
E�cient Object Sharing in Shared-Memory Multiprocessors

by

Mark Moir

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill

in partial ful�llment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill

1996

Approved by:

Prof. James Anderson, Adviser

Prof. Maurice Herlihy, Reader

Prof. Don Stanat, Reader

ii

c
1996

Mark Moir

ALL RIGHTS RESERVED

iii

Mark Moir. E�cient Object Sharing in Shared-Memory Multiprocessors

(Under the direction of Professor James H. Anderson.)

Abstract

The goal of this work is to facilitate e�cient use of concurrent shared objects in

asynchronous, shared-memory multiprocessors. Shared objects are usually implemented

using locks in such systems. However, lock-based implementations result in substantial

ine�ciency in multiprogrammed systems, where processes are frequently subject to delays

due to preemption. This ine�ciency arises because processes can be delayed while holding

a lock, thereby delaying other processes that require the lock.

In contrast, lock-free and wait-free implementations guarantee that the delay of

one process will not delay another process. We show that lock-free and wait-free imple-

mentations for shared objects provide a viable alternative to lock-based ones, and that

they can provide a signi�cant performance advantage over lock-based implementations in

multiprogrammed systems.

Lock-free and wait-free implementations are notoriously di�cult to design and to

verify as correct. Universal constructions alleviate this problem by generating lock-free

and wait-free shared object implementations using sequential implementations. However,

previous universal constructions either require signi�cant creative e�ort on the part of the

programmer for each object, or result in objects that have high space and time overhead

due to excessive copying.

We present lock-free and wait-free universal constructions that achieve low space

and time overhead for a wide spectrum of important objects, while not placing any extra

burden on the object programmer. We also show that the space and time overhead of these

iv

constructions can be further reduced by using k-exclusion algorithms to restrict access to

the shared object. This approach requires a long-lived renaming algorithm that enables

processes to acquire and release names repeatedly. We present several e�cient k-exclusion

and long-lived renaming algorithms.

Our universal constructions are based on the load-linked and store-conditional

synchronization instructions. We give a constant-time, wait-free implementation of load-

linked and store-conditional using compare-and-swap, and an implementation of multi-word

load-linked and store-conditional instructions using similar one-word instructions. These

results allow our algorithms and others to be applied more widely; they can also simplify

the design of new algorithms.

v

Acknowledgements

First, I want to thank my adviser, Jim Anderson, for his support, enthusiasm, and patience.

I have learned an enormous amount from working with him, and have thoroughly enjoyed

doing so. I am also grateful to Jim for arranging �nancial support for me for several years,

and to the alumni whose generous donations funded a fellowship for me this year.

Thanks, too, to the rest of my committee: Maurice Herlihy, Kevin Je�ay, Lars

Nyland, Jan Prins, Don Stanat, and Steve Weiss. I greatly appreciate their willingness to

bend their schedules to accommodate countless proposals, oral exams, defenses, proposals

to propose, meetings to schedule proposals to propose, and so on. I am particularly grateful

to Maurice Herlihy, who has endured much of this pain by means of phone and video

conference, and has also been extremely supportive and encouraging of my work.

In addition, my work has bene�ted from lively discussions with many other col-

leagues over the past few years. The following list cannot possibly be complete, but it's a

start: Yehuda Afek, Rajeev Alur, Hagit Attiya, Harry Buhrman, Rik Faith, Juan Garay,

Steve Goddard, Jaap-Henk Hoepman, Michael Merritt, Gary Peterson, Srikanth Rama-

murthy, Nir Shavit, Gadi Taubenfeld, Dan Touitou, Mark Tuttle, Paul Vitanyi, and Jae-

Heon Yang. I would also like to acknowledge Phil McKinley and Chuck Severance of Michi-

gan State University for their assistance with the use of their BBN GP1000 multiprocessor,

Argonne National Laboratories for providing access to their Sequent Symmetry, and Lars

Nyland for his help with the KSR performance studies in Section 5.4.

Life would be much more di�cult (and no fun) without the support and compan-

ionship of many good friends. There is no chance of thanking them all personally here, but

they know who they are, and they know that I owe them one. Thanks to all of them!

I have been very fortunate to have the love, support, and encouragement of a

wonderful family. Despite being many thousands of miles away, they have never let me

forget that they are there for me, and have always been extremely helpful to me. I am

grateful to my parents for encouraging my education from a young age, and to my siblings

for taunting me at every opportunity.

Finally, I am indebted to my wife Vikki. She has been incredibly supportive of

me over the past few years, and has tolerated my long work hours with cheerful humor. I

cannot thank her enough for being such a wonderful wife and friend. I am also grateful to

her for writing this paragraph for me. (Just kidding!)

vi

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Mutual Exclusion Algorithms : 2

1.2 Herlihy's Constructions : 7

1.3 Our Contributions : 11

1.3.1 Universal Constructions for Large Objects : : : : : : : : : : : : : : : 11

1.3.2 Using k-Exclusion to Further Reduce Overhead : : : : : : : : : : : : 12

1.3.3 Fast, Long-Lived Renaming : 13

1.3.4 Support for Wider Applicability : 14

1.4 Organization of the Dissertation : 15

2 Related Work 16

2.1 Mutual Exclusion Algorithms : 16

2.2 Lock-Free and Wait-Free Object Implementations : : : : : : : : : : : : : : : 21

2.2.1 Linearizability : 22

2.2.2 The Consensus Hierarchy : 22

2.2.3 Universal Constructions : 23

2.2.4 Speci�c Objects : 30

3 Preliminaries 32

4 Support for Algorithms and Related Results 40

4.1 One-Word Primitives : 43

4.1.1 Implementation of LL/SC using CAS : : : : : : : : : : : : : : : : : 44

4.1.2 Implementation of CAS using LL/SC : : : : : : : : : : : : : : : : : 51

4.1.3 Implementation of LL/SC using LL/FSC : : : : : : : : : : : : : : : 53

4.2 LL and SC on Large Variables : 55

5 Large Objects 58

5.1 Lock-Free Universal Construction for Large Objects : : : : : : : : : : : : : 62

5.2 Wait-Free Universal Construction for Large Objects : : : : : : : : : : : : : 70

vii

5.3 Proof Overview for Algorithm in Figures 5.5 and 5.6 : : : : : : : : : : : : : 79

5.4 Performance Comparison : 84

6 Using k-Exclusion to Further Reduce Overhead 91

6.1 Preliminaries : 97

6.2 k-Assignment : 101

6.3 k-Exclusion on Cache-Coherent Machines : : : : : : : : : : : : : : : : : : : 103

6.4 k-Exclusion on Distributed Shared-Memory Machines : : : : : : : : : : : : 113

6.4.1 First Algorithm : 114

6.4.2 Second Algorithm : 117

6.5 Performance Results : 123

6.5.1 Cache-Coherent Multiprocessors : 125

6.5.2 Distributed Shared-Memory Multiprocessors : : : : : : : : : : : : : 128

7 Fast, Long-Lived Renaming 132

7.1 De�nitions : 137

7.2 One-Time Renaming using Reads and Writes : : : : : : : : : : : : : : : : : 139

7.2.1 The One-Time Building Block : 139

7.2.2 Using the One-Time Building Block to Solve Renaming : : : : : : : 141

7.3 Long-Lived Renaming using Reads and Writes : : : : : : : : : : : : : : : : 143

7.3.1 Using a Long-Lived Building Block for Long-Lived Renaming : : : : 143

7.3.2 Making the Long-Lived Building Block Fast : : : : : : : : : : : : : : 146

7.4 Long-Lived Renaming using Read-Modify-Writes : : : : : : : : : : : : : : : 151

7.4.1 Long-Lived Renaming using set �rst zero and clr bit : : : : : : : : : 152

7.4.2 Long-Lived Renaming using bounded decrement and fetch and add : 154

7.4.3 Lock-Free, Long-Lived Renaming using fetch and add : : : : : : : : 157

8 Conclusions 159

8.1 Summary : 159

8.2 Conclusions and Future Research : 163

A Correctness Proofs for Algorithms in Chapter 5 167

A.1 Correctness Proof for Algorithm in Figures 5.5 and 5.6 : : : : : : : : : : : : 167

B Correctness Proofs for Algorithms in Chapter 6 218

B.1 Correctness Proof for Algorithm in Figure 6.8 : : : : : : : : : : : : : : : : : 218

B.2 Correctness Proof for Algorithm in Figure 6.9 : : : : : : : : : : : : : : : : : 222

C Correctness Proofs for Algorithms in Chapter 7 230

C.1 Correctness Proof for Algorithm in Figure 7.6 : : : : : : : : : : : : : : : : : 230

C.2 Correctness Proof for Algorithm in Figure 7.7 : : : : : : : : : : : : : : : : : 245

C.3 Correctness Proof for Algorithm in Figure 7.9 : : : : : : : : : : : : : : : : : 253

C.4 Correctness Proof for Algorithm in Figure 7.10 : : : : : : : : : : : : : : : : 257

Bibliography 260

viii

List of Figures

2.1 Performance comparison of various mutual exclusion algorithms. : : : : : : : : : 19

3.1 De�nitions of common instructions : 33

3.2 An example of our programming notation. : 36

4.1 Constant-time LL, SC, and VL using Read and CAS. : : : : : : : : : : : : : : : 44

4.2 Pseudo-code implementations of operations on tag queues. : : : : : : : : : : : : : 49

4.3 Constant-time implementation of CAS using LL and SC. : : : : : : : : : : : : : 51

4.4 Implementation of LL, SC, and VL using LL and FSC. : : : : : : : : : : : : : : 53

4.5 W -word weak-LL and SC using 1-word LL, VL, and SC : : : : : : : : : : : : : : 56

5.1 Lock-free implementation for a large object. : 63

5.2 Implementation of the MEM array for large object constructions. : : : : : : : : : 64

5.3 C code used for the enqueue operation of an array-based queue implementation. : 66

5.4 Variable declarations for large object construction in Figures 5.5 and 5.6. : : : : : 71

5.5 Wait-free large object construction. : 72

5.6 Wait-free large object construction (continued from Figure 5.5). : : : : : : : : : : 73

5.7 Process q prematurely detects that its applied bit equals ANC [q]:bit. : : : : : : : 78

5.8 De�nitions used in the correctness proof for the algorithm in Figures 5.5 and 5.6. : 82

5.9 Comparison of our queue implementation to Herlihy's on a KSR multiprocessor. : 86

5.10 Comparison of our skew heap implementation to Herlihy's on a KSR multiprocessor. 89

6.1 Algorithm for k-assignment using test-and-set for renaming. : : : : : : : : : : : : 101

6.2 (N; k)-exclusion using atomic queue procedures. : : : : : : : : : : : : : : : : : : 102

6.3 (N; k)-exclusion on a cache-coherent machine : : : : : : : : : : : : : : : : : : : 105

6.4 Implementing Acquire(N; k) in a tree. : 108

6.5 (N; k)-exclusion in a tree. : 109

6.6 (N; k)-exclusion with a \fast path". : 110

6.7 Implementing (N; k)-exclusion using nested fast paths. : : : : : : : : : : : : : : : 111

6.8 (N; k)-exclusion for distributed shared-memory machines. : : : : : : : : : : : : : 115

6.9 Space-e�cient (N; k)-exclusion for distributed shared-memory machines. : : : : : 119

6.10 Performance Experiments on the Sequent Symmetry. : : : : : : : : : : : : : : : 126

6.11 Performance Experiments on the BBN GP1000. : : : : : : : : : : : : : : : : : : 130

ix

7.1 Organization of processes accessing a long-lived renaming algorithm. : : : : : : : 137

7.2 The one-time building block and the code fragment that implements it. : : : : : : 139

7.3 k(k � 1)=2 building blocks in a grid, depicted for k = 5. : : : : : : : : : : : : : 142

7.4 One-time renaming using a grid of building blocks. : : : : : : : : : : : : : : : : 142

7.5 Long-lived renaming with �(k2) name space and �(Nk) time complexity. : : : : : 144

7.6 Fast, long-lived renaming using reads and writes. : : : : : : : : : : : : : : : : : 147

7.7 Long-lived k-renaming using set �rst zero and clear bit. : : : : : : : : : : : : : : 152

7.8 Example steps of the k-renaming algorithm shown in Figure 7.7. : : : : : : : : : 153

7.9 k-renaming using bounded decrement. : 156

7.10 Lock-free k-renaming using fetch and add. : 157

A.1 De�nitions used in the correctness proof for the algorithm in Figures 5.5 and 5.6. : 172

A.2 De�nitions used in the correctness proof for the algorithm in Figures 5.5 and 5.6

(continued from Figure A.1). : 173

x

List of Tables

4.1 Summary of results concerning synchronization primitives. : : : : : : : : : : : : 43

6.1 A comparison of N -process k-exclusion algorithms for shared-memory systems. : : 94

7.1 A summary of read/write, wait-free M -renaming algorithms. : : : : : : : : : : : 135

7.2 A summary of wait-free, long-lived k-renaming algorithms. Time complexity is the

worst-case time complexity of acquiring and releasing a name once. : : : : : : : : 136

Chapter 1

Introduction

Shared objects provide a convenient means of communication and synchronization

between concurrent processes in shared-memory multiprocessor applications. A shared ob-

ject is a data structure (for example, a queue) that is shared among a collection of concurrent

processes by means of a �xed set of operations (for example, enqueue and dequeue). This

dissertation is concerned with the e�cient implementation of shared objects. We assume

a programming model in which a collection of asynchronous processes repeatedly perform

some local computation (with which we are not concerned), and invoke operations on ob-

jects. Each operation has associated parameters and a return value. Our goal is to provide

e�cient implementations of these operations that appear to be executed atomically, giving

the correct return value for the given parameters.

In order to avoid corruption of a shared object, it is usually necessary to synchro-

nize concurrent accesses to the object. Various approaches have been proposed for dealing

with the problem of coordinating concurrent accesses to a shared object. Among these

2

approaches, the use of mutual exclusion [29] is the most commonly accepted. In order to

modify a shared object using mutual exclusion, a process �rst acquires a lock associated

with that object, performs its operation, and then releases the lock. Another process that

needs to modify the object must wait until the lock is released.

1.1 Mutual Exclusion Algorithms

Substantial research e�ort has been devoted to the design of algorithms for mutual

exclusion. Some researchers have focused on ensuring starvation freedom [60], so that a pro-

cess that tries to acquire a lock eventually succeeds in doing so. Others have sought stronger

guarantees that ensure, for example, that processes acquire the lock in (approximately) the

same order that they request it [62]. Of course, signi�cant e�ort has also been put into

designing \e�cient" mutual exclusion algorithms. Many have focused on the worst-case

time complexity of acquiring a lock when no other processes require it, while others have

studied the performance of various mutual exclusion algorithms under increasing levels of

contention [12, 38, 72, 97]. (The level of contention is the number of processes that simul-

taneously request a lock.) Finally, e�orts have been made to determine the impact of the

available hardware and instructions on the design of mutual exclusion algorithms.

This e�ort has resulted in several mutual exclusion algorithms that perform very

well and are widely used in shared-memory multiprocessor applications. However, all of

these algorithms share a disadvantage that is fundamental to the use of mutual exclusion:

by de�nition, only one process can access a given shared object at a time. This has several

implications.

3

First, while one process holds a lock, any other process requiring that lock must

wait. Waiting can be in the form of busy waiting or blocking. In the case of busy waiting,

a process repeatedly tests a condition, for example by reading a shared variable, until the

process determines that it can proceed. In the case of blocking, the process relinquishes

the processor, thereby allowing another process to run. Both forms of waiting have their

disadvantages. If a process busy waits for a long time, then no useful work is achieved on

that processor during that time. On the other hand, if a process blocks, then its context

must be saved and the context of another process restored. If the waiting time is short,

then the expense of these two context switches may exceed the expense of busy waiting.

Because of the di�culty of accurately predicting waiting times, either approach can lead to

poor performance.

Second, in modern multiprocessors, processes can be delayed for a variety of rea-

sons, including page faults, cache misses, interrupt handling, and preemption. If process

delays are frequent, then the time spent waiting for locks can severely impact the perfor-

mance of the application. This is particularly problematic in multiprogrammed applications,

where processes are frequently subject to relatively long delays due to preemption. In this

case, if a process is preempted while holding a lock, all other processes that require that

lock must wait. The di�culty of e�cient synchronization in multiprogrammed environ-

ments often leads programmers to avoid multiprogramming altogether. This prevents them

from using the number of processes naturally dictated by their applications, and therefore

signi�cantly complicates their implementations. We hope that our work will help to alle-

viate this problem. With this goal in mind, we have attempted to make our algorithms as

4

widely applicable as possible by avoiding the use of nonstandard operating system support

for object sharing. In particular, this precludes the use of special schedulers that avoid the

problems arising from concurrent object accesses by ensuring that they do not occur.

A third disadvantage of using mutual exclusion to implement shared objects is that

it restricts parallelism: two operations on the same object cannot execute in parallel, even if

they access disjoint parts of the object. This can severely limit scalability in multiprocessor

applications if it causes processes to spend an excessive amount of time waiting for locks in

order to perform operations on shared objects. In some cases this problem can be addressed

by using �ner locking granularity. In other words, by employing several locks for one object,

operations that access disjoint parts of the object can execute in parallel. Unfortunately,

this approach requires static information about the behavior of the operations, and often

requires signi�cant creativity on the part of the object programmer.

Finally, in priority-based systems, the use of mutual exclusion can cause priority

inversion. A priority inversion arises when a process is preempted while holding a lock,

thereby causing a higher-priority process that requires the same object to wait. This phe-

nomenon is particularly problematic in hard real-time systems (which are often designed

using priority-based schedulers). In such systems, processes (or tasks) are required to com-

plete execution by a speci�ed deadline; priority inversion can introduce lengthy delays,

thereby causing tasks to miss their deadlines. Common solutions to this problem (for ex-

ample, the priority inheritance protocol [83]) entail additional overhead and complicated

operating system support.

For all of the reasons discussed above, it is highly desirable to reduce or eliminate

5

waiting in concurrent applications. A major component of the research presented in this

dissertation focuses on shared object implementations that avoid the use of locks and thereby

greatly reduce, or even eliminate, waiting.

Previous e�orts to eliminate waiting from shared object implementations have

focused on lock-free and wait-free shared object implementations [44, 66]. A shared object

implementation is lock-free if, for every operation by each process p, some operation is

guaranteed to complete after a �nite number of steps of process p. An implementation is

wait-free if, for every operation by each process p, that operation is guaranteed to complete

after a �nite number of steps of process p. Note that both requirements preclude the use

of locking: if some process is delayed for a long time while it has an object locked, then no

process is able to complete an operation on that object.

The de�nition of a wait-free or lock-free implementation implies that multiple ob-

ject operations can be performed concurrently (because if one is delayed, another must

still be able to complete). Thus, the correctness condition for such implementations is

necessarily more complicated than for mutual-exclusion-based implementations (where the

correctness of the sequential operations implies the correctness of the implementation). Like

most researchers in the area of wait-free and lock-free shared object implementations, we use

linearizability [48] as a correctness condition for our constructions. As described more pre-

cisely in the next chapter, linearizability requires that processes invoking operations on the

implemented object cannot distinguish between the wait-free or lock-free implementation

of that object, and one that ensures that each operation is executed sequentially.

Lock-free and/or wait-free implementations have been developed for various shared

6

objects. Unfortunately, lock-free and wait-free algorithms are notoriously di�cult to design

and to verify as correct. As a result, the design of these implementations, even for simple

objects such as queues, has required signi�cant creative and intellectual e�ort. To allow

programmers of concurrent applications to easily use new lock-free and wait-free shared ob-

jects, a mechanism that automatically generates such an implementation from its sequential

implementation is desirable. Towards this end, Herlihy proposed universal constructions

[41]. A universal construction is a mechanism that produces a lock-free or wait-free imple-

mentation of a shared object, given code for a sequential implementation of that object.

In a seminal paper, Herlihy presented the �rst attempt at practical lock-free and

wait-free universal constructions [42, 44]. While this line of research provides an excellent

starting point for our work, this and other universal constructions [56, 77] for lock-free and

wait-free shared objects have entailed signi�cant time and space overhead, precluding their

use in practical settings.

The main thesis to be supported by the work in this dissertation is that

lock-free and wait-free implementations for shared objects provide a viable al-

ternative to lock-based ones, and that they have a signi�cant advantage over

lock-based implementations if process delays are common, as is the case in mul-

tiprogrammed systems.

Many of the results presented in this dissertation support this thesis directly, while others

are useful by-products of this research. Speci�cally, we present several new lock-free and

wait-free constructions that substantially improve on the time and space overhead associated

with similar previous constructions.

We also present several results involving synchronization instructions, such as

load-linked and store-conditional (our universal constructions and previous ones are based

7

on these instructions), including a constant-time, wait-free implementation of the load-

linked and store-conditional instructions using compare-and-swap, and an implementation

of multi-word load-linked and store-conditional instructions using similar one-word instruc-

tions. These results allow our algorithms and others to be applied with greater
exibility;

they can also simplify the design of new algorithms. Finally, we study the long-lived re-

naming problem. This problem is important in algorithms | including some of ours |

that have time complexity that depends on the size of the range of process identi�ers. A

fast, long-lived renaming algorithm can be used to reduce the size of this range, thereby

improving the performance of the algorithm.

The remainder of this introduction is devoted to a brief discussion of all of this

work. We begin with a brief description of Herlihy's universal constructions, which pro-

vide an important foundation for much of the work presented here. Other related work is

discussed in Chapter 2.

1.2 Herlihy's Constructions

Herlihy presents three universal constructions: lock-free and wait-free construc-

tions for \small" objects, and a lock-free implementation for \large" ones. A small object

is one that can be copied in its entirety without excessive overhead. In Herlihy's lock-free

implementation for small objects, a process p performs each operation on a copy of the ob-

ject, rather than on the current version of the object. This copy is \owned" exclusively by

process p; the operation can therefore be performed using purely sequential code, safe from

interference by other processes. Having performed its operation on a local copy, process

8

p then attempts to make that copy \current" by modifying a shared pointer; the shared

pointer always points to a copy that contains the current value of the implemented object.

There is a risk that the e�ects of an operation by process p might be lost because another

process q modi�es the shared pointer immediately after p does. This would lead to an

incorrect implementation, because q's operation would be applied to an object value that

did not include p's changes to the object. To allow process p to detect this interference,

and to retry its operation, the shared pointer is manipulated by two special instructions:

load-linked (LL) and store-conditional (SC). These operations are used as a pair: a process

p �rst reads the pointer using LL, and later attempts to write the pointer using SC. The

SC of p fails, returning false, if a successful SC operation is executed by another process

between the LL and SC of p. Thus, in the scenario described above, process q's SC fails

(has no e�ect on the shared pointer), and q retries its operation from the beginning. But

note that a SC fails only if another process successfully modi�es the shared pointer, thereby

completing an operation. Therefore, if a process q repeatedly fails to perform its opera-

tion, then some other process repeatedly completes an operation, so this implementation is

lock-free. However, q could potentially fail forever because another process might interfere

every time q attempts to modify the shared pointer. Therefore, the implementation is not

wait-free.

Herlihy's wait-free implementation for small objects overcomes this problem by

the addition of a \helping" mechanism, which ensures that if some process p repeatedly

interferes with q's operation then p (or some other process) will eventually \help" q by

performing q's operation along with its own. This helping is achieved by having each process

9

that performs an operation �rst \announce" the operation by recording the operation to be

performed, the parameters to be used, and some other administrative information. Then,

when a process performs its operation on a local object copy, it checks for outstanding

operations that have been announced by other processes, and also performs these operations

on the local copy before attempting to update the shared pointer (using SC). Herlihy shows

that this ensures that a process can fail to perform its own operation at most twice before

the operation is performed by another process [44]. Several subtle di�culties arise from the

need to ensure that each operation takes e�ect on the object exactly once, and that, when

an operation is performed by a process other than the process that invoked it, the correct

return value for that operation is communicated to the invoking process. Ensuring that these

requirements are met is complicated by the possibility of a process p successfully performing

an operation of another process q and subsequently being delayed inde�nitely; this delay

must not prevent process q from determining that its operation has been completed, or from

ascertaining the return value of that operation. These problems are overcome by recording

the return value of the operation, as well as the fact that the operation has been successfully

performed, in the same atomic step in which the operation takes e�ect (that is, when the

successful SC is performed). To facilitate this \multi-purpose" atomic step, return values

and other administrative information are kept with each object copy.

Finally, Herlihy's lock-free implementation for large objects allows the object to

be partitioned into blocks that are linked together by pointers. Now, each process that

performs an operation maintains a logically distinct version of the object, although some

parts of the object that are not a�ected by the operation may be physically shared by two

10

or more logical copies. The goal of this approach is to avoid copying as much of the object

as possible by allowing the \new" object value to share a substantial portion of the object

with the \current" object value.

Each of Herlihy's implementations has its disadvantages. First, the guarantee of

progress provided by his wait-free implementation for small objects comes at a cost: each

time process p performs an operation, p must check each other process to see if it needs

help. Thus, if N | the number of processes | is large, then there is a signi�cant overhead

involved in performing an operation, even if no other process concurrently accesses the

object. Furthermore, in both the lock-free and wait-free implementations for small objects,

each operation copies the entire object for each operation. (In fact, in the event of failed

SC instructions, these operations must copy the object more than once in order to retry.)

Depending on the size of the object, this can have a signi�cant impact on performance.

Finally, each process requires a local copy of the object. Again, if N is large, or of the

object itself is large, this could represent a signi�cant storage overhead.

The approach taken in Herlihy's lock-free implementation for large objects requires

the object designer to explicitly partition the object into blocks, and to determine how

these blocks should be updated and copied. This makes the implementation much more

di�cult to use. Also, for many common objects, this approach provides no advantage over

the small-object implementations because the whole object must be copied anyway. For

example, when implementing a FIFO queue as a linked list of blocks, the enqueue operation

must copy the entire object because, in order to link in a new block, the \next" pointer in

the last block must be changed, which necessitates copying the last block, which in turn

11

necessitates modifying the next-to-last block, and so on. This \cascading" e�ect causes

Herlihy's construction to copy the entire object in this case. Finally, Herlihy does not

present a wait-free implementation for large objects.

1.3 Our Contributions

In Chapters 5 and 6, we present new techniques for implementing lock-free and

wait-free shared objects.1 These new techniques are designed to overcome all of the problems

described above. Speci�cally, in Chapter 5, we present new lock-free and wait-free universal

constructions for large objects, and, in Chapter 6 we present a technique that allows the

time and space overhead of universal constructions to be tied to expected, rather than worst

case, contention.

1.3.1 Universal Constructions for Large Objects

Our large-object constructions provide the programmer with the \illusion" of a

large, contiguous array within which to implement a shared object. This is a natural

programming paradigm for many applications as it essentially models physical memory.

In reality, the array is implemented by a collection of smaller blocks. When an operation

modi�es a part of this array, a new block replaces the block containing that part. The

address translation and record-keeping necessary to provide the illusion of a contiguous array

is performed entirely by our constructions, and is transparent to the object programmer.2

1As explained in Chapter 6, the techniques presented there are not, technically speaking, wait-free.

However, they are designed to allow implementations to be \tuned" for a particular application so that they

provide the same bene�ts that wait-free implementations provide, while keeping overhead low.
2To use our constructions, a programmer must supply sequential code for operations and also determine

the size of the blocks that implement the underlying array. Therefore, our constructions are not com-

12

Thus, unlike Herlihy's large-object construction, ours shield the programmer frommanaging

the details of concurrent object accesses. Moreover, because the programmer now deals

with logical addresses (o�sets into the imaginary array), rather than physical addresses,

the replacement of a block does not necessitate modi�cations to other blocks (as it does

in Herlihy's large object construction). Thus, the cascading e�ect described earlier does

not occur in implementations that use our constructions. As a result, our constructions

perform signi�cantly better than Herlihy's for some objects, while having much lower space

overhead.

1.3.2 Using k-Exclusion to Further Reduce Overhead

The techniques presented in Chapter 6 are motivated by the observation that, in

most applications, it is unlikely that all N processes in the system would access the same

object concurrently, and that even if this did happen, it would be very unlikely for N � 1 of

them to be delayed simultaneously. Thus, the requirement of wait-freedom | that a pro-

cess is guaranteed to complete its operation even if the other N � 1 processes are delayed

| is stronger than most applications require. The key idea behind the results in Chapter

6 is to provide weaker progress guarantees than wait-freedom, while still providing some

resilience to process delays, and to do so with less overhead than wait-free constructions.

This is achieved by using a wait-free object implementation for k < N processes. Now,

time and space complexity are dependent on k, rather than on N , and, provided at most k

processes concurrently access this implementation, none will ever have to wait to complete

pletely transparent. Nonetheless, the choice of block size a�ects only performance; correctness is guaranteed

regardless of the block size chosen.

13

its operation. Unfortunately, most wait-free implementations for k processes will behave

incorrectly if accessed simultaneously by more than k processes. Therefore, it is important

to ensure that the assumed bound of k processes accessing the k-process, wait-free object

implementation is never violated. This is achieved by the use of a k-exclusion algorithm.

The k-exclusion problem is a generalization of the mutual exclusion problem, in which up

to k processes may execute within their critical sections concurrently. In Chapter 6, we

present several fast k-exclusion algorithms for a variety of architectures, and present perfor-

mance studies that show that this approach can result in objects that perform better under

multiprogramming than objects implemented using either Herlihy's wait-free construction

for small objects, or a state-of-the-art mutual exclusion algorithm. These techniques also

reduce the space overhead of lock-free constructions, but are lock-free if contention does not

exceed k.

1.3.3 Fast, Long-Lived Renaming

In order to use most k-process object implementations, a process needs a unique

identi�er from f0::k� 1g. In the k-exclusion-based approach described above, di�erent sets

of processes use the k-process object implementation at di�erent times, so these identi�ers

cannot be assigned statically. Therefore, a mechanism is required whereby processes can

repeatedly acquire and release identi�ers (otherwise known as names). This can be achieved

through the use of a fast, long-lived renaming algorithm. In the long-lived renaming problem,

processes with distinct names ranging over 0 to N �1 repeatedly acquire and release names

from f0; :::;M � 1g, for some M < N . It is assumed that at most k processes request

or hold names concurrently. A long-lived renaming algorithm is called fast if the time

14

complexity of acquiring and releasing a name once is independent of N and polynomial in

k. In Chapter 7, we present e�cient long-lived renaming algorithms that employ \strong"

synchronization instructions such as test-and-set and fetch-and-add, among other, less well-

known instructions. With the hope of �nding more portable renaming algorithms, we have

also studied fast, long-lived renaming algorithms that employ only simple read and write

instructions. The restriction to reads and writes makes the problem of renaming much more

di�cult, and in fact renders impossible the goal of renaming to a name space smaller than

2k � 1. We present the �rst fast, long-lived renaming algorithm that uses only reads and

writes and renames to the optimal name space size of 2k� 1. We also present the �rst fast,

one-time renaming algorithm, which achieves a name space of size k(k + 1)=2. (One-time

renaming is a special case of long-lived renaming in which processes do not release names.)

1.3.4 Support for Wider Applicability

Our constructions as well as Herlihy's are based on LL and SC instructions. As

discussed in the next chapter, Herlihy has shown that, in order to implement some objects

in a wait-free (or lock-free) manner, \strong" synchronization instructions such as LL/SC or

compare-and-swap (CAS) are necessary. Thus, because universal constructions can be used

to implement any object, they are necessarily based on such instructions. In Chapter 4, we

present several results that allow our constructions (and other LL/SC-based algorithms) to

be applied in a wider variety of settings, including those that provide CAS and not LL/SC,

and some that, for practical reasons, do not provide LL/SC instructions with the semantics

we assume.

15

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Related work is discussed

in Chapter 2. Notational conventions and de�nitions are listed in Chapter 3. In Chapter 4,

we present several mechanisms that allow the algorithms presented in Chapters 5 and 6 to be

applied with greater
exibility. Chapter 5 contains lock-free and wait-free constructions for

large shared objects. In Chapter 6, we present mechanisms for reducing the space overhead

and improving the performance of lock-free and wait-free shared object implementations.

In Chapter 7, we study the renaming problem. Finally, conclusions and a discussion of

future directions for this research appear in Chapter 8. Some of the lengthier proofs from

Chapters 5 through 7 appear in appendices. (This dissertation includes work that is based,

with permission, on previously published work [8, 9, 10, 74, 75].)

Chapter 2

Related Work

2.1 Mutual Exclusion Algorithms

In the mutual exclusion, each of a set of concurrent processes repeatedly executes a

noncritical section of code and a critical section of code. A solution to the mutual exclusion

problem consists of code for an entry section to be executed before the critical section, and

for an exit section to be executed after critical section. These code sections must ensure that

no two distinct processes execute within their critical sections concurrently. This problem

was �rst posed by Dijkstra in 1965 [29], and an enormous amount of research e�ort has been

devoted to studying this problem since. In this section, we give a brief overview of the recent

history of research on mutual exclusion algorithms for shared-memory multiprocessors.

The simplest mutual exclusion algorithm is known as a test-and-set lock. This

algorithm uses a single bit, which contains zero when the lock is free, and one when some

process is holding the lock. In order to acquire the lock, a process repeatedly attempts

to change the bit from zero to one using the test-and-set instruction (which is de�ned in

17

Chapter 3). While another process holds the lock, these attempts fail, so processes that are

requesting the lock must retry.

Recent performance studies [12, 38, 72, 97] show that, as the number of concurrent

processes in a system grows, excessive tra�c on the processor-to-memory interconnect can

quickly become a bottleneck that limits performance. Therefore, in order to achieve \scal-

able" performance (that is, performance that does not degrade unacceptably as the number

of processes in the system grows), it is desirable to design mutual exclusion algorithms

that minimize the amount of interconnect tra�c generated by each process. Furthermore,

\strong" synchronization instructions such as test-and-set, which both read and write mem-

ory in one atomic step, generally take longer to execute than instructions that simply read

or write.

Given these observations, the test-and-set lock can be improved by having each

process repeatedly read the lock bit until it is zero, and then attempt to set it to one us-

ing test-and-set. The resulting algorithm is known as a test-and-test-and-set lock. This

algorithm reduces the number of expensive test-and-set instructions executed and, in ma-

chines with coherent cache mechanisms, allows processes to avoid generating unnecessary

interconnect tra�c while the lock is held by another process. However, two disadvantages

remain. First, when the lock is released, a \
urry" of interconnect activity can arise as each

waiting process attempts to acquire the lock. Also, neither the test-and-set lock, nor the

test-and-test-and-set lock provide any progress guarantees: it is possible for one process to

repeatedly fail to acquire the lock, resulting in starvation.

Recently, various researchers have presented mutual exclusion algorithms for

18

shared-memory multiprocessors that are designed to be scalable (by avoiding excessive in-

terconnect tra�c) while providing progress guarantees to processes that attempt to acquire

the lock. Some of the best-known are due to Anderson [12], to Graunke and Thakkar [38],

to Mellor-Crummey and Scott [72], and to Yang and Anderson [97]. All of these mutual

exclusion algorithms achieve scalable performance through the use of \local spinning".

A spinning algorithm is one that busy-waits by repeatedly testing shared variables

(i.e., no shared variables are written while busy-waiting). A local spinning algorithm is one

in which all busy-wait loops access only shared variables that are locally-accessible, i.e. that

do not require a traversal of the interconnect. Two classes of shared-memory multiprocessors

| distributed shared-memory multiprocessors and cache-coherent multiprocessors | lend

themselves to the use of local spinning. On a distributed shared-memory machine, a shared

variable is locally-accessible if it is stored in a local partition of shared memory. On a cache-

coherent machine, a shared variable is locally-accessible if a copy of that variable currently

resides in the local cache.

To see the impact of local spinning on the performance of various mutual exclusion

algorithms, consider Figure 2.1. This �gure summarizes results of performance experiments

run on the Sequent Symmetry, a shared-memory multiprocessor with cache-coherence; these

results were originally reported by Yang and Anderson in [97]. The graph compares a simple

test-and-set lock with mutual exclusion algorithms by Peterson and Fischer [82], by Lamport

[65], by Styer [87], by Yang and Anderson [97], by Mellor-Crummey and Scott [72], and by

Anderson [12]. Each point (x; y) in the graph represents the average time y for one critical

section execution with x competing processes, one per processor, averaged over 100,000

19

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16

A
ve

ra
ge

 ti
m

e
fo

r
cr

iti
ca

l s
ec

tio
n

ac
qu

is
iti

on
 (

m
ic

ro
se

co
nd

s)

Number of processors

"pf"
"lamp"

"tas"
"styer"

"ya"
"mcs"
"and"

Figure 2.1: Performance comparison of a test-and-set lock (tas), with mutual exclusion algorithms
by Peterson and Fischer (pf), Lamport (lamp), Styer (styer), Yang and Anderson (ya), Mellor-
Crummey and Scott (mcs), and Anderson (and).

20

critical section executions. The algorithms by Anderson, by Mellor-Crummey and Scott,

and by Yang and Anderson are the only algorithms tested in which processes locally spin.

Each of these local-spin algorithms yields a relatively
at curve in Figure 2.1, indicating

good scalability. The curves for all of the other algorithms rise more quickly, indicating

poor scalability.

Despite these e�orts to provide scalable mutual exclusion algorithms for a variety

of architectures providing a variety of machine instructions, a serious problem remains. If

a process is delayed while holding a lock for a shared object, then no other process can

access that object until that process resumes execution and releases the lock. As a result,

other processes might spin for a relatively long time waiting for the lock, and achieve no

useful work in that time.1 If processes are multiprogrammed, this problem is exacerbated

by the fact that, in most of the mutual exclusion algorithms mentioned above, processes

acquire locks in a FIFO order. In this case, if the process that is \next in line" to acquire

a lock is preempted while waiting for the lock, then all other processes must wait for that

process to be rescheduled before it even acquires the lock. Those processes might in turn

be preempted while they are waiting, making matters even worse. This problem seems to

be inherent in any FIFO mutual exclusion algorithm.

Recently, Wisniewski et al. [96] have designed mutual exclusion algorithms with

the relaxed condition that running processes acquire the lock in FIFO order. This avoids

the problem described above, in which processes wait in line behind preempted processes.

1Another alternative approach, called idle waiting, is to allow a waiting process to relinquish the processor

to another process. This approach assumes that there is always another process that can perform useful
work. Furthermore, a non-trivial overhead is usually incurred when switching from one process (or thread)

to another. Thus, the use of idle-waiting can lead to poor performance if waiting times are usually short.

For a detailed description of these trade-o�s, and for a study of heuristics for deciding between idle waiting
and busy waiting, see [69].

21

However, as a result of this relaxed condition, these algorithms admit the possibility of

starvation. Furthermore, implementing the relaxed FIFO ordering and ensuring that a

process is not preempted while in its critical section requires the use of special kernel support.

Clearly, shared object implementations that do not rely on special kernel support are more

widely applicable. In the next section, we describe recent research that has attempted to

circumvent this problem by avoiding locking altogether, while being implemented without

non-standard kernel support.

2.2 Lock-Free and Wait-Free Object Implementations

Lock-free and wait-free shared object implementations provide alternatives to mu-

tual exclusion. A shared object implementation is wait-free if and only if each operation by

each process p is guaranteed to complete after a �nite number of steps by that process. To

be lock-free, an implementation only needs to guarantee that an operation by some process

(not necessarily p) will complete after a �nite number of steps by process p. An implemen-

tation based on critical sections is neither lock-free nor wait-free because, while a process

is delayed in its critical section, no process completes an operation.

In the remainder of this section, we introduce linearizability | the correctness

condition used to verify lock-free and wait-free implementations, and describe previous

research on such implementations. Speci�cally, we discuss the consensus problem, which

provides fundamental insight into the hardware support required for these implementations,

and also summarize previous work on lock-free and wait-free shared objects, both universal

constructions and implementations of speci�c objects.

22

2.2.1 Linearizability

Implementations of lock-free and wait-free operations consist of code fragments

that typically execute multiple atomic statements. As a result, each operation invocation

occurs in an \interval" of time. Because processes may invoke operations concurrently with

each other, two or more of these intervals may overlap. This gives rise to a partial order

over invocations: if one invocation completes before another invocation begins, then the

�rst invocation precedes the second in the partial order; if two invocations overlap, then

they are not ordered. The semantics of a shared object is satis�ed if each invocation on an

object appears to the invoking processes to be executed instantaneously at some distinct

point during the invocation's interval. The formal correctness condition used to ensure

this is linearizability [48]. Linearizability requires that the partial order that arises from

any series of invocations on an object can be extended to a total order in such a way that

the values returned by the invocations in the total order are consistent with the sequential

semantics of the implemented object.

2.2.2 The Consensus Hierarchy

In the consensus problem, a set of N asynchronous processes, each with a given

input value, communicate in order to agree on the input value of one of the processes. Loui

and Abu-Amara [70] showed that the consensus problem cannot be solved in a wait-free

manner for N > 1 in a shared-memory multiprocessor that provides only simple read and

write instructions. (A similar result was previously proved for message passing systems by

Fischer, Lynch, and Patterson [36].)

23

Herlihy later extended these results to other shared objects by classifying each

object according to its consensus number [41, 43]. The consensus number of an object is

the maximum number of processes for which a wait-free consensus algorithm exists that

relies only on that object and read and write instructions. Herlihy showed that for each

N � 1, there exists an object with consensus number N . More importantly, he also showed

that an object with consensus number N is universal in a system of N processes. An object

is universal in a system of N processes if it can be used to implement any object in a

wait-free manner in that system. These results give rise to a \hierarchy" of objects: each

object is placed at the level of its consensus number and, in a system of N processes, it is

impossible to construct a wait-free implementation of a shared object at level N using any

object from a lower level. Herlihy also identi�ed objects with unbounded consensus number

| objects that can solve consensus in a system consisting of any number of processes. These

results imply that objects with unbounded consensus number can be used to construct wait-

free implementations of any object in a system of any number of processes. A well-known

example of an object with unbounded consensus number is a register that supports read

and compare-and-swap operations. This implies that, on a shared-memory multiprocessor

that supports instructions (like compare-and-swap) with unbounded consensus number, any

object can be implemented in a wait-free manner for any number of processes.

2.2.3 Universal Constructions

In recent years, several groups of researchers have presented methods for auto-

matically \transforming" sequential object implementations into wait-free or lock-free ones

[2, 18, 41, 43, 44, 56, 77, 84]. These methods are called universal constructions. A universal

24

construction relieves the object designer of the need to reason about concurrency, thereby

greatly simplifying the task of providing a correct lock-free or wait-free implementation for

a particular shared object. Much of the research presented in this dissertation is based on

universal constructions due to Herlihy [44]. Herlihy's lock-free and wait-free constructions

for small objects, as well as his lock-free construction for large objects, are described in

Section 1.2; in the following paragraphs, we brie
y describe other universal constructions.

The �rst universal construction is due to Herlihy [41]. This construction is used

to prove the universality of consensus, and is therefore based on general consensus objects.

The construction works by appending operations onto a list in an order that is consistent

with the partial order over operation invocations. The value of the object can then be

deduced by \replaying" the operations applied since a known state. The consensus objects

are used by processes to \agree" on the order in which operations are appended to the

list. This construction requires an unbounded number of variables; Herlihy later presents

a version that uses a bounded number of variables, although the values of some of these

variables grow, albeit slowly, without bound [43]. In a subsequent paper, Jayanti and Toueg

correct some minor errors and show that bounded variables su�ce [56]. Despite all of these

improvements, these constructions all have high time and space complexity, and cannot be

considered practical.

Plotkin [77] proposed a new universal synchronization primitive called a \sticky

bit", and presents a universal construction that is based on this primitive. A sticky bit is a

variable that contains one of three values: 0,1, or ?, and supports a read operation and a

Jam(v) operation (where v 2 f0; 1g), which sets the variable to v and returns true if the

25

variable contains v or ?, and returns false otherwise. (A sticky bit also supports a \
ush"

operation, which sets the variable back to ? provided it is not executed concurrently with

any other operation on the same sticky bit, in which case it has unpredictable results.)

Plotkin shows that sticky bits can be used to implement a sticky byte | a multi-valued

version of the sticky bit | and uses this in turn to provide a universal construction. This

construction is similar in spirit to Herlihy's original construction [41], although it uses

bounded space. It also has overhead that is too high for the construction to be considered

practical.

Later, Herlihy [42] made an important step towards practical universal construc-

tions by presenting the �rst universal construction that is based on a \real" machine in-

struction, namely compare-and-swap. Although implementable on existing shared-memory

multiprocessors, this construction entails high overhead, and is therefore impractical.

Herlihy made the �rst serious attempt at practical universal constructions in [44].

He presented three constructions: lock-free and wait-free constructions for \small" shared

objects, and a lock-free construction for \large" shared objects. These constructions are

based on the LL/SC instruction pair, and are described in more detail in Section 1.2.

Although Herlihy's best constructions represent important progress towards practi-

cal universal constructions, they have several disadvantages. First, operations implemented

using the wait-free construction have time complexity that is linear in the total number of

processes, even if the operation accesses the object alone (that is, no other process accesses

the object concurrently with that operation). This is because each operation must check, for

every process, whether that process has an outstanding operation that needs to be helped.

26

Second, the small-object constructions copy the entire object. Herlihy's solution to this

problem (his lock-free, large-object construction) requires some creativity on the part of

the object programmer, fails to reduce copying for some common objects, and does not

provide wait-free implementations. Finally, Herlihy's constructions do not allow operations

to execute in parallel on the same object; this limits throughput to being no better than

that of a sequential implementation. Several groups of researchers have presented construc-

tions that are designed to overcome one or more of these disadvantages. These e�orts are

described brie
y below.

Barnes [18] recognized the importance of allowing operations to execute in parallel

where possible. He presented a mechanism in which an object is protected by a number

of locks. In order to perform an operation on the object using Barnes's method, a pro-

cess acquires the locks associated with all parts of the object that it accesses, performs

its operation, and then releases the locks. Barnes uses a technique he calls the coopera-

tive technique to avoid the problems that arise from the use of mutual exclusion, and to

guarantee lock-freedom. With the cooperative technique, when a process acquires a lock, it

attaches to that lock a pointer to a variable that describes the operation to be performed.

This allows a process that needs to acquire a lock that is already held by another process

to \help" the latter process to perform its operation and to release the lock. (A similar

approach is proposed by Turek, Shasha, and Prakash [89].) Barnes's construction uses the

LL/SC instruction pair to ensure that each step of an operation is performed only once,

despite the possibility of multiple processes attempting to perform that step concurrently.

Because of the relative expense of executing these synchronization instructions, this tech-

27

nique introduces signi�cant overhead. The cooperative technique can lead to livelock if the

implemented operations without the cooperative technique would lead to deadlock. Thus,

as with traditional lock-based implementations, it is important to avoid this situation, and

Barnes uses the common approach of ensuring that all processes acquire locks in the same

order. This can be problematic for some operations, because it is di�cult or impossible

to determine in advance which locks the operation will acquire. Barnes uses a technique

he calls the caching method to avoid this problem. Using the caching method, a process

performs an operation on a private \copy" of the object (only the parts of the object af-

fected by the sequential operation are copied), and then acquires the necessary locks in

order, and, in the absence of any interference, performs its operation on the object using

the cooperative technique. This technique avoids the livelock problem, but also introduces

further overhead. Nonetheless, Barnes's construction improves over Herlihy's by avoiding

copying the entire object, and by allowing operations to execute in parallel where possible.

Barnes did not present a wait-free construction.

Shavit and Touitou presented a method that they called software transactional

memory [84], which is based on transactional memory | a hardware mechanism proposed

by Herlihy and Moss [45]. Transactional memory allows programmers to write transac-

tions (code fragments that operate on shared memory) that either execute atomically or

fail without modifying the memory. Shavit and Touitou's approach allows transactions to

be executed in a lock-free manner, and also allows multiple transactions to execute in par-

allel, provided that that they do not interfere with each other. This is achieved through

the use of a technique that is similar to Barnes's cooperative technique: processes acquire

28

locks associated with the memory locations to be updated, and a location that is locked by

another process can be released by \helping" that process. As in Barnes's implementation,

the LL/SC instruction pair is used to ensure that a slow process does not corrupt the imple-

mented object. A key di�erence between the two approaches is that software transactional

memory avoids the situation in which a process recursively helps a long \chain" of over-

lapping operations, only to later fail as a result of the operations it helped. According to

simulated performance studies conducted by Shavit and Touitou, this results in improved

performance over Barnes's method. One limitation of software transactional memory (as

presented in [84]) is that it does not support dynamic transactions. (A transaction is static

if the locations it accesses are known in advance, and dynamic otherwise.) As a result, it

is not particularly well suited to implementing general shared object operations. However,

most common synchronization primitives | for which software transactional memory is

intended | access a �xed set of locations, and can therefore be easily implemented us-

ing static transactions. Shavit and Touitou did not present a construction for wait-free

transactions.

The constructions of Barnes and of Shavit and Touitou are lock-free, but not wait-

free. Thus, they admit the possibility that a process will fail to complete its operation

inde�nitely. Herlihy's wait-free construction guarantees that this cannot happen, but does

so at considerable expense. In particular, the time complexity of performing an operation

is
(N), where N is the total number of processes, even if no other process attempts to

perform an operation concurrently. Afek, Dauber, and Touitou [2] presented a wait-free,

universal construction that attempts to achieve a middle ground: the time complexity of

29

their construction depends on the number of processes that concurrently access the object,

rather than the total number of processes. Thus, the performance of objects implemented

using their constructions is determined by actual levels of contention, rather than worst

case. In particular, if one process accesses the object alone, then performance should be

comparable to that of a lock-free implementation. As in Herlihy's wait-free construction,

progress is guaranteed by having processes \help" each other to perform operations. How-

ever, in Herlihy's construction, the helping mechanism requires processes to check each other

process for an outstanding operation. Afek, Dauber, and Touitou's construction avoids this

overhead by maintaining a list of processes that are currently accessing the object. Main-

taining and checking this list is done with time complexity that depends on the size of

the list, and not on the total number of processes. Afek, Dauber, and Touitou present

several variations on this theme, including one that does not require the entire object to

be copied by each operation. These constructions entail some ingenious new techniques,

and represent important progress in the development of practical universal constructions.

Speci�cally, they employ a mechanism that allows a list of processes that need help to be

maintained in a wait-free manner. This list is accessed with time complexity that is linear

in the number of processes in the list (not the total number of processes). The use of this

technique allows these constructions to improve on the
(N) best-case time complexity

of Herlihy's wait-free construction. However, these new constructions are not expected to

perform well in practice, because they make heavy use of the LL/SC synchronization in-

structions. The LL/SC instructions are usually quite expensive, relative to simple read and

write instructions [61]. Finally, these constructions do not exploit parallelism.

30

2.2.4 Speci�c Objects

Finally, many researchers have presented lock-free and wait-free implementations

for speci�c shared objects. Such implementations can potentially take advantage of the

semantics of the object under consideration to improve performance. However, most im-

plementations of speci�c objects have required considerable creative and intellectual e�ort,

highlighting the need for universal constructions. Some speci�c object implementations are

listed below.

Many researchers have studied implementations of various kinds of wait-free shared

objects using only read/write registers. These implementations include constructions of

complex registers from simpler registers [22, 25, 39, 40, 58, 59, 66, 68, 78, 79, 81, 85, 88,

93]; atomic snapshots that allow multiple variables to be read atomically, [1, 4, 5, 16, 17,

32, 50, 55], algorithms for maintaining timestamps [31, 33, 37, 52], and mechanisms for

implementing any object whose operations satisfy certain algebraic requirements [6, 7, 13].

For example, a construction is given in [7] that implements any object such that, for each

pair of operations on the object, either the two operations commute with each other, or one

overwrites the other (i.e., the e�ects of executing both operations is the same as executing

just one of them).

Other researchers have considered wait-free and lock-free implementations using

instructions that are stronger than simple reads and writes. Implementations of various

types of queues have been presented by Lamport [64], by Herlihy and Wing [47], by Israeli

and Rappoport [53], by Wing and Gong [94, 95], and by Michael and Scott [73]. Anderson

and Woll [11] and Lanin and Shasha [67] present implementations for various set operations.

31

Valois presents lock-free implementations for various data structures, including queues, lists,

trees, and dictionaries [90, 91, 92]. Finally, Massalin and Pu have implemented an entire

operating system using lock-free data structures such as lists, queues, and stacks [71].

Chapter 3

Preliminaries

In this chapter, we brie
y describe our model of computation, and introduce some

conventions, de�nitions, and notation that are common to the following chapters.

All of the results in this dissertation concern asynchronous, shared-memory mul-

tiprocessors. This description includes a wide variety of architectures that consist of two

or more processors connected to each other and to memory modules by an interconnection

network, such as a bus or crossbar. These processors are used to run sequential processes

(or threads; the distinction is not important here) that communicate using shared memory.

This communication is achieved by means of simple memory instructions such as read and

write operations, as well as more complicated instructions in some cases, such as test-and-

set, fetch-and-add, CAS, and the LL/SC instruction pair.

