OSHL-U: A First Order Theorem Prover Using Propositional
Techniques and Semantics

by
Swaha D. Miller

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the department of Computer Science.

Chapel Hill
2005

Approved by:

POy s 24

David A. Plaisted, Advisor

/0‘-776”‘”‘/‘

%& Ba,ruah Reader
ck %k; Rzader

TVICMD Stotts Reader

[, Jouw il

eroslav Velev Reader

a““” g(,m/ -

Wei Wang, Redder

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3200820

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3200820
Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M| 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© 2005
Swaha D. Miller
ALL RIGHTS RESERVED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iii

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT
SWAHA D. MILLER: OSHL-U: A First Order Theorem Prover Using
Propositional Techniques and Semantics.
(Under the direction of David A. Plaisted.)

Automated theorem proving is the proving of theorems with an automatic computer pro-
gram. Automation of theorem proving is useful in proving repetitive theorems quickly and
accurately, as well as in proving theorems that may be too large or complex for humans to
handle. Automated theorem proving finds application in various fields, such as, the veri-
fication of integrated circuits, software verification, deductive databases, mathematics, and

education.

The early success of automated theorem provers for first-order logic based on the resolution-
unification paradigm has caused theorem proving research to be directed largely towards
resolution and its variants. The problems people looked at in the early days of automated de-
duction were mostly in the classes of problems that resolution is especially efficient at solving
such as Horn problems (Every clause in such problems contains at most one positive literal)
and UR resolvable problems (Problems in which the proof can be obtained purely by UR res-
olution, which is a restricted form of resolution). The initially good performance of resolution
on such problems led to disillusionment later on. Problems that are hard to solve for humans
are less and less likely to be Horn or UR resolvable, so resolution is less likely to be efficient on
such problems. That few hard problems have been solved automatically by current provers
further supports this. Therefore, there is a need to go beyond resolution for harder problems.
Approaches based on propositional techniques applied to first-order theorem proving have
great potential in this direction. Provers based on propositional techniques such as DPLL are
used extensively for hardware verification but resolution is hardly ever used for solution of
large propositional problems because it is far less efficient. Resolution has serious inefficien-
cies on non-Horn propositional problems and it is likely that these inefficiencies carry over
also to first-order problems. In recent times, techniques developed for deciding propositional
satisfiability perform at tremendous speeds, solving verification problems containing tens of
thousands of variables and hard random 3SAT problems containing millions of variables. The
desire to import such propositional efficiency into first-order theorem proving has revived an

interest in propositional techniques for proving first-order logic problems.

This dissertation explores propositional techniques to first-order theorem proving and how

these compare in performance to resolution-unification techniques. It formulates some tech-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

niques that are shown to enhance the performance of OSHL, a theorem prover for first-order
logic based on propositional techniques. The resulting implementation, OSHL-U, performs
better than resolution on categories of problems that are hard for resolution. The performance
of OSHL-U can further be improved by the use of semantics that provide problem-specific
information to help the proof search; this is demonstrated experimentally in the disserta-
tion. The techniques applied to enhance OSHL performance are applicable to other theorem
provers, too, and contribute towards building more powerful theorem provers for first-order

logic in general.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

ACKNOWLEDGMENTS

I thank my advisor, David Plaisted, for introducing me to an exciting field of research
and giving me the opportunity to work with him, and for his constant guidance, support and
enthusiasm with our work. I also thank all the members of my comittee for their valuable
guidance and providing me with a broader perspective and constructive feedback throughout.

I thank the faculty of the Computer Science Department at UNC-Chapel Hill for the many
ways in which they have taught and motivated me, both in and out of the classroom. I also
thank the Professors at the Graduate School and Dr. and Mrs. Smithwick, who have given

me valuable advice and generous support during the last year.

I am really grateful to my husband Dorian for always being there for me, brightening my
days, and helping and inspiring me in innumerable ways - big and small - to complete this
dissertation. I will always be indebted to my parents Shipra and Dipak, and my brother
Satyaki, for their love and encouragement, and for being supportive of me at all those times
when I needed them most. I have depended on these four people for my emotional well-being
and without them in my life, this dissertation would not have been possible.

Last, but not the least, I thank the staff and students in the department, with whom 1

have constantly interacted for work and for play, and who have helped make my graduate

school experience memorable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vili

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES

1 Introduction
1.1 Motivation
1.2 Thesis Statement e
1.3 Summaryof Results

14 Outlineof Thesis e e e

2 Background on First-Order Automated Theorem Proving

2.1 General Terminology and Definitions

2.2 Problem Description

2.3 Conjunctive Normal Form for Representing First-Order Logic Formulae

2.4 Herbrand Sets and Herbrand’s Theorem

2.5 Propositional Approach to First-Order Theorem Proving
2.5.1 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

2.6 The Resolution Approach
2.6.1 Ruleof Resolution

2.6.2 Unification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ix

Xv

xvii

11

11

2.6.3 Resolution Theorem Proving 19

2.6.4 Further Definitions 20

2.7 Theorem Proving in First-Order Logic 20
2.7.1 The First-order DPLL Procedure 21

2.7.2 The Model Evolution Calculus 22
2.7.3 The Disconnection Theorem Prover 22
2.7.4 Propositional Techniques at UNC 23

2.8 The TPTP Problem Set 23
2.9 Strategy Selection and Performance Tuning in Modern Provers 24
2.9.1 Choice of a Resolution Prover for Experimental Comparison 25

3 Ordered Semantic Hyper-Linking with Unit Rules 26
3.1 The OSHL Strategy it s 27
3.2 OSHL extended with Unit Rules of Inference 28
321 BasicRulesin OSHL. 30
322 URules e 31
3.2.3 Order of Applying Rulesin OSHL-U 33

3.3 Examples of OSHL-U Operation 35
3.4 Heuristics for Proof Search oo L 42
3.41 Delta Size Measure for Clause Instances 42
3.4.2 Favoring Ground Terms in Generating Minimal Instances 43
3.4.3 Relevance Distance from Input Clauses 43

3.5 Implementation 44
3.5.1 Disunification L e 44
3.5.2 Eligibility Substitution, 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.3 The Instantiation Algorithm
3.5.4 How Semantics Are Used«

3.5.5 Proofchecker

4 Experimental Evaluation of OSHL-U Efficiency
4.1 Execution Time as Measure of Efficiency
4.2 Experimental Results.,
421 Execution Time. e
4.2.2 Performance Improvement from Unit Rules
4.2.3 OSHL-U Performance Compared to Other OSHL Enhancements . . .

4.3 Conclusions o e,

5 Refinements to the OSHL-U Implementation
5.1 Effective Refinements to OSHL-U Implementation
5.1.1 Avoid Repeating Computations in Unit Filterand UR
5.1.2 Pruning Invalid Paths from the Search
5.1.3 OrderofInput Clauses.
5.1.4 Potential Unification
5.1.5 Potential Unification With Counting of Unifiers
5.1.6 Incremental Size Boundon URules
5.1.7 Instantiating Negative Literals Before Positive Literals
5.2 Refinements That Were Discarded

5.2.1 Unit Filtering on Units Generated by Non-ground UR Resolution . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

46

48

49

51

51

52

52

56

56

58

59

59

59

60

60

60

61

61

61

62

62

xii

6 Space Efficiency of OSHL-U Strategy and Resolution 67
6.1 Search Space Efficiency 67
6.2 Importance of Storage Space for Theorem Prover Efficiency 67
6.3 Space Efficiency Comparison of OSHL-U and Otter 67
6.4 Conclusion 72

7 Comparison of Theorem Provers with Different Inference Rates 74
7.1 Motivation Lo, 75
7.2 Comparing Theorem Provers with Different Inference Rates 76

721 Time Efficiency 76
722 SpaceEfficiency 77
7.3 Relative Efficiency of OSHI-U and Otter 77
74 Time Efficiency 78
7.4.1 Comparison over all, Horn and non-Horn Problems 78
7.4.2 Performance on Field Theory and Group Theory Categories 80
7.5 Space Efficiency 80
7.6 Discussion e e 81
7.7 Drawbacks of the Comparison Techniques 84
7.8 Conclusion e 86

8 Performance of OSHL-U on Problems Requiring Definition Expansion 87

8.1 Introduction. e 87
8.2 Survey of Approaches to Definition Expansion 88
83 Experiments. 88
84 Discussion e 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.5 Conclusions e e e e e e

9 Semantic Guidance in Proof Search
9.1 Use of Semanticsin OSHL-U,
9.1.1 An Example: “Who Killed Aunt Agatha?”

9.1.2 Semantics in Group Theory Problems

10 Conclusion

10.1 Future Work e

BIBLIOGRAPHY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xiii

97

98

100

101

103

106

109

111

Xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

1.1 Number of proofs obtained by Otter in various categories
1.2 Comparison of Otter and Hyper Linking on non-Horn problems

1.3 Comparison of OSHL using replacement rules and Otter

4.1 Proofs on Otter and OSHL-U compared by TPTP ratings
4.2 Proofs on Otter and OSHL-U compared over Horn category
4.3 Proofs on OSHL-U with and without Urules
4.4 Proofs on OSHL-U and OSHL with different methods
5.1 Proofs on Otter and OSHL-U compared by TPTP ratings
5.2 Proofs on Otter and OSHL-U compared over Horn category
5.3 Increase in number of proofs due to OSHL-U refinements
6.1 Distribution of ratio of clauses generated by Otter to OSHL-U
6.2 Number of clauses generated by Otter and OSHL-U and their ratio
6.3 Ratio of total search space of Otter to OSHL-U
6.4 Distribution of ratio of clauses stored by Otter to OSHL-U
6.5 Number of clauses stored by Otter and OSHL-U and their ratio
6.6 Ratio of total storage space of Otter to OSHL-U
8.1 Timing and clauses of different provers on pl left associative theorems
8.2 Timing and clauses of different provers on pl right associative theorems . . .
8.3 Timing and clauses of different provers on p2 left associative theorems
8.4 Timing and clauses of different provers on p2 right associative theorems . . .
8.5 Timing and clauses of different provers on p3 theorems
8.6 Timing and clauses of different provers on p4 left associative theorems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

94

57

57

64

65

66

69

69

70

72

72

73

91

91

92

92

93

93

Xvi

8.7 Timing and clauses of different provers on p4 right associative theorems . . .
8.8 Timing and clauses of different provers on pb left associative theorems
8.9 Timing and clauses of different provers on p5 right associative theorems

8.10 Timing and clauses of different provers on p6 theorems
9.1 Timing and clauses on Otter and OSHL-U with natural semantics

9.2 Timing and clauses on Otter and OSHL-U with non-natural semantics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

94

95

95

104

104

4.1

5.1

6.1

6.2

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

Xvii

LIST OF FIGURES

Execution times with OSHL-U and Otter 55
Execution times with the refined OSHL-U and with Otter 63
Scatter plot of number of clauses generated by OSHL-U and Otter 68
Scatter plot of number of clauses stored by OSHL-U and Otter 71
Time efficiency functions for Otter and OSHL-U on all problems 78
Time efficiency functions for Otter and OSHL-U on Horn problems 79
Time efficiency functions for Otter and OSHL-U on non-Horn problems . .. 80
Time efficiency function for Otter over along range 81
Time efficiency functions for Otter and OSHL-U on FLD problems 82
Time efficiency functions for Otter and OSHL-U on GRP problems 83
Space efficiency of Otter and OSHL-U over all problems 84
Space efficiency of Otter and OSHL-U over Horn problems 85
Space efficiency of Otter and OSHL-U over non-Horn problems 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Automated theorem proving is the proving of mathematical theorems by a fully automatic
computer program. Humans, of course, have been proving theorems without the aid of
computers for thousands of years. But using a computer helps to prove theorems quickly
and accurately. It may be easy to see the advantage of mechanizing theorem proving for
large proofs involving computational effort of a repetitive nature. On such problems, humans
tend to be more prone to mistakes, finding the work tedious and boring; use of computers
helps to avoid such mistakes and also gives us the advantage of greater computational speed
in proving these theorems. Mechanized theorem provers can also be advantageous on proofs
that are difficult for humans because of the size of the problem, or its complexity. A notable
example is the Robbins problem which used to be an open problem prior to 1996 when it was
solved by the automated theorem prover EQP [McC97]. However, such cases are rare and
exceptional; few hard problems have been solved automatically by current provers.

Automated theorem provers have been successfully used by researchers to tackle open ques-
tions in mathematics and logic, and to solve problems in engineering. Well-known commer-
cial uses of automated theorem proving include design and verification of integrated circuits
[DM96, KM96], software generation [Smi90, SWL*94], and software verification. Automated
theorem proving also finds application in education [SM84, LBM98, MRS01], expert systems,
deductive databases [SK88|, planning and robotics. Potential uses of automated theorem
proving could also be in semantic web and query answering [Tam03]. Since the Pentium
FDIV bug, which cost Intel 475 million dollars, the complicated floating point units of mod-
ern microprocessors have been designed with extra scrutiny. In the latest processors from
AMD, Intel, and others, automated theorem proving has been used to verify that the divide
and other operations are correct [AJK+00, CB98, CCH*96, SR95, DA95].

However, automated theorem provers are still limited in capability. To date, it has not been

possible to successfully automate much of the theorem proving ability of humans, especially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that involving expert knowledge. Humans often reason by constructing models of the situation
and looking for counter-examples. Humans are able to draw upon a vast amount of problem-
specific knowledge called the semantics of the problem, general problem-solving tactics, and
prior experience with proving other theorems, when attempting to prove a theorem. Some
of the aspects of human reasoning [SY97, MS98], such as “intuition” and “insight,” are not
even precisly understood. It is often difficult to identify the relevant information that helps in
proving theorems, and efficient ways of providing this information to a mechanized theorem
prover have not been fully devised. Current uses of automated theorem provers still involve
a great deal of human interaction and guidance.

The language in which a problem is presented to and manipulated by an automated the-
orem prover is called a logic. A logic allows a precise formal statement of the necessary
information, which can then be manipulated by a theorem proving system. Unlike using a
natural language such as English, there is no ambiguity in the statement of the problem,
making logic a good formalism for automated reasoning. First-order logic can be used to
represent various kinds of problems, such as in artificial intelligence, mathematical theories,
and some network protocols [AB03, Bla03], to name a few. There are also hardware ver-

ification techniques which make use of translations of other formalisms to first-order logic

[CHMO02, VB03].

1.1 Motivation

The earliest attempts in automated reasoning were directed at solving problems in math-
ematical reasoning, which is a unique field in that it combines creativity and objectivity.
There were two early approaches to automated reasoning. One was to try to understand
and imitate the actions of mathematicians finding proofs. The other was to develop algo-
rithms based on systematic logical reasoning. For a more detailed treatment of these two
methods and a survey of the early history in automated reasoning, see [Dav83]. One of
the first automated theorem provers, the Logic Theorist, developed by Newell, Shaw, and
Simon in 1957 used human problem-solving techniques to solve reasoning problems in logic
[NSS56, NSS63, NSS83]. Subsequently, better results in proving theorems were obtained by
using tools of mathematical logic rather than being restrained to the imitation of humans,
so the focus of the field shifted away from techniques based on human reasoning. Most
present-day mechanized theorem provers for first-order logic are based on a strategy called
resolution-unification [Rob65], which will be formally defined and summarized in Section 2.5
of this thesis. Resolution-unification consists of two techniques — resolution and unification.
Resolution involves deriving new facts from existing facts. Unification involves matching

facts to make them the same. Unification in first-order logic is a more difficult problem and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

non-Horn Problems UR Resolvable Problems
UR res. | non UR res. | total | Horn | non-Horn UR res. | total
problems 857 1915 2772 | 1644 857 2501
Otter proofs 400 533 933 764 400 1164
%proved 46.7 27.8 33.7 46.5 46.7 46.5

Table 1.1: Number of proofs obtained by resolution prover Otter in various categories. “UR
res.” denotes UR resovable problems. These statistics suggest that the power of resolution is
mostly from problems that are Horn or UR resolvable.

requires more sophisticated algorithms than unification in propositional logic; unification in
first-order logic is called true unification. Resolution-unification, often referred to simply as
resolution, was instrumental in building one of the first viable automated theorem provers.
Since this early success of resolution, theorem proving research has largely been directed

towards resolution and its variants.

Resolution obtained its initial success because the easy problems people looked at in the
early days of automated deduction fell mostly in the classes of problems that resolution is
especially good at solving, such as Horn problems (problems in which every clause contains
at most one positive literal) and UR resolvable problems (problems in which the proof can
be obtained purely by UR resolution, which is a restricted form of resolution). The good
performance of resolution on such problems gave it an advantage but led to disillusionment
later on. As the problems become harder, it is less and less likely that they would be Horn
or UR resolvable, so resolution is less likely to be efficient on such problems. Hence there is
a need to go beyond resolution for hard problems.

We ran some tests with a well-known resolution prover, Otter [McC03], on problems
from the TPTP problem set [SS98a], in order to see how the performance varies with the
Horn and UR resolvable property of theorems. UR resolvability is an undecidable property
for first-order logic problems. Because all the test problems are unsatisfiable, and every
unsatisfiable problem that is Horn is also UR resolvable, we can classify the Horn problems
as UR resolvable. For the non-Horn problems, we approximate UR resolvability by running
each problem with only UR resolution strategy for upto 5 minutes; if a proof is found, then
we can conclude that the problem is UR resolvable. The results are summarized in Table 1.1.
Otter obtains proofs for at least 46.5 per cent of the UR resolvable problems and at most 27.8
per cent of the non-UR resolvable problems. This indicates that resolution gets much of its
strength from UR resolvable problems.

Humans use a variety of problem-solving techniques such as representing information in

diagrams, looking for examples and counter-examples, analysing a problem on a case-by-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Name of Number of Otter Hyper Linking
Problem | Input Clauses Time Time
Ph5 45 | 38606.76 seconds 1.8 seconds
Ph9 297 >24 hours 2266.6 seconds
Latinsq 16 >24 hours 56.4 seconds
Salt 44 | 1523.82 seconds 28.0 seconds
Zebra 128 >24 hours 866.2 seconds

Table 1.2: Comparison of resolution strategy in Otter and Hyper Linking strategy on non-
Horn problems quoted from [PL92].

case basis, and using the meanings of symbols in a problem. Methods have been proposed
to incorporate human reasoning techniques into mechanical reasoning through the use of
semantic models and diagrams to guide theorem provers. Notable successes in that regard
are the Geometry Theorem Prover [GHL63] and more recently, automated theorem provers
using the area method [CGZ96, CGO1]. Finding effective ways of representing and using
semantics in automated theorem provers continues to be a challenging problem.

Automated theorem proving research has largely been directed towards provers based on
the resolution-unification paradigm; other approaches to theorem proving have been explored
relatively little. One such approach is based on propositional techniques applied to first-order
theorem proving. In recent times, techniques developed for deciding propositional satisfiability
perform at tremendous speeds, solving verification problems containing hundreds of thousands
of variables and hard random 3SAT problems containing millions of variables [Vel04b, Vel0O4al.
The desire to import such propositional efficiency into first-order theorem proving has revived

an interest in propositional techniques for proving first-order logic problems.

Provers based on propositional techniques such as DPLL [DLL62] are used extensively
for hardware verification but resolution is hardly ever used for solution of large propositional
problems because it is far less efficient. Resolution has serious inefficiencies on non-Horn
propositional problems and it is likely that these inefficiencies carry over also to first-order
problems. It has been shown that DPLL style techniques are more efficient than resolution on
non-Horn propositional problems [PL92]. Table 1.2 quotes results from [PL92], which show
that Hyper Linking, a propositional style technique similar to DPLL, outperformed the most
well-known resolution prover at that time, Otter, on some first-order problems. Table 1.3
quotes the results from [PZ99] which showed that replace rules for definitions of predicates in
conjunction with a propositional style prover outperformed Otter on some first-order problems
involving definitions. These results provide further motivation for propositional techniques in

first-order theorem proving.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Problem | OSHL Time | Otter Time | Clauses generated

(seconds) (seconds) by Otter
P1 0.30 0.03 51
P2 2.30 1000.00+ 41867
P3 11.25 1000.00+ 41867
P4 1.35 1000.00+ 27656
P5 2.00 1000.00+ 54660

Table 1.3: Comparison of OSHL using replacement rules and Otter on 5 problems involving
definitions quoted from [PZ99].

Ordered semantic hyperlinking (OSHL) [PZ00] is a theorem prover for first-order logic
based on propositional techniques. OSHL solves first-order logic problems by combining an
efficient propositional decision procedure and a strategy for instantiating first-order logic to
propositional logic. This dissertation explores propositional approaches to theorem proving
and how much first-order theorem proving one can do without true unification. It formulates
some techniques that are shown to enhance the performance of the OSHL theorem prover. It
shows that OSHL, thus enhanced and implemented as the prover OSHL-U, performs better
than resolution on some categories of problems; these categories of problems are shown to
belong to the classes of problems that are hard for resolution. The techniques applied to
enhance OSHL performance are applicable to other theorem provers, too, and contribute

towards building more powerful theorem provers, in general.

1.2 Thesis Statement

The use of syntactic strategies, heuristics and semantics significantly increases the power of
OSHL, an instance-based automated theorem prover for first-order logic, and, on certain kinds
of problems, produces performance comparable and even superior to that of resolution-based

provers.

1.3 Summary of Results

Logical rules of inference and heuristics that control these rules are some techniques of
guiding an automated theorem prover to make educated guesses at which part of the search
space is more likely to contain a proof. So rules of inference and heuristics are an important
factor in a theorem prover’s success. This thesis extends the OSHL strategy with rules and
heuristics and implements these as a theorem prover, OSHL-U. OSHL-U is so named because
the inference rules it adds to OSHL are called unit rules or U rules. OSHL-U demonstrates

that the addition of these rules leads to an improvement in performance of the OSHL strategy,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

obtaining over 4 times as many proofs on problems from the Thousands of Problems for
Theorem Proving (TPTP) repository version 2.5.0 as with only OSHL rules in the same
amount of CPU time. The TPTP provides benchmark problems for evaluating performance of
automated theorem proving systems. OSHL-U is also compared to resolution-based strategies
of the theorem prover Otter [McC94]. On many problems, OSHL-U produces search spaces
significantly smaller than those produced by Otter and uses less storage space than Otter. In
terms of CPU time, OSHL-U obtains more than half the number of proofs on TPTP 2.5.0
problems as does Otter in the same amount of CPU time; in the categories of Field Theory
(FLD) and Set Theory (SET) problems, OSHL-U obtains more proofs than Otter. These
results are remarkable because the OSHL-U implementation is rather naive and lacks the
sophistication of Otter such as term rewriting, equality handling, and data structures for
efficiency. On the same processor, while Otter is capable of producing clauses in the order of
10,000 per second, OSHL-U only produces clauses in the order of 100 per second. Despite a
slower inference rate, OSHL-U is already superior to Otter on FLD and SET problems.

Inference efficiencies of Otter and OSHL-U are also compared independent of their inference
rate. These experiments show that OSHL-U is more time-efficient and more space-efficient on

non-Horn problems, while Otter is more time-efficient and space-efficient on Horn problems.

Often, problems require expanding definitions in order to be proved. However, definition
expansion increases the search space and can cause a theorem prover to get lost in unnecessary
computation. How a theorem prover handles definitions is, therefore, important. OSHL-U and
several leading theorem provers such as Vampire [RV99] and E-SETHEOQO [SWO00] are tested
on sets of problems that require expanding definitions of predicates in order to obtain proofs.
Often, a predicate p is expressed in terms of other predicates in a clause, and such clauses are
referred to as the definition of predicate p. In proving theorems, it is sometimes necessary to
replace a predicate by its definition and this is referred to as definition expansion. Definition
expansion leads to large clauses and large numbers of clauses. Indiscriminate expansion of
definitions can quickly cause a theorem prover to generate many clauses unnecessary for the
proof, and thus affect theorem prover efficiency. Hence it is important for provers to know
when to expand definitions and when not to. OSHL-U, though a general theorem prover
without special rules for expanding definitions, demonstrates superior performance to all the

other provers.

Human mathematicians deal well with inference control owing to their knowledge of the
problem domain, and their experience with solving similar problems. Automated theorem
provers empowered with some degree of such expert knowledge have the potential to perform
much better than without such knowledge. This is investigated in my thesis by using semantics
to guide OSHL-U on some problems. The results indicate that use of semantic guidance can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indeed make the proof search more efficient; the use of semantics helps to obtain proofs
of some problems that otherwise cannot be obtained with OSHL-U and on some problems

produces smaller search spaces than without such semantic guidance.

The thesis tries to address the question of how essential true unification is to theorem
proving for first-order logic, and how much theorem proving one can do without it. It tries
to understand what characterizes problems that are hard for resolution, and shows that
propositional methods are more powerful than resolution on such problems. This contributes
to enhancing the power of automated theorem provers for first-order logic overall.

1.4 Outline of Thesis

This chapter provided a general overview of the thesis. Chapter 2 gives some background on
automated theorem proving in first-order logic and provides definitions and terminology that
is used throughout the dissertation. Chapter 3 first briefly describes the OSHL strategy; then
it describes the inference rules and algorithms that extend OSHL and their implementation in
the theorem prover, OSHL-U. In Chapter 4, we give experimental comparisons of execution
time efficiency for OSHL-U and Otter. Chapter 5 describes refinements to the OSHL-U
implementation that resulted in an increase in the number of proofs. Chapter 6 compares the
space efficiency of OSHL-U and Otter search strategies using search spaces and storage spaces.
Chapter 7 discusses techniques for comparing theorem provers independent of their inference
rate and compares OSHL-U and Otter using these techniques. Chapter 8 compares OSHL-
U to several leading automated theorem provers on sets of problems that require definition
expansion for proofs. Chapter 9 deals with the use of semantic guidance for improving search
efficiency of OSHL-U. Chapter 10 summarizes the conclusions of the thesis. Some of the
results in Chapter 4 and Chapter 6 have appeared in [DP03] and [MP05].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background on First-Order Automated
Theorem Proving

First, we present some notation and terminology for first-order theorem proving that will
be used throughout this thesis. Then we define the theorem proving problem, and the input
format that is used for such problems on the theorem provers described here. We provide
some background on resolution, a few more definitions that use the concept of resolution, and
some background on propositional methods of theorem proving in first-order logic. We also
describe the TPTP repository, which provides the problems that are used for the experiments

in this dissertation.

2.1 General Terminology and Definitions

In this section, we introduce some concepts related to our future discussions. A general
background in first-order logic and refutational theorem proving is assumed. For a general
introduction to these areas, we refer the reader to [Fit96]. A term is a well-formed expression
composed of variables, constant symbols and function symbols, such as f(X,g(a)). In this
thesis, variable symbols always begin with uppercase, such as X and Set, and constant
symbols and function symbols begin with lowercase, such as a and f(...). An atom is an
expression of the form p(t1,...,t,), where t; for ¢ € [1,n] are terms and p is a predicate
symbol. A literal is an atom (positive literal) or an atom preceded by a negation sign (negative
literal). A clause is a disjunction of a set of literals and may be written using the disjunction
symbol V as p(X)V —¢(Y, Z) or in set notation as {p(X), -q(Y,Z)}. A unit clause is a clause
containing only one literal. A Horn clause is a clause containing at most one positive literal.

A Horn set is a set of Horn clauses.

A substitution is a mapping from variables to terms that is the identity on a finite number
of variables. Informally speaking, a substitution tells us to replace variables by corresponding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

terms for certain variables in a term, literal or clause; any other variable is considered to be
replaced by itself. For example, if L is a literal and o a substitution, then Lo is the literal
resulting from replacing the variables in L by their image under «. Substitutions can be
applied to terms and clauses in a similar way. M is called an instance of a literal L, if there is
a substitution a such that La = M. A literal (or clause) is considered to be fully instantiated
if it contains no variables. A fully instantiated literal (or clause) is also referred to as a ground
literal (or clause). A clause, not necessarily ground, obtained by applying a substitution to a
clause C is referred to as an instance of C.

