
onstru
tion framework produ
es transformations ĥi su
hthat ĥi : Ω → Ωi. Sin
e ea
h ĥi is a di�eomorphism, its inverse ĥ−1
i : Ωi → Ωexists and 
an be 
al
ulated by integrating the negative velo
ity �elds ba
kwards intime, see Figure 3.6. Image to image 
orresponden
es 
an be 
omputed from thesetransformations using the 
omposition rule

ĥi,j = ĥj ◦ ĥ−1
i : Ωi → Ωj . (4.5)4.3.1 Dispersion Fun
tions on the Spa
e of Probability MassFun
tionsThe argminp

∑N

i=1 E(pi ◦ hi, p) term in Equation 4.4 represents the dispersion be-tween the 
lass-posteriors {pi ◦ hi}i=1...N . Consider three su
h dispersion terms on thespa
e of probability mass fun
tions. Two of these are information distan
es presentedin Chapter 2 and one is an extension of a well-known metri
.1. Sum-of-Kullba
k-Leibler Divergen
es I
D̄
(

p̂(x)||{pi(hi(x))}N
i=1

)

=

N
∑

i=1

D(p̂(x)||pi(hi(x)))where p̂ is the normalized geometri
 mean of {pi}
N
i=1.2. Sum-of-Kullba
k-Leibler Divergen
es II

D̄
(

{pi(hi(x))}N
i=1||p̂(x)

)

=

N
∑

j=1

D(pi(hi(x))||p̂(x))where p̂ is the arithmeti
 mean of {pi}
N
i=1



583. Sum-over-Class Squared Error
DSE({pi(hi(x))}N

i=1) =
∑

c∈C

N
∑

i=1

(pi(hi(c(x))) − p(c(x)))2The �rst two dispersions are sum-of-Kullba
k-Leibler divergen
es de�ned in Chapter 2.Minimizing either D̄
(

p̂(x)||{pi(hi(x))}N
i=1

) or D̄
(

{pi(hi(x))}N
i=1||p̂(x)

) between {pi}
N

i=1, maximizes a lower bound on Bayes' probability of error Pe and thus renders the prob-ability mass fun
tions more indistinguishable. That is, it brings them 
loser together.The third dispersion is the extension of the squared error dissimilarity measure used fors
alar images used in [49℄ to probability mass fun
tions. Although the author has notfound a relationship between DSE and Pe, one 
an see that when DSE = 0, Pe = N−1
Nand is maximal. Moreover, DSE is a true metri
.4.3.2 RegistrationWith these results, the minimization problem stated in Equation 4.4 
an be furtherspe
i�ed in one of three ways 
orresponding to the 
hoi
e of distan
e fun
tion.1. Sum-of-Kullba
k-Leibler Divergen
e I

v̂i = argmin
vi

[

∫

Ω

N
∑

i=1

D(p(x)||pi(hi(x)))dx +

∫ 1

0

∫

Ω

||Lvi(x, t)||2dxdt

] (4.6)subje
t to hi(x) = x +
∫ 1

0
vi(hi(x, t))dt.2. Sum-of-Kullba
k-Leibler Divergen
e II

v̂i = argmin
vi

[

∫

Ω

N
∑

j=1

D(pi(hi(x))||p(x))dx +

∫ 1

0

∫

Ω

||Lvi(x, t)||2dxdt

] (4.7)subje
t to hi(x) = x +
∫ 1

0
vi(hi(x, t))dt.3. Sum-over-Class Squared Error

v̂i =

∫

Ω

∑

c∈C

N
∑

i=1

(pi(hi(c(x))) − p(c(x)))2 dx +

∫ 1

0

∫

Ω

||Lvi(x, t)||2dxdt (4.8)subje
t to hi(x) = x +
∫ 1

0
vi(hi(x, t))dt.



59Note that the solution to any of these three minimization problem is independent ofthe ordering of the N image sets and in
reases linearly as image sets are added, thus,making the algorithm s
alable.4.3.3 Variation of Dispersion With Respe
t to TransformationsA gradient des
ent approa
h to optimizing the estimation problems in Se
tion 4.3.2is used. To that end, the variation of the dispersion fun
tion with respe
t to thetransformation hi 
an be 
omputed as follows:1. Sum-of-Kullba
k-Leibler Divergen
es I
∂

∂hi

D̄
(

p̂(x)||{pj(hj(x))}N
i=1

)

=
∂

∂hi

N
∑

j=1

D(p(x)||pj(hj(x)))

=
∂

∂hi

∑

c∈C

p(c(x)) log
p(c(x))

pi(hi(c(x)))

= −
∑

c∈C

p(c(x))

pi(hi(c(x)))
∇pi|

T
hi(c(x)).2. Sum-of-Kullba
k-Leibler Divergen
es II

∂

∂hi

D̄
(

{pj(hj(x))}N
j=1||p̂(x)

)

=
∂

∂hi

N
∑

j=1

D(pj(hj(x))||p(x))

=
∂

∂hi

∑

c∈C

pi(hi(c(x))) log
pi(hi(c(x)))

p(c(x))

=
∑

c∈C

[

log
pi(hi(c(x)))

p(c(x))
+ 1

]

∇pi|
T
hi(c(x)).3. Sum-over-Class Squared Error

∂

∂hi

DSD({pj(hj(x))}N
j=1) =

∂

∂hi

∑

c∈C

N
∑

j=1

(pj(hj(c(x))) − p(c(x)))2

=
∑

c∈C

∂

∂hi

(pi(hi(c(x))) − p(c(x)))2

= 2
∑

c∈C

(pi(hi(c(x))) − p(c(x)))∇pi|
T
hi(c(x)).



604.3.4 ImplementationGiven one of the three minimization problems, the iterative greedy �uid algorithmof propagation templated des
ribed in [14℄ is used to approximate the solution. At ea
hiteration k, the updated transformation hk+1
i , for ea
h 
lass-
onditional probability pi,is 
omputed using the update rule hk+1

i = hk
i

(

x + εvk
i (x)

). hk
i and vk

i are the 
urrentestimated transformation and velo
ity for the ith probability, and ε is the step size.In other words, ea
h �nal transformation hi is built up from the 
omposition of ktransformations.The velo
ity vk
i for ea
h iteration k is 
omputed as follows. First, 
ompute theupdated template estimate. For the optimization in Equation 4.6, this is normalizedgeometri
 mean,

p̂k(c(x)) =

(

∏N

i=1 pi(h
k
i (c(x)))

)
1
N

∑

c′∈C

(

∏N

i=1 pi(hk
i (c

′(x)))
)

1
N

,for ea
h 
lass 
omponent c. For the optimizations in Equations 4.7 and 4.8, this isthe arithmeti
 mean,
p̂n(c(x)) =

1

N

N
∑

i=1

pi(h
n
i (c(c))),for ea
h 
lass 
omponent c. Next, de�ne the body for
e fun
tions as the variation ofthe 
lass posterior dispersion terms with respe
t to the transformation hi.1. Sum-of-Kullba
k-Leibler Divergen
es I

F k
i (x) = −

∑

c∈C

p(c(x))

pi(hk
i (c(x)))

∇pi|
T
hi(c(x)).2. Sum-of-Kullba
k-Leibler Divergen
es II

F k
i (x) =

∑

c∈C

[

log
pi(h

k
i (c(x)))

p(c(x))
+ 1

]

∇pi|
T
hk

i (c(x)).3. Sum-over-Class Squared Error
F k

i (x) = 2
∑

c∈C

(

pi(h
k
i (c(x))) − p(c(x))

)

∇pi|
T
hk

i (c(x))



61The velo
ity �elds are estimation and integrated to produ
e subsequent forwardand inverse transformations as before. The velo
ity �eld vk
i is 
omputed at ea
h iter-ation by applying the inverse of the di�erential operator L to the for
e fun
tion, i.e.

vk
i (x) = L−1F k

i (x), where L = α∇2 + β∇(∇·) + γ is the Navier-Stokes operator. This
omputation is 
arried out in the Fourier domain [51℄.For ea
h iteration the dominating 
omputation is the Fast Fourier Transform. Thus,the order of the algorithm is MNn log n where M is the number of iterations, N is thenumber of images to be registered, and n is the number of voxels in ea
h image. The
omplexity in
reases only linearly as images are added, making the algorithm extremelys
alable. Satisfa
tory 
orresponden
e is typi
ally a
hieved after 100-200 iterations. Inpra
ti
e, a multi s
ale approa
h that initializes the �ne (voxel) s
ale registration is usedwith the up-sampled 
orresponden
e 
omputed at a 
oarser s
ale level. The �ner s
alelevels only need to a

ount for residue from 
oarser s
ale levels and thus require farfewer iterations to 
onverge.4.4 A�ne and Di�eomorphi
 Atlas ResultsTo evaluate the performan
e of the atlas formation method, the algorithm, withsum-over-
lass squared error distan
e in Equation 4.8, was applied to a set of ten 
lass-posterior mass fun
tion maps the database of healthy normal adult brains des
ribed inChapter 6. A mid-axial sli
e from ea
h 
lass-posterior is shown in Figure 4.2. There isnoti
eable variation between these anatomies, espe
ially in the ventri
ular region.Figure 4.3 shows the arithmeti
 mean of the 
lass posterior population followinga�ne alignment and the �nal large deformation di�eomorphi
 average atlas estimate.The arithmeti
 mean is blurry sin
e it is an �average� of the varying individual neu-roanatomies. Ghosting is evident around the lateral ventri
les and near the boundaryof the brain. In the �nal estimate of non-linear atlas, these variations have been a
-
ommodated by the high-dimensional di�eomorphi
 registration.