We now describe the common instructions used in this dissertation. Other, less

common, instructions are de�ned in the chapters in which they are used. Figure 3.1 contains

atomic code fragments that are equivalent to each of the instructions discussed below. We

33

test and set(X) � tmp; X := X; true; return :tmp

fetch and add(X; v) � tmp := X ; X := X + v; return tmp

CAS (X; v; w) � if X = v then X := w; return true else return false �

LL(X) � validX [p] := true ; return X

SC (X; v) � if validX [p] then

X := v;

for i := 0 to N � 1 do validX [i] := false od;

return true

else

return false

�

VL(X) � return validX [p]

Figure 3.1: Equivalent atomic code fragments for common instructions used. Fragments for LL,
VL, and SC are for process p. validX is a shared array of booleans associated with variable X. i is
a private variable of process p. N is the total number of processes. The semantics of VL and SC
are unde�ned if process p has not previously executed a LL instruction.

stress that these code fragments are de�nitions, and should not be interpreted as implemen-

tations of the given operations. The test-and-set instruction atomically sets a bit to true

and returns true if it changes the bit from false to true, and false otherwise. The fetch-and-

add instruction atomically adds a value to a variable and returns the previous value of that

variable. The CAS operation takes three parameters | a variable, an old value, and a new

value. If the variable equals the old value, then CAS writes the new value to the variable

and returns true. Otherwise, it returns false and does not modify the variable. The LL

operation returns the value of the variable on which it is invoked. A successful SC operation

on variable X writes a new value to X and returns true. An unsuccessful SC operation on

X returns false and does not modify X . A SC operation by process p on variable X is

successful if no process has performed a successful SC on X since p's most recent LL on X ,

and is unsuccessful otherwise. A validate (VL) instruction is sometimes associated with the

34

LL/SC pair. A VL instruction by process p on variable X returns true if no process has

performed a successful SC on X since p's most recent LL on X , and returns false otherwise.

Shared memory is implemented di�erently in various multiprocessors. For exam-

ple, some multiprocessors arrange all processors and memory on a single shared bus, while

others provide multiple processor-to-memory paths by using several buses or a crossbar.

However, for the most part, these implementation details do not concern us. (An exception

arises in Chapter 6, where, for performance reasons, we present di�erent algorithms for

machines with cache-coherence mechanisms and for distributed shared memory machines

on which di�erent parts of shared memory can be accessed at di�erent speeds.) However,

we do assume that the shared memory provides sequential consistency [63], which, roughly

speaking, ensures that all memory operations appear to occur in the same total order to all

processors.

We model computations on shared memory multiprocessors using states and his-

tories. A state is a mapping that assigns a value to all shared memory locations and to

all private process variables (including the program counter for each process). A history

is a totally-ordered sequence of states, with each pair of consecutive states separated by a

process step that causes the computation to go from the �rst state to the second. Thus,

in the history s0
p1
! s1

p2
! s2

p3
! :::, the initial state is s0; the execution of process p1's �rst

statement causes the computation to go from state s0 to state s1; the execution of process

p2's �rst statement causes the computation to go from state s1 to state s2, and so on.

When considering a collection of processes that share an object, we model the

processes as in�nite loops that repeatedly execute a remainder section (unrelated computa-

35

tion) and invoke operations on the object. This model is in keeping with the programming

paradigm described in Chapter 1. The level of contention is the number of processes that

are concurrently outside their remainder sections (that is, the number of processes that

concurrently access the shared object). A shared object implementation is scalable under

contention if its performance does not degrade unacceptably as the level of contention in-

creases. The notions of an implementation being scalable with increasing object size or

scalable with an increasing number of processes or processors are de�ned similarly.

In order to model asynchronous processes with arbitrary delays (and even failures),

we assume the existence of a scheduler that repeatedly selects and executes a step of any

process that is ready to run. It is important to note that this is not a real scheduler: it is

an abstraction that we use to model execution interleavings. (However, this abstraction is

su�ciently general to capture the behavior of real schedulers.) We prove that our algorithms

are correct for any history generated by this scheduler. Some of our correctness properties

refer to faulty and nonfaulty processes. A process p is faulty in a history h if, after some

point, h contains no steps of process p; p is nonfaulty otherwise. (We sometimes consider a

process to be faulty only if it stops taking steps when executing within a certain section of

its code. In this case, we say a process p is faulty in a history h if and only if there is some

point in h at which p is executing within a certain section of its code, and after which no

step by process p occurs.)

Below we describe the proof techniques used throughout the dissertation. First,

however, a brief discussion of our programming notation, which should be largely self-

explanatory, is in order. As an example, consider Figure 3.2. (This algorithm is explained

36

shared variable X : array[0::k� 1; 0::k � 1] of f?g [f0::N � 1g;
Y : array[0::k� 1; 0::k� 1; 0::k] of f?g [f0::N � 1g

initially (8r; c; n : 0 � r < k � 1 ^ 0 � c < k � 1 ^ r + c < k� 1 ^ 0 � n � k� r � c :: Y [r; c; n] = ?)

private variable name: 0::k(k+ 1)=2� 1; moved: boolean; i; j: 0::k� 1; h: 0::k

initially i = 0 ^ j = 0 ^ h = 0

while true do

0: Remainder Section;
i; j; moved := 0; 0; true;

while i+ j < k � 1 ^ moved do

1: X[i; j]; h; moved := p; 0; false;

while h < k � i� j ^ :moved do

2: if Y [i; j;h] 6= ? then

j; h;moved := j + 1; 0; true

else h := h+ 1

�

od;

h := 0;

while h � k � i� j ^ :moved do

3: if X[i; j] = p then

4: Y [i; j; h]; h := p; h+ 1

else

while h > 0 do
5: h := h� 1;

if Y [i; j; h] = p then

6: Y [i; j; h] := ?

�

od;

7: moved; i := true; i+ 1

od;
od

�

8: name := ik � i(i� 1)=2 + j;

9: Working;

if :moved then

while h > 0 do

10: h := h� 1;

if Y [i; j;h] = p then

11: Y [i; j; h] := ?

od

�

od

�

Figure 3.2: An example of our programming notation.

37

in Chapter 7 and proved correct in Appendix C; it is used here only for explanation.) In this

and other programs (unless stated otherwise), the code starting at one label and continuing

until another label is encountered is assumed to be atomic. In �gures in which no labels are

given, each line of code is assumed to be atomic. To simplify our proofs, we sometimes label

somewhat lengthy code fragments. For example, the execution of the code starting at label

2 in Figure 7.6 is assumed to read Y [i; j; h], modify j, h, and moved accordingly, check the

loop condition before label 2, and if that fails, assign zero to h, check the loop condition at

label 3, and if that fails, check the loop condition at label 1, and set the program counter

to 2, 3, 1, or 8, accordingly. Nonetheless, this and other atomic program fragments each

access at most one shared variable; it is therefore easy to implement them atomically using

the assumed memory operations in each case. Finally, private variables in all �gures are

assumed to retain their values between procedure calls.

As discussed in Section 2.2.1, the correctness condition we use for our lock-free and

wait-free implementations is linearizability. An implementation of an object is linearizable

if, in every history h, the partial order over the operation invocations in h can be extended

to a total order such that the sequence of operations in the total order is consistent with the

sequential semantics of the implemented operations. In our linearizability proofs, we show

that this total order exists by de�ning, for each operation invocation, a unique point in time,

called the linearization point of that invocation. (This point may occur at di�erent points

in di�erent invocations of the same operation.) We say that an invocation is linearized to

its linearization point. We also de�ne a \current" value of the implemented variable. We

then show that, at the linearization point of each invocation, the value of the implemented

38

variable before and after that point is consistent with the semantics of the implemented

operation, and that the invocation returns the same value as the sequential operation would

if executed atomically at that linearization point.

Assertional proof techniques [27] are used to prove correct the more di�cult algo-

rithms in this dissertation. We prove that an assertion I is an invariant by showing that it

holds inductively or that it follows from established invariants. For an inductive proof, we

show that I holds initially and that I is not falsi�ed1 by any statement execution, i.e., if I

(and perhaps other established invariants) holds before a given statement is executed then I

holds afterwards. When an invariant is in the form of an implication, we often achieve this

by showing that the consequent holds after the execution of any statement that establishes

the antecedent, and that no statement falsi�es the consequent while the antecedent holds.

We prove assertions of the form P unless Q by proving for every state s of every history h,

if P ^ :Q holds in state s, then P _ Q holds in the subsequent state in h. Thus, P unless

Q implies that, in every history, if P holds in a state of that history, then P is stable in

that history until Q holds. (If Q does not hold at or after that state, then P holds forever.)

Finally, P leads-to Q holds if, for every history h, and for every i � 0, if P holds in state si

of h, then there exists a j � i, such that Q holds in state sj of h.

Most of the progress properties in this dissertation are quite straightforward. We

model fairness in terms of the faulty and nonfaulty processes discussed above. The following

notational conventions and proof methods are used throughout this dissertation to state

properties about our algorithms, and to prove them correct.

1A statement execution falsi�es an expression if and only if that expression holds before the statement
execution and does not hold afterwards. Similarly, a statement execution establishes an expression if and

only if that expression does not hold before the statement execution, but holds after.

39

Notational Conventions: In all of our algorithms and proofs, the number of processes is

denoted by N , and process labels p, q, r, and s range over 0; :::; N � 1. In each algorithm

presented, the code is given for process p. Other free variables are assumed to be universally

quanti�ed. We use Px1;x2;:::;xn
y1;y2;:::;yn

to denote the expression P with each occurrence of xi replaced

by yi. The predicate p@s holds if and only if statement s is the next statement to be executed

by process p. We use p@S as shorthand for (9s : s 2 S :: p@s), p:s to denote statement s

of process p, and p:var to denote p's local variable var. The following is a list of symbols

we use in our proofs, in increasing order of binding power: �,), _, ^, (=; 6=; <;>;�;�),

(+;�), (multiplication,=), :, (:;@), (f; g). Symbols in parentheses have the same binding

power. We occasionally use parentheses to override these binding rules. We sometimes use

Hoare triples [49] to denote the e�ects of a statement execution.

Chapter 4

Support for Algorithms and

Related Results

In this chapter, we present several implementations involving universal primitives.

These implementations allow the LL/SC-based constructions presented in the following

chapters to be applied with greater
exibility. In particular, we present time-optimal,

wait-free implementations of LL and SC from Read and CAS, and vice versa, and imple-

mentations that eliminate the need to deal with spurious SC failures. We also present

an implementation of LL and SC operations that access variables that are larger than a

single machine word. As explained below, these new constructions simplify the design of

algorithms in later chapters, as well as future algorithms, by allowing us to ignore certain

limitations of the available universal primitives.

The algorithms presented in Chapter 5 depend on the availability of LL, VL, and

SC operations that access variables that are larger than the word size on most multiproces-

41

sors. This presents several potential di�culties for using these algorithms in practice. First,

some machines do not provide LL, VL, and SC operations, but do provide other universal

primitives, such as CAS. Second, the LL and SC instructions are frequently implemented

on top of a cache coherence mechanism. In this approach, a LL operation by process p

loads the variable accessed into p's local cache, and a SC operation modi�es that variable

only if it still resides in the cache. If another process performs a successful SC operation

between p's LL and SC, then the coherent cache mechanism invalidates p's cache copy of

the variable. Thus, p's SC subsequently fails, in keeping with the semantics of LL and SC.

However, this approach introduces the possibility of a SC operation failing as a result of

an unrelated cache invalidation, even though the semantics of LL and SC do not dictate

that it should fail. This \spurious" behavior complicates algorithm design, and can lead

to incorrect behavior if not addressed carefully. We call a SC operation that is subject to

spurious failures FSC. Finally, LL and SC usually access only one machine word, which

precludes their use in some algorithms.

We present several key results in this chapter that overcome these di�culties,

making our algorithms and others easier to apply in practice. First, we present constant-

time implementations of LL, VL, and SC operations using Read, Write, and CAS operations.

This allows algorithms (including ours) that are based on LL, VL, and SC operations

to be implemented on machines that provide the CAS operation. For completeness, we

also present a constant-time implementation of Read, Write, and CAS using LL and SC

operations. These results show that CAS is equivalent to LL and SC from a performance

standpoint | this stands in contrast to the commonly-held belief that LL and SC necessarily

42

result in more e�cient object implementations. Next, we present an implementation of LL,

VL, and SC from LL and FSC. This result allows algorithm designers to ignore the issue of

spurious failures.

Finally, we show how to e�ciently implement LL, VL, and SC for multi-word

variables using the usual single-word LL, VL, and SC primitives.1 In this implementation,

LL may return a special \failure" value that indicates that a subsequent SC will fail |

we call this a weak -LL. Elsewhere [10], we present a similar construction, in which the LL

operation has the \normal" semantics: it always returns the current value of the imple-

mented variable, even if the subsequent SC operation is sure to fail. The ability to return a

special failure value results in a simpler construction with lower space requirements because

weak-LL does not have to return a consistent multi-word value in the case of interference

by a concurrent SC. Also, weak-LL can be used to avoid unnecessary work in universal

algorithms (there is no point performing private updates when a subsequent SC is certain

to fail). For these reasons, we use weak-LL in the universal constructions presented in the

next chapter. Time complexity bounds for the implementations presented in this chapter

are summarized in Table 4.1.

Although existing universal constructions can be used to convert between CAS and

LL, VL, and SC, and to implement multi-word LL and SC, such constructions entail high

overhead because they treat these operations as general shared objects, and are therefore

1The multi-word operations considered here access a single variable that spans multiple contiguous words.

Thus, they are not the same as the multi-word operations considered in [9, 18, 54, 84], which access multiple

variables that are stored in separate, and not necessarily contiguous, memory words. The multi-word

operations we consider admit simpler and more e�cient implementations than those considered in [9, 18,

54, 84].
1The SC operation terminates in �(1) time after the most recent spurious FSC. See Section 4.1.3 for

details.

43

Primitives Used Primitives Implemented Time Complexity

Read, CAS LL, VL, SC �(1), �(1), �(1)

LL, SC Read, CAS �(1), �(1)

LL, FSC LL, VL, SC �(1), �(1), �(1)2

LL, VL, SC W -word weak-LL, VL, and SC �(W), �(1), �(W)

Table 4.1: Summary of results concerning synchronization primitives. The �rst three lines give the
time complexity of implementations of one-word variables. The last line gives the time complexity
of an implementation for W -word variables.

unable to improve e�ciency by taking advantage of the semantics of the implemented

operations. In contrast, our implementations of these primitives are time-optimal. The

best previous wait-free implementation of LL, VL, and SC using Read and CAS, recently

presented by Israeli and Rappoport in [54], requires �(N) time per operation. It also

requires N -bit shared variables, which severely limits its usefulness in practice. (Israeli and

Rappoport did not present similar constructions for CAS, and, to our knowledge, the other

constructions in Table 4.1 have not previously been considered.)

4.1 One-Word Primitives

In this section, we present e�cient implementations of one-word synchronization

primitives. We begin with a constant-time implementation of LL, VL, and SC using Read

and CAS.3 We then present a simple, constant-time implementation of Read and CAS from

LL and SC. The latter construction assumes that SC does not fail spuriously. We conclude

this section by using LL and FSC to implement LL and SC. This result allows us to use

our constructions in systems where SC might fail spuriously. To avoid confusion, we refer

3More accurately, we use shared registers that support atomic Read and Write operations, as well as
shared registers that support Read and CAS operations. We similarly assume the availability of read/write

registers in subsequent constructions.

44

type llsctype = record value: valtype; tag: 0::2N + 1; pid: 0::N � 1 end
shared variable X: llsctype; A: array[0::N � 1] of llsctype

initially X = (initial value of implemented variable; 0; 0)

private variable old, chk: llsctype; j: 0::N � 1; newtag: 0::2N + 1
initially j = 0

procedure LL()
1: old := X;

2: A[p] := old;

3: chk := X;
4: return old:value

procedureVL()
5: return chk = old ^ X = old

procedure SC(val: valtype)
6: if chk 6= old then return false �;

7: read A[j]:tag;

8: j := (j + 1) mod N ;
9: select newtag : newtag =2flast N tags read by pg[

flast N tags selected by pg[

flast tag successfully CAS 'd by pg;
10:return CAS(X;old; (val;newtag; p))

Figure 4.1: Constant-time LL, SC, and VL using Read and CAS. Private variables are static
between invocations.

to the implemented LL in the latter construction as safe-LL. We also refer to the variable

that supports the implemented operations as the implemented variable to avoid confusion

with the variables used in the implementation.

4.1.1 Implementation of LL/SC using CAS

Figure 4.1 depicts an N -process implementation of LL, VL, and SC that is based

on Read and CAS.4 This algorithm uses a nondeterministic choice to select a new value

| subject to the constraints indicated | for newtag at line 9. The algorithm is correct

for any implementation of this tag selection mechanism that satis�es these constraints.

After describing the algorithm and proving it correct, we describe a simple, constant-time

implementation of this tag selection mechanism.

4Here, as well as in other implementations presented in this chapter, we present the algorithms and
associated variables for implementing the stated instructions on one variable. For this reason, the name of the

implemented variable is omitted from the parameters of the procedure calls (for example, the SC procedure

given in Figure 4.1 takes only one parameter | the value to be written). It would be straightforward to use
Read and CAS to implement multiple variables, each supporting LL, VL, and SC operations, by duplicating

the variables in Figure 4.1, and by establishing an appropriate naming scheme to distinguish between the

implementations.

45

Variable X contains the value of the implemented variable, along with a tag and

process identi�er (the purpose of these �elds is explained below). The basic structure of

this algorithm is that a LL operation by process q records the value of X in q:old and

returns that value (lines 1 and 4), and SC uses CAS to attempt to change X from the value

stored in q:old to a new value val (line 10). Process q's SC is successful if and only if the

CAS is successful. If the value of X changes between q's executions of lines 1 and 10, (i.e.,

some other process performs a successful SC in this interval), then q's CAS (and therefore

the implemented SC) should fail, in keeping with the semantics of LL and SC. Similarly,

if X does not change in this interval (i.e., no successful SC is performed in this interval),

then q's CAS (and therefore the implemented SC) succeeds. Again, this is consistent with

the semantics of LL and SC. However, if the value of X changes more than once between

q executions of lines 1 and 10, or if some process performs a successful SC that does not

modify X (i.e., it writes the same value that is already in X), then there is a risk that q's

CAS succeeds, because X contains the same value that p's LL operation read. However,

the semantics of LL and SC dictate that q's SC should fail in this case.

The pid and tag �elds that are stored withX are used to prevent the error described

above from arising. This is achieved by having processes store a tag with each value written

to X , and by introducing a feedback mechanism between processes that ensures that the

value of X (including the pid and tag �elds) read by the LL procedure of a process q is not

written to X again before q's CAS. This feedback mechanism consists of the value written

by q to A[q] at line 2 and the tag values read by other processes at line 7.

The key property in proving this implementation correct, which is formalized by

46

the following claim, is that a process p does not prematurely reuse a tag, thereby causing a

CAS by some process q to succeed when it should fail.

Claim 1: If process q reads (x; v; p) from X at both line 1 and line 3 in its LL procedure,

then process p does not select tag v after q's second read of X and before q's CAS.

Proof: Observe that X = (x; v; p) holds at q's second read of X and that A[q] = (x; v; p)

holds between q's second read of X and q's CAS. Suppose p selects tag v in this interval.

Because p does not use any of the N most recently selected tags, it follows that p performs

at least N SC operations before selecting tag v again. Thus, because there are N processes,

and because p reads A[r] for a di�erent r in each SC operation (see lines 7 and 8), p must

have read A[q] = (x; v; p) in the last N operations, and therefore does not select tag v.

Linearizability: For the algorithm in Figure 4.1, we de�ne the current value of the imple-

mented variable to be X:value. We further de�ne the linearization point of a LL operation

to occur at the operation's �rst read of X (line 1) if the values read from X at lines 1 and

3 di�er, and at its second read of X (line 3) otherwise. A SC is linearized to occur at line

6 if it returns from line 6, and at its CAS otherwise. A VL is linearized to occur when it

reads X . For the purposes of the linearizability proof, we de�ne a VL or SC operation to

be failed if it returns false and successful otherwise.

First, note that X:value changes only as a result of a successful CAS, and that,

by de�nition, each successful CAS corresponds to the linearization point of a successful SC

operation. Thus, X:value always contains the correct value of the implemented variable

(i.e., the value written by the most recent successful SC operation). It is easy to see that

47

the value returned by a LL operation is the current value of the implemented variable at

that operation's linearization point. Also, by de�nition, failed VL and SC operations return

false, and successful VL and SC operations return true. It remains to show that VL and SC

operations correctly fail or succeed at their linearization points according to the sequential

semantics of these operations.

If a VL or SC operation by process q returns false because q:chk 6= q:old , then a

successful CAS is performed (and therefore a successful SC is linearized) after q's �rst read

of X (which is also the linearization point of q's LL in this case). Thus, q's operation is

correctly linearized in this case. Similarly, if a SC or VL operation by process q returns

false because X 6= q:old , then a successful SC operation is linearized after q's second read

of X (which is also the linearization point of q's LL in this case). Again, q's operation

is correctly linearized. It remains to consider the case in which a VL or SC operation by

process q returns true. In this case, Claim 1 implies that no successful SC operation is

linearized after the second read of X in q's previous LL, which is the linearization point

of q's LL (note that both VL and SC return false if q:chk 6= q:old). Thus, q's VL or SC

operation is correctly linearized.

Below we describe a mechanism that allows each new tag to be selected in con-

stant time using �(N) space per process. Given this mechanism, the proof above, and a

straightforward time and space complexity analysis, we have the following result.

Theorem 1: LL, VL, and SC can be implemented with constant time complexity and

�(N2) space complexity using Read and CAS.

48

The algorithm in Figure 4.1 can be implemented with a variety of tag selection

mechanisms. For example, if each process chooses a previously-unused tag in every execution

of SC, then the tag selection criteria in line 9 are met. This would result in the tags growing

without bound. However, in applications where SC would not be called su�ciently many

times to cause an over
ow, this does not pose a practical problem. For completeness, we

now describe a tag selection mechanism that does not require unbounded tags.

In our bounded tag selection mechanism, each process maintains three local queues

| Read , Last , and Select . (Note that these are not concurrent queue implementations, and

are therefore easily implemented using standard data structures.) The Read queue contains

the last N tags read. The Last queue contains a single tag, which is the last one successfully

written (using CAS) to X . The Select queue, from which new tags are selected, contains

all tags that are not in the Read queue or the Last queue.

The tag queues are maintained by means of the Read Tag , Store Tag , and Se-

lect Tag procedures shown in Figure 4.2. In these procedures, enqueue and dequeue denote

the normal queue operations, delete(Q; v) removes tag v from Q (and does not modify Q if

v is not in Q), and x 2 Q holds if and only if tag x is in queue Q.

To allow a correct tag to be selected at line 9, the Read Tag , Store Tag , and

Select Tag procedures are incorporated into the algorithm in Figure 4.1. Speci�cally, when

process p reads a tag from A[j] at line 7, p calls Read Tag to record the tag it reads; process

p calls Select Tag at line 9 to select a new tag; and process p calls Store Tag at line 10

after a successful CAS to record the tag successfully stored in X . We now describe these

procedures, and explain how they guarantee that the tag selected at line 9 satis�es the

49

private variable Read Q, Select Q, Last Q: queue of 0::4N + 1; y: 0::4N + 1
initially Last Q=f0g; Read Q=f1; :::;Ng; Select Q=fN + 1; :::;4N + 1g

procedure Read Tag(v)

if v 2 Read Q then

delete(Read Q ; v);

enqueue(Read Q ; v)
else

enqueue(Read Q ; v);

delete(Select Q ; v);
y := dequeue(Read Q);

if y =2 Last Q then

enqueue(Select Q ; y)
� �

procedure Store Tag(v)

delete(Select Q ; v);
enqueue(Last Q ; v);

y := dequeue(Last Q);
if y =2 Read Q then

enqueue(Select Q ; y)

�

procedure Select Tag()

returns 0::4N + 1
y := dequeue(Select Q);

enqueue(Select Q; y);
return y

Figure 4.2: Pseudo-code implementations of operations on tag queues.

required constraints.

Select Tag moves the front tag in p's Select queue to the back, and returns that

tag. Store Tag moves the tag from the Select queue to the Last queue, removes the tag

that was previously in the Last queue, and, if that tag is not in the Read queue, returns it

to the Select queue.

Read Tag records that a tag v was read as follows. If v is already in p's Read

queue, then Read Tag simply moves v to the end of the p's Read queue. If v is not already

in p's Read queue, then Read Tag enqueue v into p's Read queue and removes it from p's

Select queue (assuming v is in p's Select queue). Finally, Read Tag removes the tag at the

front of p's Read queue because it is no longer one of the last N tags read by p. If that tag

is also not the last tag written to X by p, then Read Tag returns it to p's Select queue.

Process p's Read queue always contains the last N tags read by process p, and

the Last queue always contains the last tag successfully written to X by p. Thus, the tag

selected by Select Tag is not the last tag successfully written to X by p, nor is it among

the last N tags read by p. In fact, maintaining a total of 4N + 2 tags ensures that the

50

tag selected is also not one of the last N tags selected. (In principle, only 2N + 1 tags are

required, and this value is used in Figure 4.1 and other �gures that use this mechanism.

Our queue-based implementation of the tag selection mechanism provides constant-time

operations, but requires 4N + 2 tags.)

To see why 4N +2 tags su�ce in Figure 4.2, �rst note that p's Read queue always

contains N tags, and p's Last queue always contains one tag (except temporarily during the

execution of Read Tag or Store Tag). Thus, using 4N+2 tags ensures that there are always

at least 3N +1 tags in p's Select queue. (It is possible that the tag in p's Last queue is also

in p's Read queue, which results in there being 3N +2 tags in p's Select queue, rather than

3N + 1.) Thus, when a tag v is selected by process p, and Select Tag moves v to the back

of p's Select queue, there are at least 3N tags ahead of v in p's Select queue. This implies

that v is not selected again by process p until 3N tags are removed from p's Select queue.

At most three tags are removed from p's Select queue per SC operation by process p (one

by Read Tag, one by Select Tag, and one by Store Tag). Thus, tag v is not selected again

by process p until at least N operations that remove tags from p's Select queue have been

executed by process p. Also, it is easy to see that, if an operation by process p removes

any tags from p's Select queue, then that operation selects a tag. Thus, the tag selected by

process p is never one of the last N tags selected by process p, as required.

All of the queue operations described above can easily be implemented in constant

time. This is achieved by using a static array that is indexed by tag and contains, for each

tag, a pointer to the queue node containing that tag. This allows the queue node for a

given tag to be located in constant time. Also, representing the queues as doubly-linked

51

shared variable X: valtype

procedure CAS(old, new: valtype)

1: if LL(X) 6= old then return false �;

2: if old = new then return true �;

3: return SC (X;new)

Figure 4.3: Constant-time implementation of CAS using LL and SC. LL trivially implements Read.

lists allows that node to be removed from a queue or added to a queue in constant time.

4.1.2 Implementation of CAS using LL/SC

We now turn our attention to the implementation of Read and CAS using LL and

SC shown in Figure 4.3. The current value of the implemented variable is de�ned to be the

current value of X . Read is trivially implemented by performing a LL on X and returning

the value returned by the LL. Process p performs a CAS by reading variable X using LL,

and possibly performing a subsequent SC of X . We de�ne the linearization point of a Read

operation to be the point at which that operation executes the LL on X . (Clearly the value

returned by the Read operation is the current value of the implemented variable when the

LL is executed; the Read operation is therefore correctly linearized at that point.) We now

show that every CAS operation can be correctly linearized.

If a CAS operation by process p returns from line 1 or from line 2, then p's CAS

can be linearized to the point at which the LL occurs. To see why, observe that, in the

�rst case, p's operation returns false, and the sequential semantics of CAS dictates that the

operation should fail because the implemented variable di�ers from p's old value. In the

second case, the implemented variable equals p's old value immediately before the LL, and

equals p's new value immediately after the LL. Thus, linearizing p's CAS to the point at

which the LL is executed is consistent with the sequential semantics of a successful CAS,

52

and p's operation returns true in this case. It remains to consider CAS operations that

return from line 3.

If the SC at line 3 is successful, then, because the LL at line 1 reads X = p:old

(otherwise the CAS returns from line 1), the value of the implemented variable equals p's

old value immediately before the SC operation is executed (if X changes between the LL

and the SC, the SC fails). Also, the SC writes p's new value to X . Thus, because the CAS

operation returns true in this case, linearizing the CAS to occur at the execution of the SC

is consistent with the sequential semantics of CAS.

If the SC at line 3 fails, then a successful SC by another process has occurred

since p's previous LL. Because each successful SC changes the value of X (note that, if

q:old = q:new , then CAS returns from line 1 or line 2), there is a point during p's CAS at

which X di�ers from old (either before or after the SC that changes the value of X); p's

(failed) CAS is correctly linearized at that point because it returns false in this case. The

time and space complexity analysis for this algorithm is straightforward, so we have the

following theorem.

Theorem 2: Read and CAS can be implemented with constant time and space complexity

using LL and SC.

We should point out that ordinary Read and Write operations are straightforward

to incorporate into the constructions of Figures 4.1 and 4.3. In particular, because the

current value of the implemented variable is stored in X in each case, Read can be imple-

mented in the construction of Figure 4.1 by reading X , and in the construction of Figure

4.3 by performing a LL on X . Also, Write(new) can be implemented in the construction of

53

type tagtype: record value: valtype; tag: 0::2N + 1; pid: 0::N � 1 end
shared variable X: tagtype; A: array[0::N � 1] of tagtype

private variable old, chk: tagtype; j: 0::N � 1; newtag: 0::2N + 1

initially j = 0

procedure Safe LL()

old := X;

A[p] := old;

chk := LL(X);

return old:value

procedure VL()

chk := LL(X);

return old = chk

procedure SC(new: valtype)

if chk 6= old then return false �;
read A[j]:tag;

j := (j + 1) mod N ;

select newtag : newtag =2 flast N tags readg[
flast N tags selectedg[

flast tag successfully FSC 'dg;

while true do

if FSC(X; (new; newtag)) then return true

elseif LL(X) 6= old then return false

od
�

Figure 4.4: Implementation of LL, SC, and VL using LL and FSC.

Figure 4.1 like SC; the main di�erence is that X is updated by a Write rather than a CAS.

Write(new) can be implemented in the construction of Figure 4.3 by the following code,

which is similar to that given for CAS.

if LL(X) = new then return �;

SC(X; new)

4.1.3 Implementation of LL/SC using LL/FSC

In Figure 4.4, we present an implementation of safe-LL,5 VL, and SC from LL

and FSC. The basic structure of this implementation is that LL implements safe-LL and

FSC implements SC. The only complication is that FSC might fail spuriously, and we use

a tag-based feedback mechanism similar to the one used in Figure 4.1 to allow a process

to identify a spurious FSC failure and to retry the FSC. This is achieved by writing tags

with each new value stored to X . As in the algorithm in Figure 4.1, we avoid reusing a tag

5We call the implemented operation safe-LL in Figure 4.4 to distinguish it from the LL instruction used

in the implementation.

54

that has been read by a safe-LL of some process that has not yet performed a subsequent

SC. Thus, when a SC by process p fails, p can reread X to see if it has changed. If X has

changed, then another process has performed a successful SC, so p can correctly fail and

return false. If the X value read is equal to the value read previously, then the feedback

mechanism guarantees that X has not been modi�ed since p's LL, which implies the SC

failed spuriously. In this case, the FSC can be retried.

Observe that, when an FSC is retried in this construction, the FSC instruction is

executed immediately after the LL instruction. This is important for two reasons. First,

it implies that the \window of vulnerability", in which cache invalidations (and potentially

subsequent spurious failures) can occur, is quite short. Secondly, there are no shared vari-

able references in this interval. This further decreases the likelihood of subsequent FSC

executions failing spuriously. Furthermore, some hardware implementations of the LL and

SC instructions forbid processes to access shared memory between the execution of LL and

the subsequent execution of SC. The construction in Figure 4.4 can easily be modi�ed so

that this rule is not violated. This is achieved by using Read instead of LL in the implemen-

tations of safe-LL and VL, and by changing the implementation of SC so that the LL check

is always performed before the FSC, rather than being performed only in the event of a FSC

failure. (It would also be necessary to ensure that the old variable is stored in a register, so

that the check between the LL and FSC does not access memory.) This allows algorithms

that do access shared memory between the LL and SC operations to be implemented on

architectures that forbid it.

It is easy to see that, if FSC does not fail in�nitely often during one invocation of

55

the implemented SC, then the implemented SC eventually terminates. The linearizability

proof for this construction is almost identical to that of the construction given in Figure

4.1, and is therefore omitted. Given the tag selection mechanism presented earlier, the time

and space complexity analysis for this algorithm is straightforward, giving the following

theorem.

Theorem 3: With space complexity �(N2), LL and FSC can be used to implement

constant-time safe-LL and VL operations, and a SC operation that, provided only �nitely

many spurious FSC failures occur per SC invocation, terminates in constant time after the

last spurious failure.

4.2 LL and SC on Large Variables

In this section, we implement weak-LL, VL, and SC operations for a W -word

variable V , whereW > 1, using the standard, one-word LL, VL, and SC operations.6 Recall

that weak-LL can return a failure value | instead of a correct value of the implemented

variable | in the case that a subsequent SC operation will fail. Nonetheless, weak-LL

is suitable for many applications. In particular, in most lock-free and wait-free universal

constructions (including the ones presented in Chapter 5), LL and SC are used in pairs in

such a way that if a SC fails, then none of the computation since the preceding LL has any

e�ect on the object. By using weak-LL, we can avoid such unnecessary computation.

In the implementation presented in this section, if a subsequent SC is guaranteed

to fail, then weak-LL returns the process ID of some process that performed a successful SC

6We assume that the SC operation does not fail spuriously. As shown in Section 4.1.3, a SC operation

that does not fail spuriously can be e�ciently implemented using LL and a SC operation that might fail
spuriously.

56

shared var X: record pid : 0::N � 1; tag: 0::1 end;
BUF : array[0::N � 1; 0::1] of array[0::W � 1] of wordtype

initially X = (0; 0) ^ BUF [0; 0] = initial value of the implemented variable V

private var curr : record pid : 0::N � 1; tag: 0::1 end; i: 0::W � 1; side: 0::1

initially side = 0

proc Long Weak LL(var r : array[0::W � 1]
of wordtype) returns 0::N

1: curr := LL(X);

for i := 0 to W � 1 do
2: r[i] := BUF [curr:pid; curr :tag][i]

od;

3: if VL(X) then return N

4: else return X.pid �

proc Long SC (val : array[0::W � 1] of wordtype)
returns boolean

4: side := 1� side;

for i := 0 to W � 1 do
5: BUF [p; side][i] := val[i]

od;

6: return SC (X; (p; side))

Figure 4.5: W -word weak-LL and SC using 1-word LL, VL, and SC. W -word VL is implemented
by validating X.

during the execution of the weak-LL operation. We call the process whose ID is returned a

witness of the failed weak-LL. As we will see in Section 5.2, the witness of a failed weak-LL

can provide useful state information that held during the execution of that weak-LL.

We now describe our implementation of weak-LL, VL, and SC, which is shown

in Figure 4.5.7 The Long Weak LL and Long SC procedures implement weak-LL and SC

operations on a W -word variable V. Values of V are stored in bu�ers, and a shared variable

X indicates which bu�er contains the current value of V. The current value is the value

written to V by the most recent successful SC operation, or the initial value of V if there

is no preceding successful SC. The VL operation for V is implemented by simply validating

X .

A SC operation on V is achieved by writing the W -word variable to be stored into

a bu�er, and by then using a one-word SC operation on X to make that bu�er current. To

ensure that a SC operation does not overwrite the contents of the current bu�er, the SC

operations of each process p alternate between two bu�ers, BUF [p; 0] and BUF [p; 1]. To

7Recall that private variables in all �gures are assumed to retain their values between procedure calls.

57

see why this ensures that the current bu�er is not overwritten, observe that, if BUF [p; 0]

is the current bu�er, then process p will attempt a SC operation using BUF [p; 1] before it

modi�es BUF [p; 0] again. If p's SC succeeds, then BUF [p; 0] is no longer the current bu�er.

If p's SC fails, then some other process has performed a successful SC, which also implies

that BUF [p; 0] is no longer the current bu�er.

A process p performs a weak-LL operation on V in three steps: �rst, it executes

a one-word LL operation on X to determine which bu�er contains the current value of V ;

second, it reads the contents of that bu�er; and third, it performs a VL on X to check

whether that bu�er is still current. If the VL succeeds, then the bu�er was not modi�ed

during p's read, and the value read by p from that bu�er can be safely returned. (Note that

this value is returned by means of the var parameter r.) If the VL fails, then the weak-LL

re-reads X at line 4 in order to determine the ID of the last process to perform a successful

SC; this process ID is then returned. Note that if the VL of line 3 fails, then a subsequent

SC by p will fail. In Appendix A, we prove this construction correct in the context of an

algorithm from Chapter 5 that uses it. The algorithm in Figures 4.5 yields the following

result.

Theorem 4: Weak-LL, VL, and SC operations for a W -word variable can be implemented

using LL, VL, and SC operations for a one-word variable with time complexity �(W), �(1),

and �(W), respectively, and space complexity �(NW).

Chapter 5

Large Objects

In this chapter, we present lock-free and wait-free universal constructions for im-

plementing large shared objects. Most previous universal constructions require processes

to copy the entire object state, which is impractical for large objects. Previous attempts to

address this problem require programmers to explicitly fragment large objects into smaller,

more manageable pieces, paying particular attention to how such pieces are copied. In

contrast, our constructions are designed to largely shield programmers from this fragmen-

tation. Furthermore, for many objects, our constructions result in lower copying overhead

than previous ones. The constructions in this chapter are based on LL, VL, and SC opera-

tions for a multi-word shared variable. As shown in the previous chapter, these operations

can be e�ciently implemented from similar one-word primitives.

This chapter extends recent research on universal lock-free and wait-free construc-

tions of shared objects [43, 44]. Such constructions can be used to implement any object in

a lock-free or a wait-free manner, and thus can be used as the basis for a general methodol-

59

ogy for constructing highly-concurrent objects. Unfortunately, this generality often comes

at a price, speci�cally space and time overhead that is excessive for many objects. In this

chapter, we address these shortcoming by presenting more e�cient universal constructions

that can usually be used to implement large objects with low space overhead.

We take as our starting point the lock-free and wait-free universal constructions

for small objects presented by Herlihy in [44]. In these constructions, operations are im-

plemented using \retry loops". In Herlihy's lock-free universal construction, each process's

retry loop consists of the following steps: �rst, a shared object pointer is read using a LL

operation, and a private copy of the object is made; then, the desired operation is performed

on the private copy; �nally, a SC operation is executed to attempt to modify the shared

object pointer to point to the private copy. The SC operation may fail, in which case these

steps are repeated. This algorithm is lock-free because a SC operation by process p fails

only if another SC has succeeded since p's most recent LL. This implies that, if p does

not complete its operation, then some other process does. However, the algorithm is not

wait-free because the SC of each loop iteration of a particular process may fail. To ensure

termination, Herlihy's wait-free construction employs a \helping" mechanism, whereby each

process attempts to help other processes by performing their pending operations together

with its own. This mechanism ensures that if a process is repeatedly unsuccessful in mod-

ifying the shared object pointer, then it is eventually helped by another process (in fact,

Herlihy shows that it is helped after at most two loop iterations [44]).

As Herlihy points out, these constructions perform poorly if used to implement

large objects. To overcome this problem, he presents a lock-free construction in which a

60

large object is fragmented into blocks linked by pointers. In this construction, operations

are implemented so that only those blocks that must be accessed or modi�ed are copied.

Herlihy's lock-free approach for implementing large objects su�ers from three

shortcomings. First, the fragmentation technique used often requires a signi�cant amount of

creative work on the part of the sequential object designer before the advantages of Herlihy's

large-object construction can be realized. In particular, the programmer must determine

how the object should be fragmented based on its semantics, and must also include code in

each operation that explicitly copies parts of the object in order to avoid interference by a

concurrent operation of another process. Second, Herlihy's approach is di�cult to apply in

wait-free implementations. In particular, directly combining it with the helping mechanism

of his wait-free construction for small objects results in excessive space overhead. Third,

Herlihy's large-object techniques reduce copying overhead only if long \chains" of linked

blocks are avoided. Consider, for example, the implementation of a large shared queue.

Given the blocks-and-pointers structure dictated by Herlihy's large-object construction, it

is natural to implement the queue as a linear sequence of blocks (i.e., in a linked list). An

unfortunate consequence of this approach is that adding a new block to the list (for an

enqueue operation) actually requires the replacement of every block in the list. In particu-

lar, linking in a new last block requires that the pointer in the previous block be changed.

Because that block is modi�ed, it must be copied to a new location to avoid interference

from concurrent operations. Thus, the pointer in the next-to-last block must be modi�ed,

so the next-to-last block must also be replaced. Repeating this argument, it follows that

every block in the list must be replaced.

61

Our approach for implementing large objects is also based upon the idea of frag-

menting an object into blocks. However, our large-object constructions provide the object

programmer with a more natural programming paradigm than Herlihy's does. Speci�cally,

our constructions allow the programmer to treat the object as if it were stored in contigu-

ous locations in shared memory, while Herlihy's construction dictates a blocks-and-pointers

approach. Thus, we view a large object as a long array that is fragmented into blocks.

However, unlike Herlihy's approach, the fragmentation in our approach is not visible to the

object programmer. Also, copying overhead in our approach is often much lower than in

Herlihy's. For example, we can implement shared queues with constant copying overhead.

Our constructions are similar to Herlihy's in that operations are performed using

retry loops. However, while Herlihy's constructions employ only a single shared object

pointer, we need to manage a collection of such pointers, one for each block of the array.

We deal with this problem by employing LL, VL, and SC operations that access a \large"

shared variable that contains all block pointers. This large variable is stored across several

memory words, and is accessed using the LL, VL, and SC operations for large variables

presented in the previous chapter.

Our wait-free universal construction is the �rst such construction to incorporate

techniques for implementing large objects. In this construction, we impose an upper bound

on the number of blocks each process has for copying. This bound is assumed to be large

enough to accommodate any single operation. The bound a�ects the manner in which pro-

cesses may help one another. Speci�cally, if a process attempts to help too many other

processes simultaneously, then it runs the risk of using more private space than is avail-

62

able. We solve this problem by having each operation help as many processes as the space

constraints allow, and by choosing processes to help in such a way that all processes are

eventually helped. If enough space is available, all processes can be helped by one process

at the same time | we call this parallel helping. Otherwise, several \rounds" of helping

must be performed, possibly by several processes | we call this serial helping. The tradeo�

between serial and parallel helping is one of time versus space.

We present our lock-free universal construction in Section 5.1, our wait-free uni-

versal construction in Section 5.2, and the results of performance experiments comparing

our constructions to Herlihy's in Section 5.4. Finally, a full assertional correctness proof for

the wait-free construction is presented in Appendix A.1.

5.1 Lock-Free Universal Construction for Large Objects

Our lock-free construction is shown in Figure 5.1. This construction provides the

object programmer with a general framework for the implementation of shared objects by

enabling her to treat the object as if it were stored in a contiguous array. Unlike Herlihy's

small-object constructions, however, this array is not actually stored in contiguous locations

of shared memory. Instead, we provide the illusion of a contiguous array, which is in fact

partitioned into blocks. An operation replaces only the blocks it modi�es, and thus avoids

copying the whole object. Before describing the code in Figure 5.1, we �rst explain how we

provide the illusion of a contiguous array without resorting to copying it in its entirety.

Figure 5.2 shows an array MEM , which is divided into B blocks of S words each.

Memory words MEM [0] to MEM [S � 1] are stored in the �rst block, words MEM [S] to

63

constant N = number of processes

B = number of blocks in shared object

S = block size in words

T = maximum number of blocks modi�ed by an operation

shared vartype blktype = array[0::S � 1] of wordtype

shared var BANK : array[0::B � 1] of 0::B +N � T � 1; =� Bank of pointers to array blocks �=
BLK : array[0::B +N � T � 1] of blktype =� Array and copy blocks �=

initially (8n : 0 � n < B :: BANK [n] = N � T + n ^ BLK [N � T + n] = (nth block of initial value))

private var copy, =� Indices of p's copy blocks �=
oldlst : array[0::T � 1] of 0::B +N � T � 1; =� Blocks to be reclaimed later �=

ptrs: array[0::B � 1] of 0::B +N � T � 1; =� Pointers for p's logicial view of the object �=

dirty: array[0::B � 1] of boolean; =� Blocks to be replaced by p's operation �=

dcnt : 0::T ; =� Number of blocks to be replaced �=

i, blkidx : 0::B � 1; =� Counter and index of block accessed by Write �=

v: wordtype; =� Temporary value for Read �=
ret : objrettype =� Return value for p's operation �=

initially (8n : 0 � n < T :: copy[n] = p � T + n)

procedure Read(addr : 0::B � S � 1) returns wordtype

1: v := BLK [ptrs[addr div S]][addr mod S];

2: if :VL(BANK) then goto 7 else return v �

procedure Write(addr : 0::B � S � 1; val : wordtype)

3: blkidx := addr div S; =� Compute block index from address �=

if :dirty[blkidx] then =� Haven't changed this block before �=

4: memcpy(BLK [copy[dcnt]]; BLK [ptrs[blkidx]]; sizeof (blktype)); =� Copy old block to new �=

5: dirty[blkidx]; oldlst[dcnt]; ptrs[blkidx]; dcnt := true; ptrs[blkidx]; copy[dcnt]; dcnt + 1

�; =� Install new block, record old block, prepare for next one �=

6: BLK [ptrs[blkidx]][addr mod S] := val =� Write new value �=

procedure LF Op(op: optype; pars: paramtype)

while true do =� Loop until operation succeeds �=

7: if Long Weak LL(BANK ; ptrs) = N then =� Load object pointer �=
for i := 0 to B � 1 do dirty[i] := false od; =� No blocks copied yet �=

dcnt := 0;

8: ret := op(pars); =� Perform operation on object �=
9: if dcnt = 0 ^ Long VL(BANK) then return ret �; =� Avoid unnecessary SC �=

10: if Long SC (BANK ; ptrs) then =� Operation is successful, reclaim old blocks �=

for i := 0 to dcnt � 1 do copy[i] := oldlst[i] od;
return ret

� �

od

Figure 5.1: Lock-free implementation for a large object.

64

B blocks

Process p’s replacement
for last object block

MEM array made up
of S−word blocks

Bank of pointers to current blocks (BANK) Process p’s logical view (p.ptrs)

Figure 5.2: Implementation of the MEM array for large object constructions.

MEM [2S � 1] are stored in the second block, and so on. A bank of pointers, one to each

block of the array, is maintained in order to record which blocks are currently part of the

array. While performing an operation, a process p maintains a logical view of the current

array. This logical view is represented by an array of pointers p:ptrs . At the beginning of

the operation, p:ptrs contains the same pointers that the BANK array contains. However,

if p's operation changes the contents of the array, then p makes a copy of each block to be

changed, installs the copies into its logical view, and the modi�es the copied blocks, rather

than the blocks that are part of the current array. Having completed its operation, process

p then attempts to make its logical view of the array current by writing the values in p:ptrs

to BANK. The BANK array is read and modi�ed by using the weak-LL and SC operations

for large variables presented in Section 4.2.1 In Figure 5.2, process p's operation modi�es

the last block, but no others. Thus, the bank of pointers to be written by p is the same as

1An extra parameter has been added to the procedures of Section 4.2 to explicitly indicate which shared

variable is updated.

65

the current bank, except that the last pointer points to p's new last block.

When an operation by process p accesses a word in the array, say MEM [x], the

block that currently containsMEM [x] must be identi�ed. If p's operation modi�esMEM [x],

then p must replace that block. In order to hide the details of identifying blocks and of

replacing modi�ed blocks, some address translation and record-keeping is necessary. This

work is performed by special Read andWrite procedures, which are called by the sequential

operation in order to read or write the MEM array. As a result, our constructions are not

completely transparent to the sequential object designer. For example, instead of writing

\MEM [1] := MEM [10]", the designer would write \Write(1;Read(10))".

As a more concrete example, consider Figure 5.3, which contains the actual code

we used to implement a queue using our constructions. As seen in the �gure, this code is

very similar to the \normal" sequential code for a queue. Indeed, the di�erences between

the sequential code and the code used with our constructions are syntactic in nature, so

it should be easy to develop a preprocessor or compiler that automatically generates code

for use with our constructions from sequential code. This would make the use of our

constructions entirely transparent.

We now turn our attention to the code of Figure 5.1. In this �gure, BANK is a

B-word shared variable, which is treated as an array of B pointers (actually indices into the

BLK array), each of which points to a block of S words. Together, the B blocks pointed

to by BANK make up the implemented array MEM . We assume an upper bound T on

the number of blocks modi�ed by any operation. Therefore, in addition to the B blocks

required for the array that stores the object, T \copy blocks" are needed for each process,

66

int enqueue(item)

int item;

{

int newtail; /* int newtail; */

Write(Read(tail),item); /* MEM[tail] = item; */

newtail = (Read(tail)+1)%n; /* newtail = (tail+1) % n; */

if (newtail == Read(head)) /* if (newtail == head) */

return FULL; /* return FULL; */

Write(tail,newtail); /* tail = newtail; */

return SUCCESS; /* return SUCCESS; */

}

Figure 5.3: C code used for the enqueue operation of an array-based queue implementation. Com-

ments show \usual" enqueue code.

giving a total of B +NT blocks. These blocks are stored in the BLK array. As shown in

Figure 5.1, blocks BLK [NT] to BLK [NT+B�1] are the initial array blocks, and BLK [pT]

to BLK [(p+ 1)T � 1] are process p's initial copy blocks. However, the roles of these blocks

are not �xed. In particular, if an operation by process p replaces a set of array blocks with

some of its copy blocks, then, as explained below, p reclaims the replaced array blocks as

copy blocks. Thus, the copy blocks of one process may become blocks of the array, and

later become copy blocks of another process.

Process p performs a lock-free operation by calling the LF Op procedure. The

loop in the LF Op procedure repeats until the SC at line 10 succeeds. (Actually, read-only

operations return from line 9 because they do not need to modify any pointers, and they

do not need to reclaim any copy blocks. This optimization allows read-only operations to

execute in parallel with other operations because they do not perform the SC operation

at line 10, and therefore do not cause the SC operations of other processes to fail.) In

each iteration, process p �rst reads BANK into p:ptrs using a B-word weak-LL. Recall

67

from Section 4.2 that the weak-LL can return a process identi�er from f0; :::;N � 1g if the

following SC is guaranteed to fail. In this case, there is no point in attempting to apply p's

operation, so the loop is restarted. Otherwise, p records in its dirty array that no block has

yet been modi�ed by its operation, and initializes the dcnt counter to zero. Process p uses

the array p:dirty and the counter p:dcnt to record which blocks of its logical view are not

part of the current array.

Next, p calls the op procedure provided as a parameter to LF Op. The op proce-

dure performs the sequential operation by reading and writing the elements of the BLKS

array. (The programmer thinks of the operation as if it were modifying the implemented

MEM array; as explained below, the construction determines which of the blocks in BLKS

currently represents the appropriate block of MEM, and modi�es that block.) This read-

ing and writing is performed by invoking the Read and Write procedures shown in Figure

5.1. The Read procedure simply computes which block currently contains the word to be

accessed, and returns the value from the appropriate o�set within that block. The Write

procedure performs a write to a word of MEM by computing the index blkidx of the block

containing the word to be written. If it has not already done so, the Write procedure then

records that the block is \dirty" (i.e., has been modi�ed) and copies the contents of the

old block to one of p's copy blocks. Then, the copy block is linked into p:ptrs , making that

block part of p's logical view of the MEM array, and the displaced old block is recorded

in oldlst for possible reclaiming later. Finally, the appropriate word of the new block is

modi�ed to contain the value passed to the Write procedure.

If BANK is not modi�ed by another process after p's weak-LL, then the object

68

contained in p's version of the MEM array (pointed to by p's ptrs array) is the correct

result of applying p's operation. Therefore, p's SC successfully installs a copy of the object

with p's operation applied to it. After the SC, p reclaims the displaced blocks (recorded in

oldlst) to replace the copy blocks it used in performing its operation. On the other hand,

if another process does modify BANK between p's weak-LL and SC, then p's SC fails. In

this case, some other process completes an operation. Therefore, the implementation is

lock-free.

Before concluding this subsection, one further complication bears mentioning. If

the BANK variable is modi�ed by another process while p's sequential operation is being

executed, then it is possible for p to read inconsistent values from the MEM array. Observe

that this does not result in p installing a corrupt version of the object, because p's subsequent

SC fails. However, there is a risk that p's sequential operation might cause an error, such as

a division by zero or a range error, because it reads an inconsistent state of the object. This

problem can be solved by ensuring that, if BANK is invalidated, control returns directly

from the Read procedure to the LF Op procedure, without returning to the sequential

operation. The Unix longjmp command can be used for this purpose.2 This eliminates the

possible error conditions mentioned above, and also avoids unnecessary work, because the

subsequent SC will fail, and the operation will have to retry anyway.

