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ABSTRACT 

 

Derek Merck:  Model Guided Rendering for Medical Images 

(Under the direction of Stephen Pizer & Julian Rosenman) 

High quality 3D medical image visualization has traditionally been restricted to either 

particular clinical tasks that focus on easily identified or high contrast structures, such as 

virtual colonoscopy, or to atlas patients such as the Visible Human, which can be 

painstakingly micro-segmented and rendered offline.  Model Guided Rendering (MGR) 

uses partial image segmentations as a framework for combining information from 

multiple data sources into a single view, which leads to a variety of methods for 

synthesizing high quality visualizations that require only a short setup time.  

Interactively presenting such scenes for particular target patients enables a variety of 

new clinical applications. 

MGR draws information about a scene not only from the target medical image but also 

from segmentations and object models, from medical illustrations and solid textures, 

from patient photographs, from registration fields, and from other patient images or 

atlases with information about structures that are hidden in the base modality.  These 

data sources are combined on a region-by-region basis to estimate context-appropriate 

shading models and to compose a globally useful composition (clipping) for the entire 

scene.  Local mappings are based on segmenting a sparse set of important structures 

from the scene by deformable shape models with well defined volumetric coordinates, 

such as the discrete medial representation (m-reps).  This partial segmentation provides 

object coordinates that can be used to guide a variety of fast techniques for oriented 

solid texturing, color transfer from 2D or 3D sources, volume animation, and dynamic 

hierarchical importance clipping. 

The mgrView library computes medial-to-world and world-to-medial mappings and 

implements many of MGR’s methods within a fast rasterize-and-blend rendering core 

that can render complex scenes in real time on modest hardware.  Several vignette 

views demonstrate how MGR’s unique capabilities can lead to important new 

comprehensions in clinical applications. These views include an interactive anatomic 

atlas of the head and neck, animated display of the effects of setup error or anatomic 

shape change on fractionated external beam radiotherapy treatment, and a 

pharyngoscopic augmentation that overlays planning image guidance information onto 

the camera view.  
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Fig. 45  The otter with an extra wrist bone from (Drebin, Carpenter and Hanrahan 1988).  

When shown this display, scientists discovered a hitherto unknown wrist bone.  

This is one of the few examples that the author has been able to find of volume 

rendering actually contributing novel scientific utility........................................................ 40 

Fig. 46 Scenes renderered with mgrView using 64 planes (left) and 192 planes (right). ............... 41 

Fig. 47 Close up of “cornrowing” effect at the edge of a 92-slice volume using mgrView. ............ 42 

Fig. 48 The gradient volume of an abdomen image stored as rgb channels and rendered 

directly with mgrView. ........................................................................................................ 43 

Fig. 49 Image from (Westover 1990) illustrating the effects of variously sized “splat” 

kernels.  The kernels in the top row are too sharp, giving inadequate coverage of 

the scene.  The kernels on the bottom row are too broad, causing unnecessary 

blur. ..................................................................................................................................... 43 

Fig. 50  Annotated OpenGL pipeline originally found in (Shreiner, et al. 2005). ............................ 44 

Fig. 51 Detail of VolView’s 3D rendering and transfer function interface from Fig. 43.  

The transfer function interface shows a histogram of the intensities in the scene.  

Leftmost is air, rightmost is bone. The overlaid line controls the opacity for each 

intensity value (transparent at air, approaching opaque at bone). The bar on the 

bottom shows the color assignments for each intensity value (brown for soft 

tissue, white-pink for bone). ............................................................................................... 46 

Fig. 52.  One of my favorite volume renderings, using a curvature based transfer 

function from (Kindlmann, et al. 2003).  Note that it is very similar to a surface 

rendering. ............................................................................................................................ 46 

Fig. 53 Tone shaded illustrative rendering of the thorax from (Ebert and Rheingans 

2000). .................................................................................................................................. 47 

Fig. 54 (Tietjen, Isenberg and Preim 2005) describes a method for combining 

segmentations with DVR to create hybrid illustrative renderings. ..................................... 47 

Fig. 55 Left, (Lu, et al. 2003)’s volume stippler and right, (Fischer, Bartz and Strasser 

2005) renderings of the engine block data. ........................................................................ 47 

Fig. 56. Image from (Svakhine, Ebert and Stredney 2005) ............................................................. 48 

Fig. 57  Left, a standard view of an abdomen data set in mgrView.  Right, the same view 

with specularity-based opacity modulation. ....................................................................... 49 

Fig. 58 (Bruckner, et al. 2006) uses cut-away views driven by distance from the viewer to 

maintain a visual context. ................................................................................................... 50 

Fig. 59 Right, a scene rendered normally in mgrView.  Left, the same scene with per-

pixel opacity modulation from distance as in Program 6.  The table and ribs have 

been removed, allowing a clear view of the kidney.  The effect is quite striking 

when interactively rotating the object. ............................................................................... 50 

Fig. 60 Male pelvis scene rendered primarily from CT data but with red tinted MR data 

mapped into the prostate region to show distinction between soft tissue types 

within the prostate.............................................................................................................. 51 

Fig. 61 Simple world-mapped solid texture applied to the thyroid region of the target 

patient. ................................................................................................................................ 52 
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Fig. 62  Direct display of the X2U map near the right sternocleidomastoid (scm) muscle. 

The red channel encodes u, the direction along the object, the green channel is v, 

around the object, and the blue channel is t, the through direction. The boundary 

surface of the scm is superimposed as a similarly colored mesh. ...................................... 53 

Fig. 63  M-reps.  Top left, a medial sample with two equal length spokes touching 

opposing surface patches.  Top middle, a sampled skeletal sheet with neighbor 

relations marked.  Top right, spokes at each medial sample describe the 

orientation of the implied surface at that hub.  Bottom left, a densely sampled 

surface can be interpolated from the medial samples.  Bottom right, a prostate 

model with sub-figures defined for the left and right seminal vesicles. ............................. 55 

Fig. 64  Surfaces implied by m-rep parameterizations of a target patient’s stomach, 

pancreas, and duodenum. .................................................................................................. 55 

Fig. 65  Top, t=1 surface colored by (uvt) and bottom, cross section normal to du of the 

scm’s X2U map.  Using the shrink wrap parameterization there is a singularity in v 

(green) at the  seam and across the medial sheet. ............................................................. 56 

Fig. 66  A cut-away of a ten onion skin representation of the scm.  Each layer has fixed t 

or blue value.  Each ring about the object has fixed u or red value.  Each line 

along the object has fixed v or green value. ....................................................................... 57 

Fig. 67  A slice through a CT  image colored by the underlying multi-object X2U LUT. The 

sternocleidomastoid’s exterior values overlap with the neighboring parotid and 

thyroid. The object label for each region is invisibly encoded in the alpha channel. ......... 59 

Fig. 68 Top left, the thyroid is difficult to identify in the gray data.  Top right, adding a 

pink texture to the clip plane.  Bottom, texturing the entire thyroid surface. ................... 60 

Fig. 69 Cross section drawn by Netter. ........................................................................................... 61 

Fig. 70  The same solid texture for the thyroid with two different texture scaling factors.  

Top, a larger scale (30), bottom, a smaller scaling factor (15) results in relatively 

larger features. .................................................................................................................... 61 

Fig. 71 Left, a 2D texture patch based on strokes from (Netter 2006) and right, the 

duodenum surface with the texture oriented along the u direction. ................................. 62 

Fig. 72 Texturing across the seam in the medial sheet results in bad interpolated values 

of v. ...................................................................................................................................... 63 

Fig. 73  Split texture mapping. ........................................................................................................ 63 

Fig. 74 Introducing a seam in the texture cube to counteract the seam in model 

coordinates. ........................................................................................................................ 64 

Fig. 75  Left, regular sampling in (φ,θ,ρ) taken as oblate spherical coordinates becomes a 

squashed spheroid in the Euclidean equivalent on the right.  Interpolating theta 

across the seam in this space produces correct values without a conditional when 

mapped back to the parametric space. ............................................................................... 64 

Fig. 76  Left, solid wood texture with standard diffuse lighting.  Right, the same texture 

with a significant normal “bump” in the direction of the texture gradient. ....................... 66 

Fig. 77 (Owada, et al. 2004) creates a mapping from 2D textures to 2D cut-planes to 

simulate a volume texture.  Though the authors do not discuss it, the proposed 

mappings rely on manually indicating the surface and medial axis in both shape 

and texture. ......................................................................................................................... 68 
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Fig. 79 Glyph packing from (Kindlmann and Westin 2006) formed the basis of the earlier 

rendering in Fig. 34. ............................................................................................................ 68 

Fig. 80 2D line-integral convolution from (Cabral and Leedom 1993)............................................ 68 

Fig. 78 Top, example of a reaction-diffusion surface texture from (Turk 1991).  Bottom, 

volume rendering of a regional 3D reaction diffusion considered for the spongy 

interior of the bone (or cheese). ......................................................................................... 69 

Fig. 81 State of the art exemplar based solid texture synthesis from (Kopf, et al. 2007).  

Several of the sample images in this document use wood or cobblestones from 

Kopf’s solid texture library. ................................................................................................. 69 

Fig. 82 2D multi-exemplar based single channel texture synthesis at multiple scales.  

Top, two exemplar textures, possibly for fat blobs and muscle fibers.  The middle 

two images are end points of single exemplar synthesis at multiple scales.  The 

coarsest scale took 10 seconds for 10 iterations.  The finest took 10 minutes for 

10 iterations.  Bottom, a synthetic texture that blends the exemplars between 

two regions. ........................................................................................................................ 70 

Fig. 83 Candidate exemplars for muscle (left) and fat (right) from the Dosch Design 

website.  (www.doschdesign.com) ..................................................................................... 71 

Fig. 84 Top, slice through oriented solid color texture generated by MTS for the scm 

region.  Bottom, the same texture on the region’s boundary surface with 

standard diffuse lighting. .................................................................................................... 72 

Fig. 85  A CT+photograph fusion rendering using the author’s photograph and a research 

patient’s CT scan. ................................................................................................................ 73 

Fig. 86  Diagram of photo-mapping decision tree. ......................................................................... 74 

Fig. 87  Top, a capuchin monkey MRI with a pseudo-cylinder photomap from a reference 

image, bottom. .................................................................................................................... 75 

Fig. 88  Top, a synthetic view of the Visible Human from a known camera. Bottom, the 

synthetic photograph pushed back onto the target patient’s 3D image using a 

direct planar mapping. ........................................................................................................ 77 

Fig. 89  Top, a schematic of the proposed 6-camera cylindrical array attachment for a CT 

gantry. Bottom, a cylindrical image of the author collected with a slit camera at 

The Tech Museum in San Jose. ........................................................................................... 78 

Fig. 90  Top, calibrating a camera. Middle, taking sequential multi-angle photos in a 

reproducible position using the accessory tray of a linear accelerator.  Bottom, a 

single planar source photograph. ....................................................................................... 79 

Fig. 91 Example of animating longitudinal surface changes.  The left-most frame shows 

the author’s photograph mapped onto a research CT scan, the right-most frame 

shows a different sample subject.  Intermediate images are blends of the two. ............... 80 

Fig. 92 Model-based color transfer pipeline.  Positions in the target image are mapped 

through model-coordinate based functions to find the color at the corresponding 

position in the atlas image. ................................................................................................. 81 

Fig. 93 Top, volumetric color mapping clipped through the mandible.  Bottom, adding 

surface color mapping for lighting. The indicated artifact running along the 

medial sheet is the same parametric interpolation singularity discussed 

previously in the section on solid texture coordinates. ...................................................... 82 
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Fig. 94 The surface (t=1) plane for a U2X map of the scm shown in Fig. 62.  The u 

direction is along the X axis, v is along the Y axis. The rgb value represents the 

(x,y,z) position at that (u,v,1) coordinate.  Top shows the wireframe, with evenly 

sampled (uv); middle shows the barycentric interpolation of (xyz) values; bottom 

shows the original surface shaded similarly. ....................................................................... 84 

Fig. 95 Passing a uniform sample grid in parameter space through the U2X maps 

produces a regular sampling of each region in world-space.  Here each point is at 

the world-space coordinate computed from an input object coordinate. ......................... 85 

Fig. 96  Direct rendering of the Visible Female color atlas with mgrView. ..................................... 87 

Fig. 97 Voxel-man renderings from the Visible Human from www.voxel-man.de. ........................ 87 

Fig. 98  Volume rendering with two different styles of oriented texture from (Dong and 

Clapworthy 2005). ............................................................................................................... 87 

Fig. 99 High quality rendering using textures synthesized from the Visible Human sample 

colors shown on the right, from (Lu and Ebert 2005). ........................................................ 88 

Fig. 100 Left, Vesalius (Vesalius 1973) removed the skin entirely, right, similar view from 

(Hagens 2007)
20

 where the skin has been moved out the way but continues to 

provide context (i.e., there is a lot of it). ............................................................................. 89 

Fig. 101  Detail from da Vinci’s “Babe in the Womb” c.1511, which, along with modern 

work by von Hagens, was cited as particular inspiration for the methods 

developed in (S. Bruckner 2006). ........................................................................................ 91 

Fig. 102 Exploded view from (S. Bruckner 2006) and similarly deformed view rendered in 

mgrView. ............................................................................................................................. 91 

Fig. 103 Image from (Hagen 1992). Retractors are used to reveal hidden internal 

anatomy. ............................................................................................................................. 93 

Fig. 104  Image from (Correa, Silver and Chen 2006) that uses parametric manipulators 

such as peelers and retractors to visualize a deformed space. ........................................... 93 

Fig. 105 Two frames from an animation showing the registration between two daily 

images in a fractionated male pelvis treatment.  The change is subtle, only a few 

voxels in most places, but notice the jog in the hip-bone where the region of 

interest passed through it and the position of the lower tip of the bladder. ..................... 94 

Fig. 106 Left, another perspective of the scene from Fig. 4.  Right, the same view with 

voxels in the mandible’s importance shadow culled away. ................................................ 97 

Fig. 107 The lizard from (Viola, Kanitsar and Groller 2004) with an importance hierarchy 

emphasizing the bones and liver. ........................................................................................ 98 

Fig. 108 Left, an anatomic illustration of a shoulder joint and right, a similar view of real 

data rendered with flexible occlusion from (Borland, et al. 2006). .................................... 99 

Fig. 109 Images from (D. Chen 1998).  Top, a medial model fit to a scanned starfruit.  

Bottom, medial models fit to the objects in the scene are used for clipping and to 

smoothly shade the rendering. ......................................................................................... 100 

Fig. 110 Cast shadows provide useful visual cues when combining surface and volumes 

data. .................................................................................................................................. 101 

Fig. 111 Shadow volume geometry in 2D from (nVidia 2004) ...................................................... 101 
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Fig. 112 Shadow volumes rendered in mgrView.  Top left, the bladder (green) and 

prostate (blue).  Top right, shadow volumes extruded using a light direction from 

the upper right.  Bottom left, intersecting the shadow volume with a plane in the 

volume.  Bottom right, the dark regions are areas with non-zero stencil buffer 

entries after the shadow pass. .......................................................................................... 103 

Fig. 113 The shadow volume from Fig. 112 top, right, with the light source “zoomed” 

towards the center of mass to imply a wider shadow frustum. ....................................... 103 

Fig. 114 The shadow volume algorithm is modified by reflecting the camera across the 

scene, then zooming it slightly to magnify the frustum.  The final camera position 

is then passed as the shadow source to the shadow stenciling algorithm as 

described above. ............................................................................................................... 104 

Fig. 115  Images from an abdomen scene focused on the duodenum. Top, the 

duodenum is completely occluded in this 3D view of the abdomen. Middle, 

nearly opaque intensities from the image in the duodenum region. Bottom, using 

a model-mapped texture in the duodenum region. ......................................................... 105 

Fig. 116 Volume rendering from an unsegmented image interrogated with a spherical 

“importance flashlight”. .................................................................................................... 106 

Fig. 117 Image from (Pelizzari, et al. 1999).  A left anterior oblique view showing the 

mandible, hyoid bone, left external jugular vein, anterior jugular veins, left 

submandibular gland and two associated submandibular lymph nodes. ......................... 107 

Fig. 118 Virtual resection from (Konrad-Verse, Preim and Littmann 2004).  Top left, cut-

lines are drawn on each plane.  Top right, the object can be separated and 

‘resected’ from its parent. Bottom, the resection clipping surface can be 

interactively modified so that the disjoint volumes include and exclude different 

features. ............................................................................................................................ 107 

Fig. 119 Volume with self shadows from an early splat rendering core considered for 
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Fig. 120 Duodenum with multiple layers, interior ruggae and circular muscle under 

longitudinal muscle. .......................................................................................................... 111 

Fig. 121 Composition based on medial properties derived from constructive solid 

geometry from (Li, et al. 2007). ........................................................................................ 111 

Fig. 122 Two different segmentations of the same tumor rendered relative to one 

another with the nested surfaces algorithm from (Weigle and Taylor 2005). .................. 112 

Fig. 123 This chapter contextualizes how MGR fits into the application component of the 

medical imaging pipeline. ................................................................................................. 113 

Fig. 124 Conclusion from (Oliver, et al. 1997) showing links between four “modalities”, 

the isosurface of the bones, MRI, CT, and a photograph of the subject.  Using 

MGR this information could all be collapsed into a single view. ...................................... 118 

Fig. 125  (Interrante, Fuchs and Pizer 1997) explores the target domain of visualizing the 

surfaces of anatomic shapes with respect to dose distribution........................................ 120 

Fig. 126  An MGR view showing a patient image with the expected dose distribution 
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Fig. 127 A life-size plaster model of a virtual craniofacial reconstruction simulation from 
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Fig. 132.  3D segmentation in mixed modes. Volume rendered structures from the CT 

image provide global context while the clinician can segment on a slice drawn 

from a corresponding MRI.  Fig. 134 shows how the CT values near the prostate 

had been corrupted by artifacts from the metal fiducial marker visible in the 

center of the prostate region. ........................................................................................... 126 

Fig. 133  Standard slice-by-slice view used during segmentation; the colored contours 

are the region boundaries drawn on this slice. The CT image on the left shows 

very little tissue differentiation between the circled prostate region and its 

neighbors compared to the MR slice on the right. ........................................................... 127 

Fig. 134 The prostate region in the CT-only volume rendering on the left is obscured by 

the artifacts from the fiducial markers. The hybrid rendering on the right 

preserves the clear tissue distinction in the target region. ............................................... 127 

Fig. 135 A common 2D dose evaluation visualization showing isodose contours projected 

onto individual slices. 2D views can be quite useful for understanding local tissue 

types, but they are not necessarily optimal for understanding the 3D spatial 

relationship between the expected dose and the target region.  (Image from 

(Mosleh-Shirazi, et al. 2004)) ............................................................................................ 128 

Fig. 136 Effect of error on expected dose. Top left, dose distribution overlaid near the 

surface where the A/P beam enters the target region. Top right, unoccluded view 

of the prostate target region below the at-risk bladder with expected dose 

overlay.  Bottom left, a small rotation applied to the patient leaves the prostate 

cold.  Bottom right, further clipping reveals the effect of the altered dose 

distribution on nearby unsegmented structures. ............................................................. 128 

Fig. 137. A rendering showing the patient’s alignment tattoo  mapped back onto the 

planning image with dose overlay to provide feedback regarding the suitability of 

the world-to-plan registration. In this case, the tattoo is not in the position 

expected by the plan. ........................................................................................................ 130 

Fig. 138 A VisionRT surface (green) aligned with the corresponding CT skin isosurface 
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Fig. 139 Thermographic image of the author holding his oldest son at age 18 months, 

taken at The Tech Museum in San Jose.  Thermography can show near surface 
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Fig. 140 Left, virtual nasopharyngoscopy and right, corresponding image from real 
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Fig. 141 A mock up of an mgrView “guided tour” 2D endoscopic display showing a 

sample scope view embedded in a 3D planning image with target and nearby 

“beyond-the-wall” structures overlaid. Fig. 142 shows the complementary 3D 
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Fig. 142  A mock up of an mgrView open field of view virtual endoscopy enhanced with 

photomapping and online guidance information. The probe position relative to a 

target region is shown in 3D based on online probe position measurements. 

Color images collected by the endoscope are dynamically overlaid onto the CT. ............ 135 

Fig. 143 The mgrView library achieves frame rates between 10 and 20 fps on a target 

laptop for most of the example scenes shown throughout this document. Until 

the graphics chip overheats and cracks the motherboard. Related research 

materials must then be extracted manually, as shown here. ........................................... 141 

Fig. 144 Surface sketch rendering for anatomic shapes from (Interrante, Fuchs and Pizer 

1997). ................................................................................................................................ 144 

Fig. 145 Display of surface non-credibility from (Levy, et al. 2007).  The dark region on 

the larger mesh is the area indicated on the slice shown on the right that has 

likely been improperly segmented. ................................................................................... 144 

Fig. 146 Matlab’s single-slice “brain” phantom function called with randomly sampled 
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Fig. 147 Top, a slice from a source image and bottom, the same slice under an obviously 

unlikely sampled registration. ........................................................................................... 145 

Fig. 148 A medical illustration that simulates a physical procedure with retractors 

provides an intuitive understanding of the 3D positions of the internal anatomic 

structures. Contours of the hidden bones are also sketched on the surface.  

(www.conservativehipsolutions.com)............................................................................... 146 

Fig. 149 (Bourke 2003) describes how to use POV-Ray to render volume data with a 

variant of the Gaussian “splat” method discussed in Chapter 2.  Note the soft 

shadows of the semi-transparent volume cast on the ground. ........................................ 147 

Fig. 150 Marketing image from Elsevier’s Netter’s Interactive 3D Anatomy making the 

likely spurious implication that multiple people could sit around a table interact 

with a 3D hologram. .......................................................................................................... 149 

Fig. 151 The doll interface from (Hinckley, et al. 1997). ............................................................... 150 

Fig. 152 Top, the author using ARToolKit (HIT Lab 2007) to intuitively manipulate a 3D 

object.  Bottom, the author’s daughter at 4 months using a two-handed version 

of the same mechanism to manipulate and clip the mgrView scene previously 

shown in Fig. 17. ................................................................................................................ 151 

Fig. 153 mgrView’s class organization with tasks for this project marked. .................................. 153 

Fig. 154  mgrView’s GLUI-based scene control interface with a rigid error controller. ............... 160 
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1 Model Guided Rendering 

for Medical Images 
 

Model Guided Rendering (MGR) is a set of methods for creating high 

quality, patient-specific medical visualizations for clinical procedure 

planning. 

High quality volume rendering has so far been limited to atlas images 

because of the large time investment required in annotating the data.  

The view from VoxelMan (Pommert, et al. 2001) shown in Fig. 1 is 

quite impressive, but the views are not portable outside their source 

data, which was carefully micro-segmented voxel-by-voxel (hence the 

name) at a cost of over 10,000 graduate student hours.  Furthermore, 

the renderings from this data may take from minutes to hours, which 

restricts the user to pre-rendered views and animations. 

Classical Direct Volume Rendering (DVR) for patient images, as in Fig. 

2 (M. Levoy 1990), has been limited since its inception by the fact that 

there is insufficient information in a single image for truly high quality 

rendering.  While medical imaging devices have become steadily more 

sophisticated and patient data collections have grown to encompass 

dozens of interrelated structural and functional images, 

segmentations, photographs, and intervention plans, medical 

visualization remains in its infancy.  Indeed, patient images are still 

routinely viewed using the same cumbersome slice-by-slice views (Fig. 

3) introduced in the 1970’s when CT scanners first became widely 

available. 

Model Guided Rendering is a novel framework for medical image 

visualization that integrates as much patient data as possible into a 

high quality, patient-specific view tailored to a particular clinical task 

and rendered at interactive rates.  MGR is based on the idea of 

merging information from multiple image sources on a region-by-

region basis, using volumetric coordinates from a sparse set of 

 
Fig. 1  Rendering from the 
VoxelMan project 

 
Fig. 3  Slice-wise view are still 
common in clinical applications. 

 
Fig. 2  Classical DVR from 
Levoy’s original papers 
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segmentations for important anatomic structures to guide the 

combination. 

Model Guided Rendering is being developed through the Medical 

Image Display and Analysis Group (MIDAG) at UNC Chapel Hill as a 

joint project between the Departments of Radiation Oncology and 

Computer Science.  UNC Hospital's Radiation Oncology clinic has 

provided many of the driving problems that MGR immediately 

addresses. 

 

1.1.1 Clinical Applications of MGR 

Detailed Anatomic Understanding 

Artists and anatomists have worked for centuries on improving 2D 

anatomical renderings.  For example, Frank Netter's anatomic 

textbooks are full of compelling examples of how data can be 

'processed' into useful 3D scenes by the human mind, such as the 

head and neck illustration shown in Fig. 5 (Netter 2006).  Netter’s 

illustrations are deemed to be so useful that they are commonly taken 

in the operating room for reference during surgery despite two huge 

Fig. 4  Model Guided 
Rendering of a target patient 
using information taken from 
the CT volume, a 3D color 
atlas, a patient photo, and 
several synthetic textures 
mapped onto various regions 

http://midag.cs.unc.edu/
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drawbacks:  first, they are not of this particular surgical patient’s 

anatomy and second, they are not interactive.  A major goal of Model 

Guided Rendering is to lift the atlas-only restriction on high-quality 

medical rendering and generate similarly high quality 3D "Netterly 

Renderings" for individual target patients. 

Multi-Source Data Visualization for Clinical Treatment Planning 

Combining data in smart ways is vital to modern medicine.  Clinical 

planning, diagnosis, and evaluation can be improved by looking at 

data from multiple sources such as anatomic and functional fusion 

images for diagnosis, or longitudinal imaging taken for adaptive 

radiotherapy (ART), or by comparing a patient’s traits to various 

normal and abnormal distributions.  MGR provides a framework for 

bringing the same kinds of multi-source improvements to a broad set 

of potential clinical tasks, such as external beam radiotherapy 

planning or virtual endoscopy. 

In general, image guided clinical treatment planning revolves around 

understanding relationships between anatomic features in space and 

across time.  MGR provides a number of tools for displaying 

longitudinal shape change as for ART, modality relationships as for 

image guided biopsy, and relationships hidden or deep features in 

relation to observed features as for patient setup or forensic analysis. 

For surgical planning, for example, major blood vessels and nerves can 

be highlighted in ways that make them avoidable, whereas for 

radiation treatment planning, those structures are radioresistant and 

are usually ignored, but radiosensitive structures must be easily 

identified. 

 

1.1.2 Model Guided Rendering 

Medical visualization technology has been relatively dormant since 

the brief explosion of interest in volume rendering in the early 90s.  

Since then, 3D rendering for medical images has found niche 

applications where it can be quite effective, such as virtual 

colonoscopy (Fig. 6).  But rendering for general applications has never 

been able to adequately portray complex anatomy because it is 

 
Fig. 5  Anatomic illustration 
from Netter with intuitive 
shading and composition. 

 
Fig. 6  Virtual colonoscopy is 
successful because it reduces 
3D data to a few important 
surfaces. 
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computed on a voxel-by-voxel basis.  That is, classic DVR relies entirely 

on surface estimates from the local gray-scale value alone.  This is 

equivalent to relying on grayscale value alone to segment an image, a 

process that is known to require additional or “a priori” information to 

be generally successful.  Extending volume rendering by adding 

additional information through a “transfer function” tends to be an ad 

hoc and non-generalizable method to solve this problem. 

On the other hand, high-quality medical rendering systems such as 

VoxelMan require a huge investment in “scene priors”, that is, 

information about features and relationships in the scene that allow 

the renderer to create a focused, understandable image.  Typically 

there is not enough time to carefully hand-edit an expansive set of 

scene priors for individual patient images.  However, modern patient 

data collections can provide us with an abundant source of scene 

priors.  Table 1 shows a few examples. 

 

PATIENT AND ATLAS SOURCES PROVIDE SCENE PRIORS FOR 

Partial Segmentations Object type, orientation 

Multi-modal scans Likely structures that are invisible 
in a particular modality 

Longitudinal and related scans Shape relationships over time or 
over populations 

Shape and intensity statistics Normal features 

Patient photography, thermography, 
endoscopy 

Color, texture on and near the 
surface 

2D and 3D color atlases Likely color, texture of normal 
anatomy 

Registration fields Motion 

Dose distributions Dose to at risk anatomy  

 

Model Guided Rendering is a framework for quickly bringing a large 

number of scene priors to bear on a patient-specific rendering by 

combining information from multiple sources.  From the combined 

scene information, MGR derives a notion of what the scene should 

look like, what is shown, and what is important about it for a 

particular application.  Then it presents and highlights the important 

structures where the information is clear, but where the information 

is insufficient or uncertain, MGR turns to non-patient-specific sources 

to make educated guesses about how that region is likely to appear. 

Table 1  Some example uses 
of various image sources in 
a patient data collection. 



 

5 

The sources may all be in different spaces, so methods from image 

analysis are leveraged to assign explicit relationships between 3D 

regions in various sources.  MGR relates images to each other in two 

ways: by volume filling registration fields or according to regional non-

linear transforms derived from medial object coordinates. 

Externally computed registration fields such as are used in (Davis, et 

al. 2004) are a common tool for studying longitudinal shape changes 

in ART.  Such deformation fields provide a key input to MGR’s scene 

composition methods, both for ART-relevant animations and by 

tailoring deformations to tasks such as describing how anatomic 

structures might move under various forces so that they can be 

“retracted” rather than simply clipped away when they occlude other 

important features. 

M-reps (Pizer, et al. 2008) provide a natural basis for the region-by-

region mappings required by MGR’s appearance methods.  They 

provide both intuitive volumetric coordinates (i.e., (u,v,t) = (along, 

around, through)) and volumetric correspondence across a 

population.  Additionally, semi-automatic m-rep based segmentation 

is commonly applied in our clinical pipeline (Fig. 7).  M-reps are used 

to identify and parameterize a few important anatomic structures in 

the scene with a minimum of manual editing, which defines region-by-

region mappings across the multiple disparate image sources.  Medial 

object-coordinates allow the renderer to work on an object-by-

object basis rather than a voxel-by-voxel basis.  This is a key insight 

for approaching the goal of high-quality rendering without exhaustive 

segmentation. 

1.1.3 Scene Design Technologies 

Because deep anatomy is very complex, a 3D visualization will only be 

useful if structures less significant to the current task can be 

suppressed while those structures that aid understanding are 

emphasized and clearly labeled.  In the context of a 3D patient image, 

this problem can be considered as two ways of relating apparent 

anatomy to occult anatomy, i.e., those features that are either hidden 

by modality or occluded from view in space or time.  Addressing such 

hidden features are two domains where artistic illustration 

particularly excels relative to computed visualization. 

 
Fig. 7  Implied surfaces of m-
reps fit to anatomic structures 
in the abdomen. 
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1. Anatomy is visually labeled – structures are colored and textured 

intuitively so that the viewer can understand what they are seeing 

in the scene.  Monochrome 3D imaging in particular inherently 

loses this visual information. 

2. Shapes and relationships between anatomic structures and 

regions that are relevant to the task at hand are exposed so that 

the viewer can see what they need to see in the scene.  Classical 

DVR has very few tools to simulate this. 

In the classic paper on computer assisted technical illustration 

(Seligmann and Feiner 1989), these two concepts are called 

respectively design of appearance and design of composition.  For 

the purposes of MGR, intuitive appearance and clear composition is 

the very definition of the term “high quality rendering” used earlier.  

MGR’s key technologies can be broadly divided into methods for 

assigning scene appearance and methods for scene composition. 

MGR addresses appearance with algorithms that leverage multiple 

data sources to shade regions for understandability.  MGR’s key 

appearance technologies are scene catalogs, solid texture mapping, 

3D color transfer and texture synthesis, and 2D color transfer. 

The scene must be composed to focus attention on important 

structures for this patient, for this problem (Fig. 8).  MGR’s key 

composition technologies work either by clipping the volume to 

eliminate objects that obscure the view or by deforming the volume 

to move occluding structures out of the way.  Netter uses a 

combination of the two approaches, sometimes removing occluders 

completely, sometimes showing a cut and peeling a surface away to 

keep context.  Volumetric deformation further extends to the general 

problem of volumetric animation or volume morphing, which can be 

used to indicate shape changes over time or shape variance relative 

to population statistics.  

1.1.4 Key Appearance Technologies 

Scene Maps 

MGR is based on the idea of object-coordinate driven shading, but the 

rendering engine still works in world or voxel coordinates.  Medial 

models are not particularly amenable to doing such transformations 

 
Fig. 8 Photoshopped example 
of how scene composition 
addresses the issue of seeing 
internal structures while 
preserving context. 
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directly, but MGR Uses m-reps only implicitly – to generate world-to-

object (x2u) and object-to-world (u2x) maps from corresponding 

surface and medial positions.  These maps contain at each sample the 

combined information from any image analysis preprocessing.  Each 

voxel is assigned a variety of feature channels such as object label, 

model coordinates, local directions, and local statistical variation from 

atlas shapes and intensities.  Simple maps representing a single object 

related to a single image can be combined into a comprehensive map 

for all the objects in a scene, called a “scene catalog”.  Even a 

relatively simple scene catalog can provide the rendering engine with 

much more information than the raw data alone. 

These scene catalogs are organized for immediate reference during 

rendering and provide a fast method for moving back and forth 

between whatever coordinate systems – object, world, or screen – are 

appropriate for a particular part of the rendering pipeline.  Computing 

and using such maps dynamically is a key component of many parts of 

MGR’s shading algorithms. 

High quality Volume and Surface Rendering 

Previously, volume rendering has only taken information from a single 

source, the patient image.  It then attempts to visually imply anatomic 

structures by assigning colors based on increasingly complex local 

transfer functions.  (See (Kindlmann, et al. 2003) for example)  The 

simplest and most intuitive means of displaying anatomic features, by 

applying intuitive anatomically based textures, is incredibly difficult to 

implement in the classical framework. 

MGR is a suite of methods that can integrate data from many sources, 

such as patient images from different times or devices, segmentations 

or registration fields, color atlas and anatomic textures, to synthesize 

a single high quality view. The scene catalog provides a mapping 

between the underlying anatomic structures in a scene and the 

various possible sources for assigning regional textures.  Given the 

parameterization discussed, simple oriented solid texture mapping 

from 3D or 2D textures into 3D regions or 2D surfaces follows 

naturally:  library textures can be assigned according to object label, 

and then oriented according to local object-coordinate derivatives.  

These same orientations can be used to enable sophisticated lighting 

from normal maps for solid textures. 

 
Fig. 9  Synthetic 2D and 3D 
textures mapped onto target 
regions in a patient image. 
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Color Mapping from 3D Images  

It is unlikely that MGR will ever get a patient-specific empirical color 

volume as input because a clinician is unlikely to actually section their 

patient.  However, normal anatomy can be approximately visually 

labeled in a target patient by collecting information from a color atlas 

such as the Visible Human and then mapping into the patient space 

using corresponding regional coordinates in both the source and 

target image (Fig. 10).  This amounts to rendering certain regions not 

from the grayscale data directly, but from an altered version of some 

empirical or pre-rendered atlas color volumes that has been deformed 

to fit this patient. 

3D color mapping is the primary candidate for fast change of 

coordinates using the scene catalog.  Given a scene catalog with 

forward and backwards transforms, this becomes an extremely local 

and parallelizable problem.  The basic algorithm for shading a pixel at 

target(Xtgt) is as follows. 

1. Convert Xtgt to model coordinate U 

2. Convert U to Xsrc in the source image 

3. Apply the color from source(Xsrc) 

This concept extends naturally to the idea of mapping any values from 

one spatial volume to another, for example, pulling information from 

a 3D functional image or statistical distribution and then making 

shading decisions based on both the base modality and any additional 

information.  This supports visualizations such as highlighting voxels 

corresponding to regions with a high likelihood of pathology in fMRI. 

The concept further extends to the idea of including visual estimates 

for not for just color but for anatomic structures that cannot be seen 

in the underlying digital image. For example, although nerves, smaller 

blood vessels, or lymph levels are invisible in CT, having a visual 

estimate of their position can be useful to a clinician who otherwise 

has to make position estimates based only on collections of 2D slices.  

Models of these occult structures, based on population statistics, can 

be included in model-based rendering, albeit in such a way that they 

are clearly identified as structures that are only likely to be present 

but not guaranteed to be so. 

 
Fig. 10  Top, color atlas 
mandible. Bottom, atlas colors 
transferred to a target patient 
according to object-
coordinates. 
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Supporting Guided Texture Synthesis 

Atlas-based rendering as described above can be thought of as a very 

simple example of a probability-based rendering:  atlas textures show 

a "most likely" appearance.  Beyond color mapping from normal atlas 

images, guided texture synthesis offers a considerably more 

sophisticated method for probability-based rendering.  Guided texture 

synthesis enables normal as well as abnormal and non-atlas structures 

to be rendered with textures appropriate to a target patient’s 

condition as determined from prior clinical knowledge or statistical 

estimates.  That is, lesions obvious in the gray image might be 

rendered to look pathological, and regions with clinically identified 

cancers might look cancerous.  In general, unexpected structures or 

structures with abnormal data values can rendered to reflect that.  

Relevant image interpretation, such as object label, local directions 

(i.e., ∇U = (du,dv,dt) at each voxel), and variation from normality can 

be exported as feature channels directly to solid texture synthesis 

modules and the resulting space filling oriented texture appropriate 

for this patient can be incorporated seamlessly into the view.  MGR 

currently works with the exemplar based algorithm described in 

(Kabul, et al. 2010) but could also work with procedural methods. 

Color Mapping from 2D Images 

Mapping patient photos into the rendering, as shown in Fig. 11, allows 

the user to visually relate surface and deep features.  The photos may 

come from visible light, thermography, or another modality. 

The photographed surface is identified in the volume image using 

model coordinates. Then color information from the corresponding 

photograph is mapped onto those voxels using a projective or 

cylindrical transform depending on the camera arrangement.  

Cylindrical maps can be collected using specialized hardware or 

synthesized from multiple planar camera images. Multiple planar 

camera images can also be selected individually by comparing the 

angle between the view direction and the surface normal, by time of 

capture, or by both criteria. 

Color mapping from 2D images has applications in diagnosis, planning, 

and procedure setup.  Thermographic images could be used for vein 

based (“near surface feature”) patient setup.  Interpolating across 

serial patient photos using the volume data as an alignment scaffold 

 
Fig. 11  An image of the author 
mapped onto a target patient 
scan 
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can be used to track surface features such as changing lesions or skin 

reactions to radiotherapy.  Using uncalibrated photos of the patient 

such as might be taken for charting would require an algorithm for 

aligning 2D and 3D landmarks, but the problem then reduces to the 

calibrated planar camera case.  Using images taken from tracked 

cameras during endoscopic procedures could provide an additional 

source of interior color information and serve as the basis for novel 

views based on endoscopic data but relieved of the burdensomely 

narrow field of view. 

1.1.5 Key Scene Composition Technologies 

Importance Clipping 

With most classical DVR, the user can rarely see what is actually 

important in the scene.  The standard method of surface finding by 

examining local gradient magnitude is a poor proxy for importance.  

This has recently been addressed by using explicit data segmentation.  

“Importance rendering” is the term used by (Viola, Kanitsar and 

Groller 2004) to describe a kind of object-based region-of-interest 

(ROI) clipping, where voxel opacity is computed according to an 

“importance” factor determined by voxel-wise pre-segmentation.  In 

MGR a similar function is implemented to “disocclude” importance 

ranked regions, so that relevant features can always be seen without 

giving up local context information.  Fig. 12 left shows a standard 

pseudo-colored region of interest in the male pelvis.  The objects-of-

interest, the bladder, prostate, and rectum are completely hidden by 

the intervening tissue.  On the right is an importance clipped scene, 

where those unimportant intervening voxels have been suppressed. 

 

Whereas Viola relies on exhaustively pre-segmented data, in MGR 

importance regions can be assigned dynamically not only to anatomic 

shapes, but to suspicious regions according to probability 

Fig. 12  Left, a standard volume 
rendering of a region in the 
pelvis, middle, the same region 
with the data occluding the 
prostate and bladder 
dynamically clipped away. 
Right, the same view with the 
planning position of the objects 
overlayed as contours. 
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distributions, or to dynamic and interactive shapes such as an 

“importance flashlight”.  MGR’s algorithms also extend to 

hierarchically ranked objects. 

Furthermore, while volume ray-tracing such as Viola uses can render 

at interactive rates only on specialized hardware, MGR’s 

implementation of the importance clipping algorithm works at 

interactive rates on even modest hardware.  The implementation is 

related to methods for computing “shadow volumes” for tiled 

surfaces, wherein the dark-side of a closed surface is extruded away 

to infinity along the contour edges and then the stencil buffer is used 

to track which screen fragments are shadowed according to that 

particular light source and that particular object.  MGR’s method is 

called “importance stenciling” and relies on a similar idea.  Important 

objects are extruded towards the camera and this “importance 

shadow” is stenciled against every voxel as it is projected onto the 

screen. 

Volumetric Animation 

Deformation fields can be used to drive surface and volumetric 

interpolations for animation.  Visualization of longitudinal anatomic 

change is particularly interesting in the context of ART for showing 

how the daily changes in anatomy will affect the expected dose 

distribution (Fig. 13).  Deformation fields can also serve as models of 

how to “retract” occluding anatomic structures as a different, more 

organic kind of importance rendering. Few methods have been 

proposed for 4D volume morphing, so this is an interesting and 

unexplored research area in its own right. 