62

Figure 4.2: Sample Class Posterior PopulationAxial views of ten 
lass-posteriors. These images 
learly indi
ate large inter-subje
t variability, espe
ially in the ventri
ular system.
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(a) A�ne Average

(b) Large Deformation Di�eomorphi
 AverageFigure 4.3: A�ne and Di�eomorphi
 AtlasesAxial views of the simple linear averaging of ten 
lass-posteriors (a) andlarge deformation di�eomorphi
 averaging of the same ten 
lass-posteriors.The di�eomorphi
 averaging produ
es a sharper atlas.



Chapter 5Atlas Stability1
An important question to ask of the atlas formation method in Chapter 4 is thefollowing: how many subje
ts are required to represent a population? That is, howmany images are ne
essary to form a stable atlas? For a given population of imagesand 
orresponding atlas, there are a number of ways to determine if an additional imagewould result in a su�
iently di�erent atlas. In this dissertation, entropy and varian
eof s
alar �elds, e.g. image intensities in T1-weighted MR images and the white matter
lass in a multi-
lass posterior map, is used to assess the stability of atlases. This
hapter fo
uses primarily on the entropy of s
alar intensity images. For atlas stability,it is the entropy introdu
ed by the atlas 
reation method that is of interest rather thanthe intrinsi
 entropy asso
iated with images of individual brain anatomy.Entropy, de�ned in Appendix A, has often been proposed as a good measure ofimage quality [33, 4℄ where sharp images have relatively low entropy. A distribution

psingle(i) = {1} for a single event random variable, e.g. an image with 
onstant intensity,has minimal entropy, H (psingle) = 0. The uniform distribution punif(i) =
{

1
N

, · · · , 1
N

},for a random variable with at least two events, 
orresponding to an image with multipleintensities o

urring with equal frequen
y, maximizes entropy, H (punif) = log N [16℄.That is, a blurry image, with a relatively �at histogram, will have greater entropy thana sharp image. Using multiple permutations of images from a database of images, thestability of atlases produ
ed by proposed atlas formation method is studied by buildingatlases of in
reasing population size. An atlas is 
onsidered stable when the entropyof its intensities or 
lass-posterior maps is stable with respe
tive to the number of
onstituent images.The remainder of this 
hapter is organized as follows. For illustrative purposes, the1This 
hapter is an extension of portions of the re
ent MICCAI paper [61℄.



65entropy 
omputation for a simple intensity image is provided in Se
tion 5.1. Imageintensity entropy is explored in terms of interpolation and s
ale in Se
tion 5.2. InSe
tion 5.3, a random permutation test is used to study atlas stability with respe
tto the number of images used in the atlas formation. The 
hapter 
on
ludes with asummary in Se
tion 5.4.5.1 Simple Intensity ExampleConsider the square 2D intensity image involving twenty-�ve voxels and asso
iatedheight �eld interpretation shown in Figure 5.1. As a random variable, this image has�ve events 
orresponding to the image intensities, E = {50, 100, 150, 200, 250}. Theprobability mass fun
tion asso
iated with this random variable is 
omputed as thenormalized histogram of the image intensities. For the intensities of this simple image,the normalized histogram is shown in Figure 5.2. The entropy of image intensities is
omputed from the probability mass fun
tion p = {0.48, 0.32, 0.04, 0.08, 0.08} as
H(p) = −

5
∑

i=1

p(i) log p(i)

≈ 1.8 bits/event.That is, on average, the minimum number of bits to represent an intensity value in thissimple image is ⌈H(p)⌉ = 2.5.2 Entropy: Interpolation and S
ale E�e
tsThis se
tion fo
uses on quantifying the e�e
ts on entropy of both the 
hoi
e of inter-polation method for image resampling and viewing images through various aperturesor at s
ale. In this, and subsequent results in this 
hapter, 256 histogram bins wereused to de�ne the probability mass fun
tions. Therefore, log2 256 = 8 bits is the upperlimit for the entropy 
omputation in these experiments.To examine the e�e
ts of interpolation on entropy, a simple binary image was 
on-stru
ted and translated over a range of distan
es using four di�erent interpolationmethods during the resampling. After ea
h resampling, the entropy of image intensi-ties was 
omputed. The simple image was 
hosen to be a uniformly white disk on auniformly bla
k ba
kground. To redu
e bias in the entropy 
omputation, the areas of
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50 50 250 50 5050 100 100 100 50200 100 150 100 20050 100 100 100 5050 50 250 50 50

Figure 5.1: Simple Intensity ImageA simple 5× 5 image with �ve distin
t intensities and 
orresponding s
alarheight �eld interpretation are shown on the left and right respe
tively.
Event (Intensity) Count Frequen
y50 12 0.48100 8 0.32150 1 0.04200 2 0.08250 2 0.08Figure 5.2: Image Intensity HistogramThe �ve intensities in the image, the asso
iated histogram, and normal-ized (to unity) histogram are shown in the left, middle, and right 
olumnsrespe
tively.
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Figure 5.3: Translated Disk EntropyEntropy plots for the disk image translated over a range of forty distan
es,uniformly spa
ed over four voxels, using four interpolation methods: nearestneighbor, linear, 
ubi
, and spline.the disk and ba
kground were 
onstru
ted to be equal. The results of translating thisdisk are shown in Figure 5.3. The higher order interpolation methods indu
e greaterentropy. Any evaluation of entropy for image quality will, therefore, have to 
onsiderthe method of interpolation used during image resampling.To examine the e�e
ts on entropy of viewing an image at s
ale, the same binarydisk image was low-pass �ltered with �fteen Gaussian kernels of in
reasing s
ale. Theoriginal image and the �fteen blurred versions thereof are shown in Figure 5.4. Theentropy of the original and blurred disks is presented in Figure 5.5. For this example,entropy grows linearly with s
ale σ. The slope of the line is approximately 0.2 bits/σ.The entropy of the base image is appropriately one bit. That is, a pixel is either whiteor bla
k in equal proportions.



68

Figure 5.4: Disk at S
aleThe original disk, 256 × 256 voxels, (upper right) and the �fteen blurredversions produ
ed by 
onvolution with a Gaussian �lter with s
ale param-eters σ = 1 . . . 15 pixels. The kernel width was de�ned to be 2σ + 1 pixelswide.
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Figure 5.5: Disk at S
ale Entropy5.3 Random Permutation TestTo address the question of how many images are required to 
onstru
t a stable atlasrandom permutation tests involving 2D s
alar T1-weighted images were investigated.In that work [61℄, rigid-based and di�eomorphi
-based atlases were 
ompared in termsof stability through entropy of image intensities and varian
e in image intensities. Theresults from that prior work are reprodu
ed in this se
tion.5.3.1 Atlas FormationAtlases were 
reated from an image database 
ontaining fourteen brain images pro-vided by the UNC Chapel Hill autism image analysis group. These images were inten-sity normalized and rigidly aligned. Due to the high memory demands of the imple-mentation, the algorithm was applied to 2D mid-axial sli
es. This database of imagesis shown in Figure 5.6. There is noti
eable large deformation variation between theseanatomies, espe
ially in lateral ventri
les.
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Figure 5.6: 2D Population Data2D mid-axial sli
es from MR images of fourteen subje
ts.



71To quantify the stability of the estimated atlases, eleven atlas 
ohorts, {Ci}
12
i=2, weregenerated ea
h with twenty atlases derived from i images randomly sele
ted from theoriginal database of fourteen images. Two mutually ex
lusive atlases from C7 are shownin Figure 5.7 for both simple averaging and with the large deformation di�eomorphisms.The rigidly aligned atlases are blurry sin
e they are arithmeti
 averages of varyingindividual neuroanatomies. Ghosting is evident around the lateral ventri
les and nearthe boundary of the brain. In the �nal di�eomorphi
 atlases, these regions appear mu
hsharper.
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Atlas of 7 images Atlas of 7 imagesFigure 5.7: Mutually Ex
lusive AtlasesBoth 
olumns represents an individual atlas 
onstru
ted by both arithmeti-
ally averaging rigidly aligned images (top row) and estimating a di�eomor-phi
 atlas after 100 iterations (bottom row). These two atlases were formedfrom 
ompletely separate sets of images.
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Figure 5.8: Translated T1 Image EntropyEntropy plots for the fourteen images in the database over a range of fortydistan
es, uniformly spa
ed over four voxels, using linear interpolation.5.3.2 Interpolation and S
ale E�e
ts on EntropyAs in Se
tion 5.2, the e�e
ts on entropy of both interpolation, as used in imageresampling, and viewing images at s
ale are 
onsidered.To examine the e�e
ts of interpolation on entropy, ea
h of the fourteen images inthe database were a translated over a range of distan
es using linear interpolation.After ea
h resampling, the entropy of image intensities was 
omputed. The mean andstandard deviation of entropy of these fourteen images over the range of distan
es isshown in Figure 5.8. The fourteen images were intensity normalized and from subje
tsof similar age whi
h may explain the rather tight varian
e observed in the entropy
omputation.To examine the e�e
ts on entropy of viewing an image at s
ale, a single image takenfrom the database was low-pass �ltered with �fteen Gaussian kernels of in
reasing s
ale.The original image and the �fteen blurred versions thereof are shown in Figure 5.9. Theentropy of the original and blurred images is presented in Figure 5.10. As with the diskexample, entropy grows linearly with s
ale σ, but after σ = 1 voxel. The slope of theline is approximately 0.1 bits/σ, half that of the disk example. It is interesting to notethat, for this image, using linear interpolation in
reases the entropy to approximately
4.43 bits of entropy whi
h is similar to the 4.59 bits observed by blurring the image