The space complexity (in terms of words) of the shared variables in the algorithm

in Figure 5.1 is �(B+NTS), and the space complexity of the private variables for each of N

processes is �(B+T). Thus, the overall space complexity of the algorithm is �(NB+NTS).

Because this algorithm is lock-free and not wait-free, the time for an operation to complete

2We model this behavior using a goto statement in our algorithms.

69

is unbounded. However, it is interesting to compare the contention-free time complexity

of lock-free algorithms. The contention-free time complexity is the time taken to complete

one operation if no other process is executing an operation. (The de�nition of lock-freedom

requires termination in this case.) As shown in Chapter 4, the time complexity of executing

one Long Weak LL, one Long VL, and one Long SC operation, is �(B). Because each

operation is assumed to modify at most T blocks, line 4 is executed at most T times

during one operation, and the loop in line 10 executes at most T iterations. With these

observations, the following theorem follows. (Recall that a full assertional proof is provided

in Appendix A.1 for the wait-free version of this algorithm, which is presented in the next

section.)

Theorem 5: Suppose a sequential object OBJ can be implemented in an array of B S-

word blocks such that any operation modi�es at most T blocks and has worst-case time

complexity C. Then, OBJ can be implemented in a lock-free manner with space overhead3

�(NB +NTS) and contention-free time complexity �(B + C + TS).

These complexity �gures compare favorably with those of Herlihy's lock-free con-

struction. Consider the implementation of a queue. By storing head and tail \pointers"

(actually, array indices, not pointers) in a designated block, an enqueue or dequeue can be

performed in our construction by copying only two blocks: the block containing the head or

tail pointer to update, and the block containing the array slot pointed to by that pointer.

Thus, for our construction, T = 2, and space overhead is �(NB + NS), which should be

small when compared to �(BS), the size of the queue. Contention-free time complexity

3By space overhead , we mean space complexity beyond that required for the sequential object.

70

is �(B + C + S), which is only �(B + S) greater than the time for a sequential enqueue

or dequeue. In contrast, as mentioned earlier, each process in Herlihy's construction must

actually copy the entire queue, even when using his large-object techniques. Thus, space

overhead is at least N times the worst-case queue length, i.e.,
(NBS). Also, contention-

free time complexity is
(BS+C), since
(BS) time is required to copy the entire queue in

the worst case. It might seem possible that our construction would su�er similar disadvan-

tages for di�erent objects. In fact, this is not the case, because an operation implemented

using our construction copies a part of the object only if the sequential version of the

operation modi�es that part of the object.

5.2 Wait-Free Universal Construction for Large Objects

Our wait-free construction for large objects is shown in Figures 5.4 through 5.6.

The basic structure of this algorithm is similar to that of the lock-free construction presented

in the previous subsection. In particular, this algorithm provides the illusion of a contiguous

array by maintaining a bank of pointers to the blocks that make up that array, and by

allowing processes to perform operations on logical views that share blocks with the current

array. As before, operations performed using this construction use the Read and Write

procedures to access these logical views. Also, the mechanisms for using copy blocks and

reclaiming displaced blocks are exactly the same as in the lock-free construction. However,

as explained below, each process has su�cient copy blocks in this algorithm to perform the

operation of at least one other process together with its own. Therefore, each process has

M � 2T private copy blocks. (Recall that T is the maximum number of blocks modi�ed by

71

constant N = number of processes

B = number of blocks in shared object

S = block size in words
T = maximum number of blocks modi�ed by an operation

M = number of copy blocks per process (M � 2 � T)

type anctype = record op: optype; pars: paramtype; bit : 0::2 end;

retblktype = array[0::N � 1] of record val : objrettype; applied , copied : 0::2 end;

blktype = array[0::S � 1] of wordtype;

banktype = record blks: array[0::B � 1] of 0::B +N �M � 1; help: 0::N � 1; ret : 0::N end;

tupletype: record pid: 0::N � 1; op: optype; pars: paramtype; val: objrettype end

shared var BLK : array[0::B +N �M � 1] of blktype; =� Array and copy blocks �=

ANC : array[0::N � 1] of anctype; =� Announce array �=

RET : array[0::N] of retblktype; =� Blocks for operation return values �=

LAST : array[0::N � 1] of 0::N ; =� Last RET block updated by each process �=

X: record pid : 0::N � 1; tag: 0::1 end; =� Current BANK bu�er �=
BUF : array[0::N � 1; 0::1] of banktype; =� Bu�ers for BANK �=

AuxObj: auxiliary array[0::B � S � 1] of wordtype =� Auxiliary value of object �=

initially X = (0; 0) ^ BUF [0; 0]:ret = N ^ BUF [0][0]:help = 0 ^ AuxObj = initial object value ^

(8p :: ANC [p]:bit = 0 ^ RET [N][p]:applied = 0 ^ RET [N][p]:copied = 0 ^

BUF [p][0]:help = 0 ^ BUF [p][1]:help = 0) ^

(8n : 0 � n < B :: BUF [0;0]:blks[n] = N �M + n ^

BLK [N �M + n] = (nth block of initial object value))

private var copy, =� Indices of p's copy blocks �=

oldlst : array[0::M � 1] of 0::B +N �M � 1; =� Blocks to be reclaimed later �=

ptrs: banktype; =� Process p's logicial view of the object �=

dirty: array[0::B � 1] of boolean; =� Blocks to be replaced by p's operation �=

dcnt : 0::M ; =� Number of blocks to be replaced �=

rb, oldrb: 0::N ; =� Return block of process p and of previous object value �=

match, a ,bit : 0::2; =� Counters for detecting outstanding and completed operations �=
applyop: optype; applypars: paramtype; =� Operation to apply and its parameters �=

rv: objrettype; =� Operation return value �=

tmp, b: 0::N ; =� Witness of failed Long Weak LL, if any �=

done, loop: boolean; =� Control variables �=

i: 0::B � 1; side: 0::1; =� Variables for Long Weak LL ... �=

curr : record pid : 0::N � 1; tag: 0::1 end; =� ... and Long SC �=

try: 0::N � 1; =� Next process to help �=

m: 0::M � 1; j; h: 0::N � 1; k : 0::S � 1; =� Various counters �=

word: 0::B � S � 1; val: wordtype; =� Variables for Simulate Op �=

retval: objrettype; action: frd;wr ; rtg;

auxcopy: auxiliary array[0::B � S � 1] of wordtype; =� Value of object during operations �=

hlplst: auxiliary list of tupletype; =� List of helped operations �=
from: auxiliary f29; 31; 40; 42; 48g =� Used to model execution stack for proof �=

initially (8n : 0 � n < M :: copy[n] = pM + n) ^ rb = p ^ side = 0 ^
ptrs:help = 0 ^ try = 0 ^ dcnt = 0 ^ bit = 0

Figure 5.4: Variable declarations for large object construction in Figures 5.5 and 5.6.

72

procedure Long Weak LL() returns 0::N

1: curr;auxcopy := LL(X);AuxObj ;

for i := 0 to B � 1 do

2: ptrs:blks[i] := BUF [curr:pid; curr:tag]:blks[i]

od;

3: ptrs:help := BUF [curr:pid; curr:tag]:help;

4: ptrs:ret := BUF [curr:pid; curr :tag]:ret;

5: if VL(X) then return N

6: else return X.pid �

procedure Long SC () returns boolean

7: side := 1� side;

for i := 0 to B � 1 do

8: BUF [p; side]:blks[i] := ptrs:blks[i]

od;

9: BUF [p; side]:help := ptrs:help;

10: BUF [p; side]:ret := ptrs:ret;

11: if SC (X; (p; side)) then

AuxObj := Apply All(AuxObj ;hlplst);

return true

else return false

�

procedure Read(addr : 0::B � S � 1) returns wordtype

12: v := BLK [ptrs:blks[addr div S]][addr mod S];
13: if :VL(X) then goto 44 else return v �

procedure Write(addr : 0::B � S � 1; val : wordtype)

14: blkidx := addr div S; =� Compute block index from address �=

if :dirty[blkidx] then =� Haven't changed this block before �=

for k := 0 to S � 1 do =� Copy old block to new �=

15: tmpword := BLK [ptrs:blks[blkidx]][k];

16: BLK [copy[dcnt]][k]; k := tmpword; k + 1

od;

17: dirty[blkidx]; oldlst[dcnt]; tr [dcnt]; ptrs:blks[blkidx]; dcnt :=

true; ptrs:blks[blkidx]; blkidx; copy[dcnt]; dcnt + 1

�; =� Mark block as changed, install new block, record old block, prepare for next one �=

18: BLK [ptrs:blks[blkidx]][addr mod S]; auxcopy[addr] := val; val =� Write new value �=

procedure Simulate Op(simop: optype; simpars: paramtype) returns objrettype

while true do =� Simulate Op is not part of the construction; it merely facilitates the proof �=

19: word ; val; retval;action := select(0::B � S � 1); select(wordtype); select(objrettype); select(frd ;wr ; rtg);

if action = rt then return retval

elseif action = rd then val := Read(word)

else Write(word; val)

�

od

procedure Apply(pr : 0::N � 1)

20: match := ANC [pr]:bit;

21: if RET [rb][pr]:applied 6= match then

22: applyop := ANC [pr]:op;

23: applypars := ANC [pr]:pars;
rv := Simulate Op(applyop;applypars);

24: RET [rb][pr]:val := rv ;

25: RET [rb][pr]:applied := match;

hlplst := hlplst � (pr;applyop;applypars; rv)

�

procedure Return Block() returns 0::N

26: tmp := Long Weak LL();

27: if tmp 6= N then

return LAST [tmp]

else

return ptrs:ret

�

Figure 5.5: Wait-free large object construction.

73

procedure WF Op(op: optype; pars: paramtype)

28: ANC [p]; bit := (op; pars; (bit + 1) mod 3); (bit + 1) mod 3; =� Announce operation �=

29: from; done := 29; false; b := Return Block();
30: while :done ^ RET [b][p]:copied 6= bit do =� Loop until update succeeds or operation is helped �=

31: from := 31;

if Long Weak LL() = N then =� Load object pointers �=
32: for i := 0 to B � 1 do dirty[i] := false od; dcnt := 0; =� No blocks modi�ed yet �=

oldrb;ptrs:ret := ptrs:ret; rb; =� Record old return block and install new one �=

for h := 0 to N � 1 do =� Make private copy of return block �=

33: tmpval := RET [oldrb][h]:val;

34: RET [rb][h]:val := tmpval;

35: tmpbit := RET [oldrb][h]:applied;
36: RET [rb][h]:applied := tmpbit

od;

37: if VL(X) then =� Check if Long SC will fail �=
for j := 0 to N � 1 do =� Record applied operations �=

38: a := RET [rb][j]:applied;

39: RET [rb][j]:copied := a

od;

40: hlplst; try; from := fg; p; 40; Apply(try);

41: try; loop := ptrs:help; false; =� Apply own operation �=

while dcnt + T �M ^ :loop do =� Help processes while su�cient space remains �=

42: if try 6= p then from := 42; Apply(try) �;

43: try := (try + 1) mod N ; if try = ptrs:help then loop := true �

od;

44: LAST [p]; ptrs:help := rb; try; =� Relay which return block was modi�ed �=

45: if Long SC () then =� Operation is successful, reclaim old blocks �=

46: for m := 0 to dcnt � 1 do copy[m] := oldlst[m] od;

rb; done := oldrb; true

�;
�

�

47: from := 47; b := Return Block() =� Get current or recent return block �=

od;

48: from := 48; b := Return Block(); =� Not necessary for correctness, ... �=

49: RET [b][p]:copied := bit; =� ... but simpli�es the proof �=
50: return RET [b][p]:val =� Get return value of operation �=

Figure 5.6: Wait-free large object construction (continued from Figure 5.5).

74

a single operation.)

There are a number of di�erences between our lock-free and wait-free construc-

tions. The principal di�erence is that processes in the wait-free construction \help" each

other in order to ensure that each operation by each process is eventually completed. We

explain the helping mechanism in detail later. There are also several di�erences between

the presentations of these two algorithms that arise from the assertional correctness proof

presented later. First, the algorithm in Figures 5.4 through 5.6 has several new auxiliary

variables (AuxObj, auxcopy, hlplst, and from) and functions (Apply All) that do not appear

in the lock-free algorithm. These variables and functions are not actually implemented; they

are provided solely for the purposes of the correctness proof, and may be ignored for now.

Also, the algorithm in Figures 5.5 and 5.6 uses a special case of the the Long Weak LL and

Long SC implementations presented in Section 4.2. Here, we have eliminated the parameters

passed to and from the Long Weak LL and Long SC procedures, because all calls to these

procedures use the same parameters. (A Long Weak LL operation by process p writes the

current value of the BANK 4 variable into p's ptrs variable, and a successful Long SC writes

the current value of p's ptrs variable into the BANK variable.) Also, the Long Weak LL

and Long SC procedures in Figure 5.5 explicitly implement these operations on a variable

of type banktype, rather than using the general large variable implementation presented in

Figure 4.5. These simpli�cations eliminate the need to reason about parameter passing and

type-casting mechanisms in the correctness proof. Finally, the Simulate Op procedure is

4Observe that the BANK variable is not referred to explicitly in the code of Figures 5.5 and 5.6. The

BANK variable is implemented by the Long Weak LL and Long SC procedures using the X and BUF

variables. The Long VL operation is implemented directly as a VL operation on X (lines 13 and 37). By

directly incorporating these implementations into the algorithm in Figures 5.5 and 5.6, we have eliminated

the need to refer to BANK explicitly.

75

used to model the e�ects of a generic, user-supplied operation. The Simulate Op procedure

makes a nondeterministic sequence of calls to Read and Write, and then returns a value.

This sequence of events is assumed to be the same as would be made by the implemented

operation with the parameters given.

We now turn our attention to the helping mechanism used in our wait-free, large-

object construction. The overall structure of our helping mechanism is the same as Herlihy's

helping mechanism, described in Section 1.2. Speci�cally, helping is achieved by having

each process p announce its operation in ANC [p] (line 28 in Figure 5.6) before entering a

loop (lines 30 through 47) that repeatedly attempts to perform its own operation (line 40)

together with the operations of other processes (lines 41 through 43) until either p executes

a successful SC (line 45) or p detects that its operation has been helped (line 30).

Despite the similarities in structure between our helping mechanism and Herlihy's,

the details are quite di�erent. To facilitate helping in our wait-free construction, two new

�elds | help and ret | are added to the BANK variable of the lock-free construction

presented earlier. (Recall that BANK is implemented by the bu�ers in the Long Weak LL

and Long SC procedures in Figure 5.5, and is no longer referenced explicitly.) The help

�eld records the next process to be helped, and the ret �eld points to a block that contains

operation return values and information that allows processes to detect completion of their

operations. The use of these two �elds is described in detail below.

To enable a process to detect that its operation has been applied, and to determine

the return value of the operation, we use a set of \return" blocks. There are N + 1 return

blocks RET [0] to RET [N]; at any time, one of these blocks is \current" (and is indicated

76

by the ret �eld in the BANK variable) and each process exclusively \owns" one of the

other return blocks. The current return block contains, for each process q, the return value

of q's most recent operation, along with two 3-valued control �elds: applied and copied .

Together with ANC [p]:bit, these two �elds determine the state of p's current operation (if

any). When p is not performing an operation (i.e., p is between calls to WF Op), the values

of ANC [p]:bit and the applied and copied �elds of the current return block are all equal.

When p announces a new operation (line 28), it also increments ANC [p]:bit, thereby making

it di�erent from its applied and copied �elds. As explained below, this indicates to other

processes that p now has an outstanding operation.

A process q performs its own operation (line 40) and helps operations of other

processes (line 42) by calling the Apply procedure, passing as a parameter the process pr

to be helped. Apply checks whether process pr has an outstanding operation by comparing

ANC [pr]:bit to the current applied �eld for process pr (lines 20 and 21). (More accurately,

it compares ANC [pr]:bit to pr 's applied �eld in a copy of the current return block. This

copy is made by process q in lines 33 through 36. In the correctness proof in Appendix A.1,

we show that, if the pr 's applied �eld in this copy is di�erent to that in the current return

block, then q's subsequent SC will fail, so q will not incorrectly apply an operation.) If

these two �elds are di�erent, then q performs pr 's operation (lines 22 and 23), records the

return value of the operation in its copy of the return block (line 24), and copies the value

read from ANC [pr]:bit to pr 's applied �eld in q's copy of the return block. Later, if q's SC

is successful, then q's copy of the return block becomes current. Thus, pr 's operation is

not subsequently reapplied by another process, because that process �nds that pr 's applied

77

�eld in the current return block equals ANC [pr]:bit .

The copied �eld for process q in the current return block is used by q to detect when

its operation has been completed. In lines 38 and 39, the applied �eld is copied to the copied

�eld for each process. Thus, the value in q's copied �eld of the current return block does not

equal ANC [q]:bit until the successful SC after the one that applies q's operation (described

above). To see why two bits are needed to detect whether q's operation is complete, consider

the scenario in Figure 5.7. In this �gure, process p performs two operations. In the �rst,

p's SC is successful, and p replaces RET [5] with RET [3] as the current return block at

line 11. During p's �rst operation, q starts an operation. However, q starts this operation

too late to be helped by p. Before p's execution of line 11, q determines that RET [5] is

the current return block (line 4). Now, p starts a second operation. Because p previously

replaced RET [5] as the current return block, RET [5] is now p's private copy, so p's second

operation uses RET [5] to record the operations it helps. When p executes line 25, it changes

q's applied bit to indicate that it has applied q's operation. Note that, at this stage, q's

operation has only been applied to p's private object copy, and p has not yet performed its

SC. However, if q reads the applied bit of RET [5] (which it previously determined to be

the current RET block) at line 4, then q incorrectly concludes that its operation has been

applied to the object, and terminates prematurely.

It is similarly possible for q to detect that its copied bit in some return block

RET [b] equals ANC [q]:bit before the SC (if any) that makes RET [b] current. However,

because q's copied bit is updated only after its applied bit has been successfully installed as

part of the current return block, it follows that some process must have previously applied

78

p

q

BANK.ret = 5 BANK.ret = 3

ANC[q].bit :=1 BANK.ret = 5 RET[5][q].applied = ANC[q].bit

RET[5][q].applied := 1

1 11 1 25

28 4 30

Figure 5.7: Process q prematurely detects that its applied bit equals ANC [q]:bit.

q's operation. Thus, the use of the second bit (copied) ensures that q terminates correctly

in this case (see line 30).

It remains to describe how process q determines which return block contains the

current state of q's operation. It is not su�cient for q to perform a weak-LL on BANK

and read the ret �eld, because the weak-LL is not guaranteed to return a value of BANK

if a successful SC operation interferes. In this case, the weak-LL returns the ID of a

\witness" process that performs a successful SC on BANK during the weak-LL operation.

In preparation for this possibility, process p records the return block it is using in LAST [p]

(line 44) before attempting to make that block current (line 45). When q detects interference

from a successful SC, q uses the LAST entry of the witness process to determine which return

block to read. The LAST entry contains the index of a return block that was current during

q's weak-LL operation. If that block is subsequently written after being current, then it is

a copy of a more recent current return block, so its contents are still valid.

We now describe the use of the new help �eld of BANK. Recall that, in Herlihy's

construction, each time a process performs an operation, it also performs the pending

operations of all other processes. However, in our construction, the restricted amount of

79

private copy space might prevent a process from simultaneously performing the pending

operations of all other processes. Therefore, in our construction, each process helps only as

many other processes as it can without violating its space constraints. The help counter,

which is used to ensure that each process is eventually helped, indicates which process should

be helped next. Each time process p performs an operation, p helps as many processes as its

space constraints permit, starting with the process stored in the help �eld. This is achieved

by helping processes until too few private copy blocks remain to accommodate another

operation (lines 22 to 24). (Observe that the Write procedure increments dcnt whenever

a new block is modi�ed.) Process p updates the help �eld so that the next process to

successfully perform an SC starts helping where p stops. Because we assume that each

process has enough copy space to accommodate at least two operations, each successful SC

operation advances the help �eld by at least one process. Thus, if some process repeatedly

fails to perform its own operation, the help �eld eventually ensures that the operation of

that process is performed, thereby guaranteeing wait-freedom. A full assertional proof is

presented in Appendix A.1. This proof is quite long and tedious; we therefore present an

overview of the proof in the next section.

5.3 Proof Overview for Algorithm in Figures 5.5 and 5.6

In this section we give an overview of the correctness proof for the algorithm in

Figures 5.5 and 5.6. This overview is intended to aid understanding of the algorithm and

to provide some intuition for the structure of the proof. It is not intended to be formal or

rigorous. Relevant properties from the full proof that appears in Appendix A are indicated

80

in parentheses.

In order to model the interaction of each process with our construction, we assume

the existence of a statement 0 (not shown in Figures 5.5 and 5.6) that repeatedly calls

WF Op with appropriate parameters. When process p returns from the WF Op procedure

(line 50), p's program counter is set to 0 in preparation for p's next operation invocation.

The Simulate Op procedure (line 19) models user-supplied operations. This is achieved by

using a nondeterministic choice to produce a sequence of read and write operations to the

implemented BS-word array, followed by the return of a nondeterministic value. We use

the select function, which takes a type parameter and returns an arbitrary value of that

type, to achieve this nondeterminism.

The algorithm in Figures 5.5 and 5.6 is augmented with several auxiliary variables

and functions, which are used to construct a total order over operation invocations that

is consistent with the sequential semantics of the implemented object. The linearizability

proof shows that each operation invocation is placed into this total order exactly once, that

this occurs during the execution of that invocation (i.e., the constructed total order extends

the partial order over invocations), and that each invocation returns the correct return value

with respect to the total order constructed.

We now explain how the total order over operations is constructed. While per-

forming operations, each process p maintains an auxiliary variable p:auxcopy which records

the changes made to p's local view of the implemented object. (Observe that, for each write

operation invoked by an operation performed by process p, an equivalent write operation

is performed on p:auxcopy at line 18.) Process p records the operations it performs in

81

an auxiliary list p:hlplst (line 25), which contains one tuple for each operation performed.

Each tuple contains the identity of the process that invoked the operation, the operation

itself, the parameters passed to that operation, and the value that would be returned by a

sequential implementation of that operation, given the previous object state in p:auxcopy .

Each time process p performs a successful SC operation (line 11), the operations in p:hlplst

are linearized (i.e., added to the constructed total order) in the order that they appear

in p:hlplst. This is recorded by updating the auxiliary variable AuxObj, which contains

the current value of the implemented object. This is achieved by means of the ApplyAll

function, which is de�ned below.

De�nition: The ApplyAll function takes two parameters: a current object

state (an array of BS words) and a list of tuples. ApplyAll scans the

list in order and, for each tuple (q; op; pars; ret), sequentially applies

the operation op, with parameters pars to the current object state.

ApplyAll returns the state of the object that results from all of these

operation applications. (Note that this function is used only to facili-

tate the proof: it is not actually implemented.)

Observe that, when p executes a LL at line 1, p also copies Auxcopy to p:auxcopy .

Thus, because Auxcopy does not change between p's LL and p's successful SC (if it did

change, then p's SC would fail), the new value written to Auxcopy when p performs its

successful SC correctly re
ects the sequential execution of the operations in p:hlplst. Thus,

the return values of the operations in the total order constructed are consistent with the

sequential semantics of those operations.

82

RV (p) � RET [BUF [X:pid ; X:tag]:ret][p]:val

AV (p) � RET [BUF [X:pid ; X:tag]:ret][p]:applied

CV (p) � RET [BUF [X:pid ; X:tag]:ret][p]:copied

NORM (p) � AV (p) = ANC [p]:bit ^ CV (p) = ANC [p]:bit

ST (p) � (AV (p) + 1) mod 3 = ANC [p]:bit ^ (CV (p) + 1) mod 3 = ANC [p]:bit

APP(p) � AV (p) = ANC [p]:bit ^ (CV (p) + 1) mod 3 = ANC [p]:bit

Figure 5.8: De�nitions used in the correctness proof for the algorithm in Figures 5.5 and 5.6.

We begin by introducing some of the de�nitions used in the proof, and by giving

the intuition behind them. These de�nitions appear in Figure 5.8.

RV (p), AV (p), and CV (p) are shorthand for the val, applied, and copied �elds,

respectively, for process p in the current return block (indicated by BUF [X:pid ; X:tag]:ret).

The NORM (p), ST (p), and APP(p) predicates represent the state of process p's current

operation (if any). In the linearizability proof in Appendix A, we show that NORM (p)

holds while process p is at line 0 or line 28 | that is, while p is not executing an operation,

or is just about to start one (I95). We also show that, during an operation by process p, p

goes through three phases before returning. These are a start phase, during which ST (p)

holds, an applied phase, during which APP(p) holds, and a completed phase, during which

NORM (p) holds again ((U2), (U3), (U4), and Claims 8, 9, and 10).

Process p starts an operation by incrementing ANC [p]:bit (line 28). Thus, because

NORM (p) holds before an operation by process p starts (I95), the execution of statement

p:28 establishes ST (p), thereby beginning the start phase of p's operation. The applied

83

phase of p's operation begins when some process q performs a successful SC that changes

the value of AV (p). We show that this occurs only if process q performed p's operation, and

hence copied ANC [p]:bit to p's applied �eld in q's local return block at lines 20 and 25 (I77).

Thus, p's operation is linearized only at the transition from its start phase to its applied

phase (i.e., the point at which ST (p) is falsi�ed and APP(p) is established). This implies

that p's operation is linearized exactly once, and that this occurs during the execution of

p's invocation. Finally, we show that, immediately after p's operation is linearized, RV (p)

contains the correct return value for p's operation (I77), and that this remains true until p

completes execution of its operation ((U4) and (U5)). We use this property to show that

the value returned from line 50 by process p is the correct return value for its operation

(I98).

The wait-freedom proof given in Appendix A shows that each of the three phases

described above completes after a �nite number of p's steps. In particular, because each

process has su�cient copy space to help at least one other process with each operation, the

value of the help counter (BUF [X:pid ; X:tag]:help) increases (modulo N) by at least one

with each successful SC. Thus, if process p repeatedly fails to perform its own operation,

then the help counter eventually ensures that the process that performs the next successful

SC also performs p's operation. We also show that AV (p) = ANC [p]:bit is stable after that

successful SC until the beginning of p's next operation ((U4) and (U5)). Thus, because

each process copies the applied �elds of its return block to the copied �eld (lines 38 and

39), the next successful SC (by p or by another process) establishes CV (p) = ANC [p]:bit

(I77). We show that this assertion is stable until the beginning of p's next operation ((U4)

84

and (U5)), and use this to show that the next time p tests the loop condition at line 30,

that condition is false (I77). Thus, p's operation is guaranteed to complete execution. In

Appendix A, we prove the following theorem.

Theorem 6: Suppose a sequential object OBJ whose return values are at most R words

can be implemented in an array of B S-word blocks such that any operation modi�es at

most T blocks and has worst-case time complexity C. Then, for any M � 2T , OBJ can be

implemented in a wait-free manner with space overhead �(N(NR+MS +B)) and worst-

case time complexity �(dN=min(N; bM=Tc)e(B +N(R+ C) +MS)).5

5.4 Performance Comparison

In this section, we describe the results of performance experiments that compare

the performance of Herlihy's lock-free construction for large objects to our two constructions

on a 32-processor KSR-1 multiprocessor.

The results of one set of experiments are shown in Figure 5.9. In these experiments,

LL and SC primitives were implemented using the standard spin-locking primitives provided

by the KSR. Each of 16 processors performed 1000 enqueues and 1000 dequeues on a

shared queue. Each point in the performance graphs presented in this section represents

the average time taken to execute these operations over �ve runs. However, the variance in

these times was small enough that taking these averages did not have a signi�cant e�ect on

5When considering these bounds, note that for many objects, R is a small constant. Also, for many

linear structures, including queues and stacks, C and T are constant, and for balanced trees, C and T are
logarithmic in the size of the object. Also, because M � 2T , dN=min(N;bM=Tc)e is at most N=2.

85

the performance results presented.

Our large object constructions give rise to a tradeo� between the block size S and

the number of blocks B. Speci�cally, if S is large, then it is expensive to copy one block,

but if S is small, then B must be large, which implies that the Long Weak LL and Long SC

procedures will be expensive. For testing our constructions, we chose B (the number of

blocks) and S (the size of each block) to be approximately the square root of the total

object size. This minimizes the sum of the block size and the number of blocks. (This is

somewhat simplistic as we have not done extensive experiments to determine the relative

costs of block copying and the Long Weak LL and Long SC procedures. It is conceivable

that further tuning of these parameters could result in better performance.) Also, we chose

T = 2 because each queue operation accesses only two words. For the wait-free construction,

we chose M = 4. This is su�cient to guarantee that each process can help at least one

other operation. In fact, because two consecutive enqueue (or dequeue) operations usually

access the same block, choosing M = 4 is su�cient to ensure that a process often helps all

other processes each time it performs an operation. These choices for M and T result in

very low space overhead compared to that required by Herlihy's construction.

As expected, both our lock-free and wait-free constructions signi�cantly outper-

form Herlihy's construction as the queue size grows. This is because an operation in Her-

lihy's construction copies the entire object, while ours copy only small parts of the object. It

is interesting to note that our wait-free construction outperforms our lock-free one. We be-

lieve that this is because the cost of recopying blocks in the event that a SC fails dominates

the cost of helping.

86

0

50

100

150

200

250

300

20 40 60 80 100 120 140 160 180 200

T
im

e
(s

)
fo

r
10

00
 e

nq
ue

ue
s

an
d

10
00

 d
eq

ue
ue

s
pe

r
pr

oc
es

s

Queue Size

"Lock_Free_Queue"
"Lock_Free_Queue_Backoff"

"Wait_Free_Queue"
"Wait_Free_Queue_Backoff"
"Herlihy_Lock_Free_Queue"

"Herlihy_Lock_Free_Queue_Backoff"

Figure 5.9: Comparison of our queue implementation to Herlihy's on a KSR multiprocessor.

87

In Herlihy's performance experiments on small objects [44], exponential backo�

played an important role in improving performance. Exponential backo� is implemented

by introducing a random delay after each failed SC operation. The length of this delay

is chosen from a uniform, random distribution between zero and a maximum delay. The

duration of the maximum delay doubles (up to a set limit) with each successive failed SC,

and is reset to a very small value at the beginning of each operation. The limit on the length

of the maximum delay is an important parameter for achieving good performance: if it is

set too low, then the bene�ts of backo� are not realized, and if it is set too high, processes

can wait too long before retrying. The data shown for constructions with backo� represent

the best performance we could achieve by tuning the backo� delay limit and repeating these

experiments. This highlights the advantage of our wait-free construction, which, without

resorting to using exponential backo�, outperforms the pure lock-free constructions, and

performs comparably with the lock-free constructions with backo�.

We should point out that we deliberately chose the queue to show the advantages of

our constructions over Herlihy's. We also implemented a skew heap | the object considered

by Herlihy in [44]. As a �rst step, we implemented a dynamic memory allocation mechanism

on top of our large object construction. This provides a more convenient interface for

objects (including skew heaps) that are naturally represented as nodes that are dynamically

allocated and released.

There are well-known techniques for implementing dynamic memory management

in an array. However, several issues arise from the design of dynamic memory management

techniques in the context of our constructions. First, the dynamic memory allocation pro-

88

cedures must modify only a small number of array blocks, so that the advantages of our

constructions can be preserved. Second, fragmentation complicates the implementation of

allocate and release procedures. For example, after many allocate and release calls, the avail-

able free space can be distributed throughout memory, and it might be time-consuming, or

even impossible, to �nd a contiguous block that is su�ciently large to satisfy a new allocate

request. These complications can make the procedures quite ine�cient, and can even cause

the allocate procedure to incorrectly report that insu�cient memory is available. Both of

these problems are signi�cantly reduced if the size of allocation requests is �xed in advance.

For many objects, this restriction is of no consequence. This is true in the case of a skew

heap, because all of the nodes in a skew heap are of the same size. We took advantage of

this fact to simplify the design of our dynamic memory allocation library.

Having implemented dynamic memory allocation, we then implemented a large

skew heap, and conducted performance experiments similar to those we conducted for the

queue. The results of these experiments can be seen in Figure 5.10. As this �gure shows,

our constructions performed about the same as they did when used to implement a queue.

However, Herlihy's construction performed much better than before, because unlike the

queue operations, skew heap operations do not need to modify blocks that are at the end

of long \chains" of blocks. In fact, Herlihy's lock-free construction slightly outperforms

ours in this case. Recall that, in order to use Herlihy's construction, a programmer must

determine, based on the semantics of the implemented object, which parts of the object

must be copied by each operation. Thus, the implementation using Herlihy's construction is

hand-crafted to perform exactly the right amount of copying; our construction does not rely

89

0

10

20

30

40

50

60

70

20 40 60 80 100 120 140 160 180 200

T
im

e
(s

)
fo

r
10

00
 in

se
rt

s
an

d
10

00
 d

el
et

es
 p

er
 p

ro
ce

ss

Skew Heap Size

"Herlihy_Lock_Free_Skew_Heap"
"Herlihy_Lock_Free_Skew_Heap_Backoff"

"Lock_Free_Skew_Heap"
"Lock_Free_Skew_Heap_Backoff"

"Wait_Free_Skew_Heap"
"Wait_Free_Skew_Heap_Backoff"

Figure 5.10: Comparison of our skew heap implementation to Herlihy's on a KSR multiprocessor.

90

on the programmer to provide this information. In other words, our construction sacri�ces

performance slightly in order to provide a transparent interface to the programmer.

Chapter 6

Using k-Exclusion to Further

Reduce Overhead

Most wait-free universal constructions | including the one presented in the pre-

vious chapter | have time complexity that depends on N , the total number of processes in

the system. This is usually as a result of the need to tolerate N � 1 simultaneous process

delays or failures. However, in many applications, it is extremely unlikely that all N pro-

cesses would simultaneously access the same shared object. Moreover, even if this scenario

did arise, it would be unlikely for N � 1 of them to fail or be delayed. Thus, wait-freedom

is, in some sense, overkill in such applications. From a performance standpoint, it might

pay to tolerate fewer simultaneous delays or failures, if that would incur lower overhead.

In this chapter, we present \tunable" object implementations, which allow the user

to select a level of resiliency (that is, select how many delays or failures will be tolerated),

and to adjust the associated overhead accordingly. In these implementations, a k-exclusion

92

algorithm is used to protect access to a k-process, wait-free shared object implementation

for some k < N . Provided at most k processes access the object concurrently, each process

is guaranteed to complete each operation in a �nite number of steps. On the other hand, if

more than k processes access the object concurrently, then some are forced to wait by the

k-exclusion algorithm.

We present several shared-memory algorithms for k-exclusion in which all process

blocking is achieved through the use of \local-spin" busy waiting. As discussed in Section

2.1, algorithms that rely only on local spinning for process blocking reduce interconnect

tra�c, which is important for good performance. The algorithms we present are based on

commonly-available synchronization primitives, are fast in the absence of contention, and

exhibit scalable performance as contention rises. In contrast, all prior k-exclusion algorithms

either require unrealistic atomic operations or perform badly.

The k-exclusion-based object implementations presented in this chapter are of in-

terest because they combine the advantages of local-spin spin locks,1 which perform well

in the absence of process delays such as preemptions, and wait-free algorithms, which ef-

fectively tolerate such delays. We present performance results that show that, in multi-

programmed systems, these object implementations can perform much better than either

wait-free or spin-lock-based object implementations. These results show that our k-exclusion

algorithms are fast and scalable.

The k-exclusion problem was posed by Fischer et al. [34] as a generalization of the

well-known mutual exclusion problem [29]. In the k-exclusion problem, the objective is to

1As mentioned in Chapter 2, a spin lock is a mutual exclusion algorithm that uses spinning to wait when

another process holds the lock. A process spins by repeatedly testing a condition, for example by reading a

shared variable, until that condition holds.

93

design a set of N > k processes, each of which has a \critical section" of code. Each process

can enter its critical section repeatedly, and at most k processes may be in their critical

sections at any time. Progress must be guaranteed in the face of undetectable process halting

failures. Speci�cally, if at most k�1 processes fail undetectably, then any nonfailed process

that wants to enter its critical section eventually reaches it. In an important variant of the

k-exclusion problem, originally posed by Attiya et al. [15], there is an added requirement

that each process entering its critical section must obtain a unique \name" from a �xed set

of k names. Following the terminology of Burns and Peterson [26], we call this variant of

the k-exclusion problem the k-assignment problem.

In this chapter, we present several algorithms for solving the k-exclusion and k-

assignment problems on shared-memory multiprocessors. We evaluate these algorithms in

terms of their remote-reference counts, which speci�es the number of remote accesses of

shared memory required per critical section acquisition. An access is remote if it requires

a traversal of the global interconnect between processors and shared memory, and local

otherwise. Table 6.1 compares the algorithms of this chapter with previously published

algorithms for k-exclusion and k-assignment. This table gives the remote-reference count

of each listed algorithm, both under contention and in the absence of contention. (The

contention-free remote-reference count is the worst-case number of remote memory accesses

required for a critical section acquisition if no other process competes for that critical section.

This notion is formalized in Section 6.1.) Table 6.1 also speci�es the set of instructions

used by each algorithm. Observe that all previously published algorithms have unbounded

remote-reference counts under contention, and most have high remote-reference counts even

94

Remote-Reference Complexity

Ref. With Contention Contention-Free Instructions Used

[34] 1 �(1) Large Critical Sections

[35] 1 �(1) Large Critical Sections

[30] 1 �(N2) Safe Bits

[3] 1 �(N) Atomic Read and Write

[26] 1 �(N) Atomic Read and Write

Thm. 9 �(k log(N=k)) �(1) Fetch-and-Add, Test-and-Set

Thm. 10 �(c) �(1) Fetch-and-Add, Test-and-Set

Thm. 13 �(k log(N=k)) �(1) Fetch-and-Add, Test-and-Set

Thm. 14 �(c) �(1) Fetch-and-Add, Test-and-Set

Thm. 17 �(k log(N=k)) �(1) Above and Compare-and-Swap

Thm. 18 �(c) �(1) Above and Compare-and-Swap

Table 6.1: A comparison of N -process k-exclusion algorithms for shared-memory systems. In the
�rst column of time complexity �gures, c is the level of contention. For the algorithms of Theorems
9 and 10, time complexity under contention is as stated only for cache-coherent machines. The
compare-and-swap-based algorithms of Theorems 17 and Theorem 18 improve upon the algorithms
of Theorems 13 and 14 by having lower space complexity. The algorithms of Theorem 9 through
Theorem 18 all use atomic reads and writes in addition to the instructions listed.

in the absence of contention. In addition, the algorithms of [34] and [35] assume the existence

of large mutually exclusive critical sections that are executed atomically.

Our decision to evaluate our k-exclusion algorithms by their remote-reference

counts | that is, to distinguish between local and remote accesses of shared memory |

is motivated by recent work on local-spin spin locks [5, 12, 38, 72, 97, 98]. In such locks,

the impact of the processor-to-memory bottleneck is minimized by structuring programs so

that processes busy wait only on locally-accessible shared variables. In practice, a shared

variable can be made locally-accessible by storing it in a local cache line or in a local par-

tition of distributed shared memory. Performance studies presented in [12, 38, 72, 97, 98]

show that minimizing remote memory accesses is important for scalable performance in the

design of synchronization algorithms.

95

Although the k-assignment problem may seem to be much harder than the k-

exclusion problem, we show that if one allows reasonable synchronization primitives, then

any k-exclusion algorithm can easily be extended to solve the k-assignment problem. There-

fore, this chapter is almost entirely devoted to algorithms for k-exclusion. Our conversion

of k-exclusion algorithms to k-assignment algorithms involves using a simple long-lived re-

naming algorithm that allows each process to acquire a name before entering its critical

section, and to release that name upon exiting its critical section. The renaming algorithm

we present is based on test-and-set, and has time complexity that is directly proportional to

contention. A generalization of this algorithm is presented in Chapter 7 and proved correct

in Appendix C.2.

The k-exclusion algorithms we present employ only local spins for process block-

ing. The �rst few algorithms we present are designed for implementation on cache-coherent

machines. In these algorithms, spins are local only if there is an underlying cache-coherence

mechanism. The remaining algorithms in this chapter do not require cache coherence.

Hence, they can be implemented on distributed shared-memory machines that do not

have coherent caches. For both classes of machines, we present algorithms that have

�(k log(N=k)) remote-reference counts under contention and algorithms that have remote-

reference counts that are directly proportional to contention (see Table 6.1). As shown in

Table 6.1, all of these algorithms have constant remote-reference counts in the absence of

contention, and are based on commonly-available synchronization primitives.

Most of the claims made above concerning scalable performance are based on

remote-reference counts. In the latter part of the chapter, we put these claims to the

96

test by evaluating the performance of our algorithms within the context of a particular

application. The application we consider is that of implementing shared objects in systems

that are multiprogrammed. In our experiments, we compare wait-free and spin-lock-based

object implementations to object implementations that incorporate both wait-free and lock-

based techniques. These implementations are (k � 1)-resilient , which means that they can

withstand undetectable halting failures of up to k � 1 processes. As explained in Section

6.5, wait-free objects actually are a special case of this de�nition: an N -process object

implementation is wait-free if and only if it is (N � 1)-resilient.

The (k � 1)-resilient shared object implementations we consider are obtained by

encasing a wait-free, k-process object implementation within a k-assignment \wrapper".

This wrapper permits only k processes to access the wait-free implementation concurrently,

and assigns these processes unique names from a range of size k to use within that imple-

mentation. This approach allows k � 1 process halting failures to be tolerated. From the

object designer's standpoint, k is a parameter that determines the degree to which halting

failures can be tolerated. Performance can be optimized by \tuning" this parameter.

The performance experiments we present show that, for both cache-coherent and

distributed shared-memory multiprocessors, for suitable choices of k, (k�1)-resilient objects

implemented using our algorithms are faster and scale better than objects implemented

using either wait-free or lock-based algorithms. These results validate our claims that our

k-exclusion algorithms are both fast and scalable. To our knowledge, the experiments we

present are the �rst to demonstrate the advantages that resilient object implementations

have over lock-based implementations in multiprogrammed systems. These advantages do

97

not seem to be widely appreciated,2 despite the considerable attention resilient objects have

received in the literature.

The remainder of this chapter is organized as follows. In Section 6.1, we present

de�nitions and notation that will be used in the rest of the chapter. In Section 6.2, we dis-

pense with the k-assignment problem as discussed above by showing that a simple renaming3

algorithm can be combined with any k-exclusion algorithm to solve k-assignment. We then

present k-exclusion algorithms for cache-coherent and distributed shared-memory machines

in Sections 6.3 and 6.4, respectively. We follow these sections with performance results in

Section 6.5. Correctness proofs for the distributed shared-memory algorithms appear in

Appendix B.

6.1 Preliminaries

A program that solves the k-exclusion problem consists of N > k processes, which

are numbered from 0 to N � 1. Each process begins execution in a noncritical section,

and cycles through its noncritical section, an entry section, a critical section, and an exit

section. Unless stated otherwise, we assume that no variable (other than program counters)

appearing in any entry or exit section is modi�ed in any noncritical or critical section.

A program that solves the k-exclusion problem must be able to cope with process

halting failures. In keeping with the de�nitions given in Chapter 3, a process p is faulty in a

history t0
s0
!t1

s1
!� � � if and only if for some i � 0, process p is outside of its noncritical section

2All previously published performance evaluations of resilient objects that we know of assume a one-

process-per-processor model of computation [10, 44]. Discussions with researchers in this area have led
us to believe that many researchers are not aware of the performance bene�ts of resilient objects under

multiprogramming.
3The renaming problem is studied in greater detail in the next chapter.

98

at state ti, and ti
si
!ti+1

si+1
! � � � includes no statement executions of process p. Informally,

a nonfaulty process can halt only in its noncritical section. Note that this implies that a

nonfaulty process cannot halt in its critical section.

We now state the key safety and progress requirements for the k-exclusion problem.

Let ES(p) be a state assertion that is true if and only if the value of process p's program

counter equals a label of a statement appearing in its entry section. Similarly, let CS(p) be

a state assertion that is true if and only if the value of process p's program counter equals

a label of a statement appearing in its critical section. Then, a program that solves the

k-exclusion problem must satisfy the following properties.

� k-Exclusion: jfp : 0 � p < N :: CS(p)gj � k is an invariant. Informally, at most k

processes can execute their critical sections at the same time.

� Starvation-Freedom: For each process p, ES(p) leads-to CS(p) in each history in

which p is nonfaulty and at most k� 1 processes are faulty. Informally, if a nonfaulty

process is in its entry section, then that process eventually executes its critical section,

provided that fewer than k processes have failed. (We also require that each process in

its exit section eventually enters its noncritical section; this requirement holds trivially

in all of our k-exclusion algorithms, so we do not consider it further.)

The k-assignment problem extends the k-exclusion problem by requiring each

process p to have a private variable p:name ranging over f0; : : : ; k�1g. If distinct processes

p and q are in their critical sections, then it is required that p:name 6= q:name . In other

words, we require that (8p; q : p 6= q :: (CS(p) ^ CS(q))) (p:name 6= q:name)) is an

invariant.

99

As mentioned previously, we focus on cache-coherent and distributed shared-

memory machines, and evaluate our algorithms by counting \remote" references of shared

memory. On distributed shared-memory machines, each shared variable is local to one pro-

cessor, and remote to all others. Thus, the distinction between local and remote memory

references is straightforward. On cache-coherent machines, making this distinction is more

problematic. The main di�culty is in determining how many cache misses a busy-waiting

loop generates. In our cache-coherent algorithms, all busy waiting is by means of simple

loops of the form \while Q = p do od", where Q is a shared variable and p is the pro-

cess identi�er of the spinning process. We assume that such a loop generates at most two

remote memory references. In particular, we assume that the �rst read of Q generates a

remote memory reference that causes a copy of Q to migrate to p's local cache. Subsequent

reads before Q is written are therefore local. When another process modi�es Q, the cache

entry is invalidated, so the next read of Q generates a second remote memory reference. In

our cache-coherent algorithms, each process modi�es Q only by assigning its own process

identi�er to Q, so the loop terminates after this second remote read. These assumptions

correspond to an idealized write-invalidate cache-coherence protocol, where a cached copy

of Q is invalidated only by writes to Q. In fact, other invalidations are possible, for example

because of preemption. However, these other invalidations should be relatively rare, so our

model closely re
ects reality.

We evaluate the algorithms in this chapter by counting (under the assumptions

of the previous paragraph) the worst-case number of remote memory references required

for any process to enter and then exit its critical section. We say that a k-exclusion or

100

k-assignment algorithm has remote-reference count R if and only if each matching entry

and exit section of any process of that algorithm together generate at most R remote

memory references. For some algorithms, the remote-reference count depends on the level of

contention. For any state of any history, we de�ne contention at that state to be the number

of processes outside their noncritical sections at that state. We say that contention is at most

c in a history if and only if contention is at most c at each state of that history. We say that a

k-exclusion or k-assignment algorithm has remote-reference count R if contention is at most

c if and only if each matching entry and exit section of any process of that program together

generate at most R remote memory references in any history for which contention is at most

c. When we refer to the remote-reference count of a program in the absence of contention,

we mean its remote-reference count if contention is exactly one. Algorithms that do not

employ local spinning can generate an unbounded number of remote memory references.

We therefore say that a k-exclusion algorithm is a local-spin k-exclusion algorithm if it has

a bounded remote-reference count. In addition to the conventions described in Chapter 3,

we use the following in the remainder of this chapter.

Notational Conventions: In addition to the notation given in Chapter 3, in this chapter,

we sometimes label sequences of statements such as noncritical and critical sections, and

the Acquire and Release procedures introduced later in this chapter. This allows us to

reason about steps of these sequences of statements. If s labels a sequence of statements,

then p@s holds if and only if some statement within that sequence is enabled for execution.

Also, for brevity, we refer to k-exclusion for N processes as (N; k)-exclusion; similarly for

(N; k)-assignment .

101

shared variable

X : array[0::k� 1] of boolean

initially

(8i : 0 � i � k � 1 :: :X[i])

private variable

name : 0::k� 1

while true do

0: Noncritical Section;

1: Acquire(N;k); =� Entry section for (N;k)-exclusion �=

2: name := 0;
3: while test and set(X[name]) do name := name + 1 od; =� Set �rst clear bit : : : �=

4: Critical Section using name name; =� : : : to get a name �=

5: X[name] := false �; =� Release name by resetting bit found �=

6: Release(N;k) =� Exit section for (N;k)-exclusion �=

od

Figure 6.1: Algorithm for k-assignment using test-and-set for renaming.

6.2 k-Assignment

As explained in the introduction, the k-assignment problem can be solved by

combining a solution to the long-lived renaming problem with a program that solves the k-

exclusion problem. The long-lived renaming problem, in which processes repeatedly acquire

and release unique names from a �xed name space, is studied in detail in Chapter 7.

Figure 6.1 depicts a program that solves the k-assignment problem in the manner

described above. The entry and exit sections of the k-exclusion algorithm being used are

denoted by Acquire(N; k) and Release(N; k), respectively. The renaming mechanism em-

ploys a sequence of test-and-set bits, one per name. In order to obtain a name, a process

tests each bit in order, until a test-and-set succeeds (line 3). The bit X [j] is associated with

name j, where 0 � j < k. A process that has obtained name j releases it by simply clearing

X [j] (line 5).

A generalization of the renaming algorithm employed in Figure 6.1 is presented

102

shared variable

X : (k �N)::k;

Q : queue of 0::N � 1

initially

X = k ^ Q = null

process p =� 0 � p < N �=

while true do

0: Noncritical Section;

1: h if fetch and add(X;�1) � 0 then =� If no critical section slots are available... �=

Enqueue(p;Q) i; =� ... then get into queue ... �=
2: while Element(p;Q) do =� null �= od =� ... and busy wait until released �=

�;

3: Critical Section;
4: h Dequeue(Q); =� Remove �rst process from Q �=

fetch and add(X; 1) i =� Increase counter of available slots again �=

od

Figure 6.2: (N; k)-exclusion using atomic queue procedures.

in more detail in Chapter 7 and proved correct in Appendix C.2. As the correctness proof

presented there shows, if a process is about to perform a test-and-set operation on X [i], then

:X [j] holds for some j where i � j < k. Thus, if a process has unsuccessfully tested bits

X [0] through X [k�2], then :X [k�1] holds, so the kth test-and-set will succeed. Therefore,

although the loop at line 3 of Figure 6.1 has no explicit bound, termination is guaranteed

after at most k iterations. Note that this renaming algorithm has remote-reference count

k+1. Also, if contention is at most c, then it has remote-reference count c+1. Because each

process has a private name variable, the renaming algorithm requires �(N) space. Thus,

we have the following theorem.

Lemma 1: Suppose thatAcquire(N; k) and Release(N; k) can be implemented with remote-

reference count B, with remote-reference count C if contention is at most c, and with

space complexity �(D). Then, (N; k)-assignment can be implemented with remote-reference

count B + k+ 1, with remote-reference count C + c+ 1 if contention is at most c, and with

space complexity �(D +N).

103

6.3 k-Exclusion on Cache-Coherent Machines

In this section, we present several fast k-exclusion algorithms for cache-coherent

machines. We begin by explaining the key insight on which all of our k-exclusion algorithms

are based.

On �rst thought, it may seem that the k-exclusion problem could be e�ciently

solved by simply modifying a queue-based spin lock [12, 38, 72] so that a process waits in

the queue only if k other processes are already in their critical sections. Before giving our

�rst algorithm, we explain why this simple approach is problematic. Consider the simple

(unrealistic) queue-based (N; k)-exclusion algorithm in Figure 6.2. The shared variable X

in this algorithm counts the number of processes that may safely enter the critical section.

X is initially k. When X � 0, a process trying to enter the critical section waits in the queue

Q. Enqueue(p;Q) and Dequeue(p;Q) are the normal queue operations, and Element(p;Q)

is a function that returns true if and only if p is in Q. Multi-line atomic statements are

enclosed in angle brackets.

Aside from the multi-line atomic statements, there are two di�culties involved with

implementing this algorithm. First, the queue operations typically require several atomic

steps if implemented using only simple primitives. Such an implementation is complicated

by the possibility that a process may fail after having only partially executed a queue

operation. Second, a queue imposes a linear order on the waiting processes. If a process in

the queue fails, then other processes in the queue are blocked.

However, both problems disappear when N = k + 1, because at most one process

ever waits in the queue in this case, which allows us to implement the queue with one

104

atomic instruction. This insight is the basis of the algorithms we present. Speci�cally, we

concentrate on solving (k + 1; k)-exclusion, and then inductively apply such a solution to

solve (N; k)-exclusion.

Our (N; k)-exclusion algorithm for cache-coherent machines is shown in Figure 6.3.

