
THREE-DIMENSIONAL SHAPE DESCRIPTION 

USING THE 

SYMMETRIC AXIS TRANSFORM 

by 

Lee Richard Nackman 

81-016 





THREE-DIMENSIONAL SHAPE DESCRIPTION 
USING THE 

SYMM£1RIC AXIS TRANSFORM 

by 

Lee Richard Nackman 

A dissertation submitted to the faculty of the University of North Carolina at 
Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy in the Department of Computer Science. 

Chapel Hill 

1982 

Approved by: 



® 1982 
Lee Richard Nackman 
ALL RIGHTS RESERVED 



LEE RICHARD NACKMAN. 
Three-Dimensional Shape Description Using the Symmetric Axis Transform 
(Under the direction of STEPHEN M. PIZER.) 

Abstract 

Blum's transform, variously known as the symmetric axis transform, medial 

axis transform, or skeleton, and his associated two-dimensional shape descrip-

tion methodology are generalized to three-dimensions. Bookstein's two-

dimensional algorithm for finding an approximation to the symmetric axis is 

also generalized. 

The symmetric axis (SA) of an object with a smooth boundary is the locus of 

points inside the object having at least two nearest neighbors on the object 

boundary. In three dimensions, the SA is, in general, a collection of smooth sur-

face patches, called simplified segments, connected together in a tree-like 

structure. Together with the radius function, the distance from each point on 

the SA to a nearest boundary point, the SA forms the symmetric axis transform. 

The three-dimensional symmetric axis transform defines a unique, coordinate-

system-independent decomposition of an object into disjoint, two-sided pieces, 

each with its own simplified segment and associated object boundary patches. 

Four principal contributions are presented. {1) A relationship among the 

Gaussian and mean curvatures of a simplified segment, the Gaussian and mean 

curvatures of the associated object boundary patches, and radius function 

measures 1s derived. {2) A further decomposition is proposed wherein each 

two-sided piece is partitioned into primitives drawn from three separate, but not 

completely independent, primitive sets: width primitives, boundary primitives, 

and axis primitives. Width primitives are regions derived from derivatives of the 



radius function; hence, they capture the behavior of the boundary patches with 

respect to the simplified segment. Axis and boundary primitives are regions of 

constant signs of Gaussian and mean curvatures of the simplified segment and 

boundary patches respectively. The aforementioned curvature relationship is 

used to derive relationships among the primitive sets. (3) In the course of 

studying width primitives, it is proved that, under certain non-degeneracy 

assumptions, the regions of the graph defined by the critical points, ridge lines, 

and course lines of a scalar valued function over a surface have one of three 

types of cycle as boundary~ (4) An almost linear algorithm that takes a 

polyhedral approximation to a three-dimensional object and yields a polyhedral 

surface approximation to that object's SA is developed. 
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CHAPTER 1 

INTRODUCTION 

"The study of form may be descriptive merely, or it may become analytical. We 
begin by describing the shape of an object in the simple words of common 
speech: we end by defining it in the precise language of mathematics; and the 
one method tends to follow the other in strict scientific order .... The mathemat
ical definition of a 'form' has a quality of precision which was quite lacking in our 
earlier stage of mere description; it is expressed in few words or in still briefer 
symbols, and these words or symbols are so pregnant with meaning that thought 
itself is economised .... " 

"Nor must we forget that the biologist is much more exacting in his require
ments, as regards to form, than the physicist; for the latter is usually content 
with either an ideal or a general description of form, while the student of living 
things must needs be specific." 

--D'Arcy Thompson, [Thompson42a, p. 1026 and 1030] 

1.1. Background 

Rapid advances in data acquisition techniques, especially computed tomog-

raphy, challenge us to seek effective shape description techniques with which to 

attack problems in biological and medical shape measurement in three dimen-

sions. Such problems appear in many guises. 

For many years biologists have sought quantitative methods for studying 

biological shape and shape change in order to examine the relation between 

form and function[Alexander71a], to study growth (both ontogenetic and 

phylogenetic)[Thompson42a, le Gros Clark45a, Sprent72a], and for taxonomic 

classification[Hursh76a]. In his recent book[Bookstein78a] Bookstein argues 

persuasively that shape measurements computed solely from landmarks, points 

of either anatomical or geometric significance, are inherently inadequate to the 

1 
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task. Structural shape descriptors offer a potential source of new, more useful 

measures. 

Already, Webber and Blum[Webber79a] have used properties derived from a 

structural descriptor {the symmetric axis transform) to quantify shape proper-

ties of lateral projections of human mandibles. Turner-Smith and 

colleagues[Turner-Smith80a] are working toward a better understanding of the 

progression of spinal curvature and rotation in patients with idiopathic scoliosis. 

They believe that the progression of the disease can be monitored from back 

surface shapes and are actively seeking techniques for describing such 

shapes[Turner-Smith81a]. Shape description may also be a useful tool for plan-

ning and assessing reconstructive facial surgery[Todd-Pokropek81a] and for 

reliably predicting the result of orthodontic procedures[Bookstein78a]. 

In hospitals around the world, huge numbers of computed tomography (CT) 

studies, each a sequence of images of cross-sectional slices of the human 

body[Brooks75a], are now being performed and archived. Each slice is a two-

dimensional map of the distribution of the X-ray attenuation coefficients of the 

tissue "cut" by the slice. Together the slices reveal the morphology of the 

organs contained within. Systematic study of organ shapes, both normal and 

· pathologic, across the large populations contained in the archived studies could 

be expected to yield results of scientific and clinical value. Perhaps we could 

then speak quantitatively of normal and abnormal ranges of organ shape, much 

as we are beginning to be able to speak quantitatively of normal and abnormal 

distributions of attenuation values[Pullan78a]. Unfortunately, neither suitable 

shape analysis nor automatic organ extraction techniques 1 yet exist. The paten-

tial applicability of structural shape descriptors to the former problem is clear. 

1 In the limited cases where thresholding is able to partition the picture elements of each slice of 
the study into two classes, organ and non-organ, a three-dimensional boundary following algorithm 
(e.g. [Artzy80a]) may be able to extract an organ automatically. 
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It may also be possible to use structural shape descriptors as a source of a 

priori anatomical information for computer-assisted analysis of medical images. 

In automatic procedures, organ shape models might guide organ extraction and 

aid in constructing three-dimensional displays from two-dimensional slices. In 

interactive procedures they might allow the diagnostician to interact with the 

machine at the structure level. For example, a diagnostician working with a 

three-dimensional display of a CT study might be able to request that an organ 

be removed from view to see behind it, to request dose calculations for indivi

dual organs in radiation treatment-planning applications, and to request shape 

measures to be compared with population norms. 

Experimental systems for small subsets of several of these applications 

have been built[Ballard78a, Sunguroff78a, Soroka79a, ShaniBOa]. Their capabili'

ties, hampered as they are by inadequate techniques for measuring and describ

ing three-dimensional shape, suggest that the potential payoff of successful use 

of structural shape descriptors is likely to be large. 

1. 2. Rationale 

This dissertation sets forth the early development of an attractive, though 

yet untested, three-dimensional structural shape description technique. Why 

study three-dimensional shape description when two-dimensional shape descrip

tion is not yet well understood? Originally, exciting medical applications, made 

possible by advancing technology, motivated our work. While that motivation 

still exists, more compelling fundamental reasons have come to light. 

The objects we study are three-dimensional or, if one considers shape 

change as well as shape itself, four-dimensional. Therefore, to execute a two

dimensional shape analysis, one must, before the analysis is even begun, choose 

a mapping from the three- or four-dimensional space in which the object is 

imbedded to the two-dimensional space of the analysis. Of course, in some cases 
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the choice of the mapping is obviated, either by a symmetry of the object under 

study, by limitations of the data acquisition apparatus, or by the goals of the 

analysis. More often, one either makes an arbitrary choice, or one orients the 

object along some "standard" axis or plane defined by points of anatomical sig-

nificance. The former is subjective; the latter is arbitrary and subject to error 

propagation, for, as the simple exercise of slicing a cone with various planes 

illustrates, slight error in orientation can lead to large changes in the resulting 

two-dimensional object. At best, a two-dimensional analysis of a three- or four-

dimensional object is incomplete. At worst, it is biased and misleading. 

Studying a shape description technique in three dimensions helps to distin-

guish between properties that are mere coincidences of the technique's formu-

lation in the plane and properties that are more fundamental. This is important, 

for simplicity and elegance demand that a two-dimensional technique be a spe-

cial case of a corresponding three-dimensional technique. Yet the usual course 

of development is, often by necessity, the converse: one begins with a promising 

two-dimensional technique, then seeks an appropriate higher dimensional gen-

eralization. 

Consider, for example, an analogous situation in geometry. The formula for 

the sum of the interior angles of a convex planar n-gon (lBOn-360) was known to 

Euclid. Generalizing the formula to three dimensions first required a suitable 

generalization of convex planar n-gons. Obviously, convex polyhedra are the 

three-dimensional analogs of convex polygons. But, what of the "n"? It could 

generalize to the number of faces, to the number of edges, to the number of ver-

tices, or perhaps to some combination of the three. Similarly, what concept 

replaces that of an "interior angle"? 

The generalization itself, discovered only in 1874, is not germane here 2. It 

2The generalization is called Gram's relation for angle-sums and holds for all d-dimensional con
vex polytopes. See Sections 14.1 and 14.4 of [Grunbaum67a]. 
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is, however, worth noting that the generalized formula depends not on the 

number of vertices, but instead on the number of faces. Indeed, in the d

dimensional case the formula depends on the number of (d-1)-dimensional 

"faces". This is true, as well, in the planar case, but is masked by the coin

cidence that in the plane the number of edges is necessarily identical to the 

number of vertices. The example, then, illustrates in small part what mathema

ticians have long known: generalizing to higher dimensions often illuminates 

lower dimensional cases as well. 

I have presented a rationale for studying shape description in dimensions 

three or more. In this dissertation, I limit discussion to three dimensions 

because a full-blown treatment of a shape description technique inn dimensions 

requires mathematical sophistication beyond mine. Though this reason alone 

does not justify restricting this work to three dimensions, when combined with 

the natural division between three and four dimensions, between shape and 

shape change, it is compelling. 

In the next section I define what I mean by shape and shape description and 

describe how they are related to (classical) statistical pattern recognition. 

Those notions established, I then sketch several shape description techniques to 

illustrate important shape description paradigms. Chapter 1 then concludes 

with an overview of the research described herein. 

1.3. Shape and Shape Description 

We begin with two-dimensional shape. Let an outline in the Euclidean plane 

be a regular, simple, closed plane curve. In other ·words, an outline is a closed 

plane curve with no self-intersections and with a well-defined, continuously turn

ing tangent at all points. A figure is an outline together ·with its interior. The 

scope of our discussion of shape is limited to single outlines, figures, and their 
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three-dimensional generalizations3. We therefore do not consider disconnected 

objects, objects with holes or corners, or point sets better characterized by 

notions of texture. 

A shape is an equivalence class of figures (or outlines). Choosing the 

equivalence relation is both difficult and important- it determines the intuitive 

meaning of "shape". At one extreme, we might require all figures in a shape to 

be congruent. Usually, such a relation is too stringent to be useful. At the other 

extreme, we might use a single measure, such as the ratio of the square of the 

outline perimeter to the figure area, to determine which shape an outline is in. 

Unless the application domain is highly constrained, such a relation is too broad 

to be usefuL 

A shape specification is a finite specification of the members of a shape. 

For example, in statistical pattern recognition, a feature vector is constructed 

for each figure (pattern} to be classified. Assuming that the feature vectors are 

elements of some appropriately chosen metric space, a shape is specified by the 

region of the metric space that contains the feature vectors for precisely those 

figures in the shape. Such a region, then, is a shape specification4 . Each ele-

ment of a feature vector is a shape measurement, a mapping from the set of all 

outlines to the real numbers. Finding appropriate feature vectors, metrics, and 

regions are difficult problems. 

Indeed, the statistical pattern recognition literature devotes considerable 

attention to systematic techniques of determining appropriate metrics and 

regions given statistical information about the feature vectors (see 

e.g.[Meisel72a, Duda73a]}. On the other hand, finding low-dimensional feature 

vectors has remained an ad hoc and difficult art. Another pattern recognition 

30utlines and figures in three dimensions are defined in Chapter 3. Intuitively, a three
dimensional outlL"'le is a smooth surface that can be "stretched" into a sphere. 

4This is true only if a finite representation of the region exists. 
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approach, often called structural pattern recognition, has evolved in response to 

the difficulty of finding effective feature vectors for use in statistical pattern 

recognition. 

In structural pattern recognition, the primary goal is description rather 

than classification. Though it is difficult to formulate a precise definition of a 

description, two intuitive notions characterize most descriptions: (1) a descrip

tion is in a form more suitable for further processing than (a representation of) 

the figure itself, and (2) a description captures the "essence" of a figure relative 

to some context(Evans69a, Pavlidis77a]. The distinction between statistical and 

structural pattern recognition is not sharp, but is mainly a difference in goals 

and approach. The shape measurements used in statistical pattern recognition 

tend to capture global figure properties such as width, elongation, and compact

ness, while structural descriptions capture relationships among the sub-figures 

that comprise a figure. Structural descriptions are often labeled graphs with 

nodes representing sub-figures, arcs representing relationships among sub

figures, and node labels characterizing sub-figures. 

Ideally, all members of a shape have the same description which then 

serves directly as a shape specification. Since this is rarely the case in practice, 

systematic techniques are being developed for approximate matching of struc

tural descriptions[Haralick7Ba, ShapiroBOa, Shapiro81a]. Once such techniques 

are in hand, structural descriptions can be used for classification by matching a 

description of the figure to be classified against a prototype figure description 

for each class (shape). Structural descriptions can also be used as a source of 

shape measurements to be used to construct feature vectors for statistical pat

tern recognition. 
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1.4. Shape Description Paradigms 

In his oft-quoted essay, Kuhn[Kuhn70a] likens "normal science" to solving 

puzzles within the restricted framework of paradigms, abstractions of the com-

man lessons learned solving problems that appear different, but that are, upon 

closer examination, identical in essential aspects5• Indeed, most shape descrip-

tion techniques are elaborations of one of three paradigms6 : represent, then dis-

card; decomposition; and prototypes. I present each, together with two- and 

three-dimensional examples, below. 

1.4.1. Represent, then Discard 

" ... we must learn from the mathematician to eliminate and to discard; to keep 
the type in mind and leave the single case, with all its ·accidents, alone; and to 
find in this sacrifice of what matters little and conservation of what matters 
much one of the peculiar excellences of the method of mathematics." 

--D'Arcy Thompson, [Thompson42a, p. 1032] 

In the first paradigm, which I call represent, then discard, a shape descrip-

tion {or measurement} is constructed in two steps: 

(1) Find a discrete representation of the outline or figure. 

(2) Discard "irrelevant" information contained in the representation . 

. For example, a two-dimensional outline can be represented by a Fourier series 

by choosing a parameterization of the outline that is periodic. The first few 

coefficients of the Fourier series contain information about overall outline pro-

perties and have been used as shape measurements[Granlund72a, Zahn72a, 

Persoon77a]. Walsh function expansions have also been used in like 

manner[Searle70a]. 

5See, esp~cially, part 3 of the postscript to the 2nd edition. 
6Pavlidis[Pavlidis76a, Pavlidis60a] classifies shape description techniques in:.o but two 

categories: information preserving and information non"J)reserving. 



A similar technique has been applied to star-shaped7 figures in three

dimensions[Schudy79a, Brown79a). Since the figure is star-shaped, there is a 
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polar coordinate system in which the outline can be expressed as a single-valued 

function over the unit sphere. Using Laplace's spherical harmonic functions 8, 

which form an orthonormal, complete system of functions over the unit sphere, 

the outline can be represented by a series expansion. Schudy[Schudy79a] has 

developed an optimization technique that finds the series expansion coefficients 

of the outline that best fits canine heart wall contours from ultrasound data. 

Since the beating heart, and hence the coefficients themselves, are (near) 

periodic, each coefficient time series can be approximated by a Fourier series 

expansion, yielding a series expansion representation in four-dimensions. 

Two- and three-dimensional figures can also be represented by an infinite 

sequence of moments[Alt62a]. Though the moments themselves are very sensi-

tive to size, location, and orientation, it is possible to derive moment invariants, 

algebraic combinations of low order moments that are invariant under changes 

in size, location, and orientation[Hu62a, SadjadiBOa]. 

Other measures, often single numbers, capture only particular aspects of a 

figure that are important in a specific application. Generally, such measures 

summarize aspects of the entire outline or figure; hence, they have been called 

gestalt-variables[Attneave56a]. Examples include measures of compactness 

(e.g. the ratio of the square of the outline perimeter to the figure area), sym-

metry, and elongation. Gestalt-variables have been used widely in psychophy-

sics, where investigators seek an understanding of the relation between the phy-

sical characteristics of a stimulus and the subject's response to it. Brown and 

Owen[Brown67a], in their critical review of the psychophysics literature, identi-

7 A set is star-shaped if there is some point in the set to which all other points can be connected 
by a line segment contained completely withLTI the set. 

6See e.g. Chapter 7, Section 5 of (Courant53a). 
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fied over 100 shape measures that had been used as stimulus dimensions. Simi

lar measures have also been used in geography[Clark73a, Bosch78a] and in com

puterized picture processing[Rosenfeld76a]. 

Though gestalt-variables are easy to compute from many discrete outline 

representations, too much information is discarded for them to be useful except 

in highly constrained situations. On the other hand, the amount of information 

discarded from series expansion representations is determined by the number 

of coefficients kept and the convergence speed of the series. The former is 

easily controlled. Unfortunately, since local perturbations of the outline are 

reflected in all coefficients, it is difficult to control the type of information dis

carded. This is one of two major disadvantages of all shape descriptors derived 

from series expansion representations of the outline. The other disadvantage is 

inherent in all techniques that treat the points of an outline as points of the out

line alone, rather than as points of the outline and the space containing the out

line. I elaborate below. 

1.4.2. Decomposition 

The decomposition paradigm is, in part, a response to the problem illus

trated in Figure 1.1: points near to each other in the plane may be far apart 

when distance is measured within the outline. Decomposition techniques are 

various embodiments of the divide-and-conquer strategy often used in algorithm 

design: divide the figure into sub-figures, called primitives, describe each primi

tive, then combine the results to yield a single description. Many examples of 

this paradigm have appeared in the computer shape description literature. 

For example, in two dimensions, polygonally bounded figures have been 

decomposed into possibly overlapping convex subsets[Pavlidis68a, Pavlidis72a, 

Pavlidis77a]. As the polygon is traversed clockwise, for each edge of the polygon 

a so-called basic half-plane is defined by the right-hand side of the line 
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Figure 1.1.: Motivation for the Decomposition Paradigm (after [Pavlidis77a]) 

containing the edge. Beginning with the intersection of all basic half-planes, 

non-decreasing sequences of convex sets can be formed by taking the intersec

tion of successively fewer basic half-planes. Some set in each sequence must be 

maximal, in the sense that all subsequent members of the sequence are not sub

sets of the figure. Each such maximal set is called a primary convex subset 

(PCS). Together, the PCS's cover the figure. Besides being expensive to com

pute, the PCS decomposition results in non-disjoint primitives which can be radi

cally altered by small changes in the polygon. In addition, the convexity 

requirement causes thin curved figures to be decomposed into many small 

pieces. 

Others have relaxed the convexity requirement to obtain "more natural" 

decompositions. Feng and Pavlidis[Feng75a] decompose polygonally bounded 

figures into convex subsets and non-convex polygonal "spirals". Shapiro and 

Haralick[Shapiro79a] define a visibility relation on pairs of line segments in the 

polygon. Two segments are related if they are mutually visible, if any line from 

an endpoint of one segment to an endpoint of the other segment is completely 

contained in the figure. Primitive regions are determined by executing a graph 
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clustering algorithm on the graph of the visibility relation. The graph clustering 

approach has been generalized by Bjorklund and Pavlidis[Bjorklund81a] to 

include multiple relations between segments. 

Existing decomposition schemes have several disadvantages. For most 

decomposition schemes, there is a limited domain of figures for which the 

scheme yields an intuitively pleasing decomposition that captures important fig-

ure properties. Perhaps more important, the primitives resulting from the 

decomposition are often poorly constrained, and thus not much simpler to 

describe than the original figure itself. Finally, the time complexity of many 

decomposition algorithms grows as the square or cube of the number of ele-

ments (pixels, line segments) in the discrete outline approximation. However, 

as we shall see in Chapter 5, this need not be the case. 

Three-dimensional curved figures have been decomposed into primitives 

called generalized cones[Nevatia77a, Agin76a]. A generalized cone is defined by 

a space curve, called the axis, and planar cross-sections normal to the axis. The 

generalized cone is the volume swept out by moving cross-sections of arbitrary 

shape and size along the axis. Various heuristic techniques have been developed 

to decompose three-dimensional figures into collections of restricted classes of 

generalized cones. For example, Agin and Binford[Agin76a] use generalized 

cylinders! generalized cones with circular cross-sections whose radii are linear 

functions of distance along the axis9. Soroka[ Soroka 7Ba, Soroka79a, Soroka79b] 

allows elliptical cross-sections whose major and minor axis lengths vary linearly 

as a function of distance along a linear axis. The centers of the ellipses are con-

strained to lie on the axis and no twisting about the axis is permitted. Finally, 

Shani[ShaniBOa] allows both the cross-sections and the axis to be parametrically 

defined cubic splines. 

9Such generalized cylinders are closely related to a degenerate case of Blum's symmetric axis 
transform in three dimensions. 
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Unfortunately, there are major problems with generalized cone decomposi-

tions. There is little understanding of the domain of figures that admit general-

ized cone decompositions. Further, such decompositions are usually not unique 

and constraints sufficient to force uniqueness are not, in general, known. Hence 

all programs that compute generalized cone decompositions are forced to use 

ad hoc rules to choose a single decomposition. 

1.4.3. Prototypes 

It is sometimes useful to assume that two outlines are members-of the 

same shape and then to examine the nature of the transformation that maps 

one outline to the other. This approach has been takento study biological 

growth[Thompson42a, le Gras Clark45a, Richards55a, Bookstein78a] and geo-

graphical relationships[Tobler78a]. Similar techniques can be used to describe 

shape by representing a prototype outline and a transformation that distorts it 

into other members of the shape. These techniques are characterized by their 

freedom from the need to describe explicitly or to decompose the outlines. The 

prototype is the description. 

Few applications of the prototype paradigm have appeared in the computer 

shape description literature. Widrow[Widrow73a] proposed using flexible tern-

plates, which he called "rubber masks," as an alternative to using matched 

filters 10 in pattern recognition. Typical application of matched filters in pattern 

recognition entails defining a filter for each possible class (shape). Then, to 

classify a pattern, the matched filter for each class is applied to the pattern. 

The pattern belongs to the class corresponding to the filter that yields the larg-

est output signaL Unfortunately, the matched filter is very sensitive to the size 

and orientation of the known signal or template. 

10A matched filter is an optimal filter for detecting (and locating) a known signal in a noisy back
ground. A classical result of signal processing (i.e., known at least since the early days of radar) 
shows that the matched filter simply cross-correlates the noise contaminated signal with the known 
signal[Castleman79a]. 
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Widrow proposed developing flexible templates that could be distorted, 

within well-defined limits, to the unknown pattern. Then, the classification of 

the unknown pattern could be determined by fitting all possible flexible tern-

plates to the pattern. Indeed, he applied this approach with some success to 

classifying chromosomes, chromatograms, electroencephalogram (EEG) record-

ings, and electrocardiogram (EKG) waveforms. Each application requires a 

hand-crafted flexible template and an associated (iterative) fitting algorithm. 

Techniques with similar flavor have long been used, albeit with different 

aims, in biology and even in art. One such scheme is elaborated at length here, 

not for its direct relevance to the present work, but because I believe it has, in 

concert with the present work, potential application to the full four-dimensional 

problem: description of both shape and shape change 11 • 

Imagine an outline drawn upon a planar rubber sheet marked with a rec-

tangular grid. Then imagine stretching the sheet, without tearing, so as to dis-

tort the figure into another figure of the same shape and the superimposed rec-

tangular grid into another grid, not necessarily rectangular. The distorted grid 

provides a vivid graphical representation of the "growth" of the original figure. 

This technique, expounded by D'Arcy Thompson[Thompson42a] in 1917 and used 

before him by Albrecht Durer12 to study proportion, has been applied to a 

number of biological problems (see, for instance, [le Gras Clark45a] and 

[Richards55a) for surveys, and Chapter 5 of [Bookstein78a] for a recent cri-

tique}. 

Despite the elegance of the idea and its frequent mention in the literature, 

it is not widely. used. Bookstein explains [Bookstein78a, pp. 76-77]): 

It seems impossible to extract quantity from the Cartesian grid, as Thompson 

11The scheme is also related to the "inbetweening" problem[Catmull78a] in computer-assisted 
animation. 

12As cited by Thompson. 



formulated it, in any straightforward way .... For any "realistic" grid fitting the 
data more closely than Thompson's (which is not a difficult accomplishment), 
various ebbs and flows of the lines become apparent ... In the effort to talk 
about what is there we open our mouths and become speechless .... 

Bookstein argues further that Thompson's fundamental error was the unsym-

metric treatment of the two figures. Instead of choosing one of the figures as 

special, to have a rectangular grid superimposed upon it, the grids should be 

defined by the change between the two figures. 

To examine Bookstein's reworking of Thompson's idea, I cast the rubber 

sheet analogy into mathematical terms 13• The stretching operation is a dif-
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feomorphism, a one-to-one differentiable transformation 14• Near any point in its 

domain, a diffeomorphism can be approximated by a nonsingular linear 

transformation. A linear transformation maps a unit circle in its domain to an 

ellipse about the origin of its range. Further, the lines in the domain that map 

to the axes of the ellipse must be perpendicular15. Therefore, unless the non-

singular linear transformation is a similarity transformation16 , in which case the 

ellipse degenerates into a circle, there is a unique pair of perpendicular vectors 

(differentials of the diffeomorphism) that are mapped to perpendicular vectors. 

As a result, two curvilinear grids, one the image of the other, can be superim-

posed on the figure and its image respectively, so that the grid curves are per-

pendicular wherever they intersect. 

These biorthogonal grids replace Thompson's grids. Not only are the two 

figures treated symmetrically, but the meaning of the biorthogonal grids is 

13Bookstein's formulation is different, and slightly more general, than the presentation here. 
14A lucid treatment of such transformations appears in Chapter 3 of [Osserman68a). 
15Since the linear transformation that approximates the diffeomorphism is nonsingular, its in

verse exists and is also a linear transformation. Recall that ru"ly linear transformation can be ob
tained by a rotation, followed by independent stretc:b..ing along the rotated coordinate axes, followed 
by another rotation. Hence, it is easy to see that the inverse transformation maps the axes of the el
lipse to a pair of perpendicular lines. Since a tra.."'lsfo:rmation composed with its inverse is the identi
ty, the transformation must map the same pair of perpendicular lines to the ellipse axes; 

16A similarity transformation is the composition of one or more rotations, reflections; or scale 
changes. 
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apparent. At each point of the figure, the transformation is completely defined 

by the dilation along each of the two biorthogonal grid curves through the point. 

The technique, then, reduces the transformation to differential "growth" in per

pendicular directions at each point. Any rotation is a consequence of the 

"growth" along the grids. 

To compute the biorthogonal grids from data one must first compute the 

diffeomorphism, the transformation from one figure to the other. 

Bookstein[Bookstein7Ba] describes a scheme for interpolating such~ transfor

mation from homologous landmarks of the two figures. For figures with few 

landmarks, there is little information to guide the interpolation. I shall propose 

an alternative, based on the symmetric axis transformation, in Chapter 2. 

Tobler, in related work dealing with geographical problems[Tobler78a, 

Tobler7Bb], describes a technique similar in spirit to Bookstein's biorthogonal 

grids, In the context of cartography, Sen[Sen76a] discusses various types and 

measures of distortion produced by diffeomorphisms. 

Broit[BroitBla, BajcsyBla] has used the transformation approach to develop 

a registration scheme that finds a mapping from one three-dimensional object 

to another, each represented by a "stack" of two-dimensional slices. The map

ping consists of two parts, one global, one local. The global mapping is limited to 

translation, rotation, and scale changes, while the local mapping is based on a 

mathematical model of a physical system that allows elastic deformation of a 

local region of one object into a corresponding local region of the other object. 

He has applied this technique to the problem of matching computed tomography 

studies of the brain to other such studies contained in a "brain anatomy atlas." 

1.5. Overview of the Research 

In the mid-60's, Blum[Blum67a] introduced a transformation, variously 

known as the symmetric axis transform (SAT), medial axis transform, or 
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skeleton17, that induces a decomposition of a figure into simpler figures. More 

recently. Blum[Blum73a, Blum74a, Blum78a] has proposed an elegant methodol-

ogy, based on the SAT, for describing the shape of two-dimensional figures. 1 

believe that, consciously or not, Blum exploited simultaneously and naturally 

two of the three paradigms described above. Therein lies a goodly portion of the 

elegance of his contribution. This notion is elaborated in Chapter 2. 

For several reasons in addition to its elegance, the scheme introduced by 

Blum shows a great deal of promise as a shape description scheme for three-

dimensional figures as well as two-dimensional figures: 

(1) the decomposition induced by the SAT is unique, coordinate-system-

independent, and, for a large class of figures with smooth boundary, natu-

ral; 

(2) the decomposition induced by the SAT decomposes the figure into disjoint 

primitives; 

(3) the resulting primitives are constrained, both individually and in the way 

they are juxtaposed; 

(4) there is a functional relationship among properties of the SAT and curva-

ture properties of the outline that can be used to show the intuitive mean-

ings of SAT derived measures; and 

(5) the definition of the SAT is easily generalized to three dimensions. 

The present work focuses on generalizing Blum's methodology to three 

dimensions. The planned attack is three-pronged. First, a theoretical under-

standing of the properties of the transform in three dimensions is sought. 

Second, this understanding is used to generalize Blum's methodology and to 

develop an algorithm for computing a discrete approximation to the transform. 

17The term skeleton has also been us~d in the picture processing literature as a generic name 
for the graph-like objects produced by a variety of "thinning" algorithms. It has yet another mean
ing in topology. Here I use the term "symmetric axis transform" or its acronym, SAT. 
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Finally, this generalized methodology must be applied to realistic data, such as 

organs extracted from clinical CT studies, to evaluate its utility. This disserta

tion addresses the first two of the three tasks, there by laying the foundation for 

experimental work to evaluate the efficacy of the method in particular applica

tions. 

The symmetric axis (SA) of an object with a smooth boundary is the locus of 

points inside the object having at least two nearest neighbors on the object 

boundary. Together with the radius function, the distance from each point on 

the SA to a nearest point on the boundary, the SA forms the symmetric axis 

transform (SAT). The SAT and the boundary are equivalent; one can be recon

structed from the other. The usefulness of the SAT derives from the ease with 

which shape information can be extracted from it. 

In three dimensions, the SA is a collection of smooth surface patches, possi

bly degenerating into space curves, connected together in a tree-like structure. 

Associated with each point of the SA are the boundary points comprising its set 

of nearest neighbors. Each SA patch, then, "goes up the middle" of a piece of 

the object bounded by the boundary points associated with the patch. Since the 

partition into patches follows naturally and uniquely from the SA definition, the 

shape description problem is reduced to describing the shape of each piece and 

the manner in which they are joined. 

