
Groupwise Shape Correspondence with Local

Features
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Abstract
İpek Oğuz: Groupwise Shape Correspondence with Local Features.

(Under the direction of Martin A. Styner)

Statistical shape analysis of anatomical structures plays an important role in many

medical image analysis applications such as understanding the structural changes in

anatomy in various stages of growth or disease. Establishing accurate correspondence

across object populations is essential for such statistical shape analysis studies. How-

ever, anatomical correspondence is rarely a direct result of spatial proximity of sample

points but rather depends on many other features such as local curvature, position

with respect to blood vessels, or connectivity to other parts of the anatomy.

This dissertation presents a novel method for computing point-based correspon-

dence among populations of surfaces by combining spatial location of the sample

points with non-spatial local features. A framework for optimizing correspondence

using arbitrary local features is developed. The performance of the correspondence

algorithm is objectively assessed using a set of evaluation metrics.

The main focus of this research is on correspondence across human cortical sur-

faces. Statistical analysis of cortical thickness, which is key to many neurological

research problems, is the driving problem. I show that incorporating geometric (sul-

cal depth) and non-geometric (DTI connectivity) knowledge about the cortex sig-

nificantly improves cortical correspondence compared to existing techniques. Fur-

thermore, I present a framework that is the first to allow the white matter fiber

connectivity to be used for improving cortical correspondence.
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Chapter 1

Introduction

The variability of anatomical structures among individuals is large within anatomical

populations. This variability makes it necessary to use statistical modeling tech-

niques to study shape similarities and to assess deviations from the healthy range of

variability. For instance, studying the local cortical thickness measurements of the

brain is a common tool for studying many medical conditions such as autism and

Alzheimer’s disease in humans. Statistical analysis of anatomical objects is there-

fore becoming increasingly important in segmentation, analysis and interpretation of

medical datasets.

The construction of such statistical models requires the ability to compute local

shape differences among similar objects, which introduces the problem of finding cor-

responding points across the population. Consistent computation of corresponding

points on 3D anatomical surfaces is a difficult task, since manually choosing landmark

points not only is cumbersome, but also does not yield a satisfyingly dense correspon-

dence map. It should also be noted that no generic “ground truth” definition of dense

correspondence exists across different anatomical surfaces. The choice of particular

correspondence metric must, therefore, be application-driven.

In this dissertation, I present a framework for finding corresponding points on

populations of anatomical surfaces based on segmented medical images. Particular



emphasis is given to the human cortical surface using Magnetic Resonance Imaging

(MRI) scans. The correspondence computation on the cortex is a highly challenging

problem due to the convoluted geometry of the brain and the high variability of fold-

ing patterns across subjects. Using mere spatial locations of surface points produces

a weak and inadequate correspondence map. My work allows the use of additional

local information, called ‘features’ throughout this manuscript, for computing cor-

respondence. These features can be structural, such as sulcal depth measurements,

as well as nonstructural, such as connectivity maps computed from Diffusion Tensor

Imaging (DTI) images, or vessel structure extracted from Magnetic Resonance An-

giography (MRA) images. The particular choice of features should be determined by

the target applications. This dissertation in particular explores various features that

can be extracted from DTI scans.

1.1 Correspondence of local features

Previous population-based correspondence computation methods, such as Minimum

Description Length (MDL) [1, 2], optimize correspondence by minimizing the covari-

ance of the sample locations across the population. These methods work well for

objects of simple enough geometry, such as caudates, but are inadequate with objects

of complex geometry with rapidly changing curvature values across the surface, such

as femoral heads or striata.

I propose to solve this problem by introducing local curvature measurements into

the objective function being optimized. The curvature function variation contains

local shape information that is lacking in the spatial positions of point samples; there-

fore, adding the local curvature to the objective function stabilizes the optimization

process. I propose to extend the traditional MDL algorithm to allow for the inclusion

of an arbitrary number of local features in the objective function. This is done by
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replacing the data matrix in MDL, which contains the spatial location of each sample

point of each object in the population, by a matrix that contains the desired local

feature value at each sample point of each object.

Using this framework, I show that using a version of MDL based on solely curva-

ture values leads to poor correspondence, since the curvature values are not unique

across the object surfaces. However, using a combination of spatial position and local

curvature improves the correspondence quality significantly for objects of complex

geometry, and it gives similar results to traditional (location-only) MDL for objects

of simple geometry. In this context, correspondence quality is measured by using

the generalization and specificity properties of the statistical model of the population

that results from the correspondence optimization, as discussed later in detail.

These results show that there is room for improvement of the correspondence

quality by exploring local features other than spatial location. My framework allows

for the use of any local feature whose absolute difference defines a metric in the feature

space, as long as the feature values at each sample point are provided as input to the

system.

The choice of the particular feature set to be used should be made based on

the application context; one of the novel contributions of this dissertation is the

exploration of possible features to be used for optimizing the correspondence of the

human cortex. The ideal feature set would provide enough variability across the

object surface and across the population.

1.2 Framework for correspondence of local features

without parametrical mapping

Even though using a parametric approach like MDL has the advantage of relative

ease of imposing surface constraints (such as no foldings), the MDL algorithm has

3



limited applicability to human cortex. The available implementations of the algo-

rithm rely on a spherical parameterization of the surfaces, which is computationally

expensive to obtain for the cortical surface (defined as the white matter (WM) - gray

matter (GM) boundary) given the complex geometry. It also is computationally very

expensive for high resolution meshes that are necessary for representing the cortical

surface. Therefore, the current formulation of MDL is not suitable for the cortical

correspondence optimization. However, it is a well-known fact in information theory

that MDL is, in general, equivalent to minimum entropy (min log|Σ + αI|, where Σ

is the covariance matrix of the population and αI is a diagonal regularization ma-

trix that introduces a lower bound α to the eigenvalues of the covariance matrix).

Therefore, I chose to use an entropy-based dynamic particle framework introduced

by Cates et al.[3, 4] as my starting point. The entropy-based correspondence scheme

does not require a spherical topology and is much more computationally efficient. I

propose a solution to the problems caused by the geometric complexity of the cortex

in Section 1.2.1.

The main idea for the entropy-based correspondence method is to construct a

point-based sampling of the shape ensemble that simultaneously maximizes a combi-

nation of the geometric accuracy and the statistical simplicity of the model. Surface

point samples, which also define the shape-to-shape correspondences, are modeled

as sets of dynamic particles that are constrained to lie on a set of implicit surfaces.

Sample positions are optimized by gradient descent on an energy function that bal-

ances the negative entropy of the points’ distribution on each shape, which represents

an even sampling of the individual surfaces, with the positive entropy of the ensem-

ble of shapes, which represents a high similarity of corresponding points across the

population.

I extend this method to incorporate local feature measurements on the surface to

provide a general correspondence definition. This is done by introducing the local

4



feature values in the ensemble entropy term, in lieu of the spatial locations. The

surface entropy term remains the same, since this term ensures an even sampling

of the surfaces regardless of the local feature values. The incorporation of the local

features in the particle framework requires a modification to the ensemble entropy

term. Consequently, the associated gradient has to change, which can be accomplished

via the chain rule.

1.2.1 Application to the human brain: dealing with the geo-

metric challenges of the cortex

One of the main constraints of the entropy-based correspondence method is that it

assumes the particles exist on local tangent planes of the surface. This assumption

makes it possible to avoid the costly computation of geodesic distances on the surface.

However, the assumption becomes problematic for surfaces of a highly convoluted

geometry, such as the human cortex. I overcome this problem by first ‘inflating’ the

cortex to obtain a less convoluted surface. The particles live and interact on this blob-

like surface; however, the local feature values, such as curvature and sulcal depth, are

still associated with the original surface. A one-to-one correspondence between the

original cortex surface and the inflated surface is therefore needed.

A set of automated tools, distributed as part of the FreeSurfer package [5, 6, 7, 8, 9,

10], are used to inflate the cortical surface, as well as to perform surface reconstruction.

However, any other surface reconstruction and inflation pipeline could easily be used

to replace FreeSurfer, since my algorithm does not depend on the specific FreeSurfer

methodology.

The FreeSurfer inflation process is such that points that lie in convex regions

move inwards while points in concave regions move outwards over time. Therefore,

the average convexity/concavity of the surface over a region, also referred to as sulcal

depth, can be computed as the integral of the normal movement of a point during

5



inflation. It should be noted that sulcal depth captures the high level foldings of the

cortical surface but is relatively insensitive to the smaller folds; this property makes

sulcal depth an attractive correspondence metric since it is relatively stable across

individuals, in addition to being available across the whole cortical surface.

1.3 Using white matter fiber structure for cortical

correspondence

The choice of suitable local features is central to the quality of correspondence results.

For the cortical correspondence problem, I propose to use a feature set derived from

Diffusion Tensor Imaging (DTI) scans of the subjects in order to incorporate available

knowledge about the white matter (WM) fiber tracts of the brain in addition to the

structural features discussed earlier. Structural MRI scans show white matter homo-

geneously, such that it is impossible to infer the orientation of the fiber tracts within

each voxel. The understanding of the white matter structure, however, can be largely

improved by additional information on fiber tracts that can be fully automatically

extracted from DTI data.

The main challenge is to find a suitable mapping of the fiber tract structure to the

cortical surface. Probabilistic connectivity maps, which represent for each voxel on

the cortical surface the probability of its being connected via fiber tracts to a given

region of interest (ROI), is the proposed solution to this problem.

Note that both low-resolution features that vary on a larger scale and spatial fea-

tures that are useful for identifying higher-resolution structures are necessary. Sul-

cal depth, a by-product of the cortical inflation algorithm, as well as the proposed

DTI-derived metrics are used as low-resolution features, whereas spatial location and

curvature are used as higher-resolution features.

6



1.3.1 Probabilistic connectivity

The probabilistic connectivity maps are obtained via stochastic tractography. For

every voxel in the white matter, the connectivity probability to various ROI’s is

computed via a Monte Carlo approach. In this dissertation, I use a stochastic trac-

tography implementation, described by Ngo [11], based on a modification of Friman’s

algorithm [12, 13]. In this approach, fiber tracts are modeled as sequences of unit

vectors whose orientation is determined by sampling a posterior probability distri-

bution. The posterior distribution is proportional to a prior of the fiber orientation

multiplied by the likelihood of the orientation given the Diffusion Weighted Imag-

ing (DWI) data. The tracking stops when the tract either reaches a voxel with a low

probability of belonging to the white matter, or it exceeds a predetermined maximum

length, or it makes an improbably sharp turn. In order to estimate the probabilistic

connectivity with appropriate accuracy, a high number of sample fibers need to be

tracked from each voxel included in the input ROI. The probabilistic connectivity of

a voxel to the ROI is then defined as the ratio of fiber samples that travel through a

voxel to the total number of samples.

The connectivity to each separate ROI is represented as a separate feature in

the particle framework. It should be noted that the spatial features used in the

correspondence (such as the sulcal depth) have to be normalized to match the range

of values of the connectivity probabilities, in order to avoid assigning a heavier weight

to the spatial features.

1.3.2 Mapping the connectivity to the cortical surface

The stochastic tractography algorithm provides connectivity values, but the tracking

often stops short of the white matter boundary, due to a low degree of anisotropy

near the surface as well as noise in the DWI signal. For this reason, a method

of mapping the connectivity probability to the white matter surface is necessary

7



Figure 1.1: Pipeline overview. I use T1 images to generate white matter (WM) sur-
faces and inflated cortical surfaces, as well as local sulcal depth. Selected ROI’s and
the DWI image are input to the stochastic tractography (ST) algorithm. WM sur-
face deflated using proposed algorithm is used to construct connectivity maps on the
surface from ST results. Inflated cortical surfaces and the connectivity maps are used
to optimize correspondence. Note that there are three different surfaces representing
the cortex. The original surface is used for the computation of the geometrical fea-
tures, such as sulcal depth. The inflated surface is used for the computation of the
particle inter-distances. The deflated surface is used for evaluating the connectivity
probabilities.

after the stochastic tractography algorithm is executed. The connectivity probability

values assigned by the stochastic tractography algorithm strongly correlate with sulcal

depth. Directly using these probabilities for correspondence optimization is therefore

not appropriate.

I propose a surface evolution algorithm for this purpose. In this method, I compute

a new, deflated surface inwards from the white matter boundary. This gives a deflated

surface voxel corresponding to each cortical surface voxel. Then, I define the projected

connectivity probability at each cortical voxel as the connectivity probability value

at the corresponding inner-curve voxel. Figure 1.1 summarizes the full pipeline.
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1.4 Evaluation of correspondence quality

In order to evaluate the proposed framework, I apply my proposed techniques to a

small set of clinical studies and compare the results with other existing algorithms.

This is for evaluation purposes only, in order to compare the performance of my

algorithm with others. Thorough validation studies are outside the scope of this

dissertation.

Metrics for assessing correspondence quality are necessary to compare the dif-

ferent correspondence algorithms. For this purpose, I analyze the generalization and

specificity properties of the resulting shape models. Lower variability as well as better

generalization and specificity properties point to an improved correspondence across

the population. I use the cortical thickness measurements to compute the generaliza-

tion and specificity for the cortical datasets, instead of the surface sample locations.

Location-based analysis is considered biased since both my technique and many other

algorithms use the surface sample locations for the optimization; the cortical thick-

ness provides an unbiased measurement more suitable for evaluation. I also present

visual assessments of correspondence quality where suitable.