The Acquire and Release procedures in this �gure are inductively assumed to implement

(N; k+1)-exclusion. Thus, as is stated formally below, at most k+1 processes concurrently

execute statements 2 through 9. In this algorithm, the idea of having one process in the

queue is approximated by using a shared variable Q to store the identi�er of the process

that is \in the queue". A process can perform the dual functions of enqueueing itself and

dequeueing the previously-queued process by simply assigning its own process identi�er to

Q. The variable X in Figure 6.3 is used in the same way as in the queue-based algorithm

of Figure 6.2. As mentioned above, the Acquire and Release procedures in Figure 6.3 are

inductively assumed to implement (N; k + 1)-exclusion. That is, we assume the following

properties, where the latter two are required to hold only if process p is nonfaulty and at

most k � 1 processes are faulty.

invariant jfq :: q@f2::8ggj � k + 1 (I1)

p@1 leads-to p@2 (L1)

p@9 leads-to p@0 (L2)

It is assumed that the variables used by Acquire(N; k+ 1) and Release(N; k + 1)

are distinct from those in the remainder of the algorithm. Note that if N = k + 1, then

Acquire(N; k + 1) and Release(N; k+ 1) are trivially implemented by skip statements. We

later use this as the basis of an induction to show that (N; k)-exclusion can be implemented

105

shared variable

X : �1::k; =� Counter of available slots �=

Q : 0::N � 1 =� Spin location �=

initially

X = k

process p =� 0 � p < N �=

while true do

0: Noncritical Section;

1: Acquire(N;k + 1); =� Entry section of (N;k + 1)-exclusion �=

2: if fetch and add(X;�1) = 0 then =� No slots available �=

3: Q := p; =� Initialize spin location �=

4: if X < 0 then =� Still no slots available - must wait �=

5: while Q = p do =� null �= od =� Busy-wait until released �=

� �;

6: Critical Section;

7: fetch and add(X; 1); =� Release a slot �=

8: Q := p; =� Release waiting process (if any) �=

9: Release(N;k + 1) =� Exit section of (N;k + 1)-exclusion �=

od

Figure 6.3: (N; k)-exclusion on a cache-coherent machine

e�ciently.

The algorithm shown in Figure 6.3 is proved correct by establishing the following

properties.

� k-Exclusion: invariant jfp :: p@6gj � k

� Starvation-Freedom: If process p is nonfaulty and at most k � 1 processes are faulty,

then p@1 leads-to p@6. (Given (L2), Starvation-Freedom for the exit section is trivial.)

Several properties are presented below in order to prove k-Exclusion and Starvation-

Freedom. The �rst two of these properties are straightforward to prove directly from the

program text, and are therefore stated without proof.

invariant X = k � jfp :: p@f3::7ggj (I2)

invariant X < 0) (9p :: p@3 _ (p@f4; 5g ^ Q = p)) (I3)

The invariant given next establishes the k-Exclusion property.

106

invariant jfp :: p@6gj � k (I4)

Proof: If X � 0, then by (I2), jfp :: p@f3::7ggj � k holds, so (I4) holds. If X < 0, then by

(I3), (9p :: p@f3; 4; 5g) holds, so by (I1), (I4) holds.

The following simple unless property, which follows immediately from the program

text, is used in the proof of Starvation-Freedom.

p@5 ^ Q 6= p unless p@6 (U1)

Starvation-Freedom: If process p is nonfaulty and at most k � 1 processes are faulty,

then p@1 leads-to p@6.

Proof: By (L1) and (L2), the only risk to Starvation-Freedom is that a nonfaulty process p

is blocked forever at statement p:5. Process p only reaches p:5 by executing p:4 when X < 0

holds. By (I2), this implies that jfp :: p@f3::7ggj > k holds when p:4 is executed. By the

assumption that at most k � 1 processes are faulty, this implies that there is a nonfaulty

process q 6= p such that q@f3::7g holds when p:4 is executed.

If p@5 ^ Q = p holds after p:4 is executed, then process q is not blocked at q:5

because q 6= p. If p@5 ^ Q = p continues to hold, then q, being nonfaulty, eventually

executes q:8 and establishes Q = q, and hence Q 6= p. Thus, p@5 ^ Q 6= p holds at some

state after p:4 is executed. Therefore, by (U1), p@6 eventually holds, because p is nonfaulty.

This concludes the proof of Starvation-Freedom.

ForN = k+1, Acquire(N; k+1) and Release(N; k+1) can be trivially implemented

by skip statements. Thus, by the above properties, the algorithm shown in Figure 6.3 can

be used to implement (k+1; k)-exclusion with remote-reference count 7 (recall that the loop

107

at statement 5 is assumed to generate at most two remote memory references). Using this

result, we can inductively solve (N; k)-exclusion. The inductive algorithm consists of N �k

nested \levels", where each level corresponds to an instance of the algorithm of Figure 6.3.

The outermost level solves (N;N�1)-exclusion, the next level solves (N�1; N�2)-exclusion,

and so on. For this and other inductive solutions considered in this section to be correct,

we must insist that di�erent instances of the algorithm of Figure 6.3 use distinct Q and X

variables. (This point may seem obvious, but we violate it later in Section 6.4.2.)

Since each level has remote-reference count 7, the algorithm described in the pre-

vious paragraph has remote-reference count 7(N�k). Each level requires constant space, so

the algorithm's space complexity is �(N). These observations give us the following result.

(In this theorem and those that follow, we only list atomic operations other than reads and

writes.)

Theorem 7: Using fetch-and-add, (N; k)-exclusion can be implemented on a cache-coherent

machine with remote-reference count 7(N � k) and space complexity �(N).

This inductive algorithm requires �(N) remote memory references, which is a sig-

ni�cant disadvantage. Note, however, that Theorem 7 implies that (2k; k)-exclusion can be

implemented with remote-reference count 7k. We can use such an algorithm inductively as

a \building block" to obtain a more e�cient implementation of (N; k)-exclusion. Speci�-

cally, we can achieve logarithmic remote-reference count by arranging these building blocks

in a tree that halves the number of process at each level, until only k remain. Figure 6.4

depicts this approach for 8k processes. This algorithm is shown in Figure 6.5. In this �gure,

it is inductively assumed that Acquire left and Release left correctly implement (dN=2e; k)-

108

k k k k k k k k

k k k k

k k

k

Figure 6.4: ImplementingAcquire(8k; k) in a tree. Release(N; k) is implemented analogously. Each
arrow represents a set of processes. Solid boxes represent Acquire(2k; k).

exclusion, and Acquire right and Release right correctly implement (bN=2c; k)-exclusion. In

addition, Acquire middle and Release middle are assumed to correctly implement (2k; k)-

exclusion using the algorithm given in Figure 6.3 with N = 2k.

Before continuing, we should point out a key property of our (k + 1; k)-exclusion

algorithm that allows it to be e�ciently used in inductive applications as described above:

this algorithm does not require a process in its entry section to know the identity of any

other process in advance. To see this, note that in the proof of the algorithm of Figure 6.3,

it does not matter how Acquire(N; k+1) and Release(N; k+1) are actually implemented |

they could be implemented using the tree algorithm of the previous paragraph, or any other

algorithm that is a correct (N; k+1)-exclusion algorithm. The correctness of the algorithm

of Figure 6.3 also does not depend on which set of up to k + 1 processes actually make

it past Acquire(N; k + 1) to execute the code given for (k + 1; k)-exclusion. Without this

109

process p =� 0 � p < N �=

while true do

0: Noncritical Section;

1: if p < dN=2e then =� Half access left subtree �=
2: Acquire left(dN=2e; k)

else =� Half access right subtree �=

3: Acquire right(bN=2c; k)
�;

4: Acquire middle(2k;k); =� All access root of tree �=

5: Critical Section;
6: Release middle(2k;k);

7: if p < dN=2e then =� Half access left subtree �=

8: Release left(dN=2e; k)

else =� Half access right subtree �=

9: Release right(bN=2c; k)

�;

od

Figure 6.5: (N; k)-exclusion in a tree.

property, it might be di�cult to e�ciently apply such an algorithm inductively as done here.

In particular, loops with �(N) time complexity might be required to detect the identity

of competing processes at each instance of the inductively-applied algorithm, resulting in

performance that does not scale.

The algorithm in Figure 6.5 can be proved correct by an induction on the tree

depth, using the fact that our (2k; k)-exclusion algorithm is correct. The depth of the tree

is dlog2(N=k)e, and the remote-reference count of accessing each (2k; k)-exclusion building

block is 7k. The algorithm uses 2dN=ke � 1 (2k; k)-exclusion building blocks in total, and

by Theorem 7, each build block requires �(k) space. Thus, the algorithm shown in Figure

6.5 yields the following result.

Theorem 8: Using fetch-and-add, (N; k)-exclusion can be implemented on a cache-coherent

machine with remote-reference count 7kdlog2(N=k)e and space complexity �(N).

The tree approach o�ers a signi�cant improvement over the approach used in

Theorem 7. However, we would like to further reduce the number of remote memory

110

shared variable

X : boolean; =� Test for fast path �=

initially

X = false

process p =� 0 � p < N �=

private variable

slow : boolean =� Path taken �=

while true do

0: Noncritical Section;

1: slow := test and set(X); =� Try to get fast path �=

2: if slow then =� Take slow path �=

Acquire(N � 1; k) =� Slow path �=

�;
3: Acquire(k+ 1; k); =� Fast path �=

4: Critical Section;

5: Release(k+ 1; k);
6: if slow then =� Check if slow path was taken �=

Release(N � 1; k)

else

7: X := false =� Release fast path �=

�

od

Figure 6.6: (N; k)-exclusion with a \fast path".

references performed when contention is low. This can be achieved by adding a \fast

path", as shown in Figure 6.6. A test-and-set instruction is used to select one process

that directly executes Acquire(k+ 1; k). The remaining N � 1 processes must �rst execute

Acquire(N � 1; k), thereby ensuring that at most k + 1 processes concurrently access the

innermost (k+ 1; k)-exclusion algorithm. This approach is depicted in Figure 6.7, in which

the dotted box represents Acquire(N�1; k). Using this algorithm, if contention is one, then

the test-and-set of the single competing process succeeds. Hence, that process executes only

the innermost Acquire(k + 1; k) and Release(k + 1; k). Observe that this process performs

at most 9 remote memory references: 2 are required to set and clear the test-and-set bit,

and at most 7 are required for the (k + 1; k)-exclusion.

The performance under contention for the algorithm shown in Figure 6.6 is deter-

mined by the implementation of (N � 1; k)-exclusion | the \slow path". One alternative

111

k

k

k

N

Fast

path

Slow path

1 1

N−2

N−1split

split

Figure 6.7: Implementing Acquire(N; k) using fast paths. Each arrow represents a set of processes.
The split is implemented using test-and-set, and causes a process that executes alone to take the
fast path. Solid boxes represent Acquire(k + 1; k). The dotted box represents Acquire(N � 1; k).
One approach for implementing Acquire(N � 1; k) using nested fast paths is depicted for N = k+ 3
(so N � 2 = k + 1).

is to use a tree approach like the one illustrated in Figure 6.4. In this case, a process

performs at most 7kdlog2(N=k)e + 8 remote memory references: 1 is required for an un-

successful test-and-set, at most 7 are required for the innermost (k + 1; k)-exclusion, and

at most 7kdlog2(N=k)e are required for the (N � 1; k)-exclusion tree. Space complexity is

dominated by the space required for the (N � 1; k)-exclusion tree, which by Theorem 8 is

�(N). Thus, we have the following result.

Theorem 9: Using fetch-and-add and test-and-set, (N; k)-exclusion can be implemented

on a cache-coherent machine with remote-reference count 9 in the absence of contention,

and 7kdlog2(N=k)e+ 8 under contention, and with space complexity �(N).

A second alternative is to implement (N � 1; k)-exclusion inductively using the al-

112

gorithm given in Figure 6.6, as depicted inside the dotted box in Figure 6.7. This approach

is designed to achieve performance that degrades gracefully with increasing contention,

rather than performance that drops suddenly when contention rises. In particular, if con-

tention is at most c, then a process accesses at most c instances of (k + 1; k)-exclusion,

each of which generates at most 7 remote memory references. A process that accesses c

instances of (k+1; k)-exclusion also performs c�1 unsuccessful test-and-set operations and

one successful test-and-set (if c < N), and clears the bit it successfully sets. This gives a

total of 8c + 1 remote memory references. Note that this approach uses N � k instances

of (k + 1; k)-exclusion, and N � k + 1 test-and-set bits. By Theorem 7, each instance of

(k + 1; k)-exclusion requires �(1) space. Thus, we have the following.

Theorem 10: Using fetch-and-add and test-and-set, (N; k)-exclusion can be implemented

on a cache-coherent machine with remote-reference count 8c+ 1 if contention is at most c,

and with space complexity �(N).

The following corollaries regarding k-assignment follow from Theorems 9 and 10

and Lemma 1.

Corollary 1: Using fetch-and-add and test-and-set, (N; k)-assignment can be implemented

on a cache coherent machine with remote-reference count 11 in the absence of contention,

and 7kdlog2(N=k)e+ k + 8 under contention, and with space complexity �(N).

Corollary 2: Using fetch-and-add and test-and-set, (N; k)-assignment can be implemented

on a cache-coherent machine with remote-reference count 9c+ 2 if contention is at most c,

and with space complexity �(N).

113

6.4 k-Exclusion on Distributed Shared-Memory Machines

In the previous section, we showed that k-exclusion can be e�ciently implemented

on cache-coherent machines. Such implementations are e�cient because when a process

waits on a variable, that variable migrates to a local cache line. A distributed shared-

memory machine without cache-coherence does not provide this luxury. On such a machine,

each variable is local to only one processor, so for good scalability, di�erent processes must

wait on di�erent variables. This makes k-exclusion more di�cult to implement e�ciently.

Nevertheless, in this section, we show that (N; k)-exclusion can be implemented e�ciently on

distributed shared-memory machines without coherent caches. This is achieved by designing

algorithms in which all busy waiting is performed on locally-accessible shared variables that

are statically allocated to processes. The algorithms presented here are much simpler and

more e�cient than the distributed shared-memory algorithms we presented in [8].

Our approach here is the same as that of Section 6.3. In particular, we inductively

reduce the problem of implementing (N; k)-exclusion to that of implementing (k + 1; k)-

exclusion. We present two algorithms for (k + 1; k)-exclusion, both of which have constant

remote-reference counts. The two algorithms di�er in space complexity. The �rst algorithm

uses fetch-and-add and test-and-set. Although this algorithm is e�cient, it can lead to

high space complexity when used inductively. In particular, each process needs a distinct

spin location for each instance of (n + 1; n)-exclusion, where k � n < N , in an inductive

application. The second algorithm we present improves on this by being structured so that

in inductive applications, each process uses only a constant number of spin locations across

all instances of (n+1; n)-exclusion. This reduction in spin locations comes at the expense of

114

using a third primitive, namely compare-and-swap. Both algorithms are based on the same

intuition as that of the algorithm for cache-coherent machines in Figure 6.3. Speci�cally,

we seek to implement a queue of size one to hold any blocked processes. However, the need

to rely only on statically allocated local spin locations complicates matters slightly. The

resulting correctness proofs are not hard, but are slightly more tedious than that given in

the previous section, so we defer their presentation to Appendix B.

6.4.1 First Algorithm

Our �rst (N; k)-exclusion algorithm for distributed shared-memory machines is

given in Figure 6.8. As before, we assume that the Acquire and Release procedures correctly

implement (N; k + 1)-exclusion, and that they use variables distinct from those in the

remainder of the algorithm. Instead of all processes waiting on one spin location Q, each

process p now has its own local spin location, P [p].

The main di�erence between this algorithm and the one in Figure 6.3 is that spin

locations are now separate from the queue Q. In the cache-coherent algorithm of Figure

6.3, a process can enqueue itself onto the queue, dequeue the previously-queued process,

and end any spinning by the previously-queued process in one step by simply assigning its

own process identi�er to Q. In the algorithm shown in Figure 6.8, it takes several steps to

accomplish all of this. Thus, we could potentially have a situation in which two or more

processes both concurrently attempt to enqueue themselves onto Q.

Let us examine this possibility in more detail. When k + 1 processes have suc-

cessfully executed the Acquire procedure, it is required that at least one of these processes

wait, so that k-Exclusion is not violated. Thus, when a process q releases a process p from

115

shared variable

X : �1::k;

Q : 0::N � 1;

P : array[0::N � 1] of boolean =� P [p] is local to process p �=
initially

X = k ^ Q = 0 ^ :P [0] ^ (8i : 1 � i < N :: P [i])

process p =� 0 � p < N �=

private variable

v : 0::N � 1

while true do

0: Noncritical Section;

1: Acquire(N;k + 1); =� Entry section of (N;k + 1)-exclusion �=

2: if fetch and add(X;�1) = 0 then =� No slots available �=

3: v := Q; =� Get current spin location �=

4: if :test and set(P [v]) then =� Release currently spinning process �=

5: Q := p; =� Become waiting process �=
6: P [p] := false; =� Initialize spin location �=

7: if X < 0 then =� Still no slots available - must wait �=

8: while :P [p] do =� null �= od =� Wait until released �=

� � �;

9: Critical Section;

10: fetch and add(X; 1); =� Release a slot �=

11: v := Q; =� Get current spin location �=

12: if :test and set(P [v]) then =� Release currently spinning process �=

13: Q := p; =� Pretend to become waiting process �=

14: P [p] := false =� Initialize spin location �=

�;

15: Release(N;k + 1) =� Exit section of (N;k + 1)-exclusion �=

od

Figure 6.8: (N; k)-exclusion for distributed shared-memory machines.

its spin loop, process q should itself start waiting. Since it takes several steps for q to

accomplish this, it is possible that before q releases p, another process r detects that p is

in the queue, releases p, and starts waiting.4 If q does not detect this, then q might start

waiting too. If the k � 1 remaining processes are faulty, then q and r might wait forever,

violating Starvation-Freedom. Thus, we need a mechanism to allow process q to detect that

process p has already been released. The test-and-set instruction in statement 4 of Figure

4To see that it is possible for this many processes to concurrently execute statements 3 through 8,

consider the following. From a state in which one process is at statement 3, and k processes are in their

critical sections, let one of the latter leave its critical section, and then attempt to enter it again. If no other

process takes a step, then that process must reach statement 3. Continuing in this manner, we could reach

a state in which k+ 1 processes are executing statements 3 through 8.

116

6.8 serves this purpose. Speci�cally, this statement ensures that at most one of q and r will

release p from its spinning. This is the essential di�erence between the algorithm of Figure

6.8 and that of Figure 6.3.

With Acquire(N; k + 1) and Release(N; k + 1) replaced by skip statements, the

algorithm in Figure 6.8 solves (k + 1; k)-exclusion on distributed shared-memory machines

with remote-reference count 9 (recall that P [p] is local to process p). As before, in inductive

applications of this algorithm, we require that di�erent instances of the algorithm employ

distinct shared variables. Because of the spin locations, P [0]; : : : ; P [N � 1], each instance

requires �(N) space (as compared to �(1) for the algorithm of Figure 6.3). Thus, we have

the following counterpart to Theorem 7.

Theorem 11: Using fetch-and-add and test-and-set, (N; k)-exclusion can be implemented

on a distributed shared-memory machine with remote-reference count 9(N � k) and with

space complexity �(N2).

The tree-based approach of Figure 6.4(a) can be applied here as well, yielding the

following counterpart to Theorem 8.

Theorem 12: Using fetch-and-add and test-and-set, (N; k)-exclusion can be implemented

on a distributed shared-memory machine with remote-reference count 9kdlog2(N=k)e and

with space complexity �(N2).

The two fast-path approaches described in Section 6.3 can be also be used. Hence,

we have the following counterparts to Theorems 9 and 10.

Theorem 13: Using fetch-and-add and test-and-set, (N; k)-exclusion can be implemented

117

on a distributed shared-memory machine with remote-reference count 11 in the absence of

contention, and 9kdlog2(N=k)e+10 under contention, and with space complexity �(N2).

Theorem 14: Using fetch-and-add and test-and-set, (N; k)-exclusion can be implemented

on a distributed shared-memory machine with remote-reference count 10c+ 1 if contention

is at most c, and with space complexity �(N2).

The remote-reference counts in the above two theorems are calculated in the same

way as was done prior to Theorems 9 and 10, but using 9 as the remote-reference count of

(k + 1; k)-exclusion instead of 7.

The following corollaries regarding k-assignment follow from Theorems 13 and 14

and Lemma 1.

Corollary 3: Using fetch-and-add and test-and-set, (N; k)-assignment can be implemented

on a distributed shared-memory machine with remote-reference count 13 in the absence

of contention, and 9kdlog2(N=k)e + k + 10 under contention, and with space complexity

�(N2).

Corollary 4: Using fetch-and-add and test-and-set, (N; k)-assignment can be implemented

on a distributed shared-memory with remote-reference count 11c+2 if contention is at most

c, with space complexity �(N2).

6.4.2 Second Algorithm

Our �rst (k+1; k)-exclusion algorithm for distributed shared-memory machines has

the disadvantage that in inductive applications each process needs a separate spin location

for each instance of the algorithm. This can result in space complexity that is somewhat

118

high. Our second (k + 1; k)-exclusion algorithm for distributed shared-memory machines

remedies this problem by allowing each process to use the same two spin locations across

all instances of the algorithm in inductive applications. This algorithm is shown in Figure

6.9. The two spin locations of each process p are denoted R[p] and P [p].

Before examining the code in Figure 6.9 in detail, we �rst consider the pitfalls

involved in using a constant number of spin locations per process in inductive applications.

Speci�cally, consider an inductive application of the algorithm in Figure 6.9, and suppose

that each process uses the same R and P variables in all instances of this algorithm (as

in our previous algorithms, we assume that other shared variables are not used in di�erent

instances). Then, to make sure that such an inductive application is correct, in our cor-

rectness proof for the algorithm of Figure 6.9, we need to allow for the possibility that R[p]

and P [p] may be modi�ed in the noncritical section, Acquire(N; k + 1) procedure, critical

section, or Release(N; k + 1) procedure of p or some other process. This is because these

sections and procedures may in fact contain other instances of the algorithm in Figure 6.9

that may modify these variables.

It should be clear from the preceding paragraph that, the correctness proof for the

algorithm of Figure 6.9 must allow for the possibility that R[p] and P [p] may be modi�ed

by some statement in the noncritical section, Acquire(N; k+ 1) procedure, critical section,

or Release(N; k+ 1) procedure of p or some other process. However, note that in inductive

applications of this algorithm, these variables may be modi�ed in these sections and proce-

dures only by executing code like that in Figure 6.9. If we assign distinct instance numbers

| the IN constant in Figure 6.9 | to di�erent instances of this code, then the modi�ca-

119

constant

IN : an integer value

=� In inductive applications, di�erent (k + 1; k)-exclusion instances use distinct IN numbers �=

type

Spintype = record
ag: boolean; instance: integer end

shared variable

X : �1::k;

Z : boolean;

Q : 0::N � 1;
R;P : array[0::N � 1] of Spintype =� R[p] and P [p] are local to process p �=

=� In inductive applications, each (k+ 1; k)-exclusion instance uses distinct X, Z, and Q variables, : : : �=

=� : : : but R[p] and P [p] are shared across all (k + 1; k)-exclusion instances �=
initially

X = k ^ Z = false ^ Q = 0

process p =� 0 � p < N �=

private variable

v : 0::N � 1

while true do

0: Noncritical Section;

1: Acquire(N;k + 1); =� Entry section of (N;k + 1)-exclusion �=

2: if fetch and add(X;�1) = 0 then =� No slots available �=

3: if :test and set(Z) then

4: v := Q; =� Get current spin location �=

5: compare and swap(P [v]; (false; IN); (true; IN)); =� Release currently spinning process �=
6: Q := p; =� Become waiting process �=

7: P [p] := (false; IN); =� Initialize \�rst" spin location �=

8: Z := false;
9: R[p] := (false; IN); =� Initialize \second" spin location �=

10: if X < 0 then =� Still no slots available - must wait �=

11: while P [p] = (false; IN) ^
12: R[p] = (false; IN) do =� null �= od =� Wait until released �=

� � �;

13: Critical Section;
14: fetch and add(X; 1); =� Release a slot �=

15: v := Q; =� Get current spin location �=

16: compare and swap(R[v]; (false; IN); (true; IN)); =� Release currently spinning process �=

17: Release(N;k + 1) =� Exit section of (N;k + 1)-exclusion �=

od

Figure 6.9: Space-e�cient (N; k)-exclusion for distributed shared-memory machines.

120

tions to spin locations in one instance will not adversely interfere with another instance. In

the following lemma, we use Hoare triples to enumerate the kinds of interferences that can

occur.

Lemma 2: For any statement s in the noncritical or critical section, or Acquire(N; k+1) or

Release(N; k+ 1) procedure of any process q, the following properties hold, where b ranges

over ffalse; trueg.

fp 6= q ^ P [p] = (b; IN)g q:s fP [p] = (b; IN)g (S1)

fp 6= q ^ R[p] = (b; IN)g q:s fR[p] = (b; IN)g (S2)

fP [q] = (b; IN)g q:s fP [q] = (b; IN) _ P [q]:instance 6= IN g (S3)

fR[q] = (b; IN)g q:s fR[q] = (b; IN) _ R[q]:instance 6= IN g (S4)

fP [p]:instance 6= IN g q:s fP [p]:instance 6= IN g (S5)

fR[p]:instance 6= IN g q:s fR[p]:instance 6= IN g (S6)

Proof: Let statement s be as de�ned in the lemma. To see that property (S1) holds, note

that q:s can change P [p] only by means of a compare-and-swap instruction in an instance

other than IN. Hence, as di�erent instances of the algorithm in Figure 6.9 have di�erent

instance numbers, s cannot falsify P [p] = (b; IN) in this case, because if it attempted to do

so, then its compare-and-swap would fail. Property (S2) holds for similar reasons. To see

that property (S3) holds, note that, because di�erent instances of the algorithm use di�erent

instance numbers, if p:s modi�es P [p], then it establishes P [p]:instance 6= IN . Property

(S4) holds from similar reasons. Finally, to see that property (S5) holds, note that process

p only establishes P [p]:instance = IN by executing statements within the instance of the

algorithm with instance number IN. Also, no process q 6= p can change the instance �eld of

121

P [p]. Property (S6) holds for similar reasons.

The discussion above explains much of the insight that underlies the algorithm

of Figure 6.9. The remaining details are as follows. As in the algorithm of the previous

subsection, we need to ensure that we do not end up enqueueing two processes at the same

time. This is prevented by the test-and-set of Z at statement 3. This test-and-set ensures

that at most one process at a time executes the code in statements 4 through 8. Note,

however, that a process could enter this region of code and then fail before executing its

compare-and-swap at statement 5, i.e., before freeing the currently-spinning process. To

get around this potential problem, we use a second spin location that processes update

in their exit sections. Thus, if a nonfailed process p is spinning at statements 11 and 12,

and if another process executes a successful test-and-set at statement 3 but fails before

executing its compare-and-swap at statement 5, then we can show that there is a nonfailed

process that will eventually free p by executing its compare-and-swap at statement 16. This

completes our informal description of this algorithm.

With Acquire(N; k + 1) and Release(N; k + 1) replaced by skip statements, the

algorithm in Figure 6.9 solves (k + 1; k)-exclusion on distributed shared-memory machines

with remote-reference count 10 (recall the P [p] and R[p] are both local to process p). As

discussed above, in inductive applications of this algorithm, each process uses the same two

spin locations across all instances of (n + 1; n)-exclusion, where k � n < N . This gives a

total of �(N) space for spin locations. In addition, constant additional space is required for

each instance. Thus, if an inductive application uses M instances of (n + 1; n)-exclusion,

then its space complexity is �(N + M). With these observations in mind, we have the

122

following counterparts to Theorems 11 through 14, and Corollaries 3 and 4 respectively.

Theorem 15: Using fetch-and-add, compare-and-swap, and test-and-set, (N; k)-exclusion

can be implemented on a distributed shared-memory machine with remote-reference count

10(N � k) and with space complexity �(N).

Theorem 16: Using fetch-and-add, compare-and-swap, and test-and-set, (N; k)-exclusion

can be implemented on a distributed shared-memory machine with remote-reference count

10kdlog2(N=k)e and with space complexity �(N).

Theorem 17: Using fetch-and-add, compare-and-swap, and test-and-set, (N; k)-exclusion

can be implemented on a distributed shared-memory machine with remote-reference count

12 in the absence of contention, and 10kdlog2(N=k)e+11 under contention, and with space

complexity �(N).

Theorem 18: Using fetch-and-add, compare-and-swap, and test-and-set, (N; k)-exclusion

can be implemented on a distributed shared-memory machine with remote-reference count

11c+ 1 if contention is at most c, and with space complexity �(N).

Corollary 5: Using fetch-and-add, compare-and-swap, and test-and-set, (N; k)-assignment

can be implemented on a distributed shared-memory machine with remote-reference count

14 in the absence of contention, and 10kdlog2(N=k)e+ k + 11 under contention, and with

space complexity �(N).

Corollary 6: Using fetch-and-add, compare-and-swap, and test-and-set, (N; k)-assignment

can be implemented on a distributed shared-memory with remote-reference count 12c+ 2

if contention is at most c, with space complexity �(N).

123

6.5 Performance Results

In this section, we present results from experiments that we conducted to evalu-

ate the performance of some of the algorithms presented in the previous sections. These

experiments involve implementations of k-resilient shared objects in systems that are mul-

tiprogrammed.

Wait-free algorithms are designed to tolerate the delay of any process when all

processes simultaneously access an object. However, as mentioned earlier, wait-freedom

links resiliency to worst-case contention, and this can be overkill in practice. From a per-

formance standpoint, linking resiliency to expected levels of contention may be preferable.

However, doing so requires an approach for e�ciently implementing shared objects that

tolerate fewer than N � 1 failures, while incurring less overhead. As discussed earlier, this

can be accomplished by combining a wait-free algorithm for k processes with a k-assignment

algorithm.

In the following two subsections, we present results from performance experiments

that compare k-resilient objects with wait-free and spin-lock-based object implementations.

These k-resilient objects are implemented using one of our k-assignment algorithms, together

with Herlihy's small-object, wait-free construction for the k-process wait-free implementa-

tion. The �rst subsection below contains results of experiments conducted on a cache-

coherent multiprocessor, while the second contains results from experiments conducted on

a distributed shared-memory multiprocessor without a cache-coherence mechanism. These

experiments show that, for both classes of machines, k can be chosen so that k-resilient

objects implemented using our algorithms are faster and scale better than objects imple-

124

mented using either wait-free or lock-based algorithms. These results validate our earlier

claims that our k-exclusion algorithms are fast and scalable.

All of our experiments have the same structure, so before we present any speci�c

details, we give a brief overview. On both machines, we implemented a shared priority

queue using the local-spin queue lock of Mellor-Crummey and Scott [72], and Herlihy's

universal wait-free object construction [44]. To test the performance of our algorithms we

used the \inductive fast path" method of Figure 6.6 with each level implemented using

the appropriate algorithm (Figure 6.3 on the cache-coherent multiprocessor, and Figure 6.8

on the distributed shared-memory multiprocessor). In each experiment, a �xed number of

priority queue operations are performed (50,000 on the cache-coherent multiprocessor, and

20,000 on the distributed shared-memory multiprocessor). The number of participating

processes is varied, and the priority queue operations are equally divided among these

processes. Previous experiments involving scalable synchronization constructs have assumed

that each process runs on a dedicated processor [12, 38, 72, 97]. However, in practice it can

be desirable to run more than one process on each processor. In our experiments, we consider

scenarios in which processes share processors by multiprogramming. In order to test the

performance of each method under varying levels of multiprogramming, we �x the number of

processors and vary the number of processes. In each performance graph presented, we plot

the total time taken to complete the operations using the various object implementations

being compared. In the case of our approach, we show k-resilient implementations for

varying values of k. An object implementation scales well if its total time does not increase

much as the number of participating processes increases, i.e., if the curve plotted for that

125

implementation is relatively
at.

6.5.1 Cache-Coherent Multiprocessors

The results presented in this section are taken from experiments run on a Se-

quent Symmetry multiprocessor. The Sequent Symmetry is a shared-memory multiproces-

sor whose processor and memory nodes are interconnected via a shared bus. A processor

node consists of an Intel 80386 and a 64 Kbyte, two-way set-associative cache. Cache coher-

ence is maintained by a snoopy protocol. The Symmetry provides an atomic fetch-and-store

instruction. For these experiments, we simulated a simple, round-robin multiprogramming

environment through the use of a dedicated processor to act as a scheduler. (Scheduling on

the Sequent Symmetry is priority-based and is therefore not particularly representative of

general multiprogramming environments.) Processes are preempted and rescheduled using

Unix signals, and a preempted process waits using the Unix sigpause() system call. We

simulated synchronization primitives that are not directly provided by using short critical

sections. In order to closely simulate these primitives, they and the scheduler were designed

so that a process would not be preempted while executing in one of these critical sections.

Figure 6.10 compares the performance of various implementations of a shared

priority queue. First, observe that Mellor-Crummey and Scott's algorithm su�ers severely

under multiprogramming. This is because processes in this algorithm wait in a queue for

access to the critical section. If a process in the queue is delayed due to preemption, then all

the processes behind it in the queue are also delayed. Furthermore, while these processes are

waiting for the delayed process, they are likely to be preempted themselves, exacerbating

the problem even further.

126

0

10

20

30

40

50

60

70

10 15 20 25 30

T
im

e
(s

)
fo

r
50

,0
00

 p
rio

rit
y

qu
eu

e
op

er
at

io
ns

Number of Contending Processes (10 processors)

"mcs"
"waitfree100"
"waitfree200"

"k1"
"k10"
"k20"
"k30"

Figure 6.10: Performance Experiments on the Sequent Symmetry. Mellor-Crummey and Scott's
algorithm is labeled \mcs"; Herlihy's algorithm for N = 100 and N = 200 are labeled \waitfree100"
and \waitfree200", respectively; and our algorithms for k = 1, k = 10, k = 20, and k = 30 are
labeled \k1", \k10", \k20", and \k30", respectively.

127

Figure 6.10 also shows the performance of Herlihy's wait-free algorithm in this

setting. Two curves are shown for Herlihy's algorithm | one for a 100-process implementa-

tion and one for a 200-process implementation. (Note that these are not the actual number

of processes participating in the experiments, but the maximum number of processes the

implementation can accommodate.) It is interesting to note that the resiliency provided

by Herlihy's algorithm allows it to outperform Mellor-Crummey and Scott's algorithm by

a signi�cant margin in both cases. However, as mentioned above, many wait-free shared

object implementations, including Herlihy's, do not scale well as N | the total number of

processes for which the object is implemented | increases. This is because they have time

complexity that is at least proportional to N . This is demonstrated in the case of Herlihy's

algorithm by the fact that the 100-process implementation outperforms the 200-process im-

plementation, despite the fact that the same number of processes perform the same number

of operations in each case. As discussed below, objects implemented using our algorithms

do not su�er from this problem.

We now turn to the performance of objects implemented using the k-exclusion

algorithm presented in Figure 6.3. Observe that, under multiprogramming, our algorithm

performs signi�cantly better than Mellor-Crummey and Scott's for all values of k shown,

and also better than Herlihy's algorithm in most cases. Also observe that, as the level of

multiprogramming increases, the performance of our approach is better for larger choices of

k, that is, when a higher level of resilience is provided. However, when the highest level of

resilience, i.e., wait-freedom, is used, performance is worse. This demonstrates the utility of

algorithms such as ours that allow the level of resilience of a shared object implementation

128

to be set according to system parameters.

It is interesting to note that when k = 1 | that is, when our algorithm is reduced

to a mutual exclusion algorithm | it signi�cantly outperforms Mellor-Crummey and Scott's

mutual exclusion algorithm, and in some cases outperforms implementations (both Herlihy's

and ours) that provide higher levels of resiliency. Two factors contribute to this good

performance. First, our k-exclusion algorithm does not enforce a strict FIFO order on

waiting processes. Thus, the bad behavior described above for Mellor-Crummey and Scott's

algorithm is not exhibited by ours. Second, our k-exclusion algorithm does not need to

provide any resiliency when k = 1, which makes it simpler than Herlihy's algorithm and

simpler than our algorithm for higher values of k. Despite these advantages, however, our

1-exclusion algorithm can be seen to su�er under higher levels of multiprogramming. This

is because, as more and more waiting processes are preempted, the likelihood of \chains"

of waiting processes increases. Our algorithm outperforms Mellor-Crummey and Scott's

because their algorithm is queue-based, which means these chains are much more likely to

form, and once they have formed, are almost certain to remain. In contrast, our algorithm

avoids these chains forming, and also allows the chains to disband when the preempted

processes resume execution. This is achieved by allowing processes to enter the critical

section despite the preemption of other waiting processes.

6.5.2 Distributed Shared-Memory Multiprocessors

The results presented in this section are taken from experiments run on a BBN

GP1000 multiprocessor. The BBN GP1000 is a shared-memory multiprocessor whose pro-

cessor and memory nodes are interconnected using a BBN Butter
y Switch. Each processor

129

node consists of an Motorola 68020 with no cache. The GP1000 provides an atomic \clear-

then-add" instruction, which can be used to directly implement test-and-set and fetch-and-

add instructions. We simulated synchronization primitives that are not directly provided by

using short critical sections. Unlike our experiments on the Sequent Symmetry, processes

on the BBN GP1000 are multiprogrammed under kernel control. As a result, it is possible

for a process to be preempted within the critical section of a simulated synchronization

primitive. However, simulated primitives are used to a similar extent by all algorithms

tested, so this problem does not unfairly penalize any of the algorithms.

We performed experiments on the BBN GP1000 similar to those described in the

previous subsection. In this case, we used 40 processors, and varied the number of processes

between 40 and 160. As mentioned above, we used the k-exclusion algorithm presented in

Figure 6.8 to test the performance of our approach to shared object implementation. The

results are presented in Figure 6.11.

Figure 6.11 shows trends for the relative performance of the three implementations

that are similar to those shown for the Sequent Symmetry. Again, Mellor-Crummey and

Scott's algorithm su�ers severely under multiprogramming and Herlihy's algorithm performs

much better. As before, two curves are shown for Herlihy's algorithm | this time one

curve is for a 200-process implementation and one for a 400-process implementation. As

in the Sequent Symmetry experiments, the performance of Herlihy's algorithm does not

scale well as N increases. When k = 1, our algorithm is reduced to a mutual exclusion

algorithm and outperforms all other approaches for most data points shown. However,

as the multiprogramming level increases, the performance of this approach degrades, and

130

0

50

100

150

200

250

300

40 60 80 100 120 140 160

T
im

e
(s

)
fo

r
20

,0
00

 p
rio

rit
y

qu
eu

e
op

er
at

io
ns

Number of Contending Processes (40 processors)

"mcs"
"waitfree200"
"waitfree400"

"k1"
"k40"
"k80"

"k120"
"k160"

Figure 6.11: Performance Experiments on the BBN GP1000. Mellor-Crummey and Scott's algo-
rithm is labeled \mcs"; Herlihy's algorithm for N = 200 and N = 400 are labeled \waitfree200" and
\waitfree400", respectively; and our algorithms for k = 1, k = 40, k = 80, k = 120, and k = 160 are
labeled \k1", \k40", \k80", \k120", and \k160", respectively.

131

by choosing k appropriately, the k-exclusion-based approach can be con�gured to perform

better. The reason that the k = 1 case performs better on the BBN GP1000 than it did

on the Sequent Symmetry relative to the other approaches is the increased relative cost

of copying on the BBN GP1000. In order to tolerate delays, Herlihy's algorithm performs

each operation on a copy of the object and later attempts to make this copy current. The

need to make copies of the object adversely a�ects the performance of Herlihy's algorithm

and therefore of our algorithms when k > 1. However, the increased cost of copying does

not degrade performance when k = 1 because no copying is necessary in this case. This

concludes the description of our performance experiments.

Chapter 7

Fast, Long-Lived Renaming

In the previous chapter, we used a simple, test-and-set-based, long-lived renaming

algorithm to assign distinct names to processes inside the k-exclusion critical section for use

in the k-process object implementation. In this chapter, we study the renaming problem in

greater depth. In particular, we investigate the impact of the available instruction set on

the problem of renaming.

Previous research on renaming has focused on the one-time renaming problem

[14, 19, 23, 74], in which each of k processes is required to choose a distinct value, called a

name, that ranges over f0; :::;M � 1g. Each process is assumed to have a unique process

identi�er ranging over f0; :::;N � 1g. It is further required that k � M < N . Thus, an

M -renaming algorithm is invoked by k processes in order to reduce the size of their name

space from N to M . One-time renaming is useful when processes perform a computation

whose time complexity is dependent on the size of the name space containing the processes.

By �rst using an e�cient renaming algorithm to reduce the size of the name space, the time

133

complexity of that computation can be made independent of the original name space.

In this chapter, we also consider long-lived renaming, a more general version of

renaming in which processes may repeatedly acquire and release names. A solution to the

long-lived renaming problem is useful if a set of processes repeatedly performs a computation

whose time complexity is dependent on the size of the name space containing the processes

that participate concurrently. As described in the previous chapter, the speci�c application

that motivated us to study this problem is the implementation of resilient, scalable shared

objects. The approach described there only restricts the number of processes that access

the shared object implementation concurrently. Over time, many processes may access it.

Thus, it is not su�cient for a process to simply acquire a name once and retain that name

for future use: a process must be able to release its name so that another process may later

acquire the same name.

The renaming problem has been studied previously for both message-passing [14]

and shared-memory multiprocessing systems [19, 23, 26]. We present several wait-free algo-

rithms for both one-time and long-lived renaming on shared-memory multiprocessing sys-

tems. Previous wait-free renaming algorithms have time complexity that is dependent on

the size of the original name space. Thus, these algorithms su�er from the same shortcom-

ing that the renaming problem is intended to overcome. In contrast, most of our algorithms

have time complexity that is independent of the size of the original name space. In the re-

mainder of this chapter, we call a renaming algorithm fast if the worst case time complexity

of acquiring (and releasing, if long-lived) a name once is independent of N , and polynomial

in k.

134

In this chapter, we present several new algorithms for one-time and long-lived

renaming, one of which is a generalization of the algorithm presented in the previous chapter.

We �rst present renaming algorithms that use only atomic read and write instructions. It

has been shown that if M < 2k�1, thenM -renaming cannot be implemented in a wait-free

manner using only atomic reads and writes [46]. Wait-free, read/write algorithms for one-

time renaming that yield an optimal name space of size M = 2k� 1 have been proposed in

[19, 23]. However, in these algorithms, the time complexity of choosing a name is dependent

on N , the size of the original name space. Similarly, the only previous algorithm that solves

long-lived renaming to a name space of size 2k � 1, due to Burns and Peterson[26],1 has

time complexity that is dependent on the size of the original name space.

We present the most e�cient algorithm to date for fast, long-lived k(k + 1)=2-

renaming. To facilitate the presentation of this algorithm, we �rst present two read/write

renaming algorithms, both of which yield a name space of size k(k + 1)=2. The �rst is

fast, but not long-lived, and the second is long-lived, but not fast. All of these algorithms

employ a novel technique that uses \building blocks" based on the \fast path" mechanism

employed by Lamport's fast mutual exclusion algorithm [65].

After presenting our fast, long-lived k(k+ 1)=2-renaming algorithm, we show how

it can be combined with previous, non-fast algorithms to achieve fast, long-lived renaming

to the optimal name space size of 2k�1. New and previous read/write renaming algorithms

are summarized in chronological order in Table 7.1.

1Actually, Burns and Peterson solved a more general problem, which they called `-assignment. An

`-assignment protocol not only assigns names to processes, but also forces some processes to wait if too
many request names concurrently. Nonetheless, if at most k processes access an `-assignment protocol that

guarantees that, provided at most k � 1 processes are faulty, every process eventually gets a name, then

none have to wait, so `-assignment provides a wait-free solution to the long-lived `-renaming problem. We
are grateful to Hagit Attiya for pointing this out to us.

135

Reference M Time Complexity Space Complexity Fast? Long-Lived?

[26] 2k � 1 �(Nk2) �(N2) No Yes

[19] k(k + 1)=2 �(Nk) �(N) No No

[19] 2k � 1 �(N4k) �(N) No No

[23] 2k � 1 �(Nk2) �(N2) No No

Thm. 19 k(k + 1)=2 �(k) �(k2) Yes No

Thm. 20 k(k + 1)=2 �(Nk) �(Nk2) No Yes

[24] k(k + 1)=2 �(k3) �(k4min(3k; N)) Yes Yes

Thm. 21 k(k + 1)=2 �(k2) �(k3) Yes Yes

Thm. 22 2k � 1 �(k4) �(k4) Yes Yes

Table 7.1: A summary of read/write, wait-free M -renaming algorithms. Time complexity is the
worst-case time complexity of acquiring (and releasing, if long-lived) a name once.

In the second part of this chapter, we consider long-lived k-renaming algorithms.

By de�nition, M -renaming for M < k is impossible, so with respect to the size of the

name space, k-renaming is optimal. As mentioned previously, it is impossible to implement

k-renaming using only atomic read and write operations. Thus, all of our k-renaming

algorithms employ stronger, read-modify-write operations.

We present three wait-free, long-lived k-renaming algorithms. The �rst such al-

gorithm uses two read-modify-write operations, set �rst zero and clr bit. The set �rst zero

operation is applied to a b-bit shared variable X whose bits are indexed from 0 to b � 1.

If some bit of X is clear, then set �rst zero(X) sets the �rst clear bit of X , and returns

its index. If all bits of X are set, then set �rst zero(X) leaves X unchanged and returns b.

Note that for b = 1, set �rst zero is equivalent to test and set. The set �rst zero operation

for b > 1 can be implemented, for example, using the atom�0andset operation available on

the BBN TC2000 multiprocessor [20]. The clr bit(X; i) operation clears the ith bit of the

b-bit shared variable X . For b = 1, clr bit is a simple write operation. For b > 1, clr bit can

be implemented, using the fetch and and operation available on the BBN TC2000.

136

Reference Time

Complexity

Bits per

Variable

Instructions Used

Thm. 23 �(k) 1 write and test and set

Thm. 23 �(k=b) b set �rst zero and clr bit

Thm. 24 �(log k) �(log k) bounded decrement and fetch and add

Thm. 25 �(log(k=b)) �(log k) above, set �rst zero, and clr bit

Table 7.2: A summary of wait-free, long-lived k-renaming algorithms. Time complexity is the
worst-case time complexity of acquiring and releasing a name once.

Our second long-lived k-renaming algorithm employs the commonly-available

fetch and add operation and the bounded decrement operation. The bounded decrement op-

eration is similar to fetch and add(X;�1), except that bounded decrement does not modify a

variable whose value is zero. We do not know of any systems that provide bounded decrement

as a primitive operation. However, at the end of Section 7.4, we show that bounded decrement

can be approximated in a lock-free manner using the fetch and add operation. This allows

us to obtain a lock-free, long-lived k-renaming algorithm based on fetch and add. A renam-

ing algorithm is lock-free if and only if it is guaranteed that each attempt by some process

p to acquire or release a name terminates unless some other process acquires and releases a

name in�nitely often.

Our third long-lived k-renaming algorithm combines both algorithms discussed

above, improving on the performance of each. Our wait-free, long-lived k-renaming algo-

rithms are summarized in Table 7.2.

The remainder of this chapter is organized as follows. Section 7.1 contains de�-

nitions used in the rest of the chapter. In Sections 7.2 and 7.3, we present one-time and

long-lived renaming algorithms that employ only atomic reads and writes. In Section 7.4,

we present long-lived renaming algorithms that employ stronger read-modify-write opera-

137

process p =� 0 � p < N �=

private variable name : 0::M � 1 =� Name received �=

while true do

Remainder Section; =� Ensure at most k processes rename concurrently �=

Getname Section; =� Assigns a value ranging over f0; :::;M � 1g to p:name �=

Working Section;

Putname Section =� Release the name obtained �=

od

Figure 7.1: Organization of processes accessing a long-lived renaming algorithm.

tions. Correctness proofs for algorithms in this chapter appear in Appendix C. (Because the

results of Section 7.3.2 subsume the results of Sections 7.2 and 7.3.1, and because full cor-

rectness proofs for those results are presented elsewhere [75], these proofs are not repeated

here.)

7.1 De�nitions

In the one-time M -renaming problem, each of k processes, with distinct process

identi�ers ranging over f0; :::;N � 1g, chooses a distinct value ranging over f0; :::;M � 1g.

We assume that 1 < k � M < N . A solution to the M -renaming problem consists of a

wait-free code fragment for each process p that assigns a value ranging over f0; :::;M�1g to

a private variable p:name and then halts. For p 6= q, the same value should not be assigned

to both p:name and q:name .

In the long-lived M -renaming problem, each of N distinct processes repeatedly

executes a remainder section, acquires a name by executing a getname section, uses that

name in a working section, and then releases the name by executing a putname section.

The organization of these processes is shown in Figure 7.1. It is assumed that each process

is initially in its remainder section, and that the remainder section guarantees that at most

138

k processes are outside their remainder sections at any time. A solution to the long-lived

M -renaming problem consists of wait-free code fragments that implement the getname

and putname sections shown in Figure 7.1, along with associated shared variables. The

getname section for process p is required to assign a value ranging over f0; :::;M � 1g to

p:name . If distinct processes p and q are in their working sections, then it is required that

p:name 6= q:name .

As discussed earlier, our algorithms use the set �rst zero, clr bit, and

bounded decrement operations, among other well-known operations. We de�ne these oper-

ations formally by the following atomic code fragments, where X is a b-bit shared variable

whose bits are indexed from 0 to b � 1, and Y is a non-negative integer. We stress that

these code fragments are de�nitions, and should not be interpreted as implementations of

the given operations.

set �rst zero(X) � if (9n : 0 � n < b :: :X[n]) then
m := (minn : 0 � n < b :: :X[n]); X[m] := true; return m

else

return b

�

clr bit(X; i) � X[i] := false

bounded decrement(Y) � m := Y ; if Y 6= 0 then Y := Y � 1 �; return m

In each of our algorithms, each atomically-accessible shared variable can be stored

in one machine word for all reasonable values of N . For example, our read/write algorithms

require shared variables of approximately log2N bits. Thus, on a 32-bit shared-memory

multiprocessor, these shared variables can be accessed with one shared variable access if

N < 232. We measure the time complexity of our algorithms in terms of the worst-case

time complexity of acquiring (and releasing, if long-lived) a name once.

139

n

n−1

n−1

1
stop right

down

shared variable X : f?g [f0::N � 1g;

Y : boolean

initially X = ? ^ Y = false

private variable move : fstop; right;downg

X := p;

if Y then move := right

else

Y := true;

if X = p then move := stop

else move := down

�

�

Figure 7.2: The one-time building block and the code fragment that implements it.

7.2 One-Time Renaming using Reads and Writes

In this section, we present a one-time (k(k+1)=2)-renaming algorithm that employs

only atomic read and write operations. This algorithm serves to introduce the main ideas of

our �rst long-lived renaming algorithm. It is also of interest in its own right, because it has

�(k) time complexity: a signi�cant improvement over previous read/write algorithms for

one-time renaming. Our one-time (k(k+ 1)=2)-renaming algorithm is based on a \building

block", which we describe next.

7.2.1 The One-Time Building Block

The one-time building block, depicted in Figure 7.2, is in the form of a wait-free

code fragment that assigns to a private variable move one of three values: stop, right, or

down. If each of n processes executes this code fragment at most once, then at most one

process receives a value of stop, at most n � 1 processes receive a value of right, and at

most n� 1 processes receive a value of down. We say that a process that receives a value of

down \goes down", a process that receives a value of right \goes right", and a process that

140

receives a value of stop \stops". Figure 7.2 shows n processes accessing a building block,

and the maximum number of processes that receive each value.

The code fragment shown in Figure 7.2 shows how the building block can be

implemented using atomic read and write operations. The technique employed is essentially

that of the \fast path" mechanism used in Lamport's fast mutual exclusion algorithm [65]. A

process that stops corresponds to a process successfully \taking the fast path" in Lamport's

algorithm. The value assigned to move by a process p that fails to \take the fast path" is

determined by the branch p takes: if p detects that Y holds, then p goes right, and if p

detects that X 6= p holds, then p goes down.

To see why the code fragment shown in Figure 7.2 satis�es the requirements of

our building block, �rst note that it is impossible for all n processes to go right | a process

can go right only if another process previously assigned Y := true . Second, the last process

p to assign X := p cannot go down because if it tests X , then it detects that X = p and

therefore stops. Thus, it is impossible for all n processes to go down. Finally, because

Lamport's algorithm prevents more than one processes from \taking the fast path", it is

impossible for more than one process to stop.

We show below how these building blocks can be used to solve the renaming prob-

lem. The basic approach is to use such building blocks to \split" processes into successively

smaller groups. Because at most one process stops at any particular building block, a process

that stops can be given a unique name associated with that building block. Furthermore,

when the size of a group has been decreased enough times that at most one process remains,

that process (if it exists) can be given a name immediately.

