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LEE RICHARD NACKMAN.
Three-Dimensional Shape Description Using the Symmetric Axis Transform
(Under the direction of STEPHEN M. PIZER.)

Abstract

Blum's transform, variously known as the symmetric axis transform, medial

axis transform, or skeleton, and his associated two-dimensional shape descrip-

tion methodology are generalized to three-dimensions. Bookstein’s two-
dimensional algorithm for finding an approximation to the symmetric axis is

also generélized.

The symmetric axis (SA) of an object with a smooth boundary is the locus of
points inside thé object having at least two nearest neighbors on the object
'boundary; In three dimensions, the SA is, in general, a collection of smooth sur-
‘face patches, called simplified segments, connected together in a tree-like
structure. Together with the radius function, the distance from each point on
the SA to a nearest boundary point, the SA forms the symmetric axis transform.
The three-dimensional symmetric axis transform defines a unique, coordinate-
system-independent decomposition of an object into disjoint, two-sided pieces,

each with its own simplified segment and associated object boundary patches.

Four principal cohtribu’tiqns are presented. (1) A relationship among the
Gaussian and mean curvatures of a simplified segment, the Gaussian and mean
curvatures of the associated object boundary‘patches, and radius function
measures is derived. (2) A further decomposition is proposed wherein each
~ two-sided piece is partitioned into primitives drawn from three separate, but not
completely independent, primitive sets: width primitives, boundary primitives,

and axis primitives. Width primitives are regions derived from derivatives of the




radius fuﬁction; hence, they capture the behavior of the boundary patches with
respect to the simplified segment. Axis and boundary primitives are regions of
constant signs of Gaussian and mean curvatures of the simplified ségrﬁent and
boundary patches respectively. The aforementioned curvature relationship is
uéed to derive relationships among the primitive sets. (3) In the course of
studying width primitives, it is proved that, under certain non-degeneracy
assumptions, the regions of the graph defined by the critical points, ridge lines,
and course lines of a scalar valued function over a surface have one of three
types of cycle as boundary. (4) An almost linear algorithm that takes a
polyhedral approximation to a three-dimenéional object and yields a polyhedral

surface approximation to that object’s SA is developed.
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CHAPTER 1

INTRODUCTION

*The study of form may be descriptive merely, or it may become analytical. We
begin by describing the shape of an object in the simple words of common
speech: we end by defining it in the precise language of mathematics; and the
one method tends to follow the other in strict scientific order.... The mathemat-
ical definition of a ‘form’ has a quality of precision which was quite lacking in our
earlier stage of mere description; it is expressed in few words or in still briefer
symbels, and these words or symbols are so pregnant with meaning that thought
itself is economised....”

**‘Nor must we forget that the biologist is much more exacting in his require-
ments, as regards to form, than the physicist; for the latter is usually content
with either an ideal or a general description of form, while the student of living
things must needs be specific.”

—~=D’Arcy Thompson, [Thompson42a, p. 1026 and 1030]

1.1. Background

Rapid advances in data acquisition techniques, especially computed tomog-
raphy, challenge us to seek effective shape description techniques with which to
attack problems in biological and medical shape measurement in three dimen-

sions. Such problems appear in many guises.

For many years biologists have sought quantitative fnethods for studying
biological shape and shape change in order to examine the relation between
form and function[Alexander71a], to study growth (both ontogenetic and
phylogenetic)[Thompson42a, le Gros Clark45a, Sprent72a], and for taxonomic
classification[ Hursh78a]. In his recent book[Bookstein78a] Bookstein argues
persuasively that shape measurements computed solely from landmarks, points

of either anatomical or geometric significance, are inherently inadequate to the




task. Structural shape descriptors offer a potential source of new, more useful

Imeasures.

Already, Webber and Blum|[Webber79a] have used properties derived from a
structural descriptor (the symmetric axis transform) to quantify shape proper-
ties of lateral projections of human mandibles. Turner-Smith and
colleagues[Turner-SmithBOa] are working toward a better understanding of the
progression of spinal curvature and rotation in éatients with idiopathic scoliosis.
They believe that the progression of the disease can be monitored from back
surface shapes and are actively seeking techniques for describing such
shapés[Turner-SmithBla]. Shape déscription may also be a useful tool for plan-
ning and assessing reconstructive facial surgery[Todd-PokropékB1a] and for

reliably predicting the result of orthodontic procedures[Bookstein78a].

In hospitals around the world, huge numbers of computed tomography (CT)
studies, each a sequence of images of cross-sectional slices of the human
body[Brooks75a}, are now being performed and archived. Each slice is a two-
dimensional map of the distribution of the X-ray attenuation coefficients of the
t;issue *‘cut” by the slice. Together the slices reveal the morphology of the
. organs contained within. -Systematic study of organ shapes, both normal and
‘pathologic, across the largé populations contained in the archived studies could

be expected to yield results of scientific and clinical value. Perhaps Wé could
then speak quantitatively of normal and abnormal ranges of organ shape, much
as we are beginning to be able to speak quantitatively pf normal and abnormal
distributions of attenuation values[Pullan78a]. Unfortunately, neither suitable
shape analysis nor automatic organ extraction techniques? yet exist. The poten-

tial applicability of structural shape descriptors to the former problem is clear.

'In the limited cases where thresholding is able to partition the picture elements of each slice of
the study into two classes, organ and non-organ, a three-dimensional boundary following algorluhm
(e.g. [ArtzyB0a]) may be able to extract an organ automatically.



It may also be possible to use structural shape descriptors as a source of a
priori anatomical information for computer-assisted analysis of medical images.
In automatic procedures, organ shape models might guide organ extraction and
aid in constructing three-dimensional displays from two-diménsionai slices. In
interactive procedures they might allow the diagnostician to interact with the
machine at the structure level. For example, a diagnostician working with a
three-dimensional display of a CT study might be able to request that an organ
be removed from view to see behind it, to request dose calculations for indivi-
dual organs in radiation treatment-planning applications, and to request shape

measures to be compared with population norms.

Experimentél systems for small subsets of seyerél of these applications
have been built[Ballard78a, Sunguroff78a, Soroka79a, Shani80a]. Their capabili-
ties, hampered as they are by inadequate techniques for measuring and describ-
ing three-dimensional shape, suggest that the potential payoff of successful use

of structural shape descriptors is likely to be large.

1.2. Rationale

This dissertation sets forth the early development of an attractive, though
yet untested, three-dimensional structural shape description technique. Why
study three;dimensional shape description when.two—dimensional shape descrip-
‘tion is not yet well understood? Originally, exciting medical applications, made
possible by advancing trechnology, motivated our work. While that motivation

still exists, more compelling fundamental reasons have come to light.

The objects we study are three-dimensional or, if oné considers shape
change as well as shape itself, four-dimensional. Therefore, to execute a two-
dimensional shape analysis, one must, before the analysis is even begun, choose
a mapping from the three- or four-dimensional space in which the object is

imbedded to the two-dimensional space of the analysis. Of course, in some cases
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the choice of the mapping is obviated, either by a symmetry of the object under
study, by limitations of the data acquisition apparatus, or by the goals of the
analysis. More often, one either makes an arbitrary choice, or one orients the
object along some ‘'standard’ axis or plane defined by points of anatomical sig-
nificance. The former is subjective; the latter is arbitrary and subject to error
propagation, for, as the simple exercise of slicing a cone with various planes
illustrates, slight error in orientation can lead to large changes in fhe resulting

| _two—dimenSional object. At best, a two-dimensional analysis of a three- or four-

dimensional object is incomplete. At worst, it is biased and misleading.

Studying a shape description technique in three dimensions helps to distin-
guish between properties that are mere coincidences of the technique's formu-
labtion in the plane and properties that are more fundamental. This is important,
for simplicity ahd elegance demand that a two-dimensional technigque be a spe-
cial case of a corresponding thfee-dimensional technique. Yet the usual course -
of development is, often by necessity, the éonverse: one begins with a promising
» two-dimenéional technique, then seeks an appropriate higher dimensional gen- .

eralization.

- Consider, for example, an analogous situation in‘geometry. The formula for
the sum of the interior angles of a convex planar n-gon {180n-380) was known to
Euclid. Generalizing thé formula to three dimensions first required a suitable
generalizat_.ion of convex planar n-gons. Obviously, convex polyhedra are the
three-dimensional analogs of cohvex polygons. But, what of the “'n’’? It could
Fgeneralize to the number of faces, to the number of edges, to the number of ver-
tices, or perhaps to some combination of the three. Similarly, what concept

replaces that of an "interior angle’?

The generalization itself, discovered only in 1874, is not germane here® It

*The generalization is called Gram’s relation for angle-sums and holds for all d-dimensional con-
vex polytopes. See Sections 14.1 and 14.4 of [Grunbaumé7a].



is, however, worth noting that the generalized formula depends not on the
number of vertices, but instead on the number of faces. Indeed, in the d-
aimensional case the formula depends on the number of (d—l)-dimensional
“faces’. This is true, as well, in the planar case, but is masked by the coin-
cidence that in the plane the number of edges is neéessarily identical to the
number of vertices. The example, then, illustrates in small part what méthema-
ticians have long known: generalizing to higher dimensions often illuminates

lower dimensional cases as well.

I have presented a rationale for studying shape deseription in dimensions
three or more. In this dissertation, I limit discussion to three dimensions
because a full-blown treatment of a shape description technique in n dimensions
requires mathernatical sophistication beyond mine. Though this reason alone
does not justify restricting this work to three dimensions, when combined with
the natural division between three and four dimensions, between shape and

shape change, it is compelling.

In the next section I define what I mean by shape and shape description and
describe h’ow they are related to (classical) statistical pattern fecognition.
Those notions established, I then sketch several shape description techniques to
illustrate important shape description paradigms. Chapter 1 then concludes

with an overview of the research described herein.

1.3. Shape and Shape Description

We begin with two-dimensional shape. Let an outline in the Buclidean plane
be a regular, simple, closed plane curve. In other words, an outline is a closed
plane curve with no self-intersections and with a well-defined, continuously turn-
ing tangent at all points. A figure is an outline together with its interior. The

scope of our discussion of shape is limited to single outlines, figures, and their




three-dimensional generalizations3. We therefore do not consider disconnected
objects, objects with holes or corners, or point sets better characterized by

notions of texture.

A shape is an equivalence class of figures (or outlines). Choosing the
eQuivalence relation is both difficult and important — it determines the intu’itive
meaning of "'shape’. At one extreme, we might require all figures in a shape to
be congruent. Usually, such a relation is too stringent to be useful. At the other
extreme, we might use a single measure, such as the ratio of the square of the
outline perimeter to the figure area, to determine which shape an outline is in.
Unless the application domain is highly constrained, such a relation is'too broad

to be useful.

A shape specificalion is a finite specification of the members of a shape.
For example, in statistical pattern recognition, a feature‘ vector is constructed
for each figure (pattern) to be classified. Assuming that the featufe vectors are
elernebnts of some appropfiately chosen metric space, a shape is specified by the

region of the metric space that contains the feature vectors for precisely those

figures in the shape. Such a region, then, is a shape specification?. Each ele-

ment of arfeature vector is a shape measurement, a mapping from the set of all
outlines to the real numbers. Finding appropriate feature vectors, metrics, and

regions are difficult problems.

Indeed, the statistical pattern recognition literature devotes considerable
attention to systematic techniques of determining appropriate metrics and
regions given statistical information about the feature vectors (see
e.g.[Meisel72a, Duda73a]). On the other hand, finding low-dimensional feature

vectors has remained an ad hoc and difficult art. Another pattern recognition

3Qutlines and figures in three dimensions are defined in Chepter 3. Intuitively, a three-
dimensional outline is a smooth surface that can be *'stretched’ into a sphere.

4This is true only if a finite representation of the region exists.



approach, often called structural pattern recognition, has evelved in response to
the difficulty of finding effective feature vectors for use in statistical pattern

recognition.

In structural pattern recognition, the primary goal "15 description rather
than classification. Though it is difficult to formulate a precise definition of a
descriptibn, two intuitive notions characterize most descriptions: (1) a descrip-
~ tion is in a form more suitable for further processing than (a representation of)
the figure itself, and (2) a description captures the ‘‘essence’ of a figure relative
to some context[Evans69a, Pavlidis77a]. The distinction between statistical and
structural pattern recognition is not sharp, but is mainly a difference in goals
and approach. The shape measurements used in statistical pattern recognition
tend to capture global figure properties such as width, elongation, and compact-
ness, while structural descriptions capture relationships among the sub-figures
that comprise é figure. Structural descriptions are often labeled graphs with
nedes représenting sub-figures; arcs representing relationships among sub-

figures, and node labels charabterizing sub-figures.

Ideally, all members of a shape have the same description which then
serves directly as a shape specification. Since this is rarely the case in practice,
systematic techniques are being developed for approximate matching of struc-
tural descriptions|[Haralick78a, Shapiro80a, Shapiro8la]. Once such technigues
are in hand, structural descriptions can be used for classification by matching a
_~description of the figure to be classified against a prototype figure description
for each class (shape). Structural descriptions can also be used as a source of

shape measurements to be used to construct featgre vectors for statistical pat-

tern recognition.




1.4. Shape Descriptioﬁ Paradigms

In his oft-quoted essay, Kuhn[Kuhn70a] likens ‘‘normal science’’ to solﬁng
puzzles within the restricted framework of paradigms, abstractions of the com-
mon lessons learned solving problems that appear different, but that are, upon
éloser’examination, identical in essential aspects®. Indeed, most shape descrip-
tion techniques are elaborations of one of three paradigms®: represent, then dis-

card; decomposition; and prototypes. I present each, together with two- and

three-dimensional examples; below.

1.4.1. Represent, then Discérd

*...we must learn from the mathematician to eliminate and to discard; to keep
the type in mind and leave the single case, with all its accidents, alone; and to
find in this sacrifice of what matters little and conservation of what matters
much one of the peculiar excellences of the method of mathematics.”

——D’Arcy Thompsen, [Thompscn42a, p. 1032]
In the first paradigm, which I call represent, then discard, a shape descrip-
tion (or measurement) is constructed in two steps:
(1) Find a discrete representation of the outline or figure.

(2) Discard “irrelevant” information contained in the representation.

. For example, a two-dimensional outline can be represented by a Fourier series

by cthSihg a parameterization of the outline that is periodic. The first few
coefficients of the Fourier series contain information about overall outline bro—
pefties aﬁd havé been used as shape measurements[‘Granlund’?Za, Zahn72a,
Persoén’?’?a]. Walsh function expansions have also been used in like

manner|Searle70a].

5See, espécia]ly. part 3 of the postseript to the 2nd edition.

8Paviidis[Pavlidis78a, PavlidisB0a] classifies shape description techniques into but two
categories: information preserving and informution non-preserving.



A similar technique has been applied to starfshaped" figures in three-
dimensions|[Schudy79a, Brown79a]. Since the figure is star-shaped, thereisa

polar coordinate system in which the outline can be expressed as a single-valued

function over the unit sphere. Using Laplace’s spherical harmonic functions®,
which form an orthonormal, complete system of functions over the unit sphere,
the outline can bé represented by a series expansion. Schudy[Schudy79a] has
developed an optimization technique that finds the series expansion coefficients
of the outline that best fits canine heart wall contoﬁrs from ultrasound data.
Since the beating heart, and hence the coefficients themselves, are {near)
periodic, each coeffiqient time series can be approximated by a Fourier series

expansion, yielding a series expansion representation in four-dimensions.

Two- and three-dimensional figures can also be represented by an infinite
sequence of moments[Alt62a]. Though the moments themselves are very sensi-
tive to size, location, and orientation, it is possible to derive moment invariants,
algebraic combinations of low order moments that are invariant under changes

in size, location, and orientation[HuB2a, Sadjadi80a].

Other measures, often single numbers, capture oﬁly particular aspects of a
figure that are important in é specific application. Generally, such measures
summarize aspects of the entire outline or figure; hence, they have been called
gesftzlt-’ua,'riables[AttneaveSéa]. Examples include measures of com‘pactness
(e.g. the ratio of the square of the outline perimeter to the figure area), sym-
metry, and elongation. Gestalt-variables have been used widely in psychophy-
sics, where investigators seek an understanding of the relation between the phy-
sical characteristics of a stimulus and the subject’s response to it. Brown and

Owen[Brown67a], in their critical review of the psychophysics literature, identi-

A set is star-shaped if there is some point in the set to which all other points can be connected
by & line segment contained completely within the set.

8See e.g. Chapter 7, Section 5 of {Courant53a].
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fied over 100 shape measures that had been used as stimulus dimensions. Simi-
lar measures have also been used in geography[Clark73a, Bosch78a] and in com-

puterized picture processing[Rosenfeld76a].

Though gesta1t~variables are easy to compute from many discreté outline
representations, too much information is discarded for them to be useful except
in highly constrained situations. On the other hand, the amount of information
disgarded from series expans‘ion representations is determined by the number
of coefficients kept and the convergence speed of the series. The fbrmer is
easily controlled. Unfortunately, since local perturbations of the outline are
reflected in all coefficients, it is difficult to control the fype of information dis-
carded. This is one of two major disadvantages of all shape descriptors derived
from series expansion representations of the outline. The other disadvantage is
inherent in all techniques that treat the points of an outline as points of the out-
line alone, rather than as points of the outline and the space containing the out-

line. 1 eléborate below.

1.4.2. Degdmpositibn

The decompositioﬁ paradigm is, in part, a response to th.e problem illus-
trated in Figu:re 1.1: points near to each other in the plane may be far apart |
whenv disﬁance is measured within the outline. Decomposition techniques are
various embodiments of the divide-and-conquer strategy cften used in algorithm
design: divide the figure into sub-figures, called primitives, describe each primi-
tive, then combine the results to yield a single description. Many examples of

this paradigm have appeared in the computer shape description literature.

For example, in two dimensions, pblygonally bounded figures have been
decomposed into possibly overlapping convex subsets[Pavlidis68a, Pavlidis72a,
Pav’lidis’?'?a].' As the polygon is traversed clockwise, for each edge of the polygon

a so-called basic half-plane is defined by the right-hand side of the line
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Figure 1.1.: Motivation for the Decomposition Paradigm (after [Pavlidis77a])

containing the edge. Beginning with the inte'rsection of all basic half-planes,
non-decreasing sequences of convex sets can be formed by taking the intersec-
tion of succéssively fewer basic half-planes. Some set in each sequence must be
maximal, in the sense that all subsequent members of the sequence are not sub-
sets of the figure. Each such maximal set is called a primary convez subset
(PCS). Together, the PCS’'s cover the figure. Besides being expensive to com-
pute, the PCS decomposition results in non-disjoint primitives which can be radi-
cally baltered by small changes in the polygon. In addition, the convexity
requirement causes thin curved figures to be decomposed into many small

pieces.

Others héve relaxed the convexity requirement to obtain '‘more natural’’
decompositions. Feng and Pavlidis[Feng?Sa] decompose polygonally bounded
figures into convex subsets and non-convex polygonal “spirals’’. Shapiro and
Haralick[Shapiro79a] define a visibility relation on pairs of line segments in the
polygon. Two segments are related if they are mutually visible, if any line from
an endpoint of one segment to an endpoint of the other segment is completely

contained in the figure. Primitive regions are determined by executing a graph
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clustering algorithm on the graph of the visibility relation. The graph clustering
approach has been generalized by Bjorklund and Pavlidis[ Bjorklund81a] to

include multiple relations between segments.

Existing decomposition schemes have several disadvantages. For most
decomposition schemes, there is a limited domain of figures for which the
scheme yields an intuitively pleasing decomposition that captures important fig-
ure properties. Perhaps more important, the primitives resulting from the
decomposition are often poorly constrained, and thus not much simpler to
describe than the original figure itself. Finally, the time complexity of many
decomposition algorithms grows as the square or cube of the number of ele-
ments (pixels, line segments) in the discrete outline approximation. However,

as we shall see in Chapter 5, this need not be the case.

Three-dimensional curved figures ha\}e been decomposed into prirnitivés
called generalized cones[Nevatia77a, Agin76a]. A generaliied cone is defined by
a space curve, called the gzis, and planar cross-sections normal to the axis. The
generalized cone is the volume swept out by moving cross-sections of arbitrary
shape and size along the axis. Various heuristic techniques have been developed
to decompose three-dimensional figures into collections of restricted classes of
generalized cones. For example, Agin and Binford[Agin76a] use generalized
cylinders, generalized cones with circular cross-sections whose radii are linear
functions of distance along the axis®. Soroka[Soroka?8a, Soroka79a, Soroka79b]
allows elliptical cross-sections whose major and minor axis lengths vary linearly
as a function of distance along a linear axis. ‘The centers of the ellipses are con-
strained to lie on the axis and no twisting about the axis is permitted. Finally,
Shani[Shani80a] allows both the cross-sections and the axis to be parametrically

defined cubic splines.

%Such generalized cylinders are closely related to a degenerate case of Blum's symmetric axis
transform in three dimensions.
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Unfortunately, there are major problems with generalized cone decomposi-
tions. There is little understanding of the domain of figures that ad.rnit‘general-
ized cone decompositions. Further, such decompositions are usually not unique
and constraints sufficient to force uniqueness are not, in general, known. Hence
all programs that compute genefalized cone decompositions are forced to use

ad hoc rules to choose a single decomposition.

1.4.3. Prototypes

It is sometimes useful to assume that two outlines are members-of the
same shape and then to examine the nature of the transformatién that maps
one outline to the other. This approach has been taken to study biological
gr(;wth[Thbmpson42a, le Gros Clark45a, Richards55a, Bookstein78a] and geo-
graphical relationships[Tobler78a]. Similar techniques can be used to describe
shape by representing a profofype outline and a transformation that distorts it
into other members of the shape. These techniques are characterized by their
freedom from the need to describe explicitly or to decompose the outlines. The

- prototype is the description.

Few applications of the prototype paradigm have appeared in the computer
shape description literature. Widrow|[Widrow73a] proposed using flexible tem-

plates, which he called “‘rubber masks,’” as an alternative to usihg matched

filters!? in pattern recognition. Typical application of matched filters in pattern
recognition entails defining a filter for each possible class (shépe). Then, to
classify a pattern, the matched filter for each class is applied to the pattern.
The pattern belongs to the class corresponding to the filter that yields the larg-

est output signal. Unfortunately, the matched filter is very sensitive to the size

and orientation of the known signal or template.

104 matched filter is an optimal filter for detecting (and locating) a known signal in a noisy back-
ground. A classical result of signal processing (i.e., known at least since the early days of radar)
shows that the matched filter simply cross-correlates the noise contaminated signal with the known
signal[Castleman79a].
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Widréw proposed developing flexible templates that could be distorted,
within well-defined limits, to the unknown pattern. r‘I'hen, the classificaétion of
the unknown pattern could be determined by fitting all possible flexible tem-
plates to the pattern. Indeed, he applied this approach with some success to
classifying chromosomes, chromatograms, electroencephalogram (EEG) record-
ings, and electrocardiogram (EKG) waveforms. Each application requires a

hand-crafted flexible template and an associated (iterative) fitting algorithm.

Techniques with similar flavor have long been used, albeit with different
aims, in biology and even in art. One such scheme is elaborated at length here,
not for its direct relevance to the present work, but because I believe it has, in

concert with the present work, potential application to the full four-dimensional

problem: description of both shape and shape change!l,

Imagine an outline drawn upon a planar rubber sheet marked with arec-
tangular grid. Then imagine stretching the sheet, without tearing, so as to dis-
tort the figure intoc another figure of the same shape and the superimposed rec-
tangular grid into. another grid, not necessarily rectangular. The distorted grid
provides a vivid graphical re@resentation of the “growth’ of the original figure.
This technique, expounded by D’Arcy Thompson[Thompson42a] in 1917 and used
befdre- him "by Albrecht Diirer!? tp study proportion, has been applied to a
number of biological broblems (see, for instance, [le Gros Clark45a] and
[Ri_chard555a] for surveys, and Chapter 5 of [Bookstein78a] for a recent cri-.
tique).

Despite the elegance of the idea and its fréquent mention in the literature,

it is not widely used. Bookstein explains [Bookstein78a, pp. 78-77]):

It seems impossible to extract quaritity from the Cartesian grid, as Thompson

The scheme is also related to the 'inbetweening’”” problem[Catmull78a] in computer-assisted
animation.

12)s cited by Thompson:
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formulated it, in any straightforward way.... For any “realistic’’ grid fitting the
data more closely than Thompson’s (which is not a difficult accomplishment),
various ebbs and flows of the lines become apparent... In the effort to talk
about what is there we open our mouths and become speechless.. ..

Bookstein argues further that Thompson's fundamental error was the unsym-
‘metric treatment of the two figures. Instead of choosing one of the figures as
special, to have a rectangular grid superimposed upon it, the grids should be

defined by the change between the two figures.

Tb examine Bookstein's reworking of Thompson's idea, I cast the rubber
sheet analogy into mathematical terms'®. The stretching operation is a dif-
feomorphism, a one-to-one differentiable transformation!%. Near any point in its
domain, a diffeomorphism can be approximated by a nonsingular linear
transformation. A linear transformation maps a unit circle in its domain to a.xn.
ellipse about the orig'uﬂ of its range. Further, the lines in the domain that map

| to the axes of the ellipse must be perpendicular!®. Therefore, unless the non-
singular linear trénsforrnation is a similarity transformation!®, in which case the
ellipse degénerates into a circle, there is a unique pair of perpendicular vectors
(differentials of the diffeomorphism) that are mapped to perpendicular vectors.
As a result, two curvilinear grids, one the image of the other, can be superim-
posed on the figure and its image respectively, so that the grid curves are per-

pendicular wherever they intersect.

These biorthogonal grids replace Thompson’s grids. Not only are the two

figures treated symmetrically, but the meaning of the biorthogonal grids is

13Bgokstein’s formulation is different, and slightly more general, than the presentation here.
144 lueid treatment of such transformations appears in Chapter 3 of [Osserman88a].

- "158ince the linear transformation that approximates the diffeomorphism is nonsingular, its in-
verse exists and is also a linear transformation. Recall that any linear transformation can be ob-
tained by arotation, followed by independent stretching along the rotated coordinate axes, followed
by another rotation. Hence, it is easy to see that the inverse transformation maps the axes of the el-
lipse to a pair of perpendicular lines. Since a transformation composed with its inverse is the identi-
iy, the transformation must map the same pair of perpendicular lines to the ellipse axes:

184 similarity transformation is the composition of one or more rotations, reflections; or scale
changes.
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apparent. At each point of the figure, the transformation is completely defined
by the dilation along each of the two biorthogonal grid curves through the point.
The technique, then, reduces the transformation to differential *‘growth’ in per-
pendicular directions at-each point. Any rotation is a consequence of the

“growth” along the grids.

Tok'c‘oympute the biorthogonal grids from data one must firsﬁ compute the
diffeomorphism, the transformation from one‘v figure to the other.
Bvooks‘tein[Bookstein'?Sa] descﬁbes a scheme for interpolating such a transfor-
mation from homologous landmarks of the two figures. For figures with few
landmarks, there is little information to guide the interpolation. I shall propose

an altefna‘tive, based on the symmetric axis transformation, in Chapter 2.

Tobler, in related work dealing with geographical problems[Tobler78a,
Tobler78b], describes a technique similar in spirit to Bookstein's biorthogonal
grids, In the context of cartography, Sen[Sen78a] discusses various types and

measures of distortion produced by diffeomorphisms.

Broit[Broit_;Bla, Bajcsy81a] has used the transformation approach to develop
a registration scheme that finds a mapping from one three-dimensional object
to another, each represented by a *“stack’ of two-dimensional slices. The map-
ping consists of twovparts, one global, one local. The global mapping is limited to
translation, rotation, and scale changes, while the local mapping is based on a
mathematical model of a physical system that allows elastic deformation of a
local region of one object into a corresponding local region of the other object.
He has applied this technique to the problem of matching computed tomography’

studies of the brain to other such studies contained in a **brain anatomy atlas.”

1.5. Overview of the Research

In the mid-60’s, Blum[Blum67a] introduced a transformation, variously

known as the symmetric axis transform (SAT), medial axis transform, or
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skeleton", that induces a decomposition of a figure into simpler figures. More
recently, Blum[Blum73a, Blum74a, Blum78a] has proposed an elegant methodol-
ogy, based on the SAT, for describing the shape of two-dimensional figures. 1
believe that, consciously or not, Blum exploited simultaneously and naturally
fwo of the three paradigms described above. Therein liés a goodly portion of the

elegahce‘ of his contribution. This notion is elaborated in Chapter 2.

For several reasons in addition to its elegance, the scheme introduced by
Blum shows a great deal of promise as a shape description scheme for three-

dimensional figures as well as two-dimensional figures:

(1) the decomposition induced by the SAT is unique, coordinate-system-
independent, and, for a large class of figures with smooth boundary, natu-
ral; |

(2) the decomposition induced by the SAT decomposes the figure into disjcint
primitives;

(3)  the resulting primitives are constrained, both individually and in the way

they are juxtaposed;

{4) there is a functional relationship among properties of the SAT and curva-
ture properties of the outline thatl can be used to show the intuitive mean-

" ings of SAT derived measures; and
(5) the definition of the SAT is easily generalized to three dimensions.

The present work focuses on generalizing Blum’s methodology to three
dimensions. The planned attack is three-pronged. First, a theoretical under-
standing of the properties of the transform in three dimensions is sought.
Second, this understanding is used to generalize Blum’s methodology and to

develop an algorithm for computing a discrete approximation to the transform.

17The term skeleton has also been used in the picture processing literature as a generic name
for ’.Lhe graph-like objects produced by a variety of ''thinning algorithms. It has yet another mean-
ing in topology. Here I use the term “symmetric axis transform” or its acronym, SAT.
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Finally, this generalized methodology must be applied to realistic data, such as
organs extracted from clinical CT studies, to evaluate its utility. This disserta-
tion addresses the first two of the three tasks, thereby laying the foundation for
experimental work to evaluate the efficacy of the method in particular applica-

tions.

The symmetric axis. (SA) of an object with a smooth boundary is the locus of
”poin’cs insid'e the object having at least two nearest neighbors on the objeét
boundary. Together with the radius function, the distance from each point on
the SA to a nearest point on the boundary, the SA forms the symmetric axis
transform (SAT). The SAT and the boundary are equivalent; one can be recon-
structed from the other. The usefulness of the SAT derives from the ease with

which shape information can be extracted from it.

In three dimensions, the SA is a collection of smooth surface patches, possi-
bly degenerating into space curves, connected together in a tree-like structure.
Associated with each point of the SA are the boundary points comprising its set
of nearest neighbors. Each SA patch, then, "goes up the middle" of a piecé of
the obj'ect bounded by the boundary points associated with the patch. Since the
partition into patches follows naturally and uniquely from the SA definition, the
shape description problem is reduced to describing the shape of each pikece and

the manner in which they are joined.

Each SA patch can be further partitioned into sub-patches, with associated
sub-pieces, determined by the SA principal curvatures and a notion of radius
curvature that I shall define in Chapter 3. Siméle relétionships that hold among
‘the curvatures of the bound.ary, SA, and radius, enable each sub-piece to be
labeled as one of a limited number of possible sub-piece types. Each subpétch,

_ then, is described by the SA curvature and radius curvature and by the shape of

the subpatch itself. The latter can be described by applying a version of the
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two-dimensional SAT generalized to measure distances along geodesics in a sur-

face rather than along lines in a plane.