1.1.6 Implementation 

Beyond appearance and composition there is an implicit third 

constraint on MGR: speed.  While none of the key technologies 

discussed depend explicitly on a particular DVR framework, our 

C++/OpenGL library of the core MGR functions, mgrView, is based on 

rasterize-and-blend DVR (Drebin, Carpenter and Hanrahan 1988).  

Rasterize-and-blend DVR allows the complex, non-linear mappings 

such as the world-to-object transforms to be moved onto the graphics 

accelerator, where they can be done very quickly.  Rasterize-and-

blend DVR has traditionally been limited in quality by the fixed 

 
Fig. 13 Interpolating between 
two daily patient images 
according to a registration field 
gives a smooth volumetric 
animation of anatomic change 
relative to a fixed dose 
distribution (red overlay). 
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functionality graphics pipeline, but recent improvements in volume 

texture representations and programmable shaders have alleviated 

those restrictions.  mgrView can achieve interactive rates for complex 

volumetric scenes on laptops and inexpensive workstations. 

mgrView is wrapped in an extensible GLUT/GLUI (Radamacher, 

Stewart and Baxter 2006) user interface, but it could be embedded in 

other windowing environments such as UNC’s in-house clinical 

radiotherapy planning tool Plan-UNC (UNC Hospital Department of 

Radiation Oncology 2007).  mgrView also includes a variety of default 

routines for frame grabs and file readers and writers, but the code is 

not tied directly to any particular data representations.  mgrView has 

also been designed to be flexible with respect to future technology 

extensions such as virtual or augmented reality for online image 

guided procedures like image guided biopsy.  mgrView also includes a 

comprehensive user guide detailing both its usage and its algorithmic 

implementations. 

The next page provides a short introduction to mgrView's 

programming format for interested engineering-oriented readers of 

this dissertation.  It can safely be skipped by other readers. 

1.1.7 Thesis 

Image segmentation via medial shapes provides an effective basis for 

guiding context-appropriate shading in 3D medial image display by 

supporting regional color mapping from library or synthesized solid 

textures, cross-modal images, and atlas data sources. 

Precomputing a global “scene catalog” that collects multiple local 

medial-to-world and world-to-medial transforms enables these 

techniques in an interactive object-order volume rendering 

framework. 

This framework additionally extends other perception-enhancing 

effects such as importance rendering and volume deformation to 

dynamic scenes.  
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INTERMEZZO:  MGRVIEW 

mgrView programs are characterized by establishing relationships between images and models, 

which directs the rendering engine’s appearance and composition algorithms.  In Program 1 three 

kinds of objects are loaded, 2D images (textures), a surface file, and a volumetric medical image.  

These objects are attached to one another with particular channel labels, such as “source_im” or 

“color_im”.  Layers are derived from the surface object and 

automatically attached as children.  The surface and volume objects 

are automatically attached as children to the root world object, which 

includes them automatically when the window makes the call to 

world->glRender().  Derived textures such as the duodenum uvt 

coordinates and the volume data gradient are automatically loaded 

and attached as sub-objects if they are present in the correct 

directories, or they are computed and cached if they do not exist. 

A simple example application is shown in Program 1 and the resulting 

display is shown in Fig. 14.  An appendix walks through implementing 

an entire project using and extending mgrView. 

// Sample mgrView program 
#include "../common/mgr.h" 
mgrWindow* mgrw; 
char* MGR_DATA_PATH = "../../data/";  char* MGR_PROJECT_DATA_SUBDIR = 
"abdomen/"; 
int main(int argc, char* argv[]){ 
 mgrRenderable world; 
 mgrw = new mgrWindow( argc, argv, &world ); 
 // -- Load textures -- 
 mgrImage2 muscle = mgrImage2( "muscle2.tga" ); 
 mgrImage2 rugae = mgrImage2( "rugae.tga" ); 
 // -- Setup the surface object -- 
 mgrSurface duodenum = mgrSurface( "duodenum.pseudotube.l2.byu" ); 
  duodenum.AttachImage(&muscle, MGR_COLOR_IM0); 
  duodenum.SetShader(MGR_SIMPLE_TEX2_SURF_SHADER ); 
  duodenum.clip_end_caps = true; 
 mgrSurface d1 = duodenum.AddLayer(0.9 ); 
  d1.FlipTransform( MGR_COLOR_IM0, Y_AXIS ); // Rotate texture 
 mgrSurface d2 = duodenum.AddLayer(0.8 ); 
  d2.AttachImage(&rugae, MGR_COLOR_IM0 ); 
 // -- Setup a volume data object -- 
 mgrImage3 gray = mgrImage3( "3301.hires.raw", 512, 512, 64 ); 
 mgrVolume v = mgrVolume( &gray ); 
  v.images[MGR_SOURCE_IM0]->iw.set( 0.55, 0.3 );  // Intensity window 
 mgrw->glStart();    // Start rendering 
 return 0;} 

Program 1  Sample application code invoking mgrLib to load a gray volume and surface 
object.  The rendering and default UI is shown in Fig. 14. 

 
Fig. 14  Labeled rendering of 
the duodenum from mgrView’s 
simple application demo 
program 
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1.1.8 Claims 

This dissertation contributes the following novel methodologies for 

producing high-quality volume visualizations using segmentations of a 

sparse set of important anatomic structures to combine information 

from multiple image sources: 

1. Method for using medial coordinates to guide context-appropriate 

shading in medical images by regional color mapping from several 

different kinds of data sources 

1.1. Method for mapping and lighting library or patient-specific 

synthetic solid textures 

1.2. Method for mapping from 2D data sources such as patient 

photographs 

1.3. Method for mapping from 3D data sources such as cross-

modal images or atlas data sources 

2. Method for generating such renderings at interactive rates on 

relatively modest hardware by precomputing a “scene catalog” 

data structure and manipulating it in an object-order rendering 

framework 

2.1. Algorithms for computing world-to-medial (“x2u”) and 

medial-to-world (“u2x”) maps from a set of segmentations by 

medial shapes and a data structure for collecting these 

mappings together 

2.2. Algorithms for using the scene catalog in various ways 

through programmable shader hardware to do the mappings 

described in (1) 

3. Refactored versions of important state of the art volume 

rendering methods such as importance rendering and volume 

deformation that allow these techniques to be applied in dynamic 

scenes 

3.1. Object-order implementations for global and local volume 

deformation and for importance rendering based on ranked 

surfaces 
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1.1.9 Outline 

Supporting discussion for these claims is divided according to the 

following chapters and sections. 

Chapter 1: Overview of Model Guided Rendering 

Chapter 2: The Medical Imaging Pipeline 

2.1. Review of 3D medical image acquisition 

2.2. Review of 3D medical image analysis, including deformable 

registration and medial coordinate systems 

2.3. Review of classical 3D medical image visualization, including 

surface extraction, image-order and object-order direct volume 

rendering (DVR), and transfer functions 

Chapter 3: Model Guided Appearance for Medical Volume Rendering 

3.1. Creating scene catalogs from medial representations 

3.2. Object-coordinate based solid textures and dynamic lighting 

3.3. Color mapping from 2D patient photos  

3.4. Color mapping from empirical or synthetic solid atlas textures 

Chapter 4: Model Guided Composition for Medical Volume 

Rendering 

4.1. Fast volumetric animation 

4.2. Fast importance clipping based on importance shadows 

4.3. Model-coordinate based surface windows 

Chapter 5:  Bringing MGR to the Clinic 

5.1. MGR’s potential role in medical image applications 

5.2. Segmentation, planning, and patient setup in radiotherapy (and 

appendix describing how to implement a project with mgrView) 

5.3. Augmented endoscopic guidance 

Chapter 6:  Conclusions & Future Work 

6.1. Review of thesis and claims 

6.2. Directions for future work, including advanced display and 

interactivity 

Appendix: Implementing the Planning Under Error View Using 

mgrView 
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The mgrView software tool is frequently used to demonstrate 

techniques throughout this dissertation. The examples shown in 

chapter 2 are all demonstrations of known techniques implemented in 

this framework.  The regional color mapping methods developed in 

chapter 3 are novel methodology and implementation.  Chapter 4 is 

concerned with extending known volume rendering methods that are 

currently restricted to static scenes to interactive or dynamic scenes. 

Chapter 5 presents a series of project vignettes that demonstrate how 

MGR methods might be applied to clinical problems.  The MGR 

components used in each project are clearly called out.  The appendix 

at the end of the dissertation walks through the programming 

required to build one of the sample vignettes in Chapter 5 using 

mgrView. 
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2 The Medical Imaging Pipeline 
 

Medical images begin with physical devices and reconstruction, which 

produce 3D data.  This data can be visualized or analyzed as suited to 

various clinical applications.  This chapter reviews the basic pipeline for 

applying medical imaging technology in the clinic shown in Fig. 15.  It is 

divided up into three parts, each focused on one section of the pipeline. 

1. Sources of Medical Images reviews the principles of the 

Engineering layer, where medical images are actually produced.  

Energy is passed through the patient and a signal is collected.  A 

variety of hardware devices work across the energy spectrum and 

can collect both structural and functional information.  The signal is 

then processed into an image of the underlying geometry and 

filtered to reduce artifacts. 

2. The Image Analysis layer, described in the section Interpreting 

Medical Images, serves to relate images to other images and to 

relate image regions to structures.  Relating images to images is 

called “image registration” and relating image regions to structure is 

called “image interpretation” in this text.  The regional model that 

MGR uses to relate regions across images is based on image 

segmentation using the discrete medial representation (“m-reps”). 

3. The section on Data-driven Medical Visualization reviews what I 

call the naïve or data-driven Presentation layer.  Visualization based 

on independent images provides a direct and usually simple view of 

the data to the clinician.  Classical volume rendering is based on 

casting rays through the image, then applying a “transfer” function 

to assign a false color to each voxel.  Classical volume rendering 

forms the basis of MGR’s rendering algorithms. 

While automatic image analysis has become steadily more 

sophisticated, the results can be cryptically difficult to interpret.  The 

goal of Model Guided Rendering is to create informed visualizations, 

that is, to reorganize the pipeline so that the presentation layer 

becomes dependent on the analysis layer.  

Engineering

Image Analysis

Presentation

Application

Physical

Reconstruction

Registration

Interpretation

 

Fig. 15 This chapter reviews the 
medical imaging pipeline. 
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2.1 Sources of Medical Images 

This section gives a brief overview of the physical and reconstruction 

layers of the medical imaging pipeline.  The main topics include the 

following. 

1. Computed Tomography is the most important modality for 

radiotherapy planning, and MGR has been conceived largely to 

support it.  This topic reviews x-ray radiation, sampling and 

reconstruction, and sources of artifacts. 

2. Other 3D Imaging Modalities such as nuclear medicine imaging, 

magnetic resonance imaging (MRI), and ultrasound (U/S) are briefly 

discussed at the end of the section.  MGR is designed to support 

rendering from multiple data sources, and while those sources are 

usually serial CT or CT + color textures, the same principles apply 

when mapping from other modalities into the rendering space.  

These other modalities have various clinical advantages over 

radiographs and CT with respect to particular future visualizations 

and applications. 

A few examples of using mgrView to load and create simple views are 

presented along with the discussions of the various modalities.  

However, mgrView’s data representation for images is detailed in the 

later chapter on working with mgrView. 

 

2.1.1 Computed Tomography 

Computed tomography (CT) is a widely adopted imaging modality with 

many clinical applications from diagnosis to procedure planning.  

Because it is a 3D modality, data can be presented in a variety of 

displays such as axial, sagittal, or coronal slices, off-axis cut planes, or 

even simulation of a standard x-ray projection image (called a 

"radiograph"). Slice-by-slice views eliminate the saturation and 

occlusion common in analog radiographic images and can make 

structures with difficult to understand 3D shapes, such as complex 

fractures, relatively easier to interpret.  For example, in the analog chest 

radiograph shown in Fig. 16, the lungs are severely obscured by the ribs, 

making them difficult to understand.  Digital images such as CT or digital 

radiographs can also be windowed to expose 1% density differences, 

 
Fig. 16 Chest x-ray of the 
author’s son at one year of age.  
The lungs (indicated) are 
extremely obscured by the ribs 
both in front of and behind 
them. 
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which provides relatively higher contrast resolution then analog films.  

Moreover, digital data can be easily post-processed at a variety of 

levels, from edge enhancement to data labeling (as described in the 

next section on image interpretation).  Modern fast CT scanners can 

create time-varying or “4D” images, which are very valuable for 

studying motion in structures such as the heart or lungs. 

In MGR’s target domain of radiotherapy planning, the CT image 

provides a physically and geometrically accurate basis for therapy 

planning.  Magnetic resonance imaging (MRI), for example, has greater 

contrast for pathologies, which is useful for diagnosis, but it gives no 

information about x-ray attenuation and suffers from innate field biases 

that can create geometrically incorrect images, limiting its uses for 

planning. 

INTERMEZZO:  LOADING 3D DATA INTO MGRVIEW 

Many of the example images produced throughout this dissertation 

were generated using mgrView's built-in functionality.  This intermezzo 

shows a short C++ mgrView program used to load a CT image generated 

by UNC’s radiotherapy planning system “Plan UNC” (PLUNC), window it 

for soft tissue resolution, and display it.  The code shown in Program 2 

produces the results shown in Fig. 17.  Note that only four lines of the 

program are actually scene dependent:  the file is loaded, and a new 

volume object is instantiated and attached to the ui and the rendering 

root.  The rest of the code simply sets up the project. 

// Sample mgrView program to load an image 
#include "../common/mgr.h" 
mgrWindow* mgrw; 
char* MGR_DATA_PATH = "../../data/"; 
char* MGR_PROJECT_DATA_SUBDIR = "pelvis/"; 
int main(int argc, char* argv[]) { 
 mgrRenderable world; 
 mgrw = new mgrWindow( argc, argv, &world ); 
 // -- Scene dependent code -- 
 mgrImage3 gray = mgrImage3( "3106.gray.pim",  
   512, 512, 81, vec3( 0.098, 0.098, 0.3 ) }; 
 gray.iw.set( 0.1, 0.3 ); 
 mgrVolume v = mgrVolume( &gray ); 
 mgrw->glStart(); return 0;} 

Program 2 A simple mgrView program to to load and display a raw CT 
image shown in Fig. 17.  

 

 
Fig. 17 A default view of the 
male pelvis CT image loaded 
using the mgrView script shown 
in Program 2 with and without a 
reference slice. 
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X-Ray Radiation & CT Reconstruction 

X-rays are high energy photons than can penetrate solid objects.  

Different types of material attenuate x-ray radiation at different rates, 

so measuring the amount of x-ray radiation that passes through a solid 

object shows the radio-density shadows of structures inside of the 

object.  Wilhelm Conrad Röntgen (Röntgen 1896) is considered to be 

the first person to discover x-ray radiation and demonstrate its potential 

medical applications (Fig. 18). 

Projection x-ray images, called "radiographs", are a common diagnostic 

tool in medicine. In projection radiography, the subject is placed 

between an x-ray source and a film or digital sampling plate.  X-rays 

passing through the subject are attenuated more in dense material such 

as bone, so the collected image is less exposed where those regions 

project onto the plate than it is where muscle or fat tissue regions are 

projected. Since most radiographs are viewed as "negative images", 

areas of low exposure become the brightest features in the image.  As 

with all shadows, occlusion problems happen when more radio-dense 

objects such as bone obscure other structures both in front of and 

behind them (Fig. 16). 

Computed tomography is an attempt to address obscuration and 

occlusion issues with projection x-rays by reconstructing the entire 3D 

interior of the subject. The x-ray attenuation factor of different 

materials is characterized by a density-weighted attenuation coefficient 

called µ.  The calcium in bone has a very high µ, whereas air has a 

relatively low µ.  X-ray radiation attenuates as a function of its initial 

energy and µ of the material that it is passing through according to Eqn. 

1.  Sampling the total attenuation of a particular x-ray energy at many 

angles and offsets about a single plane through the subject produces a 

large linear system that can be solved to recover the interior 2D array of 

attenuation factors.  Repeating this process for many planes produces a 

3D array of attenuation factors. 

The total attenuation of the x-ray radiation along a single path is the 

exponentiation of a line integral of individual attenuation factors along 

the path.  In the logarithmic space of this function, the total attenuation 

along a path is a linear combination of the attenuation factors at each 

sample along the path. This arrangement of the data as linear 

combinations producing sums at various angles and offsets is called the 

 
Fig. 18 Radiograph of the hand 
of Röntgen's wife from the late 
19th century. 

𝐼𝑡 = 𝐼0e− 𝜇𝑠𝑑𝑠  

Eqn. 1 Formula for x-ray 
attenuation through tissue with 
local attenuation µ along a line 
integral parameterized by S 
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Radon transform of the data.  The goal of CT reconstruction is to 

compute the inverse Radon transform of the system.  In filtered back 

projection, each output profile is filtered according to the amount of 

blur known to be introduced by the detectors (the "point spread 

function") and by the smearing step that follows, and then the result is 

“smeared” back along the original sampling line.  The composite output 

from smearing all of the profiles is the reconstruction of the plane.  Fig. 

19 shows a single-slice example of forward and inverse Radon 

transforms applied to synthetic data1. 

The original work on reconstruction from line integrals was developed 

in the 1960’s by (Cormack 1964), based on much earlier work from 

(Radon 1917).  In 1972 Godfrey Hounsfield created the first single-slice 

CT.  Hounsfield’s scanner (Fig. 20) took several hours to collect data and 

several days to do the reconstruction. CT machines became widely 

available in the 1970s. Recent advances have focused on resolution, 

speed, and gating for 4D motion images. 

Spatial Resolution 

CTs are digital systems that use analog-to-digital converters and 

produce sampled data, so they are subject to additional constraints on 

resolution and dynamic range.  Modern CT scanners typically produce 

images on a regularly sampled grid with 512 x 512 x ~100 samples.  For 

the abdominal, pelvic, and head and neck scans which form the basis of 

the later MGR case studies, the in-plane field of view (fov) is ~50cm and 

can span 30cm or more in length; this leads to a grid spacing of 

approximately 1mm x 1mm in-plane with 3mm planes (pitch).  For 

head/brain scans, the field of view can be much smaller, so the spacing 

can be substantially denser. 

CT is considered a potentially harmful procedure because it exposes the 

patient to a relatively small but non-negligible dose of the same kind of 

damaging radiation as is used in external beam radiotherapy.  The more 

exposure, the higher the spatial resolution that can be achieved, so 

balancing exposure with medical needs is a serious issue.  

                                                           
1
 Using Matlab's "radon" and "iradon" functions.  Matlab is a matrix math 

program developed by The Mathworks (www.themathworks.com).  Because 3D 
images can be understood as 3D arrays, Matlab is well suited to manipulating 
such data structures. Simple-to-interpret Matlab functions are pointed out as 
examples in relationship to several topics throughout this dissertation. 

 

 

 
Fig. 19 Top, source image with 
color representing an intensity 
at each spatial position.  
Middle, Radon transformed 
data with color as the total 
intensity along a profile with a 
given angle and offset. Bottom, 
the image reconstructed by 
applying the inverse Radon 
transform to the transformed 
data. (Images from 
http://www.physics.ubc. 
ca/~mirg/home/tutorial/fbp_re
con.html) 

 
Fig. 20 Hounsfield’s original 
prototype CT scanner (from 
Wikipedia). 
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The individual volume samples of any 3D image are called voxels 

(‘volume element’, as a pixel is a ‘picture element’).  If the sampling grid 

has cubic voxels, the voxels are called isotropic; otherwise they are 

anisotropic (Fig. 21).  In the examples throughout this text, the in-plane 

dimensions are referenced as ‘x’ and ‘y’ and the out of plane dimension 

as ‘z’, or as X in general for an (xyz) world-space coordinate vector.  The 

voxel indices are referenced as ‘i’, ‘j’, and ‘k’ for rows (x), columns (y), 

and slices (z) or J for an (ijk) voxel-space coordinate vector. 

Converting back and forth from world-space coordinates X to indices J, 

called X2J and J2X functions here, requires two additional pieces of 

information, the size of each voxel with respect to distances in world-

space, called S, the world-space position of an origin, typically O = J2X(0, 

0, 0). Given this information, X2J and J2X can be written as in Eqn. 2.  If 

world-space origin is set to (0,0,0) and the spacing is such that the 

largest world-space coordinate of the data is assigned to 1.0, then the 

data is said to be represented in the “unit cube”, as our clinical 

modeling software encodes coordinates.  The unit cube coordinate 

system is useful for many tasks, but it can be problematic when 

attempting to register data with different coordinate systems.  If the 

coordinate system is left handed (the y-axis has flipped sign), as our 

clinical planning software encodes images, this can be represented by 

multiplying S by (1, -1, 1) and adding (0,1,0) to the unit scaled O.  If the 

sample directions are not world-aligned, an additional rotation matrix 

can be attached to the formulae. 

Value Resolution 

CT intensity units, the density-related attenuation factor at each voxel, 

take their name from Hounsfield.  Hounsfield Units measure the ratio of 

the local attenuation factor in a particular tissue compared to the 

attenuation factors of air and water (Eqn. 3).  Hounsfield units range 

from -1000 to 3000 (12 bit range).  Some important HU values are 

shown in Fig. 22. 

When visualized as slices or volumes, CT visualizations typically follow 

the "bone is brightest" convention from radiography.  It can be difficult 

to visually distinguish nearby values from the 4000 possible levels, 

particularly since there are only 256 (8 bits) of gray value difference on 

standard display devices.  Since there are 12 bits of possible HU values, 

this means that 16 HU values are binned together at every intensity 

 
Fig. 21 Voxel representation 
(from (Borland07)) 

J2X(𝐉)  =  𝑂 + 𝑆 ∗ 𝐉 

X2J(𝐗)  = (𝐗 − 𝑂)/𝑆 

Eqn. 2 Basic world-to-index (X2J) 
and index-to-world (J2X) 
transforms. 
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Eqn. 3 Conversion factor 
between x-ray attenuation (µ) 
and Hounsfield units (HU) 

 
Fig. 23 The same view as in Fig. 
17 intensity windowed with a 
lower minimum threshold. 

Material  HU  

Air  -1000 

Fat  -80 to -40 

Water  0  

Soft Tissue  30 to 60  

Bone 100 to 3000 

 
Fig. 22 Approximate ranges for 
x-ray attenuation in Hounsfield 
units (HU) for common 
anatomic image values. 
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level that can be shown on a standard display.  However, it is 

straightforward to enhance the value resolution by picking out a 

“window” of intensities around soft tissue, for example, and expanding 

that range to encompass the entire 8 bits of display resolution.  The 

tradeoff with this is that small intensity windows can substantially 

enhance noise.  Windowing an entire volume can be quite expensive if 

done on the CPU.  This is typically obviated by windowing only a single 

cut-plane at a time.  In mgrView, windowing the entire volume can be 

done immediately using the computer's graphics hardware. 

Artifacts 

While CT has considerable advantages over standard analog 

radiography, it also has some disadvantages.  Because it is a digital 

format that requires algorithmic reconstruction to convert the sampled 

signal on the machine into an intuitive spatially organized format, it can 

have artifacts and sampling problems that are not present in analog 

radiography.  Artifacts develop when the underlying physical and 

algorithmic assumptions are broken.  Broken physical assumptions such 

as non-narrow-beam x-ray sources or variable geometry between 

source and detector can lead to blurring and ringing. Broken 

algorithmic assumptions such as patient motion, extremely dense 

materials (e.g., metal fillings or prostheses) that cause "photon 

starvation" in their shadows, and sharp or thin objects that produce 

individual voxels with material of significantly different densities can all 

cause the characteristic starburst patterns shown in Fig. 24. 

2.1.2 Other Modalities 

Fig. 25 overviews a variety of other 3D medical imaging modalities 

covering different parts of the EM spectrum and different signaling 

methods.  Different modalities are better or worse at detecting 

different phenomena. Whereas CT always collects anatomic 

information, some modalities such as nuclear medicine studies can 

show which regions are metabolically active.  These functional images 

can be very useful for identifying pathologies.  While there are currently 

no mgrView applications that specifically require non-CT data, 

combining CT images with the strengths of other modalities is an 

important area of future development.  Ultrasound, for example, is 

considered non-invasive, can provide decent 3D images in a small field 

Signal Type Modality 

Reflective Ultrasound 

Visible light 
    photography 

Emmissive MRI (RF signal) 

Nuclear Med 
       (PET, SPECT) 

IR photography 

Transmissive X-ray (CT, 
       radiograph) 

Fig. 25 Common imaging 
modalities by signal type. 

𝑊(𝑖) =
min(max 𝑖, 𝑡𝑜𝑝 , 𝑏𝑜𝑡𝑡𝑜𝑚)

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚
 

Eqn. 4. Formula for applying an 
intensity window to a value. 

 
Fig. 24 A CT plane showing the 
characteristic “starburst” artifact 
from metal. 
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of view, supports limited functional scanning (Doppler), and requires 

very little equipment compared to a CT scanner.  Visualizing online 

ultrasound data within the context of more detailed planning images 

may be an important tool in image guided biopsy. 

This section briefly reviews the strengths of magnetic resonance 

imaging (MRI), nuclear medicine, and ultrasound in the context of 

potential future fusion data extensions to Model Guided Rendering.  

Image stacks from color anatomic sections are also included here as 

another kind of 3D medical imaging. 

Magnetic Resonance Imaging 

Imaging based on gradient field relaxation was developed in the early 

1970s independently by Damadian (Damadian 1971) and Lauterbur 

(Lauterbur 1973).  Magnetic resonance imaging (MRI) measures local 

proton density (hydrogen count) and local chemical compositions.  As 

suggested in the introduction to this section, this leads to exquisite 

contrast resolution around soft tissue and makes pathology much 

easier to detect.  However, MRI contains no electron density 

information, so it is useless for the radiation transport calculations 

required for treatment planning unless paired with a CT image.  An area 

of interest for Model Guided Rendering is fusion data rendering using, 

for example, an MRI image to assign appearances (pathological/normal) 

but using the CT image for anatomic reference geometry. 

MRI works by using radiofrequency fields (RF) to align the protons in the 

hydrogen atoms of water or hydrocarbons in the patient’s body and 

then manipulates the signal to measure relaxation times, which vary by 

tissue type.  Unlike the high energy x-rays used in CT, this RF radiation 

and exposure to strong magnetic fields is thought to be harmless to the 

patient. 

Functional MRI (fMRI) can be targeted at particular systems and indicate 

spatial location of detected activity, which is of particular interest in 

brain imaging, but there is also evidence that certain non-brain 

pathologies can be identified by unique activation patterns.  Diffusion 

weighted imaging (DWI) is a special type of MRI that measures the 

diffusion properties of tissue.  Combining information from multiple 

DWI’s can produce a diffusion tensor image (DTI) that describes 

directional diffusion with a tensor at each spatial sample.  mgrView 

supports fMRI images when they are formatted as standard spatial data 

 
Fig. 26 MRI of the author’s 
head. 
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distributions.  mgrView currently has no support for tensor 

visualization, but that is a targeted future application domain. 

Nuclear Medicine Imaging 

Nuclear medicine imaging (NMI) studies use pharmaceuticals labeled 

with unstable tracer elements called radioisotopes that emit radiation 

as they decay to a stable state.  These pharmaceuticals are metabolized 

by targeted systems and then emit localized high energy photons as the 

radioisotopes decay.  Nuclear medicine studies are functional by 

definition.  For oncological studies, the radioisotopes are usually 

attached to glucose, which radio-labels most cancers since cancers tend 

to have higher glucose uptake than normal cells.  NM images typically 

are very noisy, making them most useful when viewed in conjunction 

with another modality with better resolution.  While MGR has no target 

NMI applications at present, rendering NMI fusion data, such as PET/CT 

is a targeted future application domain. 

Ultrasound 

Ultrasound (U/S) shows echoes off of tissue interfaces in the patient.  

The energy that it uses is sound waves above the threshold for human 

hearing, in the range of 20kHz to 2MHz.  The primary medical 

application for ultrasonography is for relatively coarse imaging that 

does not require penetrating air or bone, such as prenatal studies (Fig. 

28). 

Ultrasound has several considerable advantages over CT.  It is thought 

to be harmless to the patient, it has nearly instantaneous capture rates, 

enabling visualization of motion in real time, and the required 

equipment is relatively inexpensive and portable, enabling imaging 

during procedures without moving the patient. 

In radiotherapy, ultrasound is primarily of interest for patient setup, 

that is, as a basis for registrations between the real-world insides of a 

patient and their planning CT, as in the BAT system (“B-mode 

acquisition and targeting”) (Langen, et al. 2003).  The main idea is to use 

a portable ultrasound device in the treatment room to find target 

structures and then to compute an alignment between the patient on-

the-table and the planning CT.  While our clinic does not currently use 

this method, MGR has been developed with it in mind as a potential 

target for multi-source data.  

 
Fig. 28 Ultrasound is frequently 
used in prenatal screening, 
such as this 12-week image of 
the author’s twins. 

 

 
Fig. 27 Early NMI thyroid scans 
from (S. M. Pizer 1967).  Top, a 
normal thyroid, bottom a 
thyroid with high marker 
uptake. 

t
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Anatomic Photography 

 

Color anatomic slices can be considered as another modality.  While it is 

unlikely that a target patient will ever be anatomically sliced up, a color 

atlas from anatomic sections (Fig. 29) can inform a model guided 

rendering by mapping the colors through a scene catalog as described in 

the next chapter.  The Visible Human data is freely available from the 

National Library of Medicine’s Visible Human Project (Ackerman 1998).  

Each subject, male and female, consists of both radiological images and 

color photographs of the anatomic sections. 

For the female data set used in the default color maps described later, 

the cryosections are at 0.33mm in-plane resolution, with three slices per 

millimeter.  For MGR’s color mapping applications, structures in the 

Visible Human color sections were segmented manually, but similarly 

high resolution radiological MRI and CT images are also available for 

analysis, though they are not simply aligned with the color data.  Given 

a registration between the data sets, this would provide another useful 

sample fusion data set. 

Other types of less invasive anatomic photography, such as external 

patient photography or thermography, or internal endoscopic imaging 

are further discussed in the section on color mapping from 

photographs. 

  

Fig. 29 Color images of gross 
anatomic sections, such as this 
slice from the Visible Human 
can be used as a color atlas for 
MGR’s color mapping 
algorithms. 
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2.2 Interpreting Medical Images 

There are two main concepts in the Model Guided Rendering taxonomy 

of the image analysis component of the imaging pipeline: registration 

and interpretation.  Each layer provides important inputs for Model 

Guided Rendering.  

1. Image registration is the process by which collections of images can 

be aligned to the same “patient space”.  Image registration methods 

may be represented either as global transforms with a small 

number of parameters2 or with high dimensional local mappings, 

and they may be driven according to landmarks or image similarity 

metrics.  The UNC Hospital radiotherapy clinic routinely deals with 

time series CTs as patients are scanned repeatedly during an 

ongoing treatment protocol, and aligning cross-patient or cross-

modality images follows similar procedures.  Model Guided 

Rendering uses information from image registrations primarily as a 

mechanism for animating anatomic shape change. 

2. Image interpretation is about assigning anatomic labels to image 

regions.  A simple interpretation is a label volume for an image 

where individual voxels are marked according to which category 

they belong to, prostate, not-prostate, etc.  Such image 

segmentation can be done by hand or automatically by a variety of 

methods.  One method is to use image registration tools to register 

an image to an already labeled “atlas space”, and then to use that 

mapping to pull the atlas labels back to the target image.  The 

interpretation method adopted in our clinic and used by MGR is 

based on segmentation by statistical deformable shape models 

(SDSMs).  Here the term “interpretation” extends the basic idea of 

segmentation.  Interpretation involves understanding not only the 

local label of an image region, but also the orientation and other 

properties of the underlying structure.  Model Guided Rendering 

relies on image interpretation from discrete medial representations 

(“m-reps”) to shade objects according to their function. 

  

                                                           
2
 Low parameter count in contrast to Fourier coefficients, which are global 

transformations, but provide what is here referred to as a local level of detail. 
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2.2.1 Image Registration 

Target applications that require understanding anatomic change, such 

as adaptive and image-guided radiotherapy (ART, IGRT) (see (Foskey, et 

al. 2005) for a useful overview), require a framework for accurately 

mapping anatomical objects from serial images taken over several 

treatments into the same coordinate system as the planning or other 

reference image.  The most common mappings are global rigid 

transforms, but current research activity is aimed at developing 

practical and reliable methods for creating space-filling non-rigid 

mappings.  Our clinical image registration software, ImMap and its 

variants, can generate both global and local registrations.  Visualizing 

registration relationships between images is one of the mgrView 

program vignettes presented later in section 5.2, MGR Applications in 

Adaptive Radiotherapy. 

Global Transforms 

Rigid image-to-image registrations can be expressed as a global matrix 

transformation.  Positions in the space of the target image can then be 

passed through this matrix transform to find the corresponding 

positions in the source image.  Rigid and more general affine transforms 

can be derived algorithmically for 3D point correspondences, as do both 

Procrustes3 (which uses explicit correspondences) and Iterative Closest 

Point (ICP, see Fig. 30) (Besl and McKay 1992) (which computes both the 

transform and the best set of correspondences for two unlabeled sets).  

Rigid image transforms are most appropriate for within-patient 

registrations, where images change mostly in pose from day to day.  

Similarity (rigid plus scale) or affine (rigid plus scale and shear) 

transforms are more useful when studying cross-patient registrations.  

For dense intensity correspondences such as photo-constancy or mutual 

information, a global registration can be found by optimizing over the 

elements of the transform matrix according to an image similarity 

metric. 

An important application of global transforms is to align a 3D planning 

image with a 2D image of the patient taken at treatment time. Such 

visualizations can be used to verify that the patient is set up correctly on 

the therapy machine. This is typically done manually, using lasers to line 

                                                           
3
 Procrustes was a Greek bandit who forced his victims to lie in an iron bed and 

cut off their feet to fit his measuring device. 

 

Fig. 30 Parameteric surface to 
point data registration from 
(Besl and McKay 1992) 
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up the room origin with fixed surface landmarks such as tattoos. In 

other procedures such image-to-world alignment may involve a 

mechanical device such as a frame physically bolted onto the subject's 

head that provides a reference coordinate system (a "stereotactic head 

frame"). 

 

mgrView has been designed to produce images that combine real world 

photography with 3D images.  Fig. 31 shows an example of a planning 

image transformed and rendered into the space of a 2D photograph.  

The later section on color mapping from photographs describes a 

method for projecting a 2D photograph into the space of a 3D planning 

image and includes some relevant discussion of camera models. 

Local Mappings 

Non-linear image-to-image registrations4 cannot be expressed 

concisely as a matrix transform, so they are typically represented locally 

across the field, either indirectly by a set of control points for splines, or 

directly by a dense displacement field.  Non-linear registrations are 

more general than affine registrations because they can capture both 

local and global properties (although in practice, they usually only 

capture residual local changes after a global registration has been 

applied).  As with global registrations, local registrations may be feature 

driven, such as thin plate splines (TPS) (Bookstein 1989) or the basis 

paths used in (Joshi and Miller 2000).  Or they may be intensity driven, 

such as “optical flow” in 2D (Horn and Schunck 1980) or “demons” in 3D 

(Thirion 1998), fluid flow (Christensen, Joshi and Miller 1997), or free 

form deformation via B-splines (Rueckert, et al. 2006).  ImMap and its 

variants use an atlas-based version of fluid flow described in (Davis, et 

al. 2004). 

                                                           
4
 The class of affine transforms is indeed linear in homogeneous coordinates. 

Fig. 31 Left, a photograph of 
our clinic’s phantom, RANDO 
(or “Randeau” as he is 
sometimes known) on the 
treatment table. Right, a 
rendering of a CT of RANDO 
synthesized from the same 
camera point of view and 
overlaid onto the photo. 
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A method for interpolating quickly between images according to such a 

registration field for the purposes of visualization is described in the 

later section 4.1, Volumetric Animation, and is a key method in the 

target applications described in section 5.1, MGR Applications in 

Adaptive Radiotherapy. 

In contrast with rigid or affine registrations, which can be determined 

algorithmically, deformable registrations are usually determined by 

optimizing a registration metric in a very high dimensional space.  In the 

simplest case of representing the registration by an independent 

displacement vector at every voxel, there will be 3 x the voxel count 

parameters to optimize and possibly more if the registration uses 

multiple time steps.  The registration metric is usually comprised of two 

parts, an image similarity function such as sum of square differences 

between the source and registered target image, and an irregularity 

penalty that attempts to keep the deformation organized and legal 

under various definitions.  Because of the very large number of 

parameters, these regularization terms are usually too simple to rescue 

the process from significant problems with local minima.  Current 

research is frequently focused either on dimensionality reduction 

(decomposition into control paths, etc.) or on introducing more 

sophisticated and finely tuned regularization terms. 

Registration layer information is a useful input to many of Model 

Guided Rendering’s algorithms, but it is insufficient for the regional 

image-to-image mapping algorithms described later.  While registration 

of a target image to common atlas coordinates, for example the 

Talairach brain (Talairach and Tournoux 1988), can give object-labels to 

each voxel, determining qualities such as local orientation requires a 

complete object-based volumetric coordinate system fit to each image 

region.  Such coordinate systems are a natural by-product of the image 

segmentation methods described in the next section. 

2.2.2 Image Interpretation 

The image interpretation input to Model Guided Rendering comes from 

a type of deformable shape model.  Statistical shape models were 

originally developed independently in (Kendall 1984) and (Bookstein 

1989) for structures identified by a few important landmarks found in 

each of many patient images.  Modern statistical shape models for tiled 
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surfaces were proposed in (Cootes, et al. 1993) as a method for image 

segmentation.   

As with the deformable registration framework described previously, 

segmenting an image via deformable shape models relies on a two term 

optimization balancing an image match against a model penalty.  

However, parameterized shapes are much lower dimension with 

respect to the number of training samples usually available, and they 

can be restricted to not only a legal (e.g., non-self-interpenetrating) or 

regular (e.g. smooth) shape subspace, but to credible shapes (e.g., the 

liver is liver-shaped) as well. 

As an example of shape credibility, consider a simple image term 

consisting only of a threshold based edge finder.  As shown in Fig. 32, 

an edge-finding segmentation algorithm with no penalty for deviating 

from a head-like shape will incorrectly label the sinuses as skin.  This 

segmentation is legal and smooth, but it is not credible.  High 

dimensional deformable registrations tend to suffer from the same 

class of problems because it is difficult to embed notions of shape 

credibility in the regularity term. 

Following (Mumford 1994), the image match and model penalty terms 

optimized during image segmentation by statistical deformable shape 

models (SDSM) can be interpreted as probabilities and the framework is 

usually called "Bayesian probabilistic" image segmentation. 

The SDSM itself is an object-specific shape model that characterizes 

shape change and likely intensities relative to a "typical" instance.  The 

typical shape usually is taken to be the mean shape of a population of 

training shapes, and relative shape changes are encoded as a limited 

number of important modes of shape variability.  These modes are 

derived by applying principal component analysis (PCA) or another 

decomposition method on the parameters of the training shapes.  This 

results in an even lower dimensional parameterization where any 

particular shape in the space defined by the training set can be 

completely and uniquely identified by a few coefficients to within some 

small truncation error.  Distances in this space provide a metric for 

shape that can be used as the basis for numerical methods of shape 

discrimination, comparison, and interpolation. 

 
Fig. 32 A non-credible but legal 
skin segmentation with a simple 
edge detector. 
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In the context of Bayesian image segmentation, the SDSM provides the 

fitting optimization with both the initial shape estimate and a 

straightforward metric for shape credibility.  In Bayesian image 

segmentation, this metric can be interpreted as a prior probability 

distribution on shape and is usually called simply the "shape prior".  The 

SDSM additionally provides the fitting optimization with a coordinate 

system for expressing image intensities in model-relative terms.  The 

optimization, then, becomes a compromise between the shape prior 

and the shape suggested by the image intensities.  (Fig. 33) shows an 

example of an SDSM's initial and optimized fit to a target image. 

 

Shape Models 

Many types of shape and intensity representations have been proposed 

as bases for probabilistic segmentation, and all have different utility and 

drawbacks.  In particular, certain types of SDSMs can provide MGR with 

an object-centric coordinate system for local image regions.  The most 

common shape model in the literature is boundary-only, sometimes 

called a point distribution model or PDM proposed in (Cootes, et al. 

1993).  PDMs are, however, insufficient for MGR’s requirements 

because they do not parameterize the interior of the object, so they do 

not explicitly establish volumetric correspondence between 3D source 

and target regions.  Such volumetric correspondences are the basis for 

the color mapping algorithms that are proposed in the next chapter. 

The parameterization used by Model Guided Rendering is the discrete 

medial representation called “m-reps” – although the methods could be 

generalized to other shape representations with a well defined 

volumetric coordinate system.  M-reps are well suited to image 

segmentation tasks because they capture not only position information 

 

Fig. 33 Fitting a statistical 
deformable model to a target 
training image.  Top, 3D surface 
views and bottom, single sagittal 
slice views of bladder template 
geometry. Left, initial shape 
estimate coarsely aligned to a 
target training image; middle, 
deformably fit to that image; and 
right, in the context of the actual 
grayscale data. (From (Merck, et 
al. 2008)) 
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at an anatomic region's boundary but also model-relative orientational 

information throughout the region's interior.  For the purposes of MGR, 

the parameterization handles plausible physical changes such as local 

twisting and bending in a way that is naturally reflected by the 

volumetric coordinate system. 

 
The m-rep parameterization is described in section 3.1, Creating a Scene 

Catalog, but because Model Guided Rendering is a post-segmentation 

task, the detailed mechanisms by which data can be automatically 

segmented have been omitted.  See (Pizer, et al. 2008) for an overview 

of the representation and segmentation pipeline, see (Broadhurst, et al. 