141

7.2.2 Using the One-Time Building Block to Solve Renaming

In this section, we use k(k � 1)=2 one-time building blocks arranged in a \grid"

to solve one-time k(k+ 1)=2-renaming for k processes. This approach is depicted in Figure

7.3 for k = 5. In order to acquire a name, a process p accesses the building block at the

top left corner of the grid. If p receives a value of stop, then p acquires the name associated

with that building block. Otherwise, p moves either right or down in the grid, according to

the value received. This is repeated until p receives a value of stop at some building block,

or p has accessed k� 1 building blocks. The name returned is calculated based on p's �nal

position in the grid. In Figure 7.3, each grid position is labeled with the name associated

with that position. Because no process takes more than k � 1 steps, only the upper left

triangle of the grid is used, as shown in Figure 7.3.

The algorithm is presented more formally in Figure 7.4. Note that each building

block in the grid is implemented using the code fragment shown in Figure 7.2. At most one

process stops at each building block, so a process that stops at a building block receives a

unique name. However, a process may also obtain a name by taking k� 1 steps in the grid.

In [75], we show that distinct processes that take k � 1 steps in the grid acquire distinct

names. We also prove that each process acquires a name from f0; :::; k(k+ 1)=2� 1g with

worst-case time complexity �(k). Thus, we have the following result.

Theorem 19: Using read and write, wait-free, one-time (k(k + 1)=2)-renaming can be

implemented with worst-case time complexity �(k).

142

0 1 2 3 4

8

9 10 11

12 13

14

6 75

Figure 7.3: k(k � 1)=2 building blocks in a grid, depicted for k = 5.

shared variable X : array[0::k� 2; 0::k� 2] of f?g[f0::N � 1g;

Y : array[0::k� 2; 0::k� 2] of boolean
initially (8r; c : 0 � r < k � 1 ^ 0 � c < k� 1 :: X[r; c] = ? ^ Y [r; c] 6= false)

process p =� k distinct processes ranging over 0::N � 1 �=
private variable name : 0::k(k+ 1)=2� 1;

stop : boolean;

i; j : 0::k� 1
initially i = 0 ^ j = 0 ^ :stop

while i+ j < k � 1 ^ :stop do =� Move down or across grid until stopping or reaching edge �=
0: X[i; j] := p;

1: if Y [i; j] then j := j + 1 =� Move right �=

else

2: Y [i; j] := true;

3: if X[i; j] = p then stop := true else i := i+ 1 � =� Stop or move down �=

�

od;

4: name := ik� i(i� 1)=2 + j; =� Calculate name based on position in grid �=

5: halt =� Preserves p@5; has no e�ect �=

Figure 7.4: One-time renaming using a grid of building blocks.

143

7.3 Long-Lived Renaming using Reads and Writes

In this section, we present two long-lived renaming algorithms that use only atomic

read and write operations. These algorithms are both based on the grid algorithm presented

in the previous section. In each case, we enable processes to release names as well as acquire

names, by modifying the one-time building block. These modi�cations allow processes to

\reset" a building block that they have previously accessed. This �rst algorithm yields

a name space of size k(k + 1)=2 and has time complexity �(Nk). (The time complexity

of a long-lived renaming algorithm is the worst-case time complexity for acquiring and

releasing a name once.) The second algorithm improves on this by reducing the time

complexity to �(k2), thereby achieving fast, long-lived k(k + 1)=2-renaming. We now give

an informal description of the �rst algorithm, which is proved correct in [75]. We provide a

full correctness proof for the second algorithm in Appendix C.

7.3.1 Using a Long-Lived Building Block for Long-Lived Renaming

Our �rst long-lived renaming algorithm based on reads and writes is shown in

Figure 7.5. As in the one-time algorithm presented in the previous section, a process

acquires a name by starting at the top left corner of a grid of building blocks, and by

moving through the grid according to the value received from each building block. The

building blocks are similar to those described in the previous section, except that they can

be \reset" (statement 6) after being accessed (statements 2 through 5). There are two

signi�cant di�erences between this algorithm and the one-time renaming algorithm.

Firstly, the single Y -bit in each building block of the one-time algorithm is replaced

144

shared variable X : array[0::k� 2; 0::k� 2] of f?g[f0::N � 1g;

Y : array[0::k� 2; 0::k� 2] of array[0::N � 1] of boolean

initially (8r; c; p : 0 � r < k � 1 ^ 0 � c < k � 1 ^ 0 � p < N :: X[r; c] = ? ^ Y [r; c][p] = false)

process p =� 0 � p < N �=

private variable name : 0::k(k+ 1)=2� 1;
move : fstop; right;downg;

i; j : 0::k� 1; h : 0::N

initially i = 0 ^ j = 0 ^ move = down

while true do

0: Remainder Section;

1: i; j; move := 0; 0; down; =� Start at top left building block in grid �=

while i+ j < k � 1 ^ move 6= stop do =� Move through grid until stopping or reaching edge �=

2: X[i; j]; h; move := p; 0; stop; =� Will stop unless move later becomes right or down �=

while h < N ^ move 6= right do

3: if Y [i; j][h] then move := right else h := h+ 1 �

od;
4: if move 6= right then

Y [i; j][p] := true;

5: if X[i; j] 6= p then move := down else move := stop �

�;

6: if move 6= stop then

Y [i; j][p] := false; =� Reset block if we didn't stop at it �=
if move = down then i := i+ 1 else j := j + 1 � =� Move according to move �=

�

od;

7: name := ik � i(i� 1)=2 + j; =� Calculate name based on position in grid �=

Working Section;

8: if i+ j < k � 1 then =� If we stopped on a building block ... �=
Y [i; j][p] := false =� ... then reset that building block �=

�

od

Figure 7.5: Long-lived renaming with �(k2) name space and �(Nk) time complexity.

145

by N Y -bits | one for each process. Instead of setting a common Y -bit, each process p

sets a distinct bit Y [p] (statement 4). This modi�cation allows a process to reset the

building block by clearing its Y -bit. A process resets a building block it has accessed before

proceeding to the next building block in the grid (statement 6), or when releasing the name

associated with that building block (statement 8). The building blocks are reset to allow

processes to reuse the grid to acquire names repeatedly.

To see why N Y -bits are used, observe that in the one-time building block, the

Y -variable is never reset, so using a single bit su�ces. However, if only one Y -bit is used

in the long-lived algorithm, a process might reset Y immediately after another process,

say p, sets Y. Because the value p assigned to Y is overwritten, another process q may

subsequently access the building block and fail to detect that p has accessed the building

block. In this case, p and q may both receive a value of stop from the same building block,

and consequently be assigned the same name.

The second di�erence between the one-time and long-lived building blocks is that

they di�er in time complexity. Instead of reading a single Y -variable for each block it

encounters, each process now reads up to N Y -bits. This results in �(N) time complexity

for accessing each long-lived building block. It may seem that all N Y -bits should be read in

an atomic \snapshot" because, for example, p's write to Y [p] might occur concurrently with

q's scan of the Y -bits. In fact, this is unnecessary, because the fact that these operations

are concurrent is su�cient to ensure that either p or q will not receive a value of stop from

the building block.

In [75], we prove that, for distinct processes p and q, if p@8 ^ q@8 holds, then

146

p and q hold distinct names from f0; :::; k(k + 1)=2 � 1g. We also prove that the worst-

case time complexity of acquiring and releasing a name once is �(Nk). Thus, we have the

following result.

Theorem 20: Using read and write, wait-free, long-lived (k(k + 1)=2)-renaming can be

implemented so that the worst-case time complexity of acquiring and releasing a name once

is �(Nk).

7.3.2 Making the Long-Lived Building Block Fast

We now present our second algorithm for fast, long-lived (k(k + 1)=2)-renaming.

Like the algorithms presented in Sections 7.2 and 7.3.1, this algorithm is based on a grid

of building blocks, like the one shown in Figure 7.3. To facilitate formal proofs, we have

incorporated all the building blocks into a single algorithm, shown in Figure 7.6. However,

the building block structure should still be apparent. In lines 1 through 7, process p accesses

building block (r; c), where r = p:i and c = p:j. Building block (r; c) is made up of X [r; c]

and Y [r; c; 0] through Y [r; c; k� r � c].

As in the previous algorithms, a process acquires a name by starting at the top-

left corner of the grid (line 0), and by moving through the grid according to the result of

accessing each building block. At line 1, process p writes p into X [p:i; p:j]. At line 2, if

process p reads Y [p:i; p:j; n] 6= ? for some n < k�p:i�p:j, then p moves right in the grid. If

p always reads X [p:i; p:j; p:h] = p at line 3 (so no process has overwritten the value written

by p at line 1), then p writes p into Y [p:i; p:j; n] for all n � k � p:i� p:j, and then reaches

line 8 and acquires the name associated with building block (p:i; p:j). On the other hand, if

147

shared variable X : array[0::k� 1; 0::k � 1] of f?g [f0::N � 1g;

Y : array[0::k� 1; 0::k� 1; 0::k] of f?g [f0::N � 1g

initially (8r; c; n : 0 � r < k � 1 ^ 0 � c < k � 1 ^ r + c < k� 1 ^ 0 � n � k� r � c :: Y [r; c; n] = ?)

private variable name: 0::k(k+ 1)=2� 1; moved: boolean; i; j: 0::k� 1; h: 0::k

initially i = 0 ^ j = 0 ^ h = 0

while true do

0: Remainder Section;

i; j; moved := 0; 0; true;

while i+ j < k � 1 ^ moved do

1: X[i; j]; h; moved := p; 0; false;

while h < k � i� j ^ :moved do

2: if Y [i; j;h] 6= ? then

j;moved := j + 1; true

else h := h+ 1

�

od;

h := 0;

while h � k � i� j ^ :moved do

3: if X[i; j] = p then

4: Y [i; j; h]; h := p; h+ 1

else

while h > 0 do
5: h := h� 1;

if Y [i; j; h] = p then

6: Y [i; j; h] := ?

�

od;

7: moved; i := true; i+ 1

od;
od

�

8: name := ik � i(i� 1)=2 + j;

9: Working Section;

if :moved then

while h > 0 do

10: h := h� 1;

if Y [i; j;h] = p then

11: Y [i; j; h] := ?

od

�

od

�

Figure 7.6: Long-lived renaming with �(k2) name space, �(k2) time complexity, and �(k3) space
complexity.

148

p reads X [p:i; p:j] 6= p at line 3, then p executes lines 5 and 6 to reset the Y components it

previously set, and then, at line 7, moves down in the grid. If process p takes k� 1 \steps"

in the grid, then it exits the loop beginning before line 1, and acquires a name. We later

show that, in either case, no other process acquires the same name concurrently. Having

described the overall structure of the algorithm, we now concentrate on how one building

block is implemented.

The long-lived building block used in Section 7.3.1 uses N Y -bits | one for each

process. This ensures that, if a process p sets the Y variable (by setting Y [p]), then the

Y variable stays set until p resets it. This is important to ensure that two processes to

not concurrently hold the name at the same building block. Unfortunately, this approach

necessitates reading all N Y -bits in order to determine whether the Y variable is set. This

is the source of the N factor in the �(Nk) time complexity of the algorithm in Figure 7.5.

In contrast, the algorithm presented in this section uses at most k + 1 Y -components per

building block. The di�cult part of our algorithm is in ensuring that if process p sets the

Y variable, then it stays set until p resets it, and that if all processes that have set the

Y variable have since reset it, then the Y variable is no longer set. The latter property

is important to ensure that a process does not go right from a building block unless some

other process is still accessing that building block. If this property is violated, then it is

possible for more than one process to reach the same building block k � 1 steps from the

origin of the grid, thereby acquiring the same name.

These properties are ensured through the use of a new technique for setting and

resetting the components of Y . In the loop at lines 3 and 4, process p tries to set the Y

149

variable of building block (p:i; p:j) by assigning p to every Y [p:i; p:j; p:h], where p:h ranges

over 0 to k � p:i � p:j. Before setting each Y -component, p �rst checks X [p:i; p:j]. If

X [p:i; p:j] 6= p, then p stops writing Y -components for this building block, resets those it

has set (lines 5 and 6), and then moves down to the next building block (line 7).

Observe that each Y component written by p could subsequently be overwritten

by another process. Thus, there is a risk that the Y variable does not stay set while p

is accessing the building block. However, in Appendix C.1, we show that if p successfully

writes all Y -components of a building block, then some component stays set until p resets

it. To see why this is so, note that, before p does its last write to Y in building block (r; c)

(line 4), p �rst checks that X [r; c] still contains p (line 3). Thus, X [r; c] holds continuously

while p writes all of the Y -components (with the possible exception of the last). If some

other process q either resets (line 6 or 11) or writes its own identi�er (line 4) into one

of the Y -components, then q previously either reads X [r; c] 6= p or reads q from that Y

component. In either case, it must have done so before p wrote that Y component. This

implies that process q can only \corrupt" one of the Y -components p writes. In Appendix

C.1, we inductively show that at most k � r � c � 1 processes other than p concurrently

access building block (r; c). Thus, because p writes k � r � c components of Y before its

last check of X [r; c], one of the components p sets remains set to p. Also, before process

p leaves a building block (either to go to the next one, or because it releases its name),

p clears all Y -components that contain p (lines 5 to 6 and lines 10 to 11). Thus, if all

processes leave building block (r; c) then the Y variable for that building block is no longer

set. These properties capture the essence of the formal correctness proof, which is presented

150

in Appendix C.1.

Theorem 21: Using read and write, wait-free, long-lived (k(k + 1)=2)-renaming can be

implemented so that the worst-case time complexity of acquiring and releasing a name once

is �(k2), and the space complexity is �(k3).

A fast, long-lived renaming algorithm that yields a name space whose size is inde-

pendent of N can be combined with any long-lived renaming algorithm | fast or not | to

further reduce the size of the name space. This is achieved by each process �rst accessing

the fast, long-lived renaming algorithm to acquire a name, and then using that name as

its process identi�er in another long-lived renaming algorithm. In particular, by combining

our fast, long-lived renaming algorithm with the (non-fast) `-assignment algorithm (with

` = 2k � 1) of Burns and Peterson [26], fast, long-lived renaming can be achieved with a

name space of size 2k � 1. As explained earlier, if at most k processes concurrently access

Burns and Peterson's algorithm, then their algorithm is wait-free. The worst-case time

complexity of acquiring and releasing a name once is �(Nk2) [80]. Thus, we have the fol-

lowing result. By results of Burns and Peterson [26], and of Herlihy and Shavit [46], this

algorithm is optimal with respect to the size of the name space.

Theorem 22: Using read and write, wait-free, long-lived (2k� 1)-renaming can be imple-

mented so that the worst-case time complexity of acquiring and releasing a name once is

�(k4), and the space complexity is �(k4).

151

7.4 Long-Lived Renaming using Read-Modify-Writes

In this section, we present three wait-free, long-lived renaming algorithms and one

lock-free, long-lived algorithm. By using read-modify-write operations, these algorithms

signi�cantly improve upon the performance of the algorithms in the previous section. Fur-

thermore, these algorithms yield a name space of size k, which is clearly optimal (the

lower bound results of Herlihy and Shavit [46] do not apply to algorithms that employ

read-modify-write operations).

The �rst algorithm uses set �rst zero and clr bit to access shared, b-bit variables

and has time complexity �(k=b). As discussed earlier, these operations can be implemented,

for example, using operations available on the BBN TC2000 [20]. The second algorithm in

this section has time complexity �(log k) | a signi�cant improvement over the �rst algo-

rithm. To achieve this improvement, this algorithm uses the bounded decrement operation.

We then describe how the techniques from these two algorithms can be combined to obtain

an algorithm whose time complexity is better than that of either algorithm.

We do not know of any systems that provide bounded decrement as a primitive op-

eration. However, at the end of this section, we discuss how the bounded decrement opera-

tion can be approximated in a lock-free manner using the commonly-available fetch and add

operation. We show how this approximation can be used to provide a lock-free algorithm

for long-lived k-renaming.

152

shared variable X : array[0::dk=be � 1] of array[0::b� 1] of boolean =� b-bit \segments" of names �=
initially (8i; j : 0 � i � dk=be � 1 ^ 0 � j < b :: X[i][j] = false)

process p =� 0 � p < N �=

private variable h : 0::dk=be � 1; v : 0::b; name : 0::k� 1

initially h = 0

while true do

0: Remainder Section;
h; v := 0; b; =� Initialize h and v after remainder section �=

while v = b do =� Loop until a bit is set �=

1: if (9n : 0 � n < b :: :X[h][n]) then =� set �rst zero operation, as de�ned in Section 7.1 �=
m := (min n : 0 � n < b :: :X[h][n]); X[h][m]; v := true; m

else

v := b

�;

if v = b then h := h+ 1 �

od;
2: name := bh+ v; =� Calculate name �=

Working Section;

3: X[h][v] := false =� Clear the bit that was set �=
od

Figure 7.7: Long-lived k-renaming using set �rst zero and clear bit.

7.4.1 Long-Lived Renaming using set �rst zero and clr bit

Our �rst long-lived k-renaming algorithm employs the set �rst zero and clr bit

operations. The algorithm is shown in Figure 7.7. For clarity, we have explicitly used

the de�nitions of set �rst zero (statement 1) and clr bit (statement 3). In order to acquire

a name, a process tests each name in order. Using the set �rst zero operation on b-bit

variables, up to b names can be tested in one atomic shared variable access. If k � b,

this results in a long-lived renaming algorithm that acquires a name with just one shared

variable access. If k > b, then \segments" of size b of the name space are tested in each

access. To release a name, a process clears the bit that was set by that process when the

name was acquired. An example is shown in Figure 7.8 for b = 4 and k = 10. In this �gure,

process p releases name 1 by executing clr bit(X [0]; 1) and process q acquires name 5 by

153

names 0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 0 0 1 0 1 0 0

X[0] X[1] X[2]

p q

(a) In this state, p@3 ^ p:h = 1 ^ p:v = 1 holds, so p is about to execute clr bit(X[0]; 1),

thereby releasing name 1. For process q, q@1 ^ q:h = 1 holds, so q is about to execute

set �rst zero(X[1]). As X[1][1] is the �rst clear bit in X[1], q:1 will establish q@2 ^ q:h =

1 ^ q:v = 1, and will therefore acquire name 5.

names 0 1 2 3 4 5 6 7 8 9

1 1 1 1 0 1 0 1 0 0

X[0] X[1] X[2]

p q

0 1

(b) Process p has released name 1 and process q has acquired name 5.

Figure 7.8: Example steps of the k-renaming algorithm shown in Figure 7.7 for b = 4 and k = 10.

executing set �rst zero(X [1]).

Because each process tests the available names in segments, and because processes

may release and acquire names concurrently, it may seem possible for a process to reach

the last segment when none of the names in that segment are available. In Appendix C.2,

we show that this is in fact impossible and that each process acquires a distinct name from

f0; :::; k� 1g after at most dk=be shared variable accesses (see (I151) and (I152)). Releasing

a name requires one shared variable access. Thus, the algorithm shown in Figure 7.7 yields

the following result.

Theorem 23: Using set �rst zero and clr bit on b-bit variables, wait-free, long-lived k-

renaming can be implemented so that the worst-case time complexity of acquiring and

releasing a name once is �(k=b).

154

As discussed earlier, when b = 1, the set �rst zero and clr bit operations are equiv-

alent to the test and set and write operations, respectively. Thus, we have the following.

Corollary: Using test and set and write, wait-free, long-lived k-renaming can be

implemented with time complexity �(k).

7.4.2 Long-Lived Renaming using bounded decrement and fetch and add

In this section, we present a long-lived k-renaming algorithm that employs the

bounded decrement and fetch and add operations. In this algorithm, shown in Figure 7.9,

the bounded decrement operation is used to separate processes into two groups left and

right. The right group contains at most dk=2e processes and the left group contains at most

bk=2c processes. This is achieved by initializing a shared variable X to dk=2e, and having

each process perform a bounded decrement operation on X . Processes that receive positive

return values join the right group, and processes that receive zero join the left group. To

leave the right group, a process increments X . To leave the left group, no shared variables

are updated.

It might seem possible to implement this \splitting" mechanism by having a pro-

cess join the left group if and only if it receives a nonpositive return value from a normal

fetch and add(X;�1) operation. However, because processes must be able to repeatedly join

and leave the groups, the normal fetch and add operation is not suitable for this \splitting"

mechanism. If X is decremented below zero, then it is possible for too many processes

to be in the left group at once. To see this, suppose that all k processes decrement X .

Thus, dk=2e processes receive positive return values, and therefore join the right group, and

155

bk=2c processes receive non-positive return values, and therefore join the left group. Now,

X = �bk=2c. If a process leaves the right group by incrementing X , and then decrements

X as the result of a subsequent attempt to acquire a name, then that process receives a

non-positive return value, and thus joins the left group. Repeating this for each process in

the right group, it is possible for all processes to be in the left group simultaneously. The

bounded decrement operation prevents this by ensuring that X does not become negative.

The algorithm employs an instance of long-lived dk=2e-renaming for the right

group, and an instance of long-lived bk=2c-renaming for the left group, which are inductively

assumed to be correct. For notational convenience, we assume that a name is acquired from

the left instance by calling Getname left and released by calling Putname left; similarly for

the right instance. (These functions are easy to implement given the inductively-assumed

instances.) The algorithm that results from \unfolding" this inductively-de�ned algorithm

forms a tree. To acquire a name, a process goes down a path in this tree from the root

to a leaf. As the processes progress down the tree, the number of processes that can

simultaneously go down the same path is halved at each level. When this number becomes

one, a name can be assigned. Thus, the time complexity of acquiring a name is �(log k).

To release a name, a process retraces the path it took through the tree in reverse order,

incrementing X at any node at which it received a positive return value.

Note that, with b-bit variables, if b < log2dk=2e, then X cannot be initialized to

dk=2e, so this algorithm cannot be implemented. However, in any practical setting, this

will not be the case. In Appendix C.3, we prove the following result.

156

shared variable X : 0::dk=2e =� Counter of names available on right �=
initially X = dk=2e

process p =� 0 � p < N �=

private variable side : fleft; rightg

while true do

0: Remainder Section;

1: if bounded decrement(X) > 0 then =� Ensure at most dk=2e (bk=2c) access right (left) �=
2: side;name := right;Getname right() =� Get name from right instance �=

else

3: side;name := left; dk=2e +Getname left() =� Get name from left instance �=
�;

Working Section;

4: if side = right then

5: Putname right(name); =� Return name to right instance �=

6: fetch and add(X; 1) =� Increment counter again �=

else

7: Putname left(name� dk=2e) =� Return name to left instance �=

�

od

Figure 7.9: k-renaming using bounded decrement. Getname left and Putname left are inductively
assumed to implement long-lived bk=2c-renaming. Similarly, Getname right and Putname right are
inductively assumed to implement long-lived dk=2e-renaming.

Theorem 24: Using b-bit variables and bounded decrement and fetch and add, wait-free,

long-lived k-renaming can be implemented so that the worst-case time complexity of ac-

quiring and releasing a name once is �(log k) for k � 2(2b � 1).

Note that if the set �rst zero and clr bit operations are available, then it is unnec-

essary to completely \unfold" the tree algorithm described above. If the tree is deep enough

that at most b processes can reach a leaf, then by Theorem 23, a name can be assigned

with one more shared access. This amounts to \chopping o�" the bottom blog2 bc levels of

the tree. The time complexity of the resulting algorithm is �(log k � log b) = �(log(k=b)).

Thus, using all the operations employed by the �rst two algorithms, we can improve on the

time complexity of both. The following result is proved in Appendix C.3.

157

shared variable X : �bk=2c::dk=2e =� Counter of names available on right �=
initially X = dk=2e

process p =� 0 � p < N �=

private variable side : fleft; right;noneg

while true do

0: Remainder Section;

side := none;
while side = none do

1: if fetch and add(X;�1) > 0 then side := right

2: else if fetch and add(X; 1) < 0 then side := left �

�

od;

3: if side = right then

4: name := Getname right() =� Get name from right instance �=

else

5: name := dk=2e+Getname left() =� Get name from left instance �=
�;

Working Section;

6: if side = right then

7: Putname right(name); =� Return name to right instance �=

8: fetch and add(X; 1) =� Increment counter again �=

else

9: Putname left(name� dk=2e) =� Return name to left instance �=

�

od

Figure 7.10: Lock-free k-renaming using fetch and add.

Theorem 25: Using b-bit variables and set �rst zero, clear bit, bounded decrement, and

fetch and add, wait-free, long-lived k-renaming can be implemented so that the worst-case

time complexity of acquiring and releasing a name once is �(logk=b) for 1 � k � 2(2b�1).

7.4.3 Lock-Free, Long-Lived Renaming using fetch and add

The k-renaming algorithm presented in Figure 7.9 is the basis of our fastest

wait-free k-renaming solutions, as shown by Theorems 24 and 25. Unfortunately, the

bounded decrement operation employed by that algorithm is not widely available. While

the bounded decrement operation is similar to the well-known fetch and add operation, we

158

have been unable to design an e�cient wait-free implementation of the former using the lat-

ter. We have, however, designed a lock-free k-renaming algorithm that is based on the idea

of bounded decrement. The algorithm is presented in Figure 7.10. The fetch and add oper-

ation is used to approximate the bounded decrement operation in such a way that it ensures

that at most dk=2e processes access the right instance of dk=2e-renaming, and similarly for

the left instance.

The split is achieved by having processes that obtain positive values from X go

right, and processes that obtain non-positive values go left (see statements 1 and 2 in Figure

7.10). However, a process, say p, that decrements the counter X below zero \compensates"

by incrementing X again before proceeding left. If p detects that X becomes positive

again before this compensation is made, then it is possible that some other process has

incremented X and joined the left group. In this case, there is a risk that process p should

in fact go right, rather than left. In this case, process p restarts the loop.

The algorithm is lock-free because in order for a process to repeat the loop at

statements 1 and 2, some other process must modify X between the execution of statements

1 and 2. In Appendix C.4, we show that if this happens repeatedly, then eventually some

process makes progress. Thus, we have the following result.

Theorem 26: Using b-bit variables and fetch and add, lock-free, long-lived k-renaming can

be implemented so that the worst-case, contention-free time complexity of acquiring and

releasing a name once is �(log k) for k � 2(2b � 1).

Chapter 8

Conclusions

In this chapter, we �rst give a brief summary of the results presented in this

dissertation, and discuss possible directions for future research on these results. We then

make some concluding remarks about the lessons learned from this research.

8.1 Summary

In Chapter 4, we presented several results that allow the algorithms presented in

Chapters 5 and 6, as well as other algorithms found in the literature, to be applied with

greater
exibility. These results also have the potential to ease the design of future algo-

rithms, by giving researchers greater
exibility in choosing synchronization instructions on

which to base their work. Speci�cally, we present constant-time, wait-free implementations

of compare-and-swap using LL/SC and vice versa; we give an implementation that obviates

the need to deal with \spurious" SC failures; and we give an implementation of weak-LL,

VL, and SC that removes the limitation on the size of the variables accessed that is imposed

160

by most hardware implementations of these instructions. All of these implementations have

optimal time complexity, but it may be possible to reduce their space complexity.

The constructions in Chapter 5 improve the space and time e�ciency of wait-free

implementations of large objects. Also, in contrast to similar previous constructions, ours

do not require programmers to determine how an object should be fragmented, or how the

object should be copied. However, they do require the programmer to use special Read and

Write functions, instead of the assignment statements used in conventional programming.

Nonetheless, as demonstrated by Figure 5.3, the resulting code is very close to that of an

ordinary sequential implementation. Our construction could be made completely seamless

by providing a compiler or preprocessor that automatically translates assignments to and

from MEM into calls to the Read and Write functions.

Our constructions do not exploit parallel execution of operations, even if the op-

erations access disjoint sets of blocks. We would like to extend our constructions to take

advantage of such parallel execution where possible. For example, in our shared queue

implementations, an enqueue operation might unnecessarily interfere with a dequeue op-

eration. In [9], we addressed similar concerns when implementing wait-free operations on

multiple objects.

In Chapter 6, we presented a technique for improving the time and space e�-

ciency of wait-free, universal constructions, as well as the space e�ciency of lock-free ones.

This technique is based on e�cient k-assignment algorithms. To facilitate this approach,

we presented several shared-memory algorithms for k-exclusion and k-assignment in which

all process blocking is achieved through the use of \local-spin" busy waiting. These algo-

161

rithms are designed to minimize interconnect tra�c associated with busy waiting on cache-

coherent and distributed shared-memory multiprocessors. Furthermore, they are based on

commonly-available synchronization primitives, are fast in the absence of contention, and

exhibit scalable performance as contention rises. In contrast, all prior k-exclusion algorithms

either require unrealistic atomic operations, or have unacceptably high time complexity. To

our knowledge, these algorithms are the �rst local-spin synchronization algorithms to tol-

erate process failures. We also presented performance studies conducted on cache-coherent

and distributed shared-memory multiprocessors involving shared object implementations

that are obtained by combining our k-assignment algorithms with wait-free object imple-

mentations. These studies show that, in multiprogrammed systems, the implementations

we consider often outperform both wait-free and spin-lock-based object implementations.

These results validate our claims that our k-exclusion and k-assignment algorithms are fast

and scalable.

It is interesting to note that we had to use quite old multiprocessors for our

performance experiments and, in the case of the Sequent Symmetry, we had to simulate

multiprogramming. This is because we were unable to �nd more modern shared-memory

multiprocessors that robustly support multiprogramming. For example, we found the mul-

tiprogramming support on the KSR to be extremely unreliable: our experiments would

frequently hang for several hours before completing. Also, we tried to perform multipro-

gramming experiments on a Convex Exemplar, but found that an operating system bug

prevented applications from creating more threads than the available number of processors.

(We reported the above-mentioned bug to Convex and they have since corrected it.) We

162

feel that this lack of support for multiprogramming is largely a result of the fact that multi-

programming is rarely used in multiprocessor applications, and that this in turn is a result

of the di�culty of achieving e�cient interprocess synchronization under multiprogramming.

We hope that our work will help to alleviate this di�culty.

It would be interesting to try to improve upon our results by developing k-exclusion

algorithms for which performance under contention is completely independent ofN . Ideally,

we would like for such algorithms to have performance that approaches that of the fastest

spin-lock algorithms when k approaches 1.

In Chapter 7, we considered the classic one-time renaming problem, as well as

a more general problem called long-lived renaming, in which processes can release names

as well as acquire names. We provided several solutions to this problem, including some

that employ only read and write operations. We also presented a new one-time renaming

algorithm, which improves on previous read/write renaming algorithms in that its time

complexity is independent of the size of the original name space.

Our renaming algorithms exhibit a trade-o� between time complexity, name space

size, and the availability of primitives used. Most of our wait-free algorithms have the

desirable property that time complexity is proportional to contention. Thus, if fewer than

k processes concurrently use a particular renaming algorithm, then the worst-case time

complexity of acquiring and releasing a name is lower than the time complexity stated in

our theorems. This is an important practical advantage because contention should be low

in most well-designed applications [65].

Our study of read/write algorithms for long-lived renaming has culminated in an

163

algorithm that is fast and achieves an optimal name space size of 2k� 1, while having time

complexity that is independent of the size of the original name space. However, because this

result is achieved by combining two algorithms, it has quite high time complexity (�(k4)).

It would be interesting to see whether this can be improved upon by a direct solution.

Our most e�cient wait-free, long-lived renaming algorithm uses a

bounded decrement operation. Although this operation is similar to the standard

fetch and add operation, we have been unable to design an e�cient wait-free implemen-

tation of the former using the latter. We have, however, designed an e�cient lock-free

implementation of k-renaming based on this idea. In this implementation, a process can

only be delayed by a very unlikely sequence of events. We believe this implementation

will perform well in practice. It remains to be seen whether fetch and add can be used to

implement wait-free, long-lived renaming with sub-linear time complexity.

8.2 Conclusions and Future Research

In the course of this research, we have learned several important lessons about

implementing shared objects in shared-memory multiprocessors.

� The performance of universal constructions is less dependent on the choice of syn-

chronization primitive than was previously thought. In particular, we have shown

that constructions that are based on the LL/SC instruction pair can be modi�ed so

that they use compare-and-swap with minimal additional time overhead. Such a con-

struction might be useful to architects who are deciding which hardware instructions

to support. (While the gap between compare-and-swap and LL/SC has been shown

164

to be substantially smaller than previously thought, the construction of LL/SC using

compare-and-swap does have some computational overhead, albeit constant, and also

a non-trivial space overhead. As discussed in Section 4.1.1, this space overhead can

be greatly reduced for many applications by using unbounded counters. Nonetheless,

the LL/SC pair is probably still preferable to algorithm designers.) On the subject of

hardware instructions, it is interesting to note that fetch-and-add has proved useful in

several settings, but no e�cient, wait-free implementation of fetch-and-add from either

compare-and-swap or LL/SC is known (although lock-free implementations are triv-

ial). Results of Anderson [12] and Cypher [28] imply that no constant-time, wait-free

implementation of fetch-and-add from compare-and-swap or LL/SC exists. However,

the lower bound implied by these results is quite low, leaving a signi�cant gap be-

tween the lower bound and the best known implementation. Resolving this gap with

a signi�cantly higher bound would suggest that architectures that provide only CAS

or LL/SC and not fetch-and-add are not su�cient to support e�cient, wait-free (or

even starvation-free) algorithms that are based on fetch-and-add.

� There are practical bene�ts to be derived from the ability of an object implementation

to withstand process failures (even if there are no failures). This is because withstand-

ing process failures implies withstanding arbitrary process delays, which are common

and unpredictable in modern multiprocessors. As seen in Chapter 6, wait-free im-

plementations can outperform lock-based implementations under multiprogramming.

However, because there is necessarily an overhead associated with providing the ad-

vantages of wait-freedom, there will always be a tradeo� in deciding whether to use

165

a wait-free implementation. This decision is likely to be dependent on the target

machine, the operating system, the application and other applications that run on

the machine, the frequency of object accesses, the expected contention for objects,

distribution of process delays, and numerous other factors. Before these decisions can

be easily made, and wait-free (or other non-blocking) object implementations come

into common usage, two research directions must be pursued. First, while we have

substantially improved on the overhead of previous wait-free universal constructions,

there is no reason to believe that our constructions are optimal. Reducing these over-

heads further will allow the bene�ts of wait-freedom to be realized in a wider variety

of settings. Second, case studies and performance studies are needed in order to

accurately characterize the applications and environments in which wait-free object

implementations will provide performance bene�ts.

� The techniques presented in Chapter 6 allow us to construct lower overhead imple-

mentations that provide all the bene�ts of wait-free implementations while contention

remains within expected limits. Good performance can also be achieved using lock-free

constructions. However, they must be used in conjunction with carefully-tuned back-

o� mechanisms to ensure that they provide good performance under contention. This

is particularly problematic in applications that have di�erent object access behaviors

at di�erent times, because it requires the backo� mechanism to be tuned dynamically.

Wait-free implementations whose time complexity depends on contention, as proposed

by Afek, Dauber, and Touitou [2], have the potential overcome these problems. How-

ever, e�cient constructions with this property remain to be seen.

166

� Existing wait-free universal constructions (including ours) do not bene�t from parallel

execution of operations. This could prove to be a severe disadvantage, because it lim-

its scalability. Therefore, designing universal constructions that do exploit parallelism

is an important research direction. We have made some progress towards this goal

elsewhere [9] by designing constructions for implementing multiple objects and sup-

porting multi-object operations that execute in parallel where possible. Drawing on

the techniques presented in [9] and in Chapter 5, it should be possible to implement

general, wait-free \transactions" (arbitrary operations) that execute in parallel if they

do not overlap.

167

Appendix A

Correctness Proofs for Algorithms

in Chapter 5

In this appendix, we provide a formal correctness proof for the wait-free construc-

tion for large objects presented in Section 5.2.

A.1 Correctness Proof for Algorithm in Figures 5.5 and 5.6

In order to model the interaction of each process with our construction, we assume

the existence of a statement 0 (not shown in Figures 5.5 and 5.6) that repeatedly calls

WF Op with appropriate parameters. When process p returns from the WF Op procedure

(line 50), p's program counter is set to 0 in preparation for p's next operation invocation.

The Simulate Op procedure (line 19) models user-supplied operations. This is achieved by

using a nondeterministic choice to produce a sequence of read and write operations to the

implemented BS-word array, followed by the return of a nondeterministic value. We use

168

the select function, which takes a type parameter and returns an arbitrary value of that

type, to achieve this nondeterminism.

The algorithm in Figures 5.5 and 5.6 is augmented with several auxiliary variables

and functions, which are used to construct a total order over operation invocations that

is consistent with the sequential semantics of the implemented object. The linearizability

proof shows that each operation invocation is placed into this total order exactly once, that

this occurs during the execution of that invocation (i.e., the constructed total order extends

the partial order over invocations), and that each invocation returns the correct return value

with respect to the total order constructed.

We now explain how the total order over operations is constructed. While per-

forming operations, each process p maintains an auxiliary variable p:auxcopy which records

the changes made to p's local view of the implemented object. (Observe that, for each write

operation invoked by an operation performed by process p, an equivalent write operation

is performed on p:auxcopy at line 18.) Process p records the operations it performs in

an auxiliary list p:hlplst (line 25), which contains one tuple for each operation performed.

Each tuple contains the identity of the process that invoked the operation, the operation

itself, the parameters passed to that operation, and the value that would be returned by a

sequential implementation of that operation, given the previous object state in p:auxcopy .

Each time process p performs a successful SC operation (line 11), the operations in p:hlplst

are linearized (i.e., added to the constructed total order) in the order that they appear

in p:hlplst. This is recorded by updating the auxiliary variable AuxObj, which contains

the current value of the implemented object. This is achieved by means of the ApplyAll

169

function, which is de�ned below.

De�nition: The ApplyAll function takes two parameters: a current object

state (an array of BS words) and a list of tuples. ApplyAll scans the

list in order and, for each tuple (q; op; pars; ret), sequentially applies

the operation op, with parameters pars to the current object state.

ApplyAll returns the state of the object that results from all of these

operation applications. (Note that this function is used only to facili-

tate the proof: it is not actually implemented.)

Observe that, when p executes a LL at line 1, p also copies Auxcopy to p:auxcopy .

Thus, because Auxcopy does not change between p's LL and p's successful SC (if it did

change, then p's SC would fail), the new value written to Auxcopy when p performs its

successful SC correctly re
ects the sequential execution of the operations in p:hlplst. Thus,

the return values of the operations in the total order constructed are consistent with the

sequential semantics of those operations.

Because only one variable (X) is accessed using the LL, VL, and SC operations, we

use the following simple axioms to model the behavior of these operations for this algorithm.

As can be seen from Figure 3.1, these are consistent with the semantics of LL, VL, and SC.

Axiom 1: For any process p, the execution of LL(X) by process p establishes still valid(p).

No other statement establishes still valid(p).

Axiom 2: If :still valid(p) holds, then an execution of SC (X; v) by process p does not

modify X and returns false.

170

Axiom 3: If still valid(p) holds, then an execution of SC (X; v) by process p writes v to

X and returns true. SC (X; v) also establishes :still valid(q) for all processes q in this

case. No other statement falsi�es still valid(p).

Axiom 4: An execution of VL(X) by process p returns true if still valid(p) holds and

false otherwise.

There are many dependencies between the properties in the correctness proof for

the algorithm in Figures 5.5 and 5.6. In particular, we sometimes assume a property that

has not yet been proved (including the property we are currently proving). It is important

to note that this apparent circularity does not render our proof incorrect. This is because, in

such cases, we assume only that the property holds before 1 each statement execution. Thus,

we inductively prove the conjunction of all of the properties: we show for each property

that it holds initially, and that, assuming all properties hold in one state, the given property

holds in every subsequent state.

The preliminaries discussed in Chapter 3 apply to the correctness proof presented

below. In particular, recall that p, q, and r range over f0:::N � 1g, and that all other

unbound variables are assumed to be universally quanti�ed. Figures A.1 and A.2 contain

some de�nitions that are used in the correctness proof presented below.

The following invariants are trivial, and are therefore stated without proof. In

particular, the proof of (I8) uses (I7); (I13) uses (I5), (I6), and (I12); (I15) uses (I14); (I22)

uses (I21); (I23) uses (I22); (I24) uses (I23); (I25) uses (I24); and (I29) uses (I22).

1For brevity, we simply refer to the property in such cases, rather than explicitly stating that we are
assuming only that the property holds before each statement execution. Nonetheless, we never assume that

a later property (or the property being proved) holds after a statement execution.

171

invariant q@f7::25; 33::46g) q:rb = q:ptrs:ret (I5)

invariant q@11) BUF [q; q:side]:ret = q:ptrs:ret (I6)

invariant q@14) 0 � q:addr < B � S (I7)

invariant q@f15::18g) 0 � q:blkidx < B ^ q:blkidx = q:addr div S (I8)

invariant q@f15::18g) q:addr = (q:addr div S) � S + (q:addr mod S) (I9)

invariant q@f15::17g) :q:dirty [q:blkidx] (I10)

invariant q@18) q:dirty [q:blkidx] (I11)

invariant q@f45; 7::11g) LAST [q] = q:rb (I12)

invariant q@11) BUF [q; q:side]:ret = LAST [q] (I13)

invariant q@8) (8m : 0 � m < q:i :: BUF [q; q:side]:blks[m] = q:ptrs :blks[m]) (I14)

invariant q@f9::11g) BUF [q; q:side]:blks = q:ptrs :blks (I15)

invariant p:bit = ANC [p]:bit (I16)

invariant q@21 ^ q:pr = q) q:match = ANC [q]:bit (I17)

invariant q@f12::25g) q:pr = q:try (I18)

invariant q@f20::21g ^ q:pr = q) q:hlplst = fg (I19)

invariant q@f12::25g ^ q:from = 40) q:hlplst = fg (I20)

invariant p:side 2 f0; 1g (I21)

invariant 0 � X:pid < N ^ X:tag 2 f0; 1g (I22)

172

RV (p) � RET [BUF [X:pid ; X:tag]:ret][p]:val

AV (p) � RET [BUF [X:pid ; X:tag]:ret][p]:applied

CV (p) � RET [BUF [X:pid ; X:tag]:ret][p]:copied

NORM (p) � AV (p) = ANC [p]:bit ^ CV (p) = ANC [p]:bit

ST (p) � (AV (p) + 1) mod 3 = ANC [p]:bit ^ (CV (p) + 1) mod 3 = ANC [p]:bit

APP(p) � AV (p) = ANC [p]:bit ^ (CV (p) + 1) mod 3 = ANC [p]:bit

CPD(q; v; p) � (:q@25 _ q:pr 6= p) ^ RET [v][p]:val = RV (p) ^

RET [v][p]:applied = AV (p) ^ RET [v][p]:copied = RET [v][p]:applied

IBS (q; v; p) � q@25 ^ q:pr = p ^ RET [v][p]:val = q:rv ^

RET [v][p]:applied = AV (p) ^ RET [v][p]:copied = RET [v][p]:applied

APD(v; p; val) � RET [v][p]:val = val ^ ST (p) ^ ANC [p]:bit = RET [v][p]:applied ^

ANC [p]:bit = (RET [v][p]:copied + 1) mod 3

CRV (q; v; p) � (:(9 tup :: tup 2 q:hlplst ^ tup :pid = p) ^

(CPD(q; v; p) _ IBS (q; v; p))) _

(9 tup :: tup 2 q:hlplst ^ tup :pid = p ^ tup:op = ANC [p]:op ^

tup:pars = ANC [p]:pars ^ APD(v; p; tup:val))

ACRV (q; v) � (8p :: CRV (q; v; p))

Figure A.1: De�nitions used in the correctness proof for the algorithm in Figures 5.5 and 5.6.

173

EQB(n;m;Aux) � (8x : 0 � x < S :: Aux [m � S + x] = BLKS [n][x])

EQ(Arr ;Aux) � (8m : 0 � m < B :: EQB(Arr [m]; m;Aux))

HAS(v; f; t; n) � (9h : f � h < t :: v[h] = n)

HL(p; n) � HAS(p:oldlst; 0; p:dcnt; n) _ HAS (p:copy; p:dcnt ;M; n)

UNIQ(v;m) � (8h; k : 0 � h < m ^ 0 � k < m ^ h 6= k :: v[h] 6= v[k])

STS (p; n) � (RET [n][p]:copied + 1) mod 3 = ANC [p]:bit

WND(q; p) � :q@f12::25; 38::44g _

(q@f38::39g ^ (RET [q:rb][p]:applied + 1) mod 3 = ANC [p]:bit) _

(q@f12::25; 40::44g ^ STS (p; q:rb))

SRV (p; n) � RET [n][p]:val = RV (p)

DND(q; p) � :q@f12::25; 38::44g _

(SRV (p; q:rb) ^ RET [q:rb][p]:applied = ANC [p]:bit ^

(q@f38::44g _ (q@f12::25g ^ q:pr 6= p) _ (q@20 ^ q:pr = p) _

(q@21 ^ q:pr = p ^ q:match = ANC [p]:bit)))

Figure A.2: De�nitions used in the correctness proof for the algorithm in Figures 5.5 and 5.6
(continued from Figure A.1).

174

invariant 0 � p:curr :pid < N ^ p:curr :tag 2 f0; 1g (I23)

invariant 0 � p:ptrs:help < N ^

0 � BUF [p; 0]:help < N ^ 0 � BUF [p; 1]:help < N (I24)

invariant 0 � p:try < N (I25)

invariant p@f2::5g ^ still valid(p)) p:curr = X (I26)

invariant p@f33::40g) p:dcnt = 0 (I27)

invariant p@6) :still valid(p) (I28)

invariant p@27) 0 � p:tmp � N (I29)

invariant p@f1::6; 26::27g ^ p:from = 29) :p:done (I30)

invariant NORM (p)) :ST (p) ^ :APP(p) (I31)

invariant ST (p)) :NORM (p) ^ :APP(p) (I32)

invariant APP(p)) :NORM (p) ^ :ST (p) (I33)

Correctness proofs are presented below for the remaining properties.

invariant p@f15::17g) 0 � p:dcnt < M (I34)

Proof: Recall that we assume that each sequential operation modi�es at most T blocks

of the array. Thus, because (I27) implies that process p calls Apply (and therefore Sim-

ulate Op) only if p:dcnt + T � M holds, and because p:dcnt is increased by one for each

distinct block modi�ed by a sequential operation, it is easy to see that (I34) holds.

invariant 0 � p:dcnt �M (I35)

175

Proof: Initially, p:dcnt = 0 holds, so (I35) holds. Only statements p:17 and p:32 modify

p:dcnt . By (I34), neither statement falsi�es (I35).

invariant p@f2::25; 32::45g ^ :still valid(p)) X:pid 6= p (I36)

Proof: Initially, p@0 holds, so (I36) holds. Only statement p:1 establishes p@f2::25; 32::45g,

and by Axiom 1, statement p:1 does not establish the antecedent. By Axiom 3, only

statement s:11, where s is any process, establishes :still valid(p) or modi�es X , and by

Axiom 2, it does so only if executed when s@11 ^ still valid(s) holds. If s = p, then p@46

holds, and therefore the antecedent does not hold after the execution of statement s:11. If

s 6= p, then by Axiom 3, the consequent holds after the execution of s:11.

invariant :p@f8::11g) X:pid 6= p _ X:tag = p:side (I37)

Proof: Initially, the consequent holds, so (I37) holds. Only statement p:11 establishes the

antecedent. If p@11 ^ :still valid(p) holds before the execution of statement p:11, then,

by (I36), the consequent holds before the execution of statement p:11, and, by Axiom 2,

statement p:11 does not falsify the consequent. If p@11 ^ still valid(p) holds before the

execution of statement p:11, then by Axiom 3, statement p:11 establishes the consequent.

Only statement s:11, where s is any process, modi�es X . As shown above, if s = p, then

the consequent holds after the execution of statement s:11. If s 6= p, then, by Axioms 2 and

3, if statement s:11 modi�es X , then X:pid 6= p hold afterwards.

invariant p@f8::11g) X:pid 6= p _ X:tag 6= p:side (I38)

Proof: Initially, p@0 holds, so (I38) holds. Only statement p:7 establishes the antecedent.

By (I37), the consequent holds after the execution of statement p:7. No statement modi�es

176

p:side while the antecedent holds. Only statement s:11, where s is any process, modi�es

X , and by Axiom 2, it does so only if executed when s@11 ^ still valid(s) holds. If s = p,

then the antecedent does not hold after the execution of statement s:11. If s 6= p, then, by

Axiom 3, the consequent holds after the execution of statement s:11.

Claim 2: No statement modi�es BUF [p; t] while X = (p; t) holds.

Proof: Claim 2 follows directly from the program text and (I38).

invariant q@f5; 32g ^ still valid(q)) q:ptrs:ret = BUF [X:pid ; X:tag]:ret (I39)

Proof: Initially, q@0 holds, so (I39) holds. By Axiom 1, no statement establishes

still valid(q) while q@f5; 32g holds. By (I22), only statement q:5 establishes q@32. Only

statement q:4 establishes q@5, and, by Axiom 1, statement q:4 establishes the antecedent

only if executed when q@4 ^ still valid(q) holds. By (I26), statement q:4 establishes the

consequent in this case.

No statement modi�es q:ptrs :ret while the antecedent holds. Thus, by Claim 2,

the consequent can be falsi�ed only by modifying X . Only statement s:11, where s is

any process, modi�es X . By Axioms 2 and 3, if s:11 modi�es X , then it also falsi�es

still valid(q), thereby falsifying the antecedent.

invariant q@f7::25; 33::45g ^ still valid(q)) q:oldrb = BUF [X:pid ; X:tag]:ret (I40)

Proof: Initially, q@0 holds, so (I40) holds. By Axiom 1, only statement q:32 establishes

the antecedent, and it does so only if executed when q@32 ^ still valid(q) holds. By (I39),

statement q:32 establishes the consequent in this case.

177

No statement modi�es q:oldrb while the antecedent holds. Therefore, by Claim 2

and Axioms 2 and 3, no statement falsi�es the consequent while the antecedent holds.

invariant p 6= q ^ ((p@46 ^ p:oldrb = n) _ (:p@46 ^ p:rb = n)))

(:q@46 _ q:oldrb 6= n) ^ (q@46 _ q:rb 6= n) ^

BUF [X:pid ; X:tag]:ret 6= n ^

(:still valid(q) _ q:oldrb 6= n _ :q@f7::25; 33::45g) (I41)

Proof: Initially, p@0 ^ BUF [X:pid ; X:tag]:ret 6= p:rb ^ q@0 ^ q:rb 6= p:rb holds, so (I41)

holds. No statement modi�es p:rb while :p@46 holds, and no statement modi�es p:oldrb

while p@46 holds. Only statement p:46 establishes :p@46, and the antecedent holds after

the execution of p:46 only if p@46 ^ p:oldrb = n holds before. Thus, statement p:46 does not

establish the antecedent. Only statement p:11 establishes p@46. By Axiom 2, the antecedent

holds after the execution of statement p:11 only if p@11 ^ still valid(p) ^ p:oldrb =

n ^ p:rb 6= n holds before. By (I41)p;qq;p, this implies that the �rst two conjuncts of the

consequent hold before the execution of statement p:11 (the last conjunct of the consequent

of (I41)p;qq;p does not hold in this case, so neither does the antecedent); statement p:11 does

not falsify either of them. Also, (I12) and (I13) imply that BUF [p; p:side]:ret 6= n holds

before the execution of statement p:11 in this case. Therefore, by Axiom 3, statement

p:11 establishes the third conjunct of the consequent. Finally, by Axiom 3, statement p:11

establishes :still valid(q), so the last conjunct of the consequent holds after the execution

of p:11. We now consider statements that potentially falsify the consequent while the

antecedent holds.

Only statement q:32 modi�es q:oldrb, and :q@46 holds after the execution of

178

statement q:32. Only statement q:11 establishes q@46, and, by Axiom 2, it does so only if

executed when q@11 ^ still valid(q) holds. The last conjunct of the consequent implies

that q:oldrb 6= n holds before, and therefore after, the execution of statement q:11 in this

case.

Only statement q:46 can falsify q@46 or modify q:rb. The �rst conjunct of the

consequent implies that q:oldrb 6= n holds before the execution of statement q:46, which

implies that q:rb 6= n holds afterwards.

By Claim 2, no statement falsi�es the third conjunct of the consequent by mod-

ifying BUF . By Axiom 2, X is modi�ed only by statement s:11, where s is any process,

and only if s:11 is executed when s@11 ^ still valid(s) holds. If s = p, then by (I40),

p@46 ^ p:oldrb 6= n holds after the execution of statement s:11 in this case, so the an-

tecedent does not hold. If s 6= p, then by (I41)qs, s:rb 6= n holds before the execution

of statement s:11, so, by (I12) and (I13), s:11 does not falsify the third conjunct of the

consequent.

By Axiom 1, only statement q:1 establishes still valid(p), and q@2 holds af-

ter the execution of statement q:1. Only statement q:32 modi�es q:oldrb or establishes

q@f7::25; 33::45g. By Axiom 1, if q@32 ^ :still valid(q) holds before the execution of

statement q:32, then :still valid(q) also holds afterwards. If q@32 ^ still valid(q) holds

before the execution of statement q:32, then, by (I39) and the third conjunct of the conse-

quent, q:oldrb 6= n holds afterwards.

Claim 3: Only statement p:49modi�es RET [m][p] while BUF [X:pid ; X:tag]:ret = m holds.

