

Model Guided Rendering
 for Medical Images

Derek Merck

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill

2009

Approved by:

Stephen M. Pizer

Julian Rosenman

Russell Taylor

Edward Chaney

Marc Niethammer

ii

© 2009

Derek Merck

ALL RIGHTS RESERVED

iii

ABSTRACT

Derek Merck: Model Guided Rendering for Medical Images

(Under the direction of Stephen Pizer & Julian Rosenman)

High quality 3D medical image visualization has traditionally been restricted to either

particular clinical tasks that focus on easily identified or high contrast structures, such as

virtual colonoscopy, or to atlas patients such as the Visible Human, which can be

painstakingly micro-segmented and rendered offline. Model Guided Rendering (MGR)

uses partial image segmentations as a framework for combining information from

multiple data sources into a single view, which leads to a variety of methods for

synthesizing high quality visualizations that require only a short setup time.

Interactively presenting such scenes for particular target patients enables a variety of

new clinical applications.

MGR draws information about a scene not only from the target medical image but also

from segmentations and object models, from medical illustrations and solid textures,

from patient photographs, from registration fields, and from other patient images or

atlases with information about structures that are hidden in the base modality. These

data sources are combined on a region-by-region basis to estimate context-appropriate

shading models and to compose a globally useful composition (clipping) for the entire

scene. Local mappings are based on segmenting a sparse set of important structures

from the scene by deformable shape models with well defined volumetric coordinates,

such as the discrete medial representation (m-reps). This partial segmentation provides

object coordinates that can be used to guide a variety of fast techniques for oriented

solid texturing, color transfer from 2D or 3D sources, volume animation, and dynamic

hierarchical importance clipping.

The mgrView library computes medial-to-world and world-to-medial mappings and

implements many of MGR’s methods within a fast rasterize-and-blend rendering core

that can render complex scenes in real time on modest hardware. Several vignette

views demonstrate how MGR’s unique capabilities can lead to important new

comprehensions in clinical applications. These views include an interactive anatomic

atlas of the head and neck, animated display of the effects of setup error or anatomic

shape change on fractionated external beam radiotherapy treatment, and a

pharyngoscopic augmentation that overlays planning image guidance information onto

the camera view.

iv

ACKNOWLEDGEMENTS

I would foremost like to thank my loving and patient wife, Lisa, and my children, Alex,

Vanessa, and Benjamin, for their invaluable support during this long trip. My extended

family, Sherry and Rich Bader, Veronica Fagan, Lloyd Merck and Judy Foreman, and Art

and Violet Lane have all contributed hugely to this project through their constant acts of

kindness.

The idea of “Netterly Rendering”, which originally engendered the entire Model Guided

Rendering enterprise, was born out of a series of passing conversations with Julian

Rosenman, who has been a visionary leader and a generous patron of this project.

UNC has a wealth of faculty and staff who have been incredibly helpful to me over the

last several years. Steve Pizer has nurtured me academically since the moment that I

joined the department. My other committee members, Ed Chaney, Marc Niethammer,

and Russell Taylor have been equally constructive and critical in forging the ideas

behind this dissertation. Other UNC faculty members, notably Mark Foskey, Eric

Schreiber, and Anselmo Lastra have been more than generous with their time and

insight. The entire MIDAG group of the last six years and especially my research

partner, Ilknur Kabul, has been both supportive and charitable.

Finally, I would particularly like to single out Gregg Tracton, who has mentored me and

served as a constant sounding board for these ideas for the last six years. I have told

Gregg many times that when I get my piece of paper, I will give half of it to him.

v

CONTENTS

Figures .. 8

Equations .. 17

Programs ... 17

1 Model Guided Rendering for Medical Images 1

1.1.1 Clinical Applications of MGR ... 2

1.1.2 Model Guided Rendering ... 3

1.1.3 Scene Design Technologies... 5

1.1.4 Key Appearance Technologies .. 6

1.1.5 Key Scene Composition Technologies .. 10

1.1.6 Implementation .. 11

1.1.7 Thesis .. 12

 Intermezzo: mgrView ... 13

1.1.8 Claims ... 14

1.1.9 Outline .. 15

2 The Medical Imaging Pipeline 17

2.1 Sources of Medical Images .. 18

2.1.1 Computed Tomography .. 18

 Intermezzo: Loading 3D data into mgrView ... 19

2.1.2 Other Modalities .. 23

2.2 Interpreting Medical Images ... 27

2.2.1 Image Registration .. 28

2.2.2 Image Interpretation .. 30

2.3 Classic Medical Image Visualization .. 34

2.3.1 Surface Rendering .. 34

2.3.2 Object-Order and Image-Order DVR .. 38

2.3.3 Independent-Image Scene Design .. 45

vi

3 Model Guided Appearance for Medical Images 51

3.1 Creating a Scene Catalog ... 53

3.1.1 The Discrete Medial Parameterization ... 54

3.1.2 Computing the X2U Map .. 56

3.1.3 Consolidating a Multi-Object Scene Catalog .. 58

3.2 Simple Texturing for Volumes ... 60

3.2.1 World- and Model-Space Texturing ... 61

3.2.2 Solid Texture Bumping ... 65

3.2.3 Sources of Synthetic Textures .. 67

3.3 2D Color Transfer from Patient Photos ... 73

3.3.1 Method for 2D Color Transfer .. 74

3.3.2 Rendering From Cylindrical Images .. 75

3.3.3 Rendering From Planar Images .. 77

3.3.4 Camera Arrangement ... 79

3.3.5 Animating Surface Change Over Time .. 80

3.4 3D Color Transfer .. 81

3.4.1 Method for Object-Based 3D Color Transfer .. 81

3.4.2 U2X Maps ... 84

3.4.3 Using the Visible Human as a Color Atlas ... 87

4 Model Guided Composition for Medical Images 89

4.1 Volumetric Animation ... 91

4.1.1 Rendering Images Under Global Deformation ... 91

4.1.2 Rendering Images Under Local Deformation ... 93

4.2 Fast Importance Rendering ... 97

4.2.1 Importance Rendering .. 98

4.2.2 Stenciling with Importance Shadows ... 100

4.2.3 Extending Object-Order Importance Effects .. 105

4.3 Clipping Surfaces with Model Coordinates ... 111

vii

5 Bringing MGR to the Clinic 113

5.1 Medical Imaging Applications and MGR ... 115

5.1.1 Anatomic Education ... 115

5.1.2 Diagnosis... 117

5.1.3 Image Guided Therapy ... 119

5.2 MGR Applications in Adaptive Radiotherapy .. 124

5.2.1 Clinical Goals ... 124

5.2.2 3D Cross-Modal Segmentation View .. 125

5.2.3 Interactive Planning Under Error Vignette ... 128

5.2.4 Patient Setup Validation Vignette .. 130

5.3 Enhanced Endoscopy from Multiple Modalities ... 132

5.3.1 Clinical Goals ... 132

5.3.2 Online Biopsy Guidance .. 133

5.3.3 Enhanced Open Field of View Virtual Endoscopy ... 135

5.4 Evaluating MGR Methods ... 136

6 Conclusions 137

6.1.1 Chapter Organization ... 138

6.2 Thesis & Claims Revisited .. 139

6.2.1 Methodology .. 139

6.2.2 Results .. 140

6.3 Potentials of Model Guided Rendering ... 143

6.3.1 Dealing with Uncertainty .. 143

6.3.2 Non-Clinical Applications of MGR: Understanding Principal Warps 145

6.3.3 Extending MGR ... 146

6.3.4 Ray Traced MGR ... 147

6.3.5 Augmented Reality MGR .. 149

Appendix: Implementing the Planning Under Error View Using mgrView 152

Overview .. 152

Step 1: Set Up a New Project ... 154

Step 2: Import Data ... 154

Step 3: Add a Rigid Motion Controller ... 160

Step 4: Create a New Shader ... 160

References .. 166

viii

FIGURES

Fig. 1 Rendering from the VoxelMan project .. 1

Fig. 2 Classical DVR from Levoy’s original papers .. 1

Fig. 3 Slice-wise view are still common in clinical applications.. 1

Fig. 4 Model Guided Rendering of a target patient using information taken from the CT

volume, a 3D color atlas, a patient photo, and several synthetic textures mapped

onto various regions.. 2

Fig. 5 Anatomic illustration from Netter with intuitive shading and composition. 3

Fig. 6 Virtual colonoscopy is successful because it reduces 3D data to a few important

surfaces. .. 3

Fig. 7 Implied surfaces of m-reps fit to anatomic structures in the abdomen. 5

Fig. 8 Photoshopped example of how scene composition addresses the issue of seeing

internal structures while preserving context. ... 6

Fig. 9 Synthetic 2D and 3D textures mapped onto target regions in a patient image. 7

Fig. 10 Top, color atlas mandible, bottom, atlas colors transferred to a target patient

according to object-coordinates. .. 8

Fig. 11 An image of the author mapped onto a target patient scan ... 9

Fig. 12 Left, a standard volume rendering of a region in the pelvis, middle, the same

region with the data occluding the prostate and bladder dynamically clipped

away, right, the same view with the planning position of the objects overlayed as

contours. ... 10

Fig. 13 Interpolating between two daily patient images according to a registration field

gives a smooth volumetric animation of anatomic change relative to a fixed dose

distribution (red overlay). ... 11

Fig. 14 Labelled rendering of the duodenum from mgrView’s simple application demo

program ... 13

Fig. 15 This chapter reviews the medical imaging pipeline. ... 17

Fig. 16 Chest x-ray of the author’s son at one year of age. The lungs (indicated) are

extremely obscured by the ribs both in front of and behind them. 18

Fig. 17 A default view of the male pelvis CT image loaded using the mgrView script

shown in Program 2 with and without a reference slice. ... 19

Fig. 18 Radiograph of Rontgen’s wife’s hand from the late 19th century. 20

Fig. 19 Top, Source image, middle, radon transformed data, bottom, reconstructed

image (http://www.physics. ubc.ca/~mirg/home/tutorial/fbp_recon.html) 21

Fig. 20 Hounsfield’s original prototype CT scanner (from Wikipedia). ... 21

Fig. 21 Voxel representation (from (Borland07)).. 22

Fig. 22 Approximate ranges for x-ray attenuation in Hounsfield units (HU) for common

anatomic image values. ... 22

Fig. 23 The same view as in Fig. 17 intensity windowed with a lower minimum threshold........... 22

file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713725
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713726
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713727
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713728
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713728
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713728
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713729
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713730
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713730
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713731
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713732
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713732
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713733
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713734
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713734
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713735
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713736
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713736
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713736
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713736
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713737
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713737
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713737
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713738
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713738
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713739
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713740
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713740
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713741
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713741
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713742
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713743
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713743
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713744
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713745
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713746
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713746
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713747

ix

Fig. 24 A CT plane showing the characteristic “starburst” artifact from metal. 23

Fig. 25 Common imaging modalities by signal type. .. 23

Fig. 26 MRI of the author’s head. ... 24

Fig. 27 Early NMI thyroid scans from (S. M. Pizer 1967). Top, a normal thyroid, bottom a

thyroid with high marker uptake. ... 25

Fig. 28 Ultrasound is frequently used in prenatal screening, such as this 12-week image

of the author’s twins. .. 25

Fig. 29 Color images of gross anatomic sections, such as this slice from the Visible

Human can be used as a color atlas for MGR’s color mapping algorithms. 26

Fig. 30 Parameteric surface to point data registration from (Besl and McKay 1992) 28

Fig. 31 An image-to-world rendering of our clinic’s phantom, RANDO (or “Randeau” as

he is sometimes known). The overlay compares the image generated from a

virtual camera with the real world camera from which it takes its parameters. 29

Fig. 32 A non-credible but legal skin segmentation with a simple edge detector. 31

Fig. 33 Fitting a statistical deformable model to a target training image. Top, 3D surface

views and bottom, single sagittal slice views of bladder template geometry. Left,

initial shape estimate coarsely aligned to a target training image, mid,

deformably fit to that image, and right, in the context of the actual grayscale

data. (From (Merck, et al. 2008)) .. 32

Fig. 34 Left, M-rep figures and sub-figures fit to a kidney and its internal pyramids and

calyces. The complex nested volumes and smooth surfaces are represented with

a few hundred parameters. Middle, an early MGR image with detailed internal

orientations generated from this model. Right, a reference illustration from

Netter. ... 33

Fig. 35 Multislice segmentations (contours) and tiled surfaces rendered in PLUNC. Stacks

of manually drawn contours are knit together into target region surfaces by the

“FKU77” algorithm (Fuchs, Kedem and Uselton 1977). .. 34

Fig. 36 2.5D view of a CT data set of the male pelvis with intersecting axis aligned cut

planes. ... 35

Fig. 37 A clip plane aligned to be normal to the along-direction of the mandible. 36

Fig. 38 Marching cubes iso-surface extraction with different reference values and views

from (Cline, Lorensen and Ludke 1988) .. 36

Fig. 39 Gooch tone shading from of an early version of mgrView. .. 37

Fig. 40 Contours can be an effective technique for showing surfaces without occluding

the underlying data. .. 37

Fig. 41 A ray is sampled along its length in such a way as to cover all voxels (taken from

(Borland07)) .. 38

Fig. 42 A pseudo-DVR visualization for radiotherapy planning from (Levoy VBC90), also

rendered as a white light hologram in the lobby of UNC-CH’s Sitterson hall. 38

Fig. 43 Interface and rendering from VolView. .. 39

Fig. 44 An image from the original ray-casting core considered for mgrView. Effects such

as reflections, soft shadows and super-sampling can be easily implemented in a

ray-casting framework. ... 39

file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713748
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713749
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713750
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713751
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713751
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713752
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713752
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713753
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713753
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713754
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713755
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713755
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713755
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713756
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713757
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713757
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713757
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713757
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713757
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713758
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713758
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713758
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713758
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713758
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713759
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713759
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713759
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713760
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713760
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713761
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713762
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713762
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713763
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713764
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713764
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713765
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713765
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713766
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713766
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713767
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713768
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713768
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713768

x

Fig. 45 The otter with an extra wrist bone from (Drebin, Carpenter and Hanrahan 1988).

When shown this display, scientists discovered a hitherto unknown wrist bone.

This is one of the few examples that the author has been able to find of volume

rendering actually contributing novel scientific utility.. 40

Fig. 46 Scenes renderered with mgrView using 64 planes (left) and 192 planes (right). 41

Fig. 47 Close up of “cornrowing” effect at the edge of a 92-slice volume using mgrView. 42

Fig. 48 The gradient volume of an abdomen image stored as rgb channels and rendered

directly with mgrView. .. 43

Fig. 49 Image from (Westover 1990) illustrating the effects of variously sized “splat”

kernels. The kernels in the top row are too sharp, giving inadequate coverage of

the scene. The kernels on the bottom row are too broad, causing unnecessary

blur. ... 43

Fig. 50 Annotated OpenGL pipeline originally found in (Shreiner, et al. 2005). 44

Fig. 51 Detail of VolView’s 3D rendering and transfer function interface from Fig. 43.

The transfer function interface shows a histogram of the intensities in the scene.

Leftmost is air, rightmost is bone. The overlaid line controls the opacity for each

intensity value (transparent at air, approaching opaque at bone). The bar on the

bottom shows the color assignments for each intensity value (brown for soft

tissue, white-pink for bone). ... 46

Fig. 52. One of my favorite volume renderings, using a curvature based transfer

function from (Kindlmann, et al. 2003). Note that it is very similar to a surface

rendering. .. 46

Fig. 53 Tone shaded illustrative rendering of the thorax from (Ebert and Rheingans

2000). .. 47

Fig. 54 (Tietjen, Isenberg and Preim 2005) describes a method for combining

segmentations with DVR to create hybrid illustrative renderings. 47

Fig. 55 Left, (Lu, et al. 2003)’s volume stippler and right, (Fischer, Bartz and Strasser

2005) renderings of the engine block data. .. 47

Fig. 56. Image from (Svakhine, Ebert and Stredney 2005) ... 48

Fig. 57 Left, a standard view of an abdomen data set in mgrView. Right, the same view

with specularity-based opacity modulation. ... 49

Fig. 58 (Bruckner, et al. 2006) uses cut-away views driven by distance from the viewer to

maintain a visual context. ... 50

Fig. 59 Right, a scene rendered normally in mgrView. Left, the same scene with per-

pixel opacity modulation from distance as in Program 6. The table and ribs have

been removed, allowing a clear view of the kidney. The effect is quite striking

when interactively rotating the object. ... 50

Fig. 60 Male pelvis scene rendered primarily from CT data but with red tinted MR data

mapped into the prostate region to show distinction between soft tissue types

within the prostate.. 51

Fig. 61 Simple world-mapped solid texture applied to the thyroid region of the target

patient. .. 52

file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713769
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713769
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713769
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713769
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713770
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713771
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713772
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713772
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713773
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713773
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713773
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713773
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713775
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713775
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713775
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713775
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713775
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713775
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713776
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713776
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713776
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713777
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713777
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713778
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713778
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713779
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713779
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713780
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713781
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713781
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713782
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713782
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713783
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713783
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713783
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713783
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713784
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713784
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713784
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713785
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713785

xi

Fig. 62 Direct display of the X2U map near the right sternocleidomastoid (scm) muscle.

The red channel encodes u, the direction along the object, the green channel is v,

around the object, and the blue channel is t, the through direction. The boundary

surface of the scm is superimposed as a similarly colored mesh. 53

Fig. 63 M-reps. Top left, a medial sample with two equal length spokes touching

opposing surface patches. Top middle, a sampled skeletal sheet with neighbor

relations marked. Top right, spokes at each medial sample describe the

orientation of the implied surface at that hub. Bottom left, a densely sampled

surface can be interpolated from the medial samples. Bottom right, a prostate

model with sub-figures defined for the left and right seminal vesicles. 55

Fig. 64 Surfaces implied by m-rep parameterizations of a target patient’s stomach,

pancreas, and duodenum. .. 55

Fig. 65 Top, t=1 surface colored by (uvt) and bottom, cross section normal to du of the

scm’s X2U map. Using the shrink wrap parameterization there is a singularity in v

(green) at the seam and across the medial sheet. ... 56

Fig. 66 A cut-away of a ten onion skin representation of the scm. Each layer has fixed t

or blue value. Each ring about the object has fixed u or red value. Each line

along the object has fixed v or green value. ... 57

Fig. 67 A slice through a CT image colored by the underlying multi-object X2U LUT. The

sternocleidomastoid’s exterior values overlap with the neighboring parotid and

thyroid. The object label for each region is invisibly encoded in the alpha channel. 59

Fig. 68 Top left, the thyroid is difficult to identify in the gray data. Top right, adding a

pink texture to the clip plane. Bottom, texturing the entire thyroid surface. 60

Fig. 69 Cross section drawn by Netter. ... 61

Fig. 70 The same solid texture for the thyroid with two different texture scaling factors.

Top, a larger scale (30), bottom, a smaller scaling factor (15) results in relatively

larger features. .. 61

Fig. 71 Left, a 2D texture patch based on strokes from (Netter 2006) and right, the

duodenum surface with the texture oriented along the u direction. 62

Fig. 72 Texturing across the seam in the medial sheet results in bad interpolated values

of v. .. 63

Fig. 73 Split texture mapping. .. 63

Fig. 74 Introducing a seam in the texture cube to counteract the seam in model

coordinates. .. 64

Fig. 75 Left, regular sampling in (φ,θ,ρ) taken as oblate spherical coordinates becomes a

squashed spheroid in the Euclidean equivalent on the right. Interpolating theta

across the seam in this space produces correct values without a conditional when

mapped back to the parametric space. ... 64

Fig. 76 Left, solid wood texture with standard diffuse lighting. Right, the same texture

with a significant normal “bump” in the direction of the texture gradient. 66

Fig. 77 (Owada, et al. 2004) creates a mapping from 2D textures to 2D cut-planes to

simulate a volume texture. Though the authors do not discuss it, the proposed

mappings rely on manually indicating the surface and medial axis in both shape

and texture. ... 68

file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713786
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713786
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713786
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713786
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713787
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713787
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713787
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713787
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713787
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713787
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713788
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713788
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713789
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713789
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713789
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713790
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713790
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713790
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713791
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713791
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713791
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713792
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713792
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713793
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713794
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713794
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713794
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713795
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713795
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713796
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713796
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713797
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713798
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713798
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713799
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713799
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713799
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713799
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713800
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713800
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713801
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713801
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713801
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713801

xii

Fig. 79 Glyph packing from (Kindlmann and Westin 2006) formed the basis of the earlier

rendering in Fig. 34. .. 68

Fig. 80 2D line-integral convolution from (Cabral and Leedom 1993).. 68

Fig. 78 Top, example of a reaction-diffusion surface texture from (Turk 1991). Bottom,

volume rendering of a regional 3D reaction diffusion considered for the spongy

interior of the bone (or cheese). ... 69

Fig. 81 State of the art exemplar based solid texture synthesis from (Kopf, et al. 2007).

Several of the sample images in this document use wood or cobblestones from

Kopf’s solid texture library. ... 69

Fig. 82 2D multi-exemplar based single channel texture synthesis at multiple scales.

Top, two exemplar textures, possibly for fat blobs and muscle fibers. The middle

two images are end points of single exemplar synthesis at multiple scales. The

coarsest scale took 10 seconds for 10 iterations. The finest took 10 minutes for

10 iterations. Bottom, a synthetic texture that blends the exemplars between

two regions. .. 70

Fig. 83 Candidate exemplars for muscle (left) and fat (right) from the Dosch Design

website. (www.doschdesign.com) ... 71

Fig. 84 Top, slice through oriented solid color texture generated by MTS for the scm

region. Bottom, the same texture on the region’s boundary surface with

standard diffuse lighting. .. 72

Fig. 85 A CT+photograph fusion rendering using the author’s photograph and a research

patient’s CT scan. .. 73

Fig. 86 Diagram of photo-mapping decision tree. ... 74

Fig. 87 Top, a capuchin monkey MRI with a pseudo-cylinder photomap from a reference

image, bottom. .. 75

Fig. 88 Top, a synthetic view of the Visible Human from a known camera. Bottom, the

synthetic photograph pushed back onto the target patient’s 3D image using a

direct planar mapping. .. 77

Fig. 89 Top, a schematic of the proposed 6-camera cylindrical array attachment for a CT

gantry. Bottom, a cylindrical image of the author collected with a slit camera at

The Tech Museum in San Jose. ... 78

Fig. 90 Top, calibrating a camera. Middle, taking sequential multi-angle photos in a

reproducible position using the accessory tray of a linear accelerator. Bottom, a

single planar source photograph. ... 79

Fig. 91 Example of animating longitudinal surface changes. The left-most frame shows

the author’s photograph mapped onto a research CT scan, the right-most frame

shows a different sample subject. Intermediate images are blends of the two. 80

Fig. 92 Model-based color transfer pipeline. Positions in the target image are mapped

through model-coordinate based functions to find the color at the corresponding

position in the atlas image. ... 81

Fig. 93 Top, volumetric color mapping clipped through the mandible. Bottom, adding

surface color mapping for lighting. The indicated artifact running along the

medial sheet is the same parametric interpolation singularity discussed

previously in the section on solid texture coordinates. .. 82

file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713802
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713802
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713803
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713804
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713804
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713804
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713805
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713805
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713805
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713806
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713806
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713806
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713806
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713806
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713806
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713807
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713807
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713808
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713808
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713808
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713809
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713809
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713810
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713811
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713811
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713812
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713812
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713812
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713813
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713813
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713813
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713814
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713814
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713814
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713815
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713815
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713815
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713816
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713816
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713816
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713817
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713817
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713817
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713817

xiii

Fig. 94 The surface (t=1) plane for a U2X map of the scm shown in Fig. 62. The u

direction is along the X axis, v is along the Y axis. The rgb value represents the

(x,y,z) position at that (u,v,1) coordinate. Top shows the wireframe, with evenly

sampled (uv); middle shows the barycentric interpolation of (xyz) values; bottom

shows the original surface shaded similarly. ... 84

Fig. 95 Passing a uniform sample grid in parameter space through the U2X maps

produces a regular sampling of each region in world-space. Here each point is at

the world-space coordinate computed from an input object coordinate. 85

Fig. 96 Direct rendering of the Visible Female color atlas with mgrView. 87

Fig. 97 Voxel-man renderings from the Visible Human from www.voxel-man.de. 87

Fig. 98 Volume rendering with two different styles of oriented texture from (Dong and

Clapworthy 2005). ... 87

Fig. 99 High quality rendering using textures synthesized from the Visible Human sample

colors shown on the right, from (Lu and Ebert 2005). .. 88

Fig. 100 Left, Vesalius (Vesalius 1973) removed the skin entirely, right, similar view from

(Hagens 2007)
20

 where the skin has been moved out the way but continues to

provide context (i.e., there is a lot of it). ... 89

Fig. 101 Detail from da Vinci’s “Babe in the Womb” c.1511, which, along with modern

work by von Hagens, was cited as particular inspiration for the methods

developed in (S. Bruckner 2006). .. 91

Fig. 102 Exploded view from (S. Bruckner 2006) and similarly deformed view rendered in

mgrView. ... 91

Fig. 103 Image from (Hagen 1992). Retractors are used to reveal hidden internal

anatomy. ... 93

Fig. 104 Image from (Correa, Silver and Chen 2006) that uses parametric manipulators

such as peelers and retractors to visualize a deformed space. ... 93

Fig. 105 Two frames from an animation showing the registration between two daily

images in a fractionated male pelvis treatment. The change is subtle, only a few

voxels in most places, but notice the jog in the hip-bone where the region of

interest passed through it and the position of the lower tip of the bladder. 94

Fig. 106 Left, another perspective of the scene from Fig. 4. Right, the same view with

voxels in the mandible’s importance shadow culled away. .. 97

Fig. 107 The lizard from (Viola, Kanitsar and Groller 2004) with an importance hierarchy

emphasizing the bones and liver. .. 98

Fig. 108 Left, an anatomic illustration of a shoulder joint and right, a similar view of real

data rendered with flexible occlusion from (Borland, et al. 2006). 99

Fig. 109 Images from (D. Chen 1998). Top, a medial model fit to a scanned starfruit.

Bottom, medial models fit to the objects in the scene are used for clipping and to

smoothly shade the rendering. ... 100

Fig. 110 Cast shadows provide useful visual cues when combining surface and volumes

data. .. 101

Fig. 111 Shadow volume geometry in 2D from (nVidia 2004) .. 101

file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713818
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713818
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713818
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713818
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713818
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713819
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713819
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713819
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713820
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713821
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713822
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713822
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713823
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713823
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713824
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713824
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713824
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713825
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713825
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713825
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713826
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713826
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713827
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713827
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713828
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713828
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713829
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713829
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713829
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713829
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713830
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713830
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713831
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713831
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713832
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713832
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713833
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713833
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713833
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713834
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713834
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713835

xiv

Fig. 112 Shadow volumes rendered in mgrView. Top left, the bladder (green) and

prostate (blue). Top right, shadow volumes extruded using a light direction from

the upper right. Bottom left, intersecting the shadow volume with a plane in the

volume. Bottom right, the dark regions are areas with non-zero stencil buffer

entries after the shadow pass. .. 103

Fig. 113 The shadow volume from Fig. 112 top, right, with the light source “zoomed”

towards the center of mass to imply a wider shadow frustum. 103

Fig. 114 The shadow volume algorithm is modified by reflecting the camera across the

scene, then zooming it slightly to magnify the frustum. The final camera position

is then passed as the shadow source to the shadow stenciling algorithm as

described above. ... 104

Fig. 115 Images from an abdomen scene focused on the duodenum. Top, the

duodenum is completely occluded in this 3D view of the abdomen. Middle,

nearly opaque intensities from the image in the duodenum region. Bottom, using

a model-mapped texture in the duodenum region. ... 105

Fig. 116 Volume rendering from an unsegmented image interrogated with a spherical

“importance flashlight”. .. 106

Fig. 117 Image from (Pelizzari, et al. 1999). A left anterior oblique view showing the

mandible, hyoid bone, left external jugular vein, anterior jugular veins, left

submandibular gland and two associated submandibular lymph nodes. 107

Fig. 118 Virtual resection from (Konrad-Verse, Preim and Littmann 2004). Top left, cut-

lines are drawn on each plane. Top right, the object can be separated and

‘resected’ from its parent. Bottom, the resection clipping surface can be

interactively modified so that the disjoint volumes include and exclude different

features. .. 107

Fig. 119 Volume with self shadows from an early splat rendering core considered for

mgrView. ... 110

Fig. 120 Duodenum with multiple layers, interior ruggae and circular muscle under

longitudinal muscle. .. 111

Fig. 121 Composition based on medial properties derived from constructive solid

geometry from (Li, et al. 2007). .. 111

Fig. 122 Two different segmentations of the same tumor rendered relative to one

another with the nested surfaces algorithm from (Weigle and Taylor 2005). 112

Fig. 123 This chapter contextualizes how MGR fits into the application component of the

medical imaging pipeline. ... 113

Fig. 124 Conclusion from (Oliver, et al. 1997) showing links between four “modalities”,

the isosurface of the bones, MRI, CT, and a photograph of the subject. Using

MGR this information could all be collapsed into a single view. 118

Fig. 125 (Interrante, Fuchs and Pizer 1997) explores the target domain of visualizing the

surfaces of anatomic shapes with respect to dose distribution.. 120

Fig. 126 An MGR view showing a patient image with the expected dose distribution

overlaid in red. .. 120

Fig. 127 A life-size plaster model of a virtual craniofacial reconstruction simulation from

(Piatt, et al. 2006). ... 120

file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713836
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713836
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713836
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713836
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713836
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713837
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713837
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713838
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713838
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713838
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713838
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713839
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713839
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713839
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713839
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713840
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713840
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713841
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713841
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713841
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713842
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713842
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713842
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713842
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713842
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713843
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713843
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713844
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713844
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713845
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713845
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713846
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713846
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713847
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713847
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713848
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713848
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713848
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713849
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713849
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713850
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713850
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713851
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713851

xv

Fig. 128 Lymph levels are derived based on landmarks from nearby structures. 121

Fig. 129 MGR’s endoscopic “guided tour” view discussed later in this chapter overlays

3D targeting and landmark information onto the 2D endoscopic view. 122

Fig. 130 Linear accelerator used for external beam radiotherapy (EBRT). 124

Fig. 131. Workflow for adaptive radiotherapy. Main components are planning and

treatment. The MGR applications described here could be used in the

segmentation, planning, and treatment setup phases. .. 124

Fig. 132. 3D segmentation in mixed modes. Volume rendered structures from the CT

image provide global context while the clinician can segment on a slice drawn

from a corresponding MRI. Fig. 134 shows how the CT values near the prostate

had been corrupted by artifacts from the metal fiducial marker visible in the

center of the prostate region. ... 126

Fig. 133 Standard slice-by-slice view used during segmentation; the colored contours

are the region boundaries drawn on this slice. The CT image on the left shows

very little tissue differentiation between the circled prostate region and its

neighbors compared to the MR slice on the right. ... 127

Fig. 134 The prostate region in the CT-only volume rendering on the left is obscured by

the artifacts from the fiducial markers. The hybrid rendering on the right

preserves the clear tissue distinction in the target region. ... 127

Fig. 135 A common 2D dose evaluation visualization showing isodose contours projected

onto individual slices. 2D views can be quite useful for understanding local tissue

types, but they are not necessarily optimal for understanding the 3D spatial

relationship between the expected dose and the target region. (Image from

(Mosleh-Shirazi, et al. 2004)) .. 128

Fig. 136 Effect of error on expected dose. Top left, dose distribution overlaid near the

surface where the A/P beam enters the target region. Top right, unoccluded view

of the prostate target region below the at-risk bladder with expected dose

overlay. Bottom left, a small rotation applied to the patient leaves the prostate

cold. Bottom right, further clipping reveals the effect of the altered dose

distribution on nearby unsegmented structures. ... 128

Fig. 137. A rendering showing the patient’s alignment tattoo mapped back onto the

planning image with dose overlay to provide feedback regarding the suitability of

the world-to-plan registration. In this case, the tattoo is not in the position

expected by the plan. .. 130

Fig. 138 A VisionRT surface (green) aligned with the corresponding CT skin isosurface

(purple). ... 131

Fig. 139 Thermographic image of the author holding his oldest son at age 18 months,

taken at The Tech Museum in San Jose. Thermography can show near surface

features. .. 131

Fig. 140 Left, virtual nasopharyngoscopy and right, corresponding image from real

procedure. ... 133

Fig. 141 A mock up of an mgrView “guided tour” 2D endoscopic display showing a

sample scope view embedded in a 3D planning image with target and nearby

“beyond-the-wall” structures overlaid. Fig. 142 shows the complementary 3D

view. .. 134

file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713852
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713853
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713853
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713854
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713855
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713855
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713855
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713856
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713856
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713856
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713856
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713856
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713857
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713857
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713857
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713857
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713858
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713858
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713858
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713859
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713859
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713859
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713859
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713859
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713860
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713860
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713860
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713860
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713860
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713860
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713861
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713861
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713861
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713861
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713862
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713862
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713863
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713863
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713863
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713864
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713864
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713865
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713865
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713865
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713865

xvi

Fig. 142 A mock up of an mgrView open field of view virtual endoscopy enhanced with

photomapping and online guidance information. The probe position relative to a

target region is shown in 3D based on online probe position measurements.

Color images collected by the endoscope are dynamically overlaid onto the CT. 135

Fig. 143 The mgrView library achieves frame rates between 10 and 20 fps on a target

laptop for most of the example scenes shown throughout this document. Until

the graphics chip overheats and cracks the motherboard. Related research

materials must then be extracted manually, as shown here. ... 141

Fig. 144 Surface sketch rendering for anatomic shapes from (Interrante, Fuchs and Pizer

1997). .. 144

Fig. 145 Display of surface non-credibility from (Levy, et al. 2007). The dark region on

the larger mesh is the area indicated on the slice shown on the right that has

likely been improperly segmented. ... 144

Fig. 146 Matlab’s single-slice “brain” phantom function called with randomly sampled

parameters. ... 145

Fig. 147 Top, a slice from a source image and bottom, the same slice under an obviously

unlikely sampled registration. ... 145

Fig. 148 A medical illustration that simulates a physical procedure with retractors

provides an intuitive understanding of the 3D positions of the internal anatomic

structures. Contours of the hidden bones are also sketched on the surface.

(www.conservativehipsolutions.com)... 146

Fig. 149 (Bourke 2003) describes how to use POV-Ray to render volume data with a

variant of the Gaussian “splat” method discussed in Chapter 2. Note the soft

shadows of the semi-transparent volume cast on the ground. .. 147

Fig. 150 Marketing image from Elsevier’s Netter’s Interactive 3D Anatomy making the

likely spurious implication that multiple people could sit around a table interact

with a 3D hologram. .. 149

Fig. 151 The doll interface from (Hinckley, et al. 1997). ... 150

Fig. 152 Top, the author using ARToolKit (HIT Lab 2007) to intuitively manipulate a 3D

object. Bottom, the author’s daughter at 4 months using a two-handed version

of the same mechanism to manipulate and clip the mgrView scene previously

shown in Fig. 17. .. 151

Fig. 153 mgrView’s class organization with tasks for this project marked. 153

Fig. 154 mgrView’s GLUI-based scene control interface with a rigid error controller. 160

file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713866
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713866
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713866
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713866
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713867
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713867
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713867
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713867
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713868
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713868
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713869
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713869
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713869
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713870
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713870
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713871
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713871
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713872
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713872
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713872
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713872
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713873
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713873
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713873
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713874
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713874
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713874
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713875
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713876
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713876
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713876
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713876
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v548.docx%23_Toc243713878

xvii

EQUATIONS

Eqn. 1 Formula for x-ray attenuation through tissue with local attenuation µ along a line

integral parameterized by S .. 20

Eqn. 2 Basic world-to-index (X2J) and index-to-world (J2X) transforms. 22

Eqn. 3 Conversion factor between x-ray attenuation (µ) and Hounsfield units (HU) 22

Eqn. 4. Formula for applying an intensity window to a value. ... 23

Eqn. 5 Formulation for Gooch tone shading in terms of the normal direction, n, the light

direction, l, and colors k. ... 37

Eqn. 6 Formulae to introduce a splitting seam into the (pqs) texture space. 64

Eqn. 7 Formulae to convert from Cartesian coordinates (x,y,z) to cylindrical coordinates

(ρ,θ,z) given aligned origin, offset, orientation, and stretch. .. 76

Eqn. 8 Formula to calculate the world-space coordinates (xyz) of a model-space

coordinate (uvt) given U2X maps at the medial axis and boundary surface. 84

Eqn. 9 Formula for transforming a world point X by the clam shell operation to find X’,

and the inverse transform to recover the original position of a transformed X’. R

is a standard 2D rotation matrix. .. 92

Eqn. 10 Formula for linearly interpolating intensities at time t from source (I0) and

target (I1) pixels as they approach each other according to a registration field H.............. 96

PROGRAMS

Program 1 Sample application code invoking mgrLib to load a gray volume and surface

object. The rendering and default UI is shown in Fig. 14. .. 13

Program 2 A simple mgrView program to to load and display a raw CT image shown in

Fig. 17. ... 19

Program 3 GLSL with per-pixel gradient magnitude opacity modulation as in (M. Levoy

1990). .. 49

Program 4 GLSL with per-pixel specularity modulation as in (Diepstraten, Weiskopf and

and Ertl 2003). ... 49

Program 5 GLSL with per-pixel opacity modulation from distance. ... 50

Program 6 Pseudo-code for the X2U LUT scan conversion algorithm. ... 57

Program 7 Pseudo-code for the simple texturing fragment shader. .. 61

file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067876
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067876
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067877
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067878
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067879
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067880
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067880
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067881
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067882
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067882
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067883
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067883
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067884
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067884
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067884
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067885
file:///C:\Documents%20and%20Settings\Derek%20Merck\Desktop\Model%20Guided%20Rendering\doc\merck.mgr.v550.docx%23_Toc244067885

xviii

Program 8 Pseudo-code for solid texture bumping. .. 66

Program 9 GLSL fragment shader for texture bumping with a gradient from finite

differences in the solid texture. Extends trivially to higher order differences at

reduced speed. .. 67

Program 10 Basic exemplar-based texture synthesis algorithm .. 70

Program 11 Pseudo-code for the photo-to-volume mapping algorithm. 74

Program 12 GLSL fragment shader program for basic 3D+photo fusion rendering. The

rendering in Fig. 85 was produced using this program. .. 77

Program 13 GLSL fragment shader program for volume mapping. .. 83

Program 14 GLSL for the volume splitting algorithm... 92

Program 15 GLSL fragment shader extending the volume texture shader with volumetric

animation. ... 94

Program 16 GLSL code for generating shadow volumes using a vertex shader program. 102

Program 17 Object-order importance rendering using the stencil buffer and a shadow

volume. ... 105

Program 18 Extending object-order importance rendering to display ranked objects. 108

Program 19 Extending Program 18 with additional regional effects. ... 109

Program 20 A single image default scene. ... 154

Program 21 Using mgrView to load relevant images and segmentations for this scene. 155

Program 22 Using mgrView to load relevant segmentations for this scene. 157

Program 23 Adding a rigid motion controller to the CT image .. 160

Program 24 Adding a new shader to mgrView’s list of internal shader names in mgr.h 161

Program 25 Adding the new shader’s parameters to the mgrLoadShaders function in

mgrShaders.cpp .. 161

Program 26 Adding dose modulation to the standard volume fragment program. 162

Program 27 Adding local deformation to the dose+error shader. ... 163

Program 28 Adding local deformation to the dose+error shader. ... 164

Program 29 The completed mgrView project program for the dose under error view. 164

1

1 Model Guided Rendering

for Medical Images

Model Guided Rendering (MGR) is a set of methods for creating high

quality, patient-specific medical visualizations for clinical procedure

planning.

High quality volume rendering has so far been limited to atlas images

because of the large time investment required in annotating the data.

The view from VoxelMan (Pommert, et al. 2001) shown in Fig. 1 is

quite impressive, but the views are not portable outside their source

data, which was carefully micro-segmented voxel-by-voxel (hence the

name) at a cost of over 10,000 graduate student hours. Furthermore,

the renderings from this data may take from minutes to hours, which

restricts the user to pre-rendered views and animations.

Classical Direct Volume Rendering (DVR) for patient images, as in Fig.

2 (M. Levoy 1990), has been limited since its inception by the fact that

there is insufficient information in a single image for truly high quality

rendering. While medical imaging devices have become steadily more

sophisticated and patient data collections have grown to encompass

dozens of interrelated structural and functional images,

segmentations, photographs, and intervention plans, medical

visualization remains in its infancy. Indeed, patient images are still

routinely viewed using the same cumbersome slice-by-slice views (Fig.

3) introduced in the 1970’s when CT scanners first became widely

available.

Model Guided Rendering is a novel framework for medical image

visualization that integrates as much patient data as possible into a

high quality, patient-specific view tailored to a particular clinical task

and rendered at interactive rates. MGR is based on the idea of

merging information from multiple image sources on a region-by-

region basis, using volumetric coordinates from a sparse set of

Fig. 1 Rendering from the
VoxelMan project

Fig. 3 Slice-wise view are still
common in clinical applications.

Fig. 2 Classical DVR from
Levoy’s original papers

2

segmentations for important anatomic structures to guide the

combination.

Model Guided Rendering is being developed through the Medical

Image Display and Analysis Group (MIDAG) at UNC Chapel Hill as a

joint project between the Departments of Radiation Oncology and

Computer Science. UNC Hospital's Radiation Oncology clinic has

provided many of the driving problems that MGR immediately

addresses.

1.1.1 Clinical Applications of MGR

Detailed Anatomic Understanding

Artists and anatomists have worked for centuries on improving 2D

anatomical renderings. For example, Frank Netter's anatomic

textbooks are full of compelling examples of how data can be

'processed' into useful 3D scenes by the human mind, such as the

head and neck illustration shown in Fig. 5 (Netter 2006). Netter’s

illustrations are deemed to be so useful that they are commonly taken

in the operating room for reference during surgery despite two huge

Fig. 4 Model Guided
Rendering of a target patient
using information taken from
the CT volume, a 3D color
atlas, a patient photo, and
several synthetic textures
mapped onto various regions

http://midag.cs.unc.edu/

3

drawbacks: first, they are not of this particular surgical patient’s

anatomy and second, they are not interactive. A major goal of Model

Guided Rendering is to lift the atlas-only restriction on high-quality

medical rendering and generate similarly high quality 3D "Netterly

Renderings" for individual target patients.

Multi-Source Data Visualization for Clinical Treatment Planning

Combining data in smart ways is vital to modern medicine. Clinical

planning, diagnosis, and evaluation can be improved by looking at

data from multiple sources such as anatomic and functional fusion

images for diagnosis, or longitudinal imaging taken for adaptive

radiotherapy (ART), or by comparing a patient’s traits to various

normal and abnormal distributions. MGR provides a framework for

bringing the same kinds of multi-source improvements to a broad set

of potential clinical tasks, such as external beam radiotherapy

planning or virtual endoscopy.

In general, image guided clinical treatment planning revolves around

understanding relationships between anatomic features in space and

across time. MGR provides a number of tools for displaying

longitudinal shape change as for ART, modality relationships as for

image guided biopsy, and relationships hidden or deep features in

relation to observed features as for patient setup or forensic analysis.

For surgical planning, for example, major blood vessels and nerves can

be highlighted in ways that make them avoidable, whereas for

radiation treatment planning, those structures are radioresistant and

are usually ignored, but radiosensitive structures must be easily

identified.

1.1.2 Model Guided Rendering

Medical visualization technology has been relatively dormant since

the brief explosion of interest in volume rendering in the early 90s.

Since then, 3D rendering for medical images has found niche

applications where it can be quite effective, such as virtual

colonoscopy (Fig. 6). But rendering for general applications has never

been able to adequately portray complex anatomy because it is

Fig. 5 Anatomic illustration
from Netter with intuitive
shading and composition.

Fig. 6 Virtual colonoscopy is
successful because it reduces
3D data to a few important
surfaces.

4

computed on a voxel-by-voxel basis. That is, classic DVR relies entirely

on surface estimates from the local gray-scale value alone. This is

equivalent to relying on grayscale value alone to segment an image, a

process that is known to require additional or “a priori” information to

be generally successful. Extending volume rendering by adding

additional information through a “transfer function” tends to be an ad

hoc and non-generalizable method to solve this problem.

On the other hand, high-quality medical rendering systems such as

VoxelMan require a huge investment in “scene priors”, that is,

information about features and relationships in the scene that allow

the renderer to create a focused, understandable image. Typically

there is not enough time to carefully hand-edit an expansive set of

scene priors for individual patient images. However, modern patient

data collections can provide us with an abundant source of scene

priors. Table 1 shows a few examples.