74with σ = 1 voxels.
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Figure 5.9: T1 Image at S
ale
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Figure 5.10: T1 Image at S
ale Entropy5.3.3 Atlas StabilityTo evaluate the robustness and stability of the atlases, the mean and standarddeviation of the entropies of the original fourteen images were �rst 
omputed. To thisend, the mean and standard deviation of the atlas 
ohort entropies 
reated both bysimple arithmeti
 averaging of the rigidly aligned images and those produ
ed by thedi�eomorphi
 method were 
ompared. These results are summarized in Figure 5.11.From this plot, one 
an noti
e that as atlas size in
reases, the average atlas entropyin
reases for atlases formed by simple intensity averaging, whereas the average entropyde
reases for atlases 
reated via di�eomorphism. The atlases also be
ome more stablewith respe
t to entropy as the standard deviation de
reases with atlas size. After 
ohort
C10, the atlas entropy means appear to 
onverge. Note that the entropy of the largedeformation di�eomorphi
 atlases 
onverges to about 4.5 bits, approximately sameentropy of any of the shifted original images in the database. That is, to within the
hoi
e of interpolation method, the large deformation di�eomorphi
 atlases are sharp.Another measure of atlas stability is the varian
e in image intensities. For ea
hatlas 
ohort, point-wise intensity mean and varian
e images were 
reated. For a given
ohort Cs representing the N = 20 atlases {As

i (x)}N
i=1 of size s, the mean and varian
eimages were 
omputed as follows

Ms(x) =
1

N

N
∑

i=1

As
i (x)
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Figure 5.11: Cohort Average EntropyFor 
omparison, the average entropy of the original fourteen images is 3.91bits with standard deviation 0.08 bits. The error bars represent one stan-dard deviation from the mean.



78and
Vs(x) =

1

N − 1

N
∑

i=1

(As
i (x) − Ms(x))2 .Cohort varian
e images for the large deformation di�eomorphi
 average and rigid av-erage atlases are shown in Figures 5.12 and 5.13 respe
tively. These images showredu
tion of image intensity variation with the in
rease in the number of subje
ts peratlas. This redu
tion 
an be quantitatively observed through the relative varian
e sum

Vs

V2
, where

Vs =
∑

x∈Ω

Vs(x).This measure was 
omputed for both averaging methods and is shown in Figure 5.14.Both methods show 
onvergen
e in varian
e, whi
h, as with the entropy measure,indi
ate atlas stability is a
hieved with about ten subje
ts for this dataset. That is,given these fourteen subje
ts, about ten images are needed to 
reate a stable, withrespe
t to the entropy and varian
e measures, atlas representing neuroanatomy.5.4 SummaryIn this 
hapter, entropy of image intensities was used to quantify atlas sharpness.A blurry image will exhibit greater entropy of intensities than a sharper image. Usingthis measure, it was shown that resampling an image using linear interpolation addsentropy to the image 
omparable to that of blurring the image with Gaussian kernelwith a width σ = 1 voxels. For atlas formation, entropy and image intensity varian
ewas used to address the question of how many subje
ts are required to produ
e a stableatlas. Random permutation tests were 
ondu
ted to study atlas entropy and intensityvarian
e as a fun
tion of the number of images used to produ
e an atlas. It was shownthat, within the 
hoi
e of interpolation method, the large deformation di�eomorphi
atlases were sharp after the in
lusion of ten or more subje
ts. This number is 
ertainlydependent on the parti
ular population used. Atlas stability for larger and more varieddatabases may require more subje
ts. The results in this 
hapter exemplify the atlasstability methodology rather than provide an answer for all image databases.
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C2 C3 C4 C5

C6 C7 C8 C9

C10 C11 C12Figure 5.12: Cohort Varian
e: Large Deformation Di�eomorphi
 Atlases
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C10 C11 C12Figure 5.13: Cohort Varian
e: Rigid Average Atlases
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Chapter 6Aging Study via Atlases of NormalHealthy Brains
An important area of medi
al image analysis is the development of methods forautomated 
omputer-assisted assessment of disease. For example, methods for ana-lyzing lo
al stru
tural brain 
hange over time 
an provide markers for understandingdisease progression (e.g., Alzheimer's disease and s
hizophrenia). Early dete
tion ofdisease-spe
i�
 brain 
hanges is important for therapeuti
 response. This requires theestablishment of healthy norms to whi
h test subje
ts 
an be 
ompared. These normstypi
ally take the form of a digital atlas 
onstru
ted from data derived from manyhealthy subje
ts generally from a wide age range. Healthy aging, however, indu
esstru
tural 
hanges in the brain [67, 36℄. In young, healthy adults [35℄ and in non-demented older persons [82℄, analysis demonstrates that the aging pro
ess is a 
ontin-uum with 
hanges evident before senes
en
e. A 
omprehensive dis
ussion of te
hniquesused to examine the temporal dynami
s of brain anatomy is provided in [100℄. Be-fore analyzing atlas-based brain 
hange studies, the 
onstru
tion of brain databases isreviewed.The design of brain databases 
an be 
ategorized into two main types: longitudinaldesign and 
ross-se
tional design. In longitudinal studies, the same subje
ts are s
annedover time, typi
ally with inters
an intervals of one year. Cross-se
tional studies, by
ontrast, involve s
anning many subje
ts of di�erent ages only on
e. While these studies
apture brain 
hanges of longer time periods, underlying brain 
hanges are harder todete
t. This is a result of intersubje
t variability. Multivariate modeling is often usedin 
ross-se
tional studies to partition varian
e observed in the database into spe
i�
e�e
ts su
h as age and sex. To a

ount fully for these e�e
ts, the Computer-Assisted



83Surgery and Imaging Laboratory (CASILab) at UNC Chapel Hill has 
onstru
ted anage-grouped MR image database of healthy subje
ts [73℄. A potentially diseased subje
t
an then be appropriately age- and sex-mat
hed to the image database.Temporal brain 
hange has been studied using a number of methods. An approa
hthat models brain deformation in Alzheimer's disease is presented in [28℄. This methoduses longitudinal data with one-year intervals. Pair-wise, in time, 3D non-linear im-age registration was performed for nine 
ontrol subje
ts and nine Alzheimer's patients.Warping images from one time point to the next provides some measure of tempo-ral smoothing. Another longitudinal method that analyzes transformations between
orti
al maps of adoles
ent subje
ts using elasti
 image registration is des
ribed in [95℄.A voxel-based morphometri
 analysis of white matter, grey matter, and 
erebrospinal�uid volume 
hange using a large, 465-adult-subje
t 
ross-se
tional database is pre-sented in [30℄. This method involves mapping ea
h subje
t's anatomy to a templatefollowed by performing statisti
s on the resulting volumetri
 
hanges. The 
hoi
e of asingle referen
e template may introdu
e a bias. Although four times larger and 
over-ing a similar age range to the UNC database, this database is skewed to a young adultpopulation in their twenties and thirties.The above 3D methods may be sensitive to noisy longitudinal measurements. Toaddress this issue, a fully 4D approa
h that simultaneously estimates longitudinal 
or-responden
e (intra-subje
t) and inter-subje
t 
orresponden
e between template andsubje
t is presented in [89℄. The method is a generalization of the 3D method thatuses image intensity, edge, and geometri
 moment information as a feature ve
tor pro-posed by the authors in [88℄. A 4D mat
h is obtained by mapping a set of �a
tive�points. A �distin
tiveness� measure is used to sele
t these �a
tive� points. During theregistration, a hierar
hi
al approa
h is taken beginning with a smaller number of moredistin
t points and progressing to a larger number of less distin
t points. This methodwas applied to nine subje
ts taken from the Baltimore Longitudinal Study of Aging[82℄ where ea
h subje
t was s
anned on
e a year for �ve years.An age-
ontinuous 4D spatiotemporal atlas would address the need for su�
ienttemporal resolution. In this 
hapter, the multi-
lass posterior atlas formation methoddeveloped in Chapter 4 is used to produ
e time sequen
es by age of atlases, resultingin 4D spatiotemporal atlases. These dis
rete 4D atlases provide a step toward buildingage-
ontinuous 4D spatiotemporal atlases. A 
ontinuous 4D spatiotemporal atlas wouldprovide the ideal age-based mat
h for a new subje
t. By examining the Ja
obian mapsof dense transformations relating the spa
e of the �rst atlas in the sequen
e to the