Proof: Claim 3 follows directly from the program text and (I41).

179

Claim 4: RV (p) and AV (p) change only if X is modi�ed.

Proof: By Claim 2, RV (p) and AV (p) do not change as a result of a statement modifying

BUF . By Claim 3, RV (p) and AV (p) do not change as a result of a statement modifying

RET .

Claim 5: Statements other than p:17, p:32, and p:46 do not establish or falsify HL(p; n)

for any n.

Proof: The claim follows easily from the program text and the de�nition of HL.

invariant 0 � h < B ^ p@f7::25; 33::45g ^ p:dirty [h])

(9m : 0 � m < p:dcnt :: p:ptrs :blks[h] = p:copy [m]) (I42)

Proof: Initially, p@0 holds, so (I42) holds. Only statement p:32 establishes p@f7::25; 33::45g.

After the execution of statement p:32, the antecedent does not hold because :p:dirty [h]

holds. Only statement p:17 establishes p:dirty [h], and if it does so, the consequent holds

afterwards.

No statement modi�es p:copy while the antecedent holds. Only statement p:17

modi�es p:dcnt or p:ptrs:blks while p@f7::25; 33::45g holds. The consequent cannot be

falsi�ed by increasing p:dcnt . Also, statement p:17 modi�es p:ptrs:blks[h] only if executed

when p@17 ^ p:blkidx = h. Thus, by (I10), statement p:17 does not falsify the consequent

while the antecedent holds.

invariant q@f2::6; 32::40g ^ still valid(q)) q:auxcopy = AuxObj (I43)

Proof: Initially, q@0 holds, so (I43) holds. By Axiom 1, only statement q:1 establishes the

antecedent, and the consequent holds after the execution of statement q:1. No statement

180

modi�es q:auxcopy while the antecedent holds, and, by Axioms 2 and 3, the antecedent

does not hold after the execution of any statement that modi�es AuxObj .

invariant q@2 ^ still valid(q))

(8n : 0 � n < q:i :: q:ptrs :blks[n] = BUF [X:pid ; X:tag]:blks[n]) (I44)

Proof: Initially, q@0 holds, so (I44) holds. By Axiom 1, only statement q:1 establishes the

antecedent, and the consequent holds after the execution of statement q:1 because q:i = 0

holds.

By Claim 2, no statement falsi�es the consequent by modifying BUF . By Axioms

2 and 3, the antecedent does not hold after the execution of any statement that modi�es

X . Only statement q:2 modi�es q:i or q:ptrs:blks while the antecedent holds. By (I26),

statement q:2 preserves the consequent if the antecedent holds.

invariant q@f3::6; 32::37g ^ still valid(q))

(8n : 0 � n < B :: q:ptrs :blks[n] = BUF [X:pid ; X:tag]:blks[n]) (I45)

Proof: Initially, q@0 holds, so (I45) holds. By Axiom 1, only statement q:2 establishes the

antecedent, and it does so only if executed when q@2 ^ still valid(q) ^ q:i = B � 1 holds.

By (I26) and (I44), the consequent holds after the execution of statement q:2 in this case.

By Claim 2, no statement falsi�es the consequent by modifying BUF . By Axioms

2 and 3, the antecedent does not hold after the execution of any statement that modi�es

X . Also, no statement modi�es q:ptrs:blks while the antecedent holds.

invariant p@f7::25; 33::45g ^ still valid(p))

(8h : 0 � h < B :: p:dirty [h] _

181

p:ptrs:blks[h] = BUF [X; pid ; X:tag]:blks[h]) (I46)

Proof: Initially, p@0 holds, so (I46) holds. Only statement p:32 establishes p@f7::25; 33::45g.

By Axiom 1, statement p:32 establishes the antecedent only if executed when p@32 ^

still valid(p) holds. By (I45), the consequent holds before, and therefore after, the ex-

ecution of p:32 in this case. By Axiom 1, no statement establishes still valid(p) while

p@f7::25; 33::45g holds.

By Claim 2, no statement falsi�es the consequent by modifying BUF . By Axioms

2 and 3, the antecedent does not hold after the execution of any statement that modi�es

X . No statement falsi�es p:dirty [h] while the antecedent holds, and any statement that

modi�es p:ptrs :blks[h] for some h while the antecedent holds also establishes p:dirty [h].

invariant 0 � m < B ^ p@f7::25; 33::42g ^ :p:dirty [m])

:HAS (p:tr ; 0; p:dcnt; m) (I47)

Proof: Initially, p@0 holds, so (I47) holds. Only statement p:32 establishes p@f7::25; 33::42g,

and (I47) holds after the execution of statement p:32 because p:dcnt = 0 holds. No state-

ment establishes :p:dirty [m] while p@f7::25; 33::42g holds.

Only statement p:17 modi�es p:tr or p:dcnt while the antecedent holds. Statement

p:17 falsi�es the consequent only if executed when p:blkidx = m holds. However, p:17 also

falsi�es the antecedent in this case.

invariant p@f15::17g) :HAS (p:tr ; 0; p:dcnt; p:blkidx) (I48)

Proof: Initially, p@0 holds, so (I48) holds. Only statement p:14 establishes the antecedent,

182

and, by (I47), the consequent holds after statement p:14 establishes the antecedent. Also,

no statement falsi�es the consequent while the antecedent holds.

invariant p@f7::25; 33::45g ^ still valid(p) ^ 0 � m < p:dcnt ^ p:oldlst [m] = n)

BUF [X:pid ; X:tag]:blks[p:tr [m]] = n ^ :HAS (p:copy; 0;M; n) (I49)

Proof: Initially, p@0 holds, so (I49) holds. By Axiom 1, only statement p:32 establishes

p@f7::25; 33::45g ^ still valid(p). The antecedent does not hold after the execution of

statement p:32 because p:dcnt = 0 holds. Only statement p:17 modi�es p:oldlst or p:dcnt

while p@f7::25; 33::45g holds. Statement p:17 can establish the antecedent only if executed

when p@17 ^ p:dcnt = m holds. In this case, the antecedent holds after the execution

of statement p:17 only if p:ptrs:blks[p:blkidx] = n holds before. Also, by Axiom 1, the an-

tecedent does not hold after the execution of statement p:17 in this case unless still valid(p)

holds before. By (I8), (I10), and (I46), this implies p:dcnt = m ^ 0 � p:blkidx < B ^

BUF [X:pid ; X:tag]:blks[p:blkidx] = n, which implies HAS(BUF [X:pid ; X:tag]:blks; 0; B; n).

Therefore, (I53) implies :HAS(p:copy ; 0;M; n). Thus, the �rst conjunct of the consequent

holds after the execution of statement p:17, and the second conjunct holds before, and

therefore after, the execution of statement p:17.

No statement modi�es p:copy while the antecedent holds. Only statement p:17

modi�es p:tr while the antecedent holds, and it modi�es p:tr [m] only if executed when

p@17 ^ p:dcnt = m holds. As shown above, either the antecedent does not hold after the

execution of statement p:17 in this case, or the consequent does hold. By Axioms 2 and 3,

the antecedent does not hold after the execution of any statement that modi�es X , and, by

Claim 2, no statement falsi�es the consequent by modifying BUF.

183

invariant p@46 ^ 0 � m < p:dcnt ^ p:oldlst [m] = n)

:HAS (p:copy; p:dcnt ;M; n) (I50)

Proof: Initially, p@0 holds, so (I50) holds. No statement modi�es p:dcnt or p:oldlst while

p@46 holds. Only statement p:11 establishes p@46. By Axiom 2 and (I49), if statement

p:11 establishes the antecedent then the consequent holds before the execution of p:11.

Statement p:11 does not falsify the consequent. Also, no statement falsi�es the consequent

while the antecedent holds.

invariant ((p@f7::25; 33::45g ^ still valid(p)) _ p@46)) UNIQ(p:oldlst; p:dcnt) (I51)

Proof: Initially, p@0 holds, so (I51) holds. By Axiom 1, no statement establishes

still valid(p) while p@f7::25; 33::46g holds. Only statement p:11 establishes p@46, and,

by Axiom 2, it does so only if p@11 ^ still valid(p) holds beforehand, in which case, the

antecedent already holds. Only statement p:32 establishes p@f7::25; 33::45g. The conse-

quent holds after the execution of statement p:32 because p:dcnt = 0 holds.

Only statement p:17 modi�es p:oldlst or p:dcnt while the antecedent holds, and,

by Axiom 1, it does so only if executed when p@17 ^ still valid(p) holds. Also, statement

p:17 falsi�es the consequent only if executed when (9m : 0 � m < p:dcnt :: p:oldlst[m] =

p:ptrs:blks[p:blkidx]) holds. By (I10), (I46), and (I49), this implies that (9m : 0 � m <

p:dcnt :: BUF [X:pid ; X:tag]:blks[p:tr [m]] = BUF [X:pid ; X:tag]:blks[p:blkidx]) holds. How-

ever, because (I48) implies that p:tr [m] 6= p:blkidx , (I8) and (I55) imply that this does not

hold. Thus, statement p:17 does not falsify the consequent.

invariant UNIQ(p:copy;M) (I52)

184

Proof: Initially, (I52) holds. Only statement p:46 modi�es p:copy . By (I50) and (I51),

statement p:46 does not falsify (I52).

invariant p 6= q ^ ((p@46 ^ HL(p; n)) _ (:p@46 ^ HAS(p:copy ; 0;M; n))))

(:q@46 _ :HL(q; n)) ^ (q@46 _ :HAS (q:copy ; 0;M; n)) ^

:HAS (BUF [X:pid ; X:tag]:blks; 0; B; n) ^

(:still valid(q) _ :HL(q; n) _ :q@f7::25; 33::45g) (I53)

Proof: Initially, p@0 ^ q@0 holds. If n < pM or n � (p+ 1)M then the antecedent does

not hold initially. If pM � n < (p+ 1)M , then

:HAS (q:copy; 0;M; n) ^ :HAS (BUF [X:pid ; X:tag]:blks; 0; B; n)

holds initially. Therefore, (I53) holds initially.

No statement modi�es p:copy while :p@46 holds. Only statement p:46 establishes

:p@46, and the antecedent holds after the execution of p:46 only if p@46 ^ HL(p; n) holds

before. Thus, statement p:46 does not establish the antecedent. By Claim 5, :p@46 holds

after any statement execution that establishes HL(p; n). Only statement p:11 establishes

p@46. By Axiom 2 and Claim 5, statement p:11 establishes the antecedent only if executed

when p@11 ^ still valid(p) ^ HL(p; n) holds. By (I53)p;qq;p, this implies that the �rst two con-

juncts of the consequent hold before the execution of statement p:11; statement p:11 does not

falsify either of them. Also, (I15) and (I54) imply that :HAS(BUF [p; p:side]:blks; 0; B; n)

holds before the execution of statement p:11 in this case. Therefore, by Axiom 3, statement

p:11 establishes the third conjunct of the consequent in this case. Finally, by Axiom 3,

statement p:11 establishes :still valid(q), so the last conjunct of the consequent holds after

185

the execution of p:11. We now consider statements that potentially falsify the consequent

while the antecedent holds.

By Claim 5, only statement q:11 can falsify the �rst conjunct of the consequent,

and, by Axiom 2, it does so only if executed when q@11 ^ still valid(q) holds. The last

conjunct of the consequent implies that :HL(q; n) holds before, and therefore after, the

execution of statement q:11 in this case.

Only statement q:46 can falsify q@46 or modify q:copy . The �rst conjunct of

the consequent implies that :HL(q; n) holds before the execution of statement q:46, which

implies that :HAS (q:copy; 0;M; n) holds afterwards.

By Claim 2, no statement falsi�es the third conjunct of the consequent by modi-

fying BUF . By Axiom 2, X is modi�ed only by statement s:11, where s is any process, and

only if s:11 is executed when s@11 ^ still valid(s) holds. If s = p ^ :HL(p; n) holds before

the execution of s:11, then by Claim 5, the antecedent does not hold after the execution of

statement s:11. If s = p ^ s@11 ^ still valid(s) ^ HL(p; n) holds before the execution of

s:11, then, as shown above, the consequent holds after the execution of statement s:11. If

s 6= p ^ s@11 ^ still valid(s) holds before the execution of statement s:11, then, by (I53)qs,

s@11 ^ still valid(s) ^ :HAS (s:copy ; 0;M; n) holds before the execution of statement

s:11. Therefore, by (I15), (I35), (I42), and (I46), s:11 does not falsify the third conjunct of

the consequent.

By Axiom 1, only statement q:1 establishes still valid(p), and q@2 holds after

the execution of statement q:1. By Claim 5, only statements q:17, q:32, and q:46 es-

tablish HL(q; n). Also, only statement q:32 establishes q@f7::25; 33::45g. After the exe-

186

cution of statement q:46, :q@f7::25; 33::45g holds. Also, by the second conjunct of the

consequent, :HAS (q:copy; 0;M; n) holds before the execution of statement q:32. Thus,

:HL(q; n) holds afterwards. By Axiom 1, still valid(q) holds after the execution of state-

ment q:17 if still valid(q) holds before. By (I8) and (I45), q@17 ^ still valid(q) implies

q:ptrs:blks[q:blkidx] = BUF [X:pid ; X:tag]:blks[q:blkidx]. Thus, by the third conjunct of the

consequent, statement q:17 does not establish HL(q; n) in this case.

invariant p@f7::25; 33::45g ^ still valid(p) ^ HL(p; n))

:HAS (p:ptrs:blks; 0; B; n) (I54)

Proof: Initially, p@0 holds, so (I54) holds. No statement modi�es p:copy while

p@f7::25; 33::45g holds. Only statement p:17 modi�es p:dcnt or p:oldlst while

p@f7::25; 33::45g holds. HAS (p:copy; p:dcnt ;M; n) is not established by increasing p:dcnt .

Statement p:17 establishes HAS (p:oldlst; 0; p:dcnt; n) only if executed when

p:ptrs:blks[p:blkidx] = n. Thus, by Axiom 1, p:17 establishes the antecedent only if executed

when p@17 ^ still valid(p) ^ p:ptrs :blks[p:blkidx] = n ^ :HAS (p:copy; p:dcnt ;M; n) holds.

Therefore, by (I34) and (I56), the consequent holds after the execution of statement p:17.

Only statement p:32 establishes p@f7::25; 33::45g. By Axiom 1, p:32

establishes the antecedent only if executed when p@32 ^ still valid(p) ^

HAS (p:copy; 0;M; n) holds. By (I35), (I45), and (I53), the consequent holds before the

execution of statement p:32 in this case; p:32 does not falsify the consequent.

Only statement p:17 modi�es p:ptrs:blks while the antecedent holds, and p:17 falsi-

�es the consequent only if executed when p@17 ^ p:copy [dcnt] = n ^ p:ptrs :blks[p:blkidx] 6=

n holds. However, by (I49) and (I52), the antecedent does not hold after the execution of

187

statement p:17 in this case.

invariant UNIQ(BUF [X:pid ; X:tag]:blks; B) (I55)

Proof: Initially (I55) holds. By Claim 2, (I55) is potentially falsi�ed only by statements

that modify X . The only statement that modi�es X is statement s:11, where s is any

process, and, by Axiom 2, s:11 modi�es X only if executed when s@11 ^ still valid(s)

holds. By (I15) and (I56), (I55) holds after the execution of statement s:11 in this case.

invariant p@f7::25; 38::45g ^ still valid(p)) UNIQ(p:ptrs:blks; B) (I56)

Proof: Initially, p@0 holds, so (I56) holds. By Axioms 1 and 4, only statement p:37

establishes the antecedent, and it does so only if executed when p@37 ^ still valid(p)

holds. By (I45) and (I55), the consequent holds before, and therefore after, the execution

of statement p:37 in this case.

Only statement p:17 modi�es p:ptrs :blks while the antecedent holds. By Axiom

1, p:17 falsi�es the consequent while the antecedent holds only if executed when p@17 ^

still valid(p) holds. By (I34), HAS (p:copy; 0;M; p:copy[p:dcnt]) holds before the execution

of statement p:17. By (I53), this implies

p@17 ^ :HAS (BUF [X:pid ; X:tag]:blks; 0; B; p:copy[p:dcnt]):

Thus, by (I46), p@17 ^ (8h : 0 � h < B :: p:dirty [h] _ p:ptrs:blks[h] 6= p:copy[p:dcnt]) holds.

However, if p@17 ^ p:dirty [h] ^ p:ptrs:blks[h] = p:copy [p:dcnt] holds for some h, where

0 � h < B, then by (I42), p@17 ^ (9m : 0 � m < p:dcnt :: p:copy [p:dcnt] = p:copy [m]). By

(I34), this contradicts (I52). Therefore, statement p:17 does not falsify the consequent.

188

Claim 6: Statements other than q:18 no not modify BLK [x] for any x such that

HAS (q:ptrs:blks; 0; B; x) while :q@46 ^ still valid(q) holds.

Proof: Only statements s:16 and s:18, where s is any process, modify BLK . If s = q,

then, by (I34) and (I54), statement s:16 does not modify BLK [x] for any x such that

HAS (q:ptrs:blks; 0; B; x) holds while :q@46 ^ still valid(q) holds. By (I42) and (I46),

:q@46 ^ HAS(q:ptrs:blks; 0; B; x) implies

:q@46 ^ (HAS(p:copy ; 0; p:dcnt; x) _ HAS (BUF [X:pid ; X:tag]:blks; 0; B; x)):

Thus, by (I53)ps, s@46 _ :HAS (s:copy ; 0;M; x) holds. By (I34), this implies that statement

s:16 does not modify BLK [x].

By (I8), (I11), and (I42), :s@46 ^ HAS (s:copy; 0; s:dcnt ; s:ptrs:blks[s:blkidx])

holds before the execution of statement s:18. Thus, by (I53) and the above assertion,

statement s:18 does not modify BLK [x] for any x such thatHAS(q:ptrs:blks; 0; B; x) holds.

invariant q@16 ^ still valid(q)) q:tmpword = BLK [q:ptrs:blks[q:blkidx]][q:k] (I57)

Proof: Initially, q@0 holds, so (I57) holds. By Axiom 1, only statement q:15 establishes the

antecedent; q:15 establishes the consequent. No statement modi�es q:tmpword , q:ptrs:blks,

q:blkidx , or q:k while the antecedent holds. By (I8) and Claim 6, no statement falsi�es the

consequent by modifying BLK while the antecedent holds.

invariant s@18) HAS(s:copy ; 0; s:dcnt; s:ptrs:blkidx [s:blkidx]) (I58)

Proof: Initially, s@0 holds, so (I58) holds. Only statements s:14 and s:17 establish the

antecedent. It is easy to see that the consequent holds after the execution of statement

189

s:17. By (I7) and (I42), the consequent holds before and after statement s:14 establishes

the antecedent. No statement falsi�es the consequent while the antecedent holds.

Claim 7: Statements of processes other than q no not modify BLK [x] for any x such that

HAS (q:copy; 0;M; x) while :q@46 holds.

Proof: Only statements s:16 and s:18, where s 6= q, potentially violate the claim. By (I11),

(I34) and (I58), HAS (s:copy ; 0;M; x) holds before either statement modi�es BLK [x]. By

(I53), this implies that this does not hold while :q@46 ^ HAS (q:copy; 0;M; x) holds, so

the claim holds.

invariant q@f15::16g ^ still valid(q)) (8k : 0 � k < q:k ::

BLK [q:copy[q:dcnt]][k] = BLK [q:ptrs:blks[q:blkidx]][k]) (I59)

Proof: Initially, q@0 holds, so (I59) holds. By Axiom 1, only statement q:14 establishes

the antecedent. After the execution of statement q:14, either the antecedent does not hold,

or the consequent holds vacuously because q:k = 0 holds.

No statement modi�es q:copy , q:dcnt , q:ptrs:blks, or q:blkidx while the antecedent

holds. Only statement q:16 modi�es q:k and, by (I57) and the assumption that (I59) holds

before the execution of statement q:16, if follows that statement q:16 does not falsify the

consequent while the antecedent holds. Also, by (I8) and (I34) and Claims 6 and 7, no

statement falsi�es the consequent by modifying BLK while the antecedent holds.

invariant q@17 ^ still valid(q)) (8k : 0 � k < S ::

BLK [q:copy[q:dcnt]][k] = BLK [q:ptrs:blks[q:blkidx]][k]) (I60)

190

Proof: Initially, q@0 holds, so (I60) holds. By Axiom 1, only statement q:16 establishes

the antecedent, and it does so only if executed when q@16 ^ still valid(q) ^ q:k = S � 1.

By (I57) and (I59), statement q:16 establishes the consequent in this case.

No statement modi�es q:copy , q:dcnt , q:ptrs:blks, or q:blkidx while the antecedent

holds. Also, by (I8) and (I34) and Claims 6 and 7, no statement falsi�es the consequent by

modifying BLK while the antecedent holds.

invariant q@f4::25; 32::45g ^ still valid(q)) EQ(q:ptrs:blks; q:auxcopy) (I61)

Proof: Initially, q@0 holds, so (I61) holds. By Axiom 1, only statement q:3 establishes the

antecedent, and it does so only if executed when q@3 ^ still valid(q) holds. By (I43), (I45),

(I65), the consequent holds before the execution of statement q:3 in this case; statement q:3

does not falsify the consequent.

Only statement q:17 modi�es q:ptrs:blks while the antecedent holds. By Axiom

1, the antecedent holds after the execution of statement q:17 only if q@17 ^ still valid(q)

holds before. Thus, by (I60), q:17 does not falsify the consequent. Only statement q:18

modi�es q:auxcopy while the antecedent holds, and by Claim 6, statements other than q:18

do not modify BLK [x] for any x such that HAS (q:ptrs:blks[m]; 0; B; x) holds. It is easy

to see from (I8), (I9), and the de�nition of EQ that statement q:18 does not falsify the

consequent.

invariant q@f24::25g ^ still valid(q)) q:auxcopy =

Apply All(AuxObj ; q:hlplst � (q:pr ; q:applyop; q:applypars; q:rv)) (I62)

Proof: Initially, q@0 holds, so (I62) holds. By Axiom 1, the antecedent is established only

by the return of a call to Simulate Op, such that q@23 ^ still valid(q) held before the call to

191

Simulate Op. By (I63), this implies that q:auxcopy = Apply All(AuxObj ; q:hlplst) held be-

fore the call to Simulate Op. By Axioms 1, 2, and 3, if AuxObj changes during the execution

of Simulate Op, then the return from Simulate Op does not establish the antecedent. By (I9)

and (I61), each Read(q:word) call from Simulate Op returns q:auxcopy [q:word]. Also, ob-

serve that eachWrite(q:word ; q:val) call from Simulate Op writes q:val to q:auxcopy [q:word].

Thus, by the assumption that Simulate Op(q:applyop; q:applypars) makes the same sequence

of calls to Read and Write as the user-supplied operation does, and returns the same value,

it follows that the consequent holds after the return from Simulate Op establishes the an-

tecedent.

No statement modi�es q:auxcopy , q:hlplst, q:pr , q:applyop, q:applypars, or q:rv

while the antecedent holds. Also, by Axioms 2 and 3, any statement that modi�es Auxcopy

also falsi�es the antecedent.

invariant q@f7::11; 20::23; 41::46g ^ still valid(q))

q:auxcopy = Apply All(AuxObj ; q:hlplst) (I63)

Proof: Initially, q@0 holds, so (I63) holds. By Axiom 1, only statements q:25 and q:40 can

establish the antecedent, and they do so only if executed when still valid(q) holds. Thus,

by (I43), statement q:40 establishes the consequent if it establishes the antecedent because

it establishes q:hlplst = fg. Also, by (I62), statement q:25 establishes the consequent if it

establishes the antecedent.

By Axioms 2 and 3, the antecedent does not hold after the execution of any

statement that modi�es AuxObj . No statement modi�es q:hlplst or q:auxcopy while the

antecedent holds.

192

invariant q@11 ^ still valid(q))

EQ(BUF [q; q:side]:blks;Apply All(AuxObj ; q:hlplst)) (I64)

Proof: (I64) follows directly from (I15), (I63), and (I61).

invariant EQ(BUF [X:pid ; X:tag]:blks;AuxObj) (I65)

Proof: Initially, (I65) holds. By Claim 2, no statement falsi�es (I65) by modifying BUF .

Only statement q:11, where q is any process, modi�es X or AuxObj , and, by Axiom 2, it

does so only if executed when q@11 ^ still valid(q) holds. By (I64), statement q:11 does

not falsify (I65) in this case.

invariant q@41) (8p : p 6= q :: :(9 tup 2 q:hlplst :: tup :pid = p)) (I66)

Proof: Initially, q@0 holds, so (I66) holds. Only statements q:21 and q:25 establish the an-

tecedent, and they do so only if executed when q:from = 40 holds. By (I20), the consequent

holds after the execution of either statement in this case. No statement modi�es q:hlplst

while the antecedent holds.

invariant q@43 ^ (9 tup 2 q:hlplst :: tup :pid = p)) p = q _

0 � (p+N � q:ptrs:help) mod N � (q:try +N � q:ptrs :help) mod N (I67)

Proof: Initially, q@0 holds, so (I67) holds. Only statements q:21 and q:25 establish q@43,

and only statements q:25 establishes (9 tup 2 q:hlplst :: tup:pid = p). By (I68), if q:21

establishes the antecedent, then the consequent holds afterwards, and by (I18) and (I68),

if statement q:25 establishes the antecedent, then the consequent holds afterwards. No

statement falsi�es the consequent while the antecedent holds.

193

invariant q@f12::25; 42g ^ (9 tup 2 q:hlplst :: tup :pid = p)) p = q _

0 � (p+N � q:ptrs:help) mod N < (q:try +N � q:ptrs :help) mod N (I68)

Proof: Initially, q@0 holds, so (I68) holds. The antecedent does not hold after the execution

of any statement that modi�es q:hlplst . Thus, only statements q:41 and q:43 can establish

the antecedent. By (I66), if p 6= q, then the antecedent does not hold after the execution of

statement q:41 (if p = q, then the consequent holds).

If q:try +1 = q:ptrs:help _ (q:try = N � 1 ^ q:ptrs :help = 0), then, by (I24) and

(I25), statement q:43 establishes :q:loop, and therefore does not establish the antecedent.

Otherwise, q:try + 1 6= q:ptrs:help ^ :(q:try = N � 1 ^ q:ptrs:help = 0). By (I24)

and (I25), this implies that q:try + N � q:ptrs:help =2 fN � 1; 2N � 1g, and that 1 �

q:try+N�q:ptrs:help < 2N . Together, these expressions imply that (((q:try+1)mod N)+

N � q:ptrs :help) mod N = ((q:try + N � q:ptrs :help) mod N) + 1. Therefore, if the

antecedent holds after the execution of statement q:43, then statement q:43 increases (q:try+

N �q:ptrs :help)mod N by one. Thus, by (I67), if the antecedent holds after the execution

of statement q:43, then the consequent also holds.

No statement falsi�es the consequent while the antecedent holds.

invariant q@f12::25g) :(9 tup 2 q:hlplst :: tup:pid = q:pr) (I69)

Proof: Initially, q@0 holds, so (I69) holds. Only statements q:40 and q:42 establish the

antecedent. The consequent holds after the execution of statement q:40, and, by (I68)pq:try ,

it also holds after the execution of statement q:42. No statement falsi�es the consequent

while the antecedent holds.

194

Claim 8: Only statement p:28 falsi�es NORM (p), and if it does so, then it also establishes

ST (p).

Proof: Statements other than p:28 do not modify ANC [p]. By Claims 2 and 3, only

statement p:49 modi�es RET [BUF [r; t]:ret][p] while X = (r; t) holds. By (I16), statement

p:49 does not falsify NORM (p). Thus, it remains to consider statement q:11, where q

is any process, because q:11 is the only statement that modi�es X . By Axiom 2, q:11

modi�es X only if executed when q@11 ^ still valid(q) holds. By (I31) and (I77), this

implies CPD(q;BUF [q; q:side]:ret; p) _ IBS (q;BUF [q; q:side]:ret; p) (because (9 tup ::

APD(BUF [q; q:side]:ret; p; tup:val)) implies ST (p)). This implies that, if NORM (p) holds,

then the execution of statement q:11 (which establishes X = (q; q:side)) does not falsify

NORM (p). It is easy to see that if p:28 falsi�es NORM (p), then it also establishes ST (p).

Claim 9: Only statement q:11, where q is any process, falsi�es ST (p), and if it does so,

then it also establishes APP(p) and falsi�es still valid(r) for all r.

Proof: By (I32), (I95), and the program text, no statement modi�es ANC [p] while ST (p)

holds. By Claims 2 and 3, only statement p:49 modi�es RET [BUF [r; t]:ret][p] while X =

(r; t) holds. By (I91), statement p:49 does not falsify ST (p). Thus, ST (p) can be falsi�ed

only by modifying X . Only statement q:11, where q is any process, modi�es X , and, by Ax-

iom 2, it does so only if executed when q@11 ^ still valid(q) holds. By Axiom 3, this implies

that the execution of statement q:11 falsi�es still valid(r) for all r in this case. It remains

to show that q:11 also establishes APP(p). By (I77), either CPD(q;BUF [q; q:side]:ret; p)

or APD(BUF [q; q:side]:ret; p; v) holds for some v before the execution of statement q:11 in

this case (because IBS (q;BUF [q; q:side]:ret; p) implies q@25).

195

If CPD(q;BUF [q; q:side]:ret ; p) ^ ST (p) holds before the execution of statement

q:11, then by the de�nitions of CPD , ST , AV , and CV , it follows that statement q:11 does

not falsify ST (p). Similarly, if APD(BUF [q; q:side]:ret ; p; v) holds for some v before the

execution of statement q:11, then q:11 establishes APP(p).

Claim 10: Only statement q:11, where q is any process, or statement p:49 falsi�es APP(p),

and if they do so, then they establish NORM (p).

Proof: By (I32), (I95), and the program text, no statement modi�es ANC [p] while APP(p)

holds. By Claims 2 and 3, only statement p:49 modi�es RET [BUF [r; t]:ret][p] while X =

(r; t) holds, and, by (I16), if it does so while APP(p) holds, then it establishes NORM (p).

Also, only statement q:11, where q is any process, modi�es X . Similarly to the proof

of Claim 9, (I77) implies that, if statement q:11 falsi�es APP(p), then it also establishes

NORM (p).

invariant NORM (p) _ ST (p) _ APP(p) (I70)

Proof: Initially, NORM (p) holds. By Claims 8, 9, and 10, no statement falsi�es (I70).

invariant ((q@21 ^ q:match 6= RET [q:rb][q:pr]:applied) _ q@f12::19; 22::25g) ^

still valid(q) ^ q:pr = p) q:match = ANC [q:pr]:bit ^ ST (p) (I71)

Proof: Initially, q@0 holds, so (I71) holds. No statement modi�es q:match, q:rb, or q:pr

while q@f12::19; 21::25g holds. Only statement q:21 establishes q@f12::19; 22::25g, and it

does so only if executed when q@21 ^ q:match 6= RET [q:rb][q:pr]:applied holds. By (I41),

no statement modi�es RET [q:rb] while q@f12::19; 22::25g holds. Thus, by Axiom 1, only

statement q:20 establishes the antecedent. Statement q:20 establishes the �rst conjunct

196

of the consequent. Also, statement q:20 establishes the antecedent only if executed when

q@20 ^ still valid(q) ^ q:pr = p ^ ANC [q:pr]:bit 6= RET [q:rb][q:pr]:applied holds. By

(I69), (I78), (I70), and the de�nitions of NORM (p), ST (p), and APP(p), this implies that

ST (p) holds before, and therefore after, the execution of statement q:20 in this case.

No statement modi�es q:match or q:pr while the antecedent holds. Only statement

p:28 modi�es ANC [q:pr] while the antecedent holds, and, by (I31) and (I95), it does not

do so while the consequent holds. Also, by Claim 9, any statement that falsi�es ST (p) also

falsi�es the antecedent.

invariant q@f12::19; 23::25g ^ still valid(q) ^ q:pr = p) q:applyop = ANC [p]:op (I72)

Proof: Initially, q@0 holds, so (I72) holds. No statement modi�es q:pr while

q@f12::19; 23::25g holds. Therefore, by Axiom 1, only statement q:22 establishes the an-

tecedent, and it does so only if executed when q@22 ^ still valid(q) ^ q:pr = p holds.

Statement q:22 establishes the consequent in this case.

No statement modi�es q:applyop while the antecedent holds. Also, by (I31), (I71),

and (I95), no statement modi�es ANC [p] while the antecedent holds.

invariant q@f12::19; 24::25g ^ still valid(q) ^ q:pr = p)

q:applypars = ANC [p]:pars (I73)

Proof: Initially, q@0 holds, so (I72) holds. No statement modi�es q:pr while

q@f12::19; 24::25g holds. Therefore, by Axiom 1, only statement q:23 establishes the an-

tecedent, and it does so only if executed when q@23 ^ still valid(q) ^ q:pr = p holds.

Statement q:23 establishes the consequent in this case.

197

No statement modi�es q:applypars while the antecedent holds. Also, by (I31),

(I71), and (I95), no statement modi�es ANC [p] while the antecedent holds.

invariant q@f7::25; 41::45g ^ still valid(q)) (8 tup 2 q:hlplst :: ST (tup:pid) ^

tup:op = ANC [tup:pid]:op ^ tup :pars = ANC [tup:pid]:pars) (I74)

Proof: Initially, q@0 holds, so (I74) holds. By Axiom 1, only statement q:40 establishes

the antecedent; the consequent holds vacuously after the execution of statement q:40.

No statement modi�es any tuple in q:hlplst and only statement q:25 adds new

tuples to q:hlplst. By Axiom 1, the antecedent holds after the execution of statement

q:25 only if q@25 ^ still valid(q) holds before. By (I71), (I72), and (I73), statement

q:25 does not falsify the consequent in this case. By Claim 9, any statement that falsi�es

ST (p) for any p also falsi�es the antecedent. Also, only statement p:28, where p = tup:pid

modi�es ANC [tup:pid] for any tup . However, by (I31) and (I95), this does not occur while

ST (tup:pid) holds.

Claim 11: No statement falsi�es CPD(q; q:rb; p)_ IBS (q; q:rb; p) while q@40 ^ still valid(q)

holds.

Proof: No statement modi�es q:rb while q@40 holds. Statements of process q are not

executed while q@40 holds. Statements of process s 6= q do not modify q:pr . Also, by

Claim 4 and Axioms 2 and 3, any statement that modi�es RV (p) or AV (p) also falsi�es

still valid(q). For any process s 6= q, (I41)p;qq;s and the program text imply that statements

other than s:49 do not modify RET [n], where n = q:rb while :q@46 holds. By (I94), if

statement s:49 modi�es RET [n], where n = q:rb, then DND(q; s) holds. Because :q@46,

198

this implies that RET [q:rb][s]:applied = ANC [s]:bit holds. By (I16), this implies that

statement s:49 does not falsify CPD(q; q:rb; p) _ IBS (q; q:rb; p).

invariant q@40 ^ still valid(q)) (8p :: CPD(q; q:rb; p)) (I75)

Proof: Initially, q@0 holds, so (I75) holds. By Axiom 1, only statement q:39 establishes

the antecedent, and it does so only if executed when q@39 ^ still valid(q) ^ q:j = N � 1

holds. By (I84), (I85), and (I86), the consequent holds after the execution of statement q:39

in this case. Also, by Claim 11, no statement falsi�es the consequent while the antecedent

holds.

Claim 12: No statement falsi�es CRV (q; q:rb; p) while :q@46 ^ still valid(q) holds.

Proof: No statement modi�es q:rb while :q@46 holds. Only statements q:25 and q:40

modify q:hlplst. By (I75), if still valid(q) holds, then CRV (q; q:rb; p) holds after the ex-

ecution of statement q:40. Statement q:25 does not remove tuples from q:hlplst or mod-

ify tuples already in q:hlplst . Thus, q:25 potentially violates the claim only by falsifying

:(9 tup :: tup 2 q:hlplst ^ tup :pid = p) ^ IBS (q; q:rb; p) while still valid(q) holds

(note that CPD(q; q:rb; p) implies :q@25 _ q:pr 6= p); it does so only if executed when

q@25 ^ still valid(q) ^ q:pr = p ^ IBS (q; q:rb; p) holds. By (I71), ST (p) holds before the

execution of statement q:25 in this case. Thus, by the de�nitions of ST and IBS, it follows

that ANC [p]:bit = (RET [q:rb][p]:copied+1)mod 3 holds before the execution of statement

q:25. Also, by (I71), statement q:25 establishes RET [q:rb][p]:applied = ANC [p]:bit in this

case. Therefore, by (I71), (I72), and (I73), and Claim 9, statement q:25 establishes

(9 tup :: tup 2 q:hlplst ^ tup :pid = p ^ tup :op = ANC [p]:op ^

199

tup :pars = ANC [p]:pars ^ APD(q:rb; p; tup:val)),

and therefore does not falsify CRV (q; q:rb; p).

By (I31) and (I95), no statement modi�es ANC [p] while ST (p) holds, and, by

(I41), statements other than p:49 do not modify RET [q:rb][p] while :q@46 holds. Also, by

(I31), (I33), and (I97), statement p:49 is not executed while ST (p) holds. Finally, by Claim

9, no statement falsi�es ST (p) while still valid(q) holds.

invariant q@f7::25; 41::45g ^ still valid(q)) ACRV (q; q:rb) (I76)

Proof: Initially, q@0 holds, so (I76) holds. By Axiom 1, only statement q:40 establishes

the antecedent, and it does so only if executed when q@40 ^ still valid(q) holds. By (I75),

statement q:40 establishes the consequent in this case. By Claim 12, no statement falsi�es

the consequent while the antecedent holds.

invariant q@11 ^ still valid(q)) ACRV (q;BUF [q; q:side]:ret) (I77)

Proof: (I77) follows directly from (I5), (I6), and (I76).

invariant q@f7::25; 41::45g ^ still valid(q))

(8p :: (9 tup 2 q:hlplst :: tup:pid = p) _ RET [q:rb][p]:applied = AV (p)) (I78)

Proof: Initially, q@0 holds, so (I78) holds. By Axiom 1, only statement q:40 establishes

the antecedent, and it does so only if executed when q@40 ^ still valid(q) holds. By (I84),

the consequent holds beforehand after the execution of statement q:40 in this case.

Tuples are not removed from q:hlplst while the antecedent holds, nor are the tuples

in q:hlplst modi�ed. Also, no statement modi�es q:rb while the antecedent holds. By (I41),

200

no statement modi�es RET [n][p]:applied for any p, where n = q:rb, while the antecedent

holds. Also, by Claim 4, AV (p) for any p is falsi�ed only if X is modi�ed. In this case, by

Axioms 2 and 3, the antecedent is also falsi�ed.

invariant (q@f7::11; 41::45g _ (q@f12::25g ^ q:pr 6= q)) ^ still valid(q))

(APP(q) _ NORM (q) _ (9 tup 2 q:hlplst :: tup :pid = q)) (I79)

Proof: Initially, q@0 holds, so (I79) holds. By Axiom 1, no statement establishes

still valid(q) while q@f7::25; 41::45g holds. Also, no statement modi�es q:pr while

q@f12::25g holds. Only statement q:42 establishes q@f12::25g ^ q:pr 6= q, and state-

ment q:42 does not establish the antecedent. Only statements q:21 and q:25 establish

q@f7::11; 41::45g, and they establish the antecedent only if executed when q:pr = q ^

still valid(q) holds. It is easy to see that the consequent holds after the execution of state-

ment q:25 in this case. Statement q:21 establishes the antecedent only if executed when

q@21 ^ q:pr = q ^ still valid(q) ^ RET [q:rb][q]:applied = q:match holds. By (I19) and

(I78), this implies q@21 ^ q:pr = q ^ q:match = AV (p). By (I17), this implies that

AV (q) = ANC [q]:bit, which in turn implies :ST (q). By (I70), this implies the consequent.

Statement q:21 does not falsify the consequent.

Tuples are not removed from q:hlplst while the antecedent holds, nor are the tuples

in q:hlplst modi�ed. Also, by Claims 8 and 10, APP(q) _ NORM (q) is not falsi�ed while

the antecedent holds.

invariant q@f33::36g ^ still valid(q)) (8r : 0 � r < q:h :: RET [q:rb][r]:val = RV (r) ^

RET [q:rb][r]:applied = AV (r)) (I80)

201

Proof: Initially, q@0 holds, so (I80) holds. By Axiom 1, only statement q:32 establishes

the antecedent, and the consequent holds vacuously afterwards.

No statement modi�es q:rb while the antecedent holds, and, by (I41), statements

of process s 6= q do not modify RET [q:rb][r]:applied or RET [q:rb][r]:val for any r while the

antecedent holds. Also, statements of process q do not modify RET [q:rb][r] for r < q:h

while the antecedent holds. By Claim 4 and Axioms 2 and 3, any statement that changes

RV (p) or AV (p) also falsi�es still valid(q), thereby falsifying the antecedent. It remains

to consider statements that potentially falsify the consequent by increasing q:h while the

antecedent holds. The only such statement is q:36. However, by (I83), statement q:36 does

not falsify the consequent if executed while the antecedent holds.

invariant q@34 ^ still valid(q)) q:tmpval = RV (q:h) (I81)

Proof: Initially, q@0 holds, so (I81) holds. By Axiom 1, only statement q:33 establishes

the antecedent, and it does so only if executed when q@33 ^ still valid(q) holds. By (I40),

statement q:33 establishes the consequent in this case.

No statement modi�es q:tmpval or q:h while the antecedent holds. Also, by Claim

4 and Axioms 2 and 3, any statement that changes RV (p), where p = q:h, also falsi�es

still valid(q), thereby falsifying the antecedent.

invariant q@35 ^ still valid(q)) RET [q:rb][q:h]:val = RV (q:h) (I82)

Proof: Initially, q@0 holds, so (I82) holds. By Axiom 1, only statement q:34 establishes

the antecedent, and it does so only if executed when still valid(q) holds. In this case, (I81)

implies that statement q:34 establishes the consequent.

202

No statement modi�es q:rb or q:h while the antecedent holds, and, by (I41), state-

ments of process s 6= q do not modify RET [q:rb][q:h]:val while the antecedent holds. Also,

by Claim 4 and Axioms 2 and 3, any statement that changes RV (p), where p = q:h, also

falsi�es still valid(q), thereby falsifying the antecedent.

invariant q@36 ^ still valid(q))

RET [q:rb][q:h]:val = RV (q:h) ^ q:tmpbit = AV (q:h) (I83)

Initially, q@0 holds, so (I83) holds. By Axiom 1, only statement q:35 establishes

the antecedent, and it does so only if executed when still valid(q) holds. In this case, (I40)

and (I82) imply that statement q:35 establishes the consequent.

No statement modi�es q:rb, q:h, or q:tmpbit while the antecedent holds, by (I41),

statements of process s 6= q do not modify RET [q:rb][q:h]:val while the antecedent holds.

Also, by Claim 4 and Axioms 2 and 3, any statement that changes RV (p) or AV (p), where

p = q:h, also falsi�es still valid(q), thereby falsifying the antecedent.

invariant q@f37::40g ^ still valid(q)) (8r : 0 � r < N :: RET [q:rb][r]:val = RV (r) ^

RET [q:rb][r]:applied = AV (r)) (I84)

Proof: Initially, q@0 holds, so (I84) holds. By Axiom 1, only statement q:36 establishes

the antecedent, and it does so only if executed when still valid(q) ^ q:h = N � 1 holds. In

this case, (I83) and (I84) imply that statement q:36 establishes the consequent.

No statement modi�es q:rb while the antecedent holds, and, by (I41), statements

of process s 6= q do not modify RET [q:rb][r]:val or RET [q:rb][r]:applied for any r while

the antecedent holds. Also, statements of process q do not modify RET [q:rb] while the

203

antecedent holds. By Claim 4 and Axioms 2 and 3, any statement that changes RV (p) or

AV (p) also falsi�es still valid(q), thereby falsifying the antecedent.

invariant q@39) q:a = RET [q:rb][q:j]:applied (I85)

Proof: Initially, q@0 holds, so (I85) holds. Only statement q:38 establishes the antecedent,

and statement q:38 establishes the consequent. No statement modi�es q:rb or q:j while

the antecedent holds, and, by (I41), no statement modi�es RET [n][p]:applied where n =

q:rb ^ r = q:j while the antecedent holds.

invariant q@f38::39g) (8r : 0 � r < q:j ::

RET [q:rb][r]:copied = RET [q:rb][r]:applied) (I86)

Proof: Initially, q@0 holds, so (I86) holds. Only statement q:37 establishes the antecedent,

and the consequent holds vacuously after the execution of statement q:37. By (I41), only

statements q:39 and r:49 modify RET [q:rb][r] while the antecedent holds. Also, only state-

ment q:39 modi�es q:j while the antecedent holds. By (I85), statement q:39 preserves the

consequent. Also, by (I94), statement r:49 writes RET [q:rb][r]:copied only if DND(q; r)

holds. Because q@f38::39g, this implies that RET [q:rb][r]:applied = ANC [r]:bit holds. By

(I16), this implies that statement r:49 does not falsify the consequent in this case.

Claim 13: No statement falsi�es STS (p; n) while (8q :: q:rb 6= n _ WND(q; p)) ^ ST (p) ^

:p@f28; 49g holds.

Proof: No statement modi�es ANC [p] while :p@28 holds. Only statement q:39, where q is

any process, and statement p:49 modify RET [n][p]:copied. Statement p:49 is not executed

when :p@f28; 49g holds. Statement q:39 does not modify RET [n][p]:copied if executed

204

when q:j 6= p holds. Finally, q@39 ^ q:j = p ^ WND(q; p) implies (RET [q:rb][p]:applied+

1) mod 3 = ANC [p]:bit. Thus, by (I85), (q:a + 1) mod 3 = ANC [p]:bit holds before the

execution of statement q:39, so q:39 does not falsify STS (p; n) in this case.

Claim 14: For any n, no statement falsi�es WND(q; p) for any q 6= p while (8q :: q:rb 6=

n _ WND(q; p)) ^ ST (p) ^ :p@f28; 49g holds.

Proof: Only statement q:37 establishes q@f12::25; 38::44g, and, by Axiom 4, it does so

only if executed when q@37 ^ still valid(q) holds. By (I84), statement q:37 establishes

q@38 ^ (RET [q:rb][p]:applied+1)mod 3 = ANC [p]:bit in this case (because ST (p) implies

that (AV (p) + 1) mod 3 = ANC [p]:bit), and therefore does not falsify WND(q; p).

Only statement q:39 falsi�es q@f38::39g, and it does so only if executed when

q:j = N � 1 holds. By (I85) and (I86), q:39 establishes q@40 ^ STS (p; q:rb) if executed

when q@39 ^ q:j = N � 1 ^ (RET [q:rb][p]:applied + 1) mod 3 = ANC [p]:bit holds.

By (I41), no statement modi�es RET [q:rb][p]:applied while q@f38::39g holds. Also, no

statement modi�es ANC [p] while :p@28 holds.

Only statement q:44 falsi�es q@f12::25; 40::44g, and :q@f12::25; 38::44g holds af-

ter the execution of statement q:44. No statement modi�es q:rb while q@f12::25; 40::44g

holds, and, by Claim 13, no statement falsi�es STS (p; n), where n = q:rb, while (8q ::

q:rb 6= n _ WND(q; p)) ^ ST (p) ^ :p@f28; 49g holds.

invariant p@27 ^ ST (p) ^ p:from 2 f29; 47g ^ p:tmp = N)

STS (p; p:ptrs:ret) ^ (8q : q 6= p :: q:rb 6= p:ptrs:ret _ WND(q; p)) (I87)

Proof: Initially, p@0 holds, so (I87) holds. No statement modi�es p:tmp or p:from while

p@27 holds. Claims 8 and 10 and (I70) imply that only statement p:28 establishes ST (p).

205

The antecedent does not hold after the execution of statement p:28. By (I22), only statement

p:5 establishes p@27 ^ p:tmp = N , and by Axiom 4, it does so only if executed when

p@5 ^ still valid(p) holds. Also, statement p:5 establishes the antecedent only if executed

when ST (p) holds. By (I39) and (I41), this implies that STS (p; p:ptrs:ret) ^ (8q : q 6=

p :: q:rb 6= p:ptrs :ret _ q@46) holds. Statement p:5 does not falsify this expression, so the

consequent holds after the execution of statement p:5 in this case.

No statement modi�es p:ptrs:ret while the antecedent holds. Only statement q:46

modi�es q:rb, and WND(q; p) holds after the execution of statement q:46. Also, the an-

tecedent implies ST (p) ^ WND(p; p) ^ :p@f28; 49g. Therefore, by Claims 13 and 14, no

statement falsi�es the consequent while the antecedent holds.

invariant ((p@f2::6g ^ :still valid(p) ^ X:pid = r) _ (p@27 ^ p:tmp = r)) ^

p:from 2 f29; 47g ^ ST (p)) STS (p;LAST [r]) ^ WND(r; p) ^

(8q : q 6= p ^ q 6= r :: q:rb 6= LAST [r] _ WND(q; p)) (I88)

Proof: Initially, p@0 holds, so (I88) holds. No statement modi�es p:from while p@f2::6; 27g

holds. No statement modi�es p:tmp while p@27 holds, so p@27 ^ p:tmp = r is established

only by statement p:6 when X:pid = r holds, in which case, by (I28), the antecedent already

holds. Also, p@f2::6g is established only by statement p:1. By Axiom 1, the antecedent

does not hold after the execution of statement p:1. Thus, the antecedent is only established

by statements that establish ST (p) or :still valid(p) or that modify X . By Claims 8 and

10 and (I70), the antecedent does not hold after ST (p) is established. By Axioms 2 and 3,

it remains to consider the execution of statement r:11 when still valid(r) holds. By (I13),

either the �rst conjunct of the consequent holds after the execution of r:11, or :ST (p)

206

holds, in which case the antecedent does not hold. Also, r@46 holds after the execution of

r:11, and, by (I12) and (I41), (8q : q 6= p ^ q 6= r :: q:rb 6= LAST [r] _ q@46) holds before

r:11 is executed in this case. Statement r:11 does not falsify this assertion. Therefore, the

consequent holds after the execution of r:11 (because q@46 implies WND(q; p)). We now

consider statements that potentially falsify the consequent while the antecedent holds.

Only statement r:44 modi�es LAST [r]. By the second conjunct of the consequent,

and by the de�nition ofWND(r; p), r:44 does not falsify the �rst conjunct of the consequent.

Also, the second conjunct of the consequent holds after the execution of statement r:44, and,

by (I41), (8q : q 6= p ^ q 6= r :: q:rb 6= LAST [r] _ q@46) (which implies the last conjunct)

holds after the execution of statement r:44. Only statement q:46 modi�es q:rb for some

process q, and WND(q; p) holds after the execution of statement q:46. Also, statement q:46

does not falsify STS (p;LAST [r]) or WND(s; p) for any s, nor does it modify s:rb for any s.

Finally, the antecedent implies WND(p; p) ^ ST (p) ^ :p@f28; 49g ^ (r 6= p _ WND(r; p).

Therefore, by Claims 13 and 14, no statement falsi�es the consequent while the antecedent

holds.

invariant p@30 ^ ST (p)) STS (p; p:b) ^ (8q : q 6= p :: q:rb 6= p:b _ WND(q; p)) (I89)

Proof: Initially, p@0 holds, so (I89) holds. Only statement p:27 establishes p@30, and it

does so only if executed when p@27 ^ p:from 2 f29; 47g holds. By (I29), 0 � p:tmp � N

holds in this case. If 0 � p:tmp < N , then, by (I88), statement p:27 establishes the

consequent. If p:tmp = N , then, by (I87), statement p:27 establishes the consequent. We

now consider statements that potentially falsify the consequent while the antecedent holds.

No statement modi�es p:b while p@30 holds. Only statement q:46 modi�es q:rb,

207

and WND(q; p) holds after the execution of statement q:46. Also, the antecedent implies

WND(p; p) ^ ST (p) ^ :p@f28; 49g. Therefore, by Claims 13 and 14, no statement falsi�es

the consequent while the antecedent holds.

invariant p@46 _ (p:done ^ (p@f30; 47g _ (p@f1::6; 26::27g ^ p:from = 47))))

APP(p) _ NORM (p) (I90)

Proof: Initially, p@0 holds, so (I90) holds. Only statement p:46 establishes p:done or p@47,

and p:46 does not establish the antecedent. Only statement q:27 establishes q@30, and it

does so only if executed when q:from 2 f29; 47g holds. Therefore, by (I30), statement

q:27 does not establish the antecedent. No statement modi�es p:from while p@f1::6; 26::27g

holds. Therefore, only statement p:47 establishes p@f1::6; 26::27g ^ p:from = 47. However,

statement p:47 does not establish p:done , so it does not establish the antecedent. Thus,

the antecedent is established only by establishing p@46. Only statement p:11 establishes

p@46, and, by Axiom 2, it does so only if executed when p@11 ^ still valid(p) holds. By

Claims 8 and 10, only statement p:28 falsi�es the consequent. Thus, if the consequent holds

before the execution of statement p:11, then it also holds afterwards. If the consequent

does not hold before the execution of statement p:11, then by (I70), (I77), and (I79),

(9 tup 2 p:hlplst :: APD(BUF [q; q:side]:ret ; p; tup:val)) holds. This implies that APP(p)

holds after the execution of statement p:11 in this case.