2006) for a detailed description of the embedded intensity statistics, see 

(Fletcher, et al. 2004) for an explanation of the governing statistical 

model, and see (Merck, et al. 2008) for a description of the shape 

training process. 

M-Rep Software 

The primary m-rep editing and fitting tool is called Pablo5.  Pablo is a 

useful tool for developing new Model Guided Rendering scenes.  It is 

available from UNC’s Medical Image Display and Analysis Group 

(MIDAG) under a research license.  M-reps are also implemented in the 

commercial male pelvis segmentation system MxStruct MP, developed 

by Morphormics (http://www.morphormics.com).  See section 5.2, MGR 

Applications in Adaptive Radiotherapy, for details of mgrView’s shape 

representation and supported file loaders.  

                                                           
5
 The program was named based on the following quote from Pablo Picasso – 

Computers are useless. They can only give you answers. 

Fig. 34 Left, M-rep figures and 
sub-figures fit to a kidney and 
its internal pyramids and 
calyces.  The complex nested 
volumes and smooth surfaces 
are represented with a few 
hundred parameters.  Middle, 
an early MGR image with 
detailed internal orientations 
generated from this model.  
Right, a reference illustration 
from Netter. 
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2.3 Classic Medical Image Visualization 

The field of medical image visualization is very broad.  This section is 

focused exclusively on classical single-image visualization methods that 

are based entirely on local properties of the data, e.g., by intensity or 

derivatives of intensity, or by scene geometry, e.g., distance from the 

viewer.  This review further restricts its scope to the historical and 

methodological influences of Model Guided Rendering.   Later sections 

discuss precedents for interpretation driven scene design, such as 

importance rendering.  This section is divided into three topics. 

1. A very brief review of surface rendering for medical visualization.  

While surface driven visualization methods are generally inadequate 

for complex anatomic scenes, a major goal of Model Guided 

Rendering is to integrate surface and volume rendering and to use 

each where it is most beneficial to comprehension. 

2. The topic object-order and image-order direct volume rendering 

(DVR) compares ray cast volume rendering as proposed by Levoy 

with rasterize-and-blend volume rendering as proposed by Drebin.  

Ray casting or “image-order” rendering is the grandfather of DVR 

methods, and many of the basic concepts from Levoy map directly 

onto the mgrView toolbox.  Rasterize-and-blend or “object-order” 

volume rendering can be much faster than ray casting because it 

relies on graphics hardware acceleration, but it has traditionally 

been limited in quality by the fixed function hardware rasterization 

pipeline.  However, programmable shader hardware has lifted 

many of those restrictions, and mgrView’s rendering core is actually 

implemented with this method. 

3. Independent-image scene design reviews some major naïve 

methods for pseudo-coloring such as so called “volume illustration” 

and for simple clipping.  Many of these image-order methods have 

been re-implemented in mgrView as fast object-order methods. 

2.3.1 Surface Rendering 

Extracting a 2D manifold of data from a 3D data set is an easy to 

manage method for isolating certain kinds of important features and 

suppressing the rest of the volume data.  Virtual colonoscopy, where 3D 

visualization is well adopted (Fig. 6), relies on surface extraction for 

 

Fig. 35 Multislice segmentations 
(contours) and tiled surfaces 
rendered in PLUNC. Stacks of 
manually drawn contours are 
knit together into target region 
surfaces by the “FKU77” 
algorithm (Fuchs, Kedem and 
Uselton 1977). 
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both the soft pink plastic looking walls and the flythrough camera path 

planning. 

Surfaces of interest in the volume may be extracted according to purely 

geometric methods, such as cut planes, or may rely on data driven 

methods such isosurfaces.  Surfaces may also come from the 

boundaries of manual or automatic image segmentation as discussed in 

the previous section.  Once extracted, surfaces can be scan converted 

into label volumes or be used to compute normals, which are vital for 

lighting.  Much of the later discussion on volume shading revolves 

around estimating local normals in the absence of surfaces for the 

purposes of lighting. 

Cut Planes 

Trans-axial slices through the data are the simplest and most widely 

used method for interrogating volume data.  Saggital and coronal slices 

are also used in some applications, and occasionally cuts in all three 

axonometric directions will be combined to explore a particular region 

of interest, as shown in Fig. 36.  Such views are sometimes colloquially 

called “2.5D display”.  These simple views are optimal for certain tasks 

like slice-by-slice manual segmentation, but they do not provide the 

user with very good context information about the 3D shape of the 

anatomic structures. 

 

Fig. 36 2.5D view of a CT data 
set of the male pelvis with 
intersecting axis aligned cut 
planes. 
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Axis aligned cut planes were originally used exclusively because it is 

particularly simple to sample an axis aligned planar texture from a 3D 

data set.  Using 3D texturing hardware, however, planes of any 

orientation can be sampled just as quickly by simply transforming the 

texture coordinates at the corner vertices in OpenGL.  mgrView allows 

any number of independently positioned and oriented cut-planes to be 

attached to a particular scene.  Cut plane pose can also be aligned 

according to other objects in the scene, for example, to be normal to 

the medial axis of a modeled region (Fig. 37). 

Surface Extraction 

Finding the isosurface of a binary label image or the isosurface of a gray 

image with anatomic structures that have distinct values (essentially 

segmenting by threshold) is one method for identifying regional 

boundaries in an image. 

 

The isosurface method was originally developed at GE Labs and 

famously proposed as the “marching cubes” algorithm in (Lorensen and 

Cline 1987).  The authors subsequently applied the general method 

particularly to medical image visualization in (Cline, Lorensen and Ludke 

1988).  (Cline, Lorensen and Ludke 1988) has nice example of 

visualizations of bone, skin, and muscle (shown in Fig. 38), which 

happen to be the only anatomic tissue types in CT that are clearly 

discernible by scalar intensity alone.  Most features in medical volumes 

do not have such distinct values with respect to their neighbors, so 

isosurfacing is not generally useful.  Marching cubes/isosurfacing is 

currently not directly implemented in mgrView, but it can be computed 

offline using Kitware’s VTK (http://www.kitware.com) or another 

package and then loaded as a regular set of surfaces. 

Fig. 38 Marching cubes iso-
surface extraction with 
different reference values and 
views from (Cline, Lorensen 
and Ludke 1988)  

 
Fig. 37 A clip plane aligned to 
be normal to the along-
direction of the mandible. 
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Surface Lighting and Texturing 

Local lighting is typically dependent on combinations of four terms:  the 

normal direction, the view direction, the light direction, and the local 

surface color.  Lighting in volume data follows similar rules, although the 

normal direction must be approximated because it is not well defined.  

Diffuse lighting based on the dot product between the surface normal 

direction and the light direction (see (Phong 1973) for the complete 

model) provides default lighting for any surfaces displayed in mgrView.  

Methods for extending the lighting model to surfaces with solid textures 

are described in detail in the next chapter. Other shading models such 

as the so-called “Non-Photorealistic” (NPR) tone shading (Gooch, et al. 

1998) and cell shading are also implemented for surfaces in mgrView 

and can be assigned to regions either programmatically or through the 

default UI. 

Tone shading, sometimes eponymously called “Gooch shading”, was 

originally designed for technical illustrations:  hot and cool colors are 

assigned to theoretically balance the perceived intensity of the light and 

dark regions, so that surface features will not be obscured by lack of 

diffuse lighting.  The Gooch model is shown in Eqn. 5 and a rendering 

from mgrView shown in Fig. 39.  Cell shading is a nearest neighbor 

version of Phong with only a few “steps” of possible light values.  

Contour shading is similar, but it renders only those faces or edges that 

are most nearly orthogonal to the view direction (Fig. 40).  Contour-

finding is an important part of MGR’s extension of cast shadows to 

“importance stenciling” described in a later chapter.  mgrView’s NPR 

surface rendering modes are based in part on ATI’s white paper on NPR 

fragment shaders (Card and Mitchell 2002). 
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Eqn. 5 Formulation for Gooch 
tone shading in terms of the 
normal direction, n, the light 
direction, l, and colors k. 

 

 
Fig. 39 Gooch tone shading in 
mgrView. 

Fig. 40 Contours can be an 
effective technique for showing 
surfaces without occluding the 
underlying data. 
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2.3.2 Object-Order and Image-Order DVR 

Image-Order Volume Rendering 

Among other things, surface rendering suffers from occlusion problems 

– surfaces can be hidden behind other surfaces.  A partial solution to 

the occlusion problem can be found by projecting the entire 3D volume 

simultaneously onto the screen.  This method, pioneered by (Levoy 

ACM88) and extended in (M. Levoy 1990), is known as “direct volume 

rendering” (DVR).  Levoy’s original methods were based on following 

rays into the scenes; this method is variously referred to as “ray 

casting”, “image order”, or “backwards” DVR.  Image-order DVR can be 

most easily understood by considering a set of rays projected from the 

eye through the image pixel grid, and passing through the patient data 

(Fig. 41).  Each ray is sampled along its path, and each voxel traversed 

contributes to the shading and opacity accumulated for the ray. 

 

Images from the early Levoy papers were, in many ways, similar to 

isosurface renderings.  Levoy’s major insight in DVR was recognizing 

that regions of high gradient magnitude contained more information 

about the internal structure6, so those areas are weighted more heavily 

compared to areas of low gradient.  This assumption amounts to 

noticing that regions of high gradient magnitude tend to represent 

surfaces and that the local gradient direction corresponds to the local 

normal direction.  This is an excellent assumption at interfaces such as 

                                                           
6
 It is unclear whether Levoy originated this idea, Cline suggests that an even 

earlier 1986 Höhne paper proposed the same idea. 

 

Fig. 41 A ray is sampled along 
its length in such a way as to 
cover all voxels (taken from 
(Borland07)) 

Fig. 42 A pseudo-DVR 
visualization for radiotherapy 
planning from (Levoy VBC90), 
also rendered as a white light 
hologram in the lobby of UNC-
CH’s Sitterson hall. 
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skin-to-air and meat-to-bone; i.e., those same places where isosurfacing 

is particularly effective. 

Image order volume rendering is derived from (Kajiya84), which 

describes an algorithm for ray tracing volume data (transparent gasses 

with interfaces), and from (Kajiya86), which generalizes the method and 

defines the ‘rendering equation’, a mathematical formulation for how 

objects, appearance properties, lights, occlusions, and transparencies in 

a scene can be combined and projected onto an image according ray 

casting. 

Most widely used research volume rendering engines, such as that in 

Kitware’s VTK and its derivatives, VolView and Paraview, as well as 

Analyze and MRIcron, are based on ray casting engines.  Because of the 

common root with physically based rendering, ray cast DVR is very 

flexible and can be easily combined with other physically accurate light 

transport algorithms, such as lighting, reflection, soft shadows, and 

anti-aliasing.  Lighting and shadows in particular are very strong shape 

cues.  Ray cast DVR is also amenable to speed ups like oct-tree traversal 

(Levoy’s original proposal), early-exit for opacity saturated rays, and 

incremental sweetening by increasing resolution.  Because the rays are 

independent, ray casting algorithms are easily adapted to multi-

threaded architectures. 

 

Fig. 44 An image from the 
original ray-casting core 
considered for mgrView.  
Effects such as reflections, soft 
shadows and super-sampling 
can be easily implemented in a 
ray-casting framework. 

 
Fig. 43 Interface and rendering 
from VolView. 

http://www.vtk.org/
http://www.kitware.com/products/volview.html
http://www.paraview.org/
http://www.mayo.edu/bir/Software/Analyze/Analyze.html
http://www.sph.sc.edu/comd/rorden/mricron/
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However, ray casting is very computationally expensive, and MGR has 

significant additional overhead in doing a large number of trilinear 

interpolations for external image source lookups.  Therefore, without 

access to advanced hardware, ray casting’s slowness outweighs its 

relative advantages.  Fig. 44 shows a view from an early ray-casting 

implementation considered for mgrView’s rendering core; it took on the 

order of 10 minutes to render a 512 x 512 pixel image. 

Object-Order Volume Rendering 

An alternative volume rendering implementation originally proposed in 

(Drebin, Carpenter and Hanrahan 1988) is to rasterize geometry that 

has been assigned a corresponding texture in the patient image, and 

then blend the textured geometry together using standard graphics 

acceleration hardware (the graphics processing unit or “gpu”).  Drebin7 

originally proposed cutting through the volume with stacks of planar 

geometry (Fig. 45), although other geometry has also been used, such 

as Gaussian footprints (“Splats”)(Westover 1990) and spheres or other 

curved manifolds.   Because this method works in “object-space” rather 

than “image-space”, as ray casting does, these methods are sometimes 

called “object-order” or “forward” DVR.  

 

To review the basic method: 

1. The back-to-front marching order8 is determined by computing the 

dot product of the view direction with positive and negative 

cardinal directions and taking the min. 

                                                           
7
 Drebin’s original paper is also of interest because it proposes a local maximum 

a posteriori segmentation and gradients on that as part of the rendering 
process.  Thus, like Levoy, the underlying assumed surfaces are made explicit in 
the algorithm. 

8
 The order can be reversed, from front to back by using a different blending 

formula. 

Fig. 45  The otter with an extra 
wrist bone from (Drebin, 
Carpenter and Hanrahan 1988).  
When shown this display, 
scientists discovered a hitherto 
unknown wrist bone.  This is one 
of the few examples that the 
author has been able to find of 
volume rendering actually 
contributing novel scientific 
utility. 
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2. Starting with the back face and moving to the front face (“painter’s 

algorithm”), texture a piece of rectangular geometry (a “quad”) the 

size of the slice with the volume data samples and project it onto 

the screen, using the volume texture to control both the 

color/shading and transparency of each fragment9. 

Speed-ups such as early exit are unnecessary since operations are done 

in parallel; but incremental sweetening can be done by adding 

additional samples (e.g., planes) along the rays as opposed to adding 

additional rays. 

 

Because this method of plane-compositing maps directly onto graphics 

hardware, this method has low overhead and can achieve interactive 

rate volume rendering on even modest work stations.10 

When these object-order methods were originally proposed, they 

suffered from three main problems. 

1. Under-sampling oblique paths through the data 

2. Limited storage space in video RAM 

3. Fixed functionality hardware pipeline not amenable to per voxel 

effects such as can be achieved by the “transfer functions” 

discussed in the next section 

                                                           
9
 Terminology:  A “fragment” is the data necessary to generate a single pixel in 

the frame buffer.  Pixels are rgba (red, blue, green, alpha, where alpha 
measures opacity) image samples; fragments are potential rgba image samples 
that include extended properties such as depth and texture coordinates. 

10
 For additional insight into how this algorithm works, look at Joe Conti’s 

vol3d.m function for Matlab. http://www.mathworks.com/matlabcentral/ 
fileexchange/4927 

Fig. 46 Scenes renderered with 
mgrView using 64 planes (left) 
and 192 planes (right). 
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The least significant problem is with regularity of sampling.  With ray 

cast methods, one can regularly interrogate values from the data along 

a ray.  Compared to a ray perpendicular to the volume sampled evenly 

along every voxel, a different ray entering the volume at an angle may 

need to take multiple samples within a voxel to achieve the same 

spacing.  Using axis aligned plane casting, sampling is fixed at each 

plane, which means that angled rays will be undersampled with respect 

to rays that are perpendicular to the volume face.  This is also the 

source of the “cornrow effect” sometimes seen at the boundaries of 

dense regions, where the edges of the individual planes can be clearly 

seen, as shown in Fig. 47. 

Cornrowing can be addressed most simply by adding simply additional 

planes to the display.  However, a more principled approach is to slice 

the volume with screen-aligned cut planes, as proposed by (Cullip and 

Neumann 1993).  Screen-aligned plane casting was originally an 

ambitious idea, since it required the volume data to be interpolated in 

3D, rather than 2D, and thus required a supercomputer to do at any 

reasonable speed.  However, within the last few years 3D texture 

interpolation has been included on most new graphics cards, and the 

method has become quite easy to implement.  Each compositing plane 

and its texture coordinates are simply rotated by an extra matrix 

multiply to be normal to the view direction.  The renderer in mgrView 

supports either axis or view aligned volume renderering.  Cutting the 

volume with a set of nested spheres rather than planes can also be used 

to normalize the number of volume samples per pixel. 

The issue of storage space on the fast video RAM used by the gpu has 

been trivially surmounted as faster, cheaper memories became 

commoditized over the last few years.  The size of the target image has 

become essentially irrelevant with respect to object-order DVR for 

medical image sizes in our clinic; volumes up to 512 x 512 x 128 fit easily 

into texture RAM.  Stored as single bytes (truncating 4 bits), such a data 

set uses only 33 Megabytes of what is typically at least a 256 Mb store.  

Because the image gradient is expensive to sample in real time, the 

gradient of the image can be pre-computed for lighting and stored as an 

additional 3-channel texture array where each channel carries the 

directional difference information with respect to the x, y, and z 

 
Fig. 47 Close up of 
“cornrowing” effect at the edge 
of a 92 slice volume using 
mgrView. 
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directions (Fig. 48)11.  This can require an additional 100 Mb, and adding 

further high-resolution 3D color images such as the scene catalogs and 

color atlases described in the next chapter can indeed stress system 

storage if not managed correctly. 

Older graphics accelerators implemented a fixed functionality 

rasterization pipeline, which restricted the extensibility of object-order 

volume rendering.  Higher order effects, in particular, intensity 

windowing and lighting, are trivial to compute in the ray casting 

framework, but they are precluded by the fixed functionality hardware 

pixel processing. 

With a few exceptions (such as (Dachille, et al. 1998), which proposes 

using a simplified look-up table for pre-computed lighting) explicit per-

pixel effects were not deeply explored for object-order volume 

rendering until programmable shaders were introduced, and even then 

they were not practical until compliant hardware became ubiquitous.  

(Westover 1990), who proposed voxel-wise compositing by elliptical 

Gaussian ‘footprints’, or volume ‘Splatting’ as it is colloquially called 

(Fig. 49), indirectly addresses the problem by using extremely small 

elements12.  Westover did not focus on this advantage, but because 

individual voxels are composited it is slightly easier to approximate per-

pixel shading effects without relying on a programmable shader.  For 

example, a normal can be assigned to each voxel for lighting purposes.  

A splat rendering core was also considered for mgrView (see 

subsequent Fig. 119 for an image generated from it).  However, the 

large number of primitives required to be rasterized made it fairly slow, 

particularly since programmable graphics hardware has lifted most of 

the restrictions of the plane casting method. 

Using programmable shaders, object-order methods can easily achieve 

high quality results at interactive rates.  The fixed functionality shading 

pipeline can be overridden by writing short programs in a c-like 

language.  mgrView implements programmable shaders in the  OpenGL 

                                                           
11

 This technique is used again later for representing local displacement fields.  
As an historical side note, (Fuchs and Pizer 1986) suggests using the frame 
buffer for (x,y,i) data in their patent for 3D display using a varifocal mirror. 

12
 It is also to this paper that I owe the taxonomy of volume visualization 

techniques as backwards, forwards, and surface based used in organizing this 
discussion. 

 
Fig. 48 The gradient volume of 
an abdomen image stored as 
rgb channels and rendered 
directly with mgrView. 

 
Fig. 49 Image from (Westover 
1990) illustrating the effects of 
variously sized “splat” kernels.  
The kernels in the top row are 
too sharp, giving inadequate 
coverage of the scene.  The 
kernels on the bottom row are 
too broad, causing unnecessary 
blur. 
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shading language (GLSL) (http://www.opengl.org/documentation/glsl/), 

but similar results could be achieved using other gpu languages such as 

nVidia’s Cg or DirectX’s HSL.  Fig. 50 shows the standard OpenGL 

graphics pipeline along with annotations regarding how MGR objects 

are classified as image or geometry data and noting where fixed 

functionality can be overridden by custom vertex and fragment 

programs to support various MGR methods.  The MGR methods 

described in the next two chapters are all designed to be efficient in this 

context.  That is, they are largely independent of one another and 

require only small amounts of data for their calculations.  See (Shreiner, 

et al. 2005) and (Rost 2006) for details of how the OpenGL pipeline and 

GLSL work together. 

Any geometric objects such as planes through 
the volume or model surface points

Any data sampled on a 2D or 3D grid 
such as 2D/3D patient images, textures, 
registration fields

Fixed function primitive assembly can be 
replaced by “vertex programs” that 
change the standard mapping between 
vertex positions and scene coordinates.

MGR methods that will be discussed later 
include u2x maps, onion skins, and 
shadow volumes.

Fixed function fragment operations can 
be replaced by “fragment programs” 
that change the standard computation 
of fragment texturing and shading.

MGR methods that will be discussed 
later include color mapping, photo 
mapping, volumetric animation.

 
Fig. 50  Annotated OpenGL pipeline originally found in (Shreiner, et al. 2005). 

Using a standard single-source volume rendering shader with intensity 

windowing, mgrView achieves frame rates of over 20 fps for 200 slice 

standard DVR on a modest laptop with an NVIDIA Quadro NVS 160M 

graphics accelerator and over 10 fps for 100 slice DVR on an a standard 

desktop workstation with a NVIDIA GeForce 6200 graphics accelerator.  

Comparative values for other more complex shader models with color 

mapping or volumetric animation are given in later sections and 

summarized in the Conclusion Chapter in Table 4. 
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2.3.3 Independent-Image Scene Design 

Illustrations are designed to fulfill a communicative intent, such as 

showing the location or use of an object.  Illustration is based both on 

style (called 'appearance' in MGR) and on composition (sometimes 

called 'clipping' in the literature).  The idea of computed illustration was 

first proposed in (Seligmann and Feiner 1989).  Though this paper is not 

algorithmically interesting, nor are the results compelling by modern 

standards (8k polygons in 8 seconds), the paper lays out the important 

guiding principles for computed illustration.  Seligmann outlines a 

language for expressing communicative goals (location, relationship, 

property, difference).  Then for each goal he describes different design 

strategies, which can be, in turn, composed of different styles 

(highlighted object, visible context, ghost object at previous location, 

annotate).  He then uses a test and evaluate process: several candidate 

renderings are generated, and then each is evaluated and ranked 

according to questions like 'Is the object occluded?' and 'How much 

contrast is there between the object and its context?'  While MGR does 

not rely on such a fully automatic framework for styling and composing 

scenes, this core way of categorizing the tasks at hand has been 

thoroughly integrated into the design of the framework. 

There are two basic “styles” of DVR:  “Levoy-like” Superman x-ray vision, 

or maximum intensity projection (MIP), which simulates a radiographic 

view (sometimes called a “digitally reconstructed radiograph” or DRR).  

Following Seligmann, it could be argued that both of these modes suffer 

from two main problems besides speed. 

1. Understandability – it is difficult to identify important features in 

the scene. Scene understandability is addressed by MGR’s 

appearance components. 

2. Occlusions – it is difficult to focus the view to see relationships 

between these features. View focus is addressed by MGR’s 

composition components. 

These issues are typically addressed in independent image rendering by 

designing increasingly complex transfer functions or increasingly 

complex geometric dependencies that attempt to implicitly tease out 

important anatomic structures by bringing tangential external 

information to the scene.  In MGR these issues are addressed explicitly 

by working in the proper coordinate systems for local anatomic 

structures. 
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Independent Image Appearance Design 

The goal of assigning appearance in classic volume rendering methods 

is to shade implicitly identified regions in a scene so that they are more 

easily identified, if not more easily understood.  This has typically been 

addressed by assigning “transfer functions”. In image-order algorithms, 

the idea behind a transfer function is that as a ray traverses the volume 

data, it keeps track of what data intensities it has passed through and 

accordingly accumulates or modifies the pseudo-color that will be 

returned to the initializing pixel. Fig. 51 shows an example of an 

impressive rendering and VolView’s user interface for controlling the 

transfer function. Pseudo-color transfer functions are not implemented 

in mgrView, although there is no particular reason that they could not 

be. The detail that follows is to give an idea of what competing non-

multi-source volume rendering methods have to offer in terms of 

rendering styles. 

As proposed, transfer functions were originally quite simple, e.g., linear 

and clamped to a range, much like standard intensity windowing, with 

additional surface finding from gradient magnitude.  Such transfer 

functions can easily be focused on the absolute intensity of voxel with a 

direct mapping between value and a pseudo-coloring scheme.  For 

regions that can be simply identified according to intensity, this is quite 

useful – bone (high HU) can be shaded white, and muscle tissue can be 

shaded red or pink.  Unfortunately, most of the detail that is important 

in a scene is not distinct by HU value alone, so a considerable amount of 

effort has gone into creating complex and precisely targeted transfer 

functions to discover correspondingly complex relationships in the data.  

In a sense, the goal of these multi-dimensional transfer functions is to 

identify important regions by doing a local on-the-fly data 

segmentation according to automatically extracted features (again, 

typically implicit surfaces or derived properties thereof like local 

curvature (Fig. 52)). 

As the controls become more complex, the views become quite fragile.  

Because no clinician could be adequately trained to manipulate the 

many parameters in the most detailed systems, research turned instead 

to methods for ameliorating the onerous tuning with more intuitive 

controls.  (Kniss, Kindlmann and Hansen 2001), for example, describes a 

simplified framework for manipulating multi-dimensional transfer 

functions. 

 
Fig. 51 Detail of VolView’s 3D 
rendering and transfer function 
interface from Fig. 43.  The 
transfer function interface 
shows a histogram of the 
intensities in the scene.  
Leftmost is air, rightmost is 
bone. The overlaid line controls 
the opacity for each intensity 
value (transparent at air, 
approaching opaque at bone). 
The bar on the bottom shows 
the color assignments for each 
intensity value (brown for soft 
tissue, white-pink for bone). 

 
Fig. 52.  One of my favorite 
volume renderings, using a 
curvature based transfer 
function from (Kindlmann, et 
al. 2003).  Note that it is very 
similar to a surface rendering. 
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Beyond transfer functions is a set of volume non-photorealistic (NPR) 

methods such as those described previously in this section.  Volume 

equivalents to tone and cartoon shading and contour rendering, as well 

as the application of pen and ink or pencil textures have been 

proposed.  NPR shading for volumes was first described in (Ebert and 

Rheingans 2000) and was then expanded in (Rheingans and Ebert 

2001), which coins the term “volume illustration”.  Rheingans proposes 

a variety of rendering enhancements, but despite the title, tone shading 

is the major NPR technique she invokes. Unfortunately, none of their 

renderings would seem to be particularly more understandable than a 

standard Levoy-view for an untrained viewer (see Fig. 54 for an 

example).  (Tietjen, Isenberg and Preim 2005) extends the idea of 

“volume illustration” (even appropriating the term) to account for 

segmented objects (Fig. 53). 

There are a few papers that propose truly novel styles, such as applying 

“pen and ink” methods to volumes.  (Lu, et al. 2003) proposes a method 

for volume rendering with stipples (Fig. 55 left).  This style is based on 

the artistic pointillism technique and has nice results for a non-model-

based method.  An interesting insight in this paper is that a large 

number of 3D stipples can be precomputed offline for each voxel, and 

then subsets of stipples can be taken as the view-to-voxel function 

changes, so that individual stipples do not move as the number of 

stipples at each sample changes.  (Fischer, Bartz and Strasser 2005)(Fig. 

55 right) describes a similar NPR half-toning for nested iso-surfaces that 

works in image space after projection, much like PLUNC's z-vol program, 

which simulates diffuse shading by looking at the 2D gradient of the z-

buffer as a post-process. 

One of the most complete rendering systems is described in (Svakhine, 

Ebert and Stredney 2005), a paper nominally on applying illustrative 

motifs to volume rendering.  This paper provides an overview of their 

complicated volume rendering pipeline and the large number of user 

interface widgets required to interface with it. Few implementation 

details are presented here, but more details can be found in their earlier 

papers.  The goals of the Ebert/Svakhine system are somewhat similar 

to the goals outlined for Model Guided Rendering. 

1. To highlight and show structure near the focus 

2. To remove occluding material 

3. To use simple rendering for context areas. 

 
Fig. 54 Tone shaded illustrative 
rendering of the thorax from 
(Ebert and Rheingans 2000). 

 

Fig. 55 Left, (Lu, et al. 2003)’s 
volume stippler and right, 
(Fischer, Bartz and Strasser 
2005) renderings of the engine 
block data. 

 

Fig. 53 (Tietjen, Isenberg and 
Preim 2005) describes a 
method for combining 
segmentations with DVR to 
create hybrid illustrative 
renderings. 
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(Svakhine, Ebert and Stredney 2005) also suggests that model guidance 

can be included in their pipeline, but they do not explain how. They 

instead focus on implementing complex multi-dimensional transfer 

functions. Like mgrView, their system has a hardware accelerated 

object-order core, and it runs at comparable speeds: 20 fps preview 

and 4 fps sweetened. 

Independent Image Scene Composition 

The problem of occlusions in volume data was immediately recognized 

in Levoy’s original work when he suggested that his algorithm could 

display all of the information in a volume only if the data was 

“monotonically increasing along the ray”.  This is, of course, unlikely to 

be true for any natural image (as Levoy recognized), especially for an 

anatomic CT image where skin << skull >> gray matter.  In radiography 

this effect is seen when denser objects such as bone obscure all less 

dense objects both in front and behind them.  In DVR this problem is 

even worse because particular transfer functions can be defined that 

additionally allow dense features to be obscured by less dense features 

in front of them.  As a degenerate example, consider a transfer function 

that sets air to full opacity. 

A variety of tools have been proposed to get around this “monotonicity 

proposition” without taking recourse to explicit external information 

such as the “importance rendering” described in (Viola, Kanitsar and 

Groller 2004) and (Borland, et al. 2006).  (Importance rendering is 

discussed later when similar MGR methods for scene composition are 

proposed).  A few of the more interesting data or scene geometry 

driven suggestions, along with mgrView’s simple implementations of 

them, are discussed here. 

Levoy’s original insight was that high gradient magnitude regions 

corresponded to surfaces in the image and were therefore more likely 

contain interesting shape information than low-gradient magnitude 

regions.  For the same reason that the gradient direction could stand as 

a suitable proxy for a normal direction, the gradient magnitude itself 

could stand as a measure of how interesting this voxel is likely to be in 

the scene.  (M. Levoy 1990) gave a straightforward image-order 

implementation of this with a transfer function that accumulates color 

separately from opacity.  Implementing the same function in GLSL is 

simply a matter of using a fragment program (recall Fig. 50) to modulate 

the CT intensity by the local gradient magnitude, as shown in Program 3. 

 
Fig. 56. Image from (Svakhine, 
Ebert and Stredney 2005) 
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// mgrView px shader for gradient magnitude opacity modulation 
main (void ) {  
 gl_FragColor = texture3d( source_im, world_coordinate ); 
 vec3 gradient = texture3d( gradient_im, world_coordinate ); 
 gl_FragColor.a *= length( gradient );} 

Program 3 GLSL with per-pixel gradient magnitude opacity modulation as in (M. 
Levoy 1990). 

 

A variety of methods for surface based scene composition are 

formalized in (Diepstraten, Weiskopf and and Ertl 2003).  One of the 

most intriguing suggestions in Diepstraten’s treatment is to use areas 

with high specularity – surfaces that are relatively flat and oriented 

towards the viewer, to modulate transparency.  This is also simple to 

implement for a volume in a shader, as shown in Program 4 with results 

in Fig. 57.  Here specularity is approximated by a diffuse term using the 

gradient direction as a proxy for the local surface direction and the 

camera position as the light direction.  This approximation picks out the 

same kinds of interfaces that are flat and oriented towards the viewer in 

the volume data.  The effect is quite close to the earlier described 

“contour shader” for volumes. 

// mgrView px shader for specularity-based opacity modulation 
main (void ) {  
 gl_FragColor = texture3d( source_im, world_coordinate ); 
 vec3 gradient = texture3d( gradient_im, world_coordinate ); 
 gradient.unpack();  // Recover signed values 
 float diffuse = dot( normalize(camera_position), gradient ); 
 gl_FragColor.a *= (1.-diffuse); 
 // Could also use the complement for “lighting” the volume w.r.t. the 
 // camera, i.e., gl_FragColor.rgb *= diffuse; 
} 

Program 4 GLSL with per-pixel specularity modulation as in (Diepstraten, 
Weiskopf and and Ertl 2003). 

Fig. 57  Left, a standard view of 
an abdomen data set in 
mgrView.  Right, the same view 
with specularity-based opacity 
modulation. 
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Distance based opacity modulation is proposed in several sources, 

including (Lu, et al. 2003) and (Bruckner, Grimm, et al. 2006), which has 

possibly the most compelling results shown in Fig. 58.  mgrView’s 

fragment shader can be simply extended with similar functionality by 

using Program 5 with results such as those shown in Fig. 59. 

// mgrView px shader for distance-based opacity modulation 
main (void ) {  
 gl_FragColor = texture3d( source_im, world_coordinate ); 
 float z = ((gl_FragPosition.z/gl_FragPosition.w) – near) / (near – far); 
 gl_FragColor.a *= 1.-z;} 

Program 5 GLSL with per-pixel opacity modulation from distance. 

 

 

 

 

Fig. 58 (Bruckner, et al. 2006) 
uses cut-away views driven by 
distance from the viewer to 
maintain a visual context. 

Fig. 59 Left, a scene rendered 
normally in mgrView.  Right, the 
same scene with per-pixel 
opacity modulation from 
distance as in Program 5.  The 
table and ribs have been 
removed, allowing a clear view of 
the kidney.  The effect is quite 
striking when interactively 
rotating the object. 
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3 Model Guided Appearance 

for Medical Images 
 

Following (Seligmann and Feiner 1989), discussed earlier, MGR’s 

methods can be roughly divided into those concerned with scene 

appearance and those concerned with scene composition.  This chapter 

presents tools for designing scene appearance by shading important 

structures in a scene to meaningfully reflect their anatomic function.  

This can be done either by visually labeling and orienting regions with a 

texture or according to atlas colors, or by superimposing data drawn 

from another more suitable source, such as a cross-modal mapping 

showing MRI data within a target region in the context of geometrically 

accurate CT data elsewhere (Fig. 60). 

 
Both of these approaches rely on being able to create regional 

mappings from multiple image sources into a target patient rendering.  

MGR does such mappings online in an object-order context by using a 

combination of programmable graphics hardware shaders that add 

relatively little computational overhead to the rendering.  The 

algorithms are controlled by a data structure called a “scene catalog”.  A 

scene catalog is a description of where every important object in the 

Fig. 60 Male pelvis scene 
rendered primarily from CT data 
but with red tinted MR data 
mapped into the prostate region 
to show distinction between soft 
tissue types within the prostate. 
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scene is, how it is oriented, and how it corresponds to other similar 

models in other data.  Scene catalogs also form the basis for associated 

model guided texture synthesis methods. 

A scene catalog for a rendering consists of two parts. 

1. A world-to-model coordinate transform, called an “X2U map”, 

where X is a world-space (xyz) triplet and U is an object coordinate 

(uvt)=(along,across,through) with an additional possible fourth 

component, o, for object label in multi-object scenes. 

2. One or more "rules" for transforming each region’s model 

coordinates into a texture space or the world space of a related 

image such as a color atlas. 

Model-to-texture transform rules include the following cases. 

1. World-based, which uses only the label component of the X2U map 

2. Model-based, which uses the label and model coordinates 

3. Model-to-model, which uses the label and model coordinates, as 

well as an inverse mapping, called a U2X map, to convert model 

coordinates back into the world coordinates of a source image 

This chapter is divided into four sections. 

1. The first section, Creating a Scene Catalog, describes in detail how 

to quickly convert a collection of discrete medial models fit to 

regions in a scene into a X2U map. 

2. Rendering with regional appearances based on model or world 

mappings is discussed in the section Simple Texturing for Volumes.  

MGR uses simple texturing for both such things as generic oriented 

muscle fibers and for patient-specific synthetic textures that have 

been generated “in-place” for a scene.  Library solid textures can be 

used to add surface detail to a coarse underlying segmentation by 

perturbing local normal directions for lighting. 

3. An interesting case of a world-based rule is 2D Color Transfer from 

Patient Photos, where a patient image, for example, can be mapped 

onto skin voxels according to a function of world-position.  A fast 

method for rendering with 2D color transfer from photographs is 

presented in the third section of this chapter. 

4. The final texturing rule, called 3D Color Transfer in MGR, is the most 

complex but also the most flexible for mapping information from an 

additional data source, such as a color atlas or cross-modal image, 

into the target image space.  The creation and application of U2X 

maps for this purpose is described in the final section.  

 
Fig. 61 Simple world-mapped 
solid texture applied to the 
thyroid region of the target 
patient. 
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3.1 Creating a Scene Catalog 

MGR provides a framework for synthesizing multiple data sources into a 

single visualization on a region-by-region basis.  Many patient-specific 

and atlas data sources are connected to one another though shared 

object-coordinates, and the rendering engine shades each voxel 

conditionally according to the rules described in the introduction. 

Determining a governing rule and applying the relevant color-mapping 

algorithm for a particular voxel requires an estimate of the locally 

governing model’s (uvt) coordinates at any point in world space.  While 

the discrete medial coordinate system is well suited to transforming 

from parameter-to-world coordinates (the U2X transform) directly from 

the given medial parameters at the samples, the reverse transformation 

(X2U) has no closed form and typically requires an optimization driven 

search as described in (Han 2007).  This function would be extremely 

expensive to generate point-by-point according to standard means. 

 

MGR’s solution is to use the graphics accelerator to do a fast coordinate 

scan-conversion by rasterizing densely packed geometry that has been 

colored by object coordinate and then clipped to individual planes.  

Collating these planes into a volume gives a world-space lookup table 

(LUT) of (uvt) coordinates at every voxel (see Fig. 62).  In a sense, this 

Fig. 62  Direct display of the X2U 
map near the right 
sternocleidomastoid (scm) 
muscle. The red channel 
encodes u, the direction along 
the object, the green channel is 
v, around the object, and the 
blue channel is t, the through 
direction. The boundary surface 
of the scm is superimposed as a 
similarly colored mesh. 
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transform is a variant of a 3D distance map transform, but it tracks not 

only distance from the manifold (radius normalized distance along the 

spoke from the medial axis, in this case), but also the originating object 

label and (uv) coordinate on the medial sheet.  This X2U LUT, along with 

any inverse U2X maps required for the scene, is called the “scene 

catalog” in MGR.  Storing the scene catalog as a collection of 3D 

textures related to the coordinate systems of the various data sources 

participating in the scene allows mgrView’s object-order rendering 

pipeline to access and interpolate model coordinates as a function of 

world coordinates very quickly.  This novel method for being able to 

quickly access multiple images in model-relative coordinates has a 

broad range of applications in the medial shape realm where such 

access is thought to be the speed-limiting issue for many posterior 

optimization schemas. 

Scene catalogs are generated from shape models that have been fit to 

important regions in the patient images by the methods described in 

section 2.2.2, Image Interpretation. This section begins by reviewing the 

details of the discrete medial shape parameterization introduced 

previously, and then it describes the process for computing single- and 

multi-object X2U LUTs. 

3.1.1 The Discrete Medial Parameterization 

The geometry rasterized to compute the X2U table is a collection of 

onion skins between the region’s medial axis and boundary surface 

where each vertex’s (uvt) coordinate has been encoded as color.  

Medial geometry and the discrete medial representation are briefly 

reviewed here as a basis for explaining how these onion skins are 

computed and colored. 

Medial geometry was originally described in (Blum 1967) and has been 

most recently and most thoroughly described in (Siddiqi and Pizer 

2008).  Medial geometry describes 3D objects in terms of a skeletal 

surface, a 2D curved sheet lying midway between opposing boundary 

surfaces of the object, and a set of spokes extending to the object 

boundary from both sides of the skeletal surface.  The medial manifold, 

M, of a three dimensional object has eight parameters at each 2D point 

(u,v): M(u,v) = {position (3), spoke length (1), and two spoke directions 
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(2 x 2)}. Some additional complexity is introduced along the edges of the 

medial surface where the parameterization wraps around the object. 

 

 

The discrete medial representation (m-reps) samples the continuous 

manifold on a grid, yielding a set of 8-dimensional medial “hubs and 

spokes”, which taken together act as control points for the object's 

volume, as shown in Fig. 63, top.  Additional medial points can be 

interpolated according to (Han 2007), which in turn imply a denser 

surface sampling.  Alternatively, additional surface points can be 

approximated directly using a modified Catmull-Clark subdivision 

algorithm (Catmull and Clark 1978) with additional constraints on the 

normal directions(Thall 2004).  An object made from a single grid of 

medial samples is called a figure.  A single-column grid with additional 

spokes implies a tube figure; a multi-column grid implies a slab figure.  

Similar parameterizations are used for both slabs and tubes, although 

each has slightly different methods for such things as surface generation 

and measuring sample regularity. Indentations and protrusions on the 

object are handled as attached subfigures.  A figure along with any 

associated sub-figures is called a model, shown in Fig. 63, bottom left. 

The sampled M implies a volume filling approximately13 hexahedral 

mesh that is useful for various tasks that require volume filling 

coordinates, such as computing mechanical deformations according to 

finite element methods.  There are several alternatives for 

                                                           
13

 These are six-sided structures that do not necessarily have planar faces. 

Fig. 63  M-reps.  Top left, a 
medial sample with two equal 
length spokes touching opposing 
surface patches.  Top middle, a 
sampled skeletal sheet with 
neighbor relations marked.  Top 
right, spokes at each medial 
sample describe the orientation 
of the implied surface at that 
hub.  Bottom left, a densely 
sampled surface can be 
interpolated from the medial 
samples.  Bottom right, a 
prostate model with sub-figures 
defined for the left and right 
seminal vesicles. 