An interpretation I consists of a domain D and a set of mappings as follows. Constants
and functions are mapped to elements and functions, respectively, defined in the domain.
Predicates are relation mappings from the elements in the domain to truth values (true or
false). These mappings assign meaning to the constants, functions, and predicates. For
example, a problem consisting of the constants adam, bob, christine, and diane, the function
likes(X), and the predicates male(X), female(X) could have an interpretation I consisting
of domain D = {a,b,c,d}, where a,b,c,d are the domain elements, and the following set of
mappings. A constant is mapped to an element in D, a function is defined by mappings
from domain elements (which are the arguments to the function) to domain elements and a
predicate is defined by mappings from tuples of domain elements (which are the arguments
to the predicate) to truth values.

adam — a
bob — b
christine ¢
diane — d
likes : D—D
ar—C
b+—d
c— b
d—a
male : D +— {true, false}
a — true
b — true
¢ +— false
d +— false
female : D — {true, false}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

a — false
b — false
c — true

d — true

An interpretation or semantics is a model of or models a clause (or literal) if the clause
(or literal) is true under the interpretation. That interpretation I models clause C' can be
written as I |= C. The empty clause, {}, is false under every interpretation. Io[L1Ls...Lnp]
denotes an interpretation that is identical to the interpretation Iy except that the literals Ly,

Ly, ... L, are interpreted as true.

2.2 Problem Description

A problem in theorem proving is described by a set of first-order logic formulae called
statements. The statements can be systematically transformed into clause form as described
in the next section. Azioms are statements that define a theory and a statement to be proved
is called the conjecture (if validity of the statement is not known a priori) or theorem (if it
is known to be a valid statement). Theorem proving involves showing that the conjecture
or the theorem is a logical consequence of the set of axioms. A formal proof consists of a
sequence of statements leading up to the statement to be established as true. Each statement
in the sequence is either an axiom, or follows from previous statement(s) in the sequence by

applying a logical rule of inference.

The method of proof by contradiction shows that the negation of the theorem and the set of
axioms are unsatisfiable by deriving the empty clause (or False) from the set of statements; this
indicates that the set of statements somehow contradict each other. Because the set of axioms
is satisfiable, the unsatisfiablility arises due to the negated theorem. Thus the contradiction
proves the theorem. Such a proof obtained by contradiction is called a refutation proof. In
the rest of this dissertation, a proof will refer to a refutation proof, unless otherwise stated.
An automated theorem prover is a fully automatic computer program that generates a proof

of the conjecture or theorem, given the axioms and the negation of the conjecture or theorem.

2.3 Conjunctive Normal Form for Representing First-Order

Logic Formulae

In this thesis, a problem is presented to a theorem prover in a normalized format called the
Conjunctive Normal Form(CNF). A knowledge base in CNF is assumed to be a conjunction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

of statements, hence the name. Each statement is a clause, that is, a set of disjunctions
of literals. For example, a problem P could be expressed in CNF as the conjunction of
statements Sy, S2, and S3, written as S; A S2 A S3, or simply as

Si.

Ss.

S3.

The A symbol is dropped and is implicitly assumed. Each statement, S;, is a disjunction

of literals, Ly V La V ... L, for some n, and this can also be written in set notation as
{L1,La,...,Ly}.

The input format is a restricted syntax of first-order logic. Each clause is first normalized
to the Skolem Normal Form, in which all quantifiers appear at the beginning of the formula
and all existential quantifiers precede all universal quantifiers. All existential quantifiers are
then removed by replacing existentially quantified variables by Skolem functions. Then all
the universal quantifiers are dropped and the variables remaining in the clause are implicitly
assumed to be universally quantified.

Any arbitrary first-order formula can be transformed systematically to CNF representa-
tion by the following steps. Each of the steps is explained in brief. For a more detailed
explanation, see [Fit96].

Move negations in to the atoms.
e Remove existentially quantified variables by replacing with Skolem functions.

e Move universal quantifiers to the front.

Convert the matrix of the formula to a conjunction of disjunctions.

¢ Remove universal quantifiers and Boolean connectives.

Negations are moved in by the following set of rewrite rules.

- (forall x)A — (exists x)(— A)
~ (exists x)A — (forall x)(— A)
(A > B) - ((-A)VvB)
~(AAB) - ((=4)V (- B))
~(AVB)— ((=A)A(=B))
-(-A)— A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

Before replacing existentially quantified variables by Skolem functions, common variables
in a formula are renamed so that each variable appears in only one quantifier. Existential
quantifiers are eliminated by replacing formulas of the form (exists z)A[z] by A[f(z1,...,Zxa)]
where 11, ..., Z, are all the universally quantified variables whose scope includes the formula
A, and f is a new function symbol that does not already appear in the formula. Removal of
existential quantifiers in this way is called skolemization and the new function symbols, such
as f, are called Skolem functions.

Universal quantifiers are moved to the front of the formula by the following rewrite rules.

((forall x)A) vV B — (forall x)(A V B)
B V ((forall x)A) — (forall x)(B V A)
((forall x)A) A B — (forall x)(A A B)
B A ((forall x)A) — (forall x)(B A A)

The matrix of the formula is converted to a conjunction of disjunctions by applying the

following rewrite rules. Note that we are losing multilevel structure here.

(Av(BAC) > (AVB)A(AVCO)
(BAC)VA)—-(BVA)A(CVA)

The only remaining quantifiers are universal quantifiers. These are dropped, and all vari-

ables are implicitly assumed to be universally quantified. Boolean connectives are replaced
to convert a conjunctive normal form formula of the form

(A1VA V.. VAIAN(BI1VByV...VBj)A...A(C1VC2 V...V Cf)

to the form
{A1,A2,..., A}
{B1, Bs,.. ., Bj}.
{C1,Cq,...,Ci}.

As an example, consider the following first-order logic statement that expresses the subset
axiom in set theory; ‘member’ and ‘subset’ are the predicates.
(forall Subset) (forall Superset) (subset(Subset, Superset) V (exists SomeElement) (mem-
ber(SomeFElement, Subset) A not member(SomeElement, Superset)))

The statement is normalized and expressed as:
subset(Subset, Superset) V member(f(Subset, Superset), Subset).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

subset(Subset, Superset) V not member(f(Subset, Superset), Superset).

Here, fis a Skolem function that removed the existentially quantified variable SomeEle-
ment. The normalized form consists of the conjunction of two clauses.

To be input to the theorem prover, the formula is expressed in set notation as:
{subset(Subset, Superset), member(f(Subset, Superset), Subset)}.
{subset(Subset, Superset) V not member(f(Subset, Superset), Superset)}.

A set of clauses expressed in CNF is unsatisfiable if for every interpretation I, there exists a
clause that is False in I. A set of clauses in CNF is satisfiable if there exists an interpretation
I in which all the clauses in the set are True.

2.4 Herbrand Sets and Herbrand’s Theorem

A kind of interpretation that is particularly interesting for automated theorem proving
is the Herbrand interpretation. A Herbrand interpretation is defined relative to a set S of
clauses as follows. A Herbrand Universe for S is the set of all ground terms that can be
formed from the constant and function symbols in S; if S has no constant symbols, then an
extra constant symbol is added. A Herbrand interpretation is an interpretation where the
domain is a Herbrand universe and where each constant and function symbol is interpreted

as itself.

If S is a set of clauses, then a Herbrand set for S is an unsatisfiable set T of ground clauses
such that for every clause D in T, there is a clause C' in S such that D is an instance of
C. The well-known Skolem-Herbrand-Goedel theorem, also known as Herbrand’s theorem
[CL71], states that a set S of clauses is unsatisfiable iff there is a Herbrand set T for S.

2.5 Propositional Approach to First-Order Theorem Proving

Propositional methods applied to first-order theorem proving are based on enumerating
a Herbrand set for the set of first-order clauses. The idea of exhaustive enumeration can be

explained as follows.

Suppose S is a set of first-order clauses. Then let Herbs be the set of ground instances
of clauses in S, such that all symbols appearing in clauses in Herbg appear in S, except that
if S has no constant symbol, then an additional constant symbol is added in Herbg. Let C,
Cy, ... be an enumeration of clauses in Herbg, and let the set {C;, Ca, ... C;} be denoted

by T;. Then the procedure for exhaustive enumeration is as shown in Algorithm 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

Algorithm 1 Procedure for exhaustive enumeration of Herbrand set for set of clauses S

procedure enumerate(.S)

1: let Cq, Cs, ... be an enumeration of clauses in the Herbrand set for S
2:i=1

3: repeat

4: let the set {C4, Cy, ..., C;} be denoted by T;

5. test T; for unsatisfiability

6: if T; is unsatisfiable then

T return “unsatisfiable”

8: end if

9 i=i+1

o
@

until T; is not equal to T;_
11: return “satisfiable”

end enumerate

The procedure enumerate(S) enumerates progressively larger Herbrand sets for S, denoted
by T;, and tests them for unsatisfiability in 5. If S is unsatisfiable, the procedure will even-
tually return “unsatisfiable” 7. Otherwise, if Herbg is finite then the condition in 10 will
eventually be satisfied, and the procedure will return “satisfiable” 11. Otherwise the proce-
dure will run forever. In this sense, the procedure is complete and this is a direct application
of Herbrand’s theorem.

2.5.1 Davis-Putnam-Logemann-Loveland (DPLL) Procedure

The first to apply the blind enumeration algorithm to clause form first-order theorem
proving was [DLL62]; this paper used a slightly refined form of the original Davis-Putnam
procedure [DP60], a reasonably efficient decision procedure, to test the sets T} for unsatis-
fiability. Others had used enumeration procedures before this, but none had used Skolem
functions together with clause form and none had used as efficient a propositional decision
procedure. The original Davis-Putnam procedure is not used much nowadays; instead what
is usually used is this later refinement due to David, Logemann and Loveland called DPLL.
The DPLL test for unsatisfiability has three main components.

¢ Transformation to conjunctive normal form
o Rules for simplification

* Splitting

The conjunctive normal form has been discussed. Simplification consists of two main rules.

e The 1-literal rule. If a unit clause {L} appears in the problem, remove all clauses that
contain L, and remove all occurences of —L from the other clauses. This is equivalent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

to assigning a truth valuation of True to L. It reduces the number of literals and the

resulting problem is unsatisfiable iff the original problem is unsatisfiable.

o The affirmative-negative rule. If a literal L occurs only negated (that is, there are no
clauses containing L) or only unnegated (that is, there are no clauses containing —L),
then remove all clauses containing ~L or L. This is equivalent to assigning a truth
valuation of False (True) to L. It reduces the number of literals and the resulting
problem is unsatisfiable iff the original problem is unsatisfiable.

Splitting can be described as follows. Suppose the set of clauses S has some clauses
containing a literal L and some clauses containing —L. Let S, be the set of clauses resulting
from S by removing all clauses containing L and deleting all occurences of —L from the other
clauses. Similarly, let S.; be the set of clauses resulting from S by removing all clauses
containing —L and deleting all occurences of L from the other clauses. Then replace S by
the two new clause sets Sy, and S-r. This does a case analysis on L by splitting the tree of
possible truth assignments for the variables into two subtrees where L is assigned True and
False respectively. This is referred to as splitting on the literal L.

2.6 The Resolution Approach

Robinson [Rob65] developed the resolution procedure which avoids exhaustive enumeration
of the Herbrand set by use of a technique called unification. Many other strategies developed

since also use unification in various ways.

2.6.1 Rule of Resolution

Resolution, also referred to as binary resolution, takes two statements and resolves them

into one. In a simplified form, the inference rule of resolution can be described as follows.

(AVB),(~BVC)
(AVC)

2.6.2 Unification

In applying the rule of resolution to first-order logic statements, variables often have to
be matched to check that the inference is allowed. For example, consider the following two
statements.

S1: — equal_sets(Subset, Superset) V subset(Subset, Superset)

Ss: equal sets(b, bb)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

To apply the rule of resolution to S; and S, the literal equal sets(b, bb) in Sz has to be
matched up with the literal equal_sets(Subset, Superset) in S;; for this the variable Subset is
matched to the constant b, and the variable Superset is matched to the constant bb. Such a

matching is referred to as unification.

As an example of when such matching is not allowed, consider the following two statements.
S3: - member(member_of_1_not_of_2(Subset, bb), bb) V subset(Subset, bb)
Sy: subset(b, b)

To apply the rule of resolution to S3 and Sy, the literal subset(Subset, bb) in S3 has to
be matched to the literal subset(b, b) in S4. This requires matching constant bb to constant
b, which is not allowed. So the literals subset{Subset, bb) and subset(b, b) do not unify and

the rule of resolution can not be applied to S3 and Sj.

Matching is not allowed when one of the terms being matched occurs in the other term.
For example, the term z occurs in the term f(x,y) and therefore these two terms cannot be

unified. This is referred to as the occurs_check problem in unification.

A unifier of two terms (or literals, or clauses), L and M, is a substitution @ such that L6
and M8 are identical. A most general unifier of two terms (or literals, or clauses), L and M,
is a substitution # such that for any other unifier a of L and M, there is a substitution ¢ such
that LO¢ and Lo are identical. (LO¢ is obtained by applying substitution ¢ to the result of
applying substitution to L.) For example, a most general unifier of p(a, X, f(¢(Y))) and
p(Z, §(2), f(U)) is {Z — 0, X — f(a),U — g(¥)}.

Algorithm 2, which is quoted from [Pla99], gives a simple algorithm to find the most
general unifier of two terms r and s. In the procedure Unify, if the term r is a variable 1,
then if the term s is is syntactically identical to r 2, the terms are already the same and the
procedure returns the empty substitution; otherwise, the occurs-check test is performed 4 to
check whether r occurs in the term s. If 7 occurs in s, then the unification fails; otherwise, r
is substituted by the term s to unify the terms 7.

If r is not a variable and s is a variable 9, then an occurs-check is performed to test whether
s occurs in 7. If s occurs in r, then the unification fails; otherwise, s is substituted by the
term r to unify the terms 13.

If neither r nor s is a variable, then the top-level function symbol of the two terms are
compared. If the function symbols are different 15, then the unification fails. If the function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Algorithm 2 Unify two terms r and s

procedure Unify(r,s)
1: if r is a variable then
2: if r = s then
3 return {}
4 else if r occurs in s then
5 return fail
6: else
7 return {r — s}
8 end if
9: else if s is a variable then
10: if s occurs in r then

11: return fail

12: else

13: return {s+— r}
14: end if

15: else if the top-level function symbols of r and s differ or have different arities then
16: return fail
17: else
18: suppose ris f(r1...7mp) and sis f(s1...sy,)
19: return (Unify lists([ry...7rp],[s1--.50]))
20: end if
end Unify
procedure Unify lists([r;...7r,),[s1... 8p])
1: if [ry...7y] is empty then
2: return {}
3: else
4 6 — Unify(rl, Sl)
5. if 8 = fail then
6: return fail
7. end if
8: a« Unifylists([rz...75]0,[s2...50]6)
9: if a = fail then
10: return fail
11: end if
12: end if
13: return {foa}

end Unify_lists

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

symbols are identical, then the list of arguments of the two terms are attempted to be unified

by the procedure Unify lists 19.

In the procedure Unify lists, if the two lists are empty 1, no unification is necessary, so
the empty substitution is returned. Otherwise, unification is attempted on the the first terms
occuring in the lists 4. If this fails, then Unify lists fails 6. Otherwise, the substitution
unifying the first occuring terms is 6, and Unify lists is recursively called on the remaining
lists 8. If the recursive call fails, i.e., the remaining lists can not be unified, then Unify_list
fails 10. Otherwise, the substitution unifying the remaining lists is alpha. In 13, o denotes
composition of two substitutions, which is defined by t(8 o o) = tfa, where ¢ is a term.
Composition of two substitutions is also a substitution. 6 o a is returned by Unify lists.

To extend the unification of terms to unification of literals L and M, note that if L and M
have different signs or different predicate symbols, then the unification fails. Otherwise, sup-
pose L and M are P(ly,ls,...,l,) and P(mi,ma, ..., my), respectively (or their negations).
Then the most general unifier of L and M is Unify_lists([l1,l2,. .., ls], [m1,m2,...,my]).

The unification algorithm is similar to that of Robinson [Rob65]. This algorithm, though
it takes exponential time on large terms, is often efficient in practice. Unification algorithms

that are very efficient and take linear time on large terms have been devised.

2.6.3 Resolution Theorem Proving

Resolution theorem proving uses the resolution rule to obtain proofs by contradiction. The
initial knowledge base consists of the axioms and the negation of the theorem to be proved.
The proof technique involves maintaining a knowledge base of statements — all assumed to
be true — and repeatedly resolving two statements and adding the resulting statement, the
resolvent, to the set of statements comprising the knowledge base. When two statements are
resolved to produce the empty clause or False, the theorem is established to be True. A proof
can be produced by backtracking from the empty clause and building a chain of inferences
backwards to the axioms in the initial knowledge base.

In practice, several other strategies and refinements of resolution may be used to make a
theorem prover more efficient. Some of these are hyper-resolution, demodulation and set of
support. Detailed descriptions of these and other strategies and refinements can be found in
[BGO1]. Hyper-resolution is a refinement of resolution that restricts the inferences that are
performed and performs a sequence of such resolutions in one step, thus reducing the number

of intermediate results to be stored. Demodulation replaces equals by equals, permitting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

simplification of expressions. The set of support strategy forces all resolutions to involve a

statement from a specified set (the set of support) or a statement derived from the set.

2.6.4 Further Definitions

A unit resolution is a resolution in which at least one parent clause is a unit clause. For

example, resolution of {a, b, c} with {not a} to produce {b, c} is a unit resolution.

A UR resolution (unit resultant resolution) is a sequence of resolutions with unit clauses
and a non-unit clause to produce a unit clause. For example, a sequence of resolutions of the
unit clauses {p}, {not q}, {r} with the non-unit clause {not p, q, not r, s} to produce the
unit clause {s} is a UR resolution. Otter [McC90], a well-known first-order resolution prover,
also includes a sequence of resolutions with unit clauses and a non-unit clause to produce
the empty clause (which has no literals) in its definition of UR resolution. This makes UR
resolution a complete strategy in Otter.

2.7 Theorem Proving in First-Order Logic

Early theorem proving strategies (such as that of Gilmore [Gil60]) were based on the
idea of instantiating a set of first-order clauses to obtain a set of propositional clauses, and
then applying a propositional decision procedure to test satisfiability. Some recent provers
such as SATCHMO [MB88] and Baumgartner’s first-order DPLL method [Bau00] continue
in this tradition. Ideas have also been proposed for enhancing instance-based theorem prov-
ing systems by employing decision procedures for first-order fragments more complex than
propositional logic [GK03]. However, since Robinson’s groundbreaking paper on resolution
[Rob65] and Loveland’s work on model elimination [Lov68, Lov69], the focus of the field has
largely shifted to these and other similar approaches. Despite their successes, a shortcoming
of such strategies, in a fully automated mode, is their weakness on non-Horn problems. This
thesis uses OSHL to investigate the propositional approach to proving first-order theorems,
especially those that are difficult for resolution. OSHL is based on exhaustive instantiation
of the Herbrand universe and does not use true unification between non-ground literals. The
objective is to understand how essential true unification is to theorem proving and how much

theorem proving can be done without it.

In Section 2.5.1, we described the DPLL technique that is the basis of all propositional-
style provers for first-order logic. Now we will briefly mention some of the renowned theorem

provers for first-order logic based on propositional techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

2.7.1 The First-order DPLL Procedure

The DPLL procedure was originally devised as a proof-procedure for first-order logic. How-
ever, it has been used very successfully for propositional logic. Some of the most successful
propositional satisfiability (SAT) solvers to date are based on DPLL. However, DPLL’s treat-
ment of quantifiers, based on instantiation into ground formulas, makes it far less efficient for

first-order logic.

The more recent first-order DPLL (FDPLL) calculus by Baumgartner [Bau00] was the
first successful attempt to lift the DPLL procedure to the first-order level without resorting
to ground instantiation. FDPLL lifts to the first-order case the core of the DPLL procedure,
the splitting rule, but ignores other aspects of the procedure. These other aspects are not
necessary for completeness; however, they are crucial for the effectiveness of DPLL in practice.
FDPLL uses a new technique to represent first-order interpretations, where a literal specifies
truth values for all its ground instances unless there is a more specific literal specifying

opposite truth values; in that case, the specific literal overrides the more general literal.

The splitting rule in DPLL essentially carries out a case analysis with respect to a propo-
sitional variable 4, i.e., the current clause set S splits into two cases — one where A is “true”
and one where A is “false” — and this leads to further simplification. FDPLL lifts this split-
ting to the first-order level by splitting on complementary non-ground literals like P(z,y)
and —P(z,y). But the implicit universal quantification of the variables = and y as is the case
in clause-form theorem proving leads to an unsound calculus. So the way a literal is read
is modified in FDPLL as follows. A literal represents all its ground instances, for example,
P(z,y) represents instances P(a,a), P(a,b), P(b,a) and P(b,b) assuming that a and b are
the only constants. However, a more specific instance of the literal with complementary sign,
such as ~P(z,b), overrides the default interpretation of the more general literal. In this ex-
ample, P(z,y) and —P(z,b) together represent P(a,a), ~P(a,b), P(b,a) and —P(b,b). This
can be associated to an interpretation. In this way, a “case” in FDPLL is a set of (possibly
non-ground) literals that an interpretation can be associated to.

The splitting rule in FDPLL is explained as follows. Suppose C#§ is an instance of C that
is “false” in the interpretation I associated to the current case. Then a split is attempted
with with a literal L € C0 in order to repair I to an interpretation that assigns “true” to
L, and, therefore, to C6. If this is not possible because of contradiction between C8 and
the current case, then the current case is refuted; otherwise, splitting is performed on L and
two new cases are created — one extending the current case with L and the other extending
the current case with -L. FDPLL repeatedly carries out splits in this way until either every

case is refuted signifying unsatisfiability, or no clause instance C#8 is falsified by the current

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

interpretation signifying that the current case is a satisfiable model.
For a more detailed treatment of FDPLL, the reader is referred to [Bau00).

2.7.2 The Model Evolution Calculus

The Model Evolution (ME) calculus [BT03] provides a complete lifting of the DPLL
procedure to first-order logic. The ME calculus borrows many fundamental ideas from and
generalizes FDPLL, but it is an extension of DPLL rather than of FDPLL. The DPLL proce-
dure provides a Herbrand model of the input formula whenever that formula is satisfiable; it
generates this model incrementally as it progresses. The ME calculus lifts this model gener-
ation process to the first-order level. The goal of the ME calculus is to construct a Herbrand
model of a given set ® of clauses, if any such model exists. It does so by maintaining a finite
set of literals called a context. The context C is a finite and compact representation of a
Herbrand interpretation Ic serving as a candidate model for ®. The interpretation I may
not be a model of ® because it does not satisfy some clauses in ®. The main rules of the ME
calculus serve to detect this situation and either repair I by modifying C so that it becomes
a model of ®, or recognize that I is unrepairable and fail. There are additional simplifica-
tion rules in the calculus which, like in DPLL, simplify the clause set, hence speeding up the
computation.

The ME calculus starts with a default candidate model that does not satisfy any positive
literals and repairs it as needed until it becomes an actual model of the input clause set @,
or until it is clear that ® has no models at all. So all terminating derivations of a satisfiable
clause set ® produce a context C such that the corresponding interpretation Ic is a model
of ®. This provides counter-examples to invalid statements rather than only proving their
invalidity.

In addition to being a more faithful litfing of the DPLL procedure, the ME calculus
contains a more systematic treatment of universal literals, one of FDPLL’s optimizations,

and so has the potential of leading to much faster implementations.

For a detailed treatment of the ME calculus, the reader is referred to [BT03).

2.7.3 The Disconnection Theorem Prover

The Disconnection Theorem Prover (DCTP) [LSO01] is an implementation of the discon-

nection tableau calculus. The system can also be used for model generation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

The disconnection tableau calculus integretates Plaisted’s clause linking method [PL92]
into a tableau control structure. The original clause linking method works by iteratively
producing instances of the input clauses, which are occasionally tested for unsatisfiability
by a separate propositional decision procedure. The use of a tableau as a control structure
restricts the number of clause linking steps that may be performed. The tableau also provides
a propositional decision procedure for the clause instances generated so there is no need for
a separate propositional decision procedure. The disconnection tableau calculus consists of a
single inference rule called the linking rule. In addition, a number of refinements are integrated
into the system in order to improve the theorem prover’s performance; these are — pruning
of clause variants, pruning of redundant branches, unit simplification, unit lemma generation
and unit subsumption. For a detailed treatment of the rules and refinements in DCTP, the
reader is referred to [LS01].

2.7.4 Propositional Techniques at UNC

The propositional approach to first-order theorem proving has been explored at UNC-
Chapel Hill by [AP92, PL92, Pla94, ZP97] leading up to the development of the Ordered
Semantic Hyperlinking (OSHL) prover [PZ00]|. OSHL is an attempt to apply propositional
techniques to first-order logic. It is similar to DPLL, which has been shown to be more
efficient than resolution on non-Horn propositional problems [PL92], suggesting that similar
approaches might also be efficient for non-Horn first-order problems. However, one problem
with the blind enumeration approach is that it enumerates many propositional instances that
may not be needed for the proof.

OSHL differs from other provers that apply propositional techniques to first-order theorem
proving such as clause linking [PL92], FDPLL [Bau00] and DCTP [LS01]} in that OSHL works
completely at the propositional level and that it does not perform true unification between
non-ground literals. FDPLL does not work completely at the propositional level. DCTP also
does not work completely at the propositional level, but employs true unification to generate
instances. SATCHMO [MBS88], though it has similarities to OSHL, does not use orderings
or models in the way OSHL is capable of and also does not seem to have a counterpart for
all of the U rules [DP03| added to OSHL in OSHL-U. The capability of OSHL for using
sophisticated semantic guidance, that all these other provers lack, makes OSHL a unique
system for study.

2.8 The TPTP Problem Set

TPTP stands for Thousands of Problems for Theorem Provers and is a repository of test

problems that serves as a benchmark for automated theorem proving systems [SS98a]. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

version of TPTP used for the experiments in this dissertation is v2.5.0. TPTP v2.5.0 has
first-order problems from 30 different domains. This thesis uses all the problems that are not
known to be satisfiable from these 30 categories for tests; there are 4417 such problems.

Each problem in the TPTP comes with useful statistics such as number of non-Horn clauses
in the problem, hardness rating and solvability status. When the number of non-Horn clauses
is zero, the problem is a Horn problem. Otherwise, it is probably non-Horn; however, even if
there are non-Horn clauses in the set, it is possible that a proof can be obtained using only
Horn clauses.

TPTP ratings range from 0 to 1, with 0 being the easiest. The rating is based on how
difficult the problem is for theorem provers that have been tested on the TPTP. A problem
with a TPTP rating of 0 has been proved by all major automated theorem proving systems.
A problem with a TPTP rating of 1 has not been proved by any automated theorem proving
system.

The status of a problem could be satisfiable (known to be a satisfiable set of clauses),
unsatisfiable (known to be an unsatisfiable set of clauses), theorem (a theorem, hence an un-
satisfiable set of clauses), open (an open problem), and unknown (it is not known whether
the set is satisfiable or unsatisfiable). The OSHL and OSHL-U strategy only detects unsat-
isfiability and does not guarantee termination on satisfiable sets. Therefore, this thesis does
not use the problems with a satisfiable status for tests.

2.9 Strategy Selection and Performance Tuning in Modern

Provers

Most modern theorem provers have been optimized for performance and use strategy
selection and strategy scheduling. In addition, many provers have been tuned to perform well
on the TPTP problem categories. We will look briefly at strategy selection and scheduling and
performance tuning in different theorem provers. Then we justify our choice of a resolution

theorem prover for experimental comparison to OSHL.