Each SA patch can be further partitioned into sub-patches, with associated 

sub-pieces, determined by the SA principal curvatures and a notion of radius 

curvature that I shall define in Chapter 3. Simple relationships that hold among 

the curvatures of the boundary, SA, and radius, enable each sub-piece to be 

labeled as one of a limited number of possible sub-piece types. Each subpatch, 

then, is described by the SA curvature and radius curvature and by the shape of 

the subpatch itself. The latter can be described by applying a version of the 



19 

two-dimensional SAT generalized to measure distances along geodesics in a sur

face rather than along lines in a plane. 



CHAPTER 2 

THE 2D SYMMETRIC AXIS TRANSFORM 

2.1. Definition 

The symmetric axis of a figure F is the locus of centers of all maximal discs 

ofF, those discs contained in F but in no other disc in F. Equivalently, if C is the 

outline that bounds F, the symmetric axis, SA( C), is the set of points in F having 

atleast two nearest neighbors on C. Together with the radius function, the dis

tance from each point on the SA to the nearest point on the outline, the SA 

forms the symmetric axis transform (SAT). The SAT and the boundary are 

equivalent[Calabi68a]; one can be reconstructed from the other. Its usefulness 

derives from the ease with which shape information can be extracted from the 

representation. 

2.2. Point Types 

The points of SA(C) can be classified into three types depending on the 

order of the point, the number of disjoint connected subsets of C comprising its 

set of nearest neighbors. End points are of order one, normal points of order 

two, and branch points of order three or more, corresponding to maximal discs 

touching in one, two, or more disjoint arcs respectively. Additionally, points are 

called point contact if each touching subset is a single point and finite contact 

otherwise. For Can outline 1, as defined in section 1.3, SA(C) is the union of 

1This statement is true under somewhat weaker conditions than those imposed by our definition. 
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simple arcs, each a sequence of normal points bounded at each end by a branch 

or end point, that intersect each other at branch points only[Blum 7Ba]. See Fig-

ure 2.1. 

See [Calabi68a]. 

Brentch po1n 

Figure 2.1.: Symmetric Axis Point Types 
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2.3. SAT Induced Decomposition 

Let; be the mapping from C onto SA(C) that maps a point Pc inC to the 

center of the maximal disc tangent to C at P c· With each contiguous open inter-

val of normal points, which Blum and Nagel call simplified segments, the inverse 

relation ,-I associates two disjoint arcs of C. Consequently, as illustrated in Fig-

ure 2.2, F can be decomposed into a collection of two-sided parts, each associ-

ated with a simplified segment of SA{C), together with a collection of (possibly 

degenerate) circular sectors, each associated with a branch point or ~n end 

point. 

To describe the connection structure of the decomposition, Blum and 

Nagel[Bh.im78a] define a labeled, directed graph with a node for each branch 

point and each end point, as illustrated in Figure 2.3. A pair of edges, one in 

each direction, connect a branch point and an end point or a pair of branch 

points whenever those two points bound the same simplified segment. Choose a 

direction of traversing a simplified segment and call the two associated arcs of C 

the left and right boundary arcs. The directed edges can be arranged so that, if 

one traverses a simplified segment in the direction indicated by an edge, there 

~I: J ...... :•··········· .. ··· .. ····· .............................. .f·-~ 

~~---
Figure 2.2.: SAT Induced Decomposition 
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Figure 2.3.: Decomposition Connection Graph (after [Blum78a]) 

is an Eulerian circuit2 of the graph that causes one of the two boundary arcs to 

traverse the outline. Labels attached to graph nodes describe properties of the 

corresponding branch or end points such as maximal disc radius and angular 

extent of finite contact, while labels attached to graph arcs describe the 

behavior of the two-sided parts associated with each simplified segment. 

2.4. Simplified Segment Analysis 

Again, choose a direction of traversing a simplified segment. The angle {3 

between the tangent to C at a point P c and the tangent to SA(C) at 1(P c) is 

called the object angle, and is shown by Blum and Nagel[Blum78a] to be the 

arcsin of the first derivative of the disc radius at 1(P c) with respect to axis arc 

length. See Figure 2.4. The algebraic signs of the object angle and its derivative 

with respect to axis arc length, r;J1. called the object curvature, partition the 

segment into canonical primitives, called width shapes, juxtaposed one after the 

other. 

2An Eulerian circuit visits each edge of the graph exactly once. 



Figure 2.4.: Normal Point Geometry (Point Contact) 

The width shapes, shown in Figure 2.5 for a straight interval of the sym-

metric axis, are completely determined by the first and second derivatives of 
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the radius function with respect to arc length along the axis. Hence, the parti

tion obtained is independent of the curvature of the SA itself. Moreover, outline 

smoothness imposes simple syntax constraints on the string of width shapes 

associated with each simplified segment. Similarly, the algebraic signs of the 

symmetric axis curvature and its first derivative partition a simplified segment 

into canonical axis shapes juxtaposed one after the other. See Figure 2.6. The 

two partitions are independent of each other; each characterizes different pro

perties of the simplified segment and associated boundary arcs. 

The axis curvature of a simplified segment reflects the degree to which the 

associated boundary arcs curve in the same direction, while object curvature 

atraiqht _. o,o 

-,+ 

-.-

Figure 2.6.: Axis shapes (after [Blum7Ba]) 
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reflects the symmetry of the associated boundary arcs about the simplified seg

ment. If, for example, disc radius is held constant while axis curvature is 

changed, the associated boundary arcs may change from convex, to straight, to 

concave in a manner depending on the curvature. Indeed, for normal points, 

Blum and Nagel[Blum7Ba] give an explicit functional relationship among axis 

curvature, object curvature, object angle, and associated boundary arc curva

tures. Using this relationship, they have been able to characterize the behavior 

of the boundary arcs associated with each simplified segment in terms of the 

width and axis shapes ofthe segment. 

Other simplified segment partitioning schemes can be devised. 

Bookstein[Bookstein7Ba], for example, sketches a multivariate statistical tech

nique for analyzing simplified segments by computing principal components of 

samples of the vector valued function T (defined on page 22). Most likely, no sin

gle partitioning scheme is adequate for all purposes. 

2.5. On the Elegance of the SAT 

In Section 1.5, I stated my belief that the elegance of Blum's contribution is 

due, in part, to the manner in which he exploited simultaneously and naturally 

two of the three shape description paradigms described in Section 1.4. Now that 

his method has· been sketched, I shall elaborate. 

In many endeavors, an appropriate representation is the key to parsimony 

and clarity. The mathematician and physicist find coordinate systems pecu

liarly suited to their problems, the programmer data structures that simplify 

his tasks. So too, the practitioner of shape description must find representa

tions that bring to the fore that information considered essential. Marr and 

Nishihara[Marr7Ba] identify three criteria for judging the effectiveness of a fig

ure representation: 

Accessibility. Can the representation be computed from the data avail-



able? Is the time and space required for the computation acceptable? 

Scope and uniqueness. For what class of figures is the representation 
suitable? Is there a unique representation for each figure? 

Stability and sensitivity. There is an inherent conflict between stability 
and sensitivity. To be useful, it must be possible to derive from the 
representation "similar" descriptions for all figures of the same shape. 
Yet, simultaneously, it must be possible to represent subtle differences 
between figures. These conflicting desiderata can be met only if it is 
possible to decouple the stable, more constant figure properties from 
properties sensitive to subtle variations. In the terminology of Section 
1.4, it must be possible to "represent, then discard." 

Blum's representation fares well by these criteria. As we shall discuss in 
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Chapter 5, a number of algorithms for computing the SAT from other represen-

tations, all of practical space and time complexity, have been developed. The 

scope of the SAT includes not only figures as I have defined them, but also 

objects with holes and/or a finite number of corners. Moreover, the representa-

tion is unique, coordinate-system independent, and imposes no loss of informa-

tion. Other representations, too, satisfy the first and second criteria. The third 

criterion is the most demanding: no known representation c.ompletely satisfies 

it. The SAT comes close. 

By combining two of the three shape description paradigms, "represent, 

then discard" and decomposition, Blum's methodology for deriving descriptions 

from the SAT representation provides an attractive mechanism for dealing with 

the demands of the third criterion. As I have described, the SAT induces a 

unique decomposition of the figure. The decomposition is particularly attractive 

because the resulting primitives are highly constrained: each is either a two-

sided part or a collection of circular sectors. Each two-sided part is determined 

by a simplified segment whose curvatures describe the overall "curvature 

trend" of the part. Varying sensitivity is obtained by discarding more or less of 

the curvature information, for example, by partitioning the simplified segment 

into intervals where the axis curvatures lie within certain ranges, rather than 
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just considering the algebraic signs of the axis curvatures. Similarly, the same 

process applied to object angle and object curvature achieves more or less sen

sitivity to the symmetry of the boundary arcs about the simplified segments. 

We now turn to a different aspect of the same problem. Two symmetric 

axes are said to have identical topologies if their directed graphs are isomorphic 

(ignoring labels). Over the range of figures for which the topology of the sym

met:ric axis is constant, the process described above seems adequate for choos

ing an application-dependent tradeoff between stability and sensitivity. For 

ranges of figures where the topology is not constant other techniques are 

required. If a threshold on the radius of the maximal discs that comprise a fig

ure is imposed from below, the sensitivity of the symmetric axis topology to 

small, local perturbations of the outline is reduced. Similar results can be 

achieved by placing a threshold on the ratio of boundary arc length to simplified 

segment length[Blum78a]. 

2. 6. Unsolved Problems and Research Directions 

Though the two-dimensional symmetric axis transform is reasonably well 

understood, several open problems, some fundamental, remain. 

(1). Given a subset of the plane (or, more generally, a subset of Rn} and a real

valued function defined over that subset, several sufficient conditions are 

known that ensure that the subset-function pair are the symmetric axis 

and radius function for some outline. Do necessary conditions exist and, if 

so, what are they? (This problem was posed in [Calabi68a]). 

(2} Consider again the rubber sheet analogy of Section 1.4.3. Draw an outline 

on a rubber sheet and find its symmetric axis and radius function. Then 

stretch the rubber sheet, transforming the outline into another, and com

pute the symmetric axis and radius function of the new outline. The dif

feomorphism that maps one outline to the other need not, in general, map 
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one symmetric axis to the other. Is it possible t.o characterize 

diffeomorphism-symmetric axis pairs for which the symmetric axis topol

ogy remains constant? 

(3) To use Bookstein's biorthogonal grids (described in Section 1.4.3) to study 

shape change, one must first compute the transformation from one figure 

to the other by interpolating from homologous landmarks. For figures with 

few landmarks, there is little information to guide the interpolation. I pro

pose computing the symmetric axis of each figure separately and then 

interpolating the transformation from corresponding branch points and end 

points of each. When both symmetric axes share the same topology, the 

correspondence is easy to find. When the topologies differ, the correspon

dence is more difficult to find and may require elimination of ''unimpor

tant" simplified segments from each symmetric axis. This problem is inti

mately tied to the next one. 

(4) Recently, a few researchers have begun to use relational homomorphisms, 

homomorphisms from one relation to another, to match structural shape 

descriptions against prototype descriptions[Haralick7Ba, ShapiroBOa, 

ShapiroBla]. This formulation is particularly interesting because the model 

on which it is built deals explicitly with inexact matching. Can this work be 

applied to the problem of comparing two labeled graphs derived from 

Blum's methodology? 

(5) Outlines in the plane are but a specific case of closed curves on two

dimensional manifolds. The definition of the SAT is easily extended to this 

more general case by measuring distance alang geodesics in the manifold. 

Blum's shape description methodology can probably be adapted to this 

more general situation. 
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{6) One application of shape description is the study of variation within classes 

of objects. For simplicity, assume a constant symmetric axis topology over 

all objects of the study. Are there any meaningful statistics that could be 

applied tomeasures derived from the SAT to analyze within-class variation? 

{7) Image segmentation algorithms able to use a priori information have been 

developed {see e.g. [Ashkar78a]). Can SAT based models be used as a 

source of such information? 



CHAPTER 3 

THE 3D SYMMETRIC AXIS TRANSFORM 

3.1. Basic Definitions and Properties 

We must begin by defining the domain of our discussion, outlines and fig

ures in three-dimensional space. An outline is a smooth, closed surface that 

partitions the complement of the outline into two disjoint sets, one bounded, 

called the inside, and one unbounded, called the outside. This excludes surfaces 

having no distinct inside and outside, such as the Klein bottle, surfaces with 

corners, edges, or cusps, such as polyhedra, and surfaces with boundary curves, 

such as a sphere with a circle cut out of it. As in two dimensions, a figure is an 

outline together with its inside. For simplicity, throughout the remainder of the 

dissertation we consider explicitly only outlines that are topologically equivalent 

to a sphere, those outlines that can be formed by stretching, but not tearing, a 

sphere. However, except where otherwise noted, this restriction only simplifies 

the exposition of the ideas and results presented hereafter; it does not reduce 

their generality. 

We turn now to the SAT in three dimensions. The definitions of the two

dimensional SAT given in Section 2.1, apply in three dimensions as well, the only 

difference being that maximal discs become maximal spheres. As in two dimen

sions points on the symmetric axis can be classified into three types: end points, 

1 Much of this chapter will appear in the journal Computer Graphics and Image Processing. It is 
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normal points, and branch points. End points and branch points are, in general, 

no longer isolated points, but rather, curves in space. Open connected sets of 

normal points2, again called simplified segments, are bounded by possibly 

degenerate space curves of branch and end points. In general, each simplified 

segment is a surface rather than a curve, though they sometimes degenerate 

into a space curve. As before, the figure can be decomposed into a collection of 

two-sided parts each associated with a simplified segment, together with pieces 

of canal surfaces3 each associated with a branch or end point curve[Blum79a]. 

In the remainder of this chapter, we develop the mathematical tools we 

shall need in our analysis of simplified segment behavior in three dimensions. In 

particular, we define a notion of radius curvature and derive a relationship 

among boundary curvature,· simplified segment curvature, and radius curvature. 

Then, in Chapter 4, we shall use that relationship to partition each simplified 

segment into a collection of canonical primitives. 

3.2. Background 

It is necessary to digress briefly to discuss curvature of smooth surfaces in 

general. Denote the tangent plane to S at P by TpS. In a small neighborhood of 

P the curvature of S can be characterized by examining the curvature of curves 

on S through P. Consider the normal sections at P, those curves defined by the 

intersection of S with planes containing the normal at P. Each normal section is 

a curve in the plane defining it, and hence has a well-defined curvature at P that 

measures the deviation of the curve from its tangent line through P. Further, 

used here by permission of Academic Press, Inc. 
2I implicitly assume that such bounded, connected sets exist. Though I offer no proof, I offer the 

following argument. The maximal sphere centered on a normal point touches and is tangent to the 
outline in two distinct points. By making an infinitesimal change in the sphere radius it can be 
moved slightly while maintaining contact with the tangent plane at each touchine point. Since the 
outline is smooth, its tangent plane at any point on the outline approximates the outline in an open 
neighborhood about that point. Hence, the new position of the sphere defines a new normal point in a 
neighborhood of the original one. 

3A canal surface is the envelope of a family of spheres, possibly of varying radius, with centers 
lying on a space curve[Hilbert52a). 



33 

since. the tangent line lies in TpS, the normal section curvature also measures 

the deviation of S from TpS in the direction of the tangent line. By rotating the 

defining plane about the normal, we get all normal sections and their curva

tures, and hence a complete characterization of the deviation of the surface 

from its tangent plane. See Figure 3.1. 

To express all of the normal section curvatures in a finite way, we (arbi

trarily) call one side of the tangent plane the positive side and the other the 

negative side, and attach a sign to the normal section curvatures according to 

whether the normal section lies on the positive or negative side of the tangent 

plane. It can then be shown (e.g., Section 4-8, [Millman77a]) that as the defining 

plane is rotated about the normal, either the normal section curvature assumes 

its maximum and minimum values, called p'rincipal curvatures, in two orthogo

nal directions, called principal directions, or the normal section curvatures are 

constant. Further, each normal section curvature is completely determined by 

the principal curvatures and the angle between the defining plane and the prin

cipal directions. 

Figure 3.1.: Geometry of Surface Curvature 
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The product of the principal curvatures is called the Gaussian curvature of 

Sat P, and is denoted Ks. while their average is its mean curvature, Hs. The 

behavior of S at P is characterized by the signs of the Gaussian and mean curva-

tures. For Ks > 0, in a local neighborhood of P, all normal sections lie on one 

side of the tangent plane, the side determined by the sign of the mean curva-

ture. The surface is cup-shaped at P. On the other hand, forKs < 0 the normal 

sections about one principal direction lie above the tangent plane and those 

about the other lie below, giving S a saddle shape at P. The remaining case, 

Ks = 0, is a transition between the two: in one principal direction the surface 

has flattened while in the other it may remain curved. When both principal cur-

vatures are zero, S is planar at the point and the principal directions cease to 

exist. For a fascinating discussion of this and other interpretations of both 

Gaussian and mean curvature, see Ch. IV of [Hilbert52a]. 

3.3. Characterization of Sphere Radius 

Now, let S be a simplified segment in R3 and let P be a point contact normal 

point on S, i.e. the maximal sphere centered at P touches the outline in two dis-

joint touching points, sometimes called the boundary points associated with P. 

Further, we assume that S and the radius function, r (defined precisely below), 

are twice continuously differentiable at P.4 See Figure 3.2. 

We now turn to characterizing the behavior of the sphere radius. In two 

dimensions, disc radius was analyzed as a function of a single parameter, arc 

length along the symmetric axis. Unfortunately, in three dimensions no single 

parameter suffices. Instead, we examine the first and second derivatives of the 

radius function along curves in infinitely many directions through the point P. 

4This assumption can be "justified" using an argument m'..!ch like that used in footnote 2, but 
using second, rather than first order approximations to the outline. 
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Figure 3.2.: 3D SAT Geometry 

Pick any direction about P. Then, the first directional derivative of the 

radius function at P in the specified direction is the first derivative of the radius 

function with respect to arc length along any curve with tangent vector lying in 

that direction. It is easy to show that the first directional derivative is well-

defined, i.e. is independent of the choice of the curve in the specified 

direction[cf. [Millman77a], sec. 4-7]. 

Similarly, the second directional derivative of the radius function at P in 

the specified direction can be defined to be the second derivative of the radius 

function with respect to arc length along the curve. Unfortunately, this is not 
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well-defined without constraining the choice of the curve. Since we are 

interested in the behavior of the radius function, not in the curvature of the 

curve in S, we require the curve to be straight in a small neighborhood of P. 

More precisely, we require that in an infinitesimal neighborhood about P, the 

orthogonal projection of the curve onto TpS be a line in the specified direction; 

There is a unique curve, called a geodesic, that satisfies this condition (Section 

4-5, [Millman77a]). Hence, we define the second directional derivative in a 

specified direction to be the second derivative of the radius function with 

respect to arc length along the geodesic in that direction. 

Below, we prove that, like normal section curvatures, the second directional 

derivative of the radius function assumes its maximum and minimum values in 

two orthogonal directions which, by analogy, I call the principal curvatures and 

principal directions of the radius function, respectively. Further, the second 

directional derivative in any direction is completely determined by the principal 

curvatures and the angle between the direction and a principal direction. I also 

define the Gaussian and mean curvatures of the radius function analogously, . . 

and denote them KR and HR. 

3.4. Curvature Relations 

We can now state our goal more precisely. We seek a functional relationship 

among the Gaussian and mean curvatures of S at P, the Gaussian and mean cur-

vatures of the outline at the associated boundary points, and the Gaussian and 

mean curvatures bf the radius function at P. In Section 3.4, I present the 

desired relationship, limiting the mathematical prerequisites to the background 

material presented in Sections 3.2 and 3.3 and an exposure to vector calculus 

such as can be found in [Thomas60a]. I shall prove this relationship in Section 

3.4.1. 
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3.4.1. Formulation 

We begin by imposing local curvilinear coordinate systems about normal 

points on simplified segments, thus bringing the techniques of calculus to bear. 

Let S be a simplified segment in :R3. Except at finite contact normal points, 

which we ignore hereafter, we assume S to be a C2 surface. Hence if we let U be 

an open subset of H2 with coordinates u 1 and u 2, we can lets: U-+S be a C2 coor-

dinate patch (surface patch) on S with linearly independent partial derivatives 

~denoted by""· and called coordinate vectors. au\ . ....,. 

Choose a set of basis vectors for R3 and let Y and Z be two vectors 

represented in terms of that basis. To distinguish between a vector, X and the 

n-tuple that represents it with respect to some basis, we denote the n-tuple by 

X. Then, an inner product of Y and Z. denoted <Y.Z>. is given by yT GZ, where G 

is a 3 by 3 matrix such that <Y,Z> = <Z.Y> and <Y.Y> > 0 for all non-zero Y. For 

the remainder of this chapter, we will use the particular inner product defined 

by G = I (the identity matrix) when the basis vectors are orthonormal. This is 

nothing more than the dot product, yT Z, often used in R3• Though the represen-

tation of the inner product depends on the basis vectors chosen, the inner pro-

duct itself is basis-independent. Hence we use < > to denote the inner product 

of two vectors, regardless of the basis used to represent them. 

It is always possible to choose s so that the coordinate vectors are ortho-

normal at the point P = s(O,O) (Section 6-2, [Millman77a]). Thus, without loss of 

generality, we chooses so that <si(O,O),si(O,O)> = oii• where oii is the Kronecker 

delta. 

The tangent plane to S at s(u 1, u 2) is a two-dimensional subspace of R3 

spanned by the coordinate vectors s 1 and s2. Consequently, the unit normal at 

( 1 2) ( 1 2 ) . S1 x Sz s u , 'U , ns v. , u , 1s , / . Similarly, let B and C be the boundary surfaces 
! s 1Xs2 
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associated with S as shown in Figure 3.2, let b(u 1,u2) and c(u 1,u 2) be the points 

on B and C associated with s(u 1, u 2 ), and let r: s.-. R1 map a point on S to the 

radius of the maximal sphere centered at that point. 

The maximal sphere centered at s(u 1, u 2) is tangent to the boundary sur-

face Bat b(u 1,u2) with the boundary normal, no(u 1,u2), lying along a radius of 

the sphere. See Figure 3.2. Letting r(u 1,u2) denote r(s(u 1,u2 )), 

with the choice of sign determined by the direction of no. Since no itself is 

determined only up to sign, choose no pointing away from S as shown in Figure 

3.2, giving 

(3.1) 

Similarly, 

(3.2) 

Let a(t): IcR1.-.S be the geodesic on S passing through P, where 1 is some 

interval of R1 containing 0, t is arc length along the curve, and a(O) = P. Let X 

be the tangent vector of a at P, ~~ (0). Since a is parameterized by arc length 

and lies on S, X is a unit vector in the plane TpS. the tangent plane of Sat P. 

Definition 3.1: The first directional derivative of r in the X direction is 
· dr(a) 

rx = (0). • 
dt 

Definition 3.2: The second directional derivative of r in the X direction is 
· d 2r(a) 

r = . (0). 8 . 
. XX dt2 

We let At and /\2 , At~ Az, denote the principal curvatures of S at P and let e 1 

and e2 be unit vectors in the corresponding principal directions. Since each 

principal direction is determined by a line in TpS, there are two unit vectors 

each from which to choose e 1 and e2• As shown below, we can, without loss of 
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generality, require that e 1xe2 = n,; the results of this chapter are independent 

of the choice made from the remaining two possibilities. Similarly, let 7 1 and 72, 

')'1 ~ ?'z· denote the principal curvatures the radius function and let f1 and f2 

denote the corresponding principal directions. 

3.4.2. Boundary Curvature Equations 

In two dimensions, the object angle, the angle between the tangent to the 

symmetric axis at a point and the tangent to the associated boundary point, is 

determined by the arcsin of the first derivative of the radius function. A similar 

relation holds in three dimensions. 

Theorem 3.1: Let X be a unit vector in TpS. Then, the directional derivative of r 
in the X direction, rx. is -<nb .X>. II 

That is, in three dimensions, the angle between a symmetric surface tangent 

vector at a normal point and the normal at the associated boundary point is 

determined by the arccos of the first directional derivative of the radius func-

tion in the direction of the tangent vector. An analogous result holds for nc. 

The major result of the chapter follows: 

Theorem 3.2: Let 

(3.3) 

(3.4) 

Then, the Gaussian and mean curvatures of the boundary surface Bat b(O,O) 
are 

HB = h-rlc 
(3.5) 

1-2rh +r2lc 

and 

KB = k 
(3.6) 

1-2rh+r2k · 
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• 
These equations give the Gaussian and mean curvatures of the boundary sur-

face, B, in terms of properties of the radius and symmetric surface, together 

with the angle between the boundary normal, Db, and the symmetric surface 

normal, Ds· Analogous equations for boundary surface Care obtained when the 

qualifying subscripts b and B are replaced by c and C respectively. 

At first glance, it appears that knowledge of the boundary normal is prere-

quisite to evaluating h and k, and hence the boundary curvatures. This is not 

the case. Since 11s, e 1, and e2 are orthonormal, 

Choosing the sign of <ns ,nb > chooses either boundary surface B or C. As 

symmetry suggests, and application of theorem 3.1 proves, nb and De are reflec-

tions of each other through the symmetric surface tangent plane. Thus, by sym-

metry about the tangent plane, <ns ·Db> = <De ,-ns >and hence 

and (3.4), the curvature relations hold for either boundary, the choice being 

determined by the sign. 

To understand the geometric significance of h and k, consider the surface 

B' defined by 

b'(u 1, u 2) = s(u 1, u 2)+r'(u 1, u 2)nb (u 1, u 2), 

.where r'(u 1,u2 ) = r(u 1,u2 )-r(O,O). It is not difficult to see that B' passes 

through the point P = s(O,O) and at each (u 1, u 2) has the same unit normal vee-

tor as does B. B' and B are called paraUel surfaces. See Figure 3.3. Since the 

derivatives of r' and rare identical, we can evaluate (3.5) and (3.6) at (0,0), sub-

stituting r' for r, obtaining k = Ks·· and h = Hs·· Thus, the terms h and k in 

(3.5) and (3.6) are the mean and Gaussian curvatures, respectively, of the 



Figure 3.3.: Surface Parallel to Boundary Surface 

surface parallel to B passing through P. Therefore, (3.5) and (3.6) express the 

change in boundary curvature due to change in distance from the symmetric 

surface. Blum and Nagel[Blum78a] use a similar relationship in the two

dimensional case to derive boundary curvature from parallel curve curvature. 

Analogous results hold for the surface parallel to C through P when the sign of 

<ns .no> is changed. 

41 

Though the symmetric surface and radius function together contain no 

information not contained in the boundary surfaces, examining each alone 

reveals different aspects of the shape of the boundary surface. Intuitively, sym-
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metric surface curvature reflects the overall "curvature trend" of the two-sided 

piece, i.e. the degree to which the boundary surfaces curve in the same direc-

tion. Radius curvature, on the other hand, reflects the symmetry of the bound-

ary surfaces about the symmetric surface, the degree to which both boundary 

surfaces curve in opposite directions. 

To see this, observe in (3.3) that symmetric surface curvatures X1 and X2 

contribute with equal magnitude but opposite sign to the mean curvature of the 

two boundary surface parallels, while radius curvatures /I and /z contribute 

equally to each. Since the boundary surface normals are directed away from 

the symmetric surface, boundary surface mean curvatures of opposite sign 

imply curvature in the same direction. Further, it can be shown that the signs 

of the Gaussian and mean curvatures of each boundary surface are the same as 

the signs of the curvatures of the corresponding parallel surface. Hence, our 

intuitive notions of the meanings of symmetric surface curvature and radius 

curvature are confirmed. 

3.5. Proof of Curvature Relations 

In this section, we prove the results presented in Section 3.4. 2, assuming 

results from the elementary differential geometry of surfaces[Millnian77a, 

Stoker69a]. 

3. 5.1. Curvature Quadratic Forms 

First, we show that the second directional derivative of the radius function 

is a quadratic form. Hence, by properties of quadratic forms (Section 17, 

[Gel'fand61a]), the principal curvatures and principal directions exist and 

behave as claimed in Section 3.3. 

Lemma 3.3: r:xxis a quadratic form over unit vectors, X in TpS. 

Proof: For two scalar functions oft, cx 1 and cx2 , cx(t) = s(cx1(t),cx8(t)). Since TpS is 
a vector space spanned by s 1 and s2, there are scalars >..ri such that 
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2 . da. 2 dai dai · 
X= i~/"""Bi· Using the chain rule, dt= i~l ~·so '7t-<D) =X". Applying 

the chain rule again, 

dr{a) (t) = rx = t ar(~) dai . 
dt i=l au dt 

(3.7) 

Differentiating and substituting X' for dd~i , 

The geodesic a is characterized by the differential equations 

d2ak 2 2 dai dai 
-dt2 = -~ ~rt;"dtdt' k = 1,2, •= lJ =1 

where the rt are the Christoffel symbols of the second kind of S 
[Millman77a, Stoker69a], which measure the tangential components of the 
second partial derivatives sij· Combining the last two equations, denoting 

ar(~) by ri and a 2~(s)_ by rii• and rearranging terms, we see that since 
au• au•auJ 

Tij = Tji and rt = r~, 1"JX is a quadratic form in X; 

rxx: = Q(X) = XT QX, with (3.8} 

(3.9) 

II 

For any unit vector X in TpS. the second directional derivative of r in the direc-

tion defined by X is given by Q(X). 

Since Q represents the quadratic form Q(X) with respect to an orthonormal 

basis of TpS, over all unit vectors X in TpS, Q(X) assumes its minimum value at 

the eigenvector of Q corresponding to the smallest eigenvalue, y 1 and its max-

imum value at the eigenvector corresponding to the largest eigenvalue, y2. 

Further, the values assumed are y 1 and y 2 respectively and the eigenvectors are 

orthogonal if the eigenvalues are distinct (Section 17, [Gel'fand61a]). By solving 

the characteristic equation of Q, it is easy to see that y 1y 2 = det( Q) and 
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Similarly, the second fundamental form of S, TI(X), is a quadratic form over 

unit vectors in TpS that gives the curvature of the normal section in the direc-

tion X[Millman77a, Stoker69a]. Letting Ls = [Ls,
1

] be the matrix defining the 

second fundamental form with respect to the ~s 1 ,s2 ~ basis of TpS, we have 

ll(X} = xr LsX. 

Thus, two quadratic forms are defined at each point of S. One, the second 

fundamental form, gives the curvature of normal sections through the point in 

any direction, while the other gives the second derivative of the radius along the 

geodesic in the same direction. Since the normal to a geodesic is everywhere 

normal to the surface on which it lies, the geodesic and the normal section 

share a common normal vector. By construction, they have the same tangent 

vector and hence, the same curvature (cf. [Stoker69a], sec IV-12). Therefore, 

one quadratic form measures the curvature of S along geodesics and the other 

measures the radius function second derivative along the same geodesics. 

3.5.2. Matrix Formulation 

In this section, we derive an equation relating the matrices, Q and Ls, that 

determine the radius and symmetric surface curvatures respectively, to the 

matrix defining the second fundamental form, and hence the curvature, of each 

boundary surface. 