84spa
e of ea
h subsequent atlas, lo
al volumetri
 
hange through time 
an be studied.For this purpose, a program 
alled PMFAtlasBuilder was written using C++ librariesdeveloped at the radiation on
ology department at UNC Chapel Hill.The rest of this 
hapter is organized as follows. In Se
tion 6.1, the database ofmulti-modal MR brain images is detailed. The 
reation of the 
lass-
onditional pos-terior maps representing the anatomi
al stru
tures in the MR database is des
ribedin Se
tion 6.2. The 
onstru
tion of individual spatial atlases is detailed in Se
tion 6.3with spatiotemporal atlas results presented in Se
tion 6.4. The 
hapter 
on
ludes witha summary in Se
tion 6.5.6.1 Brain MR Image DatabaseFor this dissertation, MR image data from the CASILab Healthy Subje
t Database1was used. The database has 100 subje
ts, with twenty subje
ts in ea
h of �ve age ranges:19-29, 30-39, 40-49, 50-59, and 60+ years of age. The subje
ts are evenly split betweenfemales and males. Age distribution of the female and male subje
ts are shown in Figure6.1. All subje
ts were s
reened for the presen
e of disease. Additionally, handednessand ra
e were also re
orded. For ea
h subje
t, several 3-Tesla 3D MR images werea
quired: a T1-weighted image (FLASH or MPRAGE or both), a T2-weighted image,a magneti
 resonan
e angiogram (MRA), and a di�usion tensor image (DTI). The voxelspa
ing and dimensions of this data is presented in Figure 6.2. The image a
quisitiondetails 
an be found in Se
tion 3.3.The multi-modal nature of this database is depi
ted in Figure 6.3 where the mid-axial sli
es of the youngest and oldest subje
ts of both sexes are shown. It is importantto note the 
ross-se
tional nature of this data. A spatiotemporal atlas 
onstru
ted fromthis database represents many subje
ts at di�erent ages rather than a single subje
tat many ages. Therefore, any assessment of volumetri
 
hange over time may have the
onfound of inter-subje
t variability.1The CASILab Healthy Subje
t Database was produ
ed by Dr. Elizabeth Bullitt, head of CASILabat UNC Chapel Hill. The work was funded by NIBIB-NIH grant R01 EB000219, 3D Cerebral VesselLo
ation for Surgi
al Planning.
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Figure 6.1: Database Subje
t AgesAge distribution for the (a) female and (b) male subje
ts in the database.
Voxel Spa
ing (mm) Dimensions (voxels)T1-FLASH 1 × 1 × 1 176 × 256 × 176T1-MPRAGE 1 × 1 × 1 208 × 256 × 128T2 1 × 1 × 1 192 × 256 × 128MRA 0.5 × 0.5 × 0.8 448 × 448 × 128Figure 6.2: Image SizeInterior image size (voxel spa
ing) and exterior image size (dimensions).
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(a) T1-FLASH T2 MRA
(b) T1-FLASH T1-MPRAGE T2 MRA
(
) T1-FLASH T2 MRA
(d) T1-FLASH T1-MPRAGE T2 MRAFigure 6.3: Image Database SamplesMid-axial sli
es from the (a) youngest (20 year old) subje
t, (b) the oldest(68 year old) female subje
t, (
) the youngest (22 year old) male subje
t,and (d) the oldest (79 year old) male subje
t.



876.2 Class-Conditional Posterior MapsTo provide dire
t input to the PMFAtlasBuilder tool, 
lass-
onditional posteriormaps were 
reated from the T1-weighted and T2-weighted images from the databasedes
ribed in Se
tion 6.1, following a proto
ol similar to the one presented in a previousstudy [73℄ using the same database. Three tissue 
lasses (white matter, gray matter,and 
erebrospinal �uid) were de�ned using an expe
tation-maximization segmentationmethod2 based on an algorithm developed by van Leemput et al. [102, 101℄. In additionto the T1 and T2 images, a spatial probabilisti
 brain atlas [24℄ representing expertprior knowledge about brain stru
tures was used to drive the segmentation.Ea
h segmentation was produ
ed in the spa
e of the T1 image resulting in prob-ability maps. For ease of algorithm implementation, an additional ba
kground tissue
lass was added, resulting in four total 
lasses. The 
lass-
onditional posterior mapsare represented mathemati
ally as
pi(cj(x)|Īi)where the subs
ript i indi
ates the subje
t number, c the tissue 
lass, and Ī the multi-modal image set. For the results presented in this 
hapter, c = {gray matter, whitematter, 
erebrospinal �uid, and ba
kground}, and Ī = {T1 image, T2 image}. Floatingpoint numbers were used to represent the data. Therefore, ea
h posterior map 
omprises

number of voxels × number of classes × data type size = 176 × 256 × 176 × 4 × 4 Bytes

= 126, 877, 696 Bytes

= 121 MBytes.6.3 Atlas FormationThis se
tion details the prepro
essing of the images in the Healthy Subje
t Databaseof Se
tion 6.1 and provides algorithmi
 analysis of PMFAtlasBuilder. PMFAtlasBuilderwas run using the sum-over-
lass squared error distan
e des
ribed in Se
tion 4.3.1. Allprepro
essing and experiments des
ribed in Se
tion 6.4 were performed in the Neuro-Image Analysis Laboratories (NIAL) at UNC Chapel Hill using a SunFire V40z with2The expe
tion maximization segmention method used to produ
ed the multi-
lass posteriors wasdeveloped by Mar
el Prastawa et al. at the University of North Carolina at Chapel Hill [79℄.



88four AMD Opteron CPUs, 16GB of memory, and two 76GB hard drives.The �rst step in prepro
essing the data involved sele
ting a 
oordinate system towhi
h all the 
lass posteriors (produ
ed in Se
tion 6.2) were a�nely normalized. Forthis purpose, a s
alar T1-atlas produ
ed from �ve healthy adult subje
ts3 using theunbiased s
alar atlas formation method presented in [49℄ was used. As with the rawT1 and T2 images, this �ve-subje
t atlas has isotropi
 1mm spa
ing with dimensionsof 160 × 208 × 163 voxels.Using a program, 
alled areg, for a�ne registration of multi-modal images, we regis-tered intensity normalized T1 images from ea
h subje
t to the spa
e of the �ve-subje
tT1-atlas. This program was developed by Daniel Rue
kert and Julia S
hnabel at Impe-rial College London for their Image Registration Toolkit [86℄. This registration tool usesnormalized mutual information as the similarity 
riterion. Cubi
 spline interpolationwas used to resample the resulting images.The a�ne transformation parameters from the above registrations were then appliedto the 
lass posteriors from Se
tion 6.2, again using 
ubi
 spline interpolation. Theseimages were 
onverted from their original unsigned short data type format to single�oating point format for 
onvenien
e in the algorithm implementation, resulting in
lass posterior maps of the size
PMF Data Size = Number of Voxels × Number of Classes × Data Type Size

= 160 × 208 × 163 × 4 × 4 bytes

= 86, 794, 240 bytes

≈ 82.8 MBytes.6.4 ResultsSpatiotemporal atlases were 
reated for both the female and male populations usingthe PMFAtlasBuilder tool. While prepro
essing the database, the segmentation toolfailed to produ
e 
lass-
onditional probability maps for one female subje
t and fourmale subje
ts. This appears to be a result of registration failure between the spatialprior used in the segmentation pro
ess and the individual subje
ts. This is most likelydue to the a�ne registration failing to a

ommodate widely disparate skull shapes.For ea
h sex, the 
lass-
onditional probability maps were ordered by subje
t age.3These subje
ts parti
ipated in the S
hizophrenia First Episode Study at UNC Chapel Hill.



89For the female population, this resulted in the set {pfemale
i (c|x)}i=1...49 where pfemale

1 and
pfemale

49 represent the youngest and oldest female subje
ts respe
tively. Similarly, forthe male population, the ordering resulted in the set {pmale
i (c|x)}i=1...46 where pmale

1 and
pmale

46 represent the youngest and oldest male subje
ts respe
tively. The spatiotemporalatlases were then 
reated by building a sequen
e of atlases, ea
h derived from a �xednumber of subje
ts in that ordering. The number of subje
ts used to build one of theindividual atlases is 
alled the atlas window width w. The jth atlas in the sequen
e isgenerated from the sub-population {pj(c|x)}j=i...i+w−1.Due to time 
onstraints atlas stability analysis for this database was not 
ondu
ted.In the absen
e of that analysis, spatiotemporal atlases were 
reated using windowwidths of w = 10 and w = 15. PMFAtlasBuilder was run for 100 iterations to buildea
h individual atlas. The female and male spatiotemporal atlases for window width
w = 10 are presented in Figure 6.4 and Figure 6.5 respe
tively. Similarly, the femaleand male spatiotemporal atlases for window width w = 15 are presented in Figure 6.6and Figure 6.7 respe
tively. Greater detail of the youngest and oldest individual femaleatlases for window widths of w = 10 and w = 15 are shown in Figures 6.8, 6.9, 6.10,and 6.11. Similarly, greater detail of the youngest and oldest individual male atlases isshown in Figures 6.12, 6.13, 6.14, and 6.15.The average age of the sub-populations used to 
reate ea
h individual atlas was
omputed to gain an understanding of how well-spa
ed in time the 4D spatiotemporalatlases are. These atlas ages and 
orresponding age di�erentials are presented in Figure6.16 and Figure 6.17 for window widths of ten and �fteen subje
ts respe
tively.6.4.1 Spatiotemporal Atlas StabilityTo measure spatiotemporal intra atlas stability a
ross 
onstituent individual 3Dspatial atlases, the sharpness and population varian
e of ea
h individual spatial atlaswas measured. Using the approa
h des
ribed in Chapter 5, entropy was 
omputed forea
h 
lass-posterior map using 256 bins. The inter-time entropy trends are shown forfemale and male spatiotemporal atlases for window widths of w = 10 and w = 15in Figures 6.18 and 6.19 respe
tively. These trends indi
ate stability with respe
t toindividual atlas sharpness. Individual atlas sub-population varian
e was measured by
onsidering the distan
e on the transformations relating ea
h 
onstituent member ofthe sub-population to the atlas. This distan
e is the velo
ity norm in Equation 3.5.These trends for window widths of w = 10 and w = 15 are presented in Figures 6.20



90and 6.21 respe
tively.6.4.2 Volumetri
 AnalysisWhen viewed as a time sequen
e of 3D spatial atlases, spatiotemporal atlases provideinformation regarding volumetri
 
hange over time. To analyze this 
hange, per-
lassvolumes were 
omputed for ea
h tissue 
lass using two methods. In the �rst method,the per-
hannel volume V1 of a 
lass c was 
omputed as the sum of 
lass-posterior valuesover the whole spatial volume Ω,
V1(c) =