CHAPTER 2

THE 2D SYMMETRIC AXIS TRANSFORM

2.1. Definition

The symmetric axis of a figure F is the iocus of centers of all maximal discs
of F, those discs contained m F but in no other disc in F. Equivalently, if C is the
outline that bounds F, the symmetric axis, SA(C), is the set of points in F having
_at least two nearest neighbors on C. Together with the radius function, the dis-
tance from each point on the SA to the neares;c point on the outline, the SA
forms the symmetric axis transform (SAT). The SAT and the boundary are
equivalent[CalébiSBa]; one can be reconstructed from the other. Its usefulnéss
derives from the ease withl which shape inforrﬁation can be extracted from the

representation..

2.2. Point Types

The points of SA(C) can be classified into three types depending on the
o'rder of the point, the numbe‘r of disjoint connected subsets of C comprising its
set of neax_.rest neighbors. £nd points are of order one, normal points of order
two, aﬁd branch points of order three or more, corresponding tc maximal discs
touching in one, two, or more disjoint arcvs respectively. Additionally, points are
called point contact if each touching subset is a single point and finite contact

otherwise. For C an outlinel, as defined in section 1.3, SA(C) is the union of

1This statement is true under somewhat weaker conditions than those imposed by our definition,

20
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simple arcs, each a sequence of normal points bounded at each end by a branch

or end point, that intersect each other at branch points only[Blum78a]. See Fig-

ure 2.1.

% “Finite contact ¢ Point 4
contact

Figure 2.1.: Symmetric Axis Point Types

See [CalabibBa].
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2.3. SAT Induced Decomposition
Let 7 be the mapping from C onto SA(C) that maps a point P, in C to the
center of the maximal disc tangent to C at P,. With each contiguous open ipter-
val of normal points, which Blum and Nagel call simplified segments, the inverse
- relation 77! associates two disjoint arcs of C. Consequently, as illustrated in Fig-
ure 2.2, F can be decomposed into a collectioh_ of two-sided pérts, eéch associ-
ated with a simplified segment of SA(C), togethef with a collection of {possibly
degeneraté) circular sectors, each associated with a branch point or an end
point.
| To describe the connection structure of the decomposition, Blum and
Négel[Blﬁm?Ba] define a labeled, directed graph with a node for each branch
point and each end point, as illustrated in Figure 2.3. A pair of edges, one in
each direction, connect a branch point and an end point or a pair of branch
points whenever those two points bound the same simplified segment. Choose a
- direction of travefsing a simplified segment and call the two associated arcs of C
the left and right boundary .arcs. The directed edges can be arranged so that, if

one traverses a simplified segment in the direction indicated by an edge, there

Figure 2.2.: SAT Induced Decomposition
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Figure 2.3.: Decomposition Connection Graph {after [Blurh?Ba])

is an Eulerian circuit?® of the graph that causes one of the two boundary arcs to
traverse the outline. Labels attached to graph nodes describe properties of the
corresponding branch or end points such as maximal disc radius and angular
extent of finite contact, while labels attached to graph arcs describe the

behavior of the two-sided parts associated with each simplified segment.

2.4. Simplified Segment Analysis

Again, choose a direction of traversing a simplified segﬁent. The angle 8
between the tangent to C at a point P, and the tangent to SA(C) at 7(P;) is
called t;he object a'n.g_le. and is shown by Blum and Nagel[Blum78a] to be the
arcsin of the first derivative of the disc radius at 7(P¢) with respect to axis arc

length. See Figure 2.4. The algebraic signs of the object angle and its derivative

with respect to axis arc length, %SE, called the object curvature, partition the
segment into canonical primitives, called width shapes, juxtaposed one after the

other.

2An Eulerian circuit visits each edge of the graph exactly once.
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tangent
Figure 2.4.: Normal Point Geometry (Point Contact)

The width shapes, shown in Figure 2.5 for a straight interval of the sym-

metric axis, are completely determined by the first and second derivatives of

Width Property Descriptors
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Figure 2.5.: Width Shapes (after [Blurﬁ?Ba]‘) |
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the radius function with respect to arc length along the axis. Hence, the parti-
tion obtained is independent of the curvature of the SA itself. Moreover, outline
smoothness imposes simple syntax constraints on the string of width shapes
associated with each simplified segment. Similarly, the algebraic signs of the
symmetric axis curvature and its first derivative partition a simplified segment
into canonical aris shapes juxtaposed one after the other. See Figure 2.8. The
two partitions are indepéndent of each other; each characterizes different pro-

perties of the simplified segment and associated boundary arcs.

The axis curvature of a simplified segment reflects the degree td which the

associated boundary arcs curve in the same direction, while object curvature

Figure 2.6.: Axis shapes (after [Blum78a])
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reflects the symmetry of the associated boundary arcs about the simplified seg-
ment. If, for example, disc radius is held constant while axis curvature is
changed, the associated boundary arcs may change from convex, to s’;raight, to
concave in a manner depending on the curvature. Indeed, for normal pdints,
Blum and Nagel[{Blum78a] give an explicit functional relationship among axis
curvature, object curvature, object angle, and associated boundary arc curva-
tures. Using this relationship, they have béen able to characterize the behavior
of the bouhdary arcs associated with each si'mplif.iedv segment in terms of the

. width and axis shapes of the segment.

Other‘simplified segment partitioning schemes can be devised.
Bookstein[Bookstein78a], for example, sketches a multivariate statistical tech-
nique for analyzing simplified segmeknts by computing principal components of
éamples of the vector valued function 7 {defined on page 22). Most likely, no sin-

gle partitioning scheme is adeguate for all purposes.

'2.5. On the Elegance of the SAT

In Section 1.5, I stated my belief that the elegance of Blum’s contribution is
due, in part, to the manner in Which he exploited simultaneously and naturally
two of the three shape description paradigms described in Section 1.4. Now that

his method has been sketchéd, I shall elaborate.

In many endeavors, an appropriate representation is the key to parsimony
and clarity.. The mathematician and physicist find coordinate systems pecu-
liarly suited to their problems, the programmer data structures that simplify
his tasks. So too, the practitioner of shape description must find representa-
tions-that bring to the fore that information considered essential.. Marr and
Nishihara[Marr78a] identify three criteria for judging the effectiveness of a fig-

ure representation:

Accessibility. Can the representation be computed from the data avail-
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able? Is the time and space required for the computation acceptable?

Scope and uniqueness. For what class of figures is the representation
suitable? Is there a unigque representation for each figure?

Stability and sensitivity. There is an inherent conflict between stability
and sensitivity. To be useful, it must be possible to derive from the.
representation *‘'similar” descriptions for all figures of the same shape.
Yet, simultaneously, it must be possible to represent subtle differences
between figures. These conflicting desiderata can be met only if it is
possible to decouple the stable, more constant figure properties from .

properties sensitive to subtle variations. In the terminoclogy of Section
1.4, it must be possible to ‘represent, then discard.”

Blum's representation fares well kby these criteria. As we shall discuss in
Chapterk5, a number of algorithms for computing the SAT from other represen-
tations, all of practical space and time complexity, have been developed. The
scope of the SAT includes not only figures as I have defined them, but also
objects with holes and /or a finite number of corners. Moreover, the representa-
tion is uniqﬁe, coordinate-system independent, and imposes no loss of informa-
tion. Other representations, too, satisfy the first and second criteria. The third
criterion is the most deménding: no known representation completely satisfies

it. The SAT comes close.

By combining two of the three shape description paradigms, '‘represent,
then discard” and decomposition, Blum’s methodology for deriving descriptions
from the SAT representation provides an attractive mechanism for dealing with
the demands of the third criterion. As I have deécribed, the SAT induces a
unique decomposition of the figure. The decomposition is particularly attractive
because the resulting primitives are highly constrained: each is either a two-
sided part or a collection of circular sectors. Each two-sided part is determined
by a simplified segment whose curvatures describe the overall ‘‘curvature
trend” of the part. Varying sensitivity is obtained by discarding fnore or less of
the curvature information, for example, by partitioning the simplified segment

into intervals where the axis curvatures lie within certain ranges, rather than
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just considering the algebraic signs of the axis curvatures. Similarly, the same
process applied to object angle and object curvature achieves more or less sen-

sitivity to the symmetry of the boundary arcs about the simplified segments.

We now turn to a different aspect of the same problem. Two symmetric
axes are said to have ide_nti'cal topologies if their directed graphs are isomorphic
(ignorih.g labels). Qver the ran.ge of figures for which the topology of the sym-
metric axis is constant, the process describeci above seems adequate'for; choos-
ing an application-dependén£ tradeoff betweén stability and’sensitivit_;y. For
ranges of figures where the topology is not constant other techniques are
reQuifedf If a threshold on the radius of the maximal discs that comprise a fig-
ure is imposed from below, the sensitiﬁty of the symmetric axis topology to
small, local perturbations of the outline is reduced. Similar results can be
achiéved by placing a threshold on the ratio of bbundary arc length to simplified

segment length[Blum78a].

2.6. Unsolved Problems and Research Directions

Though the two-dimensional symmetric axis transform is reasonably well

understood, several open problems, some fundamental, remain.

(ll), Given a subset of the plane (or, more generally, a subset of R®) and a real-
valued fuhction defined over that subset, several sufficient conditions are .
known that ensure that the subset—function pair are the symmetric axis
and radius function for some outline. Do necessary conditions exist and, if

so, what are they? (This problem was posed in [Calabi68a]).

(2) Consider again the rubber sheet analogy of Section 1.4.3. Dfaw an outline
on a rubber sheet and find its symmetric axis and radius function'. Then

_stretch the rubber sheet, transforming the outline into another, and com-
pute the symmetric axis and radius function of the new outline. The dif~‘

feomorphism that maps dne outline to the other need not, in general, map
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one symmetric axis to the other. Is it possible to characterize
diffeomorphism-—symmetric axis pairs for which the symmetric axis topol-

ogy remains constant?

To use Bookstein’s biorthogonal grids (described in Section 1.4.3) to study
shape change, one must first compute the transformation from one figure
to the other by interpolating from homologous landmarks. For figures with
few landmarks, there is little information to guiae the interpolation. I pro-
pose computing the symmetric axis of each figure separately and then
interpolating the transformation from corresponding branch pointé and end
points of each. When both symmetric axes share the same topology, the
correspondence is easy to find. When the topologies differ, the correspon-
dence is more difficult to find and may require elimination of ‘‘unimpor-
tant” simplified segments from each symmetric axis. This problem is inti-

mately tied to the next one.

Recently, a few researchers have begun to use relational homomorphisms,
homomorphisms frorn one relation to another, to match structural shape
descﬁptions against prototype descriptions[Haralick78a, Shapiro80a,
ShapiroBla]. This formulation is particularly interesting because the model
on which it is built deals explicitly with inexact matching. Can this work be
applied to the problem of comparing two labeled graphs derived from

Blum's methodology?

Qutlines in the plane are but a specific case of closed curves on two-
dimensional manifolds. The definition of the SAT is easily extended to this
more general case by measuring distance along geodesics in the manifold.
Blum’s shape descﬁption methodoelogy can probably be adapted to this

more general situation.
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(68) One application of shape description is the study of variation within classes
of objects. For simplicity, assume a constant symmetric axis topology over
all objects of the study. Are there any meaningful statisties that could be

applied to measures derived from the SAT to analyze within-class variation?

(7) Image segmentation algorithms able to use @ priori information have been
devéloped (see e.g. [Ashkar78a]). Can SAT based models be used as a

source of such information?



CHAPTER 3

THE 3D SYMMETRIC AXIS TRANSFORM

3.1. Basic Definitions and Properties

‘We must begin by defining the domain of our discussion, outlines and fig-

~ ures in three-dimensional space. An outline is a smooth, closed surface that
partitions the complement of the outline into two.disjoint sets, one bounded,
called the inside, and one unbounded, called the outside. This excludes surfaces
having no distinct inside and outside, such as the Klein bottle, surfaces with
corners, edges, or cusps, such as polyhedra, and surfaces with boundary curves,
such as a spheré with a circle cut out of it. As in two dimensions, a figure is an
outline togyether with its inside. For simplicity, throughout the remainder of the
dissertation we consider e}%plicitly only outlines that are topologically equivalent
to a sphere, those outliﬁes that can be formed by stretching, but not tearing, a
sphere. However, except where otherwise noted, this restriction only simplifies
the exposition of the ideas and results presented hereafter; it does not reduce

their generality.

We turn now to the SAT in three dimensions. The definitions of the two-
dimensional SAT given in Section 2.1, apply in three dimensions as well, the only
difference being that maximal discs become maximal spheres. As in two dimen--

sions points on the symmetric axis can be classified into three types: end points,

Ijfuch of this chapter will appear in the journal Cernputer Graphics and Image Processing. It is
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normal points, and branch points. End points and branch points are, in general,
no longer isolated points, but rather, curves in space. Open connected sets of
normal points?.‘ again called simplified segments, are bounded by possibly
degenerate space curves of branch and end points. In general, each simpiified
segment is a surface rather than a curve, though they sometimes degenerate
into a Space curve. As before, the figure can be decomposed into a collection of
two-sided parts each associated with a simplified segment, together with pieces

3

of canal surfaces® each associated with a branch or end point curve[Blum79a].

In ’the remainder of this chapter, we develop the mathematical tools we
shall need in our analysis of simplified segment behavior in three dimensiohs. In
particﬁlar, we define a notion of radius curvature and derivé a relationship
among boundary.curvature_,-simplified segment curvature, and radius curvature.
Then, in Chapter 4, we shall use that relationship to partition each simplified

segment into a collection of canonical primitives.

3.2. Background

It is necessary to digress briefly to discuss curvature of smooth surfaces in
general. Denote the tangent plane to S at P by TpS. Ina small neighborhood of
P the curvature of S can be characterized by examining the curvature of curves
.on S through P. Consider the normal sections at P, those.curves defined Ey the
intersection of S with planes coﬁ.taining the normal at P. Eat_:h normal section is
a curve in the plane defining it,l and hence has a well-defined curvature at P that

measures the deviation of the curve from its tangent line through P. Further,

used here by permission of Academic Press, Inec.

?[implicitly assume that such bounded, connected sets exist.. Though [ offer no proof, I offer the
following argument. The maximal sphere centered on a normael point touches and is tangent to the
outline in two distinct points. By making an infinitesimal change in the sphere radius it can be
moved slightly while maintaining contact with the tangent plane at each touching point. Since the

‘outline is smooth, its tangent plane at any point on the outline approximates the outline in an open
neighborhood about that point. Hence, the new position of the sphere defines a new normal point in &
neighborhecod of the original one.

34 canal'surface is the envelope of a farmly of spheres, possibly of varying radius, with centers
lying on a space curve[Hilbert52a].
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since the tangent line lies in TpS, the normal section curvature also measures
the deviation of S from TpS in the direction of the tangent line. By rotating the
defining plane about the normal, we get all normal sections and their curva-
tures, and hence a complete characterization of the deviation of the surface

from its tangent plane. See Figure 3.1.

To express all of the normal section curvatures in a finite way, we (arbi-

~ trarily) call one side of the tangent plane the positive side and the ‘other the
negative side, and attach a sign to the normal éection curvatures according to
whether the normal section lies on the positive or negative side of thé tangent
plane. It can then be shown (e.g., Section 4-8, [Millman77a]) that as the defining
plane is rotated about the normal, either the normal section curvature assumes
its maximum and minimum values, called principal curvatures, in two orthogo-
nal directions, called principal directions, or the normal section curvatures are
constant. Further, each normal section curvature is completely determined by
the p'rinckipb»al curvatures and the angle between the defining plane and the prin-

cipal directions.

/]

Figure 3.1.: Geometry of Surface Curvature
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The product of the principal curvatures is called the Goussian curvature of
S at P, and is denoted K, while their average is its meon curvature, Hs. The
behavior o‘f S at P is characterized by the signs of the Gaussian and mean curva-
tures. For Kg > 0, in a local neighborhoced of P, all normal sections lie oﬁ one
side of the tangent plane, the side determined by the sign of the mean éurva-
ture. The surface is cup-shape.d at P. On the other hand, for Ky ‘< 0 the normal
sections about one principal direction lie above the tangent plane and those
about the other lie below, giving S a saddle shape at P. The remaining case,
K = 0, is a transition between the two: in one principal direction the surface
has flattened while in the other it may remain cur.ved. When both principal cur-
vatures are zero, S is planar at the point and the principal directions cease to
exist. For a fascinating discussion of this and other interpretations of both

Gaussian and mean curvature, see Ch. IV of [Hilbert52a].

3.3. Characterization of Sphere Radius

Now, let S be a simplified segment in R® and let P be a point contact normal
point on S, i.e. the maximal sphere centered at P touches the outline in two dis-
joint touching'poihts, sometimes called the boundary points associated with P,

‘Further, we assume that S and the radius function, r (definved precisely below),

are twice continuously differentiable at P.* See Figure 3.2.

We now turn to characterizing the behavior of the sphere radius. In two
dimensions, disc radius was analyzed as a function of a single parameter, arc
length along the symmetric axis. Unfortunately, in three dimensions no single
parameter suffices. Instead, we examine the first and second derivatives of the

radius functien along curves'in infinitely many directions through the point P.

- 4This assumption can be "‘justified" using an argument much like that used in footnote 2, but
using second, rather than first order approximations to the outline.
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Figure 3.2.: 3D SAT Geometry

Pick any direction about P. Then, the first di’r;ectional debri.vatiue of the
radius function at P in the specified direction is the first derivative of the radius
‘ function with respect to arc length along any curve with tangent vector lying‘in
that direction. It is easy to show that the first directional derivative is well-
defined, i.e. is independent of the choice of the curve in the specified

direction[ecf. [Millman77a], sec. 4-7].

Similarly, the second directional derivative of the radius function at P in
the specified direction can be defined to be the second derivative of the radius

function with respect to arc length along the curve. Unfortunately, this is not
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well-defined without constraining the choice of the curve. Since we are

interested in the behavior of the radius function, npt in the curvature of the

 curve in S, we require the curve to be straight in a small neighborhood of P.

_ More preéisely, we require that in an infinitesimal neighborhood about P, the
orthogonél ﬁrojection of the curve onto TpS be a line in the speciﬁed direction:
There is a unigue curve, called a geodesic, that satisfies this condition (Section
4-5, [Miliman'?'?a]). Hence, we define the second directional derivative in a
specified direction to be the second dérivative of the radius function with

respect to arc length along the gecdesic ih that direction.

Below, we prove that, like normal section curvatures, the second directional
dérivative of the radius function assumes its maximum and minimum values in
two orthogonal directions which, by analogy, I call the principal curvatures and
principol directions of the radius function, réspe’ctivel&. Further, the second
directional derivative in any direction is completely determined by the principal
cufvatures and the angle between the direction and a principal direction. I also
define the Gaussian and mean curvalures of the radiué Junction analogously, |

and denote them Kp and Hp.

3.4. Curvature Relations

We can nowvstate our goal more precisely. We seek a functional relationship
among the Gaussian and mean curvatures of S at P, the Gaussian and mean cur-
vatures of the outline at the associated boundary points, and the Gaussian and
mean curvatures of the radius function at P. In Section 3.4, I present the
deéired relationship, limiting the mathematical prerequisites to the background
matefial presentedin Seétions 3.2 and 3.3 and an exposure to vector calculus
such as can be found in [Thomas60a]. I shall prove this relationship in Section -

3.4.1.
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3.4.1. Formulation

We begin by imposing local curvilinear coordinate systems about normal
points on simplified segments, thus bringing the techniques of calculus to bear.
Let S be a simplified segment in R%. Except at finite contact normal points,
which we ignore hereafter, we assume S to be a C? surface. Hence if we let U be
an open subset of R? with coordinates w! and u?, we can let s: U~»S be a C? coor-

dinate patch (surface patch) on S with linearly independent partial derivatives

0s
ut

denoted by s; and called coordinale vectors.

Choose a set of basis vectors for R% and let Y and Z be two vectors
represented in terms of that basis. To distinguish between a vector, X and the
n-tuple that représents it with respect to some basis, we denote the n-tuple by
X. Then, an inner product of Y and Z denoted <Y,Z>, is given by Y7 GZ, where G
is a 3 by 3 matrix such that <Y,Z> = <ZY> and <Y,Y> > O for all non-zero Y. For
the remainder of this chapter, we will use the particular inner product defined
by G = I (the identity matrix) when the basis vectors are orthonormal. This is
nothing more than the dot product, Y7 Z, often used in R®. Though the represen-
tation of the inner product depends on the basis vectors chosen, the inner pro-
duct itselfis basis-independent. Hence we use < > to denote the inner product

of two vectors, regardless of the basis used to represent them.

It is always possible to choose s so that the coordinate vectors are ortho-
normal at the point P = s{0,0) (Section 8-2, [Millman77a]). Thus, without loss of
generality, we choose s so that <s;(0,0),5;(0,0)> = 6;;, where §;; is the Kronecker

delta.

The tangent plane to S at s(u!,«?) is a two-dimensional subspace of R®

spanned by the coordinate vectors s, and s,. Consequently, the unit normal at

S; XS,
s(ul, u?), ng(ul, u?), is ——=

. Similarly, let B and C be the boundary surfaces
|s1%sz]
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associated with S as shown in Figure 3.2, let b(u!,#?) and e{u!, «?) be the points
‘on B and C associated with s{u?!, u?), and let 7: S»R! map a point on S to the A

radius of the maximal sphere centered at that point.

The maximal sphere centered at s(u!, u?) is tangent to the boundary sur-
face B at b(u?, u?) with the boundary normal, n, (z!,u?), lying along a radius of

the sphere. See Figure 3.2. Letting r{u!,u?) denote r(s{(u!, u?)),

blul, u?) = s(ul, u¥)rr{ut, u?)n, (u!, u?),
with the choice of sign determined by the direction of n,. Since n, itself is
determined only up to. sign, choose n pointing away from S as shown in Figure

3.2, giving

B(ul,ué) = s(ul, u?)+r{ul, u¥)n, (ut, u?). (3.1)

Similarly, -

c(ul,u?) = s(ul,u?)+r(ul, u®)n, (u}, u?). (3.2)

Let a(t):IcR!'>S be the geodesic on S passing through P, where I is some

interval jof R! containing 0, ¢ is arc lengthv along the curve, and a{0) = P. Let X
be the tangent vector of a at P, %‘—(o). Since a is parameterized by arc length
and lies on S, X is a unit vector in the plane TéS, the tangent plane of S at P.

Definition 3.1; The first directional derivative of r'in the X direciion is

dr (o
rx = at 0) -]

Definition 3.2; The second directional derivative of r in the X direction is

XX = f&tt—(:(—).-(O). =

We let Ay and Az, A; < Ag, denote the principal curvatures of S at P and let ;
and e; be unit vectorsin the corresponding prineipal directions. Since each
principal direction is determined by aline in TpS, there are two unit vectors

each from which to choose e; and e;. As shown below, we can, without loss of
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generality, require that e;xe; = ng; the results of this chapter are independent
of the choice made from the remaining two possibilities. Similarly, let ¥; and ,,
Y1 = Yo denote the principal curvatures the radius function and let f; énd I

denote the corresponding principal directions.

' 3.4.2. Boundary Curvature Equations

In two'dimensions, the object angle, the angle between the tangent to the
symmetric axis at a point and the tangent to the associated boundary point, is
determined by the arcsin of the first derivative of the radius function. A similar

relation holds in three dimensions.

Theorem 3.1: Let X be a unit vector in TpS. Then, the directional derivative of 7
~in the X direction, 7y, is =<ny . X>. =

That is, in three dimensions, the angle between a symmetric surface tangent
vector -at a normal point and the normal at the associated boundary point is
determined by the arccos of the first directional derivative of the radius func-

tion in the direction of the tangent vector. An analogous result holds for n,.
The major result of the chapter follows:

Theorem 3.2: Let

(=18 + 7l =78) AL = rZ) + A1 = 72)
h =

, and  (3.3)
2<ng,n, >* 2<ng,my >
AMTee, AT :
ko= A + 7172 - €€z e (3.4)
<ng.ng > <ng.ny > _

Then, the Gaussian and mean curvatures of the boundary surface B at b{0, 0)
are

h—rk
Hp = —2T8
BT i _orh 7k (3.5)

and

k
Kg = ————p—
8 1=2rh +r%k (3.6)
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These equations give the Gaussian and mean curvatures of the boundary sur-
face, B, in terms of properties of the radius and symmetric surface, together
with the angle between the boundary normal, n,, and the symmetric surface
- normal, ng. Analogous equations for boundary surface C are obtained when the

qualifying subscripts b and B are replaced by ¢ and C respectively.

At first glance, it appears that knowledge of the boundary normal is prere-
quisite to evaluating A and &, and hence the boundary curvatures. This is not
the case. Si’nce n,, e;, and e, are orthonormal,
<h§,nb >?+<n,,e;>%*+<n,,e;>% = 1. Hence, up to sign, <n;,ny> is determined by

Te, and 7,

Choosing the sign of <ng,n, > chooses either boundary surface B or C. As
symmetry suggests, and application of theorem 3.1 proves, n, and n, are reflec-
tions bf each other through the symmetric surface tangent plane. Thus; by sym-
metry about the tangent plane, <n;,n, > = <n,,-n; > and hence
<pg.np > = —<n..ng>. Consequently, if we replac"e <ng,ny > by +<ng,np > in (3.3)
‘and (3.4), the curvature relations hold for either boundary, the choice being

determined by the sign. _

To understand the géometric significance of 2 and k, consider the surface

B' defined by

b’.(ul,'.u,z) = s(ul,u2)+r'(u’,u2)ng(u1.u2),
‘where r'(u!,u?) = r(u!,u?)~r{0,0). It is not difficult to see that B' passes
through the point P = §(0,0) and at each (u!, u?) has the séme unit normal vec-
tor as does B. B' and B are called parallel surfaces. See Figure 3.3. Since the
derivatives of ' and = are identical, we can evaluate (3.5) and (3.8) at (0,0), sub-
stituting ' for r, obtaining & = Kp, and A = Hg.. Thus, the terms h and & in

(3.5) and (3.8) are the mean and Gaussian curvatures, respectively, of the
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Figure 3.3.: Surface Parallel to Boundary Surface

surface parallel to B passing through P. Therefore, (3.5) and (3.8) express the
change in boundary curvature due to change in distance from the symmetric
surface. Blum and Nagel[Blum’?Ba] use a similar relationship in the two-
dimensional case to derive boundary curvature from parallel curve curvature.
Analogous results hold for the surface parallel to C through P when the sign of

<n,,n; > is changed.

Though the symmetric surface and radius function together contain no
information not contained in the boundary surfaces, examining each alone

reveals different aspects of the shape of the boundary surface. Intuitively, 'sym—
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metric surface curvature reflects the overall “*curvature trend” of the two-sided
piece, i.e. the degree to which the boundary surfaces curve in the same direc-
tion. Radiﬁs curvature, on the other hand, reflects the symmetry of the bound-
ary surfaces about the symmetric surface, the degree to which both boundary

surfaces curve in opposite directions.

To see this, observe in (3.3) that symmetric surface. curvatures A; and A,
contribute with equal magnitude but opposite sign to the mean curvature of the
two boundary surface parallels, while radius curvatures v, and 7y, contribute
equaﬂy to each. Since the boundafy surface normals are directed away from
the symmetric surface, boundary surface mean cur.vatures‘ of opposite sign
imply cﬁrvatur‘e in the same direction. Further, it can be shown that the signs
of the Gaussian and mean curvatures of each boundary surface are the same as
the signs of the curvatures of the corresponding parallel surface. Hence, our
intuitive notions of the meanings of symmetric surface curvature and radius

curvature are confirmed.

3.5. Prbof of Curvature Relations

In this section, we prove the results presented in Seétion 3.4.2, assuming
results from the elementary differential geometry of surfaces[Millman77a,

Stoker69al.

3.5.1. Curvature Quadratic Forms

First, we show that the second directional derivative of the radius function
is a quadratic form. Hernce, by properties of kquadra‘tic forms {Section 17,
[Gel’fand61a]), the principal curvatures and principal directions exist and

behave as claimed in Section 3.3.

Lemma 3.3: 7y is a quadratic form over unit vectors, X, in TpS.
ma XX q P

Proof: For two scalar functions of ¢, a! and o?, a(t) = s{a!(t),a*(t)). Since TpS is
a vector space spanned by s; and s,, there are scalars X* such that
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X= Z‘,X‘sl Using the chain rule, ‘ Z dt s.u SO ddo; (0) = X*. Applying
i=1 ’

the chain rule again,

2r(a) (1) < re= 5 2l8) dat (37)
d ot
at '’

Differentiating and substituting X* for

d*r{a) (t) = Z or(s) d?ot Pt | Z ZX‘XJ B%r(s)

dt? & eut dtt 3 utoud

The geodesic a is characterized by the differential equations

d?a* dot dal
— -Z ZI‘" — k =12,
S Y dt o dt |

where the I‘" are the Christoffel symbols of the second kind of S
[Mlllman'?'?a Stoker69a], which measure the tangential components of the
second partial derivatives s;;. Combining the last two equatlons denoting

ar(s 9%r (s)
—a;—}-b y r; and ETé"Tby 7;;, and rearranging terms, we see that since

Ty = 15 and l"{‘j = 1","{, rxx is a quadratic form in X

XX = Q(X) = XTQx, with ’ (3.8)

Q@ =gyl =[ry "é‘,l‘rkrﬁ]- (3.9)

For any unit vector Xin TpS, the second directional derivative of r in the direc-

tion defined by X is given by @(X).

Since @ representé the quadratic forrﬁ @{X) with respect to an orthonormal
basis of TpS, over all unit vectors Xin TpS, @(X) assumes iis minimum value at
the eigenvector of & corresponding to the smallest eigenvalue, v, and its max-
imum value at the eigenvector corresponding to the largest eigenvalue, Ys.
Further, the values assumed are ¥, and vy, respectively and the eigenvkecfors are
orthogonal if the eigenvalues are distinct {Section 17, [Gel'fandB1a]). By solving
the characteristic equation of Q, it is easy to see that v,7, = det(@) and

Y1+ye = tr(Q)-
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Similarly, the second fundamental form of S, I{X), is a quadratic form over
unit vectors in TpS that gives the curvature of the normal section in the direc-

" tion X[Millman77a, Stoker69a]. Letting s = [Lsij] be the matrix defining the

second fundamental form with respect to the {s;,s;} basis of TpS, we have
I(X) = X" Ly X.

Thus, two quadratic forms are defined at each point of S. One, the second
fundamental form, gives the curvature of normal sections through the point in
any direction, while the other gives the second derivative of the radius along the
geode'sic‘in the same direction. Since the normal to a geodesic is everywhere
| normeal to fhe surface on which it lies, the geodesic and the nornial section
share a common normal vector. By construction, they have the same tangent
vector and hence, the same curvature (cf. [Stoker89a], sec IV-12). Therefore,
one quadratic form measures the curvature of S along geodesics and f.he other

measures the radius function second derivative along the same geodesics.