Dropping explicit mention of (u 1,u2) and taking partial derivatives of (3.1), 

(3.10) 

We can solve for ri by taking the inner product of both sides of (3.10) with nb. 

Since nb is a vector of constant magnitude, it is perpendicular to its derivative, 

nb.· Thus, since ~ is perpendicular to nb by definition, 
t 

(3.11) 
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Taking partial derivatives again, 

2 
Using Gauss's formulas[Millman77a, Stoker69a], Bii = Ls;.

1
ns+ ~ r~sk• and the 

. k=l 

definition of the coefficients of the second fundamental form[Millman77a, 

Stoker69a], Ls .. = <Bi••lls >, we obtain ., -
2 

rii = -Lsii <ns•D.o >- ~ r~<sk·D.o >-<S£.n111 >. 
k=l 

(3.12) 

Analogous results for boundary surface C follow from (3.2), though for brevity we 

defer further consideration of C until the end of this section. 

Define the matrices Go= [Go,)= [<bi,bi>] andL0 = [L11"1
] representing the 

first and second fundamental forms of B at b( u 1, u 2) with respect to the 

of constant magnitude, the n 0 • are perpendicular to it. Hence, they lie in the 
' 

tangent plane and are expressed as a linear combination of the b.,; by 

Weingarten's equations 

(3.13) 

where W0 = [W0 J] = Gb - 1L0 , and is called the Weingarten map of B [Millman77a, 

Stoker69a]. Letting A = [ <si,bi>] and combining Weingarten's equations with 

(3.9), (3.11), and (3.12), 

2 
AW0 = [rii]+<ns.n0 >Ls- ~ r.~;[r~] 

k=l 

(3.14) 

Equation (3.14) relates boundary curvature, as expressed by Wb, to radius 

curvature, as expressed by Q, and to symmetric surface curvature, as 
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expressed by 4. We seek the boundary curvatures in terms of properties of the 

radius and symmetric surface. Our approach is to solve for the two invariants of 

the matrix equation (3.14), the determinant and trace. We then solve the result-

ing two equations simultaneously. 

3.5.3. Determinant Equations 

Substitute Weingarten's equations (3.13) into (3.10) and solve for the si• giv-

ing 

(3.15) 

(3.16) 

. . f1+rWd rW0 r ] 
Recalling that A = [ <~.b1 >] and defining T = l rWbJ l+rWb;!j• we use (3.15) 

and (3.16) to obtain A= T~ and consequently, since Wb = ~ -!Lb, that 

AWb = TL0 • Substituting into (3.14) then gives 

(3.17) 

To evaluate the determinant of the left side of (3.17), we use theorem 3.1 

(which we now prove} and an additional result: 

Theorem 3.1: Let X be a unit vector in TpS. Then the directional derivative of r 
in the X direction, rx. is -<nb ,X>. 

2 
Proof: Let X1 and XZ be the components of X in the !s1, s2 l basis, i.e. X= 2.:; Xi si. 

2 2 i=l 

So, <~.X>= L;Xi<~.~> which, by (3.11), is- 2:;Xiri. Thus, by (3.7), 
i = 1 i= I 

rx= -<~.X>. a 

Lemma 3.4: Letting gb = det( ~ ), g0 det2( T) = <ns .no >2. 
Proof: Recall that [ <si ,s1 >] = !, where I is the two-by-two identity matrix. Then, 

using (3.15) and (3.16), by straightforward algebra, it is not difficult to show 
that 

(3.18) 

-r1r 21 
2 ]· Taking the determinant of both sides and applying 

rl 
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theorem 3.1, 

where the last step follows because n 5 , s 1, and s2 are orthonormal. • 

Thus the determinant of the left side of (3.17) is 

det(TLb) = det(T)det(Lb) 

<ns ,nb >2det( ~ -l Lb) 
= det{T) (3.19) 

= 
<ns,nb>zKB 

det(T) 

where Kn = det( Wb) is the Gaussian curvature of B. 

We now evaluate the determinant of the right side of (3.17). Recalling that 

the determinant is invariant under change of basis, we change from the ~ s 1, s2 ~ 

basis of TpS to that defined by the eigenvectors of L5 • Let e 1 and e 2 be eigenvec-

tors of L5 corresponding to the eigenvalues A.1 and A.2 respectively. Since eigen-

vectors are determined only up to a non-zero multiplicative constant and since 

e 1 and e 2 lie in the tangent plane TpS and are orthogonal to each other, we can, 

without loss of generality, choose the ei to be unit vectors so that e 1 xe2 = n 5 • 

Similarly, let f 1 and f 2 be unit eigenvectors of Q corresponding to the eigen-

values y 1 and /'2 so that f 1xf2 = D.s· In terms of their respective eigenvector 

bases, the transformations represented by Ls and Q in terms of the !s1,s2 l basis, 

. fr. 1 0 1 fy 1 0 1 fr. 1 0 1 fy 1 0 l 
are represented by t 0 AzJ and [ 0 ?'zJ· i.e. L5 ::::: [ 0 AzJ and Q ::::: [ 0 ?'zJ· where ::::: 

denotes matrix similarity. 

Representing both transformations in terms of the !e1,e25 basis requires 

examining the relationship between the ei and the fi. Let f) be the 
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counterclockwise angle from e 1 to f 1• Then, with respect to the ~f 1 ,f2~ basis, 

r cos f7 sinel 
~ = ®fi, where a= l-sin fJ cos el· As shown in Figure 3.4, fJ is determined only 

up to a multiple of rr; thus, a is determined only up to sign. Changing from the 

f;,1 o 1 f11 o 1 r"l o 1 
~f 1 .f2 ~ basis to the ~e 1 ,e2 ~ basis, l 0 /'

2
j ~ ±®-1l 0 'Y

2
j(±a) = er lo /'

2
ja. There-

f'Y1 o 1 r,\1 o 1 
fore, Q+<Ds.no>4 is similar to arlo 'Y

2
ja+ <ns.no>[o ,\zJ· which is easily seen 

to have a determinant of 

<D,s .no >2,\tA.z + 'Yl?'2 + <ns.Do >(A-t'Yt +Az?'z-(/'t...;../'z)(,\t-,\z}cos2 fJ) . (3.20) 

Note that (3.20} is independent of fJ if either ')'1 = f'z or ,\1 = ,\2. Consequently, 

when either pair of eigenvalues fail to be distinct and the principal directions 

are not well-defined, arbitrary directions can be chosen. 

Combining (3.19) and (3.20) and rearranging terms, 

Recall that e 1 = f 1cos6-f2sinf7 and e2 = f 1sinf7+f2cosf7. Equation (3.21) can be 

f'Yl 0 1 
simplified by observing that Q( e 1} = [cos fJ -sin f7] l O /'zJ [cos fJ -sin fJ] T = 

'2 
Figure 3.4.: Relation between principal directions 
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becomes 

(3.22) 

3.5.4. Trace Equations 

The second equation relating boundary curvature to radius and symmetric 

surface curvature results from taking the trace of (3.14). Recalling that 

A= T~. it follows from (3.14) and (3.18) that 

gbdet2(T)(TT)- 1 Wb = (Q+<ns.~>Ls)-R(Q+<ns.~>Ls) · 
Hence, since tr(Wb) = 2Hn. det(Wb) = Kn. tr(Q) = 2HR• and tr(Ls) = 2H8 • taking 

the trace of both sides gives 

Two observations enable us to evaluate tr(RLs) and, by analogous reasoning, 

tr(RQ). First, simple algebra reveals that tr(RLs) is nothing more than the 

second fundamental form of S, evaluated at [r2 -r1], [r2 -r1]Ls [rz -rtF· 

Second, with respect to the ~e 1 ,e2 ~ basis, the second fundamental form is 

fr..l 0 1 
represented by the diagonal matrix [o ,x.

2
j. Hence, letting [a 1 a 2 ] represent, 

with respect to ~e 1 , e2 5, the vector represented by [r2 -r1] in the ~s 1 ,s2 ~ basis, 

fr..l 01 
tr(RLs) = [al a2J[o Azj[al a2]T. 

Let V be the matrix of transition from the {s1 ,s2 ~ basis to the ~e 1 ,e2 ~ 

basis[Gel'fand61a], i.e. the matrix such that [r2 -r1F = V[a 1 a 2]T. Since the 

columns of V are the coordinates of the ei in the !s1,s2 j basis, and since the ei 

are orthonormal, vT V =I, where I is the two-by-two identity matrix. Thus, 

det( V) = ±1 which is non-zero. Therefore, we can solve for [a 1 a 2] obtaining 
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2 
±[r1 V12+r2 V22 -r1 V11 -r2 V21 ]. Since by the definition of V, ~ = l: Vjisi. by using 

j=l 

{3.11) we see that [a. 1 a.2] = ±[ -<I4 ,e2> <I4 ,e1>] and hence, that tr(RLs} = 
A.1 <I4 ,e2>2 +A.2<I4 .e1>2

. Analogously, tr(RQ) = ')'1 <nb .f2>2+')'z<I4 ,f1>2• Finally, 

combining these results with (3.23), Lemma 3.4, and the definition of mean cur-

vature as the average of principal curvatures, we obtain 

(3.24) 

which, using theorem 3.1, can be rewritten as 

(3.25) 

3. 5. 5. Solution 

The right sides of equations (3.25) and (3.22) are the right sides of (3.3) and 

(3.4) respectively. Recall that KB = det( Wb) and HB = *tr( Wb ). Then:, by 

straightforward algebra, det(T) = 1 +r2KB +2rHB· Substituting this into (3.22) 

and (3.25), we obtain a linear system of two equations in the two unknowns HB 

and KB• with solutions (3.5) and (3.6). This proves theorem 3.2. 

3.6. Summary 

Blum's symmetric axis transform defines a unique decomposition of a fig-

ure into disjoint, two-sided pieces, each with its own surface (axis) of symmetry 

and associated boundary surfaces. I have defined measures of the radius func-

tion and have shown ho·w these measures and the symmetric surface curvatures 

are related to the boundary surface curvatures. In particular, I have shown thut 

the Gaussian and mean curvatures of the boundary surfaces are determined by 

nine measures, each with a geometric interpretation: 
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(1) the symmetric surface curvature as determined by two principal curva-

tures and a principal direction; 

(2) the radius curvature as determined by two principal curvatures and a prin-

cipal direction; 

(3) directional derivatives of the radius function as determined by the angles 

between either boundary normal and the two symmetric surface principal 

directions, called width angles after Blum[Blum73a]; and 

( 4) the radius function itself. 

It will be shown in Chapter 4 that these measures, and the curvature relation-

ship derived from them, subsume the two-dimensional measures and curvature 

relationship given by Blum and Nagel[Blum7Ba]. 

3. 7. Unsolved Problems and Research Directions 

In three dimensions, many problems remain open. Certainly, all of the 

problems sketched in Section 2.6 exist in three dimensions. Many appear even 

more difficult in three than in two dimensions. I list here problems peculiar to 

three or more dimensions. 

(1) Though our discussion has been restricted to outlines topologically 

equivalent to a sphere, the definition of the SAT applies to other surfaces in 

Jt3. For example, the symmetric axis of a torus is a circle. To my 

knowledge, there has been no thorough study of the relationship between 

the topological classification of an outline5 and properties of its symmetric 

surface. Intuition suggests that the connectivity number6 of the symmetric 

surface of a closed surface is the same as that of the surface itself. 

5All outlines (as I have defined them in gene:ral) are known to be topologica~ly equivalent eithe:r 
to a sphere, to a torus, or to two or more tori "glued" together. See [Hilbert52a] or [Massey67a). 

60n a su:rface with connectivity number n, n-1 closed C'..!rves can be d:ravm on the surface 
without cutting the surface in two, but any n closed curves must cut the surface ~!1 at least two 
parts. 
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(2) If one deforms an outline locally, as if pushing on a balloon with a finger, 

one of two things will happen to the SAT. Either both the radius function 

and the symmetric surface will change slightly, but with no change in sym-

metric surface topology, or at least one new simplified segment will 

emerge. Which case occurs clearly depends on the relative magnitudes of 

the radius function and the radii of curvature (principal curvature recipro-

cals) at the deformed point. Can this dependence be made precise and a 

catalog of possible topology changes be produced7? 

{3) Blum[Blum79a] has noted that the touching sets of the maximal spheres 

can be closed curves on the sphere as well as points and areas. For 

instance, over intervals where the symmetric surface degenerates to a 

curve, all touching sets become circles. Blum suggests that examining the 

symmetric axis of the touching sets on the maximal spheres themselves, 

will yield information about the behavior of the symmetric surface near 

branch curves. This idea needs further, more detailed study. 

{4) Many computer "vision" systems use a shape description as a source of a 

priori information. Since the description is used to model the expected 

scene, it is essential to be able to compute rapidly the appearance of the 

model from different viewpoints. With the aid of a computerized symbolic 

manipulation facility, analytic solutions for portions of this problem have 

been obtained for certain classes of generalized cones[Brooks79a]. If 

three-dimensional SAT's are ever to find use in computer "vision" systems, 

similar problems will need to be addressed. 

(5) The definition of the SAT clearly extends to higher-dimensional closed rnani-

folds embedded in metric spaces. It also seems clear that topological pro-

perties of the symmetric surface are related to the topology of the 

7Though my knowledge of the subject is very shallow, I believe :his situation could be modeled 
with catastrophe theory[Poston78a, SaundersBOa]. 
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manifold. What is this relationship and is it of any value in studying the 

many unanswered questions about the topology of higher dimensional mani

folds? Can SAT's of higher dimensional manifolds be applied to describing 

shape change? 



CHAPTER 4 

SIMPIJFIED SEGMENT PARTITIONING 

4.1. Overview 

In this chapter, I use the. measures defined in Chapter 3, together with the 

relationships among them, to demonstrate several simplified segment parti

tions. The symmetric surface of the figure under study is split at branch curves 

into simplified segments. Then, each simplified segment is partitioned into 

regions, like countries on a map, where some set of properties holds over each 

region. This partition induces, in turn, a partition of each associated boundary 

surface into corresponding regions. As a result, each two-sided part {defined by 

a simplified segmentand its two associated boundary surfaces) is decomposed 

into a collection of two-sided primitives as illustrated in Figure 4.1. 

Though I describe below a particular partitioning scheme, withparticular 

sets of primitives, I make no claim that they are in any way optimal. Moreover, I 

believe that any general optimality claim is impossible, because the choice of 

primitives largely determines the compromise between sensitivity and stability 

{see Section 2.5). Since that compromise is inherently application-dependent, 

any optimality claim must be made in the context of a specific application. But 

even then there is little, if any, theory on which to base a criterion function to 

be optimized. Therefore, I make no optimality claim. Rather, I seek to 
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Figure 4.1.: Decomposition into Primitives 

(1) demonstrate the feasibility of the partitioning approach; 

(2) provide a catalog of primitives from which the shape description practi

tioner can pick and choose according to the goals of his analysis; and 
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(3) develop a mathematical framework useful for examining properties of the 

primitives set forth here and, hopefully, for extending this work or develop

ing new primitives. 

A simplified segment partition consists of two components: a primitive set 

and a primitive adjacency graph. The simplified segment is partitioned into a 

collection of disjoint primitives, each an element of the primitive set. The primi

tive adjacency graph, then, maintains information about the spatial relation

ships among the primitives comprising a simplified segment. 

Rather than introducing a single primitive set, I define independently three 

sets of primitives: width primitives, based on radius function properties, axis 

primitives, based on simplified segment curvatures, and boundary primitives, 
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based on boundary surface curvatures. Each set of primitives is derived from 

different properties of the simplified segment and radius function and hence 

captures different characteristics of the two-sided part associated with the sim-

plified segment. 1 For some applications it might be appropriate to use more 

than one primitive set, either separately or combined together to produce a 

new, larger, cartesian product primitive set wherein each primitive is an 

ordered tuple of two or three primitives, one from each of two or three primitive 

sets. However, the relationship between symmetric surface curvature, radius 

function curvature, and boundary surface curvature given by Theorem 3.2 

places constraints on which combinations of primitives from different primitive 

sets can exist. 

4.2. Width Primitives 

Using properties of the radius function alone, the simplified segment and 

its associated boundary surfaces can be partitioned into a collection of two-

sided primitives called width primitives. Since the radius function behavior 

reveals the symmetry of the boundary surfaces about the simplified segment 

(cf. Section 304.2), the primitives differ, one from another, solely in the way their 

boundary surfaces move toward or away from the simplified segment. It is 

important to realize that this is different than the behavior of the boundary sur-

faces themselves; the latter is a function of the symmetric surface curvature as 

well as of the radius function behavior. 

4.2.1. Overview 

To be useful, the set of width primitives must capture the qualitative 

behavior of the radius function while simultaneously ignoring extraneous detail. 

Therefore, we begin our discussion of width primitives by sketching a technique 

1Though the space I shall devote to discussing width primitives dwarfs the space devoted to the 
other two primitive sets, I do not mean to imply that width primitives are more important than the 
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for analyzing the qualitative properties of a function defined over a surface, here 

the radius function. Since the basic ideas differ little from those used to 

analyze the behavior of a surface defined by its height function over the x-y 

plane, I shall occasionally discuss the radius function as if it were such a sur-

face. I shall also use terms such as "horizontal" and "above," even though they 

are not coordinate-system independent concepts. I take these liberties only to 

build intuition. We shall see that the width primitives are defined only in terms 

of coordinate-system independent properties of the radius function. 

Many elementary calculus texts give a recipe for sketching rapidly the 

graph of a function of one variable y ::: f (x ), that is, for analyzing the qualitative 

behavior of the function. The recipe usually consists of three basic steps.2 First, 

find the values of x for which the first derivative is positive and for which it is 

negative. Then, at sign transitions, apply the second derivative test to deter-

mine whether each transition point is a local minimum or local maximum. To 

determine which parts of the curve "hold water" and which "spill water," find 

the values of x for which the second derivative is positive and for which it is 

negative. Finally. sketch the curve between the values of the function at the 

sign transitions found above, having the curve rise or fall as indicated by the 

sign of the first derivative, and "spill" or "hold water" as indicated by the sign 

of the second derivative. 

The width shapes defined by Blum and Nagel for the two-dimensional sym

metric axis (see Section 2.4) can be derived by applying the aforementioned 

recipe to the radius as a function of arc length along a simplified segment. Each 

width shape is an interval over which the signs of the first and second derivatives 

of the radius function remain constant. Width shapes are juxtaposed at local 

extrema and inflection points of the radius function. 

others. 
2See, for example, Section 3-4 of [Thomas60a]. 
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Unfortunately, in three dimensions there is no one-dimensional axis along 

which to perform the analysis. First and second derivatives of the radius func

tion become first and second directional derivatives. It therefore makes no 

sense to talk about signs of the first and second derivatives without specifying a 

direction. Instead, we use the local extrema of the radius function together with 

radius function curvature to split the simplified segment into primitives. Both 

are intuitively appealing. Radius function extrema indicate "pinches" and 

"bulges" in the boundary surfaces with respect to the simplified segment, while 

radius function curvatures provide qualitative information about the manner in 

which the boundary surfaces are pulling away from or moving toward the simpli

fied segment. 

In the remainder of Section 4. 2.1. I sketch briefly a partition comprised of 

two components, slope districts, based on first derivative behavior, and curva

ture districts, based on second derivative behavior. Then, in the following sec

tions, I present a more detailed, more formal, discussion of each component. 

Slope Districts. Slope districts are an old, and, in concept, simple idea. They 

were described more than a century ago by Cayley[Ca.yley59a] and by 

Maxwell[Maxwell70a] in the context of topography. More r:ecently, 

Warntz[Watntz66a] has reviewed the earlier work and suggested that their tech

niques might also prove useful in studying demographic and economic trends. 

Pfaltz[Pfaltz76a, Pfaltz7Ba] has preliminarily investigated using a similar tech

nique for organizing large spatial data bases. Finally, Johnson[Johnson7Ba] and 

Williams[Williams82a] are applying a variant of this approach to the higher

dimensional problem of interpreting electron density functions resulting from 

X-ray diffraction studies of crystals. Here, I describe the approach intuitively 

and informally, following Cayley and Maxwell. 
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To describe the idea concretely, let us return to the surface analogy men-

tioned above. In particular, imagine that the radius function is the height func-

tion of a mountainous island. Lacking a three-dimensional relief map, one would 

use a contour map to study the island's topography. At sea level there is a sin-

gle contour, a closed curve surrounding the island. As one moves higher, con-

tours bounding local maxima, called peaks, become smaller and smaller, ulti-

mately becoming a point. Likewise, as one moves lower, contours bounding local 

minima, called pits, diminish in size, becoming points as well. However in some 

cases, as one smoothly changes elevation, two or more contours meet at a single 

point, forming a single contour that cuts itself. That point, called a pass, is nei-

ther a local maxima nor a local minima, for moving to-and-fro one ascends, while 

moving left and right one descends. 

It is not hard to convince oneself that, in general3, pits, peaks, and passes 

are isolated from each other. It therefore is meaningful to consider paths 

between them. A curve drawn so that it crosses at right angles every contour it 

meets is called a slope line. At every point on a slope line there are two possible 

directions of travel, one ascending, one descending. Moreover, the two direc-

tions are the directions of steepest ascent and of steepest descent, respectively, 

from any point on the slope line. Therefore, if one travels along a slope line in 

the ascending direction, one must eventually reach a peak or a pass; traveling in 

the opposite direction, one must eventually reach a pit, a pass, or the island 

coastline. From any point on a slope line, the portion traversed by traveling in 

the ascending direction is called the ascending slope line from that point, while 

the other portion is called the descending slope line from that point. 

With the exception of pits, peaks, and passes, there is a unique slope line 

tbrough every point. All points whose slope lines descend to the same pit form a 

3Throughout Section 4.2.1, I use the term "in general" to mean that I am describing the situa
tion that "almost always" occurs. Treating degenerate situations here would be distracting. I deal 
'IY.ith them below. · 



region, called a dale, while those points whose slope lines ascend to the same 

peak form a hill. Therefore, the whole island can be divided into dales and, 

independently, into hills. 
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Since it is impractical to divide the island into hills and dales by examining 

individually every point on the island, we examine those slope lines that 

separate dales, called ridge lines, and those that separate hills, called course 

lines. In general, a ridge line ascends from a pass to a peak, never reaching a 

pit, while a course line descends from a pass to a pit, never reaching a peak. 

Ridge lines are the only slope lines that never reach a pit; hence, they bound 

dales. Similarly, course lines are the only slope lines that never reach a peak; 

hence, they bound hills. 

For our purposes, it is more useful to combine the division into hills and the 

division into dales to produce a single division into regions, which I call slope dis

tricts, than to consider hills and dales separately. Each slope district belongs to 

a single hill and to a single dale. Hence, all slope lines passing through a slope 

district ascend to a common peak and descend to a common pit. In general, 

slope district boundaries each consist of four parts: a ridge line from pass to 

peak, followed by another ridge line from peak to pass, followed by a course line 

from pass to pit, followed by a final course line from pit to pass to complete the 

cycle. See Figure 4.2. 

We now return to the initial problem, partitioning a simplified segment on 

the basis of radius function properties. Once again using the surface analogy, 

each slope district can be thought of as a mountain face together with the valley 

below it. At the bottom of the valley the associated boundary surfaces are 

"pinched" in, close to the simplified segment. As one climbs the mountain face, 

the associated boundary surfaces "bulge" out, each moving away symmetrically 

from the simplified segment until the mountaintop is reached. In a sense, each 
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Figure 4.2.: Slope District Boundary 

slope district is a region of constant first derivative behavior. 

Curvature Districts. To characterize the local convexity or concavity of the 

mountain face we must consider second derivative behavior. This is easily 

accomplished by further partitioning each slope district into curvature dis-
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tricts, regions of a slope district in which the algebraic signs of the radius func-

tion Gaussian and mean curvatures are constant. Where the Gaussian curvature 

is positive, the mountain face is either convex or concave according to whether 

the mean curvature is negative or positive; where the Gaussian curvature is 

negative, the mountain face is neither convex nor concave, but saddle-like. Zero 

Gaussian curvature is intermediate between the two: in one direction the face is 

flat while in a perpendicular direction it is convex or concave according to the 

sign of the mean curvature. 

4.2.2. Slope Districts 

In this section, I present a more formal development of the scheme 

sketched in Section 4.2.1. Most likely, a rigorous development of these ideas· 

already exists, though I have not found one. The radius function is a real-valued 
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function on a surface, while slope lines are integral curves of the associated gra

dient vector field. Such situations arise frequently in physics, where the real

valued function is called a potential Junction and the vector field is called a con

servative vector field. For example, in fluid mechanics, an incompressible fluid 

flow can be modeled by a two-dimensional conservative vector field. However, 

the emphasis is different than ours, with the result that the techniques there 

are slanted towards analyzing the flow itself, not the potential function associ

ated with it. 

In any case, I present here a more formal development of slope districts, 

striving to achieve an appropriate balance between intuition and rigor in order 

to expose issues not readily apparent by intuition alone; to construct a catalog 

ofpossible slope district types; to resolve difficulties arising from using slope 

districts on a surface with a boundary, such as the simplified segment, rather 

than on a surface without a boundary, such as the earth; and to provide a frame

work in which further work may be done. 

After reviewing some notation from Chapter 3, we begin by discussing criti

cal points of the radius function, the pits, passes, and peaks of Section 4.2.1. 

Then, we define slope lines as solutions of a system of differential equations and 

use elementary properties of such differential equations to prove simple, but 

useful, properties of slope lines. Under an appropriate non-degeneracy assump

tion, these properties, when combined with properties of the radius function 

near critical points, then yield an understanding of slope line behavior near crit

ical points and a definition of ridge and course lines in terms of slope line 

behavior near passes. With this understanding in hand, we define sfope districts 

as regions of the simplified segment each bounded by a cycle of alternating crit

ical points and ridge/course lines, and then enumerate all possible slope dis

tricts. 
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As in Chapter 3, let S be a simplified segment in R3, let U be an open subset 

ofF! with coordinates u 1 and u 2, and let s(u 1, u 2): U __. S be a coordinate patch 

on S. Further, assume4 that U = s-1(S). The radius function can be viewed 

either as a map from S to R1 or as a map from U to R1• In this chapter, as in 

Chapter 3, we most often take the latter view. Hence, let r(u 1, u 2) denote the 

radius of the maximal sphere centered at s(u 1, u 2), let ri. (u 1, u 2) denote 

or ( 1 2) t ( t 2) d t aer ( 1 2) Wh th . . --.- u ,u , and le rii u ,u .eno e . . u ,u . ere e mean1ng 1s 
au' au'~' 

clear from context, I drop expliciLmention of {u 1,u2). 

4.2.2.1. Critical Points. 

The pits, passes, and peaks of Section 4.2.1 yield important qualitative 

information about radius function behavior; hence, they play an essential role in 

the definition of slope districts. Here, we define such points in terms of proper-

ties of the first two derivatives of the radius function r and examine the 

geometry of the simplified segment and associated boundary surfaces near 

them. 

Let P' denote a point in U and let P = s(P') denote the corresponding point 

on S. Recall from calculus that the total derivative (see e.g. Ch. 12 of 

[Apostol74a]) of rat P' E: U is a linear mapping from U to R1, Dr(P'): U __. R1. This 

mapping is represented by the gradient vector, the 1 x 2 matrix [r1 r 2]. Since it 

will be necessary to examine the relationship between the gradient at P' and the 

geometry at the corresponding point P, it is useful to express Dr(P') with respect 

to a local coordinate system on S about P. Assume for the moment that the 

principal curvatures of the radius function, ?'t and r 2 (Section 3.4.1), are dis-

tinct. Then, the unit vectors .in the principal directions of the radius function, f 1 

4Such a coordinate patch does not necessarily exist. However, it is always possible to find a col
lection of overlapping coordinate patches that cover S such that two overlapping patches are related 
by a smooth coordinate transformation. By tediously applying the chain rule or by eschewing extrin
sic coordinates altogether, this assumption can be avoided. Since neither is particularly illuminating 
here, I make the assumption. 
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and f2 . are independent (in fact, they are orthonormal) and therefore can be 

used as a basis for the tangent plane of S at P, TpS. If the principal curvatures 

are not distinct, choose any pair of orthonormal vectors in TpS whose cross pro~ 

. duct f 1 X f2 is the unit normal to S at P. We would like to represent D7(P) with 

respect to the ~f 1 ,f2 J basis of TpS. 5 D7(P) is a linear mapping that maps a unit 

vector in the tangent plane to the directional derivative in the direction of the 

vector. The representation of D7 (P) with respect to a basis is determined by the 

values of the directional derivatives in the direction of the basis vectors. There-

fore, with respect to the ~f 1 ,f2 J basis, D7 (P) is represented by the 1 x 2 matrix 

[r1 r1 ], which, by Theorem 3.1, is -[<n11 ,f1> <~.f2>]. 1 2 

Similarly, the second derivative of r at P' is a bilinear mapping from U x U 

a2r to R1, D~(P'): U x U _. R1. Letting rii = . . , n;(P') is represented by the 2 x 2 
OU 1 ouJ 

matrix [ rii ], often called the Hessian of rat P'. The Hessian too, can be 

expressed with respect to the ~f 1 ,f2 J basis. However, since we shall need to do so 

only at special points, where the form is particularly simple, we do not change 

bases now. 

We can now make use of a well-known result6 regarding extrema of func-

tions defined over an open neighborhood of R2. 

Definition 4.1: A point Pis a critical point (or stationary point) of r if Dr(P} is 
the zero map. A point that is not a critical point is a regular point. • 

Definition 4.2: A critical point of r is non-degenerate if the determinant of the 
Hessian matrix at the critical point is non-zero. Otherwise the critical point 
is degenerate; • 

. 5The derivative at a point in the domain of a map from a smooth surface to Rn is a linear map
ping from the tangent plane of the surface toRn.. The usual definition of the derivative of a map from 
R2 to Ril is a special case in which the tangent space of the surface just happens to be the surface it
self. See e.g. Chapter 1, Section 2, of [Guillemin74a]. 

6Throughout Section 4.2, I state results from various sources, often changing the notation from 
the original and restricting the result to apply only to the situation at hand. 



Using the chain rule, it is not difficult to show (see e.g. Chapter 1, Section 7 of 

[Guillemin74a]) that P' is a non-degenerate critical point if and only if P is a 

non-degenerate critical point. 

Lemma 4.1: Let P' be a non-degenerate critical point of r. Then we have 
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(1) If r 11 > 0 and the determinant of the Hessian is positive, r has a relative 
minimum at P'. 

(2} If ru < 0 and the determinant of the Hessian is positive, r has a relative 
maximum at P'. 

(3) If the determinant of the Hessian is negative, r has a saddle point at P'. 

(Theorem 13.11, [Apostol74a]) • 

After expressing the Hessian of r with respect to the ~f 1 ,f2 j basis, we can 

easily translate the results of Lemma 4.1 into more geometric terms. 

Lemma 4.2: Let P be a critipal pqint of r. Then, with respect to the basis ~f1 ,f2 ~. 
1?'1 0 I 

the Hessian of rat Pis l 0 ?'zJ· 

Proof: Since the gradient at a critical point is the zero map, r 1 = r 2 = 0. Then, 
by equation {3.9) and the definition of the Hessian, the Hessian at P is Q. 
Since f 1 and f 2 are eigenvect..ors oi Q and ?'t and ?'z are the respective eigen-

1?'1 0 
values, Q is represented by t 0 ,.

