View-Dependent Simplification

of Arbitrary Polygonal Environments

By

David P. Luebke

A dissertation submitted to the faculty of the University of North Carolinaat Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science

Chapd Hill
1998

Approved by:

Advisor: Professor Frederick P. Brooks, Jr.
University of North Carolinaat Chapel Hill

Reader: Professor Anselmo Lastra
University of North Carolinaat Chapel Hill

Reader: Professor Greg Turk,
Georgia Ingtitute of Technology

© 1998
David P. Luebke
ALL RIGHTS RESERVED

ABSTRACT

DAVID P. LUEBKE: Hierarchical Dynamic Simplification
(Under the direction of Professor Frederick P. Brooks, Jr.)

This dissertation describes hierarchical dynamic simplification (HDS), a new
approach to the problem of simplifying arbitrary polygonal environments. HDSis
dynamic, retessellating the scene continually as the user’s viewing position shifts, and
global, processing the entire database without first decomposing the environment into
individual objects. The resulting system enables real-time display of very complex
polygonal CAD models consisting of thousands of parts and millions of polygons. HDS
supports various preprocessing algorithms and various run-time criteria, providing a

general framework for dynamic view-dependent simplification.

Briefly, HDS works by clustering vertices together in a hierarchical fashion. The
simplification process continually queries this hierarchy to generate a scene containing
only those polygons that are important from the current viewpoint. When the volume of
space associated with a vertex cluster occupies less than a user-specified amount of the
screen, all vertices within that cluster are collapsed together and degenerate polygons
filtered out. HDS maintains aattive list of visible polygons for rendering. Since frame-
to-frame movements typically involve small changes in viewpoint, and therefore modify
this list by only a few polygons, the method takes advantage of temporal coherence for

greater speed.

To Steven Janke, who introduced me to the world of computer graphics, and

to Emily Luebke, who keeps me grounded in the larger world beyond.

ACKNOWLEDGMENTS

| would like to thank my advisor and mentor Dr. Fred Brooks, who somehow saw
promise in avery green young chemistry major with a single computer science course to
hisname. | have worked for and with Dr. Brooks during my entire stay at Carolina, and
would not have it any other way. Heis an excellent scientist, awonderful teacher, a
skillful manager, atalented writer, and the wisest student of human nature | have ever
met. | have learned more from Dr. Brooks than | can possibly condense into these
acknowledgements.

| would also like to thank Greg Turk for hisinvaluable technical advice, especially in
the early stages of my research when my ideas for view-dependent simplification were
only vaguely formed. Greg exemplifiesthe kind of professor | would like to be; heis
creative, knowledgeable, excited, fun to work with, and a consummate researcher.
Dinesh Manocha has been a constant source of good advice, and his unflagging energy
has never ceased to amaze and inspire me. When my students find mein thelab at 3
A.M. the night of the deadline, they can thank (or curse) Dinesh. Lastly, | would liketo
thank Nick England and Anselmo Lastrafor serving on my committee. Both have
provided the valuable perspective of expertsin computer graphics but not simplification.

| have spent three interesting, informative, and enjoyable summers at IBM’s T.J.
Watson Research Center. During those summers | had the privilege of working with and
learning from Paul Borrel, Josh Mittleman, Jai Menon, and Fausto Bernardini. | owe my
interest in polygonal simplification to my work on the 3DIX project, my dissertation
topic to a casual conversation with Josh in the cafeteria, and my very education to IBM
and the IBM Cooperative Fellowship program. My sincere thanks to everyone at IBM.

Special thanks go to my friends, teammates, and fellow students Carl Erikson, Bill
Mark, and Mark Parris. Dan Aliaga, Chris Georges, Stefan Gottschalk, Terry Hopkins,
and Jon McAllister have all given me their ideas, encouragement, and friendship.

Finally, my deepest thanks and all my love to Emily Luebke, who has given me these and
the world besides.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION......coiiiiiiieiee et e e e e 1
1.1. Polygonsin Computer GraphiCs........cccoeeirieierenenerereeeeeeeee e 1
1.2. Polygonal SImplifiCationcccueceiieiiiiesieie e 3
1.3. Motivation FOr a New APProachcccoeieriererineseeeeseesee s 4
1.4. Hierarchical Dynamic SImplificationcccccevvveeiiecesiese e 9
1.5, HDSasaFrameworK ...t 12
1.6. THeSIS SEAEMENT ..o e 13
1.7. OUtliN@Of ATQUIMENT ...ttt 13
CHAPTER 2 PREVIOUSWORK ...ttt 14
2.1, TAXONOMY .ttt r e sr e n e e b e n e naeenneeneennenne s 15
2.2. Catalog of Important Papers..........cccccveveveerieiiee i eee e 18
CHAPTER 3 STRUCTURES AND METHODS........cccceeieeecieeeeee e, 29
T I N TRV = o (G I == TSR 29
3.2. The Active TriangleLiSt.....cccoviieiieeceere et 32
TG T 1Y/ = g oo PR 34
CHAPTER 4 VIEW-DEPENDENT SIMPLIFICATIONcccceoviiieeeenee 36
4.1. Screenspace Error Threshold ..o 37
4.2. SIINOUELTE PreserVationccooeeieriesiiereee e et 38
4.3. Triangle-Budget SImplifiCation.........ccccccvveeveeiesieeseee e 41
CHAPTER 5 OPTIMIZING THE ALGORITHM......cccceiieeeeeeeeeee, 43
5.1. Exploiting Temporal CONEr&NCe........cccceiirerenerineeeeee e 43
5.2. Vishility: Accelerating Renderingcccceveeveveeceeie e 47
5.3. Vishility: Accelerating Simplificationccccvoiirininieieierese e 50
54. StreamliningtheMathccov oo 50
5.5. Parallelization: Asynchronous SImplificationccccecereienenencnennnn 52

Vi

CHAPTER 6 CONSTRUCTING THE VERTEX TREE.ccccoooiiieiee 54

6.1. Simplest: Spatial SUDAIVISIONccooiiirii e 54
6.2. Prettiest: Simplification Envelopes, Progressive Mesh Algorithm.......... 56
6.3. A HYDIid APProaChooueiiiiiiiieees e 57
CHAPTER 7 RESULTSAND ANALYSIS......ccoeee e, 59
7.1 ThePlatfOr M ..o et 59
7.2, TREMOUEIS. ..ottt ae e 59
7.3, TREPAN ..o 65
T4, ViSUAl RESUITS......coiiiiieiieeee et nne s 66
7.5. RUN-tIME PErfOr MANCE........ciiiiiiiieieeee e 74
7.6. VerteX Tree CharaCteriStiCS ...oouuiiierierie e 77
7.7. Preprocessing Performance..........ocvecvieeieeiiescee st 80
A T N 1 = ot SR 81
7.9. Preprocessing COMPIEXITYccouvieeiieieiiesiecie s 84
CHAPTER 8 CONTEMPORARY RELATED WORKcccccoeeeeiieeennee 88
8.1. Recent published algorithms..........cccoooiiiiiiin e 88
8.2, 1SSUES AN TrENUS.....ciiiiiii ettt 9
CHAPTER 9 SUMMARY AND FUTUREWORKcccoociiieieeiieeeee, 98
.1, SUMMEIY ..ottt r e ne e 98
0.2, FULUFE@WOIK ..ottt st 99
CHAPTER 10 REFERENCES.........oooo et 103
N A0) 106

vii

FIGURE 1:
FIGURE 2:
FIGURE 3:
FIGURE 4:
FIGURE 5:
FIGURE 6:
FIGURE 7:
FIGURE 8:

FIGURE 9:

FIGURE 10:
FIGURE 11:
FIGURE 12:
FIGURE 13:
FIGURE 14:
FIGURE 15:
FIGURE 16:
FIGURE 17:
FIGURE 18:
FIGURE 19:
FIGURE 20:
FIGURE 21:
FIGURE 22:

FIGURE 23:

LIST OF FIGURES

THE TRADITIONAL APPROACH TO POLY GONAL SIMPLIFICATION ...ccvvveueeiieeienneans 4
TWO MASSIVE CAD MODELSceiitiiiiiieecieeesieeesiee e siteeesaee s esnse s ensae s sneeesneeesnns 5
PRESERVING GENUS LIMITS DRASTIC SIMPLIFICATION ..uveitvesveeiesaeesseesesseesseeneas 6
A DIESEL ENGINE MODEL WITH OVER 200 PARTS......cetiiuieiiieeenieeesnseeesnveessseeenns 8
A SIMPLE MESH AND ASSOCIATED VERTEX TREEcecuveiteeiesseesseeeesseessesneesseenns 10
A SEQUENCE OF FOLD OPERATIONSuuttiiiiiieaeeeiiirrreeeeeeeessesnsseneeesasesssnnsssssees 11
TRISAND SUBTRIS OF A NODE IN THE VERTEX TREE.......ccccoueitierieseesreeseeseesneenns 30
THE VERTEX TREE, ACTIVE TREE, AND BOUNDARY NODESccccveveerieereennns 31
CORNERS AND PROXIES ...uveueeteeutesseesseesesseessessssseessessesssessesssessssssessssssesssesnses 33
VIEW-DEPENDENT SIMPLIFICATION 1.vvtttieiuteeesssreeesssssseesssssseesssssssnssssnssseessnns 37
SILHOUETTE PRESERVATION ...c.vteuteettesteeseeseesseesseesesseesseessesssessessssssesssesnsesnenns 39
SILHOUETTE PRESERVATION AND BACKFACE SIMPLIFICATION......cccvveeiieeiinenns 40
TRIANGLES ADDED, DELETED, AND ADJUSTED DURING A 700-FRAME PATH ... 44
VISIBLE, INVISIBLE, AND IRRELEVANT NODES......ccceiiteeitieereesreesnreesseeseeenneas 48
CALCULATING THE SCREENSPACE EXTENT OF A NODE.......ccoueiveerieseesreeneeneens 50
PLOT OF TIME SPENT IN ADJUSTTREE() +e.ververieeieeieiesiesie st 52
A 2-D EXAMPLE OF OCTREE VS. TIGHT-OCTREE CLUSTERING.......cccovrverveennn. 55
THE SPHERE MODELuvveiittieeiteesteeessteeesseeessesesssesssssesssssessssssssnssessnsessssens 60
THE BUNNY MODELecuviitieiteieesteesieeeesteestesaesseesteesaesseesseseesseensesneesseensesneens 61
THE SIERRA TERRAINtiiiiuiieitieesitteessteeesseeessesessesssssesssssesssssessnssessnsessssens 61
THE CASSINI SPACE PROBE MODELvveveeuieesiesseesteeseesseessesseesseesssssssssesssesseens 62
THE AUXILIARY MACHINE ROOM MODEL ...ccccivviiieiiiiieeeesiieeessssseeesssnsseeesennns 62
THE TORPEDO ROOM MODELccuvetiiiesieesieseesseesteseesseessesssesseesssssssssesssesenns 63

FIGURE 24

FIGURE 25:
FIGURE 26:
FIGURE 27:
FIGURE 28:
FIGURE 29:
FIGURE 30:
FIGURE 31:
FIGURE 32:
FIGURE 33:
FIGURE 34:
FIGURE 35:
FIGURE 36:

FIGURE 37:

FIGURE 38
FIGURE 39
FIGURE 40
FIGURE 41
FIGURE 42
FIGURE 43

FIGURE 44

A CLOSE-UP OF THE TORP MODELuutttiiitieeeessreeessssseesssssssesssssssessssnssseessnns 63
THE BONEG MODEL ...vecuveiteetieeesieesteeeesteestesaesseestesssesseesseseesseensesnesssesnsesnenns 64
THE POWERPLANT_4M MODEL ...c..uvviiiiiieaiee e siee e e e s 64
INTERIOR VIEW OF THE POWERPLANT_4M MODELcectveieeiesieesieeeesreesseeneas 65
THE AMR SHOWN AT ORIGINAL RESOLUTION ...vvtieiiireeeeissreeessssreeeessnsseesesnnns 66
THE AMR MODEL AT 0.7% SCREENSPACE ERROR TOLERANCEccccvevvennnane 67
THE AMR MODEL AT 2.5% SCREENSPACE ERROR TOLERANCEcccccveerunen. 68
THE TORP MODEL AT ORIGINAL RESOLUTIONvceitieuieiieesieeeesseessesseesseensesnnens 69
THE TORP MODEL SHOWN AT 0.8% SCREENSPACE ERROR TOLERANCE........... 70
THE TORP MODEL SHOWN AT 1.5% SCREENSPACE ERROR TOLERANCE........... 71
THE BUNNY MODEL SHOWN AT 1% SCREENSPACE ERROR TOLERANCE.......... 72
THE BUNNY MODEL SHOWN AT 5% SCREENSPACE ERROR TOLERANCE 73
THE BUNNY MODEL SHOWN WITH SILHOUETTE PRESERVATION.....cceivivrereinns 74
TIMINGS AND TRIANGLE COUNT FOR THE TORP MODELoccveiveeieeieesreeneesnnns 75
: TIMINGS AND TRIANGLE COUNT FOR THE CASSINI MODELccvveiuieeveerieesanenns 76
: A HISTOGRAM OF THE DEPTHS OF LEAF NODES IN THE VERTEX TREE............... 79
PREPROCESSING TIME IN SECONDS VS. NUMBER OF VERTICES.ccovvesveennen. 81
: AN EXAMPLE OF MESH FOLDING ...vecuviiuiesieeeesseesseeseesseesseesesseesseesssssessseessesnenns 83
: A PLOT OF VERTICES VS. TRIANGLES FOR THE SAMPLE MODELS.........cccceevuneen. 84
ENFORCING A BALANCED TREE CAN SACRIFICE GOODNESS OF FITvecuvevennee. 87
HOPPE' SDEVIATION SPACE IN CROSS-SECTION ...uuivteetieerneeeenesennsesnnseenneennnaes