3.5.2. Matrix Formulation .

In this section, we derive an equation relating the matrices, @ and L, that
determine theﬂrad.ius and symmetric surface curvatures respectively, to the
matrix defining the second fundamental form, and hence the curvature, of each

.b‘oundary surface.

Dropping explicit mention of {(x!,%?) and taking partial derivatives of (3.1),

bé =8+, +7'nbi . (3.10)
We can solve for r; by taking the inner produét of both sides of {3.10) with n,.

Since n; is a vector of constant magnitude, it is perpendicular to its derivative,

ny,. Thus, since b; is perpend'icular to np by definition,

r; = —<S;,np >, (3.11)
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Taking partial derivatives again,

Ty = ““<S¢J;nb >—<Si)nbj>.
v 2,
" Using Gauss's formulas[Millman77a, Stoker69a], s;; = sy D+ Y, TEs,, and the
. . - k=1

definition of the coefficients of the second fundamental form[Millman'?'?a.

Stoker69a], Ls-;j = <sy,D5>, we obtain

2 ‘ '
Ty = =L, <ng.my > Y TE<s,.n, >=<s.1p >, _ (3.12)
k=1 ,

Analogous results for boundary surface C follow from (3.2}, though for brevity we
defer further consideration of C until the end of this section:

Define the matrices G, =[G, ] = [<b;.b;>] and Z, = [Lbi],] representing the
first and second fundamental forms of B at b{u!, u?) with respect to the
tb,(u!, u2),by(u ', u?)} basis of the tangent plane at b(u!,u?). Since n, is a vector

of constant magnitude, the n,, are perpendicular to it. Hence, they lie in the

tangent plane and are expressed as a linear combination of the b; by

Weingarten's equations

2 ; :
Do, = =3, Hojbi. (3.13)
i=1

where W, = [W,{] = G, 'Ly, and is called the Weingarten map of B [Millman77a,
b v Ly g 1Y

StokerB9a]. Letting 4 = [<s;,b;>] and combining Weingarten's équations with

(3.9), (3.11), and {3.12),
DR 2 .
AWb = ['r‘ij]+<ns,nb>Ls—E Tk[rij
k=1

= Q+<n,,ny> L. R (3.14)

Equation (3.14) relates boundary curvature, as expressed by #,, to radius

curvature, as expressed by &, and to symmetric surface curvature, as
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expressed by I;. We seek the boundary curvatures in terms of properties of the
* radius and symmetric surface. Our approach is to solve for the two invariants of
the matrix equation (3.14), the determinant and trace. We then solve the result-

ing two equations simultaneously.

3.5.3. Determinant Equations

Substitute Weingarten’s equations (3.13) into (3.10) and solve for the s;, giv-

ing
8 = (1+TWO})b1+TWb sz—'rlnb, and (315)

Sz = rWydb, + (1+7W, )by~ 721, . (3.18)

{1+TW¢,E TWblz ]

Recalling that 4 = [<s;,b;>] and defining T = [ rWyd  L+rW, 2l we use (3.15)

and (3.18) to obtain 4 = TG, and consequently, since W, = G, 'L, that

AW, = TL,. Substituting into (3.14) then gives

TLb =g+ <ng,Nny, >LS' (3.17)

To evaluate the determinant of the left side of (3.17), we use theorem 3.1

{which we now prove) and an additional result:

Theorem 3.1: Let X be a unit vector in TpS. Then the directional derivative of 7
in the X direction, ry, is =<n, ,X>.

Proof: Let X! and X*® be the components of Xin the {s,,s;} basis, i.e. X = Zstt
i=1

So, <ny . X> = ZX‘<nb s;> which, by (3.11), is —-ZX‘T Thus, by {3.7),
i=1 i=1

'=—<lan> )

Lemma 3.4: Letting g, = det(G,), g,det®*(T) = <ng,n, >°

Proof: Recall that [<s1,s >] = 7, where 7 is the two-by-two identity matrix. Then,
using (3.15) and (3. 16) by straightforward algebra, it is not difficult to show
that

go det (T TTY 16,7 1T = [=R, ‘ - (3.18)

[ 752 —ry7l

where K = l"" R l Taking the determinant of both sides and applying
12 T
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theorem 3.1,

1=rP—r,?

I

gy det?®(T)
= 1-<n,,s;>%—<n,,s,>?

= <ng,n, >%,

~ where the last step follows because ng, §,, and s, are orthonormal. =

Thus the determinant of the left side of {3.17) is

det{TL,)

det{T)det(L,)

_ <ng,n, >%det(G, "1Ly)

det{T) (3.19)
_ <ng,my >°Kp '
T det(7)

where KB' = det(W, ) is the Gaussian curvature of B.

We now evaluate the deferminant of the right side of (3.17). Recalling that
the detefminant is invariant under change of basis, we change from the {s;,s;}
basis of TpS to that defined by the eigenvectors of ;. Let e, and e; be eigenyec-
tors of Ly eorresponding to the eigenvalues A; and A, respectively. Since eigen-
vectoré are determined only up to a non-zero multiplicative constant and since
e, and e, lie in the tangent plane TpS and are orthogonal to each other, we can,
without loss of generality, choose the e; to be unit vectors so that e;xe; = n;.
Similarly,v let f; and f, be unit eigenvectors of @ corresponding to the eigen-
values y; and 7y, so that flegl = ng. Interms of_ their respective eigvenvector

bases, thé transformations represented by g and @ in terms of the {s,,s;} basis,

: I\, ol ly, ol h, ol ly, ol
are represented by [0 AzJ and [0 72}, Le. [y & [0 Az and ¢ ® lo 72}, where

denotes matrix similarity.

Representing both transformations in terms of the {e,ep} basis requires

examining the relationship between the e; and the f;. Let & be the
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counterclockwise angle from e; to f;,. Then, with respect to the {f,,f5] basis,

[cos& sine] L o .
e; = Of,, where 0 = l—sin 8 cos 6]‘ As shown in Figure 3.4, ¢ is determined only

up toa multiple of m; thus, 0 is determined only up to sign. Changing from the

| L, ol L, ol b, ol
{f,.fo] basis to the {e;,e;} basis, lOl 72] ] .t@“lol 72](3:@) = @Tl‘ol 72}@), There-

0] I, ol

by
1
fore, §+<n;,n, > L is similar to GTlO 72]@-4— <m,m>lo }\2], which is easily seen

to have a determinant of

<ng.my > Az + 7172 + <0y >(M71HAeyz—(71-72) (M =Ag)cos®8) . (3.20)
Note that (3.20) is independent of & if either 7, = ¥ or A; = Az. Consequently,

when either pair of eigenvalues fail to be distinct and the principal directions

are not well-defined, arbitrary directions can be chosen,

Combining (3.19) and (3.20) and rearranging terms,

K A (7:5in? 8 +9,0082 & )+ Ao{y,c05° & +7,sin? &
B = Aot 7172 —+ (7 72 Y+ A7 72 ) (3.21)
det(T) <ng,ng > <ng,np >

'Recall that e, = f;cos @ —f;5in & and e; = f;sin & +f,cos . Equation (3.21) can be

[71 0]

—ci Y-
lo s [cos@ ~sing]T =

simplified by observing that Q{e,) = [cos 8 -sing]

Figure 3.4.: Relation between principal directions




49

cos? & +9,sin® & and §(e;) = v¥,sin® & +y,cos? &. Hence, by (3.8), (3.21)
71 72 2] =71 7z

becomes

Kp

= A Y12 MTey0,* AeTe ey
det(7) ~ "7 <pn,n,>?  <ng,np>

(3.22)

3.5.4. Trace Equations -

The second equation relating boundary curvature to radius and symmetric
surface curvature results from taking the trace of {3.14). Recalling that

A = TG, it follows from (3.14) and (3.18) that

9o det¥(T)(TT) W, = (@+<n,.n,>L,)~R{(Q+<ng.n, > L) .
Hence, since tr(¥,) = 2Hpg, det(W,) = Kp, tr(@) = 2Hg, and tr(L,) = 2Hg, taking

the trace of both sides gives

: 2g,b(rKB+HB)det(T) = Z(HR+ <ns,nb>H5)-—-tr(RQ)-—<ns,nb>tr(}?Ls) . (323)

Two observations enable us to evaluate tr{(RLs) and, by analogous reasoning,
tr(®Q). First, simple algebra reveals that tr{®L;) is nothing more than the
second fundamental form of S, evaluated at [ry —r,], [rz —r]Zs[r2 —r1]7.
Second, with respect to the {e;, e basis, the second fundamental form is

I\, ol
1
represented by the diagonal matrix [O )\ZJ. Hence, letting [a! a?] represent,

with respect to {e;, ez}, the vector represented by [r; —r,] in the {s,,s,} basis,

I\, ol

tr(RLg) = [a? G‘Z]lo }\zi[al a?]7,

Let V be the matrix of transition from the {s;,s,{ basis to the {e;,e;}
basis[Gel'fand61a], i.e. the matrix such that [rz -r;]7 = Via! a?]”. Since the
columns of V are the coordinates of the e; in the {s;,s;] Easis, and since the e;
are orthonormal, V7V = I, where J is the two-by-two identity matrix. Thus,

det(V) = +1 which is non-zero. Therefore, we can solve for [a! a?] obtaining
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, . _
£[7, Vig+7pVae 7 Vy=73Vp,]. Since by the definition of V, e; = ), Vj;8;, by using
i=1

(3.11) we see that [a! a®] = £[~<n,,e;> <n,,e,;>] and hence, that tr(RL;) =
A1<D,. ;5% +As<n,.e,>%. Analogously, tr(RQ) = y,<n, fo>?+7z<n, .f;>%. Finally,
combining these results with (3.23), Lemma 3.4, and the definition of mean cur-

vature as the average of principal curvatures, we obtain

o TKg+H ' '
2<n,.m; >2—E—§%-(ﬁ—= vi{1-<np,E:>2) + yo{1-<n, £, >%) +
- | | . A (3.24)
<ng.np > (A {1-<ny,e:5%) + A(1-<ny.2,>2))
which, using theorem 3.1, can be rewritien as
rKp+Hp 71<1"7‘r22)+72(1—7'r21) , >\1(1—T§2)+7\2(1‘7'§, (3.25)

det(T) 2<ng,n, >° . 2<ng,np >

3.5.5. Solution

The right sides of equations (3.25) and (3.22) are the right sides of {3.3) and
- (3.4) respectively. Recall that K = det(%,) and Hp = %tr(W,). Then, by
straightforward algebra, det(T) = 1+78Kp +2rHp. Substituting this into (3.22)
and (3.25), we obtain a linear system of two equations in the Itwo unknowns Hp

and Kp, with solutions (3.5) and (3.8). This proves theorem 3.2.

3.6. Summary

Blum’s symmetric axis transform defines a unique decomposition of a fig-
ure "into disjoint, two-sided pieces, each with its own surface {axis) of symmetry
and associated boundary surfaces. I have defined measures of the radius func-
tion and have shown how these measures and the symmetric surface curvatures

are related to the boundary surface curvatures. In particular, I have shown that

the Gaussian and mean curvatures of the boundary surfaces are determined by

nine measures, each with a geometric interpretation:



(1

(2)

(3)

(4)
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the symmetric surface curvature as determined by two principal curva-
tures and a principal direction;

the radius curvature as determined by two principal curvatures and a prin-

cipal direction;

directional derivatives of the radius function as determined by the angles
between either boundary normal and the two symmetric surface principal

directions, called width angles after Blum[Blum73a); and

the radius function itself.

It will be shown in Chapter 4 that these measures, and the curvature relation-

ship derived from them, subsume the two-dimensional measures and curvature

relationship given by Blum and Nagel| Blum78a].

3.7. Unsolved Problems and Research Directions

In three dimensions, many problems remain open. Certainly, all of the

problems sketched in Section 2.6 exist in three dimensions. Many appear even

more difficult in three than in two dimensions. ['list here problems peculiar to

three or more dimensions.

(1)

Though our discussion has been restricted to outlihes topologically
equivalent to a sphere, the definition of the SAT applies to other surfaces in
R3. For example, the symmetric axis of a torus is a circle. To my
knowledge, there has been no thorough study of the relationship between
the topological classification of an outline® and properties of its syfnmetric

surface. Intuition suggests that the connectivity number® of the symmetric

surface of a closed surface'is the same as that of the surface itself.

5All outlines (as I have defined them in general) are known to be topologically equivalent sither

to & sphere, to a torus, or to two or more tori “glued" together. See [Hilbert52a] or [Massey67al.

80n & surface with connectivity number n, n— 1 closed curves can be drawn on the surface

without cutting the surface in two, but any n closed curves must cut the surface in at least two
parts.




(2)

(3)

(4

(8)
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If one deforms an outline locally, as if pushing on a balloon with a finger,
one of two things will happen to the SAT. Either both the radius function
and the symmetric surface will change slightly, but with no change in sym-
métfic surface topology, or at least one new simplified segment will
emerge. Which case occurs clearly depends on the relative magnitudes of
the radius function»_ and the radii of curvature {(principal curvature recipro-

cals) at the deformed point. Can this dependence be made precise and a

catalog of possible topology changes be produced’?

Blum[Blum79a] has noted that the touching sets ’of the maximal spheres
can be closed curves on the sphere as well as points and areas. For
instance, over intervals where the symmetric surface degenerates to a
curve, all touching sets become circles. Blum suggests that examining the
symmetric axis of th¢ touching sets on the maximal spheres themselves,
will yield information about the behavior of the symmetric surface near

branch curves. This idea needs further, more detailed study.

Many'compliter “vision”_s_ysterns use a shape descriptionas a source of a
priori information. Sinée the description is used to model the expected
scene, it is esséntial to Ee able to compute rapidly the appearance of the
-model from differeﬁt viewpoints. With the aid of a computerized symbolic
manipulation facility, analytic solutions for portions of this pfoblem have
been obtained for certain classes of generalized cones[Brooks79a]. If
thrée-dimensional SAT's are ever to find use in computer "visipn" systems,

similar problems will need to be addressed.

The definition of the SAT clearly extends to higher-dimensional closed mani-
folds embedded in metric spaces. It also seems clear that topological pro-

perties of the symmetric surface are related to the topology of the

"Though my knowledge of the subject is very shallow, [ believe this situation could be modeled

with catastrophe theory[Poston78a, Saunders8Cal.



manifold. What is this relationship and is it of any value in studying the
many unanswered questions about the topology of higher dimensional mani-
folds? Can SAT's of higher dimensional manifolds be applied to describing

shape change?




CHAPTER 4

SIMPLIFIED SEGMENT PARTITIONING

4.1. Overview

In this chapter, I use the measures defined in Chapter 3, together with the
relationships among them, to demonstrate several simplified segment parti-
lions. The symmetric surface of the figure under study is split at branch curves
into simplified segments. Then, each simplified segment is partitioned into
regions, like countries on a map, where some set of properties holds over each
region. This partition induces, in turn, a partition of each associated boundary
surfece inte corresponding regiops. As a result, each two-sided part (defined by
~a simplified segment'end its two associated boundary surfaces) is‘decornposed

into a collection of two-sided primitives as illustrated in Figure 4.1.

Though I describe below a particular partitioning scheme, with particular
sets of primitives, I make no claim that they are in any way optimal. Moreover, I
believe that any general optimality claim is impossible, because the choice of
primitives largely determines the compromise between sensitivity and stability
(see Section 2.5). Since that compromise is inherently application-dependent,
any o_p"cimed'ity claim must be made in the context of a specific application. But
even then there is little, if any, theory on which to base a criterioh function to

. be optimized. Therefore, I make no optimality claim. Rather, ] seek to

54
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primitive 2

Figure 4.1.: Decomposition into Primitives

(1) demonstrate the feasibility of the partitioning approach;

(2) provide a catalog of primitives from which the shape description practi-

tioner can pick and choose according to the goals of his anvalysis; and

(3) develop a mathematical framework useful for examining properties of the
primitives set forth here and, hopefully, for extending this work or develop-

ing new primitives.

A simplified segment partition consists of t‘wo components: a primilive set
and a primifive adjaceﬂcy graph. The simplified segment is partitioned into a
collection of disjoint primitives, each an element of the primitive set. The primi-
tive adjacency graph, then, maintains information about the spatial relation- |

ships among the primitives comprising a simplified segment.

Rather than introducing a single primitive set, I define independently three
sets of primitives: width primitives, based on radius function properties, aris

primitives, based on simplified segment curvatures, and boundary primitives,
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based on boundary surface curvatures. Each set of primitives is derived from
different properties of the simplified segment and radius function and hence
captures different characteristics of the two-sided part associated with the sim-
plified segmen’c_.1 For some applications it might be appropriate to use more
than‘one primitive set, either separately or combined together to produce a
'new, larger, cartesian product primitive set wherein each primitive is an
orfiered tuple of two or three primitives, one from each of two or three primitive
sets. However, the relationship between symmetric surface curvature, radius
function curvature, and boundary surface curvature given by Theorem 3.2
places constraints on which combinations of primitives from different primitive

sets can exist.

4.2, Width Primitives

Using properties of the radius function.alone, the simplified segment and
vits assoéiated boundary surfaces can be partitioned into a collection of two-
sided primitives called widfh primitives. Since the radius function behavior
reveals the symmetry of the boundary surfaces about the simplified segment
.(cf. Section 3.4.2), the p_rimitives differ, one from ancther, solely in the way their
boundary surfaces move toward or away from the simplified segment. It is
important to realize that this is different than the behavior of the boundary sur-
faces themselves; the latteris a function of the symmetric surface curvature as

well as of the radius function behavior.

4.2.1. Overview

‘To be useful, the set of width primitives must capture the qualitative
behavior of the radius function while simultanecusly ignoring extraneous detail.

Therefore, we begin our discussion of width primitives by sketching a technique

!Though the space [ shall devote to discussing width primitives dwarfs the space devoted to the
other two primitive sets, [ do not mean to imply that width primitives are more important than the
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for analyzing the gualitative properties of a function defined over a surface, here
the radius function. Since the basic ideas differ little from those used to
analyze the behavior of a surface defined by its height function over the x—y
plane, I shall occasionally discuss the radius function as if it were such a sur-
face..’ I shall also use terms such as “horizontal” and “*above,” even though they
are not coordinate-system independent concepts. I take these liberties only to
build intuition. We shall see that the width primitives are defined only in terms

of coordinate-system independent properties of the radius function.

Many elementary calculus texts give a recipe for sketching rapidly the

graph of a function of one variable ¥y = f (z), that is, for analyzing the qualitative

behavior of the function. The recipe usually consists of three basic steps.? First,
- find the values of z for which the first derivative is positive and for which it is
negative. Then, at sign transitions, apply the second derivative test to deter-
mine whether each transition point is a local minimum or local maximum. To
determine which parts of the curve "hold water” and which “spill water,” find
the values of x for which the second derivative is positive and for which it is
’hegative. Finally, sketch the curve between the values of the function at the
sign transitions found above, having the curve rise or fall as indicated by the
sign of the firstwderivative, and *'spill” or “‘hold water” as indicated by the sign

of the second derivative.

The width shapes defined by Blum and Nagel for the two-dimensional sym-
metric axis (see Section 2.4) can be derived by applying the aforementioned
recipe to the radius as a funciion of arc length along a simpiified segment. Each
width shape is an interval over which the signs of the first and second derivatives
of the radius function remain constant. Width shapes are juxtaposed at local

extrema and inflection points of the radius function.

others.
£3ee, for example, Section 3-4 of [ThomasB0a].
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Unfortunately, in three dimensions there is no one-dimensional axis along
which to perform the analysis. First and second derivatives of the radius func-
tion become first and second directional derivatives. I therefore makes no
sense to talk about signs of the first and second derivatives without specifying a
direction. Instead, we use the local extrema of the radius function together with
radius fuhction curvature to split the simplified segment into primitives. Both
are intuitively appealing. Radius function extrema indicate “'pinches’ and
“bulges” in‘the boundary surfaces with respect {o the simplified segment, while
radius fbunction curvatures provide qualitative information about the manner in
which the b'oundary surfaces are pulling away from or moving toward the simpli-

fied segment.

In the remainder of Section 4.2.1, I sketch briefly a partition comprised of
two éomponents, slope districts, based on first derivative behavior, and curva-
ture districts, based on second derivative behavior. Then, in the following sec-

tions, I present a more detailed, more formal, discussion of each component.

A.Slope Districts. Slope districts are an old, and, in concept, simple idea. They
were described more than a century ago by Cayley[Cayley59a] and by
Maxwell[Maxwell70a] in the context of topography. More recently,

| Warntz[Warntz66a] has reviewed the earlier work and suggested that their tech-
niciues might also prove useful in studying demographic and economic trends.
Pfaltz[Pfaltz76a, Pfaltz78a] has preliminarily investigated using a similar tech-
nique for organizing large spatial data bases. Finally, Johnson[Johnson78a] and
Williams[WilliamsB82a] are applying a variant of this approaéh to the higher-
diménsional problem of interpreting electron density functions resulting from
X-ray diffraction studies of crystals. Here, I describe the approach intuitively

and informally, following Cayley and Maxwell.
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To describe the idea concretely, let us return to the surface analogy men-
iioned above. In particular, imagine that the radius function is the height func-
tion of a mountainous island. Lacking a three-dimensional relief map, one would
use a contour map to study the island’s topography. At sea level theré is a sin-
gle contour, a closed curve sufrounding the island. As one moves higher, con-
tours boﬁnding local maxima, called peaks, become smaller and smaller, ulti-
mately becoming a point. Likewise, as one moves lower, contours bounding local
minima, called pits, diminish in size, becoming points as well. However in some
cases, as one smoothiy changes elevation, two or more contours meet at a single
point, forming a single contour that cuts itself. That point, called a pass, is nei-
ther a local maxima nor a local minima, for moving to-and-fro one ascends, while

moving left and right one descends.

It is not hard to convince oneself that, in general®, pits, peaks, and pésses
are isolated from each other. It therefore is meaningful to consider paths
between them. A curve drawn so that it crosses at right angles every contour it
meets is called a slope line. At every point on a slope line there are two possible
directions of travel, one ascending, one descending. Moreover, the two direc-
tions are the directions of steepest ascent and of steepest descent, respectively,
from any point on the slope line. Therefore, if one travels along a slope line in
the ascending direction, one must eventually reach a peak or a pass; traveling in
the opposite direction, one must eventually reach a pit, a pass, or the island
coastliné. From any point on a slope line, the portion traversed by traveling in
thev ascending d:irection is calvl'ed the ascending slope line from that point, while

“the other portion is called the descending slope line from that point.

With the exception of pits, peaks, and passes, there is a unique slope line

through every point. All points whose slope lines descend to the same pit form a

SThroughout Section 4.2.1, [ use the term "in general” to mean that [ am describing the situa-

tion that "'almost always™ occurs. Treating degenerate situations here would be distracting: Ideal
with them below.
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region, called a dole, while those points whose slope lines ascend to the same
peak form a hill. Therefore, the whole island can be divided into dales and,

independently, into hills.

Since it is impractical to divide the island into hills and dales by examining
individually every point on the island, we examine those slope lines that
: separate'dales, called ridge lines, and those thal separate hills, called course
lmes. In general, a ridge line ascends from a pass to a peak, never reaching a
pit, while a course line descen_ds from a paés to a pit, never reaching a peak.
Ridge lines are the onlybslope lines that never reach éf}it; hence, they bound
" dales. Similarly, course lines are the only slope lines that never reach a peak;

hence, they bound hills.

For our purposes, it is more useful to combine the division into hills and the
division into dales to produce a single division into regions, which I call slope dis-
tricts, than to consider hills and dales separately. Each slope district belongs to
a single hill and to a single dale. Hence, all slope lines passing through a slope
district ascend to a common peak and descend fo a common pit. In general,
slope district boundaries each consist of four parts: a ridge line from pass to
peak, followed Ey another ridge line from peak to pass, followed by a course line
from pass to pit, fbllowed by a final course line ‘ffom pit to pass to complete the

cycle. See Figure 4.2.

We now return to the initial problem, partitioning a simplified segrrient on
the baéis of radius function properties.. Once again using the surface analogy,
each slope district can be thought of as a mountain face together with the valley
below it. At the bottom of the valley the associated boundary surfaces are
. "pinvched” in, close to the simplified segment. As one climbs the mountain face,
the associated boundary surfaces “bulge’’ out, each.moving away symmetrically

from the simplified éegment until the mountaintop is reached. In a sense, each
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Figure 4.2.: Slope District Boundary

slope district is a region of constant first derivative behavior.

Curvature Districts. To characterize the local convexityvor concavity of the
mountain face we must consider second derivative behavior. This is easily
accomplished by further partitibning each slope district into cur'vatz_m"e dis-
tricts, regions of a slope district in which the algebraic signs of the radius func-
tion Gaussian and mean curvatures are constant. Where the Gaussian curvature
is positive, the mountain face is either convex or concave according to whether
the mean curvature is negative or positive; where the Gaussian curVatufe is
negative, the mountain face is neither convex nor concave, but saddle-like. Zero
_Gaussian curvature is intermediate between the two: in one direction the face is
flat while in a perpendiculaf direction it is convex or concave according to the

" sign of the mean curvature.

4.2.2. Slope Districts

In this section, I present a more formal development of the scheme
sketched in Section 4.2.1. Most likely, a rigorous development of these ideas

already exists, though I have not found one. The radius function is a real-valued
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function on a surface, while slope lines are integral curves of the associated gra-
dient v‘ector field. Such situations arise frequently in physics, where the real-
valued function is called a pofential funclion and the vector field is called a con-
servative vector field. For example, in fluid méchaniés, an incompressible fluid
flow can be modeled by a two-dimensional conservative vector field. However,
the emphasis is different than ours, with the result that the techniques there
are slanted towards analyzing the flow itself, not the potential function associ-

ated with it.

In any case, ] present here a more formal development of slope districts,
striving to achieve an appropriate balance between intuition and rigor in order
to expose issues riot readily apparent by intuition alone; to construct a catalog
of possible slope district types; to resolve difficulties arising from using slope
-districts oné surface with a boundary, such as thé simplified segment, rather

' thaﬁ on a surface without a boundary, such as the earth; and to provide a frame-

-work in which further work may be dene.

After reviewing some notation from Chapter 3, we begin by discussing criti-
cal points of the radius function, the pits, passes, and peaks of Section 4.2.1.
Then, we define slope lines as sblutions of a system of differential equations and
use elementary properties of such differential equations to prove simple, but
useful, préperties of slope lines. Under an appropriate non-degeneracy assump-
tién, these properties, when combined with properties of the radius function
near critical points, theh yield an understanding of slope line behavior near crit-
ical points and a definition of ridge and‘ course lines in terms of slope line
~ behavior near passes; With this understanding in hand, we define slope districts
as regions ofv the simpliﬁed segment each bounded by a cycle of alternating crit-
ical points and ridge/cc;»u_rse lines, and then enumerate all possible slope dis-

tricts. .
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As in Chapter 3, let S be a simplified segment in R3, let U be an open subset

of R? with coordinates u! and w?, and let s(u!,4?): U+ S be a coordinate patch

on S. Further, assume? that U = s7}(S). The radius function can be viewed
either as a map from S to R! or as a map from U to Rl In this chapter, as in
Chapter 3, we most often take the latter view. Hence, let r(u', u?) denote the

radius of the maximal sphere centered at s{(u!,u?), let r;(u?, u?) denote

’ 2
or (ul,u?), and let ry(u?, u?) denote -—-Q.—t--—.-(ui,ug). Where the meaning is
ou' . : dutoud

clear from context, I drop explicit.mention of {(u!,u?).

4.2.2.1. Critical Points.

‘The pits, passes, and peaks of Section 4.2.1 yield important gualitative
information about radius function behavior; hence, they play an essential role in
the definition of slope districts. Here, we define such points in terms of proper-
ties of the fii'st two derivatives of the radius function r and examine the
geometry of the simplified segment and assoqiated boundary surfaces neér

them.

Let P’ denote a point in I/ and let P = s{P') denote the corresponding point
on S. Recali from calculus that the total derivative (see e.g. Ch. 12 of
[Apostol74a]) of r at P' € U is a linear mapping from U to R}, D{P'): U » R. This
mapping is represented by the gradient vector, the >1 x 2 matrix [r, r;]. Since it
will be necessary to examine the relationship between the gradient at P' and the
geometry at the corresponding point P, it is useful to express D{P') with respect
to a local coordinate system on S about P. Assume for the moment that the
principal curvatures of the radius function, 7, and v, (Section 3.4.1), are dis-

tinct. Then, the unit vectors in the principal directions of the radius function, f,

4Such a coordinate patch does not necessarily exist. However, it is always possible to find a col-
lection of overlapping coordinate patches that cover S such that two overlapping patches are related
by a smooth coordinate transformation. By tediously applying the chain rule or by-eschewing extrin-
sic coordinates altogether, this assumption can be avoided. Since neither is particularly illuminating
here, I make the assumption.
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and f,, are independent (in fact, they are orthonormal) and therefore can be
used as a basis for the tangent plane of § at P, TpS. If the principal curvatures

- are not distinct, choose any pair of orthonormal vectors in TpS whose cross pro-
‘duct f, xf, is the unit normal to S at P. We would like to represent D(P) with
respect to the {fl,fz§ basis of TpS.®° D,(P) is a linear mapping that maps a unit
vector in the tangent plane to the directional derivative in the direction of the
vector. The representation of D,.(P) with respect to a basis is determined by the
values of the directio.nal derivatives in the direction of the basis vectors. There-
fore, with respec£ to the §f,.12] basis, D(P) is represented by the 1 x 2 matrix

[ry, 7y,). which, by Theorem 3.1, is —[<ny.f;> <ny.fz>].
Similarly, the second derivative of = at P’ is a bilinear mapping from U x U

%r . :
——— D?(P') is represented by the 2x 2
PRI DE(P') ep y

to R, DE(P): Ux U » R'. Lettingry =
matrix [1',-_,- ], often called the Hessian of r at P'. The Hessian too, can be
expressed with respect to the {f,,f;] basis. However, since we shall need to do so

only at special points, where the form is particularly simple, we do not change

bases now.

We can now make use of a well-known result® i‘egarding extrema of func-

tions defined over an open neighborhood of R®.

Definition 4.1: A point P is a critical point (or stationary point) of rif D{P) is
the zero map. A point that is not a critical point is a regular point. s

Definition 4.2: A critical point of r is non-degenerate if the determinant of the
Hessian matrix at the critical point is non-zero. Otherwise the critical point
is degenerate. : '

. BThe derivative at a point in the domain of a map from a smooth surface to R®is a linear map-
ping from the tangent plane of the surface to R® The usual definition of the derivative of a map from
R®io R*is a special case in which the tangent space of the surface just happens to be the surface it-
self. See e.g. Chapter 1, Section 2, of [Guillemin74a].

SThroughout Section 4.2, I state results from various sources, often changing the notation from
the original and restricting the result to apply only to the situation at hand.
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Using the chain rule, it is not difficult to show (see e.g. Chapter 1, Section 7 of
[Guillemin74a]) that P’ is a non-degenerate critical point if and only‘if Pisa

non-degenerate critical point. |

Lemma 4.1: Let P' be a non-degenerate critical point of . Then we have

(1) If r;;>0 and the determinant of the Hessian is positive, r has a relative
minimum at P,

(2) If r,; <0 and the determinant of the Hessian is positive, 7 has a relative
maximum at P'.