2
j with respect to ~f 1 ,f2~· • 

Theorem 4.3: Let P be a point on S, let nb and ~ be the unit normal vectors at 
the associated points on the two boundary surfaces, and let KR and HR 
denote the Gaussian and mean curvatures of the radius function at P. Then: 

( 1) P is a critical point of r if and only if ~ and Ilc are perpendicular to T pS, 
the tangent plane to S at P. 

(2) If P is a critical point of r, it is non-degenerate or degenerate according 
to whether KR is non-zero or zero. 

(3) If P is a non-degenerate critical point of r, then P is a local minimum 
(pit) if KR > 0 and HR > 0, a local maximum (peak) if KR > 0 and HR < 0, 
and a saddle (pass) otherwise. 

Proof: Since n8 (the simplified segment normal at P), f 1, and f2 are orthonormal, 
<ns.~>2+<~.f1>2 +<nb,f2>2 = 1. Therefore, Dr(P) is the zero map whenever 
<ns ,nb >2 = 1, that is when the boundary surface normal, nb, is collinear with 
ns· Since~ and nc are reflections of each other through TpS (see Section 
3.4.2), nb and nc are both collinear with n 8 • Thus, the first claim is proved. 

Since the determinant is invariant under change of basis, by Lemma 4.2 
the determinant of the Hessian is ?'1?'2, which is the Gaussian curvature KR· 
Thus, the second claim is proved. 

Again using the invariance of the determinant, KR > 0 implies 
r 11r22 >r1z2• which further implies that r 11 and r 22 have the same sign. The 
trace is invariant as well. Therefore, since 2 HR = tr( Q} = rll + r 22 , the sign 
of HR determines the sign of r 11 . The last claim follows directly from the 
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invariance of the determinant and Lemma 4.1. • 

Theorem 4.3, though not at all surprising, will be useful to us in several 

ways. First, it provides a simple, coordinate-system independent, geometric 

characterization of critical points. Second, it gives a simple test for critical 

point degeneracy, and, for non-degenerate critical points, it also gives simple 

criteria for determining whether the critical point is a pit, pass, or peak. The 

theorem provides little information at degenerate critical points. 

Henceforth, I shall assume that all critical points of the radius function are 

non-degenerate. 7 This assumption vastly simplifies further analysis. Moreover, it 

can be shown (Chapter 1, Section 7, [Guillemin74a]) that almost any smooth per-

turbation of a function with degenerate critical points changes the function into 

one without degenerate criticalpoints. Poston and Stewart[Poston78a] discuss 

the sense in which degenerate critical points are atypical. 

4.2.2.2. Slope Lines 

Intuitively, an ascending slope line on the simplified segmentS is con-

structed by starting at some point on S and then taking small steps in the 

direction of the greatest increase in r, the direction of the gradient. Similarly, a 

descending slope line is constructed by taking steps in the direction opposite 

the gradient. These constructions can be embodied in two systems of first order 

nonlinear differential equations, which we then take as definitions. 

Definition4.3: Let u(t) denote the function {u 1{t),u2(t)), let u1(t) denote ~i, 
and let u{t) denote (u 1(t ), u 2(t)). An ascending slope line from the point 

. u0 = (uJ,ucr) is a curve on S defined by s(u(t)), where u(t) is a solution to 
the initial value problem 

(4.1) 

7I have studied cursorily the effects of eliminating this assumption. However, since the results 
are still preliminary, I do not present them here. 
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A descending slope line from the point Uo = (uJ, u6) is a curve on S defined 
by s{u(t )), where u(t) is a solution to the initial value problem 

(4.2) 

A slope line through the point Uo is the intersection of U with the union of 
the ascending and descending slope lines from u 0. • 

The curve in the (u 1,u2) plane defined by a solution of an initial value problem of 

this type is called a trajectory (or an orbit) of the solution. For brevity 1 often 

use the phrase "slope line" rather than the more precise "trajectory that deter-

mines a slope line." 

Two intuitively obvious, but nevertheless important properties of ascending 

and descending slope lines, set forth below in Theorems 4.4 and 4.7, follow 

directly from elementary properties of first order systems of differential equa-

tions. We shall use them repeatedly in the following sections. To avoid repeti-

tion, I present these properties for ascending slope lines only; they apply equally 

to descending slope lines. 

Theorem 4.4: There is exactly one ascending slope line through each point of S. 

Proof: By the existence-uniqueness theorem for solutions of initial value prob
lems (Theorem 3, Section 4.6, [Braun75a]), there is a unique solution to (4.1) 
for any choice of initial point u 0 • This implies that each point of U defines a 
unique solution of ( 4.1), but not that there is only one trajectory through 
each point. However, the existence-uniqueness theorem of trajectories 
{Property 1, Section 4.6, [Braun75a]) implies that if the trajectories of two 
solutions pass through a single point, then the solutions are identical. 
Hence, there is a single trajectory through each point (u 1,u 2) in U. Since s 
is a coordinate patch, it is one-to-one. Hence, s maps each trajectory to a 
unique ascending slope line on S. • 

Definition 4.4: A point (u 1, u 2) is a critical point of the systems of equations 
(4.1)ifu(u 1,u2)=0. a . . 

Obviously, a critical point of ( 4.1) is also a critical point of r. 

Definition 4.5: A trajectory reaches a critical point P' if there exists some t ~ 0 
such that u(t) = P' or if lim u(t) = P'. 1111 

, t->oo 

Though a slope line may reach a critical point (in the sense of Definition 

4.5), it does not necessarily contain that critical point: the slope line only 
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approaches the critical point in the limit. Indeed, if a slope iine contains a criti-

cal point, the slope line consists of that point alone, since, by ( 4.1), the trajec-

tory is a 12onstant. We now show that every ascending slope line reaches a criti

cal point unless it first meets the simplified segment boundary. 

Lemma 4.5: (Poincarl:!-Bendixson Theorem) Suppose that a solution u(t) of the 
system of differential equations (4.1) remains in a bounded region of the 
(u 1,u2) plane that contains no critical points of (4.1). Then, its trajectory 
must spiral into a simple closed curve, which is itself the trajectory of a 
periodic solution of (4.1). 8 (Theorem 5, Section 4.8, [Braun75a]}. • 

Lemma 4.6: Let u(t) be the trajectory of an ascending slope line. If u(t) is not a 
single point then u(t) is not periodic. 

Proof: Assume the contrary. Then there exists t 1 and t 2, t 1 < t 2, such that 
u(t 1) = u(t 2). Thus, r(u(t 1)) = r(u(t 2)). Hence, byRolle's theorem (Theorem 

5.1. [Apostol74a]) there is a point t 3 , t 1 <t3 <t 2, such that ~; 1- = 0. By the 
t -t 5 

chain rule, :; = r 1u 1 + r 2u2• Since u(t) is a solution to (4.1), ui = ri• which 

implies that :; = r 1
2 + r 2

2• Therefore r 1 = r 2 = 0 and u(t 3) is a critical point of 

r. Since the trajectory through any critical point is the point itself, either 
t 1 = t 2 = t 3 or u(t 3) is not on the trajectory. Both possibilities contradict 
the hypothesis. • 

Theorem 4. 7: Every ascending slope line must either reach a critical point or 
must intersect the boundary of S. 

Proof: Consider the trajectory u(t) that defines an ascending slope line. Let 
u 0 E: U be its initial point. If u 0 is a critical point, the trajectory is the single 
point u 0 and the theorem holds. Similarly, if u(t) is unbounded it must 
intersect the boundary of U since U is bounded. Therefore s(u(t)) would 
intersect the boundary of S, and the theorem holds. Assume neither case is 
true. By Lemmas 4.5 and 4.6, there is no region of U containing u(t ), 
0~ t < oo, not also containing a critical point. About each point of u(t) define 
a neighborhood of radius 6. The union of these neighborhoods contains u{t) 
and, hence, must contain a critical point. As 6 ~ O,the trajectory becomes 
arbitrarily close to a critical point. Therefore, u(t) reaches a critical point . 

• 
Thus, in this section, we have shown that through every point of S there is a 

unique ascending (descending) slope' line. If the point is itself a critical point, 

then the slope line consists of that point alone. Otherwise, the slope line travels 

toward a critical point, reaching it in the limit as t ~ oo, unless it first reaches 

6In other words, the trajectory asymptotically approaches another trajectory that is a simple 
closed curve. 
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the boundary of S. 

4.2.2.3. Slope Line Behavior Near Non-degenerate Critical Points 

Recall that our goal is to partition S into slope districts, regions of S 

bounded by an alternating "chain" of critical points and special slope lines, 

wherein all ascending slope lines reach a single peak and all descending slope 

lines reach a single pit. The next step in our programme, and the subject of this 

section, is to determine the behavior of slope lines near non-degenerate critical 

points. 

In a neighborhood about a non-degenerate critical point, a local coordinate 

system can be defined. 

Lemma9 4.8: Let P' = (0, 0) be a non-degenerate critical point of r, and let [rii] 
be the Hessian of rat P'. Then, 

r(u 1,u2 ) = r(O,O) + *l:>iiu"ui, 
iJ 

near P', where the rii are evaluated at P' = {0, 0). {Theorem 4.2, 
[Poston78a]) • 

Using {4.3), we have immediately a well-known result: 

Lemma 4.9: Non-degenerate critical points of rare isolated. 

(4.3) 

Proof: Taking first partial derivatives of ( 4.3) and setting both equal to zero, we 
see that in the neighborhood of P' for which (4.3) is valid, a critical point 
occu(\ lor those { u 1, u 2) that are solutions to the system of equations 

[rii] ~2j = 0. Since the determinant of [rii] is non-zero, P' = (0, 0) is the only 

solution of that system. Hence, P' is an isolated critical point. • 

In a neighborhood of a non-degenerate critical point, we can use Lemma 4.8 

to convert the nonlinear system of equations ( 4.1) into a linear system, thus 

making available the qualitative theory of linear systems of differential equa-

tions {e.g. Section 4.7 of [Braun75a]). To formulate (4.1) as a linear system near 

a critical point P', first translate the coordinate system soP' = (0, 0). Then, take 

9A more powerful version of this result is known as the Morse Lemma. This result appears as an 
:intermediate step :in Poston and Stewart's(Poston78a) proof o:f the Morse Lemma. 
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first partial derivatives of (4.3), obtaining 

Therefore (4.1) becomes the linear system 

Similarly, the nonlinear system (4.2) can be reformulated as a linear system 

near non-degenerate critical points. 

The qualitative behavior of the linear system is completely determined by 

the signs ofthe eigenvalues of its matrix. Since the eigenvalue signs are invari-

ant under change of basis, by Lemma 4.2 the behavior near a critical point is 

determined by the radius function principal curvatures ")'1 and ?'2• where ")'1 ~ ?'2 

(Section 3.4.1). I summarize the relevant results, illustrating the behavior of 

ascending slope lines. 

All slope lines approach the critical point as t -+ oo. For all but two slope 
lines, the slope line tangent approaches the direction of ±f1 as t -+ oo. The 
other two slope lines are tangent to ±f2. 

All slope lines move away from the critical point as t approaches infinity. 
For all but two slope lines, the slope line tangent near the critical point is in 
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the direction of ±f2• The other two slope lines are tangent to ±f1• 

(3) ?'1 = ?'2 < 0: peak 

Slope lines approach the critical point from all directions. 10 

(4) ?'1 = ?'2 > 0: pit 

Slope lines move away from the critical point in all directions. 

All slope lines but the two in the ±f2 directions move away from the critical 
point approaching the slope lines in the ±f1 directions as t 4 oo. The slope 
lines in the ±f2 directions approach the critical point as t 4 co, 

f2 

~ 

v~ ) ,, ~;- -, f1 

~ 

10When the eigenvalues of a firfrt order linear system are equal, the system can also exhibit a dif
ferent type of behavior, the so-called improper node. An improper node occurs only when the matrix 
of the system has exactly one linearly independent eigenvector. Here, the matrix of the system is 
symmetric with non-zero determinant and thus has two independent eigenvectors. Hence, there are 
no imprope:r nodes. 
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Descending slope lines behave identically but with all traversal directions 

reversed. 

4.2.2.4. Ridge and Course Lines 

Using properties of critical points and slope lines developed in preceding 

sections, we now discuss ridge and course lines, those special slope lines that 

form the boundaries of slope districts. In Section 4.2.1, ridge lines were charac-

terized as those slope lines that ascend from a pass to a peak, never reaching a 

pit, while course lines were characterized as those slope lines that descend from 

a pass to a pit, never reaching a peak. Though these characterizations could, 

with suitable added precision, be taken as definitions, they do not provide local 

criteria for determining whether a slope line is a ridge or course line. Instead, 

we define ridge and course lines locally, in terms of the behavior of slope lines in 

neighborhoods of passes, as discussed in Section 4.2.2.3. The local definition has 

the advantage that it is not necessary to traverse an entire slope line to ascer-

tain whether it is a ridge or course line; one need only confirm that it satisfies 

. the definition near a pass. 

Definition 4.6: Let P' be a pass and let u 0 be a point in a neighborhood of P' such 
that the descending slope line from llo reaches P'. Then, the slope line 
through llo is called a ridge line. • 

Definition 4. 7: Let P' be a pass and let u 0 be a point in a neighborhood of P' such 
that the ascending slope line from u0 reaches P'. Then, the slope line 
through u0 is called a course line. • 

It is easy to see from the diagram of slope line behavior near passes (page 71) 

that exactly two ridge lines and two course lines reach every pass, and further-

more, that ridge lines and course lines emanate from a pass in the principal 

directions of the radius function. This behavior is illustrated in Figure 4.3 for a 

surface defined by a height function with a pass at the point marked. 



ridge lines 

/\ 

~pass 
course line 

Figure 4.3.: Ridge and Course Lines at a Pass 

Using properties of slope line behavior near pits and peaks, we determine 

some aspects of the global behavior of ridge and course lines. 
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Theorem 4.10: Let P' be a pass; Then, each ridge line emanating from P' either 

{1) intersects the boundary of U; 

{2) reaches a peak; or 

(3) reaches a pass other than P' along the ±f2 direction of the pass that is 
reached. 

Proof: The ridge line consists of two parts, the ascending and descending slope 
lines. By definition, the descending slope line reaches P'. By Theorem 4. 7, 
either case {1) obtains or the ascending slope line reaches a critical point. 
Further, since all ascending slope lines diverge from pits, the critical point 
must be a peak or a pass. If the former, we are done; assume the latter. 
The ascending slope line must reach the pass along the ±f2 direction, for all 
ascending slope lines along other directions diverge from the pass. More-
over, by Lemma 4.611 the ascending slope line cannot reach P'. • 

By similar reasoning we obtain analogous results for course lines: 

Theorem 4.11: Let P' be a pass. Then, each course line emanating from P' either 

( 1) intersects the boundary of U; 
(2) reaches a pit; or 

(3) reaches a pass other than P' along the ±f1 direction of the pass that is 
reached. c 

11Strictly, the proof of Lemma 4.6 does not apply here since the hypothesis of Rolle's theorem is 
not met. However, the mean value theorem can be used instead to ~how that as the ridge line ap
proaches P' from both directions (i.e., ascending and descending), d.; ... 0 for some point on the ridge 
line. 
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4.2.2.5. Non-degenerate Critical Point Configurations 

We come now to the heart of our discussion of slope districts. We represent 

the configuration of pits, passes, peaks, course lines, and ridge lines on the sim-

plified segment as a graph, called the critical point configuration graph. Pits, 

passes, and peaks comprise the graph vertex set; course and ridge lines 

comprise the edgeset. By convention, we also add to the vertex set points of 

intersection between a ridge or course line and the simplified segment bound-

ary. Since ridge and course lines meet only at critical points and since critical 

points are isolated, the critical point configuration graph is a plane graph. 12 It 

partitions the simplified segment into regions, some bounded by a cycle of the 

graph and some bounded by a path in the graph together with a portion of the 

simplified segment boundary. We shall show that these regions are the slope dis-

tricts we seek. 

We adopt the following conventions in our illustrations of critical point con-

figuration graphs: 

(1) Pits, passes, and peaks are denoted by V, +, and A. respectively. A subscript 

is occasionally used for easy reference in the text. 

(2) Arrows on edges indicate the ascending direction. 

Let Gs denote the critical point configuration graph of the simplified seg-

ment S. 

Definition 4.8: A slope district is a maximal subset, D, of S, such that any two 
points in D may be joined by a curve in D not intersecting any edge or vertex 
of G5 . • 

A slope district bounded by a cycle of Gs is called an interior slope district, 

while a slope district bounded by a path in Gs together with a portion of the 

boundary of S is called an exterior slope district. In the remainder of Section 

4.2.2.5 we investigate properties of both interior and exterior slope districts. 

12A plane graph is a graph embedded in a surface such that edges intersect only at vertices. 
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The key result of the section yields a catalog of possible interior slope districts. 

From the catalog, it is trivial to deduce that all slope lines through points in an 

interior slope district do indeed ascend to a common peak and descend to a 

common pit. Furthermore, the catalog yields simple constraints on adjacency 

·relationships between slope districts. 

Interior Slope Districts. Let B(D) denote the cycle of G8 that bounds an inte-

rior slope district D. Since B(D) is a cycle of G8 , we can traverse it in some 

direction, say clockwise. As we do so, the vertex-edge-vertex triples encoun-

tered are limited, by Theorems 4.10 and 4.11, to the following: 

A) V-+ + D) !J. +- + 
B) + +- V E) + -+ + 
C) + -+ !J. F) + +- + 

Therefore, any cycle of Gs can be constructed by juxtaposing these triples: the 

clockwise-most vertex of one triple and the counterclockwise-most vertex of the 

next triple must be identical. Thus, for example, the sequence ACDB might 

exist; ADDB cannot. 

Another constraint exists as well. Before we discuss it, some additional 

notation is needed. Recall that exactly two ridge lines and two course lines 

emanate from each pass. When a pass is reached along a ridge line while 

traversing a cycle of the critical point configuration graph, the next edge of the 

cycle is either the one remaining ridge line or one of the two course lines. Simi-

larly, when a pass is reached along a course line, the next edge is either the one 

remaining course line or one of the two ridge lines. Thus, to specify a cycle, 

more information is required than just a sequence of triples. For example, if we 

represent schematically the choice of the next edge to be traversed at a pass as 

either proceeding forward or making a left or right turn, AECDFB could 

represent either 
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or 

F 

Resolving the ambiguity by using the subscripts L and R to denote left and 

right turns, the cycles in the preceding example can be specified by ARERCDRFRB 

and ~ERCDRFRB' respectively. Obviously, two strings denote identical cycles 

when one string can be transformed into the other by one or more "rotates." 

same cycle: 

v A >+ 
at !c 
+ D 

>6 

Since course lines are always perpendicular to ridge lines, certain triples 

cannot be juxtaposed unless a "turn" is interposed between them. For example, 

the sequence AC cannot occur because the course line leading to the pass (A) is 

perpendicular to both of the ridge lines emanating from the pass (C). Therefore, 

A can be juxtaposed with C only if one of the subscripts L or R is interposed 

between them: A1 C or ARC .. 

Cayley[Cayley59a], Maxwell[Maxwell70a], and Pfaltz[Pfaltz76a, Pfaltz78a] 

each make the assumption that triples of forms E and F do not occur. Now, I too 

make this assumption since it simplifies further analysis. I claim that any confi-

guration containing either triple is unstable and therefore not likely to occur in 

practice. Consider a slope line that is both a ridge line and a course line, one 

that ascends to one pass and descends to another. From our discussion of the 
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behavior of slope lines near passes, we know that there are exactly two slope 

lines that ascend to a pass and two that ascend to the pass; all others come near 

to the pass, never reaching it, and then move away. If either of the triples E or F 

occurs, the slope line between the two passes must be one of the two slope lines 

that ascends from one pass and one of the two slope lines that descends to 

second pass. Hence, a small perturbation of the radius function near either 

pass eliminates the triple from the configuration. 

Figure 4.4 shows all possible juxtapositions of two triples assuming that tri-

ples E and F do not occur. As shown, a clockwise traversal of a triple begins with 

-t"-V~+ 
BA 

v~+ 
ARC! 

l:i. 

6 
i 

V--4>-l-
A~ 

+~!:i.~+ 
CD 

~~+ 
DfP! 

v 

v 
t 

l:i.~+ 
DLB 

Figure 4.4.: Valid Triple Juxtapositions 
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the leftmost critical point. 

Under this assumption, I build a catalog of interior slope districts by inves

tigating cycles of the critical point configuration graph. My strategy is to 

specify concisely all possible cycles and then to show that all but three cycles 

contain at least one smaller subcycle. Since, by definition, any two points inside 

a slope district can be joined by a curve not intersecting any edge or vertex, 

cycles that contain subcycles cannot be slope districts. Therefore, there are 

only three cycles that bound interior slope districts. 

I shall use regular expressions to provide a concise notation for specifying 

sets of strings of triples denoting paths in critical point configuration graphs. I 

use the following notation: parentheses denote grouping, a vertical bar (I) 

denotes or. a superscript asterisk(*) denotes zero or more repetitions of the 

previous symbol, and a superscript denotes a specific number of repetitions of 

the previous symbol. Thus A(BjC)D.E2 denotes an A followed by either a B or a C 

followed by any number (including zero) of D's followed by two E's. During the 

course of the discussion, I shall also use a question mark (?) as a symbol to 

denote an as yet unknown triple. 

To use this regular expression notation to specify an arbitrary cycle, con

side.r any of the equivalent sequences of triples specifying the cycle that begin 

with a pit. (If there is no pit, an analogous argument can be made using a peak 

instead.) Since the path represented by the sequence is a cycle it must also end 

with a pit. Therefore, the sequence must be of the form A?•B (cf. page 75). 

Referring to Figure 4.4, the first two triples in the sequence must therefore be 

either AB, ARC, or ALC. Similarly, the last two triples must be either AB, DRB, or 

DLB. Thus, any sequence that represents a cycle must be one of the following: 

(1) AB; 
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(2) (ALC I ARC) ?" (DtB I DRB); or 

(3) one or more of the above sequences concatenated together. 

Letting pitends be a symbol representing any sequence both beginning and end

ing with a pit, we have 

pitends = AB 

I (ALC I ARC) ? • (DLB I DRB) 

I pitends •. 

Similarly, all paths beginning and ending in a peak are given by 

peakends = DC 

I (DLB I DRB) ? • (ALC I ARC) 

I peakends •. 

In both cases, the unknown sequence (?•) is easily determined. In the 

former case, the sequence specified by ?• must both begin and end with a peak, 

for else it would not "mesh" with the peaks specified by the C on its left and the 

D on its right. Similarly, in the latter case the corresponding sequence must 

both begin and end with a pit. Therefore, 

cycle = pitends I peakends 

pitends= AB 

I (ALC i ARC) peakends (DLB I DRB) 

I pitends•. 

peakends = DC 

I (DLB I DRB) pitends (ALC I ARC) 

I peak:.ends •. 

We now have a concise specification for all possible cycles. Using this 

specification I shall prove that the only cycles that are the boundaries of slope 
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districts are AB, CD, and ARCDRB; all others contain one or more subcycles. 

First, to motivate the proof let us consider informally an example, the cycle 

ABAB shown below: 

'1 
A 

)~( 
B 

'V 
J,? . 

B ?t A 

'1-;' , 2' 

Since we are assuming that there are no adjacent passes, Theorem 4.10 requires 

that the ridge lines that emanate into the cycle, one from pass +
1 

and one from 

pass +2, each reach a peak. There are two alternatives. First, as illustrated on 

the left side of Figure 4.5, each of the ridge lines can reach a separate peak that 

is part of a subgraph connected to the cycle only via the ridge lines. 

Figure 4.5.: Ridge Lines Reaching Islands 
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Alternatively, one or both of the ridge lines can reach a peak on a subgraph con-

nected to the cycle via some other edge as well, as shown on the right side of 

Figure 4.5. In the latter case, a subcycle would be formed, thus dividing ABAB 

into two subcycles. Therefore, each ridge line must reach a peak on a subgraph 

connected to the cycle via the ridge line only. But, I shall show below that such 

behavior is precluded by a topological constraint, thus implying that ABAB is 

divided into subcycles. 

Lemma 4.13, below, provides the aforementioned topological constraint, 

constraining the number and type of critical points that can be contained within 

a cycle. After proving the lemma, I shall use the constraint it provides to prove 

that no cycles other than AB, CD, and ARCDRB can bound a slope district. 

Lemma 4.12: Let there be a smooth closed curve in~ having no critical points 
of r on it. The set of points on the curve at which the directional derivative 
of r along the outward directed normal to the curve is negative is called the 
negative boundary of the region enclosed by the curve. Let nv, n+, and nA 
denote respectively the number of pits, passes, and peaks of r in the region 
enclosed by the curve, and let n,~. and n,. denote respectively the number of 
minima and maxima of r along the curve that occur on the negative bound
ary. Then, nv + n• - n+ - n,. + nA = 1. {Theorem 10, [Morse34a]) • 

Definition 4.9: Let G be a critical point configuration graph that contains no 
adjacent passes. The Mo1'se number of G, denoted M{G), is the sum of the 
number of pits and peaks in the vertex set of G less the number of passes in 
the vertex set of G. • 

Lemma 4.13: Let G be a critical point configuration graph that contains no adja
cent passes and is bounded by a cycle B(G). Further, let nAB• nBA• nA

1
c. and 

nn
1
B denote respectively the number of occurrences in B(G} of juxtaposed 

triples AB, BA,A1 C, and D1B. Then, M(G) = 1 - nBA + nAB+ nA
1
c + nn

1
B· 

Proof: We prove this result by applying Lemma 4.12 to a curve "just inside" the 
cycle B(G). We construct a smooth closed curve inside B(G) satisfying the 
hypothesis of Lemma 4.12 by constructing a curve parallel to each individual 
ridge/course line and then joining those curves near critical points. At each 
regular (non-critical) point p on a ridge/course line there is a vector normal 
to the ridge/course line at p that points into the region bounded by B(G). 
We define a point p ~.: on a corresponding top as the point at distance e from 
p along the inward directed normal at p: 

L: 
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p 

ridge or--~111!::~~ 
course line /" t . ',\ 

I . . \ 
I n I 

( ~ : 
'- / remainder 
', .,/ ..... ' --of B(G) .... _____________ ... ,... 

Thus, for any given value oft there is a curve parallel to each ridge/course 
line in the cycle B{G). The curve ex.& is constructed by smoothly joining these 
curves near critical points. There are two cases: 

(1) Two ridge/course lines meet at a critical point so that each of the two 
ridge/course lines has the same tangent line at the critical point. 

{2) Two ridge/course lines meet at a critical point so that each of the two 
ridge/course lines have different tangent lines at the critical point. 

In the first case, since there is a well-defined tangent at the critical point, 
the two parallel curves can be joined smoothly by adding the point at dis
tance e along the inward directed normal at the critical point: 

~+~ / . _L.~ "" ,' .. ··· \i/' · .. ·\. I , ,., ' 
' I \ ' 
I • • • 

' 0( • • 
I ~ ,.. 1 I . ' L.. . I \ " ' ' \ . . ' 

' ' I 

\ 

' ... , ,,• I 
\ ........... ______________ , .. -- ,' . ~ 

In the second case, since there is no well-defined tangent at the critical 
point, we must terminate each of the two parallel curves before they reach 
the critical point and then smoothly join them with some "splicing" curve. 
Other than smoothness, the only requirement placed on the "splicing" curve 
is that it can be made arbitrarily near the critical point. We shall use a cir
cular arc, as illustrated in the two examples below: 

+---~t&:::--· .... 
r"-r~~. \ ! ! .. 
-o<£ 11 

: . . . . . .... : : 
e : i 

; \ ; : '·.. ··--···-·--·-· ...... .-' .: ................... _________ . ___ ... ,· 

To apply Lemma 4.12, we must determine where the extrema of r along 
ex.& occur. Points where r achieves a local extremum are called extreme 
points, while the values assumed by r at extreme points are called extreme 
values. Recall from two-dimensional calculus that a function along a smooth 
curve can have a local minimum or maximum at a point on the curve only if 
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the directional derivative of the function in the direction of the curve at that 
point is zero. 

Consider traversing both B(G) and ex~; clockwise. As t is made to 
approach zero, a~; approaches the cycle B(G) and the directional derivative 
along ex~ of rat a point p£ on ext approaches the the directional derivative of r 
at p in the direction of traversal. Since ridge/course lines are slope lines, 
the directional derivative of r along them is non-zero except at critical 
points. Therefore, for small enough t, the derivative of r along ex~; can be 
zero only near critical points. 

So far we have argued that no extreme points occur on exe except near 
critical points. We now investigate at which critical points such extreme 
points occur and whether or not they occur on the negative boundary of the 
region bounded by Clo~:· Again, traverse B(G) and Clo~: clockwise. As B(G} is 
traversed, a peak is crossed by climbing a ridge line, reaching the peak, and 
then descending another ridge line. Hence, as the corresponding portion of 
ext is traversed, the derivative of r along at is positive at points correspond
ing to the first ridge line and negative at points corresponding to the second 
ridge line. Therefore, if the two pieces of exe that correspond to the two ridge 
lines are joined by a single point, the derivative must be zero at that point; if 
the two pieces are joined by a circular arc, the derivative must be zero 
somewhere along the arc. In either case, the behavior of the radius function 
near the peak guarantees that r achieves a local maximum, rather than a 
minimum or inflection, at the point where the derivative is zero. 

By similar arguments, there is a minimum near pits, a maximum near 
passes where two ridge lines of the cycle meet, a minimum near passes 
where two course lines of the cycle meet, and either no extremum or two 
extrema near passes where a ridge line and a course line of the cycle meet, 
depending upon whether the situation is as shown on the left or the right of 
the previous figure. Recall from the statement of Lemma 4.12 that the set of 
points of ext at which the directional derivative of r along the outward 
directed normal to the curve is negative is called the negative boundary of 
the region enclosed by ext. Similarly, the set of points for which the direc
tional derivative is positive is called the positive boundary of a~:. The bound
ary type at each of the extreme points on exe can be determined easily by 
examining the behavior of the radius function near critical points (Section 
4. 2.2.3). For each of the triple juxtapositions shown in Figure 4.4, Table 4.1 
gives the number and type of extrema and the boundary type(s) of ex~: near 
the second of the three critical points. 

The result now follows directly from Lemma 4.12 and the observation 
that since B(G) is a cycle, it consists of alternating passes and pit/peaks, 
and thus makes no contribution to M(G). 11 

I now use Lemma 4.13 to show that no cycles other than AB, CD, and ARCDRB 

bound slope districts. I shall use the following two definitions. 

Definition 4.10: A tree-island is a subtree of a critical point configuration graph 
having the property that every pass has four incident edges. 11 

Informally, a tree-island is a subgraph of a critical point configuration graph 

that has no cycles and no "dangling edges." Figure 4.6 illustrates several 



Table 4.1 
Extrema of r on O:~: 

Juxtaposed Triples Extremum Type Boundary Type 

AB maximum negative 
A1c (maximum, minimum) (negative, positive) 

ARC none 

BA minimum negative 
CD maximum positive 
DC minimum positive 
DLB {minimum, maximum) (positive, negative) 

DRB none 

graphs, some of which are tree-islands and some not, as marked. 