Using my proposed methodology, one should expect to find improved correspon-

dence over certain regions and little improvement in other regions where no relevant

additional local information is used. Furthermore, it would be up to each individual

application to define what regions are important for the application’s context, and

what additional data can be used to improve the correspondence in these critical re-

gions. For example, the regions that are strongly identifiable by fiber tract connections

to subcortical regions are expected to have significantly improved correspondence if

the connectivity probability is designated as a feature.
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1.5 Thesis and contributions

Thesis: Statistical shape analysis of anatomical structures, which is essential to un-

derstanding the structural changes in anatomy in various stages of growth or dis-

ease, requires establishing accurate correspondence across object populations. How-

ever, anatomical correspondence is rarely a direct result of spatial proximity of sam-

ple points on the surface. A generalized correspondence framework that incorporates

the similarity of non-spatial local features provides a more accurate correspondence

of sample points across populations of surfaces. In particular, incorporating features

based on cortical geometry as well as the fiber connectivity of the white matter signif-

icantly improves correspondence of the human cortical surfaces.

The contributions of this dissertation are as follows:

1. I demonstrate that the use of an approach allowing for the incorporation of

arbitrary local features into the similarity metric to be used for correspondence

optimization enhances correspondence, as measured by objective evaluation cri-

teria.

2. I present a novel parametric groupwise correspondence optimization method

that allows using arbitrary local features for establishing correspondence.

3. I demonstrate that using geometric information, such as local curvature mea-

sures, as additional local features improves correspondence quality when the

objects in the population exhibit complex geometry.

4. I present a novel nonparametric groupwise correspondence optimization method

that allows using arbitrary local features for establishing correspondence.

5. I show that this nonparametric groupwise correspondence technique can be ap-

plied to the human cortex despite the geometric challenges presented by the

convoluted surface; inflation of the surfaces as a preprocessing step solves this
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problem by producing surfaces smooth enough to avoid these challenges. Fur-

thermore, I show that cortical correspondence significantly improves when sulcal

depth is used as an additional local feature.

6. I present a novel framework for integrating white matter fiber connectivity in-

formation into cortical correspondence, the first such method that uses fiber

connectivity patterns to establish structural correspondence. To this end, I

compute probabilistic connectivity maps from diffusion weighted images via a

stochastic tractography algorithm. I project these connectivity values to the cor-

tical surface by a new cortical deflation algorithm. I present empirical evidence

showing that using connectivity features enhances cortical correspondence.

7. I develop open-source software that implements all the above techniques, as

well as a visualization tool that allows qualitative examination of the surfaces,

the local features associated with them and the surface samples used in the

correspondence algorithm.

1.6 Overview of chapters

The remainder of this dissertation is organized as follows.

Chapter 2 contains an overview of concepts and existing methodology regard-

ing the correspondence problem as well as techniques for evaluating correspondence

quality.

Chapter 3 describes a novel methodology for integrating local features into the

optimization of parameter-based shape correspondence and demonstrates, using ap-

plications to a variety of clinical datasets that using local features can strongly im-

prove correspondence. The suggested methodology is an extension to the traditional

Minimum Description Length algorithm.

Chapter 4 describes the entropy-based particle correspondence algorithm, with
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and without local features. This methodology is no longer dependent on a particular

parameterization of the surface. This chapter also discusses some issues regarding

the application of this technique to the human cortical surface, and it presents results

that demonstrate that the use of even simple geometric local features (such as sulcal

depth) is beneficial to correspondence quality.

Chapter 5 discusses the proposed methodology for integrating DTI-based connec-

tivity information into cortical correspondence. This technique computes connectivity

probabilities via stochastic tractography and applies a surface evolution algorithm to

deflate the cortical surface in order to map the connectivity probabilities to the cor-

tical surface. It presents experimental results that show, via an evaluation based on

cortical thickness, that the additional knowledge of white matter structure signifi-

cantly improves correspondence quality.

Chapter 6 presents a discussion of the contributions of this thesis and future

research directions.
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Chapter 2

Shape Correspondence

This chapter provides a summary of various existing techniques to solve the correspon-

dence problem. These techniques fall in two main categories: Given a population of

objects, pairwise correspondence methods establish the correspondence between each

object and an atlas; the correspondence across multiple objects follows by transitivity.

Groupwise correspondence methods, on the other hand, consider the entire popula-

tion at once in an attempt to capture the variability in the population. Pairwise

correspondence methods, unlike groupwise approaches, fail to incorporate informa-

tion from the entire population and treat each surface separately, which can lead to

suboptimal correspondence results. In both cases, the correspondence computation

is typically formulated as an optimization problem with an objective function that

incorporates a similarity measure between the objects and often regularization terms.

In order to compare various correspondence optimization schemes, one needs a

suitable correspondence evaluation method. For this purpose, I review existing al-

gorithms for objectively evaluating correspondence quality in the second part of this

chapter.



2.1 Pairwise Correspondence

Pairwise correspondence methods aim to optimize the correspondence between each

object in a given population and either a labeled atlas or one of the objects in the

population chosen to serve as a template. Correspondence optimization can be done

based on either surface representations or volumes. Surface-based correspondence

methods typically lend more weight to geometrical properties of the objects, whereas

volume-based methods focus on image intensities. Further classification can be done

based on whether the algorithm aims for an exact match or an approximate match

enforced by a soft penalty.

2.1.1 Surface-based pairwise correspondence

In most surface-based schemes, correspondence is defined through a parameterization

of both objects, such that points in each object with the same parameter space

coordinates correspond (see Fig. 2.1). Therefore, it is necessary to compute a one-

to-one mapping between each object and a standard parameter space.

During the optimization stage, there are two possible ways of manipulating the

correspondence: either the vertices on the surface can be moved around while keeping

the parameterization fixed, or the parameterizations can be manipulated while keep-

ing the surface vertices fixed. However, manipulating the surface vertices directly is

a difficult task, since it would then be necessary not only to confine the vertices to

the surface as they move in R3 but also to construct a mapping of the surface onto

itself at each iteration, a task far from trivial for arbitrary 3D surfaces. Most algo-

rithms therefore choose to manipulate the parameterizations rather than the surfaces

themselves.

A number of approaches use various shape-based information as additional cues in

the correspondence optimization. This is similar to the approach I suggest for using
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local features for improving correspondence; however, the existing techniques focus

on a preselected feature or set of features, whereas I propose a generalized framework

where the user can determine what features are relevant for the particular application

context.

Spherical harmonics

The spherical harmonics (SPHARM) description, introduced in [14], is commonly

used as a parameterization-based correspondence scheme. Here, a continuous one-to-

one mapping from each surface to the unit sphere is computed. The parameterization

is defined such that it is area preserving and distortion minimizing, using a constrained

optimization method. Each object is then described as a weighted sum of spherical

harmonics basis functions (see Appendix A for details). The correspondence is estab-

lished by rotating the parameter mesh such that the axes of their first-order spherical

harmonics, which are ellipsoidal, coincide with the coordinate axes in the parameter

space. Since each object can thus be parameterized without any knowledge of the

others in the dataset, data sets that have significant shape variability become prob-

lematic, because the SPHARM method does not have a proper means of optimizing

shape similarity but rather focuses on area preservation and minimized distortion

during the parameterization.

Another major shortcoming of the SPHARM correspondence is the poor handling

of objects that are rotationally symmetric around the major axes with respect to the

first-order ellipsoid. This often happens if the second and third axis have similar

sizes. Brechbühler argues that using information from higher-order harmonics can

disambiguate such cases.

These problems can be at least partially overcome by introducing a ‘flip template’,

an additional object in SPHARM representation that can be used to disambiguate

the orientation of the parameterization [15]. This is achieved by testing all possi-
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Figure 2.1: Example of parameterization-based correspondence. A parameterization
is computed for objects A and B individually. The correspondence is defined via
the parameter space, such that points with the same parameterization correspond
together when the correspond optimization is completed. Color map shows the φ
parameter, the longitude in the spherical representation.

ble flips of the parameterization and selecting the one whose reconstruction has the

minimum distance to the flip template. The use of the flip template puts SPHARM

correspondence in the pairwise category. An additional limitation of this method

is that parameterization-based correspondence schemes in general are restricted to

objects of a given topology (e.g. spherical in the case of SPHARM).

Shape-based nonrigid correspondence

One of the earlier works that use geometrical measures to align two shapes is the

shape-based nonrigid correspondence scheme of Tagare et al. [16]. In this simple

2D correspondence algorithm, the local curvature is used as a similarity metric, and

the total squared difference of local curvature is minimized along with an arc length-

based regularization term. Although this method is intuitive and seems to work well

for simple 2D populations such as hand outlines and the endocardium of the heart,

it relies on a toroidal parameterization of the two objects in 2D and therefore the

extension to 3D is not straightforward.
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Geometry driven multispectral optical flow

Tosun et al. [17] propose to use geometrical measures to align an atlas and a subject

surface in a more sophisticated framework in 3D. They propose to use two curvature-

related measures introduced by Koenderink [18] as the similarity metric for the cor-

respondence. These measures, the shape index S and the curvedness C, decouple

the shape and the size of curved surfaces and will be further discussed in Section

3.3.3. Tosun computes these curvature measures on a partially inflated cortical sur-

face in order to capture only the geometry of the most prominent anatomical features

to allow meaningful comparison among different individuals. This partially inflated

cortical surface is obtained by a mean curvature based evolution algorithm with a

preselected curvature threshold as the stopping condition. Once the shape measure

maps are computed for the subject and the atlas brain, a multispectral optical flow

algorithm is used to warp the subject cortical surface into the atlas using spherical

parameterizations of the surfaces.

Tosun uses a surface-based iterated closest point (ICP) matching scheme [19]

as an initialization point to her correspondence algorithm. This ensures that key

anatomical landmarks such as major sulci are mapped to reasonably close locations

on the parameter space and therefore provides a good initialization. The variational

problem to estimate the optical flow field is solved using a Euclidean framework, and

a gradient-descent optimization is applied.

Even though satisfactory correspondence results can be achieved by this algorithm,

there are several shortcomings. The method completely ignores spatial location infor-

mation as a correspondence metric and therefore relies on a very good initialization

to avoid false correspondences on a global scale. Additionally, as all pairwise cor-

respondence methods, the optical flow method fails to incorporate information from

the entire population, which can lead to suboptimal correspondence results.
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Parameter space warping

Meier et al. [20] propose a method that represents a pair of objects using SPHARM

description. However, unlike the original SPHARM correspondence, they warp the

parameter space to optimize the correspondence between the two objects instead of

relying on the first-order ellipsoid alignment. The objective function is a similarity

metric based on Euclidean distances, normal directions and Koenderink’s shape index

S [18]. The SPHARM representation allows both a hierarchical optimization approach

and the robust computation of differential features since no additional discretization

error is introduced.

As with other spherical parameterization-based techniques, the method is limited

to objects of spherical topology. Additionally, both the initial SPHARM computation

as well as the warping procedure itself are computationally expensive and limit the

practical applicability of the algorithm. For the cortical surface dataset reported in

the manuscript, 24 harmonics were used, with 9126 vertices on the whole surface.

While this may be an adequate representation of the surface for 5mm-thick MRI

slices used in the study, it is far from satisfactory for higher resolution data commonly

available nowadays.

FreeSurfer

FreeSurfer [5, 6, 7, 8, 9, 10] is an image analysis suite for brain studies. Aside from

cortical reconstruction and inflation tools, FreeSurfer also offers a spherical surface-

based coordinate system based on a cortical correspondence optimization method.

This method, described in detail in [7], is based on nonrigidly aligning each individ-

ual’s folding patterns with an atlas. The folding pattern in this context is quantified

by the sulcal depth of the surfaces.

The algorithm is initialized by first mapping the reconstructed cortical surface onto

a sphere using a maximally isometric transformation. Then, the spherical parameter-
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izations for the individual and the atlas are morphed into register by a combination

of sulcal depth alignment and isometry-preserving forces. The sulcal depth alignment

is achieved by minimizing the mean squared difference between the average sulcal

depth computed from a fixed training set and that of the individual modulated by

the variance across the training set.

Fischl further argues that simply maximizing the sulcal depth alignment is not

enough to prevent folds and distortions. He therefore introduces two additional energy

terms to the objective function of the optimization. The first term is for the preser-

vation of local distances, which gives the surface some local stiffness and discourages

excessive shear. The second term is for area preservation and aims to prevent ex-

cessive compression or expansion. These terms are weighted against the sulcal depth

alignment term by free parameters.

Like the geometrically driven optical flow method described above, the FreeSurfer

correspondence method ignores the spatial location of the vertices in its similarity

metric definition and therefore has to resort to a nontrivial initialization procedure

as well as the additional regularization terms described above. Additionally, it can

produce suboptimal correspondence results since it doesn’t capture the variability of

the whole population.

BrainVoyager

A multiscale correspondence method based on cortical curvature is used as part of

the BrainVoyager QX software [21]. The curvature of the cortex typically reflects the

gyral/sulcal folding pattern of the brain, similar to the sulcal depth metric used by

FreeSurfer. The algorithm first computes a spherical parameterization of the cortical

surface to simplify vertex location manipulation during the optimization stage. Then,

a gradient-descent optimization is used to minimize the mean squared differences

between the curvatures of the source and target brains. The target typically is an
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atlas or a designated template object in the population; however, BrainVoyager allows

the use of a ‘moving target’, defined as the population’s average, updated after each

iteration. The optimization is performed by an iterative coarse-to-fine procedure by

means of different levels of smoothing of the curvature maps.

Like FreeSurfer, BrainVoyager bases its correspondence definition entirely on the

curvature, which can lead to suboptimal correspondence results if the initialization is

not very good. However, the ‘moving target’ approach makes it a pseudo-groupwise

technique, which is an advantage over typical pairwise algorithms.