(3) If the determinant of the Hessian is negative, r has a saddle point at P'.
(Theorem 13.11, [Apostol74a]) m

After expressing the Hessian of r with respect to the {f1.f2] basis, we can

easily translate the results of Lemma 4.1 into more geometric terms.

Lemma 4.2: Let Pbe a crltl]cal pc11nt of 7. Then, with respect to the basis {f;,f],
the Hess fratP
e Hessian of r a 13107]

Proof: Since the gradient at a critical point is the zero map, r, = r; = 0. Then,
by equation (3.9) and the definition of the Hessian, the Hessian at P is §.
Since f, and f; are eigenvectlors oﬁ 2 and v, and 7, are the respective eigen-

0 ,

values, § is represented by 0 72] with respect to {f;,fz]. =

Theorem 4.3: Let P be a point on §, let n, and n,; be the unit normal vectors at
the associated points on the two boundary surfaces, and let Ky and HAp
denote the Gaussian and mean curvatures of the radius function at P. Then:

(1) P is a critical point of 7 if and only if n, and n, are perpendicular to TpS,
the tangent plane to S at P.

(2) IfPis a critical point of 7, it is non-degenerate or degenerate according
to whether Kj is non-zero or zero.

(3) If Pis a non-degenerate critical point of 7, then P is a local minimum
(pit) if K >0 and Hjp >0, a local maximum (peak) if Kz >0 and Hp <0,
and a saddle (pass) otherwise.

Proof: Since ns (the 51mphf1ed segment normal at P), fl, and f, are orthonormal,
<ng, n,,> +<n,, £,>% +<nb,f2> 1. Therefore, D.(P) is the zero map whenever
<ng.my, >° = 1, that is when the boundary surface normal, n,, is collinear with
ng. Since n, and n, are reflections of each other through TpS (see Section
3.4.2), n, and n; are both collinear with ny. Thus, the first claim is proved.

Since the determinant is invariant under change of basis, by Lemmma 4.2
the determinant of the Hessian is 7;¥s, which is the Gaussian curvature Kj.
Thus, the second claim is proved.

Agam using the invariance of the determinant, Kp >0 implies
711722 >7'12 which further implies that r;; and r5; have the same sign. The
trace is invariant as well. Therefore, since 2 Hp = tr{@) = ry; + 722, the sign
of Hp determines the sign of r,;. The last claim follows directly from the
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invariance of the determinant and Lemma 4.1. =

Theorem 4.3, though not at all surprising, will be useful to us in several
ways. First, it provides a simple, coordinate-system independent, geometric
characterization of critical points. Second, it g‘ives a simple test for critical
point degeﬁeracy, and, for non-degenerate critical points, it also gives simple
criteria for determining whether the critical point is a pit, pass, or peak. The

theorem provides little information at degenerate critical points.

Henceforth, I shall assume that all critical points of the radius function are

non-degenerate.” This assumption vastly simplifies further analysis. Moreover, it
can be shown (Chapter 1, Section 7, [Guillemin74a]) that almost any smooth per-
turbavtion 6f a function with degenerate critical points changes the funection into
one vﬁthout degenerate critical points. Post_on’and Stewart[Poston?8a] discuss

the sense in which degenerate critical points are‘atypical.

4.2.2.2. Slope Lines

Intuitively, an ascending slope line on the simplified segment § is con-
structed by starting at some point on S and then taking small steps in the
direction of the greatest increase in 7, the direction of the gradient. Similarly, a
descending slope line is cpnstructed by taking steps in the direction bpposite
the gradient. These constructions can be embodied in two systems of first order

nonlinear differential equations, which we then take as definitions.
Definition 4.3: Let u(f) denote the function (w(¢), u?(t)), let w*(¢) denote d:t ;

and let u(t) denote (w!(t),u*(¢t)). An ascending slope line from the point
. up = (ugd,uf) is a curve on S defined by s{(u(t)), where u(t) is a solution to .
the initial value problem

ut) = [ri{u(t)) r2(ult)], u(0) = ug, 0=t <=, (4.1)

"I have studied cursorily the effects of eliminating this assumpticn. However, since the results
are still preliminary, I do not present them here.
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A descending slope line from the point ug = {(ud,=§) is a curve on § defined
by s(u(t)), where u(t) is a solution to the initial value problem

a(t) = ~[ry(u(t)) ra(u(t)], w(0) = o, 05t <e=. (4.2)

A slope line through the point ug is the intersection of U with the union of
the ascending and descending slope lines from ug. »

The curve in the (2!, u?) plane defined by a solution of an initial value problem of
this type is called a frojectory {or an ordit) of the solution. For brevity I often
use the phrase "‘slope line” rather than the more precise ‘‘trajectory that deter-

mines a slope line.”’

Two intuitively obvious, but nevertheless important properties of ascending
and descending slope lines, set forth below in Theorems 4.4 and 4.7, follow
directly from elementary properties of first order systems of differential equa-
tions; We shall use them repeatedly in the following sections. To avoid repeti-
tion, I p.r’esent these properties for ascending slope lines only; they apply equally

- to descending slope lines.

Theorem 4.4: There is exactly one ascending slope line through each point of S.

Proof By the existence-unigqueness theorem for solutions of initial value prob-
lems (Theorem 3, Section 4.8, [Braun75a}), there is a unique solution to (4.1).
for any choice of initial point u,. This implies that each point of U defines a
unique solution of (4.1), but not that there is only one trajectory through
each point. However, the existence-uniqueness theorem of trajectories
(Property 1, Section 4.8, [Braun75a]) implies that if the trajectories of two
solutions pass through a single point, then the solutions are identical.
Hence, there is a single trajectory through each point (u!,4?) in U. Since s
is a coordinate patch, it is one-to-one. Hence, s maps each trajectory toa
unique ascending slope hne onS. =

Definition 4.4: A point (u!, w?) is a eriticol point of the systems of equations
(4.1)if a{ult,u?) =0. u

Obviously, a critical point of (4.1) is also a critical point of 7.

Definition 4.5: A trajectory reaches a critical point P’ if there exists s’ome =0
such that u{¢t) =P or if ltimu(t) =P. =

Though a slope line may reach a critical point (in the sense of Definition

4.5), it does not necessarily contain that critical point: the slope line only
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approaches the critical point in the limit. Indeed, if a slope line contains a criti-
cal point, the slope line consists of that point alone, since, by (4.1), the trajec-
tory is a constant. We now show that every ascending slope line reaches a criti-

cal point unless it first meets the simplified segment boundary.

Lemma 4.5: (Poincaré-Bendixson Theorem) Suppose that a solution u{f) of the
system of differential equations (4.1) remains in a bounded region of the
(u!,u?) plane that contains no critical points of (4.1). Then, its trajectory
must spiral into a simple closed curve, which is itself the trajectory of a

periodic solution of (4.1).8 (Theorem 5, Section 4.8, [Braun75a]). =

Lemma 4.6: Let u(t) be the trajectéry of an ascending slope line. If u{f) is not a
single point then u(t) is not periodic.

Proof: Assume the contrary. Then there exists £, and £,, £; <ij such that
u(t,) = ufte). Thus, r(u(t,)) = r(u(tz)). Hence, by Rolle's theorem {Theorem

5.1, [Apostol74é]) there is a point £g, t; <tg3< iy, such that % = 0. By the
t=tg
chain rule, -:%—: !+ rpi® Since u(t) is a solution to (4.1), 4t = 7;, which

implies that g—;—: 7,° + 1%, Therefore r; =7, =0 and u(t3) is a critical point of

r. Since the trajectory through any critical point is the point itself, either
ty = £, = tzor u(ts) is not on the trajectory. Both possibilities contradict
the hypothesis. = ‘

Theorem 4.7: Every ascending slope line must either reach a critical point or
must intersect the boundary of S. ‘

Proof: Consider the trajectory u{t ) that defines an ascending slope line. Let
Ug € U be its initial point. If ug is a critical point, the trajectory is the single
point ug and the theorem holds. Similarly, if u{t ) is unbounded it must
intersect the boundary of I since U is bounded. Therefore s{u(t)) would
intersect the boundary of S, and the theorem holds. Assume neither case is
true. By Lemmas 4.5 and 4.6, there is no region of U containing u(¢),
0=t <=, not also containing a critical point. About each point of u{) define
a neighborhood of radius 6. The union of these neighborhoods contains u{t)
‘and, hence, must contain a critical point. As ¢ » 0,the trajectory becomes
arbitrarily close to a critical point. Therefore, u{f) reaches a critical point.
B ,

Thus, in this section, we have shown that through every point of S there is é
unique ascending (descending) slope line. If the point is itself a critical point,
"then the slope line consists of that point alone. Otherwise, the slope line travels

toward a critical point, reaching it in the limit as ¢ -» =, unless it first reaches

8in other words, the trajectory asymptotically approaches ancther {rajectory that is a simple
closed curve. '
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the boundary of S.

4.2.2.3. Slope Line Behavior Near Non-degenerate Critical Points

Recall that our goal is to partition S into slope districts, regions of S
bounded by an alternating ‘*chain” of critical ‘points and special slope lines,
wherein all ascending slbpe lines reach a single peak and all descending slope
lines reach a single pit. The next step in our programme, and the subject of this
section, is to determine the behavior of slope lines near non-degenerate critical

points.

In a neighborhood about a non-degenerate critical point, a local coordinate

systermn can be defined.

Lemma® 4.8: Let P' = (0,0) be a non—degenerate critical point of r, and let [7;]
be the Hessian of r at P'. Then,

r{utl,u?) = r(0,0) + %%Tijuiuj , | (4.3)

near P', where the r;; are evaluated at P' = (0,0). (Theorem 4.2,
[Poston'?Ba])

Using (4.3), we have immediately a well-known result:

Lemma 4.9: Non-degenerate critical points of r are isolated.
Proof: Taking first partial derivatives of {4.3) and setting both equal to zero, we

see that in the nelghborhood of P' for which (4.3) is valid, a critical point
occuEL for those (u!,u?) that are solutions to the system of equations
[r41] 2| = 0. Since the determinant of [ri;] is non-zero, P' = (0, 0) is the only
solution of that system. Hence, P’ is an isolated critical point. =
In a neighborhood of a non-degenerate critical point, we can use Lemma 4.8
to convert the nonlinear system of equations (4.1) into a linear system, thus
meaking available the qualitative theory of linear systems of differential equa-

tions (e;g. Section 4.7 of [Braun75a]). To formulate (4.1) as a linear system near

a critical point P', first translate the coordinate system so P' = {0, 0). Then, take

94 more powérful version of this result is known as the Morse Lemma. This result appears as an
intermediate step in Poston and Stewart's[Poston78a] proof of the Morse Lemma,
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first partial derivatives of (4.3), obtaining

| 10,1l
[ri(ul,u?) rp(ut,uf)] = l:i; :;:] [::'3]

Therefore (4.1) becomes the linear system

]
u(t) = [ry] lua} u(0) = ug, 0=t <=,

Similarly, the nonlinear system (4.2) can be reformulated as a linear system

near non-degenerate critical points.

The qualitative behavior of the linear system is completely determined by
the signs of the eigenvalues of its matrix. Since the eigenvalue signs are invari-
ant under change of basis, by Lemma 4.2 the behavior near a critical point is
determined by the radius function principal curvatures 7, and 7z where y; < 7z
(Seétion 3.4.1). Isummarize the relevant results, illustrating the behavior of

ascending slope lines.

(1) 92<71<0: peak

All slope lines apprbach the critical point as £ » . For all but two slope
lines, the slope line tangent approaches the direction of +f; as £ » . The
other two slope lines are tangent to tf.

() O<vya<y;: pit

All slope lines move away from the critical point as { approaches infinity.
For all but two slope lines, the slope line tangent near the critical point is'in
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the direction of +f;. The other two slope lines are tangent to +f;.

A

(3) y1=7v2<0: peak

Slope lines approach the critical point from all directions.?
(4) 71=72>0: pit

Slopek lines move away from the critical point in all directions.

(5) 7v2<0<y,: pass

All slope lines but the two in the +f; directions move away from the critical
point approaching the slope lines in the +f,; directions as ¢ » . The slope
lines in the £f, directions approach the critical point as £ - . '

f2

10When the eigenvalues of a first order linear system are equal, the system can also exhibit a dif-
ferent type of behavior, the so-called improper node, An improper node occurs only when the matrix
of the system has exactly one linearly independent eigenvector. Here, the matrix of the system is
symmetric with non-zero determinant and thus has two independent eigenvectors, Hence, there are
no improper nodes.
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Descending slope lines behave identically but with all traversal directions

reversed.

4.2.2.4. Ridge and Course Lines

Using properties of critical points and slope lines developed in preceding
sections, we n_bw discuss ridge and course lines, those special slope lines that
foffn the boundaries of sldpe districts. In Section 4.2.1, ridge lines were charac-
terized as those slope lines that ascend from a pass to a peak, never reaching a
pit, while course lines were characterized as those slope lines that descend from
a pass to a pit, never reaching a peak. Though these characterizations could,
with suitable added precision, be taken as definitions, they do not provide local
criteria for determining whether a slope line is a ridge or course line. Instead,
we define ridge and course lines locally, in terms of the behavior of slope lines in
neighborhoods of passes, as discussed in Section 4.2.2.3. The local definition has
the advantage that it is not necessary to traverse an entire slope line to ascer-
tain Whether it is a ridge or course line; one need only confirm that it satisfies |

-the'definition near a pass.

Definition 4.6: Let P’ be a pass and let uy be a point in a neighborhood of P' such
that the descending slope line from ug reaches P'. Then, the slope line
through ug is called a ridge line. =

Definition 4.7: Let P' be a pass and let ug be a point in a neighborhoed of P’ such
that the ascending slope line from w, reaches P'. Then, the slope line
through ug is called a course line. a

It is easy to see from the diagram of slope line behavior near passes {page 71)
that exactly two ridge lines and two course lines reach every pass, and further- -
more, that ridge lines and course lines emanate from a pass in the principal
directions of the radius function. This behavior is iIlustratyed in Figure 4.3 for a

surface defined by a height function with a pass at the point marked.
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ridge lines

pass

course line

Figure 4.3.: Ridge and Course Lines at a Pass

Using properties of slope line behavior near pits and peaks, we detefmine

some aSpects of the global behavior of ridge and course lines.

Theorem 4.10: Let P' be a pass. Then, each ridge line emanating from P’ either
(1) intersects the boundary of U;
() reaches a peak; or

(8) reaches a pass other than P’ along the +f; direction of the pass that is
reached.

Proof: The ridge line consists of two parts, the ascending and descending slope
lines. By definition, the descending slope line reaches P'. By Theorem 4.7,
either case (1) obtains or the ascending slope line reaches a critical point.
Further; since all ascending slope lines diverge from pits, the critical point
must be a peak or a pass. If the former, we are done; assume the latter.
The ascending slope line must reach the pass along the +f; direction, for all
ascending slope lines ‘along other directions diverge from the pass More-

over, by Lemma 4.6!! the ascending slope line cannot reach P'.
By similar reasoning we obtain analogous results for course lines:

Theorem 4.11: Let P' be a pass. Then, each course line emanating from P’ either
(1) intersects the boundary of U;
(2) reaches a pit; or

(3) reaches a pass other than P’ along the +f, direction of the pass that is
reached. o

113trictly, the proof of Lemma 4.8 does not apply here since the hypothesis of Rolle’ s theorem is
not met. - However, the mean value theorem can be used instead to how that as the ridge line ap-

proaches P’ from both directions (i.e., ascending and descending), ET-» 0 for some point on the ridge
line.
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4.2.2.5. Non-degenerate Critical Point Configurations

We come now to the heart of our discussion of slope districts. We represent
the configuration of pits, passés, peaks, course lines, and ridge lines on the sim-
plified segment as a graph, called the critical point configuration graph. Pits,
passes, and peaks comprise the graph vertex set; course and ridge linés'
‘comprise the edge set. By convention, we also add to the vertex set points of
intersection between a ridge or course line and the simplified segment bound-
ary. Since ridge and course lines meet only at critical points and since critical
points are isolated, the critical point configuration graph is a plane graph.'® It
pértitions the simplified segment into regions, some bounded by a cycle of the
gfaph and some bounded by a path in the graph together with a portion of the
simplified segment boundary. We shall show that these regions are the slope dis-

tricts we seek.

We adopt the following conventions in our illustrations of eritical point con-

figuration graphs:

(1) Pits, passes, and peaks are denoted by V, +, and A respectively. A subscript

is occasionally used for easy reference in the text.
() Arrows on edges indicate the ascending direction.

'Let Gs denote the critical point configuration graph of the simplified seg-

ment S.

Definition 4.8: A slope district is a maximal subset, D, of S, such that any .two
points in D may be joined by a curve in D not intersecting any edge or vertex
of Gs. ] :

A slope district bounded by a cycle of Gg is called an interior slope district,
while a slope district boundéd by a path in Gg together with a portion of the
boundary of S is called an ezterior slope districf. In the remainder of Section

4.2.2.5 we investigate properties of both interior and exterior slope districts.

125 plane graph is a graph embedded in a surface such that edges intersect only at vertices.
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The key result of the section yields a catalog of possible interior slope districts.
From the catalog, it is trivial to deduce that all slope lines through points in an
interior slope district do indeed ascend to a common peak and descend to a

common pit. Furthermore, the catalog yields simple constraints on adjacency

'relationships between slope districts.

Interior Slope Districts. Let B(D) denote the cycle of Gg that bounds an inte-
rior slope district D. Since B(D) is a cycle of Gg, we can traverse it in some
direction, say clockwise. As we do so, the vertex—edge—vertex triples encoun-

tered are limited, by Theorems 4.10 and 4.11, to the following:

A) V-t D) A« +
B) ++«V ‘ E) +->+
C) +-4 F) +<+

Therefore, any cycle of Gg can be constructed by juxtaposing these triples: the
clockwise-most vertex of one triple and the counterclockwise-most vertex of the
next triple must be identical. Thus, for example, the sequence ACDB might

exist; ADDB cannot.

Another constraint exists as well. Before we discuss it, some additional
notation is needed. Recall that exactly two ridge lines and two course lines
emanate from each pass. When a pass is reached along a ridge line while
traversing a eycle of the critical point configuration graph, the next edge of the
cycle is either the one remaining ridge line or one of the two course lines. Simi-
larly, when a pass is reached along a course line, the next edge is either the one
remaining course line or one of the two ridge lines. Thus, to specify a cycle,
moré information is required than just a sekquence of triples. Fpr ekample, if we
represent schematically the choice of the next edge to be traversed at a pass as
either proceeding forward or making a left or right tﬁrn, AECDFB could

represent either
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+<By A, | N S
F J/E °r BY——;L TD
4 >+
A<t F

Resolving the ambiguity by using the subscripts L and R to denote left and
right 'tgrns, the cycles in the preceding example can be specified by A E,CD F.B
and ALE#CDRFRB, respectiveiy. Obviously, two strings denote identical cycles
whenrone string can be transformed into the otﬁer by one or more “‘rotates.”
Fof example, the strings A CD_B, CD_BA,, DRBAI;C' and BA_CD,, all represent the

same cycle:

V———e-e->+

BL lc

+ _T)_>A

Since course lines are always perpendiculaf to ridge lines, certain triples
cannot be juxtaposed unless a “‘turn” is interposed between them. For example,
the sequence AC cénnot occur because the course line'ieading to the pass (A) is
perpendicular to both of the ridge lines emanating from the pass (C). Therefore,
A can bé juxtaposed with C only if one of the subscripts L or R is interposed

between them: A CorAyC..

Cayley[Cayley59a], Maxwell[Maxwell70a], and Pfaltz[Pfaltz76a, Pfaltz78a]
each make the assumption that triples of forms E and F do not occur. Now, I too
make this assumption since it simplifies further analysis. I'claim that any confi-
guration .containing either triple is unstable and therefore not likely to oceur in
practice. Consider a slope line that is both a ridge line and a course line, one

that ascends to one pass and descends to another. From our discussion of the
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behavior of slope lines near passes, we know that there are exactly two slope
lines that éscend to a pass and two that ascend to the pass; all others come near
to the pass, never reaching it, and then move away. If either of the triples E or F
occurs, the slope line between the two passes must be one of the two slope lines
 that ascends. from one pass and one of the two slope lines that descends to
second pass. Hence, a small perturbation of the radius function near either

pass eliminates the triple from the configuration.

Figure 4.4 shows all possible juxtapositions of two triples assuming that tri-

ples E and F do not occur. As shown, a clockwise traversal of a triple begins with

V"—""' —V ' A—+ —sA
AB DC

+—V—+ + —A«—+

VatT A—+
R”| DB |
A v
% o
V—+ A<+
AC | DB

Figure 4.4.: Valid Triple Juxtapositions
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the leftmost critical point.

Under this assumption, I build a catalog of interior slope districts by inves-
tigating cycles of the critical poin’t configuration graph. My strategy is to
specify ’conciseiy all possible cycles and then to show that all but three cycles
contain at least one smaller subcycle. Since, by definition, any two points inside
a slope district can be joined by a curve not intersecting any 'edge or vertex,
cycles that contain subcycles cannot be slope districte. Therefore, there are

only three cycles that bound interior siope districts.

I shall use regular expressions to provide a concise notation for specifying
sets of strings of triples denoting paths in critical point configuration graphs. 1
use the following notation: parentheses denote grouping, a vertical bar {|)
" denotes or, a superscript asterisk (*) denotes zero or more repetitions of the
previous symbol, and a superscript denotes a specific number of repetitions of
the previous symbol. Thus A(B|C)D’E? denotes an A followed by eitheraBor aC
followed by any number_ (including zero) of D’s followed by two E's. During the
course of the discussion, | shall also use a question merk (?) as a symbol to

-denote an as yet unknown triple.

To use this regular expiesSion notation to specify an arbitrary cycle, con-
sidei‘ any of the equivalent sequences of triples specifying the cycle that begin
with a pit. (If there is no pit, an analogous argument can be made using a peak
instead.) Since the path represented by the sequence is a cycle it must also end
with a pit. Therefore, the sequence must be of the form A?’B (cf. page 75).
Referring to Figure 4.4, the first two triples in the sequence must therefore be
either AB, ARC, or A;C. Similarly, the last two triples must be either AB, DgB, or '

DiB. Thus, any sequence that represents a cycle must be one of the following:

(1) AB;
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(2) (ALC | AgC) ?° (DB | DgB); or
(3) one or more of the above sequences concatenated together.

Letting pitends be a symbol representing any sequence both beginning and end-

ing with-a pit, we have

pitends = AB
| (ALC | AgC) ?” (DLB | DgB)
| pitends ”,

Similarly, all paths beginning and ending in a peak are given by

peakends = DC
| (DLB | DgB) ?“(ALC | ARC)

| peakends®,

- In both cases, the unknown sequence (?°) is easily determined. In the
former case, the sequence specified by ?* must both begin and end with a peak,
for else it would not “mesh" with the peaks specified by the C on its left and the
D on its right. Similarly, in the latter case the corresponding sequence must

both begin and end with a pit. Therefore,

cycle = pitends | peakends
pitends = AB |
| (ALC | ARC) peakends (DB | DgB)

| pitends”,

peakends = DC
| (DB | DgB) pitends (ALC | AgC)
| peakends ®.
We now have a concise specification for all possible eycles. Using this

speci_fication. I shall prove that the only cycles that are the boundaries of slope
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districts are AB, CD, and ARCDgB; all others contain one or more subcycles.
First, to motivate the proof let us consider informally an example, the cycle

ABAB shown below:

Since we are assuming that there are no adjacent passes, Theorem 4.10 requires

that the ridge lines that emanate into the cycle, one from pass +, ahd one from
pass +,, each reach a peak. There are two alternatives. First, as illustrated on

the left side of Figure 4.5, each of the ridge lines can reach a separate-peak that

is part of a subgraph connected to the cycle only via the ridge lines,
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Figure 4,5.: Ridge Lines Reaching Islands
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Alterﬁatively, one or both of the ridge lines can reach a peak on a subgraph con-
nected to the cycle via some other edge as well, as éhown on the right side of
Figure 4.5. In the latter case, a subcycle would be formed, thus dividing ABAB
into two subcycles. Therefore, each ridge line must reach a peak on a subgraph
connected to the cycle via the ridge line only. But, I shall show below that such
behavior is precluded by a topological constrainﬁ, thus implying that ABAB is

divided into subcycles.

Lemma 4.13, below, provides the aforementioned topological constraint,
constraining the number and type of critical points that can be contained within
a cycle. After proving the lemma, I shall use the constraint it provides to prove

that no cycles other than AB, CD, and ARCDgB can bound a slope district.

Lemma 4.12: Let there be a smooth closed curve in R®? having no critical points
of ronit. The set of points on the curve at which the directional derivative
of r along the outward directed normal to the curve is negative is called the
negative boundary of the region enclosed by the curve. Let ny, n,, and n,
denote respectively the number of pits, passes, and peaks of r in the region
enclosed by the curve, and let n, and n, denote respectively the number of
minima and maxima of r along the curve that occur on the negative bound-
ary. Then, ng + n, —n, — n, + ny = 1. (Theorem 10, [Morse34a]) =

Definition 4.9: Let G be a critical point configuration graph that contains no
adjacent passes. The Morse number of G, denoted M(G), is the sum of the
number of pits and peaks in the vertex set of G less the number of passes in
the vertex set of G. ® -

Lemma 4.13: Let G be a critical point configuration graph that contains no adja-
cent passes and is bounded by a cycle B(G). Further, let nsp, ng,, ny ¢, and

np g denote respectively the number of occurrences in B(G) of juxtaposed
triples AB, BA, A;C, and D;B. Then, M(G) = 1 — npy + mp + nac + Np;p

Proof: We prove this result by applying Lemma 4.12 to a curve ‘‘just inside’’ the

- cycle B{(G). We construct a smooth closed curve inside B(G) satisfying the
hypothesis of Lemma 4.12 by constructing a curve parallel te each individual
ridge/course line and then joining those curves near critical points. At each

. regular {non-critical) point p on a ridge /course line there is a vector normal

to the ridge/course line at p that points into the region bounded by B(G).
Ve define a point p, on a corresponding to p as the point at distance & from
p along the inward directed normal at p:
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ridge or ————*
course line -

‘/

‘.

R /" remainder

v ____.o+—0fB(G)

Thus, for any given value of ¢ there is a curve parallel to each ridge/course
line in the cycle B(G). The curve a, is constructed by smoothly joining these
curves near critical points. There are two cases:

(1) Two ridge/course lines meet at a critical point so that each of the two
ridge/course lines has the same tangent line at the critical point.

() Two ridge/course lines meet at a critical point so that each of the two
ridge/course lines have different tangent lines at the critical point.

In the first case, since there is a well-defined tangent at the critical point,
the two parallel curves can be joined smoothly by adding the point at dis-
tance ¢ along the inward directed normal at the critical point:

+ pass
/SX— -
// — .
! 7 \ T / \ \
] ! \ y
! Y Xe ; !
1 . \L g "
\ . /
\ _____________________ ¢ . /

In the second case, since there is no well-defined tangent at the critical
point, we must terminate each of the two parallel curves before they reach
the critical point and then smoothly join them with some “'splicing” curve.
Other than smoothness, the only requirement placed on the *‘splicing’ curve
is that it can be made arbitrarily near the critical point. We shall use a cir-
cular are, as illusirated in the two examples below:
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To apply Lemma 4.12, we must determine where the extrema of r along
o, occur. Points where r achieves a local extremum are called exlreme
points, while the values assumed by r at extreme points are called exireme
values. Recall from two-dimensional calculus that a function along a smooth
curve can have a local minimum or maximum at a point on the curve only if
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the directional derivative of the function in the direction of the curve at that
point is zero.

Consider traversing both B(G) and a, clockwise. As ¢ is made to
approach zero, a, approaches the cycle B(G) and the directional derivative
along o, of r at a point p, on «, approaches the the directional derivative of »
at p in the direction of traversal. Since rldge/course lines are slope lines,
the directional derivative of r along them is non-zero except at critical -
points. Therefore, for small enough &, the derivative of r along a, can be
zero only near critical points.

So far we have argued that no extreme points occur on a, except near
critical points. We now investigate at which critical points such extreme
points occur and whether or not they occur on the negative boundary of the
region bounded by a,. Again, traverse B(G) and «, clockwise. As B(G) is
traversed, a peak is crossed by climbing a ridge line, reaching the peak, and
then descending another ridge line. Hence, as the corresponding portion of
o, is traversed, the derivative of r along «, is positive at points correspond-
ing to the first ridge line and negative at points corresponding to the second
ridge line. Therefore, if the two pieces of o, that correspond to the two ridge
lines are joined by a single point, the derivalive must be zero at that point; if
the two pieces are joined by a circular are, the derivative must be zero '
somewhere along the arc. In either case, the behavior of the radius function
near the peak guarantees that r achieves a local maximum, rather than a
minimum or inflection, at the point where the derivative is zero.

By similar arguments, there is a minimum near pits, a maximum near
passes where two ridge lines of the cycle meet, a minimum near passes
where two course lines of the cycle meet, and either no extremum or two
extrema near passes where a ridge line and & course line of the cycle meet,
depending upon whether the situation is as shown on the left or the right of
the previous figure. Recall from the statement of Lemma 4.12 that the set of
points of o, at which the directional derivative of r along the outward
directed normal to the curve is negative is called the negative boundary of
the region enclosed by «,. Similarly, the set of points for which the direc-
tional derivative is positive is called the positive boundary of a,. The bound-
ary type at each of the extreme points on a; can be determined easily by
examining the behavior of the radius function near critical points {Section
4.2.2.3). For each of the triple juxtapositions shown in Figure 4.4, Table 4.1
gives the number and type of extrema and the boundary type(s) of a; near
the second of the three critical points.

The result now follows directly from Lemma 4.12 and the observation
that since B(G) is a cycle, it consists of alternating passes and pit/peaks,
and thus makes no contribution to M(G). a

I now use Lemma 4.13 to show that no cycles other than AB, CD, and AgCDgB

bound slope distriets. Ishall use the following two definitions.

Definition 4.10: A free-isioand is a subtree of a critical poiht configuration graph
having the property that every pass has four incident edges. =

Informally, a tree-island is a subgraph of a critical point configuration graph

that has no cycles and no “‘dangling edges.” Figure 4.8 illustrates several
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_ Table 4.1
Extrema of r on o

Juxtaposed Triples Extremum Type Boundary Type
AB maximum negative

AC {maximum, minimum) | {negative, positive)

AC none '

BA minimum negative

CD maximum positive

DC . minimum positive

DB (minimum, maximum) | (positive, negative)

DB none

graphs, some of which are tree-islands and some not, as marked.

Lemma 4.14: Let G be a non-empty tree-island. Then, M(G) the Morse number

of G, is (2ny+2na + 1)/ 3.