Lemma 4.14: Let G be a non-empty tree-island. Then, M(G), the Morse number 
of G, is (2nv + 2nl.l + 1)/3. 
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Proof: In any tree, the number of edges is one less than the number of vertices 
(Theorem 4.1, [Harary69a]). By definition, the number of edges in a tree
island is four times the number of passes. Therefore, nv + nA + n ... = 4n+ + 1. 
The result then follows by using this relationship to eliminate n+ from M(G) = 
nil - n+ + nv. a 

Tree -Island Not T-1 

Figure 4.6.: Tree-Islands 



Definition 4.11: A tree-peninsula is a subtree of a critical point configuration 
graph having the property that one pass has three incident edges and all 
other passes have four incident edges. • 
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Informally, a tree-peninsula is a subgraph of a critical point configuration graph 

that has no cycles and one "dangling edge." 

Lemma4.15: Let G be a non-empty tree-peninsula. Then, M(G), the Morse 
number of G, is (2nv+ 2n4}/ 3. 

Proof: In any tree, the number of edges is one less than the number of vertices 
(Theorem 4.1, [Harary69a]). By definition, the number of edges in a tree
peninsula is one less than four times the number of passes. Therefore, 
nv + n11 + n+ = 4n+. The result then follows by using this relationship to elim
inate n+ from M( G) = nil- n+ + nv. • 

Definition 4.12: Let B(G) be a cycle of a critical point configuration graph and 
let P be a pass in B(G). The pass P is said to emanate inward i edges if i of 
the four edges defined by Pare inside the cycle B(G). Let I be the sum over 
all passes in the cycle B(G) of the number of edges emanated inward by each 
pass. Then, the cycle B(G) is said to emanate inward I edges. • 

Lemma 4.16: Let G be a subgraph of a critical point configuration graph such 
that G is bounded by a cycle, B(G), that emanates inward I edges. If B(G) is 
the boundary of a slope district, then M(G)~I. 

Proof: Consider one of the I edges that emanates into the cycle E(G). Let E 
denote that edge. By Theorems 4.10 and 4.11 and the assumption that there 
are no adjacent passes, edge E must reach either a peak or a pit. Without 
loss of generality, assume it reaches a peak, denoted by P; the argument 
below is identical for a pit. Since any edge of a graph is not o-n a cycle if and 
only if removing that edge increases the number of components of the graph 
(Theorem 3.2, [Harary69a]), any path in G between P and E(G) must contain 
E. Otherwise, G would contain a subcycle. It would then be possible to find 
two points in the district that are separated by the subcycle, and therefore 
cannot be connected without crossing G, thus contradicting the hypothesis 
that B(G) is the boundary of a slope district. Therefore, upon deleting edge 
E, G is split into two components, one connected to E(G) and not containing 
P and one not connected to E(G) but containing P. The latter component 
must be a tree for otherwise G would contain a subcycle, again contradicting 
the hypothesis that E(G) is the boundary of a slope district. Furthermore, 
since the component is not connected to E(G), it must be a tree-island. 
Thus, each of the I edges that emanates from E(G) into G has a tree-island 
"attached" to it. 

Now, let us consider the Morse number of G, M(G). M(G) is the sum of 
the Morse numbers of E(G) and of the subgraph inside of E(G). Since E(G) 
consists of alternating passes and pit/peaks, it makes no contribution to 
M(G). By Lemma 4.14, the tree-island reached by each of the! edges 
emanating from E{G) into G contributes one or more to M(G). Therefore, 
unless some other critical points contained inside of E(G) subtract from 
M(G), that is, unless ignoring the aforementioned tree-islands there are 
more passes inside E(G) that pit/peaks, M(G)~/. But any pass contained 
inside E{G) must also be part of a tree. Moreover, any such tree is either not 
connected to E(G) or is connected by only one edge, for otherwise a cycle 
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would exist. Thus, any pass contained inside B(G) must also be part of a 
tree-island or of a tree-peninsula, implying by Lemmas 4.14 and 4.15 that all 
the "extra" critical points contained inside B(G} make a non-negative contri
bution to M(G). Therefore, M(G)~ /. • 

Building upon the constraints imposed by Lemmas 4.13 and 4.16, Theorem 

4.17 gives a catalog of interior slope districts and shows that slope lines through 

all points in an interior slope district ascend to a common peak and descend to 

a common pit. 

Theorem 4.17: Let G be a subgraph of a critical point configuration graph and let 
B(G) be a cycle of G that is the boundary of an interior slope district. If 
there are no adjacent passes in G, i.e., if neither of the sequences E or F 
appear, then B(G) is equivalent to one of the following cycles: 

(1} CD 

(2) BA 

(3) ARCDRB 

Further, all ascending slope lines from points in the slope district reach a 
common peak and all descending slope lines from points in the slope district 
reach a common pit. 

Proof: By Lemma 4.16, the Morse number of G, M(G), must be at least as large as 
the number of edges that emanate inward from B(G). On the other hand, 
Lemma 4.13 gives M(G) in terms of the number of occurrences on B(G) of AB, 
BA, A1C, and D1B. To prove the theorem, I show that for all but cycles AB, BA, 
and ARCDRB• Lemmas 4.13 and 4.16 place conflicting constraints on M(G). 

Table 4.2 gives for each of the possible triple pairs (cf. Figure 4.4) the 
number of edges that emanate inward from that pair and its contribution to 
M(G) as determined by Lemma 4.13. By Lemma 4.13, M(G) is one more than 
the sum of the contributions given in Table 4.2. Observe from the table that 
no pair makes a larger contribution to M(G) than the number of edges 
emanated inward by that pair. Therefore, to show that a cycle does not 
satisfy the constraints imposed by Lemmas 4.13 and 4.16, we need only show 

Table 4.2 
Triple Contributions to M(G) 

Type Edges M(G) Contribution 

ALC 2 +1 
ARC 0 0 
CD 0 0 
D1B 2 +1 
DRB 0 0 
BA 0 -1 
AB 1 +1 
DC 1 0 
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that for some portion of the cycle, the number of edges emanated inward 
exceeds its contribution to M(G) by more than one. By inspection, this is not 
the case for AB, CD, or ARCDRB· 

To show that every other cycle does not satisfy the constraints, let us 
examine the regular expressions for a cycle. Recall that since the sequences 
defined by the regular expressions represent cycles, the last triple of a 
sequence is juxtaposed with the first triple of the sequence. 

(1) Neither A1C nor D1B can occur in any cycle since (a) both emanate two 
edges but only contribute +1 to M(G), and (b) inspection shows that 
both occur only in cycles that contain at least one BA. Therefore, the 
number of edges emanated inward exceeds the contribution to M(G) by 
at least two. 

(2) The sequence pitendsx, x~ 2, cannot occur in any cycle since BA occurs 
at least x times in any such sequence. This can be seen by noting that 
pitends is always of the form (A?•B)x. Therefore, the number of edges 
emanated inward by the sequence exceeds its contribution to M(G) by 
at least x. 

(3) The sequence DRB pitends ARC cannot occur unless pitends is empty 
since such a sequence contains at least two BA's (DRB juxtaposed with 
pitends and pitends juxtaposed with ARC). Therefore, the number of 
edges emanated inward by the sequence exceeds its contribution to 
M(G) by at least two. 

(4) The sequence peakends'X, x~ 2, cannot occur in any cycle. By items 1 
and 3, peakendsx must be of the form (DC I DrB!rrC)x. Therefore, there 
are x occurrences of DC and/or BA, implying that the number of edges 
emanated inward by the sequence exceeds its contribution to M(G) by 
at least x. 

(5) The sequence ARC peakends DRB cannot occur unless peakends is empty. 
By items 1, 3, and 4, the sequence must be either ARCDCDRB or 
ARCDRBARCDRB. In the former case, there is one DC and one BA. while in 
the latter case there are two BA's. Therefore, the number of edges 
emanated inward by either sequence exceeds its contribution to M(G) 
by at least two. 13 

Since we have examined all cases other than AB, DC, and ARCDRB, no cycle 
other than those three can bound a slope district. 

That all slope lines through points in side one of these three possible 
slope districts ascend to a single peak and descend to a single pit is obvious 
from inspection. See Figure 4. 7. 11 

We have thus shown that all interior slope districts have one of the confi-

gurations shown in Figure 4. 7. 

13Though my treatment of these cases is asymmetric, it is not difficult to prove that a relation
ship ~mil~r to that of Lemma 4.13 obtains by replacing nBA with neD and nAB with nne· Using that 
relat10nshlp, the proof of Theorem 4.17 can be made symmetric. 
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Figure 4. 7.: Catalog of Interior Slope Districts 

Exterior Slope Districts. We must still examine exterior slope districts. How

ever, let us first introduce an additional problem which we shall see is closely 

related to exterior slope districts. Consider the height function of the surface 
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shown in Figure 4.8. There are no critical points. Yet, it seems intuitively clear 

Figure 4.8.: Height Function With No Critical Points 



that there should be two slope districts separated by a ridge line, not a single 

slope district consisting of the entire simplified segment. Even when a critical 

point is introduced, such as by stretching the surface, as shown in Figure 4.9, 

there is still but one slope district. 
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Both this problem and exterior slope districts have the same origin. Were 

the radius function defined on a closed surface, such as a sphere, rather than on 

a surface with boundary, such as the simplified segment, certain properties of 

the radius function (discussed below) would demand the existence of a pass and 

its associated ridge and course lines. Thus, one can consider the aforemen

tioned problem to be caused by the intervention of the simplified segment 

boundary between actual critical points, if any, and critical points that would 

otherwise occur. Figure 4.10 illustrates an exterior slope district in which the 

simplified segment boundary intervenes between one of the passes in a ~CDRB 

slope district and the remainder of the district. 

Figure 4.9.: Height Function With One Critical Point 
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Figure 4.10.: Boundary Intervention 

The solution to the problem is simple: find points where ridge and course 

lines emanating from a "missing" pass would have crossed the simplified seg-

ment boundary. Once such points are found, the "missing" ridge and course 

lines are determined; they are the ascending or descending slope lines from the 

boundary points. To find these points, we must characterize ridge and course 

lines independently of the pass from which they emanate. Here, I sketch such a 

characterization of ridge lines; analogous arguments apply to course lines. 

A curvature line is a curve on the simplified segment whose tangent vector 

at each point is a principal direction of the radius function at that point. We 

have seen (page 71) that a ridge line leaves a pass in a principal direction, that 

is; the ridge line "starts out" as a curvature line as well as a slope line. Simi-

larly, a ridge line reaches a peak tangent to one of the principal directions at 

the peak. I claim that a ridge line is also a curvature line along the maximum 

principal direction; the converse is not always true. 

By definition, the ridge line proceeds in the direction of the gradient, the 

direction in which the first directional derivative of the radius function (Section 

. 3.4.1) is largest. The second directional derivative of the radius function in 
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some direction measures the rate of change of the first directional derivative of 

the radius function in the same direction. Recall that the principal directions of 

the radius function are the directions of the minimum and maximum radius 

function second directional derivatives. Assume that the direction of the gra

dient and of the maximum principal direction are different. Then, since the 

second directional derivative is smaller in the gradient direction than in the 

maximum principal direction, the first directional derivative increases more 

rapidly (or decreases less rapidly) in the principal direction than in the gradient 

direction. Therefore, the gradient direction approaches the maximum principal 

direction as the ridge line is traversed in the ascending direction. By the same 

argument, once the gradient direction coincides with the maximum principal 

direction, the two directions never part. From our discussion of slope line 

behavior near critical points, we know that near passes, ridge lines coincide with 

curvature lines. Therefore, ridge lines are also curvature lines along the direc

tion of the maximum principal direction; analogous arguments show that course 

lines are also curvature lines along the direction of the minimum principal 

direction. 

Unfortunately, the converse is not true: a slope line that is simultaneously a 

curvature line in the maximum principal direction is not necessarily a ridge 

line. However, it is still useful to examine the behavior of such a slope line. As 

the slope line is traversed in the descending direction, it reaches a critical point 

in the maximum principal direction. By examining the diagrams of slope line 

behavior near critical points {Section 4.2.2.3), it can be seen that such behavior 

only occurs in two cases: either the slope line descends to a pass, in which case 

it is a ridge line, or it is one of the two slope lines that reaches a pit along the 

maximum principal direction. I know of no way to disambiguate the two cases. 

Even so, we introduce a "fake" pass, called a boundary pass, at each point 

on the simplified segment boundary where a principal direction coincides with 
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the gradient direction, but no true ridge or course line crosses. When the prin

cipal direction is a maximum principal direction, the slope/curvature line 

through the boundary pass can be treated as a ridge line; otherwise, it can be 

treated as a course line. Using this criterion, a boundary pass and its associated 

ridge/course line may be introduced where none belongs. Such an error results 

in falsely partitioning a slope district into several slope districts. This error of 

commission is preferable to the corresponding error of omission, for omitting a 

ridge or course line where one belongs can cause significant "features" of the 

radius function behavior to be ignored. 

Consider, for example, the height functions illustrated in Figures 4.8 and 

4.9. In the first case, a single boundary pass and associated ridge line would be 

introduced as shown in Figure 4.11, thus creating two slope districts, as intuition 

demands. Similarly, in the second case, two boundary passes are introduced, 

each of which emanates a ridge line to the single peak as shown in Figure 4.12. 

Failing to introduce these boundary passes would, in each case, ignore the most 

striking qualitative property of the height function. 

boundary pass 
Figure 4.11.: Introduction of a Boundary Pass 
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Figure 4.12.: Introduction of Two Boundary Passes 
~---------- ·-------------·-· -- ___ ., _____________________ , 

It does not seem possible to enumerate straightforwardly all possible exte-

rior slope districts because the simplified segment boundary can cut out an 

arbitrarily complicated portion of a slope district configuration. This is illus-

trated in Figure 4.13. 

simplified 
segment, 
boundary'-

slope district 

Figure 4.13.: An Arbitrarily Complicated Exterior Slope District 

~-------------- -- -----······-----· ------
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4.2.3. Curvature Districts 

The slope districts described in Section 4.2.2 are derived primarily from 

first derivative properties of the radius function. In this section, we partition 

the simplified segment into regions, called curvature districts, derived from 

second derivative behavior as characterized by radius function Gaussian and 

mean curvatures. The two partitions are not independent, for as we have seen, 

the Gaussian and mean curvatures play an important role in defining slope dis-

tricts as well. Depending upon the application, it might be appropriate to parti-

tion the simplified segment into slope districts alone, curvature districts alone, 

or both simultaneously. Since my intuition (not confirmed by any evidence) is 

that for most applications it is appropriate to use slope and curvature districts 

simultaneously, I shall discuss their interdependence below. 

The al~ebraic signs of the Gaussian and mean curvatures qualitatively 

characterize the second derivative behavior of the radius function. We might 

therefore partition a simplified segment into regions wherein the signs of both 

the Gaussian and mean curvatures remain constant. However when the Gaus-

sian curvature is negative, the sign of the mean curvature has little meaning, 

indicating only the relative magnitudes of the two principal curvatures. Coalesc-

ing the three cases of negative Gaussian curvature into one, we obtain the six 

curvature district types shown in Table 4.3. 

Table 4.3 
Curvature District Types 

Name I Gaussian Curvature l Mean Curvature 

Flat 0 0 
Parabolic convex 0 -
Parabolic concave 0 + 
Saddle - -, 0, + 
Convex + -
Concave + + 
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Definition 4.13: A curvature district is a maximal open subset of a simplified 
segment such that the signs of the Gaussian and mean curvatures at all 
points in the subset are of the same type, as determined by Table 4.3. • 

As noted above, the partition into slope districts and the partition into cur-

vature districts are not independent. Each pit must lie within a concave curva-

ture district, each peak within a convex curvature district, and each pass within 

a saddle curvature district. Thus, for example, the slope district configuration 

~CDRB would be split into at least four curvature districts as shown in Figure 

4.14. The boundary between the concave and convex curvature districts might 

also be a combination of flat, parabolic convex, and parabolic concave curvature 

districts. 

concave 
............... ,, 

saddle 

\ 

saddle 
\l--'~,~>~1 

>... ' /'' ' ' / ...... ' ....... __ 
+ ' convex 
-~'--~>~ 

\ 
\ 

Figure 4.14.: Curvature District Partition of Slope District 
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4.3. Axis Primitives 

Using simplified segment Gaussian and mean curvatures, the simplified seg

ment and its associated boundary surfaces can be partitioned into a collection 

of two-sided axis primitives. Axis primitives should be defined so that the parti

tioning of the simplified segment is invariant under rigid motions of the figure in 

space. This can readily be accomplished by partitioning the simplified segment 

into curvature districts as defined in Section 4.2.3, using simplified segment 

curvatures in place of the corresponding radius curvatures. Table 4.3 defines 

the six possible axis primitives as well as the possible radius curvature districts. 

However, there is an ambiguity here. 

The sign of the mean curvature is determined by the signs of the principal 

curvatures. For the radius function, the signs of the principal curvatures are 

well determined: positive means increasing, negative decreasing. On the other 

hand, the signs of the simplified segment principal curvatures depend upon the 

direction of the unit normal vector at each point of the simplified segment: rev

ersing the direction of the normal changes the sign. Since the direction of the 

. unit normal is arbitrary, so is the sign of the mean curvature. This is to be 

expected, as considering the sign of the curvature of a plane curve shows. That 

sign too is arbitrary, for if the curve is traversed in one direction the curvature 

is positive, while if traversed in the other direction it is negative. Thus, in three 

dimensions, arbitrarily choosing one of the two possible unit normal directions 

is equivalent to choosing a "traversal" direction in two dimensions. Therefore, 

at some point on the simplified segment, choose one of the two possible unit 

normal directions and apply that choice consistently to the whole simplified seg

ment, so that the unit normal changes continuously. 
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4.4. Boundary Primitives 

In Sections 4.2 and 4.3, I have defined two primitive sets, one based upon 

radius function properties alone and one upon simplified segment curvature 

alone. In this section, I define another set of primitives, boundary primitives, 

that are based on boundary surface curvatures and show that these primitives 

are determined by a combination of simplified segment curvatures and radius 

function properties. The approach is simple. The simplified segment and asso

ciated boundary surfaces are partitioned into primitives, each with the property 

that the algebraic signs of the Gaussian and mean curvatures are constant over 

each of the two boundary surfaces associated with the primitive. As with axis 

primitives, since the sign of the mean curvature has little meaning when the 

Gaussian curvature is negative, we coalesce the three cases of negative Gaussian 

curv<;iture into one, yielding the same six curvature labels shown in Table 4.3. 

Hence, since there are two boundary surface pieces associated with each primi

tive, there are 36 boundary primitives, one for each possible pair of labels. 

These primitives are listed in Tables 4.4 and 4.5, which we shall discuss below. 

In the remainder of Section 4.4, I use the curvature relationships derived in 

Chapter 3 to examine in two ways the relationship between boundary primitives 

and the curvatures of the simplified segment and radius function. I first use the 

curvature relationships to define four properties of the simplified segment and 

radius function that uniquely determine the boundary primitives. 1 then use 

those same curvature relationships to develop further intuition about the 

geometry of the three-dimensional symmetric axis transform. 

We now examine the relationship between the 36 boundary primitives and 

the curvatures of the simplified segment and radius function. Let B and C be 

the boundary surfaces associated with the simplified segment S, and let P be a 

point on S. Recall {Section 3.4.2) that there is a surface B' parallel to B that 
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passes through P {see Figure 3.3}, and moreover, that the algebraic signs of the 

Gaussian and mean curvatures at the point on B associated with P, are the same 

as the Gaussian and mean curvatures at the corresponding point of B'. The 

mean and Gaussian curvatures of B' at the point associated with P are given by 

equations (3.3) and (3.4) respectively, repeated here for convenience: 

h = (3.3) 

(3.4) 

Since the signs of the curvatures at corresponding points on B on B' are identi-

cal, we can use (3.3) and {3.4) to determine the signs of the curvatures at points 

on B. Likewise, when the sign of <ns ,nb > is changed, these same equations 

determine the signs of the curvatures at the corresponding point on the other 

boundary surface, C. 

We split each of these equations into the sum of two terms, one that is the 

same for both boundary surfaces and one that has the same magnitude for both 

boundary surfaces but opposite sign. Using the subscript i to denote the 

"invariant" part, and the subscript v to denote the "variant" part, we let 

hv= 
X1(1 - r:

1
) + Xz(l - r;

1
) 

2<ns.~> 

Equations {3. 3} and (3.4) then become 

(4.4) 



respectively. 

h = hi. + hv , and 

k = k.;. + k 11 , 
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(4.5) 

Each combination of the signs of k;.. k 11 , h.;,, and h.u. together with the rela

tive magnitudes of I ki I and I k 11 I and of I h.;, I and I hv I determines a single 

boundary surface curvature pair, that is, a single boundary primitive. Tables 4.4 

and 4.5 show all possible combinations of the signs and relative magnitudes of 

the variables mentioned above, together with the boundary primitive deter

mined by each combination. The columns labeled "Boundary 1" and "Boundary 

2" give the boundary piece labels of the two boundary surfaces associated with 

the simplified segment. "Boundary 1" is the boundary surface "pointed to" by 

the simplified segment unit normal, that is, the boundary surface for which 

<lls ·Ilb > is positive; "Boundary 2" is the other boundary surface. The columns 

labeled kct and ha give the relationship ( <. =. or>) between I ki I and I kv I and 

between I hi I and I h 11 I respectively. A question mark (?) entry indicates that 

the sign of that quantity is irrelevant as long as it is consistent with the other 

entries within the same row and triple of columns (separated by double vertical 

rules). On the other hand, an asterisk(*), optionally preceded by a minus sign 

(-}, indicates that the sign of that quantity is irrelevant as long as all asterisks 

within the same row and triple of columns are given the same sign. If present, 

the minus sign indicates that the sign of that quantity must be opposite the sign 

of other quantities marked by an asterisk alone. 

Tables 4.4 and 4.5 make explicit the relationship between symmetric sur

face and radius curvatures on the one hand, and boundary primitives on the 

other. I have divided the primitives among these tables to reflect their stability, 

that is, their behavior under slight perturbations. For those primitives in Table 

4.4, a small enough change in any of ki, k 11 , h.;,, or h 11 , does not change the bound-
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Table 4.4 
Boundary Primitives (Part 1) 

Boundary 1 Boundary 2 k.;, kv 
r 

ka h.;, hv htl 

Concave Concave + ? > + ? > 
Concave Convex + ? > ? + < 
Convex Concave + ? > ? - < 
Convex Convex + ? I > - ? > 
Concave Saddle ? + i < + ? > 

I ? + < ; 

+ + = 
Convex Saddle ? + < I ? - < 

I - ? > 
- - = 

Saddle Concave ? - < + ? > 
? - < 

I + - = 
Saddle Convex I ? - I < ? + < 

I -
I 

7 > 
- + = 

Saddle I Saddle I - ? > 7 ? 7 
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-
Table 4.5 

Boundary Primitives (Part 2) 

Boundary 1 Boundary 2 ki kv I krj ~ hu hrj 

Concave Parabolic concave + + - + ? > 
Concave Parabolic convex + + = ? + < 
Concave Flat + + = + + --
Convex Parabolic concave + + - ? - < -
Convex Parabolic convex + + - - ? > -
Convex Flat + + I - - - = -
Saddle Parabolic concave - - I = + ? > 

' ? - < I 
i + - --

Saddle Parabolic convex - - I = ? + < 
I - ? > I 

- + = 
Saddle Flat - - = * * = 
Parabolic concave Concave + - I = + ? > 
Parabolic concave Convex + - = ? + < 
Parabolic convex 'Concave + - ! = ? - < 
Parabolic convex Convex + - - - ? > -
Flat Concave + - = + - = 
Flat Convex + - - - + = -
Parabolic concave Saddle - + - + ? > -

I I ? + < 
I + + I = 

Parabolic convex Saddle - + I = ? - < 
i - ? > 
I - - I --

Flat Saddle - + - * -* -- -
Parabolic concave Parabolic concave 0 0 I = + ? > 
Parabolic concave Parabolic convex 0 0 i = ? + < 
Parabolic concave Flat 0 0 ; - + + -- -
Parabolic convex Parabolic concave 0 0 i - ? - < -
Parabolic convex Parabolic convex 0 0 

' = - ? > 
Parabolic convex I Flat 0 0 I - - - = -
Flat Parabolic concave 0 0 - + - -- I -
Flat Parabolic convex 0 0 = - + = 
Flat Flat 0 0 I = I 0 0 = 

ary primitive, whereas for those primitives in Table 4.5, any change whatsoever 

ink.;, or kv changes the boundary primitive. I believe that the primitives in Table 

4.5 will be less useful in practice than those in Table 4.6, for in numerical com-

puting it is not possible to compare two quantities for exact equality. 
'--
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We now turn from an explicit discussion of the relationship between bound

ary primitives and symmetric surface and radius curvatures, to a more general 

effort to build intuition about the geometry of the three-dimensional symmetric 

axis transform. When the simplified segment is flat, intuition suggests that the 

boundary piece labels for both boundary surfaces of a boundary primitive are 

identical, and that the signs of the boundary surface curvatures are the same as 

the signs of the radius function curvatures. Hence, a flat simplified segment is 

partitioned into identical regions by radius function curvature districts and by 

boundary primitives. Each induces the same simplified segment partition with 

the same labels. We can confirm our intuition by noting that when the simplified 

segment is flat, kv and h.y are both zero and that ki is the Gaussian curvature of 

the radius function. Then, inspecting either equations (4.4) and (4.5) or Tables 

4.4 and 4.5 provides the desired confirmation. 

The relationships between boundary primitives and curvatures of the sim

plified segment and radius function are much more complex when the simplified 

segment is curved rather than flat. We can improve our understanding by trying 

to analyze the situation in two orthogonal directions, that is, by splitting the 

three-dimensional geometry into two independent two-dimensional cases. 

Though we shall see that this is not generally possible, the exercise will 

illuminate the three-dimensional geometry and will also show, as stated in 

Chapter 3, that the three-dimensional curvature relationships subsume the two

dimensional relationships given by Blum and Nagel[Blum78a]. 

Let us begin by rewriting equations (3.3) and (3.4) in another form. Recall 

(Section 3.5.3) that e 1 and e2 are unit vectors in the symmetric surface principal 

directions, f 1 and f 2 are unit vectors in the radius function principal directions, 

and fJ is the counterclockwise angle from e 1 to i\. We also have from Section 

3.5.3 that Tclel = ?'1Cos2 e + ?'2sin2 (!} and Te2e2 = ?'lsin2 e + ?'2Cos2 e. Substituting 
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into (3.4) and rearranging terms, 

Assume for the moment that the radius function principal directions and 

the symmetric surface principal directions coincide, that is, fJ = 0. Then, we 

can rewrite (4.6) to obtain 

Similarly, by setting rj = r: and rj = r!_, recalling that since 11s, e 1, and e2 are 
1 1 2 - .. 

re2 = <no ,e2>. we can rewrite (3.3)as 

(4.7) 

Hence, we see that when the principal directions of the radius function and of 

the symmetric surface coincide, A. 1 + ?'l and A.2 + 12 are the princi-
<ns,nb> <ns.no> 

pal curvatures of the surface parallel to the boundary surfaces. 

After adjusting for somewhat different notation, these expressions for the 

principal curvatures are each identical to the two-dimensional curvature rela-

tion given by Blum and Nagel[Blum7Ba]. Hence, in this case the three-

dimensional curvature relation is determined locally by two orthogonal two-

dimensional slices. 

Now consider the effect of rotating the radius function principal directions 

with respect to the simplified segment principal directions. Rewrite ( 4.6) as 

(4.8) 

By definition, A.1 ~ A.2 and ')'1 ~ ')'2 . Therefore, for the boundary surface determined 
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by <ns ·Do> positive, the effect of rotational displacement is to increase the 

boundary surface Gaussian curvature. As the radius principal directions are 

rotated with respect to the simplified segment principal directions, the effect of 

the displacement increases, reaching a maximum when the two sets of direc

tions are orthogonal and then diminishing as fJ approaches 180 degrees. 

One expects the magnitude of the effect of the rotational displacement to 

depend on the range of normal section curvatures {Section 3.2) and radius func

tion second directional derivatives. For if either range is small, the geometry is 

almost rotationally symmetric, implying that rotation of the principal axes with 

respect to each other makes little difference unless the other range is 

correspondingly large. Equation (4.8) confirms that this is indeed the case. 

Since A. 1 and A.2 are the maximum and minimum curvatures of all normal sec

tions, their difference determines the range of normal section curvatures. Simi

larly, the difference between ?'l and 7 2 determines the range of radius function 

second directional derivatives. 

4.5. Primitive Adjacency Graphs 

In the preceding sections we have developed several different ways to parti

tion a simplified segment into primitives, but have ignored the important ques

tion of how to maintain information about the spatial relationships among those 

primitives. Fortunately, this question has been addressed extensively in the pic

ture processing literature in relation to an almost identical problem, image seg

mentation. There the goal is to subdivide an image into maximal disjoint regions 

each satisfying some uniformity predicate. Ideally, the region defined by each 

predicate would correspond directly to an object potentially present in the 

image. For example, when analyzing images of street scenes one would like the 

regions to correspond to houses, cars, etc. This is rarely possible in practice. 

Consequently, image segmentation is usually followed by processing called scene 
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analysis, in which global information is used to merge regions and to assign 

region "interpretations." Both processes require the ability to examine neigh-

boring regions and to determine the spatial relationships among them. This 

need has led to the development of a number of data structures for maintaining 

region adjacency information. Pavlidis[Pavlidis77a] discusses several of these 

and provides references to others. 

Perhaps the most useful of these data structures is the region adjacency 

graph, a graph in which each vertex corresponds to a region and two vertices 

are connected by an edge if their corresponding regions have overlapping boun-

daries. We can use the same data structure, which we call a primitive adjacency 

gra,ph, to maintain information about the spatial relationships among primitives. 

Properties of the graph translate directly into relationships among the primi-

tives. For example, a vertex of degree one corresponds to a primitive com-

pletely surrounded by another primitive. More generally, a cut-vertex14 

corresponds to a primitive that completely surrounds other primitives. An 

example is illustrated in Figure 4.15. 

The edges of the primitive adjacency graph capture inter-region relation-

ships but carry no information about properties of the primitive(s) themselves. 

A more complete data structure is the labeled primitive adjacency graph, a 

primitive adjacency graph in which each vertex is labeled with information about 

the primitive it represents. Consider, as a very simple example, the simplified 

segment and associated boundary surfaces shown in Figure 4.1 on page 54. The 

primitive adjacency graph is trivial: two vertices connected by a single edge. If 

all three primitive sets are used to form a larger cartesian-product primitive 

set, each vertex could be labeled to indicate which member of each of the three 

14A vertex v1 is a cut-vertex if there are two other vertices, v2 and v3, such that all paths 
between v2 and v3 contain v1• Using depth-first search, all of the cut-vertices of a graph can be found 
in time linear in the sum of the number of vertices and the number or edges in the 
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Figure 4.15.: Example of a Primitive Adjacency Graph 

primitive sets applies. In this simple example, due to symmetry, both vertices 

receive the same labels: axis= parabolic convex; boundary= (parabolic con

cave, parabolic concave); radius = {curvature district: parabolic concave, slope 

district: external). Of course, the vertex labels need not be restricted to primi

tive names. Other possibly useful labels include properties of primitives such as 

maximum and minimum radius function values, region areas, maximum and 

minimum principal curvatures, etc. 