∑

x∈Ω

p(c|x).This approa
h assumes partial voluming of tissue 
lasses in ea
h voxel. In the se
ondmethod, the per-
hannel volume V2 of a 
lass c was 
omputed as the sum of maximuma posteriori labels,
V2(c) =

∑

x∈Ω

l(c(x))where
l(c(x)) =

{

1 where c = argminc′∈{WM,GM,CSF,Background} p(c′|x)

0 otherwiseThis approa
h assumes a voxel is 
omprised of a single tissue 
lass. Volume trends usingboth V1 and V2 are presented for female and male atlases of width w = 10 subje
ts inFigures 6.22 and 6.23 respe
tively. Similarly, volume trends for the atlases of width
w = 15 are shown in Figures 6.24 and 6.25.The volume trends show a loss of grey matter and an in
rease in 
erebrospinal �uidover time. The global loss of grey matter with age is well do
umented, for examplein aforementioned 465-adult-subje
t 
ross-se
tional study presented in [30℄. In theGood et al. study, the authors report no signi�
ant global de
rease in white mattervolume with age. While this appears to be true for the female data presented in thisdissertation it holds for only the younger half of the male data. For the older half ofthe male population there is a noti
eable de
rease in white matter volume. There alsoappears to be a general de
rease in the total intra
ranial volume with age for the entire



91male population. Additionally, Good et al. report a steeper de
line in grey mattervolume in males than in females whereas, in this dissertation, the grey matter lossappears to be similar for the female and male populations. One possible explanationfor the greater than expe
ted white matter loss and lower than expe
ted grey matterloss for se
ond half of the male population is the progressively poorer 
ontrast overtime between grey matter and white matter. For example, 
onsider o

ipital region inthe T1-FLASH and T2 images for the oldest male in Figure 6.3.There is agreement between the white matter volume of the individual atlases andthe average white matter volume of the sub-populations from whi
h those atlases where
reated. While this 
onsisten
y holds for the gray matter 
lass, it does not hold for the
erebrospinal �uid 
lass. The 
omputed 
erebrospinal �uid volumes for the individualatlases fall well below their 
orresponding sub-population averages. This is due to thethinning and, in pla
es, destru
tion of 
orti
al 
erebrospinal �uid voxels during thelinear interpolation used to resample the images during the registration pro
ess. Sin
emu
h of the 
erebrospinal �uid is 
orti
al, this e�e
t is quite pronoun
ed. The e�e
tof linear interpolation on atlas volumes 
an be studied by 
omputing the volume of asingle 
lass-posterior map at s
ale. The 
lass-posterior map representing the youngestfemale subje
t was blurred with a Gaussian kernel with σ = 0.5 and σ = 1.0 voxels.The 
lass volumes of these two blurred 
lass-posterior maps are 
ompared with the
lass volumes of the original 
lass-posterior maps in Figure 6.26. As the 
lass-posteriormaps are blurred, the 
erebrospinal �uid volume de
reases.Lo
al volumetri
 
hange 
an be studied by analyzing the logarithm of Ja
obian mapsderived from the transformation relating the youngest and oldest spatial atlases withina given spatiotemporal atlas. Figures 6.27 and 6.28 show these log-Ja
obian maps forthe female and male populations for window widths w = 10 and w = 15 respe
tively.In these images, blue represents a volumetri
 
ontra
tion, green no 
hange, and redvolumetri
 expansion.6.5 SummaryIn this 
hapter, the multi-
lass posterior atlas formation method was applied toa database of multi-modal images from ninety-�ve adult brains as part of a healthyaging study. In this study, 4D spatiotemporal atlases were 
reated for the male andfemale populations. This work is unique in that Fré
het mean atlases were 
reatedfor a number of time points. These mean atlases suggest an approximation for the



92line of best �t 
lass posteriors over time. Based on the results in Chapter 5, slidingwindows of ten and �fteen subje
ts were used to ensure temporal smoothness. All ofthis was fa
ilitated by the good age distribution of the subje
ts in the database used.Volumetri
 analysis of white-matter, grey-matter, and 
erebrospinal �uid 
hange overtime were 
onsistent with results from previous studies involving large databases. Theuse of sharp spatiotemporal atlases provides an opportunity to analyze lo
al volumetri

hange over time.
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Figure 6.4: Female Spatiotemporal Atlas, w = 10Mid-axial sli
e view of the forty individual female atlases generated using awindow width of ten subje
ts.
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Figure 6.5: Male Spatiotemporal Atlas, w = 10Mid-axial sli
e view of the thirty-seven individual male atlases generatedusing a window width of ten subje
ts.
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Figure 6.6: Female Spatiotemporal Atlas, w = 15Mid-axial sli
e view of the thirty-�ve individual female atlases generatedusing a window width of �fteen subje
ts.
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Figure 6.7: Male Spatiotemporal Atlas, w = 15Mid-axial sli
e view of the thirty-two individual male atlases generated usinga window width of �fteen subje
ts.
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(a) Mid-Axial Sli
e
(b) Mid-Coronal Sli
e
(
) Mid-Sagittal Sli
eFigure 6.8: Youngest Female Atlas, w = 10The mid-axial (a), mid-
oronal (b), and mid-sagittal (
) sli
es of the atlasbuilt from the 
lass posteriors representing the ten youngest females in thedatabase.
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(a) Mid-Axial Sli
e
(b) Mid-Coronal Sli
e
(
) Mid-Sagittal Sli
eFigure 6.9: Oldest Female Atlas, w = 10The mid-axial (a), mid-
oronal (b), and mid-sagittal (
) sli
es of the atlasbuilt from the 
lass posteriors representing the ten oldest females in thedatabase.
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(a) Mid-Axial Sli
e
(b) Mid-Coronal Sli
e
(
) Mid-Sagittal Sli
eFigure 6.10: Youngest Female Atlas, w = 15The mid-axial (a), mid-
oronal (b), and mid-sagittal (
) sli
es of the atlasbuilt from the 
lass posteriors representing the ten youngest females in thedatabase.
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(a) Mid-Axial Sli
e
(b) Mid-Coronal Sli
e
(
) Mid-Sagittal Sli
eFigure 6.11: Oldest Female Atlas, w = 15The mid-axial (a), mid-
oronal (b), and mid-sagittal (
) sli
es of the atlasbuilt from the 
lass posteriors representing the ten oldest females in thedatabase.
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(a) Mid-Axial Sli
e
(b) Mid-Coronal Sli
e
(
) Mid-Sagittal Sli
eFigure 6.12: Youngest Male Atlas, w = 10The mid-axial (a), mid-
oronal (b), and mid-sagittal (
) sli
es of the atlasbuilt from the 
lass posteriors representing the ten youngest males in thedatabase.
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(a) Mid-Axial Sli
e
(b) Mid-Coronal Sli
e
(
) Mid-Sagittal Sli
eFigure 6.13: Oldest Male Atlas, w = 10The mid-axial (a), mid-
oronal (b), and mid-sagittal (
) sli
es of the at-las built from the 
lass posteriors representing the ten oldest males in thedatabase.
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(a) Mid-Axial Sli
e
(b) Mid-Coronal Sli
e
(
) Mid-Sagittal Sli
eFigure 6.14: Youngest Male Atlas, w = 15The mid-axial (a), mid-
oronal (b), and mid-sagittal (
) sli
es of the atlasbuilt from the 
lass posteriors representing the ten youngest males in thedatabase.
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(a) Mid-Axial Sli
e
(b) Mid-Coronal Sli
e
(
) Mid-Sagittal Sli
eFigure 6.15: Oldest Male Atlas, w = 15The mid-axial (a), mid-
oronal (b), and mid-sagittal (
) sli
es of the at-las built from the 
lass posteriors representing the ten oldest males in thedatabase.
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(
) Female Atlas Age Di�erentials (d) Male Atlas Age Di�erentialsFigure 6.16: Atlas Age Trends, w = 10Average age of subje
ts used to 
reate the (a) female atlases and the (b)male atlases. Di�erential age for plots (a) and (b) is shown in (
) and (d)respe
tively.
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(
) Female Atlas Age Di�erentials (d) Male Atlas Age Di�erentialsFigure 6.17: Atlas Age Trends, w = 15Average age of subje
ts used to 
reate the (a) female atlases and the (b)male atlases. Di�erential age for plots (a) and (b) is shown in (
) and (d)respe
tively.
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Figure 6.18: Entropy Trends, w = 10Class-posterior entropy trends for the female (a) and male (b) atlases.