CHAPTER 1

INTRODUCTION

1.1 Polygonsin Computer Graphics

Computer graphicsisascience of simulation. Its practitioners attempt to create realistic
Images by simulating the optics and physics of avirtual world, or model, defined within the
computer. In general, the more accurate the simulation and the more precisely defined the
model, the more time and memory will be required to create such images. For example, the
process called ray tracing explicitly simulates the optics of a scene using the particle
approximation of light, tracing light paths in reverse from the eye into the scene and
ultimately to the light sources. Ray tracing processes commonly run for minutes or hours,
but can generate some very realistic-looking images. Thisrealism, however, is
fundamentally static. Changesin scene or viewpoint can only be reflected in the resulting

images by re-running the entire ray tracing process.

Interactive computer graphics deals with dynamic realism. Images must not only ook
correct, but also move correctly in response to interactive input. This amounts to an
additional constraint: images must be generated quickly, preferably twenty or more times per
second. The careful procedures just described must be rejected in favor of faster methods.
Interactive graphics, then, is a science of approximation. Its practitioners are concerned less
with accurately simulating the physics of a scene than with finding better and faster waysto
approximate the results of such asimulation. The techniques of texture mapping, Gouraud
shading, and the Phong lighting model are all approximations essential to modern interactive
graphics. But perhaps the most fundamental approximation underlying the field of
interactive graphicsis the use of polygons to model three-dimensional surfaces.

Polygonal models currently dominate interactive computer graphics. Thisis chiefly due
to their mathematical ssimplicity: by providing a piecewise linear approximation to shape,
polygonal models lend themselves to simple, regular rendering algorithms in which the
visibility and colors of most pixels are determined by interpolating across the polygon’s
surface. Such algorithms embed well in hardware, which has in turn led to widely available
polygon rendering accelerators for every platform. In addition, polygons serve as a sort of
lowest common denominator for computer models. Almost any surface representation may
be converted with arbitrary accuracy to a polygonal mesh, including splines, implicit
mathematical surfaces, and volumetric isosurfaces. For these and other reasons, polygonal
models remain the most common representation for interactive rendering of medical,

scientific, and computer-aided design (CAD) datasets.

The polygonal complexity of such models often exceeds the ability of graphics hardware

to render them interactively. Three basic approaches are used to alleviate this problem:

* Augmenting the raw polygonal data to convey more visual detail per polygon, so that
fewer polygons can represent the model. For example, Gouraud shading can use
smooth interpolation of color across a polygon to create the illusion of a curved
surface across the flat polygon. Texture mapping takes this notion further, stretching
an actual image across the polygonal face. A well-chosen texture map can provide a

stunning increase in realism.

» Large regions that are completely occluded from the current viewpoint can be quickly
culled away using information about the model. The visibility processing approaches
described by John Airey and Seth Teller are excellent examples, using the structure of
architectural models to divide the world into cells that are mostly mutually invisible
[Airey 90, Teller 91]. Ned Greene, Hansong Zhang, and others have tackled the more

difficult problem of general polygonal environments [Greene 93, Zhang 97].

» Simplifying the polygonal geometry of small or distant portions of the model to
reduce the rendering cost without a significant loss in the visual content of the scene.
Such methods are known collectivelypasygonal simplification algorithms. This

thesis describes a novel approach to the polygonal simplification problem.

1.2 Polygonal Simplification

The goal of polygonal simplification in rendering isto reduce the complexity of a
polygonal model to alevel that can be rendered at interactive rates. The key observation that
makes this possible is that much of the complexity is unnecessary in atypical model for a
given viewpoint. An elaborate table lamp, for example, may require thousands of polygons
to faithfully depict its every curve and bevel. However, if the table lamp isjust one object in
an architectural walkthrough of an entire house, and the user views the lamp from the
opposite side of the house, the lamp will only occupy afew pixels of the final image. In this
case, rendering those thousands of polygons is awaste of time; a crude version of the lamp
comprising fifty polygons would suffice. The sameistrue, to varying degrees, of every
object in the house. Only those portions of the model quite near the viewer need to be
rendered in their origina full detail. For the rest of the scene, a simplified approximation of
the original geometry can be used to bring the polygon count down to manageable levels.

Figure 1 summarizes the traditional approach to polygonal simplification. In an offline
preprocessing step, multiple versions of each object are created at progressively coarser
levels of detail, or LODs. Once the LODs have been created and stored for every object in
the model, complexity can be regulated at run-time by choosing for each frame which LOD
will represent each object. As an object grows more and more distant, the system switchesto

coarser and coarser LODs.

gy

10,108 triangles 1,383 triangles 474 triangles 46 triangles

Figure 1. Thetraditional approach to polygonal simplification creates several levels of
detail, or LODs, for each object. Which LOD is drawn depends on the object’s distance.

1.3. Motivation For a New Approach

This LOD-based approach to polygona simplification has been in use since the flight
simulator systems of the 1970’s [Cosman 81]. Levels of detail were originally created by

hand, but in the 1990s there began to appear in the literature a flurry of algorithms for
automatically generating LODs from a detailed original object. Thefield of polygonal
simplification, surveyed in Chapter 2, now appears to be approaching maturity. Many
excellent algorithms have been published, each with its particular advantages. Some
approaches are best suited to curved, organic forms, while others excel at preserving the
sharp corners and flat faces of mechanical objects. Some methods make global guarantees
about the topology of the ssimplified object, while others specialize in quickly reducing the

redundant geometry often found on volumetric isosurfaces.

The algorithm described in this thesis was conceived for complex, large-scale CAD
databases, a class of models for which earlier simplification methods often prove inadequate.
Several features of such models make simplification a difficult task. To begin with, large-
scale CAD models are by their nature handcrafted, often by many different CAD operators
working independently on subsections of the larger model. Asaresult, the models tend to be
messy, often containing topological degeneracies of every sort. The sheer complexity of
these models can aso be daunting. Massive models consisting of thousands of parts and
millions of polygons are not uncommon. Finally, such massive CAD models often represent
scenes rather than objects, that is, physically large environments through which a viewer

would walk or fly rather than small intricate objects to be inspected from various angles.

Figure 2 shows two such models.

(a) Submarine auxiliary machine room (500,000 polygons) (b) Coal-fired power plant (13,000,000 polygons)
Courtesy Electric Boat Division, General Dynamics Corp. Courtesy ABB Engineering & Jim Close

Figure2: Two massive CAD models.

5

(a) 4,736 triangles, 21 holes

(b) 1,006 triangles, 21 holes (c) 46 triangles, 1 hole

Figure 3: Preserving genuslimitsdrastic ssimplification. The original model of a brake
rotor (a) isshown ssmplified with a topology-preserving algorithm (b) and a topology-
modifying algorithm (c). Rotor model courtesy Alpha_1 Project, University of Utah.

1.3.1. Limitationsof Traditional LOD

Three factors make such models particularly difficult to simplify and render using
traditional LOD-based simplification algorithms. First, most traditional algorithms are quite
slow, taking minutes or even hours to create LODs for a complex object. For models
containing thousands of parts and millions of polygons, creating LODs becomes a batch
process that can take hours or days to complete. Depending on the application, such long
preprocessing times may be a slight inconvenience or afundamental handicap. In adesign-
review setting, for instance, CAD users may want to visualize their revisions in the context of
the entire model several timesaday. Preprocessing times of hours prevent the rapid

turnaround desirable in this scenario.

Second, most traditional LOD algorithms both require and preserve manifold topology in
the polygonal mesh. Requiring clean mesh topology hinders the usefulness of such
algorithms on handcrafted CAD models, which as noted above often contain topol ogical
degeneracies. Preserving mesh topology implies preserving the overall genus, which as

Figure 3 shows, can limit the amount of simplification possible.

Third, traditional algorithms all work on a per-object basis, limiting the amount of drastic
simplification possible. The problem boils down to an implicit assumption in traditional
LOD about the size of objects in the scene. Thislimitation is perhaps best illustrated

anecdotally, with two examples.

1.3.2. Drastic Simplification: the Problem with Large Objects

IBM’s 3-D Interaction Accelerator, or 3DIX for short, is an excellent product that uses
the Rossignac-Borrel algorithm [Rossignac 92] to enable interactive flythroughs of complex
3-D models. Like other traditional systems, 3DIX generates exactly one sequence of LODs
for every object in the model. IBM, as a major financial and technological sponsor of the
Atlanta Olympic Games, gave the research team that developed 3DIX an opportunity to
demonstrate their product publicly, shortly before the Games commenced in the summer of
1996. The subject was an AutoCAD model of the Olympic Stadium in Atlanta. Although
the model was well over a million polygons, 3DIX had already been successfully used on
even larger datasets, so the 3DIX team did not anticipate any problems. When they actually
received the model, however, they were horrified to learn that all the seats in all the bleachers
comprised one giant stadium-sized object! The problem, of course, was that creating a
sequence of LODs for such a huge object is useless. The viewer will always be near some
portion of the bleachers and quite distant from other portions. Using a high level-of-detalil
would mean high fidelity but low frame rates and jerky motion; using a low level-of-detail
would provide smooth motion but terrible fidelity for the nearby bleachers. The 3DIX demo
did take place, and it was indeed impressive, but only after an AutoCAD expert had spent
much of the intervening two weeks subdividing the bleachers into small chunks.

The solution proposed here for the Problem with Large Objects invobiyewuanic
simplification algorithm that incrementally changes the level of detail of a model at run time.
Dynamic simplification in turn enablesaw-dependent simplification, in which the level of
detail is varied across the model according to interactive viewing parameters such as the view
position and orientation. A large and complex object, such as the stadium bleachers, presents
no problem to a view-dependent simplification algorithm because only the portions of the
object near the user need to be rendered in high detail. The bulk of the stadium stands can

still be simplified drastically, rescuing frame rate while preserving fidelity.

Figure4: A diesel engine model with over 200 parts.
Courtesy Electric Boat Division, General Dynamics Corp.

1.3.3. Drastic Simplification: the Problem with Small Objects

The diesel engine shown in Figure 4 demonstrates another difficulty with the traditional
per-object approach. This engine model, from the submarine Auxiliary Machine Room
dataset, contains over two hundred small parts. Assume an excellent LOD algorithm, which
at the lowest level can with good fidelity reduce each of these partsto asingle cube. The
entire assembly still requires over 2,400 trianglesto render! From a great distance (say the
other end of the submarine) the whole diesel engine may cover only afew pixels on the
viewer's screen. In this situation a single, fifty-polygon, roughly engine-shaped block makes

a better approximation than two hundred small cubes.

The solution proposed here for the Problem with Small Objects involyebal

simplification algorithm that treats the entire scene rather than individual objects within the

scene. With knowledge about the entire scene, the algorithm can decide at an appropriate
level of detail to start combining the various parts of the diesel engine. At alow enough
level of detail, the whole engine (and perhaps nearby portions of the walls and floor) can be
merged and represented by that fifty-polygon block. Note that the idea of global
simplification dovetails nicely with a dynamic, view-dependent approach. Since view-
dependence allows different portions of an object to be represented at different levels of
detail, the entire scene can be treated as a single al-inclusive object. Theresult isaglobal
simplification algorithm that can automatically merge objects within the scene as needed for
drastic simplification.