Strategy selection and strategy scheduling are implemented in many leading theorem
provers today. Strategy selection refers to the analysis of a problem and the selection of
a strategy to be used based on this analysis. Also, modern provers sometimes classify the
problems into 60 or more categories and apply a different strategy to each category [Sch02].
Often, several potentially good strategies are identified and these are then scheduled to be
applied in a certain order till a proof can be found [SW99, SW00, SS99, HJL99, RV02, Sch02];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

this is referred to as strategy scheduling. Strategy selection and strategy scheduling make it
difficult to run a single uniform strategy on all problems. It also becomes difficult to determine
whether the performance of the prover is due to a single uniform strategy or the way in which

the categories or strategies are selected.

In addition, the performance of modern provers is sometimes tuned to categories of prob-
lems in the TPTP. Based on pre-computed test results on the TPTP problems, the prover
“learns” what strategy is effective for particular kinds of problems. The idea is similar to how
human experts learn to identify problem-solving techniques based on prior experience and
boosts prover performance. However, such performance tuning makes it difficult to separate
out the performance of a prover due to the strategy used and the performance boost resulting

from tuning on particular problem sets.

2.9.1 Choice of a Resolution Prover for Experimental Comparison

This dissertation compares OSHL-U with Otter, a first-order theorem prover based on
the resolution-unification paradigm. Theorem provers such as SPASS [Wei97], GANDALF
[Tam97], Vampire [RV99], and SETHEO [LSBB92) may perform better than Otter. However,
these other provers have been thoroughly optimized and have efficient data structures, which
give them a considerable advantage over OSHL and OSHL-U, which do not have such extensive
optimizations. Some of these provers use case analysis (splitting), which is really a form of
propositional reasoning imported into first-order logic. Otter is a useful prover for comparing
the OSHL-U strategy to resolution because in the autonomous mode, Otter has a simpler and
more uniform strategy selection [McCO03]. Otter’s simple control structure allows to apply a
single uniform strategy to all problems. Otter does not break the TPTP problems into
categories in the way that many other provers do. Also, Otter has not been especially tuned
to a particular problem set in the TPTP; when it uses strategy selection, it does so based
on analysing only the problem syntax and not based on any pre-computed results. However,
Otter’s efficient data structures still give it an execution speed advantage over OSHL-U, which

is not using such data structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Ordered Semantic Hyper-Linking with
Unit Rules

A brief description of the OSHL algorithm is given, followed by a description of the OSHL-
U rules of inference, algorithm and heuristics. OSHL-U is the contribution of this thesis; it
builds on and extends OSHL.

In order to describe OSHL and OSHL-U, we need the notion of eligible literals. An
eligible literal is a ground literal that is true under the current interpretation. Suppose I
is an interpretation and C a ground clause such that I [~ C. The interpretation could be
modified to make it a model of C' by making a literal L of C true under I. The modified
interpretation is written as I[L] and L is called an eligible literal under I[L]. As defined in
Chapter 2, I[L; ... L,] denotes an interpretation that is the same as I except that the literals
L; for i € [1,n], are satisfied by I[L, ... L,]; we will refer to Ly,..., L, as the eligible literals.

3.1 The OSHL Strategy

The OSHL strategy begins with an initial interpretation and progresses in the search for
a proof by generating ground instances of input clauses. Such ground instances are used to
refine the interpretation. OSHL maintains a set of ground instances of input clauses such
that the current interpretation is always a minimal model of this set. The two key steps in
the OSHL algorithm are to generate a ground instance of an input clause D that interprets to
false under the current interpretation, and then to modify the current interpretation so as to
make D true. The ground instance generated is minimal in some ordering defined on clause
instances. As was shown in [PZ00], picking the ground instance subject to the restriction of

being minimal makes OSHL a complete theorem prover.

OSHL tries to determine if a set S of first-order clauses is unsatisfiable by constructing
a set T of ground instances of clauses in S. It is assumed that if the set T is unsatisfiable,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

then it contains the empty clause {}. It is assumed also that some ordering on interpretations
and some ordering on ground clauses is given. The OSHL algorithm repeats the following
sequence of operations till T' contains {}.

e Construct interpretation I, a model of T, such that I is minimal in the ordering on

interpretations

e Select a ground instance D of a clause in S such that I £ D and D is minimal in the

ordering on clauses subject to this restriction. Replace T by TU D

e Modify the set T to preserve or increase its minimal model

The OSHL strategy is based on an exhaustive enumeration of the Herbrand base. One
problem with any enumeration strategy is that of efficiency. In OSHL, this problem is allevi-
ated by the use of semantics in order to generate instances relevant to the proof with efficiency.
The ordering on clauses that is commonly used is size-lexicographic, that is, smaller instances
are generated before larger, and when two instances have the same size, the instance oc-
curing first in lexicographic order (such as English alphabetic order) is generated first. The
lexicographic order could also be specified by the user to be some other total order. The
search, therefore, progresses in order of increasing size of terms; proofs with smaller terms are
generated before those with larger terms. As was mentioned in [PZ00], OSHL had problems
generating proofs with larger sized terms. OSHL also did not have any syntactic guidance in

instance generation, and therefore, depended solely on the specified semantics for guidance.

3.2 OSHL extended with Unit Rules of Inference

The original intent in designing OSHL was to use it in conjunction with semantics that
guide the proof search. So a deficiency of OSHL, in the absence of good semantics, is the blind
enumeration of instances; this is constrained somewhat by the interleaving of instantiation
and model searching and by the use of semantics, but it remains a problem. The rules of
inference added to OSHL in this thesis are intended to provide better syntactic guidance in
the enumeration of instances. The implementation of the resulting theorem prover is referred
to as OSHL-U, which is OSHL extended with unit rules or U rules.

OSHL-U attempts to overcome the blind enumeration of instances in OSHL by making
the generation of instances more intelligent when possible, while retaining the propositional
character of OSHL. This is done by relaxing one of the constraints of OSHL, namely, that
the instance generated must be a minimal instance contradicting a specified interpretation.
OSHL-U permits the instance to be non-minimal and to contradict another interpretation, in

exchange for avoiding the blind enumeration, when possible. OSHL-U uses a combination of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

strategies including case analysis and unit resultant resolution on ground clauses. Only when
none of these strategies are able to find an instance does OSHL-U resort to the enumeration
strategy of OSHL. The proof of completeness of OSHL is based on the condition that the
minimal model of the set of clauses T;,; is larger than the minimal model of T; for all 7. The

OSHL-U rules preserve the condition, so this also guarantees the completeness of OSHL-U.

OSHL-U consists of basic rules (from OSHL) and U rules. The basic rules by themselves
are complete and work essentially at the ground level. The U rules are not necessary but
perform operations involving unit clauses and frequently help to get proofs faster. Basic rules
produce basic clauses while U rules produce U clauses. The OSHL-U rules operate on an
ascending sequence which is a sequence C)C; . .. C), of ground clauses. Initially the ascending
sequence is empty. The proof search stops when an ascending sequence containing the empty
clause is derived; this indicates that S is unsatisfiable.

The ascending sequence consists of a (possibly empty) sequence of basic clauses followed
by a (possibly empty) sequence of U clauses. The resolvent of two clauses, at least one of
which is basic, is a basic clause and the resolvent of two U clauses is a U clause. Note that
a U clause is not necessarily a unit clause (i.e., a clause with only one literal). Each clause
in the ascending sequence has a selected literal which is the eligible literal; L; denotes the
eligible literal of clause C; in the sequence. E is the set {L1,Lo,..., Ly} of eligible literals
and F is the set of their complements. Several rules add a clause C' to the end of an ascending
sequence; this is always subject to the restriction C N E = ¢ where E consists of the eligible
literals before C is added.

There is a total syntactic ordering <;;; on ground atoms that is extended to literals by
L <y M iff at(L) <y at(M) where at(-L) = L and if L is an atom, at(L) = L. This
ordering restricts which literals may be selected from clauses. For basic clauses C;, L; is
the <;;; maximum literal in C;. For U clauses C;, if C; contains a literal L that is not
complementary to existing eligible literals, then some such L must be selected. Otherwise, a

literal must be selected that is complementary to L; for the maximum possible j.

The <y;; ordering on literals is extended to a <. ordering on clauses as follows. Suppose
L, and L2 are the <;;-maximal literals in clauses C; and Cy, respectively. Then C; <. Cs iff
Ly <yt Lp. If L is the <j;;-maximal literal in both C; and Cs, then Cy <. Cy iff (Cy—{L}) <y
(C2 —{L}).

There is an ordering <, on the eligible literals. Suppose L; and L; are the selected literals

from clauses C; and C; in the ascending sequence. Let i’ be minimal such that L; or —L; is
the selected literal from clause Cj, and similarly for j'. Then L; < L; iff ' < j'.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Iy is the initial interpretation. I; models the set of clauses Cy, Cs,. .., C; and is obtained by
refining Iy to satisfy the eligible literals Ly, Ly, ..., L; of clauses Cy, Ca, ..., Ci, respectively.
So I; can also be written as Iy[L; ... L;].

3.2.1 Basic Rules in OSHL

Extension

Let C§ be a ground instance of an input clause C such that CON E = ¢. Add C6 to the
end of the ascending sequence and select a literal from it.

(C1,Cy,...,Cp),C an input clause, 8 a substitution, s.t.
C0 is ground and <. minimal in S s.t. I, £ C6

(C1,Cy,...,Cp, CH)

The rule of extension extends the ascending sequence by adding an instance. The added
instance is generated from a clause C' from the set of input clauses S by applying variable
substitution 6 to C'. The instance, C§, interprets to false under the current interpretation I,.
Also, the instance C¥9 is selected such that, among all such instances possible, it is minimal
in the <. ordering.

Resolution

If the selected literals L and M of the last two clauses C and D of the ascending sequence
are complementary, remove these clauses and add their resolvent (C — {L}) U (D — {M}) to
the ascending sequence.

(C1,Ca,...,Cn,Cnt1), L is the selected literal in Cy,,
—L is the selected literal in Cy,41

(Cla Ca...,Cho1, (Cn - {L})) (Cn+1 - {ﬁL}))

Clause Deletion

If L, < L,_1, delete C,,_1 from the ascending sequence. The effect of clause deletion is to
delete clauses whose selected literals are “out of order,” i.e., they violate the ascending order
of the sequence. Resolution removes successive clauses whose selected literals have the same
atom. If clause deletion and resolution are done as soon as possible, then after they are both
finished, it will be true that for all 7 and j, L; <¢ Lj iff i < j.

(ClaC27 fee aCn—l;Cn), (Ln < Ln—l)
(C17C2a cee aCn—l)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

3.2.2 U Rules
U Clause Deletion

This is like the basic rule of clause deletion but it applies to U clauses. It is also possible

to apply U clause deletion if Cy, is a U clause and Cy,_, is a basic clause.

(C1,C2,...,Cn-1,Cp),(Ln < Lp_1),Cr is a U clause
(C1,Ca,...,Cn1)

U Resolution

This is like resolution but applies to two U clauses.

(C1,C2,...,CnyCny1),Cp and Cpyy are U clauses,
L is the selected literal in Cp,, —L is the selected literal in Cp41

(C1,0y,...,Cn1,(Cn — {L}) U(Cpy1 — {~L}))

UR Resolution

Suppose C is a non-unit clause. Then a sequence of resolutions between C and unit clauses
resulting in a unit clause is generally referred to as unit resultant resolution or UR resolution.
The UR resolution rule in OSHL-U is a special case of UR resolution. It is described as

follows.

Find C € S that gives L as a result of UR resolution with the set of eligible literals, E, such
that L is a ground literal and L ¢ E. Let C8 be an instance of C such that C6 C E'U {L}.
Add C9 to the end of the ascending sequence and select the literal L from it.

(C1,...,Cn),C ={M,..., My, M} an input clause, 6 a substitution,
MO ¢ {Ly,Ls,...,L,} and CO C EU {M6}

(C1,Cy,...,Cn,CO[MB))

This rule describes the derivation of a U clause instance that, immediately after being
added to the ascending sequence, will cause a series of basic and/or U resolution and deletion.
Every literal in C8 — { M6} is the complement of some eligible literal and, therefore, can be
removed by an application of the Resolution or U Resolution rules with an existing clause in
the sequence. Resolution and U Resolution rules (as well as Deletion and U Deletion rules)
are applied to the sequence as soon as possible, so adding the clause C'@ to the sequence
ultimately generates the unit U clause, {M6}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

For example, given the sequence ({s(a), p(b)}, {t(a), q(b)}) and the clause {not p(X),
not q(X), r(X)}, where the highlighted literals are the eligible literals, the sequence ({s(a),
p(b)}, {t(a), a(b)}, {not p(b), not q(b), r(b)}) is created.

Unit Filtering

Let D be obtainable from C € S by zero or more unit resolutions with unit clauses in S.
Let D@ be an instance of D such that D8 C E. Add D6 to the end of the ascending sequence.
Note that after this rule is done, either a resolution or a clause deletion (or their unit rule
counterparts) will be possible, so the ascending sequence will get shorter. If D = C , this is
called filtering.

(Cl, “ e ,Cn),

C ={Mi,..., My, D} an input clause, § a substitution

(VM; € CY({-M;} € {C4,...,Cr}) and DO C E
(Ci,...,Cn, DO)

This rule describes how a U clause is added to the ascending sequence. As with the UR
Resolution rule, an application of Unit Filtering will be followed by a series of basic and/or
U resolutions and deletions. Every literal in D@ is the complement of some eligible literal.
Therefore, unless at some point, the remaining clause (some subset of D#) is removed by U
clause deletion, every literal will eventually be removed by the Resolution or U Resolution
rules. When that happens, the empty clause will get added to the ascending sequence.

For example, given the sequence ({s(a), p(b)}, {t(a), a(b)}) and the clause {not p(X),
not q(X)}, where the highlighted literals are the eligible literals, the sequence ({s(a), p(b)},

{t(a), q(b)}, {not p(b), not q(b)}) is created.

Case Analysis

Let C be an input clause and L be a literal of C containing all the variables of C. Let 6
be a substitution that causes L to become ground such that L# € E and CONE = ¢. Add

C48 to the end of the ascending sequence.

(C1,...,Cr),C ={M,..., My} an input clause,
j € [1,k] s.t. every variable in C occurs in M and 6 a substitution s.t.
(M;0 € E and CONE = ¢)

(C1,Ca,...,Cp,C8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

The case analysis rule extends the ascending sequence with a U clause. Note that there
are several pre-conditions for the case analysis rule to be applicable. First, all the variables in
an input clause, C, occur in one of its literals, Mj, so that a substitution ¢ that instantiates
all the variables in M; also results in a fully instantiated clause instance C6. Second, M;é
is a complement of an eligible literal. Also, no other literal in C is a complement of an
eligible literal. When these conditions are satisfied, then a literal, M0 say, in C8 — {M;0}
could become a selected literal, or eligible to be true; this literal is a case. If subsequent
UR resolutions and case analyses cause a refutation of this case (i.e., the literal, M6, is
resolved away giving a new instance), then another literal from C8 — {M;6, M0} becomes
the selected literal. When every case has been refuted, the empty clause gets added to the

ascending sequence.

For example, given the sequence ({s(a), p(b)}, {t(a), q(b)}) and the clause {not q(X),
r(X), s(X)}, where the highlighted literals are the eligible literals, the sequence ({s(a), p(b)},
{t(a), q(b)}, {not q(b), r(b), s(b)}) is created by the case analysis rule.

3.2.3 Order of Applying Rules in OSHL-U

The order of applying the rules in the OSHL-U implementation is described by the flow of
control that follows. The top level procedure is oshlu_top(S), shown in Algorithm 3, where S
is the set of input clauses, empty_list is the ascending sequence which is empty to start with,
and starting_size gives the initial upper limit on the allowed size of generated instances. If
S is a satisfiable set, then it is possible that oshlu_top(S) will run forever because OSHL-U
does not necessarily detect satisfiability; otherwise oshlu_top(S) will eventually return a list
containing the empty clause, signifying that a proof has been found.

As shown in Algorithms 3 and 4, the procedure oshlu invokes a procedure corresponding
to each OSHL-U rule (basic or U) on an ascending sequence of clauses. In algorithm 3, each of
these procedures returns “fail” if the corresponding rule does not apply, and otherwise returns
the new ascending sequence that results from applying the rule. If the ascending sequence
contains the empty clause (line 1), then a proof has been found and the procedure terminates
by returning the ascending sequence (line 2). Otherwise, the Deletion rule is attempted to
be applied first (line 4). If it succeeds (line 5), then the oshlu procedure is called recursively
on the resulting ascending sequence (line 6); if it fails, then the Resolution rule is attempted
(line 8). If Resolution succeeds (line 9), then the oshiu procedure is called recursively on
the resulting ascending sequence is attempted (line 10). If neither Deletion nor Resolution
succeeds, then the U rules are attempted by calling the procedure try_U_rules (line 12). If
the U rules succeed (line 13), then the oshlu procedure is called recursively on the resulting

ascending sequence (line 14); otherwise any clauses added by the U rules are thrown away

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Algorithm 3 Order of applying rules in OSHL-U
procedure oshlu_top(S)

return (oshlu(empty_list, starting size, S))
end oshlu.top

procedure oshlu(clause list, s, S) {call oshlu with size bound of s, ascending sequence
S}
1: if clauselist contains the empty clause then
2 return clause_list
3: end if
4: new_list le ftarrow deletion(clause_list) {apply deletion rule}
5: if new.list != fail then
6: return oshlu(new.list, s, S)
7. end if
8: new_list le ftarrow resolution(clauselist) {apply resolution rule}
9: if new.list = fail then
10 return oshlu(new_list, s, S)
11: end if
12: new_list leftarrow try_U_rules(clause list, s, S) {try U rules}
13: if newlist != fail then
14: return oshlu(new_list, s, S)
15: end if
16: {throw away U clauses if U rules fail}
17: new_list leftarrow extension(clause_list, s, S) {apply extension rule}
18: if new_list != fail then
19: return oshlu(new_list, s, S)
20: end if
21: return (oshlu(clause_list, s+1, S)) {increment size bound}

end oshlu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

(line 16) and Extension is attempted (line 17). If Extension succeeds (line 18), then the oshiu
procedure is called recursively on the resulting ascending sequence (line 19); otherwise the size
bound is incremented by 1 and oshlu is called recursively with the incremented size bound
(line 21). The initial value of size bound is passed into oshlu from oshlu_top. Subsequently,
oshlu is called repeatedly with increasing values of size bound till it succeeds in finding a
proof. If one were to regard the space of possible proofs as a tree where proofs using larger
instances are further away from the root, then the progressively increasing values of the size
bound ensure that the search progresses with iterative deepening. In other words, all proofs
containing instances with a maximum size of n are generated before any proofs containing
instances of size n + 1. Later on in the chapter, we will see several different ways in which

size of an instance can be defined, and how OSHL-U computes the size of an instance.

Among the U rules, U deletion and U Resolution are performed as soon as possible and
these shrink the ascending sequence. When it is not possible to apply these two rules anymore,
the U rules that add clauses to the ascending sequence are attempted. The order in which
they are attempted is Unit Filter first, followed by UR Resolution, and then Case Analysis.

Algorithm 4 shows the order in which the U rules are applied in the procedure try_U _rules.
First, U Deletion is attempted (line 1). If it succeeds (line 2), then try_U_rules is called
recursively on the resulting ascending sequence (line 3); otherwise U Resolution is attempted
(line 5). If U Resolution succeeds (line 6), then if this results in removing all U clauses from
the ascending sequence, i.e., all the clauses in the ascending sequence are basic clauses (line 7),
then no more U rules are applied to the sequence. The procedure terminates and returns the
ascending sequence. otherwise if there are U clauses still remaining in the ascending sequence,
then try_U_rules is called recursively (line 10). If U Resolution fails, then Unit Filtering is
attempted (line 14). If Unit Filter succeeds (line 15), then try_U_rules is called recursively
on the resulting sequence (line 17); otherwise UR Resolution is attempted (line 19). If UR
Resolution succeeds (line 20), then try_U_rules is called recursively on the resulting ascending
sequence (line 22); otherwise Case Analysis is attempted (line 24). If Case Analysis succeeds
(line 25), then try_U_rules is called recursively on the resulting ascending sequence (line 27);

otherwise none of the U rules succeeded in generating an instance, so the procedure returns
“fail” (line 29).

3.3 Examples of OSHL-U Operation

Short examples are given to illustrate how the OSHL-U prover strategy works. The first
example problem is SET001-1 from the TPTP v2.5.0 [SS98a]. The problem is given in the
CNF form described in Chapter 2. The theorem being proved states that a member of a set
is also a member of that set’s supersets. The 9 input clauses, shown below, include 6 axiom

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Algorithm 4 Order of applying U rules in OSHL-U

procedure try_U_rules(clause_list, s, S) {try U rules}

20:
21:
22:
23:
24:

25:
26:
27:
28:
29:

: new.list « U_deletion(clause_list) {apply U deletion rule}

if new_list != fail then
return try_U_rules(new.list, s, S)
end if
newlist « U_resolution(clause list) {apply U resolution rule}
if newlist != fail then
if all clauses in new_list are basic clauses then
return new.list
else
return try_U_rules(new_list, s, S)
end if
: end if
: {recall that the resolvent of a basic clause and a unit clause is a basic clause}

: new_clause « filter(clause_list, s, S) {see if unit filtering can find a contradiction clause}
: if new_clause != fail then

let new_list be clause_list with new_clause added to the end
return try_U_rules(new.list, s, S)
end if

: new_clauses «+ UR_resolution(clause_list, s, S) {do a round of ground UR resolution on

all input clauses}
if new_clauses != fail then
let newlist be clause_list with new_clauses added to the end
return try_U_rules(new.list, s, S)
end if
new_clause «— case_analysis(clause_list, s, S) {see if we can generate a clause for case
analysis; this is obtained by unifying a literal of an input clause with the complement of
an eligible literal}
if new_clause != fail then
let new_list be clause_list with new_clause added to the end
return try_U_rules(newlist, s, S)
end if
return “fail”

end try_U_rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

clauses describing axioms in set theory, and 2 hypothesis clauses and 1 conjecture clause,
which express the negation of the theorem. The predicates are member for €, subset for
C, and equal_sets for set equality. member_of_1 not_of 2 is a Skolem function that takes 2
arguments. Semantically, each of the arguments represents a set and the function maps to an
element that is in the set represented by the first argument but not in the set represented by
the second argument. element_of b and b are constants. Subset, Superset and Element are
variables. Axiom 1 expresses membership in subsets and states that V Element V Subset V
Superset (Subset C Superset A Element € Subset) = Element € Superset, i.e., an element
of a set is also an element of a superset of the set. Axioms 2 and 3 express set membership
in terms of subset and state that 3 Element V Subset V Superset (Element € Superset A
Element ¢ Subset) = Subset C Superset. Axioms 4-6 express equality in terms of subset.
Axioms 4 and 5 express that two sets being equal implies each is a subset of the other; Axiom
6 expresses that two sets that are subsets of each other are equal sets. Hypothesis 1 and 2
state that b and bb are equal sets, and that element_of b is an element of the set b. Then
the conjecture to prove is that element_of b is an element of the set bb and the negation of

this conjecture is stated by the conjecture clause.

% membership_in_subsets, axiom 1.
{not(member(Element,Subset)),
not(subset(Subset,Superset)),
member(Element,Superset)}.

% subsets_axioml, axiom 2.
{subset(Subset,Superset),
member(member_of_1_not_of_2(Subset,Superset),Subset)}.

% subsets_axiom2, axiom 3.
{not(member(member_of_1_not_of_2(Subset,Superset),Superset)),
subset(Subset,Superset)}.

% set_equal _sets_are_subsetsl, axiom 4.
{not(equal sets(Subset,Superset)),
subset(Subset,Superset)}.

% set_equal_sets_are_subsets2, axiom 5.

{not(equal sets(Superset,Subset)),
subset(Subset,Superset)}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

% subsets_are_set_equal_sets, axiom 6.
{not(subset(Set1,Set2)),
not(subset(Set2,Set1)),
equal_sets(Set2,Set1)}.

% b_equals_bb, hypothesis 1.
{equal_sets(b,bb)}.

% element_of_b, hypothesis 2.
{member(element_of b,b)}.

% prove_element_of_bb, conjecture.
{not(member(element_of_b,bb))}.

Initially, the ascending sequence, Sy, is empty. The application of a rule of inference,
R;, to ascending sequence S;_; results in the new ascending sequence S;. Shown below are
the successive ascending sequences as well as the rules applied leading up to the ascending

sequence Sg, which contains the empty clause {}.
So : []
S1 : [{not(equal_sets(b,bb)), subset(b,bb)} | Applying Extension to Sp.

Sz : [{not(equal_sets(b,bb)), subset(b,bb)}, {member(element_of_b, Superset),
not(member(element_of_b,b)), not(subset(b,Superset))} | Applying Extension to Sj.

S3 : [{not(equal_sets(b,bb)), not(member(element_of_b,b)), member(element_of_b,bb)} | Ap-
plying Resolution to S;.

S4 : [{not(equal sets(b,bb)), not(member(element_of_b,b)), member(element_of_b,bb)},
{not(member(element_of_b,bb))} | Applying Extension to Ss.

S5 : [{not(equal_sets(b,bb)), not(member(element_of_b,b))} | Applying Resolution to Sy.

Se : [{not(equal_sets(b,bb)), not(member(element_of_b,b))}, {member(element_of b,b)} | Ap-
plying Extension to Ss.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

S7 : [{not(equal_sets(b,bb))} | Applying Resolution to Ss.
Ss : [{not(equal_sets(b,bb))}, {(equalsets(b,bb))}] Applying Extension to S;.

Se : [{}] Applying Resolution to Ss.

In the above example, the proof was found entirely by the application of basic rules. The
next example illustrates the operation of U rules; the empty clause is derived by application
of U rules as well as basic rules. The theorem being proved is that the union of a set, a, with
itself is the set, a, itself (¢ = a U a). Following are the 10 input clauses — 9 axioms (6 of
them being identical to the ones in the previous example, the other 3 being axioms defining
set union), and the conjecture clause, which is the negation of the theorem. The predicates
member, subset, equal_sets and union have been replaced by the symbols €, C, =, and U,
respectively, for better readibility. Axioms 1-6 are the same as in the preceding example.
Axioms 7-9 express set union in terms of set membership. Axiom 7 states that VAV BVY C
(A€dBAAZC)= (A¢gBUQCQC),ie, if an element is a member of neither of two sets then
the element is not a member of the union of the two sets. Axioms 8 and 9 state that V AV
BYCAeB=>AcBuUC,andVAVBYCA €B = A e CU B, respectively, i.e., an
element being a member of a set implies that the element is also a member of the union of
the set with another set, where the union operation is commutative. The conjecture clause
states the negation of the theorem to be proved.

% membership_in_subsets, axiom 1.
{not(X € Y), not(Y C Z), X € Z}.

% subsets_axioml, axiom 2.
{YCZg(Y, Z) e Y}

% subsets_axiom2, axiom 3.
{not(g(Y, Z) € Z), Y C Z}.

% set_equal_sets_are_subsetsl, axiom 4.

{not(Y =72), Y C Z}.

% set_equal_sets_are_subsets2, axiom 5.
{not(Z =Y), Y C Z}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

% subsets_are_set_equal_sets, axiom 6.
{not(X C Y), not(Y C X), Y = X}.

% union_definition_1, axiom 7.
{not(A €e BUC), A € B, A € C}.

% union_definition_2, axiom 8.
{not(A € B), A€ BU C}.

% union_definition_3, axiom 9.

{not(A € B), A € C UB}.

% conjecture.
{not(a = a U a)}.

Following are the successive ascending sequences resulting from the application of the
OSHL-U rules. The input clause on which a U rule is applied is specified when a U clause
is added to the ascending sequence. Also, the eligible literal in a U clause in the ascending
sequence is highlighted.