PATIENT AND ATLAS SOURCES PROVIDE SCENE PRIORS FOR

Partial Segmentations Object type, orientation

Multi-modal scans Likely structures that are invisible
in a particular modality

Longitudinal and related scans Shape relationships over time or
over populations

Shape and intensity statistics Normal features

Patient photography, thermography,
endoscopy

Color, texture on and near the
surface

2D and 3D color atlases Likely color, texture of normal
anatomy

Registration fields Motion

Dose distributions Dose to at risk anatomy

Model Guided Rendering is a framework for quickly bringing a large

number of scene priors to bear on a patient-specific rendering by

combining information from multiple sources. From the combined

scene information, MGR derives a notion of what the scene should

look like, what is shown, and what is important about it for a

particular application. Then it presents and highlights the important

structures where the information is clear, but where the information

is insufficient or uncertain, MGR turns to non-patient-specific sources

to make educated guesses about how that region is likely to appear.

Table 1 Some example uses
of various image sources in
a patient data collection.

5

The sources may all be in different spaces, so methods from image

analysis are leveraged to assign explicit relationships between 3D

regions in various sources. MGR relates images to each other in two

ways: by volume filling registration fields or according to regional non-

linear transforms derived from medial object coordinates.

Externally computed registration fields such as are used in (Davis, et

al. 2004) are a common tool for studying longitudinal shape changes

in ART. Such deformation fields provide a key input to MGR’s scene

composition methods, both for ART-relevant animations and by

tailoring deformations to tasks such as describing how anatomic

structures might move under various forces so that they can be

“retracted” rather than simply clipped away when they occlude other

important features.

M-reps (Pizer, et al. 2008) provide a natural basis for the region-by-

region mappings required by MGR’s appearance methods. They

provide both intuitive volumetric coordinates (i.e., (u,v,t) = (along,

around, through)) and volumetric correspondence across a

population. Additionally, semi-automatic m-rep based segmentation

is commonly applied in our clinical pipeline (Fig. 7). M-reps are used

to identify and parameterize a few important anatomic structures in

the scene with a minimum of manual editing, which defines region-by-

region mappings across the multiple disparate image sources. Medial

object-coordinates allow the renderer to work on an object-by-

object basis rather than a voxel-by-voxel basis. This is a key insight

for approaching the goal of high-quality rendering without exhaustive

segmentation.

1.1.3 Scene Design Technologies

Because deep anatomy is very complex, a 3D visualization will only be

useful if structures less significant to the current task can be

suppressed while those structures that aid understanding are

emphasized and clearly labeled. In the context of a 3D patient image,

this problem can be considered as two ways of relating apparent

anatomy to occult anatomy, i.e., those features that are either hidden

by modality or occluded from view in space or time. Addressing such

hidden features are two domains where artistic illustration

particularly excels relative to computed visualization.

Fig. 7 Implied surfaces of m-
reps fit to anatomic structures
in the abdomen.

6

1. Anatomy is visually labeled – structures are colored and textured

intuitively so that the viewer can understand what they are seeing

in the scene. Monochrome 3D imaging in particular inherently

loses this visual information.

2. Shapes and relationships between anatomic structures and

regions that are relevant to the task at hand are exposed so that

the viewer can see what they need to see in the scene. Classical

DVR has very few tools to simulate this.

In the classic paper on computer assisted technical illustration

(Seligmann and Feiner 1989), these two concepts are called

respectively design of appearance and design of composition. For

the purposes of MGR, intuitive appearance and clear composition is

the very definition of the term “high quality rendering” used earlier.

MGR’s key technologies can be broadly divided into methods for

assigning scene appearance and methods for scene composition.

MGR addresses appearance with algorithms that leverage multiple

data sources to shade regions for understandability. MGR’s key

appearance technologies are scene catalogs, solid texture mapping,

3D color transfer and texture synthesis, and 2D color transfer.

The scene must be composed to focus attention on important

structures for this patient, for this problem (Fig. 8). MGR’s key

composition technologies work either by clipping the volume to

eliminate objects that obscure the view or by deforming the volume

to move occluding structures out of the way. Netter uses a

combination of the two approaches, sometimes removing occluders

completely, sometimes showing a cut and peeling a surface away to

keep context. Volumetric deformation further extends to the general

problem of volumetric animation or volume morphing, which can be

used to indicate shape changes over time or shape variance relative

to population statistics.

1.1.4 Key Appearance Technologies

Scene Maps

MGR is based on the idea of object-coordinate driven shading, but the

rendering engine still works in world or voxel coordinates. Medial

models are not particularly amenable to doing such transformations

Fig. 8 Photoshopped example
of how scene composition
addresses the issue of seeing
internal structures while
preserving context.

7

directly, but MGR Uses m-reps only implicitly – to generate world-to-

object (x2u) and object-to-world (u2x) maps from corresponding

surface and medial positions. These maps contain at each sample the

combined information from any image analysis preprocessing. Each

voxel is assigned a variety of feature channels such as object label,

model coordinates, local directions, and local statistical variation from

atlas shapes and intensities. Simple maps representing a single object

related to a single image can be combined into a comprehensive map

for all the objects in a scene, called a “scene catalog”. Even a

relatively simple scene catalog can provide the rendering engine with

much more information than the raw data alone.

These scene catalogs are organized for immediate reference during

rendering and provide a fast method for moving back and forth

between whatever coordinate systems – object, world, or screen – are

appropriate for a particular part of the rendering pipeline. Computing

and using such maps dynamically is a key component of many parts of

MGR’s shading algorithms.

High quality Volume and Surface Rendering

Previously, volume rendering has only taken information from a single

source, the patient image. It then attempts to visually imply anatomic

structures by assigning colors based on increasingly complex local

transfer functions. (See (Kindlmann, et al. 2003) for example) The

simplest and most intuitive means of displaying anatomic features, by

applying intuitive anatomically based textures, is incredibly difficult to

implement in the classical framework.

MGR is a suite of methods that can integrate data from many sources,

such as patient images from different times or devices, segmentations

or registration fields, color atlas and anatomic textures, to synthesize

a single high quality view. The scene catalog provides a mapping

between the underlying anatomic structures in a scene and the

various possible sources for assigning regional textures. Given the

parameterization discussed, simple oriented solid texture mapping

from 3D or 2D textures into 3D regions or 2D surfaces follows

naturally: library textures can be assigned according to object label,

and then oriented according to local object-coordinate derivatives.

These same orientations can be used to enable sophisticated lighting

from normal maps for solid textures.

Fig. 9 Synthetic 2D and 3D
textures mapped onto target
regions in a patient image.

8

Color Mapping from 3D Images

It is unlikely that MGR will ever get a patient-specific empirical color

volume as input because a clinician is unlikely to actually section their

patient. However, normal anatomy can be approximately visually

labeled in a target patient by collecting information from a color atlas

such as the Visible Human and then mapping into the patient space

using corresponding regional coordinates in both the source and

target image (Fig. 10). This amounts to rendering certain regions not

from the grayscale data directly, but from an altered version of some

empirical or pre-rendered atlas color volumes that has been deformed

to fit this patient.

3D color mapping is the primary candidate for fast change of

coordinates using the scene catalog. Given a scene catalog with

forward and backwards transforms, this becomes an extremely local

and parallelizable problem. The basic algorithm for shading a pixel at

target(Xtgt) is as follows.

1. Convert Xtgt to model coordinate U

2. Convert U to Xsrc in the source image

3. Apply the color from source(Xsrc)

This concept extends naturally to the idea of mapping any values from

one spatial volume to another, for example, pulling information from

a 3D functional image or statistical distribution and then making

shading decisions based on both the base modality and any additional

information. This supports visualizations such as highlighting voxels

corresponding to regions with a high likelihood of pathology in fMRI.

The concept further extends to the idea of including visual estimates

for not for just color but for anatomic structures that cannot be seen

in the underlying digital image. For example, although nerves, smaller

blood vessels, or lymph levels are invisible in CT, having a visual

estimate of their position can be useful to a clinician who otherwise

has to make position estimates based only on collections of 2D slices.

Models of these occult structures, based on population statistics, can

be included in model-based rendering, albeit in such a way that they

are clearly identified as structures that are only likely to be present

but not guaranteed to be so.

Fig. 10 Top, color atlas
mandible. Bottom, atlas colors
transferred to a target patient
according to object-
coordinates.

9

Supporting Guided Texture Synthesis

Atlas-based rendering as described above can be thought of as a very

simple example of a probability-based rendering: atlas textures show

a "most likely" appearance. Beyond color mapping from normal atlas

images, guided texture synthesis offers a considerably more

sophisticated method for probability-based rendering. Guided texture

synthesis enables normal as well as abnormal and non-atlas structures

to be rendered with textures appropriate to a target patient’s

condition as determined from prior clinical knowledge or statistical

estimates. That is, lesions obvious in the gray image might be

rendered to look pathological, and regions with clinically identified

cancers might look cancerous. In general, unexpected structures or

structures with abnormal data values can rendered to reflect that.

Relevant image interpretation, such as object label, local directions

(i.e., ∇U = (du,dv,dt) at each voxel), and variation from normality can

be exported as feature channels directly to solid texture synthesis

modules and the resulting space filling oriented texture appropriate

for this patient can be incorporated seamlessly into the view. MGR

currently works with the exemplar based algorithm described in

(Kabul, et al. 2010) but could also work with procedural methods.

Color Mapping from 2D Images

Mapping patient photos into the rendering, as shown in Fig. 11, allows

the user to visually relate surface and deep features. The photos may

come from visible light, thermography, or another modality.

The photographed surface is identified in the volume image using

model coordinates. Then color information from the corresponding

photograph is mapped onto those voxels using a projective or

cylindrical transform depending on the camera arrangement.

Cylindrical maps can be collected using specialized hardware or

synthesized from multiple planar camera images. Multiple planar

camera images can also be selected individually by comparing the

angle between the view direction and the surface normal, by time of

capture, or by both criteria.

Color mapping from 2D images has applications in diagnosis, planning,

and procedure setup. Thermographic images could be used for vein

based (“near surface feature”) patient setup. Interpolating across

serial patient photos using the volume data as an alignment scaffold

Fig. 11 An image of the author
mapped onto a target patient
scan

10

can be used to track surface features such as changing lesions or skin

reactions to radiotherapy. Using uncalibrated photos of the patient

such as might be taken for charting would require an algorithm for

aligning 2D and 3D landmarks, but the problem then reduces to the

calibrated planar camera case. Using images taken from tracked

cameras during endoscopic procedures could provide an additional

source of interior color information and serve as the basis for novel

views based on endoscopic data but relieved of the burdensomely

narrow field of view.

1.1.5 Key Scene Composition Technologies

Importance Clipping

With most classical DVR, the user can rarely see what is actually

important in the scene. The standard method of surface finding by

examining local gradient magnitude is a poor proxy for importance.

This has recently been addressed by using explicit data segmentation.

“Importance rendering” is the term used by (Viola, Kanitsar and

Groller 2004) to describe a kind of object-based region-of-interest

(ROI) clipping, where voxel opacity is computed according to an

“importance” factor determined by voxel-wise pre-segmentation. In

MGR a similar function is implemented to “disocclude” importance

ranked regions, so that relevant features can always be seen without

giving up local context information. Fig. 12 left shows a standard

pseudo-colored region of interest in the male pelvis. The objects-of-

interest, the bladder, prostate, and rectum are completely hidden by

the intervening tissue. On the right is an importance clipped scene,

where those unimportant intervening voxels have been suppressed.

Whereas Viola relies on exhaustively pre-segmented data, in MGR

importance regions can be assigned dynamically not only to anatomic

shapes, but to suspicious regions according to probability

Fig. 12 Left, a standard volume
rendering of a region in the
pelvis, middle, the same region
with the data occluding the
prostate and bladder
dynamically clipped away.
Right, the same view with the
planning position of the objects
overlayed as contours.

11

distributions, or to dynamic and interactive shapes such as an

“importance flashlight”. MGR’s algorithms also extend to

hierarchically ranked objects.

Furthermore, while volume ray-tracing such as Viola uses can render

at interactive rates only on specialized hardware, MGR’s

implementation of the importance clipping algorithm works at

interactive rates on even modest hardware. The implementation is

related to methods for computing “shadow volumes” for tiled

surfaces, wherein the dark-side of a closed surface is extruded away

to infinity along the contour edges and then the stencil buffer is used

to track which screen fragments are shadowed according to that

particular light source and that particular object. MGR’s method is

called “importance stenciling” and relies on a similar idea. Important

objects are extruded towards the camera and this “importance

shadow” is stenciled against every voxel as it is projected onto the

screen.

Volumetric Animation

Deformation fields can be used to drive surface and volumetric

interpolations for animation. Visualization of longitudinal anatomic

change is particularly interesting in the context of ART for showing

how the daily changes in anatomy will affect the expected dose

distribution (Fig. 13). Deformation fields can also serve as models of

how to “retract” occluding anatomic structures as a different, more

organic kind of importance rendering. Few methods have been

proposed for 4D volume morphing, so this is an interesting and

unexplored research area in its own right.

1.1.6 Implementation

Beyond appearance and composition there is an implicit third

constraint on MGR: speed. While none of the key technologies

discussed depend explicitly on a particular DVR framework, our

C++/OpenGL library of the core MGR functions, mgrView, is based on

rasterize-and-blend DVR (Drebin, Carpenter and Hanrahan 1988).

Rasterize-and-blend DVR allows the complex, non-linear mappings

such as the world-to-object transforms to be moved onto the graphics

accelerator, where they can be done very quickly. Rasterize-and-

blend DVR has traditionally been limited in quality by the fixed

Fig. 13 Interpolating between
two daily patient images
according to a registration field
gives a smooth volumetric
animation of anatomic change
relative to a fixed dose
distribution (red overlay).

12

functionality graphics pipeline, but recent improvements in volume

texture representations and programmable shaders have alleviated

those restrictions. mgrView can achieve interactive rates for complex

volumetric scenes on laptops and inexpensive workstations.

mgrView is wrapped in an extensible GLUT/GLUI (Radamacher,

Stewart and Baxter 2006) user interface, but it could be embedded in

other windowing environments such as UNC’s in-house clinical

radiotherapy planning tool Plan-UNC (UNC Hospital Department of

Radiation Oncology 2007). mgrView also includes a variety of default

routines for frame grabs and file readers and writers, but the code is

not tied directly to any particular data representations. mgrView has

also been designed to be flexible with respect to future technology

extensions such as virtual or augmented reality for online image

guided procedures like image guided biopsy. mgrView also includes a

comprehensive user guide detailing both its usage and its algorithmic

implementations.

The next page provides a short introduction to mgrView's

programming format for interested engineering-oriented readers of

this dissertation. It can safely be skipped by other readers.

1.1.7 Thesis

Image segmentation via medial shapes provides an effective basis for

guiding context-appropriate shading in 3D medial image display by

supporting regional color mapping from library or synthesized solid

textures, cross-modal images, and atlas data sources.

Precomputing a global “scene catalog” that collects multiple local

medial-to-world and world-to-medial transforms enables these

techniques in an interactive object-order volume rendering

framework.

This framework additionally extends other perception-enhancing

effects such as importance rendering and volume deformation to

dynamic scenes.

13

INTERMEZZO: MGRVIEW

mgrView programs are characterized by establishing relationships between images and models,

which directs the rendering engine’s appearance and composition algorithms. In Program 1 three

kinds of objects are loaded, 2D images (textures), a surface file, and a volumetric medical image.

These objects are attached to one another with particular channel labels, such as “source_im” or

“color_im”. Layers are derived from the surface object and

automatically attached as children. The surface and volume objects

are automatically attached as children to the root world object, which

includes them automatically when the window makes the call to

world->glRender(). Derived textures such as the duodenum uvt

coordinates and the volume data gradient are automatically loaded

and attached as sub-objects if they are present in the correct

directories, or they are computed and cached if they do not exist.

A simple example application is shown in Program 1 and the resulting

display is shown in Fig. 14. An appendix walks through implementing

an entire project using and extending mgrView.

// Sample mgrView program
#include "../common/mgr.h"
mgrWindow* mgrw;
char* MGR_DATA_PATH = "../../data/"; char* MGR_PROJECT_DATA_SUBDIR =
"abdomen/";
int main(int argc, char* argv[]){
 mgrRenderable world;
 mgrw = new mgrWindow(argc, argv, &world);
 // -- Load textures --
 mgrImage2 muscle = mgrImage2("muscle2.tga");
 mgrImage2 rugae = mgrImage2("rugae.tga");
 // -- Setup the surface object --
 mgrSurface duodenum = mgrSurface("duodenum.pseudotube.l2.byu");
 duodenum.AttachImage(&muscle, MGR_COLOR_IM0);
 duodenum.SetShader(MGR_SIMPLE_TEX2_SURF_SHADER);
 duodenum.clip_end_caps = true;
 mgrSurface d1 = duodenum.AddLayer(0.9);
 d1.FlipTransform(MGR_COLOR_IM0, Y_AXIS); // Rotate texture
 mgrSurface d2 = duodenum.AddLayer(0.8);
 d2.AttachImage(&rugae, MGR_COLOR_IM0);
 // -- Setup a volume data object --
 mgrImage3 gray = mgrImage3("3301.hires.raw", 512, 512, 64);
 mgrVolume v = mgrVolume(&gray);
 v.images[MGR_SOURCE_IM0]->iw.set(0.55, 0.3); // Intensity window
 mgrw->glStart(); // Start rendering
 return 0;}

Program 1 Sample application code invoking mgrLib to load a gray volume and surface
object. The rendering and default UI is shown in Fig. 14.

Fig. 14 Labeled rendering of
the duodenum from mgrView’s
simple application demo
program

14

1.1.8 Claims

This dissertation contributes the following novel methodologies for

producing high-quality volume visualizations using segmentations of a

sparse set of important anatomic structures to combine information

from multiple image sources:

1. Method for using medial coordinates to guide context-appropriate

shading in medical images by regional color mapping from several

different kinds of data sources

1.1. Method for mapping and lighting library or patient-specific

synthetic solid textures

1.2. Method for mapping from 2D data sources such as patient

photographs

1.3. Method for mapping from 3D data sources such as cross-

modal images or atlas data sources

2. Method for generating such renderings at interactive rates on

relatively modest hardware by precomputing a “scene catalog”

data structure and manipulating it in an object-order rendering

framework

2.1. Algorithms for computing world-to-medial (“x2u”) and

medial-to-world (“u2x”) maps from a set of segmentations by

medial shapes and a data structure for collecting these

mappings together

2.2. Algorithms for using the scene catalog in various ways

through programmable shader hardware to do the mappings

described in (1)

3. Refactored versions of important state of the art volume

rendering methods such as importance rendering and volume

deformation that allow these techniques to be applied in dynamic

scenes

3.1. Object-order implementations for global and local volume

deformation and for importance rendering based on ranked

surfaces

15

1.1.9 Outline

Supporting discussion for these claims is divided according to the

following chapters and sections.

Chapter 1: Overview of Model Guided Rendering

Chapter 2: The Medical Imaging Pipeline

2.1. Review of 3D medical image acquisition

2.2. Review of 3D medical image analysis, including deformable

registration and medial coordinate systems

2.3. Review of classical 3D medical image visualization, including

surface extraction, image-order and object-order direct volume

rendering (DVR), and transfer functions

Chapter 3: Model Guided Appearance for Medical Volume Rendering

3.1. Creating scene catalogs from medial representations

3.2. Object-coordinate based solid textures and dynamic lighting

3.3. Color mapping from 2D patient photos

3.4. Color mapping from empirical or synthetic solid atlas textures

Chapter 4: Model Guided Composition for Medical Volume

Rendering

4.1. Fast volumetric animation

4.2. Fast importance clipping based on importance shadows

4.3. Model-coordinate based surface windows

Chapter 5: Bringing MGR to the Clinic

5.1. MGR’s potential role in medical image applications

5.2. Segmentation, planning, and patient setup in radiotherapy (and

appendix describing how to implement a project with mgrView)

5.3. Augmented endoscopic guidance

Chapter 6: Conclusions & Future Work

6.1. Review of thesis and claims

6.2. Directions for future work, including advanced display and

interactivity

Appendix: Implementing the Planning Under Error View Using

mgrView

16

The mgrView software tool is frequently used to demonstrate

techniques throughout this dissertation. The examples shown in

chapter 2 are all demonstrations of known techniques implemented in

this framework. The regional color mapping methods developed in

chapter 3 are novel methodology and implementation. Chapter 4 is

concerned with extending known volume rendering methods that are

currently restricted to static scenes to interactive or dynamic scenes.

Chapter 5 presents a series of project vignettes that demonstrate how

MGR methods might be applied to clinical problems. The MGR

components used in each project are clearly called out. The appendix

at the end of the dissertation walks through the programming

required to build one of the sample vignettes in Chapter 5 using

mgrView.

17

2 The Medical Imaging Pipeline

Medical images begin with physical devices and reconstruction, which

produce 3D data. This data can be visualized or analyzed as suited to

various clinical applications. This chapter reviews the basic pipeline for

applying medical imaging technology in the clinic shown in Fig. 15. It is

divided up into three parts, each focused on one section of the pipeline.

1. Sources of Medical Images reviews the principles of the

Engineering layer, where medical images are actually produced.

Energy is passed through the patient and a signal is collected. A

variety of hardware devices work across the energy spectrum and

can collect both structural and functional information. The signal is

then processed into an image of the underlying geometry and

filtered to reduce artifacts.

2. The Image Analysis layer, described in the section Interpreting

Medical Images, serves to relate images to other images and to

relate image regions to structures. Relating images to images is

called “image registration” and relating image regions to structure is

called “image interpretation” in this text. The regional model that

MGR uses to relate regions across images is based on image

segmentation using the discrete medial representation (“m-reps”).

3. The section on Data-driven Medical Visualization reviews what I

call the naïve or data-driven Presentation layer. Visualization based

on independent images provides a direct and usually simple view of

the data to the clinician. Classical volume rendering is based on

casting rays through the image, then applying a “transfer” function

to assign a false color to each voxel. Classical volume rendering

forms the basis of MGR’s rendering algorithms.

While automatic image analysis has become steadily more

sophisticated, the results can be cryptically difficult to interpret. The

goal of Model Guided Rendering is to create informed visualizations,

that is, to reorganize the pipeline so that the presentation layer

becomes dependent on the analysis layer.

Engineering

Image Analysis

Presentation

Application

Physical

Reconstruction

Registration

Interpretation

Fig. 15 This chapter reviews the
medical imaging pipeline.

18

2.1 Sources of Medical Images

This section gives a brief overview of the physical and reconstruction

layers of the medical imaging pipeline. The main topics include the

following.

1. Computed Tomography is the most important modality for

radiotherapy planning, and MGR has been conceived largely to

support it. This topic reviews x-ray radiation, sampling and

reconstruction, and sources of artifacts.

2. Other 3D Imaging Modalities such as nuclear medicine imaging,

magnetic resonance imaging (MRI), and ultrasound (U/S) are briefly

discussed at the end of the section. MGR is designed to support

rendering from multiple data sources, and while those sources are

usually serial CT or CT + color textures, the same principles apply

when mapping from other modalities into the rendering space.

These other modalities have various clinical advantages over

radiographs and CT with respect to particular future visualizations

and applications.

A few examples of using mgrView to load and create simple views are

presented along with the discussions of the various modalities.

However, mgrView’s data representation for images is detailed in the

later chapter on working with mgrView.

2.1.1 Computed Tomography

Computed tomography (CT) is a widely adopted imaging modality with

many clinical applications from diagnosis to procedure planning.

Because it is a 3D modality, data can be presented in a variety of

displays such as axial, sagittal, or coronal slices, off-axis cut planes, or

even simulation of a standard x-ray projection image (called a

"radiograph"). Slice-by-slice views eliminate the saturation and

occlusion common in analog radiographic images and can make

structures with difficult to understand 3D shapes, such as complex

fractures, relatively easier to interpret. For example, in the analog chest

radiograph shown in Fig. 16, the lungs are severely obscured by the ribs,

making them difficult to understand. Digital images such as CT or digital

radiographs can also be windowed to expose 1% density differences,

Fig. 16 Chest x-ray of the
author’s son at one year of age.
The lungs (indicated) are
extremely obscured by the ribs
both in front of and behind
them.

19

which provides relatively higher contrast resolution then analog films.

Moreover, digital data can be easily post-processed at a variety of

levels, from edge enhancement to data labeling (as described in the

next section on image interpretation). Modern fast CT scanners can

create time-varying or “4D” images, which are very valuable for

studying motion in structures such as the heart or lungs.

In MGR’s target domain of radiotherapy planning, the CT image

provides a physically and geometrically accurate basis for therapy

planning. Magnetic resonance imaging (MRI), for example, has greater

contrast for pathologies, which is useful for diagnosis, but it gives no

information about x-ray attenuation and suffers from innate field biases

that can create geometrically incorrect images, limiting its uses for

planning.

INTERMEZZO: LOADING 3D DATA INTO MGRVIEW

Many of the example images produced throughout this dissertation

were generated using mgrView's built-in functionality. This intermezzo

shows a short C++ mgrView program used to load a CT image generated

by UNC’s radiotherapy planning system “Plan UNC” (PLUNC), window it

for soft tissue resolution, and display it. The code shown in Program 2

produces the results shown in Fig. 17. Note that only four lines of the

program are actually scene dependent: the file is loaded, and a new

volume object is instantiated and attached to the ui and the rendering

root. The rest of the code simply sets up the project.

// Sample mgrView program to load an image
#include "../common/mgr.h"
mgrWindow* mgrw;
char* MGR_DATA_PATH = "../../data/";
char* MGR_PROJECT_DATA_SUBDIR = "pelvis/";
int main(int argc, char* argv[]) {
 mgrRenderable world;
 mgrw = new mgrWindow(argc, argv, &world);
 // -- Scene dependent code --
 mgrImage3 gray = mgrImage3("3106.gray.pim",
 512, 512, 81, vec3(0.098, 0.098, 0.3) };
 gray.iw.set(0.1, 0.3);
 mgrVolume v = mgrVolume(&gray);
 mgrw->glStart(); return 0;}

Program 2 A simple mgrView program to to load and display a raw CT
image shown in Fig. 17.

Fig. 17 A default view of the
male pelvis CT image loaded
using the mgrView script shown
in Program 2 with and without a
reference slice.

20

X-Ray Radiation & CT Reconstruction

X-rays are high energy photons than can penetrate solid objects.

Different types of material attenuate x-ray radiation at different rates,

so measuring the amount of x-ray radiation that passes through a solid

object shows the radio-density shadows of structures inside of the

object. Wilhelm Conrad Röntgen (Röntgen 1896) is considered to be

the first person to discover x-ray radiation and demonstrate its potential

medical applications (Fig. 18).

Projection x-ray images, called "radiographs", are a common diagnostic

tool in medicine. In projection radiography, the subject is placed

between an x-ray source and a film or digital sampling plate. X-rays

passing through the subject are attenuated more in dense material such

as bone, so the collected image is less exposed where those regions

project onto the plate than it is where muscle or fat tissue regions are

projected. Since most radiographs are viewed as "negative images",

areas of low exposure become the brightest features in the image. As

with all shadows, occlusion problems happen when more radio-dense

objects such as bone obscure other structures both in front of and

behind them (Fig. 16).

Computed tomography is an attempt to address obscuration and

occlusion issues with projection x-rays by reconstructing the entire 3D

interior of the subject. The x-ray attenuation factor of different

materials is characterized by a density-weighted attenuation coefficient

called µ. The calcium in bone has a very high µ, whereas air has a

relatively low µ. X-ray radiation attenuates as a function of its initial

energy and µ of the material that it is passing through according to Eqn.

1. Sampling the total attenuation of a particular x-ray energy at many

angles and offsets about a single plane through the subject produces a

large linear system that can be solved to recover the interior 2D array of

attenuation factors. Repeating this process for many planes produces a

3D array of attenuation factors.

The total attenuation of the x-ray radiation along a single path is the

exponentiation of a line integral of individual attenuation factors along

the path. In the logarithmic space of this function, the total attenuation

along a path is a linear combination of the attenuation factors at each

sample along the path. This arrangement of the data as linear

combinations producing sums at various angles and offsets is called the

Fig. 18 Radiograph of the hand
of Röntgen's wife from the late
19th century.

𝐼𝑡 = 𝐼0e− 𝜇𝑠𝑑𝑠

Eqn. 1 Formula for x-ray
attenuation through tissue with
local attenuation µ along a line
integral parameterized by S

21

Radon transform of the data. The goal of CT reconstruction is to

compute the inverse Radon transform of the system. In filtered back

projection, each output profile is filtered according to the amount of

blur known to be introduced by the detectors (the "point spread

function") and by the smearing step that follows, and then the result is

“smeared” back along the original sampling line. The composite output

from smearing all of the profiles is the reconstruction of the plane. Fig.

19 shows a single-slice example of forward and inverse Radon

transforms applied to synthetic data1.

The original work on reconstruction from line integrals was developed

in the 1960’s by (Cormack 1964), based on much earlier work from

(Radon 1917). In 1972 Godfrey Hounsfield created the first single-slice

CT. Hounsfield’s scanner (Fig. 20) took several hours to collect data and

several days to do the reconstruction. CT machines became widely

available in the 1970s. Recent advances have focused on resolution,

speed, and gating for 4D motion images.

Spatial Resolution

CTs are digital systems that use analog-to-digital converters and

produce sampled data, so they are subject to additional constraints on

resolution and dynamic range. Modern CT scanners typically produce

images on a regularly sampled grid with 512 x 512 x ~100 samples. For

the abdominal, pelvic, and head and neck scans which form the basis of

the later MGR case studies, the in-plane field of view (fov) is ~50cm and

can span 30cm or more in length; this leads to a grid spacing of

approximately 1mm x 1mm in-plane with 3mm planes (pitch). For

head/brain scans, the field of view can be much smaller, so the spacing

can be substantially denser.

CT is considered a potentially harmful procedure because it exposes the

patient to a relatively small but non-negligible dose of the same kind of

damaging radiation as is used in external beam radiotherapy. The more

exposure, the higher the spatial resolution that can be achieved, so

balancing exposure with medical needs is a serious issue.

1
 Using Matlab's "radon" and "iradon" functions. Matlab is a matrix math

program developed by The Mathworks (www.themathworks.com). Because 3D
images can be understood as 3D arrays, Matlab is well suited to manipulating
such data structures. Simple-to-interpret Matlab functions are pointed out as
examples in relationship to several topics throughout this dissertation.

Fig. 19 Top, source image with
color representing an intensity
at each spatial position.
Middle, Radon transformed
data with color as the total
intensity along a profile with a
given angle and offset. Bottom,
the image reconstructed by
applying the inverse Radon
transform to the transformed
data. (Images from
http://www.physics.ubc.
ca/~mirg/home/tutorial/fbp_re
con.html)

Fig. 20 Hounsfield’s original
prototype CT scanner (from
Wikipedia).

y

offset

angle

x

22

The individual volume samples of any 3D image are called voxels

(‘volume element’, as a pixel is a ‘picture element’). If the sampling grid

has cubic voxels, the voxels are called isotropic; otherwise they are

anisotropic (Fig. 21). In the examples throughout this text, the in-plane

dimensions are referenced as ‘x’ and ‘y’ and the out of plane dimension

as ‘z’, or as X in general for an (xyz) world-space coordinate vector. The

voxel indices are referenced as ‘i’, ‘j’, and ‘k’ for rows (x), columns (y),

and slices (z) or J for an (ijk) voxel-space coordinate vector.

Converting back and forth from world-space coordinates X to indices J,

called X2J and J2X functions here, requires two additional pieces of

information, the size of each voxel with respect to distances in world-

space, called S, the world-space position of an origin, typically O = J2X(0,

0, 0). Given this information, X2J and J2X can be written as in Eqn. 2. If

world-space origin is set to (0,0,0) and the spacing is such that the

largest world-space coordinate of the data is assigned to 1.0, then the

data is said to be represented in the “unit cube”, as our clinical

modeling software encodes coordinates. The unit cube coordinate

system is useful for many tasks, but it can be problematic when

attempting to register data with different coordinate systems. If the

coordinate system is left handed (the y-axis has flipped sign), as our

clinical planning software encodes images, this can be represented by

multiplying S by (1, -1, 1) and adding (0,1,0) to the unit scaled O. If the

sample directions are not world-aligned, an additional rotation matrix

can be attached to the formulae.

Value Resolution

CT intensity units, the density-related attenuation factor at each voxel,

take their name from Hounsfield. Hounsfield Units measure the ratio of

the local attenuation factor in a particular tissue compared to the

attenuation factors of air and water (Eqn. 3). Hounsfield units range

from -1000 to 3000 (12 bit range). Some important HU values are

shown in Fig. 22.

When visualized as slices or volumes, CT visualizations typically follow

the "bone is brightest" convention from radiography. It can be difficult

to visually distinguish nearby values from the 4000 possible levels,

particularly since there are only 256 (8 bits) of gray value difference on

standard display devices. Since there are 12 bits of possible HU values,

this means that 16 HU values are binned together at every intensity

Fig. 21 Voxel representation
(from (Borland07))

J2X(𝐉) = 𝑂 + 𝑆 ∗ 𝐉

X2J(𝐗) = (𝐗 − 𝑂)/𝑆

Eqn. 2 Basic world-to-index (X2J)
and index-to-world (J2X)
transforms.

1000
air0H

0Hx

2

2 








xHU

Eqn. 3 Conversion factor
between x-ray attenuation (µ)
and Hounsfield units (HU)

Fig. 23 The same view as in Fig.
17 intensity windowed with a
lower minimum threshold.

Material HU

Air -1000

Fat -80 to -40

Water 0

Soft Tissue 30 to 60

Bone 100 to 3000

Fig. 22 Approximate ranges for
x-ray attenuation in Hounsfield
units (HU) for common
anatomic image values.

23

level that can be shown on a standard display. However, it is

straightforward to enhance the value resolution by picking out a

“window” of intensities around soft tissue, for example, and expanding

that range to encompass the entire 8 bits of display resolution. The

tradeoff with this is that small intensity windows can substantially

enhance noise. Windowing an entire volume can be quite expensive if

done on the CPU. This is typically obviated by windowing only a single

cut-plane at a time. In mgrView, windowing the entire volume can be

done immediately using the computer's graphics hardware.

Artifacts

While CT has considerable advantages over standard analog

radiography, it also has some disadvantages. Because it is a digital

format that requires algorithmic reconstruction to convert the sampled

signal on the machine into an intuitive spatially organized format, it can

have artifacts and sampling problems that are not present in analog

radiography. Artifacts develop when the underlying physical and

algorithmic assumptions are broken. Broken physical assumptions such

as non-narrow-beam x-ray sources or variable geometry between

source and detector can lead to blurring and ringing. Broken

algorithmic assumptions such as patient motion, extremely dense

materials (e.g., metal fillings or prostheses) that cause "photon

starvation" in their shadows, and sharp or thin objects that produce

individual voxels with material of significantly different densities can all

cause the characteristic starburst patterns shown in Fig. 24.

2.1.2 Other Modalities

Fig. 25 overviews a variety of other 3D medical imaging modalities

covering different parts of the EM spectrum and different signaling

methods. Different modalities are better or worse at detecting

different phenomena. Whereas CT always collects anatomic

information, some modalities such as nuclear medicine studies can

show which regions are metabolically active. These functional images

can be very useful for identifying pathologies. While there are currently

no mgrView applications that specifically require non-CT data,

combining CT images with the strengths of other modalities is an

important area of future development. Ultrasound, for example, is

considered non-invasive, can provide decent 3D images in a small field

Signal Type Modality

Reflective Ultrasound

Visible light
 photography

Emmissive MRI (RF signal)

Nuclear Med
 (PET, SPECT)

IR photography

Transmissive X-ray (CT,
 radiograph)

Fig. 25 Common imaging
modalities by signal type.

𝑊(𝑖) =
min(max 𝑖, 𝑡𝑜𝑝 , 𝑏𝑜𝑡𝑡𝑜𝑚)

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚

Eqn. 4. Formula for applying an
intensity window to a value.

Fig. 24 A CT plane showing the
characteristic “starburst” artifact
from metal.

24

of view, supports limited functional scanning (Doppler), and requires

very little equipment compared to a CT scanner. Visualizing online

ultrasound data within the context of more detailed planning images

may be an important tool in image guided biopsy.

This section briefly reviews the strengths of magnetic resonance

imaging (MRI), nuclear medicine, and ultrasound in the context of

potential future fusion data extensions to Model Guided Rendering.

Image stacks from color anatomic sections are also included here as

another kind of 3D medical imaging.

Magnetic Resonance Imaging

Imaging based on gradient field relaxation was developed in the early

1970s independently by Damadian (Damadian 1971) and Lauterbur

(Lauterbur 1973). Magnetic resonance imaging (MRI) measures local

proton density (hydrogen count) and local chemical compositions. As

suggested in the introduction to this section, this leads to exquisite

contrast resolution around soft tissue and makes pathology much

easier to detect. However, MRI contains no electron density

information, so it is useless for the radiation transport calculations

required for treatment planning unless paired with a CT image. An area

of interest for Model Guided Rendering is fusion data rendering using,

for example, an MRI image to assign appearances (pathological/normal)

but using the CT image for anatomic reference geometry.

MRI works by using radiofrequency fields (RF) to align the protons in the

hydrogen atoms of water or hydrocarbons in the patient’s body and

then manipulates the signal to measure relaxation times, which vary by

tissue type. Unlike the high energy x-rays used in CT, this RF radiation

and exposure to strong magnetic fields is thought to be harmless to the

patient.

Functional MRI (fMRI) can be targeted at particular systems and indicate

spatial location of detected activity, which is of particular interest in

brain imaging, but there is also evidence that certain non-brain

pathologies can be identified by unique activation patterns. Diffusion

weighted imaging (DWI) is a special type of MRI that measures the

diffusion properties of tissue. Combining information from multiple

DWI’s can produce a diffusion tensor image (DTI) that describes

directional diffusion with a tensor at each spatial sample. mgrView

supports fMRI images when they are formatted as standard spatial data

Fig. 26 MRI of the author’s
head.

25

distributions. mgrView currently has no support for tensor

visualization, but that is a targeted future application domain.

Nuclear Medicine Imaging

Nuclear medicine imaging (NMI) studies use pharmaceuticals labeled

with unstable tracer elements called radioisotopes that emit radiation

as they decay to a stable state. These pharmaceuticals are metabolized

by targeted systems and then emit localized high energy photons as the

radioisotopes decay. Nuclear medicine studies are functional by

definition. For oncological studies, the radioisotopes are usually

attached to glucose, which radio-labels most cancers since cancers tend

to have higher glucose uptake than normal cells. NM images typically

are very noisy, making them most useful when viewed in conjunction

with another modality with better resolution. While MGR has no target

NMI applications at present, rendering NMI fusion data, such as PET/CT

is a targeted future application domain.

Ultrasound

Ultrasound (U/S) shows echoes off of tissue interfaces in the patient.

The energy that it uses is sound waves above the threshold for human

hearing, in the range of 20kHz to 2MHz. The primary medical

application for ultrasonography is for relatively coarse imaging that

does not require penetrating air or bone, such as prenatal studies (Fig.

28).

Ultrasound has several considerable advantages over CT. It is thought

to be harmless to the patient, it has nearly instantaneous capture rates,

enabling visualization of motion in real time, and the required

equipment is relatively inexpensive and portable, enabling imaging

during procedures without moving the patient.

In radiotherapy, ultrasound is primarily of interest for patient setup,

that is, as a basis for registrations between the real-world insides of a

patient and their planning CT, as in the BAT system (“B-mode

acquisition and targeting”) (Langen, et al. 2003). The main idea is to use

a portable ultrasound device in the treatment room to find target

structures and then to compute an alignment between the patient on-

the-table and the planning CT. While our clinic does not currently use

this method, MGR has been developed with it in mind as a potential

target for multi-source data.

Fig. 28 Ultrasound is frequently
used in prenatal screening,
such as this 12-week image of
the author’s twins.

Fig. 27 Early NMI thyroid scans
from (S. M. Pizer 1967). Top, a
normal thyroid, bottom a
thyroid with high marker
uptake.

t

o

26

Anatomic Photography

Color anatomic slices can be considered as another modality. While it is

unlikely that a target patient will ever be anatomically sliced up, a color

atlas from anatomic sections (Fig. 29) can inform a model guided

rendering by mapping the colors through a scene catalog as described in

the next chapter. The Visible Human data is freely available from the

National Library of Medicine’s Visible Human Project (Ackerman 1998).

Each subject, male and female, consists of both radiological images and

color photographs of the anatomic sections.

For the female data set used in the default color maps described later,

the cryosections are at 0.33mm in-plane resolution, with three slices per

millimeter. For MGR’s color mapping applications, structures in the

Visible Human color sections were segmented manually, but similarly

high resolution radiological MRI and CT images are also available for

analysis, though they are not simply aligned with the color data. Given

a registration between the data sets, this would provide another useful

sample fusion data set.

Other types of less invasive anatomic photography, such as external

patient photography or thermography, or internal endoscopic imaging

are further discussed in the section on color mapping from

photographs.

Fig. 29 Color images of gross
anatomic sections, such as this
slice from the Visible Human
can be used as a color atlas for
MGR’s color mapping
algorithms.

27

2.2 Interpreting Medical Images

There are two main concepts in the Model Guided Rendering taxonomy

of the image analysis component of the imaging pipeline: registration

and interpretation. Each layer provides important inputs for Model

Guided Rendering.

1. Image registration is the process by which collections of images can

be aligned to the same “patient space”. Image registration methods

may be represented either as global transforms with a small

number of parameters2 or with high dimensional local mappings,

and they may be driven according to landmarks or image similarity

metrics. The UNC Hospital radiotherapy clinic routinely deals with

time series CTs as patients are scanned repeatedly during an

ongoing treatment protocol, and aligning cross-patient or cross-

modality images follows similar procedures. Model Guided

Rendering uses information from image registrations primarily as a

mechanism for animating anatomic shape change.

2. Image interpretation is about assigning anatomic labels to image

regions. A simple interpretation is a label volume for an image

where individual voxels are marked according to which category

they belong to, prostate, not-prostate, etc. Such image

segmentation can be done by hand or automatically by a variety of

methods. One method is to use image registration tools to register

an image to an already labeled “atlas space”, and then to use that

mapping to pull the atlas labels back to the target image. The

interpretation method adopted in our clinic and used by MGR is

based on segmentation by statistical deformable shape models

(SDSMs). Here the term “interpretation” extends the basic idea of

segmentation. Interpretation involves understanding not only the

local label of an image region, but also the orientation and other

properties of the underlying structure. Model Guided Rendering

relies on image interpretation from discrete medial representations

(“m-reps”) to shade objects according to their function.

2
 Low parameter count in contrast to Fourier coefficients, which are global

transformations, but provide what is here referred to as a local level of detail.

28

2.2.1 Image Registration

Target applications that require understanding anatomic change, such

as adaptive and image-guided radiotherapy (ART, IGRT) (see (Foskey, et

al. 2005) for a useful overview), require a framework for accurately

mapping anatomical objects from serial images taken over several

treatments into the same coordinate system as the planning or other

reference image. The most common mappings are global rigid

transforms, but current research activity is aimed at developing

practical and reliable methods for creating space-filling non-rigid

mappings. Our clinical image registration software, ImMap and its

variants, can generate both global and local registrations. Visualizing

registration relationships between images is one of the mgrView

program vignettes presented later in section 5.2, MGR Applications in

Adaptive Radiotherapy.

Global Transforms

Rigid image-to-image registrations can be expressed as a global matrix

transformation. Positions in the space of the target image can then be

passed through this matrix transform to find the corresponding

positions in the source image. Rigid and more general affine transforms

can be derived algorithmically for 3D point correspondences, as do both

Procrustes3 (which uses explicit correspondences) and Iterative Closest

Point (ICP, see Fig. 30) (Besl and McKay 1992) (which computes both the

transform and the best set of correspondences for two unlabeled sets).

Rigid image transforms are most appropriate for within-patient

registrations, where images change mostly in pose from day to day.

Similarity (rigid plus scale) or affine (rigid plus scale and shear)

transforms are more useful when studying cross-patient registrations.

For dense intensity correspondences such as photo-constancy or mutual

information, a global registration can be found by optimizing over the

elements of the transform matrix according to an image similarity

metric.

An important application of global transforms is to align a 3D planning

image with a 2D image of the patient taken at treatment time. Such

visualizations can be used to verify that the patient is set up correctly on

the therapy machine. This is typically done manually, using lasers to line

3
 Procrustes was a Greek bandit who forced his victims to lie in an iron bed and

cut off their feet to fit his measuring device.

Fig. 30 Parameteric surface to
point data registration from
(Besl and McKay 1992)

29

up the room origin with fixed surface landmarks such as tattoos. In

other procedures such image-to-world alignment may involve a

mechanical device such as a frame physically bolted onto the subject's

head that provides a reference coordinate system (a "stereotactic head

frame").

mgrView has been designed to produce images that combine real world

photography with 3D images. Fig. 31 shows an example of a planning

image transformed and rendered into the space of a 2D photograph.

The later section on color mapping from photographs describes a

method for projecting a 2D photograph into the space of a 3D planning

image and includes some relevant discussion of camera models.