This point isimportant and bears repeating: for drastic simplification using traditional
level-of-detail based algorithms, large objects must be subdivided and small objects must be
combined. Asthe experience of the 3DIX team shows, doing this manually can mean a great
deal of work. A global, dynamic, view-dependent algorithm is better suited to drastic
simplification than the traditional approach of separate LODs for each object.

1.4. Hierarchical Dynamic Simplification

These considerations led to the new approach, called hierarchical dynamic simplification,
presented in thisthesis. Hierarchical dynamic simplification (HDS) is aframework for
polygona simplification viavertex merging. This operation, in which several polygon
vertices are collapsed together into a single vertex, provides the fundamental mechanism for
removing polygonal detail. When two vertices sharing an edge of atriangle are merged, that
triangle becomes redundant and may be removed. Note the use of triangle rather than
polygon. The constant memory requirements and guaranteed planarity of triangles make
them preferable to generic polygons, and like most simplification algorithms, HDS assumes

that polygonal models have been fully triangul ated.

Figure5: A simple mesh and associated vertex tree.
Verticesareclustered hierarchically toroot R.

Asapolygonal simplification algorithm, HDS has some novel features. HDS is global:
whereas traditional LOD algorithms represent the scene as a collection of objects, each at
several levels of detail, HDS uses asingle large data structure that constitutes the entire
model. This structure isthe vertex tree, a hierarchy of vertex merge operations that encodes
acontinuum of possible levels of detail across the whole model. Figure 5 showsasimple
two-dimensional example model and its associated vertex tree. Applying a node’s vertex
merge operation collapses all of the vertices within the node together to a single
representative vertex. Triangles whose corners have been collapsed together become
redundant and can be eliminated, decreasing the total triangle count. This ifobdithed
the node. Likewise, a node mayu€olded by splitting its representative vertex into the
node’s constituent vertices. Triangles filtered out when the node was collapsed become
visible again when the node is expanded, increasing the triangle count. Figure 6 illustrates
the result of folding and unfolding different nodes in the vertex tree. Chapter 3 describes the

vertex tree in detail, and Chapter 6 discusses ways to construct it.

Note that the vertex tree contains information only about the vertices and triangles of the
model. The algorithm makes no assumptions about the connectivity of those primitives. In
particular, the triangles are not assumed to form a manifold mesh or approximate a smooth
surface. This is another uncommon feature of the HDS framework: because the
simplification operates on the level of triangles and vertices rather than meshes and surfaces,

manifold topology is not required and need not be preserved.

10

il @&
l'".l 1 .-"Il'Il i A = © E] » & El T 5

", ;L

'i EEREREER N E T R R E R N

-,

Figure 6: A sequence of fold operations. Folding each node removes sometriangles
from the scene, reducing the sceneto a singletriangle and finally to the root node R.

11

Finally, the entire system is dynamic and view-dependent. Nodesto be folded or unfolded
are continually chosen at run-time based on their current projected screen size. In the
simplest mode, the user sets a screenspace-size threshold, say two pixels, before flying the
viewpoint interactively around the model. The screenspace extent of each node is monitored:
as the viewpoint shifts, certain nodes in the vertex tree will shrink in apparent size, faling
below the two-pixel threshold. These nodes will be folded into their parent nodes and the
now-redundant triangles removed from the scene. Other nodes will increase in apparent size
and will be unfolded into their constituent child nodes, introducing new vertices and new
trianglesinto the display list. The user may adjust the screenspace size threshold throughout
aviewing session for interactive control over the degree of simplification. Since nodes are
folded and unfolded each frame, efficient methods for finding, adding, and removing affected

triangles are crucial and form the subject of Chapter 3.

15. HDS as a Framewor k

It isimportant to emphasize that HDS is not a single algorithm so much as a general
framework from which algorithms can be constructed. The only essential invariants of the
HDS framework are the vertex tree and its associated methods supporting dynamic view-
dependent simplification. Decisions such as how the vertex tree is constructed, which view-
dependent criteria are used, and how the error metric guides ssmplification al flesh out the
framework into a specific algorithm. The chart below illustrates this flexibility, showing
some of the ways these parameters can be varied at run timein the current system to

customize a dynamic view-dependent algorithm.

Dynamic, View-dependent Simplification Algorithm

Vertex Tree Use of View-Dependent
Choicesto make Construction Error Metric Criteria

- o

83 s 3 %_ g S %5 § [o5

. . BEo2 | §S2| =S8 28 58 T E

Possible Alter natives vz | 9858 = <= L = 3o

EBZ | 242 53 S3 g < < B

283 | 28 S E SE 55 5 S

= a -3 iL'» R A = o
a o

See Section: 6.1 6.3 212 212,43 41 4.2

=
N

1.6. Thesis Statement

A global, dynamic, and view-dependent approach to polygonal simplification can provide
a powerful, general framework for visualizing polygonal environments, even those too

complex or degenerate for other simplification schemes.

1.7. Outline of Argument

The first clause of the thesis statement refers to a “global, dynamic, and view-dependent
approach to polygonal simplification.” The bulk of this dissertation is devoted to describing
the design and implementation of such an approach. Sections 1.3.2 and 1.3.3 have already
addressed “global, dynamic, and view-dependent,” explaining how each attribute enables
drastic simplification despite very large and small objects. Together they provide a
“powerful, general framework” for rendering polygonal scenes. Chapter 7 demonstrates the
power and generality of HDS anecdotally: HDS enables interactive walkthroughs of models
of very high complexity, and successfully runs without modification on models that can crash
other algorithms. The models tested include some extremely complex real-world maritime

and aerospace CAD datasets.

The rest of this dissertation is here outlined on a chapter-by-chapter basis. Chapter 2
surveys the previous work in traditional LOD-based polygonal simplification. Chapter 3
then turns to the new approach, presenting the data structures and methods that enable
dynamic simplification. Chapter 4 describes how to use those structures and methods for
view-dependent simplification, and Chapter 5 describes a set of optimizations that allow the
algorithm to run in real time even on very complex models. Chapter 6 discusses how the
vertex tree is constructed and how this step might take advantage of other polygonal
simplification research. Chapter 7 presents results of the algorithm in action on several
different models, describes some artifacts inherent in the simplification process (and how to
avoid them), and analyzes the space and time complexity of the algorithm. Chapter 8 returns
to the literature, describing some recent related work and commenting on issues and trends in
the field of polygonal simplification. Finally, Chapter 9 summarizes the contributions of this

thesis and suggests some avenues for future research.

13

CHAPTER 2
PREVIOUSWORK: A SURVEY OF TRADITIONAL

LEVEL-OF-DETAIL ALGORITHMS

Polygonal ssimplification is a once avery current and a very old topic in computer
graphics. Asearly as 1976 James Clark described the benefits of representing objects within
ascene at severa resolutions, and flight simulators have long used hand-crafted multi-
resolution models of airplanesto guarantee a constant frame rate [Clark 76, Cosman 81].
With the mainstream debut of 3-D CAD and workstation-based computer graphics, recent
years have seen aflurry of research into generating such multi-resolution representations of
objects automatically by simplifying the polygonal geometry of the object. This chapter
surveys the field of polygonal simplification, describing some historically important work as
well as relating the current state of the art in traditional LOD-based polygonal simplification.
The goal of this chapter is not only to provide a backdrop for the dissertation but also to

identify some major issues and trends in the field to date.

Note that terrains, or tessellated height fields, are a special category of polygona models.
The regularity and two-dimensional nature of these models simplify some aspects of the
simplification problem; most of the problems facing researchersin polygonal simplification
have been solved a year or two earlier for the restricted domain of terrain datasets. At the
risk of injustice to some elegant work on terrains, this survey focuses on solutions that apply

to the more general realm of polygona meshes.

A bewildering variety of simplification techniques have appeared in the recent literature;
the next section attempts to classify the important similarities and differences among these
techniques. A catalog of nine published algorithms follows, briefly describing each approach

and placing it into this taxonomy.

2.1

Taxonomy

The various ssimplification approaches described in the computer graphics literature of the

last five years can be categorized along many axes. Some algorithms iteratively remove

polygons while others collapse vertices, some algorithms preserve topology while others

ignoreit, and so on. This section essays a useful taxonomy for comparing the multifarious

published simplification agorithms by enumerating three important areas in which existing

solutions differ or resemble each other.

2.1.1. Mechanism of Polygon Elision

Nearly every smplification technique in the literature uses some variation or combination

of four basic polygon elision mechanisms: sampling, adaptive subdivision, decimation, and

vertex merging.

Sampling schemes begin by sampling the geometry of theinitial model. These
samples can be points on the 2-D manifold surfaces in the model or voxelsin a 3-D
grid superimposed upon the model. The algorithm then tries to create a polygonal
simplification that closely matches the sampled data. Varying the number of samples
regul ates the accuracy of the created ssimplification.

Adaptive subdivision approaches create a very simple polygonal approximation called
the base model. The base model consists of triangles or squares, shapes that lend
themselves to recursive subdivision. This process of subdivision is applied until the
resulting surface lies within some user-specified threshold of the original surface.
Conceptually ssimple, adaptive subdivision methods suffer two disadvantages. First,
creating the base model involves the very problem of polygonal simplification that
the algorithm is attempting to solve. For this reason adaptive subdivision approaches
have been more popular for the specialized case of terrains, whose base model is
typically just arectangle. Second, arecursive subdivision of the base model may not
be able to capture the exact geometry of the original model, especially around sharp

corners and creases in the mesh [Hoppe 96].

15

Decimation techniques iteratively remove vertices or faces from the mesh,
retriangul ating the resulting hole after each step. This process continues until it
reaches a user-specified degree of ssimplification. If decimation algorithms do not
permit avertex or face removal that will change the local topology of the mesh, the

decimation process may be unable to effect high degrees of simplification.

Vertex merging schemes operate by merging two or more vertices of atriangulated
model together into a single vertex, which can in turn be merged with other vertices.
Merging two corners of atriangle makes that triangle degenerate. Such triangles can
then be eliminated, decreasing the total polygon count. Vertex merging approaches
do not necessarily require manifold topology, though some algorithms use alimited
vertex merge called an edge collapse, in which only the two vertices sharing an edge
are collapsed in each operation. These algorithms generally assume manifold

topology implicitly.

2.1.2. Useof Error Metric

Simplification methods can be characterized by how they use an error metric to regulate

the quality of the smplification. A surprising number of algorithms use no metric at all, but

simply require the user to run the algorithm with different settings and explicitly select

appropriate LOD switching distances. For large databases, however, this degree of user

intervention is simply not practical. Those a gorithms that utilize an error metric to guide

simplification fall into two categories:

Fidelity-based simplification techniques allow the user to specify the desired fidelity
of the simplification in some form, then attempt to minimize the number of polygons,

subject to that fidelity constraint.

Polygon-budget simplification systems attempt to maximize the fidelity of the
simplified model without exceeding a specified polygon budget.

For example, adaptive subdivision algorithms lend themselves nicely to fidelity-based

simplification, simply subdividing the base model until the fidelity requirement is met.

Polygon-budget simplification is anatural fit for decimation techniques, which are designed

16

to remove vertices or faces one at atime and merely need to halt upon reaching the target
number of polygons. As mentioned above, however, topology constraints often prevent
decimation a gorithms from reducing the polygon count below a certain level. To be most
useful, asimplification algorithm should be capable of either fidelity-based or polygon-
budget operation. Fidelity-based approaches are crucial for generating accurate images,
whereas polygon-budget approaches are important for time-critical rendering. The user may
well require both of these possibilities in the same system.

2.1.3. Preservation of Topology

In the context of polygonal simplification, topology refersto the structure of the
connected polygonal mesh. The local topology of aface, edge, or vertex refersto the
connectivity of that feature’s immediate neighborhood. The mesh for2aB ananifold if
the local topology is everywhere homeomaorphic to a disc, that is, if the neighborhood of
every feature consists of a connected ring of triangles forming a single surface. Every edge
in a mesh displaying manifold topology is shared by exactly two triangles, and every triangle
has exactly three neighboring triangles, all distin@-amanifold with boundary allows the
local neighborhoods to be homeomaorphic to a half-disc, which means some edges can belong
to only one triangle). Aopology-preserving simplification algorithm preserves manifold
connectivity. Such algorithms do not close holes in the mesh, and they therefore preserve the
genus of the simplified surfac&lobal topology refers to the connectivity of the entire
surface. A simplification algorithm preserves global topology if it preserves local topology
and does not create self-intersections within the simplified object [Erikson 96]. A self-

intersection, as the name implies, occurs when two non-adjacent faces intersect each other.