BrainVisa

Cachier et al. [22] propose an intensity and geometric feature based registration al-

gorithm. Given a brain image, the sulci are first automatically extracted and labelled

using a neural network trained on a manually labelled set. The sulcal border and

the sulcal bottom (the edge of the sulcus deep in the brain) are extracted from these

sulci. The sulcal bottoms with the same label on two brains are then matched with

a nonparametric approach based on an objective function that has similarity terms

for the image intensities at landmark locations as well as location on the sulcus. The

image intensities are used to overcome problems such as sulci of different topologies

across different brains, as well as to increase the robustness of the automatic sulcus

labeling. Although this approach produces satisfying correspondence results, it is

strongly dependent on the initialization step, which is the automatic extraction and

labeling of the sulci. Furthermore, it is not clear how to extend the correspondence

outside the sulcal bottoms.

Shape-Based Correspondence Using Geodesics and Local Geometry

Wang et al. [23] propose a pairwise correspondence method that uses geodesic dis-

tance and surface curvature to capture the complex geometry of the cortical surface.
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It is necessary to define a sparse set of anatomical landmark points on the atlas man-

ually to use the algorithm. The points corresponding to these on the subject brain

are generated by a nonparametric shape-based matching procedure via an objective

function based on Euclidean distance, Koenderink’s curvedness metric, and a surface

normal match measure. Next, geodesic interpolation of these initial points is used to

obtain a dense set of corresponding points between the subject brain and the atlas.

This method is unique in its usage of geodesic interpolation of sparse set of cor-

responding points. However, it requires the manual selection of the initial landmark

points on the atlas (69 landmarks were necessary for the study reported in [23]), which

can be tedious. It is also unclear how well the finer details of the folding pattern are

matched with this method, since these are not explicitly identified by the manual

landmarking.

2.1.2 Volume-based pairwise correspondence

A fundamentally different approach to correspondence optimization is via the regis-

tration of an image volume to an atlas. The correspondence on the surface can be

obtained by applying the warp field implied by the volume registration. Applied to

brain images, the main advantage of these methods is that both the cortical surface

as well as subcortical structures can be treated in a unified framework. A full dis-

cussion of volumetric registration is beyond the scope of this dissertation; therefore,

this section is limited to a review of a representative selection of the methods used in

neuroimaging.

Talairach registration procedure is a classical volume-based correspondence method

[24]. The Talairach coordinate system is defined by ensuring that the anterior commis-

sure and the posterior commissure lie on a horizontal line. Since these two landmarks

lie on the midsagittal plane, the coordinate system is completely defined by requiring

this plane to be vertical. The registration procedure therefore only requires a few
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parameters to represent the entire transformation, which can lead to poor anatomical

accuracy in the cortex. In fact, several studies have shown that the between-subject

variability of landmarks after Talairach registration can be on the order of several

centimeters [25, 26]. This means that the location estimations of many small cortical

areas can be severely mistaken.

Another volume-based correspondence approach is the Statistical Parametric Map-

ping (SPM ) spatial normalization method, which is part of the SPM software toolkit

for analysis of functional imaging data [27]. The registration method used by SPM5

(and subsequent SPM versions) aims to match each skull-stripped image to the skull-

stripped reference or atlas image. The registration involves minimizing the mean

squared difference between the images that have been presmoothed with a Gaus-

sian kernel. The first step of the registration is the estimation of a 12-parameter

affine transformation. Excessive zooms and shears are penalized via a regularization

term. The second step involves nonlinear registration which targets shape differences

between the two brains, which the affine transformation cannot account for. The

warping is modeled by a linear combination of low-frequency cosine transform basis

functions. Regularization is obtained by minimizing the membrane energy of the

warp [27].

Another volume-based correspondence method is proposed by the Oxford Cen-

tre for Functional MRI of the Brain, FMRIB. Their software package FSL (FMRIB

Software Library) provides two different methods: a linear multi-resolution global op-

timization method [28], as well as a more recently introduced nonlinear registration

method [29]. The nonlinear registration method is similar to the SPM registration but

uses cubic b-splines rather than cosine transforms for parameterizing the deformation.

Although the SPM and FSL registrations provide a more accurate correspondence

than the Talairach registration procedure, they nonetheless have similar limitations.

Because the deformations are defined by only a few hundred parameters, deformations
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for higher levels of detail cannot be modeled in these frameworks.

Christensen et al. [30] propose a much higher-dimensional deformation field for

the registration to accomodate shape differences between the atlas and images of other

brains. This is accomplished by defining probabilistic transformations on the atlas

coordinate system modeled by the physical properties of viscous fluids. Although a

near-perfect match can be obtained in the image intensities of different brains with

a high-dimensional deformable registration algorithm, the alignment of the sulcal

and gyral patterns is not ensured, because the cortical geometry is ignored (as in

all the other volumetric methods discussed so far). Moreover, since gyral and sulcal

landmarks are typically accurate predictors of the location of functional areas of the

brain, it seems appropriate to use these folding patterns as features to drive the

registration of the cortical surfaces, rather than image intensities.

The HAMMER (Hierarchical Attribute Matching Mechanism for Elastic Registra-

tion) method [31] addresses the issue of taking into account the underlying anatomy

rather than simply matching image intensities across volumes. For this purpose,

HAMMER uses an attribute vector associated with each voxel to drive the elastic

registration. These vectors contain geometric information of different scales and they

can help differentiate between different parts of the anatomy that might otherwise

be indistinguishable if only image intensities are considered. However, this technique

still has the limitations of pairwise correspondence methods; furthermore, in the cur-

rent formulation, the user is not allowed to define new attributes but rather is forced

to use a predetermined set of 13 attributes.

2.2 Groupwise Correspondence

Since their introduction by Cootes and Taylor [32], active shape models (ASM) have

become very popular in medical imaging. This method is in fact one of the earliest to
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introduce the problem of choosing correspondence points for a population, along with

Bookstein’s work [33]. The solution proposed by Cootes and Taylor is to manually

choose landmarks and to perform a generalized full Procrustes alignment on the entire

population to align them with each other. Generalized full Procrustes alignment is

the alignment of n objects using translations, rotations and scaling such that the sum

of distances between all pairs of objects is minimized. The ASM method therefore

consists of manually choosing landmarks, aligning them by considering the entire

population, and finally performing a Principal Components Analysis (PCA) on the

landmark locations. This can be viewed as a first iteration of a correspondence

method, where the only additional step would be the optimization of the landmark

positions. This seminal work thus paved the way for the groupwise correspondence

approaches that were subsequently proposed.

2.2.1 Determinant of the Covariance Matrix

Kotcheff et al. [34] propose to automatically find correspondence points by optimiz-

ing an objective function that leads to compact and specific models. They argue that

the appropriate objective function is the determinant of the covariance matrix of the

landmark locations, and they optimize this objective function via a genetic algorithm

that manipulates the parameterization and pose of the objects in the parameteriza-

tion. This leads to better correspondence then some of the earlier pairwise algorithms.

However, as Davies et al. later pointed out [2], the choice of the determinant of the

covariance matrix as the objective function is not clearly justified and is therefore

solely based on intuition.

2.2.2 Minimum Description Length

The MDL method, introduced by Davies et al. [35], is an information theoretic ap-

proach to the correspondence problem. The main idea is that the simplest description
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of a population is the best; simplicity is measured in terms of the length of the code

to transmit the data as well as the model parameters. Ward et al. [36] extend the

method to medial object representations. Chapter 3 presents a novel approach to

MDL formulation, and detailed reviews of both the original algorithm and a variety

of techniques attempting to improve it will be provided in Section 3.1.1. Cates et al.

[3, 4] propose an entropy-based formulation that can be shown to be equivalent to

MDL. This nonparametric approach forms the basis for the framework presented in

Chapter 4, and a detailed review of the technique proposed by Cates will be presented

in Section 4.1.

2.3 Correspondence Evaluation

Objective methods for evaluating correspondence quality are necessary in order to

compare various correspondence optimization schemes. This section reviews major

methods of assessing correspondence quality.

2.3.1 Distance to Manual Landmarks

Since the ‘ground truth’ for correspondence of biological objects is not known, it is

common to use a small set of anatomical landmarks selected manually by a human

expert on each object for evaluation purposes. The human expert knowledge is thus

considered the ‘gold standard’ [37]. Typically, the mean distance between the manual

landmarks and the landmark points in a template is used to quantify the performance

of each correspondence algorithm. Moreover, reproducibility error of the manual

landmark selection, typically in the range of a few millimeters [37], should be taken

into account to judge the results.
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2.3.2 Jaccard Coefficient Difference

Munsell et al. [38] propose to overcome the lack of ground truth knowledge in a bench-

mark study. Given an arbitrary statistical shape model, they generate a large set of

new shape instances. This new data set can be input to different shape correspon-

dence algorithms after resampling and the addition of random affine transformations.

The correspondence performance can thus be objectively evaluated since the ‘ground

truth’ for this data set can be defined via the underlying shape model.

Munsell proposes two metrics to evaluate correspondence quality based on the

Jaccard-coefficient difference. The Jaccard-coeffient difference of two shape contours

is defined as one minus the ratio of the area enclosed by their intersection and the

area enclosed by their union.

The first evaluation metric is the bipartite-matching difference, which is the total

Jaccard-coefficient difference between each shape Si in the original set of shape con-

tours and the shape contour with the minimum Jaccard-coefficient difference to Si in

the contour set obtained via the correspondence algorithm. A small value indicates

that the shapes are closely similar for the whole population and therefore that the

correspondence method used is satisfactory.

The second metric is a statistical test applied to the minimum spanning tree of

the fully connected graph of all shape contours, where the edge weights are defined

by the Jaccard-coefficient difference of the contours represented by the neighboring

vertices. This provides an estimate of the probability that the two sets of continuous

shape contours are from the same shape space.

To apply Munsell’s metrics to real anatomical structures, one can in theory use a

very large number of real shape contours instead of the input statistical shape model.

However, obtaining such a large dataset is difficult and labor-intensive, especially in

3D. Furthermore, there is no guarantee that the entire shape space will be adequately

sampled with this approach.

26



2.3.3 Generalization, Specificity and Compactness

Davies [35] proposes three evaluation metrics that measure the properties an opti-

mal statistical shape model should have: generalization, specificity and compactness.

These three associated metrics are designed to be used for comparing different corre-

spondence methods applied to similarly sized datasets, since their values are depen-

dent on the number of surfaces.

Generalization describes a model’s capability to represent unseen instances of

the class of objects being studied. This is a useful metric since it penalizes models

that have been over-fitted to the training set. In practice, the generalization G(M)

of a model can be computed by a leave-one-out algorithm. For each object in the

training set, a model is constructed by Principal Components Analysis (PCA) using

the remaining n − 1 objects. The model is used to reconstruct the left-out object

using M principal modes of variation, and the reconstruction error is computed. This

process is repeated for all n objects and the reconstruction error is averaged. Formally,

G(M) =
1

n

n∑
i=1

|xi − x′i(M)|2, (2.1)

with standard deviation σG(M) =
σ√
n− 1

, (2.2)

where xi is the location matrix for the ith object, x′i(M) is the reconstructed object

using M modes of variation as described above, and σ is the sample standard deviation

of G(M). Since the generalization is a measure of average error, lower values of

generalization are desirable. The standard deviation is necessary in order to reason

about the significance of differences in G(M) for different correspondence methods.

Specificity captures the fact that a good model should only generate object in-

stances similar to those in the training set. In practice, a PCA model is computed

based on the training set and a large number N of random instances are generated

from this model using M modes of variation. For each new object, its distance to the
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closest object in the training set is computed; this distance is averaged for all new

objects to compute the specificity S(M). Formally,

S(M) =
1

N

N∑
i=1

|newi(M)− nearesti|2, (2.3)

with standard deviation σS(M) =
σ√
N − 1

, (2.4)

where newi is the location matrix of the ith new random object, nearesti is the location

matrix of the object in the training set with the minimum distance to newi, and σ

is the sample standard deviation of S(M). As in the case of the generalization,

specificity is an average error measure and therefore low values are desirable.

Note that the case M = 0 corresponds to the population average. G(0), therefore,

measures how far, on the average, the individual shapes are from the population

average. S(0), on the other hand, measures the distance between the population

average and the individual shape that is closest to that average.

The third evaluation metric Davies proposes is compactness. A compact model is

one that has as little variance as possible and requires as few parameters as possible

to represent an object. This property is captured by the compactness C(M), defined

as a cumulative variance:

C(M) =
M∑
i=1

λi, (2.5)

with standard deviation σC(M) =
M∑
i=1

√
2

n
λi, (2.6)

where λi is the ith eigenvalue in the PCA model, and n is the number of objects in

the training set. Based on the definition of compactness, it is clear that a low value

of C(M) is desirable.
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2.3.4 Goodness of Prediction ρ2

Jeong [39] proposes a metric that captures the goodness of fit of a shape model to a

data set. This fitness is evaluated by the squared correlation ρ2. Jeong demonstrates

that this correlation reduces to the following formula:

ρ2 =

∑N
i=1 d(m̂i,test,mtrain)2∑N
i=1 d(mi,test,mtrain)2

(2.7)

where m̂i,test is the projection of the test model mi,test on the shape space, mtrain

is the Frechet mean of the training set, and d() is an appropriate distance metric

(e.g. Euclidean distance for Cartesian space, geodesic distance for manifolds). ρ2

can be interpreted as the amount of variation of a test set explained by the retained

principal directions estimated by a training set. This can be used as a correspondence

evaluation tool by performing N leave-one-out experiments. Thus, higher values of

ρ2 indicate better correspondence models.
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Chapter 3

Parameterization-Based Group

Correspondence

A natural way to establish correspondence across a population represented in a pa-

rameterized form is to manipulate the parameterization to optimize an objective func-

tion. In this chapter, I first review in detail the Minimum Description Length (MDL)

approach to correspondence. As discussed in 2.2.2, MDL is a groupwise correspon-

dence approach that uses ideas from information theory. I then demonstrate how this

method can be extended to incorporate additional local features to effectively provide

a generalized parameter-based correspondence method. Finally, I discuss some geo-

metric metrics as local feature candidates and report results from several anatomical

data sets.