Local Mappings

Non-linear image-to-image registrations4 cannot be expressed

concisely as a matrix transform, so they are typically represented locally

across the field, either indirectly by a set of control points for splines, or

directly by a dense displacement field. Non-linear registrations are

more general than affine registrations because they can capture both

local and global properties (although in practice, they usually only

capture residual local changes after a global registration has been

applied). As with global registrations, local registrations may be feature

driven, such as thin plate splines (TPS) (Bookstein 1989) or the basis

paths used in (Joshi and Miller 2000). Or they may be intensity driven,

such as “optical flow” in 2D (Horn and Schunck 1980) or “demons” in 3D

(Thirion 1998), fluid flow (Christensen, Joshi and Miller 1997), or free

form deformation via B-splines (Rueckert, et al. 2006). ImMap and its

variants use an atlas-based version of fluid flow described in (Davis, et

al. 2004).

4
 The class of affine transforms is indeed linear in homogeneous coordinates.

Fig. 31 Left, a photograph of
our clinic’s phantom, RANDO
(or “Randeau” as he is
sometimes known) on the
treatment table. Right, a
rendering of a CT of RANDO
synthesized from the same
camera point of view and
overlaid onto the photo.

30

A method for interpolating quickly between images according to such a

registration field for the purposes of visualization is described in the

later section 4.1, Volumetric Animation, and is a key method in the

target applications described in section 5.1, MGR Applications in

Adaptive Radiotherapy.

In contrast with rigid or affine registrations, which can be determined

algorithmically, deformable registrations are usually determined by

optimizing a registration metric in a very high dimensional space. In the

simplest case of representing the registration by an independent

displacement vector at every voxel, there will be 3 x the voxel count

parameters to optimize and possibly more if the registration uses

multiple time steps. The registration metric is usually comprised of two

parts, an image similarity function such as sum of square differences

between the source and registered target image, and an irregularity

penalty that attempts to keep the deformation organized and legal

under various definitions. Because of the very large number of

parameters, these regularization terms are usually too simple to rescue

the process from significant problems with local minima. Current

research is frequently focused either on dimensionality reduction

(decomposition into control paths, etc.) or on introducing more

sophisticated and finely tuned regularization terms.

Registration layer information is a useful input to many of Model

Guided Rendering’s algorithms, but it is insufficient for the regional

image-to-image mapping algorithms described later. While registration

of a target image to common atlas coordinates, for example the

Talairach brain (Talairach and Tournoux 1988), can give object-labels to

each voxel, determining qualities such as local orientation requires a

complete object-based volumetric coordinate system fit to each image

region. Such coordinate systems are a natural by-product of the image

segmentation methods described in the next section.

2.2.2 Image Interpretation

The image interpretation input to Model Guided Rendering comes from

a type of deformable shape model. Statistical shape models were

originally developed independently in (Kendall 1984) and (Bookstein

1989) for structures identified by a few important landmarks found in

each of many patient images. Modern statistical shape models for tiled

31

surfaces were proposed in (Cootes, et al. 1993) as a method for image

segmentation.

As with the deformable registration framework described previously,

segmenting an image via deformable shape models relies on a two term

optimization balancing an image match against a model penalty.

However, parameterized shapes are much lower dimension with

respect to the number of training samples usually available, and they

can be restricted to not only a legal (e.g., non-self-interpenetrating) or

regular (e.g. smooth) shape subspace, but to credible shapes (e.g., the

liver is liver-shaped) as well.

As an example of shape credibility, consider a simple image term

consisting only of a threshold based edge finder. As shown in Fig. 32,

an edge-finding segmentation algorithm with no penalty for deviating

from a head-like shape will incorrectly label the sinuses as skin. This

segmentation is legal and smooth, but it is not credible. High

dimensional deformable registrations tend to suffer from the same

class of problems because it is difficult to embed notions of shape

credibility in the regularity term.

Following (Mumford 1994), the image match and model penalty terms

optimized during image segmentation by statistical deformable shape

models (SDSM) can be interpreted as probabilities and the framework is

usually called "Bayesian probabilistic" image segmentation.

The SDSM itself is an object-specific shape model that characterizes

shape change and likely intensities relative to a "typical" instance. The

typical shape usually is taken to be the mean shape of a population of

training shapes, and relative shape changes are encoded as a limited

number of important modes of shape variability. These modes are

derived by applying principal component analysis (PCA) or another

decomposition method on the parameters of the training shapes. This

results in an even lower dimensional parameterization where any

particular shape in the space defined by the training set can be

completely and uniquely identified by a few coefficients to within some

small truncation error. Distances in this space provide a metric for

shape that can be used as the basis for numerical methods of shape

discrimination, comparison, and interpolation.

Fig. 32 A non-credible but legal
skin segmentation with a simple
edge detector.

32

In the context of Bayesian image segmentation, the SDSM provides the

fitting optimization with both the initial shape estimate and a

straightforward metric for shape credibility. In Bayesian image

segmentation, this metric can be interpreted as a prior probability

distribution on shape and is usually called simply the "shape prior". The

SDSM additionally provides the fitting optimization with a coordinate

system for expressing image intensities in model-relative terms. The

optimization, then, becomes a compromise between the shape prior

and the shape suggested by the image intensities. (Fig. 33) shows an

example of an SDSM's initial and optimized fit to a target image.

Shape Models

Many types of shape and intensity representations have been proposed

as bases for probabilistic segmentation, and all have different utility and

drawbacks. In particular, certain types of SDSMs can provide MGR with

an object-centric coordinate system for local image regions. The most

common shape model in the literature is boundary-only, sometimes

called a point distribution model or PDM proposed in (Cootes, et al.

1993). PDMs are, however, insufficient for MGR’s requirements

because they do not parameterize the interior of the object, so they do

not explicitly establish volumetric correspondence between 3D source

and target regions. Such volumetric correspondences are the basis for

the color mapping algorithms that are proposed in the next chapter.

The parameterization used by Model Guided Rendering is the discrete

medial representation called “m-reps” – although the methods could be

generalized to other shape representations with a well defined

volumetric coordinate system. M-reps are well suited to image

segmentation tasks because they capture not only position information

Fig. 33 Fitting a statistical
deformable model to a target
training image. Top, 3D surface
views and bottom, single sagittal
slice views of bladder template
geometry. Left, initial shape
estimate coarsely aligned to a
target training image; middle,
deformably fit to that image; and
right, in the context of the actual
grayscale data. (From (Merck, et
al. 2008))

33

at an anatomic region's boundary but also model-relative orientational

information throughout the region's interior. For the purposes of MGR,

the parameterization handles plausible physical changes such as local

twisting and bending in a way that is naturally reflected by the

volumetric coordinate system.

The m-rep parameterization is described in section 3.1, Creating a Scene

Catalog, but because Model Guided Rendering is a post-segmentation

task, the detailed mechanisms by which data can be automatically

segmented have been omitted. See (Pizer, et al. 2008) for an overview

of the representation and segmentation pipeline, see (Broadhurst, et al.

2006) for a detailed description of the embedded intensity statistics, see

(Fletcher, et al. 2004) for an explanation of the governing statistical

model, and see (Merck, et al. 2008) for a description of the shape

training process.

M-Rep Software

The primary m-rep editing and fitting tool is called Pablo5. Pablo is a

useful tool for developing new Model Guided Rendering scenes. It is

available from UNC’s Medical Image Display and Analysis Group

(MIDAG) under a research license. M-reps are also implemented in the

commercial male pelvis segmentation system MxStruct MP, developed

by Morphormics (http://www.morphormics.com). See section 5.2, MGR

Applications in Adaptive Radiotherapy, for details of mgrView’s shape

representation and supported file loaders.

5
 The program was named based on the following quote from Pablo Picasso –

Computers are useless. They can only give you answers.

Fig. 34 Left, M-rep figures and
sub-figures fit to a kidney and
its internal pyramids and
calyces. The complex nested
volumes and smooth surfaces
are represented with a few
hundred parameters. Middle,
an early MGR image with
detailed internal orientations
generated from this model.
Right, a reference illustration
from Netter.

34

2.3 Classic Medical Image Visualization

The field of medical image visualization is very broad. This section is

focused exclusively on classical single-image visualization methods that

are based entirely on local properties of the data, e.g., by intensity or

derivatives of intensity, or by scene geometry, e.g., distance from the

viewer. This review further restricts its scope to the historical and

methodological influences of Model Guided Rendering. Later sections

discuss precedents for interpretation driven scene design, such as

importance rendering. This section is divided into three topics.

1. A very brief review of surface rendering for medical visualization.

While surface driven visualization methods are generally inadequate

for complex anatomic scenes, a major goal of Model Guided

Rendering is to integrate surface and volume rendering and to use

each where it is most beneficial to comprehension.

2. The topic object-order and image-order direct volume rendering

(DVR) compares ray cast volume rendering as proposed by Levoy

with rasterize-and-blend volume rendering as proposed by Drebin.

Ray casting or “image-order” rendering is the grandfather of DVR

methods, and many of the basic concepts from Levoy map directly

onto the mgrView toolbox. Rasterize-and-blend or “object-order”

volume rendering can be much faster than ray casting because it

relies on graphics hardware acceleration, but it has traditionally

been limited in quality by the fixed function hardware rasterization

pipeline. However, programmable shader hardware has lifted

many of those restrictions, and mgrView’s rendering core is actually

implemented with this method.

3. Independent-image scene design reviews some major naïve

methods for pseudo-coloring such as so called “volume illustration”

and for simple clipping. Many of these image-order methods have

been re-implemented in mgrView as fast object-order methods.

2.3.1 Surface Rendering

Extracting a 2D manifold of data from a 3D data set is an easy to

manage method for isolating certain kinds of important features and

suppressing the rest of the volume data. Virtual colonoscopy, where 3D

visualization is well adopted (Fig. 6), relies on surface extraction for

Fig. 35 Multislice segmentations
(contours) and tiled surfaces
rendered in PLUNC. Stacks of
manually drawn contours are
knit together into target region
surfaces by the “FKU77”
algorithm (Fuchs, Kedem and
Uselton 1977).

35

both the soft pink plastic looking walls and the flythrough camera path

planning.

Surfaces of interest in the volume may be extracted according to purely

geometric methods, such as cut planes, or may rely on data driven

methods such isosurfaces. Surfaces may also come from the

boundaries of manual or automatic image segmentation as discussed in

the previous section. Once extracted, surfaces can be scan converted

into label volumes or be used to compute normals, which are vital for

lighting. Much of the later discussion on volume shading revolves

around estimating local normals in the absence of surfaces for the

purposes of lighting.

Cut Planes

Trans-axial slices through the data are the simplest and most widely

used method for interrogating volume data. Saggital and coronal slices

are also used in some applications, and occasionally cuts in all three

axonometric directions will be combined to explore a particular region

of interest, as shown in Fig. 36. Such views are sometimes colloquially

called “2.5D display”. These simple views are optimal for certain tasks

like slice-by-slice manual segmentation, but they do not provide the

user with very good context information about the 3D shape of the

anatomic structures.

Fig. 36 2.5D view of a CT data
set of the male pelvis with
intersecting axis aligned cut
planes.

36

Axis aligned cut planes were originally used exclusively because it is

particularly simple to sample an axis aligned planar texture from a 3D

data set. Using 3D texturing hardware, however, planes of any

orientation can be sampled just as quickly by simply transforming the

texture coordinates at the corner vertices in OpenGL. mgrView allows

any number of independently positioned and oriented cut-planes to be

attached to a particular scene. Cut plane pose can also be aligned

according to other objects in the scene, for example, to be normal to

the medial axis of a modeled region (Fig. 37).

Surface Extraction

Finding the isosurface of a binary label image or the isosurface of a gray

image with anatomic structures that have distinct values (essentially

segmenting by threshold) is one method for identifying regional

boundaries in an image.

The isosurface method was originally developed at GE Labs and

famously proposed as the “marching cubes” algorithm in (Lorensen and

Cline 1987). The authors subsequently applied the general method

particularly to medical image visualization in (Cline, Lorensen and Ludke

1988). (Cline, Lorensen and Ludke 1988) has nice example of

visualizations of bone, skin, and muscle (shown in Fig. 38), which

happen to be the only anatomic tissue types in CT that are clearly

discernible by scalar intensity alone. Most features in medical volumes

do not have such distinct values with respect to their neighbors, so

isosurfacing is not generally useful. Marching cubes/isosurfacing is

currently not directly implemented in mgrView, but it can be computed

offline using Kitware’s VTK (http://www.kitware.com) or another

package and then loaded as a regular set of surfaces.

Fig. 38 Marching cubes iso-
surface extraction with
different reference values and
views from (Cline, Lorensen
and Ludke 1988)

Fig. 37 A clip plane aligned to
be normal to the along-
direction of the mandible.

37

Surface Lighting and Texturing

Local lighting is typically dependent on combinations of four terms: the

normal direction, the view direction, the light direction, and the local

surface color. Lighting in volume data follows similar rules, although the

normal direction must be approximated because it is not well defined.

Diffuse lighting based on the dot product between the surface normal

direction and the light direction (see (Phong 1973) for the complete

model) provides default lighting for any surfaces displayed in mgrView.

Methods for extending the lighting model to surfaces with solid textures

are described in detail in the next chapter. Other shading models such

as the so-called “Non-Photorealistic” (NPR) tone shading (Gooch, et al.

1998) and cell shading are also implemented for surfaces in mgrView

and can be assigned to regions either programmatically or through the

default UI.

Tone shading, sometimes eponymously called “Gooch shading”, was

originally designed for technical illustrations: hot and cool colors are

assigned to theoretically balance the perceived intensity of the light and

dark regions, so that surface features will not be obscured by lack of

diffuse lighting. The Gooch model is shown in Eqn. 5 and a rendering

from mgrView shown in Fig. 39. Cell shading is a nearest neighbor

version of Phong with only a few “steps” of possible light values.

Contour shading is similar, but it renders only those faces or edges that

are most nearly orthogonal to the view direction (Fig. 40). Contour-

finding is an important part of MGR’s extension of cast shadows to

“importance stenciling” described in a later chapter. mgrView’s NPR

surface rendering modes are based in part on ATI’s white paper on NPR

fragment shaders (Card and Mitchell 2002).

warmcool k
nl

k
nl

I 






 








 


2

1

2

1

Eqn. 5 Formulation for Gooch
tone shading in terms of the
normal direction, n, the light
direction, l, and colors k.

Fig. 39 Gooch tone shading in
mgrView.

Fig. 40 Contours can be an
effective technique for showing
surfaces without occluding the
underlying data.

38

2.3.2 Object-Order and Image-Order DVR

Image-Order Volume Rendering

Among other things, surface rendering suffers from occlusion problems

– surfaces can be hidden behind other surfaces. A partial solution to

the occlusion problem can be found by projecting the entire 3D volume

simultaneously onto the screen. This method, pioneered by (Levoy

ACM88) and extended in (M. Levoy 1990), is known as “direct volume

rendering” (DVR). Levoy’s original methods were based on following

rays into the scenes; this method is variously referred to as “ray

casting”, “image order”, or “backwards” DVR. Image-order DVR can be

most easily understood by considering a set of rays projected from the

eye through the image pixel grid, and passing through the patient data

(Fig. 41). Each ray is sampled along its path, and each voxel traversed

contributes to the shading and opacity accumulated for the ray.

Images from the early Levoy papers were, in many ways, similar to

isosurface renderings. Levoy’s major insight in DVR was recognizing

that regions of high gradient magnitude contained more information

about the internal structure6, so those areas are weighted more heavily

compared to areas of low gradient. This assumption amounts to

noticing that regions of high gradient magnitude tend to represent

surfaces and that the local gradient direction corresponds to the local

normal direction. This is an excellent assumption at interfaces such as

6
 It is unclear whether Levoy originated this idea, Cline suggests that an even

earlier 1986 Höhne paper proposed the same idea.

Fig. 41 A ray is sampled along
its length in such a way as to
cover all voxels (taken from
(Borland07))

Fig. 42 A pseudo-DVR
visualization for radiotherapy
planning from (Levoy VBC90),
also rendered as a white light
hologram in the lobby of UNC-
CH’s Sitterson hall.

39

skin-to-air and meat-to-bone; i.e., those same places where isosurfacing

is particularly effective.

Image order volume rendering is derived from (Kajiya84), which

describes an algorithm for ray tracing volume data (transparent gasses

with interfaces), and from (Kajiya86), which generalizes the method and

defines the ‘rendering equation’, a mathematical formulation for how

objects, appearance properties, lights, occlusions, and transparencies in

a scene can be combined and projected onto an image according ray

casting.

Most widely used research volume rendering engines, such as that in

Kitware’s VTK and its derivatives, VolView and Paraview, as well as

Analyze and MRIcron, are based on ray casting engines. Because of the

common root with physically based rendering, ray cast DVR is very

flexible and can be easily combined with other physically accurate light

transport algorithms, such as lighting, reflection, soft shadows, and

anti-aliasing. Lighting and shadows in particular are very strong shape

cues. Ray cast DVR is also amenable to speed ups like oct-tree traversal

(Levoy’s original proposal), early-exit for opacity saturated rays, and

incremental sweetening by increasing resolution. Because the rays are

independent, ray casting algorithms are easily adapted to multi-

threaded architectures.

Fig. 44 An image from the
original ray-casting core
considered for mgrView.
Effects such as reflections, soft
shadows and super-sampling
can be easily implemented in a
ray-casting framework.

Fig. 43 Interface and rendering
from VolView.

http://www.vtk.org/
http://www.kitware.com/products/volview.html
http://www.paraview.org/
http://www.mayo.edu/bir/Software/Analyze/Analyze.html
http://www.sph.sc.edu/comd/rorden/mricron/

40

However, ray casting is very computationally expensive, and MGR has

significant additional overhead in doing a large number of trilinear

interpolations for external image source lookups. Therefore, without

access to advanced hardware, ray casting’s slowness outweighs its

relative advantages. Fig. 44 shows a view from an early ray-casting

implementation considered for mgrView’s rendering core; it took on the

order of 10 minutes to render a 512 x 512 pixel image.

Object-Order Volume Rendering

An alternative volume rendering implementation originally proposed in

(Drebin, Carpenter and Hanrahan 1988) is to rasterize geometry that

has been assigned a corresponding texture in the patient image, and

then blend the textured geometry together using standard graphics

acceleration hardware (the graphics processing unit or “gpu”). Drebin7

originally proposed cutting through the volume with stacks of planar

geometry (Fig. 45), although other geometry has also been used, such

as Gaussian footprints (“Splats”)(Westover 1990) and spheres or other

curved manifolds. Because this method works in “object-space” rather

than “image-space”, as ray casting does, these methods are sometimes

called “object-order” or “forward” DVR.

To review the basic method:

1. The back-to-front marching order8 is determined by computing the

dot product of the view direction with positive and negative

cardinal directions and taking the min.

7
 Drebin’s original paper is also of interest because it proposes a local maximum

a posteriori segmentation and gradients on that as part of the rendering
process. Thus, like Levoy, the underlying assumed surfaces are made explicit in
the algorithm.

8
 The order can be reversed, from front to back by using a different blending

formula.

Fig. 45 The otter with an extra
wrist bone from (Drebin,
Carpenter and Hanrahan 1988).
When shown this display,
scientists discovered a hitherto
unknown wrist bone. This is one
of the few examples that the
author has been able to find of
volume rendering actually
contributing novel scientific
utility.

41

2. Starting with the back face and moving to the front face (“painter’s

algorithm”), texture a piece of rectangular geometry (a “quad”) the

size of the slice with the volume data samples and project it onto

the screen, using the volume texture to control both the

color/shading and transparency of each fragment9.

Speed-ups such as early exit are unnecessary since operations are done

in parallel; but incremental sweetening can be done by adding

additional samples (e.g., planes) along the rays as opposed to adding

additional rays.

Because this method of plane-compositing maps directly onto graphics

hardware, this method has low overhead and can achieve interactive

rate volume rendering on even modest work stations.10

When these object-order methods were originally proposed, they

suffered from three main problems.

1. Under-sampling oblique paths through the data

2. Limited storage space in video RAM

3. Fixed functionality hardware pipeline not amenable to per voxel

effects such as can be achieved by the “transfer functions”

discussed in the next section

9
 Terminology: A “fragment” is the data necessary to generate a single pixel in

the frame buffer. Pixels are rgba (red, blue, green, alpha, where alpha
measures opacity) image samples; fragments are potential rgba image samples
that include extended properties such as depth and texture coordinates.

10
 For additional insight into how this algorithm works, look at Joe Conti’s

vol3d.m function for Matlab. http://www.mathworks.com/matlabcentral/
fileexchange/4927

Fig. 46 Scenes renderered with
mgrView using 64 planes (left)
and 192 planes (right).

42

The least significant problem is with regularity of sampling. With ray

cast methods, one can regularly interrogate values from the data along

a ray. Compared to a ray perpendicular to the volume sampled evenly

along every voxel, a different ray entering the volume at an angle may

need to take multiple samples within a voxel to achieve the same

spacing. Using axis aligned plane casting, sampling is fixed at each

plane, which means that angled rays will be undersampled with respect

to rays that are perpendicular to the volume face. This is also the

source of the “cornrow effect” sometimes seen at the boundaries of

dense regions, where the edges of the individual planes can be clearly

seen, as shown in Fig. 47.

Cornrowing can be addressed most simply by adding simply additional

planes to the display. However, a more principled approach is to slice

the volume with screen-aligned cut planes, as proposed by (Cullip and

Neumann 1993). Screen-aligned plane casting was originally an

ambitious idea, since it required the volume data to be interpolated in

3D, rather than 2D, and thus required a supercomputer to do at any

reasonable speed. However, within the last few years 3D texture

interpolation has been included on most new graphics cards, and the

method has become quite easy to implement. Each compositing plane

and its texture coordinates are simply rotated by an extra matrix

multiply to be normal to the view direction. The renderer in mgrView

supports either axis or view aligned volume renderering. Cutting the

volume with a set of nested spheres rather than planes can also be used

to normalize the number of volume samples per pixel.

The issue of storage space on the fast video RAM used by the gpu has

been trivially surmounted as faster, cheaper memories became

commoditized over the last few years. The size of the target image has

become essentially irrelevant with respect to object-order DVR for

medical image sizes in our clinic; volumes up to 512 x 512 x 128 fit easily

into texture RAM. Stored as single bytes (truncating 4 bits), such a data

set uses only 33 Megabytes of what is typically at least a 256 Mb store.

Because the image gradient is expensive to sample in real time, the

gradient of the image can be pre-computed for lighting and stored as an

additional 3-channel texture array where each channel carries the

directional difference information with respect to the x, y, and z

Fig. 47 Close up of
“cornrowing” effect at the edge
of a 92 slice volume using
mgrView.

43

directions (Fig. 48)11. This can require an additional 100 Mb, and adding

further high-resolution 3D color images such as the scene catalogs and

color atlases described in the next chapter can indeed stress system

storage if not managed correctly.

Older graphics accelerators implemented a fixed functionality

rasterization pipeline, which restricted the extensibility of object-order

volume rendering. Higher order effects, in particular, intensity

windowing and lighting, are trivial to compute in the ray casting

framework, but they are precluded by the fixed functionality hardware

pixel processing.

With a few exceptions (such as (Dachille, et al. 1998), which proposes

using a simplified look-up table for pre-computed lighting) explicit per-

pixel effects were not deeply explored for object-order volume

rendering until programmable shaders were introduced, and even then

they were not practical until compliant hardware became ubiquitous.

(Westover 1990), who proposed voxel-wise compositing by elliptical

Gaussian ‘footprints’, or volume ‘Splatting’ as it is colloquially called

(Fig. 49), indirectly addresses the problem by using extremely small

elements12. Westover did not focus on this advantage, but because

individual voxels are composited it is slightly easier to approximate per-

pixel shading effects without relying on a programmable shader. For

example, a normal can be assigned to each voxel for lighting purposes.

A splat rendering core was also considered for mgrView (see

subsequent Fig. 119 for an image generated from it). However, the

large number of primitives required to be rasterized made it fairly slow,

particularly since programmable graphics hardware has lifted most of

the restrictions of the plane casting method.

Using programmable shaders, object-order methods can easily achieve

high quality results at interactive rates. The fixed functionality shading

pipeline can be overridden by writing short programs in a c-like

language. mgrView implements programmable shaders in the OpenGL

11

 This technique is used again later for representing local displacement fields.
As an historical side note, (Fuchs and Pizer 1986) suggests using the frame
buffer for (x,y,i) data in their patent for 3D display using a varifocal mirror.

12
 It is also to this paper that I owe the taxonomy of volume visualization

techniques as backwards, forwards, and surface based used in organizing this
discussion.

Fig. 48 The gradient volume of
an abdomen image stored as
rgb channels and rendered
directly with mgrView.

Fig. 49 Image from (Westover
1990) illustrating the effects of
variously sized “splat” kernels.
The kernels in the top row are
too sharp, giving inadequate
coverage of the scene. The
kernels on the bottom row are
too broad, causing unnecessary
blur.

44

shading language (GLSL) (http://www.opengl.org/documentation/glsl/),

but similar results could be achieved using other gpu languages such as

nVidia’s Cg or DirectX’s HSL. Fig. 50 shows the standard OpenGL

graphics pipeline along with annotations regarding how MGR objects

are classified as image or geometry data and noting where fixed

functionality can be overridden by custom vertex and fragment

programs to support various MGR methods. The MGR methods

described in the next two chapters are all designed to be efficient in this

context. That is, they are largely independent of one another and

require only small amounts of data for their calculations. See (Shreiner,

et al. 2005) and (Rost 2006) for details of how the OpenGL pipeline and

GLSL work together.

Any geometric objects such as planes through
the volume or model surface points

Any data sampled on a 2D or 3D grid
such as 2D/3D patient images, textures,
registration fields

Fixed function primitive assembly can be
replaced by “vertex programs” that
change the standard mapping between
vertex positions and scene coordinates.

MGR methods that will be discussed later
include u2x maps, onion skins, and
shadow volumes.

Fixed function fragment operations can
be replaced by “fragment programs”
that change the standard computation
of fragment texturing and shading.

MGR methods that will be discussed
later include color mapping, photo
mapping, volumetric animation.

Fig. 50 Annotated OpenGL pipeline originally found in (Shreiner, et al. 2005).

Using a standard single-source volume rendering shader with intensity

windowing, mgrView achieves frame rates of over 20 fps for 200 slice

standard DVR on a modest laptop with an NVIDIA Quadro NVS 160M

graphics accelerator and over 10 fps for 100 slice DVR on an a standard

desktop workstation with a NVIDIA GeForce 6200 graphics accelerator.

Comparative values for other more complex shader models with color

mapping or volumetric animation are given in later sections and

summarized in the Conclusion Chapter in Table 4.

45

2.3.3 Independent-Image Scene Design

Illustrations are designed to fulfill a communicative intent, such as

showing the location or use of an object. Illustration is based both on

style (called 'appearance' in MGR) and on composition (sometimes

called 'clipping' in the literature). The idea of computed illustration was

first proposed in (Seligmann and Feiner 1989). Though this paper is not

algorithmically interesting, nor are the results compelling by modern

standards (8k polygons in 8 seconds), the paper lays out the important

guiding principles for computed illustration. Seligmann outlines a

language for expressing communicative goals (location, relationship,

property, difference). Then for each goal he describes different design

strategies, which can be, in turn, composed of different styles

(highlighted object, visible context, ghost object at previous location,

annotate). He then uses a test and evaluate process: several candidate

renderings are generated, and then each is evaluated and ranked

according to questions like 'Is the object occluded?' and 'How much

contrast is there between the object and its context?' While MGR does

not rely on such a fully automatic framework for styling and composing

scenes, this core way of categorizing the tasks at hand has been

thoroughly integrated into the design of the framework.

There are two basic “styles” of DVR: “Levoy-like” Superman x-ray vision,

or maximum intensity projection (MIP), which simulates a radiographic

view (sometimes called a “digitally reconstructed radiograph” or DRR).

Following Seligmann, it could be argued that both of these modes suffer

from two main problems besides speed.

1. Understandability – it is difficult to identify important features in

the scene. Scene understandability is addressed by MGR’s

appearance components.

2. Occlusions – it is difficult to focus the view to see relationships

between these features. View focus is addressed by MGR’s

composition components.

These issues are typically addressed in independent image rendering by

designing increasingly complex transfer functions or increasingly

complex geometric dependencies that attempt to implicitly tease out

important anatomic structures by bringing tangential external

information to the scene. In MGR these issues are addressed explicitly

by working in the proper coordinate systems for local anatomic

structures.

46

Independent Image Appearance Design

The goal of assigning appearance in classic volume rendering methods

is to shade implicitly identified regions in a scene so that they are more

easily identified, if not more easily understood. This has typically been

addressed by assigning “transfer functions”. In image-order algorithms,

the idea behind a transfer function is that as a ray traverses the volume

data, it keeps track of what data intensities it has passed through and

accordingly accumulates or modifies the pseudo-color that will be

returned to the initializing pixel. Fig. 51 shows an example of an

impressive rendering and VolView’s user interface for controlling the

transfer function. Pseudo-color transfer functions are not implemented

in mgrView, although there is no particular reason that they could not

be. The detail that follows is to give an idea of what competing non-

multi-source volume rendering methods have to offer in terms of

rendering styles.

As proposed, transfer functions were originally quite simple, e.g., linear

and clamped to a range, much like standard intensity windowing, with

additional surface finding from gradient magnitude. Such transfer

functions can easily be focused on the absolute intensity of voxel with a

direct mapping between value and a pseudo-coloring scheme. For

regions that can be simply identified according to intensity, this is quite

useful – bone (high HU) can be shaded white, and muscle tissue can be

shaded red or pink. Unfortunately, most of the detail that is important

in a scene is not distinct by HU value alone, so a considerable amount of

effort has gone into creating complex and precisely targeted transfer

functions to discover correspondingly complex relationships in the data.

In a sense, the goal of these multi-dimensional transfer functions is to

identify important regions by doing a local on-the-fly data

segmentation according to automatically extracted features (again,

typically implicit surfaces or derived properties thereof like local

curvature (Fig. 52)).

As the controls become more complex, the views become quite fragile.

Because no clinician could be adequately trained to manipulate the

many parameters in the most detailed systems, research turned instead

to methods for ameliorating the onerous tuning with more intuitive

controls. (Kniss, Kindlmann and Hansen 2001), for example, describes a

simplified framework for manipulating multi-dimensional transfer

functions.

Fig. 51 Detail of VolView’s 3D
rendering and transfer function
interface from Fig. 43. The
transfer function interface
shows a histogram of the
intensities in the scene.
Leftmost is air, rightmost is
bone. The overlaid line controls
the opacity for each intensity
value (transparent at air,
approaching opaque at bone).
The bar on the bottom shows
the color assignments for each
intensity value (brown for soft
tissue, white-pink for bone).

Fig. 52. One of my favorite
volume renderings, using a
curvature based transfer
function from (Kindlmann, et
al. 2003). Note that it is very
similar to a surface rendering.

47

Beyond transfer functions is a set of volume non-photorealistic (NPR)

methods such as those described previously in this section. Volume

equivalents to tone and cartoon shading and contour rendering, as well

as the application of pen and ink or pencil textures have been

proposed. NPR shading for volumes was first described in (Ebert and

Rheingans 2000) and was then expanded in (Rheingans and Ebert

2001), which coins the term “volume illustration”. Rheingans proposes

a variety of rendering enhancements, but despite the title, tone shading

is the major NPR technique she invokes. Unfortunately, none of their

renderings would seem to be particularly more understandable than a

standard Levoy-view for an untrained viewer (see Fig. 54 for an

example). (Tietjen, Isenberg and Preim 2005) extends the idea of

“volume illustration” (even appropriating the term) to account for

segmented objects (Fig. 53).

There are a few papers that propose truly novel styles, such as applying

“pen and ink” methods to volumes. (Lu, et al. 2003) proposes a method

for volume rendering with stipples (Fig. 55 left). This style is based on

the artistic pointillism technique and has nice results for a non-model-

based method. An interesting insight in this paper is that a large

number of 3D stipples can be precomputed offline for each voxel, and

then subsets of stipples can be taken as the view-to-voxel function

changes, so that individual stipples do not move as the number of

stipples at each sample changes. (Fischer, Bartz and Strasser 2005)(Fig.

55 right) describes a similar NPR half-toning for nested iso-surfaces that

works in image space after projection, much like PLUNC's z-vol program,

which simulates diffuse shading by looking at the 2D gradient of the z-

buffer as a post-process.

One of the most complete rendering systems is described in (Svakhine,

Ebert and Stredney 2005), a paper nominally on applying illustrative

motifs to volume rendering. This paper provides an overview of their

complicated volume rendering pipeline and the large number of user

interface widgets required to interface with it. Few implementation

details are presented here, but more details can be found in their earlier

papers. The goals of the Ebert/Svakhine system are somewhat similar

to the goals outlined for Model Guided Rendering.

1. To highlight and show structure near the focus

2. To remove occluding material

3. To use simple rendering for context areas.

Fig. 54 Tone shaded illustrative
rendering of the thorax from
(Ebert and Rheingans 2000).

Fig. 55 Left, (Lu, et al. 2003)’s
volume stippler and right,
(Fischer, Bartz and Strasser
2005) renderings of the engine
block data.

Fig. 53 (Tietjen, Isenberg and
Preim 2005) describes a
method for combining
segmentations with DVR to
create hybrid illustrative
renderings.

48

(Svakhine, Ebert and Stredney 2005) also suggests that model guidance

can be included in their pipeline, but they do not explain how. They

instead focus on implementing complex multi-dimensional transfer

functions. Like mgrView, their system has a hardware accelerated

object-order core, and it runs at comparable speeds: 20 fps preview

and 4 fps sweetened.

Independent Image Scene Composition

The problem of occlusions in volume data was immediately recognized

in Levoy’s original work when he suggested that his algorithm could

display all of the information in a volume only if the data was

“monotonically increasing along the ray”. This is, of course, unlikely to

be true for any natural image (as Levoy recognized), especially for an

anatomic CT image where skin << skull >> gray matter. In radiography

this effect is seen when denser objects such as bone obscure all less

dense objects both in front and behind them. In DVR this problem is

even worse because particular transfer functions can be defined that

additionally allow dense features to be obscured by less dense features

in front of them. As a degenerate example, consider a transfer function

that sets air to full opacity.

A variety of tools have been proposed to get around this “monotonicity

proposition” without taking recourse to explicit external information

such as the “importance rendering” described in (Viola, Kanitsar and

Groller 2004) and (Borland, et al. 2006). (Importance rendering is

discussed later when similar MGR methods for scene composition are

proposed). A few of the more interesting data or scene geometry

driven suggestions, along with mgrView’s simple implementations of

them, are discussed here.

Levoy’s original insight was that high gradient magnitude regions

corresponded to surfaces in the image and were therefore more likely

contain interesting shape information than low-gradient magnitude

regions. For the same reason that the gradient direction could stand as

a suitable proxy for a normal direction, the gradient magnitude itself

could stand as a measure of how interesting this voxel is likely to be in

the scene. (M. Levoy 1990) gave a straightforward image-order

implementation of this with a transfer function that accumulates color

separately from opacity. Implementing the same function in GLSL is

simply a matter of using a fragment program (recall Fig. 50) to modulate

the CT intensity by the local gradient magnitude, as shown in Program 3.

Fig. 56. Image from (Svakhine,
Ebert and Stredney 2005)

49

// mgrView px shader for gradient magnitude opacity modulation
main (void) {
 gl_FragColor = texture3d(source_im, world_coordinate);
 vec3 gradient = texture3d(gradient_im, world_coordinate);
 gl_FragColor.a *= length(gradient);}

Program 3 GLSL with per-pixel gradient magnitude opacity modulation as in (M.
Levoy 1990).

A variety of methods for surface based scene composition are

formalized in (Diepstraten, Weiskopf and and Ertl 2003). One of the

most intriguing suggestions in Diepstraten’s treatment is to use areas

with high specularity – surfaces that are relatively flat and oriented

towards the viewer, to modulate transparency. This is also simple to

implement for a volume in a shader, as shown in Program 4 with results

in Fig. 57. Here specularity is approximated by a diffuse term using the

gradient direction as a proxy for the local surface direction and the

camera position as the light direction. This approximation picks out the

same kinds of interfaces that are flat and oriented towards the viewer in

the volume data. The effect is quite close to the earlier described

“contour shader” for volumes.

// mgrView px shader for specularity-based opacity modulation
main (void) {
 gl_FragColor = texture3d(source_im, world_coordinate);
 vec3 gradient = texture3d(gradient_im, world_coordinate);
 gradient.unpack(); // Recover signed values
 float diffuse = dot(normalize(camera_position), gradient);
 gl_FragColor.a *= (1.-diffuse);
 // Could also use the complement for “lighting” the volume w.r.t. the
 // camera, i.e., gl_FragColor.rgb *= diffuse;
}

Program 4 GLSL with per-pixel specularity modulation as in (Diepstraten,
Weiskopf and and Ertl 2003).

Fig. 57 Left, a standard view of
an abdomen data set in
mgrView. Right, the same view
with specularity-based opacity
modulation.

50

Distance based opacity modulation is proposed in several sources,

including (Lu, et al. 2003) and (Bruckner, Grimm, et al. 2006), which has

possibly the most compelling results shown in Fig. 58. mgrView’s

fragment shader can be simply extended with similar functionality by

using Program 5 with results such as those shown in Fig. 59.

// mgrView px shader for distance-based opacity modulation
main (void) {
 gl_FragColor = texture3d(source_im, world_coordinate);
 float z = ((gl_FragPosition.z/gl_FragPosition.w) – near) / (near – far);
 gl_FragColor.a *= 1.-z;}

Program 5 GLSL with per-pixel opacity modulation from distance.

Fig. 58 (Bruckner, et al. 2006)
uses cut-away views driven by
distance from the viewer to
maintain a visual context.

Fig. 59 Left, a scene rendered
normally in mgrView. Right, the
same scene with per-pixel
opacity modulation from
distance as in Program 5. The
table and ribs have been
removed, allowing a clear view of
the kidney. The effect is quite
striking when interactively
rotating the object.

51

3 Model Guided Appearance

for Medical Images

Following (Seligmann and Feiner 1989), discussed earlier, MGR’s

methods can be roughly divided into those concerned with scene

appearance and those concerned with scene composition. This chapter

presents tools for designing scene appearance by shading important

structures in a scene to meaningfully reflect their anatomic function.

This can be done either by visually labeling and orienting regions with a

texture or according to atlas colors, or by superimposing data drawn

from another more suitable source, such as a cross-modal mapping

showing MRI data within a target region in the context of geometrically

accurate CT data elsewhere (Fig. 60).

Both of these approaches rely on being able to create regional

mappings from multiple image sources into a target patient rendering.

MGR does such mappings online in an object-order context by using a

combination of programmable graphics hardware shaders that add

relatively little computational overhead to the rendering. The

algorithms are controlled by a data structure called a “scene catalog”. A

scene catalog is a description of where every important object in the

Fig. 60 Male pelvis scene
rendered primarily from CT data
but with red tinted MR data
mapped into the prostate region
to show distinction between soft
tissue types within the prostate.

52

scene is, how it is oriented, and how it corresponds to other similar

models in other data. Scene catalogs also form the basis for associated

model guided texture synthesis methods.

A scene catalog for a rendering consists of two parts.

1. A world-to-model coordinate transform, called an “X2U map”,

where X is a world-space (xyz) triplet and U is an object coordinate

(uvt)=(along,across,through) with an additional possible fourth

component, o, for object label in multi-object scenes.

2. One or more "rules" for transforming each region’s model

coordinates into a texture space or the world space of a related

image such as a color atlas.

Model-to-texture transform rules include the following cases.

1. World-based, which uses only the label component of the X2U map

2. Model-based, which uses the label and model coordinates

3. Model-to-model, which uses the label and model coordinates, as

well as an inverse mapping, called a U2X map, to convert model

coordinates back into the world coordinates of a source image

This chapter is divided into four sections.

1. The first section, Creating a Scene Catalog, describes in detail how

to quickly convert a collection of discrete medial models fit to

regions in a scene into a X2U map.

2. Rendering with regional appearances based on model or world

mappings is discussed in the section Simple Texturing for Volumes.

MGR uses simple texturing for both such things as generic oriented

muscle fibers and for patient-specific synthetic textures that have

been generated “in-place” for a scene. Library solid textures can be

used to add surface detail to a coarse underlying segmentation by

perturbing local normal directions for lighting.

3. An interesting case of a world-based rule is 2D Color Transfer from

Patient Photos, where a patient image, for example, can be mapped

onto skin voxels according to a function of world-position. A fast

method for rendering with 2D color transfer from photographs is

presented in the third section of this chapter.

4. The final texturing rule, called 3D Color Transfer in MGR, is the most

complex but also the most flexible for mapping information from an

additional data source, such as a color atlas or cross-modal image,

into the target image space. The creation and application of U2X

maps for this purpose is described in the final section.

Fig. 61 Simple world-mapped
solid texture applied to the
thyroid region of the target
patient.

53

3.1 Creating a Scene Catalog

MGR provides a framework for synthesizing multiple data sources into a

single visualization on a region-by-region basis. Many patient-specific

and atlas data sources are connected to one another though shared

object-coordinates, and the rendering engine shades each voxel

conditionally according to the rules described in the introduction.

Determining a governing rule and applying the relevant color-mapping

algorithm for a particular voxel requires an estimate of the locally

governing model’s (uvt) coordinates at any point in world space. While

the discrete medial coordinate system is well suited to transforming

from parameter-to-world coordinates (the U2X transform) directly from

the given medial parameters at the samples, the reverse transformation

(X2U) has no closed form and typically requires an optimization driven

search as described in (Han 2007). This function would be extremely

expensive to generate point-by-point according to standard means.

MGR’s solution is to use the graphics accelerator to do a fast coordinate

scan-conversion by rasterizing densely packed geometry that has been

colored by object coordinate and then clipped to individual planes.

Collating these planes into a volume gives a world-space lookup table

(LUT) of (uvt) coordinates at every voxel (see Fig. 62). In a sense, this

Fig. 62 Direct display of the X2U
map near the right
sternocleidomastoid (scm)
muscle. The red channel
encodes u, the direction along
the object, the green channel is
v, around the object, and the
blue channel is t, the through
direction. The boundary surface
of the scm is superimposed as a
similarly colored mesh.

54

transform is a variant of a 3D distance map transform, but it tracks not

only distance from the manifold (radius normalized distance along the

spoke from the medial axis, in this case), but also the originating object

label and (uv) coordinate on the medial sheet. This X2U LUT, along with

any inverse U2X maps required for the scene, is called the “scene

catalog” in MGR. Storing the scene catalog as a collection of 3D

textures related to the coordinate systems of the various data sources

participating in the scene allows mgrView’s object-order rendering

pipeline to access and interpolate model coordinates as a function of

world coordinates very quickly. This novel method for being able to

quickly access multiple images in model-relative coordinates has a

broad range of applications in the medial shape realm where such

access is thought to be the speed-limiting issue for many posterior

optimization schemas.

Scene catalogs are generated from shape models that have been fit to

important regions in the patient images by the methods described in

section 2.2.2, Image Interpretation. This section begins by reviewing the

details of the discrete medial shape parameterization introduced

previously, and then it describes the process for computing single- and

multi-object X2U LUTs.

3.1.1 The Discrete Medial Parameterization

The geometry rasterized to compute the X2U table is a collection of

onion skins between the region’s medial axis and boundary surface

where each vertex’s (uvt) coordinate has been encoded as color.

Medial geometry and the discrete medial representation are briefly

reviewed here as a basis for explaining how these onion skins are

computed and colored.

Medial geometry was originally described in (Blum 1967) and has been

most recently and most thoroughly described in (Siddiqi and Pizer

2008). Medial geometry describes 3D objects in terms of a skeletal

surface, a 2D curved sheet lying midway between opposing boundary

surfaces of the object, and a set of spokes extending to the object

boundary from both sides of the skeletal surface. The medial manifold,

M, of a three dimensional object has eight parameters at each 2D point

(u,v): M(u,v) = {position (3), spoke length (1), and two spoke directions

55

(2 x 2)}. Some additional complexity is introduced along the edges of the

medial surface where the parameterization wraps around the object.

The discrete medial representation (m-reps) samples the continuous

manifold on a grid, yielding a set of 8-dimensional medial “hubs and

spokes”, which taken together act as control points for the object's

volume, as shown in Fig. 63, top. Additional medial points can be

interpolated according to (Han 2007), which in turn imply a denser

surface sampling. Alternatively, additional surface points can be

approximated directly using a modified Catmull-Clark subdivision

algorithm (Catmull and Clark 1978) with additional constraints on the

normal directions(Thall 2004). An object made from a single grid of

medial samples is called a figure. A single-column grid with additional

spokes implies a tube figure; a multi-column grid implies a slab figure.

Similar parameterizations are used for both slabs and tubes, although

each has slightly different methods for such things as surface generation

and measuring sample regularity. Indentations and protrusions on the

object are handled as attached subfigures. A figure along with any

associated sub-figures is called a model, shown in Fig. 63, bottom left.