Many real-world CAD models contain objects that violate manifold local topology,
global topology, or both. Since interactive visualization of CAD databases is a primary
application of polygonal simplification, the behavior of the various approaches when
encountering such models is an important characteristic. Simplification algorithms can be

separated into two camps:

» Topology-preserving algorithms preserve the genus of the simplified object, so no

holes will appear or disappear during simplification. The opacity of the object seen

17

from any distance thus tends to remain roughly constant. This constraint limits the
simplification possible, however, since objects of high genus cannot be simplified
below a certain number of polygons without closing holesin the model. Moreover, a
topol ogy-preserving approach requires a mesh with valid topology to begin with.
Some algorithms, such as [Schroeder 92], are topology-tolerant: they ignore regions
in the mesh with invalid local topology, leaving those regions unsimplified. Other
algorithms faced with such regions may simply crash.

» Topology-modifying algorithms do not necessarily preserve loca or global topology.
The algorithms can therefore close up holes in the model as simplification progresses,
permitting drastic simplification beyond the scope of topol ogy-preserving schemes.
This drastic simplification often comes at the price of poor visual fidelity, however,
and distracting popping artifacts as holes appear and disappear from one LOD to the
next. Some topology-modifying algorithms do not require valid topology in the
initial mesh, which greatly increases their utility in real-world CAD applications.
Some topology-modifying algorithms attempt to regulate the change in topol ogy, but
most are topology-insensitive, paying no heed to the initial mesh connectivity at all.

2.2. Catalog of Important Papers

The intent of this section is not to provide an exhaustive list of work in the field of
polygonal simplification, nor to select the “best” published papers, but rather to briefly
describe a few important algorithms that span the taxonomy presented above. Most of the
papers chosen represent influential advances in the field; a few provide more careful

treatment of existing ideas.

Table 1 summarizes the catalog. Each algorithm is broken down according to which
mechanism or combination of mechanisms it uses, whether it supports fidelity-based
simplification or polygon-budget simplification, and whether the algorithm preserves or
modifies topology. The final column indicates whether the algorithopaogy-tolerant,
that is, whether the presence of non-manifold mesh regions will catastrophically affect the
algorithm. An asterix (*) under fidelity-based or polygon-budget simplification indicates that

18

the algorithm can be easily extended to support that use of the error metric, even though the
algorithm’s original publication does not mention it.
In addition to the algorithms presented here, a few particularly recent and relevant papers

are discussed in Chapter 8: Recent Related Work.

M echanism Use of Topology
Error Metric
Algorith Ref (o) 0 6 5 : . o o2 -
gorithm erence £ >® = 5 E’ > 5 ,g E f; g
s | 8>| £ 55 T E 23 B S K
(% S8| g > S8 |52 8 S
< 3 b =| i £ £ s =
Multi-Resolution 3D . .
Approximations... Rossignac 92 X X X
Decimation of Triangle .
Meshes Schroeder 92 X X X X
Re-tiling Polygonal Surfaces Turk 92 X X X X X
Mesh Optimization Hoppe 93 X X X X X
Multiresolution Analysis of
Arbitrary Meshes Eck 95 X X X
Vong-B§1§ed_ObJect He 95 X X X
Simplification
Simplification Envelopes Cohen 96 X X X
Progressive Meshes Hoppe 96 X X
Model Slmpllflcatlop Using Low 97 X X X X
Vertex Clustering

Table 1: Ninesimplification algorithms classified by mechanism, use of error metric,
and treatment of topology. An asterix meansthat the algorithm could easily be
extended to include the specified use of error metric.
2.2.1. Rossignac and Borrel

Multi-Resolution 3D Approximations for Rendering Complex Scenes (1992)

This vertex-merging algorithm by Jarek Rossignac and Paul Borrel is one of the few
schemes that neither requires nor preserves valid topology. The algorithm can therefore deal
robustly with degenerate models with which other approaches have little or no success. This
is atremendous advantage for simplification of handcrafted CAD databases, a notoriously

messy category of models.

The algorithm begins by assigning a perceptual importance to each vertex based upon
two factors. Vertices associated with large faces are considered more important than vertices

19

associated only with small faces, and vertices of high curvature (measured by the inverse of
the maximum angle between any pair of edges incident to the vertex) are considered more
important than vertices of low curvature. Next athree-dimensional grid is overlaid on the
model and all vertices within each cell of the grid are collapsed to a single representative
vertex for the cell, chosen according to the importance weighting calculated in the first step.
The resolution of this grid determines the quality of the resulting ssmplification; a coarse grid
will aggressively simplify the model whereas a fine grid will perform only minimal
reduction. In the process of clustering, triangles whose corners are collapsed together

become degenerate and disappear.

One unique feature of the Rossignac-Borrel agorithm isthe fashion in which it treats
these triangles. Reasoning that atriangle with two corners collapsed is simply aline and a
triangle with three corners collapsed is ssmply a point, the authors choose to render such
triangles using the line and point primitives of the graphics hardware, filtering out redundant
lines and points. Thusasimplification of a polygonal object will generally be a collection of
polygons, lines, and points. The resulting simplifications are therefore more accurate from a
schematic than a strictly geometric standpoint. For the purposes of drastic simplification,

however, the lines and points can contribute significantly to the recognizability of the object.

In addition to its inherent robustness, the Rossignac-Borrel algorithm can be implemented
very efficiently and is one of the fastest algorithms known. However, the method suffers
several disadvantages. Since topology is not preserved and no explicit error bounds with
respect to the surface are guaranteed, the resulting simplifications are often less pleasing
visually than those of slower algorithms. In addition, the smplification is sensitive to the
orientation of the clustering grid, so two identical objects at different orientations can
produce quite different ssmplifications. Finally, the algorithm does not lend itself to either
fidelity-based or polygon-budget simplification, since the only way to predict how many

triangles an LOD will have using a specified grid resolution is to perform the simplification.

20

2.2.2. Schroeder, Zarge, and Lorenson

Decimation of Triangle Meshes (1992)

One of thefirst published algorithms to simplify general polygonal models, this paper
coined the term “decimation” for iterative removal of vertices. Schroeder’s decimation
scheme is designed to operate on the output of the Marching Cubes algorithm for extracting
iIsosurfaces from volumetric data [Lorenson 87], and is still commonly used for this purpose.
Marching Cubes output is often heavily overtessellated, with coplanar regions divided into
many more polygons than necessary, and Schroeder’s algorithm excels at removing this

redundant geometry.

The algorithm operates by making multiple passes over all the vertices in the model.
During a pass, each vertex is considered for deletion. If the vertex can be removed without
violating the local topology of the neighborhood, and if the resulting surface would lie within
a user-specified distance of the unsimplified geometry, the vertex and all its associated
triangles are deleted. This leaves a hole in the mesh, which is then retriangulated. The
algorithm continues to iterate over the vertices in the model until no more vertices can be

removed.

Simplifications produced by the decimation algorithm possess an interesting feature: the
vertices of the simplified model are a subset of the vertices of the original model. This
property is convenient for reusing normals and texture coordinates at the vertices, but it can
limit the fidelity of the simplifications, since minimizing the geometric error introduced by
the simplified approximation to the original surface can at times require changing the
positions of the vertices [Garland 97]. The decimation algorithm is topology tolerant,
accepting models with non-manifold vertices, but does not attempt to simplify those regions

of the model.

223. Turk

Re-Tiling Polygonal Surfaces (1992)

Another of the first papers to address simplification of arbitrary polyhedral objects, this

algorithm combines elements of the sampling and decimation mechanisms. The re-tiling

21

algorithm works best on smoothly curved surfaces without sharp edges or discontinuities,
working better for organic forms such as people or animals than for mechanical shapes such
as furniture or machine parts. Re-tiling provides aform of polygon-budget simplification by
allowing the user to specify the number of verticesin the ssmplified model, but it is not

obvious how to modify the algorithm to provide afidelity metric.

The agorithm begins by randomly distributing the user-specified number of vertices over
the surface of the model. The a gorithm then simulates repul sion forces between the vertices,
allowing nearby verticesto repel each other. Since the vertices are constrained to move
within the surface, this repulsion tends to redistribute the randomly scattered vertices evenly
across the surface. Next, the algorithm uses a method called mutual tessellation to construct
an intermediate surface that contains both the new and original vertices. All the original
vertices are removed, leaving the re-tiled surface with only the new vertices. Finally, aloca

re-triangulation is applied to improve the aspect ratio of the resulting triangles.

Among the contributions of this paper was the introduction of a method to interpolate
smoothly between different levels of detail, a process which Hughes Hoppe calls

geomorphing [Hoppe 96].

2.2.4. Hoppe, DeRose, Duchamp, McDonald, and Stuetzle

Mesh Optimization (1993)

This paper describes a complex sampling approach, which evolved out of the authors’
work on surface reconstruction of laser-scanned datasets [Hoppe 92]. Surface reconstruction
is the problem of creating a three-dimensional mesh from a collection of sample points.

Mesh optimization, as the name suggests, treats simplification as an optimization problem.
The number of vertices in the simplification and its deviation from the original are explicitly

modeled as an energy function to be minimized.

The algorithm begins by sampling the mesh, taking a number of randomly placed
samples in addition to the vertices of the original mesh. These sample points are maintained
as the algorithm modifies the mesh; the distance moved by the sample points during the
algorithm is used to measure deviation from the original surface. Next a random edge of the

mesh is picked and one of three operations attempted at random: edge collapse, edge split, or

22

edge swap. Aninner loop then adjusts the positions of vertices to minimize the energy
function for the next configuration. If the overall energy is not reduced or the topology is
violated, the randomly selected edge operation is undone. Another random edgeis picked
and the process repeats, iterating until repeated attempts suggest that the energy function has

reached alocal minimum.

The careful simplification performed by the mesh optimization algorithm produces
models of very high fidelity. The algorithm seemsto be especialy well suited for
mechanical CAD models, capturing sharp features very nicely. Though topology is
preserved, with the consequent limits on simplification, mesh optimization appears excellent
at smplifying right up to those limits. Unfortunately, the algorithm is somewhat slow; for
example, the authors report a simplification time of 47 minutes of one 18,272-polygon
object. Moreover, the mesh optimization a gorithm seems complex enough to make
implementation a daunting task, though fortunately Hughes Hoppe has made his code for the
algorithm available at http://mww.resear ch.microsoft.conV~hoppe/Recon.940503b.tar.gz.

2.2.5. Eck, DeRose, Duchamp, Hoppe, Lounsbery, and Stuetzle

Multiresolution Analysis of Arbitrary Meshes (1995)

This adaptive subdivision algorithm uses a compact wavel et representation to guide the
recursive subdivision process. By adding or subtracting wavelet coefficients the algorithm
can smoothly interpol ate between levels of detail. The algorithm provides fidelity-based
simplification by using enough wavel et coefficients to guarantee that the simplified surface

lies within a user-specified distance of the original model.

A chief contribution of this paper isamethod for finding a simple base mesh that exhibits
subdivision connectivity, which means that the original mesh may be recovered by recursive
subdivision. As mentioned above, finding a base mesh is simple for terrain datasets but
difficult for general polygonal models of arbitrary topology. Eck’s algorithm creates the base
mesh by growing Voronoi-like regions across the triangles of the original surface. When
these regions can grow no more, a Delauney-like triangulation is formed from the Voronoi

sites, and the base mesh is formed in turn from the triangulation.

23

This algorithm possesses the disadvantages of strict topology-preserving approaches:
manifold topology is absolutely required in the input model, and the shape and genus of the
original object limit the potential for drastic simplification. The fidelity of the resulting
simplificationsis quite high for smooth organic forms, but the algorithm is fundamentally a
low-pass filtering approach and has difficulty capturing sharp features in the origina model
unless the features happen to fall along adivision in the base mesh [Hoppe 96].

2.2.6. He, Hong, Kaufman, Varshney, and Wang

Voxel-Based Object Simplification (1995)

Topol ogy-preserving algorithms must retain the genus of the original object, which often
limits their ability to perform drastic ssimplification. Topology-insensitive approaches such
as the Rossignac-Borrel algorithm do not suffer from these constraints, but reduce the
topology of their models in a haphazard and unpredictable fashion. Voxel-based object
simplification is an intriguing attempt to simplify topology in a gradual and controlled

manner using the robust and well-understood theory of signal processing.

The algorithm begins by creating a volumetric representation of the model,
superimposing athree-dimensional grid of voxels over the polygonal geometry. Each voxel
isassigned avalue of 1 or 0, according to whether the sample point of that voxel liesinside
or outside the object. Next the algorithm applies alow-pass filter and resamples the volume.
The result is another volumetric representation of the object with lower resolution. Sampling
theory guarantees that small, high-frequency features will be eliminated in the low-pass
filtered volume. The Marching Cubes algorithm [Lorenson 87] is applied to this volume to
generate a simplified polygonal model. Since Marching Cubes can create redundant
geometry, a standard topol ogy-preserving algorithm is required as a postprocess.