Proof: In any tree, the number of edges is one less than the number of vertices
(Theorem 4.1, [Harary69a]). By definition, the number of edges in a tree-
island is four times the number of passes. Therefore, ngy+na+n, =4n, + 1.
The result then follows by using this relationship to eliminate n, from M{G) =

Nnpa—ng+ny =

Tree-lIsland

<

Not T-1 Not T-1

Figure 4.8.: Tree-Islands
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Definition 4.11: A free-peninsula is a subtree of a critical point configuration
graph having the property that one pass has three incident edges and all
other passes have four incident edges. =

Informally, a tree-peninsula is a subgraph of a critical point configuration graph

that has no éycles and one ‘'dangling edge.”

' Lemma 4.15: Let G be a non- empty tree—pemnsula Then, M({G), the Morse
number of G, is (Rny+ 2n,a)/ 3.

Proof: In any tree, the number of edges is one less than the number of vertices
{(Theorem 4.1, [Harary69a]). By definition, the number of edges in a tree-
peninsula is one less than four times the number of passes. Therefore,
ny+na+n, =4n,. The result then follows by using this relationship to elim-
inate n, from M{(G) = ny—n, +ny. =

Definition 4.12: Let B(G) be a cycle of a critical point configuration graph and
let P be a pass in B(G). The pass P is said to emanate inward i edges if i of
the four edges defined by P are inside the cycle B(G). Let / be the sum over
all passes in the cycle B(G) of the number of edges emanated inward by each
pass. Then, the eycle B(G) is said to emanate inward / edges. =

Lemma 4.16: Let G be a subgraph of a critical point configuration graph such
that G is bounded by a cycle, B{(G), that emanates inward I edges. If B{(G) is
the boundary of a slope district, then M(G)= 1.

Proof: Considér one of the J edges that emanates into the cycle B{G). Let E
denote that edge. By Theorems 4.10 and 4.11 and the assumption that there
are no adjacent passes, edge E must reach either a peak or a pit. Without
loss of generality, assume it reaches a peak, denoted by P; the argument
below is identical for a pit. .Since any edge of a graph is not on a cycle if and
only if removing that edge increases the number of components of the graph
(Theorem 3.2, [Harary89a]), any path in G between P and B(G) must contain
E. Otherwise, G would contain a subeycle. It would then be possible to find
two points in the district that are separated by the subcycle, and therefore
cannot be connected without crossing G, thus contradicting the hypothesis
that B(G) is the boundary of a slope district. Therefore, upon deleting edge
E, G is split into two components, one connected to B(G) and not containing
P and one not connected to B{G) but containing P. The latter component
must be a tree for otherwise G would contain a subcycle, again contradicting
the hypothesis that B(G) is the boundary of a slope district. Furthermore,
since the component is not connected to B(G), it must be a tree-island.
Thus, each of the / edges that emanates from B{G) into G has a tree-island
“attached” toit.

Now, let us consider the Morse number of G, M(G). M(G) is the sum of
the Morse numbers of B{(G) and of the subgraph inside of B{G). Since B(G) -
consists of alternating passes and pit/peaks, it makes no contribution to .
M(G). By Lemma 4.14, the tree-island reached by each of the / edges
emanating from B{G) into G contributes one or more to M{G). Therefore,
unless some other critical points contained inside of B{G) subtract from
M(G), that is, unless ignoring the aforementioned tree-islands there are
more passes inside B{G) that pit/peaks, M(G)=/J. But any pass contained
inside B(G) must also be part of a tree. Moreover, any such tree is either not
connected to B(G) or is connected by only one edge, for otherwise a cycle
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would exist. Thus, any pass contained inside B(G) must also be part of a
tree-island or of a tree-peninsula, implying by Lemmas 4.14 and 4.15 that all
the “‘extra’ critical points contained inside B(G) make a non-negative contri-'
bution to M(G). Therefore, M(G)=/. =

Building upon the constraints imposed by Lemmas 4.13 and 4.18, Theorem
4.17 gives a catalog of interior slope districts and shows that slope lines through
all points in an interior slope district ascend to a common peak and descend to

a commmon pit.

Theorem 4.17: Let G be a subgraph of a critical point configuration graph and let
B(G) be a cycle of G that is the boundary of an interior slope district. If
there are no adjacent passes in G, i.e., if neither of the sequences E or F
appear, then B{G) is equivalent to one of the following cycles:

(1) CD
(2) BA
(3) ARCDgB

Further, all ascending slope lines from points in the slope district reach a
common peak and all descending slope lines from points in the slope district
reach a common pit.

Proof: By Lemma 4.16, the Morse number of G, M{G), must be at least as large as
the number of edges that emanate inward from B{G). On the other hand,
Lemma 4.13 gives M(G) in terms of the number of occurrences on B{G) of AB,
BA, A;C, and D;B. To prove the theorem, I show that for all but cycles AB, BA,
and ARCDgB, Lemmas 4.13 and 4.18 place conflicting constraints on M(G).

Table 4.2 gives for each of the possible triple pairs (cf. Figure 4.4) the
number of edges that emanate inward from that pair and its contribution to
M(G) as determined by Lemma 4.13. By Lemma 4.13, M{G) is one more than
the sum of the contributions given in Table 4.2. Observe from the table that
no pair makes a larger contribution to M{(G) than the number of edges
emanated inward by that pair. Therefore, to show that a cycle does not
satisfy the constraints imposed by Lemmas 4.13 and 4.16, we need only show

Table 4.2
Triple Contributions to M(G)

Type | Edges | M({G) Contribution
ALC 2 +1

AxC 0 0

CD 0 0

DB 2 +1

DB 0 0

BA 0 -1

AB 1 +1

DC 1 0
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. that for some portion of the cycle, the number of edges emanated inward
exceeds its contribution to M(G) by more than one. By inspection, this is not
the case for AB, CD, or ARCDgB.

To show that every other cycle does not satisfy the constraints, let us
examine the regular expressions for a cycle. Recall that since the sequences
defined by the regular expressions represent cycles, the last triple of a
sequence is juxtaposed with the first triple of the sequence.

(1) Neither A;C nor I)|B can occur in any cycle since {a) both emanate two
edges but only contribute +1 to M{G), and (b) inspection shows that
both occur only in cycles that contain at least one BA. Therefore, the
number of edges emanated inward exceeds the contribution to M{G) by
at least two. '

() The sequence pitends®, x=2, cannot occur in any cycle since BA occurs

: at least x times in any such sequence. This can be seen by noting that
pitends is always of the form (A?°B)%. Therefore, the number of edges
emanated inward by the sequence exceeds its contribution to M{G) by
at least x.

(8) The sequence DgB pitends ARC cannot occur unless pitends is empty
since such a sequence contains at least two BA's (DgB juxtaposed with
pitends and pitends juxtaposed with ARC). Therefore, the number of
edges emanated inward by the sequence exceeds its contribution to
M(G) by at least two.

(4) The sequence peakends®, x=2, cannot occur in any cycle. By items 1
and 3, peakends® must be of the form (DC | DrB4rC)*. Therefore, there
are x occurrences of DC and/or BA, implying that the number of edges
emanated inward by the sequence exceeds its contribution to M(G) by
at least x.

(5) The sequence ARC peakends DyB cannot occur unless peakends is empty.
By items 1, 3, and 4, the sequence must be either AgCDCDyB or
ARCDRBARCDgB. -In the former case, there is one DC and one BA, while in
the latter case there are two BA’s. Therefore, the number of edges
emanated inward by either sequence exceeds its contribution to M(G)

by at least two.!®

- Since we have examined all cases other than AB, DC, and AgCDgB, no cycle
other than those three can bound a slope district.

That all slope lines through points in side one of these three possible
slope districts ascend to a single peak and descend to a single pit is obvious
from inspection. See Figure 4.7. = ,

We have thus shown that all interior slope districts have one of the confi-

gurations shown in Figure 4.7.

) I?Though my treatment of these cases is asymmetrie, it is not difficult to prove that a relation-
ship similar to that of Lemma 4.13 obtains by replacing Ipy with N¢p and Ny with Npe. Using that
relationship, the proof of Theorem 4.17 can be made symmetric.
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Figure 4.7.: Catalog of Interior Slope Districts

Exterior Slope Districts. We must still examine exterior slope districts. How-
ever, let us first introduce an additional problem which we shall see is closely
related to exterior slope districts. Consider the height function of the surface

shown in Figure 4.8. There are no critical points. Yet, it seems intuitively clear

Figure 4.8.: Height Function With No Critical Points
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that there should be two slope districts separated by a ridge line, not a single
slope district consisting of the entire simplified segment. Even when a critical
point is introduced, such as by stretching the surface, as shown in Figure 4.9,

there is still but one slope district.

Both this problem and exterior slope districts have the same origin. Were
the radius function defined on a closed surface, such as a sphere, rather than on
a surface'with boundary, such as the simplified segment, certain properties of
the radius function (discussed below) would demand the existence of a pass and
its associated ridge and course lines. Thus, one can consider the aforemen-
tioned problem to be caused by the intervention of the simplified segment
boundary between actual critical points, if any, and critical points that would
otherwise océur. Figure 4.10 illustrates an exterior slope district in which the

simplified segment boundary intervenes between one of the passesina ACD.B

slope district and the remainder of the district.

Figure 4.9.: Height Function With One Critical Point
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Figure 4.10.: Boundary Intervention

‘The. sdlution to the problem is simple: find points where ridge and course
lines emanating from a “'missing" pass wbuld hafve crossed the simplified seg-
ment boundary. Once such points are found, the "missing’ ridge and céurse
lines are determined; they are the ascending or descending slope lines from the
boundary points. To find these points, we must characterize ridge and course
lines independently of the pass from which they emanate. Here, I sketch such a

characterization of ridge lines; analogous arguments apply to course lines.

A curvature line is a curve on the simplified segment whose tangent vector
at each point is a principal direction of the radius function at that point.‘ We
have seen (page 71) that a ridge line leaves a pass in a principal direction, that
is; the ridge line.“starts out” as a curvature line as well as a slope line. Simi-
larly, a ridge line reaches a peak tangent to one of the principal directions at
thé peak. Iclaim that a ridge line is also a cur\lrature line along the maximum

principal direction; the converse is not always true.

By definition, the ridge line proceeds in the direction of the gradient, the
direction in which the first difectional derivative of the radius function {Section

'3.4.1) is largest. The second directional derivative of the radius function in
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some difection measures the rate of change of the first directional derivative of
the radius function in the same direction. Recall that the principal directions of
thé radius function are the directions of the minimum ahd maximum radius
function second directional derivatives. Assumé that the direction of the gra-
dient and of the maximum principal direction are differént. Then, since the
second directional derivative is smaller in the gradient diréction than in the
maximum principal direction, the first directional derivative increases more
rapidly (or decreases less rapidly) in the principal direction than in the gradient
direction. Therefore, the gradient direction appAroaches the maximum principal
‘direction as the ridge line is traversed in the ascending direction. By the same
ai‘gument, once the gra.dient direction coincidkes with the maximum principal
directibn. the two directions never part. From our discussion of slope line
behavior near critical points, we know that near passes, ridge lines coincide with
curvature lines. Therefore, ridge lines are also curvature lines along.the direc-
tion of the maximum principal direction; analogous arguments show that course
lines are also curvature lines along the direction of the minimum principal
direction.

Unfortunately, the coﬁversé is not true: a slope line that is simultaneously a
curvature line in the maximum principal direction is not necessarily a ridge
line. However, it is still useful to examine the behavior of such a slope line. As
the slope line is traversed in the descending direction, it reaches a critical point
in the maximum principal dire_ction. By examining the diagrams of slope line
behavior near critical points (Sectibn 4.2.2.3), it can be seen that such behavior
only occurs in two cases: either the slope line descends to a pass, in which case
it is a ridge line, or it is one of the two slope lines that reabches a pit along the

maximum principal direction. I know of no way to disambiguate the two cases.

Even so, we introduce a *‘fake’ pass, called a boundary pass, at each point

on the simplified segment boundary where a principal direction coincides with
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the gradient direction, but no true ridge or course line crosses. When thé prin-
cipai direction is a maximum principal direction, the slope/curvature line
through the boundary pass can be treated as a ridgé line; otherwise, it can be
treatedas a course line. Using this criterion, a boundary pass and its associated
ridge/course line may be introduced where none belongs. Such an error resuilts
in falsely partitioning a slope district into Several slope districts. This erfor of
commission is preferable to the corresponding error of omission, for omitting a
ridge or course line where one belongs can cause significant ‘‘features” of the

radius function behavior to be ignored.

Consider, for example, the height functions illustrated in Figures 4.8 and
4.9. In the first case, a single boundary pass and associated ridge line would be
introduced as shown in Figure’ 4.11, thus creating two slope districts, as intuition
demands. Similarly, in the second case, two boundary passes are introduced,
each of which emanates a ridge line to the single peak as shown in Figure 4.12.
Failing to introduce these boundary passes would, in each case, ignore the most

striking qualitative property of the height function.

boundary pass

Figure 4.11.: Introduction of a Boundary Pass
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Figure 4.12.: Introduction of Two Boundary Passes

It does not seem possible to enumerate straightforwardly all possible exte-
rior slope districts because the simplified segment boundary can cut out an
arbitrarily complicated portion of a slope district configuration. This is illus-

trated in Figure 4.13.

slope district
simplified '
segment N
boundary

4+ \//\\./[\\J/\\T A

Figure 4.13.: An Arbitrarily Complicated Exterior Slope District
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4.2.3. Curvature Districts

Thekslope districts described in Section 4.2.2 are derived primarily from

. first derivative properties of the radius function. In this section, we partition
the simplified segment into regions, called curvafure districts, derived from
second derivative behavior as characterized by radius function Gaussian and
mean curvatures. The two partitions are not independent, for as we have seen,
the Gaussian and mean curyatures play an important role in defining slope dis-
tricts as well. Depending upon the application, it might be appropriate to parti-
t‘ion the simplified segment into slope districts alone, curvature districts alone,
or both simultaneously. Since my intuition (not confirmed by any evidence) is
that for most applications it is‘appropriate t;o use slope éhd‘curvature districts

simultaneously, I shall discuss their interdependence below.

The algebraic signs of the Gaussian and mean curvatures qualitatively
charabterize the second derivative behavior of the radius function. We might
therefore partition a simplified segment into regions wherein the signs of both
the Gaussian and mean curvatures remain constant. However when the Gaus-
sian curvature is negative, the sign of the mean curvature has little meaning,
indicat;ing“ only the relative magnitudes of the two principal curvatures. Coalesc-
ing the three cases of negative Gaussian curvature into one, we obtain the six v

curvature district types shown in Table 4.3.

Table 4.3 _
Curvature District Types

Name Gaussian Curvature ! Mean Curvature
Flat 0 0
Parabolic convex 0 -
Parabolic concave 0 +
Saddle - -, 0, +
Convex + -
Concave + +
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Definition 4.13: A curvature district is a maximal open subset of a simplified
segment such that the signs of the Gaussian and mean curvatures at all
points in the subset are of the same type, as determined by Table 4.3. =

As noted above, the partition into slope districts and the partition into cur-
vature districts are not independent. Each pit must lie within a concave curva-
ture district, each peak within a convex curvature district, and each pass within

a saddle curvature district. Thus, for example, the slope vdistrict configuration
| ApCD.B would be split into at least four curvature districts as shown in Figure
4.14. The boundary between the concave and convex curvature districts might
also be a combination of flat, parabolic convek, and parabolic concave curvature

districts.

\

concave \ J_'
S v =
\\ \>\7 1§ saddle
~ // N
\\ /. SN~
saddie N\ convex\

+~‘\>A
\

Figure 4.14.: Curvature District Partition of Slope District
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4.3. Axis Primitives

Using. simplified segment Gaussian and mean curvatures, the simplified seg-
ment and its associated boundary surfaces can be partitioned into a collection
of two-sided azxis primifives. Axis primitives should be defined so that the parti-
tioning of the simplified segment is invariant under rigid motions of the figure in
space. This can readily be accomplished by partitioning the simplified segment
into curvature districts as defined in Section 4.2.3, using simplified segment
curvatures in place of the corresponding radius curvatures. Table 4.3 defines
the six possible axis primitives as well as the possible radius curvature districts.

" However, there is an ambiguity here.

The sign of the mean curvature is determihed by the éigns of the brincipal
éurvatures. For the radius function, the signs of the principal curvatures are
well deterrﬁined: positive means increasing, negative decreasing. On thé other
hand, the signs of the simplified segment principal curvatures depend upon the
direction of the unit ﬁormal vector at each point of the simplified segment: rev-
ersing the direction of the normal changes the sign. Since the direction of the

“unit normal is arbitrary, so is the sign of the mean curvature. This is to be
expécted, as considering the sign of the curvature of a plane curve shows. That
sign too is arbitrary, fbr if the curve is traversed in one direction the curvature
is positivé, while if traversed in the other direction it is negative. Thus, in three
dimensions, arbitrarily choosing one of t‘he‘two possible unit normal directions
is equivalent to choosing a “‘traversal” direction in two dimensions. Thérefore,
at some point on the simplified segment, choose one of thektwo possible unit
normal directions and apply that choice consistently to the whole simplified seg-

ment, so that the unit normal changes continuously.
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4.4, Boundary Primitives

In Sections 4.2 and 4.3, ] have defined two primitivé sets, one based upon
radius function properties alone and one upt.m simplified segrﬂent curvature
alone. In this section, I define another set of primitives, boundary p'rim'itvlves,
that are based on boundary surface curvatures and show that these primitives
are determined by a combination of simplified segment curvatures and radius
function properties. The approach is simple. The simplified segment and asso-
ciated boundary surfaces arev partitioned into primitives, each with the property
that the algebraic signs of the Gaussian and mean curvatures are constant over
each of the two boundary surfaces associated with the primitive. As with axis
primit'}ves, since the sign of the mean curvature has litile meaning when the
Gavuss‘ian curvature is negative, we coalesce the three cases of negative Gaussian
curvature into one, yielding the same six curvature labels shown in Table 4.3.
Hence, since there are two boundary surface pieces associated with each primi-
tive, there are 36 boundary primitives, one for each possible pair of labels.

These primitives are listed in Tables 4.4 and 4.5, which we shall discuss below.

In the remainder of Section 4.4, I use the curvature relationships derived in
Chapter 3 to examine in two ways the relationship between boundary primitives
and the curvaturesbof the simplified segment and radius function. I first use the
curvature relationships to define four properties of the simplified segment and
radius function that Vuniquely determine the boundary primitives. Ithen use
those same curvature relationships to develop further intuition about the

geometry of the three-dimensional symmetric axis transform.

We now examine the relationship between the 36 boundary primitives and
the curvatures of the simplified segment and radius function. Let B and C be
the boundary surfaces associated with the simplified segment S, and let P be a

point on S. Recall (Section 3.4.2) that there is a surface B’ parallel to B that
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passes through P (see Figure 3.3), and moreover, that the algebraic signs of the
Gaussian /al.']d mean curvatures at the point on B associated with P, are the same
as the Gaussian and mean curvatures at the corresponding point of B’. The
mean and Gaussian curvatures of B’ at the point asscciated with P are given by

equations (3.3) and (3.4) respectively, repeated here for convenience:

_ Yl =78 + 721 = 7)) A(1-7E) + N(1-78)

¥ 3.3
2<ng,m, >* 2<ng,ny > (8:3)
’ }\.17’ +>\27'
k= A1>\2 + 7172 - €a%p €{e (34)
<ng,ny> <n;.Dp > :

Sin¢e the signs of the curvatures at corresponding points on B on B’ are identi-
cal, we can use {3.3) and (3.4) to determine the signs of the curvatures at points
on B. Likewise, when the sign of <ng,n;> is changed, these same equations
determine the signs of the curvatures at the corresponding point on the 6ther
béundary surface, C.

We split each of these equations into the sum of two terms, one that is the
same for both boundary- surfaces and one that has the same magnitude for both
boundary surfac‘es but opposite sign. Using the subscript 4 to denote the

“invariant’’ part, and the subscript v to'denote the ‘‘variant’ part, we let

(1 =) + a1 = 7E)
B 2<ng.m, >*

1

AM(1=78) + A(1 = 78)

2<ng,ng >
s*Bo (4.4)

Y17z

—ee - anid
<n,,n, >*

ki = XAg +

Alrezeg + ;\27'»3131

k, =
' <Rng,0p >

" Equations (3.3) and (3.4) then become
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h =h; +h,, and
(4.5)
k=ki +k'U’

respectively.

Each combination of the signs of k;, k,. &, and h,, together with the rela-
tive magnitudes of |k;| and |k, | and of |k;| and |k, | determines a single
' boundary surface curvature pair, that is, a single boundary primitive. Tables 4.4
and 4.5 show all possible cbrr;binations of the signs and relalive magnitudes of
the variables mentioned above, together with the boundary primitive deter-
mined by each combination. The columns labeled “Boundary 1"’ and ‘‘Boundary
2" give the boundary piece labels of the two boundary surfaces associated with
the simplified segment. “Bo.uridary 1" is the boundary surface “pointed to”’ by
the simplified Segment unit normal, that is, the boundary surface for which
<ns,ny > is positive; ‘‘Boundary 2" is the other boundéry surface. The columns
labeled kg and hgy give the relationship (<, =, or >) between |k;| and |k, | and
between |h;| and |k, | respectively. A question mark (?) entry indicate‘s:that
the sign of that quantity is irrelevant as long as it is consistent with the other
el;ltries within the same row and triple of columns {separated by double vertical |
rules). On the other hand, an asterisk (*), optionally preceded by a minus sign
‘ '(—), indicates that the sign of that quantity is irrelevant as long as all asterisks
within the same row and triple of columns are given the same sign. If presen.t,
the minus sign indicates that the sign of that quéntity must be opposite the sign

of other quantities marked by an asterisk alone.

Tables 4.4Ian'd 4.5 make explicit the relationship between symmetric sur-
face and fadius curvatures on the one hand, and boundary primitives on the
other. I have divided the primitives among these tables to reflect their sta’bility,
that is, their behavior under slight perturbations. For those primitives in Table

4.4, a small enough change in any of k;, k,, k;, or h,, does not change the bound-
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Table 4.4
 Boundary Primitives (Part 1)
Boundary 1 Boundary 2 ky iy kg hy by hg
s s
Concave . Concave + ? > + ? >
Concave : Convex + ? > ? + <
Convex Concave + ? > o7 - <
Convex Convex + ? > - ? . >
Concave- Saddle ? + < + ? >
? + <
-+ + =
Convex Saddle ? + < ? - <
' — ? >
Saddle Concave ? C—= Y + ? >
? — <
+ — =
Saddle Convex ? - < ? + <
‘ — ? >
+ ot
? ?

Saddle Saddl_e - ? > ?
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Table 4.5
Boundary Primitives (Part 2}
Boundary 1 Boundary 2 k; k, ky h; h, hy
Concave Parabolic concave || + + = + ? >
Concave Parabolic convex + + ? + <
Concave Flat + + = + + =
Convex Parabolic concave + + = ? - <
Convex Parabolic convex + + = - ? >
Convex Flat + + = - — =
Saddle Parabolic concave - - = + ? >
? — <
+ -~ =
Saddle Parabolic convex - - = ? |+ <
- ? >
. ' - <+ -
Saddle Flat - - = * * =
Parabolic concave Concave + - = + ? >
Parabolic concave Convex + - = ? + <
Parabolic convex " Concave + — = ? — <
Parabolic convex Convex + ~ = - ? >
Flat Concave + - = + —_ =
Flat Convex + ~ = - + =
Parabolic concave | Saddle - + = + 7 >
? + <
+ + =
Parabolic convex Saddle - + = ? — <
— ? >
Flat Saddle - + = * —* =
Parabolic concave Parabolic concave 0 0 = + ? >
Parabolic concave Parabolic convex 0] 0 = ? + <
Parabolic concave Flat 0 0 = + + =
Parabolic convex Parabolic concave || - 0 0 = ? - <
Parabolic convex Parabolic convex 0 0 = - ? >
Paraboliec convex Flat 0 0 = — - =
Flat Parabolic concave 0 0 = + - =
Flat Parabolic convex 0 0 = — + =
Flat Flat 0 0 | = 0 0 =

ary primitive, whereas for those primitives in Table 4.5, any change whatsoever
in k; or k,, changes the boundary primitive. I believe that the primitives in Table
4.5 will be less useful in practice than those in Table 4.6, for in numerical com-

puting it is not possible to compare two quantities for exact equality.
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We now turn from an explicit discussion of the relationship between bound-
ary primitives and symmetric surface and radius curvatures, to a more general
effort té b_uild intuition about the geometry of the three-dimensional symmetric
axis transform. When the simplified segment is flat, intuition suggests that the
boundary piéce labels for both boundary surfaces of a boundary primitive dre
identical, and that the signs of the boundary surface curvatures are the same as
the signs of the radius function curvatures. Hence, a flat simplified segment is
partitioned into identical regions by radius function curvature districts and by
boundary primitives. Each induces the same simplified segment partitiocn with
the same labels. We can confirm our intuition by noting that when the simplified
segment is flat, k, and h, are both zero and that k; is the Gaussian curvature of
the radius function. Then, inspecting either equations (4.4) and (4.5) or Tables

4.4 and 4.5 provides the desired confirmation.

| The relationships bétween boundary primitives and curvatures of the sim-
plified segment and radius function are much more compléx when the simplified
segment is curved rather than flat. We can improve our understanding by trying
' ~ to analyze the situation in two orthogonal directions, that is, by splitting the
three-dimensional geometry into two independent two-dimensional cases.
Though we shall see thaﬁ this is not generally possible, the exercise will
illuminate the three-dimensional geometry and will also show, as stated in
Chaptér 3,- that the three-dimensional curvature relationships subsume the two-

dimensional relationships given by Blum and Nagel[Blum78a].

Let us begin by rewriting equations (3.3) and (3.4) in another form. Recall
(Section 3.5.3) that e; and e, are unit vectors in the symmetric surface principal
diréctidns_, ] and f, are unit vectors in the radius function principal directions,
and & is the counterclockwise angle from e; to £;. We also have from Section

3.5.3 that 7q.e, = 71005 & + 7¢Sin? & and 7e,e, = 7:5in* & +ypc0s® . Substituting
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into (3.4) and rearranging terms,

Y2 Arye + Aey1 + (A1 —Ag) (71— 72) sin® &
<ng,n, >* <ng.n,> '

k= AIAE + (4'6)

Assume for the moment that the radius function prihcipal directions and
the symmetric surface principal directions coincide, that is, & = 0. Then, we
can rewrite (4.6) to obtain

ko= (A + a;%;—)(xﬁ z_n%%:;—) .
Similarly, f)y setting 7§ = g and r§ = r, recalling that since n;, e, and e; are
1orthonorma1. <ng.n, >%+<ny,,e,>%+ <N, ,ex>% = 1, and that 7, = <ny,e,> and

Te, = <NDy,€p>, We can rewrite (3.3) as

R o= RO+ o) + Ot a5 (4.7)

Hence, we see that when the principal directions of the radius function and of

7 and Ag+ L

the symmetric surface coincide, A} + ———— -
: <ns9nb> <n8’nb>

are the princi-
pai curvatures of the surface parallel to the boundary surfaces.

After adjuéting for somewhat different notation, these expressions for the
principal curvatures are each identical to the two-dimensicnal curvatufe rela-
tion given by Blum and Nagel[Blum78a]. Hence, in this cabse the three-
dimensional curvature relation is determined locally by two orthogonal two-

dimensional slices.

Now consider the efféct of rotating the radius function principal directions

with respect to the simplified segment principal directions. Rewrite (4.8) as

71 V2 0\1 -A2) (1 =72) .
=+ —— 00+ ) 2g.
M <ns,nb>)0\2 <ng,np >’ * <ng,n, > sin“ & (4_'8)

By definition, A;= A; and 9, >7,. Therefore, for the boundary surface determined
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by <ng,n, > positive, the effect of rotational displacement is to inérease the
boundary surface Gaussian curvature. As the radius principal directions are’
roﬁated with respect to the simplified segment principal directions, the effect -of
the displacement increases, reaching a maximum when the two sets of direc-

tions are orthogonal and then diminishing as ‘¢ approaches 180 degrees.

One eXpects the magnitude of the effect of the rotational displacement to
depend on the range of normal section curvatures {Section 3.2) and radius func-
tion second directional derivatives. For if either range is small, the geometry is
almost rotationally symmetric, impiying that rotation of the principal axéS with
respect to each other makes little difference unless the other range is
correspohdingly large. Equation (4.8) confirms that this is indeed the case.
Since Ay and Ap are the maximum and minimum curvatures of all hormal sec-
tions, their difference determines the range of normal section curvatures. Simi-
larly, the difference between v, and -y determines the range of radius function

second directional derivatives.

4.5. Primitive Adjacency Graphs

In the preceding sebtions we have developed several different ways to parti-
tion a simplified segment into primitives, ‘but have ignored the important ques-
tion of how ‘t_.vo maintain'_information about the spatial relatiqnships among those
primitives. Fortunately, this question has been addressed extensively in the pic-
ture processirig literature in relation to an almost identical problem, image seg-
mentation.  There the goal is to subdivide an irnage into maximal disjoint regions
each satisfying some’uniformfity predicate. Ideally, thé region defined by each
éredicate would correspond diré'ctly to an object potentially present in the
imége. For example, when analyzing images of street scenes one would like the
regions to correspond to houses, cars, etc. This israrely possible in practice.

Consequently, image segrnentétion is usually followed by processing called scene
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analysis, in which global information is used to merge regions and to assign
region “interpretations.’’ Both processes require the ability to examine neigh-
boring regions and to determine the spatial relationships among them. This
need has led to the development of a number of data structures for maintaining
region adjacency information. Pavlidis[Pavlidis?7a] diécussejs several of these

and provides references to others.

Perhaps the most useful‘of these data structures is the region edjacency
graph, a graph in which each vertex corresponds to a region and two vertices
. are connected by an edge if their corresponding regions have overlapping boun-
daries. We can use the same data structure, which we call a primitive adjacency
graph, to maintain information about the spatial relationships among primitives.
Properties of the graph translate directly into relationships among the prirni-
tives. For example, a vertex of degree one corresponds to a primitive com-
pletely surrounded by another primitive. More generally, a cut-vertex!4
'corresponds toa prinﬁtive that completely surrounds 6ther primitives. An

example is illustrated in Figure 4.15.

The edges of the primitive adjacency graph capture inter-region relation-
ships but cérry no information about propérties of the primitive(s) themselves.
A more complete data structure is the labeled pr'imiﬁve odjacency graph, a
primitive adjacency graph in which each vertex is labeled with information about
~ the primitive it represents. Consider, as a very simple example, the éimplified
segment and associated boundary surfaces shown in Fivgure 4.1 on page 54. The
primitive adjacenecy graph is trivial: two vertices connécted by a singleredge. If
all three primitive sets are used to form a larger cartesian-product primitive

set, each vertex could be labeled to indicate which member of each of the three

14) vertex vy is a cut-vertex if there are two other vertices, v, and v, such that all paths
between v, and vy contain v,. Using depth-first search, all of the cut-vertices of a graph can be found
in time linear in the sum of the number of vertices and the number of edges in the
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‘—cut-vertex

Figure 4.15.: Example of a Primitive Adjacency Graph

primitive sets applies. In this simple example, due to symmetry, both vértices
receive the same labels: axis = parabolic convex; boundary = (parabolic con-
cave, paré.bolic concave); radius = (curvature district: parabolic concave, slope
district: external). Of course, the vertex labels need not be restricted to primi-
tive names. Other pbssibly useful labels include properties of primitives such as
maximuﬁl and minimuni radius function values, region areas, maximum and

minimum prinecipal curvatures, etec.