The sampled M implies a volume filling approximately13 hexahedral

mesh that is useful for various tasks that require volume filling

coordinates, such as computing mechanical deformations according to

finite element methods. There are several alternatives for

13

 These are six-sided structures that do not necessarily have planar faces.

Fig. 63 M-reps. Top left, a
medial sample with two equal
length spokes touching opposing
surface patches. Top middle, a
sampled skeletal sheet with
neighbor relations marked. Top
right, spokes at each medial
sample describe the orientation
of the implied surface at that
hub. Bottom left, a densely
sampled surface can be
interpolated from the medial
samples. Bottom right, a
prostate model with sub-figures
defined for the left and right
seminal vesicles.

Fig. 64 Surfaces implied by m-
rep parameterizations of a
target patient’s stomach,
pancreas, and duodenum.

56

parameterizing M. UNC’s medial shape fitting software Pablo14 uses a

“single sided” representation, where u and v are the same on both the

top and bottom of M and direction is determined by the sign of t (τ in

Pablo parlance) with -1 on the bottom surface, 1 on the top surface, and

taking intermediate values along the crest regions. MGR uses a “shrink

wrap” representation, where u and t are fixed with regard to sidedness,

but v wraps around the medial sheet, running from [0,0.5) on the top

and (0.5,1] along the bottom, with a seam where it cycles on itself. The

shrink-wrap representation is more flexible for working with skeletal

rather than fully medial representations because spoke lengths and

directions can differ on the top and bottom of the sheet. However

there is a seam in the v parameter across the medial sheet (Fig. 65),

which adds some algorithmic complexity in the next section on applying

simple textures. The later section 5.2, MGR Applications in Adaptive

Radiotherapy, describes the mapping between Pablo’s single-sided and

MGR’s shrink wrap coordinates.

3.1.2 Computing the X2U Map

MGR’s object-order pipeline is well suited to both precomputing an

entire X2U map very quickly and to accessing the X2U map saved as a

lookup table (LUT) in memory for its various color mapping algorithms.

A space-filling X2U map can generated by repeatedly rasterizing a large

number of onion skins color-coded with (uvt) coordinates, with each

rendering pass clipped to an individual plane through the scene. A

single-object 256 x 256 x 256 X2U LUT using 64 onion-skins can be

computed in less than a second on a standard desktop machine using

this algorithm. The alternative approach of doing an optimization driven

search at each world-space position to find the corresponding model-

coordinate may take a similar amount of time to do each search, making

this approach several orders of magnitude faster for generating a space-

filling map. Program 6 summarizes the algorithm and particulars follow.

Each vertex is assigned a color (rgb) = (uvt) according to the shrink wrap

parameterization, such that on any given onion-skin surface red ranges

with u from 0 at the “bottom” to 1 at the “top”, green wraps around the

object with v < 0.5 on the “anterior” and v>0.5 on the “posterior” with a

14

 See the UNC MIDAG website for more information about Pablo.

Fig. 65 Top, t=1 surface colored
by (uvt) and bottom, cross
section normal to du of the
scm’s X2U map. Using the shrink
wrap parameterization there is a
singularity in v (green) at the
seam and across the medial
sheet.

57

seam where the values wrap along one of the crests, and blue is fixed

for t < 1.0 for an interior onion-skin and >1.0 outside .

Rasterize X2U LUT
For each k = 1 to kmax (z resolution)
 Compute sandwiching planes at that depth
 Set forwards and backwards facing clip planes
 For i = 1 to tmax (t resolution, typically 32)
 t = 2.0*i/tmax (one radius outside the boundary surface)
 Generate the “onion skin” surface colored by (uvt) at each vertex
 Render the geometry inside the clipped volume to a buffer
 Merge the buffer with the working LUT

Pick a different cardinal direction for the view and repeat
 Fill in holes by taking the (uv) value with the smallest (t)

Program 6 Pseudo-code for the X2U LUT scan conversion algorithm.

A large number of onion-skins colored by this scheme are generated, as

seen in Fig. 66. Vertex positions are computed as a t-weighted

interpolation between the spoke tail and tip. That is, X(t) = X0+t*(X1-X0)

(or, in GLSL, by the single instruction “mix(X0,X1,t)”). Fixing t and

rendering the entire surface with such modified vertex positions

produces a smoothly colored onion-skin between the medial axis and

the boundary surface. Iterating this over t between 0 and 1 produces a

set of nested onion skins. Sandwiching clip planes are used to restrict

the rasterization of the nested onion skins to each plane of voxels in the

LUT. The stack of planes is combined to create a volumetric LUT.

The initial pass can leave holes where the view direction is nearly

orthogonal to the spoke direction. These can be resolved by marching

the clip planes through the volume along two or three of the cardinal

directions and merging the results by preserving the candidate model-

coordinate at each voxel with the lowest t value, under the assumption

that samples taken closer to the medial sheet are more likely to have

the correct (uv) coordinate.

The X2U map may also be useful in the “collar” region of the object a

small distance beyond the boundary surface. Therefore, the X2U map

actually encodes values of t between 0 and 2 by packing the blue

channel with t/2.0. Medial shapes generated from m-reps are

constrained in such a way that no spokes can cross in the interior of the

object, which implies that every interior point has exactly one possible

(uvt) coordinate. However, it is impossible to enforce such a constraint

beyond the boundary, which implies that certain exterior points may

Fig. 66 A cut-away of a ten
onion-skin representation of the
scm. Each layer has fixed t or
blue value. Each ring about the
object has fixed u or red value.
Each line along the object has
fixed v or green value.

58

have more than one possible (uvt) coordinate. The same minimum-t

preserving method used above to merge LUTs is adopted here. This

heuristic can lead to unexpected discontinuities in the collar region, so

(uvt) coordinates assigned outside of the object should be inspected

carefully.

The X2U map is ultimately loaded onto the graphics accelerator as a

texture unit. Its purpose is to accept world-space (xyz) coordinates and

convert them to model-space (uvt) coordinates. Because it relies on

hardware trilinear interpolation, such conversions will have the effect of

smoothing the data. However, since the underlying data is produced

using linear assumptions (by evenly spacing the onion skins) this does

not affect the results.

There are many nested loops in this algorithm, but the deepest vertex

and surface operations can be compiled into a single hardware

operation (an OpenGL “display list” with a varying t parameter to

generate the nested onion skins in a vertex shader program). The tight

clipping planes mean that most of the vertices are rejected early and so

never contribute fragment overhead. The computation time for

generating the X2U map is therefore bound either by the sampling grid

(pixel size, number of planes, number of directions) or by the time that

it takes to read the data out of the screen buffer and cache the control

map for later use. The sampling grid need not be particularly dense;

most of the examples here are 256 x 256 x 256, or 16 megapixels total.

Common modern gpus have theoretical fill rates (number of pixels that

can be rendered in second) measured in gigapixels, suggesting that the

actual pixel processing described here could be done in a fraction of a

second.

The current rate limiter on this algorithm is reading out the frame buffer

many times so that the LUT can be compiled and merged in main

memory. The computation is expected to be extremely fast if the result

is never read out of the texture-memory, but this has not been tested

yet since no present applications for MGR require generating dynamic

X2U maps, for example, to support solid texturing in deforming models.

3.1.3 Consolidating a Multi-Object Scene Catalog

A scene catalog may consist of an X2U transform for each of multiple

objects. However, programmable fragment shaders have hard limits on

59

the number of textures that they can access, so it is preferable to

consolidate all of the look up tables into a single texture unit, as shown

in Fig. 67.

For a multi-object scene the X2U transform for object interiors should

have no overlap between objects in world space; therefore, each

object’s interior U2X entries can be OR’d into the grid without loss of

data. However, the X2U map for nearby exterior objects may overlap,

so a decision is made to give the voxel to the object with the smallest t

value, i.e., the object whose boundary surface is closest to that voxel.

This raises the problem of identifying which object governs for a

particular world position. This is solved by attaching an object-label

integer (0 to 255) into the alpha channel of a 4-channel rgba texture.

Then, given a world coordinate X, the X2U function returns uvt plus the

governing object label, called an (uvto) coordinate. mgrView includes a

Matlab script that generates such combined multi-object scene

catalogs.

In a single-object X2U map, since alpha is not being used for the object

label, it can be used to track other variables, such as likelihood of

disease or importance rank. If the X2U map is not going to be used

directly for rendering but rather for texture synthesis (see next section)

or another application, an arbitrary number of such additional per-

object-coordinate variables can be attached to the sampling grid.

Fig. 67 A slice through a CT
image colored by the underlying
multi-object X2U LUT. The
sternocleidomastoid’s exterior
values overlap with the
neighboring parotid and thyroid.
The object label for each region
is invisibly encoded in the alpha
channel.

60

3.2 Simple Texturing for Volumes

Having fast access to reliable volumetric object coordinates makes

several otherwise difficult rendering tasks much more straightforward.

Assigning textures and colors inside a volumetric region or on an

object’s boundary surface is easily done in MGR by assigning “simple

textures” based on either world or model-coordinates. The techniques

for context sensitive shading described in this section have been

developed in collaboration with Ilknur Kabul, who builds on some of

them in her own work.

Simple texturing in a volume requires only the object label from the

scene catalog X2U map for world-space texturing, or requires both the

label and model-coordinates for model-space texturing. Regions can

also be given the appearance of additional detail by bumping the solid

texture with respect to the light direction.

Simple (“diffuse”) lighting is computed by modulating the surface color

by the cosine of the angle between the surface normal and the light

direction. This gives the appearance of being fully lit when the surface

faces the light source and falls off to unlit where the normal is

orthogonal to the light direction (i.e., on the contour). “Bumping” a

surface involves varying the normal per fragment according the surface

texture to provide extra detail in the lighting. “Bumping” a solid texture

Fig. 68 Top left, the thyroid is
difficult to identify in the gray
data. Top right, adding a pink
texture to the clip plane.
Bottom, texturing the entire
thyroid surface.

61

embedded in a volume is difficult because the normal perturbation

must be smooth from fragment to fragment. This is trivially achieved

for 2D textures. The perturbations are computed with respect to the

cardinal directions of the texture, which are smoothly varying on the

surface. However, for solid textures, the model coordinates of the

underlying region can be used to align a continuously varying set of

tangent planes which can be used to sample the texture and compute

local normal perturbations.

In principle, applying MGR’s simple texture methods to a sufficiently

large number of regions identified in the target image could

incrementally transform even a slice-by-slice visualization from gray

into a more easily comprehended Netterly equivalent, such as the slice

shown in Fig. 69

3.2.1 World- and Model-Space Texturing

Mapping from Solid Texture
1. Consult the X2U map to determine fragment region membership and

object coordinates
15

2. Determine the target texture for that region
3. Transform the object or world coordinates by a standard GL affine

transform to index into texture space

Program 7 Pseudo-code for the simple texturing fragment shader.

World-Space Texturing

The most straightforward texturing rule is to assign a texture to a region

with coordinates given with respect to a world space. This can be useful

for purely isotropic textures like blobs for fatty regions or the thyroid

shown in Fig. 68 and Fig. 70. As each fragment of each plane through

the volume is processed, the corresponding position in the x2u map is

queried to determine region membership. When a fragment is

determined to have a membership in a world-space textured region

such as the thyroid, the world-space coordinates (xyz) are used directly

to index into texture coordinates. The specific (uvt) model-coordinates

at that fragment are irrelevant because the region is being treated as if

it is homogeneous throughout. A standard GL similarity transform that

controls the global size, orientation, and offset of the texture elements

15

 Recall from earlier footnote 9 that a fragment is a potential pixel. Sampling
the X2U map determines the (uvt) coordinate and region membership (which
anatomic type) for that fragment.

Fig. 70 The same solid texture
for the thyroid with two
different texture scaling factors.
Top, a larger scaling factor (30);
bottom, a smaller scaling factor
(15) results in relatively larger
features.

Fig. 69 Cross section drawn by
Netter.

62

(texels) with respect to the region may still be applied. Fig. 70 shows an

example of scaling the same solid texture to produce qualitatively

different appearances.

Model-Space Texturing

Given model-coordinates, either directly from the surface or sampled

from the X2U LUT, textures can be oriented relative to the region’s

along, across, or through directions by mapping model-coordinates (uvt)

directly to texture coordinates (pqs). Fig. 71 shows an example of using

a 2D texture with (pq) oriented according to (uv) model coordinates to

imply the direction along the duodenum surface. In traditional 3D

modeling, assigning such texture orientations requires significant

manual editing or multiple geometric proxies, such as a set of cylinders

whose parameters can be used to compute texture coordinates for the

vertices they enclose. It is a significant advantage to get these

coordinates essentially for free.

Seams and Singularities

The X2U map as described previously has a discontinuous seam in v

(recall Fig. 65) across the medial axis as well as other singularities on the

surface that necessarily occur in vector fields on shapes with spherical

topology16. When using medial coordinates for model-space solid

texture mapping, this presents a problem in interpolating values of v for

fragments that are near the medial axis. In particular, a fragment that is

exactly on the medial axis with a value of v = 0.2 on the “top” and v =

0.8 on the “bottom” will have an interpolated value of v = 0.4, which is

completely wrong.

16

 By the so-called “hairy ball theorem” (Eisenberg and Guy 1979)

Fig. 71 Left, a 2D texture patch
based on strokes from (Netter
2006). Right, the duodenum
surface with the texture oriented
along the u direction.

63

When interpolating model coordinates on the surface, this same

problem expresses itself as a seam where v wraps around from 0 to 1.

This could be taken care of by using multiple compatible coordinate

charts. In particular, an explicit value renumbering so that each

element contributing to the interpolation has consistent coordinates –

e.g., that each vertex on the seam is labeled with v = 1 or 0, whichever is

closer to the other non-seam vertices of the tile. Unfortunately, such

special cases are difficult to implement in the hardware fixed function

bilinear texture sampler that provides one of the main speedups to

object-order DVR.

One solution is to alter the mapping slightly to reflect the seam in the

texture space, somewhat like splitting a loaf of bread in half and

unrolling it. Instead of letting (uvt)->(pqs) directly, the mapping is done

as shown in Eqn. 6 and results in a texture such as that shown in Fig. 73.

This has the slight disadvantage of requiring additional complexity in

Fig. 72 Texturing across the seam
in the medial sheet results in bad
interpolated values of v.

Fig. 73 Split texture mapping.

v=0.2 v=0.8

Direction of v

64

texture generation if the texture needs to reflect interior and exterior

regions. In parameter space, exterior regions are now at both the s=0

and s=1 planes, and the interior is at s=0.5. Additionally, the texture on

the q-ends must be reflected across the t=0 plane (see Fig. 74).

Another potential solution is to interpolate values in a spherical space.

For example, (uvt) values can be taken as coordinates in a spherical

space, the values can be projected into the equivalent Euclidean space

where interpolation works, and then the interpolated value can be

brought back by the inverse mapping. A standard spherical map that

considers (uvt) to be a longitude, latitude, and thickness (φ,θ,ρ) is

unacceptable because it is degenerate – all elements with t=0 map to

the same point in the Euclidean representation, so the original u and v

values cannot be recovered by the inverse transformation. However, a

variant of the spherical map called an “oblate spherical map” has the

desired properties of being both cyclic in longitude (transformed v) and

one-to-one. Fig. 75 shows an example of regular sampling in (uvt)

projected into the equivalent “Euclidean” space, where interpolation

performs as expected. Seams and necessary singularities in the original

parameter space are preserved by this operation; the spherical space

merely enables interpolation between samples across seams without

requiring difficult to parallelize case-by-case rules.

This is a kind of dimension “lifting”. Consider that a single onion skin in

(uvt) space has only two parameters, u and v vary but t is fixed – it is a

single plane in Fig. 75, left. In the Euclidean equivalent oblate spherical

coordinates, it is actually an ellipsoidal surface, as expected. All three

parameters (xyz) are used for interpolation on the onion-skin and the

result is pushed back onto the original plane in (uvt) space.

Unfortunately, this method has two major drawbacks. First, it is

expensive to compute per fragment on the gpu; it requires hyperbolic

and inverse hyperbolic trigonometric functions which are not

implemented as single instructions on most commodity graphics

𝑞 =
2𝑣 𝑣 ≤ 0.5

1 − 2𝑣 𝑣 > 0.5

𝑠 =
0.5 + 𝑡/2 𝑣 ≤ 0.5
0.5 − 𝑡/2 𝑣 > 0.5

𝑝 = 𝑢

Eqn. 6 Formulae to introduce a
splitting seam into the (pqs)
texture space.

Fig. 75 Left, regular sampling in
(φ,θ,ρ) taken as oblate spherical
coordinates becomes a squashed
spheroid in the Euclidean
equivalent on the right.
Interpolating theta across the
seam in this space produces
correct values without a
conditional when mapped back
to the parametric space.

v={0,0.5}

v={0.5,1.0}

t={0,1.0}

t={0,1.0}

u={0,1.0}

These
faces

must be
similar

Fig. 74 Introducing a seam in
the texture cube to counteract
the seam in model coordinates.

65

hardware. And second, it produces extremely blurry texture mappings

due to limited fixed-point precision on the gpu. The oblate spheroidal

equations are available online (Wolfram, Wikipedia) and are described

in several primary sources including (Abramowitz 1972).

While the split-texture solution works for the current texturing

applications of MGR, it is insufficient for the color transfer method

described in the last section of this chapter. Determining a suitable

parameterization for solid objects is an open area of research that is

particularly important in the context of solid texture synthesis.

3.2.2 Solid Texture Bumping

To give the impression of a higher resolution for a region surface or cut

plane, the solid texture can be “bumped” with respect to the light

direction and the implied surface that is being used for lighting. Using

bump or normal maps generated from 2D texture maps to simulate

denser surface resolution is well understood (see (nVidia 2004), for

example) although the implementation given here for solid textures is

novel. The general idea of bump or normal mapping is to simulate

surface detail by lighting each fragment as if the fragment were not on

the surface but on a height field near the surface. Taking derivatives of

the height field suggests a new normal direction at each fragment. A

“bump map” stores the height field only, requiring the shader to do

some local computations to determine the normal offset. A “normal

map” essentially precomputes the new normal direction and stores it

explicitly. The height field may come from a variety of sources including

an actual higher resolution surface, but the height field is frequently

derived from the underlying texture intensity itself.

Bumping a 3D texture is similar in principle to 2D bumping, but it

requires some additional computation. The main difference is that

instead of taking derivatives of the texture in the cardinal texture space,

solid bumping requires texture derivatives taken with respect to

directions on a local tangent plane. If the derivatives are computed

with respect to the cardinal axes, for example, the differences sampled

are likely outside or inside the surface and therefore irrelevant.

66

This texture sampling requires a smoothly varying reference direction

for the results to look coherent from fragment to neighboring fragment.

This reference direction is the equivalent of the “tangent” direction in

normal mapping, with the cross-product of the normal and the

reference direction providing the equivalent of the “bi-tangent”. For

bumping on surfaces from shape models with object coordinates, the

projection of du onto the tangent plane can serve exactly this purpose.

For bumping on cut planes, the tangent can be determined by picking

the cardinal direction with the longest projection onto the tangent

plane (i.e., the most nearly orthogonal to the normal).

Given directions in the tangent plane, computing the gradient by a

forward difference requires only three lookups, one at the original

coordinate and one in each of the tangent and bi-tangent directions.

While taking gradients of large volume data sets is typically quite

expensive to do online, most of the 3D textures used in MGR’s sample

programs are very small, so there is good cache coherence, and

sampling for the gradient is fairly cheap.

Pseudo-code is given in Program 8, and an actual GLSL implementation

of a solid texture bumping fragment shader is shown in Program 9. The

implementation given takes an additional parameter C that multiplies

the effect of the normal swing.

Surface Bumping Algorithm
1. Determine the texture gradient with respect to (du,dv) and “bump” the

surface direction. Candidate surfaces include model-space surfaces,
like the boundary or an onion skin (du,t), or a world-space surface such
as a cut-plane (du,cp) or the view direction (x,view).

2. Sample the texture at (U+du) and (U+cross(du,n)) to compute a gradient
3. Use the gradient direction to ‘tip’ the normal by the gradient magnitude

Program 8 Pseudo-code for solid texture bumping.

Fig. 76 Left, solid wood texture
with standard diffuse lighting.
Right, the same texture with a
significant normal “bump” in the
direction of the texture gradient.

67

// mgrView GLSL fragment program for solid texture bumping
uniform Sampler3D color_im0;
uniform float C; // Strength of normal adjustment
uniform float psz; // Distance to next sample in [0,1]
uniform integer MODEL_MAP; // Use model or world coordinates
varying vec3 X, normal, du; // From the vertex shader
vec3 tex_coord, frag_color;
vec3 TipNormal(vec3 _n, vec3 _du, float sample_r) {
 _du = _du – dot(du, _n) * _n; // 1 step of Gram-Schmidt
 vec3 _dv = _n.cross(_du);
 // Estimate gradient with finite difference
 float drdu = sample_r - Texture3(color_im0, tex_coord + psz*du).r;
 float drdv = sample_r - Texture3(color_im0, tex_coord + psz*dv).r;
 return normalize(normal + drdu*du* C + drdv*dv*C);
}
main (void) {
 // Flag to determine world- vs. model-space mapping
 tex_coord = (MODEL_MAP)?gl_TexCoord[1]:X;
 frag_color = Texture3(color_im0, tex_coord)
 normal = TipNormal(normal, du, frag_color.r);
 StdShading(); // Call the standard Phong shader with the new normal
}

Program 9 GLSL fragment shader for texture bumping with a gradient from finite
differences in the solid texture. The program extends trivially to higher order
differences at reduced speed.

3.2.3 Sources of Synthetic Textures

Given that MGR enables color transfer directly from an empirical color

atlas source such as the Visible Human, the question arises of why use

simple texturing at all? The most obvious answer is that another

modality or an atlas that shows the desired property may not be

available or may be of too low quality to use in the region of interest.

Furthermore, atlas images are never specific to the target patient.

From the aspect of quality, as Netter realized, a library of anatomic

textures frees the viewer from being restricted to a photo-realistic look

based on long-dead cryosections. This is particularly valuable when

composing a scene with a more “illustrated” feel or when rendering

shapes that cannot be identified or have a poor appearance in the

reference atlas. From the aspect of patient specificity, synthesized

textures can support not only organ type and orientation, but also per-

patient features such as whether particular sub-regions are healthy or

sick. A patient-specific synthetic texture may also be used in a case

where the image values are untrustworthy in a particular region,

68

perhaps due to artifacts. It may be useful to synthesize an approximate

replacement texture from the target image itself and “in-paint” away

the original values.

MGR does not implement any solid texture synthesis directly, but it has

been designed to support a solid texture synthesis module, as is

described in the related work (Kabul, et al. 2010). This subsection

briefly reviews some of the background and main considerations for

using model coordinates exported by MGR as the basis for solid texture

synthesis.

Textures might be synthesized appropriately for either the model-

mapping or the world-mapping cases described previously.

For model-mapped textures, the solid texture patch is synthesized in a

Euclidean (uvt) space and is then deformed into the region by MGR’s

rendering engine according to the local object-coordinates. Such

textures can naturally reflect sub-regions like deep interior (t near 0)

and boundary (t near 1) as well as along, across, and through directions.

Having these properties by construction is a significant advantage in

texture synthesis; many high quality methods, such as (Owada, et al.

2004) shown in Fig. 77, expend substantial effort enabling a user to

“pick” corresponding medial-like properties on the object and texture.

The textures created for MGR so far are generally model-space mapped,

but the mapping infrastructure has been designed to support world-

mapped textures. For world-mapped textures, the solid texture patch

is either completely isotropic, such as the blobby texture used for the

thyroid in Fig. 68, or the texture is synthesized directly in the patient-

space, using the X2U map to determine model-coordinates at every

point and then using the gradient of the X2U map to determine

orientation. As mentioned in the section describing scene catalogs,

additional patient-specific feature channels, such as variance of local

intensity or shape from normal or likelihood of pathology can also be

Fig. 78 Glyph packing from
(Kindlmann and Westin 2006)
formed the basis of the earlier
rendering in Fig. 34.

Fig. 79 2D line-integral
convolution from (Cabral and
Leedom 1993)

Fig. 77 (Owada, et al. 2004)
creates a mapping from 2D
textures to 2D cut-planes to
simulate a volume texture.
Though the authors do not
discuss it, the proposed
mappings rely on manually
indicating the surface and medial
axis in both shape and texture.

69

identified at each voxel. Working in such a space also allows the

synthesis to be more flexible in terms of local scale – if an object packed

with marbles narrows, a cardinal uvt space texture will shrink the same

number of marbles to fill the space. A texture synthesized in patient-

space however may decide to normalize based on thickness and pack

fewer marbles into a narrower region.

Procedural vs. Data Driven Textures

Procedural textures are textures that can be generated algorithmically

from a limited number of inputs. The texture may be based on position

alone, such as a simple solid brick wall algorithm that returns the

intensity for mortar or brick depending on the (xyz) position given, or

they may take more complex inputs. Typically procedural textures use

a noise or turbulence function to simulate natural processes. Noise-

driven procedural textures were originally described by (Perlin 1985) as

a means of generating synthetic granite or wood. Several procedural

texture methods, such as glyph packing (Kindlmann and Westin 2006)

(Fig. 78), line integral convolution (LIC) (Cabral and Leedom 1993) (Fig.

79), and reaction-diffusion textures (Turk 1991) (Fig. 80) come from the

realm of vector or tensor data visualization. (D. S. Ebert 1994) provides

an excellent review of basic methods for procedural texture generation.

While it is straightforward to consider the gradient of the X2U map as a

an input vector field for some of these methods17, procedural texture

synthesis tends to suffer from three main practical shortcomings with

respect to Model Guided Rendering. First, it can be extremely slow to

compute, although this can be surmounted by moving texture synthesis

to an offline process. However, the second consideration is more

serious: procedural texture synthesis tends to be extremely fragile;

useful results are sparse relative to the many parameters required by

most frameworks. Finally, no one procedural method is particularly

suited for all of the many textures types that we wish to be able to

produce, nor is it obvious how to “blend” between regions using a

patchwork variety of methods.

The method that MGR explicitly supports works by synthesizing a 3D

patch from one or 2D exemplar patches. Such “data driven” rather than

procedural algorithms can be thought of as generative versions of the

17

 A small caution is to use only single-object X2U maps rather than
consolidated maps when computing gradients.

Fig. 80 Top, example of a
reaction-diffusion surface
texture from (Turk 1991).
Bottom, volume rendering of a
regional 3D reaction diffusion
considered for the spongy
interior of the bone (or cheese).

Fig. 81 State of the art exemplar
based solid texture synthesis
from (Kopf, et al. 2007). Several
of the sample images in this
document use wood or
cobblestones from Kopf’s solid
texture library.

70

active appearance model means of image understanding proposed in

(Cootes, Edwards and Taylor 1998). These methods similarly rely on

finding distances in a reduced dimensional space of feature vectors.

(Doretto and Soatto 2006)’s “Dynamic Textures” for generating smoke,

waves, and other moving textures based on short image sequences

presents the method in 2D+time. (Kopf, et al. 2007) presents what is

currently the most effective solid texture synthesis from 2D exemplars

in the literature (Fig. 81). The method suggested here is similar in

principle.

Fig. 82 shows some 2D examples of early experiments done by the

author in this area. The basic method is to convolve the exemplar

images with a feature kernel to generate an observation tuple at each

pixel that describes that pixel’s intensity relationships to its neighbors.

For an exemplar with P pixels and a kernel that looks at D neighbors

(e.g., 4-connected, 9-connected, etc.), this results in an D x P

observation matrix.

A proposed solution is initialized to noise. Over several iterations each

pixel in the solution is examined under the same feature kernel to

generate another set of observation tuples. At each iteration, the

nearest neighbor of each solution observation is found in the

observation matrix, and the intensity of the solution pixel is nudged

towards the intensity of the corresponding exemplar pixel. This

approach to data-driven texture synthesis is summarized in Program 10.

Basic Exemplar Based Texture Synthesis
1. Apply a ‘feature kernel’ of size D to an exemplar image with P pixels to

build a DxP observation matrix
2. Initialize S pixels of the solution to noise
3. For each pixel in the solution:
3.1 Find the most likely feature in the observation matrix
3.2 Step towards that representative intensity

Program 10 Basic exemplar-based texture synthesis algorithm

This basic method is very slow, taking on the order of hours to compute

the example shown in Fig. 82 using a basic Matlab implementation.

Scale spaces, dimension reduction, clustering, and search trees can be

used to speed the same implementation up to require on the order of

minutes. Fig. 82 middle also shows an example of the coarse (small D

and S) and fine (large D and S) scale stages. Dimension reduction can be

done by applying principal component analysis (PCA) to the observation

Fig. 82 2D multi-exemplar based
single channel texture synthesis
at multiple scales. Top, two
exemplar textures, possibly for
fat blobs and muscle fibers. The
middle two images are
endpoints of single exemplar
synthesis at multiple scales. The
coarsest scale took 10 seconds
for 10 iterations. The finest took
10 minutes for 10 iterations.
Bottom, a synthetic texture that
blends the exemplars between
two regions.

71

matrix to reduce the size of D. Clustering by k-means restricts the

number of candidate pixels (P) that must be checked for each of the S

pixels. And a local search tree within each cluster speeds up the nearest

neighbor search.

The information encoded in the X2U map, namely the local category

(object type, surface or interior, sick or healthy), orientation, and scale,

can be used to seed a more sophisticated synthesis. Local orientation

and scale information can either be applied post hoc at render-time

(producing textures suited to the so called “model-mapping” method

discussed earlier) or in-place at synthesis-time by rotating or resizing

the feature kernel as it is applied to each individual pixel in the solution

(the so called “world-mapping” method).

Applying category information to show different textures in different

regions, for example to blend between sick and healthy textures or

between surface and internal textures, is somewhat more complex

because it requires a method for blending between exemplars. Several

methods are possible depending on at what stage the blend occurs.

One possibility is to completely synthesize two alternate textures and

then blend them in the final image space, another possibility is to

compute several blends of the exemplars themselves and generate

multiple compatible observation matrices for the blend regions. The

result shown in Fig. 82 was done by combining both exemplars into a

single large D x 2P observation matrix and appending an additional

category coordinate onto each observation. The blending was then

done in the algorithm itself by blending the category coordinates in the

solution and running the algorithm as normal.

The model guided texture synthesis engine (MTS) described in (Kabul, et

al. 2010) works as a companion to MGR. It extends the data-driven

texture synthesis framework described with multiple variants for

generation and blending, 3D color texture synthesis, and other types of

feature guidance, such as local edginess. A control language interface is

being developed to allow MGR to request synthetic anatomic textures

from MTS with regional control of exemplar type, color shift (e.g.,

tendons are white muscle), and relationships to local model

orientations and scale (i.e., hypertrophic structures scale texture

elements, and hyperplastic structures pack additional texture elements

into the space). 2D exemplars suitable for synthesizing anatomic

Fig. 83 Candidate exemplars for
muscle (left) and fat (right) from
the Dosch Design website.
(www.doschdesign.com)

http://www.doschdesign.com/pdfoverviews/DT-MVV3_pdf.pdf

72

structures with MTS can be taken directly from illustrated sources such

as (Netter 2006) or from specifically designed anatomic texture catalogs

such as the one found at Dosch Designs (Fig. 83). Fig. 84 shows an

example of a solid color texture generated by MTS guided by model-

coordinates taken from the scm.

Fig. 84 Top, slice through
oriented solid color texture
generated by MTS for the scm
region. Bottom, the same
texture on the region’s
boundary surface with
standard diffuse lighting.

73

3.3 2D Color Transfer from Patient Photos

Whereas collecting patient-specific 3D color volumes can be quite

invasive, collecting patient photographs is quite simple. Cameras have

become a common treatment room accoutrement for patient setup and

monitoring, but they have been overlooked as a data source for 3D

visualization. This section describes an interesting application of a

world-mapped texture by superimposing patient photography onto a

target 3D image (Fig. 85). Renderings of such registered data can serve

to show relationships between internal structures and visible surface

features. Animating anatomic change with respect to a fixed surface, or

animating surface images with respect to fixed anatomy can further

expose such relationships over time. Potential applications of this

technology include improved 3D procedure planning, reconstructive

surgery, improved diagnosis of surface pathologies or skin reactions,

and patient setup, which are discussed later in chapter five, Bringing

MGR to the Clinic.

Fig. 85 A CT+photograph fusion
rendering using the author’s
photograph and a research
patient’s CT scan.

74

3.3.1 Method for 2D Color Transfer

One or more photographs of a patient are captured when they are

scanned. The photographs can be registered to the 3D scan either

through explicit calibration or by feature-based estimation of a camera

pose relative to the imaging device. When a 3D view of the patient data

is volume rendered, the surface pixels are found either implicitly by

considering a function of intensity like gradient magnitude, or explicitly

by querying the scene catalog. Then the photographic data is

referenced according to the camera model to determine the relevant

surface texture to apply.

Once the decision to photo-map a voxel has been made, the core of the

rendering method is the transformation between a 3D coordinate and a

patch of a photographic image. Different methods must be used

depending on whether the photographic source is configured as a

cylindrical image or as a standard planar image.

For the purposes of animating longitudinal surface changes, surface

appearance may be assigned by blending multiple photographs

according to when they were captured.

The basic rendering algorithm is described in detail in the following

section. Program 11 summarizes the algorithm and it is diagrammed in

Fig. 86.

Photo-Mapping Algorithm
1. For each voxel, determine membership in skin/surface of interest:

Implicit (intensity threshhold + gradient)
Explicit (voxel label)

2. If not of interest, pick a value according to the DVR transfer function
3. Otherwise, for cylindrical images

3.1 Compute image coordinate as a non-linear function of stretch,
 rotation, axis, and world-coordinate

4. Otherwise, for multiple planar images
4.1 Determine which image governs shading by dotting gradient dir
 and camera dir
4. 2 Pass the world-coordinate through the appropriate
 world-to-image transform

Program 11 Pseudo-code for the photo-to-volume mapping algorithm.

Input

The method described is flexible with respect to its input. 3D images

may be of any modality (computed tomography, magnetic resonance

imaging, etc.) but all require a method for identifying voxels subject to

Region
Membership

Accumulate
Transfer fn

uv = Trans(xyz)

Select
Image
Trans

Lookup
Image Texel

Color shaded
region

No region

Voxel Input

Value Output

Fig. 86 Diagram of photo-
mapping decision tree.

75

photo-mapping. For CT or MRI combined with surface imaging, where

there is a well defined intensity different between air and the patient,

identifying surface voxels can be a straightforward application of edge-

finding. For photo-mapping laparoscopic or endoscopic images onto

internal regions, this may require 3D path information. For photo-

mapping anatomic images such as a reference image of a liver, this may

require more sophisticated image segmentation.

Photographic images may be of two different types, Atlas Images or

Patient Images. Atlas images are pictures of a reference patient which

can be carefully built once offline, then mapped many times onto

different patient scans. Such images are useful for adding race and sex

cues to visualization or for identifying the surfaces of internal anatomy,

such as the liver or a muscle. Patient images are unique to a given

patient and require specific processing between capture-time and

render-time. Patient images are required for any patient-specific

diagnostic or longitudinal studies. Some applications rely on non-visible

light patient photography, such as thermographic imaging, but the same

principles hold. Atlas and patient images can be easily combined, if, for

example, a clinician desired a rendering with patient-specific surface

features but also with a liver atlas image embedded in the 3D data.

3.3.2 Rendering From Cylindrical Images

The easiest case to consider is photo mapping from a cylindrical image

of the patient. Cylindrical images tend to be harder to collect and more

expensive to transform into CT coordinates, but the decision tree is

straightforward and the renderings are ultimately much more robust to

mismatches between the photograph and the 3D geometry. Consider

that the image in Fig. 85 is the author’s photograph mapped by this

method onto a completely different patient’s CT data, and the image in

Fig. 87 uses a non-cylindrical image of the monkey.

By aligning the cylinder axis of a cylindrical photo of the patient

captured at treatment time and the cylinder axis of any patient scan,

the two images can be registered with a small number of variables. As

the 3D image is rendered, the voxels corresponding to skin are

identified by image analysis methods and are “painted” using a

mathematical cylinder transform to query a patient photograph for the

relevant skin texture. This section describes the mapping in detail.

Fig. 87 Top, a capuchin
monkey MRI with a pseudo-
cylinder photomap from a
reference image, bottom.

76

Using an OpenGL object-order renderer, the patient’s 3D CT image is

bound to texture unit 1, and a patient photo is bound to texture unit 2.

For simplicity, suppose that the 3D patient image has been

preprocessed and includes a label for skin voxels in the alpha channel.

For realistic lighting, further suppose that the gradient direction and

magnitude of the 3D patient data have been precomputed and loaded

as rgba values to a third texture binding.

A custom fragment shader (recall Fig. 50) then processes each fragment.

Each fragment has a world position, X=(x,y,z), that is used to retrieve

I(X) = (h,s), where h is the local intensity value of the patient image in

Hounsfield units and s is a binary label for skin or not skin. If the

fragment is not skin, it is composited normally. If it is a skin voxel, the

cylindrical coordinate of the patient photo is calculated, and that texel is

used to determine the surface value. If desired, additional lighting can

be calculated by using the local gradient as a proxy for the normal

direction at this fragment. The gradient can be easily computed online

by finite differences by testing local texture values. However, in

practice, these additional tests can be quite slow, and because the

gradient direction is fixed within a scalar even under intensity

windowing, it is usually easier to simply pre-compute the gradient and

load it as a color texture, as discussed previously. The gradient direction

at the skin fragment can then be linearly interpolated and renormalized,

which requires only a single texture lookup.

A cylindrical texture map is a restricted case of the spherical texture

map first described in (Blinn and Newell 1976). For a simple cylinder

mapping, Cartesian coordinates (x,y,z) can be converted to cylindrical

coordinates (ρ,θ,z) according to Eqn. 1. For a general cylinder map,

additional parameters for stretch (κ), rotational offset (φ), axis origin

(x0,y0,z0), and axis direction (x1,y1,z1) can be included. Capturing the

cylindrical image relative to the imaging or treatment couch with the

cylinder axis aligned along direction that the patient will move through

the scanner eliminates the axis direction parameter, so only five

parameters (κ,φ,x0,y0,z0) are required. For a fixed capture device all five

parameters can be determined empirically and will remain fixed for all

subjects. The world-to-cylinder transform is non-linear and requires

some trigonometry, which can be slightly more expensive to implement

on a gpu but still requires relatively few operations to compute.

𝜃 =

arccos
𝑥

𝜌
 0 ≤ 𝑥

𝜋 − arccos
𝑥

𝜌
 0 > 𝑥

𝑧 = 𝑧

𝜌 = 𝑥2 + 𝑦2

Eqn. 7 Formulae to convert from
Cartesian coordinates (x,y,z) to
cylindrical coordinates (ρ,θ,z)
given aligned origin, offset,
orientation, and stretch.

77

Ultimately, for a cylindrical image that is aligned with the central axis of

the 3D image, such as the one shown in Fig. 89 (bottom), the pixel

coordinates (p,q) are (θ/2π+φ, κz). Cylinder mapping implemented as a

GLSL fragment shader is shown in Program 12, and Fig. 85 shows a

resulting image.

// mgrView Fragment GLSL for Volume Rendering + Photo Mapping
#define ONE_OVER_TWO_PI 0.159154943
varying vec3 light_dir;
uniform sampler3d patient_im3d, patient_im3d_gradient;
uniform sampler2d patient_photo;
uniform float kappa, phi;
uniform vec3 axis;
vec3 CylinderMap(vec3 point, vec3 axis, float kappa, float phi) {
 float x = point.x - axis.x; float y = point.y - axis.y; float z = point.z - axis.z;
 float rho = length(vec2(x, y));
 float theta = (y>=0.0) ? acos(x/rho) * ONE_OVER_TWO_PI : 1.0 - acos(
x/rho) *
 ONE_OVER_TWO_PI;
 theta = theta + phi; theta = theta - floor(theta); // Cycle
 z = kappa*(1.0-z);
 return vec3(rho, theta, z);
}
void main() {
 vec4 source_color = texture3d(patient_im3d, gl_TexCoord0.xyz);
 float intensity = source_color.r;
 // Skin membership is encoded in source.alpha
 if (source_color.a != 1.0) color = vec3(intensity);
 else color = texture2d(patient_photo, CylinderMap(gl_TexCoord0.xyz,
axis, kappa, phi).zy);
 gl_FragColor = vec4(color, source_color.r);
}

Program 12 GLSL fragment shader program for basic 3D+photo fusion
rendering. The rendering in Fig. 85 was produced using this program.

3.3.3 Rendering From Planar Images

The cylindrical image approach outlined above pushes the method’s

complexity into the generation of the cylindrical image, which can be, in

turn, answered with hardware. Cylindrical images may be captured

directly using a specialized slit camera (Fig. 89, right) or by blending

photos from an array of standard cameras positioned around the

patient as discussed in the next section. However, similar results can be

achieved using planar images directly. Mapping from world space to

photo space given a single image from a calibrated camera is a simple

variant of the common world-to-image transform used in computer

graphics projective mapping such as the OpenGL 4 x 4 “Model-view-

Fig. 88 Top, a synthetic view of
the Visible Human from a
known camera. Bottom, the
synthetic photograph pushed
back onto the target patient’s
3D image using a direct planar
mapping.

78

projection” matrix. This matrix multiplies a homogeneous world-

coordinate and the result reduces to a 2D image coordinate. Such

matrix multiplications can be done quickly and inexpensively on a gpu.

A camera’s intrinsic properties (field of view, center point, pixel size,

skew) can be derived empirically using a tool such as the Camera

Calibration Toolbox for Matlab (Bouguet 2008). The extrinsic properties

or “pose” of a fixed camera can be estimated similarly or determined

mathematically from the rig or gantry geometry. These camera

calibration parameters can be directly transformed into a standard

OpenGL-type 4 x 4 matrix transform. The ARToolkit (HIT Lab 2007)

includes an open source version of such a transform for reference

purposes.

While simple planar images are easier to collect and cheaper to

transform for rendering, planar images are much more sensitive to

measurement error and mismatches between the photograph and the

3D geometry. Cylindrical image maps have few parameters, and the

parameters have intuitive relationships with the projection. Thus the

user can easily manually improve a mapping to account for mismatches.

Projective image maps have many parameters (position, orientation,

field of view, skew, etc.) and multiple conflicting ways to achieve similar

results, such as moving the camera vs. zooming the field of view. This

precludes the user from doing significant manual alignment.

When using multiple cameras to collect a set of planar images, such as

an anterior and a lateral photo, the most relevant camera can be

selected for each fragment by comparing the surface normal (the

gradient direction) to the camera view direction. Assuming that the

camera that is most closely aligned with the surface normal will have

the best texture information, the maximum dot product with the

gradient over all camera view directions will serve to distinguish a single

best camera. A slower but smoother approach is to blend texture

information from several cameras weighted by the dot product

between the view and normal directions.

Multi-image projective texture mapping has several interesting non-

medical antecedents. In particular, (Debevec, Borshukov and Yu 1998)

is an important example of using photographs and simple geometry as a

means for high quality image based rendering. (Raskar, et al. 2001)

proposes a method for projecting synthetic photo-like textures using

actual visible light ("shader lamps") to illuminate real world objects.

R 1.5'

R 3'

Ring array

Cameras

CT gantry

CT bore

Patient table

Fig. 89 Top, a schematic of the
proposed 6-camera cylindrical
array attachment for a CT
gantry. Bottom, a cylindrical
image of the author collected
with a slit camera at The Tech
Museum in San Jose.

79

3.3.4 Camera Arrangement

As suggested previously, the photographic images may come from

cameras working across the visible and the invisible spectrum.

Thermographic or heat photography is thought to have considerable

potential in this domain. In general, planar photographs can be

captured using either calibrated or uncalibrated cameras.

Calibrated cameras, as discussed previously, have known intrinsic

properties (pixel size, field of view, skew, etc.) and known position and

orientation (called “pose”, or extrinsic properties) with respect to the

same reference frame used by the 3D modality. Photographs covering

multiple angles may be generated sequentially from a single camera

moved serially around the patient into several known positions (Fig.

90), or in parallel from an array of cameras mounted around the patient

that can be activated simultaneously (Fig. 89, top). The parallel camera

array has the advantage of limiting patient motion between frames and

motion between being photographed and entering the 3D scanner.

The UNC Radiation Oncology clinic has proposed building such an array

fit up against a CT scanner gantry so that it can generate the cylindrical

image directly before the patient enters the bore where the 3D image

will be collected. Mathematical transforms for computing cylindrical

images from multi-angle photograph collections are related to those

used in creating multi-image panoramas. If the cameras are calibrated

and fixed in known positions, no feature matching needs to be done.

We expect that the camera array proposed will achieve sub-millimeter

accuracy when mapping patient photographs onto 3D CT image.