Unfortunately, high-frequency details such as sharp edges and squared-off corners seem
to contribute greatly to the perception of shape. Asaresult, the voxel-based simplification
algorithm performs poorly on models with such features. This greatly restrictsits usefulness
on mechanical CAD models. Moreover, the algorithm as presented in the paper is not
topology-tolerant, since deciding whether sample points lie inside or outside the object

requires well-defined closed-mesh objects with manifold topology.

24

2.2.7. Cohen, Varshney, Manocha, Turk, Weber, Agrawal, Brooks, and Wright

Simplification Envel opes (1996)

Simplification envelopes provide a method of guaranteeing fidelity bounds while
enforcing global aswell aslocal topology. Simplification envelopes per se are more of a
framework than an individual agorithm, and the authors of this paper present two examples

of algorithms within this framework.

The simplification envelopes of a surface consist of two offset surfaces, or copies of the
surface offset no more than some distance € from the original surface. The outer envelopeis
created by displacing each vertex of the original mesh along its normal by €. Similarly, the
inner envelopeis created by displacing each vertex by -. The envelopes are not allowed to

self-intersect; where the curvature would create such self-intersection, € islocally decreased.

Once created, these envel opes can guide the simplification process. The algorithms
described in the paper both take decimation approaches that iteratively remove triangles or
vertices and re-triangul ate the resulting holes. By keeping the simplified surface within the
envelopes, these algorithms can guarantee, first, that global topology is respected, and

second, that the simplified surfaces never deviate by more than € from the original surface.

The resulting ssimplifications tend to have very good fidelity.

Where fidelity and topology preservation are crucial, simplification envelopes are an
excellent choice. The € error bound is also an attractive feature of this approach, providing a
natural means for calculating LOD switching distances. Though the algorithms presented in
the paper are based on a decimation approach, a vertex-merging algorithm based on
simplification envelopesis easy to imagine. However, the very strengths of simplification
envelopes technique are a so their weaknesses. The strict preservation of topology and the
careful avoidance of self-intersections curtail the approach’s capability for drastic
simplification. The construction of offset surfaces also demands an orientable manifold;
topological imperfections in the initial mesh can hamper or prevent simplification. Finally,
the algorithms for simplification envelopes are intricate; writing a robust system based on
simplification envelopes seems a substantial undertaking. The authors have made their

implementation available attp://www.cs.unc.edu/~geonmyenvel ope.html.

25

2.2.8. Hoppe

Progressive Meshes (1996)

This vertex-merging algorithm by Hughes Hoppe follows up on the mesh optimization
approach. As described above, mesh optimization used the three techniques of edge collapse,
edge split, and edge swap in random order to reduce an explicitly modeled energy function.
The progressive meshes paper builds on the discovery that the edge collapse operation alone
suffices to achieve high-quality simplification. The main contributions of the paper are the
progressive mesh, a new representation for polygonal models based on edge collapses, and a

topology-preserving simplification algorithm for generating progressive meshes.

A progressive mesh consists of a simple base mesh, created by a sequence of edge
collapse operations, followed by a stream of vertex split records. A vertex split (or vsplit) is
the dual of an edge collapse (or ecol). Each vsplit replaces avertex by two edge-connected
vertices, creating one additional vertex and two additional triangles. The vsplit recordsin a
progressive mesh correspond to the edge collapse operations used to create the base mesh.
Applying al of the vsplit records to the associated base mesh will recapture the original
model exactly; applying a subset of the vsplit records will create an intermediate
simplification. Since each vertex split creates two triangles (one for boundary edges),
triangle-budget ssimplification is easily implemented by applying the vsplit records in order
until the specified triangle budget isreached. In fact, the stream of vsplit records encodes a
continuum of simplifications from the base mesh up to the original model. The vertex split
and edge collapse operations are quite fast and may be applied at run-time to transition
between levels of detail.

The quality of the intermediate simplifications depends entirely on the order of ecol
operations used to create the base mesh. Hoppe describes a careful simplification algorithm
to generate these edge collapses. The agorithm, like the mesh optimization algorithm,
models fidelity explicitly as an energy function to be minimized. All edgesthat can be
collapsed are evaluated according to their effect on this energy function and sorted into a
priority queue. The energy function can then be minimized in a greedy fashion by

performing the ecol operation at the head of the queue, which will most decrease the energy

26

function. Since this may change how collapsing nearby edges will affect the energy function,
those edges are re-evaluated and resorted into the queue. This process repeats until
topological constraints prevent further smplification. The remaining edges and triangles
comprise the base mesh, and the sequence of ecol operations performed becomes (in reverse

order) the stream of vsplit operations.

Along with progressive meshes, Hoppe introduces a nice framework for handling surface
attributes of a mesh during smplification. Such attributes are categorized as discrete
attributes, associated with faces in the mesh, and scalar attributes, associated with corners of
the facesin the mesh. Common discrete attributes include material and texture identifiers;
common scalar attributes include color, normal, and texture coordinates. Hoppe also
describes how to model some of these attributes in the energy function, allowing normals,

color, and materia identifiersto guide the simplification process.

2.29. Lowand Tan

Model Simplification Using Vertex Clustering (1997)

Kok-Lim Low and Tiow-Seng Tan have invented a revised version of the Rossignac-
Borrel algorithm. Observing that the spatial binning invoked by the 3-D grid issimply a
form of vertex clustering, Low and Tan introduce a different clustering approach they call
floating-cell clustering. In this approach the vertices are ranked by importance, and a cell of
user-specified size is centered on the most important vertex. All vertices falling within the
cell are collapsed to the representative vertex and degenerate triangles are filtered out asin
the Rossignac-Borrel scheme. The most important remaining vertex becomes the center of
the next cell, and the processis repeated. By eliminating the underlying grid, floating-cell
clustering greatly reduces the sensitivity of the simplification to the position and orientation
of themodel. In addition, floating-cell ssimplification results vary less with cell size than the

results of the uniform-subdivision approach.

Low and Tan aso improve upon the criteria used for calculating vertex importance. Let
8 be the maximum angle between al pairs of edgesincident to avertex. Though Rossignac
and Borrel used 1/6 to estimate the probability that the vertex lies on the silhouette, Low and
Tan argue that cos (6/2) provides a better estimate.

27

Moreover, Low and Tan extend the concept of drawing degenerate triangles as lines,
calculating an approximate width for those lines based on the vertices being clustered and
drawing the line using the thick-line primitive present in most graphics systems. The
appearance of these linesis further improved by giving the line a normal to be shaded by the
standard graphics lighting computations. This normal is dynamically assigned at run-timeto

give the line acylinder-like appearance.

Low and Tan address the lack of afidelity metric in the original agorithm by noting that
the clustering size used to create an LOD can be related to the maximum number of pixels
each cluster can cover. This provides arough fidelity metric, allowing the user to specify

that no LOD will be used unlessit clusters only vertices within n pixels of each other.

28

CHAPTER 3

STRUCTURESAND METHODS

3.1 TheVertex Tree

The most fundamental data structure used by HDS isthe vertex tree. The vertex tree
spans the entire model, organizing every vertex of every polygon into one global hierarchy
that encodes all possible ssimplifications of the model. Internal nodes in the vertex tree
represent the merging of multiple vertices from the original model into asingle vertex. This
is the representative vertex, or repvert. A repvert is associated with each node in the vertex
tree. At theleaves of the tree, each node contains exactly one vertex from the original
model; in this case, that vertex is the node’s repvert. Each node in the vertex tree, then,
represents a subset of the vertices in the original model; the root node represents the vertices

of the entire model.

Section 1.4 definetblding a node as the process of merging the vertices represented by a
node together into the node’s repvert, anfiblding a node as the reverse process. Here the
terms are defined more carefully. For simplicity, assume that a node’s children must all be
folded before the node can be folded (since those children can first be folded recursively if
necessary, this assumption does not limit the power of the fold operation). This assumption
reduces the process of merging all the vertices represented by a node to the process of
merging the repverts of that node’s children. Similarly, unfolding a node assumes that the
node’s parent is unfolded, and splits a node’s representative vertex into just the few
representative vertices of the node’s folded children. Defined this way, fold and unfold are

local operations that make only incremental changes to the vertex tree.

(2) Nodes 1, 2, 7 mergeto form A (b) Thelocal vertex tree (c) Thetris and subtris of node A

Figure7: Trisand subtrisof anodein thevertex tree. The highlighted
node A representsthe clustering of nodes 1, 2, and 7.

When a node is folded, vertices are merged together and triangles change shape or
degenerate into lines or points. In fact, given the definitions of the fold and unfold operations
above, the same triangles are affected by the two dual operations. One set of triangles, called
the node’aris, will change in shape as a corner shifts during fold and unfold operations.
Another set of triangles, called the nodaibtris, will disappear when the node is folded and
reappear when the node is unfolded (Figure 7). This leads to the key observation behind
dynamic simplification:since a node’s tris and subtris do not depend on the state of other

nodes in the vertex tree, they can be computed offline and accessed very quickly at runtime.

Unfolded nodes are labeled active folded nodes are labeled inactive If the entire vertex
tree (excepting the root node) is labeled inactive to begin with, the definitions above ensure
that after any sequence of fold and unfold operations the active nodes will constitute a cut of
the vertex tree, rooted at the root node, called the active tree Folded nodes with active
parents are a special case; these nodes form the boundary of the active tree and are labeled
boundary(Figure 8). Since the location of the boundary nodes determines which verticesin
the original model have been collapsed together, the path of the boundary nodes across the
vertex tree completely determines the current simplification. Notice that by definition, only
boundary nodes can be unfolded and only active nodes whose children are all boundary

nodes can be folded. The optimizations of Chapter 5 will take advantage of this fact.

30

Vertex
Tree

Figure8: Thevertex tree, activetree, and boundary nodes.

Each node in the vertex tree includes the basic structure described below; explanations of
the individual fields follow.

struct Node {
Byt e
Byt e
NodeSt at us
Coord
Coord
fl oat
Tri
Tri
Node
Byt e
Node

path[];
dept h;

| abel ;
repvert;
center;
radi us;
*tris;
*subtris;
*parent;
nunchi | dren;
**chil dren;

* path: anarray of digitsthat specifies the path from the root of the vertex tree to the

node. The nth element of the array specifies which branch to take at level n.

 depth: the depth of the nodein the vertex tree’.

* label : the node’s statusactive, boundary, orinactive.

! Of coursenode- >dept h = ||node- >pat h ||, but storing the depth separately turns out to be

convenient for optimizing the r st Act i veAncest or () function (see Section 5.1).

31

* repvert: the coordinates of the node’s representative vertex. All vertices in

boundary and inactive nodes are collapsed to this vertex.

* center,radius: the center and radius of a bounding sphere containing all vertices in
this node. This bounding sphere will be used for determining if the node is within the

view frustum and for estimating its screenspace extent.

* tris: alist of triangles with exactly one corner in the node. These are the triangles

whose corners must be adjusted when the node is folded or unfolded.

* subtris: alist of triangles with an edge spanning two children of the node, or two
edges spanning three children of the node. These triangles will be filtered out if the
node is folded, and re-introduced if the node is unfolded.

* parent: a pointer to the parent of this node in the vertex tree.

* nunchildren,children: the number of, and pointers to, the children of this node.

3.2. TheActiveTriangleList

If the vertex tree represents every simplification of the model possible in the HDS
system, thective triangle list represents the current simplification being rendered. Such a
structure may seem unnecessary, for any simplification can be extracted from the vertex tree
by a series of unfold operations starting with the root node. In practice, however, creating
each frame’s simplification from scratch is cumbersome. The chief purpose of the active
triangle list is to take advantage of temporal coherence. Frames in an interactive viewing
session typically exhibit only incremental shifts in viewpoint, so the set of visible triangles
remains largely constant. In its simplest form, the active triangle list is just a sequence of
those visible triangles. Expanding a node appends some triangles to the active triangle list;
collapsing the node removes them. The active triangle list is maintained in the current
implementation as a doubly-linked list of triangle structures, each with the following basic

structure:

32

struct Tri {

Node *corners[3];
Node *proxi es[3] ;
Tri *prev, *next;

Thecor ner s field represents the triangle at its highest resolution, pointing to the three
nodes whose representative vertices are the original corners of thetriangle. Thecor ner s of
atriangle therefore remain fixed. The pr oxi es field represents the triangle in the current
simplification, pointing to the first active ancestor of each corner node (Figure 9). In other
words, the pr oxi es field of atrianglein the active triangle list represents the three vertices
into which the cor ner s of the triangle have been merged. The first active ancestor need not
be a proper ancestor; if the corner node N is labeled active, the first active ancestor of N is
just N. Boundary nodes are considered active for the purposes of the first active ancestor
test. If the node N isinactive, itsfirst active ancestor is the boundary node on the path from
N to theroot. Note that the definitions of the fold and unfold operations ensure that exactly
one boundary node will exist along the path from each inactive node to the root.