So: []
51 : [{not(a = a U a)}| (Extension, conjecture clause)

Sy : [{not(a = a U a)}, {not(a U a C a), not(a C aUa), a=aU a}.] (Case Anal-

ysis, axiom 6)

S; : [{not(a = a U a)}, {not(a U a C a), not(a C a U a), a =a U a}, {not(g(a U
a, a) € a), aU a C a}] (UR Resolution, axiom 3)

Sy : [{not(a = a U a)}, {not(a U a C a), not(a C a U a), a = a U a}, {not(g(a U
a,a) €a),aUaCa},{aUaCa, g(aUa,a) € auU a}] (UR Resolution, axiom 2)

Ss : [{not(a = a U a)}, {not(a U a C a), not(a C a U a), a=aU a}, {not(g(a U

a,a) ca),aUacCa},{aUaCa,g(aUa,a)c aUa}, {not(g(aU a, a) € aU a), g(a
U a, a) € a}.] (Unit Filter, axiom 7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Sg : [{not(a = a U a)}, {not(a U a C a), not(a C aU a), a=aU a}, {not(g(a U
a,a) €a),aUacCa},{aUacC a, g(aUa,a) € a}] (U Resolution)

S7 : [{not(a = a U a)}, {not(a U a C a), not(a CaUa),a=aUa},{aUac
a}.] (U Resolution)

Sg : [{not(a = a U a)}, {not(a C a U a), a = a U a}.] (U Resolution)

Sy : [{not(a = a U a)}, {not(a C aU a),a=aUa}, {aCaUa, g(a aUa)c
a}] (UR Resolution, axiom 2)

510 : [{not(a = a U a)}, {not(a CaUa),a=aUa}, {aCaUa,g(aalUa)c
a}, {not(g(a, a U a) € a U a), a C a U a}] (UR Resolution, axiom 3)

S11 ¢ [{not(a = a U a)}, {not(a CaUa),a=aUa},{acala,glaala)c
a}, {not(g(a, a U a) € a U a),a C aUa}, {not(g(a, aU a) € a), g(a, aU a) € aU a}]
(Unit Filter, axiom 7)

S12 : [{not(a = a U a)}, {not(a CaUa),a=aUa},{aCcaUa, g(aauUa)c
a}, {a C aU a, not(g(a, a U a) € a)}] (U Resolution)

S13 : [{not(a = a U a)}, {not(a C a U a), a=aUa}, {a ¢ aU a}] (U Resolu-
tion)

S14 : [{not(a = a U a)}, {a = a U a}| (U Resolution)

S15 ¢ [{}] (Resolution)

The initial interpretation used is a trivial all-positive interpretation, that is, every predicate
is interpreted to “true”. Initially, the ascending sequence is empty. The conjecture clause is
added to the sequence by Extension. Then Case Analysis is applied on an instance of axiom
6, obtained by using the substitution {X — a U a, Y — a}. Each of the literals, not{(a U a
C a), not(a C a U a), is removed by applying a sequence of UR Resolution and Unit Filter;
the remaining literal is removed by Resolution with the conjecture clause, generating the
empty clause. Note that the two cases being removed with U rules correspond to proving the
subgoals, eUa Caand a CaUa.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

3.4 Heuristics for Proof Search

The OSHL-U search for instances is guided by additional heuristics that are not used
in OSHL. The heuristics are designed to provide better control over which instances are
generated. These are described now.

3.4.1 Delta Size Measure for Clause Instances

Selection of a minimal instance that will subsequently be used to refine the current in-
terpretation is a crucial part of the OSHL strategy. However, because a syntactic measure
is used to compute the order of instances, it is possible for the selection to become biased
in favor of syntactically small input clauses. The delta size measure used by OSHL-U for

computing order of clause instances tries to overcome this bias.

OSHL uses a size-lexical order on clauses, when looking for the minimal clause instance.
The size of a clause is the size of the largest literal in the clause. The size of a literal
is computed using the number of symbols occuring in the literal. A symbol is a variable,
constant, function name or predicate name. A symbol contributes a count of 1 to the size
of a literal for every occurence of the symbol in the literal. The sum of the size measures
contributed by all the symbols occuring in a literal is the size of the literal. So, the literals L, =
at(City, Leaves, Time, Situation) and L = at(City, Leaves, s(Time), wait_at(Situation))
have sizes of 5 and 7, respectively, and the clause C' = {L;, Ly} has a size of 7, which is the
maximum of the sizes of the literals in C.

In the OSHL algorithm, a ground clause is generated by instantiating variables in an
input clause. Therefore, size of a ground clause depends on the size of the uninstantiated
input clause as well as the size of ground terms used to instantiate variables. This biases the
instance selection in favor of input clauses that are smaller to begin with. For example, the
minimum size for Ly is 7, while that for L; is 5. So no matter how L- is instantiated, its
size as computed by OSHL will be greater than all instances of L; of sizes 5 and 6. Instance

selection, therefore, is biased in favor of L; over L.

OSHL-U does not use the absolute symbol size measure that OSHL uses for ground
clauses. Instead, OSHL-U uses a relative measure, the increment in the size of a clause due to
instantiation. This measure is referred to as the delta size of the ground clause. If the symbol
size measure of an uninstantiated clause C is s¢ and the symbol size of an instance C§ is
scg, then the delta size measure for CO is (s¢g - s¢). Note that a ground clause generated
by OSHL-U is an instance of an input clause, so it is possible to compute the delta size for

every ground clause.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

The delta size used by OSHL-U for minimal instance selection is not affected by the
original sizes of the uninstantiated input clauses. This is helpful in that it does not bias
the minimal instance selection in favor of ground clauses which are instances of small input
clauses. Otherwise, many instances of a small input clause may be generated before generating

any instance of a larger input clause.

3.4.2 Favoring Ground Terms in Generating Minimal Instances

The measure of syntactic size for terms in OSHL-U favors ground terms occurring in the
non-axiom input clauses, that is, in the hypotheses and conjecture clauses. This is different
than in OSHL. In OSHL, the size of a term is simply the number of symbol occurences. Each
symbol contributes 1 to the syntactic size of a term for each time it occurs in the term. OSHL-
U regards the syntactic size of a ground term occuring in a non-axiom input clause as 1. In
other words, such a term is treated like a single symbol. For example, in the commutativity
theorem for set union, the terms union(a, b) and union(b, a) occuring in the conjecture clause
are ground terms; in OSHL-U each of these terms is considered to be of syntactic size 1,
though the size of each would be 3 in OSHL. In this way, OSHL-U tries to ensure that bigger
ground terms that occur in the theorem do not bias the minimal clause selection against
selection of instances containing such terms. Otherwise, it is possible that many syntactically
smaller clauses not containing any of these terms would be generated before larger clauses
containing these terms. Being part of the theorem, these terms are likely to be essential to
the proof. By generating clauses containing such terms earlier, OSHL-U avoids having to
search first through many smaller clauses that do not contain such terms.

3.4.3 Relevance Distance from Input Clauses

Another heuristic used in minimal ground instance generation in the OSHL-U implemen-
tation is how closely a clause is related to some input clause. We call this the relevance of a
clause to the set of input clauses. The OSHL algorithm generates clauses with smaller abso-
lute size before those with larger. So OSHL searches proofs with short clauses before proofs
with longer clauses. This favors short clauses in the proof search even if a longer clause could
be linked more closely to an input clause. The idea behind using relevance in OSHL-U is to
consider instances more closely related to input clauses before considering instances that are
further away. Relevance allows the generation of longer instances that are linked closely to
the input clauses before shorter instances that are not as closely linked.

Relevance is estimated as follows. Each fully instantiated clause is associated with a non-
negative integer representing its relevance to the set of input clauses. This number is called
the relevance distance. A smaller relevance distance indicates that an instance is more closely

related to the set of input clauses. In selecting instances, the sum of the relevance distance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

and the delta size is considered and a smaller sum is favored. So when two instances have
the same delta size, the one with a smaller relevance number is favored. Note also that it is
possible to generate an instance with a larger delta size before one with a smaller delta size,
if the former is more closely related to the set of input clauses. Note that relevance distance
does not need to be computed for clauses which are not ground

Relevance distances are computed in the following way. Every input clause is assigned
a relevance distance of zero, though these could also be assigned other values by the user,
if desired. Also, every eligible literal under the initial interpretation is assigned a relevance
distance of zero. An instance of an input clause, none of whose literals are complements of
eligible literals, has the same relevance distance as the input clause itself, that is, zero. The
relevance distance of an eligible literal is the same as the relevance distance of the clause
from which it is selected. A literal that is a complement of an eligible literal is assigned the
relevance distance of that eligible literal incremented by 1. The relevance distance of a clause,
several of whose literals are complements of eligible literals, is the smallest of the relevance
distances of all such literals.

3.5 Implementation

OSHL-U is implemented in Ocaml on Linux. The actual implementation of the rules in
OSHL-U has additional restrictions; for example, the clause instance C8 used for extension
must be a minimal clause contradicting a minimal interpretation of E where clauses and
interpretations are ordered in a specified way. The semantics provide the initial interpretation.
The current interpretation is a refinement of the initial interpretation. A selected instance is
always falsified by the current interpretation. The choice of semantics, therefore, influences the
selection of the minimal instance. We describe the implementation of the OSHL algorithm for
instantiating instances — the G algorithm for computing the minimal ground instance —
which implements the rule of extension. It requires disunification and eligibility substitution,
which we will define and discuss next. For a more detailed treatment of the OSHL core
algorithm, see [PZ00]. We also discuss how the semantics are used in computing the minimal

instance.

3.5.1 Disunification

Suppose that M is a ground literal and L is an arbitrary literal having M as an instance.
Define M//L, the prefizes of M relative to L, to be the smallest set of literals such that the

following conditions are met:

e LeM//L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

e if L' € M//L and z is the leftmost variable in L', then L'{z — f(z1,...,7,)} € M//L,
where 71, ..., Tn are distinct variables that do not appear in L', and where f is chosen

so that M is an instance of L'{z — f(z1,...,%n)}.

For example, if L is P(z, f(y)) and M is P(a, f(f(b))) and the set of function (a constant is
a function that takes no arguments) symbols is {a, b, f}, then M//L is { P(z, f(v)), P(a, f(¥)),

P(a, f(f(¥))), P(a, f(f(D))}-

Suppose that M is a ground literal and L is an arbitrary literal having M as an instance.
Then dis2(L, M) is the set of literals of the form L'{z « f(1,...,2n)} such that L' e M//L,
L' is not ground, z is the leftmost variable of L', z1,...,z, are distinct variables that do not
appear in L', and such that f is chosen so that M is not an instance of L' {x « f(z1,...,zn)}.
For L and M in the above example, dis2(L, M) is {P(a, f(a)), P(a, f(b)), P(a, f(f(a))),

P(a, f(f(f(z1)))}-

Note that no two distinct elements of dis2(L, M) unify with each other. The number of
elements in dis2(L, M) is polynomial in || L|| +||M|| and the symbol sizes of these elements are
also polynomial in ||L|| + ||M||. The algorithm dis(L, £) given below computes disunification
of a literal L and a set of ground literals £, that is, it creates a list S of instances of L such
that an instance L' of L is not in the set £ of ground literals iff L’ is an instance of some
element of §. While dis2 computes the disunification of a literal with a ground literal, dis
computes the disunification of a literal with a set of ground literals. So dis2 serves as a helper
procedure to dis. To instantiate a literal of a clause in OSHL, we need the disunification of the
literal with the set of eligible literals. That is done by the procedure dis shown in Algorithm
5 where L is the literal and £ is the set of ground literals.

Algorithm 5 Disunification of a literal L with a set of ground literals £
procedure dis(L, £)

1: if £ is empty then

2. return ({L})
3: else
4: let L; be an element of £
5. if L and L; do not unify then
6: return dis(L, £ — {L1})
7. elseif L =L; then
8: return {}
9: else
10: return (U{dis(M, £ —{L1}) : M € dis2(L, L1)})
11: end if
12: end if
end dis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

If the set of ground literals £ is empty (line 1), then there are no literals to disunify with
and the procedure returns the set containing the literal L. Otherwise, the procedure considers
an element L; of £ (line 4). If L; does not unify with L (line 5), then the procedure recurses
on the remaining set of ground literals £—{L;} (line 6). Otherwise, if L and L; are equivalent
(line 7), ie., L is equivalent to an eligible literal already, then L cannot be disunified with
the set of eligible literals so the empty set is returned 8. Otherwise, the disunifier of the
literal L with the literal Ly, dis2(L, L1), is computed; then each element of dis2(L, L;) is
disunified recursively with the remaining eligible literals £ — {L;} and the union of all these
disunification sets is returned (line 10).

In most cases, L and L; will not unify, and the size of the set returned will be small.
On recursive calls of dis, the literal L becomes larger, making unification even less likely. So
the procedure is efficient in practice. As will be seen in the GT" algorithm, the search for
instances is bounded by size, i.e., we are looking for instances of a certain size s; this means
that if ||L|| > s then dis(L, £) can return the empty set. This also makes the procedure
efficient. Also, all the elements of dis are not computed at once, but they can be computed

one by one, stopping as soon as an instance has been found by Gg’i".

3.5.2 Eligibility Substitution

An eligibility subsitution for a clause C and a set {L1, ..., L,} of eligible literals is a most
general substitution o such that for every literal L in C, L is an instance of some literal in
dis(L, {L1,...,Ln}) U {-Ly,...,~Lp}.

Ground instances can be obtained by first instantiating clauses of S, the set of input
clauses, with eligibility substitutions and then instantiating to a ground clause that contradicts
the current interpretation. Suppose the current interpretation is Io[L; ... L,]. Recall that
this means the initial interpretation was Iy and the current interpretation is identical to I
except that it satisfies the eligible literals Li,...,L,. Then we try to unify each literal L
of an input clause C with an element of dis(L, {L1,...,L,}) U {=L1,...,-L,} and then
further instantiate the literals in Ca — {—Ly,...,nL,} so that they contradict the initial
interpretation, Iy. The eligibility substitution « replaces some or all variables of C by ground
terms making the latter instantiation easier. For a fixed S, the number of literals in C is
bounded, so computing eligibility substitution can be done in polynomial time.

3.5.3 The Instantiation Algorithm

The procedure G'S’-‘i” shown in Algorithm 6 computes the set U of all minimal terms of
increasing sizes. The set U is used to compute a set V of instances in S which contradict

current interpretation I, and a minimal element of V' is returned. If there are a finite number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

of terms and no instance of S contradicting I is found, then G’é‘i" halts and returns “fail”.
But if there are infinitely many terms and no instance of S contradicting I is found, then

G will not terminate. >, is the lexicographic ordering.

Algorithm 6 The G%*[I] procedure to compute a ground instance minimal in >, that
contradicts interpretation

procedure GT'"[I]
1: let {L1,...,Ly} be such that I is Ig[L; ... Ly]

2: {Compute minimal terms relative to I and >z}

3: U « {} {U is the set of minimal terms}

4: s = 0 {Initialize size of instance to 0}

5. repeat

6: Unew < {} {Unew is the set of minimal terms of size s}

7. Uy « {terms f(s1,...,8;) of size s: s; € U, f € F}

8: for all terms ¢ in U in order of >, do

9: if there does not exist v in U U Upey such that t?0 = 40 then

10: Unew < Unew U {t}

11: end if

12: end for

13: if Upey is empty then

14: return “fail”

15: end if

16: U — UUUpew

171V «—{} //V is a set of instances of S

18: for Ce Sdo

19: for all eligibility substitutions a of C do

20: D — Ca—{-Li,...,~Ly}

21: for all 3 of the form {z; « t1,...,Zm < tn} where z1,...,,, are the variables
in D and t;,...,t, are in U do

22: if Ip = DG then

23: V—Vu{CapB}

24: end if

25: end for

26: end for

27 end for

28: s« s+ 1 {Increment size of ground instance for next iteration}
29: until V is not empty

30: return an element of V that is minimal in the clause ordering

end G

Given the set of input clauses S, the G?in procedure computes a >, minimal instance
that contradicts a given interpretation I as follows. Suppose L, Lo, ..., L, are the eligible
literals (line 1). U, the set of minimal terms, is initialized to the empty set (line 3). Instances

are generated in order of increasing size so the size, s, is initialized to 0 (line 4). The loop in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

lines 5 - 29 is repeated till an instance is found. Uy, maintains the set of minimal terms of the
current size s, and it is initialized to be empty (line 6). All terms of size s that are functions
or symbols are stored in U; (line 7). For every term in Uj, where terms are considered in
increasing order of >, (line 8), if there is not already a term in U or Uy, that is equivalent
to the term under the initial interpretation (line 9), then the term is added to the set of terms
Unew of size s (line 10). If there are no terms of the current size, i.e., Upey, is empty (line 13),
then the GF™™ procedure fails (line 14); otherwise all the terms in Unew are addeed to the
set of minimal terms U (line 16). V maintains a set of instances of the input clauses S that
are False under the current interpretation and is initialized to be empty (line 17). For every
clause C' in the input set S, every eligibility substitution « is considered in turn — if D is the
clause resulting from applying eligibility substitution « to C' and removing any literals that
are negated eligible literals (line 20), then every possible way of substituting the variables in
D with a minimal term from U is looked at (line 21). If any such substitution gives a clause
that is False under the initial interpretation (line 22), then an instance that is False under the
current interpretation is obtained by applying this substitution to the eligible substitution of
C (line 23). To see why this instance, denoted by Ca on line 23, is False under the current
interpretation, consider that this instance, with any instance of an eligible literal removed
from it, is False under the initial interpretation. The current interpretation differs from the
initial interpretation only in the set of eligible literals, the eligible literals being True in the
current interpretation. A negated eligible literal is False under the current intpretation, so
the instance Caf is False under the current interpretation. The instance is added to the set,
V, of instances that are False under the current intepretation. If no instance can be added to
V,i.e., V is empty, then the loop (line 5 - line 29) is repeated for a larger size of instances (line
28), till some instance can be added to V. The instance finally returned by the procedure is

that which is minimal in the clause ordering among all the instances in V' (line 30).

In the earlier Prolog implementation of OSHL, G7*" was implemented differently. Some
of the literals of an input clause C were unified with complements of eligible literals and the
remaining variables of C' were replaced with minimal or non-minimal terms in such a way

that no new eligible literals are created and so that the resulting clause contradicts I.

3.5.4 How Semantics Are Used

Semantics are used in the test for Iy = D3 in the GZ"" procedure. The OSHL-U imple-
mentation allows the user to specify an all-positive or an all-negative initital semantics, which
we refer to as trivial semantics, or to specify a non-trivial semantics. The trivial semantics are
provided by the system. To specify a non-trivial semantics, the user writes Ocaml functions
that define the domain elements and evaluate the functions and predicates in the problem. If
the user specifies only a partial semantics, the functions and predicates not specified by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

user will be mapped, by default, to those of one of the trivial semantics. When a user-specified
semantics is supplied, then it will be used to evaluate the truth value of the ground clause
Dg.

3.5.5 Proofchecker

Once a proof is detected by the empty clause being added to the ascending sequence,
the proof is reconstructed from the stored clauses by tracing back through the sequence of
rule applications. The proof of the empty clause thus generated is printed in a form that
is easy to read by a human. Each statement in the proof is either an instance of an input
clause or the result of resolution of two statements. In addition, the implementation includes
a proofchecker which verifies the soundness of a proof found by OSHL-U by checking for the
soundness of each inference step in the proof. Following is an example of a proof generated
by OSHL-U for problem SET001-1 from the SET (set theory) domain of the TPTP. The
problem and the derivation of the proof was given in the first example of OSHL-U operation.
Each line in the proof consists of a clause which is either an instance of an input clause or
obtained by resolving two other clauses, each of which is indented one tab beyond the current
clause. In this example, the empty clause on line 1 is obtained by resolving an instance of
input clause (7) shown on line 2 and the clause shown on line 3. The clause on line 3, in
turn, is obtained by resolving the two clauses on lines 4 and 5, the former being an instance
of input clause 8 and the latter being the result of resolving the two clauses on lines 6 and
7. The clause on line 6 is an instance of the input clause 9, while the clause on line 7 is the
result of resolving the two clauses on lines 8 and 9, which are instances of input clauses 1 and
4, respectively. Thus, the proof gives a chain of inference that derives the empty clause from
a set of instances of the input clauses.

L{}

2. input clause (7) { equalsets(b bb) }

3. { not(equal_sets(b bb)) }

4. input clause (8) { member(element_of b b) }

5 { not(equal sets(b bb)), not(member(element of b b)) }
6 input clause (9) { not(member(element_of b bb)) }
7

{ not(equal_sets(b bb)), not(member(element_of_b b)),
member(element_of b bb) }

8. input clause (1) { member(element_of_b Superset),
not(member(element_of_b b)), not(subset(b Superset)) }
9. input clause (4) { not(equal_sets(b bb)),

subset(b bb) }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Experimental Evaluation of OSHL-U
Efficiency

The efficiency of OSHL-U was measured experimentally. The execution times were com-
pared to those obtained with a prior implementation of OSHL, as well as to those obtained
with a resolution prover, Otter. Also, the improvement in performance due to the unit rules
was studied by running OSHL-U both with and without the unit rules.

4.1 Execution Time as Measure of Efficiency

People are interested in obtaining proofs using automated theorem provers quickly, or at
least within a reasonable amount of time. Therefore, execution time is an important measure
of an automated theorem prover’s efficiency. Of course, a reasonable amount of time could
vary from a few minutes to several months depending on the kind of problem, or even many

years for open problems of a profound nature.

A common way of measuring theorem prover efficiency, as done in the CASC competitions
[SS98b) is to set a limit on the maximum CPU time a theorem prover is allowed to execute
on each problem and then determine how many proofs are obtained by the theorem prover.
The experimental results in this chapter were obtained in a similar way, using 30 seconds as
the CPU time limit on each problem. The justification of selecting a time limit of 30 seconds
is that this makes it practical to obtain results on the set of TPTP problems within a few
days. We also repeated the runs on a smaller set of problems with a maximum time limit of
5 minutes on each problem.

The set of problems used to conduct these tests are from the TPTP version 2.5.0 [SS98a).
The problems are categorized into 30 domains and statistics are provided on the difficulty
ratings for each problem. The difficulty rating is represented by a number lying between 0 and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

1. A lower rating indicates an easier problem, based on the performances of all the provers
that have been tested on the TPTP. Because many of the provers that have been tested on
these problems are resolution-based provers, the ratings are a good reflection of how hard a
problem is for resolution-based strategies.

4.2 Experimental Results

The results described here were obtained with a restricted implementation of the unit
filtering rule, in that the unit clauses used in unit resolution were propositional. The unit
filtering rule provides a way of interfacing OSHL-U with a conventional resolution prover,
because resolvents from the conventional prover can be added to the set of clauses used for
filtering. But we have not conducted any experiments to test this capability.

The data presented was obtained by executing OSHL-U on the TPTP v2.5.0 problems,
using trivial semantics, i.e., either an initial interpretation that interpretes all predicates to
positive (all-positive) or an initial interpretation that interpretes all predicates to negative
(all-negative). Therefore, OSHL-U was running as a purely syntactic prover, without semantic
guidance. Otter [McC94], an efficient resolution prover, was run on the TPTP v2.5.0 problems
in the autonomous mode with a CPU time limit of 30 seconds on each problem.

4.2.1 Execution Time

The execution times reported are on a Pentium 4 1.7 GHz processor with 256 MB of
memory running Linux. Execution times on individual problems that were proved by both
OSHL-U and Otter are shown in the scatter plot of Figure 4.1. Summary statistics of the
number of proofs obtained by OSHL-U and Otter is shown in Table 4.1 and Table 4.2.
Table 4.1 compares the number of proofs obtained by OSHL-U and Otter breaking up the
problem sets into problems of TPTP rating zero and problems of TPTP rating greater than
zero. Table 4.2 compares the number of proofs obtained by OSHL-U and Otter based on the
problems being Horn or non-Horn, and further based on TPTP rating within the non-Horn

category.

Since OSHL-U is not designed to detect satisfiability, we collected the results on only
the problems which are not known to be satisfiable. Out of 4417 such problems, OSHL-U
obtained 900 proofs and Otter obtained 1697 proofs.

Comparing the total number of proofs Otter and OSHL-U obtained, we note that the num-

ber of problems OSHL-U proves is more than half the number of problems that Otter proves.
This is interesting, especially considering that OSHL-U has no special rules for equality, does

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Dom. | #Prob. #Otter Proofs #OSHL-U Proofs
Total | Rating=0 | Rating>0 | Total | Rating=0 | Rating>0

ALG 9 1 1 0 0 0 0
ANA 10 0 0 0 0 0 0
BOO 64 8 6 2 0 0 0
CAT 52 25 18 7 8 7 1
COL 150 59 54 5 2 1 1
COM 9 6 6 0 3 3 0
FLD 143 28 17 1 42 18 24
GEO 187 99 50 49 64 28 36
GRA 1 1 1 0 1 1 0
GRP 503 112 105 7 52 36 16
HEN 64 43 18 25 11 11 0
HWC 4 1 0 1 0, 0 0
HwWV 73 48 33 15 23 18 5
KRS 9 9 9 0 9 8 1
LAT 48 6 5 1 1 1 0
LCL 422 131 103 28 15 15 0
LDA 23 0 0 0 0 0 0
MGT 134 86 68 18 46 30 16
MSC 11 9 7 2 4 2 2
NLP 43 33 29 4 4 4 0
NUM 63 18 13 5 11 10 1
PLA 30 5 5 0 1 1 0
PUZ 58 46 38 8 40 28 12
RNG 82 22 6 16 5 2 3
ROB 23 1 1 0 0 0 0
SET 604 168 128 40 213 107 106
SWC 713 145 27 118 0 0 0
SwWv 13 1 10 1 11 10 1
SYN 866 570 537 33 332 277 55
TOP 6 6 4 2 2 2 0
Total 4417 1697 1299 398 900 620 280

Table 4.1: Number of proofs found by Otter and OSHL-U compared by TPTP ratings of

problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Dom. | # of #Otter Proofs #OSHL-U Proofs
Prob. | Total | H non-Horn Total | H non-Horn
Total | R=0 | R>0 Total | R=0 | R>0
ALG 9 1 0 1 1 0 0 0 0 0 0
ANA 10 0 0 0 0 0 0 0 0 0 0
BOO 64 8 8 0 0 0 0 0 0 0 0
CAT 52 25 20 5 5 0 8 4 4 4 0
COL 150 59 59 0 0 0 2 1 1 1 0
COM 9 6 3 3 3 0 3 2 1 1 0
FLD 143 28 0 28 17 11 42 0 42 18 24
GEO 187 99 2 97 49 48 64 1 63 27 36
GRA 1 1 0 1 1 0 1 0 1 1 0
GRP 503 112 72 40 36 4 52 22 30 30 0
HEN 64 43 43 0 0 0 11 11 0 0 0
HWC 4 1 1 0 0 0 0 0 0 0 0
HWV 73 48 0 48 33 15 23 0 23 18 5
KRS 9 9 1 8 8 0 9 1 8 8 0
LAT 48 6 6 0 0 0 1 1 0 0 0
LCL 422 131 | 127 4 4 0 15 11 4 4 0
LDA 23 0 0 0 0 0 0 0 0 0 0
MGT 134 86 26 60 42 18 46 4 42 28 14
MSC 11 9 1 8 6 2 4 1 3 1 2
NLP 43 33 8 25 21 4 4 0 4 4 0
NUM 63 18 7 11 9 2 11 2 9 8 1
PLA 30 5 4 1 1 0 1 0 1 1 0
PUZ 58 46 14 32 29 3 40 6 34 34 0
RNG 82 22 19 3 0 3 5 3 2 0 2
ROB 23 1 1 0 0 0 0 0 0 0 0
SET 604 168 2 166 126 40 213 2 211 114 97
SWC 713 145 0 145 27 118 0 0 0 0 0
SWV 13 11 2 9 1 8 11 2 9 9 0
SYN 866 570 | 338 | 232 205 27 332 212 | 120 107 13
TOP 6 6 0 6 5 1 2 0 2 2 0
Total 4417 1697 | 764 | 933 636 297 900 | 281 619 401 218

Table 4.2: Number of proofs found by Otter and OSHL-U compared over Horn and non-Horn
problems. H denotes Horn. R denotes TPTP rating.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

Scatter plot of execution times with Otter and OSHL-U on individual problems
30 L | L] T L] L)

25 b . -

20 3

10F * ’ e

Execution time with OSHL-U (seconds)

.
o to
5k, ’ .
S
oh&‘"'-"z‘r e e . e 4 " N
0 5 10 15 20 25 30
Execution time with Otter (seconds)

Figure 4.1: Scatter plot showing execution times with OSHL-U and Otter on individual
problems that were proved by both provers.

not use term rewriting, and lacks efficient data structure support. This is the first time to our
knowledge that a propositional style prover, not performing unification on non-propositional
literals has demonstrated performance comparable to that of a resolution prover. In the do-
mains of Field Theory (FLD) and Set Theory (SET), OSHL-U obtains a greater number of
proofs than Otter does. So OSHL-U already performs better than Otter on these categories

of problems, despite the implementation lacking a similar level of sophistication as Otter.