3.1 Traditional MDL

The goal of the MDL technique is to build optimal statistical shape models from

boundary representations of 2D or 3D object populations. The key idea is that the

‘best’ model will minimize the description length, or the length in bits of a description

of the entire dataset, including both the model parameters and the encoded data. This

leads to an objective function comprised of two terms, one that aims to minimize the



model complexity (description length of model parameters), and one that aims to

ensure the quality of the fit between the model and the data (description length of

encoded data).

3.1.1 Original Algorithm Formulation

The original MDL method for shape correspondence was introduced by Davies et

al. [2] for 2D. Each shape is individually parameterized such that points on differ-

ent surfaces that have the same parameterization correspond. The correspondence

optimization task thus becomes a problem of finding the optimal parameterization.

Davies proposed to represent the shapes using the shape parameters from a Prin-

cipal Components Analysis (PCA) of the population. Then, new shapes can be

generated by choosing random values for the shape parameters in the range of the

training set. If the correspondence is appropriate, this will provide an efficient statis-

tical model of the data set; otherwise, illegal shapes can occur.

The objective function is the description length, which is the sum of the description

length for the parameters of the PCA model (DLparameters) and the description length

of the data (DLdata). The training data is modeled with a 1D Gaussian distribution

along each principal direction. Therefore, the parameters that need to be transmitted

are the mean µ and the variance σ of the Gaussian distribution. The data is assumed

to be bounded and quantized, with an upper bound R and a quantization parameter

∆; the data description length is therefore the entropy associated with a bounded,

quantized 1D Gaussian. Furthermore, the quantization parameter for the variance, δ,

must be included in DLparameters. Finally, the n principal direction vectors must be

transmitted; however, the description length of these is constant for a given training

set with a fixed number of sample points per object, and therefore it does not need

to be considered in the objective function. Similarly, R and ∆ can be omitted for a
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given training set. Therefore, we have

DLparameters = DLµ +DLσ +DLδ (3.1)

DL = DLparameters +DLdata =
n∑

m=1

DLm (3.2)

with

DLm =

 f(R,∆, n) + (n− 2)ln(σm), if σm ≥ σcut

f(R,∆, n) + (n− 2)ln(σcut) + n+3
2

(( σm

σcut
)2 − 1), if σm < σcut

(3.3)

where σcut is the lower bound on the variances along each principal direction (σm),

and f is a function that depends only on R,∆ and n (see [2] for the derivation of

Eq. 3.3). In the limit as ∆ → 0, σm approaches
√
npλm, where np is the number of

samples per object and λm are the eigenvalues of the covariance matrix associated

with the sample locations. It can be seen that the description length is closely related

to the determinant of the covariance matrix.

In this original formulation, Davies uses a parameterization that is piecewise linear

to ensure one-to-one and monotonic mappings and optimizes the MDL function by

using a stochastic algorithm. To avoid the whole system to collapse to a trivial global

minimum, he proposes to fix the parameterization of one object in the population.

Davies further extended [1] this basic formulation to 3D. An equal-area mapping

to the sphere (as described by Brechbuhler [14]) is used to parameterize the shapes,

which is the only major change from the 2D formulation. This parameterization is

obtained by a nonlinear constrained optimization aiming for minimal edge length

distortion via manipulation of the spherical coordinates of the vertices. An initial

spherical parameterization based on a heat conduction model is used as initialization

point to this optimization. Each face of the object mesh is constrained to have the

same area. Davies claimed that any other spherical mapping method that does not
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introduce surface folding or tearing would perform equally as well for this purpose,

since MDL further optimizes the parameterization and the final result should not

significantly depend on the initialization, at least in theory.

In this 3D formulation, a multi-resolution optimization is performed using Cauchy

kernels to create symmetric θ transformations in order to manipulate the parameter-

ization, by initially using only a few big Cauchy kernels and then using additional,

smaller kernels. This reparameterization strategy causes the points near the kernel

center to be spread over the sphere, while landmarks in other regions of the surface

are compressed. Using a large number of kernels at different locations, the parame-

terization can be arbitrarily manipulated.

3.1.2 Gradient Descent Optimization of the MDL Function

The stochastic optimization method used in the original algorithm description is very

time consuming. Heimann et al.[40] propose a gradient descent optimization scheme

to resolve this issue. The PCA is computed using singular value decomposition on

the data matrix A, defined as A = 1√
N−1

(L−L), where L is the matrix that encodes

the vertex locations for each object along successive columns, L is a matrix with all

columns set to the mean shape µ, and N is the number of objects in the population.

A simplified version of the MDL objective function is then used, as proposed by

Thodberg et al. [41]:

F =
n∑

m=1

Fm,

with

Fm =

 1 + log(λm/λcut), if λm ≥ λcut

λm/λcut, if λm < λcut

(3.4)
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where λm are the eigenvalues of the covariance matrix associated with the sample

locations and λcut is a free parameter that corresponds to σcut from the original MDL

formulation.

Heimann also claims that the Cauchy kernels used by Davies to manipulate the

parameterization are inefficient because adding one new kernel modifies all vertex

positions. However, it is desirable to keep established correspondences stable. He

proposes to confine the kernels to be strictly local instead by truncating them at

a predefined distance from the kernel center. By decreasing the threshold distance

as the optimization progresses, a hierarchical optimization effect is achieved, such

that larger regions are handled first and finer details are handled last. In addition,

the parameterization meshes are randomly rotated throughout the optimization to

ensure that all regions of the sphere are treated equally by the Cauchy kernels, whose

locations remain fixed in the parameter space.

This series of randomized parameterization rotations, combined with the hierar-

chical optimization approach, makes convergence to local minima unlikely. Conse-

quently, the gradient descent approach produces significantly better correspondences

than the original MDL formulation, as evidenced by better generalization and speci-

ficity properties as well as lower convergence values for the MDL cost function, which

indeed suggest an optimization more robust to local minima. Furthermore, Heimann

reports the gradient descent optimization convergences up to 5000 times faster than

the original approach. However, the method nonetheless takes reportedly up to 20

hours for relatively small and simple datasets (10-20 subjects with less than 5000

vertices per surface); the computational cost therefore becomes prohibitive for highly

detailed datasets such as human cortical surfaces.
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3.1.3 Shape Image Based MDL Optimization Schemes

The computation bulk of the MDL method lies in the reparameterization step, which

requires the interpolation of the mesh on the parameter sphere at each iteration.

Twining et al. [42] argue that moving this interpolation from the spherical domain to

a plane would significantly improve the correspondence computation time. For this

purpose, the sphere is first mapped to an icosahedron, which is then cut open and

flattened, as proposed by Praun et al. [43]. Twining calls these flattened images of the

parameter sphere shape images and proposes to store spatial location information in

them. An elastic registration of the shape images is performed to optimize the MDL

function.

Although this method is significantly faster than traditional MDL implementa-

tions, it does nonetheless require a spherical parameterization as the initial input,

which can be a limiting factor. The entropy-based particle correspondence method

discussed in the next chapter offers fast computation times in addition to being

parameterization-free, therefore allowing surfaces of arbitrary topologies.

3.2 Generalized MDL Correspondence

Although traditional location-based MDL (as discussed in Section 3.1.1) has been

demonstrated to be a powerful approach for solving the groupwise correspondence

problem in an automated fashion, it typically performs rather poorly on objects with

complex geometry, when the surfaces in question are convoluted. For such surfaces,

spatial proximity of vertices does not provide a distinctive enough correspondence

objective function and can easily result in false correspondence results. A typical

example is the case of vertices of a brain mesh lying on opposing sides of a sulcus, as

illustrated in Figure 3.1.
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Figure 3.1: Spatial proximity can be a false indicator of correspondence, as illustrated
by points lying on opposing sides of a sulcus of the brain. Point A on the left brain
is closer to point B on the right brain than it is to point C (AB < AC). However,
it is intuitively clear that A is much more likely to correspond to C than to B, as C
is located on the opposite bank of the sulcus. A’s position is replicated on the right
brain for ease of comparison.

3.2.1 Using Local Features for Generalizing MDL

A natural solution to these issues is to make use of geometric information that goes

beyond spatial location, such as local curvature. The MDL objective function can

be extended to incorporate such local features, as we presented in [44, 45]. The

extension I propose is applicable to not only geometric measures such as curvature,

but to any local features whose absolute difference defines a metric in the feature

space, as long as the feature values are available at each sample location. Depending

on the application domain, appropriate local features might be proximity to major

blood vessels, connectivity to other anatomical structures, image intensities, etc.

To use local features in the MDL computation rather than vertex locations, it is
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necessary to substitute the data matrix L encoding the spatial locations in traditional

MDL. In this alternative matrix the columns are the local feature values, such as

curvature measurements of the object, instead of spatial locations. Therefore, the cost

function for MDL must be modified to be based on the eigenvalues of the curvature

matrix instead of the eigenvalues of the location matrix.

With this technique, it is possible to use local features that are high dimensional,

such as different curvature measurements, or to even include the spatial location itself

as a feature dimension, in addition to the other application-driven features.

3.3 Geometric Features

The choice of specific features for representing local shape is one of the issues in

using geometrical features to improve MDL. In this section, I review some candidates

for local geometrical features. The feature selection will be made based on some of

the correspondence evaluation techniques reviewed in Section 2.3, in particular, the

generalization and specificity metrics.

3.3.1 Principal Curvatures (κ1, κ2)

In differential geometry, the second fundamental form II is a quadratic form on the

tangent plane of a smooth surface in the 3-D Euclidean space. The second funda-

mental form is a symmetric bilinear map that captures the local shape of the surface

[18]. In this context, shape is how the surface normal direction changes while mov-

ing along the surface in arbitrary directions. The principal directions of the surface

can be computed as the eigenvectors of II. The associated eigenvalues of the second

fundamental form are called the principal curvatures κ1 and κ2 (chosen such that

κ1 ≥ κ2). These values measure the maximum and minimum values of bending of a

surface, and they bound the local values of the normal curvature.
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3.3.2 Mean Curvature and Gaussian Curvature (H, K)

The trace and determinant of the second fundamental form capture geometric in-

variants regarding the shape of the surface. The mean curvature is defined as H =

1
2
(κ1 + κ2) — half the trace of II. Koenderink [18] describes it as “the nosedive

averaged over all directions”, where the ‘nosedive’ refers to the amount of twist-free

turning of the principal frame field. Mean curvature is an extrinsic measure of cur-

vature.

The Gaussian curvature is the determinant of II, defined as K = κ1κ2. The

Gaussian curvature can be interpreted extrinsically as the measure of the spread of

surface normals per unit surface area. This corresponds to the area magnification of

the Gauss map, hence the name “Gaussian curvature”. However, K is an intrinsic

measure since it is invariant under local isometries and its value can be computed

from measurements on the surface itself, regardless of the way the surface is situated

in 3D space. This is the result of Gauss’s famous Theorema Egregium [18].

H and K are both algebraic invariants, meaning that they do not change depend-

ing on the choice of frame field for the surface, and geometric invariants, meaning

that they do not change when the surface is rotated or translated. However, these

measures are not scale-invariant.

3.3.3 Curvedness and Shape Index (C, S)

Koenderink [18] points out that all spheres intuitively have the same shape even

though they may have different sizes. All of the above curvature metrics fail to

capture this intuitive property. Koenderink therefore proposes two new metrics to

reflect these properties, the curvedness C and the shape index S.

The shape index S describes the local shape in terms of concavity and convexity.
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Figure 3.2: Shape index S. The shape index is a curvature-based metric that intu-
itively captures local shape. S can take on values from [−1..1]. Shapes with opposite
values of S have the relationship of an object and its mold. Figure reprinted from
[18].

It is formally defined as:

S = − 2

π
tan−1κ1 + κ2

κ1 − κ2

(3.5)

Figure 3.2 illustrates surfaces corresponding to various values of S. S takes values

in the interval [−1..1], with the endpoints corresponding to the concave and convex

umbilics (i.e., points where κ1 = κ2).

The curvedness C represents how curved the surface is. It is formally defined as:

C =
2

π
ln

√
κ2

1 + κ2
2

2
(3.6)

Figure 3.3 illustrates surfaces corresponding to various values of C. C can take any

value in (−∞..∞), with −∞ corresponding to a flat point and +∞ corresponding to

a singular point.

C and S basically correspond to a polar representation of the principal curvatures,

in an attempt to decouple measurements for the size and shape of the curved surface.

In particular, S is a very useful property when comparing objects of different sizes

(and thus different curvature ranges), since trying to match variables with different

ranges could adversely affect the optimization process. As discussed previously in
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Figure 3.3: Curvedness C. Curvedness captures the size of a surface regardless of
its shape. The unit sphere has a C value of 0. Positive values of C correspond to
increasingly sharp points, and negative values correspond to increasingly flat surfaces.
Figure reprinted from [18].

Section 2.1.1, Tosun et al. [17] use C and S as part of their cortical correspondence

scheme.

3.4 Results and Discussion

In this section, I present a practical comparison of four correspondence methods dis-

cussed so far: SPHARM correspondence (Sec. 2.1.1), Heimann’s implementation of

position-based MDL (Sec. 3.1.2), generalized MDL correspondence (Sec. 3.2) using a

pair of curvature measures (denoted CurvMDL) and generalized MDL correspondence

using position and a pair of curvature measures (denoted CombinationMDL). Further-

more, I have applied the CurvMDL and CombinationMDL methods separately using

each pair of metrics discussed in Sec. 3.3.