Onc_e a labeled primitive édjacency graph is constructed, the scene analysis
techniqﬁes reviewed by Pavlidis ([Pavlidis77a], Chapter 6) ma‘y be useful for
furt.her prb_cessing. In more recént work, Shapiro and Haralick[ShaéiroBla]

| have developed an approach to such proces‘sing that may prove useful for
matching inexactly two labeled primitive adjacency graphs, such as might be

derived in shape description using the prototype paradigm of Chapter 1.

graph[Reingold?7a].
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4.6. Summary

Beginning with the result of the unique figure decompeosition induced by
Blum's symmetric axis transform, the simplified segment, I have proposed a
further decomposition into primitives drawn from three separate, but not com-
pletely independent, primitive sets. Each captures different qualitative proper-
ties of the two-sided piece associated with a Sirnplified ségment. They can either
be used separately or combined together to form cartesian-product primitive
sets. In thelatter case, each primitive becomes an ordered 2- or 3-tuple of
primitives drawn from two or three separate primitive sets. I have also pro-
posed a simple data structure, the labeled primitive adjacency graph, to be used
to maintain information about the spatial relationships among primitives. These

proposals have yet to be tested in practice.

4.7. Unsolved Problems and Research Directions

It is almost superfluous to say that the techniques described here need to
be evaluated by applying them, in concert with the other work described in this
dissertation, to realistic applications. There are also a nufnber of theoretical
issues that should be addressed, preferably in combination with the necessary

applied work.

(1) It appears straightforward, but tediousb, to remove the assumption that a

critical point configuratioﬁ graph has no adjacent passes.

(2) Pfaltz[Pfaltz76a] has defin.ed a graph of critical points, called a surface net-
work, much like the critical point configuration graph of Section 4.2.2.5. As
part of his investigation of using surface networks in spatial data bases, he
proposed simplifying surface networks by replacing certain subgraphs with
a single vertex, thus discarding “irrelevant’” detail. Similar techniques
might prove useful here to discard minor slope districts, such as those

caused by a small “'bump”’ on the side of a large ““mountain’.
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(3) Ihave proposed three schemes for partitioning a simplified segment into

(@)

(5),

regions; each with its own boundary. Though some properties of these
region boundaries are defined, for example Gaussian curvature along boun-
daries of axis primitives, I have ignored the problem of describing the shape
of those boundaries. As mentioned in Chapter 1, it appears tﬁat the two-
dimensional SAT, together with Blum’s shape description methodology, can

be generalized easily to apply to outlines on surfaces.

Blum and Nagel[Blum78a] have defined several measures used to charac-
tefize properties of the boundaries 6f two-dimensional sifnplified segments,
branch and end points. For example, they define the ‘'busyness’ of a
branch point as the number of other branch points contained within the
maximal disc centered at the first branch point. I have not defined any
similar méasures on the boundaries of three-dimensional simplified seg-

ments, branch and end curves.

I have used the notion of stfuctural stability to justify an incomplete discus-
sion of radius function behévior near degenerate critical poihts. In prac-
tice, what ié rneantk'by a degenerate critical point? Indeed, is it reasonable
to éxpecf to be ablé to‘ use any of the unstable primitives, those, such as
the boundary primitives in Table 4.5, that are defined in terms of the equal-
ity of two quantities? -1 think not—some sbrt of tolerance is necessary.

Blum and Nagel[Blum78a] completely ignore the issue in their two- |
dirnensional work. Such numerical issues are rarely addressed in the shape

descriptibn literature.



CHAPTER 5

- APPROXIMATING THE THREE-DIMENSIONAL SYMMETRIC SURFACE,

5.1. Introduction

Many algorithms for computing the symmetric axis of a two-dimensional fig-
ure, or an approximation thereto, have been developed. With but one exception,
which we discuss below, each algorit‘hm is a variation on one of two themes. In
the first, the outline is approximated by a simple polygon. Then, an algorithm
that computes the irue symmetric axis of the polygon[MontanariSQa, Lee77a,
Preparata77a, Kirkpatrick79a], without regard to éﬁy smooth underlying out-
line, is applied. Unfortunately, the resulting symmetric axis, which consists of
line segrhents and parabolic arcs, differs from the axis of the smooth u‘n.debrlying
outline lying near the poiygon by the inelusion of simplified segments tmaking
contact with each non-reentrant (‘*‘convex’’) polygon vertex. Various threshold-
ing techniques have been devised to delete such superfluous segments[Blum78a,

Montanari69al].

In the other common approach, points on the symmetric axis in the digital
plane'are cbmputed from a digitized outline, either by collapsing the outline into
the figure until “opposite sides” of the outline meet on the symmetric
axis[Rosenfeld66a, Philbrick88a, Montanari68a, DeSouza77a] or by finding cir-
cles that fit just inside the figure[Badler79a]. The latter approach has also been
used in three dimensions[O’Roﬁrke’?Qa]. The distance metric used is the pri-

mary distinction among these algorithms. All compute only a sampling of points

109
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on the symmetric axis, thus losing symmetric axis connectivity information

which must then be reconstructed by heuristic means.

Bookstein[Bookstein79a] takes a much different approach. Beginning with
a polygonal approximation to a smooth underlying outline wherein eéch pelygon
edge is tangent to.the outliné, his algorithm yields a connected graph of line
segm’ent’,s, which he calls the line-skelefon, that approximates the symmetric
aﬁis of the outline. The resulting line-skeleton is not the symmetric axis of the
approximating polygon. It has neither parabolic arcs nor segments contacting
non-reentrant vertices. Instead, each element of the line-skeleton lieé tangent

to the true symmetric axis of the underlying outline.

Both the two-dimensional shape description methodology proposed by Blum
and Nagel[Blum78a] and the three-dimensional generalization set forth in this
dissertation depend heavily on curvature. This is hardly surprising since the
importance of curvature in human shape perception has been widely recognized
for yéars. Yet Bookstein f)resents the only algorithm of which I am aware that
explicitly deals with outline and symmetric axis tangents and that maintains
symmetric axis continuity. In my view, any symmetric axis algorithm must have
‘these characteristics if it is to be useful» for shape description. My work in three

dimensions therefore builds upon Bookstein’s work in two dimensions.

In the next section, I describe Bookstein’s two-dimensional algorithm.
Then, I present a three-dimensicnal generalization of the key concept on which
Bookstein’s work is built and sketch an algorithm that utilizes that generaliza-

tion.

5.2. Bookstein's Line-Skeleton

Bookstein’s algorithm is best described in two par‘ts: (1) a procedure that,
were it possible in cbntinuous 'space to examine all points near another point,

could find an outline’s true.symmetric axis, and (2) a discrete approximation of
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that procedure. The continuous space procedure applicable in two dimensions

is also applicable in three dimensions with but minor modification.

5.2.1. The Medial Invclution and Continuous Extension

L’et C be a smooth outline, let SA(C) be the symmetric axis {surface) of C,
and let 7 be the mapping from C onto SA(C) that maps a point P in C té the
| center of the maximal disc that touches C at P,. See Figure 2.4 (page 24).
Further, let C; be the set of all points P, in C for which 7(P¢) is a point contact
normal point. For P, in Cyp, there is by definition a single point P’ in Cp, called
the medial involute of Pg, such that 7(P¢') = 7(P¢). The function that maps a
point in C; to its medial involute, called the medial involution, is continuous on
C.. Lef. T(P¢) denote the line (plane in three dimensions) tangent to C at P, and
let N(P¢) denote the line normal to C at P,. As a consequence of the definitio.n
of the SA, 7(P,) = 7(P;") must lie at the intersection of N{(P,), N(PC'), and the

bisector of T(Pc) and T(Py'). Further, the bisector is tangent to SA(C) at 7(P¢).

_ Given any P in C,, its medial involute is easily found. At each point P of C,
construct N(P), T(P), and the bisector of T(P) and T(Pc). Only points P for which
the two normals and the bisector coincide are candidates for the medial involute
of Pc. Of all candidates, the medial involute is the point P’ for which the dis-

" tance between P, and the point of coincidence is least. See Figure 5.1.‘

Because the medial involution is continuous, the search for medial involutes
~of points on C; near to Py can be constrained to a neighborhood of Pe'. The new
pair of medial involutes determines a point on SA(C) which, by the continuity of
T,is near to 7{P¢), thus extending SA(C). A sifnplified segment can be con-

structed in two steps:

(1) Pick some point on the outline and search for its medial involute. The

resulting pair of medial involutes determines a poirit on SA(C).
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Figure 5.1.: Medial Involutes

(2) Using the continuity of the medial involution, grow SA(C) until a point P is
reached where the medial involution fails to be continuous. That point is

not in Cg; 7(P) is either a branch point or an end point of SA(C).

Of course, in continous space, where each neighborhood contains an infinite
number of points, this procedure never terminates. That is not a problem in

- discrete space.

5.2.2. Discrete Approximation of the Two-dimensional Medial Involution

To apply the afcrementioned procedure to discreie data, a discrete approx-
» imationk of the continuous medial involution is required. Recall that Bookstein
begins with a polygonal approximation to the underlying outline wherein each
polygon edge lies tangent to the outline at soﬁie point along its length. This pro-
vides a sampling of the outline tangent assumed to be sufficiently fine to cap-
ture the outline bcurvature. Bisectors of adjacent polygon edges, called pseu-
doﬁormals, serve as appro'ximavtions of outline normals. Consider two n'on-v

adjacent edges, g; and e;, and let B be their bisector line, as shown in Figure 5.2.
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Figure 5.2.: Finite Skeletal Line Elements {after [Bookstein79a})

Edges e; and g; each determine a pair of pseudonormals, one through each end-
point, which demarcate a (possibly empty) interval on B. The two edges are
called discfete medial involutes if the two intervals so defined on B overlap. In
that case, the overlap on B is called the finite skeletal line element (fsle) of e,

and e;, denoted Sy (e;, e;).!

In contihuous space coincidence of the normals at each of two outline
points with the bisector of the tangent planes at those points is necessary, but
not sufficient, to enéure that those points are medial involutes. Similarly, each
edge of the approximating polygon may have more than one discrete medial
involute. A true discrete involute (tdi) of a polygon edge eg; is a discrete medial
involute of e; for which the cyorresponding fsle is closesf to g;, distance bet’weén
an fsle and e; being defined as the smaller of the distances from the endpoints
of‘the fsle to the line containing e;. Whenever two -edges are true discrete invo-

lutes, the fsle between them is presumed to approximate a {one-dimensional)

!Figure 5.2 and all subsequent figures in Section 5.2.2 are closely modeled after figures in
[Bookstein78a]. Polygon edges and fsle’s are drawn bold with endpoints shown as black dots. Pseu-
donormals are drawn dashed.
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neighborhood of the true symmetric axis.. Moreover, the two fsle’s defined by
two contiguous edges and a third, non-contiguous edge are connected, as shown

in Figure 5.3.

Bookstein’s algorithm, as he describes ittBookstein?Qa], is a “tree-
structured assembly’ of several operations on edges and fsle’s: finding initial
finite skeletal line elements, extending fsle’s into fsle chain#, and determining
branch and end points. 'The algorithm begins by picking an arbitrary edge of the
approximating polygon and finding one of its tdi’s® and corresponding fsle.

From this “seed” fsle, the algorithm constructs two connected fsle chains, one
left and one right, by “marching” along the polygon edges as illustrated in Fig-
ure 5.4. (In essence, the transition from continuous to di‘screte space replaces
extension of the SA by neighb}orhood search as described in Section 5.2.1, with

simple extension of a chain of fsle’s.) The left and right chains are constructed

Figﬁre 5.3.: Connected Fsle’s (after [Bookstein79a])

2[f the approximating polygon does not adequately capture the curvature of the underlying out-
line, the edge may not have a tdi. In that case, another starting edge must be chosen. [n general, a
smell “'gap” appears in the gymmetric axis approximation whenever an edge has no corresponding
fsle. Bookstein describes an ad hoc procedure for patching such ''gaps.”
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Figure 5.4.: Fsle Chain Extension {(from [Bookstein79a])

independently and identically; consider the extension right. Eventually, the
extension fails in one of twp ways, corresponding either to an end or to a branch
point of the true symmetric axis. In the first failure mode, which Bookstein calls
“*failure by mode A,” the extension terminates when the two edges that deter-
mine the rightmost fsle are separated by but one edge, as shown in Figure 5.5,

Extension failure by mode A corresponds to reaching an end point.

Figure 5.5.: Mode A Chain Termination (after [Bookstein79a])
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In the second failure mode, illustrated in Figure 5.6, the pseudonormals of
an edge cross before intersecting the bisector line that contains what shouid be
the next chain fsle, thus terminating the chain. This failure mode, which Book-
stein calls ‘‘failure by mode B,” occurs either when an edge has no tdi because
the oﬁtliﬁe curvature is sampled inadequately or when the fsle chain is extended
_ﬁast a brahdh point. lignore the former case.: The llatter situation is illustrated
in Figurev 5’7 As chain extension proceeds rightward from Sy (e;, ej), crossing
the true branch point (shown solid with its branches), the algorithm must even-
tually encounter an edge on the ‘"upper” boundary arc, here edge ez, whose tdi,
here edge ek_é, lies between ¢; and g;. Since the pseudonormals of ¢, must
inters’ect beyond the upward branch from the branch peint, they must also
_interseect above the chain being extended right from Sy (eq, ej). But this implies
failure of the extension right by mode B. Therefore, extension past a branch

point implies eventual failure by mode B.

We must still approximately locate the branch point. Upon failure of the

extension after fsle Sy (er_g.2m ) the algoritvhm finds the tdi e, of e;_; by
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Figure 5.6.: Mode B Chain Termination (after [Bookstein79a])
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Figure 5.7.: Extension Failure Past Branch Points (after Bookstein79a])

exhaustive search and then extends left a new chain from Sy ek, er—g). Either
the extension left fails by passing a second branch point or an fsle of the new
chain intersects an fsle of the original chain. In the former case, illustrated
schematically in Figufe 5.8, a new tdi is found and yét another new chain is
extended left by this same procedure. In the latter case, the intersecting fsle’s,
here Sy{eg-g.€+1) and Sy (€g_4 €y +y) are determined by the common edge e,
Furthermore, a third fsle, S; (ep 41 ey .,) intersects at the same point. Two new
chains out of this point of intersection are constructed by recursively invoking
the extension procedure twice, once using Sy (e;_s €¢+,) as the “‘seed” fsle and
once using Sy {em+1, e +1)-

Upon failure of all extension procedures at end points, that is, by mode A,
the algorithm terminates, yielding a connected chain of fsle’'s each lying tangent
to i:he true symmetric axis of the underlying outline. Of course, this description

of Bookstein's algorithm is a simplification; his exposition[Bookstein?Qa] is more
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extension past branch

Figure 5.8.: Extension Left to Branch Point {after [Bookstein79a])

complete.

5.3. Overview of the Three-dimensional Algorithm

In three dimensions, we seek an algorithm that takes a polyhedral approxi-
mation to a smooth cutline and yields a polyhedral surface approximating the
symr'netric‘ surface of the outline. Since the two- and three-dimensional continu-
ous medial involutions are defined identically, our approach is to generalize
Boorkstein’s algorithm. The principal task is to define three-dimensional analogs
of pseudonérmals and finite skeletal line elements, the two compo.nents of the
two—dimensional discrete medial involution. In three dirﬁensions, Awe approxi-
mate ‘outlin'e bnormals by polyhedral regions of space, ca_lled pseudonormal pen-
cils,3 rather than by pseudonormal lines, and syrnmetrié surfacé neighborhoods
‘by planar polygons, called symmelric surfﬁce planar elements (sspe’s), rather
than by line segments. There corresponds to each pair of non-adjacent faces of

the approximating polyhedron an sspe, possibly empty, defined by the overlap of

31 shall use the term pencil in its informal sense-—somethingllong and thin ke a pencil—-rather
than in the sense used in projective geometry.
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two pseudonormal pencils upon the bisector of the faces. Two such faces having
a non-empty symmetric surface planar element are discrete medial involutes,

the discrete analog of continuous medial involutes.

Like Bookstein's two-dimensional algorithm, the three-dimensional algo-
rithm I propose below consists of three basic operations: finding a **seed’’ sspe,
extending sspe’s into polyhe’dral surfaces, and determining branch and end
point curves. Given a polyhedral approximation {o a_smooth outline, the algo-
rithm begins by arbitrarily choosing a face of the approximation and then find-
ing, by exhaustive search, a true discrete involute of the starting face, and
hence, a “seed”. sspe. Then, using this “'seed,” the simplified segment extension
procedure constructs, without further searching, the eﬁtire Sin;lplified segment
containing the ‘‘seed’” sspe. The extension procedure fails at end curves and
past branch curves, much as in the analogous two-dimensional situation. How-
ever, once the branch is detected, a new “'seed’’ sspe is found, again by exhaus-
tive search, and the extension procedure is invoked to construct another simpli-
fied segment. By intersecting the new simplified segment with the original, the
actual location of the branéh curve can be found and other simplified segments

constructe d.

In the balance of this chapter, I describe a the three-dimensional generali-
zation of Bookstein’s algorithm outlined above. In the next section, I define
pseudonormal pencils and symmetric surface planar elements, and‘investigate
their individual properties. Then, in the following section, after showing - that
sspe’s “'fit together’ to form a polyhedral surface, I present a three-dimensicnal
sspe extension procedure. Finally, I outline a procedure for intersecting simpli-

fied segments to find the actual location of branch curves.
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5.4. Three-dimensional Discrete Medial Involutes

This section addresses the principal task of the chapter, defining the com-
ponents of the three-dimensicnal discrete médiél involution: pseudonormal pen-
cils and symmetric surface planar elements. Ifirst introducé the terminology
and the mathematical concepts we shall need and discuss required properties of
the approximating polyhedral surface. Then, I define pseudonormal pencils and
show intuitively in what sense they approximate normals to the underlying out-
line. Using this understanding, I then define strnetric surface planar elements

and investigate their individual properties.

5.4.1. Background

Since different sources use the same terminology for slightly different

notions, the terminology we shall use is defined here.

Definition 5.1: A closed polygonal curve is a finite set of line segments such that

{1) Two distinct closed line segments are either disjoint or intersect at a
common endpoint.

() Each endpoint is an endpoint of exactly two line segments. =

- Definition 5.2: A closed planar polygonal curve is a polygonal curve contained in
a plane. =

Definition 5.3: A closed polygon is the union of a closed planar polygonal curve
and its inside. A wertez is a point at which two non-collinear line segments in
the polygonal curve intersect. An edge is a closed line segment in the polyg-
onal curve with vertices as endpoints, =

Deflmtlon 5.4: A polyhedral su'rface (without boundary) is a finite set of closed
polygons called faces, such that

- (1) Two faces are either disjoint or intersect in an entire edge common to
both faces or in a vertex common to both faces

(2) Each edge of each face is also an edge of exactly one other face.

(3) The set of faces that share a common vertex can be labeled in cyclic
order, Fg, . . . ,Fp-1, Fp =Fg, such.that F; and F;,, share a common edge.
[

Figure 5.9 (a) illustrates several permissible face intersections, while {(b) illus-

trates several illegal intersections.
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Figure 5.9.: Face Intersections

Definition 5.5: A polyhedral surface with boundary is a finite set of closed
polygons, called faces, such that

(1) Two faces are either disjoint or intersect in an entire edge common to
both faces or in a vertex common to both faces.

{2) Each edge of each face is also an edge of at most one other face. An
edge contained in exactly one face is called a boundary edge.

(3) The set of faces that share a common vertex can be labeled
Fo. ... ,Fn_1.F,, such that for O<=i <n,F; and F,,; share a common
edge. If, in addition, Fg=F,, the vertex is called an interior vertez; oth-
erwise it is called a boundary vertez. ® '

The term polyhedral surface, used without qualification, refers to a polyhedral

surface without boundary.

We shall also use some elementary concepts of elementary point set topol-
ogy in Euclidean spaces. Concise, yet readable treatments of these concepts
appear in Sections 1.1 through 1.7 of [Kelly79a] and in Section 2 of

[Requicha78a], as well as in many elementary topology texts.
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Definition 5.6: Let d(p.q) denote the Euclidean distance between two points p
and g. The set N(p.d) = {g | d(p.g) <6} is the neighborhood of p with center
p and radius 6. ® :

Definition 5.7: A point p is an interior point of a set A if there exists a neighbor-

’ hood of p that is contained in 4. A point p is an exlerior point of a set A if
there exists a neighborhood of p that is contained in the complement of 4.
A point p is a boundaery point of a set A if every neighborhood of p intersects
both A and the complement of 4. The interior of 4, denoted int 4, is the set
of all interior points of A. The eztferior of A, denoted ext A4, is the set of all
exterior points of A. The boundary of A, denoted bd 4, is the set of all
boundary peoints of 4. =

Definition 5.8: A set 4 is open if it consists entirely of interior points. A set A4 is
closed if it contains its boundary. = '

Note that a set can be both open and closed. For example, the empty set is both

_open and closed.

Definition 5.9: The closure of a set A, denoted cl 4, is the union of the set and its
~ boundary. =

Definitions 5.6 through 5.9 depend crucially on the universe, the set
characterized by its complement being empty. In other words, the universe
contains all points considered. Different universes can yield different results for
the same notion. For example, if 4 is a closed line segment in the universe R},
bd A consists of the two endpoints. If, however, the same line segment is con-
sidered "1'n the universe Re. bd A4 is 4 itself. Unless specified, the universe will be

clear from context.

Where vit is necessary to work simultaneously ‘with. two universes, one a sub-
set of the other, say U' C U, we denote the interior, boundary, éxterior, énd clo-
sure of a set 4 1n the universe U' by int' A4, bd'A, ext' A, and cl' A respectively.
| Additionally, if with respect to the universe ' 4 is open, it will be said to be
openin U'. If with respect to the universe U' it is closed, it will be said to be
closed in U'. The following result shows how some of these notions are related

for different universes.



123

Lemma 5.1: Let U be the universe and let 7' ¢ UU. Then

(1) A neighborhood in U’ is the intersection of U' with the neighborhood of
U that has the same center and radius.

(B) A subset of U'is openin U'if and only if it is the intersection of U' with
an open subsel of [J.

(3) A subset of U'is closed in U'if and only if it is the intersection of U’
with a closed subset of U.

(4) If Ais asubset of U', then the closure of 4 in U' is the intersection of U'
with the closure of 4 in U.

(Theorem 7, Section 1.3, [Kelly79a]). n
5.4.2. The Approximating Polyhedral Surface

The algorithm is to take as its input a polyhedral surface that approximates
an outline. To be acceptable, the approxirmating polyhedral surface must satisfy
certain conditions which, after appropriate notation is introduced, are discussed

in this section.

Each face, F;, of the polyhedral surface is bounded by n; edges denoted e/,
j=0,...,n;—1. See Figure 5.10. Beginning with an arbitrary edge, the edges

are numbered in counterclockwise order as seen from outside the face. There

cc; ()

are n; vertices vi = e ne; , where CC;(j) = (j+1) mod n; denotes the index

Figure 5.10.: Face and Vertex Notation
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of the edge on F; counterclockwise adjacent to ef. Henceforth, we use sub-
scripts to index faces and superscripts to index edges and vertices. Two distinct
faces are called edge-adjacent if they share a common edge and vertez-adjecent
if they share a common vertex. By convention, a face is neither edge-adjacent
nor vevrtevx-adja‘cent to itself. Note, however, that part (1) of Definition 5.4
implies that edge-adja:cent faces are also vertex-adjacent. Two vertex-adjacent
faces are also called. neighbors. Finally, let V; be the set of indices bf all faces
vertex'adjacent.to F; and let E; be the set of indices of all faces edge adjacent to
F;.

In additién to the conditions imposeci by Definition 5.4, the approximating

polyhedral surface must satisfy the following conditions:
(1) each face must be a convex closed polygon;

(2) at some point within its extent, each face of the approximating polyhedral

surface must lie tangent to the underlying smooth outline; and,

(3) the approximating polyhedral surface must “adequately” capture the cur-

vature of the outline.

Note that condition (1) does not require that the approximating polyhedral sur-
~ face bound a convex polyhedron, but only that each face be convex. I shall ela-

" borate condition (3) below.

Throughout this chapter, we shall also assume that vertex-adjacent faces
are not coplanar. Though this condition is not essential, it results in a substan-

tial simplification of the algorithm description with little loss of generality.

5.4.3. Pseudonormal Planes and Pencils

At some point within its extent, each face of the approximating polyhedral
surface lies tangent to the underlying outline. Unfortunately, discrete samples

of normalsto-the outline cannot be obtained by constructing a perpendicular to
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the face at the point of tangency, for the point of tangency is not known.
Instead, a suitable approximation is required. Therefore, in this section I define
for each face of the approximating polyhedral surface a sel of pseudonormal
planes which, taken together, determine a pseudono'rma,l penctl associated with
that same face. 1 then argue intuitively that pseudonormal planes and pseu-

donormal pencils together play the role of outline normals.

Let F; be a face of the approximating polyhedrél surface and let m; denote
the blané containingb F;. Assign to each face, the inward directed unit normal
vector n;, and denote by 7} the open half-space into which the normal vector
points, by m; the opposite open half-space, and by mf* and n?~ the correspond-
ing closed half-spaces. We shall consider a plane to be defined not only by its
point set but also by the direction of its unit normal. For any point in space p,

‘the signed distance from p to m;, denoted d, (p), is defined as v

d{p,m) ifp enl*
_d(;pnﬂ'i) lfp Eﬂi—,
where d{p,n;) denotes the shortest distance between the point p and the plane

dn (p) =

w5
Each pair of faces F; and F; determines a set g;; = {p | d,,t(p)': d,,j(p)g,

' called‘ the bisector set. For all but parallel faces, g;; is one of the two planes
that bisect the angle formed by the intersection of m; and n;. When m; and 7y
are parallel and distinct, gy is either the plane midway between them (n; = —-n,-),
or isvempty (n; =n;). When m; = 7i;, oy is all of space.

Definition 5.10: Let F; and Fy, be vertex-adjacent faces. The pseudonsrmal
plane Ny, is 0;,, the bisector of m; and 71y,. @

See Figure 5.11. Note that the pseudonormal plane Ny, determined by faces F;
and F,, may intersect the interiors of either or both of the faces, as illustrated

in Figure 5.12 (the vertex shared by F; and Fy, is not in the plane of the paper).
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o+ | ,0-
Nim Nim

Figure 5.11.: Pseudonormal Planes (side view)

Figure 5.12.: Faces ““Cut” by a Pseudonormal Plane (side view)

Assume for now that F; is contained in one of the two closed half-spaces'
bounded by N;,,. Dencte by N3 the closed half-space bounded by N,,, contain-

ing F;, by N2, the other closed half-space {which need not contain Fm),‘ and by
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Ni. and N, the corresponding open half-spaces. N3 and N3, are called respec-
tively tyh’e closed positive and closed negatlive pseudonormal half-spaces of Ny, .
Similarly, N, and N, are called respectively the open positive and open negci—
tive pseudonormal half-spaces of Ny,,. We shall see below that the case ﬁrhere Fy
is not contained in one of the two closed half-spaces bobunded by Nm is

irrelevant.

Definition 5.11: Let F; be a face. The closed pseudonormal pencil of F;,
P#* = M N§, is the intersection of the closed positive pseudonormal half-
ke,
spaces of the pseudonormal planes determined by F; and its neighbors. The
open pseudonormal pencil of F;, P} = M N, is the intersection of the
corresponding open positive pseudonormal half-spaces. o

See Figure 5.13.

A normal pencil approximates a true outline normal in the following sense.
Consider a neighborhood of radius § about a point p on the underlying outline.
There is a line normal to the outline through each point on the neighborhood

boundary. Collectively, those lines sweep out a surface in space that separates

Figure 5.13.: Example of a Pseudonormal Pencil
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space into regions, one of which contains the neighborhood of p and is called the
normal peﬁcil at p of pencil radius §. The surféce swept cut by the normal is
called the normal pencil boundafy. See Figure 5.14. As the pencil radius is
made to approach zero, the neighborhood becomes more closely approximated
by the tangent plane td the outline at p, while at the same time the normal pen-

cil becomes more nearly cylindrical with the normal through p as its axis.

Pseudonormal pencils, in turn, approximate normal pencils. Each face of
the approximating polyhedral surface defines the tangent plane to the outline at
some point within the face. As the approximating polyhedral surface becomes
increasingly accurate, that is, as its faces become smaller and more numerous,
each face becomes a better approximation of a neighborhood about a point on
the underlying outline. Moreover, the points of tangency of neighboring faces
move closer together, implying thét the pse‘udonorvmal planes become increas-
ingly accurate approximations to normals on the neighborhood boundéry, and
hence, that pseudonormal pencils approach normal pencils. We shall ﬁherefore

use pseudonormal pencils to approximate outline normals.

Figure 5.14.: Example of a Normal Pencil
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5.4.4. Symmetric Surface Planar Elements

Recall from Section 5.2.1 that two points on the outliné, pandyg, afe poten-
tial medial involutes only if the normals at those points intersect on the bisector
of the tangent planes at p and g and, furthermore, that if p and g are indeed
medial involutes, the point of intersection is on the symmetric surface. Since
normals to a smooth surface (such as the outline) change continuously, for
small enough pencil radii the intersection of normal pencils at p and g with the
bisector of the ﬁangent planes at p and g approximates a neighborhood of the
symmetric'surface. 'Similarly, in the discrete case, two faces are discrete
medial involute candidates if the closed pseudonormal pencils at those faces
intersect on the bisector plane betWeen the two facés. Temporarily ignoring
certain details, the neighborhood of the bisector plane so defined is called the
‘symmetric surface planar element candidate (sspec) defined by the two faces.
The approximate symmetric surface consists entirely of sspec’s, each of which
approximate a symmetric surface neighborhood; not all sspec’s are part of the
appi‘oximate symmetric surface. An sspec contained in the approximate sym-
metric surface is called a symmetric surfoce planar element (sspe). Unlike
Bookstein's fsle terminology, the terminology used here distinguiéhes between
sspec’s that are potentially part of the approximatebsym‘ﬁletric surface and
sspe'é that are part of the approximate symmetric surface. Pairs of faces for
~ which tfxe corresponding sspec is not empty are called discrefe medial involute
candidales, and those pairs of faces for which the corresponding sspec is also an

sspe are called discrefe medial involutes.

In the next section, I discuss properties of continuous medial involutes, nor-
mal pencils, and symmetric surface neighborhoods that discrete medial invo-
lutes, pseudon‘ormal pencils, and sspe’s must also possess if they are to be rea-

. sonable approximations of their continuocus counterparts. 4 Then, 1 givé a formal

definition of sspec’s and prove that the conditions established therein ensure
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the necessary properties.