We looked at how many of the problems solved by the provers were Horn and non-Horn and
further among the non-Horn problems, how many problems had a TPTP rating greater than
0. A higher rating indicates a harder problem, based on the performances of all the provers
that were tested on the TPTP. Most of the provers tested use resolution-based strategies, so
the TPTP rating is a good reflection of how hard a problem is for resolution. On non-Horn
problems of rating greater than 0, OSHL-U obtains 218 proofs while Otter obtains 297 proofs.
On all problems of rating higher than 0, OSHL-U obtains 280 proofs and Otter obtains 398
proofs. OSHL-U was not designed for Horn problems and does not necessarily perform better
than resolution on this kind of problem. These results suggest that the performance of OSHL-
U relative to resolution improves as the problems become harder for resolution and non-Horn.

Thus for harder and non-Horn problems, OSHL-U could become superior to resolution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

The 30 second time limit was chosen somewhat arbitrarily to enable us to collect a set of
results on all the problems within a few days. To get an idea of how the number of proofs
might increase with longer execution times, the OSHL-U runs were repeated on problems
from the Field Theory (FLD) domain, allowing a longer maximum time limit of 300 seconds.
A total of 57 proofs were obtained. Compared to 42 proofs within the 30 second limit, this is
a 35 per cent increase.

4.2.2 Performance Improvement from Unit Rules

The number of proofs obtained with the OSHL-U implementation by turning off the unit
rules is shown in Table 4.3. OSHL-U when run without any of the unit rules was able to get
238 proofs compared to 900 proofs with the unit rules. This clearly indicates a performance
improvement of OSHL due to the unit rules. It should be noted that OSHL was originally
designed to be used only in conjunction with semantic models that provide guidance in proof
search, and lacks any syntactic guidance. Considering that these tests were run with trivial
semantics that do not necessarily provide useful guidance in looking for proofs, the low number
of proofs obtained without the unit rules is not surprising. This also illustrates the inefliciency
problem of directly enumerating the Herbrand set in searching for a proof. The performance
improvement with the unit rules, seen as an increase in the number of proofs, shows that the

unit rules are indeed able to provide better syntactic guidance in proof search.

4.2.3 OSHL-U Performance Compared to Other OSHL Enhancements

Table 4.4 provides summary comparisons of the results of OSHL-U to those of OSHL
tested earlier with several other enhancements. Results of running OSHL with replacement
rules and definition detection on 6 problems in SET were presented in [PZ99] and corresponds
to the first row of results in Table 4.4.

Adnan Yahya collected the results of running OSHL with the Set Theory flag on 79
problems in SET. The Set Theory flag turned on facilities such as replacement rule with
definition detection [PZ99], special rules for the equality predicate and term rewriting. This
is shown in the second row in Table 4.4.

OSHL has also been used to obtain proofs with the help of semantic models on a subset
of problems from the Set Theory (SET) domain [Fun01]. The three methods that were tried
correspond to the last three rows in Table 4.4. The third row in Table 4.4 represents
running OSHL with standard semantics, i.e., a natural semantics that models all the Set
Theory axioms in the problem input. The fourth row corresponds to using OSHL with a
feature called Modified Size Measure (MSM), which assigns a size of 0 to terms that are likely
to be used in a proof; the modified size of 0 ensures that literals containing these terms are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

Dom. | #Prob. | #Proofs with all rules | #Proofs without unit rules
ALG 9 0 0
ANA 10 0 0
BOO 64 0 0
CAT 52 8 4
COL 150 2 1
COM 9 3 0
FLD 143 42 2
GEO 187 64 1
GRA 1 1 1
GRP 503 52 7
HEN 64 11 5
HWC 4 0 0
HWV 73 23 0
KRS 9 9 5
LAT 48 1 1
LCL 422 15 11
LDA 23 0 0
MGT 134 46 8
MSC 11 4 1
NLP 43 4 0
NUM 63 11 3
PLA 30 1 0
PUZ 58 40 14
RNG 82 5 1
ROB 23 0 0
SET 604 213 27
SWC 713 0 0
SWv 13 11 4
SYN 866 332 141
TOP 6 2 1
Total 4417 900 238

Table 4.3: Number of proofs found by OSHL-U with and without U rules.

Method #Prob. | #proofs by method | #proofs by
compared to compared to OSHL-U
Oshl+repl. rules 6 6 6
Oshl+set theory flag 79 54 79
Oshl+std. semantics 88 41 88
Oshl+MSM 88 78 88
Oshl+MSM with atoms 88 83 88

Table 4.4: Number of proofs found by OSHL-U and other methods used with OSHL such as
replacement rules for definition expansion, methods that work well with set theory problems
(definition expansion, special rules for equality predicate, term rewriting), use of semantic
guidance and Modified Size Measure (MSM) to favor specific terms and atoms in the proof.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

favored in generating instances over other literals. The fifth row corresponds to using OSHL
with Modified Size Measure as well as explicitly specifying atoms (i.e., literals without a sign
specified) to be used and atoms to be avoided in the proof search. Use of these methods
involved extensive input from the human user and, in many cases, significant help from the
user in the form of specifying to the prover what terms to use and what terms to avoid in a
proof. Such input from the user relies on the fact that the user already knows how to prove
the problem or has an idea of what subgoals to prove in order to obtain the final proof.

These results show that on the problems tested, OSHL-U demonstrates performance that is
as good as that of OSHL with replacement rule and definition detection and better than that
of OSHL with equality and term rewriting, and of OSHL in conjunction with some semantic
guidance. Of course, this comparison is only of a limited nature because these other methods
were specific to small subsets of the TPTP and were not tested exhaustively on all the TPTP
problems that OSHL-U was tested on.

4.3 Conclusions

The results in this chapter show that the use of unit rules in OSHL-U causes an improve-
ment in performance over not using these rules. The number of proofs obtained in 30 second
time limited runs on each problem increases more than four times with the unit rules. Also,
the total number of proofs obtained with OSHL-U, a propositional style prover not perform-
ing unification on non-propositional literals is in the range of the number of proofs obtained
with a respectable resolution prover, Otter. The performance of OSHL-U relative to Otter is
better on non-Horn problems and problems with higher TPTP difficulty rating than on Horn
problems and problems that are less difficult. OSHL-U already performs better than Otter
on the TPTP domains of Field Theory and Set Theory which contain many problems that
are highly non-Horn.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Refinements to the OSHL-U

Implementation

Several refinements were made to the OSHL-U implementation in order to improve its
performance. Some of these increased the number of proofs in some of the TPTP domains
but decreased the number of proofs in others. The total number of proofs over all the problem
domains was used to determine if the refinement was effective and should be retained in the
implementation or discarded. The total number of proofs obtained in 30 seconds on each
problem was increased to 1,027 as a result of the refinements. Without these refinements, the
number of proofs was 900. So this is about a 14% increase in the number of proofs. We also
describe an attempted modification to the Unit Filtering rule that increased the number of
proofs on some problem domains but decreased the number of proofs overall; this modification
was, therefore, discarded.

5.1 Effective Refinements to OSHL-U Implementation

5.1.1 Avoid Repeating Computations in Unit Filter and UR

In the more general case of Unit Filter, unification of a literal in a clause with the com-
plement of a unit clause is allowed. In this case, the literal can be viewed as one which is not
unified with a literal in FE and, therefore, an instance of this literal could potentially be the
result of a UR Resolution.

The implementation, however, uses filtering, which is a special case of the Unit Filter rule as
described in Chapter 3. Some preliminary tests showed that Filtering performs just as well as
or better than Unit Filter. Filtering does not involve unification between non-ground literals.
The only cases to consider in Filtering are where D is obtainable from C € S by zero or more
unit resolutions with unit clauses in S, such that these unit clauses are ground. However, we

include the complements of the ground unit clauses in S among the set E at initialization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

In implementing this rule, therefore, we only need to check if for some substitution 8 of the
variables in a clause C' € S, C8 C E. The UR Resolution rule is similar to the Filtering rule.
In UR Resolution, we search for C' € S and for a substitution 8 such that for a ground literal
Le€C8, L¢EandCOC EU{L}). While for Filtering, we try to match every literal in a
clause to a literal in E, for UR Resolution, we try to match every but one literal in a clause
to a literal in E.

Much of the computation in Filtering is repeated in UR Resolution. The repeated com-
putation was avoided in the OSHL-U implementation by computing and storing the literals
resulting from UR Resolution when performing Filtering. This way, Filtering incurs a very
small computation overhead but UR Resolution is practically free.

5.1.2 Pruning Invalid Paths from the Search

Any literal in a clause could potentially give the resulting literal from a UR Resolution,
and could therefore be regarded as being skipped over. However, only one literal in the
clause being considered can be skipped over. Unifying with a non-ground unit clause for
Unit Filtering can be considered as skipping over a literal for UR Resolution. If a literal has
already been skipped over or unified with a non-ground unit clause, then for UR Resolution
to apply, no subsequent literal can be skipped over or unified with a non-ground unit clause.

This observation helps to prune away useless computation paths for UR Resolution.

5.1.3 Order of Input Clauses

When performing UR resolution and filtering, the input clauses are considered longest first.
This makes the computation independent of the order in which the clauses are given in the
input. It turned out that this also increased the number of proofs obtained. We noted also,
that considering the input clauses in the reverse order, i.e., shortest first, led to a decrease in
the number of proofs.

5.1.4 Potential Unification

UR Resolution, and Unit Filtering use unification, which is computationally expensive.
Before attempting unification, we can eliminate some of the eligible literals and unit clauses,
which will not succeed in unifying with the literal under consideration. This is referred to as

potential unification and it reduces the computational cost for unification.
There is a limited number of predicate symbols appearing in a problem. A literal L could

potentially unify with an eligible literal or unit clause if the predicate symbol of L appears in

at least one eligible literal or unit clause with the opposite sign as that in L. So, for instance,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

if the predicate symbol Subset appears in L with a positive sign, then the only eligible literals
and unit clauses that need to be considered for unification with L are those containing Subset

with a negative sign.

Potential unification also helps to prevent some clauses from being considered at all for
Unit Filtering or UR Resolution. Suppose C' is an input clause. If two or more literals of C
are not potentially unifiable, then C can not be used for Unit Filtering or UR Resolution. If
exactly one literal of C is not potentially unifiable, then C' cannot be used for Unit Filtering
but it can be used for UR Resolution; in this case we know in advance which literal of C
should be “skipped over”. If all literals of C are potentially unifiable, then C' can be used for
both UR Resolution and Unit Filtering; in this case, we have to skip over each literal in turn

during UR Resolution, even if the literal is unifiable.

5.1.5 Potential Unification With Counting of Unifiers

The idea of potential unification was further refined by considering the number of potential
unifiers for every literal appearing in an input clause. Unification on literals in a clause was

attempted in the order of “literal with fewer potential unifiers” first.

5.1.6 Incremental Size Bound on U Rules

Computation time for applying U rules depends on the size bound on clauses used. The
computation times increase exponentially with larger size bounds. If we can get a success on
the U rules with a small size bound then it might be a lot faster than starting right away
with the maximum size bound. So we use a small initial value for the size bound on U rules.
If applying U rules fails, we try to apply the U rules again with the size bound incremented
by 1, until the maximum size bound is exceeded or the U rules succeed. This is essentially

the same idea as that of a depth-first search with iterative deepening.

This modification did not change the number of proofs on TPTP problems, but it was
kept anyway.

5.1.7 Instantiating Negative Literals Before Positive Literals

In instantiating literals of a clause to generate a ground instance, if two literals L and M
have the same number of variables, and L is positive and M is negative, then M is instantiated
first. The reason is that typical interpretations make most literals false and there are only a
small number of literals that are true. Thus fewer instances of M would contradict the initial
interpretation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

This modification did not change the number of proofs on TPTP problems, but it was
kept anyway.

5.2 Refinements That Were Discarded

5.2.1 Unit Filtering on Units Generated by Non-ground UR Resolution

We refined the Unit Filtering rule by expanding the input set with unit clauses generated
from the input clauses. Let S be the set of input clauses. Then the new unit clauses are
generated when the proof search starts by non-ground UR resolution on S. Let U be the set
of these unit clauses. The Unit Filtering rule, as originally intended, applied only to S. But
we modified it so it applies to clauses in S U U. When applying Unit Filtering to a clause
{L1} in U, we try to find an eligible literal L, that unifies with —L;; if this happens, Unit
Filtering on {L;} succeeds.

One problem with this modified Unit Filtering is that when the input set has clauses with
many literals, generating the set U could take a very long time. So the process of generating
new unit clauses by UR resolution was restricted to those clauses with no more than a fixed
small number of literals. We experimentally found 4 to be a good bound for most TPTP
problems, so we restricted the UR resolution step to input clauses with 4 or less literals.

This modification increased the number of proofs on some domains but decreased the

number of proofs overall. So it was discarded.

5.3 Results

The execution times on individual problems that were proved by both OSHL-U and Otter
are shown in the scatter plot of Figure 5.1. Tables 5.2 and 5.1 show the revised statistics on
numbers of proofs in different categories with the OSHL-U implementation that includes all

the effective modifications described.

The effective modifications increased the total number of proofs by 14.11% from 900
before the changes to 1027 after. To analyze the increase in number of proofs by category of
problems, we further looked at the percentage increase in number of proofs in the categories
of Horn problems, non-Horn problems, and non-Horn problems with TPTP rating greater
than 0. These are summarized in Table 5.3. As seen in these numbers, the greatest increase
— 21.56% — is for the category of non-Horn problems of rating greater than 0; these are
presumably hard for resolution and the kind of problems we are most interested in solving

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

with OSHL-U. The increase in number of proofs non-Horn problems overall is 15.67% and
the increase in number of proofs on Horn problems is 10.68%.

The modifications increased the number of proofs in 10 out of 30 problem domains. The
most significant increases were observed in problems from Software Computation (SWC),
Field Theory (FLD) and Syntactic Category (SYN).

A decrease in the number of proofs was observed in 6 problem domains. On the remaining
14 problem domains, the modifications did not change the number of proofs.

Scatter plot of execution times with Otter and OSHL-U on individual problems
35 ¥ Ll L L) L]

30 ¢ . -
2} . .

20 }+ -

Execution time with OSHL-U (seconds)

.
AR 90 < 2 2 st 4 " N

5 10 15 20 25 30
Execution time with Otter (seconds)

Figure 5.1: Scatter plot showing execution times with the refined implementation of OSHL-U
and with Otter on individual problems that were proved by both provers.

5.4 Conclusion

The optimizations increased the number of proofs by 14.11% overall. The number of
proofs increased in all categories of problems. However, the greatest improvement was in the
category of non-Horn problems of rating greater than 0; here the number of proofs increased
by 21.56%. So the modifications were effective in addressing the category of problems we are

most interested in because these are presumably hard for resolution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Dom. | #Prob. #Otter Proofs #OSHL-U Proofs
Total | Rating=0 | Rating>0 | Total | Rating=0 | Rating>0

ALG 9 1 1 0 1 1 0
ANA 10 0 0 0 0 0 0
BOO 64 8 6 2 1 1 0
CAT 52 25 18 7 13 11 2
COL 150 59 54 5 1 1 0
COM 9 6 6 0 3 3 0
FLD 143 28 17 11 68 21 47
GEO 187 99 50 49 67 27 40
GRA 1 1 1 0 1 1 0
GRP 503 112 105 7 48 47 1
HEN 64 43 18 25 11 11 0
HWC 4 1 0 1 0 0 0
HwWV 73 48 33 15 26 20 6
KRS 9 9 9 0 6 6 0
LAT 48 6 5 1 1 1 0
LCL 422 131 103 28 13 13 0
LDA 23 0 0 0 0 0 0
MGT 134 86 68 18 38 27 11
MSC 11 9 7 2 4 2 2
NLP 43 33 29 4 4 4 0
NUM 63 18 13 5 13 12 1
PLA 30 5 5 0 0 0 0
PUZ 58 46 38 8 40 34 6
RNG 82 22 6 16 5 2 3
ROB 23 1 1 0 0 0 0
SET 604 168 128 40 211 118 93
SWC 713 145 27 118 66 22 44
SwWv 13 11 10 1 11 10 1
SYN 866 570 537 33 373 357 16
TOP 6 6 4 2 2 2 0
Total 4417 1697 1299 398 1027 754 273

Table 5.1: Number of proofs found by Otter and OSHL-U compared by TPTP ratings of
problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

Dom. | #Prob. #Otter Proofs #OSHL-U Proofs
Total | H non-Horn Total | H non-Horn
total | R=0 | R>0 total | R=0 | R>0

ALG 9 1 0 1 1 0 1 0 1 1 0
ANA 10 0 0 0 0 0 0 0 0 0 0
BOO 64 8 8 0 0 0 1 1 0 0 0
CAT 52 25 20 5 5 0 13 9 4 4 0
COL 150 59 59 0 0 0 1 1 0 0 0
COM 9 6 3 3 3 0 3 2 1 1 0
FLD 143 28 0 28 17 11 68 0 68 21 47
GEO 187 99 2 97 49 48 67 1 66 26 40
GRA 1 1 0 1 1 0 1 0 1 1 0
GRP 503 112 72 40 36 4 48 25 23 22 1
HEN 64 43 43 0 0 0 11 11 0 0 0
HWC 4 1 1 0 0 0 0 0 0 0 0
HWV 73 48 0 48 33 15 26 0 26 20 6
KRS 9 9 1 8 8 0 6 1 5 5 0
LAT 48 6 6 0 0 0 1 1 0 0 0
LCL 422 131 | 127 4 4 0 13 9 4 4 0
LDA 23 0 0 0 0 0 0 0 0 0 0
MGT 134 86 26 60 42 18 38 2 36 25 11
MSC 11 9 1 8 6 2 4 1 3 1 2
NLP 43 33 8 25 4 21 4 0 4 4 0
NUM 63 18 7 11 9 2 13 2 11 10 1
PLA 30 5 4 1 1 0 0 0 0 0 0
PUZ 58 46 14 32 29 3 40 8 32 28 4
RNG 82 22 19 3 0 3 5 3 2 0 2
ROB 23 1 1 0 0 0 0 0 0 0 0
SET 604 168 2 166 126 40 211 2 209 116 93
SWC 713 145 0 145 27 118 66 0 66 22 44
SWv 13 11 2 9 8 1 11 2 9 8 1
SYN 866 570 | 338 | 232 205 27 373 | 230 (143 130 13
TOP 6 6 0 6 5 1 2 0 2 2 0
Total 4417 1697 | 764 | 933 636 297 1027 | 311 | 716 451 265

Table 5.2: Number of proofs found by Otter and OSHL-U compared over Horn and non-Horn
problems. H denotes Horn. R denotes rating.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Problem Category

Total | Horn | non-Horn | non-Horn, Rating>0
#proofs without
refinement 900 281 619 218
#proofs with
refinement 1027 311 716 265
% increase 14.11 | 10.68 15.67 21.56

Table 5.3: Increase in number of proofs on different categories of problems due to refinements
in OSHL-U implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Space Efficiency of OSHL-U Strategy and

Resolution

6.1 Search Space Efficiency

Execution time is undoubtedly a practical measure of performance for automated theorem
proving systems. However, it is not entirely a fair or accurate way of comparing the underlying
strategies that different theorem proving systems are based on. This is because execution time
depends not only on the strategy but also on how well it is implemented in the theorem proving
system; execution time is affected by factors such as the programming language the prover is
implemented in, use of efficient data structures, and optimizations performed in implementing
the strategy. However, the size of the search space explored by a theorem prover before it
finds a proof is not affected by such implementation issues. So search space is a more accurate
measure of how efficient a theorem proving strategy is and provides a way of comparing the

strategies of different theorem proving systems, independent of their implementation.

6.2 Importance of Storage Space for Theorem Prover Effi-

ciency

For some very hard problems, storage space for inferences can be an important consid-
eration, too. A prover that runs out of space will fail, no matter how fast it is. But a
space-efficient method can run for a very long time without exhausting memory, so it could
find a proof by running longer.

6.3 Space Efficiency Comparison of OSHL-U and Otter

OSHL-U and Otter strategies are compared here using search spaces and storage spaces.
In order to limit the comparison to one between the strategies of OSHL-U and Otter, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Scatter plot of number of clauses generated by Otter and OSHL-U on individual problems on a log scale
10000 T T

1000

100 |

N
10 p [R

S T 0

P

#clauses generated by OSHL-U

0.1 < i i 1 1 1
0.1 1 10 100 1000 10000 100000
#clauses generated by Otter

Figure 6.1: Scatter plot showing number of clauses generated by OSHL-U against that of
Otter on 827 problems. The plot is on a logarithmic scale. The diagonal line (x=y) is shown
for comparison. OSHL-U is better on 497 problems, Otter is better on 319 problems, and the
provers are the same on 11 problems.

not their implementation, we compared the number of clauses generated by each prover on
the same problem, that is, how much of the search space is explored by a prover strategy
before it finds a proof. Also, we look at how the storage requirements for Otter and OSHL-U
compare using the number of clauses stored by the provers.

We compared on all problems for which we had data for both provers, i.e., problems
for which both Otter and OSHL-U succeeded in obtaining proofs within 30 seconds. The
OSHL-U statistics used here are from runs with all-negative trivial semantics for all but 32
problems on which proofs were obtained with all-positive trivial semantics. The total number
of problems tested on was 4417, which is all the problems in TPTP v2.5.0 that do not have
a known status of “satisfiable”. These results are from the runs on the optimized OSHL-U
implementation described in Chapter 5. The resolution prover Otter v3.3 [McC94| was also

run on the same problems.

We further looked at whether each of these problems is Horn or non-Horn and compared
the search spaces and storage spaces on these two categories. We also classified the problems
by their TPTP difficulty ratings — rating zero or rating greater than zero — and compared
the search spaces on these categories.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Ratio of Clauses Generated Frequency
by Otter to OSHL-U of Occurence
[0,0.01) 48
[0.01,0.1) 18
[0.1,1) 253
1 11
(1,10) 350
[10,100) 117
[100,1000) 30

Table 6.1: Distribution of the ratio of the number of clauses generated by Otter to that
generated by OSHL-U on all individual problems that are proved by both theorem provers.
A ratio > 1 means Otter generated more clauses; a ratio < 1 means OSHL-U generated more
clauses; a ratio = 1 means Otter and OSHL-U generated the same number of clauses.

All | Horn | non-Horn | R=0 | R>0 | non-Horn,R>0
Clauses on Otter 708 90 618 357 | 351 348
Clauses on OSHL-U 104 39 65 78 26 26
Ratio(Otter/OSHL-U) 6.8 2.3 9.5 46| 135 13.5

Table 6.2: Total number of clauses, in thousands, generated by Otter and OSHL-U over
problems for which both provers find a proof and the ratio of the number of clauses generated
by Otter to that generated by OSHL-U. R denotes TPTP rating.

The number of clauses generated by OSHL-U against that generated by Otter for every
problem on which both provers obtained a proof are shown in the scatter plot in Fig. 6.1.
The plot is shown on a logarithmic scale. The frequency distribution of the ratios of the
number of clauses generated by Otter to that generated by OSHL-U is shown in Table. 6.1.
A ratio of 1 means the two provers have the same search space, a ratio less than 1 means
Otter has a smaller search space than OSHL-U, and a ratio greater than 1 means OSHL-U
has a smaller search space than Otter. Otter has a smaller search space than OSHL-U on
319 problems, OSHL-U has a smaller search space than Otter on 497 problems, and the two
provers have the same search space on 11 problems. On the 319 problems on which Otter
has a smaller search space than OSHL-U, the average number of clauses generated by Otter
is 39.48 and that for OSHL-U is 98.96. On the 497 problems where OSHL-U has a smaller
search space, the average number of clauses generated by OSHL-U is 145.36 and that for
Otter is 1398.84. The best ratio in favor of Otter is 0 on 44 of the 48 problems shown in the
[0, 0.01) range of Table. 6.1; the largest number of clauses that OSHL-U generates on any of
these 44 problems is 191. The best ratio in favor of OSHL-U is 794.3. The number of clauses
generated on the problem for which the difference between Otter and OSHL-U is highest, that
is, Otter generated fewer clauses by the largest margin is 94 on Otter and 1377 on OSHL-U.
The number of clauses generated on the problem for which OSHL-U generated fewer clauses
than Otter by the largest margin is 24829 on Otter and 41 on OSHL-U. These statistics shows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

Domain All | Horn nH =0 | R>0 | nH, R>0
ALG 27.2 -1 272 272 - -
CAT 34 2.9 6.9 1.5 7.8 -
COL 2.0 2.0 - 2.0 - -
CoOM 0.9 0.6 1.5 0.9 - -
FLD 117.4 -1 117.4 | 117.2 | 117.5 117.5
GEO 44.2 03| 133 | 53.3| 53.3 53.3
GRA 0.9 - 0.9 0.9 - -
GRP 15.3 51 17.7| 141 | 289 28.9
HEN 19.7 19.7 -| 19.7 - -
HWV 3.1 - 3.1 4.1 1.0 1.0
KRS 7.2 0.5 7.5 7.2 - -
LAT 0.0 0.0 - 0.0 - -
LCL 2.1 2.9 0.3 2.1 - -
MGT 2.3 0.4 2.3 1.9 3.7 3.7
MSC 10.8 -| 10.8 29 207 20.7
NLP 1.9 - 1.9 1.9 - -
NUM 5.9 1.6 6.1 5.9 - -
PUZ 5.3 6.4 5.2 5.2 5.7 2.2
RNG 2209 | 617.8 | 423 | 6178 | 423 42.3
SET 6.2 1.3 6.2 4.9 | 14.0 10.7
SWv 4.4 0.1 4.5 4.2 7.7 7.7
SYN 2.3 1.8 6.8 2.2 29.5 29.5
TOP 1.6 - 1.6 1.6 - -

Table 6.3: Ratio of total search space of Otter to that of OSHL-U on problems for which both
provers find a proof. R denotes TPTP rating. nH denotes non-Horn.

that OSHL-U has smaller search spaces on many problems; and that when Otter generates
less clauses than OSHL-U, it does so by not a very large factor, except when Otter generates
0 clauses. It should be noted that in reporting the number of clauses generated, Otter counts
'new’ clauses generated only and does not count clauses from the input set of clauses; but
OSHL-U includes such clauses, too, in its count. Also, Otter uses hyper-resolution which
performs several resolutions in one step without generating the intermediate resolvents. This

explains how Otter obtains some proofs by generating 0 clauses.