 
Fig. 64  Surfaces implied by m-
rep parameterizations of a 
target patient’s stomach, 
pancreas, and duodenum. 
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parameterizing M.  UNC’s medial shape fitting software Pablo14 uses a 

“single sided” representation, where u and v are the same on both the 

top and bottom of M and direction is determined by the sign of t (τ in 

Pablo parlance) with -1 on the bottom surface, 1 on the top surface, and 

taking intermediate values along the crest regions.  MGR uses a “shrink 

wrap” representation, where u and t are fixed with regard to sidedness, 

but v wraps around the medial sheet, running from [0,0.5) on the top 

and (0.5,1] along the bottom, with a seam where it cycles on itself.  The 

shrink-wrap representation is more flexible for working with skeletal 

rather than fully medial representations because spoke lengths and 

directions can differ on the top and bottom of the sheet.  However 

there is a seam in the v parameter across the medial sheet (Fig. 65), 

which adds some algorithmic complexity in the next section on applying 

simple textures.  The later section 5.2, MGR Applications in Adaptive 

Radiotherapy, describes the mapping between Pablo’s single-sided and 

MGR’s shrink wrap coordinates. 

3.1.2 Computing the X2U Map 

MGR’s object-order pipeline is well suited to both precomputing an 

entire X2U map very quickly and to accessing the X2U map saved as a 

lookup table (LUT) in memory for its various color mapping algorithms. 

A space-filling X2U map can generated by repeatedly rasterizing a large 

number of onion skins color-coded with (uvt) coordinates, with each 

rendering pass clipped to an individual plane through the scene.  A 

single-object 256 x 256 x 256 X2U LUT using 64 onion-skins can be 

computed in less than a second on a standard desktop machine using 

this algorithm. The alternative approach of doing an optimization driven 

search at each world-space position to find the corresponding model-

coordinate may take a similar amount of time to do each search, making 

this approach several orders of magnitude faster for generating a space-

filling map. Program 6 summarizes the algorithm and particulars follow. 

Each vertex is assigned a color (rgb) = (uvt) according to the shrink wrap 

parameterization, such that on any given onion-skin surface red ranges 

with u from 0 at the “bottom” to 1 at the “top”, green wraps around the 

object with v < 0.5 on the “anterior” and v>0.5 on the “posterior” with a 

                                                           
14

 See the UNC MIDAG website for more information about Pablo. 

 
Fig. 65  Top, t=1 surface colored 
by (uvt) and bottom, cross 
section normal to du of the 
scm’s X2U map.  Using the shrink 
wrap parameterization there is a 
singularity in v (green) at the  
seam and across the medial 
sheet. 
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seam where the values wrap along one of the crests, and blue is fixed 

for t < 1.0 for an interior onion-skin and >1.0 outside . 

Rasterize X2U LUT 
For each k = 1 to kmax (z resolution) 
 Compute sandwiching planes at that depth 
 Set forwards and backwards facing clip planes 
 For i = 1 to tmax (t resolution, typically 32) 
  t = 2.0*i/tmax (one radius outside the boundary surface) 
  Generate the “onion skin” surface colored by (uvt) at each vertex 
  Render the geometry inside the clipped volume to a buffer 
  Merge the buffer with the working LUT 
 
Pick a different cardinal direction for the view and repeat 
 Fill in holes by taking the (uv) value with the smallest (t) 

Program 6 Pseudo-code for the X2U LUT scan conversion algorithm. 

A large number of onion-skins colored by this scheme are generated, as 

seen in Fig. 66.  Vertex positions are computed as a t-weighted 

interpolation between the spoke tail and tip.  That is, X(t) = X0+t*(X1-X0) 

(or, in GLSL, by the single instruction “mix(X0,X1,t)”).  Fixing t and 

rendering the entire surface with such modified vertex positions 

produces a smoothly colored onion-skin between the medial axis and 

the boundary surface.  Iterating this over t between 0 and 1 produces a 

set of nested onion skins.  Sandwiching clip planes are used to restrict 

the rasterization of the nested onion skins to each plane of voxels in the 

LUT.  The stack of planes is combined to create a volumetric LUT. 

The initial pass can leave holes where the view direction is nearly 

orthogonal to the spoke direction.  These can be resolved by marching 

the clip planes through the volume along two or three of the cardinal 

directions and merging the results by preserving the candidate model-

coordinate at each voxel with the lowest t value, under the assumption 

that samples taken closer to the medial sheet are more likely to have 

the correct (uv) coordinate. 

The X2U map may also be useful in the “collar” region of the object a 

small distance beyond the boundary surface.  Therefore, the X2U map 

actually encodes values of t between 0 and 2 by packing the blue 

channel with t/2.0. Medial shapes generated from m-reps are 

constrained in such a way that no spokes can cross in the interior of the 

object, which implies that every interior point has exactly one possible 

(uvt) coordinate.  However, it is impossible to enforce such a constraint 

beyond the boundary, which implies that certain exterior points may 

 
Fig. 66  A cut-away of a ten 
onion-skin representation of the 
scm.  Each layer has fixed t or 
blue value.  Each ring about the 
object has fixed u or red value.  
Each line along the object has 
fixed v or green value. 
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have more than one possible (uvt) coordinate.  The same minimum-t 

preserving method used above to merge LUTs is adopted here.  This 

heuristic can lead to unexpected discontinuities in the collar region, so 

(uvt) coordinates assigned outside of the object should be inspected 

carefully. 

The X2U map is ultimately loaded onto the graphics accelerator as a 

texture unit.  Its purpose is to accept world-space (xyz) coordinates and 

convert them to model-space (uvt) coordinates.  Because it relies on 

hardware trilinear interpolation, such conversions will have the effect of 

smoothing the data.  However, since the underlying data is produced 

using linear assumptions (by evenly spacing the onion skins) this does 

not affect the results. 

There are many nested loops in this algorithm, but the deepest vertex 

and surface operations can be compiled into a single hardware 

operation (an OpenGL “display list” with a varying t parameter to 

generate the nested onion skins in a vertex shader program).  The tight 

clipping planes mean that most of the vertices are rejected early and so 

never contribute fragment overhead. The computation time for 

generating the X2U map is therefore bound either by the sampling grid 

(pixel size, number of planes, number of directions) or by the time that 

it takes to read the data out of the screen buffer and cache the control 

map for later use.  The sampling grid need not be particularly dense; 

most of the examples here are 256 x 256 x 256, or 16 megapixels total.  

Common modern gpus have theoretical fill rates (number of pixels that 

can be rendered in second) measured in gigapixels, suggesting that the 

actual pixel processing described here could be done in a fraction of a 

second. 

The current rate limiter on this algorithm is reading out the frame buffer 

many times so that the LUT can be compiled and merged in main 

memory.  The computation is expected to be extremely fast if the result 

is never read out of the texture-memory, but this has not been tested 

yet since no present applications for MGR require generating dynamic 

X2U maps, for example, to support solid texturing in deforming models. 

3.1.3 Consolidating a Multi-Object Scene Catalog 

A scene catalog may consist of an X2U transform for each of multiple 

objects.  However, programmable fragment shaders have hard limits on 
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the number of textures that they can access, so it is preferable to 

consolidate all of the look up tables into a single texture unit, as shown 

in Fig. 67. 

 

For a multi-object scene the X2U transform for object interiors should 

have no overlap between objects in world space; therefore, each 

object’s interior U2X entries can be OR’d into the grid without loss of 

data.  However, the X2U map for nearby exterior objects may overlap, 

so a decision is made to give the voxel to the object with the smallest t 

value, i.e., the object whose boundary surface is closest to that voxel. 

This raises the problem of identifying which object governs for a 

particular world position.  This is solved by attaching an object-label 

integer (0 to 255) into the alpha channel of a 4-channel rgba texture.  

Then, given a world coordinate X, the X2U function returns uvt plus the 

governing object label, called an (uvto) coordinate.  mgrView includes a 

Matlab script that generates such combined multi-object scene 

catalogs. 

In a single-object X2U map, since alpha is not being used for the object 

label, it can be used to track other variables, such as likelihood of 

disease or importance rank.  If the X2U map is not going to be used 

directly for rendering but rather for texture synthesis (see next section) 

or another application, an arbitrary number of such additional per-

object-coordinate variables can be attached to the sampling grid.  

Fig. 67  A slice through a CT  
image colored by the underlying 
multi-object X2U LUT. The 
sternocleidomastoid’s exterior 
values overlap with the 
neighboring parotid and thyroid. 
The object label for each region 
is invisibly encoded in the alpha 
channel. 
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3.2 Simple Texturing for Volumes 

Having fast access to reliable volumetric object coordinates makes 

several otherwise difficult rendering tasks much more straightforward.  

Assigning textures and colors inside a volumetric region or on an 

object’s boundary surface is easily done in MGR by assigning “simple 

textures” based on either world or model-coordinates.  The techniques 

for context sensitive shading described in this section have been 

developed in collaboration with Ilknur Kabul, who builds on some of 

them in her own work. 

  

 

Simple texturing in a volume requires only the object label from the 

scene catalog X2U map for world-space texturing, or requires both the 

label and model-coordinates for model-space texturing.  Regions can 

also be given the appearance of additional detail by bumping the solid 

texture with respect to the light direction. 

Simple (“diffuse”) lighting is computed by modulating the surface color 

by the cosine of the angle between the surface normal and the light 

direction.  This gives the appearance of being fully lit when the surface 

faces the light source and falls off to unlit where the normal is 

orthogonal to the light direction (i.e., on the contour).  “Bumping” a 

surface involves varying the normal per fragment according the surface 

texture to provide extra detail in the lighting.  “Bumping” a solid texture 

Fig. 68 Top left, the thyroid is 
difficult to identify in the gray 
data.  Top right, adding a pink 
texture to the clip plane.  
Bottom, texturing the entire 
thyroid surface. 
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embedded in a volume is difficult because the normal perturbation 

must be smooth from fragment to fragment.  This is trivially achieved 

for 2D textures.  The perturbations are computed with respect to the 

cardinal directions of the texture, which are smoothly varying on the 

surface.  However, for solid textures, the model coordinates of the 

underlying region can be used to align a continuously varying set of 

tangent planes which can be used to sample the texture and compute 

local normal perturbations. 

In principle, applying MGR’s simple texture methods to a sufficiently 

large number of regions identified in the target image could 

incrementally transform even a slice-by-slice visualization from gray 

into a more easily comprehended Netterly equivalent, such as the slice 

shown in Fig. 69 

3.2.1 World- and Model-Space Texturing 

Mapping from Solid Texture 
1. Consult the X2U map to determine fragment region membership and 

object coordinates
15

 
2. Determine the target texture for that region 
3. Transform the object or world coordinates by a standard GL affine 

transform to index into texture space 

Program 7 Pseudo-code for the simple texturing fragment shader. 

World-Space Texturing 

The most straightforward texturing rule is to assign a texture to a region 

with coordinates given with respect to a world space.  This can be useful 

for purely isotropic textures like blobs for fatty regions or the thyroid 

shown in Fig. 68 and Fig. 70.  As each fragment of each plane through 

the volume is processed, the corresponding position in the x2u map is 

queried to determine region membership.  When a fragment is 

determined to have a membership in a world-space textured region 

such as the thyroid, the world-space coordinates (xyz) are used directly 

to index into texture coordinates.  The specific (uvt) model-coordinates 

at that fragment are irrelevant because the region is being treated as if 

it is homogeneous throughout.  A standard GL similarity transform that 

controls the global size, orientation, and offset of the texture elements 

                                                           
15

 Recall from earlier footnote 9 that a fragment is a potential pixel.  Sampling 
the X2U map determines the (uvt) coordinate and region membership (which 
anatomic type) for that fragment. 

 

 
Fig. 70  The same solid texture 
for the thyroid with two 
different texture scaling factors.  
Top, a larger scaling factor (30); 
bottom, a smaller scaling factor 
(15) results in relatively larger 
features. 

 

Fig. 69 Cross section drawn by 
Netter. 
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(texels) with respect to the region may still be applied.  Fig. 70 shows an 

example of scaling the same solid texture to produce qualitatively 

different appearances. 

Model-Space Texturing 

Given model-coordinates, either directly from the surface or sampled 

from the X2U LUT, textures can be oriented relative to the region’s 

along, across, or through directions by mapping model-coordinates (uvt) 

directly to texture coordinates (pqs).  Fig. 71 shows an example of using 

a 2D texture with (pq) oriented according to (uv) model coordinates to 

imply the direction along the duodenum surface.  In traditional 3D 

modeling, assigning such texture orientations requires significant 

manual editing or multiple geometric proxies, such as a set of cylinders 

whose parameters can be used to compute texture coordinates for the 

vertices they enclose.  It is a significant advantage to get these 

coordinates essentially for free. 

 

Seams and Singularities 

The X2U map as described previously has a discontinuous seam in v 

(recall Fig. 65) across the medial axis as well as other singularities on the 

surface that necessarily occur in vector fields on shapes with spherical 

topology16.  When using medial coordinates for model-space solid 

texture mapping, this presents a problem in interpolating values of v for 

fragments that are near the medial axis.  In particular, a fragment that is 

exactly on the medial axis with a value of v = 0.2 on the “top” and v = 

0.8 on the “bottom” will have an interpolated value of v = 0.4, which is 

completely wrong. 

                                                           
16

 By the so-called “hairy ball theorem” (Eisenberg and Guy 1979) 

Fig. 71 Left, a 2D texture patch 
based on strokes from (Netter 
2006).  Right, the duodenum 
surface with the texture oriented 
along the u direction. 
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When interpolating model coordinates on the surface, this same 

problem expresses itself as a seam where v wraps around from 0 to 1.  

This could be taken care of by using multiple compatible coordinate 

charts.  In particular, an explicit value renumbering so that each 

element contributing to the interpolation has consistent coordinates – 

e.g., that each vertex on the seam is labeled with v = 1 or 0, whichever is 

closer to the other non-seam vertices of the tile.  Unfortunately, such 

special cases are difficult to implement in the hardware fixed function 

bilinear texture sampler that provides one of the main speedups to 

object-order DVR. 

 

One solution is to alter the mapping slightly to reflect the seam in the 

texture space, somewhat like splitting a loaf of bread in half and 

unrolling it.  Instead of letting (uvt)->(pqs) directly, the mapping is done 

as shown in Eqn. 6 and results in a texture such as that shown in Fig. 73.  

This has the slight disadvantage of requiring additional complexity in 

Fig. 72 Texturing across the seam 
in the medial sheet results in bad 
interpolated values of v. 

Fig. 73  Split texture mapping. 

v=0.2 v=0.8 

Direction of v 
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texture generation if the texture needs to reflect interior and exterior 

regions.  In parameter space, exterior regions are now at both the s=0 

and s=1 planes, and the interior is at s=0.5.  Additionally, the texture on 

the q-ends must be reflected across the t=0 plane (see Fig. 74). 

Another potential solution is to interpolate values in a spherical space.  

For example, (uvt) values can be taken as coordinates in a spherical 

space, the values can be projected into the equivalent Euclidean space 

where interpolation works, and then the interpolated value can be 

brought back by the inverse mapping.  A standard spherical map that 

considers (uvt) to be a longitude, latitude, and thickness (φ,θ,ρ) is 

unacceptable because it is degenerate – all elements with t=0 map to 

the same point in the Euclidean representation, so the original u and v 

values cannot be recovered by the inverse transformation.  However, a 

variant of the spherical map called an “oblate spherical map” has the 

desired properties of being both cyclic in longitude (transformed v) and 

one-to-one.  Fig. 75 shows an example of regular sampling in (uvt) 

projected into the equivalent “Euclidean” space, where interpolation 

performs as expected.  Seams and necessary singularities in the original 

parameter space are preserved by this operation; the spherical space 

merely enables interpolation between samples across seams without 

requiring difficult to parallelize case-by-case rules. 

 
This is a kind of dimension “lifting”.  Consider that a single onion skin in 

(uvt) space has only two parameters, u and v vary but t is fixed – it is a 

single plane in Fig. 75, left.  In the Euclidean equivalent oblate spherical 

coordinates, it is actually an ellipsoidal surface, as expected.  All three 

parameters (xyz) are used for interpolation on the onion-skin and the 

result is pushed back onto the original plane in (uvt) space.  

Unfortunately, this method has two major drawbacks.  First, it is 

expensive to compute per fragment on the gpu; it requires hyperbolic 

and inverse hyperbolic trigonometric functions which are not 

implemented as single instructions on most commodity graphics 

𝑞 =  
2𝑣 𝑣 ≤ 0.5

1 − 2𝑣 𝑣 > 0.5
  

𝑠 =  
0.5 + 𝑡/2 𝑣 ≤ 0.5
0.5 − 𝑡/2 𝑣 > 0.5

  

𝑝 = 𝑢  

Eqn. 6  Formulae to introduce a 
splitting seam into the (pqs) 
texture space. 

Fig. 75  Left, regular sampling in 
(φ,θ,ρ) taken as oblate spherical 
coordinates becomes a squashed 
spheroid in the Euclidean 
equivalent on the right.  
Interpolating theta across the 
seam in this space produces 
correct values without a 
conditional when mapped back 
to the parametric space. 

v={0,0.5}

v={0.5,1.0}

t={0,1.0}

t={0,1.0}

u={0,1.0}

These 
faces 

must be 
similar

 
Fig. 74 Introducing a seam in 
the texture cube to counteract 
the seam in model coordinates. 
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hardware.  And second, it produces extremely blurry texture mappings 

due to limited fixed-point precision on the gpu.  The oblate spheroidal 

equations are available online (Wolfram, Wikipedia) and are described 

in several primary sources including (Abramowitz 1972). 

While the split-texture solution works for the current texturing 

applications of MGR, it is insufficient for the color transfer method 

described in the last section of this chapter.  Determining a suitable 

parameterization for solid objects is an open area of research that is 

particularly important in the context of solid texture synthesis. 

3.2.2 Solid Texture Bumping 

To give the impression of a higher resolution for a region surface or cut 

plane, the solid texture can be “bumped” with respect to the light 

direction and the implied surface that is being used for lighting.  Using 

bump or normal maps generated from 2D texture maps to simulate 

denser surface resolution is well understood (see (nVidia 2004), for 

example) although the implementation given here for solid textures is 

novel.  The general idea of bump or normal mapping is to simulate 

surface detail by lighting each fragment as if the fragment were not on 

the surface but on a height field near the surface.  Taking derivatives of 

the height field suggests a new normal direction at each fragment.  A 

“bump map” stores the height field only, requiring the shader to do 

some local computations to determine the normal offset.  A “normal 

map” essentially precomputes the new normal direction and stores it 

explicitly.  The height field may come from a variety of sources including 

an actual higher resolution surface, but the height field is frequently 

derived from the underlying texture intensity itself. 

Bumping a 3D texture is similar in principle to 2D bumping, but it 

requires some additional computation.  The main difference is that 

instead of taking derivatives of the texture in the cardinal texture space, 

solid bumping requires texture derivatives taken with respect to 

directions on a local tangent plane.  If the derivatives are computed 

with respect to the cardinal axes, for example, the differences sampled 

are likely outside or inside the surface and therefore irrelevant. 
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This texture sampling requires a smoothly varying reference direction 

for the results to look coherent from fragment to neighboring fragment.  

This reference direction is the equivalent of the “tangent” direction in 

normal mapping, with the cross-product of the normal and the 

reference direction providing the equivalent of the “bi-tangent”.  For 

bumping on surfaces from shape models with object coordinates, the 

projection of du onto the tangent plane can serve exactly this purpose.  

For bumping on cut planes, the tangent can be determined by picking 

the cardinal direction with the longest projection onto the tangent 

plane (i.e., the most nearly orthogonal to the normal). 

Given directions in the tangent plane, computing the gradient by a 

forward difference requires only three lookups, one at the original 

coordinate and one in each of the tangent and bi-tangent directions.  

While taking gradients of large volume data sets is typically quite 

expensive to do online, most of the 3D textures used in MGR’s sample 

programs are very small, so there is good cache coherence, and 

sampling for the gradient is fairly cheap. 

Pseudo-code is given in Program 8, and an actual GLSL implementation 

of a solid texture bumping fragment shader is shown in Program 9.  The 

implementation given takes an additional parameter C that multiplies 

the effect of the normal swing. 

Surface Bumping Algorithm 
1. Determine the texture gradient with respect to (du,dv) and “bump” the 

surface direction.  Candidate surfaces include model-space surfaces, 
like the boundary or an onion skin (du,t), or a world-space surface such 
as a cut-plane (du,cp) or the view direction (x,view). 

2. Sample the texture at (U+du) and (U+cross(du,n)) to compute a gradient 
3. Use the gradient direction to ‘tip’ the normal by the gradient magnitude 

Program 8 Pseudo-code for solid texture bumping. 

Fig. 76  Left, solid wood texture 
with standard diffuse lighting.  
Right, the same texture with a 
significant normal “bump” in the 
direction of the texture gradient. 
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// mgrView GLSL fragment program for solid texture bumping 
uniform Sampler3D color_im0; 
uniform float C;    // Strength of normal adjustment 
uniform float psz;  // Distance to next sample in [0,1] 
uniform integer MODEL_MAP; // Use model or world coordinates 
varying vec3 X, normal, du; // From the vertex shader 
vec3 tex_coord, frag_color; 
vec3 TipNormal(vec3 _n, vec3 _du, float sample_r ) { 
 _du = _du – dot( du, _n ) * _n;  // 1 step of Gram-Schmidt 
 vec3 _dv = _n.cross( _du ); 
 // Estimate gradient with finite difference 
 float drdu = sample_r - Texture3( color_im0, tex_coord + psz*du ).r; 
 float drdv = sample_r - Texture3( color_im0, tex_coord + psz*dv ).r; 
 return normalize( normal + drdu*du* C + drdv*dv*C ); 
} 
main ( void ) { 
 // Flag to determine world- vs. model-space mapping 
 tex_coord = (MODEL_MAP)?gl_TexCoord[1]:X; 
 frag_color = Texture3( color_im0, tex_coord ) 
 normal = TipNormal(normal, du, frag_color.r); 
 StdShading();  // Call the standard Phong shader with the new normal 
} 

Program 9 GLSL fragment shader for texture bumping with a gradient from finite 
differences in the solid texture.  The program extends trivially to higher order 
differences at reduced speed. 

 

3.2.3 Sources of Synthetic Textures 

Given that MGR enables color transfer directly from an empirical color 

atlas source such as the Visible Human, the question arises of why use 

simple texturing at all?  The most obvious answer is that another 

modality or an atlas that shows the desired property may not be 

available or may be of too low quality to use in the region of interest.  

Furthermore, atlas images are never specific to the target patient. 

From the aspect of quality, as Netter realized, a library of anatomic 

textures frees the viewer from being restricted to a photo-realistic look 

based on long-dead cryosections.  This is particularly valuable when 

composing a scene with a more “illustrated” feel or when rendering 

shapes that cannot be identified or have a poor appearance in the 

reference atlas.  From the aspect of patient specificity, synthesized 

textures can support not only organ type and orientation, but also per-

patient features such as whether particular sub-regions are healthy or 

sick.  A patient-specific synthetic texture may also be used in a case 

where the image values are untrustworthy in a particular region, 
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perhaps due to artifacts.  It may be useful to synthesize an approximate 

replacement texture from the target image itself and “in-paint” away 

the original values. 

MGR does not implement any solid texture synthesis directly, but it has 

been designed to support a solid texture synthesis module, as is 

described in the related work (Kabul, et al. 2010).  This subsection 

briefly reviews some of the background and main considerations for 

using model coordinates exported by MGR as the basis for solid texture 

synthesis. 

Textures might be synthesized appropriately for either the model-

mapping or the world-mapping cases described previously. 

 

For model-mapped textures, the solid texture patch is synthesized in a 

Euclidean (uvt) space and is then deformed into the region by MGR’s 

rendering engine according to the local object-coordinates.  Such 

textures can naturally reflect sub-regions like deep interior (t near 0) 

and boundary (t near 1) as well as along, across, and through directions.  

Having these properties by construction is a significant advantage in 

texture synthesis; many high quality methods, such as (Owada, et al. 

2004) shown in Fig. 77, expend substantial effort enabling a user to 

“pick” corresponding medial-like properties on the object and texture. 

The textures created for MGR so far are generally model-space mapped, 

but the mapping infrastructure has been designed to support world-

mapped textures.  For world-mapped textures, the solid texture patch 

is either completely isotropic, such as the blobby texture used for the 

thyroid in Fig. 68, or the texture is synthesized directly in the patient-

space, using the X2U map to determine model-coordinates at every 

point and then using the gradient of the X2U map to determine 

orientation.  As mentioned in the section describing scene catalogs, 

additional patient-specific feature channels, such as variance of local 

intensity or shape from normal or likelihood of pathology can also be 

 
Fig. 78 Glyph packing from 
(Kindlmann and Westin 2006) 
formed the basis of the earlier 
rendering in Fig. 34. 

 
Fig. 79 2D line-integral 
convolution from (Cabral and 
Leedom 1993) 

Fig. 77 (Owada, et al. 2004) 
creates a mapping from 2D 
textures to 2D cut-planes to 
simulate a volume texture.  
Though the authors do not 
discuss it, the proposed 
mappings rely on manually 
indicating the surface and medial 
axis in both shape and texture. 
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identified at each voxel.  Working in such a space also allows the 

synthesis to be more flexible in terms of local scale – if an object packed 

with marbles narrows, a cardinal uvt space texture will shrink the same 

number of marbles to fill the space.  A texture synthesized in patient-

space however may decide to normalize based on thickness and pack 

fewer marbles into a narrower region. 

Procedural vs. Data Driven Textures 

Procedural textures are textures that can be generated algorithmically 

from a limited number of inputs.  The texture may be based on position 

alone, such as a simple solid brick wall algorithm that returns the 

intensity for mortar or brick depending on the (xyz) position given, or 

they may take more complex inputs.  Typically procedural textures use 

a noise or turbulence function to simulate natural processes.  Noise-

driven procedural textures were originally described by (Perlin 1985) as 

a means of generating synthetic granite or wood.  Several procedural 

texture methods, such as glyph packing (Kindlmann and Westin 2006) 

(Fig. 78), line integral convolution (LIC) (Cabral and Leedom 1993) (Fig. 

79), and reaction-diffusion textures (Turk 1991) (Fig. 80) come from the 

realm of vector or tensor data visualization.  (D. S. Ebert 1994) provides 

an excellent review of basic methods for procedural texture generation. 

While it is straightforward to consider the gradient of the X2U map as a 

an input vector field for some of these methods17, procedural texture 

synthesis tends to suffer from three main practical shortcomings with 

respect to Model Guided Rendering.  First, it can be extremely slow to 

compute, although this can be surmounted by moving texture synthesis 

to an offline process.  However, the second consideration is more 

serious:  procedural texture synthesis tends to be extremely fragile; 

useful results are sparse relative to the many parameters required by 

most frameworks.  Finally, no one procedural method is particularly 

suited for all of the many textures types that we wish to be able to 

produce, nor is it obvious how to “blend” between regions using a 

patchwork variety of methods. 

The method that MGR explicitly supports works by synthesizing a 3D 

patch from one or 2D exemplar patches.  Such “data driven” rather than 

procedural algorithms can be thought of as generative versions of the 

                                                           
17

 A small caution is to use only single-object X2U maps rather than 
consolidated maps when computing gradients. 

 

 
Fig. 80 Top, example of a 
reaction-diffusion surface 
texture from (Turk 1991).  
Bottom, volume rendering of a 
regional 3D reaction diffusion 
considered for the spongy 
interior of the bone (or cheese). 

 
Fig. 81 State of the art exemplar 
based solid texture synthesis 
from (Kopf, et al. 2007).  Several 
of the sample images in this 
document use wood or 
cobblestones from Kopf’s solid 
texture library. 
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active appearance model means of image understanding proposed in 

(Cootes, Edwards and Taylor 1998).  These methods similarly rely on 

finding distances in a reduced dimensional space of feature vectors.  

(Doretto and Soatto 2006)’s “Dynamic Textures” for generating smoke, 

waves, and other moving textures based on short image sequences 

presents the method in 2D+time.  (Kopf, et al. 2007) presents what is 

currently the most effective solid texture synthesis from 2D exemplars 

in the literature (Fig. 81).  The method suggested here is similar in 

principle. 

Fig. 82 shows some 2D examples of early experiments done by the 

author in this area.  The basic method is to convolve the exemplar 

images with a feature kernel to generate an observation tuple at each 

pixel that describes that pixel’s intensity relationships to its neighbors.  

For an exemplar with P pixels and a kernel that looks at D neighbors 

(e.g., 4-connected, 9-connected, etc.), this results in an D x P 

observation matrix. 

A proposed solution is initialized to noise.  Over several iterations each 

pixel in the solution is examined under the same feature kernel to 

generate another set of observation tuples.  At each iteration, the 

nearest neighbor of each solution observation is found in the 

observation matrix, and the intensity of the solution pixel is nudged 

towards the intensity of the corresponding exemplar pixel.  This 

approach to data-driven texture synthesis is summarized in Program 10. 

Basic Exemplar Based Texture Synthesis 
1. Apply a ‘feature kernel’ of size D to an exemplar image with P pixels to 

build a DxP observation matrix 
2. Initialize S pixels of the solution to noise 
3. For each pixel in the solution: 
3.1 Find the most likely feature in the observation matrix 
3.2 Step towards that representative intensity 

Program 10 Basic exemplar-based texture synthesis algorithm 

This basic method is very slow, taking on the order of hours to compute 

the example shown in Fig. 82 using a basic Matlab implementation.  

Scale spaces, dimension reduction, clustering, and search trees can be 

used to speed the same implementation up to require on the order of 

minutes.  Fig. 82 middle also shows an example of the coarse (small D 

and S) and fine (large D and S) scale stages. Dimension reduction can be 

done by applying principal component analysis (PCA) to the observation 

 

 

 

 
Fig. 82 2D multi-exemplar based 
single channel texture synthesis 
at multiple scales.  Top, two 
exemplar textures, possibly for 
fat blobs and muscle fibers.  The 
middle two images are 
endpoints of single exemplar 
synthesis at multiple scales.  The 
coarsest scale took 10 seconds 
for 10 iterations.  The finest took 
10 minutes for 10 iterations.  
Bottom, a synthetic texture that 
blends the exemplars between 
two regions. 
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matrix to reduce the size of D.  Clustering by k-means restricts the 

number of candidate pixels (P) that must be checked for each of the S 

pixels.  And a local search tree within each cluster speeds up the nearest 

neighbor search. 

The information encoded in the X2U map, namely the local category 

(object type, surface or interior, sick or healthy), orientation, and scale, 

can be used to seed a more sophisticated synthesis.  Local orientation 

and scale information can either be applied post hoc at render-time 

(producing textures suited to the so called “model-mapping” method 

discussed earlier) or in-place at synthesis-time by rotating or resizing 

the feature kernel as it is applied to each individual pixel in the solution 

(the so called “world-mapping” method). 

Applying category information to show different textures in different 

regions, for example to blend between sick and healthy textures or 

between surface and internal textures, is somewhat more complex 

because it requires a method for blending between exemplars.  Several 

methods are possible depending on at what stage the blend occurs.  

One possibility is to completely synthesize two alternate textures and 

then blend them in the final image space, another possibility is to 

compute several blends of the exemplars themselves and generate 

multiple compatible observation matrices for the blend regions.  The 

result shown in Fig. 82 was done by combining both exemplars into a 

single large D x 2P observation matrix and appending an additional 

category coordinate onto each observation.  The blending was then 

done in the algorithm itself by blending the category coordinates in the 

solution and running the algorithm as normal. 

The model guided texture synthesis engine (MTS) described in (Kabul, et 

al. 2010) works as a companion to MGR.  It extends the data-driven 

texture synthesis framework described with multiple variants for 

generation and blending, 3D color texture synthesis, and other types of 

feature guidance, such as local edginess.  A control language interface is 

being developed to allow MGR to request synthetic anatomic textures 

from MTS with regional control of exemplar type, color shift (e.g., 

tendons are white muscle), and relationships to local model 

orientations and scale (i.e., hypertrophic structures scale texture 

elements, and hyperplastic structures pack additional texture elements 

into the space). 2D exemplars suitable for synthesizing anatomic 

 
Fig. 83 Candidate exemplars for 
muscle (left) and fat (right) from 
the Dosch Design website.  
(www.doschdesign.com) 

http://www.doschdesign.com/pdfoverviews/DT-MVV3_pdf.pdf
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structures with MTS can be taken directly from illustrated sources such 

as (Netter 2006) or from specifically designed anatomic texture catalogs 

such as the one found at Dosch Designs (Fig. 83). Fig. 84 shows an 

example of a solid color texture generated by MTS guided by model-

coordinates taken from the scm. 

 

  

Fig. 84 Top, slice through 
oriented solid color texture 
generated by MTS for the scm 
region.  Bottom, the same 
texture on the region’s 
boundary surface with 
standard diffuse lighting. 
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3.3 2D Color Transfer from Patient Photos 

Whereas collecting patient-specific 3D color volumes can be quite 

invasive, collecting patient photographs is quite simple.  Cameras have 

become a common treatment room accoutrement for patient setup and 

monitoring, but they have been overlooked as a data source for 3D 

visualization.  This section describes an interesting application of a 

world-mapped texture by superimposing patient photography onto a 

target 3D image (Fig. 85).  Renderings of such registered data can serve 

to show relationships between internal structures and visible surface 

features.  Animating anatomic change with respect to a fixed surface, or 

animating surface images with respect to fixed anatomy can further 

expose such relationships over time.  Potential applications of this 

technology include improved 3D procedure planning, reconstructive 

surgery, improved diagnosis of surface pathologies or skin reactions, 

and patient setup, which are discussed later in chapter five, Bringing 

MGR to the Clinic. 

 

 

Fig. 85  A CT+photograph fusion 
rendering using the author’s 
photograph and a research 
patient’s CT scan. 
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3.3.1 Method for 2D Color Transfer 

One or more photographs of a patient are captured when they are 

scanned.  The photographs can be registered to the 3D scan either 

through explicit calibration or by feature-based estimation of a camera 

pose relative to the imaging device.  When a 3D view of the patient data 

is volume rendered, the surface pixels are found either implicitly by 

considering a function of intensity like gradient magnitude, or explicitly 

by querying the scene catalog.  Then the photographic data is 

referenced according to the camera model to determine the relevant 

surface texture to apply. 

Once the decision to photo-map a voxel has been made, the core of the 

rendering method is the transformation between a 3D coordinate and a 

patch of a photographic image.  Different methods must be used 

depending on whether the photographic source is configured as a 

cylindrical image or as a standard planar image. 

For the purposes of animating longitudinal surface changes, surface 

appearance may be assigned by blending multiple photographs 

according to when they were captured. 

The basic rendering algorithm is described in detail in the following 

section.  Program 11 summarizes the algorithm and it is diagrammed in 

Fig. 86. 

Photo-Mapping Algorithm 
1. For each voxel, determine membership in skin/surface of interest: 

Implicit (intensity threshhold + gradient) 
Explicit (voxel label) 

2. If not of interest, pick a value according to the DVR transfer function 
3. Otherwise, for cylindrical images 

3.1 Compute image coordinate as a non-linear function of stretch, 
       rotation, axis, and world-coordinate 

4. Otherwise, for multiple planar images 
4.1 Determine which image governs shading by dotting gradient dir 
       and camera dir 
4. 2 Pass the world-coordinate through the appropriate 
       world-to-image transform 

Program 11 Pseudo-code for the photo-to-volume mapping algorithm. 

Input 

The method described is flexible with respect to its input.  3D images 

may be of any modality (computed tomography, magnetic resonance 

imaging, etc.) but all require a method for identifying voxels subject to 

Region 
Membership

Accumulate 
Transfer fn

uv = Trans(xyz)

Select 
Image 
Trans

Lookup
Image Texel

Color shaded 
region

No region

Voxel Input

Value Output

 

Fig. 86  Diagram of photo-
mapping decision tree. 
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photo-mapping.  For CT or MRI combined with surface imaging, where 

there is a well defined intensity different between air and the patient, 

identifying surface voxels can be a straightforward application of edge-

finding.  For photo-mapping laparoscopic or endoscopic images onto 

internal regions, this may require 3D path information.  For photo-

mapping anatomic images such as a reference image of a liver, this may 

require more sophisticated image segmentation. 

Photographic images may be of two different types, Atlas Images or 

Patient Images.  Atlas images are pictures of a reference patient which 

can be carefully built once offline, then mapped many times onto 

different patient scans.  Such images are useful for adding race and sex 

cues to visualization or for identifying the surfaces of internal anatomy, 

such as the liver or a muscle.  Patient images are unique to a given 

patient and require specific processing between capture-time and 

render-time.  Patient images are required for any patient-specific 

diagnostic or longitudinal studies.  Some applications rely on non-visible 

light patient photography, such as thermographic imaging, but the same 

principles hold.  Atlas and patient images can be easily combined, if, for 

example, a clinician desired a rendering with patient-specific surface 

features but also with a liver atlas image embedded in the 3D data. 

3.3.2 Rendering From Cylindrical Images 

The easiest case to consider is photo mapping from a cylindrical image 

of the patient.  Cylindrical images tend to be harder to collect and more 

expensive to transform into CT coordinates, but the decision tree is 

straightforward and the renderings are ultimately much more robust to 

mismatches between the photograph and the 3D geometry.  Consider 

that the image in Fig. 85 is the author’s photograph mapped by this 

method onto a completely different patient’s CT data, and the image in 

Fig. 87 uses a non-cylindrical image of the monkey. 

By aligning the cylinder axis of a cylindrical photo of the patient 

captured at treatment time and the cylinder axis of any patient scan, 

the two images can be registered with a small number of variables. As 

the 3D image is rendered, the voxels corresponding to skin are 

identified by image analysis methods and are “painted” using a 

mathematical cylinder transform to query a patient photograph for the 

relevant skin texture. This section describes the mapping in detail. 

 

 
Fig. 87  Top, a capuchin 
monkey MRI with a pseudo-
cylinder photomap from a 
reference image, bottom. 
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Using an OpenGL object-order renderer, the patient’s 3D CT image is 

bound to texture unit 1, and a patient photo is bound to texture unit 2.  

For simplicity, suppose that the 3D patient image has been 

preprocessed and includes a label for skin voxels in the alpha channel.  

For realistic lighting, further suppose that the gradient direction and 

magnitude of the 3D patient data have been precomputed and loaded 

as rgba values to a third texture binding. 

A custom fragment shader (recall Fig. 50) then processes each fragment.  

Each fragment has a world position, X=(x,y,z), that is used to retrieve 

I(X) = (h,s), where h is the local intensity value of the patient image in 

Hounsfield units and s is a binary label for skin or not skin.  If the 

fragment is not skin, it is composited normally. If it is a skin voxel, the 

cylindrical coordinate of the patient photo is calculated, and that texel is 

used to determine the surface value.  If desired, additional lighting can 

be calculated by using the local gradient as a proxy for the normal 

direction at this fragment.  The gradient can be easily computed online 

by finite differences by testing local texture values.  However, in 

practice, these additional tests can be quite slow, and because the 

gradient direction is fixed within a scalar even under intensity 

windowing, it is usually easier to simply pre-compute the gradient and 

load it as a color texture, as discussed previously.  The gradient direction 

at the skin fragment can then be linearly interpolated and renormalized, 

which requires only a single texture lookup. 

A cylindrical texture map is a restricted case of the spherical texture 

map first described in (Blinn and Newell 1976).  For a simple cylinder 

mapping, Cartesian coordinates (x,y,z) can be converted to cylindrical 

coordinates (ρ,θ,z) according to Eqn. 1.  For a general cylinder map, 

additional parameters for stretch (κ), rotational offset (φ), axis origin 

(x0,y0,z0), and axis direction (x1,y1,z1) can be included.  Capturing the 

cylindrical image relative to the imaging or treatment couch with the 

cylinder axis aligned along direction that the patient will move through 

the scanner eliminates the axis direction parameter, so only five 

parameters (κ,φ,x0,y0,z0) are required. For a fixed capture device all five 

parameters can be determined empirically and will remain fixed for all 

subjects.  The world-to-cylinder transform is non-linear and requires 

some trigonometry, which can be slightly more expensive to implement 

on a gpu but still requires relatively few operations to compute. 

 

𝜃 =  

arccos  
𝑥

𝜌
 0 ≤ 𝑥

𝜋 − arccos  
𝑥

𝜌
 0 > 𝑥

  

𝑧 = 𝑧 

𝜌 =  𝑥2 + 𝑦2   

Eqn. 7  Formulae to convert from 
Cartesian coordinates (x,y,z) to 
cylindrical coordinates (ρ,θ,z) 
given aligned origin, offset, 
orientation, and stretch. 
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Ultimately, for a cylindrical image that is aligned with the central axis of 

the 3D image, such as the one shown in Fig. 89 (bottom), the pixel 

coordinates (p,q) are (θ/2π+φ, κz).   Cylinder mapping implemented as a 

GLSL fragment shader is shown in Program 12, and Fig. 85 shows a 

resulting image. 