I have applied these correspondence methods to four different object populations:

lateral ventricles, caudates, striata (which is the union of caudate, putamen and nu-

cleus accumbens), and left femoral heads. Figure 3.4 illustrates the relative positions
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Figure 3.4: The relative locations of the various brain structures used in experiments.
Representative axial (A) and coronal (B) slices are shown, as well as a 3D rendering
(C). The caudate nuclei, shown in blue, are located near the centre of the brain. The
putamen, shown in green, is the outermost part of the basal ganglia. The striatum
is the structure comprised of the caudate and the putamen, which are separated by
the internal capsule fiber tract, and the nucleus accumbens (shown in yellow). The
pallidum, shown in purple in the 2D views, is the other nucleus among the rostral
basal ganglia. The lateral ventricles, shown in red, are roughly wrapped around the
rostral basal ganglia.

of the brain structures (lateral ventricles, caudates and striata). All populations

of brain structures included healthy subjects as well as patients with various disor-

ders. This setting leads to a higher variability in the populations. The results of the

SPHARM correspondence have been used as initialization to all MDL-based methods,

since these require a spherical parameterization for the surface. All curvature mea-

sures have been analytically computed from the SPHARM coefficients (see Appendix

A for details).

For all populations, traditional MDL performed better than SPHARM, which

agrees with findings reported by Styner et al. [37], as can be seen in Figures 3.6 - 3.9.

SPHARM correspondence does not handle well rotational variations in the popula-

tions, since it is based on first-order ellipsoid allignment. It is surprising, however, that

SPHARM nonetheless performed better than pure curvature MDL (CurvMDL) for all

populations. This is due to the non-unique nature of curvature measurements; with-

out the spatial location information, curvature metrics on their own are not enough
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Figure 3.5: The results of the SPHARM, traditional MDL and CombinationMDL
demonstrated on two striata and two femoral heads. The coloring shows the φ co-
ordinates on the spherical parameterization of the objects, with each (x, y, z) point
on the object surface mapped to a (φ, θ) point on the unit sphere. Locations with
same coloring on the two subjects correspond to each other for a given method. As
shown in (c), the line separating blue and red regions corresponds to a longitude
line on the unit sphere. Note that the SPHARM correspondence for the striata is
very poor, and the CombinationMDL method gives the best visual correspondence
for both populations.

for a stable correspondence computation. The natural solution is to combine location

and curvature for MDL computation (CombinationMDL), so that the spatial location

will be used for low-resolution correspondence and curvature for high-resolution. My

framework enables the seamless integration of these features of different resolutions

in a single objective function. The performance of CombinationMDL is satisfactory

for all populations. However, for some populations, there seems to be little reason to

use CombinationMDL instead of the traditional MDL. This finding is expected since

the traditional MDL is quite adequate for simpler shapes like caudates. However, for

objects with complex curvature patterns, such as the striata and the femur illustrated
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in Figure 3.5, the incorporation of curvature improves the correspondence.

For all populations, the choice of particular pair of curvature measures proved not

to be critical, since any of the 3 pairs of measures I used resulted in performances

in the same range. This result is not surprising, since given any pair of measures

I presented, one can easily compute the other 2 pairs: each pair encodes the same

information about the surface shape. To improve graph readability, I only show

results using the (C, S) pair of metrics on most of the figures in this chapter.

In the generalized MDL methods (CurvMDL and CombinationMDL), I have

scaled the feature values appropriately. This is accomplished by using the inverse

of the feature variance averaged over the whole surface as the scaling factor. This

forces all feature channels to have a variance of 1 and to therefore have equal weight

in the correspondence optimization.

The MDL implementation that I used requires a parameterization mesh as an

additional input to determine the spatial resolution at which correspondence opti-

mization is performed. In all computations I have used a mesh of the same resolution

as the one used for SPHARM computation to obtain full-resolution correspondence.

However, one might want to use a lower-resolution parameterization mesh to speed

up the computation and interpolate to obtain a denser correspondence. This would

lead to a faster but less accurate correspondence optimization.

3.4.1 Lateral Ventricle

The first population consists of 116 lateral ventricle segmentations. These are large,

C-shaped structures located in the cerebrum. Shape analysis of the lateral ventricles

is important for the study of schizophrenia and Parkinson’s disease [46, 47].

For this population, the traditional MDL performs very well, and introducing

additional curvature information does not have any benefits. In fact, since curvature

measurements are more prone to sampling noise than locations, using the curvature
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data is similar to adding noise to the dataset. However, the performances of the two

methods are still in the same range. Figure 3.6 summarizes these results.

3.4.2 Caudate

The next dataset includes 56 caudate segmentations. The caudate is one of the

basal ganglia nuclei, with a vaguely C-shaped geometry with a wide head and a

tapering tail. The traditional MDL and the CombinationMDL perform similarly

well on this population as expected, given the simple shape of the objects in the

population. In fact, Figure 3.7 demonstrates that even SPHARM correspondence

performs reasonably well on this dataset, since there are no twists in the structure.

3.4.3 Femur

The third dataset I used consists of 18 truncated femur bones. The femur is a large

bone in the upper leg, and its analysis is important to computer assisted surgery

as well as prosthesis design [48]. The superior part of the femur has three major

protuberances: the head, the greater trochanter and the lesser trochanter. The lower

part, including the lower extremity, was truncated and excluded for this study.

For this dataset, due to the complex structure of the objects, the correspondence

improves when curvature information is included. Note that, for the generalization

metric, traditional MDL catches up with the performance of CombinationMDL when

a high number of shape eigenmodes (M) are used. The CombinationMDL has superior

specificity values independent of M. Figure 3.8 captures these results.

3.4.4 Striatum

Finally, I have compared the methods on a population of 20 striata, which consist

of the caudate nucleus, the putamen and the nucleus accumbens. The striatum best
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demonstrates the type of object where using curvature for establishing correspondence

is beneficial. A typical striatum has both highly convex and highly concave surface

patches, and the curvature pattern quickly changes along the surface. Traditional

MDL does not perform optimally on these convoluted objects because the vertices

with similar spatial locations across subjects do not necessarily correspond together.

In this case, the local geometry becomes varied enough that it provides a means of

identifying corresponding points, and thus it helps to use curvature as a stabilizer on

striatum correspondence. The results are shown in Figure 3.9.

3.4.5 Discussion

In this chapter, I presented a framework for integrating local features into MDL

computation. When using geometrical measurements as local features, such as various

curvature measures, my method invariably produces results at least comparable to

traditional MDL, and it handles objects with highly complex curvature structure

much better than traditional MDL.

It is clear that incorporating local measurement into correspondence computation

has the potential of significantly improving correspondence. Any other measurements

can also be used to improve correspondence besides geometric information such as

curvature.

In human cortical surfaces, which is the main target application of this disserta-

tion, geometric measurements such as sulcal depth (see Section 1.2.1) and connectivity

measures that can be derived from DTI scans are some of the intuitive features that

can be used to improve correspondence. Chapter 4 discusses a parameterization-free

correspondence method and its application to the human cortex using sulcal depth as

a feature. Chapter 5 discusses connectivity measures that can be used as additional

features for human cortical surfaces.

Although MDL is a powerful method for optimizing correspondence, it has the
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disadvantage of requiring parameterized surfaces, which limits its applicability. For

the human cortex, for instance, it is a nontrivial task to produce a surface with

spherical topology from MR images. The level of folding of the cortical surface further

complicates the problem, since the surface meshes necessarily will have a very large

number of vertices, which leads to unacceptably long MDL run times, even with faster

implementations such as Heimann’s. The nonparametric correspondence framework

introduced in the next chapter not only typically converges significantly faster than

MDL even on very large meshes, but also does not require spherical topology.
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Figure 3.6: Top, the shape and SPHARM parameterization of a typical lateral ven-
tricle surface. Middle and bottom, generalization (G(M)) and specificity (S(M))
comparison on a population of lateral ventricles. In all figures, XYZ refers to the
traditional MDL method; CS, HK and Kappa refer to CurvMDL method using the
specified curvature metrics; XYZCS, XYZHK and XYZKappa refer to Combination-
MDL method. Note that the choice of particular curvature metric has very little effect
on the results for both CurvMDL and CombinationMDL methods. Therefore, only
results using the C-S metrics will be shown in the subsequent figures to improve graph
readability. For the lateral ventricle population, SPHARM and CurvMDL both per-
form poorly. The performance of traditional MDL and CombinationMDL is within
the same range.
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Figure 3.7: Top, the shape and SPHARM parameterization of a typical caudate
nucleus. Middle and bottom, the generalization (G(M)) and specificity (S(M)) com-
parison on a population of caudates. Given the very simple structure of the objects,
there is no extra benefit in adding curvature information to MDL computation. Even
SPHARM performs well on this dataset, since the first order ellipsoid alignment is
satisfactory. The pure curvature method (CurvMDL) performs poorly.
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Figure 3.8: The generalization (G(M)) and specificity (S(M)) comparison on a pop-
ulation of femurs. CombinationMDL provides an improved correspondence compared
to traditional MDL, even though the improvement is negligible when a higher number
of shape eigenmodes (M) is used. SPHARM and CurvMDL both perform poorly.
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Figure 3.9: The generalization (G(M)) and specificity (S(M)) comparison on a popu-
lation of striata. CombinationMDL clearly improves correspondence. SPHARM and
CurvMDL both perform poorly.
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Chapter 4

Parameterization-Free Group

Correspondence and Application to

Highly Folded Surfaces

MDL implementations rely on parameterizations, which must be obtained through a

preprocessing stage. This is a computationally expensive step at best and becomes

prohibitive for 3D surfaces of non-spherical topology. Furthermore, as discussed in

Chapter 3, MDL optimization itself is a slow process, especially with a large number of

vertices per surface, due to the reparameterization step in the algorithm. This chap-

ter presents a nonparameterized, topology-independent and computationally efficient

algorithm suitable for correspondence optimization on human cortical surfaces.

Styner et al. [37] describe an empirical study which shows that ensemble-based

statistics improve correspondences relative to pure geometric regularization and that

MDL performance is virtually the same as that of min log |Σ + αI| (where Σ is

the covariance matrix of the sample positions across the population and αI is a

diagonal regularization matrix that introduces a lower bound α to the eigenvalues

of the covariance matrix). This last observation is consistent with the well-known

result from information theory: MDL is, in general, equivalent to minimum entropy

[49]. Cates et al. [3, 4] propose a system exploring this property; this entropy-based



correspondence algorithm is the underlying technique for the methodology presented

here.

The entropy-based correspondence method uses a point-based surface sampling

to optimize surface correspondence in a groupwise manner. Like-numbered samples,

named particles, define correspondence across the population. The optimization con-

sists of moving the particles along the surfaces in the direction of the gradient of an

energy functional that strikes a balance between an even sampling of each surface

(characterized by shape entropy) and a high spatial similarity of the corresponding

samples across the population (ensemble entropy). The novel contribution of this

chapter is to extend this method by allowing local measurements on the object sur-

faces to be incorporated into the ensemble entropy term to provide a generalized

correspondence definition.

4.1 Entropy-based Particle Framework

4.1.1 Surface entropy

In this work, as presented in [4], a surface S ⊂ Rd is sampled using a discrete set of

N surface points, Z = (X1, X2, . . . , XN). These surface points, called particles, are

considered to be random variables drawn from a probability density function (PDF),

p(X). A realization of this PDF is denoted with lowercase; thus, a particle set is

represented by z = (x1, x2, . . . , xN), where z ∈ SN . The probability of a realization

x is p(X = x), which is denoted simply as p(x).

Cates et al. describe in [4] a nonparametric Parzen windowing method to estimate

p(xi) such that

p(xi) ≈
1

N(N − 1)

N∑
j=1,j 6=i

G(xi − xj, σi). (4.1)
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where G(xi − xj, σi) represents a d-dimensional isotropic Gaussian with standard

deviation σi. The value for σi is computed using Newton-Raphson method such that

∂p(xi, σi)/∂σi = 0, which optimizes the probability of the particle i being at the

position indicated by the current configuration.

The amount of information contained in such a random sampling is the differ-

ential entropy of the PDF in the limit, which is H[X] = −
∫
S
p(x) log p(x)dx =

−E{log p(X)}, where E{·} denotes expected value. The cost function C is the neg-

ative of this expected value, which can be approximated by the sample mean for a

sufficiently large sample size. The optimization problem is thus given by:

ẑ = arg min
z
C(z) s.t. x1, . . . , xN ∈ S (4.2)

C(z) = −H[X] ≈
N∑
i=1

log
1

N(N − 1)

N∑
j=1,j 6=i

G(xi − xj, σj) (4.3)

−∂C
∂xi

=
1

σ2

∑N
j=1,j 6=i(xi − xj)G(xi − xj, σi)∑N

j=1,j 6=iG(xi − xj, σi)

= σ−2
i

N∑
j=1,j 6=i

(xi − xj)wij (4.4)

where wij are weights such that
∑N

j=1wij = 1. This can be interpreted as the particles

moving away from each other under a repulsive force while constrained to lie on the

surface. The motion of each particle is away from all of the other particles, but the

forces are weighted by a Gaussian function of inter-particle distance. Interactions

are therefore local for sufficiently small σ. Furthermore, the Gaussian kernels are

truncated at 3σ to ensure that each particle has a finite radius of influence.

Note that this particle formulation computes Euclidean distances between par-

ticles rather than the geodesic distances on the surface. Thus, a sufficiently dense

sampling is assumed, so that nearby particles lie in the tangent planes of the zero

sets of a scalar function F which provides the implicit cortical surface. This is an
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important consideration; in cases where this assumption is not valid, such as highly

curved surfaces, the distribution of particles may be affected by neighbors that are

outside of the true manifold neighborhood.

The preceding minimization produces a uniform sampling of a surface. A strategy

that samples adaptively in response to higher order shape information can be more

effective for some applications. In particular, sampling high-curvature regions more

densely can be desirable to ensure the validity of the assumption that tangent planes

vary smoothly between neighboring particles. This can be achieved by modifiying

Eq. 4.1 by introducing a scaling factor kj proportional to the root sum-of-squares of

the principal curvatures at each particle j:

p′(xi) ≈
1

N(N − 1)

N∑
j=1,j 6=i

G(
1

kj
(xi − xj), σi). (4.5)

The human cortex is a prime example of a highly curved surface. In fact, due

to the high level of convolution, even a strong degree of adaptivity does not produce

a satisfactory sampling of these surfaces such that nearby particles can be assumed

to lie on the local tangent planes, unless a very high number of particles are used.