Uncalibrated cameras, such as hand-held cameras used to photograph

patients for identification or for ad hoc charting of skin lesions, require

2D to 3D feature-match based pose estimation. Such landmark based

pose estimation is beyond the scope of this paper, but the general

problem of computing projective registrations is an active area of

interest in the computer vision community. Consider (Forsyth and

Ponce 2002) as a starting point. Given such pose estimates, images

from uncalibrated cameras essentially become directly-mapped single

planar images as discussed above.

Fig. 90 Top, calibrating a
camera. Middle, taking
sequential multi-angle photos in
a reproducible position using the
accessory tray of a linear
accelerator. Bottom, a single
planar source photograph.

80

3.3.5 Animating Surface Change Over Time

For longitudinal photo collections an additional parameter can vary to

determine a weighting between textures sampled from two or more

images. Such visual registrations might be interesting for tracking inter-

fractional patient skin changes with respect to a dose field (Fig. 91).

A number of additional “key photos” can be added to an animation

without appreciably decreasing the rendering frame rates, although

restrictions on the number of active texture units within a fragment

shader can come into play. However, this can be addressed for

collections of images with the same alignment parameters (e.g.,

collected with the same fixed camera) by loading an aligned stack of

color images as a single 3D color texture unit and then trilinearly

interpolating a value at the coordinate (pqt), where t identifies the

particular key photo.

Further combining surface color mapping rendering with volumetric

animation has possible applications in domains such as planning

reconstructive surgery, as will be discussed later.

Fig. 91 Example of animating
longitudinal surface changes.
The left-most frame shows the
author’s photograph mapped
onto a research CT scan; the
right-most frame shows a
different sample subject.
Intermediate images are blends
of the two.

81

3.4 3D Color Transfer

Medial shape representations provide a useful object-relative

coordinate system that can be used to compare or transfer information

across images in object-relative coordinates. Such mappings can

combine data from multiple images into a single target rendering,

thereby allowing the user to simultaneously visualize data from

whichever source is most useful or sensitive to a task at hand.

Given a scene catalog that contains both an X2U map and the inverse

U2X map for a particular region, the source image model-coordinates

can be transformed into the world-coordinates of a related atlas image,

and then the atlas image can be indexed for the appropriate scene

texture, as shown in Fig. 92. While the method can be used to map data

between any two images with properly modeled corresponding regions,

assigning a general label-specific appearance by transferring from a

color atlas volume such as the Visible Human is an interesting target

case. Fig. 93 shows an example of a target patient rendering with the

mandible region colored according to the Visible Human color volume.

This section includes three topics: a Method for Object-Based 3D Color

Transfer on surfaces and in volumes, a discussion of data

representation for U2X Maps, and a brief review of other methods that

have been proposed for Using the Visible Human as a Color Atlas.

3.4.1 Method for Object-Based 3D Color Transfer

Corresponding regions in both the target and source images18 are fit

with models similar in topology (slab/tube) and sampling (grid size). As

discussed previously, this can be done semi-automatically for the target

image, but atlas images may be segmented and carefully fit offline. In

the prostate scene used in Fig. 60 and later in Fig. 134, the source image

is an MRI of the same patient taken at a different time. In the head and

neck scene used in Fig. 4 and Fig. 93, the source image is a high

resolution color volume from the Visible Human. In both cases, the

source data was carefully segmented by hand, and then an m-rep was

fit to the resulting binary label image.

18

 Terminology: Following standard convention, the patient image is called the
“target” image throughout; any textures mapped into this space regardless of
type are referred to as “source” images.

Xtgt2U
map

Atlas Im

X in target in

U and label

U2Xsrc
map per

label

X in atlas

Color out

Fig. 92 Model-based color
transfer pipeline. Positions in
the target image are mapped
through model-coordinate
based functions to find the
color at the corresponding
position in the atlas image.

82

The m-rep fit to the source image is converted to a U2X map, the

inverse of the X2U map described previously. The U2X map provides

similar functionality to the X2U map – an object-coordinate U is input,

and the world coordinate of that point in the atlas image is read back

out. MGR represents U2X maps as an image that can be loaded as a

texture unit and manipulated in a programmable shader.

Fig. 93 Top, volumetric color
mapping clipped through the
mandible. Bottom, adding
surface color mapping for
lighting. The indicated artifact
running along the medial sheet is
the same parametric
interpolation singularity
discussed previously in the
section on solid texture
coordinates.

83

Given a source image and a U2X map, two types of color transfer are

then possible, surface-only and volumetric (Fig. 93). Both rely on the

same basic method, but as with simple texturing, surface-only color

transfer does not require the X2U map at all since the only object

coordinates of interest are given directly at the vertices. As each

fragment of the target image is shaded, the X2U map or model surface

gives an object-coordinate which can be transformed through the U2X

map into source image coordinates. As shown in Fig. 92, this is

effectively a two step texture indirection. Program 13 shows a GLSL

fragment shader that does this indirection19.

// mgrView GLSL fragment shader for single object color transfer
uniform sampler2D u2x_im0, u2x_im1, x2u_im, color_im0;
void main(void) {
 source_color = texture3D(source_im0, vec3(gl_TexCoord[0])).rgb;
 vec3 uvt_coord = texture3D(x2u_im, vec3(gl_TexCoord[1])).rgb;
 if (uvt_coord.b < 0.45) {
 // Inside the region of interest
 // Convert u coordinate to x in atlas
 vec3 x_0 = texture2D(u2x_im0, uvt_coord.rg).xyz; // Medial pos
 vec3 x_1 = texture2D(u2x_im1, uvt_coord.rg).xyz; // Surface pos
 vec3 x_t = mix(x_0, x_1, 2.*uvt_coord.b); // Coord pos
 vec4 x_a = gl_TextureMatrix[4]*vec4(x_t, 1.); // Atlas is texture[4]
 vec3 atlas_color = texture3D(color_im0, x_a).rgb;
 gl_FragColor = vec4(atlas_color, 1.);
 } else {
 // Standard shading
 float windowed_value = intensity_window(source_color.r);
 gl_FragColor = vec4(windowed_value);
 }

Program 13 GLSL fragment shader program for volume mapping.

If the multiple texture indirections required for multi-object X2U maps

are found to be a considerable slow down on rendering speed, it is also

possible to “pre-flatten” each object of the source image by

prerendering it into a cardinal (uvt) space so that the second indirection

would become unnecessary.

19 It appears that for some OpenGL implementations, when doing surface

mapping, it is important that the source texture coordinate be computed in the
vertex shader and an interpolated value passed into the fragment shader. This
can be implemented by moving steps 1 and 2 from Program 13 into the vertex
shader and using a standard world-mapped fragment shader as described in
section 3.2, Simple Texturing for Volumes.

84

3.4.2 U2X Maps

The U2X map is a data structure for a medial model associating an (xyz)

world-space coordinate with every parametric coordinate (uvt). In the

fragment shader the U2X map provides an interface to index atlas data

according to model-coordinates (recall Fig. 92). A fragment’s world

position in the target image is transformed into a model coordinate

according to the X2U map described previously. Those model-

coordinates must then be transformed back into the world coordinates

of a source image.

As mentioned previously, m-reps are, by construction, designed to

transform medial parameters to world-coordinates at the sample

points, but interpolating a continuous transform requires complex

math. In mgrView, continuous U2X maps are implemented as a pair of

2D images parameterized such that the nominal x axis is u and the y axis

is v. The rgb values at each pixel encode the corresponding x,y, and z

values at that (uv) coordinate. The first image (u2x0) is the U2X map at

the medial sheet and the second image (u2x1) is the U2X map at the

boundary surface. Each pair of values taken from the same (uv)

coordinate in the two images implies the tip and tail of a medial spoke.

Interpolating non-sampled values from this grid gives vertices with the

same level of continuity as the mathematically implied m-rep boundary

has. Taking weighted combinations of two images gives a very fast

means of computing the (xyz) coordinates of a radius-weighted onion-

skin between the medial sheet and the boundary surface (Eqn. 8). As

with the X2U maps, in certain cases it is useful to extend the map

beyond the surface, so that world coordinates can be estimated for the

nearby “collar” region at values of t greater than 1.

Once loaded as a texture pair, the U2X map for a shape can be accessed

in both the vertex and fragment shaders. Its application in the fragment

shader for inverting the X2U map as part of atlas color mapping has

been discussed. However, it can also be useful in a vertex shader to

quickly generate vertices at any (uvt) coordinate. For example, Fig. 95

shows corresponding world points for uniformly sampled (uvt) in each

of several target regions. Such sampling could have a variety of

potential applications for understanding data according to model-

centric coordinates. The local spoke direction can be also easily

interpolated, and if one assumes that the surface is orthogonal to the

spoke direction (i.e., the surface is “partial Blum”), then the spoke

Fig. 94 The surface (t=1) plane
for a U2X map of the scm shown
in Fig. 62. The u direction is
along the X axis; v is along the Y
axis. The rgb value represents
the (x,y,z) position at that (u,v,1)
coordinate. Top shows the
wireframe, with evenly sampled
(uv); middle shows the
barycentric interpolation of (xyz)
values; bottom shows the
original surface shaded similarly.

𝑋 𝑢𝑣𝑡 = 𝑡 ∗ u2x0 𝑢𝑣

 + 1 − 𝑡 ∗ u2x1(𝑢𝑣)

Eqn. 8 Formula to calculate the
world-space coordinates (xyz) of
a model-space coordinate (uvt)
given U2X maps at the medial
axis and boundary surface.

85

direction can be used as a proxy for the normal direction. The image

derivatives define du and dv directions for a local tangent plane.

Computing a U2X Map

U2X maps can be created by rendering the surface vertices and faces at

their (uvt) positions, colored by their (unit cube) (xyz) positions. In

mgrView this is done in a vertex shader that simply exchanges model-

with world-coordinates. Fig. 94 shows an example surface and its U2X

map. The small errors in connectivity at the top of the image are the

corners of the implied surface. Each boundary surface generated by

Pablo has four medial-sheet-array-corner crest regions. When wrapping

around the object in v, the first two corner crests assign coordinates to

some of the vertices that are counted again in the later corner crest

regions. Thus, a few values of “shrinkwrap” (uv) are missing from Pablo-

generated surfaces. This has no effect on the rendering since those (uv)

coordinates are unused.

When generating a fully volumetric U2X map, this function is called at

least two times with t=1.0 (surface) and with t=0.0 (medial positions).

The image buffers are loaded onto the graphics card as 2D texture units.

As with the X2U maps, mgrView additionally saves these images out to

cache so that they need not be recomputed.

Fig. 95 Passing a uniform
sample grid in parameter space
through the U2X maps
produces a regular sampling of
each region in world-space.
Here each point is at the world-
space coordinate computed
from an input object
coordinate.

86

The U2X maps can be quite small: in principle they need only a single

pixel for each vertex in a given direction. For example, a shape with 10

medial samples in u and 4 in v (treated as 8 because that implies 4 more

on the bottom of the sheet) with a single level of subdivision would

require only approximately a 20 x 16 pixel image to capture all the

vertices. In practice, because there are additional vertices along the

crests that must be represented and because there is no waste in using

a power of 2 sized image, image dimensions are square and computed

as NextPow2(max(u*1.5,2*v*1.5)). This is still quite small: the U2X

example described above is still only two 128 x 128 pixel images. As

with all small texture maps, these small images have good cache

coherence when manipulating them in a shader program.

One disadvantage of this representation is that its spatial precision is

limited by color precision to 256 bins across the unit cube in each

direction. Considering that the (xyz) positions of the original vertices

may have sub-voxel accuracy and that there are usually 512 voxel units

across clinical CT images, this might be a serious weakness in certain

contexts. This could be overcome by identifying a region of interest as

an additional offset and scaling for the U2X map. This would give 256

bins of precision across the extents of the object, but that has so far

been unnecessary for color mapping from the Visible Human.

U2X Maps for Multiple-Object Scene Catalogs

As with X2U maps, it is preferable to collapse multiple U2X fields into

the same texture unit; however, in this case the procedure is somewhat

more convoluted. The simplest solution is to concatenate each object’s

grid along the u-axis of a master U2X field. Thus, a 32 x 32 u2x map

becomes a 32 x 64 grid for a two-object scene or a 32 x 128 grid for a

four object-scene. Then the u value is transformed by adding the

object-number divided by the total number of objects. Care must be

taken at the edges to not interpolate across objects. Hardware texture

requirements mean that the total number of objects representable in

the consolidated map is restricted to be a power of two, but there is no

particular harm in leaving blank entries at the end.

87

3.4.3 Using the Visible Human as a Color Atlas

Mapping color from the Visible Human cyrosections allows regions in

the target image to be shaded according to one fairly realistic anatomic

atlas. Several other methods for high quality rendering using the

Visible Human data have been proposed, most notably VoxelMan,

shown in Fig. 97. As mentioned previously, VoxelMan rendering is done

offline, and it requires exhaustive microsegmentation, so it is not

suitable for target clinical patients.

However, it would certainly be possible to use the color mapping

technique described earlier to pull the detailed voxel-wise labeling from

certain regions in the VoxelMan data set and map them into a clinical

patient, for example, bringing small blood vessels or nerves which are

unseen on a target CT but have been identified in the Visible Human

back into the target patient scene. This would not require a great deal

of work, since many structures in the Visible Human are already

targeted for m-rep based segmentation to serve as regional color

atlases. Given an additional voxel-wise field from a project such as

VoxelMan, e.g., ‘blood-vessels’, this same segmentation framework

could easily be used to pull those additional channel into the target

rendering along with the color values.

There are other less segmentation-driven methods for augmented

rendering such as (Dong and Clapworthy 2005), which proposes a

method for enhancing isosurface-type volume rendering of the Visible

Human data by looking at small features with high curvature to identify

fiber orientations (Fig. 98). In both cases, the rendering target is limited

to the Visible Human, in the first case, because it presupposes an

exhaustive segmentation, and in the second case, because such detail-

Fig. 98 Volume rendering with
two different styles of oriented
texture from (Dong and
Clapworthy 2005).

Fig. 96 Direct rendering of the
Visible Female color atlas with
mgrView.

Fig. 97 Voxel-man renderings
from the Visible Human from
www.voxel-man.de.

88

oriented methods require extremely high resolution images with no

motion artifacts.20

There are many educational applications specifically designed to

visualize and interrogate data from the Visible Human (see

www.nlm.nih.gov/research/visible for a list), but the only approach

that, like MGR, allows color information from the Visible Human to be

mapped into a new target patient rendering is found in (Lu and Ebert

2005) and associated work from the same group. (Lu and Ebert 2005)

proposes using example patches from the Visible Human to synthesize

3D tiling “Wang” texture cubes that can be mapped into broadly

defined regions in a new target image (Fig. 99). This is a very flexible

approach, but it lacks MGR’s ability to use model-centric coordinates

to map, for example, the marrow of a bone into the interior regions

and the surface of the bone to the boundary.

20

 “We can’t get resolution like that in the clinic. For one thing, we’re pretty
sure that the Visible Human subjects weren’t moving when they were
scanned.” – Gregg Tracton

Fig. 99 High quality rendering
using textures synthesized from
the Visible Human sample
colors shown on the right, from
(Lu and Ebert 2005).

89

4 Model Guided Composition

for Medical Images

All volume rendering suffers from problems of occlusion and

obscuration; unimportant regions in the scene get in the way of

understanding important features. This is what Levoy was referring to

when he made the proposition that no features would be lost in volume

rendering as long as the data increased monotonically along the ray.

While this statement is true, it is irrelevant because it is never the case

that anatomic images have this property.

Composing a scene is organizing the rendering so that everything that is

most important for understanding a particular problem is revealed.

There are three basic approaches for doing this: picking an unoccluded

viewpoint and transfer function, deforming the data to move occluders

out of the way, or removing occluders entirely (Fig. 100). The first

approach is typically used exclusively and is usually left entirely to the

viewer although (Bruckner, Kohlmann, et al. 2008) and others have

proposed semi-automatic approaches to scene composition via

parameterized views. This chapter covers MGR’s approaches for

enabling the latter two of these approaches.

MGR’s volumetric animation capability was originally intended to

enable interactively pulling aside structures to expose features behind

them, but the same methods can be applied to animate the scene with

respect to any deformation imposed on the image. The method has

received the most attention for its ability to interactively show the

21

 I could write an entire section on von Hagens, but suffice it to say that he is
doing “Netterly Rendering” with bodies rather than images: rendering bodies
to look more like anatomy than they did when they were alive. And like the
Renaissance artists that he fashions himself after, von Hagens has been
accused of such unsavory “grave-robbing” as trafficking in the corpses of
executed Chinese dissidents, so certain of his exhibits were refused entry into
the US.

Fig. 100 Left, Vesalius (Vesalius
1973) removed the skin
entirely, right, similar view
from (Hagens 2007)

21
 where

the skin has been moved out
the way but continues to
provide context (i.e., there is a
lot of it).

90

effects of the local registration fields commonly used in adaptive

radiotherapy (ART) or 4D imaging studies. MGR’s method for volumetric

animation is a straightforward and novel extension of volume

visualization to dynamic scenes. Image deformation is bound by the

large number of trilinear interpolations required. Having already made

the decision to work within the confines of the graphics accelerator

hardware, there are a large number of interpolation units available to

use for free, and it is simply a question of representing the various

images and deformations so that they can interact as texture units.

Clipping approaches in volume rendering usually involve creating

complex transfer functions that pick out objects or regions of interest;

however, these transfer functions become increasingly fragile and over-

tuned to particular data sets. Importance rendering (Viola, Kanitsar and

Groller 2004) is a significant recent technological insight that, like MGR,

relies on a model for the scene to make smart “importance decisions”

for each pixel. The major drawback of current work in this area is that it

is implemented with straightforward but slow ray casting algorithms

that require pre-determining the scene’s importance rules. MGR

proposes a novel object-order fast importance rendering algorithm that

works on ranked surfaces rather than according to voxel values. This

algorithm is related to the concept of “shadow volumes” and is fast

enough that it enables dynamic importance rendering, by which a scene

can be dynamically clipped against an arbitrary shape with interactively

controlled position and size.

These two methods for scene composition can be used for a variety of

effects. In particular, when taken together they are very useful for

showing changes in shape and spatial relations in time, which is the

basis for the project MGR Applications in Adaptive Radiotherapy, which

will be discussed in section 5.2 of the next chapter.

The chapter closes with a very short section on clipping surfaces with

model coordinates. This technique is straightforward in MGR and can

be used to produce some attractive anatomic layering effects.

91

4.1 Volumetric Animation

Clipping is the most widely use approach for scene composition in

volume rendering, however, there are certainly scenes for which no

static view completely exposes the important features or for which it is

necessary to preserve all of the features for context. In particular,

scenes which change over time such as an image under the effect of a

deformation fall into this category.

As discussed previously, one of the basic problems with doing this kind

of operation is slowness of interpolation. For any given time step,

several million trilinear interpolations need to be done if every voxel is

potentially contributing to the scene. The key insight is simply that

there are a large number of parallel trilinear interpolation circuits

available on modern graphics accelerators that can be leveraged to do

this work if the problem can be cast into an object-space algorithm.

The section includes two topics, one giving an example of rendering

images under a global deformation, and another describing the general

technique for and implications of rendering images under a local

deformation field.

4.1.1 Rendering Images Under Global Deformation

(S. Bruckner 2006) describes a method for gpu accelerated volume ray-

casting of “exploded” views, shown in Fig. 102 left. This technique is

effectively a global deformation applied selectively to the volume

image. A similar deformation technique was built in mgrView as an

example of how easily such global deformations can be added in this

framework (Fig. 102, right).

Fig. 102 Exploded view from (S.
Bruckner 2006) and similarly
deformed view rendered in
mgrView.

Fig. 101 Detail from da Vinci’s
“Babe in the Womb” c.1511,
which, along with modern work
by von Hagens, was cited as
particular inspiration for the
methods developed in (S.
Bruckner 2006).

92

Consider z fixed and the center of the split is at c=(0.5,1.0). Then a 2D

position X is going to a new position X’ as a function of θ according to

Eqn. 9. The original position of a fragment that is at X’ can be found by

inverting the equation. Finally, recognize that any source position with

an x value that is on the wrong side of the center line with respect to

the fragment position (i.e., sign(x’-cx) ≠ sign(x-cx)) or any fragment that

maps to the preserved positions should be rejected. The fragment

shader for this is shown in Program 14 and the result in Fig. 102, right.

Note that in this sample case, the position of bone is preserved (image

values greater than 0.3), but given a scene catalog the clam shell effect

could preserve any collection of regions.

uniform float time;
vec2 center = vec2(0.5,1.0);
vec2 split_vol(vec2 X){
 float theta = 0.81 * time * (X.x>center.x?-1.:1.); // Want to go PI/2 at 1
 mat2 Rt = mat2(cos(theta), -sin(theta), sin(theta), cos(theta));
 return (X-center)*Rt+center;}
void main(void){
 source_color = texture3D(source_im0, vec3(gl_TexCoord[0])).rgb;
 // Fragment was soft tissue
 if (source_color.r < 0.3) {
 vec2 X_new = split_vol(vec2(gl_TexCoord[0]));
 // Determine if the fragment came from the same side of the split
 // as it started on, this would be more complex if not axis ailgned
 if (sign(X_new.x-center.x)!=sign(gl_TexCoord[0].x-center.x))
 source_color = vec3(0.0);
 else {
 source_color = texture3D(source_im0, vec3(X_new,
 gl_TexCoord[0].z)).rgb;
 // Fragment was bone, so ignore it
 if (source_color.r > 0.3) source_color = vec3(0.0);
 } }
 if (source_color.r < 0.05) gl_FragColor = vec4(source_color, 0.0);
 else {
 float windowed_value = intensity_window(source_color.r);
 gl_FragColor = vec4(windowed_value);
 }}

Program 14 GLSL for the volume splitting algorithm.

The rendering is fairly effective as an animation, but it is expensive to

compute. This implementation runs at a respectable 15 fps on a target

laptop with an NVIDIA Quadro NVS 160M gpu, but at sub-interactive

rates (4 fps) on a target desktop with a NVIDIA GeForce 6200 gpu (see

Table 4 on page 142). There may be more efficient means of computing

this particular transform, such as rotating world-space half-cube texture

𝜃′ =
−𝜃, 𝑥 < 𝑐𝑥
𝜃, 𝑥 ≥ 𝑐𝑥

𝑋′ = 𝑋 − 𝑐 𝐑(𝜃′) + 𝑐

𝑋 = 𝑋 ′ − 𝑐 𝐑T(𝜃′) + 𝑐

Eqn. 9 Formula for
transforming a world point X by
the clam shell operation to find
X’, and the inverse transform to
recover the original position of
a transformed X’. R is a
standard 2D rotation matrix.

93

stacks, but this example is merely meant as an illustration of the general

idea of applying global deformations in this framework.

4.1.2 Rendering Images Under Local Deformation

Deforming the volume to move particular regions in order to visualize

structures that are hidden behind them (Fig. 103 and Fig. 104) requires

some kind of physical model. The parametric deformation model

described in (Correa, Silver and Chen 2006) produces local appearance

effects, but is actually much closer to the global deformations discussed

in the last chapter. While m-reps are amenable to local physical

modeling such as finite element modeling (see (Crouch, et al. 2003), for

example), implementing such a framework is beyond the current scope

of this project.

However, the 3D image registration fields discussed earlier provide an

interesting related problem that relies on the same basic method for

representing local deformation. Furthermore, such registrations are an

important aspect of image analysis but have only limited support among

visualization tools.

The method requires at least two patient images, I0 and I1, that are

related by a rigid transform, R, and a dense vector field, H, that

accounts for the residual change such that I1 = H(R(I0)). The particular

registration method is unimportant here. In this example taken from

inter-fractional patient images, the registration is done with ImMap,

described in (Foskey, et al. 2005).

H is stored as a 3D color texture unit, where (rgb) represents the

displacement at each voxel (hx,hy,hz). As each fragment is rendered, its

position X is used to lookup the local displacement H(X), and a final

intensity is determined by looking up the image value at X+H(X).

Trilinear interpolation of the gray values in the deformed space is done

automatically in hardware as long as OpenGL is instructed to use

GL_LINEAR as the texture interpolation method. With a scalar time

ranging between [0,1], the volume can be incrementally deformed by

indirectly mapping assigning intensity(X) to intensity(X+time*H(X)).

Program 15 shows the fragment shader for this, and Fig. 105 shows two

frames from the resulting interactive animation that shows the entire

range of deformation between the source and target images. This idea

Fig. 103 Image from (Hagen
1992). Retractors are used to
reveal hidden internal
anatomy.

Fig. 104 Image from (Correa,
Silver and Chen 2006) that uses
parametric manipulators such
as peelers and retractors to
visualize a deformed space.

94

is expanded and detailed in the later section describing an application of

mgrView for evaluating inter-fractional shape change.

// GLSL to SpatiallyTransform a Volume Texture According
// to a Non-linear Deformation Field
uniform sampler3D gray, registration;
uniform float time;
main(void) {
 coord = gl_TexCoord[0].xyz
 coord = coord + time * texture3d(registration, coord)
 source_color = texture3d(gray, coord)
 gl_FragColor = source_color
}

Program 15 GLSL fragment shader extending the volume texture shader with
volumetric animation.

The technique extends to non-linear displacement fields that are

represented as chains of displacements fields, such as the curved

diffeomorphic paths generated by (Joshi and Miller 2000), by loading

each time step as a discrete texture unit and stepping through each in

turn, i.e., intensity(X) = intensity(X+time*Hn(time*Hn-1...time*H0(X)))).

The problem with doing such chaining is not that there are a large

number of interpolations to do but that there are a large number of

ordered texture lookups to do for each fragment. Hence, this technique

is considerably slower than single-step displacements. And while it may

be useful for computing general diffeomorphic transformations, in the

context of same-patient serial imaging, where the displacements are

typically only a few voxels and the difference between the curved and

linearized paths is smaller than a voxel in magnitude, the added

precision does not provide much visual advantage.

The main drawbacks for this method arise from the requirement that

images be loaded onto the graphics accelerator as standard texture

units. The next two paragraphs discuss some particular implications of

Fig. 105 Two frames from an
animation showing the
registration between two daily
images in a fractionated male
pelvis treatment. The change is
subtle, only a few voxels in
most places, but notice the jog
in the hip-bone where the
region of interest passed
through it and the position of
the lower tip of the bladder.

95

this, reduced precision and restrictions on relative scaling between

images.

As with gradient data, discussed earlier, each displacement, which

typically has sub-voxel precision natively, must be encoded as unsigned

bytes (modulo a scaling constant) and then interpolated in low

precision. Again, while may not be appropriate for scientific calculation,

in the context of these registrations with relatively small displacements,

this is not a significant issue. For example, a range of 16 voxels (+/- 8

voxels) still provides 16 units of sub-voxel precision (increments of

0.0625 voxels). This is more than enough precision to understand even

relatively small shape changes in objects such as the prostate or bladder

that are several tens of voxels in size. If more precision is necessary in

some other context, the problem could also be addressed by using more

sophisticated graphics hardware that supports half-float data

interpolation (a 16 bit float format supported for higher precision

computations on some newer graphics architectures).

There is also a difficulty in reconciling texture units with different

extents. In particular, most registration fields are computed in a

restricted region of interest relative to the original images. Because

texture units are all maintained in a cardinal unitary space that also

includes any additional voxel padding required to meet most hardware’s

requirements that textures be sampled with dimensions in powers of

two, additional care must be taken to convert cm distances into unit

distances that maintain relationships between data sets. The one

ameliorating factor is that each texture may have its own independent

4 x 4 transformation matrix for converting world-distances into unit

texture extents distances. In ray-casting, by contrast, units can be

maintained in their native format and cm distances along a ray can be

converted explicitly to voxel-values by straightforward formulae.

Finally, this method also applies to surfaces in a scene. The position of

each surface vertex can also be used to index into the displacement

field and determine a new position. For surfaces this must be done in

the vertex shader, which requires hardware that supports OpenGL’s

“vertex texture fetch” (VTF). As described in the next section of this

chapter, this technique provides a source for dynamic importance

clipping in animating scenes – the changing surface provides a new clip

frustum at every frame.

96

Volume Morphing

Most spatial registration algorithms cannot account for substantial

intensity differences between the images. Consider a rectum with a gas

bubble registered to one without gas. The patient may be the same, the

nearby anatomy may be the same, and the shape of the rectum may be

the same, but there is an intensity difference that requires either that

the registration be “torn” so that the intensities can be inserted, or

typically, the gas be “deflated” away to a tiny point so that the

registration can remain diffeomorphic.

In practice, with the clinical algorithms that we use, this happens all the

time at a small scale. The smoothness constraint either forces the

registration to “miss” or allows the registration to produce an unsmooth

and likely illegal mapping (preview Fig. 147). A pixel with no good

corresponding intensity will obligingly map itself to a good spot

suggested by its neighbors. This means that H(I0) is almost never

actually equal to I1. It is I0 as close as it can get to I1 within the

smoothness constraint. This has no practical consequence in the clinic,

but it can be somewhat disconcerting when visually comparing H(I0)

with the intended target image I1.

Actually “morphing” between the two 3D images requires both a

registration field and an intensity difference term to absorb the residual

error in the registration. This problem has been addressed in a formal

way for medical image analysis by the “Metamorphosis” method

presented in (Trouvé and Younes 2005).

An overly simplified solution is to linearly interpolate between the pixel

intensity in I0 that is t along the displacement vector and the pixel

intensity in I1 that is (1-t) along the displacement vector, as expressed in

Eqn. 10. This formulation is easily implemented in mgrView by adding a

few lines to the animation shader to sample I1 and mix the values from

the different images.

𝐼𝑡 𝑥 =

𝑡𝐼0 𝑥 + 𝑡𝐻 𝑥 +

(1 − 𝑡)𝐼1 𝑥 + (1 − 𝑡)𝐻 𝑥

2

Eqn. 10 Formula for linearly
interpolating intensities at time
t from source (I0) and target (I1)
pixels as they approach each
other according to a
registration field H.

97

4.2 Fast Importance Rendering

Scene composition is, at its simplest, about rendering in such a way that

important structures are not obscured by unimportant structures. As

discussed earlier, most volume rendering approaches suppress or

enhance features identified according to local image properties by

complex transfer functions. For instance, Levoy’s original proposition

that gradient magnitude should determine opacity was an implicit

assumption that region boundaries were the most important features

for understanding a volumetric scene. Other more advanced clipping

rules tend to follow this cue and make further assumptions, looking to

second derivatives or other feature matching methods to separate

important from unimportant features.

Unfortunately, as with assigning scene appearance, there are no good

purely data driven transfer functions for automatically determining the

relative importance of regions of any general scene. Such labeling is

essentially an image segmentation task, so scene composition requires

both external information and a robust method for identifying

important features in the scene.

MGR’s clipping algorithm ultimately relies on the same partial

segmentations used to guide appearance as guides for scene

composition. Fig. 106 shows an example. The image on the left is the

same scene shown previously shown in Fig. 4, but rendered from

behind. From this perspective, most of the important internal structures

are hidden inside the volume. The image on the right shows the same

rendering with the volume culled wherever it would obscure a structure

of interest, in this case, the mandible.

Fig. 106 Left, another
perspective of the scene from
Fig. 4. Right, the same view
with voxels in the mandible’s
importance shadow culled
away.

98

This basic idea of scene composition based on pre-segmented features

is known as “importance rendering” and was originally proposed as an

image-order method by (Viola, Kanitsar and Groller 2004) (Fig. 107).

Given a partial segmentation of the scene into ranked regions, the

problem of scene clipping in MGR reduces to finding an object-order

algorithm for importance rendering. The importance clipping algorithm

used in mgrView is based on an extension of the standard stencil-buffer

based shadow-volume algorithms sometimes used to compute surface-

to-surface occlusions. In the example shown in Fig. 106, the mandible

surface is used to compute a shadow frustum extruding from the

mandible towards the viewer; then each textured plane is stenciled

against the shadow geometry as it is composited to clip away the

intervening voxels.

This section is divided into three topics: first a review of antecedent

work in importance rendering, second the details of the method for

stenciling with importance shadows, and finally a discussion of

extending importance stenciling for hierarchically ranked or dynamic

objects.

4.2.1 Importance Rendering

There are two distinct methods for identifying important regions and

relationships between them in a scene. Manual identification of

important regions is usually based on simple geometric proxies (e.g.,

solid rectangles or spheres) and called volume-of-interest or region-of-

interest (ROI) clipping. Alternatively, given an image segmentation, the

rendering engine can automatically determine more complex shapes of

interest and relationships between them. The term importance

rendering is usually reserved for such model-based clipping. MGR’s

importance clipping algorithm can be driven by either manually

Fig. 107 The lizard from (Viola,
Kanitsar and Groller 2004) with
an importance hierarchy
emphasizing the bones and
liver.

99

controlled ROIs or by the underlying scene segmentation, but this

section reviews methods of model-based clipping in particular. Previous

examples of volumetric clipping with simple manually identified ROIs

are reviewed briefly in the later section describing mgrView’s

“importance flashlight” dynamic clipping tool.

Important structures in a patient image are commonly segmented as

part of our clinical pipeline. Scene composition according to such

segmentations has been a recent and productive area of research

inspired by techniques for cut-away views and ghosting from technical

illustration. The term “importance rendering” was coined in (Viola,

Kanitsar and Groller 2004), which is a significant and beautiful work (Fig.

107). Viola uses a hierarchy of geometric models with importance

values to automatically infer the regions of interest and generate view-

dependent effects in an image-order framework.

“Flexible Occlusion Rendering” proposed in (Borland, et al. 2006) (Fig.

108) falls into the same category. This algorithm works by using a

transfer function to identify contrasted regions and then resetting its

accumulation function when it encounters anatomic intensities again.

The main disadvantage of both Viola’s and Borland’s methods is that

they are designed to be implemented as transfer functions and so rely

on ray casting, which makes them relatively slow to compute.

Computational complexity can be surmounted by fast hardware –

indeed, (Quammen 2006) describes a graphics hardware accelerated

version of Borland’s ray casting method that is quite fast, given the

proper hardware. However, Borland’s method requires a contrasted

image, and Viola’s method requires a voxel-wise segmentation with per-

voxel importance values. Thus, neither of the methods is amenable to

dynamic importance descriptions. Enabling dynamic importance

clipping – i.e., importance clipping against an interactively controlled

Fig. 108 Left, an anatomic
illustration of a shoulder joint
and right, a similar view of real
data rendered with flexible
occlusion from (Borland, et al.
2006).

100

object, is the main advantage that moving to an object-order

implementation gives MGR.

Other antecedent work on volume clipping using explicit models

includes (D. Chen 1998) and (Bullitt and Aylward 2002). In both cases

the models are medial. (Bullitt and Aylward 2002) uses a voxelized

label image to guide clipping when rendering the liver and vasculature

for surgical planning. (D. Chen 1998) is a direct precursor to MGR in

using medial models to guide volume visualizations. However, the

methods are primarily concerned with doing near-model clipping and

lighting the volume according to local data-driven boundary

displacement on medial objects (i.e., using the model normals rather

than the gradient direction). An example rendering is shown in Fig.

109. It is unclear why this method required medial models since the

space-filling volumetric coordinates are not used, but it is an interesting

first step towards being able to identify and focus visualization on

objects of interest by tile geometry rather than according to simple

ROIs.

Finally, some additional related work on clipping and scene composition

for surfaces is reviewed in the final section of this chapter.

4.2.2 Stenciling with Importance Shadows

This section presents an object-order implementation of importance

rendering suitable for a hardware accelerated object-order rendering

framework. In a ray-casting context, determining whether objects are

occluded by or are occluders of anther object is a straightforward task –

when a surface is intersected by a ray, an additional "shadow ray" is

sent to each light source. If the shadow ray intersects with any surface

before it reaches the light source, the generating surface point is

considered to be in shadow. Keeping track of “importance occlusions”

along a single ray, as in Viola or Borland, is even more straightforward

and can be accomplished with a transfer function that simply tracks the

most important object already seen and resets the pixel intensity if a

more important voxel is encountered.

The main problem with implementing such functionality in an object-

order framework is that parallelization requires that each fragment is

necessarily treated independently and that the computations for each

fragment can access only a small amount of local data. Taken together,

Fig. 109 Images from (D. Chen
1998). Top, a medial model fit
to a scanned starfruit. Bottom,
medial models fit to the objects
in the scene are used for
clipping and to smoothly shade
the rendering.

101

this limits the fragment shader’s ability to compute complex “transfer

functions” for both color and opacity. The key insight for this algorithm

is that occlusions in volumetric data are essentially related to cast

shadows – and there are known algorithms for dynamically computing

the effects of cast shadows using per-fragment operations. MGR’s

importance rendering mechanism is based on such an object-order cast

shadow algorithm that relies on a stencil buffer to track the simple

dependency of whether a fragment is shadowed or not across all the

fragments that contribute to each pixel. However, instead of

determining surface fragments that are occluded with respect to a light

source, MGR’s importance shadows determine volume fragments that

are occluders with respect to an object of importance and then stencils

them away.

Shadow Volumes & Importance Shadows

The cast shadow method used by MGR is based on “shadow volumes”

or “stencil shadows”, originally proposed in (Crow 1977) and extended

by (Heidmann 1991) and others. In this method, a shadow volume is a

derived surface for each potential occluder and light source such that

the surface polygons that are back-facing with respect to a light source

are projected to infinity. The shadow volume then encloses all the

surface elements that are occluded with respect to a particular surface

and light source. Fig. 111 shows an example of a 2D shadow area from

(nVidia 2004)

The scene is rendered as normal. Then the pixels that are inside the

shadow volume can be identified by rendering the shadow volume in a

particular way that allows the hardware to count how many fragments

Fig. 111 Shadow volume
geometry in 2D from (nVidia
2004)

Fig. 110 Cast shadows provide
useful visual cues when
combining surface and volumes
data.

102

project onto each pixel. This is the object-order equivalent of casting

rays through the shadow volume and counting the number of

intersections before the ray finally reaches the target surface. If the

count is odd and the shadow volume has no self-intersections, the pixel

is shadowed.

The cleverness in implementing this as an object-order algorithm comes

from using the stencil buffer to track the number of fragments from the

shadow volume that project onto each pixel. The stencil test is a

standard part of the graphics pipeline that passes or rejects a fragment

and updates the stencil buffer based on some condition. The stencil

buffer can be thought of as an additional channel for the frame buffer.

Its original intent was to store a mask that could be used to restrict 3D

rendering to part of a window, for example, to reserve a 2D region for a

user interface.

In implementation, the shadow volume is rendered without writing to

the screen buffer or the depth buffer although depth testing is still used

to determine if a fragment is in front of the target pixel. Instead of

simply counting every fragment and then using even/odd to determine

if the pixel is shadowed, the stencil can be set to increment on front

facing fragments and decrement on back facing fragments. Thus, any

non-zero value implies that the pixel is inside of the shadow volume

regardless of self-intersections.

The rasterization pipeline can then treat the shadowed pixels

differently. Typically for cast shadows, the stencil buffer is used to mask

a second pass rendering that either rerenders the entire scene without

the occluded light or, as a short cut, simply blends a dark color over the

fully lit pixels to simulate shadowing (Fig. 112, bottom right).

Program 16 gives a vertex shader implementation for generating a

shadow volume as a function of a source position and frustum scaling

and Fig. 112 illustrates the shadowing process.

void main(void){
 vec3 light_direction = normalize(gl_Vertex.xyz – gl_Light0.position);
 float diffuse = dot(-light_direction, gl_Normal);
 // If vertex is not lit, extrude it
 if (diffuse < -0.05) world_position = world_position + light_direction;
 gl_Position = gl_ModelViewProjectionMatrix*vec4(world_position, 1.0);
}

Program 16 GLSL code for generating shadow volumes using a vertex shader
program.

103

Implementing this method in mgrView provides the basis of the

importance rendering mechanism, and it has the additional advantage

of providing cast shadows to improve spatial understanding and

verisimilitude of the renderings, as seen in Fig. 110.

Method for Stenciling with Importance Shadows

The insight in MGR’s method for importance rendering is recognizing

that occlusions relative to important objects can be treated similarly to

cast shadows. Important objects in the scene, e.g., the prostate,

bladder, and rectum in a male pelvis image, have been semi-

automatically segmented with deformable shape models and each

model implies a boundary surface. Then, each object’s front-facing tiles

with respect to the camera are projected back towards the camera (the

opposite direction of a cast shadow volume). In implementation, this is

accomplished by reflecting the camera across the center of mass of the

scene regions and using that position as the “importance source” for

the shadow algorithm outlined in the previous section. Using the center

of mass is an expedient choice in that it can be computed easily and

provides reasonable results for multiple regions that are near one

Fig. 112 Shadow volumes
rendered in mgrView. Top left,
the bladder (green) and prostate
(blue). Top right, shadow
volumes extruded using a light
direction from the upper right.
Bottom left, intersecting the
shadow volume with a plane in
the volume. Bottom right, the
dark regions are areas with non-
zero stencil buffer entries after
the shadow pass.

Fig. 113 The shadow volume
from Fig. 112 top, right, with
the light source “zoomed”
towards the center of mass to
imply a wider shadow frustum.

104

another. However, importance shadows from distant regions are better

served by calculating individual importance sources for each.

The reflected camera can additionally be “zoomed” towards the center

of mass to create a wider shadow frustum (Fig. 113). This effect can be

used to open a wider hole through the volume to the object and

thereby provide more or less context for the region. Fig. 114 shows a 2D

projection of a scene with the importance shadow geometry.

Camera Position (P)

Center of Mass (C)

Reflected Camera (R)
 R = P+2(C-P) = 2C-P

View Direction

Reflection Plane

Zoomed Reflected Camera (Z)
 Z = Interpolate(R,C,t)

(Z) has a wider frustum than (R)

C-
P

After each plane in the texture stack is rendered, the combined

importance shadow for all the objects identified as “important” in the

scene is rendered into the stencil buffer to create a mask of which

fragments on the next plane would obscure the important regions of

the data. This mask is then used to cull the fragments of the next plane

as it is rasterized, effectively testing that each fragment does not

obscure a fragment from an important object. Program 17 adapts the

basic object-order rendering algorithm with an importance mask.

The basic shadow volume algorithm can be modified slightly to preserve

the interior of the region by flipping the diffuse lighting test from “less

than” to “greater than”. This causes the closer (lit) cap rather than the

farther (unlit) cap to be extruded and so removes the interior of the

Fig. 114 The shadow volume
algorithm is modified by
reflecting the camera across
the scene, then zooming it
slightly to magnify the frustum.
The final camera position is
then passed as the shadow
source to the shadow stenciling
algorithm as described above.

105

object from the “shadowed” region. This is most useful in cases of high

contrast objects, such as the mandible (recall Fig. 106) or when applying

a (more) opaque synthetic or image texture in the image region, such as

is shown in Fig. 115 middle.

Render Volume with Importance
1. Compute importance shadow volumes for this camera
2. Enable depth testing
3. for i=0 to number of slices
 3.1 Set stencil to count faces (“increment/decrement”)
 3.2 Disable buffer writes
 3.3 Render importance shadow volumes
 3.4 Set stencil to test for non-zero (“cull if on”)
 3.5 Enable buffer writes
 3.6 Render slice i

Program 17 Object-order importance rendering using the stencil buffer and a
shadow volume.

Because this algorithm requires that the shadow volume be re-rendered

to the stencil buffer for every slice cast through the volume, it can be a

significant speed-up to precompile the shadow volume as a display list.

Using a vertex shader to extrude the shadow volume is a significant win

here since the display list need not be recompiled each time the camera

position changes. Since no fragments are actually promoted to pixels,

this is a fairly fast operation. mgrView achieves frame rates over 15 fps

for an importance stenciled 200 slice view on a target laptop and

around 6 fps for an importance stenciled 100 slice view on a standard

desktop workstation. See Table 4 on page 142 for a complete summary.

4.2.3 Extending Object-Order Importance Effects

This section describes some additional object-order importance effects,

importance for dynamic objects, hierarchical importance rendering,

and adding regional effects to a scene. The section closes with a

discussion of voxel-to-context importance decisions in this framework.

Dynamic Importance & ROIs

The method described above is fast enough to provide importance

rendering for two different types of dynamic scenes: for changing

importance surfaces in a static scene or for an animating scene as

described in the previous section. An example of a dynamic object

embedded in a static scene is mgrView’s importance flashlight (Fig.

116), which is a simple spherical shape that can be scaled or moved

Fig. 115 Images from an
abdomen scene focused on the
duodenum. Top, the
duodenum is completely
occluded in this 3D view of the
abdomen. Middle, nearly
opaque intensities from the
image in the duodenum region.
Bottom, using a model-mapped
texture in the duodenum
region.

106

interactively through the 3D scene to dynamically carve holes in the

data. Slight variations of this tool can be used to simulate many

different effects and provide many useful and novel ways to interrogate

the data without clipping it to a single plane or cut surface. An example

of importance rendering for animating scenes is described in the next

chapter. Because mgrView’s importance clipping method computes

importance masks on the fly, mgrView achieves the same frame rates

for scenes with dynamic importance as it does for static scenes.