The sum of the number of clauses generated for all the problems that both provers can
prove in 30 seconds, over all domains and the ratio of the sums are shown in Table 6.2.
The ratio of the numbers of clauses generated for Otter to those for OSHL-U on individual
domains is shown in Table 6.3. The ratios were determined not only for all problems, but
also for only those of the problems that are Horn, those that are non-Horn, those that have
a rating equal to 0, those that have a rating greater than 0, and those that are non-Horn
as well as have a rating greater than 0. A ratio could not be computed when there were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Scatter plot of number of clauses kept by Otter and OSHL-U on individual problems on a log scale

1000 g T T)l T
100 N E
2 :*
4 * .
I .o
[%]
(o]
z .
a 10 F L' E
2
»
o
]
| s .
g s o .
1k .
0.1 < N N i 2 1
0.1 1 10 100 1000 10000 100000

#clauses kept by Otter

Figure 6.2: Scatter plot showing number of clauses stored by OSHL-U against that of Otter
on individual problems. The plot is on a logarithmic scale. The diagonal line (x=y) is shown
for comparison. OSHL-U is better on 727 problems, Otter is better on 69 problems, and the
provers are the same on 31 problems.

no problems in a particular category; such cases are marked as “” in the table. OSHL-U
generates significantly fewer clauses than Otter does in many domains. It is possible that
Otter generates significantly fewer clauses than OSHL-U on some problems, but OSHL-U has
not run long enough for us to conclude this. The ratios indicate that OSHL-U performs best
in comparison to Otter for problems which are non-Horn and which have ratings greater than
0. On some domains, the number of proofs that both provers get are so few that such trends
are not observable. OSHL-U even seems to generate smaller search spaces than Otter for
Horn clauses on several domains.

In order to compare the space requirements of each prover, we compare the number of
clauses retained by each prover on each problem. For OSHL-U, this is the maximum of the
number of clauses in the ascending sequence at any point during execution. These comparisons
were done in a way similar to the comparison of search spaces, by using the number of clauses
stored by each prover. The number of clauses stored by OSHL-U is plotted against the number
of clauses stored by Otter in the scatter plot in Fig. 6.2 and the frequency of occurence of
their ratios are shown in Table 6.4. These show that on most of the problems compared,
Otter uses significantly more storage space than OSHL-U and on a few problems, it uses less
space than OSHL-U. The comparison of storage space used over all domains and on individual
domains is shown in Table 6.5 and Table 6.6. These data also indicate that OSHL-U stores

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

Ratio of Clauses Stored Frequency
by Otter to OSHL-U of Occurence
[0,0.01) 0
[0,0.1) 0
[0.1,1) 69
1 31
(1,10) 605
[10,100) 100
[100,1000) 22

Table 6.4: Distribution of the ratio of number of clauses stored by Otter to that stored by
OSHL-U on all individual problems that are proved by both provers. A ratio > 1 means
Otter stored more clauses; a ratio < 1 means OSHL-U stored more clauses; a ratio = 1 means
Otter and OSHL-U stored the same number of clauses.

All | Horn | non-Horn | R=0 | R>0 | non-Horn,R>0
Clauses on Otter 423 81 342 230 193 192
Clauses on OSHL-U 92 37 55 67 25 25
Ratio(Otter/OSHL-U) 4.6 2.2 6.2 34 7.7 7.7

Table 6.5: Total number of clauses, in thousands, stored by Otter and OSHL-U over problems
for which both provers find a proof and the ratio of the number of clauses stored by Otter to
that stored by OSHL-U. R denotes TPTP rating.

significantly fewer clauses than does Otter.

It should be noted that OSHL-U generates far fewer clauses per second than Otter, which
has a more sophisticated implementation. The tests were executed on a Pentium 4 1.7 GHz
processor with 256 MB of memory running Linux; on this computer, Otter can generate
clauses numbering in the order of 10000 per second, while OSHL-U can generate clauses
numbering in the order of 100 per second. OSHL-U is implemented in OCaml and Otter in
C. OSHL-U does not have term rewriting or any special support for handling equality; neither
does it have any special data structure support for speeding up the implementation. OSHL-U
was not designed for Horn problems and is not necessarily better than UR resolution on this
kind of problem. The results suggest that the performance of OSHL-U relative to resolution
improves as the problems become harder and non-Horn.

6.4 Conclusion

We compare the strategy of OSHL-U to Otter, independent of how efficiently the provers
are implemented. We consider the number of clauses generated as a good metric for compar-
ison. However, it should be noted that Otter uses term-rewriting which reduces the search
space on some problems. Otter generates in all over 6 times as many clauses as OSHL-U

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Domain | All | Horn | non-Horn | R=0 | R>0 | non-Horn, R>0
ALG 6.7 - 6.7 6.7 - -
CAT 2.4 2.0 4.0 1.9 3.7 -
COL 3.5 3.5 - 3.5 - -
COM 0.9 0.8 1.1 0.9 - -
FLD 88.2 - 88.2 | 1049 | 81.5 81.5
GEO 8.9 2.0 9.0 9.9 8.7 8.7
GRA 34 - 3.4 34 - -
GRP 4.1 4.7 3.9 3.7 6.4 6.4
HEN 4.2 4.2 - 4.2 - -
HWV 2.8 - 2.8 3.7 0.8 0.8
KRS 3.2 1.3 3.4 3.2 - -
LAT 5.7 5.7 - 5.7 - -
LCL 44 5.5 1.6 44 - -
MGT 2.4 1.6 24 2.5 2.0 2.0
MSC 10.1 - 10.1 1.2 | 205 20.5
NLP 1.9 - 1.9 1.9 - -
NUM 6.9 2.7 7.1 6.9 - -
PUZ 4.5 6.0 4.3 4.4 5.2 1.7
RNG 46.1 | 129.6 12.7 1 129.6 | 12.7 12.7
SET 4.4 2.9 4.4 33| 10.7 10.7
SWv 2.5 1.0 2.6 24 3.0 3.0
SYN 2.2 2.1 4.4 2.1 8.6 29.5
TOP 5.0 - 5.0 5.0 - -

Table 6.6: Ratio of total storage space of Otter to that of OSHL-U on problems for which
both provers find a proof. R denotes TPTP rating.

on the problems for which both found proofs, and on non-Horn problems, Otter generates
over 10 times as many clauses. On problems of rating greater than zero, Otter generates
over 13 times as many clauses overall. Otter stores about 4 times as many clauses on all
problems, twice as many clauses on Horn problems, and 6 times as many clauses on non-
Horn problems. It appears that the search space advantage of OSHL-U over Otter is greater
on non-Horn problems and on problems of rating greater than zero, which are presumably
harder for resolution. While it would be good to be able to also find proofs for those problems
that are already easy for resolution, our real interest is in finding more efficient strategies for
problems that are not. One of our objectives is to investigate the instance-based approach
on problems that are difficult for resolution provers, in an effort towards making automated
theorem provers, in general, stronger. It may be that OSHL-U has better asymptotic behav-
ior than resolution — this would imply that for problems that are harder for resolution, the
performance of OSHL-U would get better relative to Otter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Comparison of Theorem Provers with

Different Inference Rates

In this chapter, some techniques for comparing theorem provers with different rates of
inference generation are presented. These techniques make it possible to carry out such
comparisons independent of the inference rate and of the speed of the machines that the
provers execute on. Using these methods, we compare Otter and OSHL-U, which differ in
inference generation rates by several orders of magnitude. The results indicate that OSHL-U
is superior to Otter on certain kinds of problems, in spite of having a lower inference rate
than Otter.

7.1 Motivation

Often in automated reasoning work, comparisons have to be made between theorem
provers that differ greatly in their prover strategy, implementation and rates of generat-
ing inferences. For example, one theorem prover may be implemented in a low-level language
with efficient data structures while another theorem prover may be implemented in a higher
level language and with less efficient data structures. The former prover would generally have
a much higher inference generation rate. It is also possible that one theorem prover uses
inference strategies that are harder to implement than those of another prover. So even with
equivalent implementations, the rate of inference generation of the two provers could differ
considerably. All this makes it difficult to get an idea of the relative merits of the two provers
in a way that factors out the differences in their implementation. But it is important to have
an estimate of the relative powers of the two theorem provers so that one can decide whether
it would be worthwhile to spend additional effort optimizing the less well implemented prover.
There is, therefore, the need to have techniques that can compare theorem proving capabilities
independent of inference rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

7.2 Comparing Theorem Provers with Different Inference Rates

The functions defined in this section are useful in estimating theorem prover efficiency in
terms of time and space, while factoring out the differences in inference rate and efficiency of
the implementation.

Informally speaking, the time efficiency function measures the number of proofs obtained
with the number of inferences generated; the space efficiency function measures the total
amount of space used by a prover as a function of the number of proofs obtained. If a prover
were run in parallel on all the problems, then the number of proofs obtained with increasing
number of inferences is given by the time efficiency function. Similarly, if a prover were run
on all the problems in parallel, then the maximum total space requirement of the prover with
increasing number of proofs obtained is given by the space efficiency function. In computing
these functions, the assumption is that inferences are generated by a prover at the same rate
on all problems. This assumption may not be justified for problems on which the prover has
to do more computation in order to generate inferences.

7.2.1 Time Efficiency

Time efficiency for a prover P on a given set of problems can be defined by a function
fp: N — N, such that fp(n) is the number of proofs obtained after P is allowed to generate
n inferences on each problem in the set. This gives some idea of the asymptotic behavior
of the prover as n becomes large. fp can be determined experimentally for all values in the
range [0,n] by running the prover for n inferences on each problem and then computing fp
for values less than n. Ideally, this data would be collected by running a theorem prover for
some maximum number of inferences on every problem. However, mechanisms to run for a
bounded number of inferences are not provided in automated theorem proving systems, in
general. Rather some mechanism that allows a prover to be run for a bounded amount of
execution time is common. Assuming that inferences increase monotonically with time, the
data for computing the time-efficiency function can be collected by running for some large
execution time.

If two provers P; and P; were implemented equally well, then presumably their inference
rates would be identical, so the functions fp, and fp, would give a measure of the relative
numbers of proofs obtained by the two provers in the same execution time. It is possible
that one prover uses a method that is harder to implement, so that even wth equivalent
implementations, the inference rate of prover P, is r times slower than that of prover P;.
Then instead of comparing the functions fp,(n) and fp,(n), one could compare fp, (rn) and
fp,(n) to get an idea of their relative behavior. This could be done for more than one value

of r to see how close the inference rate of P» would have to be to that of P; in order for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

provers to have comparable behavior.

7.2.2 Space Efficiency

A similar method can be used to compare storage space requirements for theorem provers.
Let us define space efficiency for a prover P on a given set of problems by a function gp:
N — N as follows. Let t be the time taken by prover P to obtain n proofs. Then gp(n)
denotes the sum of space required to generate each proof, that is obtained within time ¢ by
P. As in the case of the time efficiency functions, one can compute gp,(n) and gp,(n) for
various values of n and estimate the relative behavior of two provers P; and P, in terms of
their space requirements as n becomes large. The functions gp, and gp, give us the space
the provers require as a function of the number of proofs generated. Thus, these serve as a
measure of how efficient the provers are at using space. Such a measure is also independent

of the inference rates of the provers.

The definitions of the f and g functions are not analogous. The space efficiency function
g adds space, but the time efficiency function f does not add times. This is because when

problems are run in parallel, space is additive but time is not.

7.3 Relative Efficiency of OSHL-U and Otter

OSHL-U is implemented in Ocaml and Otter in C with better data structures. These
differences are reflected in the provers’ different rates of inference. While Otter is capable of
generating clauses on the order of 10,000 per second, OSHL-U can generate clauses on the
order of 100 per second. OSHL-U could be improved by adding term rewriting, semantics,
special methods for handling equality, and better data structures. But to know whether such
effort would be worthwhile, there is a desire to compare the provers in a way that factors out

the differences in their inference rates.

Recall that we compared execution times to obtain proofs and the number of proofs
obtained within fixed CPU time limits; these are highly dependent on inference rate. We also
compared strategy using the search space and storage space requirements. However, even
this comparison is dependent on inference rate because Otter can generate more clauses than
OSHL-U in 30 seconds.

Based on the data from the tests with the theorem provers described in previous Chapters,
we compute the time efficiency and space efficiency functions for Otter and OSHL-U. These
give us an interesting way of looking at the two provers which have very different inference
rates. However, because the runs were limited by execution time and not by the number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

of inferences generated, the functions computed here are an approximation to the actual
functions. On the assumption that number of inferences generated increase monotonically

with execution time, these approximations still give us some estimate of the relative powers

of Otter and OSHL-U.

7.4 Time Efficiency

7.4.1 Comparison over all, Horn and non-Horn Problems

Comparison of time efficiency function f for Otter and OSHL

1200 T T T T T T
“oshi* B
ofter” ----pe
N
woF e e
800 } y 4
a2 e
g 600 4
£ i
400 .
200 § -
0 L 'l L L - L
] 100 200 300 400 500 600 700
#clauses generated

Figure 7.1: Comparison of time efficiency functions for Otter and OSHL-U on all problems.
X-axis represents the number of clauses generated and Y-axis represents the number of proofs
obtained.

The time efficiency functions for Otter and OSHL-U were computed on all the problems,
on only the Horn problems, and on only the non-Horn problems. Figure 7.1 shows the time
efficiency function computed for OSHL-U and Otter over all problems. This indicates that
Otter has slightly better performance than OSHL-U as evidenced by the higher curve for
fotter- Also, fouer shows a more steeply rising curve while fogp—v flattens out indicating
a saturation in the number of proofs.

Figure 7.2 and Figure 7.3 show the time efficiency functions for OSHL-U and Otter on

Horn problems and on non-Horn problems, respectively. On Horn problems, Otter is clearly
better than OSHL-U as seen by a significantly higher curve for fouer than for fospr—u.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Comparison of time efficiency function f for Otter and OSHL on Horn problems

500 T T T v o "oshlt ——
. otter” -------
“er e -]
) - ,«'-"' .
350 /'; |

#proofs

0 Y i I L 2

0 100 200 300 400 500 600
#clauses generated

Figure 7.2: Comparison of time efficiency functions for Otter and OSHL-U on Horn problems.
X-axis represents the number of clauses generated and Y-axis represents the number of proofs
obtained.

Otter performs better than OSHL-U on Horn problems more significantly than on all the
problems. On non-Horn problems, however, fosmrr—u has a significantly higher curve than
fotter indicating that OSHL-U performs much better than Otter.

Figure 7.1 showed foger and fosur—u to be comparable over the range plotted. However,
fotter seems to be rising while fogpr—v flattens out. If foier continues to rise in the same way
with increasing numbers of clauses generated, then this indicates that performance of Otter
gets asymptotically better than that of OSHL-U with greater number of inferences generated.
So we looked at fotser further. Because of the higher inference rate, Otter generated many
more inferences than OSHL-U within the 30 second CPU time limit; we used the data to
plot fotter over a larger range of inferences as shown in Figure 7.4. As this figure shows,
the number of proofs obtained by Otter seems to reach saturation as seen in the flattening
out of fotter. The runs are limited by CPU time and inference generation rates are not
strictly uniform on all problems; even with the same prover, inference generation rate is often
problem-class specific. Therefore, at the higher values in the range over which we plot the
function, fewer problems may have run for as many inferences so our approximation could
deviate from the ideal function by a larger amount. This could account for the levelling off
in the number of proofs, as observed in the case of Otter as well as of OSHL-U.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

Comparison of time efficiency function f for Otter and OSHL on non-Horn problems
700

600

500

400

#proofs

300

200

100

0 'y L 'l A AL
0 100 200 300 400 500 600
#clauses generated

Figure 7.3: Comparison of time efficiency functions for Otter and OSHL-U on non-Horn prob-
lems. X-axis represents the number of clauses generated and Y-axis represents the number of
proofs obtained.

7.4.2 Performance on Field Theory and Group Theory Categories

To further investigate the difference in behavior of the provers on Horn and non-Horn
problems, we allowed OSHL-U to run for 300 seconds on each of the problems in the TPTP
domains FLD(field theory) and GRP(group theory); this gives us a longer range over which to
compare foier and fosgr—u. These domains are of interest because all the problems in FLD
are non-Horn problems and many of the problems in GRP are Horn. Figure 7.5 shows foger
and fospr_uv on FLD problems. Figure 7.6 shows fouer and foswr—u on GRP problems.
These figures show OSHL-U to be superior on FLD problems and Otter to be superior on
GRP problems. These observations concur with our general observations on performance of
Otter and OSHL-U over all Horn and all non-Horn problems, in general.

7.5 Space Efficiency

We compare space efficiency of Otter and OSHL-U in a similar way as we did time efficiency.
Figure 7.7 shows the comparison of the space efficiency functions gosmr—v and goiter on all

problems. The overall space efficiency of the two provers is similar.

Figure 7.8 shows the comparison of space efficiencies of Otter and OSHL-U on Horn
problems. Otter uses much less space than OSHL-U on these problems. gouer and gosur—-u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

Time efficiency function f for Otter
2000 ¥ Ll L) T L] LJ L] Ld L)

1800 E

1600 b

1400 e

1200 | -

1000 | o

#proofs

800 F b
600 1
400 | b

200 p h

1 S ' A It Fl I ' 1

0
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
#clauses generated

Figure 7.4: Time efficiency function for Otter over a long range. X-axis represents the number
of clauses generated and Y-axis represents the number of proofs obtained.

have similar space efficiencies over smaller number of proofs; in fact, OSHL-U seems even
more space-efficient than Otter. However, space requirements of OSHL-U rise sharply with
increasing number of proofs, significantly exceeding that of Otter. Sometimes, a prover uses
extra clauses on “starting up”; this would show up as a sharp initial rise in the plot of the g
function, but a less sharp rise subsequently. In this case, we see a similar effect with gogter.
the gotter and gosur—u curves diverge rapidly with increasing number of proofs, meaning
that for generating the same number of proofs on Horn problems, the space requirements of
OSHL-U grow more and more rapidly compared to that of Otter as more and more proofs
are generated.

Figure 7.9 shows the comparison of space efficiencies of Otter and OSHL-U on non-Horn
problems. On these problems, Otter uses more and more space than OSHL-U with increasing
number of proofs. So OSHL-U is significantly more space-efficient than Otter on non-Horn
problems.

7.6 Discussion

The results obtained with the different techniques of comparing prover efficiency in this
and the previous Chapters may seem somewhat contradictory. The fact that Otter obtains
more proofs than OSHL-U within a fixed time limit, of course, favors Otter as a more time-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Time efficiency function f for Otter and OSHL on FLD problems

70 L] L) L T L] L] L] Ll T
. ; “otter” ————
I A "oshl” ------
l"r-r
60 - P - -
o
-
;
- P
50 e 1
g
;
-~
40 i 4
2 i
8 f
P~ P
3 .-‘
30 | H -
!
i
H
20 | H J
!
i
ol | -
i f
/ "—,—1—-'
! L 'l L L - 'l L L

0 100 200 300 400 500 600 700 800 900 1000
#clauses generated

Figure 7.5: Comparison of time efficiency functions for Otter and OSHL-U on FLD problems.
X-axis represents the number of clauses generated and Y-axis represents the number of proofs

obtained.

efficient prover. But this is hardly surprising considering that Otter generates inferences at
a much higher rate than does OSHL-U. However, the fact that OSHL-U is able to get more
than half the proofs even with a much lower inference rate tends to favor OSHL-U. Figure 7.1
suggests that Otter may rapidly outperform OSHL-U as inferences increase, but the flattening
out of fosuer in Figure 7.4 puts this in question. Also, OSHL-U obtains more proofs than
Otter on set theory(SET) and field theory(FLD) problems within the 30 second time limited
runs suggesting OSHL-U is already more time-efficient than Otter on non-Horn problems
without equality despite a lower inference rate than Otter. The relative number of proofs in
the Horn and non-Horn categories also supports that OSHL-U performs better in relation to
Otter on non-Horn problems. The comparison based on the time efficiency functions clearly
favors OSHL-U as being more time-efficient on non-Horn problems. The number of problems
the time efficiency functions were compared over is not very large, so this result can not be
conclusively generalized over all non-Horn problems. Based on the time efficiency functions,
Otter is favored as somewhat more time-efficient overall and especially on Horn problems.
These conclusions are further supported by looking at the time efficiency functions on two of
the TPTP domains — group theory and field theory. On field theory(FLD) problems, all of
which are non-Horn, OSHL-U appears to be more time-efficient, while on group theory(GRP)

problems, many of which are Horn, Otter appears to be more time-efficient.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

Time efficiency function f for Otter and OSHL on GRP problems

——

#proofs

0) - L.] L L L A
0 200 400 600 800 1000 1200 1400 1600
#clauses generated

Figure 7.6: Comparison of time efliciency functions for Otter and OSHL-U on GRP problems.
X-axis represents the number of clauses generated and Y-axis represents the number of proofs
obtained.

The count of the number of clauses stored favors OSHL-U as a more space-efficient prover.
The comparison based on the space efficiency functions also favors OSHL-U as being more

space-efficient overall and especially so on non-Horn problems.

These results show that it is not always easy to say which of two automated reasoning
methods is better overall. This is especially so when the implementations differ greatly in
inference rate and level of optimization. Using a single method of comparison could be
misleading, so several methods of comparison were used to get a more complete picture.
The time efficiency and space efficiency functions in this chapter provide some additional
techniques for carrying out such comparisons.

On some problems OSHL-U, uses much less space than Otter and many fewer inferences.
And, on some problems, OSHL-U even uses less time than Otter. These results are indepen-
dent of inference rate because a faster inference rate for OSHL-U will not affect space but
will only increase the time advantage of OSHL-U on some problems. Likewise, the fact that a
propositional prover not using true unification can prove over half of the problems that Otter
proves is a fact that is interesting in itself and is not invalidated by OSHL-U’s slow inference
rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Comparison of space efficiency function g for Otter and OSHL

120000 T T T T T
"otter”
Jpshi® ------
100000 4
80000 | 4
a
@
>
]
@
8 60000 L
2
B
e
40000 | 4
20000 <
0
0 200 400 600 800 1000 1200

Figure 7.7: Comparison of space efficiency of Otter and OSHL-U over all problems. X-axis
represents the number of proofs obtained and Y-axis represents the total number of clauses
kept.

The fact that OSHL-U uses much less space on some problems, and gets more proofs than
Otter in 30 seconds on FLD and SET, suggests that OSHL-U is already superior to resolution
on certain problems. This means that OSHL-U may already be a useful tool for research
and applications because it may be able to solve a class of problems that resolution cannot.
In support of this, OSHL-U proved at least one problem of TPTP rating 1.00, which means
that as of the date of the TPTP release used, no other prover could prove it. Of course,
further enhancements to OSHL-U such as term rewriting and semantics should only increase

its utility.

Even a prover that is slower overall and gets fewer proofs can still be superior on certain
kinds of problems and thus be a useful tool for research and applications. The results obtained
with OSHL-U and Otter indicate that propositional approaches to proving first-order prob-
lems are worthwhile, at least for certain kinds of problems. It is possible that a combination
of propositional and resolution techniques could be superior to using resolution alone.

7.7 Drawbacks of the Comparison Techniques

Otter has a simple control structure that makes it possible for us to consistently apply

a uniform strategy. However, there are some drawbacks to applying the f and g functions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

Comparison of space efficiency function g for Otter and OSHL on Horn problems

40000 L] ¥ L L L) L .
ofter” ——
oghl" -------
’
35000 | Ve T
30000 |- ’/’ .}
B 25000 t / A
£ /
3 20000 | 4
8 rd
k! -
g 15000 | / :
10000 R
5000 1

0 50 100 150 200 250 300 350

Figure 7.8: Comparison of space efficiency of Otter and OSHL-U over Horn problems. X-axis
represents the number of proofs obtained and Y-axis represents the total number of clauses
kept.

described to modern theorem provers. Modern provers are often run taking a fixed time
and/or space limit into consideration. For example, when there is little time left a modern
prover will often throw away large clauses because these are probably not going to contribute
to a proof that can be determined within the time limit. When this is the case, it is difficult
to determine how many inferences a prover takes to prove a result, because this may depend
on external parameters. Similar issues occur in space usage, particularly for provers that try
to keep all often-used information in fast memory and for provers that try to exploit all the
fast memory that is available to them, only getting rid of retained results when this memory
is exhausted.

Modern provers also are tuned to particular problem classes, and may exhibit significantly
better performance after tuning. Also, provers use strategy scheduling whereby the avail-
able time limit is sliced between several different strategies instead of using a single uniform
strategy throughout. These factors make it difficult to have a straightforward evaluation of

strategy in modern theorem provers using the efficiency functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

180000
160000
140000
120000
100000

80000

total #clauses kept

60000

40000

20000

Comparison of space efficiency function g for Otter and OSHL on non-Hom problems

T

T

—

“otter”
"oshl”

800

Figure 7.9: Comparison of space efficiency of Otter and OSHL-U over non-Horn problems.
X-axis represents the number of proofs obtained and Y-axis represents the total number of

clauses kept.

7.8 Conclusion

The time efficiency and space efficiency functions indicate that Otter is more time-efficient

and more space-efficient than OSHL-U on Horn problems, while OSHL-U is more time-efficient

and more space-efficient than Otter on non-Horn problems. This is observed on Horn and

non-Horn problems overall as well as in the individual domains of GRP and FLD, which

contain mostly Horn problems and mostly non-Horn problems, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Performance of OSHL-U on Problems

Requiring Definition Expansion

8.1 Introduction

An important problem in trying to prove a theorem is when to expand definitions [Wos88].
Definitions represent concepts in a theory and are important in many proofs. For example,
theorems in set theory can be proven largely by expanding definitions. However, expanding
definitions increases the search space a theorem prover has to look at and can degrade the
performance of the prover. Moreover, quantifiers are eliminated during translation to the
clause normal form, so it is difficult for clause form theorem provers for first-order logic to
replace a predicate by its definition when the definition involves new quantifiers. It was
shown by Bledsoe [Ble97] that clause form provers do not perform well on problems involving
definitions. Because the performance of a theorem prover can be affected by the way in
which it handles definitions, it is important to handle definitions well. In this Chapter, we
look at how proofs requiring definition expansion are handled by OSHL-U. We compare the
performance of OSHL-U on some set theory problems requiring definition expansion to that
of resolution, using the resolution theorem provers, Otter [McC90] and Vampire [RV02]. We
also compare to E-SETHEO [SW00|, a prover based on model elimination, and to DCTP
[LS01], which is an implementation of the disconnection calculus described in [Bil96]; DCTP
is an example of a prover based on propositional strategies. All these are leading modern
automated theorem provers that have outperformed many other provers in the most recent
CASC competitions; these provers also represent powerful provers that use several different
approaches. The implementation of OSHL-U is a general theorem prover and does not have
any special rules for definition detection or replacement. In that, it differs from the earlier
approach of [PZ99)] to using replacement rules for definitions with OSHL that only worked for
definition expansion. One of the unit rules implemented in OSHL-U, case analysis, simulates

definition expansion by case analysis of the literals in a clause.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

8.2 Survey of Approaches to Definition Expansion

Some of the approaches to handling definitions used in the past have involved special
rules for replacing predicates by their definitions. The method used in [PG86] was to replace
predicates by their definitions before translating to clause form, and then use a structure-
preserving clause form translation and a variant of locking resolution. In [PP91], replacement
rules were applied in a way similar to term rewriting rules, where the replacement rules
and their orientation were selected by the user. Both these methods were effective with
set theory problems. In [LP94|, replacement rules were selected by the user, with extra
features added for difficult proofs. This was improved upon in' CLIN-S [PC94] with automatic
selection of replacement rules for definition expansion and contraction. The RRTP theorem
prover [PP97] also used automatic selection of replacement rules, to perform different kinds
of replacement at the same time. It was highly efficient for problems involving concept
description languages [PP98]. An extensive study of replacement rules is given in [Par97],
and a variant of those rules was used in a fully automatic way in [PZ99]. In [GOP93|,
criteria are proposed for eliminating defined concepts. Definition expansion in a first-order
combinatory logic setting are considered in [DHK98], and a complete approach to higher-logic
logic in this way is given. However, approaches involving higher-order logic can explicitly
represent quantifiers in definitions. Quaife [Qua92] obtained many set theory proofs using
the general first-order prover Otter with special settings and particular clause weights to guide
the search. In [BA98], both the original as well as the expanded clauses are retained, and this
approach is incorporated into a higher-order theorem prover. Theorems with both universal
and existential quantifiers are handled in (BF91]; our case is simpler with only universally
quantified variables.