However, using such a high number of particles is undesirable due to computational

cost. Therefore, in this work, I overcome this problem by inflating the cortical sur-

face prior to optimizing correspondence instead of adaptive sampling. The particles

therefore live in the tangent planes of the inflated surface; they are only pulled back

to the original cortical surface for correspondence evaluation purposes.

For both uniform and adaptive sampling, the constraint of the particles to the

object surface is achieved via an implicit representation where the surface is defined

by the zero-set of a signed distance function F (x). This constraint is maintained at

each iteration of the optimization, as described by Meyer et al. [50], by projecting

the gradient of the cost function onto the tangent plane of the surface, moving the
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particle along this tangent vector, and projecting the particle to the closest root of

F by the Newton-Raphson method. The sampling system is initialized with a single

particle at a root of F that is recursively split in two to produce the desired number

of particles, as described by Cates [4].

4.1.2 Ensemble entropy

An ensemble E is a collection of M surfaces each with their own set of particles, i.e.,

E = z1, . . . , zM . The ordering of the particles on each shape implies a correspondence

among shapes and the entire population can be represented in a matrix of particle

positions P = xkj with particle positions along the rows and shapes across the columns.

Cates et al. [3] model zk ∈ RNd as an instance of a random variable Z, and they

propose to minimize the combined ensemble and shape cost function

Q = H(Z)−
M∑
k=1

H(P k), (4.6)

which favors a compact ensemble representation balanced against a uniform (or adap-

tive) distribution of particles on each surface.

For this discussion, the complexity of each object is assumed to be greater than

the number of objects, and therefore it is typical to have N > M . Given the low

number of examples relative to the dimensionality of the space, some conditions must

be imposed in order to perform the density estimation. Cates assumes a normal

distribution and models the distribution of Z parametrically using a Gaussian with

covariance Σ. The entropy of a g-dimensional Gaussian with covariance Σ can be

computed as

H = −
∫ ∫

. . .

∫
f(x)ln(f(x))dx (4.7)

=
1

2
(g + gln(2π) + ln|Σ|) (4.8)
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The ensemble entropy can therefore be expressed as

H(Z) ≈ 1

2
log |Σ| = 1

2

Nd∑
j=1

log λj, (4.9)

where λ1, ..., λNd are the eigenvalues of Σ.

In practice Σ will not have full rank, in which case the entropy is not finite.

It is therefore necessary to regularize the problem with the addition of a diagonal

matrix αI to introduce a lower bound on the eigenvalues. Let Y = P − P , where

P is the matrix that encodes the vertex locations for each object along successive

columns, P is a matrix with all columns set to the mean shape µ. The covariance

can then be estimated from the data, with Σ = (1/(M − 1))Y Y T . Because N > M ,

the computations are performed on the dual space (dimension M rather than N),

knowing that the determinant is the same up to a constant factor of α. Thus, the

cost function G associated with the ensemble entropy is defined as:

log |Σ| ≈ G(P ) = log

∣∣∣∣ 1

M − 1
Y TY

∣∣∣∣ (4.10)

and

−∂G
∂P

= Y (Y TY + αI)−1. (4.11)

It is now clear that α is a regularization on the inverse of Y TY to account for the

possibility of a diminishing determinant. Starting with a large α and incrementally

reducing it as the optimization converges yields an annealing approach which improves

computational efficiency; this has the effect of preventing the system from attempting

to reduce the thinnest dimensions of the ensemble distribution too early in the process.

The negative gradient −∂G/∂P gives a vector of updates for the entire system,

which is recomputed once per system update. This term is added to the shape-based

56



updates described in the previous section to give the update of each particle:

xkj ← γ
[
−∂G/∂xkj + ∂Ck/∂xkj

]
. (4.12)

4.2 Generalized ensemble entropy

As demonstrated in Chapter 3, incorporating local features into the similarity metric

can significantly improve correspondence quality as compared to approaches that only

use spatial proximity. In particular, surfaces with complex geometry have been shown

to benefit the most from this approach. Furthermore, there is no clear evidence that

spatial proximity alone defines anatomical correspondence in medical datasets, where

non-spatial measurements can be available along with the surface geometry. In these

cases, it is desirable to incorporate such local information into the similarity metric

to achieve an optimal correspondence across the population.

The entropy-based particle framework lends itself nicely to this generalized corre-

spondence definition, as we presented in [51]. The ensemble entropy term is modified

to reflect the similarity of the local features instead of the spatial locations. The

features are represented as a function of location, f(xkj ), with f : Rd → Rq. The

function f is thus vector-valued (with vector dimension q) to allow multiple features

to be used at once. The surface entropy term remains unchanged, since it is still

desirable to sample the surfaces uniformly (or adaptively, if so chosen).

When computing the ensemble entropy of vector-valued functions of the corre-

spondence positions P , the generalized case can be represented by P̃ = f(xkj ). Ỹ

becomes a matrix of the function values at the particle points minus the means of

those functions at the points, and the general cost function can be computed simply

as

G̃(P̃ ) = log

∣∣∣∣ 1

M − 1
Ỹ T Ỹ ,

∣∣∣∣ . (4.13)
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Let Q = (Ỹ T Ỹ + αI)−1. By the chain rule, the partial derivative of G̃ with respect

to each shape k becomes

− ∂G̃

∂P k
= JTk Q

k, (4.14)

where Jk is the Jacobian of the functional data for shape k. Note that each Jk is in

the form of a block diagonal matrix with (q × N) × (q × N) blocks, with diagonal

blocks the q × d submatrices of the function gradients at particle j.

When multiple features are present (q > 1), each feature channel is scaled sep-

arately, as described in Sec. 3.4 for the case of generalized MDL applications. In

particular, the inverse of the feature variance averaged over the whole surface is used

as the scaling factor. This forces all feature channels to have a variance of 1 and to

therefore have equal weight in the correspondence optimization. However, it is also

possible to scale the features differently if the application warrants assigning a heavier

weight to some of the features in the similarity metric computation.

4.3 Application to cortex

One of the main challenges of using the entropy-based particle framework on the

cortical surface is that it assumes the particles to be existing on local tangent planes,

which presents a problem for the cortex given the highly convoluted surface geometry

as discussed in Sec. 4.1.1. This problem can be overcome by incorporating geodesic

distances instead of Euclidean distances in the surface entropy term. However, this

would be computationally expensive and thus it would eliminate one of the strengths

of the entropy-based correspondence algorithm, making it unsuitable for application

to cortical datasets.

I overcome this difficulty by instead ‘inflating’ the cortex surface. This way, I

obtain a less convoluted, blob-like surface for the particles to live on, while the local

features continue to live on the original cortical surface. Inflation is a commonplace
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procedure for cortical visualization, since the extensive sulcal and gyral convolutions

make visual inspection difficult. Several cortical unfolding procedures that expose the

buried folds of the cortical surface have been proposed [52, 53, 54]. In this work, I use

FreeSurfer for inflation [6] since it provides a smooth surface while minimizing metric

distortions, without introducing a cut to the surface. However, the technique I pro-

pose is not specifically dependent on the FreeSurfer algorithm. Therefore, FreeSurfer

inflation could be replaced by any module that delivers similar inflated surfaces and

a one-to-one correspondence between the original cortex surface and the inflated sur-

face, since the data to be used for correspondence, such as the sulcal depth, lives on

the original cortex surface.

FreeSurfer inflation is achieved via the optimization of an energy functional con-

sisting of the weighted sum of a spring force that works towards ‘inflating’ the surface

and a metric preservation term that ensures that as little metric distortion as pos-

sible is introduced in the process. The inflation process is such that points that lie

in convex regions move inwards while points in concave regions move outwards over

time. Therefore, the average convexity/concavity of the surface over a region, also

referred to as sulcal depth, can be computed as the integral of the normal movement

of a point during inflation. Specifically, the sulcal depth SD(xk(0)) at position xk is

defined as:

SD(xk(0)) =

∫
vk(t) • nkdt (4.15)

where nk is the unit normal vector at position xk and vk(t) is the direction in which

the vertex xk moves at time step t, which is equivalent to the partial derivative of the

energy functional driving the inflation. It should be noted that SD captures the high

level foldings of the cortical surface but is relatively insensitive to the smaller folds;

this property makes SD an attractive correspondence metric, since it is relatively
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Figure 4.1: The sulcal depth pictured as a color map on the white matter surface
and its inflation surface. The blue and red regions correspond to highly negative and
highly positive values of sulcal depth, respectively.

stable across individuals. Fig. 4.1 shows the sulcal depth as a color map on both the

original white matter surface and the inflated surface.

4.4 Surface interpolation from particles

The entropy-based correspondence algorithm described above produces N particles

along each surface such that like-numbered particles across the population corre-

spond. For some applications this can be satisfactory, such as in the case of surfaces

with a low level of geometric complexity that can be captured adequately with a few

thousand particles or less. However, for other applications such as in the case of the

human cortical surface, a much denser sampling of the correspondence map is desired.

Directly obtaining this dense sampling from the correspondence algorithm by using

a very high number of particles is not appealing, since such an attempt would signif-

icantly increase the computation time. Furthermore, it is not possible to manually

choose the locations of the particles, which can make the correspondence information

for certain anatomical landmarks elusive. Finally, it is desirable to retain geometri-

cal information associated with the surfaces, such as normal vectors and curvature.

Therefore, it is advantageous to interpolate the relatively sparse correspondence maps

obtained from the entropy-based correspondence algorithm using the original dense

surface meshes and a set of desired sample locations. In the experiments presented in
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Figure 4.2: Surface interpolation from particles. Given the desired surface sample
set, the closest particles Ai, Bi, Ci to each sample point vi are identified and the
barycentric coordinates of vi in this triangle are computed. Then, the corresponding
sample location v′i on a different surface can be obtained by interpolating using these
barycentric coordinates in the triangle 4A′iB′iC ′i, where A′i, B

′
i, C

′
i are the particles

corresponding to Ai, Bi, Ci respectively.

this chapter, the vertices for one of the original reconstructed surfaces are used as the

sample set, typically producing densely interpolated surface meshes of about 150,000

vertices per object, in contrast to N = 1024 or 2048 particles.

The interpolation scheme used to produce these dense surface meshes from the

particles is a 3-step algorithm. First, interpolation coefficients are computed using

the sample set and the associated particles. Then, for each surface, the correspond-

ing sample points are computed by interpolating the corresponding particles using

the weights computed in the first step. Finally, the interpolated sample points are

projected onto the original surface for each object to compensate for the discrepancy

introduced in the first step, as explained below. Figure 4.2 illustrates the process.

The interpolation coefficients for a sample point vi are obtained by locating the

3 closest particles Ai, Bi, Ci to vi and computing vi’s barycentric coordinates in the

triangle 4AiBiCi formed by these 3 points. Note that these barycentric coordinates

represent vi’s projection on4AiBiCi rather than vi itself; the discrepancy can become

significant in high-curvature regions if the particle sampling is too sparse. Therefore,

it is advisable to use the adaptive sampling scheme described in Sec. 4.1.1 for surfaces

that have high-curvature patches.
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Figure 4.3: Example of surface interpolation. Given M surfaces and the particle
locations on each that are in correspondence, the surface interpolation method pro-
duces M dense meshes (with 144,827 vertices per mesh for this particular example)
such that like-numbered vertices are in correspondence. The rightmost image shows
a zoomed-in section of one of the interpolated surfaces with the particle locations
overlayed with the wireframe mesh.

For computing the sample locations on each surface S, for each sample point vi,

the particles A′i, B
′
i, C

′
i corresponding to the particles Ai, Bi, Ci are interpolated using

the barycentric coordinates computed in the first step. The sample point v′i thus

computed belongs to the triangle 4A′iB′iC ′i and corresponds to the projection of vi

onto the triangle 4AiBiCi.

To compute the sample point that corresponds to vi, one needs to project v′i back

to the surface S. This can be achieved by finding the closest point on the original mesh

for S to v′i, whether this is a vertex of the mesh or a point within an edge or a triangle.

This step compensates for any discrepancies that might have been introduced in the

first step and ensures that all sample points created by the algorithm are indeed on

the surface rather than being slightly inside or outside the surface.

An example of the surface interpolation results is shown in Fig. 4.3 for two

surfaces. The vertices of one of the original meshes have been used as the sample

point set for the interpolation. Even though only a modest number of particles per

surface (N = 1024) has been used to produce the surfaces in this figure, the quality
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of the densely interpolated mesh is satisfactory, as demonstrated by a mean distance

of 0.0088mm between the Subject 2 original surface and the associated interpolated

surface.

4.5 Results

I evaluate my method on two different datasets of human cortical surfaces. In order

to evaluate the quality of my results, I analyze the local variability reduction of

both the features that are being used for the correspondence computation (sulcal

depth in this case), and, more importantly, of a different local measurement, namely,

cortical thickness. Additionally, I use the generalization and specificity measurements,

discussed in detail in Sec. 2.3.3, to further analyze the correspondence quality. I

compare these performance measures with results obtained from FreeSurfer, which is

one of the most commonly used methods for cortical correspondence.

As discussed in Sec. 2.1.1, the FreeSurfer correspondence method is essentially

a two-step correspondence computation: it is initialized with spatial correspondence

(while computing a spherical parameterization of the surfaces) and then it optimizes

the sulcal depth correspondence. This method is also fundamentally different from

the entropy-based techniques in that it focuses on a pairwise correspondence (subject

to average), whereas the entropy-based method emphasizes a groupwise approach.