Creating motion in the scene by interactively manipulating the camera

viewpoint or the parameters of the carved shape makes the

organization of the grayscale image much more understandable than it

is in a static scene. Dilating the shadow source along its normal

directions or tuning the frustum width by zooming the reflected camera

can provide more or less context near the subject. Interactively

adjusting the frustum’s projection angle by moving the reflected camera

orthogonally to the view direction produces slightly oblique cuts that

can help clarify the subject’s depth and the scene perspective. In Fig.

116, for example, the projection angle is slightly down and left of the

camera direction.

The importance flashlight is related to the standard ROI or VOI method

of focusing a scene by manually selecting a region of interest. There are

many antecedents to ROI clipping and many methods for picking ROI

Fig. 116 Volume rendering from
an unsegmented image
interrogated with a spherical
“importance flashlight”.

107

shapes. Pelizzari22 was an important early user of volume ROIs for

therapy planning to visualize soft-tissue targets through obscuring

outer stuctures. (Pelizzari, et al. 1999) (Fig. 117) and other early papers

from this group discuss the application of volume visualization for

radiotherapy treatment planning and present patient renderings with

compelling scene composition.

Other more recent methods for interactively creating clip regions

include (Weiskopf, Engel and Ertl 2003) and (Konrad-Verse, Preim and

Littmann 2004). Several papers from Weiskopf’s group describe an

alternative approach for object-order clipping with arbitrarily shaped

objects, but their method relies on voxelization of the target shape, so

it is not clear that it would be sufficiently fast for MGR’s interactive rate

rendering goal. Konrad-Verse proposes using a flexible deformable

mesh to do ‘virtual resection’, as shown in Fig. 118. Their goal is not

merely to exclude irrelevant shapes but to provide decision support for

how particular resection plans will affect hidden internal structures.

Their method for determining a clip surface according to cut-lines drawn

on planes and ‘spheres of influence’ could serve as a method for

defining complex ROI geometry in any clipping framework.

The “sand away views” in (Davis, et al. 1991) and “volumetric sculpting”

in (Wang and Kaufman 1995) describe a grayscale morphology rather

than geometrically determined manual clipping. In those works, hidden

structures are exposed by eroding the 3D image directly according to

grayscale morphological kernels.

Hierarchical Importance Shadows

This method extends to hierarchically ranked importance surfaces. For

example, in a given scene the user may wish to see the area near the

importance flashlight through intervening important anatomic regions.

There are two possible approaches to address this. One method

requires a more complex stencil test that uses the top few bits of the

stencil buffer to track the highest object rank at each pixel and the

lower bits to count front-back faces as above. This method has the

advantage of not requiring the importance manifolds to be presented in

any particular order, but implementing it requires using a considerably

more complex stencil test.

22

 Pelizzari is probably best known for his 'head-hat' registration algorithm.

Fig. 117 Image from (Pelizzari, et
al. 1999). A left anterior oblique
view showing the mandible,
hyoid bone, left external jugular
vein, anterior jugular veins, left
submandibular gland and two
associated submandibular lymph
nodes.

Fig. 118 Virtual resection from
(Konrad-Verse, Preim and
Littmann 2004). Top left, cut-
lines are drawn on each plane.
Top right, the object can be
separated and ‘resected’ from its
parent. Bottom, the resection
clipping surface can be
interactively modified so that the
disjoint volumes include and
exclude different features.

108

A simpler method is to use the single rank method but to order the

importance manifolds and stencil their importance shadows in ranked

order. This requires only a small amount of additional computational

overhead compared to the per-slice shadow passes required for the

basic volume importance algorithm.

With either method, because the hierarchical stencil is recomputed

completely at each frame, there is no computational penalty for

dynamically changing relative importance ranks. mgrView’s

implementation allows every object in the scene to be assigned a

different importance rank, but in practice using more than one or two

ranks can lead to very confusing views. Occlusion is a very important

and expected depth cue.

Render Volume with Hierarchical Importance
1-3. Render culled volume as in Program 17
4. Clear the stencil buffer
5. For i=1 to number of ranked objects
 5.1 Set stencil to test for non-zero (“cull if on”)
 5.2 Enable buffer writes
 5.3 Render objects with rank i
 5.4 Disable buffer writes
 5.5 Set stencil to count faces (“increment/decrement”)
 5.6 Render importance shadow volumes for objects with rank i

Program 18 Extending object-order importance rendering to display ranked
objects.

Adding Additional Regional Effects

Complex scenes with importance effects can be difficult to interpret

spatially since the strong depth cues from occlusions are being

reordered in non-intuitive ways. However, because MGR has access to

geometric proxies for the regions of interest, regional effects can be

added indirectly during a final rendering pass without making the

volume data shader itself more complex. mgrView supports three

simple additional regional effects during importance rendering, which

are tinting, contours, and cast shadows.

In this implementation object tinting is done during texturing with a

variation on the standard 3D texture surface shader used in Fig. 115

middle and elsewhere to map voxel values onto surface tiles. As

previously discussed in the volume visualization background section of

109

Chapter 2, contours, i.e., locations where surfaces begin to be self-

occluding, (see Fig. 40), are added using a contour shader that performs

a dot product between the camera direction and the surface normal

and discards fragments that are not nearly orthogonal to the viewing

plane. And finally, an actual shadow pass using a shadow volume cast

from a regular light source and a shadow volume from the combined

region surfaces is used to project cast shadows into the clipped volume

and onto region surfaces. Program 19 shows the complete importance

rendering algorithm with hierarchy and object effects.

Render Volume with Hierarchical Importance and Object Effects
1-3.Render culled volume as in Program 17
4. Clear the stencil buffer
5. For i=1 to number of ranked objects
 5.1 Set stencil to test for non-zero (“cull if on”)
 5.2 Enable buffer writes
 5.3 Render objects with rank i
 5.3.1 Render tinted object
 5.3.2 Disable depth test and depth write
 5.3.3 Render contours
 5.4 Disable buffer writes
 5.5 Set stencil to count faces (“increment/decrement”)
 5.6 Render importance shadow volumes for objects
6. Clear the stencil buffer
7. Stencil shadow volume according to cast light source
8. Render dark quad and blend shadow regions

Program 19 Extending Program 18 with additional regional effects.

Voxel-to-Context Importance & Volumetric Shadows

The scene catalog provides a powerful tool for identifying and

categorizing not only voxel-to-neighbor relationships (e.g., local

interfaces) but also voxel-to-context relationships. For example,

consider a patch of bright voxels. If it belongs to a region that should be

bone, it is uninteresting data. However, if it belongs to a region that

should be kidney, the patch represents a calcification or lesion and

warrants consideration, and indeed warrants focus in the scene. While

mgrView implements only shadows from surfaces, cast shadows from

particular regions in volumes are also possible in an object-order

rendering framework. This raises the possibility of extending the

importance rendering method described to clip according to voxel-

centric decisions (“Is this voxel interesting compared to its neighbors?”)

rather than region-centric decisions as described here (“Is this surface

more important than its neighbors?”).

110

As with cast shadows for surfaces, cast shadows for volumes are easy to

compute in image-order direct volume rendering (DVR) by the simple

expedient of casting secondary shadow rays and tracing them on their

path through the volume (recall Fig. 44). In the forward rendering

context, algorithms have been proposed by (Zhang, Crawfis Vis02) using

voxel splatting, and in (Behrens VV98) using texture mapping.

The method for computing and using shadows from volume data

originally considered for mgrView is based on a method originally

described in (Merck UNC04)(Fig. 119). An occlusion volume is

computed similarly to the X2U map computation, by progressively

rendering each plane in order into a buffer that accumulates the total

attenuation at each voxel from the point of view of the light. The

buffer is read back (“unprojected”) at each step and stored in a

secondary occlusion volume. When the occlusion volume is complete,

it can be used to modulate the intensity at each corresponding voxel as

it is rendered from the camera’s point of view. This method is

considerably faster than ray-tracing, but it is still not fast enough to

support dynamic lighting.

Fig. 119 Volume with self
shadows from an early splat
rendering core considered for
mgrView.

111

4.3 Clipping Surfaces with Model Coordinates

The final section of this chapter deals briefly with MGR’s capacity for

model based clipping or windowing in surfaces. Many anatomic

structures of interest, such as the gut or vasculature, are most

appropriately described as surfaces, particularly as layered surfaces.

The duodenum shown in Fig. 120 is an interesting curved shape with

multiple layers. (Revisit Program 1 for the simple mgrView example

script used to create it.)

Such overlapping (or interpenetrating) surfaces can be quite difficult to

understand. In medical illustration convention, windows in surfaces are

frequently aligned with the along-object and across-object directions –

which are given in our framework. Little research has been done on

mimicking this effect. (Li, et al. 2007) uses constructive solid geometry

to identify a medial axis for each object so that windows can be cut

transversely or along geodesics on the surface, as shown in Fig. 121.

Again, starting from partial segmentations by m-reps, MGR is provided

with such directions automatically by construction, making it trivial to

assign clipping windows with intuitive coordinates such as between 0.3

and 0.6 of the way along the object and between 0.5 and 0.7 of the way

around the object (the actual coordinates of the window in the

longitudinal muscle in Fig. 120).

Fig. 120 Duodenum with
multiple layers, interior ruggae
and circular muscle under
longitudinal muscle.

Fig. 121 Composition based on

medial properties derived from

constructive solid geometry

from (Li, et al. 2007).

112

In implementation, mgrView “clips” the surface to the nearest vertices

by simply rejecting any vertices that fall within the model-coordinate

clipping window. The clip boundary vertices are marked so that cap

geometry can be added dynamically to give the layer the illusion of

depth. The end caps on open tubes can be treated similarly. Simple

discrete medial models are de facto deformations of spherical

topologies, so in order to render other topologies, such as hollow tubes

for the gut and duodenum, the end caps are clipped with similar object-

coordinate windows, for example, clipping vertices with u in the ranges

[0,0.1] or [0.9,1] for all v and all t.

A non-model-based method for layer-by-layer clipping is “depth

peeling”, a method for 2-pass rendering using a depth buffer to

selectively cull the front-most polygons of nested surfaces (Nagy, Klein

CGA03), (Rezk-Salama, Kolb CGF06). Borland originally called his flexible

occlusion rendering “volumetric depth peeling”.

Finally, a related field is display of intersecting surfaces, as is explored in

(Weigle and Taylor 2005)(Fig. 122) or (Interrante, Fuchs and Pizer

1997). Both these works in particular draw some of their driving

problems from external beam radiotherapy planning, the same target

domain as MGR does. Both methods propose, among other things,

applying oriented textures to surfaces in order to provide shape cues

for intersecting objects. In general, these texture orientations are

determined by intrinsic properties of the surface, such as lines of

principal curvature. However, it seems likely that integrating these

texturing methods with model-based surface coordinates as described

here might provide additional insights into the relative shapes of the

objects.

Fig. 122 Two different
segmentations of the same
tumor rendered relative to one
another with the nested
surfaces algorithm from
(Weigle and Taylor 2005).

113

5 Bringing MGR to the Clinic

This chapter provides evidence that the MGR techniques described in

this dissertation are both usable and potentially useful in clinical

visualization.

The first section, 5.1, Medical Imaging Applications and MGR, gives a

high level review of the final application component in the medical

imaging pipeline that was used to organize the background material

and is represented in Fig. 123. The section describes the context in

which MGR techniques have been developed and discusses some of the

ways that they may be applied to image guided medicine.

The next two sections provide additional motivation and examples

demonstrating how combinations of MGR methods can provide

additional useful capabilities for particular important but difficult

medical image visualization tasks in radiotherapy and endoscopic

guidance. Much of the thinking behind these target problems has been

taken from or developed to support grant proposals being written

together with Dr. Julian Rosenman and Stephen Pizer.

Section 5.2, MGR Applications in Adaptive Radiotherapy, provides a

case study describing how to apply some of MGR’s methods to improve

comprehension in visualizations for segmentation, planning in the

presence of error, and patient setup for radiotherapy. This section also

refers to an appendix with considerable implementation detail for

building the “planning in the presence of error” project using the

mgrView software library. The appendix is intended for the reader who

may be interested either in reproducing examples from this dissertation

or in generating their own projects using mgrView. The appendix covers

importing images, dense registration fields, and medial shape models

into mgrView, and it also provides a walkthrough of creating a new

shader model and integrating it with the standard library functions. The

appendix material assumes some familiarity with C++ and OpenGL and

can safely be skipped over by non-engineering-oriented readers.

Engineering

Image Analysis

Presentation

Application

Physical

Reconstruction

Registration

Interpretation

Fig. 123 This chapter
contextualizes how MGR fits
into the application component
of the medical imaging
pipeline.

114

The shorter section 5.3 overviews another target problem, Enhanced

Endoscopy from Multiple Modalities, and describes how to integrate

endoscopic and 3D images to improve online visualizations for biopsy

guidance.

The required input for all of these projects is images and data that are

commonly collected or computed in the UNC Department of Radiation

Oncology’s standard clinical pipeline.

115

5.1 Medical Imaging Applications and MGR

MGR brings several immediate general improvements to medical

visualization systems:

 Ability to work in unoccluded 3D views (from importance rendering)

 Ability to work in 4D views, such as segmenting structures at any

step of an animating respiratory cycle (from volumetric animation)

 Ability to work in combinations of the most appropriate image

modality for each region, for example identifying landmarks in a

particular region using MRI or photographs while still working in the

familiar context of the CT base image elsewhere (from photo or

color mapping)

 Ability to recognize multiple segmented and unsegmented

structures in a scene (from regional model coordinates and

texturing)

This section attempts to contextualize how combinations of MGR’s

particular special abilities might map into particular medical image

application domains. For the purposes of this discussion, applications of

medical images are considered in three main domains:

 Anatomic education

 Diagnosis

 Image guided therapy (IGT)

Following (Yaniv and Cleary 2006), IGT is further broken up into three

sub-domains:

 Procedure planning

 Intra-operative guidance

 Postoperative analysis

Some of the main points of this discussion are summarized in Table 2.

5.1.1 Anatomic Education

Medical images used in anatomic education commonly come from a

particular “normal” reference subject such as the Visible Human, or

they are taken from libraries of reference images of pathological or

normal variants. Such reference images serve a complementary role to

traditional medical illustration. Medical illustration is frequently

concerned with providing what has been called “global” anatomic

116

Domain Standard Interface MGR Interface

Anatomic Education

Understand anatomic shape,

interrelations

Interact with reference atlas Interact with atlas-like views of

many individual reference images

Diagnosis

Identify deviations from expected

shape (3D) or intensity (2D)

Review using static surfaces or

slices

Review in 4D, best modality per

region, relate surface and deep

features

Image Guided Therapy

Procedure Planning

Segmentation Work in 2D, single modality at a

time

Work on 2D slice in 3D context,

combination of best modalities

Planning & Evaluation Work using static or serial images Work in 3D/4D with intuitive region

shading, see effects of scenarios

such as patient motion or position

Intra-operative Guidance

Relate world to plan World object immobilization or

fiducial tracking on 2D slice

Project procedure-time images back

into the 3D planning scene

Analysis or Tracking Same as listed above under

diagnosis

Same as listed above under

diagnosis

Table 2 Common clinical applications for medical images and potential roles for MGR methods.

information in this dissertation. Global anatomic information is about

shape and about spatial and functional interrelationships between

anatomic structures. Certain normal reference images may be viewed

with similar global goals, as in the case of the heavily preprocessed

VoxelMan, which has many prerendered 3D views emphasizing various

global qualities of the atlas anatomy. However, library images are

typically intended to be interrogated slice-by-slice and used as real-

world representatives for local image characteristics. For example, a

particular reference CT image may be intended to help a radiologist

learn to distinguish intensities that suggest healthy versus sick lung

tissue.

MGR can augment this learning by providing more global context to

these local tasks. The entire suite of MGR methodology is essentially

designed to provide the advantages of an illustrated (“Netterly”) or

atlas-like 3D global view to particular library images without either

obscuring local information or requiring exhaustive micro-

segmentation. MGR’s regional texture mapping and importance

rendering methods allow multiple important structures in a target

image to be rendered distinctly in a 3D view. Color mapping by pulling

117

color information from atlas or reference textures can additionally

provide estimates for invisible local detail such as likely blood vessels or

nerves that are invisible in the base modality or have been obscured by

the rendering itself. When combined with a synthetic texture

generation module, reference textures can be tuned to the particular

anatomic variant being presented. For the example given above, an

MGR rendering of an image showing a lung pathology could tune a

standard healthy pink lung texture in suspicious regions to make it

appear to be full of pockets of air where the interstitial tissue has

disintegrated. At the same time, it is always possible to interactively

inspect the image data of the base modality by switching off the

synthetic texture or by placing an untextured cut plane nearby, so that

the visualization can still be used as an example of the local intensity

characteristics that suggest unhealthy tissue.

Educational training applications that simulate procedures on partially

segmented reference images can be considered an aspect of the

procedure planning domain discussed later.

5.1.2 Diagnosis

A primary difference between educational applications and diagnostic

or IGT applications is that the latter are patient-specific by definition.

Many diagnostic imaging applications are best done slice-by-slice

because they are concerned with teasing out local image characteristics

in specific regions and comparing them against expectations to identify

pathology. However, there are also diagnostic tasks that require 3D

shape and spatial relationship information, such as virtual colonoscopy.

These 3D tasks have been typically restricted to high contrast structures

(e.g., the intestinal tract) and may rely on navigating through a surface-

only endoscopic simulation.

MGR methods could be brought to both the 2D/local and 3D/global

cases. In the case of characterizing local detail, it would certainly be

inappropriate to enhance a rendering with atlas estimates of local

features. However, related MGR’s regional color mapping methods

could be used to integrate additional data sources to a view. Region-by-

region rendering from multi-modality imaging where corresponding

objects have been identified in each source is one example. The next

section presents a view that uses a CT image for volume rendering but

118

embeds MRI data near the prostate to suppress reconstruction artifacts

from seeds or markers.

MGR’s photo mapping method also provides a method for combining

3D images with surface photography in order to visually relate surface

and deep features. One possible application for this would be to use

serial photographs mapped onto reference anatomy to track surface

changes over time. For example, current methods of diagnosing

potential melanomas involve taking many pictures of the patient, laying

them out, and comparing current pictures to those taken several

months prior. MGR could provide a view that enables a physician to

actually animate the skin change over time in 3D. Another application

might be combining a 3D imaging modality with thermography, which

shows near-surface features. Thermography is thought to have some

benefit for breast cancer screening, but it suffers from many “false

positives”. Here the idea would be to present an interactive view where

thermographic images mapped onto the surface suggest suspicious

regions for closer inspection in the underlying 3D image.

As an aside, Fig. 124 shows an interesting antecedent to MGR’s

emphasis on linking surface and deep features; (Oliver, et al. 1997)

developed a mapping between photographs and a CT scan to determine

if bones were broken by improperly swung batons in the Rodney King

case (supporting the claim that they were). By using MGR and pre-

segmenting a few important bony structures, all this information could

be collapsed into a single interactive view.23

In the 3D diagnostic case, MGR methods can be used in particular to

provide better vantage points. Although simulated endoscopic views

have genuine advantages over physical endoscopy in the ease of the

procedure (especially to the patient), surface-only renderings such as

Fig. 6 provide no medical advantage over actual camera images.

However, MGR’s importance rendering methods could provide a real

advantage in scene composition. Importance rendering frees simulated

endoscopy from its naturally restricted field of view. Proposing an

“open” virtual arthroscopy was one of the major results from Borland’s

flexible occlusion rendering against contrasted regions (recall Fig. 108).

MGR extends such open views by making them dynamic and allowing

for hierarchical importance from multiple ranked regions. Additionally,

MGR’s color mapping methods could be used in such views to clearly

23

 There was an interactive viewer for Oliver's project, but it has been lost.

Fig. 124 Conclusion from
(Oliver, et al. 1997) showing
links between four
“modalities”, the isosurface of
the bones, MRI, CT, and a
photograph of the subject.
Using MGR, this information
could all be collapsed into a
single view.

119

distinguish and orient nearby regions. An MGR virtual endoscopy is

presented later in this chapter.

One important future application of MGR’s volume animation capability

is interactive 4D rendering for regions such as the heart or lungs; this

would allow a clinician to make decisions based on how a region

changes shape over time.

5.1.3 Image Guided Therapy

Image guided therapy (IGT) involves three different kinds of tasks:

planning, intra-operative guidance, and post-operative analysis. From

a high level view, the post-operative phase has similar visualization

requirements as the diagnosis domain discussed previously. However,

planning and intra-operative guidance have very distinct needs.

Planning by Simulation

Not all image-guided medical procedure planning requires that the

image be preprocessed to explicitly identify important anatomic

regions. However, many of the most complex planning applications are

intended to provide some level of simulation to verify that a proposed

procedure is likely to achieve its intended goals. Such “planning by

simulation” requires computing the expected effects of a procedure and

evaluating the results with respect to particular important regions. An

example of this kind of evaluation is precomputing the expected dose

distribution of a radiotherapy plan with respect to target objects and

nearby objects at risk.

“Planning by simulation” has already been a fruitful domain for 3D

visualization. Levoy’s earliest volume rendering methods were focused

on radiotherapy planning, and many of the medical image visualization

techniques referenced throughout this text have been motivated by

such planning problems. Plan evaluation is, in some ways, a more

appropriate target for 3D rendering methods than diagnostic tasks

because plan evaluation is primarily concerned not with local detail but

with understanding global shape and spatial relationships. For example,

a dosimetrist is more interested in understanding how a configuration

of beams intersect various target regions and organs at risk than they

are in understanding the specific character of the tissue type in those

regions.

120

There are several planning subdomains with different simulation

mechanisms but related visualization needs.

 Radiation simulation, which uses proxy geometry to approximate

beam positioning and computes a likely dose distribution that must

be evaluated relative to target and at-risk anatomy. Many of the

visualizations that have been proposed for radiotherapy planning,

such as (Interrante, Fuchs and Pizer 1997) (Fig. 125), focus on

evaluating the shapes of static nested surfaces representing an

isodose boundary and a target region. An example view presented

later in this chapter uses MGR’s interactive volumetric animation and

importance rendering to display the volumetric effects of possible

error from setup, internal deformations, or time dependent change

such as respiration on an expected dose distribution. Interactive

control over such a deformable scene could be a major improvement

in any planning domain given that most planning assumes only rigid

scene motion if any.

 Mechanical simulation, such as the target problems described in

(Bullitt and Aylward 2002) or (Konrad-Verse, Preim and Littmann

2004) (discussed earlier in the section on clipping), which both use

visualization-related techniques to simulate and improve surgical

resections. MGR’s model-coordinate-based cut geometry provides

several similar advantages in orienting and evaluating potential

resection geometry.

 Reconstructive simulation, which integrates computer assisted design

with image guidance methods for simulating the results of

reconstructive surgery. A proposed application of MGR’s photo

mapping and volume deformation methods is to provide “quality

control” for craniofacial reconstruction as described in (Piatt, et al.

2006). The reconstruction of the osseous elements (Fig. 127) implies

a deformation field on the original 3D patient image. A rendering of

the original data could be first painted with a patient image and then

warped according to the deformation field to provide an estimate of

the surgical results. Such a rendering might be used for both

evaluating the procedure plan and as an intra-operative reference.

MGR’s model-coordinate based solid texturing provides a general

advantage across the planning domain by allowing a clinician to be able

to identify, orient, and spatially relate multiple important regions

Fig. 127 A life-size plaster
model of a virtual craniofacial
reconstruction simulation from
(Piatt, et al. 2006).

Fig. 125 (Interrante, Fuchs and
Pizer 1997) explores the target
domain of visualizing the
surfaces of anatomic shapes
with respect to dose
distribution.

Fig. 126 An MGR view showing
a patient image with the
expected dose distribution
overlaid in red.

121

throughout the volume. This is particularly true since a relatively

detailed image segmentation of important anatomic structures is likely

to be available.

Because planning by simulation tasks require evaluation with respect to

important structures, these tasks are usually preceded by a

segmentation phase to identify relevant anatomy. Segmenting an

image has requirements similar to both the 2D and 3D diagnostic tasks.

2D views are required to adequately characterize local detail and create

or edit boundaries. 3D views of the segmented surface are more

appropriate for understanding whether the structures identified have

appropriate shapes and spatial interrelationships.

The same MGR regional color mapping methods suggested for

application in diagnosis tasks are applicable here as well. The next

section of this chapter presents a possible MGR view taken from

radiotherapy planning for the male pelvis. In the base CT image the

prostate target is difficult to identify, but it stands out in the MRI. A

combination view presented in 3D enables the clinician to pick out

landmarks in the most useful imaging modality. Providing a volume

rendered 3D context from the CT enables the clinician to understand

the shape and spatial relationships of the segmented object to both

other explicitly identified regions and to nearby unsegmented

structures.

MGR’s access to model coordinates can also be used to automatically

visualize additional difficult to segment structures, such as the lymph

levels in the head and neck. These regions (Fig. 128) cannot themselves

be identified but are determined by landmarks on several surrounding

objects. Generating these structures automatically is impossible without

model coordinates that can distinguish, for example, the top from the

bottom of an object. However, given suitable model coordinates,

landmarks in the lymph level guidelines can be converted to model-

coordinate uvt format. Then the model coordinates of the segmented

neighboring objects imply a set of landmark positions that can be taken

together to visualize the extent of these lymph levels. Typically lymph

levels are displayed in terms of an atlas patient rather than for a

particular clinical subject, which draws a connection between such

visualization and the idea of showing “hidden features” discussed in

relation to MGR’s atlas color mapping.

Fig. 128 Lymph levels are
derived based on landmarks
from nearby structures.

122

Intra-operative Guidance

Intra-operative guidance is primarily concerned with relating a real

world patient on the table to an annotated planning image. Most

current planning does not or cannot account for a deformation

relationship between the planning image and the patient on the table,

but MGR enables interactively controlled views of such relationships

using its volumetric animation methods. Because most planning

assumes rigid relationships between the plan and patient, intra-

operative guidance usually reduces to guaranteeing proper patient

setup. The simplest means of patient setup is a restraint system that

immobilizes the patient in an aligned position, such as a stereotactic

frame in open neurosurgery or a face mask in head and neck

radiotherapy. Another method is to somehow mark a region of interest

with an easy to track “fiducial marker” such as a small metal sphere

embedded in an internal structure or a tattoo marked on the surface.

Such fiducial markers allow the patient to be aligned with the planning

image. However, no reverse mapping has been considered – i.e., given

a tattooed surface, there is no way to guarantee that the tattoos have

been put on in the right place according to the plan. An example later in

this chapter uses MGR’s photo mapping method to provide such

evaluation.

Fig. 129 MGR’s endoscopic
“guided tour” view discussed
later in this chapter overlays 3D
targeting and landmark
information onto the 2D
endoscopic view.

123

In the setting of minimally invasive surgery (MIS) via endoscopy, intra-

operative guidance involves registering the scope position and the

planning image. Typically this is displayed as a simple 2D projection of

the scope position onto an image slice. MGR can improve such displays

by providing context outside of the natural imaging limits of the scope

both by mapping data from the planning image into the endoscopic

view or from the endoscopic view into an open field of view virtual

endoscopy. Again, the planning image, scope image, and any local

deformation implied by the motion of the scope are just additional data

sources for MGR’s pipeline. Enhanced multi-source endoscopy is

described in a later section of this chapter, and it is considered as a form

of augmented-reality-guided surgery in the conclusion.

Of IGT’s major domains, 3D visualization is most significantly adopted in

surgical planning and guidance tasks. Applications of image guided

surgery (IGS) or computer aided surgery (CAS) have been surveyed in

(Grimson WE 1999) and more recently in (Yaniv and Cleary 2006). Many

clinical visualization tools have been developed for IGS applications by

extending the free open source visualization package 3D Slicer

(www.slicer.org), which itself builds on the NA-MIC software libraries

such as ITK and VTK. The slicer publications list provides an interesting

recent overview of many types of clinical visualization applications.

(Taylor 2000) includes a more formal survey of volume visualization

applications and has a broad overlap with the bibliography of this

dissertation. (Zuiderveld, Meissner, et al. 2005) documents a panel

overview on the relevance of volume rendering to clinical applications

and observes generally that initial research has been into methods for

speeding it up but that the focus is shifting to application and intent-

driven research, although few examples are discussed explicitly.

With a few exceptions, image guided radiotherapy (IGRT) has seen

relatively less emphasis on 3D planning tools. Paradoxically, this is likely

due in part to the compounded information in these scenes from

imaging, segmentations, beams planning, and dose distributions, which

makes them exactly the scenes that need improved global

comprehension. The next section considers how MGR methods could

be used to improve important IGRT 2D/local visualization tasks such as

segmentation by adding 3D/global information and how some global

visualization tasks such as plan evaluation could be improved by moving

them into a 3D view without sacrificing local detail.

124

5.2 MGR Applications in Adaptive Radiotherapy

5.2.1 Clinical Goals

External beam radiotherapy (EBRT) involves a detailed planning phase

and has a relatively complex workflow diagramed in Fig. 131. Patients

are imaged, and this planning image is segmented to identify target

regions and nearby “at-risk” structures. A dosimetrist then proposes a

therapy plan by arranging several virtual “beams” around the planning

image. The expected dose with respect to each of the important

structures is computed, and the plan is refined accordingly. The goal of

the planning is to deliver adequate radiation “dose” to the target region

while sparing as much as possible the nearby normal tissue.

Given a plan, the therapy itself is divided up into a course of treatment

“fractions” that will be delivered over several sessions. This makes the

task of reproducibly aligning the patient with the plan extremely

important. Patient setup is typically limited to aligning external markers,

such as tattoos, with intersecting lasers that indicate a planning space

reference position. However, the patient’s internal anatomy may also

move or change shape from day to day or even from moment to

moment. For example, the target prostate tissue can be shifted and

deformed between treatment fractions as the bladder empties and fills.

Respiration can cause similar kinds of anatomic changes in the abdomen

within a single treatment fraction.

Modified
treatment plan

Segmentation
& treatment

plan

Treatment

Planning or
reference

image

Patient scanned
Segmentation and

planning

Segmentation
& treatment

plan

Expected dose
on target and
objects at risk

Patient setup
(alignment with plan)

Treatment
image

Simulation
Compute relationship

between I0 and I1

Registration &
modified

treatment plan

Planning

Treatment

Repeat for several fractions of treatment

I0 S0

D

Ii

H0i

Fig. 130 Linear accelerator used
for external beam radiotherapy
(EBRT).

Fig. 131. Workflow for adaptive
radiotherapy. Main components
are planning and treatment. The
MGR applications described here
could be used in the
segmentation, planning, and
treatment setup phases.

125

Adjusting an EBRT plan to account for treatment-time anatomic shape

change is called “adaptive radiotherapy” (ART) (Yan D 2000)(Wong JR

2005). ART is based on mappings between planning images and images

collected at treatment-time. Evaluating the effects of such mappings on

the expected dose delivered to the various important anatomic

structures in the scene is a complex spatial task; yet it is typically limited

to 2D views and a few quantitative summary measurements such as the

volume overlaps of important regions before and after a registration.

Planning in the presence of such anatomic change or potential patient

setup error can account for considerable clinical time.

The next subsections demonstrate how MGR methods can be used to

improve the particular tasks of segmentation, planning, and patient

setup. From a high level, the MGR improvements allow the clinician to

do 3D work in a regionally appropriate image modality, in the presence

of potential error, and in a setting that ties the planning image to the

patient in the world. The three clinical application views described are

for 3D cross-modal segmentation, interactive planning under error,

and patient setup verification. Each section includes a short overview

of the problem being addressed, the view itself, and a discussion of

what MGR methods were used to improve comprehension for the task.

 Appendix: Implementing the Planning Under Error View Using mgrView

on page 152, walks the reader through the implementation of the

planning project using the mgrView library, detailing how to preprocess

input data for mgrView’s file loaders and how to create a new shader

program and integrate it with the library.

The examples shown here are interactive mock-ups or vignettes. At

present, mgrView does not provide a complete solution for allowing a

clinician to interactively segment, plan, or update patient positioning: it

is limited to providing views on data. Integrating mgrView functions

into a framework such as 3D Slicer could provide many of the editing

capabilities required for a complete solution.

5.2.2 3D Cross-Modal Segmentation View

Identifying the boundaries of target and at-risk regions is a crucial task

in preparing a patient image for planning. A clinician usually delineates

these boundaries slice by slice. Many structures are difficult to discern

in a CT image; for example, prostate tissue is relatively homogeneous

126

and in CT images has no clear boundary with some neighboring

structures. The combination of difficult to identify structures and views

limited to axial slices leads to ad hoc segmentation heuristics like “find a

particular bony landmark, then count down three slices and assume the

prostate starts there”.

The goal of this vignette is to provide a clinician with both local detail

and 3D context near a particular anatomic region to support a

segmentation task.

The MGR vignette shown in Fig. 132 addresses each of these issues.

First, while the user can still draw on a 2D slice, the slice is presented in

its volume rendered 3D context and can take a continuous range of

orientations. If a neighboring structure such as the bladder has already

been identified, the slice can be oriented and positioned automatically

according to local model coordinates and directions. An example might

be positioning and orienting the slice to naturally emphasize the most

proximal points between the bladder and the likely position of the

prostate.

Second, while CT is the most important imaging modality for

radiotherapy planning because it directly measures the tissue properties

required for computing dose distribution, MRI can also be a useful

imaging modality despite its potential geometric inaccuracies. In this

case, the CT values of homogeneous regions such as the prostate have

been swapped out to allow the clinician to pick landmarks or delineate

boundaries with stronger tissue type differentiation from MRI (see Fig.

Fig. 132. 3D segmentation in
mixed modes. Volume rendered
structures from the CT image
provide global context while the
clinician can segment on a slice
drawn from a corresponding
MRI. Fig. 134 shows how the CT
values near the prostate had
been corrupted by artifacts from
the metal fiducial marker visible
in the center of the prostate
region.

MGR Methods Required

 Model-coordinate driven clipping

 Regional color mapping from an

alternate modality

127

133) in the region of interest but with the familiar context of the CT data

elsewhere.

One particular example of the utility of this is when metal fiducial

markers embedded in the prostate for tracking create CT reconstruction

artifacts that obscure the target region, as in Fig. 134. Here, MGR’s

special capabilities for integrating multiple image sources has been used

to replace the CT values on the entire working slice with data from a

fused MRI. More complex potential solutions could be imagined using

MGR’s color mapping methods. One particularly interesting application

might be using the marker positions identified in the MRI to identify

untrustworthy regions in the CT so that they can be replaced with an

appropriate reference solid texture. Such solid texture “in-painting” for

gas bubbles in the rectum based on the methods of (Cheung, Frey and

Jojic 2005) was originally discussed by Joshua Levy in an unpublished

report from 2005.

Fig. 134 The prostate region in
the CT-only volume rendering
on the left is obscured by the
artifacts from the fiducial
markers. The hybrid rendering
on the right preserves the clear
tissue distinction in the target
region.

Fig. 133 Standard slice-by-slice
view used during segmentation;
the colored contours are the
region boundaries drawn on this
slice. The CT image on the left
shows very little tissue
differentiation between the
circled prostate region and its
neighbors compared to the MR
slice on the right.

128

5.2.3 Interactive Planning Under Error Vignette

Radiotherapy planning and plan evaluation is usually done in part slice-

by-slice (Fig. 135) and in part with projections such as the “beams eye

view” to verify that the target regions can be “seen” and the nearby

objects at risk are “hidden”. Evaluation is also based in part on

summary values such as dose volume histograms that measure

radiation dose to target and at-risk structures.

The vignette proposed provides several directions of visualization

extensions to the basic means of evaluating radiotherapy plans

described above.

The goal of this vignette is to enable 3D evaluation of a radiotherapy

plan with respect to multiple anatomic regions in the presence of a

range of possible setup errors or possible internal shape changes.

Fig. 136 Effect of error on
expected dose. Top left, dose
distribution overlaid near the
surface where the A/P beam
enters the target region. Top
right, unoccluded view of the
prostate target region below the
at-risk bladder with expected
dose overlay. Bottom left, a
small rotation applied to the
patient leaves the prostate cold.
Bottom right, further clipping
reveals the effect of the altered
dose distribution on nearby
unsegmented structures.

Fig. 135 A common 2D dose
evaluation visualization showing
isodose contours projected onto
individual slices. 2D views can be
quite useful for understanding
local tissue types, but they are
not necessarily optimal for
understanding the 3D spatial
relationship between the
expected dose and the target
region. (Image from (Mosleh-
Shirazi, et al. 2004))

129

As with the segmentation vignette described in the previous subsection,

this view is 3D, but MGR techniques can be used to slice the data into

2D cross sections that can be oriented with respect to natural directions

(i.e., along, across) for local regions for local evaluation of dose vs.

shape. Moreover, MGR provides for a dose overlay that modulates

both the identified and unidentified anatomic structures. This enables

the clinician to understand the dose with respect to locality – not just

how much dose is received per object, but where it is received

throughout the object. Regions can be individually clipped away to

expose hidden interior structures, and the dose can be visualized both

inside and on nearby regions to understand what is happening to

unsegmented but discernible structures in the scene.

Finally, the primary novelty of the mgrView vignette for this application

is the addition of interactive control over variable error parameters that

apply a global rigid transform or local deformable transform to the

patient while leaving the dose field in place. This is implemented as

described in section 4.1, Volumetric Animation. This effect can be used

to simulate and understand the effects of possible errors in setup,

gantry realignements, patient motion, or internal anatomic change such

as the bladder filling and emptying. Such evaluation may suggest minor

adjustments to the beams to make them more robust to possible

changes, or, when evaluating a plan against the registration to a real

daily image, a decision to replan the patient. This same effect with

multiple daily images could be used in segmentation as well to allow the

clinician to identify or edit a boundary on any step of the series of

registered images.

See the Appendix: Implementing the Planning Under Error View Using

mgrView beginning on page 152 for a complete walkthrough of

implementing such a vignette using the mgrView library.

This method could be further extended by adding appearance effects

from atlas texture mapping. A basic problem is that dose volume

histograms summarize dose to explicitly identified objects only. The

method as outlined above additionally displays the dose distribution

with respect to discernible but non-segmented structures, such as the

spine.24 Applying MGR’s model-based atlas color mapping methods,

24

 “You can have the best summary statistics in the world, but it doesn’t matter
if you packed all your error into the spine.” – Ira Kalet, Univ. of Washington

MGR Methods Required

 Model-coordinate driven clipping

 Interactive volumetric animation

 Dynamic importance rendering

 Regional color mapping from

alternate imaging modality

 Model-coordinate implied

regions

130

one could additionally design a display of a dose distribution with

respect to hidden but likely radio-sensitive structures such as nerves,

lymph levels, or internal structures by pulling relevant regional textures

from atlas sources.

5.2.4 Patient Setup Validation Vignette

Patient setup is the problem of aligning the real-world patient with a

virtual procedure plan. This must be done reproducibly over many days

for fractionated treatment. Usually the only information available for

this task are visual cues such as skin tattoos that can be lined up with

lasers in the room to at least align the patient’s target region with the

planned dose isocenter.

The goal of this vignette is to help estimate the position of deep

features based on surface features.

MGR can be used in dual complementary capacities to address this

problem. First, augmenting views from cameras in the treatment room

with a projection of the proposed planning image (recall Fig. 31 of

RANDO) could provide the same kind of visual alignment estimate as

tattoos, but for the entire plan rather than just for the isocenter.

Second, using the methods described in section 3.3, 2D Color Transfer

Fig. 137. A rendering showing
the patient’s alignment tattoo
mapped back onto the planning
image with dose overlay to
provide feedback regarding the
suitability of the world-to-plan
registration. In this case, the
tattoo is not in the position
expected by the plan.

MGR Methods Required

 Patient photo mapping

131

from Patient Photos, to augment the 3D planning image with the

photograph from the treatment room (Fig. 137) provides several

additional guidance cues.

 Tie the plan to the patient and catch blunders such as left/right

symmetry transforms or planning the wrong patient

 Confirm that the target implied by the tattoos does indeed align

with the dose isocenter

 Visualize where a radiation beam should fall on the patient without

having to make mental estimations about the actual surface

features shown on the CT. This addresses shortcomings in the

practice of “light field setup” which provided no good link between

the expected light field positions and the patient’s surface

appearance.

Beyond photography, the same methods could be applied to visualize

registrations between a planning image and various other data sources.

One intriguing setup source might be a reference surface such as is

collected by the VisionRT (www.visionrt.com) stereo camera setup

system (Fig. 138), which could be used for patient setup based on

geometry. Another potential setup source might be non-visible light

photography such as thermographic (heat) images (Fig. 139), which

could be used for patient setup based on veins or other warm, near-

surface landmarks. Applying this vignette to serial patient images taken

at treatment time would provide a means to track skin reactions with

respect to the expected dose distribution and the initial treatment

photograph.

Fig. 138 A VisionRT surface
(green) aligned with the
corresponding CT skin
isosurface (purple).

Fig. 139 Thermographic image
of the author holding his oldest
son at age 18 months, taken at
The Tech Museum in San Jose.
Thermography can show near
surface features.

132

5.3 Enhanced Endoscopy from Multiple Modalities

The introduction of this section is paraphrased from a related RC1 grant

application written principally by Dr. Julian Rosenman and submitted

through UNC Hospital’s Department of Radiation Oncology.

5.3.1 Clinical Goals

There are two main ways of determining the anatomic extent of a

tumor: 3D imaging (e.g., CT, MRI, or PET) and direct visualization via

endoscopy. In the head and neck, nasopharyngoscopy is a minimally

invasive diagnostic procedure in which a small camera called an

endoscope is inserted into the patient’s nasal passage and passed down

through the pharynx. An attached cable serves to control the position

and orientation of the camera, to provide light at the target via optical

fiber, and to transmit a video signal back to a monitor. The endoscopic

rig may include additional instruments such as a biopsy needle or pincer

for collecting tissue samples at a target site.

Computed visualizations of 3D images and direct endoscopic

evaluations are both particularly important when tumors are entangled

with multiple critical normal tissues. Nasopharyngoscopy enables a

clinician to see the mucosal surfaces of the cavities but not the internal

tissues. 3D imaging provides information about the deep infiltration of

the tumor, but it does not provide a visualization of the mucosal

surfaces. So, for example, a patient with a submucosal abnormality on

CT may have normal-appearing mucosa. Therefore the physician may

require additional guidance from a 3D planning image to direct a biopsy.

Or conversely, a CT may give incomplete information about the extent

of a tumor's infiltration into the submucosal region. Therefore the

physician may require additional guidance from direct visualization to

estimate a target region for treatment planning. However, there is

presently no easy way to visually register the information from these

two assessment tools with each other beyond simply displaying the

probe’s world position on a slice from a CT.

Virtual endoscopy has become accepted standard of care for certain

clinical procedures such as colonoscopy (as early as the 1990s, see

(Robb 1996), (Nain D. 2001)), but simulated views (Fig. 140 left) lack

color information and cannot be used to guide actual biopsy. Real views

133

(Fig. 140 right), by contrast, obviously lack targeting information from

any planning that has been done.

MGR methods can be used to create hybrid views from simulated and

real views. There are two proposed applications for MGR in this

domain. The first is to provide online guidance for the biopsy by

integrating hidden features identified in 3D imaging directly into the

endoscopic view. The second is the complementary task of integrating

video from the endoscopy back into the 3D rendering to enhance open

field of view virtual endoscopy with actual endoscopic images. This

vignette could serve roles both for online guidance by indicating the

probe position relative to the target region in 3D and for offline review.

Taken together, these two vignettes would provide a powerful update

to the standard guidance method of projecting the probe position onto

the slice of a planning CT.

These techniques are expected to be of particular interest in virtual

nasopharyngoscopy, which is an open area with little active research

due at least in part to the large number of both discernible and inferred

(lymph levels) critical anatomic structures and their complex spatial

interrelationships. The mockup figures in the next two sections are

accordingly taken from that domain.

5.3.2 Online Biopsy Guidance

Current methods for providing 3D visualizations suitable for augmenting

endoscopic views are either limited to only a few poorly defined

surfaces (i.e., the surface-only virtual colonoscopy model), or they take

months to prepare and so are not applicable to the treatment of an

individual patient (i.e., the VoxelMan model).

Fig. 140 Left, virtual
nasopharyngoscopy and right,
corresponding image from real
procedure.

134

The goal of this vignette is to augment the endoscopic view with

information about the patient’s anatomy in the hidden “beyond-the-

wall” region relative to the camera.

Given a partial segmentation of a planning image, MGR can synthesize

overlays for the camera video feed to show both target objects

discernible in the planning images and other clinically relevant objects

and regions implied by prior anatomic knowledge.

The mgrView rendering engine runs fast enough to integrate this extra

data in real time into the endoscopic view and overlay an annotated

textbook-like “guided tour” of the nearby hidden features as the

endoscope is advanced or endoscopic surgical instruments are utilized.

It is expected that using this hybrid annotated view will improve

diagnostic and therapeutic outcomes for endoscopy and endoscopic

surgery for patients with head and neck cancer, in particular.

Method Outline

1. Collect a planning image, segment important objects and assign

textures similarly to the head and neck project shown throughout

chapter three, Model Guided Appearance for Medical Images.