(a) Proxies = {1,3,5} (b) Proxies = {A,3,5} (c) Proxies= {A,3,B} (d) Proxies = {l,3,B}

Figure9: Cornersand proxies. The proxiesof atriangle arethefirst active ancestors of
itscorners. Herethe proxiesof triangle 1-3-5 shift asnodesfold and unfold.

33

3.3. Methods

The fundamental methods associated with the active triangle list are addTri () and
removeTri (). Asthe namesimply, these operations add or remove atriangle from the
active triangle list. Using a doubly-linked list with sentinels before and after the list
simplifies this process considerably:

// global dunmy structures start & end active triangle list:
Tri *startTrilList, *endTriList;

addTri (Tri *T)
// append to end of |ist
T->next = endTri Li st;
T->prev = endTri Li st->prev;
T->prev->next = T,

renoveTri (Tri *T)

// sentinels ensure prev & next fields won'’t be NULL
T->next->prev = T->prey;
T->prev->next = T->next;

Note that this scheme maintains the active triangle list entirely in place. All trianglesin
the model are kept in an array with their prev and next fieldsinitialized to NULL. As
addTri () andrenoveTri () arecaled, they thread the doubly-linked list through the array
of triangles. Though simple, this approach is less than optimal with regard to memory access
patterns. after along series of addTri () andremoveTri () cals, thelinked listislikely to
hop around the array of triangles seemingly at random. If the entire array does not fit into
cache (or even into main memory), this can greatly degrade performance. Chapter 9 will

discuss possible optimizations to avoid this problem.

The fundamental methods associated with anode in the vertex tree are f ol dNode() and
unf ol dNode() . These functions add or remove the subtris of the specified node from the

active triangle list and update the proxies of the node’s tris:

f ol dNode (Node *N)
N>l abel = boundary;
foreach child C of N
// all children should be | abel ed boundary; change to inactive
if (C>label == boundary)
C->l abel = inactive;
el se
// validity check:
reportError();
foreach triangle T in N>tris
// update tri proxies
foreach corner ¢ of {1, 2,3}
T->proxies[c] = firstActiveAncestor(T->corners[c]);
foreach triangle T in N->subtris
// renpve subtris fromactive |ist
removeTri (T);

unf ol dNode (Node *N)
if (N->parent != boundary)
// validity check:
reportError();
foreach child C of N
C->l abel = boundary;
N>l abel = active;
foreach triangle T in N>tris
// update tri proxies
foreach corner ¢ of {1, 2,3}
T->proxies[c] = firstActiveAncestor(T->corners[c]);
foreach triangle T in N->subtris
// add subtris to active |ist
addTri (T);

Note that a properly debugged system should only call unf ol dNode() on boundary nodes
and should never call f ol dNode() on anode whose children are not boundary nodes, so the

validity checks above can be removed for greater speed.

35

CHAPTER 4

VIEW-DEPENDENT SIMPLIFICATION

The structures and methods described provide a framework for dynamic simplification,
since nodes can be folded and unfolded and triangles added and removed fast enough to
respond to run-time events. Any criterion for run-time simplification may be plugged into
this framework; each criterion takes the form of afunction to choose which nodes are folded
and unfolded each frame.

Dynamic simplification in turn provides a framework for view-dependent simplification,
since these criteriamay use data such as the precise location and orientation of the viewpoint.
Traditional LOD, by contrast, uses only a general eye-to-object distance metric, or at best an
approximate screen-space extent for the object.

The sections below describe three view-dependent criteria supported by the prototype
implementation of HDS: a screenspace error threshold, a silhouette test, and atriangle
budget.

4.1. ScreenspaceError Threshold

(a) The displayed image, with triangles highlighted. (b) Overhead view, with view frustumin yellow.

Figure 10: View-dependent simplification using a screenspace error threshold of 2%.
Thefull resolution isused near the viewer and smoothly degrades as the model recedes
into thedistance. Terrain model courtesy Herman Towles, Sun Microsystems.

The underlying philosophy of HDS is to remove triangles that are not important to the
scene. Since importance usually diminishes with size on the screen, an obvious run-time
strategy is to collapse vertices that occupy a small amount of the screen. To formulate this
strategy more precisely, consider anode in the vertex tree. Folding this node, which
represents multiple vertices in the original model, clusters those vertices together into the
node’s repvert. The error introduced by collapsing the vertices can be thought of as the
maximum distance a vertex can be shifted during the fold operation, which equals the length
of the vector between the node’s repvert and the vertex farthest from the repvert in the
cluster. The extent of this vector when projected onto the screensis¢hespace error of
the node. By unfolding exactly those nodes whose screenspace error exceeds a user-
specified thresholti HDS enforces a quality constraint on the simplification: no vertex shall

move by more thahpixels on the screen.

Determining the exact screenspace extent of a vertex cluster can be a time-consuming
task, but a conservative estimate can be efficiently obtained by associating a bounding
volume with each node in the vertex tree. The current implementation uses bounding
spheres, which allow an extremely fast screenspace extent test but often provide a poor fit to

the vertex cluster. The functioindeSi ze() tests the bounding sphere of a node and returns

37

its extent on the screen as a fraction of viewport size. The recursive procedure
adj ust Tree() usesnodeSi ze() inatop-down fashion, evaluating which nodesto fold and
unfold. Nodes with extent greater than t are unfolded and smaller nodes are folded:
adj ust Tree (Node *N)
size = nodeSi ze(N);
if (size >= threshol d)
if (N->label == active)
foreach child C of N
adj ust Tree(O ;
else // N> abel == boundary
unf ol dNode(N) ;

else // size < threshold
fol dSubtree(N);

Therecursive function f ol dSubt r ee() , as the name suggests, folds the entire subtree
rooted at node N:

fol dSubtree (Node *N)
i f (node->label == active)
foreach child C of N
fol dSubtree(C);
f ol dNode(C);

4.2. Silhouette Preservation

Silhouettes and contours are particularly important visual cues for object recognition.
Detecting nodes along object silhouettes and allocating more detail to those regions can
therefore disproportionatel y increase the perceived quality of asimplification [Xia96]. A
conservative but efficient silhouette test can be plugged into the HDS framework by adding
two fields to the Node structure: coneNor mal isavector and coneAngl e is afloating-point
scalar. Thesefields together specify a cone of normals [Shirman 93] for the node, which
bounds all the normals of all the triangles supported by the node. At run time aviewing cone
is created that originates from the viewer position and tightly encloses the bounding sphere of
the node (Figure 11). Testing the viewing cone against the cone of normals determines
whether the node is completely frontfacing, completely backfacing, or (if any normal in the
cone of normalsis orthogonal to any direction contained within the viewing cone) potentially

on the silhouette.

38

g . viewConeAngle (3)

coneNormal e ;.."/
T e
i/ coneAngle (o) ~ } G>

(&) A node containing four triangles, shown with its (b) The viewing cone originates from the viewer and
bounding sphere, and the node’s cone of normals. tightly encloses the node’s bounding sphere. The
angle betweeN e andNy;qy is denotedd.

Figure1l: Silhouette preservation. If any vector within the viewing coneisat right
anglesto any vector within the cone of nor mals, the node may be on the silhouette.

test Sil houette(Node *node, Coord eyePt)
o = node- >coneAngl e;
Neone = node->coneNor mal ;

B = cal cVi ewConeAngl e(eyePt, node);
Njiew = cal cVi ewConeNor nal (eyePt, node);
0 = COS'l(Nyiew * Neone)
if (6- a-B>12)

return FrontFacing;
if (6+a+ B <12

return BackFaci ng;
return OnSil houette;

Silhouette preservation dovetails nicely with the screenspace error metric approach
presented above: the operation determines which nodes may be on the silhouette, and these
nodes are then tested against atighter screenspace error threshold (Ts) than interior nodes
(T)). Also, nodesthat t est Si | houet t e() evaluates as entirely backfacing can be collapsed,
aggressively simplifying portions of the model oriented away from the viewer. Thisiscalled
backface simplification. Figure 12 illustrates silhouette preservation and backface

simplification using asimple model of a sphere. Theadj ust Tree() operation iseasily
modified to incorporate this test:

39

adj ust Tree(Node *N)
size = nodeSi ze(N);
result = testSil houette(N);
if (result == OnSil houette)
test Threshold = Ty

else if (result == FrontFacing)
test Threshold = T;;

else // result == BackFacing
fol dSubtree(N);
return;

if (size >= testThreshol d)
if (N>l abel == active)
foreach child C of N
adj ust Tree(O);
else // N->label == boundary
unf ol dNode(N) ;
el se // size < test Threshol d
fol dSubtree(N);

Note that hierarchical backface culling falls out of the silhouette preservation test if
polygons of backfacing nodes are not rendered [Kumar 96].

(a) Original resolution (8,192 faces)

(b) 1% error threshold, backface (¢) 1% silhouette error threshold, 20%
simplification enabled (3,388 faces) interior error threshold (1,950 faces)

Figure 12: Silhouette preservation and backface smplification.

40

4.3. Triangle-Budget Simplification

The screenspace error threshold and silhouette test allow the user to set a bound on the
fidelity of the simplified scene, but often a bound on the complexity (and thus rendering
time) isdesired instead. Triangle budget simplification allows the user to specify how many
triangles the scene should contain. HDS then minimizes the maximum screenspace error of
all boundary nodes within this triangle budget constraint. The intuitive meaning of this
process is easily put into words: “Vertices on the screen can move as fiaeds from

their original position. Using no more thartriangles, minimize.”

The current system performs triangle budget simplification using a priority queue of
boundary nodes, sorted by screenspace error. The node N with the greatest error is unfolded,
removing N from the top of the queue and inserting the children of N back into the queue.
This process iterates until unfolding the top node of the queue would exceed the triangle
budget, at which point the maximum error has been minimized. The simplification could
further refine the scene by searching the priority queue for the largest nodes that can still be
unfolded without violating the triangle budget, but this is unnecessary in practice. The initial
minimization step works extremely well on all models tested, and always terminates within a
few triangles of the specified budget. Pseudocode for this procedure is straightforward, using
a standard heap to implement the priority queue:

budget Si npl i f y(Node *r oot node)

// Initialize priority queue Qto contain just the rootnode
Heap *Qroot node);

whil e (Q >topnode->nsubtris < tribudget)
unf ol dNode(Q >t opnode) ;
// insert children, sorted by screenspace error:
foreach child C of Q >topnode
Q >insert(0O;
tribudget = tribudget - Q >topnode->nsubtris;
Q >renoveTopnode();

Note that simply bounding the number of triangles in a scene does not guarantee a
constant frame rate on most modern graphics hardware. Triangle count directly affects the
amount of geometric computation, toansformation cost, of a scene, but equally important
is thefill rate, or speed with which the graphics hardware can write pixels to the framebuffer.

Since large triangles require filling many more pixels than small triangles, overall frame rate

41

depends not only on the number but also the size of the triangles rendered. Models complex
enough to warrant polygonal simplification techniques, however, tend to consist mainly of
small polygons. Chapter 7 will demonstrate that fill rate is not a rendering bottleneck for any
sizable model tested in HDS. In practice, then, regulating the number of triangles provides

good control and a nearly constant frame rate.

42

CHAPTERS

OPTIMIZING THE ALGORITHM

An initial naive implementation of the HDS algorithm ran at 10-20 frames per second on
small models, no larger than 20,000 triangles &r te final system has been demonstrated
on models more than two orders of magnitude larger. Four kinds of optimizations together
made this possible: exploiting temporal coherence, using visibility information, streamlining
the math, and parallelizing the algorithm.

5.1. Exploiting Temporal Coherence

Interactive viewing sessions exhibit a high degree of frame-to-frame coherence in the
position of the viewer, and HDS takes advantage of this fact throughout. The design of the
active triangle list, for example, is based on the assumption that relatively few triangles will
be added to, or removed from, the scene each frame. An alternative would be to generate the
list of visible triangles anew each frame by traversing from the active nodes of the vertex
tree, but this is wasteful if most triangles remain visible from one frame to the next. As
Figure 13 shows, less than 2.5% of the triangles were added, deleted, or adjusted each frame
during a typical path through the Torp model at a 1% screenspace error threshold, and less
than 1.2% of the triangles were added, deleted, or adjusted each frame with a 5% error
threshold. The active triangle list exploits temporal coherence by storing the unchanging
triangles from frame to frame and supporting efficient add, delete, and update operations for

the rest.