By Claims 8 and 10, no statement falsi�es the consequent while the antecedent

holds.

invariant p@f48::50g _ (p@f1::6; 26::27g ^ p:from = 48))

208

APP(p) _ NORM (p) (I91)

Proof: Initially, p@0 holds, so (I91) holds. No statement modi�es p:from while

p@f1::6; 26::27g holds. Therefore, only statement p:48 establishes p@f1::6; 26::27g ^

p:from = 48. However, statement p:48 does not establish the antecedent. Only statement

p:30 establishes p@f48::50g, and it does so only if executed when p@30 ^

(RET [p:b][p]:copied = p:bit _ p:done) holds. By (I90), p@30 ^ p:done implies the

consequent. By (I16), (I70), and (I89), p@30 ^ RET [p:b][p]:copied = p:bit also implies the

consequent. By Claims 8 and 10, statement p:30 does not falsify the consequent, and no

statement falsi�es the consequent while the antecedent holds.

Claim 15: No statement falsi�es SRV (p; n) while (8q :: q:rb 6= n _ DND(q; p)) ^

(APP(p) _ NORM (p)) holds.

Proof: Only statements s:24 and s:34, where s is any process, potentially modify

RET [n][n]:val. However, they do not do so while s:rb 6= n. Also, by Claim 4, Axiom

2, (I32), and (I77), RV (p) does not change while APP(p) _ NORM (p) holds (because

CPD(q;BUF [q; q:side]:ret; p) implies RET [BUF [q; q:side]:ret][p]:val = RV (p)).

Claim 16: For any n, no statement falsi�es DND(q; p) for any q 6= p while (8q :: q:rb 6=

n _ DND(q; p)) ^ (APP(p) _ NORM (p)) ^ :p@28 holds.

Proof: Only statement q:37 establishes q@f12::25; 38::44g, and, by Axiom 4, it does so

only if executed when q@37 ^ still valid(q) holds. By (I84), statement q:37 establishes

q@38 ^ SRV (p; q:rb) ^ RET [q:rb][p]:applied = ANC [p]:bit in this case (because APP(p) _

NORM (p) implies that AV (p) = ANC [p]:bit), and therefore does not falsify DND(q; p).

209

Only statement q:46 modi�es q:rb, and :q@f12::25; 38::44g holds after the exe-

cution of statement q:46. By Claim 15, no statement falsi�es SRV (p; n), where n = q:rb,

while (8q :: q:rb 6= n _ DND(q; p)) ^ (APP(p) _ NORM (p)) holds.

By (I41), no statement modi�es RET [q:rb][p]:applied while

q@f38::44; 12::25g holds. Also, no statement modi�es ANC [p]:bit while :p@28 holds.

Only statements q:40, q:42, and q:44 falsify q@f38::44g. Statements q:40 and q:42

both establish q@20 (which implies either q@f12::25g ^ q:pr 6= p or q@20 ^ q:pr = p),

and statement q:44 establishes q@45. Thus, none of these statements falsify DND(q; p).

No statement modi�es q:pr while q@f12::25g holds. Only statements q:13, q:21,

and q:25 falsify q@f12::25g, and all of these statements establish q@f38::44g. Statement

q:20 establishes q@21 ^ q:pr = p ^ q:match = ANC [p]:bit if executed when q@20 ^ q:pr = p

holds.

No statement modi�es ANC [p] while :p@28 holds, and no statement modi�es q:pr

or q:match while q@21 holds. Finally, statement q:21 establishes q@f35; 41g if executed

when q@21 ^ q:pr = p ^ q:match = ANC [p]:bit ^ RET [q:rb][p]:applied = ANC [p]:bit

holds.

invariant p@27 ^ p:from = 48 ^ p:tmp = N) SRV (p; p:ptrs:ret) ^

(8q : q 6= p :: q:rb 6= p:ptrs:ret _ DND(q; p)) (I92)

Proof: Initially, p@0 holds, so (I92) holds. No statement modi�es p:from or p:tmp while

p@27 holds. By (I22), only statement p:5 establishes p@27 ^ p:tmp = N , and, by Axiom

4, it does so only if executed when p@5 ^ still valid(p) holds. By (I39) and (I41), this

implies that SRV (p; p:ptrs:ret) ^ (8q : q 6= p :: q:rb 6= p:ptrs:ret _ q@46) holds. Statement

210

p:5 does not falsify this expression. Therefore, the consequent holds after the execution of

statement p:5. We now consider statements that potentially falsify the consequent while

the antecedent holds.

No statement modi�es p:ptrs :ret while p@27 holds. Only statement q:46 modi�es

q:rb, and DND(q; p) holds after the execution of statement q:46. By (I91), the antecedent

implies DND(p; p) ^ (APP(p) _ NORM (p)) ^ :p@28. Therefore, by Claims 15 and 16,

no statement falsi�es the consequent while the antecedent holds.

invariant ((p@f2::6g ^ :still valid(p) ^ X:pid = r) _ (p@27 ^ p:tmp = r)) ^

p:from = 48) SRV (p;LAST [r]) ^ DND(r; p) ^

(8q : q 6= p ^ q 6= r :: q:rb 6= LAST [r] _ DND(q; p)) (I93)

Proof: Initially, p@0 holds, so (I93) holds. No statement modi�es p:from while p@f2::6; 27g

holds. No statement modi�es p:tmp while p@27 holds, so p@27 ^ p:tmp = r is established

only by statement p:6 when X:pid = r holds. By (I28), the antecedent already holds in this

case. Also, p@f2::6g is established only by statement p:1. By Axiom 1, the antecedent does

not hold after the execution of statement p:1. Thus, the antecedent is only established by

statements that establish :still valid(p) or that modify X . In both cases, by Axioms 2 and

3, we need only consider the execution of statement r:11 when still valid(r) holds. By (I13),

the �rst conjunct holds after the execution of r:11 in this case. Also, r@46 holds after the

execution of r:11, and, by (I12) and (I41), (8q : q 6= p ^ q 6= r :: q:rb 6= LAST [r] _ q@46)

holds before r:11 is executed in this case. Therefore, the consequent holds before and after

the execution of r:11 (because q@46 implies DND(q; p)). We now consider statements that

potentially falsify the consequent while the antecedent holds.

211

Only statement r:44 modi�es LAST [r]. By the second conjunct of the consequent,

and by the de�nition of DND(r; p), r:44 does not falsify the �rst conjunct of the consequent.

Also, the second conjunct of the consequent holds after the execution of statement r:44, and,

by (I41), (8q : q 6= p ^ q 6= r :: q:rb 6= LAST [r] _ q@46) (which implies the last conjunct)

holds after the execution of statement r:44. Only statement q:46 modi�es q:rb for some

process q, and DND(q; p) holds after the execution of statement q:46. Also, statement q:46

does not falsify SRV (p;LAST [r]) or DND(s; p) for any s, nor does it modify s:rb for any s 6=

q. Finally, by (I91), the antecedent implies DND(p; p) ^ (APP(p) _ NORM (p)) ^ :p@28.

Therefore, by Claims 15 and 16, no statement falsi�es the consequent while the antecedent

holds.

invariant p@f49::50g) SRV (p; p:b) ^ (8q : q 6= p :: q:rb 6= p:b _ DND(q; p)) (I94)

Proof: Initially, p@0 holds, so (I94) holds. Only statement p:27 establishes p@f49::50g, and

it does so only if executed when p@27 ^ p:from = 48 holds. By (I29), 0 � p:tmp � N holds

in this case. If 0 � p:tmp < N , then, by (I93), statement p:27 establishes the consequent.

If p:tmp = N , then, by (I92), statement p:27 establishes the consequent. We now consider

statements that potentially falsify the consequent while the antecedent holds.

No statement modi�es p:b while p@f49::50g holds. DND(q; p) holds after the

execution of any statement that modi�es q:rb. Also, by (I91), the antecedent implies

DND(p; p) ^ (APP(p) _ NORM (p)) ^ :p@28. Therefore, by Claims 15 and 16, no

statement falsi�es the consequent while the antecedent holds.

invariant p@f0; 28; 50g) NORM (p) (I95)

212

Proof: Only statement q:49 establishes the antecedent, and, by (I16) and (I97), the con-

sequent holds after the execution of statement q:49. By Claim 8, no statement falsi�es the

consequent without falsifying the antecedent.

The de�nitions below are used in the properties that follow.

(p@f7::25; 29::48g _ (p@f1::6; 26::27g ^ p:from 6= 48)) ^ ST (p) (A1)

(p@f7::25; 29::48g _ (p@f1::6; 26::27g ^ p:from 6= 48)) ^ APP(p) (A2)

p@f26; 1g ^ APP(p) ^ p:from = 48 (A3)

p@f2::4g ^ APP(p) ^ p:from = 48 ^ still valid(p) ^ p:curr = X (A4)

p@5 ^ APP(p) ^ p:from = 48 ^ still valid(p) ^

p:ptrs :ret = BUF [X:pid ; X:tag]:ret (A5)

p@27 ^ APP(p) ^ p:from = 48 ^ ^ p:ptrs :ret = BUF [X:pid ; X:tag]:ret (A6)

p@49 ^ APP(p) ^ p:b = BUF [X:pid ; X:tag]:ret (A7)

p@f1::27; 29::49g ^ NORM (p) (A8)

p@28 unless (A1) (U2)

Proof: Only statement p:28 falsi�es p@28. By (I16) and (I95), statement p:28 establishes

p@29 ^ ST (p), which implies (A1).

(A1) unless (A2) (U3)

Proof: Only statements p:11 and p:30 falsify p@f7::25; 29::48g _ (p@f1::6; 26::27g ^

p:from 6= 48). By (I16), (I89), and (I90), statement p:30 does not do so while ST (p) holds,

and by Axiom 2, statement p:11 does so only if executed when p@11 ^ still valid(p) holds.

213

By (I32), (I77), and (I79), if ST (p) holds, then statement p:11 establishes q@46 ^ APP(p)

in this case. Also, by Claim 9, any statement that falsi�es ST (p) also establishes APP(p).

RV (p) = x ^ ((A2) _ (A3) _ (A4) _ (A5) _ (A6) _ (A7) _ (A8)) unless

RV (p) = x ^ p@50 ^ NORM (p) (U4)

Proof: By Claim 4, RV (p) can be modi�ed only by modifying X . X is modi�ed only by

statement q:11, where q is any process, and, by Axiom 2, only if q@11 ^ still valid(q) holds

before hand. Therefore, by (I77), RV (p) does not change while the left-hand side holds. To

see this, observe that (I32) implies that APD(BUF [q; q:side]:ret ; p; v) does not hold for any

v before the execution of statement q:11, and that IBS (q;BUF [q; q:side]:ret; p) does not

hold while q@11 holds. Thus CPD(q;BUF [q; q:side]:ret; p) holds, so q:11 does not modify

RV (p).

If any of (A2) through (A7) is falsi�ed as a result of APP(p) being falsi�ed, then,

by Claim 10, (A8) holds afterwards. By Axioms 2 and 3, only statement q:11 for some

process q falsi�es still valid(p) or modi�es X , and it does so only if executed when q@11 ^

still valid(q) holds. By (I32) and (I77), this implies that CPD(q;BUF [q; q:side]:ret; p) holds

if this occurs when (A2) _ (A3) _ (A4) _ (A5) _ (A6) _ (A7) holds. Therefore, (A8)

holds after the execution of statement q:11 in this case. By Claim 2, no statement falsi�es

(A5), (A6), or (A7) by modifying BUF . Also, p:curr is not modi�ed while (A4) holds;

p:from 6= 48 is not falsi�ed while (A2) holds; p:from is not modi�ed while (A3), (A4), (A5),

or (A6) holds; p:ptrs:ret is not modi�ed while (A5) or (A6) holds; and p:b is not modi�ed

while (A7) holds. By Claim 8, NORM (p) is not falsi�ed while (A8) holds.

214

If p@f7::25; 29::48g _ (p@f1::6; 26::27g ^ p:from 6= 48) is falsi�ed while (A2) holds,

then (A3) holds afterwards. If p@f26; 1g is falsi�ed while (A3) holds, then, by Axiom 1,

(A4) holds afterwards. If p@f2::4g is falsi�ed while (A4) holds, then (A5) holds afterwards.

If p@5 is falsi�ed while (A5) holds, then, by Axiom 4, (A6) holds afterwards. (It is easy to

see that statement p:5 returns to statement p:27 if p:from = 49 holds.) If p@27 is falsi�ed

while (A6) holds, then (A7) holds afterwards. If p@49 is falsi�ed while RV (p) = x ^ (A7)

holds, then, by (I16), the right-hand side holds afterwards. If p@f1::27; 29::49g is falsi�ed

while RV (p) = x ^ (A8) holds, then the right-hand side holds afterwards.

p@50 ^ NORM (p) ^ RV (p) = x unless p@0 (U5)

Proof: Statement p:50 establishes p@0. By Claim 8, no statement falsi�es NORM (p) while

p@50 holds, and by Claim 4, Axiom 2, and (I77), RV (p) does not change while the left-hand

side holds (because CPD(q;BUF [q; q:side]:ret ; p) implies RET [BUF [q; q:side]:ret][p]:val =

RV (p)).

invariant :p@f0; 28g) (p@f1::27; 29::45; 47g ^ ST (p)) _ (A2) _ (A3) _ (A4) _

(A5) _ (A6) _ (A7) _ (A8) _ (p@52 ^ NORM (p)) (I96)

Proof: Initially, p@0 holds, so (I96) holds. Only statement p:28 establishes the antecedent,

and by (U2) the consequent holds after the execution of statement p:28. By (U3), (U4),

and (U5), no statement falsi�es the consequent while the antecedent holds.

invariant p@49) (APP(p) ^ p:b = BUF [X:pid ; X:tag]:ret) _ NORM (p) (I97)

Proof: (I97) follows directly from (I96).

215

invariant p@50) RET [p:b][p]:val = RV (p) (I98)

Proof: (I98) is implied by (I94).

Claim 17: If a statement execution linearizes an operation by process p, then ST (p) holds

before, and APP(p) holds afterwards.

Proof: By de�nition, only statement q:11, where q is any process, linearizes operations,

and, by Axiom 2, it does so only if executed when q@11 ^ still valid(q) holds. In this case,

(I77) implies that ST (p) holds before the execution of q:11, and APP(p) holds afterwards.

Claim 18: If a statement execution falsi�es ST (p), then it also linearizes an operation op

by process p with parameters pars, where op = ANC [p]:op and pars = ANC [p]:pars, and

afterwards, RV (p) = x ^ (A2) holds, where x is the correct return value for that operation.

Proof: By Claim 9, only statement q:11, where q is any process, falsi�es ST (p), and

by Axiom 2, it does so only if executed when q@11 ^ still valid(q) holds. Claim 9

also implies that APP(p) holds after ST (p) is falsi�ed, and, (I32), by (I91), and (I95),

(p@f7::25; 29::48g _ (p@f1::6; 26::27g ^ p:from 6= 48)) holds before and after the execution

of statement q:11 in this case. Therefore, (I77) implies that the claim holds in this case.

Linearizability: (U2), (U3), and (U4) imply that ST (p) is falsi�ed exactly once per

operation invocation by process p. By Claim 17 and (I33) this implies that exactly one

operation by process p is linearized per invocation by process p. By Claim 18, (U4), (U5),

and (I98), the correct operation is linearized, and p returns the correct value from that

operation.

216

Wait-Freedom: By the assumption that each sequential operation terminates, the only

risk to wait-freedom is that the loop at lines 30 to 47 does not terminate for some process

p that takes in�nitely many steps. (The loop at lines 42 to 43 terminates after at most

N iterations.) This implies that the SC operation at line 11 fails in�nitely often, which,

in turn, implies that there are in�nitely many successful SC operation by other processes.

Suppose that ST (p) holds forever. Observe that each successful SC operation by some

process q is guaranteed to increase (modulo N) the help counter (BUF [X:pid ; X:tag]:help)

by at least one, because each sequential operation is assumed to increase q:dcnt by at most

T , and it is assumed that M � 2 � T . (This implies that the loop at lines 42 to 43 will be

executed at least once by any operation that subsequently performs a successful SC, and

therefore that operation increases the help counter.) Thus, eventually some operation, say

by process r, that performs a successful SC will call Apply(p). By the assumption that

ST (p) holds forever, and by (I69) and (I76), it follows that the check at line 21 succeeds

(by (I95), ANC [p]:bit does not change while ST (p) holds), and that process r subsequently

adds a tuple for process p to r:hlplst. Thus, process r linearizes p's operation. By Claim

17, this contradicts the assumption that ST (p) holds forever. Suppose that APP(p) holds.

Then by Claim 17, no operation by process p is linearized. Thus, by (I77), NORM (p) holds

after the execution of the next successful SC operation. It remains to consider the case in

which NORM (p) holds forever. Then, by (I77), for every return block v that is successfully

installed as BUF [X:tag; X:ret]:ret , RET [v][p]:copied = ANC [p]:bit is stable. Thus, when

process p reads from a return block b that has been current since NORM (p) held (line 27),

(I16) implies that p detects that RET [b][p]:copied = p:bit and therefore the loop at lines 30

217

to 47 terminates.

Suppose a sequential object OBJ whose return values are at most R words can be

implemented in an array of B S-word blocks such that any operation modi�es at most T

blocks and has worst-case time complexity C. Then, the worst case cost of one iteration of

the loop at lines 30 to 42 is B +N(R+ C) +MS. Also, because each sequential operation

modi�es at most T blocks, and because each process has M local copy blocks available,

each successful operation is guaranteed to advance the help pointer by min(N; bM=Tc).

Therefore, if process p's SC fails dN=min(N; bM=Tc)e times, then p's operation is helped.

Thus, we have the following theorem.

Theorem 6: Suppose a sequential object OBJ whose return values are at most R words

can be implemented in an array of B S-word blocks such that any operation modi�es at

most T blocks and has worst-case time complexity C. Then, for any M � 2T , OBJ can be

implemented in a wait-free manner with space overhead �(N(NR+MS +B)) and worst-

case time complexity �(dN=min(N; bM=Tc)e(B +N(R+ C) +MS)).

218

Appendix B

Correctness Proofs for Algorithms

in Chapter 6

In this appendix, we provide formal correctness proofs for the two algorithms for

(k + 1; k)-exclusion presented in Section 6.4. Each algorithm is considered in a separate

subsection.

B.1 Correctness Proof for Algorithm in Figure 6.8

In this section, we prove that the algorithm of Figure 6.8 is correct. As in Section

6.3, we assume the following properties, where the latter two are required to hold only if

process p is nonfaulty and at most k � 1 processes are faulty.

invariant jfq :: q@f2::14ggj � k + 1 (I99)

p@1 leads-to p@2 (L3)

219

p@15 leads-to p@0 (L4)

Before proving that k-Exclusion and Starvation-Freedom hold for the program

of Figure 6.8, we �rst establish some useful properties. The �rst of these properties is

straightforward and is stated without proof.

invariant X = k � jfp :: p@f3::10ggj (I100)

We now prove that the conjunction of the following three assertions is an invariant.

This, of course, implies that each of these assertions taken individually is an invariant.

(:P [q]) Q = q) ^ ((9p :: p@f5; 6; 13; 14g) = (8i :: P [i])) (I101)

jfq :: q@f5; 6; 13; 14ggj � 1 (I102)

p@f6; 14g _ (p@f7; 8g ^ :P [p])) Q = p (I103)

invariant (I101) ^ (I102) ^ (I103)

Proof: It is straightforward to check that each of (I101), (I102), and (I103) is initially true.

In the remainder of the proof, we show that no statement execution falsi�es any of these

assertions if executed when all three assertions hold.

The �rst conjunct of (I101) could potentially be falsi�ed by any statement that

falsi�es P [q] or that modi�es Q. The statements to check are q:6, q:14, p:5, and p:13, where

p is any process. By (I103), Q = q holds before (and hence after) the execution of q:6 or

q:14. By the second conjunct of (I101), P [q] is true before (and hence after) the execution

of p:5 or p:13.

220

Now, consider the second conjunct of (I101). Observe that the assertion

p@f5; 6; 13; 14g is established only by p:4 or p:12, and only if P [p:v] is false. By the �rst

conjunct of (I101), this is the only component of P that is false when p:4 or p:12 is exe-

cuted. Therefore, after the execution of one of these statements, all components of P are

true. p@f5; 6; 13; 14g is only falsi�ed by p:6 or p:14, both of which falsify (8i :: P [i]). By

(I102), both also falsify (9p :: p@f5; 6; 13; 14g). Note that no statements other than p:4, p:6,

p:12, and p:14 establish or falsify (8i :: P [i]), and that we have already shown that these

statements do not falsify (I101).

(I102) is proved using the second conjunct of (I101). In particular, if p@f5; 6; 13; 14g

holds for some process p, then (8i :: P [i]) holds. Hence, q@f5; 6; 13; 14g cannot be estab-

lished for another process q.

The antecedent of (I103) is only established by p:5 or p:13, each of which also

establishes the consequent. The consequent of (I103) is only falsi�ed by q:5 or q:13, where

q 6= p. By (I102), q@f5; 13g implies that p@f6; 14g is false. By the second conjunct of

(I101), q@f5; 13g also implies that p@f7; 8g ^ :P [p] is false. Thus, if either q:5 or q:13 is

enabled, then the antecedent of (I103) is false.

invariant X < 0) (9r :: r@3 _ (r@4 ^ r:v = Q) _ r@f5; 6g _ (r@f7; 8g ^ :P [r]))

(I104)

Proof: The antecedent of (I104) is initially false, and is established only by p:2, which also

establishes p@3. In the remainder of the proof, we check those statements that may falsify

a disjunct of the consequent if executed when the antecedent holds. We show that if such

a disjunct is falsi�ed, then another disjunct holds.

221

p@3 can only be falsi�ed by p:3, which also establishes p@4 ^ p:v = Q.

p@4 ^ p:v = Q can be falsi�ed only by p:4 or q:5 or q:13, where q 6= p. If p:4 is

executed when (8i :: P [i]) holds, then by the second conjunct of (I101), (9q :: qf5; 6; 13; 14g)

holds. If X < 0 holds, then, by (I99) and (I100), (9q :: qf5; 6g) holds, which implies that

p:4 does not falsify (I104). If p:4 is executed when (8i :: P [i]) does not hold, then by the

�rst conjunct of (I101), P [p:v] is false (since p:v = Q). Hence, p:4 establishes p@5. Finally,

q:5 establishes q@6, and if X < 0, then (I99) and (I100) imply that q:13 is not enabled.

p@f5; 6g is falsi�ed only by p:6, which establishes p@f7; 8g ^ :P [p].

If X < 0, then p@f7; 8g ^ :P [p] can only be falsi�ed by q:4 or q:12 for some

q 6= p. However, if q:4 establishes P [p], then it also establishes q@5. Also, because X < 0,

(I99) and (I100) imply that q:12 is not enabled.

The following invariant establishes the k-Exclusion property for the program of

Figure 6.8.

invariant jfp :: p@9gj � k (I105)

Proof: If X � 0, then by (I100), jfp :: p@f3::10ggj � k holds, so (I105) holds. If X < 0,

then by (I104), (9p :: p@f3::8g) holds, so by (I99), (I105) holds.

The following unless property, which follows directly from the program text, is

used in the proof of Starvation-Freedom.

p@8 ^ P [p] unless p@9 (U6)

Starvation-Freedom: If process p is nonfaulty and at most k � 1 processes are faulty,

then p@1 leads-to p@9.

222

Proof: By (L3) and (L4), the only risk to Starvation-Freedom is that a nonfaulty process

p is blocked forever at p:8. Process p only reaches p:8 by executing p:7 when X < 0 holds.

By (I100), this implies that jfp :: p@f3::10ggj > k holds when p:7 is executed. By the

assumption that at most k � 1 processes are faulty, this implies that there is a nonfaulty

process q 6= p such that q@f3::10g holds when p:7 is executed.

We now show that p@8 ^ P [p] holds at some state after p:7 is executed. Assume,

to the contrary, that p@8 ^ :P [p] holds continually after p:7 is executed. Note that, by

the �rst conjunct of (I101), this implies that process q is not blocked at q:8 because q 6= p.

Because p@8 ^ :P [p] continues to hold, by (I103), p@8 ^ :P [p] ^ Q = p continues to hold.

Hence, because process q is nonfaulty and does not become blocked at q:8, q:11 is eventually

executed when p@8 ^ :P [p] ^ Q = p holds, establishing q@12 ^ q:v = Q ^ :P [p] ^ Q = p.

Statement q:12 is then eventually executed, establishing P [p]. Thus, p@8 ^ P [p] holds at

some state after p:7 is executed.

To conclude the proof, observe that once p@8 ^ P [p] holds, by (U6), p@9 eventually

holds, because p is nonfaulty. Thus, Starvation-Freedom holds for the program of Figure

6.8.

B.2 Correctness Proof for Algorithm in Figure 6.9

In this section, we prove that the algorithm of Figure 6.9 is correct. We begin by

repeating the following lemma, which was proved in Section 6.4.2.

Lemma 2: For any statement s in the noncritical or critical section, or Acquire(N; k+1) or

Release(N; k+ 1) procedure of any process q, the following properties hold, where b ranges

223

over ffalse; trueg.

fq 6= p ^ P [p] = (b; IN)g q:s fP [p] = (b; IN)g (S1)

fq 6= p ^ R[p] = (b; IN)g q:s fR[p] = (b; IN)g (S2)

fq = p ^ P [p] = (b; IN)g q:s fP [p] = (b; IN) _ P [p]:instance 6= IN g (S3)

fq = p ^ R[p] = (b; IN)g q:s fR[p] = (b; IN) _ R[p]:instance 6= IN g (S4)

fP [p]:instance 6= IN g q:s fP [p]:instance 6= IN g (S5)

fR[p]:instance 6= IN g q:s fR[p]:instance 6= IN g (S6)

As before, we assume the following properties concerning Acquire(N; k + 1) and

Release(N; k + 1), where the latter two are required to hold only if process p is nonfaulty

and at most k � 1 processes are faulty.

invariant jfq :: q@f2::16ggj � k + 1 (I106)

p@1 leads-to p@2 (L5)

p@17 leads-to p@0 (L6)

Now that we have stated the assumptions that we require of the noncritical and

critical sections and Acquire(N; k + 1) and Release(N; k + 1) procedures, we proceed to

prove that k-Exclusion and Starvation-Freedom hold for the program of Figure 6.9. We

�rst prove a number of useful intermediate properties. The �rst three of these properties

are straightforward and are stated without proof.

invariant X = k � jfp :: p@f3::14ggj (I107)

invariant Z = (9q :: q@f4::8g) (I108)

224

invariant jfq :: q@f4::8ggj � 1 (I109)

Note that (I108) and (I109) must be proved together as a conjunction.

invariant p@f5; 6g) p:v = Q (I110)

Proof: (I110) clearly holds initially. The antecedent of (I110) is established only by p:4,

which also establishes the consequent. The consequent can be falsi�ed while the antecedent

holds only by q:6, where q 6= p. However, if the antecedent holds, then by (I109), statement

q:6 is not enabled.

invariant p@6) P [p:v] 6= (false; IN) (I111)

Proof: (I111) clearly holds initially. The antecedent is established only by statement p:5.

If p:5 is executed when P [v] = (false; IN) holds, then it establishes P [v] = (true ; IN).

If p:5 is executed when P [v] 6= (false; IN), then it does not modify P [v]. In either case,

P [v] 6= (false; IN) holds after the execution of p:5.

Now, consider statements that may falsify the consequent P [p:v] 6= (false; IN).

Note that this expression is equivalent to (P [p:v] = (true ; IN)) _ (P [p:v]:instance 6= IN).

Let r = p:v. By (S1) and (S5), it follows that the consequent is not falsi�ed by any statement

within the noncritical or critical section or Acquire(N; k+1) or Release(N; k+1) procedure

of any process q 6= r. Furthermore, by (S3), if process r modi�es P [r] in one of these

sections or procedures when p:v = r holds, then it establishes P [p:v]:instance 6= IN . The

remaining statements to consider are p:4 and p:15, which may modify p:v, r:7, which may

modify P [p:v] (recall that r = p:v), and q:5, where q:v = p:v, which may also modify P [p:v].

However, the antecedent of (I111) is false after the execution of p:4 or p:15. By (I109), it

225

is also false after the execution of r:7 or q:5, where q 6= p. If q = p, then P [v] 6= (false; IN)

holds after the execution of q:5, as explained in the previous paragraph.

invariant p@f7; 8g) Q = p (I112)

Proof: (I112) clearly holds initially. The antecedent is established only by statement p:6,

which also establishes the consequent. The consequent can only be falsi�ed by statement

q:6, where q 6= p. However, by (I109), the antecedent of (I112) is false after the execution

of q:6.

invariant p@8) P [p] = (false; IN) (I113)

Proof: (I113) clearly holds initially. The antecedent is established only by p:7, which also

establishes the consequent. If the antecedent holds, then by (S1), the consequent could

potentially be falsi�ed only by q:5, where q 6= p. However, by (I109), q:5 is not enabled

when the antecedent holds.

invariant p@f9::12g) ((:Z _ (9r :: r@f4; 5g)) ^ Q = p) _ P [p] 6= (false; IN) (I114)

Proof: (I114) clearly holds initially. The antecedent of (I114) is established only by state-

ment p:8. By (I112), p:8 also establishes :Z ^ Q = p. In the remainder of the proof, we

consider the two disjuncts of the consequent. We show that if one disjunct is falsi�ed while

the antecedent holds, then the other disjunct holds.

We �rst dispose of the second disjunct, i.e., P [p] 6= (false; IN). This expression is

equivalent to (P [p] = (true ; IN)) _ (P [p]:instance 6= IN). By (S1) and (S5), this expression

is not falsi�ed by any statement within the noncritical or critical section or Acquire(N; k+1)

or Release(N; k + 1) procedure of any process q 6= p. If it is falsi�ed by process p in one

226

of these sections or procedures, then the antecedent p@f9::12g is false. The remaining

statement to consider is p:7. However, the antecedent of (I114) is false after the execution

of p:7.

We now consider the �rst disjunct, i.e., (:Z _ (9r :: r@f4; 5g)) ^ Q = p. This

expression could potentially be falsi�ed by any statement that establishes Z or Q 6= p, or

that falsi�es (9r :: r@f4; 5g). We consider such statements in turn.

Z is established only by statement q:3 for some process q. However, if this state-

ment is executed when :Z ^ Q = p holds, then it establishes (9r :: r@f4; 5g) ^ Q = p.

Q 6= p is established only by statement q:6, where q 6= p. However, by (I110) and

(I111), if q@6 ^ Q = p holds, then P [p] 6= (false; IN) also holds, and q:6 does not falsify

this expression.

Finally, (9r :: r@f4; 5g) is falsi�ed only by statement r:5. However, if this state-

ment is executed when (9r :: r@f4; 5g) ^ Q = p ^ P [p] = (false; IN) holds, then by (I110),

it establishes P [p] = (true ; IN).

invariant p@f11; 12g ^ P [p] = (false; IN)) Q = p (I115)

Proof: Follows directly from (I114).

invariant X < 0) (9r :: r@f3::8g _ (r@9 ^ P [r] = (false; IN)) _

(r@f10::12g ^ P [r] = (false; IN) ^ R[r] = (false; IN))) (I116)

Proof: The antecedent of (I116) is initially false, and is established only by p:2. However,

if p:2 establishes X < 0, then it also establishes p@3. In the remainder of the proof, we

check those statements that may falsify a disjunct of the consequent. We show that if such

a disjunct is falsi�ed, then another disjunct holds or the antecedent is false.

227

The �rst disjunct, r@f3::8g, can only be falsi�ed by statements r:3 and r:8. How-

ever, r:3 falsi�es r@f3::8g only if executed when Z = true , which by (I108), implies that

(9q :: q@f4::8g) holds. Also, by (I113), r:8 establishes r@9 ^ P [r] = (false; IN).

By (S1), the second disjunct, r@9 ^ P [r] = (false; IN), can only be falsi�ed by

statements r:9 and q:5, where q is any process. (Note that process r could potentially falsify

P [r] = (false; IN) in its noncritical or critical sections or Acquire(N; k+1) or Release(N; k+

1) procedures, but in this case r@9 is false.) However, if r:9 is executed when r@9 ^ P [r] =

(false; IN) holds, then it establishes r@f10::12g ^ P [r] = (false; IN) ^ R[r] = (false; IN).

Also, q@f3::8g holds after the execution of q:5.

Finally, consider the third disjunct, i.e., r@f10::12g ^ P [r] = (false; IN) ^ R[r] =

(false; IN). By (S1) and (S2), this disjunct can only be falsi�ed by r:10, q:5, and q:16, where

q is any process. (As before, process r could potentially falsify P [r] = (false; IN) or R[r] =

(false; IN) in its noncritical or critical sections or Acquire(N; k + 1) or Release(N; k + 1)

procedures, but in this case r@f10::12g is false.) However, r:10 does not falsify r@f10::12g

while the antecedent holds. Also, q@f3::8g holds after the execution of q:5, and by (I106)

and (I107), q:16 is not enabled while the antecedent holds.

The following invariant establishes the k-Exclusion property for the program of

Figure 6.9.

invariant jfp :: p@13gj � k (I117)

Proof: If X � 0, then by (I107), jfp :: p@f3::9ggj � k holds, so (I117) holds. If X < 0,

then by (I116), (9p :: p@f3::12g) holds, so by (I106), (I117) holds.

228

The following unless property is used in the proof of Starvation-Freedom.

p@f11; 12g ^ (P [p] 6= (false; IN) _ R[p] 6= (false; IN)) unless p@13 (U7)

Proof: By (S1), (S2), (S5), (S6), and the program text, neither P [p] 6= (false; IN) nor

R[p] 6= (false; IN) can be falsi�ed while p@f11; 12g holds.

Starvation-Freedom: If process p is nonfaulty and at most k � 1 processes are faulty,

then p@1 leads-to p@13.

Proof: By (L5) and (L6), the only risk to Starvation-Freedom is that a nonfaulty process

p is blocked forever at p:11 and p:12. Process p only reaches p:11 by executing p:10 when

X < 0 holds. By (I107), this implies that jfp :: p@f3::14ggj > k holds when p:11 is

executed. By the assumption that at most k�1 processes are faulty, this implies that there

is a nonfaulty process q 6= p such that q@f3::14g holds when p:10 is executed.

We now show that p@f11; 12g ^ (P [p] 6= (false; IN) _ R[p] 6= (false; IN))

holds at some state after p:10 is executed. Assume, to the contrary, that p@f11; 12g ^

P [p] = (false; IN) ^ R[p] = (false; IN) holds continually after p:10 is executed. Note

that, by (I115), this implies that process q is not blocked at q:11 and q:12 because q 6= p.

Because p@f11; 12g ^ P [p] = (false; IN) ^ R[p] = (false; IN) continues to hold, by (I115),

p@f11; 12g ^ P [p] = (false; IN) ^ R[p] = (false; IN) ^ Q = p continues to hold. Hence,

because process q is nonfaulty and does not become blocked at q:11 and q:12, statement q:15

is eventually executed when p@f11; 12g ^ P [p] = (false; IN) ^ R[p] = (false; IN) ^ Q = p

holds, establishing q@16 ^ q:v = Q ^ R[p] = (false; IN) ^ Q = p. Statement q:16

is then eventually executed, establishing R[p] = (true ; IN). Thus, p@f11; 12g ^ (P [p] 6=

229

(false; IN) _ R[p] 6= (false; IN)) holds at some state after p:10 is executed.

To conclude the proof, note that once p@f11; 12g ^ (P [p] 6= (false; IN) _ R[p] 6=

(false; IN)) holds, by (U7), p@13 eventually holds, because p is nonfaulty. Thus, Starvation-

Freedom holds for the program of Figure 6.9.

230

Appendix C

Correctness Proofs for Algorithms

in Chapter 7

In this appendix, we provide formal correctness proofs for the renaming algorithms

presented in Chapter 7. Each algorithm is considered in a separate section.

C.1 Correctness Proof for Algorithm in Figure 7.6

In accordance with the problem de�nition given in Section 7.1, we assume (I118)

and are required to prove (I119) and that our algorithm satis�es the wait-freedom property.

invariant jfp :: p@f1::11gj � k (I118)

invariant (p 6= q ^ p@9 ^ q@9) p:name 6= q:name) ^

(p@9) 0 � p:name < k(k + 1)=2) (I119)

Wait-Freedom: Every nonfaulty process that leaves line 0 eventually reaches line 9, and

231

that every nonfaulty process that leaves line 9 eventually reaches line 0.

The proofs of the following invariants are straightforward, and are therefore omit-

ted. In particular, (I120) through (I126) follow directly from the program text, (I127) is

proved using (I121), (I128) is proved using (I126), and (I125) is proved using (I128). Finally,

the proof of (I129) uses (I128), and the proof of (I130) uses (I129).

invariant p@f0::11g (I120)

invariant p@f5; 10g) p:h > 0 (I121)

invariant p@9) p:name = (p:i)k� (p:i)(p:i� 1)=2 + p:j (I122)

invariant (8r; c; n : 0 � r < k � 1 ^ 0 � c < k � 1 ^ r + c < k � 1 ^

0 � n � k � r � c :: Y [r; c; n] 2 f?g [f0::N � 1g) (I123)

invariant p@f2::7g) :p:moved (I124)

invariant p@2) p:h < k � p:i� p:j (I125)

invariant p@f1::7g) p:i+ p:j < k � 1 (I126)

invariant p:i � 0 ^ p:j � 0 ^ p:h � 0 (I127)

invariant p:i+ p:j � k � 1 (I128)

invariant p@f3::7g) p:h � k � p:i� p:j (I129)

invariant p@f8::11g) p:h � k � p:i� p:j + 1 (I130)

The following invariant shows that if the nth Y component in building block (r; c)

is set, then some process is accessing building block (r; c) at, or beyond, component n.

invariant (r � 0 ^ c � 0 ^ r + c < k � 1 ^ n � 0 ^ n < k � r � c ^

Y [r; c; n] = q)) (q:i = r ^ q:j = c ^ :q:moved ^

232

((q@f3::6; 8::11g ^ q:h > n) _ (q@f6; 11g ^ q:h = n))) (I131)

Proof: Assume r � 0 ^ c � 0 ^ r + c < k � 1 ^ n � 0 ^ n < k � r � c. This implies

that Y [r; c; n] = ? holds initially, so (I131) holds initially. Only statement q:4 can establish

the antecedent, and it does so only if executed when q@4 ^ q:i = r ^ q:j = c ^ q:h = n

holds. By (I124), :q:moved also holds in this case. Therefore, because n < k � r � c, q:4

establishes q:i = r ^ q:j = c ^ :q:moved ^ q@3 ^ q:h > n, thereby establishing the

consequent.

No statement modi�es q:i, q:j, or q:moved while the consequent holds. It remains

to consider statements that might falsify ((q@f3::6; 8::11g ^ q:h > n) _ (q@f6; 11g ^ q:h =

n)) while the consequent holds. First, observe that any statement that falsi�es the second

disjunct while the consequent holds also falsi�es the antecedent.

If the �rst disjunct holds, then q:h > 0. Therefore, statement q:3 establishes

q@f4; 5g, and does not modify q:h. By (I124), statement q:4 establishes q@3 or q@8 and

increases q:h, so q:4 does not falsify �rst disjunct. If q:h > n+ 1, then q@f5; 6g ^ q:h > n

holds after q:5 is executed. If q:h = n + 1, then because Y [r; c; n] = q, statement q:5

establishes q@6 ^ q:h = n, thereby establishing the second disjunct listed above. Similarly,

(q@f10::11g ^ q:h > n) _ (q@11 ^ q:h = n) holds after q:10 is executed. Because q:h > n

and n � 0, statement q:6 establishes q@5 ^ q:h > n. Similarly, statement q:11 establishes

q@10 ^ q:h > n. Finally, statements q:8 and q:9 do not modify q:h, q:8 establishes q@9, and

because :q:moved and q:h > n holds, statement q:9 establishes q@10. Thus, no statement

falsi�es the consequent while the antecedent holds.

233

De�nitions. For convenience, we de�ne the following predicates. Intuitively,

MOD(q; r; c; n) holds if process q is about to modify Y [r; c; n]; SET (q; r; c; n) holds if process

q has just set Y [r; c; n] to q and has not yet reset it; and EN (q; r; c) holds if process q will

access (or has already accessed) a building in the subgrid whose top-left corner is at (r; c).

MOD(q; r; c; n) � q:i = r ^ q:j = c ^ q:h = n ^ q@f4; 6; 11g

SET (q; r; c; n) � q:i = r ^ q:j = c ^

((q@f3; 5; 8::10g ^ q:h = n + 1) _ (q@f6; 11g ^ q:h = n))

EN (q; r; c) � q:j � c ^ ((q:i � r ^ q@f1::11g) _ (q:i = r � 1 ^

((q@f2::4g ^ X [r� 1; q:j] 6= q) _ q@f5::7g)))

The following three invariants follow easily from the de�nitions above. The proof

of (I133) uses (I132).

invariant (SET (p; r; c; n) _ MOD(p; r; c; n)))

(8m :m 6= n :: :SET (p; r; c;m) ^ :MOD(p; r; c;m)) (I132)

invariant p@2 ^ EN (p; r; c)) jfn :: (9q :: SET (q; r; c; n) _

MOD(q; r; c; n))gj< jfq :: EN (q; r; c)gj (I133)

invariant EN (p; r; c)) EN (p; r; c� 1) ^ EN (p; r� 1; c) (I134)

The next invariant implies that at most k� r� c processes access building blocks

in the sub-grid whose top left corner is at building block (r; c). In particular, this implies

that at most one process at a time occupies each grid position that is k � 1 steps from the

position origin.

234

invariant r � 0 ^ c � 0 ^ r + c � k � 1) (jfp :: EN (p; r; c)gj � k � r � c) (I135)

Proof: Initially, (8p :: p@0) holds, so (I135) holds. First, observe that (I118) implies that

if r = 0 ^ c = 0, then (I135) holds. Henceforth, assume that r � 0 ^ c � 0 ^ r + c �

k�1 ^ r+c > 0. (I135) can be falsi�ed only by establishing EN (q; r; c) for some process q.

By the de�nition of EN , this can be achieved only by modifying q:i, q:j or X [r� 1; q:j], or

by establishing q@f1::11g or q@f2::4g or q@f5::7g. The statements to check are therefore

q:0, q:2, q:3, q:7, and p:1, where p is any process.

Because r + c > 0, statement q:0 does not establish EN (q; r; c). Statement q:3

potentially establishes EN (q; r; c) only by establishing q@f5::7g. Thus, EN (q; r; c) holds

after q:3 is executed only if q:j � c ^ q:i = r� 1 ^ q@3 ^ X [q:i; q:j] 6= q holds before, in

which case EN (q; r; c) already holds. Statement q:7 establishes q@f1; 8g and could therefore

establish EN (q; r; c) only by establishing q:j � c ^ q:i � r. However, it does so only if

executed when q:j � c ^ q:i = r� 1 ^ q@7 holds, in which case EN (q; r; c) already holds.

It remains to consider statement p:1, where p is any process, and statement q:2.

If p = q ^ q:i � r, then p:1 does not establish EN (q; r; c) because it does not

modify q:i or q:j or establish q@f1::11g. If p = q ^ q:i < r, then by (I127), statement

p:1 establishes q@2 ^ (q:i 6= r � 1 _ X [r � 1; q:j] = q) and therefore does not establish

EN (q; r; c). If p 6= q, then statement p:1 can establish EN (q; r; c) only by establishing

X [r�1; q:j] 6= q while q:j � c ^ q:i = r�1 ^ q@f2::4g ^ X [r�1; q:j] = q holds. However,

it does so only if executed when p@1 ^ p:i = r � 1 ^ p:j � c. These assertions imply

EN (q; r� 1; c) ^ :EN (q; r; c) ^ EN (p; r� 1; c) ^ :EN (p; r; c). Also, q:i = r� 1 ^ (I127)

implies that r� 1 � 0 and r+ c � k� 1 implies that r� 1 + c � k� 1. Therefore, because

235

(I135)
r;c
r�1;c holds before p:1 is executed, it follows that jfp :: EN (p; r� 1; c)gj � k� r� c+1

holds before p:1 is executed. By (I134), this implies that jfp :: EN (p; r; c)gj � k� r� c� 1

holds before p:1 is executed (because p 6= q and EN (q; r�1; c) ^ :EN (q; r; c) ^ EN (p; r�

1; c) ^ :EN (p; r; c) holds), so p:1 does not falsify (I135).

Statement q:2 can establish EN (q; r; c) only if executed when q@2 ^ q:i � r ^ q:j =

c�1 ^ Y [q:i; c�1; q:h] 6= ? holds. By (I127) and (I125), this implies that q:i � 0 ^ c�1 �

0 ^ q:h � 0 ^ q:h < k�q:i�(c�1) holds before q:2 is executed. Thus, by (I123), (I126), and

(I131)r;c;n;qq:i;c�1;q:h;s, it follows that (9s : s 6= q :: EN (s; r; c� 1) ^ :EN (s; r; c)) holds. (Note

that q@2 ^ s@f3::6; 8::11g implies that s 6= q.) Also, EN (q; r; c� 1) ^ :EN (q; r; c) holds.

Thus, as above, (I127), (I134), and (I135)r;cr;c�1 imply that jfp :: EN (p; r; c)gj � k� r� c� 1

holds before q:2 is executed, so q:2 does not falsify (I135).

The following invariant implies that, while process p is executing the loop at line

2 and X [p:i; p:j] = p still holds, for each component of Y that p has already read, either

that component is not set, or some process has just written that component and has not

yet cleared it.

invariant (r � 0 ^ c � 0 ^ r + c < k � 1 ^ p@2 ^ p:i = r ^ p:j = c ^

X [r; c] = p)) (8n : 0 � n < p:h :: Y [r; c; n] = ? _

(9q : q 6= p :: Y [r; c; n] = q ^ :q:moved ^ SET (q; r; c; n))) (I136)

Proof: Assume r � 0 ^ c � 0 ^ r+ c < k� 1. Initially, p@0 holds, so (I136) holds. Only

statement p:1 establishes p@2. Statement p:1 also establishes p:h = 0, so the consequent

holds vacuously after p:1 is executed. No statement modi�es p:i while p@2 holds, and

only statement p:2 modi�es p:j while p@2 holds. However, if p:2 modi�es p:j, then it

236

also establishes p:moved and terminates the loop, thereby falsifying the antecedent. Only

statement p:1 can establish X [r; c] = p, and as shown above, the consequent holds after the

execution of p:1.

We now show that no statement falsi�es the consequent while the antecedent

holds. Statements of process p other than p:2 are not enabled while the antecedent holds.

Statement p:2 can a�ect the consequent only by increasing p:h. However, p:2 does not

falsify the consequent in this case, because it increments p:h only if Y [r; c; p:h] = ?. We

now consider steps of process s, where s 6= p. Statements of process s can falsify the

consequent only by modifying Y [r; c; n] or by falsifying :s:moved ^ SET (s; r; c; n) for some

n < p:h while Y [r; c; n] = s holds.

Only statements s:4, s:6, and s:11 modify Y [r; c; n]. Statements s:6 and s:11

establish Y [s:i; s:j; s:h] = ? and therefore do not falsify the consequent. Statement s:4

modi�es Y [r; c; n] only if s@4 ^ s:i = r ^ s:j = c ^ s:h = n. By (I124), :s:moved holds

in this case. Therefore, after s:4 is executed in this case, Y [r; c; n] = s ^ s:i = r ^ s:j =

c ^ :s:moved ^ s@f3; 8g ^ s:h = n + 1 holds, which implies SET (s; r; c; n). Thus, s:4

does not falsify the consequent by modifying Y [r; c; n].

We now consider statements that potentially falsify :s:moved ^ SET (s; r; c; n)

for some process s and for some n < p:h while Y [r; c; n] = s holds. No statement modi�es

s:i, s:j, or s:moved while SET (s; r; c; n) holds. It remains to consider statements that

potentially falsify ((s@f3; 5; 8::10g ^ s:h = n + 1) _ (s@f6; 11g ^ s:h = n)) while

Y [r; c; n] = s ^ :s:moved ^ SET (s; r; c; n) holds. First, observe that if s:6 or s:11

falsi�es the second disjunct while the antecedent and consequent both hold, then it also

237

establishes Y [r; c; n] = ?, thereby preserving the consequent. If the �rst disjunct holds, then

s:h > 0. Thus, because the antecedent implies thatX [r; c] 6= s (recall that s 6= p), statement

s:3 establishes s@5 and does not modify s:h. Also, because Y [r; c; n] = s, executing s:5

establishes s@6 ^ s:h = n, thereby establishing the second disjunct above. Similarly,

statement s:10 establishes s@11 ^ s:h = n if executed while the antecedent and consequent

both hold. Finally, statements s:8 and s:9 do not modify s:h, s:8 establishes s@9, and

because :s:moved and s:h = n+ 1 holds, statement s:9 establishes s@10.

The following invariant implies that while process p is executing the loop at lines 3

to 4 and X [p:i; p:j] = p still holds, one of the Y -components that p has set is not overwritten

by any other process.

invariant r � 0 ^ c � 0 ^ r + c < k � 1 ^

p@f3::4g ^ p:i = r ^ p:j = c ^ X [r; c] = p)

(9n :: (8q : q 6= p :: :MOD(q; r; c; n)) ^

((Y [r; c; n] = p ^ 0 � n ^ n < p:h) _

(Y [r; c; n] = ? ^ p:h � n ^ n < k � r� c)) (I137)

Proof: Assume r � 0 ^ c � 0 ^ r + c < k � 1. Initially, p@0 holds, so (I137) holds.

Observe that no statement modi�es p:i or p:j or establishes X [r; c] = p while p@f3::4g

holds. Thus, only statements that establish p@f3::4g can establish the antecedent. By

(I126), statement p:1 establishes p:h < k� p:i� p:j ^ :p:moved , so p:1 does not establish

p@f3::4g. After statement p:5 or statement p:6 is executed, p@f5::7g holds. Statement p:7

establishes p:moved , thereby terminating the loop and establishing p@f1; 8g. The following

assertions imply that if statement p:2 establishes the antecedent, then the consequent holds

238

afterwards.

fp@2 ^ (p:i 6= r _ p:j 6= c _ Y [p:i; p:j; p:h] 6= ? _ X [r; c] 6= p)g p:2

f(p:i 6= r _ p:j 6= c) _ (p:moved ^ p@f1; 8g) _ X [r; c] 6= pg

, p:2 does not modify p:i or X ; if p:2 modi�es p:j or

if Y [p:i; p:j; p:h] 6= ?, then p:2 establishes p:moved ^ p@f1; 8g.

p@2 ^ p:i = r ^ p:j = c ^ Y [p:i; p:j; p:h] = ? ^ X [r; c] = p ^

p:h+ 1 > k � r � c) false , by (I125).

fp@2 ^ p:i = r ^ p:j = c ^ Y [p:i; p:j; p:h] = ? ^ X [r; c] = p ^

p:h+ 1 < k � r � cg p:2 fp@2g

, by (I124), the precondition implies :p:moved ^ p:h+ 1 < k � p:i� p:j,

so the loop does not terminate.

p@2 ^ p:i = r ^ p:j = c ^ Y [p:i; p:j; p:h] = ? ^ X [r; c] = p ^ p:h+ 1 = k � r � c

) p@2 ^ p:i = r ^ p:j = c ^ Y [r; c; p:h] = ? ^ X [r; c] = p ^

p:h+ 1 = k � r � c ^ jfn :: (9q :: SET (q; r; c; n) _ MOD(q; r; c; n))gj<

jfq :: EN (q; r; c)gj , by (I133) and the de�nition of EN (p; r; c).

) p@2 ^ p:i = r ^ p:j = c ^ Y [r; c; p:h] = ? ^ X [r; c] = p ^

p:h+ 1 = k � r � c ^

jfn :: (9q :: SET (q; r; c; n) _ MOD(q; r; c; n))gj< k � r � c , by (I135).

) p@2 ^ p:i = r ^ p:j = c ^ Y [r; c; p:h] = ? ^ X [r; c] = p ^

p:h+ 1 = k � r � c ^ (9n : 0 � n < k � r � c :: (8q :: :SET (q; r; c; n) ^

:MOD(q; r; c; n))) , by the pigeonhole principle.

239

) p@2 ^ p:i = r ^ p:j = c ^ Y [r; c; p:h] = ? ^ X [r; c] = p ^

p:h+ 1 = k � r � c ^ (9n : 0 � n < k � r � c :: Y [r; c; n] = ? ^

(8q :: :SET (q; r; c; n) ^ :MOD(q; r; c; n))) , by (I136).

fp@2 ^ p:i = r ^ p:j = c ^ Y [r; c; p:h] = ? ^ X [r; c] = p ^

p:h+ 1 = k � r � c ^ (I133) ^ (I135) ^ (I136)g p:2

f(9n :: Y [r; c; n] = ? ^ p:h � n ^ n < k � r � c ^

(8q : q 6= p :: :MOD(q; r; c; n)))g

, by the preceding derivation and the program text; note that p:2

establishes p:h = 0 in this case, and does not modify Y or

establish MOD(q; r; c; n) for any q. Also observe that the postcondition

implies the consequent of (I137).