5.4.4.1. Definition

Let.F‘T and F; be distinct faces of the approximating polyhedral surface.
lInformaIly, the sspec determined by F; and Fy, denocted S;; = Sy, is the intersec-
tion of the bisector plane ¢;; with the closed pseudonormal pencils P{* anid PPt
Unfortunately, such a simple definition is not adequate if we are to avoid running
afoul of artifacts caused by the noninfinitesimal extent of pseudonormal penecils.
If the approximating polyhedral surface does not adequately sample the curva-
turé of the underlying smooth outline, pseudonormal pencils and sspe’s need not
- possess certain_ properties of the normal penc‘ils and symmetric surface neigh-
borhoods they approximate. Iﬁ the seven items below, | discuss these properties
by cdmparison to the corresponding continuous behavior. Then I set forth for-
mally conditions sufficient l;.o ensure that non-empty sspec’s possess the
requisite properties.

(1) By definition, a normal pencil contains its defining neighborhood. Simi-
| larly, we require (part (1) of Definition 5.14 below) that each closed pseu-.
donormal pencil contain the face that defines it. Note that a face having
an ill-defined pseudonormal half-space (page 127), has no sspec associ-

ated with it that satisfies this condition.

(2, 3) Let p and g be two continuous medial involutes. By definition, p and g
also lie on a maximal sphere centered on a symmetric surface point and
are strictly separated by the tangent plane to the symmetric surface at

the sphere center. Moreover, the sphere is tangent to the outline at p

‘and at g. Since no two points on a sphere have the same normal,* the

normals at p and g are distinct. Therefore, since the normals of a

4Antipodal points on the sphere have parallel normals but they are directed in opposite direc-
tions.
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smooth surfacé change continuously, there exist ‘two neighborhoods on
the outline, one about p and one about g, such that the normal at any
~point in the neighborhocd of p is different from the normal at g, and vice
versa. We shall require analogous behavior of discrete medial involutes:
o;; must strictly separate F; and F;; the normals of thé neighbors Qf F;
are distinet from the nprmal of F;, and the normals of the neighbors of F;
are distinct from the normal of F;. (Parts (2) and (3) of Definition 5.14

below.)

(4) For a normal pencil at p (likewise at q) to demarcate a neighborhood on
the symmetric surface, the pencil radius must be sufficiently small that
the pencil intersects the bisector of the tangent planesatp and g in a
closed curve rather than in open curve.® Similarly, we shall require that
for any pair of discrete medial involutes F; and F;, the pseudonormal pen-
cils defined by F; and F; must each intersect the bisector plane.aij ina
closed polygonal curve. To develop conditions sufficient to ensure such

behavior, we consider an example:

Fa
Fi Fmn Nim
/Fb.
N: N N
b
L

The left figure shows two edge-adjacent faces F; and F,,, viewed from

5This is analogous to the intersection of & plane and a cone. Depending upon the generating an-
gle of the cone and the orientation of the plane with respect to the cone axis, the curve of intersec-
tion is either an ellipse {closed), a parabola (open), or & hyperbola (open).
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oqtside of the approximating polyhedral surface. Faces Fy and Fy are the
two4 faces that are both edge-adjacent to F; and vertex-adjacent to Fp,.
‘The right figure shows the three pseudonormal planes Ny, , N;;, and N,;b
viewed from the F,, side of N;,,,. Pseudonormal planes Ny, and N, inter-
;ect in a line; likewise Ny, and N;; also intersect in a line. We shall préve
in the following section that if all such lines (i.e., for all faces F,, edge-
adjacent to F;) are not parallel to the bisector plane 0y, then the pseu-
donormal pencil at F; intersects oy; 1n a closed polygonal curve. (Part {4)

- of Definition 5.14 below.)

(5.8) A pks'eudonormal pencil approximation of a normal pencil muét be local in
‘two senses. First, the pseudonormal planes that provide estimates of nor-
- mals in one portion of the normal pencil’s defining neighborhood should
have no effect on estimates in other portions of the neighborhood.
- Second, those estimates shbuld be ordered about the pseudonormal pen-
cil of a face in the same way that neighboring fdces are ordered about the

face. Let us again consider an example:

The left figure shows a face F; and its neighbors viewed from outside the
approximating polyhedral surface. Consider the intersection of the bisec-

tor plane o;; with all of the closed positive pseudonormal half—épaces
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defined by faces edge-adjacent to F;, as shown on the right. Now consider
~ the intersection of this polygon with the positive pseudonormal half-space
defined by the non-edge-adjacent neighbors of F;, in this example Fy, ¢,
and Fg;. We requife (part (5) of Definition 5.14 below) that if one or more
Ofb the pseudovnormal planes N;,, Ny, or Nz intersects the polygon they do
so only in the two edges defined by the pseudonormal planes N;; and N,.
This type of intersection is shown on the left below; a prohibited intersec-

tion is shown on the right:

NipNdj;

)

Nib 103
/“L \ LN\

We also require (part {8) of Definition 5.14) that as the edges of the result-
ing polygon are traversed in some direction, say clockwise, the neighbors
of F; that determine the pseudonormeals containing the edges. are
traversed in clockwise oi‘der about F;, with the possible exception that
not all neighbors ‘need be traversed. This type vof ordering .is shown on the

left below; a prohibited ordering is shown 6n the right:
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(7)  Thus far, we have considered only properties required independently of
each of the two pseudonormal pencils that determine an sspec; we now
deal with a property of their intersection. Since an sspecis to approxi-
mate a neighborhood of the simplified segment, it must be two-
dimensional, neither a point nor a curve. To avoid such degeneracies,
ssﬁec's are defined in -terms of the intersection of open, rather than of
closed, pseudonormal pencils.® Taking intersections of open penciis
(which are open sets) ensures that such degeneracies cannot occur
because, as we shall sh'ow in the next section, the intersection of two open
pénéils with the bisector plane is an open set, Szfj, in the plane g4. Since
open sets in a plane (other than the empty set) are, by definition, two-
dimensional, S;; is two-dimensional. The sspec S;; is defined as the clo-
sure in the plane g;; of S,';J-. The closure operator simply "wraps'’ a bound-

_ary around. S{j {o) thai‘; the sspe is a closed polygon rather than just the

interior of a closed poljrgon.

5This is more an issue of mathematical formulation than of practical significance, for in numeri-
cal computing of this sort the notion of a closed set is specious: numerical error precludes any test
for strict equality. . .
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The conditions introduced in the preceding informal discussion are set

forth formally in the next three definitions.

- Definition 5.12: Let F; be a face of the approximating polyhedral surface. A par-
tial pseudonormal pencil at F; is the intersection of two or more of the
closed positive pseudonormal half-spaces of the pseudeonormal planes deter-
mined by F; and its neighbors. = :

Every p‘artial pseudonormal pencil at F; contains the pseudonormal pencil at F;.

DPefinition 5.13: Consider a plane that intersects the boundary of a partial pseu-
donormal pencil at face F; in a polygonal curve. Each edge of the polygonal
curve is contained in the intersection with a pseudonormal plane defined by
F; and one of its neighbors; the edge is said to be associated with the neigh-
bor. The pseudonormal pencil at F; is well-ordered with respect to a plane if,
for every partial pseudonormal pencil that intersects the plane in a polygo-

nal curve, as the edges of the polygonal curve are traversed clockwise,” the
associated neighbors of F; are traversed in clockwise order about ¥y, with
the possible exception that some neighbors may not be traversed. ®

Definition 5.14: Let F; and F; be faces of the approximating polyhedral surface,
and let : : .

S‘i:g = SJ"L = aij m Pi+ m P]:‘.- (5.1)

It

 (la) F; c PP
(1b) F; c P
() the bisector plane Oyj separates® F; and Fy
(3a) for k€V;, n; # ny;
(3b) for k €V, n; # ny;
(4a) for meE; and k €(E; N Vi), 05 N Nim N Nie # ¢
(4b) for m€E; and k€(E; N\ V), 045 M Njm 1y Ny # ¢
(5a) for meV;, oy M Ny Y Ny NG € ) N§S

eV, kev,
. ke, kEV,,
; o+ .
(5b) for mEVj, 05 M N’jm N N Nj'k c N NJQ+’
kev, keVy
kev,, kEV,,

(6a) PP* is well-ordered with respect to oy; and
(6b) P/* is well-ordered with respect to oy;;
then the sspec, Sy, is the closure of Séj in gy, cl’ S,E_,—; otherwise S;; is empty

().

"The clockwise direction is determined by the usual '"keep your left hand on the inside wall"
rule.

8Two sets are separated by a plane if they are contained in opposite open hali-spaces of the
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I conjecture that any pseudonormal pencil satisfying conditions (1), {(4), and (5),

is also well-ordered with respect to gy;.

Definition 5.15: Let F; and F; be faces of the approximating polyhedral surface.
If S;; is not empty, then F; and F; are discrele medial involute candidates.
We also say that F; is a discrete medial involute candidate of F; and vice
versa. m

Definition 5.16: Let F; be a face of the approximating polyhedral surface. A frue
discrete involute (tdi) of F,, if one exists, is a discrete medial involute candi-
date of F;, F;, for which the minimum distance between a point of S;; and the
plane m; is smallest. a

We say that the approximating polyhedral surface *‘adequately’” approxi-
‘mates the underlying smooth outline if every face has at least one discrete

medial involute candidate.

Definition 5.17: An approximating polyhedral surface is admissible if every face
“has at least one discrete medial involute candidate. =

Henceforth, we shall assume that the approximating polyhedral surface is

admissible.

5.4.4.2. Properties

In this section,. I prove formally that the conditioris stated in Definition 5.14

are sufficient to ensure that a non-empty sspec is a closed convex polygon:

Theorem 5.2: Let F; and F; be faces of the approximating polyhedral surface.
Then, if Sy is not empty, Sy; is a convex closed planar polygon. =

Essentially, Theorem 5.2 ensures that any sspec that is not empty, and is thus
eligible to approximate a symmetric surface neighborhood, is a polygon rather

than an unbounded region.

‘The proof is in three parts. First, I show that a non-empty sspec is homoge-
neously two-dimensional, neither a line nor a point, and that it is convex. I then
show that the sspec is the intersection of two closed pseudonormal pencils with

- the bisector plane, and, finally, that the sspéc is bounded and therefore a closed

plane.
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polygon.
The intuitive notion of homogeneity is captured by the set-theoretic con-

cept of a regular set[Requicha77a, Requicha78a, Kuratowski76a].
Definition 5.18: A set A4 is regular if A = clintA. =

Informaily, the operator ‘‘clint,” sometimes called regularization, discards por-
tions of the set having no interior and then ‘‘wraps’ a boundary around the

remainder of the set.

Lemma 5.3: If 4 is a convex set, then int4 = 1nt clA. (Theorem 12, Sectlon
3.1,[Kelly79a]). =

Lemma 5.4: If 4 is a convex set with a non-empty interior, then cl4 = clint A.
-~ {Theorem 11, Section 3.1, [Kelly79a]). =

Lemma 5.5: Sy; is regular in the plane oy.

Proof: If S;; = ¢, the result is trivial. By Definition 5.14, S;; is the closure in the
bisector plane oy of S;;. We must therefore show that in the plane oy,
cl'int'el'S;; = el S,_J, where primes on the closure and interior operators, cl’
and int', denote closure and interior in ¢y. Since planes and half-spaces are
convex sets and the intersection of any number of convex sets is convex
(Theorem 7, Section 3.1, [Kelly?ga]) by (5.1) S;; is convex. Then, by Lemma
5.3, cl'int' cl’ S = cl’ int’' S The result now follows immediately from Lemma

"5.4. n

We also have

Lemma 5.6: The closure of a convex set is convex. {Theorem 12, Section 2.8,
[Kelly79a]). =

Lemma 5.7: S is convex.

Proof: S was shown to be convex in the proof of Lemma 5.5. The result follows
from Lemma 5.8. u .

Together, Lenimas 5.5 and 5.7 show that a non-empty sspec is a convezx,
homogeneously two-di_rnension.al region of the bisector plane 0. The second
part of the proof of Theorem 5.2 entails showing that a non-empty sspec is the
intersection of two closed pseudonormal pencils with the bisector plane, and
hence, is a closéd polygonal region of the bisector blane. By definition, a non-

empty sspec Sy; is the closure in the bisector plane gy of the intersection witbh
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dij of the open pseudonormal pencils at faces F; and F;. Essentially, what is
required is to show that in the particular case when the sspec is non-empty, the

closure operator distributes over the intersection operator.

Lemma 5.8: Let F; and F,, be vertex-adjacent faces and let FJ be any other face.

' Ifn; # n;, D, # 0y, 0y # $. and o,,; # ¢, then oy M Ny, is a line. Further-
more, 0'.,,_., ﬂ Um.] ﬂ N = Um; ﬂ N'Lm = Uz) ﬂ sz '

Proof: We first show that o;; M Ny, is a line. Using the definition of a bisector
plane, it is not difficult to see that n; ~n,, and n; ~n; are vectors normal to
Nim and oy respectively. Hence, oy M Ny, = ¢ only if n; —n,, = ¢ (n; —n;),
for some non-zero constant ¢. By solving for n; and taking its magnitude, it
is easy to see that o M Ny, is empty only if n; =n,,,. If n; =n,, 0,; is
emptly unless i =M. But by hypothesis, op,; is not empty. Therefore,
7j = My, . But since vertex-adjacent faces are not coplanar, n; # 7, . Thus, oy
and N;,, are not parallel and must intersect in a line.

By corresponding arguments, g,,; and Ny, also intersect in a line. It
remains to be shown that the two lines are identical. Let p € 05 M Ny By
definition, d, (p) = dn, (p) and d, (p) = d,_(p), which implies that p € oy;.

Thus 6 M Ny, T 0 ﬁ Nim - An 1dent1ca1 argument yields the converse and
thus equality. =

Lemma 5.9: For any two faces F; and Fy, if S;; is not empty, then S;; =
0.1,] n P0+ m P0+

Proof: Rearranging (5.1) and substituting from Definition 5.11,

Si= Nloy NNE N N (o N NE).

kev, kevy

By Lemma 5.8, Ny intersects oy; in the line ai; () Ng, implying that
i N NZ* is a closed half-plane. Therefore the interior of o N N2t in O4js
1nt' (o N N§*), is the open half-plane g;; M Ni. Thus,

Sy = m(mt'(cn., ANED N N ot oy N NED).

Applying the distributive property of the interior operator over intersection
{Property 2.8.9, [Requicha78a]), we have

Su—mt(m(ou AN Y N oy NNED.
EVt k‘Vj

Let A = N (o5 NNED) N N (o N NY). Since Sy; is not empty (else
kev, Lev,
Sy would be ernpt_/) A is not emp’éy Moreover, since 4 is the intersection of
planes and half-spaces, which are convex sets, and the intersection of any
number of convex sets is convex {Theorem 7, Section 3.1, [Kelly79a]), by
Lemma 5.4,
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mt(r\(au NN N ol (cn, N NED)

—
. kev,

cl'( N (oy NNEI N m(oumN ).

kEi j

Since the intersection of any number of closed sets is closed (Theorem 4,

Section 1.3, [Kelly79a]), N (o N NG N ﬁ (o3 M NJ') is closed in R?, and
A

hence, by part (3) of Lemma 5.1, it is also closed in 0;;. Therefore, since the

closure of a closed set is the set itself (Property 2.5.6, [Requicha78a]),

cel'Sy = N oy NNE) N m(au N NE.

Icet

The result then follows by substituting from Definition 5.11 and rearranomg
terms. ®

So faf, we have shown that a non-emply sspe is a closed polygonal region of
the bisector plane. We complete the proof of Theorem 5.2 by showing that the

region is bounded.

Theorem 5.2: Let F; and F; be faces of the approximating polyhedral surface.
Then, if Sy is not empty, S;; is a convex closed planar polygon.

Proof: By Lemmas 5.8 and 5.9, S;; is the intersection of a finite set of closed
half-planes of 05 - Moreover, by Lemma 5.5, S;; is homogeneously two-
dimensional. It is therefore a polygon if it is also bounded (Theorem 3.1.3,
[Grunbaum67a]). Let A =0y (N () N§'. We show that S;; is bounded by

keE,;
showing that 4, which contains Sy, is bounded. Rewrite 4 as N (o5 N N&
. kEEt
and apply Lemma 5.8 to see that A is the intersection of a finite set of closed-
half-planes of ¢4, each bounded by the line of mtersectlon between oy; and
the pseudonormal plane Ny, through the edge ef of F;. For £=0, ... m 1,
let N} denote the pseudonormal plane Ny, k € Ez, that contains edge e,‘ of
face F We need only show that for all edges ef of Fy, the line Oy (M N} inter-

sects the line g; N NCC ()

But, this is equivalent to showing that o;; N N M Ny
is guaranteed by part (4) of Definition 5.14. =

, for then A is bounded by a c)losed polygon in gy;.
ce, (¢

is not empty, which
In this section we have examined properties of individual sspec’s, showing

principally that an sspec is a convex, closed, planar polygon. Along the way we

have also derived several results that will be usgful below as we discuss proper-

ties of ssp"evc's defined by neighboring faces.
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5.5. A Simplified Segment Extension Procedure

In Section 5.4, 1 defined and investigated some of the properties of pSeu;
donormal pencils and symmetric surface planar element candidates, the princi-
pal components of a three-dimensional generalization of Bookstein's algorithm.
Here, I use those components to construct a three-dimensional generalization of
' Bookstéin’s fsle chain extension procedure. 1f{irst give a brief overview of the
three-dimensional extension procedure. Then, after proving that sspec’s "fit
together” into polyhedral surfaces, 1 give a detailed presentation of the exten-
sion procedure. In Section 5.6, I show how this extension procedure can be
integrated into a complete algorithm for finding an approximate symmetric sur-

face.

5.5.1. Overview

As described briefly iri Section 5.3, the simplified seg'ment extension pro-
cedure is to begin with a single "'seed’’ sspe about which it grows an entire sim-
plified segment. Not surprisingly, we face the same problem generalizing
Bookstein’s fsle éhain extens_ion procedure that we encountered in Chapter 3
aﬁd again in Chapter 4, namely, since a simplified segment of a three-
dimensional outline is a surface, rather than a durVe, ﬁhere is no one-
dimensional axis along which we can work. Therefore, it make:s no sense to
speak of extending a ch:ain left or right. Instead:, the extension procedure must
extend a ''seed” sspe in all directions, either depth-first or breadth-first, yield-
ing a polyhedral surface. I present a breadth-first procedure, since I believe

that it admits a more efficient implementation than the corresponding depth-

first procedure. The procedure is quite simple:

(1) Initially, the polyhedral surface being constructed contains the ““seed” sspe

alone.



141

() About each boundary vertex of the polyhedral surface constructed thus far,
attach one or more new sspe’s in cyclic order, obtaining a new polyhedral

surface of sspe’s, as illustrated:

(3) Repeat step {2) until no new sspe’s can be added due to extension failure

(discussed below).

Of course, this procedure is applicable only if sspec’s fit together appropriately.
Therefore, before discussing this procedure in detail, we pause to prove that

sspec’s do indeed *‘fit together.”

5.5.2. Sspec Intersections

Thus far, we have shown that an individual sspec is .avconvex,’ closed, planar
polygvon defined by the intersection of two pseudonormai pencils with the .bisec-
tor plane between two faces. In this section, as a prelude to describing the
extension procedure in detail‘, we investigate some intersection properties of
two hon+empty sspec’s defined by a pair of vertex-adjacent faces and a third,
“opposite’’ face. For brevity, we shall call two such sspec’s neighboring sspec’s.
The principal result of the section ensures that we can construct a polyhedral
surféce »from sépe.c’s by yielding a solution to the following problem: Given an

sspec and an edge of that sspec, is it possible to find without searching a
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neighboring sspec sharing that same edge? If so, how?

Let us try to achieve an intuitive understanding of the solution. By defirﬁ-
‘tion, an sspec, say Sy, is the intersection with oy, the bisector plane between
faces F; and Fy, of the pseudonormal pencil at face F; and the pseddonormal
pencil ét face F;. Each edge of the sspec Sy; muét therefore be contained in the
line of intersection between the bisector plane ¢;; and one of the pseudonormal
planes at either F; or F;. For concreteness, pick some edge of S;; and assume
that it is contained in the line of intersection between ¢;; and the pseudonormal
plane N;,, determined by F; and one of its néighbors, F,,. Call the line of inter-
section Lijm - |

Clearly, if some other sspecis to share.that edge with S;;, the bisector
plane containing the other sspec must contain Ly;,. We have seen previously
(Lemma 5.8) that the bisector plane Om; between Fy, and F; satisfies this
requirement, as illustrated in Figure 5.15. Therefore, we shall argue that the
sspec Sy,; defined by faces Fy,, and F; shares the edge of S;; contained in Ny, .

This result, which we shall prove below, is stated formally in Theorem 5.10:

Theorem 5.10: Let F; and F,,, be vertex-adjacent faces and let F; be a face such
that S;; and S,;; are non-empty sspec’s. If S M Ny, is an edge of Sy, then
Sy and Sy,; share the common edge Sy M Spy = Sy M Num = Sppy M Ny - ®

Thus, given an sspec and any edge of that sspec, we can find a neighboring sspec
that shares the edge simply by knowing which pseudonormal plane contains the
edge. This result is the basis for the extension procedure described in detail in

the next section.

I now prove Theorem 5.10. I first show that if two neighboring sspec’s inter-
sect, they do so in the pseudonormal plane between the vpaif of neighboring

faces that define the sspec’s.

Lemma 5.11: If F; and Fy, are vertex-adjacent faces and F; is another face, then
S"j M SmJ is a subset of N’im and S‘J M Smj = (S"'J M Nm) M (SmJ M Nm)
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Figure 5.15.: InterSéction of Bisector and Pseudonormal Planes

Proof: If either S;; or S,,; is empty the result is trivial. Assume both are non-
empty. Using Lemnma 5.9,

Sij M Smj = 0y N Omj N PP N PR N PP*.

Arguments identical to those used in the proof of Lemma 5.8 show that oy;
and o,,; intersect in aline. Let p be a pointin g;; M 0y,;. Then, by defini-
tion, d, (p) = dﬁj(p) and d, (p) = dﬂj(p). Therefore, d, (p) = d,_(p), which
implies that oy (M 0y is a subset of g, = Ny,,. Hence, Si; M S,,; is a subset
of Nym. Since Sy M Spy; is a subset of Ny, Sy N Sy = (Sy N Nim) N

(Smj M Nim). &
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Recalling that S;; is a polygon in ¢;; and that S,,; is a polygon in 045, and
referring to Figure 5.15, we see that Lemma 5.11 states that if S;; and S,,; inter--

sect, they do so in the line Lyy,, where Ly, = 0 M Ny = 0pmj N Nipp -

Using the first of the pseudonormal pencil localness properties mentioned
above, I now state and prove a condition sufficient to ensure that Sy and Sy
have identical intersections with L;;,. The pseudonormal pencils at Fz and F,
conskist of the intersectiions of the positive pseudonormal half-spaces determined
by the neighbors of F; and F,,, respectively. The first pseudonormal pencil
localness property {part (5) of Definition 5.14) implies that the intersection of
Lijm with the pseudondrmal pencil at F; is completely determined by the postive
pseudonormal half-spaces associated with F; and faces vertex-adjacent to both
F; and Fp,. Similarly, the intersection of Ly, with the pseudonormal pencil at
Fp, is completely determined by the positive pseudonormal half-spaces associ-
ated with F,,, and faces vertex-adjacent to both F; and F,,. Thus, to determine
the intersections of S;; and S,,; with Ly, , we need only consider respectively the
intersections of Ly, with the positive pseudonormal hali-spaces determined by
F; and faces that are vertei-adjacent to both F; and ¥y, and of Ly, with the posi-
tive psuédonormal half-spaces determined by F,, and faces that are vertex-
adjacent to both F; and Fm. In the following lemma, I show that S;; and S,,; have
identical 'interéections with Ly, if for every face F, vertex-adjacent to both F;
and F,,, the positive pseudonormal half-space of F; and F;, intersects the same
half—lihe of L, as does the positive pseudonormal half-space of F,,, and F,. See

Figure 5.186.

Lemma 5.12: Let F; and F,, be vertex-adjacent faces and let I'; be a face such
that S;; and S,,; are non-empty sspec’s. If for all faces F, vertex-adjacent to
both F.é and Fm, L’ijm N&+ = Lz]m ﬂ NS.J;, then S‘Lj m Nm = Smj m Nim-

Proof: Using Lemma 5.9, A
Sii N Nim =045 N Nim N P Ny ng+-
By part (5a) of Definition 5.14, 05 M Ny N N N3F € N§'. Therefore,

kev, keV,
keV,, LEV,,
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Figure 5.16.: Pseudonormal Half-space Intersections with L;;,

since PJ* = ) N§F,
kev,

Sii N Nim =05 N Numw N N NE) N PP
kEV‘
eV,

Similarly,

Smi N Nim = 0mj M Nim N ( Q, N3%) N PP,
ke .
Icev;'
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Rearranging terms,

Sy N Nim = n (o4 M Ngmw N NEY) N PP, and
€
‘ ke,

Smj N Ny, = ich (Umj N Nim N Nr?z};) M PJg+
€
kev!

N (o5 N New N NSR) N PJ*,
keV,
kev,,

where the last step follows from Lemma 5.8. Comparing these expressions
for Sy M Nim and Sp; M Ny and substituting Ly, = 04 M Ny, establishes
the lemma. =

To prove that S;; and S,,; share a common edge, we now need only sh‘ow
that for every face F; vertex-adjacent to both F; and Fy,, the positive pseudonor-
mal half-space of F; and F, intersects the same half-line of L;;, as does the posi-
tive pseudonormal half-space of F,,, and F;. I first establish that the pseudnor-
mal planes N and N,,; indeed intersect the pseudnormal plane N;, in the same
line, as Figure 5.16 illustrates. Then, I shall use the second localness property of
pseudonormal pencils (part (8) of Definition 5.14) to complete the proof that S;

and S,,; share a common edge.
mj g

Lemma 5.13: If face F;. is vertex-adjacent to both F; and F,,, then the pseu-
donormal planes Ny, , Ny, and Ny, intersect in a common line, that is,

Nim N Nie = Nim N Ny -

Proof: Since F,;, F;, and F, all share a common vertex, both Ny, and Ny contain
that vertex. Hence, Ny, 1) Ny is not empty. Let p be a point in Ny, M Ni.
Then, by Definition 5.10, d, (p) =d, (p) and d, (p) =d,_(p). Therefore,

d, (p)=d, (p)as well. Thusp € Ny, implying that Nyp M Ny € Ny 1 N
A similar argument yields N, M N, € N M) Ng. which establishes the
result. a

I complete the proof that S;; and S shai‘e a common edge, by using the
seéond localness property of pseudonormal pencils {part (8) of Definition 5.14)
to show that for any face F, vertex-adjacent to both F; and F,, not only do Ng
and Ny intersect Ly, at the same point, as shown in Figure 5.18, but thveir posi-

tive half-spaces intersect the same half-line of Lj,.
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Theorem 5.10: Let F; and F,, be vertex-adjacent faces and let Fj be a face such
that Sy; and S,,; are non-empty sspec’s. If S;; M Ny, is an edge of Sy;, then
S;j and S,; share the common edge Sy M Sp; = Sy M Nim = Sppj N Nim

Proof: To prove the theorem, we establish the hypothesis of Lemma 5.12. Let F,
be any face vertex-adjacent to both F; and F,,. The closed half-spaces N3
and N2t each define a closed half-line of Lijm - It is sufficient to show that
the two half-lines are identical. By Lemma 5.13, we know thatl the two half-
lines N} N Lijm and N3& N Lijm have identical endpoints. The situation in
the g and oy,; planes as viewed from directly above Ly, is shown in Figure
5.17 (cf. Figure 5.18). The small arrows near pseudonormal plane labels indi-
cate the positive pseudonormal half-spaces of the corresponding pseudonor-
mal planes.

It remains to be determined which half-space of N,,;, is the positive
half-space. We do so by using the well-ordered property {Definitions 5.12 and
5.13) of the pseudonormal pencils at F; and F,,. Consider the partial pseu-
donormal pencil at F; defined by the intersection of the positive half-spaces
of Ny, -and Ny,. As we traverse clockwise the intersection of the partial

Clmj
Nmk
?
Nmi T
Nim { Liim
Nik
Yi

Figure 5.17.: Diagram for Proof of Theorem 5.10




143

pseudonormal boundary with g;;, the pseudonormal planes Nimn and Ny are
encountered in order. Thus, the associated neighbors of F; must occur in
the order F,, followed by F,. Therefore, since the pseudonormal pencil at F;
must be well-ordered with respect to oy; (part (6) of Definition 5.14), faces
Fi. Fp.. and F must be ordered about their common vertex as shown:

Now consider the partial psuedonormal pencil at F,, defined by the intersec-
tion of the positive half-spaces of N,,; and N,,,;,. Since the pseudonormal pen-
~ cil at Fy, must be well-ordered with respect to g,;, to be consistent with the

ordering of F;, Fy,, and Fi shown above, as we traverse clockwise the inter-
section of the partial pseudonormal boundary with o,,y, the associated neigh-
bors of Fy, must occur in the order F, followed by F;. Therefore, the positive
half-space of N,,, must lie to the left of Nmk in Figure 5.17%, thus confirming
that the half-lines of Ly, determmed by N¥' and N3} are identical. Analo-
gous arguments apply when N&' lies to the rlght of N,k

Thus, the hypothesis of Lemma 5.12 is satisfied, implying that
S,‘_j M Ngn = Smj M Nin. That S.,;j M Sm,j = S‘l'.j N Nim = Smj M Nyn follows
directly from this result and Lemma 5.11; =

Thus, given an sspec and an edge of that sspec, Theorem 5.10 tells us how to
find without éearch'mg an edge-adjacent neighboring sspec. Since Si M Nim =

Smij N Nm., it follows that the shared edge Ais an entire edge of each.

- Theorem 5. 10 ensures that if we carry out the sspec extension procedure

sketched in Section 5.5.1, the result will be a polyhedral surface without holes.

'5.0.3. Abstract Data Types

To construct a simplified.segment approximation, the extension algorithm
'sketched in Section 5.5.1 manipulates both the topology and the geometry of
collections of con\}ex planar polygohs (sspec’s). Maﬁy different data structures
that maintain sufficient information to perform the exte.nsion algorithm can be
devised. They differ primarily in the amount and type of redundant information

maintained about the relationships among the polygons. Usually, data
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structures that maintain the most redundant information require the least com-
pufation.- Rather than evaluate the redundancy vs. efficiency tradeoff under
some 'afbitrary assumptions, in this section I present épeciﬁcations for several
abstract data types that provide the necessary capabilities; I do not discuss
their implementation. However, assuming that there is an upper bound on the
number of vertices in eéch sspe,? all of the operations defined here can be
implemented in constant time and space using the ‘“winged-edge’ polyhedron

data structure[Baumgart75a, Newell79a].

Each abstract data type is specified by a list of access functions together
with the domain and range of each and a description of the semantics‘ of each
function. With but a few obvious exceptions, the functions are typical of those
one would expect to find in any geometric modeling package based on polyhe-
dra.!® | adopt several notational conventions similar to those used in

[Guttag78a]:
(1) Data type names appear in italics.