// mgrView Fragment GLSL for Volume Rendering + Photo Mapping 
#define ONE_OVER_TWO_PI 0.159154943 
varying vec3 light_dir; 
uniform sampler3d patient_im3d, patient_im3d_gradient; 
uniform sampler2d patient_photo; 
uniform float kappa, phi; 
uniform vec3 axis; 
vec3 CylinderMap( vec3 point, vec3 axis, float kappa, float phi ) { 
 float x = point.x - axis.x; float y = point.y - axis.y; float z = point.z - axis.z; 
  float rho = length( vec2( x, y ) ); 
  float theta = (y>=0.0) ? acos( x/rho ) * ONE_OVER_TWO_PI : 1.0 - acos( 
x/rho ) *  
  ONE_OVER_TWO_PI; 
  theta = theta + phi; theta = theta - floor(theta);  // Cycle 
  z = kappa*(1.0-z); 
  return vec3( rho, theta, z ); 
} 
void main() { 
 vec4 source_color = texture3d( patient_im3d, gl_TexCoord0.xyz ); 
 float intensity = source_color.r; 
 // Skin membership is encoded in source.alpha 
 if ( source_color.a != 1.0 ) color = vec3(intensity); 
 else color = texture2d( patient_photo, CylinderMap( gl_TexCoord0.xyz, 
axis, kappa, phi ).zy ); 
 gl_FragColor = vec4( color, source_color.r ); 
} 

Program 12 GLSL fragment shader program for basic 3D+photo fusion 
rendering.  The rendering in Fig. 85 was produced using this program. 

3.3.3 Rendering From Planar Images 

The cylindrical image approach outlined above pushes the method’s 

complexity into the generation of the cylindrical image, which can be, in 

turn, answered with hardware. Cylindrical images may be captured 

directly using a specialized slit camera (Fig. 89, right) or by blending 

photos from an array of standard cameras positioned around the 

patient as discussed in the next section.  However, similar results can be 

achieved using planar images directly. Mapping from world space to 

photo space given a single image from a calibrated camera is a simple 

variant of the common world-to-image transform used in computer 

graphics projective mapping such as the OpenGL 4 x 4 “Model-view-

 
Fig. 88  Top, a synthetic view of 
the Visible Human from a 
known camera. Bottom, the 
synthetic photograph pushed 
back onto the target patient’s 
3D image using a direct planar 
mapping. 



 

78 

projection” matrix. This matrix multiplies a homogeneous world-

coordinate and the result reduces to a 2D image coordinate. Such 

matrix multiplications can be done quickly and inexpensively on a gpu. 

A camera’s intrinsic properties (field of view, center point, pixel size, 

skew) can be derived empirically using a tool such as the Camera 

Calibration Toolbox for Matlab (Bouguet 2008).  The extrinsic properties 

or “pose” of a fixed camera can be estimated similarly or determined 

mathematically from the rig or gantry geometry.  These camera 

calibration parameters can be directly transformed into a standard 

OpenGL-type 4 x 4 matrix transform.  The ARToolkit (HIT Lab 2007) 

includes an open source version of such a transform for reference 

purposes. 

While simple planar images are easier to collect and cheaper to 

transform for rendering, planar images are much more sensitive to 

measurement error and mismatches between the photograph and the 

3D geometry. Cylindrical image maps have few parameters, and the 

parameters have intuitive relationships with the projection.  Thus the 

user can easily manually improve a mapping to account for mismatches. 

Projective image maps have many parameters (position, orientation, 

field of view, skew, etc.) and multiple conflicting ways to achieve similar 

results, such as moving the camera vs. zooming the field of view. This 

precludes the user from doing significant manual alignment. 

When using multiple cameras to collect a set of planar images, such as 

an anterior and a lateral photo, the most relevant camera can be 

selected for each fragment by comparing the surface normal (the 

gradient direction) to the camera view direction. Assuming that the 

camera that is most closely aligned with the surface normal will have 

the best texture information, the maximum dot product with the 

gradient over all camera view directions will serve to distinguish a single 

best camera. A slower but smoother approach is to blend texture 

information from several cameras weighted by the dot product 

between the view and normal directions. 

Multi-image projective texture mapping has several interesting non-

medical antecedents.  In particular, (Debevec, Borshukov and Yu 1998) 

is an important example of using photographs and simple geometry as a 

means for high quality image based rendering.  (Raskar, et al. 2001) 

proposes a method for projecting synthetic photo-like textures using 

actual visible light ("shader lamps") to illuminate real world objects.  

R 1.5'

R 3'

Ring array

Cameras

CT gantry

CT bore

Patient table

 
Fig. 89  Top, a schematic of the 
proposed 6-camera cylindrical 
array attachment for a CT 
gantry. Bottom, a cylindrical 
image of the author collected 
with a slit camera at The Tech 
Museum in San Jose. 
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3.3.4 Camera Arrangement 

As suggested previously, the photographic images may come from 

cameras working across the visible and the invisible spectrum.  

Thermographic or heat photography is thought to have considerable 

potential in this domain.  In general, planar photographs can be 

captured using either calibrated or uncalibrated cameras. 

Calibrated cameras, as discussed previously, have known intrinsic 

properties (pixel size, field of view, skew, etc.) and known position and 

orientation (called “pose”, or extrinsic properties) with respect to the 

same reference frame used by the 3D modality.  Photographs covering 

multiple angles may be generated sequentially from a single camera 

moved serially around the patient into several known positions (Fig. 

90), or in parallel from an array of cameras mounted around the patient 

that can be activated simultaneously (Fig. 89, top). The parallel camera 

array has the advantage of limiting patient motion between frames and 

motion between being photographed and entering the 3D scanner.  

The UNC Radiation Oncology clinic has proposed building such an array 

fit up against a CT scanner gantry so that it can generate the cylindrical 

image directly before the patient enters the bore where the 3D image 

will be collected. Mathematical transforms for computing cylindrical 

images from multi-angle photograph collections are related to those 

used in creating multi-image panoramas. If the cameras are calibrated 

and fixed in known positions, no feature matching needs to be done. 

We expect that the camera array proposed will achieve sub-millimeter 

accuracy when mapping patient photographs onto 3D CT image. 

Uncalibrated cameras, such as hand-held cameras used to photograph 

patients for identification or for ad hoc charting of skin lesions, require 

2D to 3D feature-match based pose estimation.  Such landmark based 

pose estimation is beyond the scope of this paper, but the general 

problem of computing projective registrations is an active area of 

interest in the computer vision community.  Consider (Forsyth and 

Ponce 2002) as a starting point.  Given such pose estimates, images 

from uncalibrated cameras essentially become directly-mapped single 

planar images as discussed above. 

 

 
Fig. 90  Top, calibrating a 
camera. Middle, taking 
sequential multi-angle photos in 
a reproducible position using the 
accessory tray of a linear 
accelerator.  Bottom, a single 
planar source photograph. 
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3.3.5 Animating Surface Change Over Time 

For longitudinal photo collections an additional parameter can vary to 

determine a weighting between textures sampled from two or more 

images.  Such visual registrations might be interesting for tracking inter-

fractional patient skin changes with respect to a dose field (Fig. 91). 

 

A number of additional “key photos” can be added to an animation 

without appreciably decreasing the rendering frame rates, although 

restrictions on the number of active texture units within a fragment 

shader can come into play.  However, this can be addressed for 

collections of images with the same alignment parameters (e.g., 

collected with the same fixed camera) by loading an aligned stack of 

color images as a single 3D color texture unit and then trilinearly 

interpolating a value at the coordinate (pqt), where t identifies the 

particular key photo. 

Further combining surface color mapping rendering with volumetric 

animation has possible applications in domains such as planning 

reconstructive surgery, as will be discussed later. 

  

Fig. 91 Example of animating 
longitudinal surface changes.  
The left-most frame shows the 
author’s photograph mapped 
onto a research CT scan; the 
right-most frame shows a 
different sample subject.  
Intermediate images are blends 
of the two. 
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3.4 3D Color Transfer 

Medial shape representations provide a useful object-relative 

coordinate system that can be used to compare or transfer information 

across images in object-relative coordinates. Such mappings can 

combine data from multiple images into a single target rendering, 

thereby allowing the user to simultaneously visualize data from 

whichever source is most useful or sensitive to a task at hand. 

Given a scene catalog that contains both an X2U map and the inverse 

U2X map for a particular region, the source image model-coordinates 

can be transformed into the world-coordinates of a related atlas image, 

and then the atlas image can be indexed for the appropriate scene 

texture, as shown in Fig. 92. While the method can be used to map data 

between any two images with properly modeled corresponding regions, 

assigning a general label-specific appearance by transferring from a 

color atlas volume such as the Visible Human is an interesting target 

case. Fig. 93 shows an example of a target patient rendering with the 

mandible region colored according to the Visible Human color volume. 

This section includes three topics:  a Method for Object-Based 3D Color 

Transfer on surfaces and in volumes, a discussion of data 

representation for U2X Maps, and a brief review of other methods that 

have been proposed for Using the Visible Human as a Color Atlas. 

3.4.1 Method for Object-Based 3D Color Transfer 

Corresponding regions in both the target and source images18 are fit 

with models similar in topology (slab/tube) and sampling (grid size).  As 

discussed previously, this can be done semi-automatically for the target 

image, but atlas images may be segmented and carefully fit offline.  In 

the prostate scene used in Fig. 60 and later in Fig. 134, the source image 

is an MRI of the same patient taken at a different time.  In the head and 

neck scene used in Fig. 4 and Fig. 93, the source image is a high 

resolution color volume from the Visible Human.  In both cases, the 

source data was carefully segmented by hand, and then an m-rep was 

fit to the resulting binary label image. 

                                                           
18

 Terminology:  Following standard convention, the patient image is called the 
“target” image throughout; any textures mapped into this space regardless of 
type are referred to as “source” images. 

Xtgt2U 
map

Atlas Im

X in target in

U and label

U2Xsrc 
map per 

label

X in atlas

Color out
 

Fig. 92 Model-based color 
transfer pipeline.  Positions in 
the target image are mapped 
through model-coordinate 
based functions to find the 
color at the corresponding 
position in the atlas image. 
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The m-rep fit to the source image is converted to a U2X map, the 

inverse of the X2U map described previously.  The U2X map provides 

similar functionality to the X2U map – an object-coordinate U is input, 

and the world coordinate of that point in the atlas image is read back 

out.  MGR represents U2X maps as an image that can be loaded as a 

texture unit and manipulated in a programmable shader. 

 

 

 

Fig. 93 Top, volumetric color 
mapping clipped through the 
mandible.  Bottom, adding 
surface color mapping for 
lighting. The indicated artifact 
running along the medial sheet is 
the same parametric 
interpolation singularity 
discussed previously in the 
section on solid texture 
coordinates. 
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Given a source image and a U2X map, two types of color transfer are 

then possible, surface-only and volumetric (Fig. 93).  Both rely on the 

same basic method, but as with simple texturing, surface-only color 

transfer does not require the X2U map at all since the only object 

coordinates of interest are given directly at the vertices.  As each 

fragment of the target image is shaded, the X2U map or model surface 

gives an object-coordinate which can be transformed through the U2X 

map into source image coordinates.  As shown in Fig. 92, this is 

effectively a two step texture indirection.  Program 13 shows a GLSL 

fragment shader that does this indirection19. 

// mgrView GLSL fragment shader for single object color transfer 
uniform sampler2D u2x_im0, u2x_im1, x2u_im, color_im0; 
void main(void) { 
 source_color    = texture3D(source_im0,  vec3( gl_TexCoord[0] ) ).rgb; 
 vec3 uvt_coord  = texture3D(x2u_im,      vec3( gl_TexCoord[1] ) ).rgb; 
 if (uvt_coord.b < 0.45 ) { 
     // Inside the region of interest 
  // Convert u coordinate to x in atlas 
     vec3 x_0 = texture2D( u2x_im0, uvt_coord.rg ).xyz;  // Medial pos 
     vec3 x_1 = texture2D( u2x_im1, uvt_coord.rg ).xyz;  // Surface pos 
     vec3 x_t = mix( x_0, x_1, 2.*uvt_coord.b );                  // Coord pos 
     vec4 x_a = gl_TextureMatrix[4]*vec4(x_t, 1.);            // Atlas is texture[4] 
     vec3 atlas_color = texture3D(color_im0, x_a).rgb; 
     gl_FragColor = vec4( atlas_color, 1. ); 
 } else { 
       // Standard shading 
        float windowed_value = intensity_window( source_color.r ); 
     gl_FragColor = vec4( windowed_value ); 
 } 

Program 13 GLSL fragment shader program for volume mapping. 

If the multiple texture indirections required for multi-object X2U maps 

are found to be a considerable slow down on rendering speed, it is also 

possible to “pre-flatten” each object of the source image by 

prerendering it into a cardinal (uvt) space so that the second indirection 

would become unnecessary. 

  

                                                           
19 It appears that for some OpenGL implementations, when doing surface 

mapping, it is important that the source texture coordinate be computed in the 
vertex shader and an interpolated value passed into the fragment shader.  This 
can be implemented by moving steps 1 and 2 from Program 13 into the vertex 
shader and using a standard world-mapped fragment shader as described in 
section 3.2, Simple Texturing for Volumes. 
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3.4.2 U2X Maps 

The U2X map is a data structure for a medial model associating an (xyz) 

world-space coordinate with every parametric coordinate (uvt).  In the 

fragment shader the U2X map provides an interface to index atlas data 

according to model-coordinates (recall Fig. 92).  A fragment’s world 

position in the target image is transformed into a model coordinate 

according to the X2U map described previously.  Those model-

coordinates must then be transformed back into the world coordinates 

of a source image. 

As mentioned previously, m-reps are, by construction, designed to 

transform medial parameters to world-coordinates at the sample 

points, but interpolating a continuous transform requires complex 

math.  In mgrView, continuous U2X maps are implemented as a pair of 

2D images parameterized such that the nominal x axis is u and the y axis 

is v.  The rgb values at each pixel encode the corresponding x,y, and z 

values at that (uv) coordinate.  The first image (u2x0) is the U2X map at 

the medial sheet and the second image (u2x1) is the U2X map at the 

boundary surface.  Each pair of values taken from the same (uv) 

coordinate in the two images implies the tip and tail of a medial spoke.  

Interpolating non-sampled values from this grid gives vertices with the 

same level of continuity as the mathematically implied m-rep boundary 

has.  Taking weighted combinations of two images gives a very fast 

means of computing the (xyz) coordinates of a radius-weighted onion-

skin between the medial sheet and the boundary surface (Eqn. 8).  As 

with the X2U maps, in certain cases it is useful to extend the map 

beyond the surface, so that world coordinates can be estimated for the 

nearby “collar” region at values of t greater than 1. 

Once loaded as a texture pair, the U2X map for a shape can be accessed 

in both the vertex and fragment shaders.  Its application in the fragment 

shader for inverting the X2U map as part of atlas color mapping has 

been discussed. However, it can also be useful in a vertex shader to 

quickly generate vertices at any (uvt) coordinate.  For example, Fig. 95 

shows corresponding world points for uniformly sampled (uvt) in each 

of several target regions.  Such sampling could have a variety of 

potential applications for understanding data according to model-

centric coordinates.  The local spoke direction can be also easily 

interpolated, and if one assumes that the surface is orthogonal to the 

spoke direction (i.e., the surface is “partial Blum”), then the spoke 

 

 

  
Fig. 94 The surface (t=1) plane 
for a U2X map of the scm shown 
in Fig. 62.  The u direction is 
along the X axis; v is along the Y 
axis. The rgb value represents 
the (x,y,z) position at that (u,v,1) 
coordinate. Top shows the 
wireframe, with evenly sampled 
(uv); middle shows the 
barycentric interpolation of (xyz) 
values; bottom shows the 
original surface shaded similarly. 

𝑋 𝑢𝑣𝑡 =         𝑡 ∗       u2x0 𝑢𝑣  

                  +  1 − 𝑡 ∗ u2x1(𝑢𝑣) 

Eqn. 8  Formula to calculate the 
world-space coordinates (xyz) of 
a model-space coordinate (uvt) 
given U2X maps at the medial 
axis and boundary surface. 
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direction can be used as a proxy for the normal direction.  The image 

derivatives define du and dv directions for a local tangent plane. 

Computing a U2X Map 

U2X maps can be created by rendering the surface vertices and faces at 

their (uvt) positions, colored by their (unit cube) (xyz) positions.  In 

mgrView this is done in a vertex shader that simply exchanges model- 

with world-coordinates.  Fig. 94 shows an example surface and its U2X 

map.  The small errors in connectivity at the top of the image are the 

corners of the implied surface.  Each boundary surface generated by 

Pablo has four medial-sheet-array-corner crest regions.  When wrapping 

around the object in v, the first two corner crests assign coordinates to 

some of the vertices that are counted again in the later corner crest 

regions.  Thus, a few values of “shrinkwrap” (uv) are missing from Pablo-

generated surfaces. This has no effect on the rendering since those (uv) 

coordinates are unused. 

 

When generating a fully volumetric U2X map, this function is called at 

least two times with t=1.0 (surface) and with t=0.0 (medial positions).  

The image buffers are loaded onto the graphics card as 2D texture units.  

As with the X2U maps, mgrView additionally saves these images out to 

cache so that they need not be recomputed. 

Fig. 95 Passing a uniform 
sample grid in parameter space 
through the U2X maps 
produces a regular sampling of 
each region in world-space.  
Here each point is at the world-
space coordinate computed 
from an input object 
coordinate. 
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The U2X maps can be quite small:  in principle they need only a single 

pixel for each vertex in a given direction.  For example, a shape with 10 

medial samples in u and 4 in v (treated as 8 because that implies 4 more 

on the bottom of the sheet) with a single level of subdivision would 

require only approximately a 20 x 16 pixel image to capture all the 

vertices.  In practice, because there are additional vertices along the 

crests that must be represented and because there is no waste in using 

a power of 2 sized image, image dimensions are square and computed 

as NextPow2(max(u*1.5,2*v*1.5)).  This is still quite small: the U2X 

example described above is still only two 128 x 128 pixel images.  As 

with all small texture maps, these small images have good cache 

coherence when manipulating them in a shader program. 

One disadvantage of this representation is that its spatial precision is 

limited by color precision to 256 bins across the unit cube in each 

direction.  Considering that the (xyz) positions of the original vertices 

may have sub-voxel accuracy and that there are usually 512 voxel units 

across clinical CT images, this might be a serious weakness in certain 

contexts.  This could be overcome by identifying a region of interest as 

an additional offset and scaling for the U2X map.  This would give 256 

bins of precision across the extents of the object, but that has so far 

been unnecessary for color mapping from the Visible Human. 

U2X Maps for Multiple-Object Scene Catalogs 

As with X2U maps, it is preferable to collapse multiple U2X fields into 

the same texture unit; however, in this case the procedure is somewhat 

more convoluted.  The simplest solution is to concatenate each object’s 

grid along the u-axis of a master U2X field.  Thus, a 32 x 32 u2x map 

becomes a 32 x 64 grid for a two-object scene or a 32 x 128 grid for a 

four object-scene.  Then the u value is transformed by adding the 

object-number divided by the total number of objects.  Care must be 

taken at the edges to not interpolate across objects.  Hardware texture 

requirements mean that the total number of objects representable in 

the consolidated map is restricted to be a power of two, but there is no 

particular harm in leaving blank entries at the end. 
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3.4.3 Using the Visible Human as a Color Atlas 

Mapping color from the Visible Human cyrosections allows regions in 

the target image to be shaded according to one fairly realistic anatomic 

atlas.  Several other methods for high quality rendering using the 

Visible Human data have been proposed, most notably VoxelMan, 

shown in Fig. 97.  As mentioned previously, VoxelMan rendering is done 

offline, and it requires exhaustive microsegmentation, so it is not 

suitable for target clinical patients. 

However, it would certainly be possible to use the color mapping 

technique described earlier to pull the detailed voxel-wise labeling from 

certain regions in the VoxelMan data set and map them into a clinical 

patient, for example, bringing small blood vessels or nerves which are 

unseen on a target CT but have been identified in the Visible Human 

back into the target patient scene.  This would not require a great deal 

of work, since many structures in the Visible Human are already 

targeted for m-rep based segmentation to serve as regional color 

atlases.  Given an additional voxel-wise field from a project such as 

VoxelMan, e.g., ‘blood-vessels’, this same segmentation framework 

could easily be used to pull those additional channel into the target 

rendering along with the color values. 

 

There are other less segmentation-driven methods for augmented 

rendering such as (Dong and Clapworthy 2005), which proposes a 

method for enhancing isosurface-type volume rendering of the Visible 

Human data by looking at small features with high curvature to identify 

fiber orientations (Fig. 98).  In both cases, the rendering target is limited 

to the Visible Human, in the first case, because it presupposes an 

exhaustive segmentation, and in the second case, because such detail-

 
Fig. 98  Volume rendering with 
two different styles of oriented 
texture from (Dong and 
Clapworthy 2005). 

 
Fig. 96  Direct rendering of the 
Visible Female color atlas with 
mgrView. 

Fig. 97 Voxel-man renderings 
from the Visible Human from 
www.voxel-man.de. 
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oriented methods require extremely high resolution images with no 

motion artifacts.20 

There are many educational applications specifically designed to 

visualize and interrogate data from the Visible Human (see 

www.nlm.nih.gov/research/visible for a list), but the only approach 

that, like MGR, allows color information from the Visible Human to be 

mapped into a new target patient rendering is found in (Lu and Ebert 

2005) and associated work from the same group.  (Lu and Ebert 2005) 

proposes using example patches from the Visible Human to synthesize 

3D tiling “Wang” texture cubes that can be mapped into broadly 

defined regions in a new target image (Fig. 99).  This is a very flexible 

approach, but it lacks MGR’s ability to use model-centric coordinates 

to map, for example, the marrow of a bone into the interior regions 

and the surface of the bone to the boundary. 

                                                           
20

 “We can’t get resolution like that in the clinic.  For one thing, we’re pretty 
sure that the Visible Human subjects weren’t moving when they were 
scanned.” – Gregg Tracton 

 
Fig. 99 High quality rendering 
using textures synthesized from 
the Visible Human sample 
colors shown on the right, from 
(Lu and Ebert 2005). 
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4 Model Guided Composition 

for Medical Images 
 

All volume rendering suffers from problems of occlusion and 

obscuration; unimportant regions in the scene get in the way of 

understanding important features.  This is what Levoy was referring to 

when he made the proposition that no features would be lost in volume 

rendering as long as the data increased monotonically along the ray.  

While this statement is true, it is irrelevant because it is never the case 

that anatomic images have this property. 

Composing a scene is organizing the rendering so that everything that is 

most important for understanding a particular problem is revealed.  

There are three basic approaches for doing this: picking an unoccluded 

viewpoint and transfer function, deforming the data to move occluders 

out of the way, or removing occluders entirely (Fig. 100).  The first 

approach is typically used exclusively and is usually left entirely to the 

viewer although (Bruckner, Kohlmann, et al. 2008) and others have 

proposed semi-automatic approaches to scene composition via 

parameterized views. This chapter covers MGR’s approaches for 

enabling the latter two of these approaches. 

MGR’s volumetric animation capability was originally intended to 

enable interactively pulling aside structures to expose features behind 

them, but the same methods can be applied to animate the scene with 

respect to any deformation imposed on the image. The method has 

received the most attention for its ability to interactively show the 

                                                           
21

 I could write an entire section on von Hagens, but suffice it to say that he is 
doing “Netterly Rendering” with bodies rather than images: rendering bodies 
to look more like anatomy than they did when they were alive.  And like the 
Renaissance artists that he fashions himself after, von Hagens has been 
accused of such unsavory “grave-robbing” as trafficking in the corpses of 
executed Chinese dissidents, so certain of his exhibits were refused entry into 
the US. 

 
Fig. 100 Left, Vesalius (Vesalius 
1973) removed the skin 
entirely, right, similar view 
from (Hagens 2007)

21
 where 

the skin has been moved out 
the way but continues to 
provide context (i.e., there is a 
lot of it). 
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effects of the local registration fields commonly used in adaptive 

radiotherapy (ART) or 4D imaging studies. MGR’s method for volumetric 

animation is a straightforward and novel extension of volume 

visualization to dynamic scenes. Image deformation is bound by the 

large number of trilinear interpolations required.  Having already made 

the decision to work within the confines of the graphics accelerator 

hardware, there are a large number of interpolation units available to 

use for free, and it is simply a question of representing the various 

images and deformations so that they can interact as texture units. 

Clipping approaches in volume rendering usually involve creating 

complex transfer functions that pick out objects or regions of interest; 

however, these transfer functions become increasingly fragile and over-

tuned to particular data sets.  Importance rendering (Viola, Kanitsar and 

Groller 2004) is a significant recent technological insight that, like MGR, 

relies on a model for the scene to make smart “importance decisions” 

for each pixel.  The major drawback of current work in this area is that it 

is implemented with straightforward but slow ray casting algorithms 

that require pre-determining the scene’s importance rules.  MGR 

proposes a novel object-order fast importance rendering algorithm that 

works on ranked surfaces rather than according to voxel values.  This 

algorithm is related to the concept of “shadow volumes” and is fast 

enough that it enables dynamic importance rendering, by which a scene 

can be dynamically clipped against an arbitrary shape with interactively 

controlled position and size. 

These two methods for scene composition can be used for a variety of 

effects.  In particular, when taken together they are very useful for 

showing changes in shape and spatial relations in time, which is the 

basis for the project MGR Applications in Adaptive Radiotherapy, which 

will be discussed in section 5.2 of the next chapter. 

The chapter closes with a very short section on clipping surfaces with 

model coordinates.  This technique is straightforward in MGR and can 

be used to produce some attractive anatomic layering effects. 
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4.1 Volumetric Animation 

Clipping is the most widely use approach for scene composition in 

volume rendering, however, there are certainly scenes for which no 

static view completely exposes the important features or for which it is 

necessary to preserve all of the features for context.  In particular, 

scenes which change over time such as an image under the effect of a 

deformation fall into this category. 

As discussed previously, one of the basic problems with doing this kind 

of operation is slowness of interpolation.  For any given time step, 

several million trilinear interpolations need to be done if every voxel is 

potentially contributing to the scene.  The key insight is simply that 

there are a large number of parallel trilinear interpolation circuits 

available on modern graphics accelerators that can be leveraged to do 

this work if the problem can be cast into an object-space algorithm. 

The section includes two topics, one giving an example of rendering 

images under a global deformation, and another describing the general 

technique for and implications of rendering images under a local 

deformation field. 

4.1.1 Rendering Images Under Global Deformation 

(S. Bruckner 2006) describes a method for gpu accelerated volume ray-

casting of “exploded” views, shown in Fig. 102 left.  This technique is 

effectively a global deformation applied selectively to the volume 

image.  A similar deformation technique was built in mgrView as an 

example of how easily such global deformations can be added in this 

framework (Fig. 102, right). 

 

Fig. 102 Exploded view from (S. 
Bruckner 2006) and similarly 
deformed view rendered in 
mgrView. 

 
Fig. 101  Detail from da Vinci’s 
“Babe in the Womb” c.1511, 
which, along with modern work 
by von Hagens, was cited as 
particular inspiration for the 
methods developed in (S. 
Bruckner 2006). 
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Consider z fixed and the center of the split is at c=(0.5,1.0).  Then a 2D 

position X is going to a new position X’ as a function of θ according to 

Eqn. 9.  The original position of a fragment that is at X’ can be found by 

inverting the equation.  Finally, recognize that any source position with 

an x value that is on the wrong side of the center line with respect to 

the fragment position (i.e., sign(x’-cx) ≠ sign(x-cx) ) or any fragment that 

maps to the preserved positions should be rejected.  The fragment 

shader for this is shown in Program 14 and the result in Fig. 102, right.  

Note that in this sample case, the position of bone is preserved (image 

values greater than 0.3), but given a scene catalog the clam shell effect 

could preserve any collection of regions. 

uniform float time; 
vec2 center = vec2(0.5,1.0);  
vec2 split_vol( vec2 X ){ 
    float theta = 0.81 * time * (X.x>center.x?-1.:1.);  // Want to go PI/2 at 1 
    mat2 Rt = mat2( cos(theta), -sin(theta), sin(theta), cos(theta) ); 
    return (X-center)*Rt+center;} 
void main(void){ 
    source_color = texture3D(source_im0,  vec3( gl_TexCoord[0] ) ).rgb; 
    // Fragment was soft tissue 
    if (source_color.r < 0.3) { 
        vec2 X_new = split_vol( vec2( gl_TexCoord[0] ) ); 
       // Determine if the fragment came from the same side of the split 
       // as it started on, this would be more complex if not axis ailgned 
        if (sign(X_new.x-center.x)!=sign(gl_TexCoord[0].x-center.x)) 
             source_color = vec3( 0.0 ); 
        else { 
            source_color = texture3D(source_im0,  vec3( X_new,  
                                                           gl_TexCoord[0].z ) ).rgb; 
           // Fragment was bone, so ignore it 
            if ( source_color.r > 0.3 ) source_color = vec3( 0.0 ); 
        } } 
 if ( source_color.r < 0.05 ) gl_FragColor = vec4( source_color, 0.0 ); 
    else { 
        float windowed_value = intensity_window( source_color.r ); 
     gl_FragColor = vec4( windowed_value ); 
    }} 

Program 14  GLSL for the volume splitting algorithm. 

The rendering is fairly effective as an animation, but it is expensive to 

compute. This implementation runs at a respectable 15 fps on a target 

laptop with an NVIDIA Quadro NVS 160M gpu, but at sub-interactive 

rates (4 fps) on a target desktop with a NVIDIA GeForce 6200 gpu (see 

Table 4 on page 142).  There may be more efficient means of computing 

this particular transform, such as rotating world-space half-cube texture 

𝜃′ =  
−𝜃, 𝑥 < 𝑐𝑥
𝜃, 𝑥 ≥ 𝑐𝑥

  

𝑋′ =  𝑋 − 𝑐 𝐑(𝜃′) + 𝑐 

𝑋 =  𝑋 ′ − 𝑐 𝐑T(𝜃′) + 𝑐 

Eqn. 9 Formula for 
transforming a world point X by 
the clam shell operation to find 
X’, and the inverse transform to 
recover the original position of 
a transformed X’.  R is a 
standard 2D rotation matrix. 
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stacks, but this example is merely meant as an illustration of the general 

idea of applying global deformations in this framework. 

4.1.2 Rendering Images Under Local Deformation 

Deforming the volume to move particular regions in order to visualize 

structures that are hidden behind them (Fig. 103 and Fig. 104) requires 

some kind of physical model.  The parametric deformation model 

described in (Correa, Silver and Chen 2006) produces local appearance 

effects, but is actually much closer to the global deformations discussed 

in the last chapter.  While m-reps are amenable to local physical 

modeling such as finite element modeling (see (Crouch, et al. 2003), for 

example), implementing such a framework is beyond the current scope 

of this project. 

However, the 3D image registration fields discussed earlier provide an 

interesting related problem that relies on the same basic method for 

representing local deformation.  Furthermore, such registrations are an 

important aspect of image analysis but have only limited support among 

visualization tools. 

The method requires at least two patient images, I0 and I1, that are 

related by a rigid transform, R, and a dense vector field, H, that 

accounts for the residual change such that I1 = H(R(I0)).  The particular 

registration method is unimportant here.  In this example taken from 

inter-fractional patient images, the registration is done with ImMap, 

described in (Foskey, et al. 2005). 

H is stored as a 3D color texture unit, where (rgb) represents the 

displacement at each voxel (hx,hy,hz).  As each fragment is rendered, its 

position X is used to lookup the local displacement H(X), and a final 

intensity is determined by looking up the image value at X+H(X).  

Trilinear interpolation of the gray values in the deformed space is done 

automatically in hardware as long as OpenGL is instructed to use 

GL_LINEAR as the texture interpolation method.  With a scalar time 

ranging between [0,1], the volume can be incrementally deformed by 

indirectly mapping assigning intensity(X) to intensity(X+time*H(X)). 

Program 15 shows the fragment shader for this, and Fig. 105 shows two 

frames from the resulting interactive animation that shows the entire 

range of deformation between the source and target images.  This idea 

 
Fig. 103 Image from (Hagen 
1992). Retractors are used to 
reveal hidden internal 
anatomy. 

 

Fig. 104  Image from (Correa, 
Silver and Chen 2006) that uses 
parametric manipulators such 
as peelers and retractors to 
visualize a deformed space. 
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is expanded and detailed in the later section describing an application of 

mgrView for evaluating inter-fractional shape change. 

// GLSL to SpatiallyTransform a Volume Texture According 
// to a Non-linear Deformation Field 
uniform sampler3D gray, registration; 
uniform float time; 
main(void) { 
  coord = gl_TexCoord[0].xyz 
  coord = coord + time * texture3d( registration, coord ) 
  source_color = texture3d( gray, coord )  
  gl_FragColor = source_color 
} 

Program 15 GLSL fragment shader extending the volume texture shader with 
volumetric animation. 

 

The technique extends to non-linear displacement fields that are 

represented as chains of displacements fields, such as the curved 

diffeomorphic paths generated by (Joshi and Miller 2000), by loading 

each time step as a discrete texture unit and stepping through each in 

turn, i.e., intensity(X) = intensity(X+time*Hn(time*Hn-1...time*H0(X)))).  

The problem with doing such chaining is not that there are a large 

number of interpolations to do but that there are a large number of 

ordered texture lookups to do for each fragment.  Hence, this technique 

is considerably slower than single-step displacements.  And while it may 

be useful for computing general diffeomorphic transformations, in the 

context of same-patient serial imaging, where the displacements are 

typically only a few voxels and the difference between the curved and 

linearized paths is smaller than a voxel in magnitude, the added 

precision does not provide much visual advantage. 

The main drawbacks for this method arise from the requirement that 

images be loaded onto the graphics accelerator as standard texture 

units.  The next two paragraphs discuss some particular implications of 

Fig. 105 Two frames from an 
animation showing the 
registration between two daily 
images in a fractionated male 
pelvis treatment.  The change is 
subtle, only a few voxels in 
most places, but notice the jog 
in the hip-bone where the 
region of interest passed 
through it and the position of 
the lower tip of the bladder. 
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this, reduced precision and restrictions on relative scaling between 

images. 

As with gradient data, discussed earlier, each displacement, which 

typically has sub-voxel precision natively, must be encoded as unsigned 

bytes (modulo a scaling constant) and then interpolated in low 

precision.  Again, while may not be appropriate for scientific calculation, 

in the context of these registrations with relatively small displacements, 

this is not a significant issue.  For example, a range of 16 voxels (+/- 8 

voxels) still provides 16 units of sub-voxel precision (increments of 

0.0625 voxels).  This is more than enough precision to understand even 

relatively small shape changes in objects such as the prostate or bladder 

that are several tens of voxels in size.  If more precision is necessary in 

some other context, the problem could also be addressed by using more 

sophisticated graphics hardware that supports half-float data 

interpolation (a 16 bit float format supported for higher precision 

computations on some newer graphics architectures). 

There is also a difficulty in reconciling texture units with different 

extents.  In particular, most registration fields are computed in a 

restricted region of interest relative to the original images.  Because 

texture units are all maintained in a cardinal unitary space that also 

includes any additional voxel padding required to meet most hardware’s 

requirements that textures be sampled with dimensions in powers of 

two, additional care must be taken to convert cm distances into unit 

distances that maintain relationships between data sets.  The one 

ameliorating factor is that each texture may have its own independent 

4 x 4 transformation matrix for converting world-distances into unit 

texture extents distances.  In ray-casting, by contrast, units can be 

maintained in their native format and cm distances along a ray can be 

converted explicitly to voxel-values by straightforward formulae. 

Finally, this method also applies to surfaces in a scene.  The position of 

each surface vertex can also be used to index into the displacement 

field and determine a new position.  For surfaces this must be done in 

the vertex shader, which requires hardware that supports OpenGL’s 

“vertex texture fetch” (VTF).  As described in the next section of this 

chapter, this technique provides a source for dynamic importance 

clipping in animating scenes – the changing surface provides a new clip 

frustum at every frame. 
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Volume Morphing 

Most spatial registration algorithms cannot account for substantial 

intensity differences between the images.  Consider a rectum with a gas 

bubble registered to one without gas.  The patient may be the same, the 

nearby anatomy may be the same, and the shape of the rectum may be 

the same, but there is an intensity difference that requires either that 

the registration be “torn” so that the intensities can be inserted, or 

typically, the gas be “deflated” away to a tiny point so that the 

registration can remain diffeomorphic. 

In practice, with the clinical algorithms that we use, this happens all the 

time at a small scale.  The smoothness constraint either forces the 

registration to “miss” or allows the registration to produce an unsmooth 

and likely illegal mapping (preview Fig. 147).  A pixel with no good 

corresponding intensity will obligingly map itself to a good spot 

suggested by its neighbors.  This means that H(I0) is almost never 

actually equal to I1.  It is I0 as close as it can get to I1 within the 

smoothness constraint.  This has no practical consequence in the clinic, 

but it can be somewhat disconcerting when visually comparing H(I0) 

with the intended target image I1. 

Actually “morphing” between the two 3D images requires both a 

registration field and an intensity difference term to absorb the residual 

error in the registration.  This problem has been addressed in a formal 

way for medical image analysis by the “Metamorphosis” method 

presented in (Trouvé and Younes 2005). 

An overly simplified solution is to linearly interpolate between the pixel 

intensity in I0 that is t along the displacement vector and the pixel 

intensity in I1 that is (1-t) along the displacement vector, as expressed in 

Eqn. 10.  This formulation is easily implemented in mgrView by adding a 

few lines to the animation shader to sample I1 and mix the values from 

the different images. 

  

𝐼𝑡 𝑥 =

𝑡𝐼0 𝑥 + 𝑡𝐻 𝑥  +

(1 − 𝑡)𝐼1 𝑥 + (1 − 𝑡)𝐻 𝑥  

2
 

Eqn. 10  Formula for linearly 
interpolating intensities at time 
t from source (I0) and target (I1) 
pixels as they approach each 
other according to a 
registration field H. 
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4.2 Fast Importance Rendering 

Scene composition is, at its simplest, about rendering in such a way that 

important structures are not obscured by unimportant structures.  As 

discussed earlier, most volume rendering approaches suppress or 

enhance features identified according to local image properties by 

complex transfer functions.  For instance, Levoy’s original proposition 

that gradient magnitude should determine opacity was an implicit 

assumption that region boundaries were the most important features 

for understanding a volumetric scene.  Other more advanced clipping 

rules tend to follow this cue and make further assumptions, looking to 

second derivatives or other feature matching methods to separate 

important from unimportant features. 

Unfortunately, as with assigning scene appearance, there are no good 

purely data driven transfer functions for automatically determining the 

relative importance of regions of any general scene.  Such labeling is 

essentially an image segmentation task, so scene composition requires 

both external information and a robust method for identifying 

important features in the scene. 

 

MGR’s clipping algorithm ultimately relies on the same partial 

segmentations used to guide appearance as guides for scene 

composition.  Fig. 106 shows an example.  The image on the left is the 

same scene shown previously shown in Fig. 4, but rendered from 

behind. From this perspective, most of the important internal structures 

are hidden inside the volume.  The image on the right shows the same 

rendering with the volume culled wherever it would obscure a structure 

of interest, in this case, the mandible. 

Fig. 106 Left, another 
perspective of the scene from 
Fig. 4.  Right, the same view 
with voxels in the mandible’s 
importance shadow culled 
away. 
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This basic idea of scene composition based on pre-segmented features 

is known as “importance rendering” and was originally proposed as an 

image-order method by (Viola, Kanitsar and Groller 2004) (Fig. 107).  

Given a partial segmentation of the scene into ranked regions, the 

problem of scene clipping in MGR reduces to finding an object-order 

algorithm for importance rendering.  The importance clipping algorithm 

used in mgrView is based on an extension of the standard stencil-buffer 

based shadow-volume algorithms sometimes used to compute surface-

to-surface occlusions.  In the example shown in Fig. 106, the mandible 

surface is used to compute a shadow frustum extruding from the 

mandible towards the viewer; then each textured plane is stenciled 

against the shadow geometry as it is composited to clip away the 

intervening voxels. 

 

 

 

 

 

 

 

 

 

This section is divided into three topics:  first a review of antecedent 

work in importance rendering, second the details of the method for 

stenciling with importance shadows, and finally a discussion of 

extending importance stenciling for hierarchically ranked or dynamic 

objects. 

4.2.1 Importance Rendering 

There are two distinct methods for identifying important regions and 

relationships between them in a scene.  Manual identification of 

important regions is usually based on simple geometric proxies (e.g., 

solid rectangles or spheres) and called volume-of-interest or region-of-

interest (ROI) clipping.  Alternatively, given an image segmentation, the 

rendering engine can automatically determine more complex shapes of 

interest and relationships between them.  The term importance 

rendering is usually reserved for such model-based clipping.  MGR’s 

importance clipping algorithm can be driven by either manually 

Fig. 107 The lizard from (Viola, 
Kanitsar and Groller 2004) with 
an importance hierarchy 
emphasizing the bones and 
liver. 
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controlled ROIs or by the underlying scene segmentation, but this 

section reviews methods of model-based clipping in particular.  Previous 

examples of volumetric clipping with simple manually identified ROIs 

are reviewed briefly in the later section describing mgrView’s 

“importance flashlight” dynamic clipping tool. 

Important structures in a patient image are commonly segmented as 

part of our clinical pipeline.  Scene composition according to such 

segmentations has been a recent and productive area of research 

inspired by techniques for cut-away views and ghosting from technical 

illustration.  The term “importance rendering” was coined in (Viola, 

Kanitsar and Groller 2004), which is a significant and beautiful work (Fig. 

107).  Viola uses a hierarchy of geometric models with importance 

values to automatically infer the regions of interest and generate view-

dependent effects in an image-order framework. 

“Flexible Occlusion Rendering” proposed in (Borland, et al. 2006) (Fig. 

108) falls into the same category.  This algorithm works by using a 

transfer function to identify contrasted regions and then resetting its 

accumulation function when it encounters anatomic intensities again. 