For both the sulcal depth and cortical thickness measurements, I compute the local

sample variance of the measurement before and after correspondence optimization;

the desirable result is a lowering of variability across corresponding points. It should

be noted that both sulcal depth-based entropy methods and FreeSurfer use the sulcal

depth information as part of the correspondence optimization process; therefore, the

sulcal depth evaluation is biased. Also note that the higher degree of remaining

variability in cortical thickness can be largely attributed to inter-subject variability,
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Figure 4.4: Mean sample variances of sulcal depth and cortical thickness measure-
ments across the cortical surface for the first dataset, given different correspondence
maps. The values in parentheses show the standard error associated with each mean.

since cortical thickness patterns tend to vary largely among individuals.

The first dataset consists of 10 cortical surfaces from healthy patients recon-

structed via FreeSurfer from T1-weighted images; 1 had to be removed due to failure

of successful surface reconstruction with FreeSurfer, caused by a high level of noise

in the MRI scan (therefore, the final study used M = 9 subjects). All reconstruc-

tions showed some degree of error in the temporal lobe; no manual interventions were

made.

As a first experiment, I simply use the local sulcal depth as the feature f for

the generalized entropy method. So the methods compared are the initial data,

the sulcal depth-based entropy (denoted SD-entropy from here on for brevity), the

standard location-only entropy-based particle system (denoted XYZ-entropy) as well

as FreeSurfer. Mean sample variances for both the cortical thickness and sulcal depth

measurements are summarized in Fig. 4.4.

For sulcal depth measurements, SD-entropy reduces variance almost 75-fold over

initial data, and almost 25-fold over FreeSurfer results. For cortical thickness, SD-

entropy has considerable improvement over initial data and has a slightly higher

average variance than FreeSurfer does, but the difference is not significant since it is
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Figure 4.5: Comparison of the distribution of variance across the cortical surfaces
for SD-entropy method (left) and FreeSurfer (right). The coloring of the particles
is linearly growing from values of (blue=0) to (red=1). It can be seen that the SD-
entropy results in a localized high variance near the temporal lobe (conceivably due to
reconstruction noise), but has low variance elsewhere; FreeSurfer results in relatively
high variance across the entire cortical surface.

within the standard error values. Furthermore, an inspection of the distribution of

this mean variance over the surface, as shown in Fig. 4.5, reveals that FreeSurfer has

a higher variance across the entire surface, whereas SD-entropy has only a localized

high variance around the temporal lobe (which is, as noted above, not perfectly

reconstructed due to input image noise) and performs much better in other areas of

the cortical surface. It is therefore possible that the SD-entropy performance would

improve with a better temporal lobe reconstruction. Furthermore, the SD-entropy

method completely discards the spatial proximity from the similarity metric. As

illustrated in the next example, using spatial proximity in addition to SD in the

generalized entropy can also improve the correspondence quality. Note that both SD-

entropy and FreeSurfer perform considerably better than the XYZ-entropy method.

The second dataset consists of 9 cortical surfaces also from healthy subjects. Since

both T1 and T2 images are available for this population, a bias-corrected T1-weighted

image is produced via an atlas-based tissue segmentation tool. This tool, itkEMS,

implements an Expectation-Maximization approach to segment the major brain tissue

classes and correct for intensity inhomogeneity using both T1 and T2 weighted images
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Figure 4.6: Mean sample variances of sulcal depth and cortical thickness measure-
ments across the cortical surface for the second dataset, given different correspondence
maps. The values in parentheses show the standard error associated with each mean.

[55]. This bias-corrected T1-weighted image is used as input to the FreeSurfer pipeline

to increase the robustness of the reconstruction.

For this dataset, I use a different generalized entropy application, such that

f(x, y, z) = {x, y, z, sd(x, y, z)}. In addition to this method (denoted XYZ-SD-

entropy), XYZ-entropy, SD-entropy and FreeSurfer are also tested as for the first

dataset. The sulcal depth and cortical thickness variance analysis is summarized in

Figure 4.6. As in the first dataset, the SD-entropy method outperforms FreeSurfer in

sulcal depth variability reduction. However, the XYZ-SD-entropy method provides

the best cortical thickness variability reduction of all 4 methods tested. The combina-

tion of spatial proximity and sulcal depth similarity outperforms either measurement

on its own, as well as FreeSurfer which is a somewhat hybrid method. These results

suggest that FreeSurfer and SD-entropy methods might be overfitting the model by a

too strong focus on the sulcal depth similarity; however further evaluation is needed

since the differences in cortical thickness variation are within the standard error.

To provide further correspondence quality comparison, I provide a comparison

of the generalization and specificity measures (see Sec. 2.3.3) between FreeSurfer,

XYZ-entropy and XYZ-SD-entropy. It should be noted that these measurements
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Figure 4.7: Cortical thickness generalization, G(M). M denotes the number of prin-
cipal modes of variation used in the surface reconstruction. Note that a lower G(M)
value represents a better correspondence. The XYZ-SD-entropy method clearly has
better generalization ability than both FreeSurfer and XYZ-entropy.

are computed based on cortical thickness rather than spatial location both to be

consistent with the mean variance measure described above and to benefit from the

unbiased nature of the cortical thickness. Also note that both generalization and

specificity are estimates of error (measured in millimeters) and therefore a low value

represents a good correspondence of the population. Figures 4.7 and 4.8 show the

results of the analysis on this dataset. The XYZ-SD-entropy clearly has better gener-

alization ability than FreeSurfer, and FreeSurfer performs better than XYZ-entropy.

For specificity, the difference between the methods is minor; however, both entropy

methods perform slightly better than FreeSurfer. XYZ-SD-entropy also outperforms

XYZ-entropy by a small margin. Note that specificity is a measurement designed

for statistical modeling purposes rather than statistical analysis; therefore, it is less

relevant for cortical thickness or functional analysis purposes as compared to gener-

alization and variability reduction.

This chapter presented a novel method of computing correspondence across datasets

of human cortical surfaces using functions of spatial locations in an entropy mini-
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Figure 4.8: Cortical thickness specificity, S(M). M denotes the number of princi-
pal modes of variation used in the surface reconstruction. Note that a lower S(M)
value represents a better correspondence. Both entropy methods have slightly better
specificity than FreeSurfer.

mizing particle framework. I showed that this generalized entropy method provides

correspondence maps that result in tighter distributions of sulcal depth and corti-

cal thickness compared to other commonly used methods such as FreeSurfer. Using

sulcal depth in conjuncture with the spatial location gives the best results for these

cortical datasets. For other applications, curvature and spatial location could be a

useful combination of geometric features.

The power of the generalized entropy-based correspondence method becomes more

clear when one considers non-geometric measurements as part of the feature set. In

the next chapter, I will present a framework for using white matter connectivity for

improving the cortical correspondence even further. Image intensities, blood vessel

proximity (as extracted from MRA images) or functional measurements are other

examples of non-geometric features that can improve correspondence in other appli-

cations.
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Chapter 5

DTI-based Connectivity for Cortical

Correspondence

The previous chapter presented an entropy-based framework that incorporates local

functions of position to establish correspondence among a surface population. This

extension of the particle correspondence framework is critical for the application of the

algorithm to populations of cortical surfaces, since additional information sources can

have significant impact on correspondence quality. Structural features such as sulcal

depth, as presented in the previous chapter, provide additional information about the

geometry of the brain. This chapter introduces DWI-based fiber connectivity features

to provide augmented knowledge about the white matter structure, as we presented

in [56].

Structural MRI scans show white matter (WM) as a mostly homogeneous region,

such that it is impossible to infer information about WM fiber tracts. The under-

standing of the WM structure, however, can be significantly improved via information

on fiber tracts that can be extracted from diffusion weighted imaging (DWI) scans.

One of the main contributions of this dissertation is a suitable mapping of such fiber

tract information to the cortical surface. Cortical connectivity maps, which represent

the extent to which each voxel on the cortical surface is connected via fiber tracts to

a given region of interest (ROI), is proposed as a possible solution to this problem.



Figure 5.1: Pipeline overview. (A), selected ROI’s and the DWI image are input to
the stochastic tractography (ST) algorithm. WM surface is deflated using proposed
algorithm (B) to construct connectivity maps on the surface from ST results (C).
These connectivity maps are normalized via histogram equalization (D) and used to
optimize correspondence (E).

I employ a stochastic tractography algorithm, described in Sec. 5.1.2, to generate

connectivity maps that represent the probability of each voxel being connected to

each one of various designated ROI’s. A separate feature channel is used for each

ROI’s connectivity map in the correspondence optimization.

There is, however, a major obstacle to using these connectivity maps for cortical

correspondence: the connectivity probabilities typically decrease drastically near the

WM/GM boundary, since the diffusion gets too isotropic and noisy near the surface.

This effect is more emphasized at the ridges of the gyri (as opposed to the valleys of

the sulci). Thus, the connectivity values sampled directly at the cortical surface voxels

reflect the local sulcal depth rather than actual WM connectivity. Sec. 5.2.2 presents

a method of computing the connectivity probability at the cortical surface using a

surface deflation algorithm. The surface deflation results in a smoother surface that
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follows the sulcal cortical boundary closely while leaving out the gyri. Then, the con-

nectivity probability at each cortical voxel is defined as the connectivity probability

value at the corresponding deflated surface voxel.

An overview of the pipeline for computing connectivity features is shown in Fig.

5.1. A stochastic tractography algorithm (Section 5.1.2) is used to compute proba-

bilistic connectivity values to selected ROI’s based on the DWI image. To project

these maps to the cortical surface, a deflated surface is computed (Section 5.2.2).

Finally, to normalize these connectivity maps with respect to ROI and brain size, his-

togram equalization is applied (Section 5.2.2). The normalized connectivity maps are

used as features in the particle correspondence framework, as discussed in Chapter 4.

5.1 Diffusion Tractography for Connectivity

The goal of tractography is the extraction of WM fiber paths from DWI or DTI images

in order to determine intervoxel connectivity on the basis of the anisotropic diffusion

of water [57]. Fiber tracking algorithms can be divided into three main groups:

deterministic (streamline) tractography, probabilistic (stochastic) tractography, and

optimal path approaches. This section provides a brief review of a variety of tracking

algorithms, with a focus on the technique used for generating the connectivity features

used in the experiments to be presented in Section 5.3.

5.1.1 Streamline tractography

Deterministic tractography typically generates fiber tracts by following the direction

of maximal diffusion. In this approach, fiber trajectories, or ‘streamlines’ follow the

primary eigenvector of the diffusion tensor assuming that this is parallel to the domi-

nant direction of axonal tracts. The streamlines are computed by forward integration

of the field of vectors defined by the local principal eigenvectors. The twofold ambigu-
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ity of the eigenvector direction is resolved by the continuity of the path. Thresholds

for the maximum turning angle of the streamline between integration steps as well as

for the minimum FA at a given tract location can be established to constrain the fiber

tracts to regions of the brain where the diffusion tensor model realistically represents

the white matter pathways [57].

While these methods have low computation costs and simplify the visualization

of the extracted fiber tracts, there are some issues with using them for quantitative

analysis [58]. They are not robust against noise in the input images since the error in

the integration accumulates. They are also prone to partial voluming effects caused by

fiber crossings, a problem which renders the primary eigenvector direction ambiguous

and thus misleads the streamline. Furthermore, since streamlining methods do not

account for the uncertainty in fiber orientation in highly isotropic regions, they have

limited applicability to regions containing isotropic voxels. These limitations motivate

the use of a stochastic tractography algorithms for computing the cortical connectivity

maps to be used for correspondence.

5.1.2 Stochastic tractography

In contrast to deterministic approaches, stochastic tractography methods take the

uncertainty of fiber orientations into account and therefore yield results that are

more suitable for this dissertation’s purposes.

The bootstrap method is a nonparametric statistical procedure for determining

the uncertainty in a given statistic. As shown by Lazar et al. [59] and Jones et al.

[60], this method can be applied to fiber tracking in order to compute connectivity

between different ROI’s based on estimates of variance in the original DTI data. The

method estimates the variance of the diffusion data by taking several (redundant) sets

of DWI scans and using these to create new data through random recombinations of

the original data. A large number of such mixed DWI sets (called bootstrap samples)
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are each converted to DTI images on which streamline tractography is performed with

the same start points. The connectivity probability of each voxel in the volume is

then computed via the percentage of bootstrap samples where the fiber tract passed

that particular voxel.

On the other hand, Bayesian stochastic techniques, such as the method presented

by Behrens et al. [61], perform tractography in a probabilistic framework by generat-

ing a posterior probability distribution of fiber directions from the observed diffusion

data. A stochastic integration algorithm is then applied by choosing the flow vector

at each step to be a random sample from this distribution defined around the ten-

sor’s principal eigenvector orientation at the current voxel. Since the fiber orientation

distribution is analytically intractable, these techniques are typically combined with

Monte-Carlo simulations, which may include tens of thousands of paths from a single

seed, of which only a small fraction will typically reach the target. The connectiv-

ity probability of each voxel is defined via the percentage of samples that traverse

that particular voxel. The explicit modeling and propagation of uncertainty allow

stochastic methods to generate tracts in regions of low anisotropy.

In this work, I use an open-source implementation by Ngo et al. [11] of Friman’s

stochastic tractography algorithm [12, 13]. Because Monte-Carlo simulations tend

to be computationally expensive, Friman et al. introduce a stochastic method that

avoids Monte-Carlo integration. In this approach, as in Behrens’ work above, fiber

tracts are modeled as sequences of unit vectors whose orientation is determined by

sampling a posterior probability distribution. The posterior distribution is given by a

prior likelihood of the fiber orientation multiplied by the likelihood of the orientation

given the DWI data. Friman uses a tensor model constrained to be linearly anisotropic

to lower the computational cost of the algorithm; deviations from this distribution

are modeled as uncertainty in the fiber orientation. At each step, the orientation of

the previous vector in the sequence affects the prior, ensuring no backtracking occurs.
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The tracking stops when the tract reaches a voxel with a low posterior probability of

belonging to the white matter.