The following invariant implies that, if process p is in its working section while

occupying an interior building block (r; c), then no other process is in its working section

at that building block.

invariant r � 0 ^ c � 0 ^ r + c < k � 1 ^ p:i = r ^ p:j = c ^

((p@4 ^ p:h � k � r � c) _ p@f8::9g))

(9n : 0 � n < k � r � c :: Y [r; c; n] = p ^ (8q : q 6= p :: q:i 6= p:i _ q:j 6= p:j

_ q@f0::1g _ (q@2 ^ q:h � n) _ ((q@f2::3g _

(q@4 ^ q:h < k � r � c ^ q:h 6= n)) ^ X [r; c] 6= q) _

q@f5; 7; 10g _ (q@f6; 11g ^ q:h 6= n))) (I138)

240

Proof: Assume that r � 0 ^ c � 0 ^ r+c < k�1. Initially, p@0 holds, so (I138) holds. The

antecedent of (I138) is only established by modifying p:i, p:j, or p:h, or by establishing p@4

or p@f8::9g. Therefore, statements p:6, p:8, p:9, and p:11 do not establish the antecedent.

After statements p:0, p:1, p:5, and p:10, the antecedent does not hold because :p@f4; 8::9g

holds. ((I124) implies that p:1 establishes p@2.) Statement p:7 establishes p@1 _ (p@8 ^

p:i+ p:j � k � 1), and therefore does not establish the antecedent.

If p@2 ^ Y [p:i; p:j; p:h] = ? holds before p:2 is executed, then, by (I124) and (I125),

p@f2; 3g holds afterwards. If p@2 ^ Y [p:i; p:j; p:h] 6= ? holds before p:2 is executed, then

p@1 _ (p@8 ^ p:i + p:j � k � 1) holds afterwards. Thus, p:2 does not establish the

antecedent. The remaining statements to check are p:3 and p:4.

By (I124) and (I129), :p:moved ^ p:h � k� p:i� p:j holds before statement p:4

is executed. Therefore, the antecedent holds after p:4 is executed only if p:i = r ^ p:j =

c ^ p@4 ^ p:h = k � p:i� p:j holds before, in which case the antecedent already holds.

Statement p:3 establishes the antecedent of (I138) only if executed when p@3 ^

p:i = r ^ p:j = c ^ X [p:i; p:j] = p ^ p:h � k � r � c holds. By (I129) and (I137)r;cp:i;p:j,

this implies that the following assertion holds before p:3 is executed.

X [p:i; p:j] = p ^ (9n : 0 � n < k � r � c :: Y [r; c; n] = p ^

(8q : q 6= p :: X [p:i; p:j] 6= q ^ :MOD(q; p:i; p:j; n))) (A9)

(A9) ^ (I120) ^ (I138)p;q;r;cq;p;q:i;q:j implies the consequent of (I138). To see this,

suppose that some q 6= p does not satisfy the universal quanti�er in the consequent of

(I138). Then (A9) ^ (I120) implies that q:i = p:i ^ q:j = p:j ^ ((q@4 ^ q:h �

k� r� c) _ q@f8::9g) holds (because X [p:i; p:j] 6= q ^ :MOD(q; p:i; p:j; n) holds). In this

241

case, (I138)
p;q;r;c
q;p;q:i;q:j ^ p@3 implies X [p:i; p:j] 6= p, a contradiction. Statement p:3 does not

falsify the consequent, so the consequent holds after p:3 is executed in this case.

We now consider statements that potentially falsify the consequent while the an-

tecedent holds. First, observe that no statement modi�es p:i, p:j, or Y [r; c; n] while the an-

tecedent and consequent both hold. Only statements q:0, q:2, and q:7 potentially falsify the

consequent by modifying q:i or q:j for some process q. However, if any of these statements

modi�es q:i or q:j, then q@1 _ (q@8 ^ q:i+q:j � k�1) holds afterwards. The latter disjunct

implies that q:i 6= p:i _ q:j 6= p:j holds because the antecedent implies that p:i+p:j < k�1.

Thus, no statement that modi�es q:i or q:j for any process q falsi�es the consequent while the

antecedent holds. It therefore remains to consider statements that falsify (A10) below, for

some q 6= p, while p:i = r ^ p:j = c ^ 0 � n < k�r�c ^ Y [r; c; n] = p ^ q:i = p:i ^ q:j = p:j

holds.

q@f0::1g _ (q@2 ^ q:h � n) _ ((q@f2::3g _

(q@4 ^ q:h < k � r � c ^ q:h 6= n)) ^ X [r; c] 6= q) _

q@f5; 7; 10g _ (q@f6; 11g ^ q:h 6= n) (A10)

Only statement q:1 falsi�es q@f0::1g, and q:1 establishes q@2 ^ q:h � n.

Only statements q:2 and q:3 falsify q@2 ^ q:h � n or q@f2::3g. As shown above,

if q:2 modi�es q:j, then it does not falsify the consequent while the antecedent holds. Also,

statement q:2 does not falsify q@2 ^ q:h � n by incrementing q:h because Y [q:i; q:j; n] 6=

q. By (I124) and (I125), statement q:2 does not falsify q@f2::3g if it increments q:h. If

statement q:3 falsi�es q@f2::3gwhile X [r; c] 6= q holds, then q:3 establishes q@f5; 7g. (Recall

that p:i = c ^ p:j = r ^ q:i = p:i ^ q:j = p:j.)

242

If statement q:4 falsi�es q@4 ^ q:h < k � r � c ^ q:h 6= n, then by (I124),

q:4 establishes q@3. No statement falsi�es X [r; c] 6= q while q@f2::4g holds. Because

q:i = r ^ q:j = c ^ Y [r; c; n] 6= q holds, (q@6 ^ q:h 6= n) _ q@f5; 7g holds after

the execution of q:5. As shown above, statement q:7 does not falsify the consequent while

the antecedent holds. Statement q:10 establishes q@f0; 10g _ (q@11 ^ q:h 6= n) (because

q:i = r ^ q:j = c ^ Y [r; c; n] = p). Finally, statement q:6 establishes q@f5; 7g and statement

q:11 establishes q@f0; 10g. Thus, the consequent is not falsi�ed while the antecedent holds.

The following invariant implies that, if two distinct processes are in their working

sections concurrently, then they occupy di�erent grid positions. We ues this fact later to

show that distinct processes do not hold the same name concurrently.

invariant p 6= q ^ p@f8::9g ^ q@f8::9g) p:i 6= q:i _ q:j 6= q:j (I139)

Proof: If p 6= q ^ p@f8::9g ^ p:i+ p:j < k� 1 holds, then by (I127) and (I138)r;cp:i;p:j, q:i 6=

p:i _ q:j 6= p:j _ :q@f8::9g holds, so (I139) holds. If p 6= q ^ p@f8::9g ^ p:i+p:j � k�1

holds, then by (I127), (I128), and (I135)
r;c
p:i;p:j, it follows that jfs :: EN (s; p:i; p:j)gj � 1.

By the de�nition of EN , the antecedent implies EN (p; p:i; p:j). Therefore :EN (q; p:i; p:j)

holds, which implies that the consequent holds.

Claim 19: Let c, d, c0, and d0 be nonnegative integers satisfying (c 6= c0 _ d 6= d0) ^ (c+d �

k � 1) ^ (c0 + d0 � k � 1). Then, ck� c(c� 1)=2 + d 6= c0k � c0(c0 � 1)=2 + d0.

Proof: The claim is straightforward if c = c0, so assume that c 6= c0. Without loss of

generality assume that c < c0. Then,

ck � c(c� 1)=2 + d � ck � c(c� 1)=2 + k � 1� c , d � k � 1� c.

243

= ck � c2=2� c=2 + k � 1

< (c+ 1)(k� c=2)

� c0k � c0(c0 � 1)=2 , c+ 1 � c0.

� c0k � c0(c0 � 1)=2 + d0 , d0 is nonnegative.

Claim 20: Let c and d be nonnegative integers satisfying c + d � k � 1. Then 0 �

ck � c(c� 1)=2 + d < k(k + 1)=2.

Proof: It follows from the statement of the claim that c � k � 1. Thus, k � (c� 1)=2 > 0.

Also, c � 0 and d � 0. Thus, ck � c(c� 1)=2 + d � 0. To see that ck � c(c� 1)=2 + d <

k(k + 1)=2, consider the following derivation.

ck � c(c� 1)=2 + d � ck � c(c� 1)=2 + d(d+ 1)=2 , d � 0.

� ck � c(c� 1)=2 + (k � 1� c)(k� c)=2 , d � k � 1� c.

= c+ k(k � 1)=2

� k � 1 + k(k � 1)=2 , c � k � 1.

< k(k + 1)=2

The next two invariants show that distinct processes in their working sections hold distinct

names from f0; :::; k(k+1)=2�1g. The �rst follows easily from (I122), (I127), (I128), (I139),

and Claim 19. The second is easily proved using (I122), (I127), (I128), and Claim 20.

invariant p 6= q ^ p@9 ^ q@9) p:name 6= q:name (I140)

invariant p@9) 0 � p:name < k(k + 1)=2 (I141)

244

(I140) and (I141) imply that the algorithm in Figure 7.6 correctly implements

(k(k + 1)=2)-renaming. To see that the wait-freedom requirement is satis�ed, we consider

all the loops in the algorithm in Figure 7.6. By (I127), the loop at line 2 clearly terminates

after at most k iterations. Similarly, by (I127), (I129), and (I130), the loop at lines 5 and

6 and the loop at lines 10 to 11 both terminate after at most k + 1 iterations. Also, note

that if the loop at lines 5 to 6 is executed, then statement 7 establishes p:moved , so the

loop at lines 3 to 7 terminates. Thus, the loop at lines 5 to 6 is executed at most once per

execution of the loop at lines 3 to 7. To see that the loop at lines 3 to 7 terminates, consider

statement p:3. If X [p:i; p:j] 6= p holds before statement p:3 is executed, then statement p:7

establishes p:moved , so the loop terminates. Otherwise, p:h is incremented when statement

p:4 is executed. Because of the loop condition p:h � k � p:i � p:j, by (I127), the loop at

lines 3 to 7 is executed at most k times. Finally, the loop at lines 1 to 7 executes at most

k�1 times. To see this, observe that, by (I124), the loop terminates unless some statement

establishes p:moved . Only statements p:2 and p:7 establish p:moved , and if they do so, they

increment either p:i or p:j. Thus, because of the loop condition p:i + p:j < k � 1, (I127)

implies that the loop terminates after at most k�1 executions. Thus, we have the following

result.

Theorem 21: Using read and write, wait-free, long-lived (k(k + 1)=2)-renaming can be

implemented so that the worst-case time complexity of acquiring and releasing a name once

is �(k2), and the space complexity is �(k3).

245

C.2 Correctness Proof for Algorithm in Figure 7.7

In accordance with the problem speci�cation, we assume the following invariant.

invariant jfp :: p@f1::3ggj � k (I142)

The following invariants follow directly from the program text in Figure 7.7, and

are stated without proof.

invariant p@3) p:name = b(p:h) + p:v (I143)

invariant p:h � 0 (I144)

invariant p@f2::3g) 0 � p:v < b (I145)

Correctness proofs are given below for the remaining invariants. Although each

of the following two assertions is an invariant in its own right, it is convenient to prove

that their conjunction is an invariant because this way we may inductively assume that

both hold before any statement execution. These assertions show that two processes do not

concurrently \hold" the same bit and that for each set bit, some process r holds that bit.

q 6= p ^ q@f2::3g ^ p@f2::3g ^ 0 � p:h < dk=be) q:h 6= p:h _ q:v 6= p:v (A11)

0 � i < dk=be ^ 0 � j < b) (X [i][j]� (9r :: r@f2; 3g ^ r:h = i ^ r:v = j)) (A12)

invariant (A11) ^ (A12) (I146)

Proof: Initially (8p :: p@0) ^ :X [i][j] holds, so (I146) holds. We �rst consider statements

that potentially falsify (A11). Assume that q 6= p. By (I144), only p:0 can establish

0 � p:h < dk=be, and the antecedent does not hold after p:0 is executed. Therefore, by

246

symmetry, we need only consider statements that may establish q@f2::3g or modify q:h

or q:v. The statements to check are q:0 and q:1. The antecedent does not hold after q:0

is executed. To show that statement q:1 does not falsify (A11), we consider the following

three cases.

fq@1 ^ (8n : 0 � n < b :: X [q:h][n])g q:1 fq@1g

, q:1 assigns q:v = b so loop does not terminate.

fq@1 ^ (9n : 0 � n < b :: :X [q:h][n]) ^

(:p@f2::3g _ q:h 6= p:h _ p:h < 0 _ p:h � dk=be)g q:1

f:p@f2::3g _ q:h 6= p:h _ p:h < 0 _ p:h � dk=beg , q:h is not modi�ed; also q 6= p.

q@1 ^ (9n : 0 � n < b :: :X [q:h][n]) ^ p@f2::3g ^ q:h = p:h ^

0 � p:h < dk=be ^ (A12)i;jp:h;p:v

)(9n : 0 � n < b :: :X [q:h][n]) ^ p@f2::3g ^ q:h = p:h ^

0 � p:h < dk=be ^ 0 � p:v < b ^ (A12)i;jp:h;p:v , by (I145).

)(9n : 0 � n < b :: :X [q:h][n]) ^ X [p:h; p:v] ^ q:h = p:h , by de�nition of (A12).

)(minn : 0 � n < b :: :X [q:h; n]) 6= p:v , predicate calculus.

fq@1 ^ (9n : 0 � n < b :: :X [q:h][n]) ^ p@f2::3g ^ q:h = p:h ^

0 � p:h < dk=be ^ (A12)i;jp:h;p:vg q:1 fq:v 6= p:vg

, by above derivation and program text.

For (A12), assume that 0 � i < dk=be ^ 0 � j < b. (A12) can be falsi�ed by

statements that modify X , establish or falsify r@f2::3g, or modify r:h or r:v for some r. The

statements to check are r:0, r:1, and r:3. Statement r:0 does not modify X ; also r@f2; 3g

247

(and hence r@f2; 3g ^ r:h = i ^ r:v = j) is false both before and after the execution of

r:0. To show that r:1 does not falsify (A12), we consider the following four cases.

fr@1 ^ (8n : 0 � n < b :: X [r:h][n]) ^ (A12)g r:1 fr@1 ^ (A12)g

, by the program text, r:1 does not modify X [i][j], and the loop does

not terminate; also the pre- and post-conditions imply

:(r@f2::3g ^ r:h = i ^ r:v = j).

fr@1 ^ (9n : 0 � n < b :: :X [r:h][n]) ^ r:h 6= i ^ (A12)g r:1 fr:h 6= i ^ (A12)g

, r:1 does not modify X [i][j] because r:h 6= i;

also pre- and post-conditions imply :(r@f2::3g ^ r:h = i ^ r:v = j).

fr@1 ^ (9n : 0 � n < b :: :X [r:h][n]) ^ r:h = i ^

(minn : 0 � n < b :: :X [r:h][n]) = j ^ (A12)g

r:1 fX [i][j] ^ r@f2; 3g ^ r:h = i ^ r:v = jg

, by program text.

fr@1 ^ (9n : 0 � n < j :: :X [i][n]) ^ r:h = i ^

(minn : 0 � n < b :: :X [r:h][n]) 6= j ^ (A12)g

r:1 fX [i][j]� (9r :: r@f2; 3g ^ r:h = i ^ r:v = j)g

, the precondition implies the postcondition; r:1 does not modify

X [i][j], establish r@f2; 3g ^ r:h = i ^ r:v = j, or a�ect

q@f2; 3g ^ q:h = i ^ q:v = j for q 6= r.

To show that r:3 does not falsify (A12), we consider the following two cases.

fr@3 ^ (r:h 6= i _ r:v 6= j) ^ (A12)g r:3 fr@0 ^ (r:h 6= i _ r:v 6= j) ^ (A12)g

248

, r:3 does not modify X [i][j], establish r@f2; 3g ^ r:h = i ^ r:v = j,

or a�ect q@f2; 3g ^ q:h = i ^ q:v = j for q 6= r.

fr@3 ^ r:h = i ^ r:v = j ^ (A11)g r:3

f:X [i][j] ^ r@0 ^ (8s : s 6= r :: :s@f2::3g _ s:h 6= i _ s:v 6= j)g

, because 0 � i < dk=be, the precondition implies that 0 < r:h < dk=be; thus, by

de�nition of (A11), the precondition implies (8s : s 6= r :: :s@f2::3g _

s:h 6= i _ s:v 6= j), which is not falsi�ed by r:3; also, r:3 establishes

:X [i][j] ^ r@0 in this case.

The following invariant shows that, for each i, 0 � i < dk=be, there are always

enough names left for the number of processes seeking names from X [i]:::X[dk=be� 1].

invariant 0 � i < dk=be) (jfp :: p@f1::3g ^ p:h � igj � k � ib) (I147)

Proof: By (I142), (I147) holds if i = 0. Henceforth, assume 0 < i < dk=be. Initially

(8p :: p@0) holds, and because i < dk=be, it follows that k� ib � 0, so (I147) holds initially.

(I147) can be falsi�ed only by establishing q@1 or by incrementing q:h for some process q.

The statements to check are q:0 and q:1. After statement q:0 is executed, q:h < i holds

because i > 0. Statement q:1 can establish q@f1::3g ^ q:h � i only if executed when

q@1 ^ q:h = i� 1 holds. To show that q:1 does not falsify (I147) in this case, we consider

the following two cases.

fq@1 ^ q:h = i� 1 ^ (9n : 0 � n < b :: :X [i� 1][n]) ^ (I147)g q:1

fq@2 ^ q:h = i� 1 ^ (I147)g

, by program text; loop terminates because q:1 establishes q:v < b.

249

q@1 ^ q:h = i� 1 ^ (8n : 0 � n < b ::X [i� 1][n] ^ (I146)
i;j
i�1;n) ^ (I147)ii�1

) q@1 ^ q:h = i� 1 ^ jfp :: p@f2::3g ^ p:h = i� 1gj � b ^ (I147)ii�1

, (I146) implies (A12); recall that 0 < i < dk=be.

) q@1 ^ q:h = i� 1 ^ jfp :: p@f2::3g ^ p:h = i� 1gj � b ^

jfp :: p@f1::3g ^ p:h � i� 1gj � k � ib+ b , de�nition of (I147).

)jfp :: p@f1::3g ^ p:h � i)gj � k � ib� 1

, predicate calculus; note that q:h = i� 1) q:h � i� 1 ^ :(q:h � i).

fq@1 ^ q:h = i� 1 ^ (8n : 0 � n < b :: X [i� 1][n] ^ (I146)i;ji�1;n) ^ (I147)ii�1g q:1 f(I147)g

, by above derivation; q:1 does not establish p@f1::3g ^ p:h � i for p 6= q.

The following invariant shows that if a process reaches X [dk=be � 1], then its

set �rst zero will succeed, so it will acquire a name.

invariant p@1 ^ p:h = dk=be � 1) (9n : 0 � n < k � b(dk=be � 1) :: :X [dk=be � 1][n])

(I148)

Proof: Consider the following derivation.

p@1 ^ p:h = dk=be � 1 ^ (I147)i
dk=be�1

)p@1 ^ p:h = dk=be � 1 ^ (jfp :: p@f1::3g ^ p:h � dk=be � 1)gj � k � b(dk=be � 1))

, by (I147).

)p:h = dk=be � 1 ^ (jfp :: p@f2::3g ^ p:h = dk=be � 1gj < k � b(dk=be)� 1)

, predicate calculus.

)jfn : 0 � n < k � b(dk=be � 1) :: X [dk=be� 1][n]gj < k � b(dk=be � 1)

250

, observe that 0 � n < k � b(dk=be � 1) implies 0 � n < b; thus, by (I146),

jfn : 0 � n < k � b(dk=be � 1) :: X [dk=be � 1][n]gj �

jfp :: p@f2::3g ^ p:h = dk=be � 1gj.

)(9n : 0 � n < k � b(dk=be � 1) :: :X [dk=be � 1][n]) , pigeonhole principle.

The following invariants are used to show that process p acquires a name in

f0; :::; k� 1g from one of the �rst dk=be segments of names.

invariant p@1) 0 � p:h < dk=be (I149)

Proof: Initially p@0 holds, so (I149) holds. Only statements p:0 and p:1 a�ect (I149).

Because k > 1 and b > 0, (I149) holds after p:0 is executed. Statement p:1 can falsify

(I149) only if executed when p:h = dk=be � 1. However, by (I148), (9n : 0 � n < k �

b(dk=be � 1) :: :X [p:h][n]) holds before p:1 is executed in this case. This implies that

(9n : 0 � n < b :: :X [p:h][n]), so the antecedent does not hold after p:1 is executed.

invariant p@f2; 3g) 0 � p:h < dk=be�1 _ (p:h = dk=be�1 ^ 0 � p:v < k�b(dk=be�1))

(I150)

Proof: Initially, p@0 holds, so (I150) holds. Only statements p:0 and p:1 potentially falsify

(I150). The antecedent does not hold after p:0 is executed. For p:1 we have the following.

p@1 ^ (p:h < 0 _ p:h � dk=be)) false , by (I149).

fp@1 ^ 0 � p:h < dk=be � 1g p:1 fp@1 _ 0 � p:h < dk=be � 1g

, if p:1 increases p:h then it also assigns v := b, so the loop does not terminate.

fp@1 ^ p:h = dk=be � 1g p:1 fp@2 ^ p:h = dk=be � 1 ^ 0 � p:v < k � b(dk=be � 1)g

251

, by (I148) and program text.

Claim 21: Let c, d, c0, and d0 be nonnegative integers satisfying (c 6= c0 _ d 6= d0) ^ 0 �

d < b ^ 0 � d0 < b. Then, bc+ d 6= bc0 + d0.

Proof: The claim is straightforward if c = c0, so assume that c 6= c0. Without loss of

generality assume that c < c0. Then,

bc+ d < b(c+ 1) , d < b.

� bc0 , c < c0.

� bc0+ d0 , d0 � 0.

invariant p 6= q ^ p@3 ^ q@3) p:name 6= q:name (I151)

Proof: Consider the following derivation.

p 6= q ^ p@3 ^ q@3

)p 6= q ^ p@3 ^ q@3 ^ 0 � p:h < dk=be , by (I150).

)p 6= q ^ p@3 ^ q@3 ^ (q:h 6= p:h _ q:v 6= p:v) , by (A11) ((I146) implies (A11)).

)(q:h 6= p:h _ q:v 6= p:v) ^ 0 � p:v < b ^ 0 � q:v < b ^ p:h � 0 ^ q:h � 0

, by (I144) and (I145).

)b(p:h) + p:v 6= b(q:h) + q:v , by Claim 21 with c = p:h, d = p:v, c0 = q:h, and d0 = q:v.

)p:name 6= q:name , by (I143).

This concludes the proof that no two processes in their working sections have the

same name. The following invariant shows that that each process acquires a name ranging

over 0::k � 1.

252

invariant p@3) 0 � p:name < k (I152)

Proof: Initially p@0 holds, so (I152) holds. Only statement p:2 potentially falsi�es (I152).

To show that p:2 does not falsify (I152), we consider the following three cases.

Case 1: p@2 ^ (p:h < 0 _ p:h � dk=be)) false , by (I150).

Case 2: p@2 ^ 0 � p:h < dk=be � 1

)(0 � b(p:h) � k � b) ^ (0 � p:v < b) , by (I145) and predicate calculus.

fp@2 ^ 0 � p:h < dk=be � 1g p:2 f0 � p:name < kg

, by the above derivation and the program text.

Case 3: p@2 ^ p:h = dk=be � 1

)(p:h = dk=be � 1) ^ (0 � p:v < k � b(dk=be � 1)) , by (I150).

)0 � (b(p:h) + p:v) < (b(dk=be � 1) + k � b(dk=be � 1))

, predicate calculus, b > 0, k > 0.

)0 � (b(p:h) + p:v) < k , predicate calculus.

fp@2 ^ p:h = dk=be � 1g p:2 f0 � p:name < kg

, by the above derivation and the program text.

(I151) and (I152) prove that the algorithm shown in Figure 7.7 correctly imple-

ments long-lived k-renaming.

Observe that each time a shared variable is accessed when acquiring a name, either

the loop terminates or p:h is incremented. Thus, by (I149), p executes at most dk=be shared

accesses before the loop terminates. Also, releasing a name requires 1 shared variable access.

Thus, we have the following result.

253

Theorem 23 Using set �rst zero and clr bit on b-bit variables, wait-free, long-lived k-

renaming can be implemented so that the worst-case time complexity of acquiring and

releasing a name once is dk=be+ 1.

C.3 Correctness Proof for Algorithm in Figure 7.9

We inductively assume correctness for the right instance of dk=2e-renaming and the

left instance of bk=2c-renaming. In accordance with the problem speci�cation, we assume

that the following invariant holds.

invariant jfp :: p@f1::7ggj � k (I153)

The following two invariants follow directly from the program text in Figure 7.9.

invariant p@f5::6g) p:side = right (I154)

invariant p@7) p:side 6= right (I155)

Proofs for the remaining invariants are provided below. Although each of the

following two assertions is an invariant in its own right, it is convenient to prove that

their conjunction is an invariant because this way we may inductively assume that both

hold before any statement execution. These assertions are used to prove that too many

processes do not access the left and right instances. This is required so that the correctness

of these instances can be used to prove the algorithm correct inductively.

0 � X � dk=2e (A13)

254

jfp :: p@2 _ (p@f4::7g ^ p:side = right)gj = dk=2e �X (A14)

invariant (A13) ^ (A14) (I156)

Proof: Initially (A13) ^ (A14) holds. (A13) can only be falsi�ed by decrementing X

when X = 0 holds, or by incrementing X when X = dk=2e holds. By the de�nition

of bounded decrement, the �rst case does not arise. Only statement p:6 increments X .

However, consider the following.

p@6 ^ X = dk=2e ^ p:side 6= right ^ (I154)) false , by (I154).

p@6 ^ X = dk=2e ^ p:side = right ^ (A14)) false , by de�nition of (A14).

(A14) is potentially falsi�ed by any statement that modi�es p:side or X , or estab-

lishes or falsi�es p@2 or p@f4::7g. The statements to check are p:1, p:2, p:3, p:6, and p:7

where p is any process. Statement p:2 preserves p@2 _ (p@f4::7g ^ p:side = right) and

statement p:3 preserves :(p@2 _ (p@f4::7g ^ p:side = right)). Also, neither statement

modi�es X . By (I154), statement p:6 decreases both sides of (A14) by 1. By (I155), state-

ment p:7 does not a�ect either side. The following assertions imply that statement p:1 does

not falsify (A14).

p@1 ^ X < 0 ^ (A13)) false , de�nition of (A13).

fp@1 ^ X = 0 ^ (A14)g p:1 fp@3 ^ (A14)g

, by de�nition of bounded decrement, p:1 does not modify X .

fp@1 ^ X > 0 ^ (A14)g p:1 fp@2 ^ (A14)g

, both sides of (A14) are increased by 1 in this case.

255

invariant jfp :: p@2 _ (p@f4::7g ^ p:side = right)gj � dk=2e (I157)

Proof: (I157) follows directly from (I156).

invariant jfp :: p@3 _ (p@f4::7g ^ p:side = left)gj � bk=2c (I158)

Proof: Initially, (8p :: p@0) holds, so (I158) holds because k > 0. (I158) is potentially

falsi�ed by any statement that establishes p@3 _ (p@f4::7g ^ p:side = left) for some p.

The statements to check are p:1, p:2, and p:3. For statement p:2, we have fp@2g p:2 fp@4 ^

p:side = rightg. Statement p:3 preserves p@3 _ (p@f4::7g ^ p:side = left). The following

assertions imply that statement p:1 does not falsify (I158).

p@1 ^ X < 0) false , by (A13) ((I156) implies (A13)).

fp@1 ^ X > 0g p:1 fp@2g , de�nition of bounded decrement.

p@1 ^ X = 0

)p@1 ^ jfq :: q@2 _ (q@f4::7g ^ q:side = right)gj = dk=2e

, by (A14) ((I156) implies (A14)).

)jfq :: q@3 _ (q@f4::7g ^ q:side = left)gj < bk=2c , by (I153).

fp@1 ^ X = 0g p:1 fjfq :: q@3 _ (q@f4::7g ^ q:side = left)gj � bk=2c

, by preceding derivation; p:1 increases the left-hand side of (I158) by at most 1.

By (I157) and (I158), the right instance is accessed by at most dk=2e processes

concurrently and the left instance is accessed by at most bk=2c processes concurrently. By

assumption, these instances are correct. Therefore, the following invariants follow easily

from the correctness conditions.

256

invariant p@f4; 5g ^ p:side = right) 0 � p:name < dk=2e (I159)

invariant p@f4; 7g ^ p:side = left) dk=2e � p:name < k (I160)

invariant p 6= q ^ p@f4::7g ^ q@f4::7g ^ p:side = q:side) p:name 6= q:name (I161)

Correctness of the k-renaming algorithm shown in Figure 7.9 follows from (I159),

(I160), and (I161). Note that, given the assumption that the left and right instances are

correct, wait-freedom is trivial. This allows us to prove the following result.

Theorem 24 Using b-bit variables and bounded decrement and fetch and add, wait-free,

long-lived k-renaming can be implemented so that the worst-case time complexity of ac-

quiring and releasing a name once is 2dlog2 ke for k � 2(2b � 1).

Proof: By induction on k.

Basis: k = 2. 1-renaming can be trivially implemented with no shared accesses. Thus, in

this case, the algorithm in Figure 7.9 implements 2-renaming with two shared accesses.

Induction: k > 2. Inductively assume that dk=2e-renaming and bk=2c-renaming can be

implemented with time complexity at most 2dlog2dk=2ee and 2dlog2bk=2ce, respectively.

Thus, the algorithm in Figure 7.9 has time complexity at most 2 + 2dlog2dk=2ee = 2 +

2dlog2 k � 1e = 2dlog2 ke, so the theorem holds. Note that because the shared counter X

must be represented with b bits, this algorithm can only be implemented if dk=2e � 2b � 1.

Thus, the proof only holds if k � 2(2b � 1).

As noted in Section 7.4.2, the set �rst zero and clr bit operations can be used to

further improve the time complexity of this algorithm by \chopping o�" the bottom blog2 bc

257

levels of the tree. This approach yields the following result.

Theorem 25: Using b-bit variables and set �rst zero, clr bit , bounded decrement, and

fetch and add, wait-free, long-lived k-renaming can be implemented so that the worst-case

time complexity of acquiring and releasing a name once is 2(dlog2dk=bee + 1) for 1 � k �

2(2b � 1).

Proof: By induction on k.

Basis: k � b. By Theorem 23, wait-free k-renaming can be implemented with time com-

plexity dk=be+ 1 = 2 = 2(dlog2dk=bee+ 1) when k � b.

Induction: k > b. Inductively assume that dk=2e-renaming and bk=2c-renaming can each be

implemented with time complexity 2(dlog2dk=2bee+1) = 2dlog2dk=bee. Then, the algorithm

in Figure 7.9 implements the k-renaming with time complexity at most 2 + 2dlog2dk=bee =

2(dlog2dk=bee+1) shared accesses. As for Theorem 24, this proof only holds if k � 2(2b�1).

C.4 Correctness Proof for Algorithm in Figure 7.10

The di�erences between the safety proofs for the algorithms shown in Figures 7.9

and 7.10 are captured by the following three invariants. These invariants are easy to prove,

and are therefore stated without proof.

invariant jfp :: (p@2 ^ p:side = none) _ (p@f3::9g ^ p:side = right)gj = dk=2e �X

(I162)

258

invariant jfp@f3::9g ^ p:side = rightgj � dk=2e (I163)

invariant jfp@f3::9g ^ p:side = leftgj � bk=2c (I164)

These invariants are analogous to (A14), (I157), and (I158), respectively. As with

the proof for the algorithm shown in Figure 7.9, (I163) and (I164) are used to show that

the left and right instances are not accessed by too many processes concurrently. The rest

of the proof is similar to the previous one. The lock-freedom property for the algorithm

shown in Figure 7.10 is captured formally by the following property.

Lock-Freedom: If a non-faulty process p attempts to reach its working section, then

eventually some process (not necessarily p) reaches its working section.

Proof: We inductively assume that the left and right instances are lock-free. Thus, it is

easy to see that the only risk to lock-freedom is that some non-faulty process p executes

statements p:1 and p:2 forever, without any other process reaching its working section.

Assume, towards a contradiction, that process p repeatedly executes statements p:1 and p:2.

Consider consecutive statement executions, of p:2 and p:1, respectively. By the assumption

that the loop executes repeatedly, it follows that X > 0 holds immediately after statement

p:2 is executed, and that X � 0 holds immediately before statement p:1 is executed. Thus,

X is decremented at least once between the execution of statements p:2 and p:1. Consider

the �rst such decrement by some process q. The only statement that decrements X is

statement q:1. As q:1 is the �rst decrement of X after the execution of p:2, it follows that

X > 0 holds when q:1 is executed. Thus, q:1 establishes q@3 ^ q:side = right . Note that

process q can only decrement X again after reaching its working section. Thus, if some

259

process p repeats the loop at p:1 and p:2 N times, then some process q reaches its working

section.

Because a process may repeatedly execute statements p:1 and p:2 (while other

processes make progress), the worst-case time complexity for the algorithm in Figure 7.10 is

unbounded. However, if no other process takes a step between statements p:1 and p:2 being

executed, then the test at statement p:2 will succeed. Therefore, if there is no contention,

then the number of shared accesses generated by a process acquiring and releasing a name

once is at most 2 plus the contention-free time complexity for the inductively-assumed

instances. Thus, by an inductive proof similar to the proof of Theorem 24, we have the

following result. This result can be extended, as Theorem 24 was in the previous section,

to give a result analogous to Theorem 25.

Theorem 26: Using b-bit variables and fetch and add, lock-free, long-lived k-renaming can

be implemented so that the worst-case, contention-free time complexity of acquiring and

releasing a name once is 2dlog2 ke for k � 2(2b � 1).

Bibliography

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, \Atomic Snapshots
of Shared Memory", Proceedings of the Ninth Annual Symposium on Principles of

Distributed Computing , 1990, pp. 1-14.

[2] Y. Afek, D. Dauber, and D. Touitou, \Wait-free Made Fast (Extended Abstract)",
Proceedings of the 27th Annual ACM Symposium on Theory of Computing, 1995, pp.
538-547.

[3] A. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, \A Bounded, First-In, First-
Enabled Solution to the `-Exclusion Problem", ACM Transactions on Programming

Languages and Systems, 16(3), 1994, pp. 939-953.

[4] J. Anderson, \Composite Registers", Distributed Computing , 6(3), 1993, pp. 141-154.

[5] J. Anderson, \Multi-Writer Composite Registers", Distributed Computing, 7(4), 1994,
pp. 175-195.

[6] J. Anderson and B. Gro�selj, \Beyond Atomic Registers: Bounded Wait-Free Im-
plementations of Nontrivial Objects", Science of Computer Programming , 1992, pp.
192-237.

[7] J. Anderson and M. Moir. \Towards A Necessary and Su�cient Condition for Wait-
Free Synchronization", Proceedings of the Seventh International Workshop on Dis-

tributed Algorithms, 1993, pp. 39-53.

[8] J. Anderson and M. Moir, \Using k-Exclusion to Implement Resilient, Scalable Shared
Objects", Proceedings of the 13th Annual ACM Symposium on Principles of Dis-

tributed Computing , 1994, pp. 141-150.

[9] J. Anderson and M. Moir, \Universal Constructions for Multi-Object Operations",
Proceedings of the 14th Annual ACM Symposium on Principles of Distributed Com-

puting , 1995, pp. 184-194.

[10] J. Anderson and M. Moir, \Universal Constructions for Large Objects", Proceedings
of the Ninth International Workshop on Distributed Algorithms, 1995, pp. 168-182.

[11] R. Anderson and H. Woll, \Wait-Free Parallel Algorithms for the Union-Find Prob-
lem", Proceedings of the 23rd ACM Symposium on Theory of Computing , 1991, pp.
370-380.

261

[12] T. Anderson, \The Performance of Spin Lock Alternatives for Shared-Memory Multi-
processors", IEEE Transactions on Parallel and Distributed Systems, 1(1), 1990, pp.
6-16.

[13] J. Aspnes and M. Herlihy, \Wait-Free Data Structures in the Asynchronous PRAM
Model", Proceedings of the Second Annual ACM Symposium on Parallel Architectures

and Algorithms , 1990, pp. 340-349.

[14] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk, \Achiev-
able Cases in an Asynchronous Environment", Proceedings of the 28th Annual IEEE

Symposium on Foundations of Computer Science, 1987, pp. 337-346.

[15] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk, \Renaming
in an Asynchronous Environment", Journal of the ACM 37(3), 1990, pp. 524-548.

[16] H. Attiya, M. Herlihy, and O. Rachman, \E�cient Atomic Snapshots Using Lattice
Agreement", Proceedings of the 6th International Workshop on Distributed Algorithms,
1992, pp. 35-53.

[17] H. Attiya and O. Rachman, \Atomic Snapshots in O(n logn) Operations", Proceedings
of the 12th Annual ACM Symposium on the Principles of Distributed Computing,
1993, pp. 29-40.

[18] G. Barnes, \A Method for Implementing Lock-Free Shared Data Structures", Proceed-
ings of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures ,
1993, pp. 261-270.

[19] A. Bar-Noy and D. Dolev, \Shared Memory versus Message-Passing in an Asyn-
chronous Distributed Environment", Proceedings of the 8th Annual ACM Symposium

on Principles of Distributed Computing , 1989, pp. 307-318.

[20] BBN Advanced Computers, Inside the TC2000 Computer, February, 1990.

[21] B. Berhsad. \Practical Considerations for Non-Blocking Concurrent Objects", Pro-
ceedings of the 13th International Conference on Distributed Computing Systems,
1993, pp. 264-274.

[22] B. Bloom, \Constructing Two-Writer Atomic Registers", IEEE Transactions on Com-

puters , 37(12), December 1988, pp. 1506-1514. Also appeared in Proceedings of the

Sixth Annual Symposium on Principles of Distributed Computing , 1987, pp. 249-259.

[23] E. Borowsky and E. Gafni, \Immediate Atomic Snapshots and Fast Renaming", Pro-
ceedings of the 12th Annual ACM Symposium on Principles of Distributed Computing ,
1993, pp. 41-50.

[24] H. Buhrman, J. Garay, J. Hoepman, and M. Moir, \Long-Lived Renaming Made
Fast", Proceedings of the 14th Annual ACM Symposium on Principles of Distributed

Computing , 1995, pp. 194-203.

[25] J. Burns and G. Peterson, \Constructing Multi-Reader Atomic Values from Non-
Atomic Values", Proceedings of the Sixth Annual Symposium on Principles of Dis-

tributed Computing , 1987, pp. 222-231.

[26] J. Burns and G. Peterson, \The Ambiguity of Choosing", Proceedings of the Eighth

Annual ACM Symposium on Principles of Distributed Computing , 1989, pp. 145-157.

262

[27] K. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley,
1988.

[28] R. Cypher, \The Communication Requirements of Mutual Exclusion", Proceedings of
the 7th Annual ACM Symposium on Parallel Algorithms and Architectures, 1995, pp.
147-156.

[29] E. Dijkstra, \Solution to a Problem in Concurrent Programming Control", Commu-
nications of the ACM, 8(9), 1965, p. 569.

[30] D. Dolev, E. Gafni, and N. Shavit, \Towards a Non-atomic Era: l-Exclusion as a Test
Case", Proceedings of the 20th ACM Symposium on Theory of Computing , 1988, pp.
78-92.

[31] D. Dolev and N. Shavit, \Bounded Concurrent Timestamp Systems are Con-
structible!", Proceedings of the 21st Annual ACM Symposium on Theory of Com-

puting , 1989, pp. 454-465.

[32] C. Dwork, M. Herlihy, S. Plotkin, and O. Waarts, \Time Lapse Snapshots", Proceed-
ings of the Israel Symposium on the Theory of Computing and Systems, 1992, pp.
154-170.

[33] C. Dwork and O. Waarts, \Simple and E�cient Bounded and Concurrent Timestamp-
ing or Bounded Concurrent Timestamp Systems are Comprehensible!", Proceedings of
the 24th Annual ACM Symposium on Theory of Computing , 1992, pp. 655-666.

[34] M. Fischer, N. Lynch, J. Burns, and A. Borodin, \Resource Allocation with Immunity
to Process Failure", Proceedings of the 20th Annual IEEE Symposium on Foundations

of Computer Science, 1979, pp. 234-254.

[35] M. Fischer, N. Lynch, J. Burns, and A. Borodin, \Distributed FIFO Allocation of
Identical Resources Using Small Shared Space", ACM Transactions on Programming

Languages and Systems , 11(1), 1989, pp. 90-114.

[36] M. Fischer, N. Lynch, and M. Paterson, \Impossibility of Distributed Consensus with
One Faulty Process", Journal of the ACM, 1985, pp. 374-382.

[37] R. Gawlick, N. Lynch, and N. Shavit, \Concurrent Timestamping Made Simple",
Proceedings of the Israel Symposium on the Theory of Computing and Systems, 1992,
pp. 171-183.

[38] G. Graunke and S. Thakkar, \Synchronization Algorithms for Shared-Memory Mul-
tiprocessors", IEEE Computer 23, 1990, pp. 60-69.

[39] S. Haldar and P. Subramanian, \Space-Optimum Con
ict-Free Construction of 1-
Writer 1-Reader Multivalued Atomic Variable", Proceedings of the 8th International

Workshop on Distributed Algorithms , 1994, pp. 116-128.

[40] S. Haldar and K. Vidyasankar, \Space-E�cient Construction of Bu�er-Optimal 1-
Writer 1-Reader Multivalued Atomic Variable", Proceedings of the 15th Annual ACM

Symposium on Principles of Distributed Computing, 1996, p. 178.

[41] M. Herlihy, \Impossibility and Universality Results for Wait-Free Synchronization",
Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed

Computing , 1988, pp. 276-290.

263

[42] M. Herlihy, \A Methodology for Implementing Highly Concurrent Data Structures",
Proceedings of the Second Annual ACM Symposium on Principles and Practice of

Parallel Programming , 1990, pp. 197-206.

[43] M. Herlihy, \Wait-Free Synchronization", ACM Transactions on Programming Lan-

guages and Systems, 13(1), 1991, pp. 124-149.

[44] M. Herlihy, \A Methodology for Implementing Highly Concurrent Data Objects",
ACM Transactions on Programming Languages and Systems , 15(5), 1993, pp. 745-
770.

[45] M. Herlihy and J. Moss, \Transactional Memory: Architectural Support for Lock-
Free Data Structures", Proceedings of the 20th International Symposium in Computer

Architecture, 1993, pp. 289-300.

[46] M. Herlihy and N. Shavit, \The Asynchronous Computability Theorem for t-Resilient
Tasks", Proceedings of the 25th ACM Symposium on Theory of Computing , 1993, pp.
111-120.

[47] M. Herlihy and J. Wing, \Axioms for Concurrent Objects", Proceedings of the 14th

ACM Symposium on Principles of Programming Languages , pp. 13-26, 1987.

[48] M. Herlihy and J. Wing, \Linearizability: A Correctness Condition for Concurrent
Objects", ACM Transactions on Programming Languages and Systems , 12(3), 1990,
pp. 463-492.

[49] C. A. R. Hoare, \An Axiomatic Basis for Computer Programming", Communications
of the ACM 12, 1969, pp. 576-580,583.

[50] J.-H. Hoepman and J. Tromp, \Binary Snapshots", Proceedings of the Seventh Inter-

national Workshop on Distributed Algorithms, 1993, pp. 18-25.

[51] M. Inoue, W. Chen, T. Masuzawa, and N. Tokura, \Linear-Time Snapshot Using
Multi-Writer Multi-Reader Registers", Proceedings of the 8th International Workshop

on Distributed Algorithms , 1994, pp. 130-140.

[52] A. Israeli and M. Li, \Bounded Time-Stamps", Proceedings of the 28th IEEE Sympo-

sium on Foundations of Computer Science, 1987, pp. 371-382.

[53] A. Israeli and L. Rappoport, \E�cient Wait-Free Implementation of a Concurrent
Priority Queue", Proceedings of the 7th International Workshop on Distributed Algo-

rithms , 1993, pp. 1-16.

[54] A. Israeli and L. Rappoport, \Disjoint-Access-Parallel Implementations of Strong
Shared Memory Primitives", Proceedings of the 13th Annual ACM Symposium on

Principles of Distributed Computing , 1994, pp. 151-160.

[55] A. Israeli, A. Shaham, and A. Shirazi, \Linear-Time Snapshots for Unbalanced Sys-
tems", Proceedings of the Seventh International Workshop on Distributed Algorithms,
1993, pp. 26-38.

[56] P. Jayanti and S. Toueg, \Some Results on the Impossibility, Universality, and Decid-
ability of Consensus", Proceedings of the 6th International Workshop on Distributed

Algorithms , 1992, pp. 69-84.

264

[57] T. Johnson and K. Harathi, \Interruptible Critical Sections", Technical Report, TR94-
007, Dept. Of Computer Science, University of Florida at Gainesville, 1993.

[58] L. Kirousis, E. Kranakis, and P. Vitanyi, \Atomic Multireader Register", Proceedings
of the Second International Workshop on Distributed Computing , 1987, pp. 278-296.

[59] L. Kirousis, P. Spirakis, and P. Tsigas, \Reading Many Variables in One Atomic
Operation: Solutions with Linear or Sublinear Complexity", Proceedings of the Fifth

International Workshop on Distributed Algorithms , 1991, pp. 229-241.

[60] D. Knuth, \Additional Comments on a Problem in Concurrent Programming Control",
Communications of the ACM, 9(5) 1966, pp. 321-322.

[61] A. LaMarca, \A Performance Evaluation of Lock-Free Synchronization Protocols",
Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Com-

puting , 1994, pp. 130-140.

[62] L. Lamport, \A New Solution of Dijkstra's Concurrent Programming Problem", Com-
munications of the ACM, 17(8), 1974, pp. 453-455.

[63] L. Lamport, \How to Make a Multiprocessor Computer that Correctly Executes Mul-
tiprocess Programs", IEEE Transactions on Computers, C-28(9), 1979, pp. 690-691.

[64] L. Lamport, \Specifying Concurrent Program Modules", ACM Transactions on Pro-

gramming Languages and Systems , 5(2), 1983, pp. 190-222.

[65] L. Lamport, \A Fast Mutual Exclusion Algorithm", ACM Transactions on Computer

Systems , 5(1), 1987, pp. 1-11.

[66] L. Lamport, \On Interprocess Communication, Parts I and II", Distributed Computing
1, 1986, pp. 77-101.

[67] V. Lanin and D. Shasha, \Concurrent Set Manipulation without Locking", Proceedings
of the 7th Annual ACM Symposium on Principles of Database Systems , 1988, pp. 211-
220.

[68] M. Li, J. Tromp, and P. Vitanyi, \How to Construct Wait-Free Variables", Proceedings
of International Colloquium on Automata, Languages, and Programming , 1989, pp.
488-505.

[69] B.-H. Lim and A. Agrawal, \Waiting Algorithms for Synchronization", ACM Trans-

actions on Computer Systems , 11(3), 1993, pp. 253-294.

[70] M. Loui, H. Abu-Amara, \Memory Requirements for Agreement Among Unreliable
Asynchronous Processes", Advances in Computing Research 4, 1987, pp. 163-183.

[71] H. Massalin and C. Pu, \A Lock-Free Multiprocessor OS Kernel", Technical Report
CUCS-005-91, Columbia University, 1991.

[72] J. Mellor-Crummey and M. Scott, \Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors", ACM Transactions on Computer Systems , 9(1),
1991, pp. 21-65.

[73] M. Michael and M. Scott, \Simple, Fast, and Practical Non-Blocking and Blocking
Concurrent Queue Algorithms", Proceedings of the 15th Annual ACM Symposium on

Principles of Distributed Computing , 1996, pp. 267-276.

265

[74] M. Moir and J. Anderson, \Fast, Long-Lived Renaming", Proceedings of the 8th In-

ternational Workshop on Distributed Algorithms , 1994, pp. 141-155.

[75] M. Moir and J. Anderson, \Wait-Free Algorithms for Fast, Long-Lived Renaming",
Science of Computer Programming 25, 1995, pp. 1-39.

[76] M. Moir and J. Garay, \Fast, Long-Lived Renaming Improved and Simpli�ed", to
appear in the proceedings of the 10th International Workshop on Distributed Algo-
rithms, 1996. A brief announcement appeared in Proceedings of the 15th Annual ACM

Symposium on Principles of Distributed Computing, 1996, p. 152.

[77] S. Plotkin, \Sticky Bits and Universality of Consensus", Proceedings of the 8th Annual
ACM Symposium on Principles of Distributed Computing , 1989, pp. 159-175.

[78] R. Newman-Wolfe, \A Protocol for Wait-Free, Atomic, Multi-Reader Shared Vari-
ables", Proceedings of the Sixth Annual Symposium on Principles of Distributed Com-

puting , 1987, pp. 232-248.

[79] G. Peterson, \Concurrent Reading While Writing", ACM Transactions on Program-

ming Languages and Systems 5, 1983, pp. 46-55.

[80] G. Peterson, personal communication, November 1995.

[81] G. Peterson and J. Burns, \Concurrent Reading While Writing II: The Multi-Writer
Case", Proceedings of the 28th Annual Symposium on Foundations of Computer Sci-

ence, 1987.

[82] G. Peterson and M. Fischer, \Economical Solutions for the Critical Section Prob-
lem in a Distributed System", Proceedings of the 9th ACM Symposium on Theory of

Computing , 1977, pp. 91-97.

[83] L. Sha, R. Rajkumar, and J. Lehoczky, \Priority Inheritance Protocols: An Approach
to Real-Time System Synchronization", IEEE Transactions on Computers , 39(9),
1990, pp. 1175-1185.

[84] N. Shavit and D. Touitou, \Software Transactional Memory", Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing , 1995, pp. 204-213.

[85] A. Singh, J. Anderson, and M. Gouda, \The Elusive Atomic Register", Journal of the
ACM , 41(2), 1994, pp. 311-339.

[86] J. Singh, W. Weber, and A. Gupta, \SPLASH: Stanford Parallel Applications for
Shared-Memory", ACM SIGARCH Computer Architecture News, 22(4), 1992, pp. 5-
44.

[87] E. Styer, \Improving Fast Mutual Exclusion", Proceedings of the Eleventh Annual

ACM Symposium on Principles of Distributed Computing , 1992, pp. 159-168.

[88] J. Tromp, \How to Construct an Atomic Variable", Proceedings of the Third Interna-

tional Workshop on Distributed Algorithms , 1989, pp. 292-302.

[89] J. Turek, D. Shasha, and S. Prakash, \Locking Without Blocking: Making Lock
Based Concurrent Data Structure Algorithms Non-Blocking", Proceedings of the 11th
Symposium on Principles of Database Systems, 1992, pp. 212-222.

[90] J. Valois, \Implementing Lock-Free Queues", Proceedings of the Seventh International

Conference on Parallel and Distributed Computing Systems, 1994, pp. 64-69.

266

[91] J. Valois, \Lock-Free Linked Lists Using Compare-and-Swap", Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing , 1995, pp. 214-222.

[92] J. Valois, \Lock-Free Data Structures", Ph.D. Thesis, Rensselaer Polytechnic Institute,
May 1995.

[93] P. Vitanyi and B. Awerbuch, \Atomic Shared Register Access by Asynchronous Hard-
ware", Proceedings of the 27th IEEE Symposium on the Foundations of Computer

Science, 1986, pp. 233-243.

[94] J. Wing and C. Gong, \A Library of Concurrent Objects and their Proofs of Correct-
ness", Technical Report CMU-CS-90-151, Carnegie Mellon University, 1990.

[95] J. Wing and C. Gong, \Testing and Verifying Concurrent Objects", Journal of Parallel
and Distributed Computing, 17(2), 1993, pp. 164-182.

[96] R. Wisniewski, L. Kontothanassis, and M. Scott, \Scalable Spin Locks for Multipro-
grammed Systems", Proceedings of the 8th International Parallel Processing Sympo-

sium, 1994, pp. 583-589.

[97] J.-H. Yang and J. Anderson, \Fast, Scalable Synchronization with Minimal Hard-
ware Support", Proceedings of the 12th Annual ACM Symposium on Principles of

Distributed Computing , 1993, pp. 171-182.

[98] J.-H. Yang and J. Anderson, \A Fast, Scalable Mutual Exclusion Algorithm", Dis-
tributed Computing 9, 1995, pp. 51-60.