 

The main disadvantage of both Viola’s and Borland’s methods is that 

they are designed to be implemented as transfer functions and so rely 

on ray casting, which makes them relatively slow to compute.  

Computational complexity can be surmounted by fast hardware – 

indeed, (Quammen 2006) describes a graphics hardware accelerated 

version of Borland’s ray casting method that is quite fast, given the 

proper hardware.  However, Borland’s method requires a contrasted 

image, and Viola’s method requires a voxel-wise segmentation with per-

voxel importance values.  Thus, neither of the methods is amenable to 

dynamic importance descriptions.  Enabling dynamic importance 

clipping – i.e., importance clipping against an interactively controlled 

Fig. 108 Left, an anatomic 
illustration of a shoulder joint 
and right, a similar view of real 
data rendered with flexible 
occlusion from (Borland, et al. 
2006). 
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object, is the main advantage that moving to an object-order 

implementation gives MGR. 

Other antecedent work on volume clipping using explicit models 

includes (D. Chen 1998) and (Bullitt and Aylward 2002).  In both cases 

the models are medial.  (Bullitt and Aylward 2002) uses a voxelized 

label image to guide clipping when rendering the liver and vasculature 

for surgical planning.  (D. Chen 1998) is a direct precursor to MGR in 

using medial models to guide volume visualizations.  However, the 

methods are primarily concerned with doing near-model clipping and 

lighting the volume according to local data-driven boundary 

displacement on medial objects (i.e., using the model normals rather 

than the gradient direction).  An example rendering is shown in Fig. 

109.  It is unclear why this method required medial models since the 

space-filling volumetric coordinates are not used, but it is an interesting 

first step towards being able to identify and focus visualization on 

objects of interest by tile geometry rather than according to simple 

ROIs. 

Finally, some additional related work on clipping and scene composition 

for surfaces is reviewed in the final section of this chapter. 

4.2.2 Stenciling with Importance Shadows 

This section presents an object-order implementation of importance 

rendering suitable for a hardware accelerated object-order rendering 

framework.  In a ray-casting context, determining whether objects are 

occluded by or are occluders of anther object is a straightforward task – 

when a surface is intersected by a ray, an additional "shadow ray" is 

sent to each light source.  If the shadow ray intersects with any surface 

before it reaches the light source, the generating surface point is 

considered to be in shadow.  Keeping track of “importance occlusions” 

along a single ray, as in Viola or Borland, is even more straightforward 

and can be accomplished with a transfer function that simply tracks the 

most important object already seen and resets the pixel intensity if a 

more important voxel is encountered. 

The main problem with implementing such functionality in an object-

order framework is that parallelization requires that each fragment is 

necessarily treated independently and that the computations for each 

fragment can access only a small amount of local data.  Taken together, 

 
Fig. 109 Images from (D. Chen 
1998).  Top, a medial model fit 
to a scanned starfruit.  Bottom, 
medial models fit to the objects 
in the scene are used for 
clipping and to smoothly shade 
the rendering. 
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this limits the fragment shader’s ability to compute complex “transfer 

functions” for both color and opacity.  The key insight for this algorithm 

is that occlusions in volumetric data are essentially related to cast 

shadows – and there are known algorithms for dynamically computing 

the effects of cast shadows using per-fragment operations.  MGR’s 

importance rendering mechanism is based on such an object-order cast 

shadow algorithm that relies on a stencil buffer to track the simple 

dependency of whether a fragment is shadowed or not across all the 

fragments that contribute to each pixel.  However, instead of 

determining surface fragments that are occluded with respect to a light 

source, MGR’s importance shadows determine volume fragments that 

are occluders with respect to an object of importance and then stencils 

them away. 

Shadow Volumes & Importance Shadows 

The cast shadow method used by MGR is based on “shadow volumes” 

or “stencil shadows”, originally proposed in (Crow 1977) and extended 

by (Heidmann 1991) and others.  In this method, a shadow volume is a 

derived surface for each potential occluder and light source such that 

the surface polygons that are back-facing with respect to a light source 

are projected to infinity.  The shadow volume then encloses all the 

surface elements that are occluded with respect to a particular surface 

and light source.  Fig. 111 shows an example of a 2D shadow area from 

(nVidia 2004) 

 

The scene is rendered as normal. Then the pixels that are inside the 

shadow volume can be identified by rendering the shadow volume in a 

particular way that allows the hardware to count how many fragments 

Fig. 111 Shadow volume 
geometry in 2D from (nVidia 
2004) 

 
Fig. 110 Cast shadows provide 
useful visual cues when 
combining surface and volumes 
data. 
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project onto each pixel. This is the object-order equivalent of casting 

rays through the shadow volume and counting the number of 

intersections before the ray finally reaches the target surface. If the 

count is odd and the shadow volume has no self-intersections, the pixel 

is shadowed. 

The cleverness in implementing this as an object-order algorithm comes 

from using the stencil buffer to track the number of fragments from the 

shadow volume that project onto each pixel. The stencil test is a 

standard part of the graphics pipeline that passes or rejects a fragment 

and updates the stencil buffer based on some condition. The stencil 

buffer can be thought of as an additional channel for the frame buffer. 

Its original intent was to store a mask that could be used to restrict 3D 

rendering to part of a window, for example, to reserve a 2D region for a 

user interface. 

In implementation, the shadow volume is rendered without writing to 

the screen buffer or the depth buffer although depth testing is still used 

to determine if a fragment is in front of the target pixel.  Instead of 

simply counting every fragment and then using even/odd to determine 

if the pixel is shadowed, the stencil can be set to increment on front 

facing fragments and decrement on back facing fragments.  Thus, any 

non-zero value implies that the pixel is inside of the shadow volume 

regardless of self-intersections. 

The rasterization pipeline can then treat the shadowed pixels 

differently. Typically for cast shadows, the stencil buffer is used to mask 

a second pass rendering that either rerenders the entire scene without 

the occluded light or, as a short cut, simply blends a dark color over the 

fully lit pixels to simulate shadowing (Fig. 112, bottom right). 

Program 16 gives a vertex shader implementation for generating a 

shadow volume as a function of a source position and frustum scaling 

and Fig. 112 illustrates the shadowing process. 

void main(void){ 
    vec3 light_direction = normalize( gl_Vertex.xyz – gl_Light0.position ); 
    float diffuse = dot( -light_direction, gl_Normal ); 
    // If vertex is not lit, extrude it 
    if (diffuse < -0.05) world_position = world_position + light_direction; 
    gl_Position = gl_ModelViewProjectionMatrix*vec4( world_position, 1.0 ); 
} 

Program 16 GLSL code for generating shadow volumes using a vertex shader 
program. 
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Implementing this method in mgrView provides the basis of the 

importance rendering mechanism, and it has the additional advantage 

of providing cast shadows to improve spatial understanding and 

verisimilitude of the renderings, as seen in Fig. 110. 

Method for Stenciling with Importance Shadows 

The insight in MGR’s method for importance rendering is recognizing 

that occlusions relative to important objects can be treated similarly to 

cast shadows.  Important objects in the scene, e.g., the prostate, 

bladder, and rectum in a male pelvis image, have been semi-

automatically segmented with deformable shape models and each 

model implies a boundary surface.  Then, each object’s front-facing tiles 

with respect to the camera are projected back towards the camera (the 

opposite direction of a cast shadow volume).  In implementation, this is 

accomplished by reflecting the camera across the center of mass of the 

scene regions and using that position as the “importance source” for 

the shadow algorithm outlined in the previous section.  Using the center 

of mass is an expedient choice in that it can be computed easily and 

provides reasonable results for multiple regions that are near one 

Fig. 112 Shadow volumes 
rendered in mgrView.  Top left, 
the bladder (green) and prostate 
(blue).  Top right, shadow 
volumes extruded using a light 
direction from the upper right.  
Bottom left, intersecting the 
shadow volume with a plane in 
the volume.  Bottom right, the 
dark regions are areas with non-
zero stencil buffer entries after 
the shadow pass. 

 
Fig. 113 The shadow volume 
from Fig. 112 top, right, with 
the light source “zoomed” 
towards the center of mass to 
imply a wider shadow frustum. 
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another.  However, importance shadows from distant regions are better 

served by calculating individual importance sources for each. 

The reflected camera can additionally be “zoomed” towards the center 

of mass to create a wider shadow frustum (Fig. 113). This effect can be 

used to open a wider hole through the volume to the object and 

thereby provide more or less context for the region. Fig. 114 shows a 2D 

projection of a scene with the importance shadow geometry. 

Camera Position (P)

Center of Mass (C)

Reflected Camera (R)
 R = P+2(C-P) = 2C-P

View Direction

Reflection Plane

Zoomed Reflected Camera (Z)
 Z = Interpolate(R,C,t)

(Z) has a wider frustum than (R)

C-
P

After each plane in the texture stack is rendered, the combined 

importance shadow for all the objects identified as “important” in the 

scene is rendered into the stencil buffer to create a mask of which 

fragments on the next plane would obscure the important regions of 

the data. This mask is then used to cull the fragments of the next plane 

as it is rasterized, effectively testing that each fragment does not 

obscure a fragment from an important object. Program 17 adapts the 

basic object-order rendering algorithm with an importance mask. 

The basic shadow volume algorithm can be modified slightly to preserve 

the interior of the region by flipping the diffuse lighting test from “less 

than” to “greater than”.  This causes the closer (lit) cap rather than the 

farther (unlit) cap to be extruded and so removes the interior of the 

Fig. 114 The shadow volume 
algorithm is modified by 
reflecting the camera across 
the scene, then zooming it 
slightly to magnify the frustum.  
The final camera position is 
then passed as the shadow 
source to the shadow stenciling 
algorithm as described above. 
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object from the “shadowed” region.  This is most useful in cases of high 

contrast objects, such as the mandible (recall Fig. 106) or when applying 

a (more) opaque synthetic or image texture in the image region, such as 

is shown in Fig. 115 middle. 

Render Volume with Importance 
1. Compute importance shadow volumes for this camera 
2. Enable depth testing 
3. for i=0 to number of slices 
 3.1 Set stencil to count faces (“increment/decrement”) 
 3.2 Disable buffer writes 
 3.3 Render importance shadow volumes 
 3.4 Set stencil to test for non-zero (“cull if on”) 
 3.5 Enable buffer writes 
 3.6 Render slice i 

Program 17  Object-order importance rendering using the stencil buffer and a 
shadow volume. 

Because this algorithm requires that the shadow volume be re-rendered 

to the stencil buffer for every slice cast through the volume, it can be a 

significant speed-up to precompile the shadow volume as a display list.  

Using a vertex shader to extrude the shadow volume is a significant win 

here since the display list need not be recompiled each time the camera 

position changes.  Since no fragments are actually promoted to pixels, 

this is a fairly fast operation.  mgrView achieves frame rates over 15 fps 

for an importance stenciled 200 slice view on a target laptop and 

around 6 fps for an importance stenciled 100 slice view on a standard 

desktop workstation.  See Table 4 on page 142 for a complete summary. 

4.2.3 Extending Object-Order Importance Effects 

This section describes some additional object-order importance effects, 

importance for dynamic objects, hierarchical importance rendering, 

and adding regional effects to a scene.  The section closes with a 

discussion of voxel-to-context importance decisions in this framework. 

Dynamic Importance & ROIs 

The method described above is fast enough to provide importance 

rendering for two different types of dynamic scenes: for changing 

importance surfaces in a static scene or for an animating scene as 

described in the previous section.  An example of a dynamic object 

embedded in a static scene is mgrView’s importance flashlight (Fig. 

116), which is a simple spherical shape that can be scaled or moved 

 

 

 
Fig. 115  Images from an 
abdomen scene focused on the 
duodenum. Top, the 
duodenum is completely 
occluded in this 3D view of the 
abdomen. Middle, nearly 
opaque intensities from the 
image in the duodenum region. 
Bottom, using a model-mapped 
texture in the duodenum 
region. 
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interactively through the 3D scene to dynamically carve holes in the 

data. Slight variations of this tool can be used to simulate many 

different effects and provide many useful and novel ways to interrogate 

the data without clipping it to a single plane or cut surface. An example 

of importance rendering for animating scenes is described in the next 

chapter. Because mgrView’s importance clipping method computes 

importance masks on the fly, mgrView achieves the same frame rates 

for scenes with dynamic importance as it does for static scenes. 

 

Creating motion in the scene by interactively manipulating the camera 

viewpoint or the parameters of the carved shape makes the 

organization of the grayscale image much more understandable than it 

is in a static scene. Dilating the shadow source along its normal 

directions or tuning the frustum width by zooming the reflected camera 

can provide more or less context near the subject.  Interactively 

adjusting the frustum’s projection angle by moving the reflected camera 

orthogonally to the view direction produces slightly oblique cuts that 

can help clarify the subject’s depth and the scene perspective.  In Fig. 

116, for example, the projection angle is slightly down and left of the 

camera direction. 

The importance flashlight is related to the standard ROI or VOI method 

of focusing a scene by manually selecting a region of interest.  There are 

many antecedents to ROI clipping and many methods for picking ROI 

Fig. 116 Volume rendering from 
an unsegmented image 
interrogated with a spherical 
“importance flashlight”. 
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shapes.  Pelizzari22 was an important early user of volume ROIs for 

therapy planning to visualize soft-tissue targets through obscuring 

outer stuctures.  (Pelizzari, et al. 1999) (Fig. 117) and other early papers 

from this group discuss the application of volume visualization for 

radiotherapy treatment planning and present patient renderings with 

compelling scene composition. 

Other more recent methods for interactively creating clip regions 

include (Weiskopf, Engel and Ertl 2003) and (Konrad-Verse, Preim and 

Littmann 2004).  Several papers from Weiskopf’s group describe an 

alternative approach for object-order clipping with arbitrarily shaped 

objects, but their method relies on voxelization of the target shape, so 

it is not clear that it would be sufficiently fast for MGR’s interactive rate 

rendering goal.  Konrad-Verse proposes using a flexible deformable 

mesh to do ‘virtual resection’, as shown in Fig. 118.  Their goal is not 

merely to exclude irrelevant shapes but to provide decision support for 

how particular resection plans will affect hidden internal structures.  

Their method for determining a clip surface according to cut-lines drawn 

on planes and ‘spheres of influence’ could serve as a method for 

defining complex ROI geometry in any clipping framework. 

The “sand away views” in (Davis, et al. 1991) and “volumetric sculpting” 

in (Wang and Kaufman 1995) describe a grayscale morphology rather 

than geometrically determined manual clipping.  In those works, hidden 

structures are exposed by eroding the 3D image directly according to 

grayscale morphological kernels. 

Hierarchical Importance Shadows 

This method extends to hierarchically ranked importance surfaces.  For 

example, in a given scene the user may wish to see the area near the 

importance flashlight through intervening important anatomic regions. 

There are two possible approaches to address this. One method 

requires a more complex stencil test that uses the top few bits of the 

stencil buffer to track the highest object rank at each pixel and the 

lower bits to count front-back faces as above.  This method has the 

advantage of not requiring the importance manifolds to be presented in 

any particular order, but implementing it requires using a considerably 

more complex stencil test. 

                                                           
22

  Pelizzari is probably best known for his 'head-hat' registration algorithm. 

 
Fig. 117 Image from (Pelizzari, et 
al. 1999).  A left anterior oblique 
view showing the mandible, 
hyoid bone, left external jugular 
vein, anterior jugular veins, left 
submandibular gland and two 
associated submandibular lymph 
nodes. 

 

 
Fig. 118 Virtual resection from 
(Konrad-Verse, Preim and 
Littmann 2004).  Top left, cut-
lines are drawn on each plane.  
Top right, the object can be 
separated and ‘resected’ from its 
parent. Bottom, the resection 
clipping surface can be 
interactively modified so that the 
disjoint volumes include and 
exclude different features. 
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A simpler method is to use the single rank method but to order the 

importance manifolds and stencil their importance shadows in ranked 

order.  This requires only a small amount of additional computational 

overhead compared to the per-slice shadow passes required for the 

basic volume importance algorithm. 

With either method, because the hierarchical stencil is recomputed 

completely at each frame, there is no computational penalty for 

dynamically changing relative importance ranks. mgrView’s 

implementation allows every object in the scene to be assigned a 

different importance rank, but in practice using more than one or two 

ranks can lead to very confusing views.  Occlusion is a very important 

and expected depth cue. 

Render Volume with Hierarchical Importance 
1-3. Render culled volume as in Program 17 
4. Clear the stencil buffer 
5. For i=1 to number of ranked objects 
 5.1 Set stencil to test for non-zero (“cull if on”) 
 5.2 Enable buffer writes 
 5.3 Render objects with rank i 
 5.4 Disable buffer writes 
 5.5 Set stencil to count faces (“increment/decrement”) 
 5.6 Render importance shadow volumes for objects with rank i 

Program 18  Extending object-order importance rendering to display ranked 
objects. 

 

Adding Additional Regional Effects 

Complex scenes with importance effects can be difficult to interpret 

spatially since the strong depth cues from occlusions are being 

reordered in non-intuitive ways.  However, because MGR has access to 

geometric proxies for the regions of interest, regional effects can be 

added indirectly during a final rendering pass without making the 

volume data shader itself more complex. mgrView supports three 

simple additional regional effects during importance rendering, which 

are tinting, contours, and cast shadows. 

In this implementation object tinting is done during texturing with a 

variation on the standard 3D texture surface shader used in Fig. 115 

middle and elsewhere to map voxel values onto surface tiles.  As 

previously discussed in the volume visualization background section of 
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Chapter 2, contours, i.e., locations where surfaces begin to be self-

occluding, (see Fig. 40), are added using a contour shader that performs 

a dot product between the camera direction and the surface normal 

and discards fragments that are not nearly orthogonal to the viewing 

plane.  And finally, an actual shadow pass using a shadow volume cast 

from a regular light source and a shadow volume from the combined 

region surfaces is used to project cast shadows into the clipped volume 

and onto region surfaces.  Program 19 shows the complete importance 

rendering algorithm with hierarchy and object effects. 

Render Volume with Hierarchical Importance and Object Effects 
1-3.Render culled volume as in Program 17 
4. Clear the stencil buffer 
5.  For i=1 to number of ranked objects 
 5.1 Set stencil to test for non-zero (“cull if on”) 
 5.2 Enable buffer writes 
 5.3 Render objects with rank i 
  5.3.1 Render tinted object 
  5.3.2 Disable depth test and depth write 
  5.3.3 Render contours 
 5.4 Disable buffer writes 
 5.5 Set stencil to count faces (“increment/decrement”) 
 5.6 Render importance shadow volumes for objects 
6. Clear the stencil buffer 
7. Stencil shadow volume according to cast light source 
8. Render dark quad and blend shadow regions 

Program 19 Extending Program 18 with additional regional effects. 

Voxel-to-Context Importance & Volumetric Shadows 

The scene catalog provides a powerful tool for identifying and 

categorizing not only voxel-to-neighbor relationships (e.g., local 

interfaces) but also voxel-to-context relationships.  For example, 

consider a patch of bright voxels.  If it belongs to a region that should be 

bone, it is uninteresting data.  However, if it belongs to a region that 

should be kidney, the patch represents a calcification or lesion and 

warrants consideration, and indeed warrants focus in the scene.  While 

mgrView implements only shadows from surfaces, cast shadows from 

particular regions in volumes are also possible in an object-order 

rendering framework.  This raises the possibility of extending the 

importance rendering method described to clip according to voxel-

centric decisions (“Is this voxel interesting compared to its neighbors?”) 

rather than region-centric decisions as described here (“Is this surface 

more important than its neighbors?”). 
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As with cast shadows for surfaces, cast shadows for volumes are easy to 

compute in image-order direct volume rendering (DVR) by the simple 

expedient of casting secondary shadow rays and tracing them on their 

path through the volume (recall Fig. 44).  In the forward rendering 

context, algorithms have been proposed by (Zhang, Crawfis Vis02) using 

voxel splatting, and in (Behrens VV98) using texture mapping. 

The method for computing and using shadows from volume data 

originally considered for mgrView is based on a method originally 

described in (Merck UNC04)(Fig. 119).  An occlusion volume is 

computed similarly to the X2U map computation, by progressively 

rendering each plane in order into a buffer that accumulates the total 

attenuation at each voxel from the point of view of the light.  The 

buffer is read back (“unprojected”) at each step and stored in a 

secondary occlusion volume.  When the occlusion volume is complete, 

it can be used to modulate the intensity at each corresponding voxel as 

it is rendered from the camera’s point of view.  This method is 

considerably faster than ray-tracing, but it is still not fast enough to 

support dynamic lighting.  

 
Fig. 119 Volume with self 
shadows from an early splat 
rendering core considered for 
mgrView. 
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4.3 Clipping Surfaces with Model Coordinates 

The final section of this chapter deals briefly with MGR’s capacity for 

model based clipping or windowing in surfaces.  Many anatomic 

structures of interest, such as the gut or vasculature, are most 

appropriately described as surfaces, particularly as layered surfaces.  

The duodenum shown in Fig. 120 is an interesting curved shape with 

multiple layers.  (Revisit Program 1 for the simple mgrView example 

script used to create it.) 

 

Such overlapping (or interpenetrating) surfaces can be quite difficult to 

understand.  In medical illustration convention, windows in surfaces are 

frequently aligned with the along-object and across-object directions – 

which are given in our framework.  Little research has been done on 

mimicking this effect.  (Li, et al. 2007) uses constructive solid geometry 

to identify a medial axis for each object so that windows can be cut 

transversely or along geodesics on the surface, as shown in Fig. 121.  

Again, starting from partial segmentations by m-reps, MGR is provided 

with such directions automatically by construction, making it trivial to 

assign clipping windows with intuitive coordinates such as between 0.3 

and 0.6 of the way along the object and between 0.5 and 0.7 of the way 

around the object (the actual coordinates of the window in the 

longitudinal muscle in Fig. 120). 

Fig. 120 Duodenum with 
multiple layers, interior ruggae 
and circular muscle under 
longitudinal muscle. 

 
Fig. 121 Composition based on 

medial properties derived from 

constructive solid geometry 

from (Li, et al. 2007). 
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In implementation, mgrView “clips” the surface to the nearest vertices 

by simply rejecting any vertices that fall within the model-coordinate 

clipping window.  The clip boundary vertices are marked so that cap 

geometry can be added dynamically to give the layer the illusion of 

depth.  The end caps on open tubes can be treated similarly.  Simple 

discrete medial models are de facto deformations of spherical 

topologies, so in order to render other topologies, such as hollow tubes 

for the gut and duodenum, the end caps are clipped with similar object-

coordinate windows, for example, clipping vertices with u in the ranges 

[0,0.1] or [0.9,1] for all v and all t. 

A non-model-based method for layer-by-layer clipping is “depth 

peeling”, a method for 2-pass rendering using a depth buffer to 

selectively cull the front-most polygons of nested surfaces (Nagy, Klein 

CGA03), (Rezk-Salama, Kolb CGF06).  Borland originally called his flexible 

occlusion rendering “volumetric depth peeling”. 

Finally, a related field is display of intersecting surfaces, as is explored in 

(Weigle and Taylor 2005)(Fig. 122) or (Interrante, Fuchs and Pizer 

1997).  Both these works in particular draw some of their driving 

problems from external beam radiotherapy planning, the same target 

domain as MGR does.  Both methods propose, among other things, 

applying oriented textures to surfaces in order to provide shape cues 

for intersecting objects.  In general, these texture orientations are 

determined by intrinsic properties of the surface, such as lines of 

principal curvature.  However, it seems likely that integrating these 

texturing methods with model-based surface coordinates as described 

here might provide additional insights into the relative shapes of the 

objects. 

 
Fig. 122 Two different 
segmentations of the same 
tumor rendered relative to one 
another with the nested 
surfaces algorithm from 
(Weigle and Taylor 2005). 
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5 Bringing MGR to the Clinic 
 

This chapter provides evidence that the MGR techniques described in 

this dissertation are both usable and potentially useful in clinical 

visualization. 

The first section, 5.1, Medical Imaging Applications and MGR, gives a 

high level review of the final application component in the medical 

imaging pipeline that was used to organize the background material 

and is represented in Fig. 123.  The section describes the context in 

which MGR techniques have been developed and discusses some of the 

ways that they may be applied to image guided medicine. 

The next two sections provide additional motivation and examples 

demonstrating how combinations of MGR methods can provide 

additional useful capabilities for particular important but difficult 

medical image visualization tasks in radiotherapy and endoscopic 

guidance.  Much of the thinking behind these target problems has been 

taken from or developed to support grant proposals being written 

together with Dr. Julian Rosenman and Stephen Pizer. 

Section 5.2, MGR Applications in Adaptive Radiotherapy, provides a 

case study describing how to apply some of MGR’s methods to improve 

comprehension in visualizations for segmentation, planning in the 

presence of error, and patient setup for radiotherapy.  This section also 

refers to an appendix with considerable implementation detail for 

building the “planning in the presence of error” project using the 

mgrView software library.  The appendix is intended for the reader who 

may be interested either in reproducing examples from this dissertation 

or in generating their own projects using mgrView.  The appendix covers 

importing images, dense registration fields, and medial shape models 

into mgrView, and it also provides a walkthrough of creating a new 

shader model and integrating it with the standard library functions.  The 

appendix material assumes some familiarity with C++ and OpenGL and 

can safely be skipped over by non-engineering-oriented readers. 

Engineering

Image Analysis

Presentation

Application

Physical

Reconstruction

Registration

Interpretation

 

Fig. 123 This chapter 
contextualizes how MGR fits 
into the application component 
of the medical imaging 
pipeline. 
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The shorter section 5.3 overviews another target problem, Enhanced 

Endoscopy from Multiple Modalities, and describes how to integrate 

endoscopic and 3D images to improve online visualizations for biopsy 

guidance. 

The required input for all of these projects is images and data that are 

commonly collected or computed in the UNC Department of Radiation 

Oncology’s standard clinical pipeline. 
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5.1 Medical Imaging Applications and MGR 

MGR brings several immediate general improvements to medical 

visualization systems: 

 Ability to work in unoccluded 3D views (from importance rendering) 

 Ability to work in 4D views, such as segmenting structures at any 

step of an animating respiratory cycle (from volumetric animation) 

 Ability to work in combinations of the most appropriate image 

modality for each region, for example identifying landmarks in a 

particular region using MRI or photographs while still working in the 

familiar context of the CT base image elsewhere (from photo or 

color mapping) 

 Ability to recognize multiple segmented and unsegmented 

structures in a scene (from regional model coordinates and 

texturing) 

This section attempts to contextualize how combinations of MGR’s 

particular special abilities might map into particular medical image 

application domains.  For the purposes of this discussion, applications of 

medical images are considered in three main domains: 

 Anatomic education 

 Diagnosis 

 Image guided therapy (IGT) 

Following (Yaniv and Cleary 2006), IGT is further broken up into three 

sub-domains: 

 Procedure planning 

 Intra-operative guidance 

 Postoperative analysis 

Some of the main points of this discussion are summarized in Table 2. 

5.1.1 Anatomic Education 

Medical images used in anatomic education commonly come from a 

particular “normal” reference subject such as the Visible Human, or 

they are taken from libraries of reference images of pathological or 

normal variants.  Such reference images serve a complementary role to 

traditional medical illustration.  Medical illustration is frequently 

concerned with providing what has been called “global” anatomic  
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Domain Standard Interface MGR Interface 

Anatomic Education   

Understand anatomic shape, 

interrelations 

Interact with reference atlas Interact with atlas-like views of 

many individual reference images 

Diagnosis   

Identify deviations from expected 

shape (3D) or intensity (2D) 

Review using static surfaces or 

slices 

Review in 4D, best modality per 

region, relate surface and deep 

features 

Image Guided Therapy   

Procedure Planning   

Segmentation Work in 2D, single modality at a 

time 

Work on 2D slice in 3D context, 

combination of best modalities 

Planning & Evaluation Work using static or serial images Work in 3D/4D with intuitive region 

shading, see effects of scenarios 

such as patient motion or position 

Intra-operative Guidance   

Relate world to plan World object immobilization or 

fiducial tracking on 2D slice 

Project procedure-time images back 

into the 3D planning scene 

Analysis or Tracking Same as listed above under 

diagnosis 

Same as listed above under 

diagnosis 

Table 2  Common clinical applications for medical images and potential roles for MGR methods. 

information in this dissertation.  Global anatomic information is about 

shape and about spatial and functional interrelationships between 

anatomic structures.  Certain normal reference images may be viewed 

with similar global goals, as in the case of the heavily preprocessed 

VoxelMan, which has many prerendered 3D views emphasizing various 

global qualities of the atlas anatomy. However, library images are 

typically intended to be interrogated slice-by-slice and used as real-

world representatives for local image characteristics. For example, a 

particular reference CT image may be intended to help a radiologist 

learn to distinguish intensities that suggest healthy versus sick lung 

tissue. 

MGR can augment this learning by providing more global context to 

these local tasks.  The entire suite of MGR methodology is essentially 

designed to provide the advantages of an illustrated (“Netterly”) or 

atlas-like 3D global view to particular library images without either 

obscuring local information or requiring exhaustive micro-

segmentation.  MGR’s regional texture mapping and importance 

rendering methods allow multiple important structures in a target 

image to be rendered distinctly in a 3D view. Color mapping by pulling 
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color information from atlas or reference textures can additionally 

provide estimates for invisible local detail such as likely blood vessels or 

nerves that are invisible in the base modality or have been obscured by 

the rendering itself. When combined with a synthetic texture 

generation module, reference textures can be tuned to the particular 

anatomic variant being presented. For the example given above, an 

MGR rendering of an image showing a lung pathology could tune a 

standard healthy pink lung texture in suspicious regions to make it 

appear to be full of pockets of air where the interstitial tissue has 

disintegrated.  At the same time, it is always possible to interactively 

inspect the image data of the base modality by switching off the 

synthetic texture or by placing an untextured cut plane nearby, so that 

the visualization can still be used as an example of the local intensity 

characteristics that suggest unhealthy tissue. 

Educational training applications that simulate procedures on partially 

segmented reference images can be considered an aspect of the 

procedure planning domain discussed later. 

5.1.2 Diagnosis 

A primary difference between educational applications and diagnostic 

or IGT applications is that the latter are patient-specific by definition.  

Many diagnostic imaging applications are best done slice-by-slice 

because they are concerned with teasing out local image characteristics 

in specific regions and comparing them against expectations to identify 

pathology. However, there are also diagnostic tasks that require 3D 

shape and spatial relationship information, such as virtual colonoscopy.  

These 3D tasks have been typically restricted to high contrast structures 

(e.g., the intestinal tract) and may rely on navigating through a surface-

only endoscopic simulation. 

MGR methods could be brought to both the 2D/local and 3D/global 

cases.  In the case of characterizing local detail, it would certainly be 

inappropriate to enhance a rendering with atlas estimates of local 

features.  However, related MGR’s regional color mapping methods 

could be used to integrate additional data sources to a view.  Region-by-

region rendering from multi-modality imaging where corresponding 

objects have been identified in each source is one example.  The next 

section presents a view that uses a CT image for volume rendering but 
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embeds MRI data near the prostate to suppress reconstruction artifacts 

from seeds or markers. 

MGR’s photo mapping method also provides a method for combining 

3D images with surface photography in order to visually relate surface 

and deep features.  One possible application for this would be to use 

serial photographs mapped onto reference anatomy to track surface 

changes over time.  For example, current methods of diagnosing 

potential melanomas involve taking many pictures of the patient, laying 

them out, and comparing current pictures to those taken several 

months prior.  MGR could provide a view that enables a physician to 

actually animate the skin change over time in 3D.  Another application 

might be combining a 3D imaging modality with thermography, which 

shows near-surface features.  Thermography is thought to have some 

benefit for breast cancer screening, but it suffers from many “false 

positives”.  Here the idea would be to present an interactive view where 

thermographic images mapped onto the surface suggest suspicious 

regions for closer inspection in the underlying 3D image. 

As an aside, Fig. 124 shows an interesting antecedent to MGR’s 

emphasis on linking surface and deep features; (Oliver, et al. 1997) 

developed a mapping between photographs and a CT scan to determine 

if bones were broken by improperly swung batons in the Rodney King 

case (supporting the claim that they were).  By using MGR and pre-

segmenting a few important bony structures, all this information could 

be collapsed into a single interactive view.23 

In the 3D diagnostic case, MGR methods can be used in particular to 

provide better vantage points.  Although simulated endoscopic views 

have genuine advantages over physical endoscopy in the ease of the 

procedure (especially to the patient), surface-only renderings such as 

Fig. 6 provide no medical advantage over actual camera images.  

However, MGR’s importance rendering methods could provide a real 

advantage in scene composition.  Importance rendering frees simulated 

endoscopy from its naturally restricted field of view.  Proposing an 

“open” virtual arthroscopy was one of the major results from Borland’s 

flexible occlusion rendering against contrasted regions (recall Fig. 108).  

MGR extends such open views by making them dynamic and allowing 

for hierarchical importance from multiple ranked regions.  Additionally, 

MGR’s color mapping methods could be used in such views to clearly 

                                                           
23

 There was an interactive viewer for Oliver's project, but it has been lost. 

 
Fig. 124 Conclusion from 
(Oliver, et al. 1997) showing 
links between four 
“modalities”, the isosurface of 
the bones, MRI, CT, and a 
photograph of the subject.  
Using MGR, this information 
could all be collapsed into a 
single view. 
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distinguish and orient nearby regions.  An MGR virtual endoscopy is 

presented later in this chapter. 

One important future application of MGR’s volume animation capability 

is interactive 4D rendering for regions such as the heart or lungs; this 

would allow a clinician to make decisions based on how a region 

changes shape over time. 

5.1.3 Image Guided Therapy 

Image guided therapy (IGT) involves three different kinds of tasks:  

planning, intra-operative guidance, and post-operative analysis.  From 

a high level view, the post-operative phase has similar visualization 

requirements as the diagnosis domain discussed previously.  However, 

planning and intra-operative guidance have very distinct needs. 

Planning by Simulation 

Not all image-guided medical procedure planning requires that the 

image be preprocessed to explicitly identify important anatomic 

regions.  However, many of the most complex planning applications are 

intended to provide some level of simulation to verify that a proposed 

procedure is likely to achieve its intended goals.  Such “planning by 

simulation” requires computing the expected effects of a procedure and 

evaluating the results with respect to particular important regions.  An 

example of this kind of evaluation is precomputing the expected dose 

distribution of a radiotherapy plan with respect to target objects and 

nearby objects at risk. 

“Planning by simulation” has already been a fruitful domain for 3D 

visualization.  Levoy’s earliest volume rendering methods were focused 

on radiotherapy planning, and many of the medical image visualization 

techniques referenced throughout this text have been motivated by 

such planning problems.  Plan evaluation is, in some ways, a more 

appropriate target for 3D rendering methods than diagnostic tasks 

because plan evaluation is primarily concerned not with local detail but 

with understanding global shape and spatial relationships.  For example, 

a dosimetrist is more interested in understanding how a configuration 

of beams intersect various target regions and organs at risk than they 

are in understanding the specific character of the tissue type in those 

regions. 
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There are several planning subdomains with different simulation 

mechanisms but related visualization needs. 

 Radiation simulation, which uses proxy geometry to approximate 

beam positioning and computes a likely dose distribution that must 

be evaluated relative to target and at-risk anatomy.  Many of the 

visualizations that have been proposed for radiotherapy planning, 

such as (Interrante, Fuchs and Pizer 1997) (Fig. 125), focus on 

evaluating the shapes of static nested surfaces representing an 

isodose boundary and a target region. An example view presented 

later in this chapter uses MGR’s interactive volumetric animation and 

importance rendering to display the volumetric effects of possible 

error from setup, internal deformations, or time dependent change 

such as respiration on an expected dose distribution.  Interactive 

control over such a deformable scene could be a major improvement 

in any planning domain given that most planning assumes only rigid 

scene motion if any. 

 Mechanical simulation, such as the target problems described in 

(Bullitt and Aylward 2002) or (Konrad-Verse, Preim and Littmann 

2004) (discussed earlier in the section on clipping), which both use 

visualization-related techniques to simulate and improve surgical 

resections.  MGR’s model-coordinate-based cut geometry provides 

several similar advantages in orienting and evaluating potential 

resection geometry. 

 Reconstructive simulation, which integrates computer assisted design 

with image guidance methods for simulating the results of 

reconstructive surgery.  A proposed application of MGR’s photo 

mapping and volume deformation methods is to provide “quality 

control” for craniofacial reconstruction as described in (Piatt, et al. 

2006).  The reconstruction of the osseous elements (Fig. 127) implies 

a deformation field on the original 3D patient image.  A rendering of 

the original data could be first painted with a patient image and then 

warped according to the deformation field to provide an estimate of 

the surgical results. Such a rendering might be used for both 

evaluating the procedure plan and as an intra-operative reference. 

MGR’s model-coordinate based solid texturing provides a general 

advantage across the planning domain by allowing a clinician to be able 

to identify, orient, and spatially relate multiple important regions 

 
Fig. 127 A life-size plaster 
model of a virtual craniofacial 
reconstruction simulation from 
(Piatt, et al. 2006). 

 
Fig. 125  (Interrante, Fuchs and 
Pizer 1997) explores the target 
domain of visualizing the 
surfaces of anatomic shapes 
with respect to dose 
distribution. 

 
Fig. 126  An MGR view showing 
a patient image with the 
expected dose distribution 
overlaid in red. 
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throughout the volume.  This is particularly true since a relatively 

detailed image segmentation of important anatomic structures is likely 

to be available.  

Because planning by simulation tasks require evaluation with respect to 

important structures, these tasks are usually preceded by a 

segmentation phase to identify relevant anatomy.  Segmenting an 

image has requirements similar to both the 2D and 3D diagnostic tasks.  

2D views are required to adequately characterize local detail and create 

or edit boundaries.  3D views of the segmented surface are more 

appropriate for understanding whether the structures identified have 

appropriate shapes and spatial interrelationships. 

The same MGR regional color mapping methods suggested for 

application in diagnosis tasks are applicable here as well.  The next 

section of this chapter presents a possible MGR view taken from 

radiotherapy planning for the male pelvis.  In the base CT image the 

prostate target is difficult to identify, but it stands out in the MRI.  A 

combination view presented in 3D enables the clinician to pick out 

landmarks in the most useful imaging modality.  Providing a volume 

rendered 3D context from the CT enables the clinician to understand 

the shape and spatial relationships of the segmented object to both 

other explicitly identified regions and to nearby unsegmented 

structures. 

MGR’s access to model coordinates can also be used to automatically 

visualize additional difficult to segment structures, such as the lymph 

levels in the head and neck.  These regions (Fig. 128) cannot themselves 

be identified but are determined by landmarks on several surrounding 

objects. Generating these structures automatically is impossible without 

model coordinates that can distinguish, for example, the top from the 

bottom of an object.  However, given suitable model coordinates, 

landmarks in the lymph level guidelines can be converted to model-

coordinate uvt format.  Then the model coordinates of the segmented 

neighboring objects imply a set of landmark positions that can be taken 

together to visualize the extent of these lymph levels.   Typically lymph 

levels are displayed in terms of an atlas patient rather than for a 

particular clinical subject, which draws a connection between such 

visualization and the idea of showing “hidden features” discussed in 

relation to MGR’s atlas color mapping. 

 

 
Fig. 128  Lymph levels are 
derived based on landmarks 
from nearby structures. 
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Intra-operative Guidance 

Intra-operative guidance is primarily concerned with relating a real 

world patient on the table to an annotated planning image.  Most 

current planning does not or cannot account for a deformation 

relationship between the planning image and the patient on the table, 

but MGR enables interactively controlled views of such relationships 

using its volumetric animation methods. Because most planning 

assumes rigid relationships between the plan and patient, intra-

operative guidance usually reduces to guaranteeing proper patient 

setup.  The simplest means of patient setup is a restraint system that 

immobilizes the patient in an aligned position, such as a stereotactic 

frame in open neurosurgery or a face mask in head and neck 

radiotherapy.  Another method is to somehow mark a region of interest 

with an easy to track “fiducial marker” such as a small metal sphere 

embedded in an internal structure or a tattoo marked on the surface.  

Such fiducial markers allow the patient to be aligned with the planning 

image.  However, no reverse mapping has been considered – i.e., given 

a tattooed surface, there is no way to guarantee that the tattoos have 

been put on in the right place according to the plan.  An example later in 

this chapter uses MGR’s photo mapping method to provide such 

evaluation. 

 

Fig. 129 MGR’s endoscopic 
“guided tour” view discussed 
later in this chapter overlays 3D 
targeting and landmark 
information onto the 2D 
endoscopic view. 
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In the setting of minimally invasive surgery (MIS) via endoscopy, intra-

operative guidance involves registering the scope position and the 

planning image. Typically this is displayed as a simple 2D projection of 

the scope position onto an image slice. MGR can improve such displays 

by providing context outside of the natural imaging limits of the scope 

both by mapping data from the planning image into the endoscopic 

view or from the endoscopic view into an open field of view virtual 

endoscopy. Again, the planning image, scope image, and any local 

deformation implied by the motion of the scope are just additional data 

sources for MGR’s pipeline. Enhanced multi-source endoscopy is 

described in a later section of this chapter, and it is considered as a form 

of augmented-reality-guided surgery in the conclusion. 

Of IGT’s major domains, 3D visualization is most significantly adopted in 

surgical planning and guidance tasks.  Applications of image guided 

surgery (IGS) or computer aided surgery (CAS) have been surveyed in 

(Grimson WE 1999) and more recently in (Yaniv and Cleary 2006).  Many 

clinical visualization tools have been developed for IGS applications by 

extending the free open source visualization package 3D Slicer 

(www.slicer.org), which itself builds on the NA-MIC software libraries 

such as ITK and VTK.  The slicer publications list provides an interesting 

recent overview of many types of clinical visualization applications. 