Once a labeled primitive adjacency graph is constructed, the scene analysis 

techniques reviewed by Pavlidis ([Pavlidis77a], Chapter 6) may be useful for 

further processing. In more recent work, Shapiro and Haralick[ShapiroBla] 

have developed an approach to such processing that may prove useful for 

matching inexactly two labeled primitive adjacency graphs, such as might be 

derived in shape description using the prototype paradigm of Chapter 1. 

graph[Reingold77a]. 
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4.6. Summary 

Beginning with the result of the unique figure decomposition induced by 

Blum's symmetric axis transform, the simplified segment, I have proposed a 

further decomposition into primitives drawn from three separate, but not com

pletely independent, primitive sets. Each captures different qualitative proper

ties of the two-sided piece associated with a simplified segment. They can either 

be used separately or combined together to form cartesian-product primitive 

sets. In the latter case, each primitive becomes an ordered 2- or 3-tuple of 

primitives drawn from two or three separate primitive sets. I have also pro

posed a simple data structure, the labeled primitive adjacency graph, to be used 

to maintain information about the spatial relationships among primitives. These 

proposals have yet to be tested in practice. 

4. 7. Unsolved Problems and Research Directions 

It is almost superfluous to say that the techniques described here need to 

be evaluated by applying them, in concert with the other work described in this 

dissertation, to realistic applications. There are also a number of theoretical 

issues that should be addressed, preferably in combination with the necessary 

applied work. 

(1) It appears straightforward, but tedious, to remove the assumption that a 

critical point configuration graph has no adjacent passes. 

(2) Pfaltz[Pfaltz76a] has defined a graph of critical points, called a surface net

work, much like the critical point configuration graph of Section 4.2.2.5. As 

part of his investigation of using surface networks in spatial data bases, he 

proposed simplifying surface networks by replacing certain subgraphs with 

a single vertex, thus discarding "irrelevant" detail. Similar techniques 

might prove useful here to discard minor slope districts, such as those 

caused by a small "bump" on the side of a large "mountain". 
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{3) 1 have proposed three schemes for partitioning a simplified segment into 

regions, each with its own boundary. Though some properties of these 

region boundaries are defined, for example Gaussian curvature along boun

daries of axis primitives, I have ignored the problem of describing the shape 

of those boundaries. As mentioned in Chapter 1, it appears that the two

dimensional SAT, together with Blum's shape description methodology, can 

be generalized easily to apply to outlines on surfaces. 

{4) Blum and Nagel[Blum78a] have defined several measures used to charac

terize properties of the boundaries of two-dimensional simplified segments, 

branch and end points. For example, they define the "busyness" of a 

branch point as the number of other branch points contained within the 

maximal disc centered at the first branch point. I have not defined any 

similar measures on the boundaries of three-dimensional simplified seg

ments, branch and end curves. 

{5) I have used the notion of structural stability to justify an incomplete discus

sion of radius function behavior near degenerate critical points. In prac

tice, what is meant by a degenerate critical point? Indeed, is it reasonable 

to expect to be able to use any of the unstable primitives, those, such as 

the boundary primitives in Table 4.5, that are defined in terms of the equal

ity of two quantities? I think not-some sort of tolerance is necessary. 

Blum and Nagel[Blum78a] completely ignore the issue in their two

dimensional work. Such numerical issues are rarely addressed in the shape 

description literature. 



CHAPTER 5 

APPROXIMATING THE THREE-DIMENSIONAL SYMMETRIC SURFACE 

5.1. Introduction 

Many algorithms for computing the symmetric axis of a two-dimensional fig

ure, or an approximation thereto, have been developed. With but one exception, 

which we discuss below, each algorithm is a variation on one of two themes. In 

the first, the outline is approximated by a simple polygon. Then, an algorithm 

that computes the true symmetric axis of the polygon[Montanari69a, Lee77a, 

Preparata77a, Kirkpatrick79a], without regard to any smooth underlying out

line, is applied. Unfortunately, the resulting symmetric axis, which consists of 

line segments and parabolic arcs, differs from the axis of the smooth underlying 

outline lying near the polygon by the inclusion of simplified segments making 

contact with each non-reentrant ("convex") polygon vertex. Various threshold

ing techniques have been devised to delete such superfluous segments[Blum 78a, 

Montanari69a). 

In the other common approach, points on the symmetric axis in the digital 

plane are computed from a digitized outline, either by collapsing the outline into 

the figure until "opposite sides" of the outline meet on the symmetric 

axis[Rosenfeld66a, Philbrick68a, Montanari68a, DeSouza77a] or by finding cir

cles that fit just inside the figure[Badler79a]. The latter approach has also been 

:used in three dimensions[O'Rourke79a]. The distance metric used is the pri

mary distinction among these algorithms. All compute only a sampling of points 

109 



on the symmetric axis, thus losing symmetric axis connectivity information 

which must then be reconstructed by heuristic means. 
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Bookstein[Bookstein79a] takes a much different approach. Beginning with 

a polygonal approximation to a smooth underlying outline wherein each polygon 

edge is tangent to the outline, his algorithm yields a connected graph of line 

segments, which he calls the line-skeleton, that approximates the symmetric 

axis of the outline. The resulting line-skeleton is not the symmetric axis of the 

approximating polygon. It has neither parabolic arcs nor segments contacting 

non-reentrant vertices. Instead, each element of the line-skeleton lies tangent 

to the true symmetric axis of the underlying outline. 

Both the two-dimensional shape description methodology proposed by Blum 

and Nagel[Blum78a] and the three-dimensional generalization set forth in this 

dissertation depend heavily on curvature. This is hardly surprising since the 

importance of curvature in human shape perception has been widely recognized 

for years. Yet Bookstein presents the only algorithm of which I am aware that 

explicitly deals with outline and symmetric axis tangents and that maintains 

symmetric axis continuity. In my view, any symmetric axis algorithm must have 

these characteristics if it is to be useful for shape description. My work in three 

dimensions therefore builds upon Bookstein's work in two dimensions. 

In the next section, I describe Bookstein's two-dimensional algorithm. 

Then, I present a three-dimensional generalization of the key concept on which 

Bookstein's work is built and sketch an algorithm that utilizes that generaliza

tion. 

5.2. Bookstein's Line-Skeleton 

Bookstein's algorithm is best described in two parts: (1) a procedure that, 

were it possible in continuous space to examine all points near another point, 

could find an outline's true symmetric axis, and (2) a discrete approximation of 
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that procedure. The continuous space procedure applicable in two dimensions 

is also applicable in three dimensions with but minor modification. 

5.2.1. The Medial Involution and Continuous Extension 

Let C be a smooth outline, let SA( C) be the symmetric axis (surface) of C, 

and let r be the mapping from C onto SA(C) that maps a point Pc inC to the 

center of the maximal disc that touches Cat Pc. See Figure 2.4- (page 24). 

Further, let C2 be the set of all points P c in C for which r(P c) is a point contact 

normal point. For Pc in C2, there is by definition a single point Pc' in C2, called 

the medial involute of Pc. such that r(Pc') = r(Pc). The function that maps a 

point in C2 to its medial involute, called the medial involution, is continuous on 

C2• Let T(Pc) denote the line (plane in three dimensions) tangent to Cat Pc and 

let N(Pc) denote the line normal to Cat Pc. As a consequence of the definition 

of the SA, r(Pc) = r(Pc'} must lie at the intersection of N(Pc), N(Pc'), and the 

bisector of T(P c) and T(P c'). Further, the bisector is tangent to SA( C) at r{P c }. 

Given any P c in C2 , its medial involute is easily found. At each point P of C, 

construct N(P), T(P), and the bisector of T(P) and T{Pc). Only points P for which 

the two normals and the bisector coincide are candidates for the medial involute 

of P c· Of all candidates, the medial involute is the point P c' for which the dis

tance between Pc and the point of coincidence is least. See Figure 5.1. 

Because the medial involution is continuous, the search for medial involutes 

of points on C2 near to Pc can be constrained to a neighborhood of Pc'· The new 

pair of medial involutes determines a point on SA( C) which, by the continuity of 

r, is near to r(Pc). thus extending SA{C}. A simplified segment can be con

structed in two steps: 

(1) Pick some point on the outline and search for its medial involute. The 

resulting pair of medial involutes determines a point on SA( C). 
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Figure 5.1.: Medial Involutes 

(2) Using the continuity of the medial involution, grow SA( C) until a point P is 

reached where the medial involution fails to be continuous. That point is 

not in C2; -r(P) is either a branch point or an end point of SA(C). 

Of course. in continous space, where each neighborhood contains an infinite 

number of points, this procedure never terminates. That is not a problem in 

discrete space. 

5.2.2. Discrete Approximation of the Two-dimensional Medial Involution 

To apply the aforementioned procedure to discrete data, a discrete approx

imation of the continuous medial involution is required. Recall that Bookstein 

begins with a polygonal approximation to the underlying outline wherein each 

polygon edge lies tangent to the outline at some point along its length. This pro

vides a sampling of the outline tangent assumed to be sufficiently fine to cap

ture the outline curvature. Bisectors of adjacent polygon edges, called pseu

donormals, serve as approximations of outline normals. Consider two non

adjacent edges, ei and e1, and let B be their bisector line, as shown in Figure 5.2. 
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Figure 5.2.: Finite Skeletal Line Elements (after [Bookstein79a]) 

Edges e;. and ej each determine a pair of pseudonormals, one through each end

point, which demarcate a (possibly empty) interval on B. The two edges are 

called discrete medial involutes if the two intervals so defined on B overlap. In 

that case, the overlap on B is called the finite skeletal line element (fsle) of e.,; 

In continuous space coincidence of the normals at each of two outline 

points with the bisector of the tangent planes at those points is necessary, but 

not sufficient, to ensure that those points are medial involutes. Similarly, each 

edge of the approximating polygon may have more than one discrete medial 

involute. A true discrete involute. (tdi) of a polygon edge ei is a discrete medial 

involute of e.,; for which the corresponding fsle is closest to e.,;. distance between 

an fsle and ei being defined as the smaller of the distances from the endpoints 

of the fsle to the line containing ei. Whenever two edges are true discrete invo-

lutes, the fsle between them is presumed to approximate a (one-dimensional) 

1Figure 5.2 and all subsequent figures in Section 5.2.2 are closely modeled after figures in 
[Bookstein79a]. Polygon edges and fsle's are drawn bold with endpoints shown as black dots. Pseu
donormals are drawn dashed. 
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neighborhood of the true symmetric axis. Moreover, the two fsle's defined by 

two contiguous edges and a third, non-contiguous edge are connected, as shown 

in Figure 5.3. 

Bookstein's algorithm, as he describes it[Bookstein79a], is a "tree-

structured assembly" of several operations on edges and fsle's: finding initial 

finite skeletal line elements, extending fsle's into fsle chains, and determining 

branch and end points. The algorithm begins by picking an arbitrary edge of the 

approximating polygon and finding one of its tdi's2 and corresponding fsle. 

From this "seed" fsle, the algorithm constructs two connected fsle chains, one 

left and one right, by "marching" along the polygon edges as illustrated in Fig-

ure 5.4. (In essence, the transition from continuous to discrete space replaces 

extension of the SA by neighborhood search as described in Section 5.2.1, with 
I 

simple extension of a chain of fsle's.) The left and right chains are constructed 

I . 
I 

I 
I 
I 

I 
I 
I 

Figure 5.3.: Connected Fsle's (after [Bookstein79a]) 

2If the approximatmg polygon does not adequately capture the curvature of the underlymg out
line, the edge may not have a tdi. In that case, another starting edge must be chosen. In general, a 
small "'gap" appears in the symmetric axis approximation whenever an edge has no corresponding 
fsle. Bookstem describes an ad. hoc procedure for patching such ''gaps." 
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Figure 5.4.: Fsle Chain Extension {from [Bookstein79a]) 

independently and identically; consider the extension right. Eventually, the 

extension fails in one of two ways, corresponding either to an end or to a branch 

point of the true symmetric axis. In the first failure mode, which Bookstein calls 

"failure by mode A," the extension terminates when the two edges that deter-

mine the rightmost fsle are separated by but one edge, as shown in Figure 5. 5. 

Extension failure by mode A corresponds to reaching an end point. 

Figure 5.5.: Mode A Chain Termination {after [Bookstein79a]) 
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In the second failure mode, illustrated in Figure 5.6, the pseudonormals of 

an edge cross before intersecting the bisector line that contains what should be 

the next chain fsle, thus terminating the chain. This failure mode, which Book-

stein calls "failure by mode B." occurs either when an edge has no tdi because 

the outline curvature is sampled inadequately or when the fsle chain is extended 

pa,st a branch point. I ignore the former case. The latter situation is illustrated 

in Figure 5.7. As chain extension proceeds rightward from s1 (e;,. ej), crossing 

the true branch point (shown solid with its branches), the algorithm must even-

tually encounter an edge on the "upper" boundary arc, here edge e1c, whose tdi, 

here edge e~c_2 , lies between ei and e~c. Since the pseudonormals of e~c must 

intersect beyond the upward branch from the branch point, they must also 

intersect above the chain being extended right from s1 (ei, ej ). But this implies 

failure of the extension right by mode B. Therefore, extension past a branch 

point implies eventual failure by mode B. 

We must still approximately locate the branch point. Upon failure of the 

extension after fsle s1 (ek-S• em), the algorithm finds the tdi e1c of e~c_2 by 

Figure 5.6.: Mode B Chain Termination (after [Bookstein79a]) 
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Figure 5. 7.: Extension Failure Past Branch Points (after Bookstein79a]) 

exhaustive search and then extends left a new chain from s1 (ek, e~c_2). Either 

the extension left fails by passing a second branch point or an fsle of the new 

chain intersects an fsle of the original chain. In the former case, illustrated 

schematically in Figure 5.8, a new tdi is found and yet another new chain is 

extended left by this same procedure. In the latter case, the intersecting fsle's, 

here s1 (e~c_4 , e/c+l) and s1 (e~c_4, em+l) are determined by the common edge e~c_4. 

Furthermore, a third fsle, s1 (em+l• e/c+l) intersects at the same point. Two new 

chains out of this point of intersection are constructed by recursively invoking 

the extension procedure twice, once using s1 (e~c_4 , ek+l) as the "seed" fsle and 

once using s, (em+l• e/c+l). 

Upon failure of all extension procedures at end points, that is, by mode A, 

the algorithm terminates, yielding a connected chain of fsle's each lying tangent 

to the true symmetric axis of the underlying outline. Of course, this description 

of Bookstein's algorithm is a simplification; his exposition[Bookstein79a] is more 
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extension past branch 

Figure 5.8.: Extension Left to Branch Point (after [Bookstein79a]) 

complete. 

5.3. Overview of the Three-dimensional Algorithm 

In three dimensions, we seek an algorithm that takes a polyhedral approxi-

mation to a smooth outline and yields a polyhedral surface approximating the 

symmetric surface of the outline. Since the two- and three-dimensional continu-

ous medial involutions are defined identically, our approach is to generalize 

Bookstein's algorithm. The principal task is to define three-dimensional analogs 

of pseudonormals and finite skeletal line elements, the two components of the 

two-dimensional discrete medial involution. In three dimensions, we approxi-

mate outline normals by polyhedral regions of space, called pseudonormal pen-

cils, 3 rather than by pseudonormallines, and symmetric surface neighborhoods 

by planar polygons, called symmetric surface planar elements (sspe's), rather 

than by line segments. There corresponds to each pair of non-adjacent faces of 

the approximating polyhedron an sspe, possibly empty, defined by the overlap of 

3I shall use the term pencil in its informal sense-something long and thin like a pencil-rather 
than in the sense used in projective geometry. 
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two pseudonormal pencils upon the bisector of the faces. Two such faces having 

a non-empty symmetric surface planar element are discrete medial involutes, 

the discrete analog of continuous medial involutes. 

Like Bookstein's two-dimensional algorithm, the three-dimensional algo

rithm I propose below consists of three basic operations: finding a "seed" sspe, 

extending sspe's into polyhedral surfaces, and determining branch and end 

point curves. Given a polyhedral approximation to a smooth outline, the algo

rithm begins by arbitrarily choosing a face of the approximation and then find

ing, by exhaustive search, a true discrete involute of the starting face, and 

hence, a "seed" sspe. Then, using this "seed," the simplified segment extension 

procedure constructs, without further searching, the entire simplified segment 

containing the "seed" sspe. The extension procedure fails at end curves and 

past branch curves, much as in the analogous two-dimensional situation. How

ever, once the branch is detected, a new "seed" sspe is found, again by exhaus

tive search, and the extension procedure is invoked to construct another simpli

fied segment. By intersecting the new simplified segment with the original, the 

actual location of the branch curve can be found and other simplified segments 

constructed. 

In the balance of this chapter, I describe a the three-dimensional generali

zation of Bookstein's algorithm outlined above. In the next section, I define 

pseudonormal pencils and symmetric surface planar elements, and investigate 

their individual properties. Then, in the following section,-· after showing that 

sspe's "fit together" to form a polyhedral surface, I present a three-dimensional 

sspe extension procedure. Finally, 1 outline a procedure for intersecting simpli

fied segments to find the actual location of branch curves. 
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5.4. Three-dimensional Discrete Medial Involutes 

This section addresses the principal task of the chapter, defining the com-

ponents of the three-dimensional discrete medial involution: pseudonormal pen-

cils and symmetric surface planar elements. I first introduce the terminology 

and the mathematical concepts we shall need and discuss required properties of 

the approximating polyhedral surface. Then, I define pseudonormal pencils and 

show intuitively in what sense they approximate normals to the underlying out-

line. Using this understanding, I then define symmetric surface planar elements 

and investigate their individual properties. 

5.4. L Background 

Since different sources use the same terminology for slightly different 

notions, the terminology we shall use is defined here. 

Definition 5.1: A closed polygonal curve is a finite set of line segments such that 

(1) Two distinct closed line segments are either disjoint or intersect at a 
common endpoint. 

{2) Each endpoint is an endpoint of exactly two line segments. • 

Definition 5.2: A closed planar polygonal curve is a polygonal curve contained in 
a plane. • 

Definition 5.3: A closed polygon is the union of a closed planar polygonal curve 
and its inside. A vertex is a point at which two non-collinear line segments in 
the polygonal curve intersect. An edge is a closed line segment in the polyg
onal curve with vertices as endpoints. 111 

Definition 5.4: A polyhedral surface {without boundary) is a finite set of closed 
polygons called faces, such that 

( 1) Two faces are either disjoint or intersect in an entire edge common to 
both faces or in a vertex common to both faces. 

(2) Each edge of each face is also an edge of exactly one other face. 

(3) The set of faces that share a common vertex can be labeled in cyclic 
order, Fo, ... , Fn-l• F n = F0, such. that Fi and Fi+l share a common edge. 
11 

Figure 5.9 (a) illustrates several permissible face intersections, while (b) illus-

trates several illegal intersections. 



(a) (b) 

Figure 5.9.: Face Intersections 

Definition 5.5: A polyhedral surface with boundary is a finite set of closed 
polygons, called faces, such that 
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( 1) Two faces are either disjoint or intersect in an entire edge common to 
both faces or in a vertex common to both faces. 

(2) Each edge of each face is also an edge of at most one other face. An 
edge contained in exactly one face is called a boundary edge. 

(3) The set of faces that share a common vertex can be labeled 
Fa .... , Fn-l• Fn, such that for O~i <n. Fi and Fi+l share a common 
edge. If, in addition, Fa= Fn, the vertex is called an interior vertex; oth
erwise it is called a boundary vertex. • 

The term polyhedral surface, used without qualification, refers to a polyhedral 

surface without boundary. 

We shall also use some elementary concepts of elementary point set topol-

ogy in Euclidean spaces. Concise, yet readable treatments of these concepts 

appear in Sections 1.1 through 1. 7 of [Kelly79a] and in Section 2 of 

[Requicha78a], as well as in many elementary topology texts. 
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Definition 5.6: Let d (p ,q) denote the Euclidean distance between two points p 
and q. The set N{p,o} = ~q I d{p,q) <o~ is the neighborhood ofp with center 
p and radius o. a 

Definition 5. 7: A point p is an interior point of a set A if there exists a neighbor
hood of p that is contained in A. A point p is an exterior point of a set A if 
there exists a neighborhood of p that is contained in the complement of A. 
A point p is a boundary point of a set A if every neighborhood of p intersects 
both A and the complement of A. The interior of A, denoted intA, is the set 
of all interior points of A. The exterior of A, denoted ext A, is the set of all 
exterior points of A. The boundary of A, denoted bdA, is the set of all 
boundary points of A. • 

Definition 5.8: A set A is open if it consists entirely of interior points. A set A is 
closed if it contains its boundary. • 

Note that a set can be both open and closed. For example, the empty set is both 

open and closed. 

Definition 5.9: The closure of a set A, denoted ciA. is the union of the set and its 
boundary. • 

Definitions 5.6 through 5.9 depend crucially on the universe, the set 

characterized by its complement being empty. In other words, the universe 

contains all points considered. Different universes can yield different results for 

the same notion. For example, if A is a closed line segment in the universe R1, 

bdA consists of the two endpoints. If, however, the same line segment is con-

sidered ih the universe R2, bdA is A itself. Unless specified, the universe will be 

clear from context. 

Where it is necessary to work simultaneously with two universes, one a sub-

set of the other, say U' c U, we denote the interior, boundary, exterior, and clo-

sure of a set A in the universe U' by int' A, bd' A, ext' A, and cl' A respectively. 

Additionally, if with respect to the universe U' A is open, it will be said to be 

open in U'. If with respect to the universe U' it is closed, it will be said to be 

closed in U'. The following result shows how some of these notions are related 

for different universes. 
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Lemma 5.1: Let U be the universe and let U' c U. Then 

(l) A neighborhood in U' is the intersection of U' with the neighborhood of 
U that has the same center and radius. 

(2) A subset of U' is open in U' if and only if it is the intersection of U' with 
an open subset of U. 

(3) A subset of U' is closed in U' if and only if it is the intersection of U' 
with a closed subset of U. 

( 4) If A is a subset of U', then the closure of A in U' is the intersection of U' 
with the closure of A in U. 

(Theorem 7, Section 1.3, [Kelly79a]). • 

5.4.2. The Approximating Polyhedral Surface 

The algorithm is to take as its input a polyhedral surface that approximates 

an outline. To be acceptable, the approximating polyhedral surface must satisfy 

certain conditions which, after appropriate notation is introduced, are discussed 

in this section. 

Each face, Fi, of the polyhedral surfaceis bounded by 11..j, edges denoted e/, 

j =0, ... , ni -1. See Figure 5.10. Beginning with an arbitrary edge, the edges 

are numbered in counterclockwise order as seen from outside the face. There 

are~ vertices v! = e! n eiccf.(j)' where CC.;,{j) = {j+1) mod~ denotes the index 

v .... 
I 

0 v, 
' 

e~ • 

Figure 5.10.: Face and Vertex Notation 
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of the edge on F.,; counterclockwise adjacent to ef. Henceforth, we use sub

scripts to index faces and superscripts to index edges and vertices. Two distinct 

faces are called edge-adjacent if they share a common edge and vertex-adjacent 

if they share a common vertex. By convention, a face is neither edge-adjacent 

nor vertex-adjacent to itself. Note, however, that part (1) of Definition 5.4 

implies that edge-adjacent faces are also vertex-adjacent. Two vertex-adjacent 

faces are also called neighbors. Finally, let Vi be the set of indices of all faces 

vertex adjacent to F.,; and let E.,; be the set of indices of all faces edge adjacent to 

F.,;. 

In addition to the conditions imposed by Definition 5.4, the approximating 

polyhedral surface must satisfy the following conditions: 

(1) each face must be a convex closed polygon; 

(2) at some point within its extent, each face of the approximating polyhedral 

surface must lie tangent to the underlying smooth outline; and, 

(3) the approximating polyhedral surface must "adequately" capture the cur-

vature of the outline. 

Note that condition (1) does not require that the approximating polyhedral sur

face bound a convex polyhedron, but only that each face be convex. I shall ela

borate condition (3) below. 

Throughout this chapter, we shall also assume that vertex-adjacent faces 

are not coplanar. Though this condition is not essential, it results in a substan

tial simplification of the algorithm description with little loss of generality. 

5.4.3. Pseudonormal Planes and Pencils 

At some point within its extent, each face of the approximating polyhedral 

surface lies tangent to the underlying outline. Unfortunately, discrete samples 

of normals to the outline cannot be obtained by constructing a perpendicular to 
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the face at the point of tangency, for the point of tangency is not known. 

Instead, a suitable approximation is required. Therefore, in this section I define 

for each face of the approximating polyhedral surface a set of pseudonormal 

planes which, taken together, determine a pseudonormal pencil associated with 

that same face. I then argue intuitively that pseudonormal planes and pseu-

donormal pencils together play the role of outline normals. 

Let Fi be a face of the approximating polyhedral surface and let 1ri denote 

the plane containing Fi. Assign to each face, the inward directed unit normal 

vector~. and denote by rr.t the open half-space into which the normal vector 

points, by 1Ti- the opposite open half-space, and by rr1.0+ and rrP- the correspond-

ing closed half-spaces. We shall consider a plane to be defined not only by its 

point set but also by the direction of its unit normal. For any point in space p, 

the signed distance fromp to 1Ti, denoted drr,(p), is defined as 

drr~ (p) = ( d (p .rrd ~f p E1Ti~+ 
-d (p, rr.J 1f p E1Ti • 

where d (p ,rr.;,) denotes the shortest distance between the point p and the plane 

Each pair of faces Fi and FJ determines a set a.i.J = ~p I drr~ (p) = drri (p )~, 

called the bisector set. For all but parallel faces, aij is one of the two planes 

that bisect the angle formed by the intersection of rri and rr;· When rri and rr; 

are parallel and distinct, CTt; is either the plane midway between them (D.i = -n; ), 

or is empty (n.,; = n; ). When rr.,; = rr;. CTi; is all of space. 

Definition 5.10: Let F.,; and F m be vertex-adjacent faces. The pseudonormal 
plane Nim is CTim• the bisector of 1Ti and 1rm· 1:11 

See Figure 5.11. Note that the pseudonormal plane Nim determined by faces F.,; 

and F m may intersect the interiors of either or both of the faces, as illustrated 

in Figure 5.12 (the vertex shared by Fi and F m is not in the plane of the paper). 
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Figure 5.11.: Pseudonormal Planes (side view) 

1f. 
I -rrm 

Figure 5.12.: Faces "Cut" by a Pseudonormal Plane (side view) 

Assume for now that F.,; is contained in one of the two closed half-spaces 

bounded by Nim· Denote by NB;i the closed half-space bounded by Nim contain

ing Fi• by NB;; the other closed half-space (which need not contain Fm), and by 
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Ni~ and N~ the corresponding open half-spaces. Ne! and N;.';; are called respec-

tively the closed positive and closed negative pseudonormal half-spaces of Nim. 

Similarly, Ni~ and N~ are called respectively the open positive and. open nega-

live pseudonormal half-spaces of Nim. We shall see below that the case where F\ 

is not contained in one of the two closed half-spaces bounded by Nim is 

irrelevant. 

Definition 5.11: Let Fi be a face. The closedpseudonormalpencil of Fi, 
pp+ = n NB/. is the intersection of the closed positive pseudonormal half

ke:Vi 

spaces of the pseudonormal planes determined by Fi and its neighbors. The 
open pseudo normal pencil of Fi, P t = n Nit, is the intersection of the 

ke:Vi 

corresponding open positive pseudonormal half-spaces. • 

See Figure 5.13. 

A normal pencil approximates a true outline normal in the following sense. 

Consider a neighborhood of radius o about a point p on the underlying outline. 

There is a line normal to the outline through each point on the neighborhood 

boundary. Collectively, those lines sweep out a surface in space that separates 

Figure 5.13.: Example of a Pseudonormal Pencil 
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space into regions, one of which contains the neighborhood of p and is called the 

normal pencil at p of pencil radius 6. The surface swept out by the normal is 

called the normal pencil boundary. See Figure 5.14. As the pencil radius is 

made to approach zero, the neighborhood becomes more closely approximated 

by the tangent plane to the outline at p, while at the same time the normal pen

cil becomes more nearly cylindrical with the normal through p as its axis. 

Pseudonormal pencils, in turn, approximate normal pencils. Each face of 

the appr!Jximating polyhedral surface defines the tangent plane to the outline at 

some point within the face. As the approximating polyhedral surface becomes 

increasingly accurate, that is, as its faces become smaller and more numerous, 

each face becomes a better approximation of a neighborhood about a point on 

the underlying outline. Moreover, the points of tangency of neighboring faces 

move closer together, implying that the pseudonormal planes become increas

ingly accurate approximations to normals on the neighborhood boundary, and 

hence, that pseudonormal pencils approach normal pencils. We shall therefore 

use pseudonormal pencils to approximate outline normals. 

Figure 5.14.: Example of a Normal Pencil 
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5.4.4. Symmetric Surface Planar Elements 

Recall from Section 5.2.1 that two points on the outline, p and g, are poten

tial medial involutes only if the normals at those points intersect on the bisector 

of the tangent planes at p and g and, furthermore, that if p and g are indeed 

medial involutes, the point of intersection is on the symmetric surface. Since 

normals to a smooth surface {such as the outline) change continuously, for 

small enough pencil radii the intersection of normal pencils at p and g with the 

bisector of the tangent planes at p and q approximates a neighborhood of the 

symmetric surface. Similarly, in the discrete case, two faces are discrete 

medial involute candidates if the closed pseudonormal pencils at those faces 

intersect on the bisector plane between the two faces. Temporarily ignoring 

certain details, the neighborhood of the bisector plane so defined is called the 

symmetric surface planar element candidate {sspec) defined by the two faces. 

The approximate symmetric surface consists entirely of sspec' s, each of which 

approximate a symmetric surface neighborhood; not all sspec's are part of the 

approximate symmetric surface. An sspec contained in the approximate sym

metric surface is called a symmetric surface planar element (sspe). Unlike 

Bookstein's fsle terminology, the terminology used here distinguishes between 

sspec's that are potentially part of the approximate symmetric surface and 

sspe's that are part of the approximate symmetric surface. Pairs of faces for 

which the corresponding sspec is not empty are called discrete medial involute 

candidates, and those pairs of faces for which the corresponding sspec is also an 

sspe are called discrete medial involutes. 

In the next section, I discuss properties of continuous medial involutes, nor

mal pencils, and symmetric surface neighborhoods that discrete medial invo

lutes, pseudonormal pencils, and sspe's must also possess if they are to be rea

sonable approximations of their continuous counterparts. Then, I give a formal 

definition of sspec's and prove that the conditions established therein ensure 
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the necessary properties. 

5.4.4.1. Definition 

Let Fi and F; be distinct faces of the approximating polyhedral surface. 

Informally, the sspec determined by Fi and F;. denoted Si; = Sii• is the intersec

tion of the bisector plane aii with the closed pseudonormal pencils Pi0+ and Pr. 

Unfortunately, such a simple definition is not adequate if we are to avoid running 

afoul of artifacts caused by the noninfinitesimal extent of pseudonormal pencils. 