8.3 Experiments

We describe the results of our experiments on OSHL-U, Otter 3.3, Vampire 7.0, E-
SETHEQ and DCTP 1.3 with a set of problems in set theory. The sets of theorems used to
test the provers are as follows.

p1l left associative. S1US2U...USn = SnUS(n —1)U...US1 for various n, with
both sides associated to the left.

pl right associative. S1US2U...USn=SnUS(n—1)U...U S1 for various n, with
the left side associated to the left and the right side associated to the right.

p2 left associative. S1US2U...USn = S1US2U...USnUSIUS2U...U Sn for
various n, with both sides associated to the left.

p2 right associative. S1US2U...USn=S51US52U...USnUS1US2U...USn for

various n, with the left side associated to the left and the right side associated to the right.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

p3. SIUS2U...USn = S1US2U...U Sn for various n, with the left side associated to
the left and the right side associated to the right.

p4 left associative. S1NS2N..NSn=SnNS(n—1)N...NS1 for various n, with
both sides associated to the left.

p4 right associative. S1NS2N..NSn=SnNS(n—1)N...NS1 for various n, with
the left side associated to the left and the right side associated to the right.

p5 left associative. S1NS2N...NSn=51N82N...NSnNS1INS2N...N Sn for
various n, with both sides associated to the left.

p5 right associative. S1NS2N...NSn=S51NS2N...NSnNS1INS2N...N Sn for
various n, with the left side associated to the left and the right side associated to the right.

p6. S1NS2N...NSn=S51NS52N...NSn for various n, with the left side associated to
the left and the right side associated to the right.

For the problems, the definitions of C (subset), set equality, U (set union), and N (set

intersection) were supplied when needed. These definitions are as follows.

Subset {not(memb(E, A)), not(subset(A, B)), memb(E, B)}.
{ subset(A, B), memb(memb_of_1_not_of 2(A, B), A)}.
{not(memb(memb_of_1 not_of 2(A, B), B)), subset(A, B)}.

Equality {not(equal(A, B)), subset(A, B)}.
{not(equal(B, A)), subset(A, B)}.
{not(subset(A, B)), not(subset(B, A)), equal(B, A)}.

Union {not(memb(A, union(B, C))), memb(A, B), memb(A, C)}.
{not(memb(A, B)), memb(A, union(B, C))}.
{not(memb(A, B)), memb(A, union(C, B)}}.

Intersect {not(memb(C, intersect(A, B))), memb(C, A)}.
{not(memb(C, intersect(A, B))), memb(C, B)}.
{not(memb(C, A)), not(memb(C, B)), memb(C, intersect(A, B))}.

We ran the problems on OSHL-U, Vampire 7.0, Otter 3.3, E-SETHEO and DCTP 1.3.
We performed the Vampire, E-SETHEO and DCTP runs on SystemOnTPTP [SS98a] with
a time limit of 300 seconds on each problem for each prover. The command-line arguments
used for DCTP were ‘-negpref -complexity -fullrewrite -alternate -resisol’. Vampire and E-
SETHEO were run as they are provided by default on SystemOnTPTP without any command-
line arguments. Both Vampire and E-SETHEO use the technique of strategy scheduling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

[Tam97, SW99] whereby a problem is examined to identify several potential good strategies for
solving the problem, some CPU time is assigned to each strategy and then these strategies are
attempted one after the other in some order till a solution is found. We performed the Otter
and OSHL-U runs on a Pentium 4 1.7 GHz processor with 256 MB of memory running Linux.
We executed OSHL-U with all-positive trivial semantics (back chaining) with a timeout of
300 seconds on each problem. We performed the runs on Otter with several different settings
as follows, using 600 seconds on each problem for each setting.

¢ autonomous mode (“auto” flag) with only the negation of the theorem in the set of
support

o negative hyper-resolution (“neg_hyper res” flag) with only the negation of the theorem
in the set of support

o positive hyper-resolution (“hyper._res” flag) with all the positive clauses and the negation
of the theorem in the set of support

binary resolution with only the negation of the theorem in the set of support

Tables 8.1 - 8.10 show a comparison of the execution time, clauses generated and clauses
kept on OSHL-U, Otter and Vampire and the execution time on E-SETHEQ and DCTP on
the sets of problems described. Note that the set of problems, pl left associative (S1U S2 U
...USn=8nUS(n—-1)U...US1 with both sides associated to the left), starts at n = 2,
while the set of problems, p1 right associative (S1US2U...USn=SnUS(n—-1)U...US1
with the left side associated to the left and the right side associated to the right), starts at
n = 3. This is because the n = 2 case for pl right associative is the same as for pl left
associative. Similar reasoning applies to the sets, p2 left associative and p2 right associative,

p4 left associative and p4 right associative, and p5 left associative and p5 right associative.

The results with the different settings on Otter were similar; all the settings found the
proofs of the same problems in a short amount of time and timed out on the rest of the
problems. So only one set of results on Otter is reported, those obtained using negative
hyper-resolution and only the negation of the theorem in the set of support. Performance
of DCTP was similar to that of Otter. Vampire obtained a few more proofs than did Otter,
and E-SETHEO obtained some more proofs than Vampire. OSHL-U obtained all the proofs,
though on some of the problems that were also proved by other provers, OSHL-U used more
CPU time. The “nostats” entries in the Tables correspond to when Vampire timed out but

did not output any statistics of progress.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

n OSHL Otter Vampire E D
time clauses time clauses time clauses time | time
sec. | gen. { kept | sec. gen. | kept | sec. gen. | kept | sec. | sec.

21 0175 41 36 | 600+ 100303 | 24712 | 0.00 103 90 | 0.0 | 0.01

31 0.678 85 80 { 600+| 66753 | 31496 | 70.10{ 3606742 | 50382 | 0.3 | 3004+

4| 2107 | 141 | 136 | 600+| 47219 | 22119 | 300+| 25898955 | 68385 | 0.3 | 300+

5| 5.317 | 207 | 202 | 600+| 46054 | 20941 | 300+| 25298293 | 67864 | 2.6 | 300+

6 | 12.019 | 283 | 278 | 600+| 60247 | 22923 | 300+| 25612105 | 68457 | 300+| 300+

7 {38973 | 525 | 521 | 600+| 56299 | 19660 | 300+ 25641650 | 67977 | 300+| 300+

8 |77.941 | 663 | 659 | 600+| 53652 | 18932 | 300+| 25863117 | 68542 | 3004 300+

Table 8.1: Timing and clauses of OSHL, Otter, Vampire, E-SETHEO and DCTP on set of
theorems (p1 left associative), S1US2U...USn = SnUS(n—1)U...US1, with both sides
associated to the left, for various values of n. Time is in seconds. E denotes E-SETHEOQO, D
denotes DCTP. 600+ (300+) means that a proof was not found in 600 (300) seconds.

n OSHL Otter Vampire E D
time clauses time clauses time clauses time | time
sec. | gen. | kept | sec. gen. | kept | sec. gen. kept | sec. | sec.

3 0.718 | 128 | 123 | 600+ 67489 | 31366 | 15.0 111454 | 19427 { 0.2 | 24.94

4 2.593 | 280 | 275 | 600+| 47835 | 22418 | 250+| nostats | nostats | 0.3 | 300+

5 8.155 | 511] 506 | 6004 47291 | 21539 | 300+| 25888516 | 68531 | 6.5 | 300+

6| 22.835(834 | 829 | 600+ 58489 | 21778 | 300+| 25697427 | 68648 | 300+| 300+

71 82979 | 1380 | 1376 | 6004| 57085 | 19474 | 300+| 25882741 68756 | 300+| 300+

8 | 164.227 | 2086 | 2082 | 600+| 55813 | 18944 | 300+| 25939919 | 68790 | 300+| 300+

Table 8.2: Timing and clauses of OSHL, Otter, Vampire, E-SETHEQO and DCTP on set of
theorems (pl right associative), STUS2U...USn =SnUS(n—1)U...US1, with the left
side associated to the left and the right side associated to the right, for various values of n.
Time is in seconds. E denotes E-SETHEQ, D denotes DCTP. 600+ (300+) means that a
proof was not found in 600 (300) seconds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

n OSHL Otter Vampire E D
time clauses time clauses time clauses time | time
sec. | gen. | kept | sec. gen. | kept | sec. gen. kept { sec. | sec.

1 0.072 13 810.01 62 30 | 0.0 52 451 0.0 | 0.01

2 0.402 59 54 | 600+| 46693 | 21377 | 20.0 146848 | 21002 | 0.0 | 300+

3 1.829 [164 | 159 [600+ 51421 | 24494 | 300+| 26129081 | 68237 | 0.0 | 300+

4 686 | 340 | 335 | 600+ 41275 | 19441 | 300+| 25329011 | 68114 | 3.0 | 300+

5| 21720 | 600 | 595 | 600+| 41347 | 19075 | 300+| 25647655 | 68034 | 3004 300+

6 { 100.499 | 1161 { 1159 | 600+| 51921 | 19852 | 300+| 25835826 | 68478 | 300+| 300+

7 1207.163 | 1775 | 1771 | 600+| 51565 | 18214 | 3004-| nostats | nostats | 300+] 300+

Table 8.3: Timing and clauses of OSHL, Otter, Vampire, E-SETHEO and DCTP on set of
theorems (p2 left associative), SIUS2U...USn=S1US2U...USnUS1US2U...USn
with both sides associated to the left, for various values of n. Time is in seconds. E denotes
E-SETHEO, D denotes DCTP. 600+(300+) means that a proof was not found in 600(300)

seconds.

n OSHL Otter Vampire E D
time clauses time clauses time clauses time | time
sec. | gen. | kept | sec. gen. | kept | sec. gen. kept | sec. | sec.

2 0.414 53 48 | 600+] 46565 | 21553 | 20.0 184651 23354 | 0.0 | 300+

3 3.227 | 200 | 195 | 600+ 53923 | 25718 | 300+| 26095006 | 68624 | 35.0 | 300+

4 84741 335 330 | 600+| 44199 | 20624 | 300+| nostats | nostats | 300+| 300+

51 40.012 | 598 | 596 | 600+ 44254 | 20050 | 3004 25440159 | 67256 | 300+] 300+

6 | 112.260 | 1008 | 1004 | 600+ 58893 | 22325 | 300+| nostats | nostats | 300+| 300+

7 | 180.490 | 1279 | 1275 | 600+ 56941 | 19866 | 300+| nostats | nostats | 300+ 300+

Table 8.4: Timing and clauses of OSHL, Otter, Vampire, E-SETHEO and DCTP on set of
theorems (p2 right associative), S1US2U...USn = S1US2U...USnUS1US2U...USn, with
the left side associated to the left and the right side associated to the right, for various values
of n. Time is in seconds. E denotes E-SETHEO, D denotes DCTP. 600+ (300+) means that
a proof was not found in 600 (300) seconds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

n OSHL Otter Vampire E D
time clauses time clauses time clauses time | time
sec. | gen. | kept | sec. gen. kept | sec. gen. kept | sec. | sec.

2 | 0.043 6 310.01 9 510.0 29 25100 [0.0

3| 0876 | 105 | 100 | 600+ 67489 | 31366 | 65.0 | 2997523 | 47238 | 0.0 | 300+

4| 25891 176 | 171 | 600+| 47835 | 22418 | 300+! nostats | nostats | 0.0 | 3004

51 6.357 | 258 | 253 | 6004 46662 | 21228 | 300+ nostats | nostats | 0.0 | 300+

6 | 24.061 | 330 | 326 | 600+ 60927 | 23223 | 300+| nostats | nostats | 300+| 300+

7 | 35.338 | 436 | 432 | 600+ 58891 | 20602 | 300+| nostats | nostats | 300+| 300+

8 | 58.917 | 553 | 549 | 600+| 58237 | 20342 | 300+| nostats | nostats | 3004| 300+

Table 8.5: Timing and clauses of OSHL, Otter, Vampire, E-SETHEO and DCTP on set of
theorems (p3), SLUS2U...USn = S1US2U...U Sn with the left side associated to the
left and the right side associated to the right, for various values of n. Time is in seconds. E
denotes E-SETHEOQ, D denotes DCTP. 600+ (300+) means that a proof was not found in
600 (300) seconds.

n OSHL Otter Vampire E D
time clauses time clauses time clauses time | time
sec. | gen. | kept | sec. gen. | kept | sec. gen. kept | sec. | sec.

24 0.123 17 12 | 600+| 135461 | 8533 | 0.0 72 63 | 0.0 | 0.02

3| 0.462 75 70 | 600+| 125759 | 8786 | 40.1 227258 | 46580 | 0.0 | 300+

4| 1432 131 | 126 { 600+ 98812 | 6108 | 300+| 27382397 | 72420 | 0.0 | 300+

5] 3.584 | 197 | 192 | 6004} 97230 | 6124 | 300+| 27042468 | 72461 | 0.0 | 300+

6| 7.752 | 273 | 268 | 6004+ 93064 | 5881 | 300+| nostats | nostats | 110.1| 300+

7 1 15.026 | 359 | 354 | 600+| 90592 | 5741 | 300+| 27478904 | 72790 | 300+| 300+

8 | 45.355 | 635 | 631 | 6004 82116 | 5254 | 300+| nostats | nostats | 300+| 300+

Table 8.6: Timing and clauses of OSHL, Otter, Vampire, E-SETHEO and DCTP on set of
theorems (p4 left associative), S1NS2N..NSn=SnNS(n—-1)N...NS1 with both sides
associated to the left, for various values of n. Time is in seconds. E denotes E-SETHEOQ, D
denotes DCTP. 600+ (300+) means that a proof was not found in 600 (300) seconds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

n OSHL Otter Vampire E D
time clauses time clauses time clauses time | time
sec. | gen. | kept | sec. gen. | kept | sec. gen. kept | sec. | sec.

3 0.704 97 92 | 600+{ 108841 | 8266 | 0.0 3504 3141 | 0.0 | 300+

4 2424 | 258 | 253 | 600+| 93254 | 5853 | 25.0 119409 | 37380 | 0.0 | 300+

5 7458 | 524 | 519) 600+ 91392 | 5751 | 300+| nostats | nostats | 0.0 | 300+

6| 20826 919 (914 | 600+| 89726 | 5672 | 300+| nostats | nostats | 0.0 { 300+

7| 52.417 | 1466 | 1461 | 600+ 87254 | 5532 | 300+| 27360321 | 72279 | 2.3 | 300+

8 | 132.051 | 1712 | 1708 | 600+| 85270 | 5420 [3004} nostats | nostats | 300+| 300+

Table 8.7: Timing and clauses of OSHL, Otter, Vampire, E-SETHEO and DCTP on set of
theorems (p4 right associative), S1NS2N...NSn = SnNS(n—1)N...NS1 with the left side
associated to the left and the right side associated to the right, for various values of n. Time
is in seconds. E denotes E-SETHEO, D denotes DCTP. 600+ (300+) means that a proof was
not found in 600 (300) seconds.

n OSHL Otter Vampire E D
time clauses time clauses time clauses time | time
sec. | gen. | kept | sec. gen. | kept | sec. gen. kept | sec. | sec.

11{ 0.071 13 81 0.01 55 1 37 0.0 53 46 | 0.0 | 0.01

2| 0.435 38 33 | 600+| 154993 | 22287 | 5.0 20420 | 17774 | 0.0 | 300+

3] 2.034 | 185| 180 | 600+ 98752 | 6385 | 300+ 27402260 | 72208 | 0.0 | 300+

41 6.728| 409! 404 | 600+ 97008 [6100 | 300+| nostats | nostats | 0.0 | 300+

5 (20013 | 756 | 751 | 600+ 94922 | 5985 | 300+| 27301184 | 72478 (0.0 | 300+

6 | 53.247 | 1252 | 1247 | 600+] 90714 | 5729 | 300+| 26978451 72582 | 300+| 300+

7 1193.93 | 1301 | 1297 | 6004+ 86744 | 5498 | 300+| 27462355 | 72280 | 3004 300+

Table 8.8: Timing and clauses of OSHL, Otter, Vampire
theorems (p5 left associative), S1NS2N...NSn=81NS2N...NSnNSINS2N...NSn
with both sides associated to the left, for various values of n. Time is in seconds. E denotes
E-SETHEO, D denotes DCTP. 600+(300+) means that a proof was not found in 600(300)

seconds.

¥

E-SETHEQO and DCTP on set of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

n OSHL Otter Vampire E D
time clauses time clauses time clauses time | time
sec. | gen. | kept | sec. gen. | kept | sec. gen. kept | sec. | sec.

2§ 0416 64 59 | 600+| 155839 | 22549 | 0.0 2228 2042 | 0.0 | 300+

31 2974 | 233 | 228 | 600+ 88957 1 5900 | 300+| 27302710 | 72327 | 0.0 | 300+

4 6.906 | 370 | 365 | 600+ 87594 | 5510 | 300+| nostats | nostats | 0.0 | 300+

5 (32901 | 518 | 514 | 600+ 85472 | 5393 | 300+ 27577403 | 72123 | 4.9 | 300+

6 | 67.015 | 860 856 | 600+| 82570 | 5254 | 300+| 27366758 | 72571 | 300+{ 300+

7 185.133 | 1106 | 1102 | 600+| 79408 | 5110 | 300+| nostats | nostats | 300+| 300+

Table 8.9: Timing and clauses of OSHL, Otter, Vampire, E-SETHEO and DCTP on set of
theorems (p5 right associative), S1NS2N...NSn = S1NS2N...NSnNS1NS2N...NSn with

the left side associated to the left and the right side associated to the right, for various values
of n. Time is in seconds. E denotes E-SETHEO, D denotes DCTP. 600+ (300+) means that

a proof was not found in 600 (300) seconds.

n OSHL Otter Vampire E D
time clauses time clauses time clauses time | time
sec. | gen. | kept | sec. gen. | kept | sec. gen. kept | sec. | sec.

2] 0.040 6 310.01 8 510.0 29 25100 |0.0

3 0621 104 99 | 600+| 108753 | 7731 | 300+| 27355902 | 70805 | 0.0 | 300+

4| 1.803 | 177 | 172 | 600+ 91948 | 5688 | 300+| 27362158 [71521 | 0.0 | 300+

5| 4.300 | 263 | 258 | 6004+ 91970 | 5792 | 300+| 27366993 | 72035 | 4.9 | 300+

6 | 8.858 | 360 | 355 | 600+ 88480 | 5595 | 300+| 27397879 | 71703 | 10.0 | 300+

7123.639 | 431 | 427 | 600+| 85804 | 5447 | 300+| mnostats | nostats | 300+| 300+

8 |1 36.909 | 546 | 542 | 600+| 83922 | 5344 | 300+| nostats | nostats | 300+| 300+

Table 8.10: Timing and clauses of OSHL, Otter, Vampire, E-SETHEO and DCTP on set of
theorems (p6), S1NS2N...NSn =S51NS2N...N Sn with the left side associated to the
left and the right side associated to the right, for various values of n. Time is in seconds. E
denotes E-SETHEO, D denotes DCTP. 600+ (300+) means that a proof was not found in
600 (300) seconds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

8.4 Discussion

The power of OSHL-U here is largely due to the case analysis rule. Definitions are fre-
quently of the form L == A where L is a literal and A is a first-order formula. In clauses
obtained from such definitions, it is frequently the case that one of the literals (the literal that
comes from L) has all the variables in the clause. This will be true if A has no quantifiers
in it, for example. This is true for all of the clauses in the axioms used here, except one of
the subset axioms. And when one literal in a clause C has all the variables, then the clause
C can be used by the case analysis rule. This explains why the case analysis rule helps for
definitions. As for the remaining subset axiom (in which no literal has all the variables), this

axiom can frequently be handled by the ground UR resolution rule or the unit filtering rule.

The rule analyses the literals of a clause individually, thus essentially performing definition
expansion on each literal, in turn. For example, the definition of set equality in terms of subset
is expressed by the clause {X=Y, - X C Y, = Y C X}. When trying to prove equality of two
sets, the literal X=Y matches to a literal from the theorem, so an instance of the clause gets
selected by the U rules. Subsequently, instances matching the literals - X c Yand - Y c X
get selected by the U rules. Propositional unsatisfiability of the set of instances is detected
by a propositional decision procedure and the original clauses are still available for inferences,
so directionality of the definitions is not a concern. The U rules simulate the replacement
method described in detail in the earlier work on OSHL with replacement rules [PZ99]. That
paper also explains in more detail why the U rules work so well for definitions, though the
terminology used there is different. However, the earlier method is not complete, while the
current OSHL-U is a complete theorem proving strategy.

The size-lexicographic ordering on ground clauses used by OSHL-U causes instances of
smaller size to be generated earlier. However, the heuristic favoring ground terms in the
theorem by giving these terms a size measure similar to a constant term allows early generation
of instances with large sizes containing large terms that appear in the theorem. This further

helps on our test problems that contain large terms in the theorem.

The reason Otter does so poorly on these problems is that they are highly non-Horn and
resolution is slow on them. Also, the terms generated are large and Otter generates clauses
in order of size, so it takes a long time for Otter to get to clauses that are big enough for the

proofs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

8.5 Conclusions

OSHL-U does well on definitions compared to Otter and Vampire and compared to resolu-
tion in general. OSHL-U also has better performance on these problems than E-SETHEQO and
DCTP. Several different settings were tried in Otter using a single uniform strategy each time.
Vampire and E-SETHEOQ used strategy scheduling, whereby a set of possible good strategies
are chosen based on the problem, and these strategies are scheduled to be attempted in some
order till a solution can be found. The TPTP contains several hundreds of problems in the do-
main of Set Theory (SET), which contain axioms of set theory. As seen in Chapter 4, OSHL-U
has demonstrated superior performance over Otter, in terms of number of proofs obtained
with a fixed time limit, on these problems as well. This further supports our observation

about the superiority of OSHL-U performance on problems involving definition expansion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Semantic Guidance in Proof Search

Semantics refers to the meaning of symbols occuring in a problem. A first-order logic
description of a theorem proving problem gives us a syntactic representation of the problem.
However, the syntactic symbols occuring in the problem also correspond to concepts in the
problem domain. For example, predicates such as 'move’ or 'grab’ that may be used describe
problems in robotic planning have a corresponding meaning in the physical world; predicates
such as ’subset’ and 'member’ that may be used to describe problems in set theory correspond
to certain mathematical concepts. Such problem-specific information, or semantics, often
helps a human reason about the problem. Enabling a theorem prover to effectively use
semantics in its proof search continues to be one of the biggest challenges in automated

deduction.

In the early days of automated deduction research, semantics were successfully used to
guide proof search in the Geometry Theorem Proving Machine developed by Gelernter at
IBM [GHL63]; the Geometry Theorem Proving Machine used a geometry diagram as semantic
information to prune irrelevant candidates from the search tree to prove many results from
high-school geometry. Many current theorem provers are based primarily on the hyper-
resolution strategy. Hyper-resolution performs several resolution inference steps at a time,
and therefore makes larger and fewer inference steps than does binary resolution. However, it
blindly manipulates symbols and has no concept of the meanings of the symbols. Slagle showed
hyper-resolution to be a special case of semantic resolution [Sla67]. Semantic resolution uses
truth valuation of the syntactic symbols, i.e., a model, to guide inference steps . Hyper-
resolution uses a static trivial model, which evaluates everything to true or everything to
false, and is therefore purely syntactic in operation. John Slaney developed algorithms to use
changing models to guide resolution inferences, referred to as dynamic semantic resolution.
There is some evidence that dynamic semantic resolution has the potential to outperform
hyper-resolution [Tho03].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Ganzinger, Meyer and Weidenbach developed a method [GMW97], that is a variant of
ordered resolution with semantic restrictions and is very similar to OSHL. Both this method
and OSHL specify a model of a subset of input clauses, which is minimal in a certain ordering
on interpretations, and try to find clauses that contradict the model. OSHL generates an
instance that contradicts the model and modifies the model using this instance; two ground
clauses may or may not be resolved. However, the method of Ganzinger et al resolves two
clauses, one of which is a minimal clause contradicting the model. Also, OSHL allows user-
specified semantics, whereas Ganzinger et al use a fixed initial interpretation which is minimal
in a certain ordering on interpretations. This latter difference makes OSHL goal-sensitive,
which Ganzinger et al is not. In addition, Ganzinger et al works at the first-order level, while
OSHL extends the propositional method to first-order logic by an enumeration method that
can introduce inefficiencies.

9.1 Use of Semantics in OSHL-U

The power of the OSHL design comes from the ability of the user to supply a model
to guide instance generation in proof search. The models provide the prover with semantic
information specific to the problem. So, in the context of OSHL, semantics refers to the model
or interpretation supplied at the start of proof search. The OSHL algorithm was originally
intended to be used only in conjunction with semantic guidance to avoid blind enumeration.
This accounts for the relatively poor performance of the OSHL strategy using trivial semantics
and without the use of U rules as reported in Chapter 4. All the results reported with OSHL-
U so far have also used trivial semantic models that interprete every predicate to true or every
predicate to false, hence performing purely syntactic inference steps. Some of the theoretical
results of Plaisted have shown that OSHL, when used with appropriate semantics, implicitly
performs unifications. Thus the choice of appropriate semantics should profoundly affect
OSHL performance. In general, natural semantics — that is, a semantics that corresponds to
the mathematical or physical meaning of the symbols and satisfies all the axioms — could help
the proof search by providing to the automated theorem prover the same kind of information
that is available to a human prover. Standard semantics are known for many domains and
it seems reasonable to allow the prover to take advantage of this knowledge. OSHL-U is
capable of using user-specified semantic models in the same way as OSHL and this chapter
demonstrates that semantics can indeed be used to better guide instance generation. We
measure the search space, i.e., the number of clauses generated and execution times to show
that the performance of OSHL-U can be improved with the use of non-trivial semantics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

9.1.1 An Example: “Who Killed Aunt Agatha?”

We give an example of the use of semantics on the problem, PUZ001-2, from the PUZ
(puzzles) domain of the TPTP. The logic puzzle, stated in English, is as follows:

Someone who lives in Dreadbury Mansion killed Aunt Agatha. Agatha, the butler,
and Charles live in Dreadbury Mansion, and are the only people who live therein.
A killer always hates his victim, and is never richer than his victim. Charles hates
no one that Aunt Agatha hates. Agatha hates everyone except the butler. The
butler hates everyone not richer than Aunt Agatha. The butler hates everyone
Aunt Agatha hates. No one hates everyone. Agatha is not the butler. Therefore,
Agatha killed herself.

The input consists of 26 clauses and 53 literals. The predicates in the problem are
equal(X,Y), lives_at_dreadbury(X), hates(X,Y), richer(X,Y) and killed(X,Y). The con-
stants are aunt_agatha, butler, charles and someone; everyone_but(X) is a Skolem function

that arises from the statement — No one hates everyone.

A human is able to reason about the puzzle and solve it, even without the use of formal
logic. But if one were to present the same problem, replacing all the predicates, functions, and
constants with names such a pred;, predsz, funci, and so on, then it would become a lot more
difficult for the human to solve. This is because a human is able to interprete the semantics
of the problem in a certain way, which helps her solve the problem. For example, a human
“knows” that there are only 3 persons and one of those 3 persons is the killer. This means
that the domain of definition to consider in solving this problem should have 3 elements. A
human also “knows” that a person can not be richer than himself/herself, and interpretes
the richer(X,Y) predicate accordingly. However, with a purely syntactic formulation of the
problem, such additional semantic information is lost, making it harder to solve the problem.
Because an automated theorem prover lacks this kind of human “knowledge” of the problem,
a human user can supply this extra information to the prover through a semantic model.
The semantic model provides the prover with an initial interpretation that incorporates extra
information that the human user knows about the problem.