(Taylor 2000) includes a more formal survey of volume visualization 

applications and has a broad overlap with the bibliography of this 

dissertation.  (Zuiderveld, Meissner, et al. 2005) documents a panel 

overview on the relevance of volume rendering to clinical applications 

and observes generally that initial research has been into methods for 

speeding it up but that the focus is shifting to application and intent-

driven research, although few examples are discussed explicitly. 

With a few exceptions, image guided radiotherapy (IGRT) has seen 

relatively less emphasis on 3D planning tools.  Paradoxically, this is likely 

due in part to the compounded information in these scenes from 

imaging, segmentations, beams planning, and dose distributions, which 

makes them exactly the scenes that need improved global 

comprehension.  The next section considers how MGR methods could 

be used to improve important IGRT 2D/local visualization tasks such as 

segmentation by adding 3D/global information and how some global 

visualization tasks such as plan evaluation could be improved by moving 

them into a 3D view without sacrificing local detail.  
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5.2 MGR Applications in Adaptive Radiotherapy 

5.2.1 Clinical Goals 

External beam radiotherapy (EBRT) involves a detailed planning phase 

and has a relatively complex workflow diagramed in Fig. 131.  Patients 

are imaged, and this planning image is segmented to identify target 

regions and nearby “at-risk” structures.  A dosimetrist then proposes a 

therapy plan by arranging several virtual “beams” around the planning 

image.  The expected dose with respect to each of the important 

structures is computed, and the plan is refined accordingly.  The goal of 

the planning is to deliver adequate radiation “dose” to the target region 

while sparing as much as possible the nearby normal tissue. 

Given a plan, the therapy itself is divided up into a course of treatment 

“fractions” that will be delivered over several sessions.  This makes the 

task of reproducibly aligning the patient with the plan extremely 

important. Patient setup is typically limited to aligning external markers, 

such as tattoos, with intersecting lasers that indicate a planning space 

reference position.  However, the patient’s internal anatomy may also 

move or change shape from day to day or even from moment to 

moment. For example, the target prostate tissue can be shifted and 

deformed between treatment fractions as the bladder empties and fills.  

Respiration can cause similar kinds of anatomic changes in the abdomen 

within a single treatment fraction. 
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Fig. 130 Linear accelerator used 
for external beam radiotherapy 
(EBRT). 

Fig. 131. Workflow for adaptive 
radiotherapy. Main components 
are planning and treatment.  The 
MGR applications described here 
could be used in the 
segmentation, planning, and 
treatment setup phases. 
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Adjusting an EBRT plan to account for treatment-time anatomic shape 

change is called “adaptive radiotherapy” (ART) (Yan D 2000)(Wong JR 

2005).  ART is based on mappings between planning images and images 

collected at treatment-time.  Evaluating the effects of such mappings on 

the expected dose delivered to the various important anatomic 

structures in the scene is a complex spatial task; yet it is typically limited 

to 2D views and a few quantitative summary measurements such as the 

volume overlaps of important regions before and after a registration.  

Planning in the presence of such anatomic change or potential patient 

setup error can account for considerable clinical time. 

The next subsections demonstrate how MGR methods can be used to 

improve the particular tasks of segmentation, planning, and patient 

setup.  From a high level, the MGR improvements allow the clinician to 

do 3D work in a regionally appropriate image modality, in the presence 

of potential error, and in a setting that ties the planning image to the 

patient in the world.  The three clinical application views described are 

for 3D cross-modal segmentation, interactive planning under error, 

and patient setup verification.  Each section includes a short overview 

of the problem being addressed, the view itself, and a discussion of 

what MGR methods were used to improve comprehension for the task. 

 Appendix: Implementing the Planning Under Error View Using mgrView 

on page 152, walks the reader through the implementation of the 

planning project using the mgrView library, detailing how to preprocess 

input data for mgrView’s file loaders and how to create a new shader 

program and integrate it with the library. 

The examples shown here are interactive mock-ups or vignettes.  At 

present, mgrView does not provide a complete solution for allowing a 

clinician to interactively segment, plan, or update patient positioning: it 

is limited to providing views on data.  Integrating mgrView functions 

into a framework such as 3D Slicer could provide many of the editing 

capabilities required for a complete solution. 

5.2.2 3D Cross-Modal Segmentation View 

Identifying the boundaries of target and at-risk regions is a crucial task 

in preparing a patient image for planning.  A clinician usually delineates 

these boundaries slice by slice.  Many structures are difficult to discern 

in a CT image; for example, prostate tissue is relatively homogeneous 
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and in CT images has no clear boundary with some neighboring 

structures.  The combination of difficult to identify structures and views 

limited to axial slices leads to ad hoc segmentation heuristics like “find a 

particular bony landmark, then count down three slices and assume the 

prostate starts there”. 

 

The goal of this vignette is to provide a clinician with both local detail 

and 3D context near a particular anatomic region to support a 

segmentation task. 

The MGR vignette shown in Fig. 132 addresses each of these issues.  

First, while the user can still draw on a 2D slice, the slice is presented in 

its volume rendered 3D context and can take a continuous range of 

orientations.  If a neighboring structure such as the bladder has already 

been identified, the slice can be oriented and positioned automatically 

according to local model coordinates and directions.  An example might 

be positioning and orienting the slice to naturally emphasize the most 

proximal points between the bladder and the likely position of the 

prostate. 

Second, while CT is the most important imaging modality for 

radiotherapy planning because it directly measures the tissue properties 

required for computing dose distribution, MRI can also be a useful 

imaging modality despite its potential geometric inaccuracies.  In this 

case, the CT values of homogeneous regions such as the prostate have 

been swapped out to allow the clinician to pick landmarks or delineate 

boundaries with stronger tissue type differentiation from MRI (see Fig. 

Fig. 132.  3D segmentation in 
mixed modes. Volume rendered 
structures from the CT image 
provide global context while the 
clinician can segment on a slice 
drawn from a corresponding 
MRI.  Fig. 134 shows how the CT 
values near the prostate had 
been corrupted by artifacts from 
the metal fiducial marker visible 
in the center of the prostate 
region. 

MGR Methods Required 

 Model-coordinate driven clipping 

 Regional color mapping from an 

alternate modality 
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133) in the region of interest but with the familiar context of the CT data 

elsewhere. 

 

One particular example of the utility of this is when metal fiducial 

markers embedded in the prostate for tracking create CT reconstruction 

artifacts that obscure the target region, as in Fig. 134.  Here, MGR’s 

special capabilities for integrating multiple image sources has been used 

to replace the CT values on the entire working slice with data from a 

fused MRI. More complex potential solutions could be imagined using 

MGR’s color mapping methods. One particularly interesting application 

might be using the marker positions identified in the MRI to identify 

untrustworthy regions in the CT so that they can be replaced with an 

appropriate reference solid texture.  Such solid texture “in-painting” for 

gas bubbles in the rectum based on the methods of (Cheung, Frey and 

Jojic 2005) was originally discussed by Joshua Levy in an unpublished 

report from 2005. 

 

Fig. 134 The prostate region in 
the CT-only volume rendering 
on the left is obscured by the 
artifacts from the fiducial 
markers. The hybrid rendering 
on the right preserves the clear 
tissue distinction in the target 
region. 

Fig. 133  Standard slice-by-slice 
view used during segmentation; 
the colored contours are the 
region boundaries drawn on this 
slice. The CT image on the left 
shows very little tissue 
differentiation between the 
circled prostate region and its 
neighbors compared to the MR 
slice on the right. 
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5.2.3 Interactive Planning Under Error Vignette 

Radiotherapy planning and plan evaluation is usually done in part slice-

by-slice (Fig. 135) and in part with projections such as the “beams eye 

view” to verify that the target regions can be “seen” and the nearby 

objects at risk are “hidden”.  Evaluation is also based in part on 

summary values such as dose volume histograms that measure 

radiation dose to target and at-risk structures. 

 

The vignette proposed provides several directions of visualization 

extensions to the basic means of evaluating radiotherapy plans 

described above. 

 

The goal of this vignette is to enable 3D evaluation of a radiotherapy 

plan with respect to multiple anatomic regions in the presence of a 

range of possible setup errors or possible internal shape changes. 

Fig. 136 Effect of error on 
expected dose. Top left, dose 
distribution overlaid near the 
surface where the A/P beam 
enters the target region. Top 
right, unoccluded view of the 
prostate target region below the 
at-risk bladder with expected 
dose overlay.  Bottom left, a 
small rotation applied to the 
patient leaves the prostate cold.  
Bottom right, further clipping 
reveals the effect of the altered 
dose distribution on nearby 
unsegmented structures. 

Fig. 135 A common 2D dose 
evaluation visualization showing 
isodose contours projected onto 
individual slices. 2D views can be 
quite useful for understanding 
local tissue types, but they are 
not necessarily optimal for 
understanding the 3D spatial 
relationship between the 
expected dose and the target 
region.  (Image from (Mosleh-
Shirazi, et al. 2004)) 
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As with the segmentation vignette described in the previous subsection, 

this view is 3D, but MGR techniques can be used to slice the data into 

2D cross sections that can be oriented with respect to natural directions 

(i.e., along, across) for local regions for local evaluation of dose vs. 

shape.  Moreover, MGR provides for a dose overlay that modulates 

both the identified and unidentified anatomic structures.  This enables 

the clinician to understand the dose with respect to locality – not just 

how much dose is received per object, but where it is received 

throughout the object.  Regions can be individually clipped away to 

expose hidden interior structures, and the dose can be visualized both 

inside and on nearby regions to understand what is happening to 

unsegmented but discernible structures in the scene. 

Finally, the primary novelty of the mgrView vignette for this application 

is the addition of interactive control over variable error parameters that 

apply a global rigid transform or local deformable transform to the 

patient while leaving the dose field in place.  This is implemented as 

described in section 4.1, Volumetric Animation.  This effect can be used 

to simulate and understand the effects of possible errors in setup, 

gantry realignements, patient motion, or internal anatomic change such 

as the bladder filling and emptying.  Such evaluation may suggest minor 

adjustments to the beams to make them more robust to possible 

changes, or, when evaluating a plan against the registration to a real 

daily image, a decision to replan the patient.  This same effect with 

multiple daily images could be used in segmentation as well to allow the 

clinician to identify or edit a boundary on any step of the series of 

registered images. 

See the Appendix: Implementing the Planning Under Error View Using 

mgrView beginning on page 152 for a complete walkthrough of 

implementing such a vignette using the mgrView library. 

This method could be further extended by adding appearance effects 

from atlas texture mapping.  A basic problem is that dose volume 

histograms summarize dose to explicitly identified objects only.  The 

method as outlined above additionally displays the dose distribution 

with respect to discernible but non-segmented structures, such as the 

spine.24  Applying MGR’s model-based atlas color mapping methods, 

                                                           
24

 “You can have the best summary statistics in the world, but it doesn’t matter 
if you packed all your error into the spine.” – Ira Kalet, Univ. of Washington 

MGR Methods Required 

 Model-coordinate driven clipping 

 Interactive volumetric animation 

 Dynamic importance rendering 

 Regional color mapping from 

alternate imaging modality 

 Model-coordinate implied 

regions 
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one could additionally design a display of a dose distribution with 

respect to hidden but likely radio-sensitive structures such as nerves, 

lymph levels, or internal structures by pulling relevant regional textures 

from atlas sources. 

5.2.4 Patient Setup Validation Vignette 

 

Patient setup is the problem of aligning the real-world patient with a 

virtual procedure plan.  This must be done reproducibly over many days 

for fractionated treatment.  Usually the only information available for 

this task are visual cues such as skin tattoos that can be lined up with 

lasers in the room to at least align the patient’s target region with the 

planned dose isocenter. 

The goal of this vignette is to help estimate the position of deep 

features based on surface features. 

MGR can be used in dual complementary capacities to address this 

problem.  First, augmenting views from cameras in the treatment room 

with a projection of the proposed planning image (recall Fig. 31 of 

RANDO) could provide the same kind of visual alignment estimate as 

tattoos, but for the entire plan rather than just for the isocenter.  

Second, using the methods described in section 3.3, 2D Color Transfer 

Fig. 137. A rendering showing 
the patient’s alignment tattoo  
mapped back onto the planning 
image with dose overlay to 
provide feedback regarding the 
suitability of the world-to-plan 
registration. In this case, the 
tattoo is not in the position 
expected by the plan. 

MGR Methods Required 

 Patient photo mapping 
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from Patient Photos, to augment the 3D planning image with the 

photograph from the treatment room (Fig. 137) provides several 

additional guidance cues.  

 Tie the plan to the patient and catch blunders such as left/right 

symmetry transforms or planning the wrong patient 

 Confirm that the target implied by the tattoos does indeed align 

with the dose isocenter 

 Visualize where a radiation beam should fall on the patient without 

having to make mental estimations about the actual surface 

features shown on the CT.  This addresses shortcomings in the 

practice of “light field setup” which provided no good link between 

the expected light field positions and the patient’s surface 

appearance. 

Beyond photography, the same methods could be applied to visualize 

registrations between a planning image and various other data sources.  

One intriguing setup source might be a reference surface such as is 

collected by the VisionRT (www.visionrt.com) stereo camera setup 

system (Fig. 138), which could be used for patient setup based on 

geometry.  Another potential setup source might be non-visible light 

photography such as thermographic (heat) images (Fig. 139), which 

could be used for patient setup based on veins or other warm, near-

surface landmarks.  Applying this vignette to serial patient images taken 

at treatment time would provide a means to track skin reactions with 

respect to the expected dose distribution and the initial treatment 

photograph. 

  

 
Fig. 138 A VisionRT surface 
(green) aligned with the 
corresponding CT skin 
isosurface (purple). 

 
Fig. 139 Thermographic image 
of the author holding his oldest 
son at age 18 months, taken at 
The Tech Museum in San Jose.  
Thermography can show near 
surface features. 
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5.3 Enhanced Endoscopy from Multiple Modalities 

The introduction of this section is paraphrased from a related RC1 grant 

application written principally by Dr. Julian Rosenman and submitted 

through UNC Hospital’s Department of Radiation Oncology. 

5.3.1 Clinical Goals 

There are two main ways of determining the anatomic extent of a 

tumor: 3D imaging (e.g., CT, MRI, or PET) and direct visualization via 

endoscopy. In the head and neck, nasopharyngoscopy is a minimally 

invasive diagnostic procedure in which a small camera called an 

endoscope is inserted into the patient’s nasal passage and passed down 

through the pharynx. An attached cable serves to control the position 

and orientation of the camera, to provide light at the target via optical 

fiber, and to transmit a video signal back to a monitor. The endoscopic 

rig may include additional instruments such as a biopsy needle or pincer 

for collecting tissue samples at a target site. 

Computed visualizations of 3D images and direct endoscopic 

evaluations are both particularly important when tumors are entangled 

with multiple critical normal tissues.  Nasopharyngoscopy enables a 

clinician to see the mucosal surfaces of the cavities but not the internal 

tissues.  3D imaging provides information about the deep infiltration of 

the tumor, but it does not provide a visualization of the mucosal 

surfaces.  So, for example, a patient with a submucosal abnormality on 

CT may have normal-appearing mucosa.  Therefore the physician may 

require additional guidance from a 3D planning image to direct a biopsy.  

Or conversely, a CT may give incomplete information about the extent 

of a tumor's infiltration into the submucosal region.  Therefore the 

physician may require additional guidance from direct visualization to 

estimate a target region for treatment planning.  However, there is 

presently no easy way to visually register the information from these 

two assessment tools with each other beyond simply displaying the 

probe’s world position on a slice from a CT. 

Virtual endoscopy has become accepted standard of care for certain 

clinical procedures such as colonoscopy (as early as the 1990s, see 

(Robb 1996), (Nain D. 2001)), but simulated views (Fig. 140 left) lack 

color information and cannot be used to guide actual biopsy.  Real views 
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(Fig. 140 right), by contrast, obviously lack targeting information from 

any planning that has been done. 

  

MGR methods can be used to create hybrid views from simulated and 

real views.  There are two proposed applications for MGR in this 

domain.  The first is to provide online guidance for the biopsy by 

integrating hidden features identified in 3D imaging directly into the 

endoscopic view.  The second is the complementary task of integrating 

video from the endoscopy back into the 3D rendering to enhance open 

field of view virtual endoscopy with actual endoscopic images.  This 

vignette could serve roles both for online guidance by indicating the 

probe position relative to the target region in 3D and for offline review.  

Taken together, these two vignettes would provide a powerful update 

to the standard guidance method of projecting the probe position onto 

the slice of a planning CT. 

These techniques are expected to be of particular interest in virtual 

nasopharyngoscopy, which is an open area with little active research 

due at least in part to the large number of both discernible and inferred 

(lymph levels) critical anatomic structures and their complex spatial 

interrelationships.  The mockup figures in the next two sections are 

accordingly taken from that domain. 

5.3.2 Online Biopsy Guidance 

Current methods for providing 3D visualizations suitable for augmenting 

endoscopic views are either limited to only a few poorly defined 

surfaces (i.e., the surface-only virtual colonoscopy model), or they take 

months to prepare and so are not applicable to the treatment of an 

individual patient (i.e., the VoxelMan model). 

Fig. 140 Left, virtual 
nasopharyngoscopy and right, 
corresponding image from real 
procedure. 
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The goal of this vignette is to augment the endoscopic view with 

information about the patient’s anatomy in the hidden “beyond-the-

wall” region relative to the camera. 

Given a partial segmentation of a planning image, MGR can synthesize 

overlays for the camera video feed to show both target objects 

discernible in the planning images and other clinically relevant objects 

and regions implied by prior anatomic knowledge. 

The mgrView rendering engine runs fast enough to integrate this extra 

data in real time into the endoscopic view and overlay an annotated 

textbook-like “guided tour” of the nearby hidden features as the 

endoscope is advanced or endoscopic surgical instruments are utilized.  

It is expected that using this hybrid annotated view will improve 

diagnostic and therapeutic outcomes for endoscopy and endoscopic 

surgery for patients with head and neck cancer, in particular. 

Method Outline 

1. Collect a planning image, segment important objects and assign 

textures similarly to the head and neck project shown throughout 

chapter three, Model Guided Appearance for Medical Images. 

Fig. 141 A mockup of an 
mgrView “guided tour” 2D 
endoscopic display showing a 
sample scope view embedded 
in a 3D planning image with 
target and nearby “beyond-the-
wall” structures overlaid. Fig. 
142 shows the complementary 
3D view. 

MGR Methods Required 

 Combining 2D and 3D images 

 Regional volume textures 

 Model coordinate implied regions 
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2. Register the endoscope position and orientation to the CT image 

and render an MGR virtual view from the point of view of a 

corresponding simulated camera. 

3. Combine the views according to various levels of virtualization, e.g., 

camera only, camera + labels, camera + hidden objects, or virtual 

only. 

5.3.3 Enhanced Open Field of View Virtual 
Endoscopy 

Endoscopic guidance is frequently restricted to projecting the probe 

position onto a 2D slice of the planning image.  This can confound the 

user’s ability to understand the spatial relationship between the probe 

and nearby clinically relevant objects. 

 

The goals of this vignette are to provide an unobstructed indicator for 

the relative positions of the probe and beyond the wall structures for 

online guidance and to put the endoscopic images back into a 3D 

context for review. 

Fig. 142  A mockup of an 
mgrView open field of view 
virtual endoscopy enhanced 
with photomapping and online 
guidance information. The 
probe position relative to a 
target region is shown in 3D 
based on online probe position 
measurements. Color images 
collected by the endoscope are 
dynamically overlaid onto the 
CT. 
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Addressing the first goal, mgrView can easily take online probe position 

data and render a camera proxy into an open field of view endoscopic 

vignette as discussed previously.  This can provide much needed 3D 

context for the spatial relationship between the probe and any target 

regions.  This mapping additionally gives MGR all the information that it 

needs to project the current probe image back onto the CT image 

according to the methods described in Chapter 3.  This photo-map 

enhanced image can then be used retrospectively for a color-correct 

virtual endoscopy, of either the fly-along-the-tube or the open field of 

view type that enables viewing from any point of view the physician 

desires.  In either case, the virtual view could be further augmented by 

the same “beyond the wall” structures discussed for the previous 

vignette. 

Method Outline 

1. Use the methods from section 4.2, Fast Importance Rendering, to 

focus a view on the endoscopic path (an “open field of view virtual 

endoscopy”) 

2. Use online camera position information to and add geometry 

proxies for the camera and nearby clinical target regions to the 

scene 

3. Use a virtual camera to project each frame into the planning CT 

coordinates and color the local CT data according to the endoscopic 

view using the methods described in section 3.3.3, Rendering From 

Planar Images 

4. Collect the entire color volume for use in offline for color-correct 

virtual endoscopy 

 

5.4 Evaluating MGR Methods 

The aforementioned vignettes have shown a number of areas where 

MGR methods can be used to provide additional comprehension to 

particular clinical applications.  Prototyping a full application would be a 

useful next step in evaluating MGR methods’ strengths and in 

identifying and ameliorating its weaknesses. 

 

MGR Methods Required 

 Photomapping 

 Color mapping from atlas or 

synthetic sources 

 Interactive volumetric animation 

 Importance rendering 

 Model coordinate implied regions 
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6 Conclusions 
 

Traditional medical volume visualization has focused on two main 

methods: slice-wise cut-planes that provide good local detail but 

sacrifice 3D understanding, and direct volume rendering (DVR) that 

provides good global comprehension but sacrifices the ability to 

interpret local values and comprehension of interior structures. 

The goal of Model Guided Rendering (MGR) is to maintain the global 

comprehension from volume rendering while adding back some of the 

lost local detail and obscured structures.  There are already a few 

methods that achieve such results, but they are either patient-specific 

but limited to a particular task, such as virtual colonoscopy, or 

generalizable but limited to a particular exhaustively micro-segmented 

atlas data set, such as VoxelMan. 

MGR is an attempt to bridge the gap between generality in the task and 

subject domains.  MGR can leverage a broad range of input data to 

produce flexible, high quality images.  But it requires only limited 

manual intervention, so it can be applied to a broad variety of patient-

specific clinical tasks.  In particular, MGR is intended to support 

“Netterly” and other styles of volume rendering for specific clinical 

target patients.  MGR is designed to be a display layer extension that 

sits on top of deformable model based segmentation technologies 

currently being actively developed by research entities like UNC and by 

commercial entities like Morphormics. 

The key observation is that traditional volume rendering is limited by 

working in voxel-coordinates of a single source image.  There is simply 

not enough information in a single CT image to address such complex 

questions as “What am I seeing here?”  This is exacerbated in 3D 

visualization where the most common tool available for image 

interpretation is a fragile transfer function. 
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MGR addresses this by relating information in multiple sources on a 

region-by-region basis with object-coordinates from a few automatically 

segmented regions.  Relying on increasingly powerful automatic image 

processing algorithms to define the image relationships frees the user 

from reliance on overly simple single-modality transfer functions to pick 

out and interpret 3D structures.  Given an interpretation of type and 

orientation of a few important structures, relevant local detail can be 

added back into the scene based on a patient data collection when 

appropriate. Patient data collections are becoming increasingly complex 

and can comprise images from multiple 2D and 3D modalities, serial 

imaging studies, registration fields, and various spatial distributions, 

such as dose calculations for external beam radiotherapy (EBRT) 

planning.  Additionally, atlas textures from color anatomic sections (the 

Visible Human) or synthetic sources may be available.  MGR provides a 

framework that allows all of these sundry sources to play a part in the 

rendering pipeline. 

 

6.1.1 Chapter Organization 

This chapter has two sections:  first, a review of the dissertation thesis 

and claims in the context of the materials presented; second, some 

meditations on the positive and negative potentials of MGR 

visualization, including dealing with uncertainty, non-clinical 

applications, and extending MGR. 
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6.2 Thesis & Claims Revisited 

This dissertation supports the following thesis. 

Image segmentation via medial shapes provides an effective basis for 

guiding context-appropriate shading in 3D medial image display by 

supporting regional color mapping from library or synthesized solid 

textures, cross-modal images, and atlas data sources. Precomputing a 

global “scene catalog” that collects multiple local medial-to-world and 

world-to-medial transforms enables these techniques in an interactive 

object-order volume rendering framework. This framework additionally 

extends other perception-enhancing effects such as importance 

rendering and volume deformation to dynamic scenes.  

There are two parts to the proof of this thesis. First, the methodology 

claims restated in Table 3 have been presented.  Second, several novel 

vignette projects enabled by these methods have been provided as 

results. 

6.2.1 Methodology 

Chapter three, Model Guided Appearance for Medical Images, presents 

a methodology for regional combination of data sources on the basis of 

coordinate systems provided by a sparse set of deformable shape 

models fit to important regions in the scene.  The techniques discussed 

in this chapter for assigning scene appearance are summarized in the 

first and second claims of novel methodologies from Table 3. 

Section 3.1, Creating a Scene Catalog presents a fast method for 

computing such regional world-to-model (x2u) and model-to-world 

(u2x) data mappings using m-reps (claim 2.1) in an object-order 

rendering setting by using programmable shaders to exploit graphics 

hardware acceleration (claim 2.2). The mappings created are 

themselves suitable for doing such transformations quickly on graphics 

hardware.  These methods are described with respect the m-rep shape 

model because it implies a volume-filling coordinate system with 

intuitive directions such as along, around, and through the object.  

However, MGR could be integrated with other segmentation tools if 

given a method to infer a volume filling coordinate system. 

Methodological Claims 

1. Method for using medial 

coordinates to guide context-

appropriate shading in medical 

images by regional color mapping 

from several different kinds of 

data sources 

1.1. Method for mapping and 

lighting library or patient-

specific synthetic solid 

textures 

1.2. Method for mapping from 2D 

data sources such as patient 

photographs 

1.3. Method for mapping from 3D 

data sources such as cross-

modal images or atlas data 

sources 

2. Method for generating such 

renderings at interactive rates on 

relatively modest hardware by 

precomputing a “scene catalog” 

data structure and manipulating 

it in an object-order rendering 

framework 

2.1. Algorithms for computing 

world-to-medial (“x2u”) and 

medial-to-world (“u2x”) maps 

from a set of segmentations by 

medial shapes and a data 

structure for collecting these 

mappings together 

2.2. Algorithms for using the scene 

catalog in various ways 

through programmable shader 

hardware to do the mappings 

described in (1) 

3. Refactored versions of important 

state-of-the-art volume 

rendering methods such as 

importance rendering and 

volume deformation that allow 

these techniques to be applied in 

dynamic scenes 

3.1. Object-order implementations 

for global and local volume 

deformation and for 

importance rendering based 

on ranked surfaces 

Table 3  Claims revisited. 
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Section 3.2, Simple Texturing for Volumes, describes how to use regional 

mappings to apply solid textures in world space, which requires only an 

object label, or in model space, which requires the complete object 

coordinate system (claim 1.1).  Section 3.3, 2D Color Transfer from 

Patient Photos, details a variant of a world-space mapping that can be 

used to push patient photographs into the 3D scene (claim 1.2).  

Section 3.4, 3D Color Transfer, details cross-image mapping, a variant of 

model-space mapping that uses a model to world and an inverse world 

to model mapping from another data set to transfer 3D image data 

from a different image or atlas into the scene using object-relative 

coordinates (claim 1.3). 

The fourth chapter, Model Guided Composition for Medical Images, 

adds fast methods for scene composition and focus.  Global and local 

volume morphing (the first part of claim 3.1) is discussed in section 4.1, 

Volumetric Animation, and importance rendering using fast shadows 

and importance stenciling (the second part of claim 3.1) is discussed in 

section 4.2, Fast Importance Rendering. 

6.2.2 Results 

Several clinical application “vignettes” are presented throughout the 

text as demonstrations both of MGR's methods and the kinds of novel 

visualizations enabled by MGR. 

MGR’s most general intended application is supporting high quality 3D 

volume rendering for particular target patients.  Motivating examples 

throughout the methodology chapters are taken from a prototype 

“atlas quality head and neck” project that suggests how various types of 

scene-catalog (claim 1) driven solid texturing and color mapping (claim 

2) could be used to increase understanding of multiple region types and 

orientations in volume rendering. 

The fifth chapter, Bringing MGR to the Clinic, both overviews the types 

of medical imaging applications in which MGR could potentially play a 

role, and provides several specific examples that demonstrate how MGR 

methods are uniquely suited to address some important but currently 

difficult clinical tasks. 

Section 5.2 presents application vignettes taken from radiotherapy 

planning.  The first part shows how MGR’s methods for regional color 

mapping from alternate modalities (claim 1.3) could be used to provide 
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context and suppress artifacts during 3D image segmentation. The 

second part shows how dynamic importance rendering, volumetric 

animation (claim 3.1), and model-coordinate derived regions could aid 

in understanding the effects of shape change or setup error on a 3D 

dose distribution. The third part shows how MGR’s photo mapping 

method (claim 1.2) provides a means for evaluating the placement of 

patient setup tattoos relative to planning expectations. 

The example application vignettes from endoscopic guidance are 

presented in section 5.3.  The complementary view vignettes presented 

use MGR photo mapping, solid texturing, (claims 1.1 and 1.2) and 

importance rendering (claim 3.1) to provide a concise 3D navigation 

system for guiding a probe to hidden target anatomy. 

In summary, the potential uses of MGR’s special capabilities are 

demonstrated in the following ways: 

 Assigning cross-modal or atlas solid textures according to model 

coordinates (claims 1.1, 1.3, and 2) is demonstrated in the head and 

neck atlas project shown throughout chapter 3, the cross-modal 

segmentation vignette in section 5.2.3, and the 3D endoscopy 

vignette in section 5.3.3. 

 Assigning textures from photographs or video (claim 1.2) is 

demonstrated in the head and neck atlas project, the patient setup 

vignette in section 5.2.4, and the augmented endoscopy view in 

section 5.3.2. 

 Applications for dynamic importance clipping and volume animation 

(claim 3) are demonstrated in the planning with error view in 

section 5.2.3, and the 3D endoscopy view in section 5.3.3. 

The "radiotherapy planning under error" project is described in detail in 

an appendix that serves as an example of how to go about designing 

and building a new project using the mgrView library. This serves to 

show that the methods are not only potentially useful but also 

potentially usable as implemented in mgrView. 

mgrView uses fast object-order algorithms for the core MGR methods 

described here and provides as well a framework for unifying many 

other state of the art methods for scene composition, such as global 

deformations and geometry based opacity modulation. Frame rates 

achieved by mgrView for the methods and scenes discussed in this 

dissertation are summarized in Table 4.  mgrView includes a minimal 

 
Fig. 143 The mgrView library 
achieves frame rates between 
10 and 20 fps on a target 
laptop for most of the example 
scenes shown throughout this 
document.  However, running 
mgrView did eventually 
overheat and crack the 
graphics accelerator in the 
disassembled laptop above. 
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windowing environment and user interface, but it is also intended to be 

embedded in other clinical tools, such as the Plan-UNC (PLUNC) 

radiotherapy planning system. 

 

 NVIDIA GeForce 6200 
(Desktop) 

NVIDIA Quadro NVS 160M 
(Laptop) 

mgrView Rendering Task 100 planes 200 planes 100 planes 200 planes 

Standard DVR with intensity windowing 12 8 20+ 20 
 
MGR Methods 

    

1. Regional Volume Texture 7 4 20+ 10 
2. Photo Mapping 7 4 15 11 
3. 3D Color Transfer 7 4 20+ 10 
4. Global Deformation 4 2 15 10 
5. Local Deformation 7 4 20+ 12 
6. Dynamic Importance Rendering 6 3 20+ 15 
 
Complex Scenes 

    

Radiotherapy Planning (methods 3,5,6) 4 2 15 9 
Virtual Endoscopy (methods 1,2,3,6) 5 3 20+ 15 

Table 4 Summary of the best frame rates in frames per second (fps) achieved using the mgrView software 
library for various rendering tasks and scenes described in this dissertation.  Methods 1 and 3 use the same 
code mechanism, so they have identical results. 
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6.3 Potentials of Model Guided Rendering 

While the vignettes described here are encouraging, clearly there is a 

need to build a complete system to evaluate the clinical potentials of 

MGR and identify capabilities that are still required. 

That said, there are several intriguing potential uses for MGR that may 

or may not have clinical relevance but are themselves worth further 

consideration.  This section reviews several directions that have been 

considered for additional focus. 

6.3.1 Dealing with Uncertainty 

Assigning synthetic textures or atlas colors to a particular target patient 

begs the point that this potentially adds spurious information to the 

scene.  Worse, the segmentation or registration being used to guide the 

rendering may itself have some level of uncertainty, so visual estimates 

in some areas may be both incorrect and in the wrong place.  Worse 

yet, mgrView itself makes a variety of simplifying assumptions about the 

data that are problematic, such as linearizing multiple time step warp 

fields or using standard m-rep surfacing algorithms with radius 0 medial 

spokes for unstable approximations of object coordinates on the medial 

sheet.  Thus, in the worst case, visual estimates in some areas may 

actually be based on completely incorrect assumptions.  If such images 

are misused for diagnosis, the results could be dangerously misleading. 

To this I would respond that at least the non-implementation-specific 

sources of uncertainty will be present in any volume visualization 

because assumptions about the character of the data will always be 

made. CT reconstruction is subject to major artifacts when algorithmic 

assumptions are broken; yet no one misdiagnoses a patient as having a 

mouth full of high density material configured in starbusts centered 

around her fillings.  Classical volume rendering is subject to fragility of 

parameters that easily allows noise to be emphasized and signal 

suppressed. MGR bases its assumptions on a prerequisite robust 

segmentation, which actually gives the user significantly more explicit 

control over which assumptions will be made with regard to a particular 

scene. An expert user can tune segmentation or registration methods 

and set thresholds when designing the project for how credible 

interpretation or atlas sources must be to be included in the view. 
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Indeed, this very uncertainty could provide an additional channel for 

MGR to use in guiding how particular anatomic regions should be 

displayed.  An MGR style has been proposed that would use a non-

photorealistic (NPR) sketch texture such as in Fig. 144 where 

information was uncertain, a more “realistic” texture where structures 

were more confidently understood, and a blend of the two methods to 

show varying levels of certainty in the interpretation of the underlying 

data.  A measurement of local uncertainty could be provided by a tool 

such as (Levy, et al. 2007) (Fig. 145), which uses deformable shape 

object statistics to automatically flag of suspicious local properties such 

as abnormal shape or intensity distributions. 

However, to some degree, it is still somewhat too early to discuss 

explicit measures on uncertainty given the youth of the system and the 

challenges involved in simply gauging and eliminating the 

implementation-specific sources of error in the presence of presumed 

perfect data. 

One of my favorite observations from visualization literature is from 

(Simpson, et al. 2006) in regard to visualizing uncertainty of image-to-

world registrations.  After establishing a complex visualization designed 

to show uncertainty in indicating a target region for a simulated biopsy, 

the debriefed physician subject commented that all he needed to know 

was that the registration was uncertain and that then he would just 

“use a bigger drill bit” to take the sample.  He didn’t need to know 

where or by how much.  Edward Chaney, a research and former clinical 

physicist in radiation oncology, has made similar comments about the 

current disconnect between the increasing accuracy of image 

segmentation and the limited precision of most external beam 

radiotherapy delivery devices.  Given uncertainty in an image 

segmentation, the solution in external beam radiotherapy is usually to 

simply “use a bigger margin”.  That is, detailed understanding of 

uncertainty does not, per se, lead to more careful targeting; rather it 

leads to relaxing the precision of the targeting method. 

  

 
Fig. 145 Display of surface non-
credibility from (Levy, et al. 
2007).  The dark region on the 
larger mesh is the area 
indicated on the slice shown on 
the right that has likely been 
improperly segmented. 

 
Fig. 144 Surface sketch 
rendering for anatomic shapes 
from (Interrante, Fuchs and 
Pizer 1997). 
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6.3.2 Non-Clinical Applications of MGR: 
Understanding Principal Warps 

There are a variety of volume visualization tasks where multiple data 

sources or relationships among multiple data sources need 

visualizations.  An example of a task that requires visualization of 

multidimensional volumetric animation is evaluation of an image space 

defined according to “principal warps”. mgrView’s method for 

volumetric animation according to deformation fields was originally 

developed to aid in evaluating statistical analysis of fluid registration 

from an atlas to a number of target images.  The mgrView interface 

provided a user interface to control how much of which displacement 

field was applied to which image.  By applying a weighted combination 

of warps to a source image, a new “image” could be produced. 

The idea of sampling from statistics of dense registration fields to 

produce new images was originally developed in (Chen, et al. 2002) as a 

means for synthesizing a database of computational image phantoms 

for the region near the kidney. Segmented image phantoms are 

necessary for validating segmentation or planning tools. Typically they 

are produced by creating a parametric representation of a set of 

structures and then sampling from a distribution on those parameters 

to generate novel data sets (Fig. 146).  In the case of statistics of dense 

registration fields, the parametric representation is how much of each 

of the basis warps found by principle component analysis (PCA) are 

applied to the source image to deform it and its corresponding 

segmentation into a new target image. The main problem with this 

method is that the implied image space is mostly full of anatomically 

unlikely or otherwise illegal images and only sparsely populated with 

useful instances. For example, PCA is not guaranteed to preserve 

diffeomorphism in its decomposition, so arbitrary combinations of 

principal warps can easily tear or fold the space. Thus, the parameters 

cannot be randomly sampled to produce a mapping from the atlas to a 

“new” image without risking grossly illegal results, as seen in Fig. 147. 

However, using the mgrView deformable animation tool, warp 

combinations could be sampled and applied in an interactive fashion to 

animate over a continuous range of potential “new” images.  Simple 

visual inspection could serve to eliminate the large number of obviously 

illegal candidates and focus closer inspection on likely candidates.  

Parameters of credible images could be saved with the push of a button.  

 
Fig. 146 Matlab’s single-slice 
“brain” phantom function 
called with randomly sampled 
parameters. 

 

 
Fig. 147 Top, a slice from a 
source image and bottom, the 
same slice under an obviously 
unlikely sampled registration. 
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6.3.3 Extending MGR 

I am confident that the increasing power of automatic medical image 

segmentation will lead to important improvements to 3D clinical 

visualization over the next ten years.  MGR is one possible approach for 

integrating data from segmentation into rendering, but it requires 

considerable further development to reach the kind of robustness 

needed for general clinical applications. 

In particular, continued development of the MGR framework is strongly 

dependent on two supporting areas – one is anatomic texturing, the 

other is using physical models to produce believable general 

deformations. 

 Associated texture synthesis algorithms are already under 

development by Ilknur Kabul.  However, there is a substantial 

amount of additional work to do in the area of creating a reference 

library of solid textures from anatomic photography and various 

found sources.  Integrating information from truly multivariate data 

sources, such as diffusion tensor imaging, could also fall into this 

project of extending MGR’s available appearance models. 

 Using physical models for organ-by-organ deformation would be a 

valuable tool for designing intuitive scene compositions.  As Fig. 148 

shows, cutting and moving objects out of the way rather than 

simply ghosting them out can be a very effective means of showing 

the 3D positions of hidden internal anatomy without losing the 

global context.  As previously mentioned, physical modeling is 

another area where having m-rep models fit to important structures 

in the scene can provide an uncomplicated framework for 

approaching this otherwise complex problem. 

These supporting technologies are somewhat tangential to MGR’s core 

rendering capabilities; they are methods to compute additional data 

sources to drive a scene.  In terms of algorithmic extensions to MGR’s 

core capabilities, there are two projects that I personally think are 

intriguing: Ray Traced MGR and Augmented Reality MGR.  

 
Fig. 148 A medical illustration 
that simulates a physical 
procedure with retractors 
provides an intuitive 
understanding of the 3D 
positions of the internal 
anatomic structures. Contours 
of the hidden bones are also 
sketched on the surface.  
(www.conservativehipsolutions.
com) 
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6.3.4 Ray Traced MGR 

As machines get faster, MGR’s goal of interactive rate rendering for 

complex scenes becomes more possible to achieve in a ray casting or 

image-order setting.  Integrating MGR methods with a high quality 

offline ray tracing renderer such as POV-Ray (www.povray.org) would 

provide dramatically better lighting models than can be achieved with 

object-order DVR.  Furthermore, many implementation details of 

mgrView that are necessarily complex due to the fast object-order 

framework would be quite straightforward in a ray casting framework. 

Such an interface need not be particularly closely tied to the rendering 

engine.  For example, Fig. 13 from the introduction demonstrating the 

shape change project was actually a prototype rendering done in 

VolView by preprocessing the image and using VolView’s native transfer 

function controls.  The importance mask was precomputed for a single 

point of view, and the marked intervening voxels in the target image 

were simply set to 0 intensity so that they could be suppressed.  The 

halos were achieved by assigning otherwise unused value ranges to the 

voxels intersected by the segmentation surfaces so that they could be 

controlled independently of the rest of the transfer function. 

An alternative to creating an MGR interface for a software ray tracer is 

to map MGR methods for scene appearance and composition onto a 

hardware-accelerated ray tracing solution. Software ray tracing is 

typically done serially, and each ray is independently processed.  The 

three possible directions for hardware accelerated ray tracing are all 

methods for parallelizing a simplified ray following algorithm. 

1. Map MGR ray tracing implementations onto graphics hardware 

using shaders or a language like nVidia’s CUDA.  Several sources 

including (Kruger and Westermann 2003) and (Quammen 2006) 

describe straightforward mappings of volume ray casting (no 

secondary rays) onto graphics hardware using a fragment shader to 

follow the entire ray that will contribute to each pixel value.  