(2) Non-italicized lowercase symbols are free variables of a type that either is
clear from context or is 'sbecified in a declare statement.

(3) Funt_:tion names appear in uppercase.

{4) The domain of each function is specified by a list of data types, separated

by cofnmas, contained within matched parentheses. The range appears to

the right of an arrow (-).

All program fragi’nents are written in “'pidgin-Algol,” as described in Section

1.8 of [Aho74a].

¥Such an upper bound follows immediately from an upper bound on the number of faces that
can be vertex-adjacent to any face.

10See e.g. [Baumgart75a] or [Eastman?7a].
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Boundary Face Pair

A bdyfoce_pair instance denotes a pair of faces in the approximating

polyhedral surface.

‘Sspec Vertex

An sspec_wvertex contains the coordinates of an sspe vertex in some
unspecified coordinate system. No operations other than instantiation may be

performed on an sspec_vertez unless it is part of an sspec (described below).

Sspec Vertex Queue

The sspec vertex queue is a first-in-first-out queue of sspec vertices.

Syntax:

INITQ() -

ENQ(sspec _vertez) »
DEQ() - sspec_wvertex
EMPTYQ() - boolean

Semantics:

INITQ-
INITQ() initializes the queue to an empty queue.

ENQ
ENQ(v) places vertex v last on the queue.

DEQ :
DEQ() removes the first vertex on the queue from the queue and returns
it. S

EMPTYQ ,
EMPTYQ() returns true if and only if the queue is empty. .

Sspec Iidge
An sspec_edge is the edge of an sspe defined by two sspe vertices. No

operations other than instantiation may be performed on an sspec_edge unless

it is part of an sspec (described below).
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Sspec
An sspec instance denotes an oriented sspec.

Syntax:

MAKESSPEC(bdyfece_pair) » sspec
OPPBF(sspec) - bdyface pair

CCV(sspec, sspec_vertex) - sspec_vertezx
CV(sspec, sspec_wertex) - sspec_vertex
FORCCV(sspec, procedure) -
FORCV(sspec, procedure) -

CCE(sspec, sspec_vertex) - sspec_ edge
CE(sspec, sspec_vertez) - sspec_edge
ADIBF(sspec, sspec_edge) - bdyface _pair

Semantics:

MAKESSPEC :
MAKESSPEC(x) returns the sspec defined by the pair of faces specified
by x. If the specified sspec does not exist, empty is returned.

OPPBF ’
OPPBF(x) returns the bdyface_puair that determines sspec x. More pre-
cisely, if MAKESSPEC(x) # empty, OPPBF(MAKESSPEC(x)) = x; other-
wise, its value is undefined.

ccv
CCV(x, v) returns the vertex counterclockwise adjacent to vertex v on
SSpEec X. '

CV(x, v) returns the vertex clockwise adjacent to vertex v on sspec x.

FORCCV
FORCCV(x, P) calls procedure P once for each vertex of sspec x, passing
the vertex as a parameter to P. Successive calls to p are passed suc-

cessive vertices in counterclockmse order. FORCCV(X, P) is equivalent
to:

vy « arbitrary vertex of x;
V ¢ Vg,
repeat
begin
P{v);
v « CCV({v);
end
until v = vg;

FORCV :
FORCV(x, P) calls procedure P once for each vertex of sspec x, passing
the vertex as a parameter to P. Successive calls to P are passed suc-
cessive vertices in clockwise order. FORCV(x, P) is equivalent to:
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vg « arbitrary vertex of x;
V « Vg
repeat
begin
P(v);
v « CV(v);
end
until v = Vo

CCE
CCE(x, v) returns the edge of x defined by v and CCV(x, v).

CE
CE(x, v) returns the edge of x defined by v and CV(x, v).

ADJBF
ADJBF(x, e) returns the bdyface _pair that specifies the sspec that
shares edge e of sspe x. The appropriate sspec is determined by apply-
ing Theorem 5.10 as follows. Say that x represents the sspec S;; and
that e represents an edge of S;;. Then, either e is S;; M N;,, where F,, is
a neighbor of Fy, or e is S;; M Ny, where Fy, is a neighbor of F;. In the

- former case, ADJBF(e, x) returns the bdyface _pair that specifies S,,;, in

the latter case it returns the bdyface _pair that specifies S;,.

Several of these functions are illustrated in Figure 5.18,

CCEXXyv) VY

J, \

CEX.V)

CCV(XV)

I/CV(X V)

Figure 5.18.: Operations on the sspec Data Type
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Polyhedral Surface

A polysurf instance denotes a collection of sspec’s that form a polyhedral

surface.

Syntax:

INITSURF(sspec) - polysurf

EF1(polysurf, sspec_edge) - sspec

EF2(polysurf, sspec_edge) - sspec '
EADJF(polysurf, sspec, sspec_edge) > sspec
EXTCCF(polysurf, sspec_vertez) - sspec
EXTCF(polysurf, sspec_vertezx) - sspec
BDYVERT{polysurf, sspec_vertex) - boolean
EDGEMERGE(polysurf, sspec_edge, sspec) - polysurf

Semantics:

INITSURF
INITSURF(x) returns a polysurf comprised of the single sspec x.

EF1, EF2
EF1(p, €) returns one of the two possible sspec’s sharing edge e and
EF2(p, e) returns the other sspec. If only one sspec in p contains e,
then either EF1 or EF2, but not both, returns empty. These functions
are so-called ‘*hidden functions,’’ used only in describing other func-
tions. '

EADJF
EADJF(p, x, e) returns the sspec in p that shares edge e of sspe x. Ifeis
a boundary edge, empty is returned. Note that EADJF(p, EFi(p, e), e) =
EF2(p, e) and EADIF(p, EF2(p, e), ) = EF1(p, ).

EXTCCF
EXTCCF(p, v) returns the counterclockwise most sspec in p about vertex
v. More precisely, EXTCCF(p, v) returns the sspec x, if it exists, such

that EADJF(p, x, CE(v, x)) = empty. If no such sspec exists, EXTCCF(p,
-v) returns an arbitrary sspec having v as a vertex.

EXTCF
EXTCF(p, v) returns the clockwise most sspec in p about vertex v. More
precisely, EXTCF(p, v) returns the sspec x, if it exists, such that
EADJF(p, x, CCE(v, x)) = empty. If no such sspec exists, EXTCF(p, v)
returns an arbitrary sspec having v as a vertex.

BDYVERT
BDYVERT(p, v) returns true if and only if vertex v of p is a boundary ver-
tex (Definition 5.5).

EDGEMERGE
EDGEMERGE(p. e, x) adds sspe x to polysurf p along edge e of p. This
routine may be invoked only if:

(1) Either EF1(p, e) = empty or EF2(p, e) = empty, but not both; and
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() IfEFi(p, e) = x, # empty, x and x, must share edge e. Otherwise, if .
EF2(p, e) = X, # empty, x and x, must share edge e.

Invoking EDGEMERGE(p, e, x) has the following effects:

(1) The edge of sspec x that is shared by edge e of p becomes identical
to e for comparison purposes. Similarly, the vertices of that edge
become identical to the vertices of edge e.

(R) ' The values returned by subsequent calls of the functions EF1, EF2,
EXTCCF, EXTCF, or EADJF are possibly changed. If before invoking
EDGEMERGE, EF1(p, ) returned empty, then afterward EF1({p, e)
returns x and EADJF(p, x, e) returns EF2({p, e). Similarly, if before
invoking EDGEMERGE, EF2(p, €) returned empty, then afterward
EF2(p, e) returns x and EADJF(p, x, e) returns EF1{p, e). Further, if
before invoking EDGEMERGE, e was in EXTCF(p, v), v a vertex of e,
then afterward EXTCF(p, v) = x. If e was in EXTCCF(p, v), then after-
ward EXTCCF(p, ) = x.

- 5.5.4. Extension Procedure

Using the sspec intersection properties proved in Section 5.5.2 and the
abstract data types described in the previous section, in this section 1 gi\}e a
detailed description of the extension procedure sketched above. Recall from

Section 5.5.1 that the extension procedure consists of several simple steps:

(1) Initially, the polyhedral surface being constructed contains the ““seed’ sspe

alone.

(2) About each boundary vertex of the polyhedral surface constructed thus far,
attach one or more new sspe’s in cyclic order, obtaining a new polyhedral

surface of sspe’s.

(3) Repeat step (2) until no new sspe’s can be added due to extension failure

(discussed below).

The extension procedure consists of two subroutines, MAKE_SIMP_SEG and
VGROW, given as ‘‘pidgin-Algol” procedures in Figures 5.19 and 5.20 respectively.
The extension procedure is invoked by calling MAKE_SIMP_SEG, passing it a
“seed” sspe (obtained by search, as described in the next section) as parame-
ter. It createsa polyhedral surface consisting of the ‘‘seed” alone (statement 1)
and then inserts the vertices of the ‘*seed” in clockwise order into a first-in,

first-out queue (statement 3). Throughout the execution of the procedure, the
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procedure MAKE_SIMP_SEG(init_sspe):
begin
declare init_sspe sspec;

declare simp _seg polysurf,

comment Insert initial sspe into simplified segment;
1 simp_seg « INITSURF(init_sspe);

comment Place all vertices of the initial sspe on the queue of vertices to ex-
plore; :
2 INITQ();
3 FORCV(ENQ, init_sspe);

comment Grow the segment by generating all sspe’s that share each vertex
in the queue;
4 while ~EMPTYQ() do
5 VGROW(simp _seg, DEQ());

6 return simp_seg;
end

Figure 5.19.: MAKE_SIMP_SEG

vertex queue will contain all boundary vertices of the polyhedral surface yet to
be processed. After initializing the vertex queue, MAKE_SIMP_SEG calls VGROW
to process each vertex by atitaching to the vertex all of the sspec’s that are adja-

cent to the vertex but not already present {statements 4-5).

Upon being invoked to process a vertex v, VGROW finds (statements 2-3) the
edge counterclockwise from v of the clockwise-most sspe about v, in the illustra-

tion below, edge e of sspe sf:

Then, using Theorem 5.10 to determine which pair of faces determine the sspec
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procedure VGROW(s, v):
begin
declare s polysurf;
declare v sspec_vertex;

declare sf sspec;

declare newsf sspec;

declare e sspec _edge;
declare tempv sspec_vertez;

comment Add all sspe’s vertex—adjacent to vertex v in simplified segment s;
1 while BDYVERT(s, v) do ‘
begin

2 sf « EXTCF(s, v);
3 e « CCE(sf, v);
comment If the sspe to be added already exists, just merge it in;
4 if ADJBF(sf, e) = OPPBF(EXTCCF(s, v)) then
begin
5 ‘ EDGEMERGE(s, e, EXTCCF(s, v))
6 return
end
7 newsf « MAKESSPEC(ADJIBF(sf, e));
8 if newsf # empty then
begin
comment Merge the new sspe into the simplified segment;
9 EDGEMERGE(s, e, newsf);
10 . if ADJBF(newsf, CCE{(newsf, v)) = OPPBF(EXTCCF(s, v)) then
11 ‘ EDGEMERGE(s, CE(EXTCCF(s, v), v), newsf);
comment Add vertices of the new sspe not common with the
, , original sspe to the queue of vertices to explore;
12 ' tempv « CV{newsf, CV{newsf, v));
13 , while EADJF(s, newsf, CE(newsf, tempv)) = empty do
- begin '
14 . ~ ENQ(tempv);
15 tempv « CV{tempv);
' end
end
else
begin
comment Extension failure;
16 Mark edge e with failure mode A or B
v return
end
end
end

Figure 5.20.: VGROW
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that shar~. :dge e with sf, VGROV first determines whether that sspec is the
counterclockwise most sspe about v (statement 4). If it is, then that sspec is
merged with sspe sf along edge e (statement 5) and VGROW is finished. Other-
wise, VGROW calls MAKESSPEC to attempt to construct the sspec newsf neighbor-
ing sf (statement 7). If the appropriate sspec is empty, extension has failed and

the call to VGROW terminates. We shall discuss extension failure below. .

If it is not empty, newsf must be merged into the polyhedral surface (state-

ments 9-11) as illustrated below:

First. edge e of sspec newsf must be merged with edge e of sspe éf (staternent
9). Then, a test must be made to determine whether the two edges indicated by
the dotted arrows in the illustration above are identical (statement 10); if so,
they too)rnust be merged. This test requires no numerical comparison, rather,
Théorern 5.10 is used to determine whether the two sspec’s involved share those
edges. Finally, any new boundary veftices must be inserted last into the queuve
of vertices yet to be processed {statements 12-15). This whole process repeats
until either vertex v is completely surrounded by sspe's and therefore is no
longer a boundary vertex, or until extension fails (statements 16—17); In the
latter case, additional sspe’s niay be added about vertex v by later invocations

of VGROW.
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_Inow illustrate the major steps of extension with a simple example. Let F,,
Fs, Fs, and F, be vertex-adjacent faces as shown below on the left, and let F5 and

Fg be edge-adjacent faces ‘‘opposite’’ the others, as shown on the right:

Further, we shall assume that the geometry is such that the portion of the sim-
plified segment approximation produced byr the opposition of F,; through F4 with

Fys and Fg is as shown:

The labels placed on the edges and vertices are for ease of reference only and

carry no further meaning.
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The extension procedure is begun by calling MAKE___SIMP_SEG W;th a ‘‘seed”
sspe, say Sgg, as parameter. After statements 1 and 2 are exécuted, the vertex
queue might contain,!! in first to last order, v,g, Vg, Vs, vlz,;and vy;. Then, for
each vertex on the queue, statements 4 and 5 invoke VGROW to completely sur-
round the vertex with sspe’s. Figure 5.21 shows the queue contents and
polyhedral surface before the first call and after the first five calls to VGROW.
Subsequent calls to VGROW have no effect other than depleting the queue and

marking polyhedral surface boundary edges when further extension fails.

Extension failure in three-dimensions is much like in two-dimensions.
Extension fails whenever the call to MAKESSPEC in statement 7 of VGROW
returns empty. For concreteness, let us say that the bdyface_poair returned by
the call to ADJBF in statement 6 represents the pair of faces F; and F;. There

are three causes of extension failure:

(1) The sspec 8;; is empty because condition (2) of Definition 5.14 does not
obtain, that is, F; and Fj are edge-adjacent. Following Bookstein, I call this

extension failure by mode A

(8) The sspec S;; is empty because the intersection Wii’.h the bisector plane oy
of the pseudonormal pencil at F; or at F; empty. Again following Bookstein,
1 call this extension failure by mode B. Extension past a branch curve
iﬁiplies eventual failure by mode B, for Bookstein’s analogous two-

dimensional argument (Section 5.2.2) also holds in three dimensions.

(3) The sspec Si; is empty because at least one of the conditions of Definition
5.14 other than condition (2) does not obtain and hence, the approximating
polyhedral surface is not admissible. We shall not consider this case

further.1?

11The exact contents of the queue depend on which vertex of Sgg the implementation of FORCVY
first returns.

%However, see section 3 of [Bookstein79a] for a description of Bookstein's ad hoc procedure for
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QUEUE

Vizr Vg0 Vo Vigs Vg

’V
5 V4’ V120 V130 V900 Vgo
V’ »
8 V90 Vg
Var V12> V10 Vipe Voo Vg
v,,
V120 Y110 Vg0 Voo Vgr Yy Vg
V.o,V ., vV,
11’ V15 Ve Var V70 Voo Vi
v, V)

POLYHEDRAL SURFACE

NO CHANGE

NO CHANGE

Figure 5.21.: lllustration of Calls to VGROW

Thus, given a ‘‘seed’ sspe, the extension procedure described in this sec-

tion produces a polyhedral surface with boundary comprised of sspe’s. Further-

closing thie gaps formed by two-dimensional extension failure. Though [ have not investigated the is-
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more, each boundary edge of the polyhedral surface is marked with the mode of
extension failure at that edge, either A or B, corresponding respectively toend .

curves and extension past branch curves of the true symmetric surface.

5.6. The Three-dimensional Algorithm

We now have three-dimensional generalizations of each component of
Bookstein’s two-dimensional algorithm. Not surprisingly, the structure of the
complete algorithm for compuling a discrete approximation to the symmetric
surface of a three-dimensional figure is almost identical to fhe structure of
Bookstein's corresponding two-dimensional algorithm. Therefore, in this sec-
tion, I only sketch the structure of the three-dimensional algorithm, assuming

familiarity with Bookstein’s algorithm as described in Section 5.2.2.

The first task is to find a *'seed’ sspe. The algorithm begins by picking an
arbitrary face of the approximating polyhedral surface and find'mg, by exhaus-
tive search, one of its true discrete involutes (Definition 5.16). The sspe thereby

determined serves as the initial ‘‘seed”.

Starting with the initial "‘seed’’ the algorithm carries out the following

steps:

(1) Construct a polyhedral surface containing the “*seed’” by passing the

“seed” to MAKE_SIMP_SEG.

(2) Scan the boundary edges of the polyhedral surface constructed in step {1).
If all boundary edges are marked as failure by mode A, there is no evidence
for a branch curve. Otherwise, each connected chain of boundary edges
marked as failure by mode B is evidence of extension past a true _branch
curve. For each such connected chain determine the actual location of the

branch curve by the following steps (cf. Section 5.2.2):

sue, I suspect that a similar ad hoc procedure can be devised for closing gaps in three dimensions.
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{a) Choose one edge of the chain and call ADJBF to determine the pair of
faces that would have defined an sspec attached to that edge had it not

been empty.

(b) Choose one face of the pair determined in {(a) and find one of its true
discrete involutes by exhaustive search. That face and the chosen true

discrete involute determine a new “*seed’ sspe.

(c) Call MAKE_SIMP_SEG to compute the branch polyhedral surface contain-

ing this new ‘‘seed.”

(d) If some sspe of the branch polyhedral surface intersects an sspe in the
polyhedral surface determined in step (1) and the two sspe’s are deter-
mined by a common face, say sspe’s S;; and Sy,; (F;, F;, and Fyp, not
‘adjacent) determined by the common face Fj. the branch curve has
been located.!® The other branch polyhedral surface that meets at the
branch curve can be constructed by returning to step (1) using sspe S;,

as ''seed.”’ 14

(e} If, on the other hand, no such intersection occurs, return to step (2)

using the branch polyhedral surface.

The entire algorithm terminates when all extensions terminate in failure by

mode A.

5.7 Summary

I have presented a three-dimensional generalization of Bookstein’s two-
dimensional algorithm, using the same basic components and sfructure. I view

the principal contribution of this chapter, then, as defining pseudohormal

13[n practice, this check for intersection would be made in MAKE_SIMP_SEG as each new sspe
was added. If each face of the approximating polyhedral surface is marked whenever an sspe defined
" by that face is generated, the intersection test does not require any extensive searching.

14That 8y, exists is easily shown using a direct analog of Bookstein’s corresponding argument, I
have not proven formally that all three branch surfaces meet in a common branch curve, though a
somewhat more complex version of Bookstein's argument should suffice.
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pencils and symmetric surface planar elements, and proving that they have the

properties necessary to be used in the same manner as Bookstein's fsle’s.

5.8. Unsolved Problems and Resecarch Directions

Here, asin previoué chapters, both thecretical and applied work remains to

be done. I believe that I have described the algorithm in sufficient detail so that

a programmer familiar with the basic algorithms and techniqueé of computa-

tional geometry!® and an awareness of the pitfalls of numerical computing could

implement it. There are, however, several implementation issues that will need

to be addressed:

(1)

(2)

What data structures are most appropriate for implementing the abstract
data types described in Section 5.5.3? The most likely candidate is one of
the many variations of Baumgart's ““winged-edge polyhedron’’ data

structure[Baumgart75a, Newell79a].

What are appropriate representations for faces of the approximating
polyhedral surface and for pseudonormal pencils? The choice of appropri-
ate representations depends upon the operations to be performed. Com-
puting an individual sspe requires two primitive operations: finding bisector
planes and computing thé intersections of pseudonormal pencils with the
appropriate bisector plane. Finding bisgctor planes is particularly simple
and rapid if the planes containing faces of the approximating polyhedral
surface are represented in affine coordinates, that is, aé a unit vector nor-
mal to the plane and distance along that vector to the coordinate system
origin. The necessary intersections can be computed in asymptotically
optimal time using algorithms such as those described by

Shamos[Shamos76a, Shamos78a] and Brown[Brown79a). However, there is

5See, for example, Shamos's extensive (but very readable) treatise[Shamos78a] or his treat-

ment of geometric intersection problems[Shamos?5a, Shamos76a].
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a particularly simple algorithm, reentrant polygon clipping[Sutherland74a],

that, while not asymptotically optimal, is very fast in practice.

A number of theoretical issues also remain to be addressed:

Q)

(2)

How can we approximate the radius function, symmetric surface, and-

boundary surface curvatures necessary for applying the simplified segment

- partitioning technigques described in Chapter 47 Since there are well-known

expressions for curvatures at vertices and edges of polyhedral
surfaces[Banchoff?Oa, Brehm81a], the problem reduces to one of interpo-
lating from curvature values at vertices and edges. [ have not investigated

such interpolation schemes.

Though I have given intﬁitive arguments that sspe’s approximate neighbor-
hoods of the symmetric surface, neither Bookstein nor I have given a formal
proof that the approximation produced by his algorithm or by my three-
dimensional generalization converges to the true symmetric aﬁds as the
approximating polyhedral surface converges to the underlying outline. See
Sectipn 6.3 of [Kelly79a] and [Brehm81a] for eXamples of metrics and tech-

niques that might be useful in such a proof.



CHAPTER 6

SUMMARY AND DIRECTIONS FOR FUTURE WORK

. Building upon Blum's seminal idea, ] have begun to develop a three-
dimensional structural shape description methodology. In this, the final
chapter, I shall review the contributions of this dissertation and outline in broad

fashion directions for further research.

6.1. Summary

| In Chapter 1, I introduced three shape description paradigms—represent,
then discard; decomposition; and prototypes—and suggested that most shape
description techniques are elaborations of these paradigms. In particular, !
~ believe that Blum's two-dimensional shape description methodology, as reviewed
in C_hvapter 2, exploits 'simultaneously and naturally two of these three para-
digms: represent, then discard and decomposition. In so doing, it provides an
attractive mechanism for deal'mg with the crucial tradeocff between stability and
sensitivity, largely because the symmetric axis transform makes it possible to
decouple stable, constant figure properties from properties sensitive to subtle
variations: |

My work to generalize Blum's two-dimensional methodology to three dimen-

sions consists of three parts, reported in Chapters 3, 4, and 5 of this disserta-
tion. First, I have sought an understanding of the geometry of the three-

dimensional symmetric axis transform. Second, I have used this understanding
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to géneralize to three dimensions Blum's techniques for partitioning two-
dimensional symmetric axes into width shapes, axis shapes, and boundéry
shapes. Finally, I have generalized from two to three dimensions Bookstein's
algorithm for computing a discrete approximation to the symmetric axis

transform.

The three-dimensional generalization of Blum's symmetric axis transform
def'mes a unique, coordinate—system-independent decomposition of a figure into
disjoint, two-sided pieces, each with its own simplified segfnent and associated
boundary surfaces. In Chapter 3, I have defined measures of the radius function
and have shown how these measures and the syrﬁmetric surface curvatures are
rélated to thebboundary surface curvatures. In particular, I have shown that the
Gaussian and mean curvatures of the boundary surfaces are determined by nine

measures, each with a geometric interpretation:

(1) the symmetric surface curvature as determined by two principal curva-

tures and a principal direction;

(2) the radius curvature as determined by two principal curvatures and a prin-
cipal direction;
{3) directional derivatives of the radius function as determined by the angles
betweeh either boundary normal and the two symmetric suriace principal
’ directions; and |
(4 the radius function itself.

These measures, and the curvature relationship derived from them, subsume

. the two-dimensional measures and curvature relationship given by Blum.

In Chapter 4, beginning with the result of the unique figure decomposition
induced by the three-dimensional symmetric axis transform, I have used the
. aforementioned measures, together with the relationships among them, to pro-

pbse'a further decomposition into primitives drawn from three separate, but not
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completely independent, primitive sets: width primifives, based on radius fune-
tion properties, axis pr'i,mitives; based on simplified segment curvatures, and
boundary primitives, based on boundary surface curvatures. Since each primi-
tive set is derived from different properties of the simplified segment and radius
function, each captures different qualitétive properties of the two-sided piece
as_sociated with the simplified segment. They can either be used separatély or
combined together to form cartesian-product primitive sets. I have also pro-
posed a simple data structure, the labeled primitive adjacency graph, to be used

to maintain information about the spatial relationships among primitives:.

Since width primitives are defined by properties of radius function
behavior, they reveal the behavior of the boundary surfaces associated with a
simplified segment with respect to that simplified segment. Width primitivés
are themselves comprised of two components: slope districts and curvature dis-
tficts. Using topological properties of scalar functions on surfaces, e.g. the

radius function, 1 have proven that there are only three possible slope districts

types.! There are six curvature district types.

Visualizing radius function behavior as if it were the height function of some
mountainous terrain, each‘slope district corresponds to a mountain face
togetherb with the valley below it. At the botiom of the valley the associated
boundary surfaces are "‘pinched” in, close to the simplified .segment. As one
climbs the mountain face, the associated boundary surfaces "*bulge” out, each
'moving away symmetrically from the simplified segment until the mountaintop
is reached. Curvature districts, on the other hand, further partition each slope

district into regions that are locally either convex, concave, or saddle-like.

Using simplified segment Gaussian and mean curvatures, the simplified seg-

ment and its associated boundary surfaces alsb can be partitioned into a collec-

!This result does not depend on any special properties of the radius function,
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tion of two-sided axis primitives, corresponding to regions of the simplified seg-
ment wherein the algebraic signs of the simplified segment Gaussian and mean
curvatures are constant. Since simplified segment curvatures reflect the
overall curvature trend of its associated two-sided piece, axis primitives, of

"'v‘vhich there are six, are two-sided pieces with constant overall curvature trend.

The final set of primitives, boundary primitives, are based on boundary sur-
face curvatures. The simplified segment and associated boundary surfaces are
partitioned.into primitives each with the property that t‘he algebraic signs of the
Gaussian and mean curvature; are constant over each of the two boundary sur-
faces associated with the primitive. Each of the resulting 36 boundary primi-
tives reflects the locally convex, concave, or saddle-like behavior of both associ-
ated boundary surfaces. Furthermore, the boundary primitives are related in a

simple manner to properties of the simplified segment and radius function cur-

vatures.

In Chapters 3 and 4, have generalized much of Blum's two-dimensional
shape description methodology te three dimensions. In Chapter 5,1 have con-
sidered a different question: how does one compute the three-dimensional sym-
metric axis tranéform? After reviewing severaf of the many algorithms for com-
puting the symmetric aiis trénsform of a two-dimensional figure, [ concluded
that Bookstein’s algorithrn was the only one that deais explicitly with outline and
symrﬁetr‘ic axis tangents and that maintains symmetric axis continuity. Since,
in my view.. any symmetric axis algorithm must have these characteristics if it is
to be useful for shape description, I have described, in Chapter 5, a three-

dimensional generalization of Bookstein's two-dimensional algorithm.

From a polyhedral approzimation to a smoocth underlying outline wherein
each polyhedron face is tangent to the outline, my three-dimensional generaliza-

tion of Bookstein's algorithm yields a polyhedral surface approximating the sym-
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metric surface of the outline. Outline normals are approximated by pseudonor-
mal pencils and symmetric surface neighborhoods by symmetric surface planar
elements. The aigorithm, which consists primarily of using these approxima-
tions to vsimulate the geometry of the symmetric axis transform in continuous
épace, first finds, by exhaustive search, an initial ‘‘seed” symmetric surface
planar element. Then, using this “‘seed,” the simplified segmen£ extension pro-
cedure construets, without further searching, the entire sifnplified segment con-
' taining the ‘“‘seed’’. The extension procedure fails at end curves and pasf branch
‘curves. Once a branch is detected, a new *'seed” is found, again by exhaustive
search, and the extension procedure is invoked to construct branch sifn?lified ‘ ‘
segments. When all such extensions terminate at end curves, the algorithm ter-

minates, yielding the desired approximation.

6.2. Future Work

The results set forth in this dissertation lay the foundation for the experi-
mental work necessary to evaluate the utility of the symmetric axis transform
as a three-dimensional shape description tool. At the close of each chapter I
have s'ug‘gested directions for fﬁrther researcﬁ germane to the subject of each
chapter; In this section, I outline a research programme, probably of several
years duration if carried to completion, designed to yield a better understand-
ing of the strengths and weaknesses of the symmetric axis transform as a shape

description tool.

No matter what the application, I believe that some early experience with
symmetric surfaces of the kinds of figures one'is likely to encounter is essential.
If nothing else, such experience is likely to yield an intuitive ““feel” for whether
sim.ilar figures have similar syfnmetric surfaces, for Wheth‘er perturbations
intreduced by noise cause difficulty, and for what seem to be the most impor-

tant features of the symmetric axis transform. Therefore, an implementation of
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the algorithm described in Chapter 5 is needed.

Several problems other than the implementation issues raised in Chapter 5
will need to be resolved. Most pressing is the form of the available three-
dimensional data. The algorithm expects to receive a polyhedral approximation
of the figure, yet the mo’ét common sources of data are pbint samples and
~ stacks of two-dimensional slices. Though algorithms exist for converting such
data into polyhedral approximations (see, for example, [Schﬁmaker?Ga] ahd
[Fuchs77a]), the suitability of the resulting approximations as input to the sym-

metric surface algorithm has yet to be investigated.

Once a suitable implementation is available, many interesting possibilities
-arise. Consider, for example, studying organs isolated from computed tomogra-
phy (CT) studies, Does the symmetric axis transform appear to have potential
as a ‘‘feature generator” for distinguishing among different organs? How do
organ descriptions derived from the primitive sets proposed in Chapter 4 vary
| across subjects? Are such descriptions correlated wiﬁh disease states? Which
primitive sets are most useful? These, and other questions cannot be ade-
quately studied without active involvement of medical experts. However, early
‘ad hoc expe‘riment;s are useful if only to build intuition, indicate promise {or lack

thereof), and foster curiosity.

Should these ad hoc experiments indicate that further investigation is war-

ranted, three separate research directions immediately present themselves:

(1) If measures derived from the symmetric axis transform are to be useful as
indicators of abnormal conditions or to study variations in organ shape,

some statistical tests of significance seem essential.

(2) In the structural pattern recognition literature, there is an increasing
interest in inexact matching of labeled graphs. It might be fruitful to inves-

tigate matching primitive adjacency graphs as described in Chapter 4
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against prototype graphs.

(3) Generalized cylinders have been studied extensively as both a shape
analysis tool and as a representation to provide a priori information in com-
puter vision systems. As discussed in Chapter 1, the symmetric axis
transform seems to have several benefits over generalized cylinders.

Further investigation is needed.

I do not expect the three-dimensional symmetric axis transform and the
techniques described in this dissertation to answer the dreams of all shape
description practitioners, if there be such. I do hope, however, that the early
results | have presented here encourage others to study and apply the sym-

metric axis transform.
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