Fig. 141 A mockup of an
mgrView “guided tour” 2D
endoscopic display showing a
sample scope view embedded
in a 3D planning image with
target and nearby “beyond-the-
wall” structures overlaid. Fig.
142 shows the complementary
3D view.

MGR Methods Required

 Combining 2D and 3D images

 Regional volume textures

 Model coordinate implied regions

135

2. Register the endoscope position and orientation to the CT image

and render an MGR virtual view from the point of view of a

corresponding simulated camera.

3. Combine the views according to various levels of virtualization, e.g.,

camera only, camera + labels, camera + hidden objects, or virtual

only.

5.3.3 Enhanced Open Field of View Virtual
Endoscopy

Endoscopic guidance is frequently restricted to projecting the probe

position onto a 2D slice of the planning image. This can confound the

user’s ability to understand the spatial relationship between the probe

and nearby clinically relevant objects.

The goals of this vignette are to provide an unobstructed indicator for

the relative positions of the probe and beyond the wall structures for

online guidance and to put the endoscopic images back into a 3D

context for review.

Fig. 142 A mockup of an
mgrView open field of view
virtual endoscopy enhanced
with photomapping and online
guidance information. The
probe position relative to a
target region is shown in 3D
based on online probe position
measurements. Color images
collected by the endoscope are
dynamically overlaid onto the
CT.

136

Addressing the first goal, mgrView can easily take online probe position

data and render a camera proxy into an open field of view endoscopic

vignette as discussed previously. This can provide much needed 3D

context for the spatial relationship between the probe and any target

regions. This mapping additionally gives MGR all the information that it

needs to project the current probe image back onto the CT image

according to the methods described in Chapter 3. This photo-map

enhanced image can then be used retrospectively for a color-correct

virtual endoscopy, of either the fly-along-the-tube or the open field of

view type that enables viewing from any point of view the physician

desires. In either case, the virtual view could be further augmented by

the same “beyond the wall” structures discussed for the previous

vignette.

Method Outline

1. Use the methods from section 4.2, Fast Importance Rendering, to

focus a view on the endoscopic path (an “open field of view virtual

endoscopy”)

2. Use online camera position information to and add geometry

proxies for the camera and nearby clinical target regions to the

scene

3. Use a virtual camera to project each frame into the planning CT

coordinates and color the local CT data according to the endoscopic

view using the methods described in section 3.3.3, Rendering From

Planar Images

4. Collect the entire color volume for use in offline for color-correct

virtual endoscopy

5.4 Evaluating MGR Methods

The aforementioned vignettes have shown a number of areas where

MGR methods can be used to provide additional comprehension to

particular clinical applications. Prototyping a full application would be a

useful next step in evaluating MGR methods’ strengths and in

identifying and ameliorating its weaknesses.

MGR Methods Required

 Photomapping

 Color mapping from atlas or

synthetic sources

 Interactive volumetric animation

 Importance rendering

 Model coordinate implied regions

137

6 Conclusions

Traditional medical volume visualization has focused on two main

methods: slice-wise cut-planes that provide good local detail but

sacrifice 3D understanding, and direct volume rendering (DVR) that

provides good global comprehension but sacrifices the ability to

interpret local values and comprehension of interior structures.

The goal of Model Guided Rendering (MGR) is to maintain the global

comprehension from volume rendering while adding back some of the

lost local detail and obscured structures. There are already a few

methods that achieve such results, but they are either patient-specific

but limited to a particular task, such as virtual colonoscopy, or

generalizable but limited to a particular exhaustively micro-segmented

atlas data set, such as VoxelMan.

MGR is an attempt to bridge the gap between generality in the task and

subject domains. MGR can leverage a broad range of input data to

produce flexible, high quality images. But it requires only limited

manual intervention, so it can be applied to a broad variety of patient-

specific clinical tasks. In particular, MGR is intended to support

“Netterly” and other styles of volume rendering for specific clinical

target patients. MGR is designed to be a display layer extension that

sits on top of deformable model based segmentation technologies

currently being actively developed by research entities like UNC and by

commercial entities like Morphormics.

The key observation is that traditional volume rendering is limited by

working in voxel-coordinates of a single source image. There is simply

not enough information in a single CT image to address such complex

questions as “What am I seeing here?” This is exacerbated in 3D

visualization where the most common tool available for image

interpretation is a fragile transfer function.

138

MGR addresses this by relating information in multiple sources on a

region-by-region basis with object-coordinates from a few automatically

segmented regions. Relying on increasingly powerful automatic image

processing algorithms to define the image relationships frees the user

from reliance on overly simple single-modality transfer functions to pick

out and interpret 3D structures. Given an interpretation of type and

orientation of a few important structures, relevant local detail can be

added back into the scene based on a patient data collection when

appropriate. Patient data collections are becoming increasingly complex

and can comprise images from multiple 2D and 3D modalities, serial

imaging studies, registration fields, and various spatial distributions,

such as dose calculations for external beam radiotherapy (EBRT)

planning. Additionally, atlas textures from color anatomic sections (the

Visible Human) or synthetic sources may be available. MGR provides a

framework that allows all of these sundry sources to play a part in the

rendering pipeline.

6.1.1 Chapter Organization

This chapter has two sections: first, a review of the dissertation thesis

and claims in the context of the materials presented; second, some

meditations on the positive and negative potentials of MGR

visualization, including dealing with uncertainty, non-clinical

applications, and extending MGR.

139

6.2 Thesis & Claims Revisited

This dissertation supports the following thesis.

Image segmentation via medial shapes provides an effective basis for

guiding context-appropriate shading in 3D medial image display by

supporting regional color mapping from library or synthesized solid

textures, cross-modal images, and atlas data sources. Precomputing a

global “scene catalog” that collects multiple local medial-to-world and

world-to-medial transforms enables these techniques in an interactive

object-order volume rendering framework. This framework additionally

extends other perception-enhancing effects such as importance

rendering and volume deformation to dynamic scenes.

There are two parts to the proof of this thesis. First, the methodology

claims restated in Table 3 have been presented. Second, several novel

vignette projects enabled by these methods have been provided as

results.

6.2.1 Methodology

Chapter three, Model Guided Appearance for Medical Images, presents

a methodology for regional combination of data sources on the basis of

coordinate systems provided by a sparse set of deformable shape

models fit to important regions in the scene. The techniques discussed

in this chapter for assigning scene appearance are summarized in the

first and second claims of novel methodologies from Table 3.

Section 3.1, Creating a Scene Catalog presents a fast method for

computing such regional world-to-model (x2u) and model-to-world

(u2x) data mappings using m-reps (claim 2.1) in an object-order

rendering setting by using programmable shaders to exploit graphics

hardware acceleration (claim 2.2). The mappings created are

themselves suitable for doing such transformations quickly on graphics

hardware. These methods are described with respect the m-rep shape

model because it implies a volume-filling coordinate system with

intuitive directions such as along, around, and through the object.

However, MGR could be integrated with other segmentation tools if

given a method to infer a volume filling coordinate system.

Methodological Claims

1. Method for using medial

coordinates to guide context-

appropriate shading in medical

images by regional color mapping

from several different kinds of

data sources

1.1. Method for mapping and

lighting library or patient-

specific synthetic solid

textures

1.2. Method for mapping from 2D

data sources such as patient

photographs

1.3. Method for mapping from 3D

data sources such as cross-

modal images or atlas data

sources

2. Method for generating such

renderings at interactive rates on

relatively modest hardware by

precomputing a “scene catalog”

data structure and manipulating

it in an object-order rendering

framework

2.1. Algorithms for computing

world-to-medial (“x2u”) and

medial-to-world (“u2x”) maps

from a set of segmentations by

medial shapes and a data

structure for collecting these

mappings together

2.2. Algorithms for using the scene

catalog in various ways

through programmable shader

hardware to do the mappings

described in (1)

3. Refactored versions of important

state-of-the-art volume

rendering methods such as

importance rendering and

volume deformation that allow

these techniques to be applied in

dynamic scenes

3.1. Object-order implementations

for global and local volume

deformation and for

importance rendering based

on ranked surfaces

Table 3 Claims revisited.

140

Section 3.2, Simple Texturing for Volumes, describes how to use regional

mappings to apply solid textures in world space, which requires only an

object label, or in model space, which requires the complete object

coordinate system (claim 1.1). Section 3.3, 2D Color Transfer from

Patient Photos, details a variant of a world-space mapping that can be

used to push patient photographs into the 3D scene (claim 1.2).

Section 3.4, 3D Color Transfer, details cross-image mapping, a variant of

model-space mapping that uses a model to world and an inverse world

to model mapping from another data set to transfer 3D image data

from a different image or atlas into the scene using object-relative

coordinates (claim 1.3).

The fourth chapter, Model Guided Composition for Medical Images,

adds fast methods for scene composition and focus. Global and local

volume morphing (the first part of claim 3.1) is discussed in section 4.1,

Volumetric Animation, and importance rendering using fast shadows

and importance stenciling (the second part of claim 3.1) is discussed in

section 4.2, Fast Importance Rendering.

6.2.2 Results

Several clinical application “vignettes” are presented throughout the

text as demonstrations both of MGR's methods and the kinds of novel

visualizations enabled by MGR.

MGR’s most general intended application is supporting high quality 3D

volume rendering for particular target patients. Motivating examples

throughout the methodology chapters are taken from a prototype

“atlas quality head and neck” project that suggests how various types of

scene-catalog (claim 1) driven solid texturing and color mapping (claim

2) could be used to increase understanding of multiple region types and

orientations in volume rendering.

The fifth chapter, Bringing MGR to the Clinic, both overviews the types

of medical imaging applications in which MGR could potentially play a

role, and provides several specific examples that demonstrate how MGR

methods are uniquely suited to address some important but currently

difficult clinical tasks.

Section 5.2 presents application vignettes taken from radiotherapy

planning. The first part shows how MGR’s methods for regional color

mapping from alternate modalities (claim 1.3) could be used to provide

141

context and suppress artifacts during 3D image segmentation. The

second part shows how dynamic importance rendering, volumetric

animation (claim 3.1), and model-coordinate derived regions could aid

in understanding the effects of shape change or setup error on a 3D

dose distribution. The third part shows how MGR’s photo mapping

method (claim 1.2) provides a means for evaluating the placement of

patient setup tattoos relative to planning expectations.

The example application vignettes from endoscopic guidance are

presented in section 5.3. The complementary view vignettes presented

use MGR photo mapping, solid texturing, (claims 1.1 and 1.2) and

importance rendering (claim 3.1) to provide a concise 3D navigation

system for guiding a probe to hidden target anatomy.

In summary, the potential uses of MGR’s special capabilities are

demonstrated in the following ways:

 Assigning cross-modal or atlas solid textures according to model

coordinates (claims 1.1, 1.3, and 2) is demonstrated in the head and

neck atlas project shown throughout chapter 3, the cross-modal

segmentation vignette in section 5.2.3, and the 3D endoscopy

vignette in section 5.3.3.

 Assigning textures from photographs or video (claim 1.2) is

demonstrated in the head and neck atlas project, the patient setup

vignette in section 5.2.4, and the augmented endoscopy view in

section 5.3.2.

 Applications for dynamic importance clipping and volume animation

(claim 3) are demonstrated in the planning with error view in

section 5.2.3, and the 3D endoscopy view in section 5.3.3.

The "radiotherapy planning under error" project is described in detail in

an appendix that serves as an example of how to go about designing

and building a new project using the mgrView library. This serves to

show that the methods are not only potentially useful but also

potentially usable as implemented in mgrView.

mgrView uses fast object-order algorithms for the core MGR methods

described here and provides as well a framework for unifying many

other state of the art methods for scene composition, such as global

deformations and geometry based opacity modulation. Frame rates

achieved by mgrView for the methods and scenes discussed in this

dissertation are summarized in Table 4. mgrView includes a minimal

Fig. 143 The mgrView library
achieves frame rates between
10 and 20 fps on a target
laptop for most of the example
scenes shown throughout this
document. However, running
mgrView did eventually
overheat and crack the
graphics accelerator in the
disassembled laptop above.

142

windowing environment and user interface, but it is also intended to be

embedded in other clinical tools, such as the Plan-UNC (PLUNC)

radiotherapy planning system.

 NVIDIA GeForce 6200
(Desktop)

NVIDIA Quadro NVS 160M
(Laptop)

mgrView Rendering Task 100 planes 200 planes 100 planes 200 planes

Standard DVR with intensity windowing 12 8 20+ 20

MGR Methods

1. Regional Volume Texture 7 4 20+ 10
2. Photo Mapping 7 4 15 11
3. 3D Color Transfer 7 4 20+ 10
4. Global Deformation 4 2 15 10
5. Local Deformation 7 4 20+ 12
6. Dynamic Importance Rendering 6 3 20+ 15

Complex Scenes

Radiotherapy Planning (methods 3,5,6) 4 2 15 9
Virtual Endoscopy (methods 1,2,3,6) 5 3 20+ 15

Table 4 Summary of the best frame rates in frames per second (fps) achieved using the mgrView software
library for various rendering tasks and scenes described in this dissertation. Methods 1 and 3 use the same
code mechanism, so they have identical results.

143

6.3 Potentials of Model Guided Rendering

While the vignettes described here are encouraging, clearly there is a

need to build a complete system to evaluate the clinical potentials of

MGR and identify capabilities that are still required.

That said, there are several intriguing potential uses for MGR that may

or may not have clinical relevance but are themselves worth further

consideration. This section reviews several directions that have been

considered for additional focus.

6.3.1 Dealing with Uncertainty

Assigning synthetic textures or atlas colors to a particular target patient

begs the point that this potentially adds spurious information to the

scene. Worse, the segmentation or registration being used to guide the

rendering may itself have some level of uncertainty, so visual estimates

in some areas may be both incorrect and in the wrong place. Worse

yet, mgrView itself makes a variety of simplifying assumptions about the

data that are problematic, such as linearizing multiple time step warp

fields or using standard m-rep surfacing algorithms with radius 0 medial

spokes for unstable approximations of object coordinates on the medial

sheet. Thus, in the worst case, visual estimates in some areas may

actually be based on completely incorrect assumptions. If such images

are misused for diagnosis, the results could be dangerously misleading.

To this I would respond that at least the non-implementation-specific

sources of uncertainty will be present in any volume visualization

because assumptions about the character of the data will always be

made. CT reconstruction is subject to major artifacts when algorithmic

assumptions are broken; yet no one misdiagnoses a patient as having a

mouth full of high density material configured in starbusts centered

around her fillings. Classical volume rendering is subject to fragility of

parameters that easily allows noise to be emphasized and signal

suppressed. MGR bases its assumptions on a prerequisite robust

segmentation, which actually gives the user significantly more explicit

control over which assumptions will be made with regard to a particular

scene. An expert user can tune segmentation or registration methods

and set thresholds when designing the project for how credible

interpretation or atlas sources must be to be included in the view.

144

Indeed, this very uncertainty could provide an additional channel for

MGR to use in guiding how particular anatomic regions should be

displayed. An MGR style has been proposed that would use a non-

photorealistic (NPR) sketch texture such as in Fig. 144 where

information was uncertain, a more “realistic” texture where structures

were more confidently understood, and a blend of the two methods to

show varying levels of certainty in the interpretation of the underlying

data. A measurement of local uncertainty could be provided by a tool

such as (Levy, et al. 2007) (Fig. 145), which uses deformable shape

object statistics to automatically flag of suspicious local properties such

as abnormal shape or intensity distributions.

However, to some degree, it is still somewhat too early to discuss

explicit measures on uncertainty given the youth of the system and the

challenges involved in simply gauging and eliminating the

implementation-specific sources of error in the presence of presumed

perfect data.

One of my favorite observations from visualization literature is from

(Simpson, et al. 2006) in regard to visualizing uncertainty of image-to-

world registrations. After establishing a complex visualization designed

to show uncertainty in indicating a target region for a simulated biopsy,

the debriefed physician subject commented that all he needed to know

was that the registration was uncertain and that then he would just

“use a bigger drill bit” to take the sample. He didn’t need to know

where or by how much. Edward Chaney, a research and former clinical

physicist in radiation oncology, has made similar comments about the

current disconnect between the increasing accuracy of image

segmentation and the limited precision of most external beam

radiotherapy delivery devices. Given uncertainty in an image

segmentation, the solution in external beam radiotherapy is usually to

simply “use a bigger margin”. That is, detailed understanding of

uncertainty does not, per se, lead to more careful targeting; rather it

leads to relaxing the precision of the targeting method.

Fig. 145 Display of surface non-
credibility from (Levy, et al.
2007). The dark region on the
larger mesh is the area
indicated on the slice shown on
the right that has likely been
improperly segmented.

Fig. 144 Surface sketch
rendering for anatomic shapes
from (Interrante, Fuchs and
Pizer 1997).

145

6.3.2 Non-Clinical Applications of MGR:
Understanding Principal Warps

There are a variety of volume visualization tasks where multiple data

sources or relationships among multiple data sources need

visualizations. An example of a task that requires visualization of

multidimensional volumetric animation is evaluation of an image space

defined according to “principal warps”. mgrView’s method for

volumetric animation according to deformation fields was originally

developed to aid in evaluating statistical analysis of fluid registration

from an atlas to a number of target images. The mgrView interface

provided a user interface to control how much of which displacement

field was applied to which image. By applying a weighted combination

of warps to a source image, a new “image” could be produced.

The idea of sampling from statistics of dense registration fields to

produce new images was originally developed in (Chen, et al. 2002) as a

means for synthesizing a database of computational image phantoms

for the region near the kidney. Segmented image phantoms are

necessary for validating segmentation or planning tools. Typically they

are produced by creating a parametric representation of a set of

structures and then sampling from a distribution on those parameters

to generate novel data sets (Fig. 146). In the case of statistics of dense

registration fields, the parametric representation is how much of each

of the basis warps found by principle component analysis (PCA) are

applied to the source image to deform it and its corresponding

segmentation into a new target image. The main problem with this

method is that the implied image space is mostly full of anatomically

unlikely or otherwise illegal images and only sparsely populated with

useful instances. For example, PCA is not guaranteed to preserve

diffeomorphism in its decomposition, so arbitrary combinations of

principal warps can easily tear or fold the space. Thus, the parameters

cannot be randomly sampled to produce a mapping from the atlas to a

“new” image without risking grossly illegal results, as seen in Fig. 147.

However, using the mgrView deformable animation tool, warp

combinations could be sampled and applied in an interactive fashion to

animate over a continuous range of potential “new” images. Simple

visual inspection could serve to eliminate the large number of obviously

illegal candidates and focus closer inspection on likely candidates.

Parameters of credible images could be saved with the push of a button.

Fig. 146 Matlab’s single-slice
“brain” phantom function
called with randomly sampled
parameters.

Fig. 147 Top, a slice from a
source image and bottom, the
same slice under an obviously
unlikely sampled registration.

146

6.3.3 Extending MGR

I am confident that the increasing power of automatic medical image

segmentation will lead to important improvements to 3D clinical

visualization over the next ten years. MGR is one possible approach for

integrating data from segmentation into rendering, but it requires

considerable further development to reach the kind of robustness

needed for general clinical applications.

In particular, continued development of the MGR framework is strongly

dependent on two supporting areas – one is anatomic texturing, the

other is using physical models to produce believable general

deformations.

 Associated texture synthesis algorithms are already under

development by Ilknur Kabul. However, there is a substantial

amount of additional work to do in the area of creating a reference

library of solid textures from anatomic photography and various

found sources. Integrating information from truly multivariate data

sources, such as diffusion tensor imaging, could also fall into this

project of extending MGR’s available appearance models.

 Using physical models for organ-by-organ deformation would be a

valuable tool for designing intuitive scene compositions. As Fig. 148

shows, cutting and moving objects out of the way rather than

simply ghosting them out can be a very effective means of showing

the 3D positions of hidden internal anatomy without losing the

global context. As previously mentioned, physical modeling is

another area where having m-rep models fit to important structures

in the scene can provide an uncomplicated framework for

approaching this otherwise complex problem.

These supporting technologies are somewhat tangential to MGR’s core

rendering capabilities; they are methods to compute additional data

sources to drive a scene. In terms of algorithmic extensions to MGR’s

core capabilities, there are two projects that I personally think are

intriguing: Ray Traced MGR and Augmented Reality MGR.

Fig. 148 A medical illustration
that simulates a physical
procedure with retractors
provides an intuitive
understanding of the 3D
positions of the internal
anatomic structures. Contours
of the hidden bones are also
sketched on the surface.
(www.conservativehipsolutions.
com)

147

6.3.4 Ray Traced MGR

As machines get faster, MGR’s goal of interactive rate rendering for

complex scenes becomes more possible to achieve in a ray casting or

image-order setting. Integrating MGR methods with a high quality

offline ray tracing renderer such as POV-Ray (www.povray.org) would

provide dramatically better lighting models than can be achieved with

object-order DVR. Furthermore, many implementation details of

mgrView that are necessarily complex due to the fast object-order

framework would be quite straightforward in a ray casting framework.

Such an interface need not be particularly closely tied to the rendering

engine. For example, Fig. 13 from the introduction demonstrating the

shape change project was actually a prototype rendering done in

VolView by preprocessing the image and using VolView’s native transfer

function controls. The importance mask was precomputed for a single

point of view, and the marked intervening voxels in the target image

were simply set to 0 intensity so that they could be suppressed. The

halos were achieved by assigning otherwise unused value ranges to the

voxels intersected by the segmentation surfaces so that they could be

controlled independently of the rest of the transfer function.

An alternative to creating an MGR interface for a software ray tracer is

to map MGR methods for scene appearance and composition onto a

hardware-accelerated ray tracing solution. Software ray tracing is

typically done serially, and each ray is independently processed. The

three possible directions for hardware accelerated ray tracing are all

methods for parallelizing a simplified ray following algorithm.

1. Map MGR ray tracing implementations onto graphics hardware

using shaders or a language like nVidia’s CUDA. Several sources

including (Kruger and Westermann 2003) and (Quammen 2006)

describe straightforward mappings of volume ray casting (no

secondary rays) onto graphics hardware using a fragment shader to

follow the entire ray that will contribute to each pixel value.

(Purcell, et al. 2005) proposes a graphics hardware algorithm for

triangulated surface ray tracing, that is, casting secondary rays for

shadows, reflections, and antialiasing. Since MGR makes extensive

use of both volumetric and surface data, it would require a hybrid

approach.

Fig. 149 (Bourke 2003)
describes how to use POV-Ray
to render volume data with a
variant of the Gaussian “splat”
method discussed in Chapter 2.
Note the soft shadows of the
semi-transparent volume cast
on the ground.

148

2. Map MGR ray tracing implementations onto parallelizable general

purpose processors, such as IBM’s Cell architecture. No volume

rendering software for this architecture currently exists, but I have

proposed an algorithm where each processor is responsible for a

small set of rays and image data is streamed between them in a ring

fashion. Given a suitable preordering, it is likely that each voxel will

only be loaded onto each processor one time. This could be

extremely powerful as the render time is expected to be bound to

the absolute minimum constraint, that is, the amount of time

required to access each voxel from memory exactly once. The

method would scale in both speed and target resolution with the

number of dedicated processors.

MGR methods that can reference additional data sources as if they

were extra channels of the base image (e.g., deformation fields or

scene maps) could be easily integrated into this setting. However,

most of MGR’s methods rely on spatially incoherent texture lookups

(e.g., solid textures, photo mapping, or color mapping), and it is not

clear how such data could be efficiently interleaved into the voxel-

stream.

3. Map MGR ray tracing implementations onto a custom circuit design

for a field programmable gate array (FPGA) or an application

specific integrated circuit (ASIC). Custom ray tracing circuits for

triangles have been proposed, most notably by (Woop 2005) as the

“ray processing unit” or RPU. The challenges presented in extending

this idea to realize a volume ray tracing circuit and moreover to

support MGR’s various needs are considerable and would likely be

laborious.

However, the result could be of considerable importance in the

related clinical field of dose calculation. The volume ray casting

algorithm per se need not accumulate a 2D buffer; it could easily

accumulate a 3D buffer according to a distribution kernel – which is

exactly the framework required for high precision dose calculation

according to superposition/convolution. Using the same hardware

engine to compute both visualizations and dose calculations for

radiotherapy seems quite poetic. It seems that such dose

calculations should be difficult to compute on a gpu because of the

fast scattered reads and writes to the 3D accumulations buffer, but

(Jacques, et al. 2008) has recently implemented exactly this.

149

6.3.5 Augmented Reality MGR

One of the major goals of MGR is to provide a global 3D understanding

without losing too much of the fine detail available in 2D slice-by-slice

renderings. Virtual or augmented reality (VR or AR, first described in

practice by (Sutherland 1968)) provides a powerful tool for enhancing

3D comprehension by actually preserving the 3-dimensionality of the

displayed objects. Adding a simple stereo display would be an

intentionally straightforward extension of mgrView’s windowing

system, and a fully tracked AR display has also been considered.

However, the question naturally arises of how useful stereo display, VR,

or AR actually is in clinical tasks.

Clinical stereo display would be an easily achievable extension for

mgrView. But while it seems obvious that providing even a limited 3D

display such as a stereo view would ameliorate any 3D planning task,

there are few promising examples of stereo providing significant utility

in a clinical setting. The earliest reference to stereo views for volume

rendering was (State, Balu and Fuchs 1994), which proposed a kind of

limited single axis (“bunker view”) stereo volume visualization that

could be pre-rendered to give the illusion of interactive display.

Subsequently (Zuiderveld, van Ooijen, et al. 1996) described using an

SGI system and an object-order volume renderer to produce fully

interactive stereo views, but comments about stereo capability were

mostly in regard to the shutter glasses hurting the subjects’ eyes and to

subject motion sickness.25 A more recent example of stereo enabled

planning is (Maupu, et al. 2005), which presents a method for planning

liver shunting (“TIPS”) using a stereo display of anatomic surfaces;

however, this paper is also conspicuously silent on whether the

improved depth understanding adds anything to the physicians ability to

work in 3D. Elsevier’s recent Netter’s Interactive 3D Anatomy (Fig. 150)

uses stereo views of anatomy for a medical education application.

However, it appears to be limited to surface-only rendering of static

anatomy.

Fully head-tracked 3D display has seen very few proposed clinical

applications, likely because of the extensive hardware requirements.

25

 An interesting observation from this paper is that the clinical staff at a major
university hospital circa 1996 found the volume visualization interesting and
useful but that they simply had not been aware that such technology existed.

Fig. 150 Marketing image from
Elsevier’s Netter’s Interactive
3D Anatomy making the likely
spurious implication that
multiple people could sit
around a table and interact
with a 3D hologram.

150

UNC has produced a few notable exceptions. A very early paper by

(Chung 1992) establishes an elaborate virtual reality experiment to test

the effect of virtual reality for the same kinds of radiotherapy targeting

tasks I discussed in section 5.2, MGR Applications in Adaptive

Radiotherapy – and concludes that immersive VR is little more effective

than using a joystick.26 On the other hand, it is possible that Chung’s

conclusions would have been different had MGR methods been

available. For instance, one might imagine that the path planning task

might have been easier using something like MGR’s importance

rendering algorithm to focus on the target through the occluders.

Other notable exceptions are methods for the online augmented-

reality-guided biopsy (State, et al. 1996) and AR guided radiofrequency

ablation (Fuchs, State, et al. 2008). This work can be seen as related to

the enhanced endoscopic view suggested in section 5.3, Enhanced

Endoscopy from Multiple Modalities; however, State does not annotate

views or mix modalities beyond showing the ultrasound data projected

back to its original position in the patient. I am intrigued by the idea of

using MGR methods in a framework like State’s to provide a head

tracked AR view of a patient plan projected onto the patient herself for

evaluating patient setup.

Interacting with the Scene

The other important aspect of virtual reality is the opportunity to

present the user with more sophisticated means of interaction than a

simple mouse. It is quite difficult to interact with the many degrees of

freedom available in a volume rendering. Some earlier literature has

experimented with the idea of working with more intuitive controls, but

the idea does not seem to have gained significant traction.

(Pierce, Stearns and Pausch 1999) discusses the use of “voodoo dolls”27

in virtual environments and (Ebert, et al. 1996) describes a two-handed

stereotactic control for ‘minimally immersive’ interaction with

volumetric data such as CT images. (Preim, et al. 2001) and (Goble, et

al. 1995) describe two-handed interfaces for rotating and specifying

26

 As an aside, the most interesting proposal in the paper is the ‘orbital’ head
tracked display mode, which is shown to be more useful than ‘walk around’
interactions.

27
 This is a great term that can be used for any physical proxy for interacting

with a virtual object, e.g. “Using Voodoo Dolls for Patient Setup”.

Fig. 151 The doll interface from
(Hinckley, et al. 1997).

151

resections when planning oncological surgery. One of my favorite ideas

for a controller is from (Hinckley, et al. 1997), which describes using a

doll’s head prop and a piece of plexiglass to control a cut plane

orientation and position relative to a head CT. The method is described

as being incredibly intuitive and universally easy to adopt (Fig. 151).

It seems to be well worth thinking about supporting such a two-handed

controller in mgrView. Fig. 152 top shows an augmented reality image

from an experiment using an ARToolKit marker as an optical six degree

of freedom (“6-DOF”) mouse to control a display. ARToolKit uses

computer vision techniques to identify a square marker in a camera

image and estimate the corresponding relative pose of the camera. That

camera pose is converted into an OpenGL-type 4 x 4 view matrix that

can be used to project virtual objects into the view. The project shown

was a prototype for a patient-surface-to-CT alignment task that could be

integrated with mgrView. The bottom image shows the author’s

daughter controlling an mgrView display and specifying a clip plane

using a two-handed version of the same mechanism.

Fig. 152 Top, the author using
ARToolKit (HIT Lab 2007) to
intuitively manipulate a 3D
object. Bottom, the author’s
daughter at 4 months using a
two-handed version of the
same mechanism to
manipulate and clip the
mgrView scene previously
shown in Fig. 17.

152

APPENDIX: IMPLEMENTING THE PLANNING UNDER ERROR VIEW USING

MGRVIEW

This appendix describes how to combine and extend library implementations of Model Guided

Rendering (MGR) methods to address the tasks described in section 5.2.3, Interactive Planning Under

Error . It is intended in part as a starting place for a reader who is attempting to recreate the example

views from this dissertation or is interested in evaluating or extending the mgrView library. It is also in

part a demo of mgrView’s flexibility and ease of use for rapid prototyping28. This section assumes

more familiarity with C++, OpenGL, and related UNC research software than the rest of the text does.

Non-engineering oriented readers are welcome to skip over this material.

mgrView is a four-thousand line C++/OpenGL2.0 library implementing MGR’s core functionality. It

provides an interactive rate volume rendering framework for MGR’s core methods and has only

modest hardware requirements. The library includes some simple file I/O and an extensible default

windowing and UI based on GLUT/GLUI (Radamacher, Stewart and Baxter 2006), but it is also intended

to be embedded in other software environments, such as UNC’s in-house clinical radiotherapy

planning system, Plan-UNC (PLUNC). mgrView is available through the Computational Oncology lab at

UNC’s Department of Radiotherapy. See http://titan.radonc.unc.edu/~derek/mgrView for details.

mgrView provides one possible object-order implementation of MGR’s general methods. However,

core MGR functions – creating and referencing scene maps, 2D and 3D color mapping, volumetric

animation, and importance rendering – have been designed to require small, relatively independent

calculations at each operation, so they could be easily transferred to alternate parallelized frameworks

(see section 6.3.4, Ray Traced MGR, for additional thoughts on this).

Overview

The general goal of the view is to create an interactive 3D volume animation of the effects of various

sources of spatial error on dose distribution in both segmented and non-segmented regions for

radiotherapy treatment planning. The mgrView application described combines data from several

sources that are routinely generated during planning: a base planning CT image, the dose distribution,

and a deformable registration that suggests possible patient motion, and an alternate imaging

modality view of the region near the target. The application allows the user to smoothly control the

effects of rigid and deformable registration error applied to the base image while holding the dose

fixed. The volume can be clipped or importance rendered to focus on the target region.

28

 These goals were identified after talking to a neuroradiologist at Duke University Hospital who was excited about
a newly introduced visualization system that let her work on non-axis aligned cut planes. When I expressed
surprise that this had only recently arrived at the clinic, she suggested that the radiologists were at the mercy of
complex software and attendant specialized hardware. Hence, mgrView has been developed with the goal of
enabling high quality rendering for complex scenes without requiring either intimate understanding of the
algorithms or access to the powerful hardware typically required for interactive-rate ray casting volume rendering.

153

Fig. 153 shows mgrView’s basic class organization and calls out the tasks required to implement this

project. In short, a variety of data must be preprocessed for import (step 2), and then a GLSL shader

with the desired functionality crafted by combining pre-built components (step 4).

Fig. 153 mgrView’s class organization with tasks for this project marked.

mgrView is organized in three basic sections: renderable objects such as tiles or volume data, images

(sampled n-dimensional m-variate data fields), and OpenGL related functionality, such as shaders and

windows. Each mgrView object can be attached to the other components to create a scene graph of

images, shapes, and appearance descriptions descending from the world root object. mgrView’s base

functionality can be extended in any of these three component areas. For example, a patch surface

type might extend the basic surface type as long as it implements the required glRender api. In this

project the OpenGL-related functionality is extended by adding a shader that combines animation,

dose overlay, and color mapping.

154

Step 1: Set Up a New Project

An mgrView project is usually a single file that initializes a few global path variables, loads the scene

data, sets up scene relationships, and passes control to the mgrView rendering engine at the end of

the main() function. Program 20 shows a basic mgrView program that loads the planning image only

from this project and attaches it as the source channel for a volume renderable object. The directive

to include “mgrv.h” gives the program access to the mgrView library functions. “data_dir” is a global

variable that points to a directory with atlas as well as project textures. “project_dir” is the

subdirectory where mgrView will expect to find any project-specific files, such as 6600.plan.pim in this

example. All the sample data for this program can be found in mgrView’s /data/6600.pelvis directory.

// New mgrView Project
#include “mgrv.h”
data_dir = "../../data"; project_dir = "6600.pelvis";
int main(argv, argc) {
 // Load data
 mgrImage I_0 = mgrvLoadImage(“6600.plan.pim”, vec3(1.0), 512, 512, 80);
 mgrVolume v =mgrVolume(&I_0); // Setup volume based on I_0
 // Start renderer
 mgrvMainLoop();
}

Program 20 A single-image default scene.

The call to mgrvMainLoop() passes control to the rendering engine. At each frame the rendering

engine starts at the scene root and passes over each object, updating OpenGL’s state and switching

shaders to reflect interrelationships between the images, shapes, and appearances. The object-order

volume rendering core works as described in Chapter 2. A marching order is identified by comparing

the dot product of the view direction with the volume axis directions, and then back-to-front ordered

planes are sent down the graphics pipeline. mgrView’s standard volume fragment program processes

each image sample by simply looking up the CT intensity and windowing it. Because the volume is

rendered in back-to-front order, every fragment is promoted to a pixel and composited into the frame

buffer.

Step 2: Import Data

Step 2.1: Load Images, Dose, and Deformation Fields

mgrView’s image class includes a simple binary file loader, mgrvLoadImage(), that can read any image

format that stores grid data with channel (rgb) changing fastest, then x, then y, then z, i.e., as ordered

slices with each entry containing n variables. The image class does some simple processing such as

pre-computing the image gradient or calculating a spatial transform into the unit cube. Any rigid

spatial transforms for images are done in mgrView using the OpenGL texture matrix stack. The

essential issue for converting gridded data into the unit cube is in understanding that the data extents

– the voxel size times voxel count in each dimension, will be normalized to the range (0,1) in all three

155

dimensions. Because the image typically has a different height than its width or breadth, the z-

direction coordinates must be stretched by the height-to-width ratio to maintain that relationship.

Finally, mgrView loads the image into texture RAM and discards the original data unless directed to

preserve it for further processing. To render an image directly, the image must be assigned as the

“source0” channel of a volume-renderable object.

This project requires that images be bound to several additional predefined channels as well.

 A planning image, I0, is loaded into the "source0" channel.

 A dose grid file, D, that contains the expected dose at each sample for a particular plan is loaded

into the "dose" channel.

 A dense registration field, H, is loaded into the "registration" channel and used to simulate

internal shape change.

 An alternate modality source image for color mapping can be included in the "source1" channel.

In this example, a corresponding MRI is used. In order to distinguish the alternate modality image

from any treatment CT images, this additional source image will be called IS.

Refer back to Fig. 131 to see how each of these sources fit into the radiotherapy workflow. Program 21

shows mgrView code to load each data source.

 // Load Image Data
 mgrImage I_0 = mgrvLoadImage(“6600.plan.pim”, vec3(0.1), 512,512,80, 1,
 MGR_USHORT_DATA, MGR_SKIP_HEADER_FLAG);
 mgrImage D = mgrvLoadImage(“6600.dose.raw”, vec3(0.1), 128,128,40, 1, MGR_FLOAT_DATA);
 D.SetOrigin(vec3(0.3, 0.3, 0.3);
 mgrImage H = mgrvLoadImage(“6600.plan2day1.raw”, vec3(0.1), 128,128,40, 3,
 MGR_FLOAT_DATA, MGR_SUBTRACT_IDENTITY_FLAG);
 H.SetOrigin(vec3(0.3, 0.3, 0.3);
 mgrImage I_s = mgrvLoadImage(“6600.mri.pim”, vec3(0.1), 512, 512, 80, 1
 MGR_USHORT_DATA, MGR_SKIP_HEADER_FLAG);
 // Setup Scene
 mgrVolume v =mgrVolume(&I_0); // Setup volume based on I_0
 v.AttachImage(MGR_DOSE_IM, &D); // Assign data channels
 v.AttachImage(MGR_REG0_IM, &H);
 v.AttachImage(MGR_SOURCE1_IM, &I_s);

Program 21 Using mgrView to load relevant images and segmentations for this scene.

In this project, the CT and MRI images are provided by PLUNC in .pim or “plan-image” format. Plan-

images are stored as a header followed by an array of 16 bit unsigned integers. mgrView does not read

image headers, so the image properties – in particular the voxel size, voxel count in each dimension, the

number of variables, and the data format (e.g., short, float) must be determined externally and passed

as arguments to the loader. By default the loader assumes univariate unsigned short data. However,

dose and displacement fields in particular are usually stored as floats.

156

The file reader also takes optional special action flags, such as skipping over header information

before beginning to read29. Other common formats that use a header + gridded data arrangement,

such as Pablo’s raw3, Analyze’s nii/hdr+raw and UNC’s meta-image mha/mhd+raw formats (Chandra

and Ibanez 2001) can be read similarly. Header information can be read from PLUNC images using the

“plan-image-info” program, from Analyze images using Matlab’s Analyze toolbox, and from raw3 by

displaying the first few bytes of the file as text.

Many medical images are stored in DICOM format (“Digital Imaging and Communications in

Medicine”, see the website dicom.nema.org), which can be quite complex to parse. DICOM images

can be read by our clinical modeling software, Pablo, and then saved in its own raw3 format which can

be read as described above. Slice-wise volumes, such as the Visible Human color atlas slices can be

converted to a single 3D color image using the Matlab “imgs2raw.m” script included in mgrView’s

/scripts directory. Converting a 3D image into a texture unit on the gpu requires that the samples be

taken with a uniform slice thickness.

The displacement field for this project has been generated using UNC’s in-house registration software,

ImMap (described in (Foskey, et al. 2005)), a planning and treatment image are registered to each

other with a rigid transform, R, which can be accounted for by adjusting the patient setup, and with a

dense vector field, H, which captures residual shape change, such that I1 = H(R(I0)). The particular

registration method is unimportant; mgrView’s volume deformation animation would work with any

sampled method for generating space-filling non-rigid mappings (e.g. for adaptive radiotherapy, (Lu W

2004),(Wang H 2004), (Mohan R 2005), (Freedman D 2005), or (Pekar, McNutt and Kaus 2004)).

In this example, the source and target images have been resampled into the same space, so R can be

ignored. The displacement field itself is provided as a so-called “h-field”, which contains target

destinations in voxel- rather than world-coordinates. This use of the word “displacement” differs from

the interpretation used by some registration packages. The special action flag

“MGR_SUBTRACT_IDENTITY_FLAG” instructs mgrView’s image class to convert h-field data to a vector

field in unit unit cube coordinates before loading it as a texture unit. H-field data from ImMap is

stored as mhd+raw files and can be read as 3-variate float data as described above – but it requires an

additional origin position, since the displacement field is almost always computed only for a restricted

region of interest. The origin must be read out of the header file and manually applied to the target

image when it is loaded with the function mgrImage::SetOrigin().

As an aside, mgrView currently does not support data with more than four variables per entry, such as

diffusion tensor images (DTI) that store the elements of a 3x3 symmetric matrix at every voxel. One

possible method for addressing this in the future may be by splitting such data across multiple texture

units.

29

 By counting backwards from the end the appropriate number of bytes and reading from there. This trick
works with many different data formats.

157

Step 2.2: Importing Shapes into mgrView

Planning images are normally segmented as part of planning, either by hand or by deformable shape

models. If a planning image is segmented by hand, medial models are fit to the resulting binary label

images of each object. In either case, this results in a set of m-reps, M0i, one for each anatomic

region. For this project, these shapes are read as shown in Program 22. If a shape is not explicitly

identified as a child of another object, it is attached directly to the world root object in the scene.

Shapes can also be assigned to other objects' data channels – in this example, the prostate shape is

used as the target channel of the volume object.

 // Load Shape Data
 mgrShape* Mpros_0 = mgrvLoadShape(“6600.prostate.byu”);
 mgrShape* Mrect_0 = mgrvLoadShape(“6600.rectum.byu”);
 mgrShape* Mblad_0 = mgrvLoadShape(“6600.bladder.byu”);
 v.AttachShape(MGR_LABEL_SURF, &Mpros_0)

Program 22 Using mgrView to load relevant segmentations for this scene.

mgrView has no native m-rep type or m-rep reader but instead represents medial shapes as surfaces

with extended properties. mgrView’s surface class is a standard vertex and face list with some

additional type information. Each vertex object must have at least a world position and a normal

direction to be valid. If explicit surface normals are not provided, they will be computed automatically

when the object is created by averaging the connected face normals. MGR model-coordinate

functionality is provided in mgrView’s surface class by assigning additional attributes to each the

vertex object. A vertex may optionally include an object coordinate (uv, with t assumed to be 1 on the

surface) and a medial position. If the vertices of a surface contain both of these attributes, mgrView

will automatically generate the U2X and X2U maps for the surface and link them to the surface

through their respective channels. Exporting these maps to a volume shader enables the shader to

make model-coordinate relative decisions.

A vertex object can additionally include a pointer to another vertex that tracks values at the next time

step for the surface. This allows the surface to be animated in multiple steps over time by

interpolating between world positions. If the start and end vertices contain a medial position entry,

the entire spoke can be interpolated over time, which would provide the basis for a new intermediate

volumetric coordinate system. The current implementation is too slow to recompute intermediate

U2X and X2U tables interactively, but this should be possible with optimization and slightly upgraded

graphics hardware with more support for internal frame buffer objects.

M-rep models only explicitly identify a few surface vertices at the spoke tips. As discussed previously,

higher resolution surfaces can be interpolated by various mechanisms with different smoothness and

speed constraints. Because MGR methods do not require interactive surface generation, it is left to an

off-line process, such as the surfacing algorithm in UNC’s Pablo m-rep based segmentation tool30. The

30

 Pablo is discussed earlier in M-Rep Software on page 34. For academic access to Pablo see the UNC MIDAG
website http://midag.cs.unc.edu; for commercial access see Morphormics http://www.morphormics.com.

158

pre-generated surface can be saved and loaded into mgrView as a simple tile geometry file. mgrView

includes a byu file reader for simple tile geometry, this format choice largely motivated by

convenience in exchanging data with other software in our lab. “movie.byu” is a file format for storing

animations that originated at Brigham Young University. mgrView uses only the geometry part of the

byu file format. byu geometry files follow a very simple format: a header with the number of vertices

on the first line and the number of faces on the second, a list of three floats for every vertex, and a list

of three integer vertex indices for every face. The final integer in each face triplet must be preceded

by a negative sign. A formatting sample from a test data set, “cube.byu,” is shown in Example 1.

Complete documentation of the byu format exists in several sources online,

https://people.sc.fsu.edu/~burkardt/data/byu/byu.html was used as a reference for mgrView’s file

reader. A useful program for converting other common surface file formats to byu is IVCON

(http://orion.math.iastate.edu/burkardt/g_src/ivcon/ivcon.html).