(Purcell, et al. 2005) proposes a graphics hardware algorithm for 

triangulated surface ray tracing, that is, casting secondary rays for 

shadows, reflections, and antialiasing.  Since MGR makes extensive 

use of both volumetric and surface data, it would require a hybrid 

approach. 

 
Fig. 149 (Bourke 2003) 
describes how to use POV-Ray 
to render volume data with a 
variant of the Gaussian “splat” 
method discussed in Chapter 2.  
Note the soft shadows of the 
semi-transparent volume cast 
on the ground. 
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2. Map MGR ray tracing implementations onto parallelizable general 

purpose processors, such as IBM’s Cell architecture.  No volume 

rendering software for this architecture currently exists, but I have 

proposed an algorithm where each processor is responsible for a 

small set of rays and image data is streamed between them in a ring 

fashion.  Given a suitable preordering, it is likely that each voxel will 

only be loaded onto each processor one time.  This could be 

extremely powerful as the render time is expected to be bound to 

the absolute minimum constraint, that is, the amount of time 

required to access each voxel from memory exactly once.  The 

method would scale in both speed and target resolution with the 

number of dedicated processors. 

MGR methods that can reference additional data sources as if they 

were extra channels of the base image (e.g., deformation fields or 

scene maps) could be easily integrated into this setting.  However, 

most of MGR’s methods rely on spatially incoherent texture lookups 

(e.g., solid textures, photo mapping, or color mapping), and it is not 

clear how such data could be efficiently interleaved into the voxel-

stream. 

3. Map MGR ray tracing implementations onto a custom circuit design 

for a field programmable gate array (FPGA) or an application 

specific integrated circuit (ASIC).  Custom ray tracing circuits for 

triangles have been proposed, most notably by (Woop 2005) as the 

“ray processing unit” or RPU. The challenges presented in extending 

this idea to realize a volume ray tracing circuit and moreover to 

support MGR’s various needs are considerable and would likely be 

laborious. 

However, the result could be of considerable importance in the 

related clinical field of dose calculation.  The volume ray casting 

algorithm per se need not accumulate a 2D buffer; it could easily 

accumulate a 3D buffer according to a distribution kernel – which is 

exactly the framework required for high precision dose calculation 

according to superposition/convolution.  Using the same hardware 

engine to compute both visualizations and dose calculations for 

radiotherapy seems quite poetic.  It seems that such dose 

calculations should be difficult to compute on a gpu because of the 

fast scattered reads and writes to the 3D accumulations buffer, but 

(Jacques, et al. 2008) has recently implemented exactly this.  
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6.3.5 Augmented Reality MGR 

One of the major goals of MGR is to provide a global 3D understanding 

without losing too much of the fine detail available in 2D slice-by-slice 

renderings.  Virtual or augmented reality (VR or AR, first described in 

practice by (Sutherland 1968)) provides a powerful tool for enhancing 

3D comprehension by actually preserving the 3-dimensionality of the 

displayed objects.  Adding a simple stereo display would be an 

intentionally straightforward extension of mgrView’s windowing 

system, and a fully tracked AR display has also been considered.  

However, the question naturally arises of how useful stereo display, VR, 

or AR actually is in clinical tasks. 

Clinical stereo display would be an easily achievable extension for 

mgrView.  But while it seems obvious that providing even a limited 3D 

display such as a stereo view would ameliorate any 3D planning task, 

there are few promising examples of stereo providing significant utility 

in a clinical setting.  The earliest reference to stereo views for volume 

rendering was (State, Balu and Fuchs 1994), which proposed a kind of 

limited single axis (“bunker view”) stereo volume visualization that 

could be pre-rendered to give the illusion of interactive display.  

Subsequently (Zuiderveld, van Ooijen, et al. 1996) described using an 

SGI system and an object-order volume renderer to produce fully 

interactive stereo views, but comments about stereo capability were 

mostly in regard to the shutter glasses hurting the subjects’ eyes and to 

subject motion sickness.25  A more recent example of stereo enabled 

planning is (Maupu, et al. 2005), which presents a method for planning 

liver shunting (“TIPS”) using a stereo display of anatomic surfaces; 

however, this paper is also conspicuously silent on whether the 

improved depth understanding adds anything to the physicians ability to 

work in 3D.  Elsevier’s recent Netter’s Interactive 3D Anatomy (Fig. 150) 

uses stereo views of anatomy for a medical education application.  

However, it appears to be limited to surface-only rendering of static 

anatomy. 

Fully head-tracked 3D display has seen very few proposed clinical 

applications, likely because of the extensive hardware requirements.  

                                                           
25

 An interesting observation from this paper is that the clinical staff at a major 
university hospital circa 1996 found the volume visualization interesting and 
useful but that they simply had not been aware that such technology existed. 

 
Fig. 150 Marketing image from 
Elsevier’s Netter’s Interactive 
3D Anatomy making the likely 
spurious implication that 
multiple people could sit 
around a table and interact 
with a 3D hologram. 
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UNC has produced a few notable exceptions.  A very early paper by 

(Chung 1992) establishes an elaborate virtual reality experiment to test 

the effect of virtual reality for the same kinds of radiotherapy targeting 

tasks I discussed in section 5.2, MGR Applications in Adaptive 

Radiotherapy – and concludes that immersive VR is little more effective 

than using a joystick.26  On the other hand, it is possible that Chung’s 

conclusions would have been different had MGR methods been 

available.  For instance, one might imagine that the path planning task 

might have been easier using something like MGR’s importance 

rendering algorithm to focus on the target through the occluders. 

Other notable exceptions are methods for the online augmented-

reality-guided biopsy (State, et al. 1996) and AR guided radiofrequency 

ablation (Fuchs, State, et al. 2008).  This work can be seen as related to 

the enhanced endoscopic view suggested in section 5.3, Enhanced 

Endoscopy from Multiple Modalities; however, State does not annotate 

views or mix modalities beyond showing the ultrasound data projected 

back to its original position in the patient.  I am intrigued by the idea of 

using MGR methods in a framework like State’s to provide a head 

tracked AR view of a patient plan projected onto the patient herself for 

evaluating patient setup. 

Interacting with the Scene 

The other important aspect of virtual reality is the opportunity to 

present the user with more sophisticated means of interaction than a 

simple mouse.  It is quite difficult to interact with the many degrees of 

freedom available in a volume rendering.  Some earlier literature has 

experimented with the idea of working with more intuitive controls, but 

the idea does not seem to have gained significant traction. 

(Pierce, Stearns and Pausch 1999) discusses the use of “voodoo dolls”27 

in virtual environments and (Ebert, et al. 1996) describes a two-handed 

stereotactic control for ‘minimally immersive’ interaction with 

volumetric data such as CT images.  (Preim, et al. 2001) and (Goble, et 

al. 1995) describe two-handed interfaces for rotating and specifying 

                                                           
26

 As an aside, the most interesting proposal in the paper is the ‘orbital’ head 
tracked display mode, which is shown to be more useful than ‘walk around’ 
interactions. 

27
 This is a great term that can be used for any physical proxy for interacting 

with a virtual object, e.g. “Using Voodoo Dolls for Patient Setup”. 

 
Fig. 151 The doll interface from 
(Hinckley, et al. 1997). 
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resections when planning oncological surgery. One of my favorite ideas 

for a controller is from (Hinckley, et al. 1997), which describes using a 

doll’s head prop and a piece of plexiglass to control a cut plane 

orientation and position relative to a head CT. The method is described 

as being incredibly intuitive and universally easy to adopt (Fig. 151). 

It seems to be well worth thinking about supporting such a two-handed 

controller in mgrView.  Fig. 152 top shows an augmented reality image 

from an experiment using an ARToolKit marker as an optical six degree 

of freedom (“6-DOF”) mouse to control a display. ARToolKit uses 

computer vision techniques to identify a square marker in a camera 

image and estimate the corresponding relative pose of the camera. That 

camera pose is converted into an OpenGL-type 4 x 4 view matrix that 

can be used to project virtual objects into the view.  The project shown 

was a prototype for a patient-surface-to-CT alignment task that could be 

integrated with mgrView. The bottom image shows the author’s 

daughter controlling an mgrView display and specifying a clip plane 

using a two-handed version of the same mechanism. 

 

 

Fig. 152 Top, the author using 
ARToolKit (HIT Lab 2007) to 
intuitively manipulate a 3D 
object.  Bottom, the author’s 
daughter at 4 months using a 
two-handed version of the 
same mechanism to 
manipulate and clip the 
mgrView scene previously 
shown in Fig. 17. 
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APPENDIX: IMPLEMENTING THE PLANNING UNDER ERROR VIEW USING 

MGRVIEW 

This appendix describes how to combine and extend library implementations of Model Guided 

Rendering (MGR) methods to address the tasks described in section 5.2.3, Interactive Planning Under 

Error .  It is intended in part as a starting place for a reader who is attempting to recreate the example 

views from this dissertation or is interested in evaluating or extending the mgrView library.  It is also in 

part a demo of mgrView’s flexibility and ease of use for rapid prototyping28.  This section assumes 

more familiarity with C++, OpenGL, and related UNC research software than the rest of the text does.  

Non-engineering oriented readers are welcome to skip over this material. 

mgrView is a four-thousand line C++/OpenGL2.0 library implementing MGR’s core functionality.  It 

provides an interactive rate volume rendering framework for MGR’s core methods and has only 

modest hardware requirements.  The library includes some simple file I/O and an extensible default 

windowing and UI based on GLUT/GLUI (Radamacher, Stewart and Baxter 2006), but it is also intended 

to be embedded in other software environments, such as UNC’s in-house clinical radiotherapy 

planning system, Plan-UNC (PLUNC).  mgrView is available through the Computational Oncology lab at 

UNC’s Department of Radiotherapy.  See http://titan.radonc.unc.edu/~derek/mgrView for details. 

mgrView provides one possible object-order implementation of MGR’s general methods.  However, 

core MGR functions – creating and referencing scene maps, 2D and 3D color mapping, volumetric 

animation, and importance rendering – have been designed to require small, relatively independent 

calculations at each operation, so they could be easily transferred to alternate parallelized frameworks 

(see section 6.3.4, Ray Traced MGR, for additional thoughts on this). 

Overview 

The general goal of the view is to create an interactive 3D volume animation of the effects of various 

sources of spatial error on dose distribution in both segmented and non-segmented regions for 

radiotherapy treatment planning.  The mgrView application described combines data from several 

sources that are routinely generated during planning: a base planning CT image, the dose distribution, 

and a deformable registration that suggests possible patient motion, and an alternate imaging 

modality view of the region near the target.  The application allows the user to smoothly control the 

effects of rigid and deformable registration error applied to the base image while holding the dose 

fixed.  The volume can be clipped or importance rendered to focus on the target region. 

                                                           
28

 These goals were identified after talking to a neuroradiologist at Duke University Hospital who was excited about 
a newly introduced visualization system that let her work on non-axis aligned cut planes.  When I expressed 
surprise that this had only recently arrived at the clinic, she suggested that the radiologists were at the mercy of 
complex software and attendant specialized hardware.  Hence, mgrView has been developed with the goal of 
enabling high quality rendering for complex scenes without requiring either intimate understanding of the 
algorithms or access to the powerful hardware typically required for interactive-rate ray casting volume rendering. 
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Fig. 153 shows mgrView’s basic class organization and calls out the tasks required to implement this 

project.  In short, a variety of data must be preprocessed for import (step 2), and then a GLSL shader 

with the desired functionality crafted by combining pre-built components (step 4). 

 
Fig. 153 mgrView’s class organization with tasks for this project marked. 

mgrView is organized in three basic sections: renderable objects such as tiles or volume data, images 

(sampled n-dimensional m-variate data fields), and OpenGL related functionality, such as shaders and 

windows. Each mgrView object can be attached to the other components to create a scene graph of 

images, shapes, and appearance descriptions descending from the world root object.  mgrView’s base 

functionality can be extended in any of these three component areas.  For example, a patch surface 

type might extend the basic surface type as long as it implements the required glRender api.  In this 

project the OpenGL-related functionality is extended by adding a shader that combines animation, 

dose overlay, and color mapping.  
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Step 1:  Set Up a New Project 

An mgrView project is usually a single file that initializes a few global path variables, loads the scene 

data, sets up scene relationships, and passes control to the mgrView rendering engine at the end of 

the main() function.  Program 20 shows a basic mgrView program that loads the planning image only 

from this project and attaches it as the source channel for a volume renderable object.  The directive 

to include “mgrv.h” gives the program access to the mgrView library functions.  “data_dir” is a global 

variable that points to a directory with atlas as well as project textures.  “project_dir” is the 

subdirectory where mgrView will expect to find any project-specific files, such as 6600.plan.pim in this 

example.  All the sample data for this program can be found in mgrView’s /data/6600.pelvis directory. 

// New mgrView Project 
#include “mgrv.h” 
data_dir = "../../data"; project_dir = "6600.pelvis"; 
int main( argv, argc ) { 
 // Load data 
 mgrImage I_0 = mgrvLoadImage( “6600.plan.pim”, vec3(1.0), 512, 512, 80 ); 
 mgrVolume v =mgrVolume( &I_0 );  // Setup volume based on I_0 
 // Start renderer 
 mgrvMainLoop(); 
} 

Program 20  A single-image default scene. 

The call to mgrvMainLoop() passes control to the rendering engine.  At each frame the rendering 

engine starts at the scene root and passes over each object, updating OpenGL’s state and switching 

shaders to reflect interrelationships between the images, shapes, and appearances.  The object-order 

volume rendering core works as described in Chapter 2.  A marching order is identified by comparing 

the dot product of the view direction with the volume axis directions, and then back-to-front ordered 

planes are sent down the graphics pipeline.  mgrView’s standard volume fragment program processes 

each image sample by simply looking up the CT intensity and windowing it.  Because the volume is 

rendered in back-to-front order, every fragment is promoted to a pixel and composited into the frame 

buffer. 

Step 2:  Import Data 

Step 2.1:  Load Images, Dose, and Deformation Fields 

mgrView’s image class includes a simple binary file loader, mgrvLoadImage(), that can read any image 

format that stores grid data with channel (rgb) changing fastest, then x, then y, then z, i.e., as ordered 

slices with each entry containing n variables.  The image class does some simple processing such as 

pre-computing the image gradient or calculating a spatial transform into the unit cube. Any rigid 

spatial transforms for images are done in mgrView using the OpenGL texture matrix stack.  The 

essential issue for converting gridded data into the unit cube is in understanding that the data extents 

– the voxel size times voxel count in each dimension, will be normalized to the range (0,1) in all three 
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dimensions. Because the image typically has a different height than its width or breadth, the z-

direction coordinates must be stretched by the height-to-width ratio to maintain that relationship.  

Finally, mgrView loads the image into texture RAM and discards the original data unless directed to 

preserve it for further processing.  To render an image directly, the image must be assigned as the 

“source0” channel of a volume-renderable object. 

This project requires that images be bound to several additional predefined channels as well. 

 A planning image, I0, is loaded into the "source0" channel. 

 A dose grid file, D, that contains the expected dose at each sample for a particular plan is loaded 

into the "dose" channel. 

 A dense registration field, H, is loaded into the "registration" channel and used to simulate 

internal shape change. 

 An alternate modality source image for color mapping can be included in the "source1" channel.  

In this example, a corresponding MRI is used.  In order to distinguish the alternate modality image 

from any treatment CT images, this additional source image will be called IS. 

Refer back to Fig. 131 to see how each of these sources fit into the radiotherapy workflow.  Program 21 

shows mgrView code to load each data source. 

 // Load Image Data 
 mgrImage I_0 = mgrvLoadImage( “6600.plan.pim”, vec3(0.1), 512,512,80, 1,  
                 MGR_USHORT_DATA, MGR_SKIP_HEADER_FLAG ); 
 mgrImage D = mgrvLoadImage( “6600.dose.raw”, vec3(0.1), 128,128,40, 1, MGR_FLOAT_DATA ); 
     D.SetOrigin( vec3( 0.3, 0.3, 0.3 ); 
 mgrImage H = mgrvLoadImage( “6600.plan2day1.raw”, vec3(0.1), 128,128,40, 3,  
                 MGR_FLOAT_DATA, MGR_SUBTRACT_IDENTITY_FLAG); 
     H.SetOrigin( vec3( 0.3, 0.3, 0.3 ); 
 mgrImage I_s = mgrvLoadImage( “6600.mri.pim”, vec3(0.1), 512, 512, 80, 1  
                 MGR_USHORT_DATA, MGR_SKIP_HEADER_FLAG ); 
 // Setup Scene 
 mgrVolume v =mgrVolume( &I_0 );  // Setup volume based on I_0 
 v.AttachImage( MGR_DOSE_IM, &D);  // Assign data channels 
 v.AttachImage( MGR_REG0_IM, &H); 
 v.AttachImage( MGR_SOURCE1_IM, &I_s ); 

Program 21  Using mgrView to load relevant images and segmentations for this scene. 

In this project, the CT and MRI images are provided by PLUNC in .pim or “plan-image” format.  Plan-

images are stored as a header followed by an array of 16 bit unsigned integers.  mgrView does not read 

image headers, so the image properties – in particular the voxel size, voxel count in each dimension, the 

number of variables, and the data format (e.g., short, float) must be determined externally and passed 

as arguments to the loader.  By default the loader assumes univariate unsigned short data.  However, 

dose and displacement fields in particular are usually stored as floats. 
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The file reader also takes optional special action flags, such as skipping over header information 

before beginning to read29.  Other common formats that use a header + gridded data arrangement, 

such as Pablo’s raw3, Analyze’s nii/hdr+raw and UNC’s meta-image mha/mhd+raw formats (Chandra 

and Ibanez 2001) can be read similarly.  Header information can be read from PLUNC images using the 

“plan-image-info” program, from Analyze images using Matlab’s Analyze toolbox, and from raw3 by 

displaying the first few bytes of the file as text. 

Many medical images are stored in DICOM format (“Digital Imaging and Communications in 

Medicine”, see the website dicom.nema.org), which can be quite complex to parse.  DICOM images 

can be read by our clinical modeling software, Pablo, and then saved in its own raw3 format which can 

be read as described above.  Slice-wise volumes, such as the Visible Human color atlas slices can be 

converted to a single 3D color image using the Matlab “imgs2raw.m” script included in mgrView’s 

/scripts directory.  Converting a 3D image into a texture unit on the gpu requires that the samples be 

taken with a uniform slice thickness. 

The displacement field for this project has been generated using UNC’s in-house registration software, 

ImMap (described in (Foskey, et al. 2005)), a planning and treatment image are registered to each 

other with a rigid transform, R, which can be accounted for by adjusting the patient setup, and with a 

dense vector field, H, which captures residual shape change, such that I1 = H(R(I0)).  The particular 

registration method is unimportant; mgrView’s volume deformation animation would work with any 

sampled method for generating space-filling non-rigid mappings (e.g. for adaptive radiotherapy, (Lu W 

2004),(Wang H 2004), (Mohan R 2005), (Freedman D 2005), or (Pekar, McNutt and Kaus 2004)). 

In this example, the source and target images have been resampled into the same space, so R can be 

ignored.  The displacement field itself is provided as a so-called “h-field”, which contains target 

destinations in voxel- rather than world-coordinates.  This use of the word “displacement” differs from 

the interpretation used by some registration packages. The special action flag 

“MGR_SUBTRACT_IDENTITY_FLAG” instructs mgrView’s image class to convert h-field data to a vector 

field in unit unit cube coordinates before loading it as a texture unit.  H-field data from ImMap is 

stored as mhd+raw files and can be read as 3-variate float data as described above – but it requires an 

additional origin position, since the displacement field is almost always computed only for a restricted 

region of interest.  The origin must be read out of the header file and manually applied to the target 

image when it is loaded with the function mgrImage::SetOrigin(). 

As an aside, mgrView currently does not support data with more than four variables per entry, such as 

diffusion tensor images (DTI) that store the elements of a 3x3 symmetric matrix at every voxel.  One 

possible method for addressing this in the future may be by splitting such data across multiple texture 

units. 

                                                           
29

 By counting backwards from the end the appropriate number of bytes and reading from there.  This trick 
works with many different data formats. 



 

157 

Step 2.2:  Importing Shapes into mgrView 

Planning images are normally segmented as part of planning, either by hand or by deformable shape 

models.  If a planning image is segmented by hand, medial models are fit to the resulting binary label 

images of each object.  In either case, this results in a set of m-reps, M0i, one for each anatomic 

region.  For this project, these shapes are read as shown in Program 22.  If a shape is not explicitly 

identified as a child of another object, it is attached directly to the world root object in the scene.  

Shapes can also be assigned to other objects' data channels – in this example, the prostate shape is 

used as the target channel of the volume object. 

 // Load Shape Data 
 mgrShape* Mpros_0 = mgrvLoadShape( “6600.prostate.byu” ); 
 mgrShape* Mrect_0 = mgrvLoadShape( “6600.rectum.byu” ); 
 mgrShape* Mblad_0 = mgrvLoadShape( “6600.bladder.byu” ); 
 v.AttachShape( MGR_LABEL_SURF, &Mpros_0 ) 

Program 22  Using mgrView to load relevant segmentations for this scene. 

mgrView has no native m-rep type or m-rep reader but instead represents medial shapes as surfaces 

with extended properties.  mgrView’s surface class is a standard vertex and face list with some 

additional type information.  Each vertex object must have at least a world position and a normal 

direction to be valid.  If explicit surface normals are not provided, they will be computed automatically 

when the object is created by averaging the connected face normals.  MGR model-coordinate 

functionality is provided in mgrView’s surface class by assigning additional attributes to each the 

vertex object.  A vertex may optionally include an object coordinate (uv, with t assumed to be 1 on the 

surface) and a medial position.  If the vertices of a surface contain both of these attributes, mgrView 

will automatically generate the U2X and X2U maps for the surface and link them to the surface 

through their respective channels.  Exporting these maps to a volume shader enables the shader to 

make model-coordinate relative decisions. 

A vertex object can additionally include a pointer to another vertex that tracks values at the next time 

step for the surface.  This allows the surface to be animated in multiple steps over time by 

interpolating between world positions.  If the start and end vertices contain a medial position entry, 

the entire spoke can be interpolated over time, which would provide the basis for a new intermediate 

volumetric coordinate system.  The current implementation is too slow to recompute intermediate 

U2X and X2U tables interactively, but this should be possible with optimization and slightly upgraded 

graphics hardware with more support for internal frame buffer objects. 

M-rep models only explicitly identify a few surface vertices at the spoke tips.  As discussed previously, 

higher resolution surfaces can be interpolated by various mechanisms with different smoothness and 

speed constraints. Because MGR methods do not require interactive surface generation, it is left to an 

off-line process, such as the surfacing algorithm in UNC’s Pablo m-rep based segmentation tool30.  The 

                                                           
30

 Pablo is discussed earlier in M-Rep Software on page 34. For academic access to Pablo see the UNC MIDAG 
website http://midag.cs.unc.edu; for commercial access see Morphormics http://www.morphormics.com. 
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pre-generated surface can be saved and loaded into mgrView as a simple tile geometry file.  mgrView 

includes a byu file reader for simple tile geometry, this format choice largely motivated by 

convenience in exchanging data with other software in our lab.  “movie.byu” is a file format for storing 

animations that originated at Brigham Young University.  mgrView uses only the geometry part of the 

byu file format.  byu geometry files follow a very simple format: a header with the number of vertices 

on the first line and the number of faces on the second, a list of three floats for every vertex, and a list 

of three integer vertex indices for every face.  The final integer in each face triplet must be preceded 

by a negative sign.  A formatting sample from a test data set, “cube.byu,” is shown in Example 1.  

Complete documentation of the byu format exists in several sources online, 

https://people.sc.fsu.edu/~burkardt/data/byu/byu.html was used as a reference for mgrView’s file 

reader.  A useful program for converting other common surface file formats to byu is IVCON 

(http://orion.math.iastate.edu/burkardt/g_src/ivcon/ivcon.html). 

     1     8     6    24     0 
     1     6 
 1.00000E+00 1.00000E+00 1.00000E+00 
 1.00000E+00 1.00000E+00-1.00000E+00 
 1.00000E+00-1.00000E+00 1.00000E+00 
 1.00000E+00-1.00000E+00-1.00000E+00 
-1.00000E+00 1.00000E+00 1.00000E+00 
-1.00000E+00 1.00000E+00-1.00000E+00 
-1.00000E+00-1.00000E+00 1.00000E+00 
-1.00000E+00-1.00000E+00-1.00000E+00 
     1     3     4    -2     5     7     8    -6     1     5     6    -2     3     7     8    -4 
     1     5     7    -3     2     6     8    -4 

Example 1 Sample byu format for a cube. 

mgrView will instantiate a simple surface for any byu geometry file it is asked to read.  Extended 

surface properties, as discussed above – explicit normals, object coordinates, and medial positions – 

can be included by adding additional specially named byu files to the data/surfs directory for the 

project.  These files must be named as follows: 

1. shape_name.byu 

2. shape_name-normals.byu  

3. shape_name-uvt.byu  

4. shape_name-mpos.byu 

These specially named files embed extended vertex data triplets in the vertex list portion of the file, 

and the face list is ignored.  If only a single file is found, it is assumed to be the surface file.  Only the 

surface vertices are strictly required to render a shape.  The normals file is optional; it is provided to 

allow for higher order offline surface normal computation.  If the normals file is absent, the vertex 

normal directions are computed as either the differences to the medial mesh (i.e., the spoke 

directions) if the medial file exists, or they can be computed directly from a surface by averaging face 

normal directions as required. 
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Providing (uvt) coordinates of each vertex enables mgrView to render surfaces with object-centric 

texture directions as described previously in section 3.2, Simple Texturing for Volumes.  Further 

providing the medial positions of each vertex enables mgrView to compute a volumetric coordinate 

system (the U2X and X2U lookup tables) for the shape. This allows mgrView to use the color mapping 

methods described in section 3.4, 3D Color Transfer. A complete set of all four files can be generated 

in Pablo by saving a model as a byu surface file, contracting all of the atom radii to 0, and resaving a 

byu medial positions file. Supplemental normal and model coordinate files are generated 

automatically. 

An obvious future extension to the code is to add loaders and surface generators for native m-rep 

registry files (.m3d).  Alternately, a more compact version of this format, such as an extended .obj file 

supporting additional “position on the medial surface” parameters for each vertex would be useful. 

Reparameterizing Models from Pablo 

As an implementation aside, the m-rep parameterization in UNC’s Pablo segmentation software is not 

a minimal representation.  That is, it parameterizes a spherical topology (the version of m-reps used in 

these projects do not support objects with holes) with three parameters, (u’v’φ), where u’ and v’ 

count the medial sampling grid for atom-implied vertices but have fractional values for interpolated 

vertices, and φ indicates sidedness and varies around the “crest” regions. To reduce this to two 

parameters so that any coordinate on the medial sheet (along and across) can fit into the red and 

green channels alone, reserving blue for distance from the medial sheet (through), mgrView converts 

m-rep (u’v’φ) to a (latitude, longitude) representation, called, confusingly enough, (uv) again. Recall 

from section 3.1, Creating a Scene Catalog, that MGR’s medial parameterization is a “shrink-wrap” 

cylindrical mapping, with v taken to run from one boundary edge to the other at v=0.5, then across 

the bottom of the object on the interval v=(0.5,1.0]. 

There are two different conversion algorithms in mgrView: one for “slab” type objects that have  

n x m medial samples with n,m>1, and another for “tube” type objects that have n x 1 medial samples 

with n>1.  For slabs, φ = 1 on the anterior side, φ = -1 on the posterior side, and φ = 0 on the “crest” 

vertices.  For tubes, v’ is always 1 and φ counts around the object from -1 to 1.  For tubes the 

conversion is quite simple, Pablo’s v’ is thrown out and the new v is simply equal to the read φ.  For 

slabs the conversion is somewhat more complex and requires special cases for multiple different 

geometric regions (anterior or posterior faces, right A/P crest, left A/P crest, top crest, bottom crest).  

In both cases, integer u and v values are normalized to the (0,1) range.  See the documentation of the 

mgrSurface::ReparameterizeSlab() function for additional implementation details. 
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Step 3:  Add a Rigid Motion Controller 

mgrView’s image class automatically associates a 4 x 4 matrix transform with its image data.  

Whenever mgrView binds an image to a texture unit, this transform is applied to any texture 

coordinates intended for that texture unit.  Such texture transforms serve many purposes, such as 

scaling and moving coordinate in the unit cube into coordinates for a region of interest or rotating a 

solid texture to align it with the “along” direction of an anatomic region.  In this case, attaching a rigid 

motion user interface (UI) to the base image’s transform will allow the clinician to simulate setup error 

by manipulating translation and rotation parameters interactively. 

mgrView uses GLUI as a UI for rapid prototyping. 

mgrView’s user interface class includes customized GLUI 

widgets for manipulating the parameters of several 

library types, including surface and volume renderables, 

clip planes, images, and transforms.  The line in 

Program 23 requests that the window controller add a 

UI transform widget for the CT image.  The resulting UI 

is shown in Fig. 154. 

 // Add Transform UI Control for Rigid Motion 
 mgrw->UI->AddTransformControl( &I_0.transform, 
“Rigid error” ); 

Program 23  Adding a rigid motion controller to the CT 
image 

The built-in deformation animation based on the 

displacement field is controlled by a global “time” 

parameter that is already included as a (0,1) slider in 

the default UI.  This is sufficient for this view, but 

managing a weighted combination of deformation fields 

would require additional interface controls. 

Step 4:  Create a New Shader 

Volume animation and color mapping are provided by mgrView’s built-in features, but combining the 

two and adding the dose overlay requires developing a custom shader program.  There are four steps 

to adding the new shader to mgrView: 

1. Add the new shader’s name and dependencies to mgrView’s shader controller 

2. Modify the default volume rendering shader to add a dose overlay 

3. Modify the shader to add deformation animation 

4. Modify the shader to support color mapping from an alternate modality 

 
Fig. 154  mgrView’s GLUI-based scene control 
interface with a rigid error controller. 
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Step 4.1:  Add the new shader’s name and dependencies to mgrView’s shader controller 

mgrView’s shader object consists of a program id and a set of required texture channels.  When a 

shader is invoked, it is passed a pointer to a particular renderable and the shader object’s job is to 

check that all the required texture channels are present and to export the texture names and any 

supplemental parameters to the actual OpenGL hardware shader program.  A global controller 

manages loading and compiling the shader programs and keeps a list of the available shaders 

identified by a unique name such as “MGR_STD_VOL_SHADER”.  The first step to adding a new shader 

to mgrView is to add its name to the MGRenum section of the mgrv.h file as shown in Program 24. 

Second, the shader’s name, parameters, and dependencies need to be listed in the 

mgrView::mgrLoadShaders() function found in mgrShaders.cpp, as shown in Program 25.  In this case, 

the new shader uses the standard vertex program (“vstd”), it has a specialized fragment program in a 

file, the UI name should be “Dose + Err Vol”, and it is defined for volume objects.  The final argument 

is a bitwise-OR of flags for each of the required texture channels and GLSL uniforms and attributes 

that must be exported to the shader when it is invoked. 

enum MGRenum { 
 // Shader Names 
 MGR_STD_VOL_SHADER   = 0,  ... 
 // Add new shader name for ART Evaluation Project 
  MGR_DOSE_ERR_VOL_SHADER 
} 

Program 24  Adding a new shader to mgrView’s list of internal shader names in mgr.h 

int mgrLoadShaders() { 
 GLhandleARB vstd = mgrShader::LoadVertexProgram( "std.vert.glsl" ); 
 /* New shaders take the following parameters: 
 mgrShader( enumerated mgrView shader name, 
 vertex program handle or filename, 
 fragment program handle or filename, 
 string for display in UI, 
 shader type (MGR_VOLUME_TYPE, MGR_SURFACE_TYPE), 
 bitwise-or’d flags for reqd objects (MGR_SOURCE_IM0f|etc.))*/ 
 … 
 // New shader for ART Evaluation Project 
 new mgrShader(  MGR_DOSE_ERR_VOL_SHADER, 
   vstd, "dose+err.vol.frag.glsl",  
   "Dose + Err Vol", MGR_VOLUME_TYPE, 
   MGR_SOURCE_IM0f | MGR_DEFORMATION_IM1f |  
   MGR_DOSE_IMf, MGR_TIME_UNIFORMf ); 
} 

Program 25  Adding the new shader’s parameters to the mgrLoadShaders function in 
mgrShaders.cpp 

Adding the shader name and parameters to the loader will cause mgrView’s setup routine to 

automatically try to read the required files and compile the shader program  This new shader is still 

missing its fragment program, so copy the “std.vol.frag.glsl” program from mgrView’s /common 
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directory and rename it to “dose+err.vol.frag.glsl”.  Now when mgrView is run, the new shader should 

load and its name “Dose + Err Vol” will be automatically be available on the shader drop down of the 

default volume object control.  It is not very interesting yet though, since it merely duplicates the 

functionality of the standard volume shader object. 

Step 4.2:  Modify the default volume rendering shader to add a dose overlay 

This section explains first how to extend the standard volume fragment program by referencing an 

additional channel for a dose overlay.  When the new shader was set up in the last step, a dose 

channel was flagged as required.  This means that the shader will require that the volume have a dose 

channel assigned (recall Program 21) and that the shader will export that channel’s OpenGL texture 

unit binding as a named uniform variable to the hardware fragment program.  Variable names for all 

the predefined channels are defined in the common mgr.common.glsl header.  In this case, the base 

image channel is called “source_im0” and the dose channel is called “dose_im”. 

The standard volume fragment program is only three lines – it reads an intensity from source_im0, it 

calls the library intensity_window() function, and it sets the output fragment color accordingly.  To add 

a dose overlay, the program needs to additionally read the dose value and modulate the red channel 

accordingly.  This is shown in Program 26.  C0 is a constant that can vary to intensify or suppress the 

strength of the modulation.  Note that the rigid transformation controller added previously will only 

affect the texture coordinate used for source_im0 and not the texture coordinate used for dose_im, 

so the dose overlay will remain fixed. 

const float C0 = 0.5;  // Dose modulation strength 
void main() { 
 // Standard volume fragment program 
 float source_intensity = texture3d( source_im0, texCoord0.xyz ).r; 
 float windowed_intensity = intensity_window(source_intensity); 
 // Dose modulation 
 float dose_intensity = texture3d( dose_im, texCoord1.xyz ).r; 
 vec4 modulated_color = vec4( source_intensity + dose_intensity*C0, source_intensity, 
             source_intensity, source_intensity*C0 ); 
 modulated_color = max( modulate_color, vec4(1.) ); 
 // Set output 
 gl_FragColor = modulated_color; 
} 

Program 26 Adding dose modulation to the standard volume fragment program. 

Step 4.3:  Modify the shader to add deformation animation 

This example uses only a single displacement field to simulate possible internal shape change, but 

extending this project to support multiple registration fields, such as those between the planning 

image and several fraction images or using a basis of “principal warps” as described in section 6.3.2, 

Non-Clinical Applications of MGR, is not particularly difficult beyond adding several more data 

channels.  However, each additional texture channel lookup does contribute to an overall slowdown 

of the system. 
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The object-order algorithm for an animating volume is detailed in section 4.1.2, Rendering Images Under 

Local Deformation.  mgrView’s local deformation shader requires both the source_im0 channel and a 

disp_im channel that can be used to compute the world-space offset for any world position.  Program 27 

shows how to integrate this functionality into the dose+error shader.  The global time variable is used to 

weight how much of the displacement to apply. 

One implementation caveat is that each image may potentially be from a different region of interest 

and thus may have a different mapping between world coordinates and texture coordinates.  

Therefore, the developer must know the order in which the mgrView shader is going to bind the 

required texture channels to determine the mapping between source, dose, and deformation and 

texCoord0, texCoord1, and texCoord2.  This order can be determined by looking at the texture 

channel ordering in the function mgrShader::ExportUniforms(). 

const float C0 = 0.5;  // Dose modulation strength 
void main() { 
 // Interpolate a local registration vector 
 vec3 offset = texture3d( disp_im, texCoord2.xyz ).xyz; 
 float source_intensity = texture3d( source_im0, texCoord0.xyz + time*offset ).r; 
 float windowed_intensity = intensity_window(source_intensity); 
 // Dose modulation 
 float dose_intensity = texture3d( dose_im, texCoord1.xyz ).r; 
 vec4 modulated_color = vec4( windowed_intensity + dose_intensity*C0, windowed_intensity, 
             windowed_intensity, windowed_intensity*C0 ); 
 modulated_color = max( modulate_color, vec4(1.) ); 
 // Set output 
 gl_FragColor = modulated_color; 
} 

Program 27 Adding local deformation to the dose+error shader. 

Step 4.4: Modify the shader to support color mapping from an alternate modality 

The last step in building the dose+error shader is to add color mapping from the MRI channel.  This 

particular example is done as a ‘world-space mapping’ of the CT and MR images; that is, the images 

are pre-aligned by resampling them into the same space.  This means that mgrView does not require 

model coordinates to transfer the images; it only needs to determine the region where the transfer 

should occur.  When the fragment is determined to be within the prostate region, the MRI channel is 

queried at the same coordinates and its values replace the CT values.  Tinting or increasing the relative 

opacity of the region as shown in the previous Fig. 60 can also call attention to the local detail.  

Program 28 shows the completed dose+error GLSL shader. 

Finally, in the main program, the new shader is assigned as the initial appearance for the volume 

object by calling the volume object’s member function SetShader() with the shader’s name as an 

argument.  Program 29 shows the completed mgrView project program.  The final line before the call 

to mgrvMainLoop() assigns the newly created shader as the default appearance for the volume object.  

Other built-in shaders can be still selected by a dropdown in the UI.  
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const float C0 = 0.5;  // Dose modulation strength 
void main() { 
 // Interpolate a local registration vector 
 vec3 offset = texture3d( disp_im, texCoord2.xyz ).xyz; 
 // Determine fragment membership 
 float label_value = texture3d( label_im0, texCoord0.xyz + time*offset ).r; 
 if (label_value==0.) { 
  // Not in target region, so use CT 
  float source_intensity = texture3d( source_im0, texCoord0.xyz + time*offset ).r; 
  float final_intensity = intensity_window(source_intensity); } 
 else 
  // In target region, so use MR 
  float final_intensity = texture3d( source_im1, texCoord0.xyz + time*offset ).r; 
 // Dose modulation 
 float dose_intensity = texture3d( dose_im, texCoord1.xyz ).r; 
 vec4 modulated_color = vec4( final_intensity + dose_intensity*C0, final_intensity, 
             final_intensity, final_intensity*C0 ); 
 modulated_color = max( modulate_color, vec4(1.) ); 
 // Set output 
 gl_FragColor = modulated_color;} 

Program 28 Adding local deformation to the dose+error shader. 

#include “mgrv.h” 
data_dir = "data"; project_dir = "6600.pelvis"; 
int main( argv, argc ) { 
 // Load Image Data 
 mgrImage I_0 = mgrvLoadImage( “6600.plan.pim”, vec3(0.1), 512,512,80, 1,  
                MGR_USHORT_DATA, MGR_SKIP_HEADER_FLAG ); 
 mgrImage D = mgrvLoadImage( “6600.dose.raw”, vec3(0.1), 128,128,40, 1,MGR_FLOAT_DATA ); 
     D.SetOrigin( vec3( 0.3, 0.3, 0.3 ); 
 mgrImage H = mgrvLoadImage( “6600.plan2day1.raw”, vec3(0.1), 128,128,40, 3,  
                MGR_FLOAT_DATA, MGR_SUBTRACT_IDENTITY_FLAG); 
     H.SetOrigin( vec3( 0.3, 0.3, 0.3 ); 
 mgrImage I_s = mgrvLoadImage( “6600.mri.pim”, vec3(0.1), 512, 512, 80, 1  
                 MGR_USHORT_DATA, MGR_SKIP_HEADER_FLAG ); 
 // Setup Scene & Bind Data Channels 
 mgrVolume v =mgrVolume( &I_0 );  // Setup volume based on I_0 
 v.AttachImage( MGR_DOSE_IM, &D); 
 v.AttachImage( MGR_REG0_IM, &H); 
 v.AttachImage( MGR_SOURCE1_IM, &I_s ); 
 // Load Shape Data 
 mgrShape* Mpros_0 = mgrvLoadShape( “6600.prostate.byu” ); 
 mgrShape* Mrect_0 = mgrvLoadShape( “6600.rectum.byu” ); 
 mgrShape* Mblad_0 = mgrvLoadShape( “6600.bladder.byu” ); 
 mgrShape* Mpros_s = mgrvLoadShape( “6600.mri.prostate.byu” ); 
 // Add Transform UI Control for Rigid Motion 
 mgrw->UI->AddTransformControl( &I_0.transform, “Rigid error” ); 
 // Set initial shader 
 v.SetShader( MGR_DOSE_ERR_VOL_SHADER); 
 // Start program 
 mgrvMainLoop();} 

Program 29  The completed mgrView project program for the dose under error view. 
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The view can be focused by user defined clip planes or by selecting any shape in the scene as a target 

for mgrView’s built-in importance rendering capability.  mgrView implements two different functions 

for importance rendering: one for static shapes and a different one for dynamic shapes as 

described in the section Dynamic Importance & ROIs on page 105.  In this case, because the 

target regions shift according to the deformation field, dynamic importance rendering 

can be enabled by attaching H to each target’s reg0_im channel and calling the function 

mgrView::mgrvEnableDeformationImportanceRendering().  However, this requires that the graphics 

hardware accelerator supports vertex texture fetch (“vtf”) so that the vertex program can offset each 

vertex position according to a texture lookup from the registration field. 
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