If the approximating polyhedral surface does not adequately sample the curva-

ture of the underlying smooth outline, pseudonormal pencils and sspe's need not 

· possess certain properties of the normal pencils and symmetric surface neigh-

borhoods they approximate. In the seven items below, I discuss these properties 

by comparison to the corresponding continuous behavior. Then I set forth for-

mally conditions sufficient to ensure that non-empty sspec's possess the 

requisite properties. 

{1) By definition, a normal pencil contains its defining neighborhood. Simi-

larly, we require (part ( 1) of Definition 5.14 below) that each closed pseu-

donormal pencil contain the face that defines it. Note that a face having 

an ill-defined pseudonormal half-space (page 127), has no sspec associ-

ated with it that satisfies this condition. 

(2, 3) Let p and q be two continuous medial involutes. By definition, p and q 

also lie on a maximal sphere centered on a symmetric surface point and 

are strictly separated by the tangent plane to the symmetric surface at 

the sphere center. Moreover, the sphere is tangent to the outline at p 

and at q. Since no two points on a sphere have the same normal,4 the 

normals at p and q are distinct. Therefore, since the normals of a 

4Antipodal points on the sphere have parallel normals but they are directed in opposite direc
tions. 
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smooth surface change continuously, there exist two neighborhoods on 

the outline, one about p and one about q, such that the normal at any 

point in the neighborhood of p is different from the normal at q, and vice 

versa. We shall require analogous behavior of discrete medial involutes: 

a;.; must strictly separate Fi and F;; the normals of the neighbors ofF; 

are distinct from the normal of Fi, and the normals of the neighbors of Fi 

are distinct from the normal ofF;. (Parts (2) and (3) of Definition 5.14 

below.) 

(4) For a normal pencil at p (likewise at q) to demarcate a neighborhood on 

the symmetric surface, the pencil radius must be sufficiently small that 

the pencil intersects the bisector of the tangent planes at p and q in a 

closed curve rather than in open curve. 5 Similarly, we shall require that 

for any pair of discrete medial involutes F.,; and F;. the pseudonormal pen

cils defined by Fi and F; must each intersect the bisector plane aii in a 

closed polygonal curve. To develop conditions sufficient to ensure such 

behavior, we consider an example: 

The left figure shows two edge-adjacent faces F.,; and F m viewed from 

5This is analogous to the intersection of a plane and a cone. Depending upon the generating an
gle of the cone and the orientation of the plane with respect to the cone axis, the curve of intersec
tion is either an ellipse (closed), a parabola {open), or a hyperbola (open). 



132 

out$ide of the approximating polyhedral surface. Faces Fa and F!i are the 

two faces that are both edge-adjacent to Fi and vertex-adjacent to F m. 

The right figure shows the three pseudonormal planes Nim, Nia, and Nib 

viewed from the F m side of N.~m. Pseudo normal planes Nim and Nia inter-

sect in a line; likewise Nim and Nib also intersect in a line. We shall prove 

in the following section that if all such lines (i.e., for all faces F m edge

adjacent to F,;) are not parallel to the bisector plane aii• then the pseu

donormal pencil at Fi intersects aii in a closed polygonal curve. (Part (4) 

of Definition 5.14 below.) 

(5, 6) A pseudonormal pencil approximation of a normal pencil must be local in 

two senses. First, the pseudonormal planes that provide estimates of nor-

mals in one portion of the normal pencil's defining neighborhood should 

have no effect on estimates in other portions of the neighborhood. 

Second, those estimates should be ordered about the pseudonormal pen-

cil of a face in the same way that neighboring faces are ordered about the 

face. Let us again consider an example: 

The left figure shows a face Fi and its neighbors viewed from outside the 

approximating polyhedral surface. Consider the intersection of the bisec-

tor plane aii with all of the closed positive pseudonormal half-spaces 
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defined by faces edge-adjacent to Fi• as shown on the right. Now consider 

the intersection of this polygon with the positive pseudonormal half-space 

defined by the non-edge-adjacent neighbors ofF,, in this example Fb, Fe, 

and Fct. We require (part (5) of Definition 5.14 below) that if one or more 

of the pseudonormal planes Nw, Nic, or Nict intersects the polygon they do 

so only in the two edges defined by the pseudonormal planes Nia and Nia. 

This type of intersection is shown on the left below; a prohibited intersec

tion is shown on the right: 

We also require (part (6) of Definition 5.14) that as the edges of the result

ing polygon are traversed in some direction, say clockwise, the neighbors 

of Fi that determine the pseudonormals containing the edges are 

traversed in clockwise order about Fi, with the possible exception that 

not all neighbors need be traversed. This type of ordering is shown on the 

left below; a prohibited ordering is shown on the right: 



134 

(7} Thus far, we have considered only properties required independently of 

each of the two pseudonormal pencils that determine an sspec; we now 

deal with a property of their intersection. Since an sspec is to approxi-

mate a neighborhood of the simplified segment, it must be two-

dimensional, neither a point nor a curve. To avoid such degeneracies, 

sspec's are defined in terms of the intersection of open, rather than of 

closed, pseudonormal pencils. 6 Taking intersections of open pencils 

(which are open sets) ensures that such degeneracies cannot occur 

because, as we shall show in the next section, the intersection of two open 

pencils with the bisector plane is an open set, S~J· in the plane aiJ· Since 

open sets in a plane (other than the empty set) are, by definition, two-

dimensional, S~J is two-dimensional. The sspec SiJ is defined as the clo

sure in the plane aiJ of S~J· The closure operator simply "wraps" a bound

ary around. S~J so that the sspe is a closed polygon rather than just the 

interior of a closed polygon. 

6This is more an issue of mathematical formulation than of practical significance, for in numeri
cal computing of this sort the notion of a closed set is specious: numerical error precludes any test 
for strict equality. 
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The conditions introduced in the preceding informal discussion are set 

forth formally in the next three definitions. 

Definition 5.12: Let Fi be a face of the approximating polyhedral surface. A par
tial pseudonormal pencil at Fi is the intersection of two or more of the 
closed positive pseudonormal half-spaces of the pseudonormal planes deter
mined by Fi and its neighbors. a 

Every partial pseudonormal pencil at F.,; contains the pseudonormal pencil at Fi. 

Definition 5.13: Consider a plane that intersects the boundary of a partial pseu
donormal pencil at face Fi in a polygonal curve. Each edge of the polygonal 
curve is contained in the intersection with a pseudonormal plane defined by 
Fi and one of its neighbors; the edge is said to be associated with the neigh
bor. The pseudonormal pencil at Fi is well-ordered with respect to a plane if, 
for every partial pseudonormal pencil that intersects the plane in a polygo-
nal curve, as the edges of the polygonal curve are traversed clockwise, 7 the 
associated neighbors of Fi are traversed in clockwise order about Fi, with 
the possible exception that some neighbors may not be traversed. • 

Definition 5.14: Let Fi and F; be faces of the approximating polyhedral surface, 
and let 

If 

(1a) F1. c Pr: 
(1b) F; c PJ+; 

(2) the bisector plane aij separates8 Fi and F;: 

(3a) fork EV;, ni :F D..l:; 

(3b} for k EVi, n; :F D..l:; 

(4a) formEEi andkE(Ei nVm), aii n N.,:m n Nik :F ¢; 

(4b) form EE; and k E(E; n Vm ), aij n N;m n N;k # ¢; 

(5a) for m EVi, aii n Nim n n NBc+ c n N.f1+; 
k EV4 lc EV, 
/cEV;, k~V;, 

(5b) for mEV;. ai; n N;m n n NJ/ c n NJ~c+: 
lc EVi lc EVi 
kEVm k.t.Vm 

(6a} Pr is well-ordered with respect to a1.;: and 

(6b) Pr is well-ordered with respect to a1.;: 

{5.1) 

then the sspec, sij• is the closure of s~j in Gij• cl' S~;; otherwise sij is empty 
(¢). II 

7The clockwise direction is determined by the usual '"keep your left hand on the inside wall" 
rule. 

6Two sets are separated by a plane if they are contained in opposite open half-spaces of the 
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l conjecture that any pseudonormal pencil satisfying conditions (1), (4), and (5), 

is also well-ordered with respect to a;.1. 

Definition 5.15: Let F, and Fi. be faces of the approximating polyhedral surface. 
If S;.1 is not empty, then lt'i and F1 are discrete medial involute candidates. 
We also say that F1 is a discrete medial involute candidate of Fi and vice 
versa. • 

Definition 5.16: Let F;. be a face of the approximating polyhedral surface. A true 
discrete involute {tdi) of Fi, if one exists, is a discrete medial involute candi
date ofF;.. F1, for which the minimum distance between a point of S;.1 and the 
plane rri is smallest. • 

We say that the approximating polyhedral surface "adequately" approxi-

mates the underlying smooth outline if every face has at least one discrete 

medial involute candidate. 

Definition 5.17: An approximating polyhedral surface is admissible if every face 
has at least one discrete medial involute candidate. • 

Henceforth, we shall assume that the approximating polyhedral surface is 

admissible. 

5.4.4.2. Properties 

In this section,.I prove formally that the conditions stated in Definition 5.14 

are sufficient to ensure that a non-empty sspec is a closed convex polygon: 

Theorem 5.2: Let F;. and F1 be faces of the approximating polyhedral surface. 
Then, if Sii is not empty, Sii is a convex closed planar polygon. • 

Essentially, Theorem 5.2 ensures that any sspec that is not empty, and is thus 

eligible to approximate a symmetric surface neighborhood, is a polygon rather 

than an unbounded region. 

The proof is in three parts. First, I show that a non-empty sspec is homage-

neously two-dimensional, neither a line nor a point, and that it is convex. I then 

show that the sspec is the intersection of two closed pseudonormal pencils with 

the bisector plane, and, finally, that the sspec is bounded and therefore a closed 

plane. 



polygon. 

The intuitive notion of homogeneity is captured by the set-theoretic con· 

cept of a regular set[Requicha77a, Requicha78a, Kuratowski76a]. 

Definition 6.18: A set A is regular if A = clintA. 111 
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Informally, the operator "clint," sometimes called regularization, dis'cards por· 

tions of the set having no interior and then "wraps" a boundary around the 

remainder of the set. 

Lemma 6.3: If A is a convex set, then intA = int clA. (Theorem 12, Section 
3.1.[Kelly79a]). • 

Lemma 6.4: If A is a convex set with a non-empty interior, then clA = clintA. 
(Theorem 11, Section 3.1, [Kelly79a]). • 

Lemma 6.6: Sij is regular in the plane Uij• 

Proof: If Sii = ¢. the result is trivial. By Definition 5.14, Sii is the closure in the 
bisector plane aij of s~j· We must therefore show that in the plane Uij• 

cl' int' cl' s~j = cl' s~j· where primes on the closure and interior operators, cl' 
and int', denote closure and interior in aii· Since planes and half-spaces are 
convex sets and the intersection of any number of convex sets is convex 
(Theorem 7, Section 3.1, [Kelly79a]), by (5.1) S~i is convex. Then, by Lemma 
5. 3, cl' int' cl' S~5 = cl' int' S~5 . The result now follows immediately from Lemma 
5.4 .• 

We also have 

Lemma 6.6: The closure of a convex set is convex. (Theorem 12, Section 2.6, 
[Kelly79a]). 11 

Lemma 5. 7: Sii is convex. 

Proof: S~5 was shown to be convex in the proof of Lemma 5.5. The result follows 
from Lemma 5.6. 11 . 

Together, Lemmas 5.5 and 5. 7 show that a non-empty sspec is a convex, 

homogeneously two-dimensional region of the bisector plane aij. The second 

part of the proof of Theorem 5.2 entails showing that a non-empty sspec is the 

intersection of two closed pseudonormal pencils with the bisector plane, and 

hence, is a closed polygonal region of the bisector plane. By definition, a non-

empty sspec sij is the closure in the bisector plane aij of the intersection with 
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aii of the open pseudonormal pencils at faces Fi and F1. Essentially, what is 

required is to show that in the particular case when the sspec is non-empty, the 

closure operator distributes over the intersection operator. 

Lemma 5.6: Let F,; and F m be vertex-adjacent faces and let F; be any other face. 
If D.t -:f:. n1, ~ #:- n1, aii -:f:. ¢. and am; "#- ¢. then a,;; n Nim is a line. Further
more, aii n ami n Nim ::: am; n Nim = aii n Nim · 

Proof: We first show that a,1 n Nim is a line. Using the definition of a bisector 
plane, it is not difficult to see that nt - nm and n, - n; are vectors normal to 
Nim and aii respectively. Hence, aii n Nim = ¢ only if n,; - Dm. = c (llt - n1 ), 
for some non-zero constant c. By solving for llt and taking its magnitude, it 
is easy to see that aii n Nim is empty only if n; = Dm.. If n; = Dm., ami is 
empty unless rr; = 1fm· But, by hypothesis, am; is not empty. Therefore, 
rr1 =rrm· But since vertex-adjacent faces are not coplanar, rr; "#1fm· Thus, aii 
and Nim are not parallel and must intersect in a line. 

By corresponding arguments, am; and Nim also intersect in a line. It 
remains to be shown that the two lines are identical. Let p E: aii n Nim. By 
definition, d11,(p) = dn (p) and dn (p) = d11 (p ), which implies that p E: ami· 

• i 1. m • 
Thus aii n Nim c am; n Nim. An identical argument yields the converse and 
thus equality. 11 

Lemma 5.9: For any two faces F, and F1, if s,1 is not empty, then Sii = 
aii n Pr n Pr. 

Proof: Rearranging (5.1) and substituting from Definition 5.11, 

By Lemma 5.8, Nile intersects a,1 in the line aii n Nile, implying that 
aij n NB/ is a closed half-plane. Therefore the interior of aij n N8t in aij. 
int' (aii n N8t}. is the open half-plane a,1 n N.Lt. Thus, 

S~; = n (int' (aii n N3/)) n n (int' (aii n N;~+)). 
/cEV1. kEVj 

Applying the distributive property of the interior operator over intersection 
(Property 2.6.9, [Requicha78a]), we have 

S~; = int'( n (aii n Nfl/) n n (aii n Nj~c+)). 
kEV1. /cEVj 

Let A = n (aii n N$/) n n (aii n NjJt}. Since S~; is not empty (else 
/cEVi lc EVj 

Sii would be empty), A is not empty. Moreover, since A is the intersection of 
planes and half-spaces, which are convex sets, and the intersection of any 
number of convex sets is convex (Theorem 7, Section 3.1, [Kelly79a]), by 
Lemma 5.4, 
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cl' S~ = cl' int'( () (aii () N8t} () () (aii () Njit)) 
lcEV~ kEVi 

= cl'( () (aii () N-8/) () () (ai.i () NJ~c+)). 
kEV,; lcEVi 

Since the intersection of any number of closed sets is closed (Theorem 4, 
Section 1.3, [Kelly79a]), () (aii () Nf}_t) () () (aii () NJ1/) is closed in R3, and 

. lc EV,; lc EVj 

hence, by part (3) of Lemma 5.1, it is also closed in aii· Therefore, since the 
closure of a closed set is the set itself (Property 2.5.6, [Requicha78a]), 

The result then follows by substituting from Definition 5.11 and rearranging 
terms. 11 

So far, we have shown that a non-empty sspe is a closed polygonal region of 

the bisector plane. We complete the proof of Theorem 5.2 by showing that the 

region is bounded. 

Theorem 5.2: Let Fi and F1 be faces of the approximating polyhedral surface. 
Then, if Sii is not empty, Sii is a convex closed planar polygon. 

Proof: By Lemmas 5.8 and 5.9, S.u is the intersection of a finite set of closed 
half-planes of aii. Moreover, by Lemma 5.5, Sii is homogeneously two
dimensional. It is therefore a polygon if it is also bounded (Theorem 3.1. 3, 
[Grunbaum67a]}. Let A = aii () () N.8/. We show that Sii is bounded by 

IeEE,; 

showing that A, which contains Sii• is bounded. Rewrite A as n (aii n N8t} 
IeEE,; 

and apply Lemma 5.8 to see that A is the intersection of a finite set of closed 
half-planes of aij, each bounded by the line of intersection between aii and 
the pseudonormal plane Nik through the edge ef of Fi. Fort =0, ... , ni -1, 
let Nf denote the pseudonormal plane Nile, k E: Ei, that contains edge ef of 
face Fi. We need only show that for all edges ef of Fi, the line aii () Nf inter-
sects the line aii () Nicci(t)' for then A is bounded by a closed polygon in aii· 

But, this is equivalent to showing that aii () Nf () Nicci(t) is not empty, which 
is guaranteed by part ( 4) of Definition 5.14. • 

In this section we have examined properties of individual sspec's, showing 

principally that an sspec is a convex, closed, planar polygon. Along the way we 

have also derived several results that will be usE1ful below as we discuss proper

ties of sspec's defined by neighboring faces. 
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5.5. A Simplified Segment Extension Procedure 

In Section 5.4, I defined and investigated some of the properties of pseu-

donormal pencils and symmetric surface planar element candidates, the princi-

pal components of a three-dimensional generalization of Bookstein's algorithm. 

Here, I use those components to construct a three-dimensional generalization of 

Bookstein's fsle chain extension procedure. I first give a brief overview of the 

three-dim.ensional extension procedure. Then, after proving that sspec's "fit 

together" into polyhedral surfaces, I give a detailed presentation of the exten-

sion procedure. In Section 5.6, I show how this extension procedure can be 

integrated into a complete algorithm for finding an approximate symmetric sur-

face. 

5.5.1. Overview 

As described briefly in Section 5.3, the simplified segment extension pro-

cedure is to begin Vvith a single "seed" sspe about which it grows an entire sim-

plified segment. Not surprisingly, we face the same problem generalizing 

Bookstein's fsle chain extension procedure that we encountered in Chapter 3 

and again in Chapter 4, namely, since a simplified segment of a three-

dimensional outline is a surface, rather than a curve, there is no one-

dimensional axis along which we can work. Therefore, it makes no sense to 
I 

speak of extending a chain left or right. Instead, the extension procedure must 

extend a "seed" sspe in all directions, either depth-first or breadth-first, yield-

ing a polyhedral surface. I present a breadth-first procedure, since 1 believe 

that it admits a more efficient implementation than the corresponding depth-

first procedure. The procedure is quite simple: 

(1) Initially, the polyhedral surface being constructed contains the "seed" sspe 

alone. 
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(2) About each boundary vertex of the polyhedral surface constructed thus far, 

attach one or more new sspe's in cyclic order, obtaining a new polyhedral 

surface of sspe's, as illustrated: 

(3) Repeat step (2) until no new sspe's can be added due to extension failure 

(discussed below). 

Of course, this pr:ocedure is applicable only if sspec's fit together appropriately. 

Therefore, before discussing this procedure in detail, we pause to prove that 

sspec's do indeed "fit together." 

5.5.2. Sspec Intersections 

Thus far, we have shown that an individual sspec is aconvex, closed, planar 

polygon defined by the intersection of two pseudonormal pencils with the bisec

tor plane between two faces. In this section, as a prelude to describing the 

extension procedure in detail, we investigate some intersection properties of 

two non'-empty sspec's defined by a pair of vertex-adjacent faces and a third, 

"opposite" face. For brevity, we shall call two such sspec's neighboring sspec 's. 

The principal result of the section ensures that we can construct a polyhedral 

surface from sspec's by yielding a solution to the following problem: Given an 

sspec and an edge of that sspec, is it possible to find without searching a 
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neighboring sspec sharing that same edge? If so, how? 

Let us try to achieve an intuitive understanding of the solution. By defini-

. tion, an sspec, say Sii• is the intersection with ai.i• the bisector plane between 

faces F'i. and F1, of the pseudonormal pencil at face Fi and the pseudonormal 

pencil at face F i. Each edge of the sspec Sii must therefore be contained in the 

line of intersection between the bisector plane aii and one of the pseudonormal 

planes at either Fi or F1. For concreteness, pick some edge of Sii and assume 

that it is contained in the line of intersection between aii and the pseudonormal 

plane Nim determined by Fi and one of its neighbors, F m. Call the line of inter-

section Ltim . 

Clearly, if some other sspec is to share that edge with Sii, the bisector 

plane containing the other sspec must contain Ltim· We have seen previously 

(Lemma 5.8) that the bisector plane ami between Fm and F1 satisfies this 

requirement, as illustrated in Figure 5.15. Therefore, we shall argue that the 

sspec Smj defined by faces F m and F1 shares the edge of Sij contained in Nim. 

This result, which we shall prove below, is stated formally in Theorem 5.10: 

Theorem 5.10: Let Fi and Fm be vertex-adjacent faces and let F1 be a face such 
that Sii and Smi are non-empty sspec's. If Sii n Nim is an edge of Sii• then 
Sii and Smi share the common edge Sii n Smi = Sii n Nim = Smi n Nim. • 

Thus, given an sspec and any edge of that sspec, we can find a neighboring sspec 

that shares the edge simply by knowing which pseudonormal plane contains the 

edge. This result is the basis for the extension procedure described in detail in 

the next section. 

I now prove Theorem 5.10. I first show that if two neighboring sspec's inter-

sect, they do so in the pseudonormal plane between the pair of neighboring 

faces that define the sspec's. 

Lemma 5.11: If Fi and Fm are vertex-adjacent faces and F1 is another face, then 
Sii n Smi is a subset of Nim and Sii n Smi = (Sii n Nim) n (Smi n Nim ). 



Figure 5.15.: Intersection of Bisector and Pseudonormal Planes 

Proof: If either Sij or Smi is empty the result is trivial. Assume both are non
empty. Using Lemma 5.9, 

Sii n Sm; = aii n am; n pp+ n P;;t n Pj+ · 
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Arguments identical to those used in the proof of Lemma 5.8 show that aij 

and am; intersect in a line. Let p be a point in aii n am;· Then, by defini
tion, d11 • (p) = d11 . (p) and d11 (p) = d

111
(p ). Therefore, d 11 (p) = d11 (p), which 

' 1 m i m 
implies that (Jij n Umj is a subset of aim = Nim. Hence, sij n smj is a subset 
of Nim. Since Sii n Sm; is a subset of Nim, Sii n Sm; = (Sii n Nim) n 
(Smj n Nim>· D 
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Recalling that S..:; is a polygon in a.i.i and that Sm; is a polygon in ami• and 

referring to Figure 5.15, we see that Lemma 5.11 states that if Si; and Smi inter

sect. they do so in the line L..:;m. where L..:;m = a1.; n N1.m = am; n N.t:m. 

Using the first of the pseudonormal pencillocalness properties mentioned 

above, 1 now state and prove a condition sufficient to ensure that S.r.5 and Sm; 

have identical intersections with L..:;m. The pseudonormal pencils at Fi and F m 

consist of the intersections of the positive pseudonormal half-spaces determined 

by the neighbors of Fi and F m, respectively. The first pseudonormal pencil 

localness property (part (5) of Definition 5.14) implies that the intersection of 

~im with the pseudonormal pencil at Fi is completely determined by the postive 

pseudonormal half-spaces associated with Fi and faces vertex-adjacent to both 

Fi and Fm. Similarly, the intersection of L..:;m with the pseudonormal pencil at 

F m is completely determined by the positive pseudonormal half-spaces associ-

ated with F m and faces vertex-adjacent to both Fi and F m. Thus, to determine 

the intersections of Si; and Sm; with Lt;m, we need only consider respectively the 

intersections of Li;m with the positive pseudonormal half-spaces determined by 

Fi and faces that are vertex-adjacent to both Fi and F m and of Lijm with the posi-

tive psuedonormal half-spaces determined by F m and faces that are vertex-

adjacent to both Fi and F m. In the following lemma, I show that Si; and Smi have 

identical intersections with Lijm if for every face F~e vertex-adjacent to both Fi 

and F m, the positive pseudonormal half-space of Fi and F 1e intersects the same 

half-line of L..:;m as does the positive pseudonormal half-space of F m and F 1e. See 

Figure 5.16. 

Lemma 5.12: Let Fi and F m be vertex-adjacent faces and let F i be a face such 
that Si; and Sm; are non-empty sspec's. If for all faces F~e vertex-adjacent to 
both Fi and Fm, Liim n NfJt = Li;m n N~. then SiJ n Ni.m = Smi n Nim· 

Proof: Using Lemma 5.9, 

si; n N1.m = ai1 n Nim n P2+ n PJ+. 
By part (5a) of Definition 5.14, aii n Nim n n NfJ/ c n N8/. Therefore, 

leEVt leEVi 
leEVrn le/t.Vm 



Figure 5,16.: Pseudonormal Half-space Intersections with ~jm 

since pf+ = n N.8/' 
ke:V( 

Similarly, 

sij n Nim = aij n Nim n ( n NB/) n pr. 
ke:Vi 

ke:Vm. 

Smf n Nim =am; n Nim n ( n N~) n Pj+. 
ke:V., 
kEVm 
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Rearranging terms, 

sij n N,;m = n (a,;; n Nim n N.[k+) n Pj+ I and 
kEV( 

li;EV, 

Sm; n Nim = n (am; n Nim n N~t) n Pj+ 
kEVi 
kEV, 

= n (aii n Nim n N~t} n Pf+, 
li;EVi 

II;EV, 
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where the last step follows from Lemma 5.8. Comparing these expressions 
for Sii n Nim and Sm; n Nim and substituting ~im = aii n Nim establishes 
the lemma. • 

To prove that S.;,; and Sm; share a common edge, we now need only show 

that for every face F~~; vertex-adjacent to both F'i. and Fm, the positive pseudon'or-

mal half-space of Fi and F~~; intersects the same half-line of ~im as does the posi

tive pseudonormal half-space ofF m and F 11;. I first establish that the pseudnor-

mal planes N"" and Nmk indeed intersect the pseudnormal plane Nim in the same 

line, as Figure 5.16 illustrates. Then, I shall use the second localness property of 

pseudonormal pencils (part (6) of Definition 5.14) to complete the proof that Sii 

and Sm; share a common edge. 

Lemma 5.13: If face F~; is vertex-adjacent to both Fi and Fm, then the pseu
donormal planes Nim• N"", and Nm~~; intersect in a common line, that is, 
Nim n N"" = Nim n Nm~~;. 

Proof: Since Fi, F~~;. and Fm all share a common vertex, both Nim and Nik contain 
that vertex. Hence, Nim n N"" is not empty. Let p be a point in Nim n N"". 
Then, by Definition 5.10, d11i. (p) = d11k (p) and dn., (p) = d11,. (p ). Therefore, 
dn, (p) = dn~c (p) as well. Thus p E Nm~~;, implying that Nim n N"" c N.~m n Nmk. 
A similar argument yields Nim n Nm~~; c Nim n N"", which establishes the 
result. a 

I complete the proof that Sii and Sm; share a common edge, by using the 

second localness property of pseudonormal pencils (part ( 6) of Definition 5.14) 

to show that for any face F 1c vertex-adjacent to both Fi and F m, not only do N"" 

and Nmk intersect ~im at the same point, as shown in Figure 5.16, but their posi

tive half-spaces intersect the same half-line of ~im. 
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Theorem 5.10: Let Fi and F m be vertex-adjacent faces and let Fi be a face such 
that Sii and Smi are non-empty sspec's. If Sii n N1m is an edge of Sii• then 
Sii and Smi share the common edge Sii n Smi ::: SiJ n Nim = Smi n Nim· 

Proof: Toprove the theorem, we establish the hypothesis of Lemma 5.12. Let Fk 
be any face vertex-adjacent to both F.,; and F m. The closed half-spaces Nf]/ 
and N~t each define a closed half-line of L.,;im. It is sufficient to show that 
the two half-lines are identical. By Lemma 5.13, we know that the two half
lines Nf}/ n ~im and N~t n Liim have identical endpoints. The situation in 
the aii and ami planes as viewed from directly above Lijm is shown in Figure 
5.17 ( cf. Figure 5.16). The small arrows near pseudonormal plane labels indi
cate the positive pseudonormal half-spaces of the corresponding pseudonor
mal planes. 

It remains to be determined which half-space of Nmk is the positive 
half-space. We do so by using the well-ordered property (Definitions 5.12 and 
5.13) of the pseudonormal pencils at Fi and F m. Consider the partial pseu
donormal pencil at F.,; defined by the intersection of the positive half-spaces 
of Nim and Nile:. As we traverse clockwise the intersection of the partial 

C"'mj 

Nmi t 

g .. 
IJ 

G;. 
IJ 

Figure 5.17.: Diagram for Proof of Theorem 5.10 

L··m IJ 
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pseudonormal boundary with a;.;. the pseudonormal planes Nim and Nile are 
encountered in order. Thus, the associated neighbors of F;. must occur in 
the order Fm followed by F~c. Therefore, since the pseudonormal pencil at Fi 
must be well-ordered with respect to a;.; (part (6) of Definition 5.14), faces 
F;.. Fm• and F.~; must be ordered about their common vertex as shown: 

Now consider the partial psuedonormal pencil at F m defined by the intersec
tion of the positive half-spaces of Nmi and Nm~c. Since the pseudonormal pen
cil at F m must be well-ordered with respect. to ami• to be consistent with the 
ordering of F;., F m, and F .1: shown above, as we traverse clockwise the inter
section of the partial pseudonormal boundary with ami• the associated neigh
bors of Fm must occur in the order F~c followed by Fi. Therefore, the positive 
half-space of Nm.k must lie to the left of Nm~c in Figure 5.17, thus confirming 
that the half-lines of L;.;m determined by N-B.t and N~t are identical. Analo
gous arguments apply when NJ]/ lies to the right of Nik. 

Thus, the hypothesis of Lemma 5.12 is satisfied, implying that 
Sii n Nim = Sm; n Nim. That S;.; n Sm; = S;.; n N;.m = Sm; n Nim follows 
directly from this result and Lemma 5.11. 11 

Thus, given an sspec and an edge of that sspec, Theorem 5.10 tells us how to 

find without searching an edge-adjacent neighboring sspec. Since Sii n Nim = 
Sm; n Nm, it follows that the shared edge is an entire edge of each. 

Theorem 5.10 ensures that if we carry out the sspec extension procedure 

sketched in Section 5.5.1, the result will be a polyhedral surface without holes. 

5.5.3. Abstract Data Types 

To construct a simplified segment approximation, the extension algorithm 

sketched in Section 5.5.1 manipulates both the topology and the geometry of 

collections of convex planar polygons (sspec's). Many different data structures 

that maintain sufficient information to perform the extension algorithm can be 

devised. They differ primarily in the amount and type of redundant information 

maintained about the relationships among the polygons. Usually, data 
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structures that maintain the most redundant information require the least com-

putation. Rather than evaluate the redundancy vs. efficiency tradeoff under 

some arbitrary assumptions, in this section I present specifications for several 

abstract data types that provide the necessary capabilities; I do not discuss 

their implementation. However, assuming that there is an upper bound on the 

number of vertices in each sspe, 9 all of the operations defined here can be 

implemented in constant time and space using the "winged-edge" polyhedron 

data structure[Baumgart75a, Newell79a]. 

Each abstract data type is specified by a list of access functions together 

with the domain and range of each and a description of the semantics of each 

function. With but a few obvious exceptions, the functions are typical of those 

one would expect to find in any geometric modeling package based on polyhe-

dra. 10 I adopt several notational conventions similar to those used in 

[Guttag7Ba]: 

{1) Data type names appear in italics. 

{2) Non-italicized lowercase symbols are free variables of a type that either is 

clear from context or is specified in a declare statement. 

(3) Function names appear in uppercase. 

(4) The domain of each function is specified by a list of data types, separated 

by commas, contained within matched parentheses. The range appears to 

the right of an arrow ( 4 ). 