 1 8 6 24 0
 1 6
 1.00000E+00 1.00000E+00 1.00000E+00
 1.00000E+00 1.00000E+00-1.00000E+00
 1.00000E+00-1.00000E+00 1.00000E+00
 1.00000E+00-1.00000E+00-1.00000E+00
-1.00000E+00 1.00000E+00 1.00000E+00
-1.00000E+00 1.00000E+00-1.00000E+00
-1.00000E+00-1.00000E+00 1.00000E+00
-1.00000E+00-1.00000E+00-1.00000E+00
 1 3 4 -2 5 7 8 -6 1 5 6 -2 3 7 8 -4
 1 5 7 -3 2 6 8 -4

Example 1 Sample byu format for a cube.

mgrView will instantiate a simple surface for any byu geometry file it is asked to read. Extended

surface properties, as discussed above – explicit normals, object coordinates, and medial positions –

can be included by adding additional specially named byu files to the data/surfs directory for the

project. These files must be named as follows:

1. shape_name.byu

2. shape_name-normals.byu

3. shape_name-uvt.byu

4. shape_name-mpos.byu

These specially named files embed extended vertex data triplets in the vertex list portion of the file,

and the face list is ignored. If only a single file is found, it is assumed to be the surface file. Only the

surface vertices are strictly required to render a shape. The normals file is optional; it is provided to

allow for higher order offline surface normal computation. If the normals file is absent, the vertex

normal directions are computed as either the differences to the medial mesh (i.e., the spoke

directions) if the medial file exists, or they can be computed directly from a surface by averaging face

normal directions as required.

159

Providing (uvt) coordinates of each vertex enables mgrView to render surfaces with object-centric

texture directions as described previously in section 3.2, Simple Texturing for Volumes. Further

providing the medial positions of each vertex enables mgrView to compute a volumetric coordinate

system (the U2X and X2U lookup tables) for the shape. This allows mgrView to use the color mapping

methods described in section 3.4, 3D Color Transfer. A complete set of all four files can be generated

in Pablo by saving a model as a byu surface file, contracting all of the atom radii to 0, and resaving a

byu medial positions file. Supplemental normal and model coordinate files are generated

automatically.

An obvious future extension to the code is to add loaders and surface generators for native m-rep

registry files (.m3d). Alternately, a more compact version of this format, such as an extended .obj file

supporting additional “position on the medial surface” parameters for each vertex would be useful.

Reparameterizing Models from Pablo

As an implementation aside, the m-rep parameterization in UNC’s Pablo segmentation software is not

a minimal representation. That is, it parameterizes a spherical topology (the version of m-reps used in

these projects do not support objects with holes) with three parameters, (u’v’φ), where u’ and v’

count the medial sampling grid for atom-implied vertices but have fractional values for interpolated

vertices, and φ indicates sidedness and varies around the “crest” regions. To reduce this to two

parameters so that any coordinate on the medial sheet (along and across) can fit into the red and

green channels alone, reserving blue for distance from the medial sheet (through), mgrView converts

m-rep (u’v’φ) to a (latitude, longitude) representation, called, confusingly enough, (uv) again. Recall

from section 3.1, Creating a Scene Catalog, that MGR’s medial parameterization is a “shrink-wrap”

cylindrical mapping, with v taken to run from one boundary edge to the other at v=0.5, then across

the bottom of the object on the interval v=(0.5,1.0].

There are two different conversion algorithms in mgrView: one for “slab” type objects that have

n x m medial samples with n,m>1, and another for “tube” type objects that have n x 1 medial samples

with n>1. For slabs, φ = 1 on the anterior side, φ = -1 on the posterior side, and φ = 0 on the “crest”

vertices. For tubes, v’ is always 1 and φ counts around the object from -1 to 1. For tubes the

conversion is quite simple, Pablo’s v’ is thrown out and the new v is simply equal to the read φ. For

slabs the conversion is somewhat more complex and requires special cases for multiple different

geometric regions (anterior or posterior faces, right A/P crest, left A/P crest, top crest, bottom crest).

In both cases, integer u and v values are normalized to the (0,1) range. See the documentation of the

mgrSurface::ReparameterizeSlab() function for additional implementation details.

160

Step 3: Add a Rigid Motion Controller

mgrView’s image class automatically associates a 4 x 4 matrix transform with its image data.

Whenever mgrView binds an image to a texture unit, this transform is applied to any texture

coordinates intended for that texture unit. Such texture transforms serve many purposes, such as

scaling and moving coordinate in the unit cube into coordinates for a region of interest or rotating a

solid texture to align it with the “along” direction of an anatomic region. In this case, attaching a rigid

motion user interface (UI) to the base image’s transform will allow the clinician to simulate setup error

by manipulating translation and rotation parameters interactively.

mgrView uses GLUI as a UI for rapid prototyping.

mgrView’s user interface class includes customized GLUI

widgets for manipulating the parameters of several

library types, including surface and volume renderables,

clip planes, images, and transforms. The line in

Program 23 requests that the window controller add a

UI transform widget for the CT image. The resulting UI

is shown in Fig. 154.

 // Add Transform UI Control for Rigid Motion
 mgrw->UI->AddTransformControl(&I_0.transform,
“Rigid error”);

Program 23 Adding a rigid motion controller to the CT
image

The built-in deformation animation based on the

displacement field is controlled by a global “time”

parameter that is already included as a (0,1) slider in

the default UI. This is sufficient for this view, but

managing a weighted combination of deformation fields

would require additional interface controls.

Step 4: Create a New Shader

Volume animation and color mapping are provided by mgrView’s built-in features, but combining the

two and adding the dose overlay requires developing a custom shader program. There are four steps

to adding the new shader to mgrView:

1. Add the new shader’s name and dependencies to mgrView’s shader controller

2. Modify the default volume rendering shader to add a dose overlay

3. Modify the shader to add deformation animation

4. Modify the shader to support color mapping from an alternate modality

Fig. 154 mgrView’s GLUI-based scene control
interface with a rigid error controller.

161

Step 4.1: Add the new shader’s name and dependencies to mgrView’s shader controller

mgrView’s shader object consists of a program id and a set of required texture channels. When a

shader is invoked, it is passed a pointer to a particular renderable and the shader object’s job is to

check that all the required texture channels are present and to export the texture names and any

supplemental parameters to the actual OpenGL hardware shader program. A global controller

manages loading and compiling the shader programs and keeps a list of the available shaders

identified by a unique name such as “MGR_STD_VOL_SHADER”. The first step to adding a new shader

to mgrView is to add its name to the MGRenum section of the mgrv.h file as shown in Program 24.

Second, the shader’s name, parameters, and dependencies need to be listed in the

mgrView::mgrLoadShaders() function found in mgrShaders.cpp, as shown in Program 25. In this case,

the new shader uses the standard vertex program (“vstd”), it has a specialized fragment program in a

file, the UI name should be “Dose + Err Vol”, and it is defined for volume objects. The final argument

is a bitwise-OR of flags for each of the required texture channels and GLSL uniforms and attributes

that must be exported to the shader when it is invoked.

enum MGRenum {
 // Shader Names
 MGR_STD_VOL_SHADER = 0, ...
 // Add new shader name for ART Evaluation Project
 MGR_DOSE_ERR_VOL_SHADER
}

Program 24 Adding a new shader to mgrView’s list of internal shader names in mgr.h

int mgrLoadShaders() {
 GLhandleARB vstd = mgrShader::LoadVertexProgram("std.vert.glsl");
 /* New shaders take the following parameters:
 mgrShader(enumerated mgrView shader name,
 vertex program handle or filename,
 fragment program handle or filename,
 string for display in UI,
 shader type (MGR_VOLUME_TYPE, MGR_SURFACE_TYPE),
 bitwise-or’d flags for reqd objects (MGR_SOURCE_IM0f|etc.))*/
 …
 // New shader for ART Evaluation Project
 new mgrShader(MGR_DOSE_ERR_VOL_SHADER,
 vstd, "dose+err.vol.frag.glsl",
 "Dose + Err Vol", MGR_VOLUME_TYPE,
 MGR_SOURCE_IM0f | MGR_DEFORMATION_IM1f |
 MGR_DOSE_IMf, MGR_TIME_UNIFORMf);
}

Program 25 Adding the new shader’s parameters to the mgrLoadShaders function in
mgrShaders.cpp

Adding the shader name and parameters to the loader will cause mgrView’s setup routine to

automatically try to read the required files and compile the shader program This new shader is still

missing its fragment program, so copy the “std.vol.frag.glsl” program from mgrView’s /common

162

directory and rename it to “dose+err.vol.frag.glsl”. Now when mgrView is run, the new shader should

load and its name “Dose + Err Vol” will be automatically be available on the shader drop down of the

default volume object control. It is not very interesting yet though, since it merely duplicates the

functionality of the standard volume shader object.

Step 4.2: Modify the default volume rendering shader to add a dose overlay

This section explains first how to extend the standard volume fragment program by referencing an

additional channel for a dose overlay. When the new shader was set up in the last step, a dose

channel was flagged as required. This means that the shader will require that the volume have a dose

channel assigned (recall Program 21) and that the shader will export that channel’s OpenGL texture

unit binding as a named uniform variable to the hardware fragment program. Variable names for all

the predefined channels are defined in the common mgr.common.glsl header. In this case, the base

image channel is called “source_im0” and the dose channel is called “dose_im”.

The standard volume fragment program is only three lines – it reads an intensity from source_im0, it

calls the library intensity_window() function, and it sets the output fragment color accordingly. To add

a dose overlay, the program needs to additionally read the dose value and modulate the red channel

accordingly. This is shown in Program 26. C0 is a constant that can vary to intensify or suppress the

strength of the modulation. Note that the rigid transformation controller added previously will only

affect the texture coordinate used for source_im0 and not the texture coordinate used for dose_im,

so the dose overlay will remain fixed.

const float C0 = 0.5; // Dose modulation strength
void main() {
 // Standard volume fragment program
 float source_intensity = texture3d(source_im0, texCoord0.xyz).r;
 float windowed_intensity = intensity_window(source_intensity);
 // Dose modulation
 float dose_intensity = texture3d(dose_im, texCoord1.xyz).r;
 vec4 modulated_color = vec4(source_intensity + dose_intensity*C0, source_intensity,
 source_intensity, source_intensity*C0);
 modulated_color = max(modulate_color, vec4(1.));
 // Set output
 gl_FragColor = modulated_color;
}

Program 26 Adding dose modulation to the standard volume fragment program.

Step 4.3: Modify the shader to add deformation animation

This example uses only a single displacement field to simulate possible internal shape change, but

extending this project to support multiple registration fields, such as those between the planning

image and several fraction images or using a basis of “principal warps” as described in section 6.3.2,

Non-Clinical Applications of MGR, is not particularly difficult beyond adding several more data

channels. However, each additional texture channel lookup does contribute to an overall slowdown

of the system.

163

The object-order algorithm for an animating volume is detailed in section 4.1.2, Rendering Images Under

Local Deformation. mgrView’s local deformation shader requires both the source_im0 channel and a

disp_im channel that can be used to compute the world-space offset for any world position. Program 27

shows how to integrate this functionality into the dose+error shader. The global time variable is used to

weight how much of the displacement to apply.

One implementation caveat is that each image may potentially be from a different region of interest

and thus may have a different mapping between world coordinates and texture coordinates.

Therefore, the developer must know the order in which the mgrView shader is going to bind the

required texture channels to determine the mapping between source, dose, and deformation and

texCoord0, texCoord1, and texCoord2. This order can be determined by looking at the texture

channel ordering in the function mgrShader::ExportUniforms().

const float C0 = 0.5; // Dose modulation strength
void main() {
 // Interpolate a local registration vector
 vec3 offset = texture3d(disp_im, texCoord2.xyz).xyz;
 float source_intensity = texture3d(source_im0, texCoord0.xyz + time*offset).r;
 float windowed_intensity = intensity_window(source_intensity);
 // Dose modulation
 float dose_intensity = texture3d(dose_im, texCoord1.xyz).r;
 vec4 modulated_color = vec4(windowed_intensity + dose_intensity*C0, windowed_intensity,
 windowed_intensity, windowed_intensity*C0);
 modulated_color = max(modulate_color, vec4(1.));
 // Set output
 gl_FragColor = modulated_color;
}

Program 27 Adding local deformation to the dose+error shader.

Step 4.4: Modify the shader to support color mapping from an alternate modality

The last step in building the dose+error shader is to add color mapping from the MRI channel. This

particular example is done as a ‘world-space mapping’ of the CT and MR images; that is, the images

are pre-aligned by resampling them into the same space. This means that mgrView does not require

model coordinates to transfer the images; it only needs to determine the region where the transfer

should occur. When the fragment is determined to be within the prostate region, the MRI channel is

queried at the same coordinates and its values replace the CT values. Tinting or increasing the relative

opacity of the region as shown in the previous Fig. 60 can also call attention to the local detail.

Program 28 shows the completed dose+error GLSL shader.

Finally, in the main program, the new shader is assigned as the initial appearance for the volume

object by calling the volume object’s member function SetShader() with the shader’s name as an

argument. Program 29 shows the completed mgrView project program. The final line before the call

to mgrvMainLoop() assigns the newly created shader as the default appearance for the volume object.

Other built-in shaders can be still selected by a dropdown in the UI.

164

const float C0 = 0.5; // Dose modulation strength
void main() {
 // Interpolate a local registration vector
 vec3 offset = texture3d(disp_im, texCoord2.xyz).xyz;
 // Determine fragment membership
 float label_value = texture3d(label_im0, texCoord0.xyz + time*offset).r;
 if (label_value==0.) {
 // Not in target region, so use CT
 float source_intensity = texture3d(source_im0, texCoord0.xyz + time*offset).r;
 float final_intensity = intensity_window(source_intensity); }
 else
 // In target region, so use MR
 float final_intensity = texture3d(source_im1, texCoord0.xyz + time*offset).r;
 // Dose modulation
 float dose_intensity = texture3d(dose_im, texCoord1.xyz).r;
 vec4 modulated_color = vec4(final_intensity + dose_intensity*C0, final_intensity,
 final_intensity, final_intensity*C0);
 modulated_color = max(modulate_color, vec4(1.));
 // Set output
 gl_FragColor = modulated_color;}

Program 28 Adding local deformation to the dose+error shader.

#include “mgrv.h”
data_dir = "data"; project_dir = "6600.pelvis";
int main(argv, argc) {
 // Load Image Data
 mgrImage I_0 = mgrvLoadImage(“6600.plan.pim”, vec3(0.1), 512,512,80, 1,
 MGR_USHORT_DATA, MGR_SKIP_HEADER_FLAG);
 mgrImage D = mgrvLoadImage(“6600.dose.raw”, vec3(0.1), 128,128,40, 1,MGR_FLOAT_DATA);
 D.SetOrigin(vec3(0.3, 0.3, 0.3);
 mgrImage H = mgrvLoadImage(“6600.plan2day1.raw”, vec3(0.1), 128,128,40, 3,
 MGR_FLOAT_DATA, MGR_SUBTRACT_IDENTITY_FLAG);
 H.SetOrigin(vec3(0.3, 0.3, 0.3);
 mgrImage I_s = mgrvLoadImage(“6600.mri.pim”, vec3(0.1), 512, 512, 80, 1
 MGR_USHORT_DATA, MGR_SKIP_HEADER_FLAG);
 // Setup Scene & Bind Data Channels
 mgrVolume v =mgrVolume(&I_0); // Setup volume based on I_0
 v.AttachImage(MGR_DOSE_IM, &D);
 v.AttachImage(MGR_REG0_IM, &H);
 v.AttachImage(MGR_SOURCE1_IM, &I_s);
 // Load Shape Data
 mgrShape* Mpros_0 = mgrvLoadShape(“6600.prostate.byu”);
 mgrShape* Mrect_0 = mgrvLoadShape(“6600.rectum.byu”);
 mgrShape* Mblad_0 = mgrvLoadShape(“6600.bladder.byu”);
 mgrShape* Mpros_s = mgrvLoadShape(“6600.mri.prostate.byu”);
 // Add Transform UI Control for Rigid Motion
 mgrw->UI->AddTransformControl(&I_0.transform, “Rigid error”);
 // Set initial shader
 v.SetShader(MGR_DOSE_ERR_VOL_SHADER);
 // Start program
 mgrvMainLoop();}

Program 29 The completed mgrView project program for the dose under error view.

165

The view can be focused by user defined clip planes or by selecting any shape in the scene as a target

for mgrView’s built-in importance rendering capability. mgrView implements two different functions

for importance rendering: one for static shapes and a different one for dynamic shapes as

described in the section Dynamic Importance & ROIs on page 105. In this case, because the

target regions shift according to the deformation field, dynamic importance rendering

can be enabled by attaching H to each target’s reg0_im channel and calling the function

mgrView::mgrvEnableDeformationImportanceRendering(). However, this requires that the graphics

hardware accelerator supports vertex texture fetch (“vtf”) so that the vertex program can offset each

vertex position according to a texture lookup from the registration field.

166

REFERENCES

"Definition of Oblate Spheroidal Coordinates." In Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, by M. and Stegun, I. A. (Eds.) Abramowitz, 752. New York: Dover, 1972.

Ackerman, M.J. "The Visible Human Project." Proceedings of the IEEE 86, no. 3 (March 1998): 504 - 511.

Besl, P J, and N D McKay. "A Method for Registration of 3-D Shapes." IEEE Transactions on Pattern Analysis and

Machine Intelligence (IEEE Computer Society) 14, no. 2 (1992): 239-256.

Blinn, J. F., and M. E. Newell. "Texture and reflection in computer generated images." Commun. ACM 19, no. 10

(October 1976): 542-547.

Blum, Harry. A Transformation for Extracting New Descriptors of Shape. Edited by Weiant Wathen-Dunn.

Cambridge: MIT Press, 1967.

Bookstein, F L. "Principal Warps: Thin-Plate Splines and the Decomposition of Deformations." IEEE Trans. Pattern

Anal. Mach. Intell. (IEEE Computer Society) 11, no. 6 (1989): 567-585.

Borland, David, John P. Clarke, Julia R. Fielding, and Russell M. Taylor II. "Volumetric Depth Peeling for Medical

Image Display." Proc. SPIE Int. Soc. Opt. Eng. 2006.

Bouguet, J-Y. Matlab Camera Calibration Toolbox. 2008. http://www.vision.caltech.edu/bouguetj/calib_doc/.

Bourke, Paul. Using POVRay as a volume renderer. 2003.

http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/df3/.

Brechbuhler, C., G. Gerig, and O. Kubler. "Parameterization of closed surfaces for 3-D shape." Computer Vision,

Graphics, and Image Processing: Image Understanding 65 (1995).

Broadhurst, Robert E, Joshua Stough, Stephen M Pizer, and Edward L Chaney. "A statistical appearance model

based on intensity quantile histograms." ISBI. IEEE, 2006. 422-425.

Bruckner, S. "Exploded Views for Volume Data." IEEE Transactions on Visualization and Computer Graphics 12, no.

5 (2006): 1077-1084.

Bruckner, S., P. Kohlmann, A. Kanitsar, and M.E Groller. "Integrating volume visualization techniques into medical

applications." Biomedical Imaging: From Nano to Macro, 5th IEEE International Symposium on (ISBI). 2008. 820-

823.

Bruckner, S., S. Grimm, A. Kanitsar, and M. E. and Groller. "Illustrative context-preserving exploration of volume

data." IEEE Transactions on Visualization and Computer Graphics 12, no. 6 (2006): 1559–1569.

Bullitt, E., and S.R. Aylward. "Volume rendering of segmented image objects." Medical Imaging, IEEE Transactions

on 21, no. 8 (August 2002): 998-1002.

Cabral, Brain, and Leith Leedom. "Imaging Vector Fields Using Line Integral Convolution." Proceedings of

SIGGRAPH. ACM Press, 1993. 263--270.

Canny, J. "A computational approach to edge detection." IEEE Trans. Pattern Anal. Mach. Intell. 8, no. 6 (1986).

167

Card, D, and JL Mitchell. "Non-Photorealistic Rendering with Pixel and Vertex Shaders." In ShaderX: Vertex and

Pixel Shaders Tips and Tricks. 2002.

Catmull, E., and J. Clark. "Recursively generated B-spline surfaces on arbitrary topological meshes." Computer-

Aided Design 10, no. 6 (1978): 350-355.

Chandra, Parag, and Luis Ibanez. "ImageIO: design of an extensible image input/output library." Crossroads (ACM)

7, no. 4 (2001): 10-16.

Chen, David. "Volume Rendering Guided by Multiscale Medial Models." PhD Thesis, Department fo Computer

Science, UNC, 1998.

Chen, James Z., Stephen M. Pizer, Edward L. Chaney, and Sarang Joshi. "Medical Image Synthesis via Monte Carlo

Simulation." Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002. 2002. 347-354.

Cheung, V., B. J. Frey, and N. Jojic. "Video Epitomes." IEEE Intern. Conf. Computer Vision and Pattern Recognition

(CVPR). 2005.

Christensen, G.E., R.D. Rabbitt, and M.I. Miller. "Deformable templates using large deformation kinematics." IEEE

Transactions on Image Processing 5, no. 10 (1996).

Christensen, GE, SC Joshi, and MI Miller. "Volumetric transformation of brain anatomy." IEEE Transactions in

Medical Imaging, 1997.

Chung, J. C. "A comparison of head-tracked and non-head-tracked steering modes in the targeting of radiotherapy

treatment beams." Proceedings of the 1992 Symposium on interactive 3D Graphics. 1992. 193-196.

Cline, H. E., W. E. Lorensen, and S. Ludke. "Two algorithms for the three-dimensional reconstruction of

tomograms." Medical Physics, 1988.

Cootes, T F, C J Twining, K O Babalola, and C J Taylor. "Diffeomorphic statistical shape models." Image Vision

Comput. (Butterworth-Heinemann) 26, no. 3 (2008): 326-332.

Cootes, T.F., G.J. Edwards, and C.J. Taylor. "Active Appearance Models." Computer Vision — ECCV. 1998. 484-.

Cootes, Timothy F, A Hill, Christopher J Taylor, and J Haslam. "The Use of Active Shape Models for Locating

Structures in Medical Images." IPMI '93: Proceedings of the 13th International Conference on Information

Processing in Medical Imaging. London, UK: Springer-Verlag, 1993. 33-47.

Cormack, Allen. "Representation of a Function by its Line Integrals with some Radiological Applications." Journal of

Applied Physics, 1964.

Correa, C.D., D. Silver, and M. Chen. "Feature Aligned Volume Manipulation for Illustration and Visualization."

Visualization and Computer Graphics, IEEE Transactions on, 2006.

Crouch, Jessica R., Stephen M. Pizer, Edward L. Chaney, and Marco Zaider. "Medially Based Meshing with Finite

Element Analysis of Prostate Deformation." Medical Image Computing and Computer-Assisted Intervention -

MICCAI 2003. 2003.

Crow, Franklin C. "Shadow Algorithms for Computer Graphics." Computer Graphics (SIGGRAPH '77 Proceedings).

1977. 242-248.

168

Cullip, T. J., and U. Neumann. "Accelerating volume reconstruction with 3d texture hardware." Department of

Computer Science at the University of North Carolina, Chapel Hill, 1993.

Dachille, Frank, Kevin Kreeger, Baoquan Chen, Ingmar Bitter, and Arie Kaufman. "High-quality volume rendering

using texture mapping hardware." HWWS '98: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on

Graphics hardware. Lisbon, Portugal: ACM, 1998.

Damadian, R. V. "Tumor Detection by Nuclear Magnetic Resonance." Science, no. 171 (March 1971): 1151-1153.

Davis, Brad, Sarang Joshi, Matthieu Jomier, and Guido Gerig. "Unbiased diffeomorphic atlas construction for

computational anatomy." NeuroImage 23, no. Supplement 1 (2004): S151-S160.

Davis, Richard E., et al. "Three-Dimensional High-Resolution Volume Rendering (HRVR) of Computed Tomography

Data: Applications to Otolaryngology-Head and Neck Surgery." The Laryngoscope 101, no. 6 (1991): 573.

Debevec, Paul E., George Borshukov, and Yizhou Yu. "Efficient View-Dependent Image-Based Rendering with

Projective Texture-Mapping." In 9th Eurographics Rendering Workshop. Vienna, Austria, 1998.

Delingette H., Montagnat J. "Shape and Topology Constraints on Parametric Active Contours." Computer Vision and

Image Understanding 83, no. 2 (August 2001): 140-171.

Deschamps, Thomas. 3-D Path Extraction for Virtual Endoscopy. 2002.

http://math.lbl.gov/~deschamp/html/virtual_endoscopy.html.

Diepstraten, J., D. Weiskopf, and T. and Ertl. "Interactive cutaway illustrations." Computer Graphics Forum 22, no. 3

(2003).

Dong, Feng, and Gordon J. Clapworthy. "Volumetric texture synthesis for non-photorealistic volume rendering of

medical data." The Visual Computer 21, no. 7 (2005).

Doretto, G., and S. Soatto. "Dynamic shape and appearance models." IEEE PAMI 28, no. 12 (2006): 2006-2019.

Drebin, Robert A, Loren Carpenter, and Pat Hanrahan. "Volume rendering." SIGGRAPH Comput. Graph. (ACM) 22,

no. 4 (1988): 65-74.

Ebert, D. S., C. D. Shaw, A. Zwa, and C. Starr. "Two-handed interactive stereoscopic visualization." Proceedings of

the 7th Conference on Visualization '96. 1996.

Ebert, D., and P. Rheingans. "Volume illustration: non-photorealistic rendering of volume models." Proceedings of

Visualization 2000. 2000. 195-202.

Ebert, David S., ed. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann Pub, 1994.

Eisenberg, Murray, and Robert Guy. "A Proof of the Hairy Ball Theorem." The American Mathematical Monthly 86,

no. 7 (1979): 571-574.

Fischer, J., D. Bartz, and W. Strasser. "Illustrative display of hidden iso-surface structures." Proceedings of IEEE

Visualization 2005. 2005. 663-670.

Fletcher, P.T., Conglin Lu, S.M. Pizer, and Sarang Joshi. "Principal geodesic analysis for the study of nonlinear

statistics of shape." IEEE Transactions on Medical Imaging, 2004.

Forsyth, David, and Jean Ponce. Computer Vision: A Modern Approach. 2002.

169

Foskey, M, BC Davis, J Rosenman, L Goyal, S Chang, and Joshi S. "Automatic segmentation of intra-treatment CT

images for adaptive radiation therapy of the prostate." Medical Image Computing and Computer-Assisted

Intervention (MICCAI). 2005. 442-50.

Freedman D, Radke R, Zhang T, Jeong Y, Lovelock M, and Chen G. "Model-based segmentation of medical imagery

by matching distributions." IEEE Transactions in Medical Imaging 24, no. 3 (2005): 281-292.

Fuchs, H, Z M Kedem, and S P Uselton. "Optimal surface reconstruction from planar contours." Commun. ACM

(ACM) 20, no. 10 (1977): 693-702.

Fuchs, Henry, and Stephen M. Pizer. Three Dimensional Display Using a Varifocal Mirror. United States Patent

4,607,255. August 19, 1986.

Fuchs, Henry, et al. "Optimizing a Head-Tracked Stereo Display System to Guide Hepatic Tumor Ablation." Proc.

Medicine Meets Virtual Reality (MMVR). Newport Beach, CA, 2008.

Goble, John C., Ken Hinckley, Randy Pausch, John W. Snell, and Neal F. Kassell. "Two-Handed Spatial Interface Tools

for Neurosurgical Planning." Computer 28, no. 7 (1995): 20-26.

Gooch, A., B. Gooch, P. Shirley, and E. Cohen. "A non-photorealistic lighting model for automatic technical

illustration." in Proceedings of the 25th Annual Conference on Computer Graphics and interactive Techniques

SIGGRAPH. New York, NY: ACM Press, 1998. 447-452.

Grimson WE, Kikinis R, Jolesz FA, Black PM. "Image-guided surgery." Scientific American 280, no. 6 (June 1999): 62-

69.

Hagen, John. "Surgical Repair of the Septate Uterus (1990)." In Atlas of Gynocological Surgery, by Raymond Lee.

Saunders, 1992.

Hagens, Gunther von. Bodyworlds. 2007. http://www.bodyworlds.com/.

Han, Qiong. Proper Shape Representation of Single- and Multi-Figure Anatomical Objects. PhD Thesis, University of

North Carolina at Chapel Hill Dept. of Computer Science, 2007.

Heidmann, T. "Real Shadows, Real Time." Iris Universe 18 (1991): 23-31.

Hinckley, K, R Pausch, JH Downs, D Proffitt, and NF Kassell. "The props-based interface for neurosurgical

visualization." Studies in health technology and informatics 39 (1997): 552-62.

HIT Lab. "ARToolKit Home Page." 2007.

Horn, Berthold K, and Brian G Schunck. Determining Optical Flow. Cambridge, MA, USA: Massachusetts Institute of

Technology, 1980.

Interrante, V., H. Fuchs, and S.M. Pizer. "Conveying the 3D shape of smoothly curving transparent surfaces via

texture." IEEE Transactions on Visualization and Computer Graphics 3, no. 2 (April/June 1997): 98-117.

Jacques, R., R. Taylor, J. Wong, and T. McNutt. "Towards Real-time Radiation Therapy: Superposition/Convolution

at Interactive Rates." International Journal of Radiation Oncology Biology Physics 72, no. 1 (2008): S667-S667.

Joshi, S.C., and M.I. Miller. "Landmark matching via large deformation diffeomorphisms." IEEE Transactions on

Image Processing, 2000.

170

Kabul, Ilknur, Derek Merck, Stephen Pizer, and Julian Rosenman. "Model Based Texture Synthesis for Anatomical

Visualization." in submission. 2010.

Kass, M, A Witkin, and D Terzopoulos. "Snakes: Active Contour Models." Int J Comp Vision, 1987.

Kelemen, A., G. Szekely, and G. Gerig. "Elastic model-based segmentation of 3-D neuroradiological data sets." IEEE

Transactions on Medical Imaging 14, no. 10 (Oct 1999): 828-839.

Kendall, David G. "Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces." Bull. London Math. Soc.

16 (1984): 81-121.

Kindlmann, G., R. Whitaker, T. Tasdizen, and T. Moller. "Curvature-based transfer functions for direct volume

rendering: methods and applications." Proceedings of the 14th IEEE Visualization 2003 (Vis'03). 2003.

Kindlmann, Gordon, and Carl-Fredrik Westin. "Diffusion Tensor Visualization with Glyph Packing." IEEE

Transactions on Visualization and Computer Graphics 12, no. 5 (September-October 2006): 1329-1336.

Kniss, J., G. Kindlmann, and C. Hansen. "Interactive volume rendering using multi-dimensional transfer functions

and direct manipulation widgets." Viz, 2001: 255-262.

Koenderink, Jan J. Solid Shape. The MIT Press, 1990.

Konrad-Verse, Olaf, Bernhard Preim, and Arne Littmann. "Virtual Resection with a Deformable Cutting Plane." In

Proceedings of Simulation und Visualisierung. 2004. 203-214.

Kopf, Johannes, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani Lischinski, and Tien-Tsin Wong. "Solid Texture

Synthesis from 2D Exemplars." ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26, no. 3 (2007):

2:1--2:9.

Kruger, J., and R. Westermann. "Acceleration Techniques for GPU-based Volume Rendering." Proceedings of the

14th IEEE Visualization 2003. 2003.

Langen, K.M, et al. "Evaluation of ultrasound-based prostate localization for image-guided radiotherapy." Intl. J. of

Rad-Onc, Biology, Physics 57, no. 3 (November 2003): 635-644.

Lauterbur, P.C. "Image Formation by Induced Local Interactions: Examples of Employing Nuclear Magnetic

Resonance." Nature, no. 242 (1973): 190-191.

Levoy, M, et al. "Volume rendering in radiation treatment planning." Visualization in Biomedical Computing,

Proceedings of the First Conference on. 1990. 22-25.

Levoy, Marc. "Volume Rendering." IEEE Computer Graphics and Applications (IEEE Computer Society) 10, no. 2

(1990): 33-40.

Levy, Joshua H., Robert E. Broadhurst, Surajit Ray, Edward L. Chaney, and Stephen M. Pizer. "Signaling local non-

credibility in an automatic segmentation pipeline." Proceedings of the SPIE. 2007.

Li, W., L. Ritter, M. Agrawala, B. Curless, and D Salesin. "Interactive cutaway illustrations of complex 3D models."

ACM SIGGRAPH 2007 Papers. San Diego, California: ACM, 2007.

Lorensen, W. E., and H. E. Cline. "Marching cubes: A high resolution 3D surface construction algorithm." Edited by

M. C. Stone. Proceedings of the 14th Annual Conference on Computer Graphics and interactive Techniques ,

SIGGRAPH '87. New York, NY: ACM Press, 1987. 163-169.

171

Lu W, Chen M-L, Olivera G, Ruchala K, and Mackie T. "Fast free-form deformable registration via calculus of

variations." Phys Med Biol 49 (2004): 3067-3087.

Lu, A., and D.S. Ebert. "Example-based volume illustrations." Visualization (IEEE), 2005: 655- 662.

Lu, Aidong, et al. "Illustrative Interactive Stipple Rendering." IEEE Transactions on Visualization and Computer

Graphics 9, no. 2 (2003): 127-138.

Maupu, D., M.H. Van Horn, S. Weeks, and E. Bullitt. "3D stereo interactive medical visualization." Computer

Graphics and Applications, IEEE, 2005: 67-71.

Merck, D, et al. "Training Models of Anatomic Shape Variability." Medical Physics 35, no. 7 (August 2008).

Merck, Derek. Model Guided Rendering for Medical Images. Chapel Hill: University of North Carolina, Department

of Computer Science, forthcoming dissertation.

Mohan R, Zhang X, Wang H, Kang Y, Wang X, Liu H, Ang K, Kuban D, Dong L. "Use of deformed intensity

distributions for on-line modification of image-guided IMRT to account for interfractional anatomic changes." Int J

Rad Oncol Biol Phys 61, no. 4 (2005): 1258-1266.

Mosleh-Shirazi, M. Amin, Vibeke N. Hansen, Peter J. Childs, Alan P. Warrington, and Frank H. Saran.

"Commissioning and implementation of a stereotactic conformal radiotherapy technique using a general-purpose

planning system." Journal of Applied Clinical Medical Physics 5, no. 3 (2004).

Mumford, David. "The bayesian rationale for energy functionals." 1994. Geometry Driven Diffusion in Computer

Vision.

Nain D., Haker S., Kikinis R., Grimson W.E.L. "An Interactive Virtual Endoscopy Tool." Satellite Workshop Int Conf

Med Image Comput Comput Assist Interv. 2001. http://www.spl.harvard.edu/publications/item/view/684.

Netter, Frank. Atlas of Human Anatomy. Saunders, 2006.

nVidia. Fast Robust Shadow Volumes. 2004. http://developer.nvidia.com/object/fast_shadow_volumes.html.

—. Texture Space Bump Mapping. May 2004.

http://developer.nvidia.com/object/texture_space_bump_mapping.html.

Oliver, William R., Aziz Boxwala, Julian Rosenman, Tim Cullip, Jim Symon, and Glenn Wagner. "Three-Dimensional

Visualization and Image Processing in the Evaluation of Patterned Injuries: The AFIP/UNC Experience in the Rodney

King Case." American Journal of Forensic Medicine & Pathology 18, no. 1 (1997): 1-10.

Owada, S., F. Nielsen, M. Okabe, and T. Igarashi. "Volumetric illustration: designing 3D models with internal

textures." Edited by J. Marks. ACM SIGGRAPH 2004 Papers. Los Angeles, 2004.

Pekar, V., T. McNutt, and M. Kaus. "Automated model-based organ delineation for radiotherapy planning in

prostatic region." Int J Rad Oncol Biol Phys 60 (2004): 973-980.

Pelizzari, CA, et al. "Volumetric visualization of head and neck CT data for treatment planning." Int J Radiat Oncol

Biol Phys 44, no. 3 (June 1999): 693-703.

Perlin, Ken. "An Image Synthesizer." Computer Graphics 19, no. 3 (1985): 287-296.

Phong, Bui Tuong. Illumination for computer-generated images. The University of Utah, 1973.

172

Piatt, Joseph H. (Jr.), Binil Starly, Wei Sun, and Eric Faerber. "Application of computer-assisted design in craniofacial

reconstructive surgery using a commercial image guidance system." Journal of Neurosurgery: Pediatrics 104, no. 1

(January 2006).

Pierce, J. S., B. C. Stearns, and R. Pausch. "Voodoo dolls: seamless interaction at multiple scales in virtual

environments." Proceedings of the 1999 Symposium on interactive 3D Graphics. 1999. 141-145.

Pizer, S. M. "The Medical Image Display and Analysis Group at the University of North Carolina: Reminiscences and

philosophy." Medical Imaging, IEEE Transactions on 22, no. 1 (January 2003): 2-10.

Pizer, Stephen M. Production and Processing of Radioisotope Scans. PhD Thesis, Harvard University, 1967.

Pizer, Stephen M., et al. "Segmentation by Posterior Optimization of M-reps: Strategy and Results." Medical Image

Analysis, 2008.

Pommert, Andreas, et al. "Creating a high-resolution spatial/symbolic model of the inner organs based on the

Visible Human." Medical Image Analysis 5, no. 3 (September 2001): 221-228.

Prastawa, Marcel, Elizabeth Bullitt, and Guido Gerig. "Synthetic Ground Truth for Validation of Brain Tumor MRI

Segmentation." Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005. 2005. 26-33.

Preim, B., W. Spindler, K. J. Oldhafer, and H Peitgen. "3D-interaction techniques for planning of oncologic soft

tissue operations." Procedures of Graphics Interfaces. Canadian Information Processing Society, 2001. 183-190.

Purcell, Timothy J., Ian Buck, William R. Mark, and Pat Hanrahan. "Ray tracing on programmable graphics

hardware." SIGGRAPH '05: ACM SIGGRAPH 2005 Courses. 2005.

Quammen, Cory. Volumetric Depth Peeling. 2006. http://wwwx.cs.unc.edu/~cquammen/wp/projects/volumetric-

depth-peeling/.

Radamacher, Paul, Nigel Stewart, and Bill Baxter. "GLUI User Interface." 2006.

Radon, Johann. "On the Determination of Functions from Their Integral Values along Certain Manifolds (1917)."

IEEE Transactions on Medical Imaging 1986 5, no. 4 (December 1917): 170-176.

Raskar, R., G. Welch, K. Low, and D. Bandyopadhyay. "Shader Lamps: Animating Real Objects With Image-Based

Illumination." Proceedings of the 12th Eurographics Workshop on Rendering Techniques . London, U.K., 2001.

Rheingans, P., and D. Ebert. "Volume illustration: nonphotorealistic rendering of volume models." Visualization and

Computer Graphics, IEEE Transactions on 7, no. 3 (2001): 253-264.

Robb, Richard. Virtual Endoscopy Development and Evaluation Using the Visible Human Dataset. 1996.

http://www.nlm.nih.gov/research/visible/vhp_conf/robb/robb_pap.htm.

Röntgen, Wilhelm Conrad. "On a New Kind of Rays." Nature, 1896.

Rost, Randi. OpenGL Shading Language (The Orange Book). Addison-Wesley Professional, 2006.

Rueckert, Daniel, Paul Aljabar, Rolf A. Heckemann, Joseph V. Hajnal, and Alexander Hammers. "Diffeomorphic

Registration Using B-Splines." Medical Image Computing and Computer-Assisted Intervention (MICCAI). 2006. 702--

709.

173

Seligmann, D. D., and S. Feiner. "Specifying composite illustrations with communicative goals." UIST '89:

Proceedings of the 2nd annual ACM SIGGRAPH symposium on User interface software and technology.

Williamsburg, Virginia: ACM, 1989. 1-9.

Shreiner, Dave, Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming Guide: The Official Guide to

Learning OpenGL (The Red Book). Addison-Wesley Professional, 2005.

Siddiqi, K., and S. Pizer. Medial Representations: Mathematics, Algorithms and Applications. Springer, 2008.

Simpson, Amber L., Burton Ma, Elvis C. S. Chen, Randy E. Ellis, and A. James Stewart. "Using Registration

Uncertainty Visualization in a User Study of a Simple Surgical Task ." Medical Image Computing and Computer-

Assisted Intervention – MICCAI 2006. 2006.

Stabin, Michael G. Doses from Medical Radiation Sources. July 2008.

http://www.hps.org/hpspublications/articles/dosesfrommedicalradiation.html.

State, A., et al. "Towards Performing Ultrasound-Guided Needle Biopsies from within a Head-Mounted Display."

Edited by K. H. Höhne and R. Kikinis. Visualization in Biomedical Computing, Proceedings of the 4th international

Conference on. 1996. 591-600.

State, Andrei, Suresh Balu, and Henry Fuchs. Bunker View: Limited- range head-motion-parallax visualization for

complex data sets. 1994. http://www.cs.unc.edu/~andrei/pubs/1994_VBC_bunker.pdf.

Sutherland, I. E. "A head-mounted three dimensional display." Proceedings of the December 9-11, 1968, Fall Joint

Computer Conference, Part I. ACM, 1968. 757-764.

Svakhine, Nikolai, David S. Ebert, and Don Stredney. "Illustration Motifs for Effective Medical Volume Illustration."

IEEE Computer Graphics and Applications 25, no. 3 (May/June 2005): 31-39.

Talairach, J., and P. Tournoux. Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System :

An Approach to Cerebral Imaging. Thieme Medical Publishers, 1988.

Taylor, R. M. "Practical scientific visualization examples." SIGGRAPH Comput. Graph. 34, no. 1 (February 2000): 74-

79.

Thall, Andrew. Deformable Solid Modeling via Medial Sampling and Displacement Subdivision. PhD Thesis,

University of North Carolina at Chapel Hill, Department of Computer Science, 2004.

Thilmann, Christoph, et al. "Correction of patient positioning errors based on in-line cone beam CTs: clinical

implementation and first experiences." Radiation Oncology 1, no. 1 (2006).

Thirion, J.-P. "Image matching as a diffusion process: an analogy with Maxwell's demons." Medical Image Analysis

2, no. 3 (September 1998): 243-260.

Tietjen, Christian, Tobias Isenberg, and Bernhard Preim. "Combining Silhouettes, Surface, and Volume Rendering

for Surgery Education and Planning." Procedings of IEEE Eurographics Symposium on Visualization. 2005.

Trouvé, Alain, and Laurent Younes. "Metamorphoses Through Lie Group Action." Foundations of Computational

Mathematics 5, no. 2 (2005): 173-198.

Turk, Greg. "Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion." Computer Graphics 25, no. 4

(1991): 289-298.

174

UNC Hospital Department of Radiation Oncology. "Plan-UNC User's Guide." 2007.

Vesalius, Andreas. The Illustrations from the Works of Andreas Vesalius of Brussels. Edited by J. B. deC. M. Saunders

and Charles D. O'Malley. Dover, 1973.

Viola, Ivan, Armin Kanitsar, and Eduard Groller. "Importance-Driven Volume Rendering." Vis (IEEE Computer

Society) 00 (2004): 139-146.

Wang H, Dong l, Lii M, Lee A, De Crevoisier R, Mohan R, Cox J, Kuban D, and Cheung R. "Implementation and

validation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy." Int

J Rad Oncol Biol Phys 61 (2004): 725-735.

Wang, S. W., and A. E. Kaufman. "Volume Sculpting." Proceedings of the 1995 Symposium on interactive 3D

Graphics. Monterey, California: ACM, 1995.

Weigle, C, and R Taylor. "Visualizing intersecting surfaces with nested-surface techniques." Vis, 2005.

Weiskopf, Daniel, Klaus Engel, and Thomas Ertl. "Interactive Clipping Techniques for Texture-Based Volume

Visualization and Volume Shading." IEEE Transactions on Visualization and Computer Graphics 9, no. 3 (2003): 298-

312.

Westover, Lee. "Footprint evaluation for volume rendering." SIGGRAPH '90: Proceedings of the 17th annual

conference on Computer graphics and interactive techniques. ACM, 1990. 367-376.

Wong JR, Grimm L, Uematsu M, Oren R, Cheng CW, Merrick S, and Schiff P. "Image-guided radiotherapy for

prostate cancer by CT-linear accelerator combination prostate movements and dosimetric considerations." Int J

Radiat Oncol Biol Phys 61 (2005): 561–569.

Woop, S., Schmittler, J., Slusallek, P. "RPU: a programmable ray processing unit for realtime ray tracing." ACM

SIGGRAPH 2005 Papers. 2005. 434-444.

Yan D, Lockman D, Brabbins D, Tyburski L, Martinez A. "An off-line strategy for constructing a patient-specific

planning target volume in adaptive treatment process for prostate cancer." Int J Radiat Oncol Biol 48, no. 1 (2000):

289-302.

Yan, D, DA Jaffray, and J Wong. "A model to accumulate fractionated dose in a deforming organ." Int J Radiat Oncol

Biol Phys, June 1999.

Yaniv, Ziv, and Kevin Cleary. "Image Guided Procedures, A Review." Tech Report, Georgetown University, 2006.

Zuiderveld, K.J., et al. "Clinical evaluation of interactive volume visualization." Proceedings of the 7th Conference on

Visualization '96. San Francisco, California, 1996. 367-370.

Zuiderveld, K.J., M. Meissner, G. Harris, J.R. Lesser, A. Persson, and M. Vannier. "End Users' Perspectives on

Volume Rendering in Medical Imaging: A job well done or not over yet?" IEEE Visualization (VIS 05). 2005. 711 -

713.