(a) 20 25 30 35 40 45 50 55 60 65 70
0

0.5

1

1.5

2

2.5

3

3.5

4
Entropy: Female Atlases

Atlas Age (years)

E
nt

ro
py

 (
bi

ts
)

WM
GM
CSF

(b) 20 25 30 35 40 45 50 55 60 65 70
0

0.5

1

1.5

2

2.5

3

3.5

4
Entropy: Male Atlases

Atlas Age (years)

E
nt

ro
py

 (
bi

ts
)

WM
GM
CSF

Figure 6.19: Entropy Trends, w = 15Class-posterior entropy trends for the female (a) and male (b) atlases.
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Figure 6.20: Velo
ity Norm Trends, w = 10Velo
ity norm trends for the female (a) and male (b) atlases.
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ity Norm Trends, w = 15Velo
ity norm trends for the female (a) and male (b) atlases.
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Figure 6.22: Female Volume Trends, w = 10Volume trends for (1a-1d) V1 and (2a-2d) V2 for the female atlases of widthof ten subje
ts for (1a&2a) white matter, (1b&2b) grey matter, (1
&2
)
erebrospinal �uid, and (1d&2d) total brain volume.
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Figure 6.23: Male Volume Trends, w = 10Volume trends for (1a-1d) V1 and (2a-2d) V2 for the male atlases of widthof ten subje
ts for (1a&2a) white matter, (1b&2b) grey matter, (1
&2
)
erebrospinal �uid, and (1d&2d) total brain volume.
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Figure 6.24: Female Volume Trends, w = 15Volume trends for (1a-1d) V1 and (2a-2d) V2 for the female atlases of widthof �fteen subje
ts for (1a&2a) white matter, (1b&2b) grey matter, (1
&2
)
erebrospinal �uid, and (1d&2d) total brain volume.
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Figure 6.25: Male Volume Trends, w = 15Volume trends for (1a-1d) V1 and (2a-2d) V2 for the female atlases of widthof �fteen subje
ts for (1a&2a) white matter, (1b&2b) grey matter, (1
&2
)
erebrospinal �uid, and (1d&2d) total brain volume.
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aleClass volumes for the youngest female and two blurred versions of the same.
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(a)

(b) Figure 6.27: Log-Ja
obian Map: Oldest to Youngest, w = 10Log-Ja
obian maps of the transformation relating the 
oordinate spa
es ofthe (a) oldest to youngest female and (b) oldest to youngest male. The 
olorin these �gures represents volumetri
 
hange, with respe
t to the original,of 32% or less for blue, 100% for green, 316% or more for red.
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(a)

(b) Figure 6.28: Log Ja
obian Map: Oldest to Youngest, w = 15Log-Ja
obian maps of the transformation relating the 
oordinate spa
es ofthe (a) oldest to youngest female and (b) oldest to youngest male. The 
olorin these �gures represents volumetri
 
hange, with respe
t to the original,of 32% or less for blue, 100% for green, 316% or more for red.



Chapter 7Con
lusion
This 
hapter reviews and dis
usses the 
ontributions of this dissertation and presentsfuture work possibilities. The 
ontributions are revisited and dis
ussed in Se
tion 7.1and a dis
ussion of future resear
h goals and new appli
ation areas is presented inSe
tion 7.2. This 
hapter 
on
ludes with a summary in Se
tion 7.3.7.1 Review of ContributionsThis se
tion summarizes the 
ontributions of this dissertation. The 
ontributionsare restated in the order presented in the dissertation along with a dis
ussion of howthey were a

omplished.1. A theoreti
al development showing that minimizing sum-of-Kullba
k-Leibler di-vergen
es, in either ordering of parameters, maximizes a lower bound on Bayesprobability of error, a measure of indistinguishability between probability distribu-tions.Multi-
lass 
onditional posteriors were the model 
hosen to represent underly-ing tissue stru
ture for the multi-modal image set registration and atlas forma-tion. Chapter 2 investigated two methods for produ
ing probability distribu-tion averages via minimizing sum-of-Kullba
k-Leibler divergen
es. It was shownthat p̂ = argminp D̄

(

{pi}
N
i=1||p

) produ
ed the arithmeti
 mean and that p̂ =

argminp D̄
(

p||{pi}
N
i=1

) produ
ed the normalized geometri
 mean. Both averagingmethods were determined via the method of Lagrange multipliers.



117Using the arithmeti
 mean, the sum-of-Kullba
k-Leibler dispersion D̄
(

{pi}
N
i=1||p̂

)was dire
tly related to generalized Jensen-Shannon divergen
e. Existing Bayeserror bounds on Jensen-Shannon divergen
e presented in [60℄ therefore providedBayes error bounds on the population-
entri
 dispersion measure. Minimizing
D̄
(

{pi}
N
i=1||p̂

) maximizes a lower bound on Bayes probability of indistinguisha-bility error.Using the normalized geometri
 mean, the sum-of-Kullba
k-Leibler dispersion
D̄
(

p̂||{pi}
N
i=1

) was found to provide an upper bound to a dispersion fun
tion forinterpreting pair-wise Bayes error. Spe
i�
ally, bounds on Bayes error in terms ofthe Bhatta
harrya 
oe�
ient were used to show that minimizing D̄
(

p̂||{pi}
N
i=1

)also maximizes a lower bound on Bayes probability of indistinguishability error.2. A novel multi-modal image set registration method is presented. To the author'sknowledge this is the only method that in
orporates an arbitrary number of multi-modal images per subje
t. An advantageous 
onsequen
e of this framework isinverse-invariant (symmetri
) registration.A Bayesian framework for generating inter-subje
t large deformation transforma-tions between two multi-modal sets of images was presented in Chapter 3. Fun-damental to this method was the assumption that human brain anatomy 
onsistsof �nitely enumerable stru
tures. These stru
tures are 
aptured by estimatinga 
lass-
onditional posterior map for ea
h stru
ture. The modality independentregistration framework was a
hieved by jointly estimating the posterior prob-abilities asso
iated with the multi-modal image sets and the high-dimensionalregistration transformations mapping the posteriors. To drive the registration,relative entropy between ea
h of the posteriors and an evolving posterior average,in an independent 
oordinate spa
e, was minimized. Using the posterior averageprovided an intrinsi
ally inverse-invariant registration framework. The registra-tion framework was based on the mat
hing problem formulated via �uid �owsintrodu
ed by [14℄.3. An extension of the above framework to unbiased multi-
lass atlas formation.The multi-modal image set registration framework was extended to large defor-mation multi-
lass posterior atlas estimation in Chapter 4. The method generates



118a representative anatomi
al template from an arbitrary number of topologi
allysimilar multi-modal image sets. The de�nition of the average atlas follows fromthe notion of Fré
het means. The generated atlas is the 
lass posterior that re-quires the least amount of deformation energy to be deformed into every 
lassposterior. The method is 
omputationally pra
ti
al in that 
omputation timegrows linearly with the number of image sets. To the author's knowledge thisis �rst unbiased atlas building method that is based on a population of sets ofmulti-modal images. Constru
ting su
h an atlas provides pair-wise 
orrespon-den
e between any two image sets via transformations through said atlas.4. The use of information theory to evaluate atlas stability.Entropy of image intensities was used to quantify atlas sharpness in Chapter5. A blurry image will exhibit greater entropy of intensities than a sharper im-age. Using this measure, it was shown that resampling an image using linearinterpolation adds entropy to the image 
omparable to that of blurring the imagewith Gaussian kernel with a width σ = 1 voxels. For atlas formation, entropywas used to address the question of how many subje
ts are required to produ
e astable atlas. Random permutation tests were 
ondu
ted to study atlas entropy asa fun
tion of the number of images used to produ
e an atlas. It was shown that,within the 
hoi
e of interpolation method, the large deformation di�eomorphi
atlases were sharp after the in
lusion of ten or more subje
ts. This number is
ertainly dependent on the parti
ular population used.5. An appli
ation of the atlas formation to an aging study involving multi-modalbrain image data from ninety-�ve subje
ts.In Chapter 6, the multi-
lass posterior atlas formation method was applied to adatabase of multi-modal images from ninety-�ve adult brains as part of a healthyaging study. In this study, 4D spatiotemporal atlases were 
reated for the maleand female populations. This work is unique in that Fré
het mean atlases were
reated for a number of time points. These mean atlases suggest an approxi-mation for the line of best �t 
lass posteriors over time. Based on the resultsin Chapter 5, sliding windows of ten and �fteen subje
ts were used to ensuretemporal smoothness. All of this was fa
ilitated by the good age distributionof the subje
ts in the database used. Volumetri
 analysis of white-matter, grey-



119matter, and 
erebrospinal �uid 
hange over time were 
onsistent with results fromprevious studies involving large databases.7.2 Future WorkThis se
tion presents several extensions to this dissertation and dis
usses areas forfuture resear
h. This se
tion is divided into three se
tions: Se
tion 7.2.1 des
ribes the
reation of 
ontinuous 4D spatiotemporal atlases, Se
tion 7.2.2 proposes the extensionof multi-modal image set registration to images of subje
ts with pathology, and Se
tion7.2.3 des
ribes the appli
ation of multi-modal image set registration to multi-
enterstudies were MR images are a
quired from s
anners of di�erent �eld-strength.7.2.1 Continuous 4D Spatiotemporal AtlasCan regression methods be applied to the 3D spatial atlases at dis
rete time points?What notion of distan
e, and subsequently interpolation (parti
ularly temporal), areappropriate in this setting? This dissertation has attempted to provide an approximatesolution by moving average windows. The main idea is to over
ome the limitations ofviewing data as belonging to age groups by approximating a 
ontinuous pro
ess.7.2.2 Registration of Images Involving PathologiesThe multi-modal image set registration as presented here might be potentially sig-ni�
ant in various appli
ations whi
h rely on the measurement of image sets. Forexample, multi-modal imaging is standard in the imaging of pathologies su
h as tu-mors and lesions. Registration between images presenting pathology and images ofhealthy subje
ts is a 
hallenging task sin
e spa
e-o

upying lesions have to be treateddi�erently from in�ltrating lesions. Spe
i�
ally, the registration needs to a

ommodateboth lo
al spatial deformation and lo
al 
hange of image intensity. Existing registra-tion method involving s
alar images based on image brightness do not a

ommodatepathologies. In the formation of the 
lass posteriors, one 
an expli
itly assign 
lassesto the various healthy and pathologi
al tissues.