In order to solve this problem, we supplied OSHL-U with a non-trivial semantic model
consisting of 3 elements. We did not provide a natural semantics. Some of the input clauses
are not modeled by our initial semantics, which maps the killed predicate such that Charles
is the killer. Also, it may not be apparent to a human user how the function everyone_but
(arising from Skolemization) should be interpreted. We mapped the function to be consistent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

with the mapping for the hates predicate. The domain of definition D = {1,2,3}. The
mappings of the constants, function, and predicates are as follows.

aunt_agatha — 1
butler +— 2
charles +— 3

someone +— 1

everyone_but : D w— D
1—2
22
3—3

equal : D x D — {True, False}
(X,Y)+— True, if X =Y
(X,Y) — False, otherwise

lives_at.dreadbury : D +— {True, False}
1 +— True
2 +— True
3 +— True

hates : D X D+ {True, False}
(1,1) — True
(1,2) — False
(1,3) — True
(2,1) — True
(2,2) — False
(2,3) — True
(3,1) — False
(3,2) — True
(3,3) > False

richer : D x D — {True, False}
(1,1) — False
(1,2) — False
(1,3) — True
(2,1) — True
(2,2) — False

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

(2,3) — True
(3,1) — False
(3,2) — False
(3,3) — False

killed : D x D — {True, False}
(X,Y)+— True,if X =3 and ¥ = 1.

False, otherwise

With the non-trivial semantics described, OSHL-U finds the proof in 5 minutes 49 seconds,
generating 1795 clauses. On changing the described semantics to model Aunt Agatha as the
killer, OSHL-U finds the proof in 5 minutes 48 seconds, generating 1632 clauses. On changing
the described semantics by using different mappings for the hates and the richer predicates,
OSHL-U still obtains the proof in about 6 minutes. With an all-positve or all-negative
semantics, OSHL-U runs for over 3 hours generating more than 50,000 clauses, without finding
a proof. Therefore, in this case, a user-specified semantics produces significant improvement

in OSHL-U performance over a trivial semantics.

9.1.2 Semantics in Group Theory Problems

We also tested the use of user-specified semantics on some group theory (GRP) problems.
Table 9.1 shows the results obtained with OSHL-U using a non-trivial semantics compared
to those with OSHL-U using trivial semantics and with Otter in the “auto” mode, on these
problems. Cases when a prover timed out without generating a proof are marked with “fail”
and the execution time alloted to the proof attempt is noted.

In mathematics, a group is a set, with a binary operation on elements of the set, such as
multiplication or addition, satisfying certain axioms. We used a non-trivial natural semantics
that models a finite group of size 4. The domain elements were mapped to the integers 0,
1, 2, 3 and the binary operation was addition modulo 4. The semantics chosen was suitable
for all the problems in Table 9.1 except GRP008-1. These problems are theorems about
identity and inverse functions in a group and have only Horn clauses; problem GRP008-1 is
stated to be a theorem of “unknown meaning” and has 1 non-Horn clause. On some of the
problems, use of this semantics gives the proof faster and with the generation of fewer clauses
than using either of the trivial semantics. Use of the semantics also helps to obtain proofs of
some problems that could not be proved with trivial semantics. Problems in GRP are mostly

all Horn, so Otter exhibits good performance on these problems. However, there are a few

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Problem | Natural Sem. | All-positive | All-negative Otter

gen | time(sec) | gen | time(sec) | gen | time(sec) | gen | time(sec)
GRP003-1 | 140 119.20 | fail 300+ fail 300+ 116 0.01
GRP004-1 | 53 28.00 | fail 300+ fail 300+ 129 0.00
GRP004-2 | 222 716.50 | fail 300+ fail 300+ 335 0.01
GRPOO7-1 | 17 0.38} 18 1.99 | 58 38| 85 0.01
GRP008-1 | 396 226.30 | fail 600+ fail 600+ fail 600+
GRP017-1 | 241 16.05 | fail 300+ fail 300+ 210 0.02
GRP018-1 | 15 048] 36 6.40 | 108 6.14 | 266 0.01
GRP019-1 14 024 39 7.90 | fail 300+ 267 0.01
GRP020-1 | 20 1.55 | 68 33.80 | fail 300+ | 265 0.02
GRP021-1 | 18 087 | 45 5.55 | fail 300+ | 264 0.01
GRP022-1 | 36 17.90 | fail 600+ fail 600+ | 448 0.02
GRP023-1 | 16 050 | 15 0.33 | fail 300+ 79 0.01
GRP023-2 | 36 191} 23 0.69 | fail 300+ fail 300+

Table 9.1: Execution time and number of clauses generated with OSHL-U and a non-trivial
natural semantics, with OSHL-U and trivial semantics (all-positive and all-negative), and
with Otter in the “auto” mode. The number of clauses generated and the execution time
in seconds are shown. 300+ (600+4) means that the prover timed out in 300 (600) seconds
without finding a proof.

problems proved by the semantics that even Otter, in the autonomous mode, could not prove.

We also tested non-natural semantics on some GRP problems. In these cases, the groups
were sets of integers of size 2 ({0,1}) and 4 ({0,1,2,3}). However, the binary operation was
selected to be such that the axioms of group theory are not all satisfied by the model. Table
9.2 shows the result of these tests. These indicate that even a non-natural semantics can

perform better than trivial semantics on some problems.

Problem | Non-natural Sem. | All-positive | All-negative Otter

size | gen | time(sec) | gen | time(sec) | gen | time(sec) | gen | time(sec)
GRP005-1 2 6 0.02 6 0.02 6 0.02 57 0.02
GRP008-1 21 90 16.6 fail 600+ fail 600+ fail 600+
GRP018-1 2| 21 0.97 36 6.40 | 108 6.14 | 266 0.01
GRP019-1 21 22 1.570 | 39 7.920 | fail 300+ 267 0.01
GRP034-3 4| 25 2242 | 44 4183 | 84 10.185 | 141 0.01

Table 9.2: Execution time and number of clauses generated with OSHL-U and a non-trivial
non-natural semantics, with OSHL-U and trivial semantics (all-positive and all-negative),
and with Otter in the “auto” mode. The domain size is given for the non-trivial semantics.
The number of clauses generated and the execution time in seconds are shown. 300+ (600+)
means that the prover timed out in 300 (600) seconds without finding a proof.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

We performed the experiments with natural semantics of larger sizes using groups of
sizes 16, 24, and 40. The results were similar to those with groups of size 4. Using larger
semantics, proofs of the same problems were found as with semantics of size 4 generating the
same number of clauses in similar execution times. Adding more elements did not increase
the information conveyed by the semantics; proofs of the same problem were not found any
faster and no new proofs were found. At the same time, an increase in the number of terms

did not result in more clauses being generated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10

Conclusion

This dissertation explored propositional techniques to first-order theorem proving with the
implementation of the OSHL-U theorem prover. The OSHL-U prover builds on and enhances
the OSHL theorem prover, which is based on propositional techniques applied to first-order
logic. We showed that a propositional-style prover like OSHL-U can come within the range
of performance of respectable resolution theorem provers and even outperforms resolution
provers on some classes of problems. These classes of problems are difficult for resolution
provers; so by providing alternative techniques for such problems, we increase the power of

first-order theorem provers, in general.

We presented U rules that extend the OSHL strategy; the resulting theorem prover was
implemented and is referred to as OSHL-U. The U rules provide syntactic guidance in proof
search to the OSHL algorithm, and give tremendous speedup in performance. OSHL-U was
tested on 4417 problems from the TPTP v2.5.0. In the absence of sophisticated semantic
guidance and within 30 seconds of execution time on each problem, OSHL-U obtains 238
proofs without the U rules, 900 proofs with the U rules, and 1027 proofs with the U rules and
a more optimized implementation. The problems were run without sophisticated semantics
because generating semantics on individual problems or problem domains requires extensive
user input and, therefore, not feasible to perform automatically in a short amount of time on
a large collection of problems. The 30 second time limit was chosen to enable us to collect a
set of results on all the problems within a few days.

Otter, a resolution prover, was also tested on the TPTP problems and in the autonomous
mode, Otter obtained 1697 proofs within 30 seconds on each problem. It is interesting that
OSHL-U, a propositional prover, can obtain more than half the number of the proofs that
Otter obtains in the autonomous mode on the TPTP problems in 30 seconds. This is especially
so when one considers that the propositional prover has no special rules for equality axioms

and has a far less sophisticated implementation than Otter. OSHL and prior propositional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

provers have performed well on near-propositional problems. This is the first time to our
knowledge that a propositional style prover, not peforming unification on non-propositional
literals, has demonstrated performance comparable to that of a resolution prover on a group of
TPTP problems that is not near-propositional in structure. This suggests that propositional
techniques have the potential to speed up a significant number of first-order proofs. OSHL-U
outperforms Otter on SET and FLD problems which have many non-Horn clauses, indicating

propositional techniques are superior to resolution on such problems.

We looked at space efficiency and inference efficiency of OSHL-U and Otter. In search
space as well as storage space, OSHL-U is more efficient than Otter on non-Horn problems,
and Otter is more efficient than OSHL-U on Horn problems. This observation also holds for
inference efficiency.

An interesting question in theorem proving is how essential unification of non-ground liter-
als is to theorem proving, and how much theorem proving one can do without it. Resolution
is efficient if the problem is UR resolvable, meaning that the proof can be found by UR res-
olution. All Horn problems are UR resolvable, and some non-Horn problems are, too. In
the early years of theorem proving, the problems people looked at belonged to these classes,
which were easy for resolution. This, therefore, gave resolution an advantage. Some theoret-
ical results of Plaisted have shown that with a high probability, hard problems are not Horn
or UR resolvable. This was also confirmed by our experimental results with Otter that have
shown, that of the 1697 TPTP problems provable by Otter in 30 seconds, at least 1042 can be
proved by UR resolution; of the 297 problems proved by Otter that are both non-Horn and
had TPTP rating greater than zero, at most 215 are not UR resolvable. Therefore, resolution
tends to be inefficient on hard problems that are not UR resolvable. The performance of
OSHL-U suggests propositional techniques are superior to resolution on non-Horn problems
which are not UR resolvable and are, therefore, difficult for resolution provers. Thus OSHL-U
and propositional provers significantly enhance the power of automated theorem proving.

OSHL with replacement rules for definition handling has done well on problems involving
definition expansion. However, OSHL-U is a general theorem prover and does not have
special rules for definitions. Nevertheless, OSHL-U exhibits better performance than Otter
and several other leading theorem provers - Vampire, E-SETHEO and DCTP - on some classes

of problems that involve definition expansion for proofs.

OSHL-U was also tested with non-trivial user-specified semantics on some GRP problems.
The results of these tests show that OSHL-U generates fewer clauses and uses less execution
time in obtaining proofs with such semantics, even in cases where natural semantics were not

used, compared to OSHL-U with trivial semantics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

10.1 Future Work

The OSHL-U implementation is rather naive. There is no data structure support for
storing or matching literals or terms. Ocaml List and Ocaml Set and the operations defined
on these have been used in the implementation. OSHL-U also has no special rules for term-
rewriting or handling equality axioms; its performance might be significantly enhanced by

term-rewriting, special rules for equality axioms, and better data structures.

The unit filter rule of inference in OSHL-U provides a mechanism to interface OSHL-U
with another theorem prover. Thus, the resolvents from a conventional theorem prover can
be added to the set of clauses used by OSHL-U for filtering. Interesting experiments can be

conducted using OSHL-U in conjunction with an efficient resolution prover.

Use of domain-specific semantic information to guide proof search has long been believed
to be a potential area of improving automated reasoning techniques. However, till date, this
remains a largely unrealized dream. OSHL and OSHL-U are capable of using semantic models.
Such models could be supplied by a human expert or generated automatically. Machine-
generation of models could probably benefit from heuristics. Experiments with machine-
generated models might help develop such heuristics and help reveal interesting facts about
selection of appropriate semantics for a problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

BIBLIOGRAPHY

[AB03] Martin Abadi and Bruno Blanchet. Computer-Assisted Verification of a Protocol for
Certified Email. In Radhia Cousot, editor, Static Analysis, 10th International Sym-
posium (SAS’08), volume 2694 of Lecture Notes on Computer Science, pages 316-335,
San Diego, California, June 2003. Springer Verlag.

[AJK*00] Mark D. Aagaard, Robert B. Jones, Roope Kaivola, Katherine R. Kohatsu, and
Carl-Johan H. Seger. Formal verification of iterative algorithms in microprocessors. In
DAC ’00: Proceedings of the 37th conference on Design automation, pages 201-206,
New York, NY, USA, 2000. ACM Press.

[AP92] Geoffrey D. Alexander and David A. Plaisted. Proving equality theorems with hyper-
linking. In Deepak Kapur, editor, CADE-12 — The 12th International Conference on
Automated Deduction, volume 607 of Lecture Notes in Computer Science, pages 706—
710. Springer, 1992.

[BA98] Matthew Bishop and Peter B. Andrews. Selectively instantiating definitions. In
CADE-15: Proceedings of the 15th International Conference on Automated Deduction,
pages 365—380, London, UK, 1998. Springer-Verlag.

[Bau00] Peter Baumgartner. FDPLL — A First-Order Davis-Putnam-Logeman-Loveland Pro-
cedure. In David McAllester, editor, CADE-17 - The 17th International Conference on
Automated Deduction, volume 1831, pages 200-219. Springer, 2000.

[BF91] W. W. Bledsoe and G. Feng. Set-Var. Journal of Automated Reasoning, 11:293-314,
1991.

[BGO1] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Handbook of
Automated Reasoning, pages 19-99. 2001.

[Bil96] Jean-Paul Billon. The disconnection method - a confluent integration of unification
in the analytic framework. In TABLEAUX ’96: Proceedings of the 5th International
Workshop on Theorem Proving with Analytic Tableaur and Related Methods, pages 110—
126, London, UK, 1996. Springer-Verlag.

[Bla03] Bruno Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In
Dagstuhl seminar ”Language-Based Security”, October 2003.

[Ble97] W. W. Bledsoe. Non-resolution theorem proving. In Artificial Intelligence, 9, pages
1-35, 1997.

[BT03] P. Baumgartner and C. Tinelli. The model evolution calculus, 2003.

[CB98] Yirn-An Chen and Randal E. Bryant. Verification of floating-point adders. In CAV
'98: Proceedings of the 10th International Conference on Computer Aided Verification,
pages 488-499, London, UK, 1998. Springer-Verlag.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

[CCH*96] Yirng-An Chen, Edmund M. Clarke, Pei-Hsin Ho, Yatin Vasant Hoskote, Timothy
Kam, Manpreet Khaira, John W. O’Leary, and Xudong Zhao. Verification of all circuits
in a floating-point unit using word-level model checking. In FMCAD ’96: Proceedings
of the First International Conference on Formal Methods in Computer-Aided Design,
pages 19-33, London, UK, 1996. Springer-Verlag.

(CGO1] Shang-Ching Chou and Xiao-Shan Gao. Automated reasoning in geometry. In Hand-
book of Automated Reasoning, pages 707-749. 2001.

[CGZ96] Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. An introduction to
geometry expert. In CADE, pages 235-239, 1996.

[CHMO2] K. Claessen, R. Hahnle, and J. Martensson. Verification of hardware systems with
first-order logic, 2002.

[CL71} C.-L. Chang and R. C.-T. Lee. Herbrand’s theorem. In C.-L. Chang and R. C.-T.
Lee, editors, Symbolic Logic and Mechanical Theorem Proving, pages 45—69. Academic
Press, New York, 1971.

[DA95] D.P. Appenzeller and A. Kuehlmann. Formal Verification of a PowerPC Microproces-
sor. In Proceedings of the IEEE International Conference on Computer Design (ICCD
’95), Austin, Texas, October 1995. IBM.

[Dav83] M. Davis. The prehistory and early history of automated deduction. In J. Sickmann
and G. Wrightson, editors, Automation of Reasoning 1: Classical Papers on Computa-
tional Logic 1957-1966, pages 1-28. Springer, Berlin, Heidelberg, 1983.

[DHK98] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo, 1998. Techni-
cal Report 3400, Institut National de Recherche en Informatique et en Automatique
(INRIA), Le Chesnay, France.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
CACM, 5:394-397, 1962.

[DM96] D. Kapur and M. Subramaniam. Mechanically verifying a family of multiplier cir-
cuits. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the Eighth
International Conference on Computer Aided Verification CAV, volume 1102, pages
135-146, New Brunswick, NJ, USA, / 1996. Springer Verlag.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7:201-215, 1960.

[DP03] S. Das and D. A. Plaisted. An improved propositional approach to first-order theorem
proving. In Workshop on Model Computation - Principles, Algorithms, Applications at
The 19th International Conference on Automated Deduction, 2003.

[Fit96] Melvin Fitting. First-order logic and automated theorem proving (2nd ed.). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[Fun01] Shelby Funk. Using a modified size measure to guide the search in the ordered
semantic hyper-linking theorem prover. Available at
http: //www.cs.unc.edu/ shelby /MathResearch.html, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

[GHL63] H. Gelernter, J.R. Hansen, and D.W. Loveland. Empirical explorations of the geom-
etry theorem proving machine. In E. Feigenbaum and J. Feldman, editors, Computers
and Thought, pages 153-167. McGraw-Hill, New York, 1963.

[Gil60] P. C. Gilmore. A proof method for quantification theory. IBM Journal of Research
and Development, 4:28-35, 1960.

[GK03] H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving.
In Proceedings of the 18th IEEE Symposium on Logic in Computer Science, pages 55—64.
IEEE Computer Society Press, 2003.

[GMW97] H. Ganzinger, Chr. Meyer, and Chr. Weidenbach. Soft typing for ordered resolu-
tion. In Automated Deduction — CADE’1/, volume 1249 of Lecture Notes in Computer
Science, pages 321-335, Berlin, 1997. Springer-Verlag.

[GOP93] D. Gabbay, J. Ohlbach, and D. Plaisted. Killer transformations. In 1998 Workshop
on Proof Theory in Modal Logic, pages 145, 1993.

[HJL99] T. Hillenbrand, A. Jaeger, and B. Lochner. Waldmeister - Improvements in Perfor-
mance and Ease of Use. In H. Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction, number 1632 in Lecture Notes in Artificial Intel-
ligence, pages 232-236. Springer-Verlag, 1999.

[KM96] Matt Kaufmann and J Strother Moore. ACL2: An industrial strength version of
Ngthm. In Compass’96: Eleventh Annual Conference on Computer Assurance, pages
23-34, Gaithersburg, Maryland, 1996. National Institute of Standards and Technology.

[LBM98] Helen Lowe, Alan Bundy, and Duncan McLean. The use of proof planning for
cooperative theorem proving. Journal of Symbolic Computation, 25:239-261, 1998.

[Lov68] Donald W. Loveland. Mechanical theorem-proving by model elimination. Journal of
the ACM, 15(2):236-251, 1968.

[Lov69] D. Loveland. A simplified format for the model elimination procedure. Journal of
the ACM, 16:349-363, 1969.

[LP94] S.-J.. Lee and D. Plaisted. Use of replace rules in theorem proving. Methods of Logic
in Computer Science, 1:217-240, 1994.

[LS01] R. Letz and G. Stenz. DCTP: A Disconnection Calculus Theorem Prover. In Lecture
Notes in Artificial Intelligence, volume 2083, pages 381-385. Springer Verlag, 2001.

[LSBB92] Reinhold Letz, Johann Schumann, S. Bayerl, and Wolfgang Bibel. SETHEO:A
high-performance theorem prover. Journal of Automated Reasoning, 8(2):183-212, 1992.

[MB88] R. Manthey and F. Bry. SATCHMO: A Theorem Prover Implemented in Prolog.
In Proceedings of the Ninth International Conference on Automated Deduction, Lecture
Notes in Computer Science 310, pages 415-434. Springer-Verlag, 1988.

[McC90] W. McCune. Otter 2.0 (theorem prover). In M.E. Stickel, editor, Proceedings of the
10th International Conference on Automated Deduction, pages 663—4, July 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

[McC94] W. W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL-94/6,
Argonne National Laboratory, Argonne, Illinois, 1994.

[McC97] William McCune. Solution of the robbins problem. Journal of Automated Reasoning,
19(3):263-276, 1997.

(McC03] W.W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263,
Argonne National Laboratory, Argonne, USA, 2003.

[MPO05] S. Miller and D. A. Plaisted. The space efficiency of OSHL. In International

Conference on Automated Reasoning with Analytic Tableauz and Related Methods
(TABLEAUX), 2005.

[MRSO01] D. McMath, M. Rozenfeld, and R. Sommer. A computer environment for writing
ordinary mathematical proofs. In LPAR - 8th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Lecture Notes in Computer Science
(Lecture Notes in Artificial Intelligence), pages 507-516. Springer-Verlag, 2001.

[MS98] Padraic Monaghan and Keith Stenning. Learning to solve syllogisms by watching
others’ learning, 1998. Online Research Papers of the Human Communication Research
Center, University of Edinburgh.

[NSS56] A. Newell, J. C. Shaw, and H. A. Simon. Empirical explorations with the logic
theory machine: A case study in heuristics. In Western Joint Computer Conference,
pages 218-239, 1956.

[NSS63] A. Newell, J. C. Shaw, and H. A. Simon. Empirical explorations of the geometry
theorem proving machine. In E. Feigenbaum and J. Feldman, editors, Computers and
Thought, pages 134-152. McGraw-Hill, New York, 1963.

[NSS83] A. Newell, J. C. Shaw, and H. A. Simon. Empirical explorations with the logic
theory machine: A case study in heuristics. In J. Sieckmann and G. Wrightson, editors,
Automation of Reasoning 1: Classical Papers on Computational Logic 1957-1966, pages
49-73. Springer, Berlin, Heidelberg, 1983.

[Par97] M. Paramasivam. Instance-based first-order methods using propositional calculus
provers, 1997. PhD thesis, University of North Carolina at Chapel Hill

[PC94] D. Plaisted and Heng. Chu. Semantically guided first-order theorem proving using
hyper-linking. In Twelfth International Conference on Automated Deduction, Lecture
Notes in Artificial Intelligence 814, pages 192-206, 1994.

[PG86] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form trans-
lation. J. Symb. Comput., 2(3):293-304, 1986.

[PL92] D. A. Plaisted and Shie-Jue Lee. Eliminating duplication with the hyper-linking
strategy. Journal of Automated Reasoning, 9(1):25-42, 1992.

[Pla94] D. A. Plaisted. Ordered semantic hyper-linking. Technical Report MPI-I-94-235,
Max-Planck Institut fuer Informatik, Saarbruecken, Germany, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

[Pla99] David A. Plaisted. Theorem proving. 21:662—682, 1999.

[PP91] David A. Plaisted and Richard C. Potter. Term rewriting: Some experimental results.
J. Symb. Comput., 11(1/2):149-180, 1991.

[PP97] M. Paramasivam and David A. Plaisted. Rrtp - a replacement rule theorem prover.
J. Autom. Reasoning, 18(2):221-226, 1997.

[PP98] M. Paramasivam and David A. Plaisted. Automated deduction techniques for classi-
fication in description logic systems. Journal of Automated Reasoning, 20(3):337-364,
1998.

[PZ99) D. A. Plaisted and Y. Zhu. Replacement rules with definition detection. In Ricardo
Caferra and Gernot Salzer, editors, Automated Deduction in Classical and Non-Classical
Logics, Lecture Notes in Artificial Intelligence 1761, pages 80-94, 1999. Invited paper.

[PZ00] D. A. Plaisted and Y. Zhu. Ordered semantic hyper linking. Journal of Automated
Reasoning, 25(3):167-217, October 2000.

[Qua92] A. Quaife. Automated deduction in NBG set theory. Journal of Automated Reason-
ing, 8(1):91-147, 1992.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12:23-41, 1965.

[RV99] A. Riazanov and A. Voronkov. Vampire. In H. Ganzinger, editor, The 16th Interna-
tional Conference on Automated Deduction, volume 1632 of Lecture Notes in Artificial
Intelligence, pages 292-296, Trento, Italy, 1999.

[RV02] A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. Al
Communications, 15(2-3):91-110, 2002.

[Sch02] S. Schulz. E: A Brainiac Theorem Prover. AI Communications, 15(2-3):111-126,
2002.

[SK88] F. Sadri and R. Kowalski. A theorem-proving approach to database integrity. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages
313-362. Kaufmann, Los Altos, CA, 1988.

[Sla67] James R. Slagle. Automatic theorem proving with renamable and semantic resolution.
J. ACM, 14(4):687-697, 1967.

[SM84] P. Suppes and J. McDonald. Student use of an interactive theorem prover. In Bledsoe
and Loveland, editors, Automated Theorem Proving: After 25 Years, volume 29 of
Contemporary Mathematics, pages 315-360. American Mathemtical Society, 1984.

[Smig0] D. R. Smith. Kids: A semi-automated program development system. In Special
Issue on Formal Methods, IEEE Transactions on Software Engineering, pages 1024—
1043. September 1990.

[SR95] S. Tahar and R. Kumar. Formal Specification and Verification Techniques for RISC
Pipeline Conflicts. The Computer Journal, 38(2):111-120, 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

[SS98a] G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177-203, 1998.

[SS98b] Christian B. Suttner and Geoff Sutcliffe. The CADE-14 ATP system competition.
Journal of Automated Reasoning, 21(1):99-134, 1998.

[SS99] G. Sutcliffe and D. Seyfang. Smart Selective Competition Parallelism ATP. In A. Ku-
mar and I. Russell, editors, Proceedings of the 12th Florida Artificial Intelligence Re-
search Symposium, pages 341-345. AAAI Press, 1999.

[SW99] G. Stenz and A. Wolf. Strategy Selection by Genetic Programming. In A. Kumar
and I. Russell, editors, Proceedings of the 12th Florida Artificial Intelligence Research
Symposium, pages 346-350. AAAI Press, 1999.

[SW00] G. Stenz and A. Wolf. E-SETHEO: An Automated Theorem Prover. In R. Dyck-
hoff, editor, Proceedings of the International Conference on Automated Reasoning with
Analytic Tableauz and Related Methods (TABLEAUX-2000), number 1847 in Lecture
Notes in Artificial Intelligence, pages 436-440. Springer-Verlag, 2000.

[SWL*94] Mark E. Stickel, Richard J. Waldinger, Michael R. Lowry, Thomas Pressburger,
and Ian Underwood. Deductive composition of astronomical software from subroutine
libraries. In Conference on Automated Deduction, pages 341-355, 1994.

[SY97] K. Stenning and P. Yule. Image and language in human reasoning: a syllogistic
illustration. In Cognitive Psychology 34, 109-159., volume 2, pages 109-159. 1997.

[Tam97] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199-204, 1997.

[Tam03] Tanel Tammet. Extending classical theorem proving for the semantic web. In PSSS,
2003.

[Tho03] Simon Thornton. Implementing dynamic semantic resolution. In Benjamin I. P.
Rubinstein, Nelson Chan, and K. K. Kshetrapalapuram, editors, Proceedings of the
First Australian Undergraduate Students’ Computing Conference, 2003.

[VB03] Miroslav N. Velev and Randal E. Bryant. Effective use of boolean satisfiability pro-
cedures in the formal verification of superscalar and vliw microprocessors. J. Symb.
Comput., 35(2):73-106, 2003.

[VelO4a] Miroslav N. Velev. Exploiting signal unobservability for efficient translation to cnf
in formal verification of microprocessors. In DATE ’04: Proceedings of the conference
on Design, automation and test in Europe, page 10266, Washington, DC, USA, 2004.
IEEE Computer Society.

[Vel04b] Miroslav N. Velev. Using positive equality to prove liveness for pipelined micropro-
cessors. In ASP-DAC ’04: Proceedings of the 2004 conference on Asia South Pacific
design automation, pages 316-321, Piscataway, NJ, USA, 2004. IEEE Press.

[Wei97] C. Weidenbach. SPASS version 0.49. Journal of Automated Reasoning, 18(2):247-
252, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

[Wos88] Larry Wos. Automated Reasoning: 33 Basic Research Problems. Prentice Hall, 1988.

[ZP97] Yunshan Zhu and D. A. Plaisted. FOLPLAN: A Semantically Guided First-Order
Planner. 10th International FLAIRS Conference, May 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