2 0n an SGI Onyx computer with InfiniteReality graphics. Chapter 7 has details.

Per cent of
Total Triangles
2
\
[
|

& AR 4 .
0.4% A iy
» - g R -+

0 100 200 300 400 500 600 700

3.0%
2.5%
38
5 D 2.0% =
= 8
§ = 15% 4 £ 4
a g 1.0% . i £ 41
0.5% f‘ﬁi ¥
00%) = et ‘ |
0 100 200 300 400 500 600 700
Frame Number

| - TrianglesAdded - Triangles Deleted ~ Triangles Adjusted|

Figure 13: Trianglesadded, deleted, and adjusted during a 700-frame path through
the 699,000-triangle Torp model, using screenspace error thresholds of 1% (top)
and 5% (bottom). Thispath isused for all plots presented in thisdissertation.

The vertex tree traversal can also profit from temporal coherence. Just as few triangles
change status from frame to frame, few nodes in the vertex tree change status from frame to
frame. Most nodes |abeled Inactive this frame will remain Inactive next frame; most Active
nodes will remain Active; most Boundary nodes will remain Boundary. Under these
conditions the adj ust Tree() function isinefficient, visiting many nodes unnecessarily. The
root node (for example) will typically be active the entire viewing session, so why test it each
frame? Oneimprovement would be to modify adj ust Tree() to evaluate only boundary
nodes and their parents, skipping quickly over the magjority of unchanging nodes, but this still
suffers from the disadvantage that those nodes have to be loaded into memory, if only to
check their status.

A better scheme isto traverse, not down the vertex tree as adj ust Tree() does, but
across the vertex tree along the path formed by boundary nodes. In this way active nodes far
from the action are never considered and need not even be resident in memory. This path,
called the boundary path, is maintained as a doubly-linked list by adding pr ev and next

44

fields to the Node structure. The function adj ust Pat h() traversesthe boundary path,

folding and unfolding nodes as necessary”:

adj ustPath ()

Node *current; // node currently being tested
Node *parent; // parent of current node
Node *| ast parent; // parent node last iteration

/'l beforepath and afterpath are dunmy nodes bracketing the path
current = beforepat h->next;

while (current->next != afterpath)
current = current->next
parent = current->parent;
if (parent != |astparent)
| ast parent = parent;
// check parent’s size first
i f (nodeSize(parent) < threshold)
// parent falls below threshold; fold parent
f ol dSubt ree(parent);
current = parent;
conti nue;
// parent is fine, check current node
i f (nodeSize(current) >= threshol d)
// current node too large; unfold
unf ol dNode(current);

Thistraversal scheme requires modifying the f ol dNode() and unf ol dNode() functions

to maintain the boundary path:

% Note that this pseudocode uses the nodesi ze() function for clarity, but the actual

implementation uses the streamlined expression described in section 5.4

45

f ol dNode (Node *N)
N>l abel = boundary;
foreach child C of N
// children shoul d be | abel ed boundary; change to inactive
C->l abel = jnactive;
foreach triangle T in N->tris
// update tri proxies
foreach corner c¢ of {1, 2,3}
T->proxies[c] = firstActiveAncestor(T->corners[c]);
foreach triangle T in N->subtris
// renpve subtris fromactive |ist
removeTri (T);
N->prev = N->firstChild->prev;
N->next = N>l ast Chi | d- >next;
N- >pr ev- >next N;
N- >next - >prev N;

unf ol dNode (Node *N)
Node *pred = N >prev;
Node *succ N >next ;

foreach child C of N
C- >l abel = boundary;
C->prev = pred;
pred->next = C
pred = C
N>l abel = active;
foreach triangle T in N>tris
// update tri proxies
foreach corner ¢ of {1, 2,3}
T->proxies[c] = firstActiveAncestor(T->corners[c]);
foreach triangle T in N->subtris
// add subtris to active |ist
addTri (T);
pred- >next = succ;
succ->prev = pred;

Another frequent operation that can take advantage of coherence isthe
firstActiveAncestor () function, used heavily by f ol dNode() and unf ol dNode() .
Fi rst Acti veAncest or (N) returnsthe nearest ancestor of node N which is labeled active or

boundary. A simple implementation is straightforward:

46

Node *firstActiveAncestor (Node *N)
Node *tmp = N

while (tnp->label == Inactive)
tnmp = tnp->parent;
return tnp

However, if the node N lies far below the boundary path in the vertex tree, every call to
firstActiveAncestor (N will traverse the same path from N to itsfirst active ancestor.
From frame to frame, this ancestor is likely to remain fixed; when it does change, the first
active ancestor of a node tends to move up or down the tree by only anode or two. The
firstActiveAncestor (N) operation can exploit this by storing the result of each search and
starting the next search from the previous result. The modified function uses a new

ancest or field to the Node structure, and uses the pat h field to guide the search down the

tree along the correct path:
Node *firstActiveAncestor (Node *N)
Node *tnmp = N->ancestor; // the current node being exan ned
Byt e whi chchil d; // which child leads fromtnp to N?
if (tnp->label == boundary or tnp ==
// previous FAA still on the boundary; return it
return tnp;
else if (tnp->label == Inactive)
// previous FAA | nactive, search up the tree
while (tnp->label == Inactive)

tnp = tnp->parent;
N- >ancestor = tnp;
return tnp
el se
// previous FAA active, search down tree for boundary node
do
if (tnp->label == boundary or tnp ==
N- >ancestor = tnp;
return tnp
whi chchild = N->pat h[tnp->dept h];
tnp = tnp->children[whichchild];
| oop
N- >ancestor = tnp;
return tnp

5.2. Vighbility: Accelerating Rendering

For many applications, most of the model is invisible most of the time. In architectural

CAD, for example, a user might want a walkthrough, steering the viewpoint interactively

a7

through the interior of avirtual building. Since the horizontal field of view in such an
application istypically 90° or less, aquarter of the floorplan or lesswill be visibleto a
viewer from the center of the model. A limited vertical field of view restricts the visible
portion of the model still further. The process of quickly identifying and rejecting objects
outside the visible field of view is called view-frustum culling. In applications such as
architectural walkthroughs, view-frustum culling can greatly decrease rendering time by not

rendering invisible portions of the model.

O Visible
O Invisible
{::I Irrelevant

Figure 14: Visble, invisible, and irrelevant nodes. Invisible nodeslie outside the view
frustum. Irrelevant nodes areinvisible and support no vertices of visibletriangles.

Enabling efficient view-frustum culling in HDS requires modifying the active triangle list
dightly. The problem isthat the active triangle list as described exploits temporal coherence
but not spatial coherence. Triangles are added to and removed from the list in a haphazard
fashion as nodes are folded and unfolded, so triangles near each other in the model are
unlikely to be near each other in the active triangle list. Without spatial coherence, view-
frustum culling can only be done on a per-triangle basis. Unfortunately, determining the
visibility of an individual triangle takes as long as rendering the triangle, so applying view-
frustum culling techniques to every triangle in the model fails to speed up rendering.

The solution isto impose spatial coherence by splitting the active triangle list into many
lists, each representing a portion of the complete model. When unfolding a node creates a

triangle, it is added to whichever list corresponds to the portion of the model containing the

triangle. View-frustum culling is applied to the lists themselves, or rather to the portions of

48

the model they represent. The rendering process tests a bounding volume associated with
each list and skips any lists determined to be invisible. Organizing the lists and bounding
volumes hierarchically can speed up this process even further by allowing the rendering
process to reject large chunks of the scene without examining the individual lists containing

the triangles that constitute portions of those large chunks.

The vertex tree provides aready-made hierarchy for these multiple active triangle lists.
Each node in the vertex tree represents a subset of the verticesin the model, and for every
triangle, one or more nodes exist that represent all three of that triangle’s corners. Of these
nodes, the triangle’sull node is the farthest from the root of the vertex tree. The cull node is
invisible if its bounding volume lies outside the view frustum. Since that volume bounds all
three corners of the triangle, the triangle need not be rendered if its cull node is invisible.
This property holds hierarchically: the descendants of an invisible node are invisible, and no

triangles having the node or a descendant as a cull node need be rendered.

A naive implementation of view-frustum culling, then, simply involves creating an active
triangle list for every node of the vertex tree and modifyimig! dNode() to add each
triangle to the active triangle list of its cull node. Rendering the scene then involves a top-
down traversal of the active tree, testing each node against the view frustum. If the node is
visible, its active triangle list is rendered and its children traversed in turn. If the node is
invisible, nothing is rendered and traversal of that branch of the vertex tree terminates. This
scheme enables efficient visibility culling, but sacrifices some of the advantages of temporal
coherence, sinoavery visible active node must be visited every frame. On complex models
the overhead of traversing a deep active tree undermines the benefit of rendering fewer

triangles, and rendering the hierarchy of lists takes longer than rendering a single global list.

In practice a hybrid approach works well. Cull nodes are restricted to high levels of the
vertex tree, providing a coarse-grained culling without the overhead of a full active tree
traversal. The resulting system thus exploits both visibility culling and temporal coherence.
For all the results presented in this thesis, cull nodes were restricted to nodes sfdepth
more sophisticated approach might be to restrict cull nodes to those nodes representing

vertices supporting more than some particular number of triangles.

49

53. Vighility: Accelerating Simplification

Distributing the active list across multiple cull nodes speeds up rendering by quickly
discarding triangles contained by invisible nodes. HDS may still need to examine such
nodes, however, sincethetris andsubt ri s fields of an invisible node may refer to visible
triangles (Figure 14). Thisfact givesriseto astronger condition: some nodes are not only
invisible but aso irrelevant. Irrelevant nodes are defined as invisible nodes that support no
vertices of visible triangles. Folding or unfolding an irrelevant node therefore cannot
possibly affect the scene, and the ssimplification traversal can save time by not visiting these
nodes. In awalkthrough session, the vast majority of invisible nodes are usualy irrelevant,
so testing for irrelevance provides a significant speedup. An exact test is difficult, but a
conservativetest for irrelevant nodesis easily constructed by adding a cont ai ner field to the
Node structure. The container node C of anode N is the smallest node that contains every tri
and subtri of N and N’s descendants. C thus contains every triangle that might be affected by
operations on the subtree rooted at N. If C is invisible, N is irrelevant and can be safely

ignored by the simplification traversal.

5.4. Streamlining the Math

,—F"'ff
e
.:—'-'_'-- il -
L'-f_"::_'_ Q0
— —I! i
— -
— "
L% e ,f
e
"4'.' E E" -_\--\-\--_\'-_\-\""—\-______

Figure 15: Calculating the screenspace extent of a node. The node is approximated by
abounding sphereof radiusr centered at c. The eyepoint iseand thefield of view is ¢.

50

Some of the geometric operationsin HDS are quite complex; appropriate use of
approximations and careful attention to implementation details can greatly streamline the
computation involved. For example, the nodeSi ze() function from Section 4.1 finds the
extent of a cluster of vertices when projected onto the screen. An exact solution would
presumably involve projecting the vertices (or their convex hull) and comparing the resulting
screen coordinates, a dauntingly expensive operation. Since nodeSi ze() istypically called
thousands of times per frame, an approximate solution based on bounding spheresis used
instead. Figure 15 shows a sphere with center ¢ and radiusr, seen from the eyepoint e with
field-of-view angle ¢. The fraction of viewport F occupied by the sphereis estimated by:

r

" e-d@n@2)

(Equation 1)

Note that this approximation assumes that the sphere liesin the center of the field of
view, and dlightly underestimates F for nodes near the edges of the viewport. Already much
simpler than the exact calculation, thisfairly terse expression can be optimized still further in
context. Thefunction adj ust Tree(), for instance, compares each node’s screenspace extent

F to a user-specified threshdld This amounts to evaluating the inequality:

F>t (Equation 2)
which reduces to:

r > t|c - ¢ftan(p/2) (Equation 3)
Squaring both sides and dividing by %#/2) yields:

r2cot®(p/2)= t*c - ¢’ (Equation 4)

The cof(¢ /2) term is precalculated at the beginning of each frame. This expression is
well suited for rapid evaluation; the lack of division or square root operations makes it
particularly palatable. Fixing the field-of-view angle throughout the viewing session enables
a further optimization: compute and store the enfitet(¢ /2) term for each node, instead
of just the radius of the node’s bounding sphere. Though these rearrangements may seem
minor, the final expression evaluates much faster. As Figure 16 shows, this optimization

alone more than tripled the speed of the simplification process in practice.