1207.2.3 Multi-Center StudiesAnother potential appli
ation for this method is the registration of images a
quiredfrom s
anners of di�erent �eld-strength. Image set registration a
ross di�erent s
annersbe
omes an in
reasingly important 
omponent in multi-
enter studies. For example,in studies of developmental 
hanges 
overing multiple years, and in follow-up studiesof diseases with 
hange of s
anner te
hnology. Images a
quired from di�erent s
annerspotentially have di�erent 
ontrasts and di�erent spatial distortions. The method pre-sented in this dissertation may help address these problems as the registration would bebased on underlying anatomi
al stru
tures rather than simply image intensities. Thisassumes a robust segmentation method 
apable of handling the output from s
annersof di�erent �eld strength.7.3 SummaryThis dissertation presented a Bayesian framework for generating large deformationtransformations between multi-modal image sets. An image set may be 
omprisedof an arbitrary number of multi-modal images. To the author's knowledge, this isthe �rst su
h method 
apable of exploiting the 
omplementary information providedby multi-modal image sets. This modality independent registration framework wasa
hieved by jointly estimating the multi-
lass posterior probability maps asso
iatedwith the multi-modalmodal image sets and large deformation di�eomorphisms mappingthese posterior maps. This framework was extended to large deformation multi-
lassposterior map atlas estimation. The method generates an unbiased sharp representativeanatomi
al template from an arbitrary number of topologi
ally similar multi-modalimage sets. This method was applied to an aging study involving ninety-�ve subje
tsto study global and lo
al volumetri
 
hange. This resear
h shows promise for futurework in building 4D spatiotemporal atlases, image registration involving subje
ts withpathologies, and multi-
enter studies.



121Appendix AInformation Theoreti
 Measures
In this appendix, the basi
 quantities of information theory: entropy, relative en-tropy, and mutual information, are presented in their dis
rete form. These measures arefun
tionals of probability distributions and, hen
e, are not dependent on a
tual valuesassumed by random variables. Additionally, a more re
ent measure, Jensen-Shannondivergen
e, is also presented. This measure is used in Chapter 2 to de�ne inequalitiesinvolving Bayes probability of error Pe. In the medi
al image analysis 
ontext, imageintensities 
an be interpreted as random variables whose behavior 
an be 
hara
terizedin terms of probability distributions upon whi
h the basi
 quantities of informationtheory 
an be applied. This dissertation fo
uses on tissue 
lass-
onditional probabilitymass fun
tion maps.A.1 EntropyThe 
on
ept of entropy was �rst developed in the �eld of thermodynami
s as itsse
ond law whi
h states that the entropy of an isolated system is non-de
reasing. Insear
hing for a quantity whi
h measures how mu
h, or at what rate, information isprodu
ed by a pro
ess, Shannon [87℄, building on the work of Hartley [38℄, developedthe 
on
ept of entropy to measure the average un
ertainty of a random variable.De�nition A.1 (Un
ertainty). The un
ertainty, U , of a random variable X is givenby

U(x) = − log p(x)where the probability p(x) is the probability distribution 
hara
terizing X .
U(x) is monotoni
 in p(x) and positive for all values of p(x), sin
e 0 ≤ p(x) ≤ 1.Both of these properties are desirable features of a measure. Also, the least and greatestun
ertainty o

ur when p(x) = 1 and p(x) = 0 respe
tively. This presents an intuitiveunderstanding for the measure, sin
e if X = x happens with probability 1 then one is
ertain of X and, hen
e, have the least un
ertainty.



122De�nition A.2 (Entropy). The entropy of a random variable X, H(X), is de�ned asthe average un
ertainty over all possible values X may assume:
H(X) = Ep[U(x)]

= Ep[− log p(x)]

= −
∑

x∈X

p(x) log p(x).Entropy is typi
ally measured in bits, nats, and Hartleys for logarithms of bases two,
e, and ten respe
tively. Unless otherwise stated, entropies stated in this dissertationwill be measured in bits. For an axiomati
 derivation of entropy see [87℄.There are several important properties of entropy noted below:

• Non-negativity : H(X) ≥ 0.
• Upper bound : H(X) ≤ log(N). Entropy is maximum when all probabilities areequally likely; equivalently, when the average un
ertainty is greatest.
• Chain rule: H(X, Y ) = H(X) + H(X|Y ).
• Conditioning redu
es entropy : H(X|Y ) ≤ H(X).
• Con
avity : H({p(xi)}) is 
on
ave in p.The notion of entropy 
an be extended to multiple random variables as shown below.De�nition A.3 (Joint Entropy). The joint entropy, H(X, Y ), of a pair of dis
reterandom variables X and Y with joint distribution p(x, y) is de�ned by

H(X, Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y).De�nition A.4 (Conditional Entropy). Let X and Y be dis
rete random variableswith joint distribution p(x, y) and 
onditional distribution p(x|y). Then the entropy
onditioned on a single event is de�ned by
H(X|Y = y) = −

∑

x∈X

p(x|y) log p(x|y).



123The 
onditional entropy, or equivo
ation, is then de�ned by
H(X|Y ) =

∑

y∈Y

p(y)H(X|Y = y)

= −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log p(x|y)

= −
∑

x∈X

∑

y∈Y

p(x, y) log p(x|y).A.2 Kullba
k-Leibler Divergen
eWith this well-de�ned notion of entropy, Kullba
k and Leibler [58℄ de�ne a distan
emeasure between two distributions.De�nition A.5 (Kullba
k-Leibler Divergen
e). The Kullba
k-Leibler divergen
e (orrelative entropy) between two probability distributions p and q over the same dis
reterandom variable X is de�ned by the expe
ted logarithm of likelihood ratio of p to q

D(p||q) = Ep

[

log
p(x)

q(x)

]

=
∑

x∈X

p(x) log
p(x)

q(x)
.In a signal model, this measure 
an be interpreted as the ine�
ien
y of assum-ing that q is true when p is true. That is, given a model expressed as a probabilitydistribution p, one 
an then measure how far an observation, also expressed by a prob-ability distribution, q, deviates from p using relative entropy. Additionally, D(p||q)
an be viewed as the average number of bits that are wasted by en
oding events fromdistribution p with a 
ode based on distribution q.The Information Inequality theorem provides the basi
 properties of Kullba
k-Leibler divergen
e.Theorem A.1 (Information Inequality). Let p(x) and q(x) be two probability massfun
tions asso
iated with random variable X. Then DKL(p||q) ≥ 0 with equality if andonly if p(x) = q(x) for all x ∈ X.Proof. See [16℄, page 26, for an argument based on Jensen's Inequality and fa
t thatthe fun
tion − log is 
onvex.



124Although a useful distan
e fun
tion, Kullba
k-Leibler divergen
e is not a metri
. ByTheorem A.1, D(·||·) satis�es the non-negativity and identity of indis
ernables prop-erties of a metri
, De�nition 1.1. D(·||·), however, is not a metri
 sin
e it does notobey the symmetry and triangle inequality properties. Consider the following simple
ounterexample.Example A.1 (Kullba
k-Leibler divergen
e is not a metri
.). Consider the followingthree probability mass fun
tions,
p(x) =

{

1

2
,
1

2

}

q(x) =

{

3

4
,
1

4

}

r(x) =

{

7

8
,
1

8

}

.In 
omputing Kullba
k-Leibler divergen
es between these probability mass fun
tions,note that
D(p||q) =

∑

x

p(x) log
p(x)

q(x)

=
1

2
log

(

1

2
·
4

3

)

+
1

2
log

(

1

2
·
4

1

)

=
1

2
log

(

2

3

)

+
1

2
log 2

=
1

2
−

1

2
log 3 +

1

2

= 1 −
1

2
log 3and

D(q||p) =
∑

x

q(x) log
q(x)

p(x)

=
3

4
log

(

3

4
·
2

1

)

+
1

4
log

(

1

4
·
2

1

)

=
3

4
log

3

2
+

1

4
log

1

2

=
3

4
log 3 −

3

4
−

1

4

=
3

4
log 3 − 1.That is, D(p||q) > D(q||p), and, hen
e, D(·||·) is not symmetri
. In 
omputing two



125more Kullba
k-Leibler divergen
es, one �nds that
D(q||r) =

∑

x

q(x) log
r(x)

q(x)

=
3

4
log

(

3

4
·
8

7

)

+
1

4
log

(

1

4
·
8

1

)

=
3

4
log

6

7
+

1

4
log 2

=
3

4
log 2 +

3

4
log 3 −

3

4
log 7 +

1

4

= 1 +
3

4
log 3 −

3

4
log 7and

D(p||r) =
∑

x

p(x) log
p(x)

r(x)

=
1

2
log

(

1

2
·
8

7

)

+
1

2
log

(

1

2
·
8

1

)

=
1

2
log

4

7
+

1

2
log 4

=
1

2
log 4 −

1

2
log 7 + 1

= 2 −
1

2
log 7.Now 
onsider the expression

D(p||q) + D(q||r) − D(p||r) = 1 −
1

2
log 3 + 1 +

3

4
log 3 −

3

4
log 7 − 2 +

1

2
log 7

=
1

4
(log 3 − log 7)

< 0

⇒ D(p||q) + D(q||r) < D(p||r).That is, D(·||·) does not obey the triangle inequality.A.3 Jensen-Shannon Divergen
eA generalized notion of Kullba
k-Leibler divergen
e, Jensen-Shannon divergen
e,will be used in Chapter 2 to provide bounds on Bayes probability of error. The



126Kullba
k-Leibler divergen
e is always non-negative, but 
an be unbounded (e.g., when
p1(x) 6= 0 and p2(x), D(p1||p2) = ∞) and is, as noted above, not symmetri
. A morere
ent measure between two probability distributions is the Jensen-Shannon divergen
eintrodu
ed by [60℄ whi
h is both bounded and symmetri
.De�nition A.6 (Jensen-Shannon Divergen
e). Let π = {π1, π2} with π1, π2 ≥ 0 and
π1 + π2 = 1 be prior probabilities on two probability distributions p1(x) and p2(x). TheJensen-Shannon divergen
e between p1 and p2 de�ned by