All program fragments are written in "pidgin-Algol," as described in Section 

l.B of [Aho74a]. 

. 
9Such an upper bound follows immediately from an upper bound on the number of faces that 

can be vertex-adjacent to any face. · 
10See e.g. [Baumgart75a] or [Eastman77a]. 
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Boundary Face Pair 

A bdyface_:pair instance denotes a pair of faces in the approximating 

polyhedral surface. 

Sspec Vertex 

An sspec_vertex contains the coordinates of an sspe vertex in some 

unspecified coordinate system. No operations other than instantiation may be 

performed on an sspec_vertex unless it is part of an sspec (described below). 

Sspec Vertex Queue 

The sspec vertex queue is a first-in-first-out queue of sspec vertices. 

Syntax: 

INITQ() ~ 
ENQ(sspec _vertex) ~ 
DEQ() ~ sspec _vertex 
EMPTYQ() ~ boolean 

Semantics: 

INITQ 

ENQ 

DEQ 

INITQ() initializes the queue to an empty queue. 

ENQ{v) places vertex v last on the queue. 

DEQ() removes the first vertex on the queue from the queue and returns 
it. 

EMPTYQ 
EMPTYQ() returns true if and only if the queue is empty. 

Sspec Edge 

An sspec _edge is the edge of an sspe defined by two sspe vertices. No 

operations other than instantiation may be performed on an sspec_edge unless 

it is part of an sspec {described below). 
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Sspec 

An sspec instance denotes an oriented sspec. 

Syntax: 

MAKESSPEC(bdyface_pair) -+ sspec 
OPPBF(sspec) -+ bdyface_pair 
CCV(sspec, sspec_vertex) -+ sspec_vertex 
CV(sspec, sspec_vertex)-+ sspec_vertex 
FORCCV(sspec, procedure) -+ 
FORCV(sspec, procedure}-+ 
CCE(sspec, sspec_vertex) -+ sspec_edge 
CE(sspec, sspec_vertex)-+ sspec_edge 
ADJBF(sspec, sspec_edge)-+ bdyface_pair 

Semantics: 

MAKES SPEC 
MAKESSPEC(x) returns the sspec defined by the pair of faces specified 
by x. If the specified sspec does not exist, empty is returned. 

OPPBF 

CCV 

cv 

OPPBF{x) returns the bdyface_pair that determines sspec x. More pre
cisely, if MAKESSPEC{x) "# empty, OPPBF{MAKESSPEC(x)) = x; other
wise, its value is undefined. 

CCV(x, v) returns the vertex counterclockwise adjacent to vertex von 
sspec x. 

CV(x, v) returns the vertex clockwise adjacent to vertex von sspec x. 

FORCCV 
FORCCV{x, P} calls procedure P once for each vertex of sspec x, passing 
the vertex as a parameter to P. Successive calls to p are passed suc
cessive vertices in counterclockwise order. FORCCV(x, P) is equivalent 
to: 

FORCV 

v0 ~ arbitrary vertex of x; 
v ~ v0; 

repeat 
be~in 

P{v); 
v ~ CCV(v); 

end 
until v = v0; 

FORCV{x, P) calls procedure P once for each vertex of sspec x, passing 
the vertex as a parameter toP. Successive calls toP are passed suc
cessive vertices in clockwise order. FORCV{x, P) is equivalent to: 



v0 ~ arbitrary vertex of x; 
v ~ v0; 

repeat 
begin 

P(v); 
v ~ CV(v); 

end 
until v = v0; 
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CCE 
CCE(x, v) returns the edge of x defined by v and CCV(x, v). 

CE 
CE(x, v) returns the edge of x defined by v and CV(x, v). 

ADJBF 
ADJBF{x, e) returns the bdyface_pair that specifies the sspec that 
shares edge e of sspe x. The appropriate sspec is determined by apply
ing Theorem 5.10 as follows. Say that x represents the sspec Sij and 
that e represents an edge of Sij. Then, either e is Sii n Nim where F m is 
a neighbor of Fi• ore is Sij n N;m where Fm is a neighbor ofF;. In the 

· former case, ADJBF(e, x) returns the bdyface _pair that specifies Smj• in 
the latter case it returns the bdyface _pair that specifies Sim. 

Several of these functions are illustrated in Figure 5.18. 

CCE(X,VJ 

CCV(X,V) 
l 

~ 
v 
,J, 

I 
CE(X,V) 

Figure 5.18.: Operations on the sspec Data Type 
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Polyhedral Surface 

Apolysurf instance denotes a collection of sspec's that form a polyhedral 

surface. 

Syntax: 

INITSURF{sspec) -+ polysurf 
EFl{polysurf, sspec_edge) -+ sspec 
EF2(polysurf, sspec_edge) -+ sspec 
EADJF{polysurf, sspec, sspec_edge)-+ sspec 
EXTCCF(polysurf, sspec _vertex) -+ sspec 
EXTCF(polysurf, sspec _vertex} -+ sspec 
BDYVERT(polysurf, sspec_vertex) -+boolean 
EDGEMERGE(polysurf, sspec _edge, sspec) -+ polysurf 

Semantics: 

I NIT SURF 
INITSURF(x) returns a polysurf comprised of the single sspec x. 

EF1. EF2 
EF1(p, e) returns one of the two possible sspec's sharing edge e and 
EF2(p, e) returns the other sspec. If only one sspec in p contains e, 
then either EF1 or EF2, but not both, returns empty. These functions 
are so-called ''hidden functions,'' used only in describing other func
tions. 

EADJF 
EADJF(p, x, e) returns the sspec in p that shares edge e of sspe x. If e is 
a boundary edge, empty is returned. Note that EADJF(p, EF1(p, e), e)= 
EF2(p, e) and EADJF(p, EF2(p, e), e) = EF1(p, e). 

EXTCCF 
EXTCCF(p, v} returns the counterclockwise most sspec in p about vertex 
v. More precisely, EXTCCF(p, v) returns the sspec x, if it exists, such 
that EADJF(p, x, CE(v, x)) = empty. If no such sspec exists, EXTCCF{p, 
v} returns an arbitrary sspec having vas a vertex. 

EXTCF 
EXTCF{p, v) returns the clockwise most sspec in p about vertex v. More 
precisely, EXTCF(p, v) returns the sspec x, if it exists, such that 
EADJF(p, x, CCE(v, x)) = empty. If no such sspec exists, EXTCF(p, v) 
returns an arbitrary sspec having v as a vertex. 

BDYVERT 
BDYVERT(p, v) returns true if and only if vertex v of pis a boundary ver
tex (Definition 5.5). 

EDGEMERGE 
EDGEMERGE(p, e, x) adds sspe x to polysurf p along edge e of p. This 
routine may be invoked only if: 

(1) Either EF1(p, e) = empty or EF2(p, e) = empty, but not both; and 
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(2) If EF1(p, e)= x
1 
~ empty, x and x

1 
must share edge e. Otherwise, if 

EF2(p, e) = x2 ~ empty, x and x2 must share edge e. 

Invoking EDGEMERGE(p, e, x) has the following effects: 

(1) The edge of sspec x that is shared by edge e of p becomes identical 
to e for comparison purposes. Similarly, the vertices of that edge 
become identical to the vertices of edge e. 

(2) The values returned by subsequent calls of the functions EF1, EF2, 
EXTCCF, EXTCF, or EADJF are possibly changed. If before invoking 
EDGEMERGE, EF1(p, e) returned empty, then afterward EFl(p, e} 
returns x and EADJF(p, x, e) returns EF2(p, e). Similarly, if before 
invoking EDGEMERGE, EF2(p, e) returned empty, then afterward 
E:f2(p, e) returns x and EADJF(p, x, e) returns EFl(p, e). Further, if 
before invoking EDGEMERGE, e was in EXTCF(p, v), v a vertex of e, 
then afterward EXTCF(p, v) = x. If e was in EXTCCF(p, v}, then after
ward EXTCCF(p, v) = x. 

5.5.4. Extension Procedure 

Using the sspec intersection properties proved in Section 5.5.2 and the 

abstract data types described in the previous section, in this section I give a: 

detailed description of the extension procedure sketched above. Recall from 

Section 5.5.1 that the extension procedure consists of several simple steps: 

(1) Initially, the polyhedral surface being constructed contains the "seed" sspe 

alone. 

(2) About each boundary vertex of the polyhedral surface constructed thus far, 

attach one or more new sspe's in cyclic order, obtaining a new polyhedral 

surface of sspe's. 

(3) Repeat step (2) until no new sspe's can be added due to extension failure 

(discussed below). 

The extension procedure consists of two subroutines, MAKE_SIMP _SEG and 

VGROW, given as "pidgin-Algol" procedures in Figures 5.19 and 5.20 respectively. 

The extension procedure is invoked by calling MAKE_j3IMP _j3EG, passing it a 

"seed" sspe (obtained by search, as described in the next section) as parame-

ter. It creates a polyhedral surface consisting of the "seed" alone (statement 1) 

and then inserts the vertices of the "seed" in clockwise order into a first-in, 

first-out queue {statement 3). Throughout the execution of the procedure, the 



procedure MAKE_ SIMP _SEG(init_sspe): 
begin 

declare init_sspe sspec; 

declare simp_ seg polysurf; 

comment Insert initial sspe into simplified segment; 
1 simp_seg '"""INITSURF(init_sspe); 
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comment Place all vertices of the initial sspe on the queue of vertices to ex
plore; 

2 INITQ(); 
3 FORCV{ENQ, init_sspe); 

comment Grow the segment by generating all sspe"s that share each vertex 
in the queue; 

4 
5 

I 

while ..., EMPTYQ() do 
VGROW(simp _seg, DEQ()); 

1
6 return simp_seg; 
end 

I 
I 

Figure 5.19.: MAKE_l;IMP _§EG 

vertex queue will contain all boundary vertices of the polyhedral surface yet to 

be processed. After initializing the vertex queue, MAKE_SIMP _l;EG calls VGROW 

to process each vertex by attaching to the vertex all of the sspec's that are adja-

cent to the vertex but not already present (statements 4-5). 

Upon being invoked to process a vertex v, VGROW finds (statements 2-3) the 

edge counterclockwise from v of the clockwise-most sspe about v, in the illustra-

tion below, edge e of sspe sf: 

<zv 
....._ ___ _, 

Then, using Theorem 5.10 to determine which pair of faces determine the sspec 



procedure VGROW(s, v): 
begin 

declare s polysurf; 
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declare v sspe c _vertex; I 

declare sf sspec; I 
declare newsf sspec; I 
declare e sspec _edge; 
declare tempv sspec_vertex; . . . . . I 
comment Add all sspe's vertex-adJacent to vertex v m s1mphf1ed segment s; 1 

1 while BDYVERT(s, v) do 'I 

begin 
2 sf """ EXTCF(s, v); 
3 e """ CCE(sf, v); I 

4 
comment If the sspe to be added already exists, just merge it in; 
if ADJBF(sf, e) = OPPBF(EXTCCF(s, v)) then 

begin 
EDGEMERGE(s, e, EXTCCF(s, v)) 
return 

end 

7 newsf (- MAKESSPEC(ADJBF(sf, e)): 
8 if newsf -F- empty then 

begin 
comment Merge the new sspe into the simplified segment; 

9 EDGEMERGE(s, e, newsf); 
10 if ADJBF(newsf, CCE(newsf, v)) = OPPBF(EXTCCF(s, v)) then 
11 EDGEMERGE{s, CE(EXTCCF{s, v), v}, newsf); 

comment Add vertices of the new sspe not common with the 
original sspe to the queue of vertices to explore; 

12 tempv""" CV(newsf, CV{newsf, v)); 
13 while EADJF(s, newsf, CE{newsf, tempv)) = empty do 

begin 
14 ENQ(tempv); 
15 tempv """ CV{tempv); 

end 

else 
begin 

end 

comment Extension failure; 
16 Mark edge e with failure mode A or B 
17 return 

end 
end 

end 

Figure 5.20.: VGROW 

I 
I 
I 

I 
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that shar .. : . -:.O.ge e with sf, VGROW first determines whether that ssp~c is the 

counterclockwise most sspe about v (statement 4). If it is, then that sspec is 

merged with sspe sf along edge e (statement 5) and VGROW is finished. Other

wise, VGROW calls MAKESSPEC to attempt to construct the sspec newsf neighbor

ing sf (statement 7). If the appropriate sspec is empty, extension has failed and 

the call to VGROW terminates. We shall discuss extension failure below .. 

If it is not empty, newsf must be merged into the polyhedral surface (state

ments 9-11) as illustrated below: 

new sf 

First, edge e of sspec newsf must be merged with edge e of sspe sf (statement 

9). Then, a test must be made to determine whether the two edges indicated by 

the dotted arrows in the illustration above are identical (statement 10); if so, 

they too must be merged. This test requires no numerical comparison, rather, 

Theorem 5.10 is used to determine whether the two sspec's involved share those 

edges. Finally, any new boundary vertices must be inserted last into the queue 

of vertices yet to be processed (statements 12-15). This whole process repeats 

until either vertex v is completely surrounded by sspe' s and therefore is no 

longer a boundary vertex, or until extension fails (statements 16-17). In the 

latter case, additional sspe's may be added about vertex v by later invocations 

ofVGROW. 



158 

. I now illustrate the major steps of extension with a simple example. Let F 1, 

F2, F3 , and F4 be vertex-adjacent faces as shown below on the left, and let F5 and 

F6 be edge-adjacent faces "opposite" the others, as shown on the right: 

Further, we shall assume that the geometry is such that the portion o_f the sim

plified segment approximation produced by the opposition ofF 1 through F 4 with 

F:; and F 6 is as shown: 

The labels placed on the edges and vertices are for ease of reference only and 

carry no further meaning. 
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The extension procedure is begun by calling MAKE_SIMP _SEG with a "seed" 

sspe, say 826, as parameter. After statements 1 and 2 are executed, the vertex 

queue might contain,U in first to last order, v13, v5, v4 , v12, and v11 • Then, for 

each vertex on the queue, statements 4 and 5 invoke VGROW to completely sur-

round the vertex with sspe's. Figure 5.21 shows the queue contents and 

polyhedral surface before the first call and after the first five calls to VGROW. 

Subsequent calls to VGROW have no effect other than depleting the queue and 

marking polyhedral surface boundary edges when further extension fails. 

Extension failure in three-dimensions is much like in two-dimensions. 

Extension fails whenever the call to MAKESSPEC in statement 7 of VGROW 

returns empty. For concreteness, let us say that the bdyface_:pa.ir returned by 

the call to ADJBF in statement 6 represents the pair of faces Fi and F;. There 

are three causes of extension failure: 

(1) The sspec Sii is empty because condition (2) of Definition 5.14 does not 

obtain, that is, Fi and F; are edge-adjacent. Following Bookstein, 1 call this 

extension failure by made A 

(2) The sspec Sii is empty because the intersection with the bisector plane aii 

of the pseudonormal pencil at Fi or at F; empty. Again following Bookstein, 

I call this extension failure by mode B. Extension past a branch curve 

implies eventual failure by mode B, for Bookstein's analogous two-

dimensional argument (Section 5.2.2) also holds in three dimensions. 

(3) The sspec Sij is empty because at least one of the conditions of Definition 

5.14 other than condition {2) does not obtain and hence, the approximating 

polyhedral surface is not admissible. We shall not consider this case 

further. 12 

11The exact contents of the queue depend on which vertex of S26 the implementation of FORCV 
first returns. 

12However, see section 3 of [Bookstein79a] for a description of Bookstein's ad hoc procedure for 



QUEUE POLYHEDRAL SURFACE 

v5. v4, v12' vll' vlo' v9' 

VB' v7, v6 va 

v4' vl2' vll' vlO' v9. vB, 

v7' v6 

vl2' vll' vlo' v9, va, v7' v6 

vll, vlo' v9, va• v7, v6, v3' 

v2' vl 

NO CHANGE 

NO CHANGE 

Figure 5.21.: Illustration of Calls to VGROW 
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Thus, given a "seed" sspe, the extension proc:edure desc:ribed in this sec:-

tion produc:es a polyhedral surfac:e with boundary comprised of sspe's. Further-

closing the gaps formed by two-dimensional extension failure. Though I have not investigated the is-
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more, each boundary edge of the polyhedral surface is marked with the mode of 

extension failure at that edge, either A or B, corresponding respectively to end 

curves and extension past branch curves of the true symmetric surface. 

5.6. The Three-dimensional Algorithm 

We now have three-dimensional generalizations of each component of 

Bookstein's two-dimensional algorithm. Not surprisingly, the structure of the 

complete algorithm for computing a discrete approximation to the symmetric 

surface of a three-dimensional figure is almost identical to the structure of 

Bookstein's corresponding two-dimensional algorithm. Therefore, in this sec

tion, I only sketch the structure of the three-dimensional algorithm, assuming 

familiarity with Bookstein's algorithm as described in Section 5.2.2. 

The first task is to find a "seed" sspe. The algorithm begins by picking an 

arbitrary face of the approximating polyhedral surface and finding, by exhaus

tive search, one of its true discrete involutes {Definition 5.16). The sspe thereby 

determined serves as the initial "seed". 

Starting with the initial "seed" the algorithm carries out the following 

steps: 

{1) Construct a polyhedral surface containing the "seed" by passing the 

"seed" to MAKE_SIMP .J3EG. 

(2) Scan the boundary edges of the polyhedral surface constructed in step {1). 

If all boundary edges are marked as failure by mode A, there is no evidence 

for a branch curve. Otherwise, each connected chain of boundary edges 

marked as failure by mode B is evidence of extension past a true branch 

curve. For each such connected chain determine the actual location of the 

branch curve by the following steps (cf. Section 5.2.2): 

sue, I suspect that a similar u.cl hoc procedure can be devised for closing gaps in three dimensions. 
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(a) Choose one edge of the chain and call ADJBF to determine the pair of 

faces that would have defined an sspec attached to that edge had it not 

been empty. 

(b) Choose one face of the pair determined in (a) and find one of its true 

discrete involutes by exhaustive search. That face and the chosen true 

discrete involute determine a new "seed" sspe. 

{c) Call MAKE_§IMP _§EG to compute the branch polyhedral surface contain-

ing this new "seed." 

(d) If some sspe of the branch polyhedral surface intersects an sspe in the 

polyhedral surface determined in step (1) and the two sspe's are deter

mined by a common face, say sspe's Sii and Smj (Ft., F1, and F m not 

adjacent) determined by the common face F1, the branch curve has 

been located. 13 The other branch polyhedral surface that meets at the 

branch curve can be constructed by returning to step (1) using sspe Sim 

as "seed." 14 

(e) If, on the other hand, no such intersection occurs, return to step (2) 

using the branch polyhedral surface. 

The entire algorithm terminates when all extensions terminate in failure by 

mode A. 

5.7. Summary 

I have presented a three-dimensional generalization of Bookstein's two-

dimensional algorithm, using the same basic components and structure. I view 

the princ~pal contribution of this chapter, then, as defining pseudonormal 

15In practice, this check for intersection would be made in MAKE..SIMP ...SEG as each new sspe 
was added. If each face of the approximating polyhedral surface is marked whenever an sspe defined 
by that face is generated, the intersection test does not require any extensive searching. 

14That Sim. exists is easily shown using a direct analog of Bookstein's corresponding argument. 
have not proven formally that all th..ree branch surfaces meet in a common branch curve, though a 
somewhat more complex version of Bookstein's argument should suffice. 
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pencils and symmetric surface planar elements, and proving that they have the 

properties necessary to be used in the same manner as Bookstein's fsle's. 

5.8. Unsolved Problems and Research Directions 

Here, as in previous chapters, both theoretical and applied work remains to 

be done. I believe that I have described the algorithm in sufficient detail so that 

a programmer familiar with the basic algorithms and techniques of computa-

tional geometry1~ and an awareness of the pitfalls of numerical computing could 

implement it. There are, however, several implementation issues that will need 

to be addressed: 

(1) What data structures are most appropriate for implementing the abstract 

data types described in Section 5.5.3? The most likely candidate is one of 

the many variations of Baumgart's "winged-edge polyhedron" data 

structure[Baumgart75a, Newell79a]. 

(2) What are appropriate representations for faces of the approximating 

polyhedral surface and for pseudonormal pencils? The choice of appropri-

ate representations depends upon the operations to be performed. Com-

puting an individual sspe requires two primitive operations: finding bisector 

planes and computing the intersections of pseudonormal pencils with the 

appropriate bisector plane. Finding bisector planes is particularly simple 

and rapid if the planes containing faces of the approximating polyhedral 

surface are represented in affine coordinates, that is, as a unit vector nor-

mal to the plane and distance along that vector to the coordinate system 

origin. The necessary intersections can be computed in asymptotically 

optimal time using algorithms such as those described by 

Shamos[Shamos76a, Shamos7Ba] and Brown[Brown79a]. However, there is 

15See, for example, Shamos's extensive (but very readable) treatise[Shamos78a] or his treat
ment of geometric intersection problems[Shamos75a, Shamos76a]. 
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a particularly simple algorithm, reentrant polygon clipping[Sutherland74a], 

that, while not asymptotically optimal, is very fast in practice. 

A number of theoretical issues also remain to be addressed: 

(1) How can we approximate the radius function, symmetric surface, and 

boundary surface curvatures necessary for applying the simplified segment 

partitioning techniques described in Chapter 4? Since there are well-known 

expressions for curvatures at vertices and edges of polyhedral 

surfaces[Banchoff70a, BrehmBla], the problem reduces to one of interpo

lating from curvature values at vertices and edges. I have not investigated 

such interpolation schemes. 

(2) Though I have given intuitive arguments that sspe's approximate neighbor

hoods of the symmetric surface, neither Bookstein nor I have given a formal 

proof that the approximation produced by his algorithm or by my three

dimensional generalization converges to the true symmetric axis as the 

approximating polyhedral surface converges to the underlying outline. See 

Section 6.3 of [Kelly79a] and [BrehmBla] for examples of metrics and tech

niques that might be useful in such a proof. 



CHAPTER 6 

SUMMARY AND DIRECTIONS FOR FUTURE WORK 

Building upon Blum's seminal idea, I have begun to develop a three

dimensional structural shape description methodology. In this, the final 

chapter, I shall review the contributions of this dissertation and outline in broad 

fashion directions for further research. 

6.1. Summary 

In Chapter 1, I introduced three shape description paradigms-represent, 

then discard; decomposition; and prototypes-and suggested that most shape 

description techniques are elaborations of these paradigms. In particular, I 

believe that Blum's two-dimensional shape description methodology, as reviewed 

in Chapter 2, exploits simultaneously and naturally two of these three para

digms: represent, then discard and decomposition. In so doing, it provides an 

attractive mechanism for dealing with the crucial tradeoff between stability and 

sensitivity, largely because the symmetric axis transform makes it possible to 

decouple stable, constant figure properties from properties sensitive to subtle 

variations; 

My work to generalize Blum's two-dimensional methodology to three dimen

sions consists of three parts, reported in Chapters 3, 4, and 5 of this disserta

tion. First, I have sought an understanding of the geometry of the three

dimensional symmetric axis transform. Second, I have used this understanding 
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to generalize to three dimensions Blum's techniques for partitioning two

dimensional symmetric axes into width shapes, axis shapes, and boundary 

shapes. Finally, I have generalized from two to three dimensions Bookstein' s 

algorithm for computing a discrete approximation to the symmetric axis 

transform. 
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The three-dimensional generalization of Blum's symmetric axis transform 

defines a unique, coordinate-system-independent decomposition of a figure into 

disjoint, two-sided pieces, each with its own simplified segment and associated 

boundary surfaces. In Chapter 3, I have defined measures ofthe radius function 

and have shown how these measures and the symmetric surface curvatures are 

related to the boundary surface curvatures. In particular, I have shown that the 

Gaussian and mean curvatures of the boundary surfaces are determined by nine 

measures, each with a geometric interpretation: 

(1) the symmetric surface curvature as determined by two principal curva

tures and a principal direction; 

(2) the radius curvature as determined by two principal curvatures and a prin

cipal direction; 

(3) directional derivatives of the radius function as determined by the angles 

between either boundary normal and the two symmetric surface principal 

directions; and 

(4} the radius function itself. 

These measures, and the curvature relationship derived from them, subsume 

the two-dimensional measures and curvature relationship given by Blum. 

In Chapter 4, beginning with the result of the unique figure decomposition 

induced by the three-dimensional symmetric axis transform, I have used the 

aforementioned measures, together with the relationships among them, to pro

pose a further decomposition into primitives drawn from three separate, but not 
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completely independent, primitive sets: widthprimitives, based on radius func

tion properties, axis primitives, based on simplified segment curvatures, and 

boundary primitives, based on boundary surface curvatures. Since each primi

tive set is derived from different properties of the simplified segment and radius 

function, each captures different qualitative properties of the two-sided piece 

associated with the simplified segment. They can either be used separately or 

combined together to form cartesian-product primitive sets. I have also pro

posed a simple data structure, the labeled primitive adjacency graph, to be used 

to maintain information about the spatial relationships among primitives. 

Since width primitives are defined by properties of radius function 

behavior, they reveal the behavior of the boundary surfaces associated with a 

simplified segment with respect to that simplified segment. Width primitives 

are themselves comprised of two components: slope districts and curvature dis

tricts. Using topological properties of scalar functions on surfaces, e.g. the 

radius function, 1 have proven that there are only three possible slope districts 

types. 1 There are six curvature district types. 

Visualizing radius function behavior as if it were the height function of some 

mountainous terrain, each slope district corresponds to a mountain face 

together with the valley below it. At the bottom of the valley the associated 

boundary surfaces are "pinched" in, close to the simplified segment. As one 

climbs the mountain face, the associated boundary surfaces "bulge" out, each 

moving away symmetrically from the simplified segment until the mountaintop 

is reached. Curvature districts, on the other hand, further partition each slope 

district into regions that are locally either convex, concave, or saddle-like. 

Using simplified segment Gaussian and mean curvatures, the simplified seg

ment and its associated boundary surfaces also can be partitioned into a collec-

1This result does not depend on any special properties of the radius function. 



168 

tion of two-sided axis primitives, corresponding to regions of the simplified seg

ment wherein the algebraic signs of the simplified segment Gaussian and mean 

curvatures are constant. Since simplified segment curvatures reflect the 

overall curvature trend of its associated two-sided piece, axis primitives, of 

which there are six, are two-sided pieces with constant overall curvature trend. 

The final set of primitives, boundary primitives, are based on boundary sur

face curvatures. The simplified segment and associated boundary surfaces are 

partitioned into primitives each with the property that the algebraic signs of the 

Gaussian and mean curvatures are constant over each of the two boundary sur

faces associated with the primitive. Each of the resulting 36 boundary primi

tives reflects the locally convex, concave, or saddle-like behavior of both associ

ated boundary surfaces. Furthermore, the boundary primitives are related in a 

simple manner to properties of the simplified segment and radius function cur

vatures. 

In Chapters 3 and 4, I have generalized much of Blum's two-dimensional 

shape description methodology to three dimensions. In Chapter 5, I have con

sidered a different question: how does one compute the three-dimensional sym

metric axis transform? After reviewing several of the many algorithms for com

puting the symmetric axis transform of a two-dimensional figure, I concluded 

that Bookstein's algorithm was the only one that deals explicitly with outline and 

symmetric axis tangents and that maintains symmetric axis continuity. Since, 

in my view, any symmetric axis algorithm must have these characteristics if it is 

to be useful for shape description, I have described, in Chapter 5, a three

dimensional generalization of Bookstein's two-dimensional algorithm. 

From a polyhedral approximation to a smooth underlying outline wherein 

each polyhedron face is tangent to the outline, my three-dimensional generaliza

tion of Bookstein's algorithm yields a polyhedral surface approximating the sym-
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metric surface of the outline. Outline normals are approximated by pseudonor

mal pencils and symmetric surface neighborhoods by symmetric surface planar 

elements. The algorithm, which consists primarily of using these approxima

tions to simulate the geometry of the symmetric axis transform in continuous 

space, first finds, by exhaustive search, an initial "seed" symmetric surface 

planar element. Then, using this "seed," the simplified segment extension pro

cedure constructs, without further searching, the entire simplified segment con

taining the "seed". The extension procedure fails at end curves and past branch 

curves. Once a branch is detected, a new "seed" is found, again by exhaustive 

search, and the extension procedure is invoked to construct branch simplified 

segments. When all such extensions terminate at end curves, the algorithm ter

minates, yielding the desired approximation. 

6.2. Future Work 

The results set forth in this dissertation lay the foundation for the experi

mental work necessary to evaluate the utility of the symmetric axis transform 

as a three-dimensional shape description tool. At the close of each chapter I 

have suggested directions for further research germane to the subject of each 

chapter; In this section, I outline a research programme, probably of several 

years duration if carried to completion, designed to yield a better understand

ing of the strengths and weaknesses of the symmetric axis transform as a shape 

description tool. 

No matter what the application, I believe that some early experience with 

symmetric surfaces of the kinds of figures one is likely to encounter is essential. 

If nothing else, such experience is likely to yield an intuitive "feel" for whether 

similar figures have similar symmetric surfaces, for ·whether perturbations 

introduced by noise cause difficulty, and for what seem to be the most impor

tant features of the symmetric axis transform. Therefore, an implementation of 
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the algorithm described in Chapter 5 is needed. 

Several problems other than the implementation issues raised in Chapter 5 

will need to be resolved. Most pressing is the form of the available three

dimensional data. The algorithm expects to receive a polyhedral approximation 

of the figure, yet the most common sources of data are point samples and 

stacks of two-dimensional slices. Though algorithms exist for converting such 

data into polyhedral approximations {see, for example, [Schumaker76a] and 

[Fuchs77a]), the suitability of the resulting approximations as input to the sym

metric surface algorithm has yet to be investigated. 

Once a suitable implementation is available, many interesting possibilities 

·arise. Consider, for example, studying organs isolated from computed tomogra

phy (CT) studies. Does the symmetric axis transform appear to have potential 

as a "feature generator" for distinguishing among different organs? How do 

organ descriptions derived from the primitive sets proposed in Chapter 4 vary 

across subjects? Are such descriptions correlated with disease states? Which 

primitive sets are most useful? These, and other questions cannot be ade

quately studied without active involvement of medical experts. However, early 

ad hoc experiments are useful if only to build intuition, indicate promise (or lack 

thereof), and foster curiosity. 

Should these ad hoc experiments indicate that further investigation is war

ranted, three separate research directions immediately present themselves: 

(1) If measures derived from the symmetric axis transform are to be useful as 

indicators of abnormal conditions or to study variations in organ shape, 

some statistical tests of significance seem essential. 

(2) In the structural pattern recognition literature, there is an increasing 

interest in inexact matching of labeled graphs. It might be fruitful to inves

tigate matching primitive adjacency graphs as described in Chapter 4 
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against prototype graphs. 

(3) Generalized cylinders have been studied extensively as both a shape 

analysis tool and as a representation to provide a priori information in com

puter vision systems. As discussed in Chapter 1, the symmetric axis 

transform seems to have several benefits over generalized cylinders. 

Further investigation is needed. 

I do not expect the three-dimensional symmetric axis transform and the 

techniques described in this dissertation to answer the dreams of all shape 

description practitioners, if there be such. I do hope, however, that the early 

results I have presented here encourage others to st.udy and apply the sym

metric axis transform. 
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