51

= Using Equation 1 + Using Equation 4\

250

j A YA i

0 100 200 300 400 500 600 700
Frame Number

Figure 16: Plot of time spent in adj ust Tree() using Equation 1 versus Equation 4.
Hereisthe modified adj ust Tree() function, with silhouette tests omitted for clarity.
Thet hr eshol d2 term, as the name suggests, holds the user-specified threshold, squared, and

the new r 2cot 2 field of the Node structure stores r’cot?(¢ /2) for the node. Modifying the

adj ust Pat h() function along the same linesis straightforward.

adj ust Tree (Node *N)

di stance2 = (N->center[X] — eyept[X]) 2+
(N->center[Y] — eyept[Y]) 2+
(N->center[Z] — eyept[Z]) 2
i f (N->r2cot2 >= threshold2 * distance?2)
i f (N->label == active)

f oreach child C of N
adj ust Tr ee(C);
else // N->label == boundary
unf ol dNode(N);
else // node size is bel ow threshol d

fol dSubtree(N);

5.5. Parallelization: Asynchronous Simplification

An important strategy for speeding up any agorithm isto paralldize it, distributing the
work over multiple processors. Computer graphics applications most commonly accomplish
this by performing the major stages of the rendering computation concurrently in a pipeline
fashion. A traditional level-of-detail system might be divided into SELECT and RENDER
stages: the SELECT stage decides which resolution of which objects to render and compiles
them into adisplay list, which the RENDER process then renders. Meanwhile, the SELECT

52

process prepares the display list for the next frame [Funkhouser 93, Rohlif 94]. If Sisthe
time taken to select levels of detail and R is the time taken to render aframe, performing the
two processes as a pipeline reduces the total time per frame from R+S to max(R,S).

HDS divides naturally into two basic tasks, SIMPLIFY and RENDER. The SIMPLIFY
task traverses the vertex tree, folding and unfolding nodes as needed. The RENDER task
cycles over the active triangle list rendering each triangle. Let the time taken by SIMPLIFY
to traverse the entire tree be S and the time taken by RENDER to draw the entire active list
be R. The frame time of a uniprocessor implementation will then be R+S, and the frame time
of a pipelined implementation will again be max(R,S). The rendering task usually dominates
the simplification task, so the effective frame time often reducesto R. The exception is
during large shifts of viewpoint, when the usual assumption of temporal coherence fails and
many triangles must be added and deleted from the active triangle list. This can have the
distracting effect of slowing down the frame rate exactly when the user speeds up the rate of

motion.

Asynchronous simplification provides a solution: let the SIMPLIFY and RENDER tasks
run asynchronously, with the SIMPLIFY process writing to the active triangle list and the
RENDER processreading it. This decouples the tasks for atotal frame time of R,
eliminating the slowdown artifact associated with large viewpoint changes. When the
viewer's velocity outpaces the simplification rate in asynchronous mode, the SIMPLIFY
process simply falls behind. Typically, this results in a temporary coarsening of the scene
quality. Under HDS, the portions of the scene near the viewer are refined to high detail
whereas distant portions are simplified to coarse detail. If the user moves forward too
quickly for the SIMPLIFY process to keep up, the viewpoint will leave the highly detailed
region behind and move into a coarsely represented region. The scene rendered for the
viewer remains coarse in quality until the SIMPLIFY process catches up, at which point the
scene gradually refines back to the expected quality. This graceful degradation of fidelity is
less distracting than sudden drops in frame rate.

53

CHAPTERG

CONSTRUCTING THE VERTEX TREE

The previous chapters have described the vertex tree and how it enables dynamic view-
dependent simplification, but have left open the question of how the vertex treeis
constructed in thefirst place. Thisisan important issue, for the care with which the vertex
tree is constructed directly affects the quality of the simplifications extracted fromit. The
vertex tree is completely determined by the order in which vertices are grouped. Once the
hierarchical grouping of vertices is established, the matter of calculating subtris, container
nodes, and so on becomes a purely mechanical process. The problem, then, is how to

perform this hierarchical vertex clustering.

Possible algorithms for clustering vertices form a spectrum, ranging from fast, smple
approaches whose resulting simplifications have moderate fidelity to slower, more
sophisticated methods with superb fidelity. The choice of algorithm for constructing the
vertex tree is heavily application-dependent. In a design-review setting, CAD users may
want to visualize their revisions in the context of the entire model several times a day.
Preprocessing times of hours are unacceptable in this scenario. On the other hand, a
walkthrough of the completed model might be desired for demonstration purposes. Hereit
makes sense to use a slower, more careful algorithm to optimize the quality of simplifications

and prevent any distracting artifacts.

6.1. Simplest: Spatial Subdivision

One of the simplest techniquesisto classify the vertices of the model with a hierarchical
Space-partitioning structure. Recall the spatial binning approach introduced by Rossignac
and Borrel, which clustered vertices according to a uniform grid [Rossignac 92]. Thefirst

versions of HDS used a straightforward extension of the Rossignac-Borrel algorithm to

construct the vertex tree, clustering vertices in atop-down fashion with an octree. Inthis

method vertices are first ranked by importance using local criteria such as edge length and
curvature. The root node of the octreeis an axis-aligned cube large enough to contain every

vertex in the model. Beginning with this root node, the most important vertex within each

node is chosen as that node’s repvert. The node is then divided exactly in half along the X,
Y, and Z directions into 8 cubical subnodes (hence the name “octree”). The vertices are then
partitioned among the node’s eight children and the process is recursively repeated for any
subnode with more than one vertex. In this way vertices are clustered roughly according to
proximity. Neighboring vertices are likely to get clustered near the leaves of the tree,
whereas distant vertices tend to merge only at higher levels of the tree.

Octree Tight Octree
| @ | PEODEDHEEERENGD @ [EEErecerErTEEn
1 o~
P & @ R g @ = e == ==
i v e R T s OEOEOEE: OO0, EREE:
@ @
El & @
@ TN @@
] 3| 8@
() | N E A EE [| 8 IS0 B DT VEVE R
Y @ @ I . . 2 o i) -
o [EEREER] [(BE0] [BEED] . [[(e6)] [aEs)]
e @ OSSR AST IS ARSI SIS m_ ALEZREL AN LS AT TS e At i
* | % — A7
@ @ =
@ | N E A EE | 8 IS0 B DT VEVE R
2 el @ T S | v 3
o [PEEEEE] [BER] [EaEa] [EeccealkcalEzca)
I:i} -r-:l:-‘li_lr:l- +I+II+T+'!L
o ® es)|EEES BT - meaEEREEEEERRE
1t 2 re ey s, " R
@ @ g | 2o AR BB BB - E RO
L) =

Figure 17: A 2-D example of octree vs. tight-octree clustering. Notethat thetight
octree produces two fewer nodes than the octree even on this small example.

55

Unless the vertices of the model are uniformly distributed, the straightforward approach
just described will result in unbalanced octrees with more nodes than necessary, which
wastes storage space and traversal time. CAD models are often locally dense but globally
sparse, consisting of highly detailed components separated by large areas of low detail or
empty space. In this situation a more adaptive partitioning structure is desired. Thetight
octree isamodified octree in which each node is tightened to the smallest axis-aligned cube
that encloses the relevant vertices before the node is subdivided (Figure 17). This approach
seems to adapt very well to CAD models, and most results presented in this thesis used tight-

octree spatial subdivision to cluster vertices.

Top-down spatial subdivision clustering schemes possess many advantages. Their
simplicity makes an efficient, robust implementation relatively easy to code. In addition,
gpatial partitioning of verticesistypicaly very fast, bringing the preprocess time of even
large models down to manageable levels. Preprocessing the 700,000-polygon torpedo room
model, for example, takes only 143 seconds using a tight-octree clustering scheme. Finaly,
spatial-subdivision vertex clustering isinherently very general. No knowledge of the
polygon mesh is used; manifold topology is neither assumed nor preserved. Inthe CAD
domain, meshes with degeneracies such as cracks, T-junctions, and missing polygons are
regrettably common. Spatial-subdivision vertex clustering schemes will operate despite the
presence of degeneracies incompatible with more complex schemes.

6.2. Prettiest: Simplification Envelopes, Progressive Mesh Algorithm

On the other end of the spectrum, some very sophisticated simplification agorithms
could be used to build the vertex cluster tree. Section 2.2.7 described the Smplification
Envel opes approach of Cohen et al., which uses offset surfaces of a polygona mesh bounded
to adistance £ of the mesh and modified to prevent self-intersection. By generating asimpler
triangulation of the surface without intersecting the simplification envel opes, the authors
guarantee a simplification that preserves global topology and varies from the original surface
by no more than £[Cohen 96]. Simplification envelopes could be used to construct the
vertex treein HDS by applying successively larger values of &, and at each stage clustering

those vertices that do not cause the mesh to intersect the envelopes. The value of €used to

56

generate each cluster would then become the error metric associated with that node in the
vertex tree. The resulting simplifications should have excellent fidelity. Unfortunately, itis
not clear how to extend simplification envel opes to allow merging between different objects,
or to allow drastic topology-discarding collapse operations at high levels of the tree.

Hoppe describes an optimization approach that creates a series of edge collapses for the
Progressive Meshes representation [Hoppe 96]. The stream of edge collapse recordsin a
progressive mesh contains an implicit hierarchy that maps directly to the HDS vertex tree.
Each edge collapse corresponds to a node in HDS with two children and one or two subtris.
A progressive mesh could thus be viewed without modification in an HDS system, though
this has disadvantages. A progressive mesh never collapses more than two vertices together
at atime, which may result in an unnecessarily deep vertex tree. A modified optimization
step that could collapse multiple vertices seems possible, and would address this problem.
Also, progressive meshes collapse only vertices within a mesh, so separate objects never
merge together. Finally, restricting edge collapses to those that preserve the manifold
topology of the mesh limits the amount of simplification possible®. For these reasons,
directly embedding a progressive mesh into the HDS vertex tree does not lend itself to drastic

simplification, and may not be optimal for visualizing complex CAD models.

However, Hoppe’s method of maintaining discrete and scalar attributes as vertices are
collapsed extends directly to HDS, and is used without modification in the current

implementation.

6.3. A Hybrid Approach

Sophisticated, high-fidelity methods such as the simplification envelope and progressive
mesh approaches can be combined with top-down spatial subdivision to allow drastic
simplification and merging of objects. Since neither approach allows vertices from different
meshes to merge, the result of either on a collection of objects in a scene is a collection of
vertex trees. When the vertex tree produced by the high-fidelity algorithm for each object is

* For example, our implementation could not reduce the 69,451-triangle bunny model beyond

520 triangles.

57

judged adequate, the spatial subdivision algorithm unifies this “vertex forest” into a single
tree. A tight octree or similar structure merges nearby vertex clusters, without regard to
topology or source mesh. The final vertex tree exhibits both high fidelity (at low levels of

the tree) and drastic simplification (at high levels).

The simplifications used to illustrate silhouette preservation as a run-time criterion were
generated with this type of hybrid approach (see Figure 12). The nature of the silhouette test
made a hybrid approach more attractive than the usual tight-octree clustering for two reasons.
First, effective silhouette preservation requires clustering vertices of coplanar regions in
preference to clustering vertices across a crease in the mesh. This means merging vertices so
as to minimize the normal cones of the resulting vertex cluster rather than merging vertices
according to simple proximity. Second, the curvature (and therefore silhouette) of a non-
manifold mesh is not well defined. To preserve manifold topology, only certain adjacent

vertices in the mesh should be collapsed.

These considerations led to a two-stage clustering algorithm. First, a progressive mesh-
like algorithm was applied, in which edges were collapsed so as to chosen to minimize the
resulting normal cones and to maintain a balanced tree. The vertex resulting from each edge
collapse was simply chosen to be the midpoint of the collapsed edge. Collapses that resulted
in normal cone angles greater than’®8re disallowed. When the model could be
simplified no further with these restrictions, a tight octree was applied to the remaining

vertex clusters to produce a single HDS vertex tree.

58

CHAPTER 7

RESULTSAND ANALYSIS

7.1. The Platform

Unless otherwise noted, all results reported in this thesis were obtained on afour-
processor Silicon Graphics Onyx? computer with 195 Mhz MIPS R10000 processors, 1152
megabytes of main memory, 4 megabytes of secondary cache, and InfiniteReality graphics.

7.2. TheModds

Model Category Vertices Triangles
Sphere Procedural 4,098 8,192
Bunny Scanned 35,947 69,451
Sierra Terrain 81,920 162,690
Cassini Aerospace CAD 189,615 415,257
AMR Maritime CAD