JSπ(p1||p2) = H(π1p1 + π2p2) − π1H(p1) − π2H(p2)

= π1D(p1||Mπ) + π2D(p2||Mπ)where Mπ = π1p1 + π2p2 is 
alled the mutual sour
e of p1 and p2 [23℄.De�nition A.7 (Generalized Jensen-Shannon Divergen
e). The Jensen-Shannon di-vergen
e 
an be generalized to measure the distan
e between any �nite number of prob-ability distributions as
JSπ({pi}

N
i=1) = H

(

N
∑

i=1

πipi

)

−

N
∑

i=1

πiH(pi)

= −
∑

x∈X

(

N
∑

i=1

πipi(x)

)

log

(

N
∑

j=1

πjpj(x)

)

+
N
∑

i=1

πi

∑

x∈X

pi(x) log pi(x)

=
N
∑

i=1

∑

x∈X

πipi(x)

[

− log

(

N
∑

j=1

πjpj(x)

)

+ log pi(x)

]

=

N
∑

i=1

∑

x∈X

πipi(x) log
pi(x)

∑N

j=1 πjpj(x)

=

N
∑

i=1

πiD(pi||Mπ)where Mπ =
∑N

j=1 πjpj with πi ≥ 0 and ∑N

i=1 πi = 1.Although not used in the framework proposed by this dissertation, for 
ompleteness,this se
tion 
on
ludes with the de�nition of the last of three fundamental informationtheoreti
 measures, mutual information. Mutual information will be dis
ussed later inthe 
ontext of related work.



127A.4 Mutual InformationThe last of the three basi
 information theoreti
 measures is mutual information:the measure of the amount of information one random variable X has about another
Y .De�nition A.8 (Mutual Information). Mutual information is de�ned as the relativeentropy between the joint distribution and the produ
t of two probability mass fun
tions:

I(X; Y ) = D(p(x, y)||p(x)p(y))

=
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.Mutual information measures the dependen
e of random variables X and Y . When

X and Y are independent p(x, y) = p(x)p(y) and I(X; Y ) = 0. Mutual information
an also be expressed in terms of entropy as follows:
I(X; Y ) = H(X) − H(X|Y ) (A.1)

= H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X, Y ).In equation A.1, mutual information is viewed as the redu
tion in the un
ertaintyof X due to the knowledge of Y . There are several important properties of mutualinformation noted below:
• Non-negativity : I(X; Y ) ≥ 0.
• Symmetry : I(X; Y ) = I(Y ; X).
• Self-information: I(X; X) = H(X).
• Independen
e: I(X; Y ) = 0 ⇐⇒ X ⊥ Y .
• Information explanation:I(X; Y ) ≤ H(X) and I(Y ; X) ≤ H(Y ).A.5 Multivariate Mutual InformationThe two notions of mutual information in Se
tion A.4 
an be extended to the mul-tivariate setting.



128A.5.1 Entropy Redu
tionThe �rst extension follows the �entropy redu
tion� idea espoused by [1℄ whi
h is ageneralization of Equation A.1,
I(X1; . . . ; XN) =

N
∑

k=1

∑

{i1,...,ik}⊆{1,...,N}

(−1)k+1H(pi1 , . . . , pik).In this 
ontext, multivariate mutual information amount N ≥ 2 random variables 
anbe interpreted as the measure of their simultaneous intera
tion [105, 56℄. It 
an beequivalently interpreted as a multi-way similarity measure among random variables.If the value is zero, the N random variables do not simultaneously intera
t. Thisgeneralization of mutual information 
an result in negative values. As an example,
onsider the three random variable 
ase, {Xi}
3
i=1,

I(X1, X2, X3) = H(X1) + H(X2) + H(X3)

− H(X1, X2) − H(X1, X3) − H(X2, X3)

+ H(X1, X2, X3).Note that the symmetry property still holds.A.5.2 Redundan
y MeasureThe generalization of mutual information based on De�nition A.8 preserves thenon-negativity property. This is the approa
h of [105℄ where they extend the relativeentropy 
on
ept to a �redundan
y measure�
R(X1, . . . , XN) = D

(

p(x1, . . . , xN )||
N
∏

k=1

p(xk)

)

=

N
∑

k=1

H (p(xk)) − H (p(x1, . . . , xN)) .By the Information Inequality Theorem, TheoremA.1, this measure is non-negativeand equal to zero if the Xi are sto
hasti
ally independent. The higher the redundan
yamong the random variables, the stronger their fun
tional dependen
y [46, 47℄



129Appendix BStudy of Convergen
e
B.1 Introdu
tionHow likely is it that the a
tual optimum in the multi-modal image set registration
ost fun
tion is a
hieved? It is impossible to know for real data, sin
e there is no wayto know the true 
orresponden
e. For syntheti
 transformations and syntheti
 imageintensities, the algorithm 
omes 
lose to the global minimum of the 
ost fun
tion. Usingsyntheti
 data, this do
ument presents a qualitative evaluation of the registration and aquantitative evaluation of the data likelihood estimation under the multi-variate normaldistribution model.B.2 Syntheti
 Data Example1To evaluate the performan
e of the algorithm, a syntheti
 2D dataset was gener-ated. Spe
i�
ally, a geometri
 prior, a known transformation, and two syntheti
 imageswhose radiometri
 
hara
teristi
s are statisti
ally similar to a
tual T1- and T2-weightedMR images were de�ned. A four-
lass atlas prior 
omprised of 
on
entri
 ellipses wasgenerated using Matlab. The subsequent 
omposite label image was generated by thesuperposition of the individual 
lasses. Both the atlas and 
omposite label image areshown in Figure B.1. Additionally, a transformation was 
onstru
ted using sinusoidaldispla
ements, whi
h was then applied to the 
omposite label image to produ
e thefoundation for the syntheti
 image set. The multi-modal syntheti
 image set was 
re-ated from two images that were simulated by sampling from a multi-variate Gaussiandistribution with di�erent means and 
ovarian
es for ea
h of the 
lasses in the deformedlabel image. The deformed label image and the 
orresponding multi-modal images areshown in Figure B.2. The algorithm was run for �fty iterations with ten steps of thelarge deformation di�eomorphi
 registration per iteration. The �nal segmentation anddeformation estimates are also shown in Figure B.3.1This se
tion represents portions of the WBIR 2003 paper [62℄.
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(a) (b) (
) (d) (e)Figure B.1: Geometri
 Atlas PriorThe manually generated geometri
 four-
lass atlas prior (a-d) and the 
or-responding 
omposite labeled image (e).

(a) (b) (
)Figure B.2: Syntheti
 Image SetThe deformed label image (a), the syntheti
 image derived from T1 samples(b), and the syntheti
 image derived from T2 samples (
).
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(a) (b)Figure B.3: Estimated DeformationThe estimated deformation expressed as a warped regular grid (a) and theestimated segmentation (b) following �fty iterations of the algorithm.To evaluate the registration the algorithm was run, again with �fty iterations, hold-ing the transformation �xed to the identity map. With the transformation �xed tothe identity map, the expe
tation maximization provided the maximum likelihood so-lution. The �nal estimated segmentation was then 
ompared to the registration-basedsegmentation, with results shown in Figure B.4. By examining the regions where thetwo segmentations di�er from the ground truth label image, it is 
lear the registrationhas improved the segmentation.In both invo
ations of the algorithm, the 
lass means and 
ovarian
es were 
olle
tedand 
ompared. Figure B.5 shows the �nal relative norms for the estimated and a
tualmeans and 
ovarian
es at the �nal iteration. For all 
lasses, the registration has im-proved estimates for both the means and 
ovarian
es. The 
onvergen
e of the meanand 
ovarian
e estimates using registration is shown in Figure B.6. This �gure showsthat the estimates of the means and 
ovarian
es have 
onverged qui
kly when the trans-formation is �xed to the identity map. When registration is added, the estimates ofthe means and 
ovarian
es 
ontinue to improve as the estimation of the transformationbetween the atlas and the subje
t 
onverges. This exempli�es the e�e
tiveness of thealternating nature of the algorithm. These results show that the registration improvesthe segmentation by a

ommodating lo
al variability.
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(a) (b) (
)

(d) (e)Figure B.4: Final SegmentationThe top row shows the ground truth label image (a), the �nal segmentationestimation using registration (b), and the regions where this segmentationdi�ers from the ground truth (
). The bottom row shows the �nal seg-mentation estimation without using registration (d), and regions where thissegmentation di�ers from the ground truth (e).
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Class ||µ̂ci
−µci

||

||µci
||

w/ reg. ||µ̂ci
−µci

||

||µci
||

w/o reg. ||Σ̂ci
−Σci

||F
||Σci

||F
w/ reg. ||Σ̂ci

−Σci
||F

||Σci
||F

w/o reg.
c1 0.0047 0.1216 0.0450 7.0588
c2 0.0152 0.1168 0.2104 1.8164
c3 0.0960 0.0939 0.0206 0.0811
c4 0.0046 0.0046 0.0081 0.0266Figure B.5: Relative Norm Statisti
sThe �rst two 
olumns of numbers are the means at the �nal iteration µ̂cirelative to the a
tual means µci

using registration and �xed identity map.The last two 
olumns show the same for the relative 
ovarian
es using theFrobenius norm, ||A||F =
√

tr (AAT ).
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Figure B.6: Convergen
eThe left 
olumn shows the 
onvergen
e of means and 
ovarian
es usingregistration. The right 
olumn shows the same using the �xed identitytransformation.
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