A high number of sample fibers are tracked from each voxel included in the input

ROI; the probabilistic connectivity of a voxel to the ROI is defined as the ratio

of fiber samples that travel through a voxel over the total number of samples. As

described in the next section, the connectivity values on the WM/GM boundary are

not appropriate for usage in cortical correspondence, and instead the values at the

corresponding deflated surface location are used.

5.1.3 Optimal path methods

Various methods based on the Hamilton-Jacobi approach have been proposed to over-

come some of the difficulties arising in tractography [58, 62, 63]. The main idea for

these methods is to compute the shortest path where the cost associated with each

path is an integral dependent on position and path orientation. The cost function also

involves a penalty for paths that are unlikely given the tensors. These formulations re-

sult in first- or higher-order partial differential equations which model evolving fronts

whose speeds are determined by information from the diffusion tensor [58]. These

methods are inherently more robust to noise in diffusion data than the other trac-

tography methods. However, these methods are generally not suitable for usage as

features in cortical correspondence, since they typically do not generate connectivity

probability maps for the entire cortex, with the notable exception of Lenglet et al.

[64] who define a connectivity measure in an optimal control framework. Further-

more, these methods can not handle crossing fibers effectively, whereas this can be

incorporated into explicit tractography models.
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5.2 Mapping Connectivity to the Cortical Surface

Once connectivity maps for a given ROI is computed, it is necessary to map these

values to the cortical surface in order to use them as features in the cortical correspon-

dence framework (Fig. 5.1-C). Sec. 5.2.1 discusses the naive approach to illustrate

its problems. Then, in Sec. 5.2.2, I describe a novel method of computing the con-

nectivity probability at the cortical surface using a surface deflation algorithm (Fig.

5.1-B).

5.2.1 Kernel-based averaging

The intuitive way to assign connectivity values to the vertices of the cortical mesh

is to look up the connectivity at the equivalent volume location via interpolation

between the nearest voxels. However, given the isotropic nature of the diffusion data

near the WM/GM boundary, this results in inconsistent features on the surface. A

basic approach to solve this problem is by simply averaging using a small Gaussian

kernel in an attempt to get rid of the excessively noisy values. This approach can

be improved by averaging only the values of those voxels that reside within a white-

matter mask, in order to avoid averaging values that lie in the gray matter where the

connectivity values are 0.

However, a visual inspection of the connectivity values thus obtained on the sur-

face, as shown in the right side of Figure 5.2, reveals a major problem. The stochastic

tractography results are heavily dependent on the local sulcal depth, even after av-

eraging. This observation is intuitively evident: the uncertainty in tracking increases

near the WM/GM boundary and thus decreases the connectivity probability, as the

DTI values become isotropic. Furthermore, the longer the fiber has to travel in such

a high-uncertainty region, the lower the connectivity values will become, since the

uncertainty accumulates. Therefore, in the valleys of sulci, high connectivity values

75



Figure 5.2: Impact of brain deflation algorithm on surface connectivity values. The
stochastic tractography algorithm gives connectivity probabilities for the brainstem
for this subject(A). The noisy tracking around temporal lobe is reflected on the con-
nectivity map that uses simple averaging(B). The surface deflation method ignores
the noisy signal and reflects a more accurate connectivity map(C). Note how strongly
the averaging method depends on sulcal depth(D), illustrated in highlighted regions.
The connectivity map obtained by the surface deflation method shows a pattern that
closely agrees with anatomical knowledge: the brainstem is connected to the motor
and premotor cortex, primary sensory cortex, parietal lobe, temporal lobe and oc-
cipial lobe, via the corticospinal tract, the medial lemniscus and the superor, medial
and inferior cerebellar peduncles [65].

are observed, whereas at the ridges of the gyri, connectivity becomes close to 0. This

is an artificial side-effect of the stochastic algorithm, and the connectivity values as

they are form an undesirable and unstable feature for correspondence.

5.2.2 Brain deflation

In order to get accurate readings of fiber connectivity probability values, I propose

using a deflated smooth white matter surface with one-to-one correspondence to the

WM/GM boundary. This surface should not only be sufficiently far from the bound-

ary, but also without the convolutions caused by sulci and gyri. Without such a
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deflated surface, the probabilistic fiber connectivity values become heavily depen-

dent on the local sulcal depth, yielding high connectivity values near sulci and low

connectivity values near the gyri (see Fig. 5.2).

I propose a surface evolution method that evolves the WM surface by progressively

smoothing out the gyri. To prevent the local sulcal depth from dominating the

connectivity values, it’s important to have a surface that is not only sufficiently far

from the WM/GM boundary but also much smoother. This is accomplished by

a mean-curvature-based smoothing algorithm, described in [19, 66]. This iterative

method smoothes the surface mesh using a relaxation operator, such that the vertices

are repositioned according to

V t+1
i = (1− λ)V t

i + λV̄ t
i , (5.1)

where Vi is the position of the ith vertex, t is the number of iterations, λ ∈ [0, 1] is

a smoothing parameter, and V̄i is the average vertex position, which is the average

position of neighboring triangle centers weighted by the triangle areas.

However, an unconstrained mean-curvature-based smoothing algorithm results in

an inflated surface that evolves towards a sphere in the limit. This is an unsuitable

approach, since the desired result is a deflated surface that closely follows the valleys

of the sulci of the brain. To this end, I propose an adapted algorithm such that

vertices located near the valleys of the sulci are fixed (by forcing the velocity λ to 0

at these vertices), which results in the smoothing of only the gyri, while keeping the

rest of the mesh intact. However, keeping the valleys of the sulci indefinitely fixed

would result in the creation of singular points due to the hard constraint posed on

these vertices. To prevent this, the fixed locations are progressively released during

the evolution based on thresholding of the vertex curvature, computed on the discrete
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mesh as [66]

H(xi) =
1

4Ai
|
∑

j∈N1(i)

(cotαij + cotβij)(xi − xj)| (5.2)

where Ai is the area of the Voronoi cell associated with the vertex, N1(i) is the set of

1-neighbors of the ith vertex and αij and βij are the two angles opposite to the edge

in the two triangles sharing the edge (xi, xj).

The vertices to be fixed initially are determined based on the sulcal depth. All

positive local maxima of the sulcal depth are marked as fixed, and all vertices of the

mesh that are located between already fixed locations are also fixed, in order to create

merged surface patches rather than standalone points. It is preferable to start with

too many fixed vertices rather than too few, because the progressive relaxation stage

ensures no vertices remain fixed for longer than necessary. Constraining the fixed

points to positive sulcal depth values ensures that vertices located on the gyri are free

to move at all times, whereas the sulci can start moving only after the surrounding

gyri have been smoothed out.

The progressive relaxation of the fixed locations is necessary to avoid any patches

from remaining fixed indefinitely despite the fact that the rest of the mesh around it

has sufficiently deflated. Once the fixed sulcal region becomes flat (detected by the

mean curvature threshold), the zero-velocity constraint on the vertex is released, and

the vertex is free to move.

As a final step in the deflation, I shrink the entire surface inwards by about one

voxel, to ensure that the vertices at the sulci move away from the WM/GM boundary.

Without this shrinking step, the probabilistic connectivity values at the sulci and gyri

would be treated differently, which would introduce unwanted bias by only moving

the gyri away from the WM/GM boundary. Note that the shrinking has to be done

in small increments to avoid introducing topological changes to the surface. Fig. 5.3
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Figure 5.3: Brain deflation progress for one subject. The surface outline is shown in
contrasting colors overlayed on an axial slice of the brain. A shows the original WM
surface, and B-E show the progress of the deflation at 1000 iteration intervals. The
surface shown in E is used for retrieving probabilistic connectivity images after a final
scaling step, shown in F. Note the progressive smoothing of the gyri as the surrounding
regions become flat, which relaxes the velocity constraint on these vertices.

shows intermediate results of the surface deflation on an axial slice of the brain scan

as well as the final scaling.

Normalizing connectivity maps

One of the problems with using probabilistic connectivity results for cortical corre-

spondence is the issue of comparability given different ROI segmentation and different

brain sizes. Given the same DWI data, additional voxels in the ROI tend to lower the

connectivity probability of voxels, especially if the additional voxels are erroneous and

do not truly belong to the same anatomical structure, because the probability is de-

fined as the number of samples that visit the voxel divided by number of all samples.

Even in the case of correct segmentations, different parts of the ROI might show dif-

ferent connectivity patterns, which can reduce the assigned probabilities significantly.

Figure 5.4 illustrates this problem.

To normalize for such effects, I perform a histogram equalization on the connectiv-

ity feature values for each individual and for each ROI (Fig. 5.1-D). Each connectivity

map is a map on the cortical surface with values defined on the n vertices. The con-

nectivity values in this map can be discretized by simply multiplying them by the
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Figure 5.4: Motivation for normalizing connectivity maps. ROI voxels are shown in
yellow and non-ROI voxels are shown in blue. On the left, all fiber samples generated
from the ROI (consisting of one voxel, B) lead to voxel A. Therefore, A has a con-
nectivity of 3/3 = 1. On the right, an additional voxel is included in the ROI for a
different brain. All the fiber samples leaving D lead to C; similarly, all samples leav-
ing ROI voxel E lead to F. Consequently, C and F both have connectivity 3/6 = 0.5.
However, the connection strength of these voxels is not any different than that of A.
Normalization for ROI size effects is clearly necessary if these connectivity maps are
to be effectively used for correspondence optimization.

total number of fiber samples, by definition of probabilistic connectivity. Then, if ni

is the number of occurrences of connectivity value i, the probability of an occurrence

of a vertex with connectivity i in the map is pconn(i) = p(conn = i) = ni

n
. The associ-

ated cumulative distribution function is given by cdfconn(i) =
∑i

j=0 pconn(j). Then, a

new map {connnorm} can be produced using connnorm(v) = cdfconn(conn(v)) at each

vertex v. This normalized map is used for cortical correspondence optimization. It is

important to note that this approach does not change the ordering of the connectivity

strengths associated with the various parts of the cortex, but it merely stretches the

histogram to ensure comparability across the population.

An alternative approach for normalization would be to divide the number of fiber

samples that pass through the voxel by the maximum number of samples that passes

any given boundary voxel rather than the total number of samples. In Fig. 5.4, this

would assign a connectivity strength of 3/3 = 1 to A, C, and F. It would indeed be

generally the case that the connectivity values would not significantly change depend-

ing on ROI size, unless a voxel with a very strong connectivity to a different region

is added to the ROI. However, this approach lacks the additional benefit of apply-

ing histogram equalization to the connectivity maps, namely, contrast enhancement.
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Figure 5.5: Comparison of connectivity maps with linear normalization and histogram
equalization. Color map denotes connectivity probabilities (blue represents a connec-
tivity probability of 0.0, whereas red represents a connectivity probability of 1.0).
With a linear normalization, the connectivity values on the surfaces are typically
weak everywhere outside the initial ROI, and the connectivity map does not provide
any information that can be useful for establishing correspondence between the two
subjects with the exception of a small patch in the frontal area. The normaliza-
tion via histogram equalization reveals several cortical regions that exhibit similar
connectivity patterns (notably near the Sylvain fissure, the motor cortex and the so-
matosensory cortex, in addition to the frontal areas, all plausible connections based
on anatomical knowledge). This information can be subsequently used for improving
cortical correspondence.

Since ideal features for correspondence optimization should have strong contrast, I

chose the histogram equalization approach rather than the division by the maximum

connectivity. Figure 5.5 illustrates the advantage of the histogram equalization ap-

proach over simple linear normalization for creating suitable connectivity features for

correspondence optimization.

It should be noted that the contrast enhancement is not a necessary step but

merely is an additional performance booster for the correspondence algorithm. As

a general principle, features with more distinct values add more useful information

to the correspondence algorithm (as compared to the extreme case where f(x) = c
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with a constant value c for all x locations). However, if the connectivity data is such

that histogram equalization would reduce contrast rather than enhance it (such as

might be the case with nonzero connectivity on the majority of the cortex), linear

normalization is likely to be more suitable than a histogram equalization.

5.3 Results

I applied the methodology presented to a dataset of 9 healthy subjects with 1.5T

DTI scans as well as structural MRI scans (this is the same dataset as the second

population described in Section 4.5). The DTI scans had 60 gradient directions and

10 baselines, with b = 700s/mm2 and (2mm)3 voxel size. Cortical surfaces were

reconstructed via FreeSurfer from T1 images that have been corrected for bias via

the itkEMS tool using both T1 and T2 scans. No manual interventions were made

to the FreeSurfer pipeline. Only left hemispheres were used.

The fiber tracking was performed using Ngo’s implementation of the stochastic

tractography algorithm [11] laid out by Friman et al. [13], as described in Sec. 5.1.2. I

use the output of the itkEMS algorithm described in Section 4.5, coregistered with the

DWI data (by registering the T2-weighted image with the DWI baseline using an affine

transformation with 12 degrees of freedom), as the necessary soft WM segmentation

input. The ROI’s are obtained from the FreeSurfer segmentation.

I compare several methods of correspondence computation: location-based particle

system (denoted XYZ-entropy throughout the following), the generalized entropy

system based on sulcal depth only (SD-entropy) and the generalized entropy based

on connectivity combined with sulcal depth and location (XYZ-SD-PC-entropy). For

XYZ-SD-PC-entropy, I use probabilistic connectivity measurements to the corpus

callosum, the brainstem and the left caudate, with the ROI segmentations provided
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by FreeSurfer. Therefore, the local function used by the entropy system is

f(x, y, z) = {x, y, z, sd(x, y, z), conncc(x, y, z), connbs(x, y, z), conncaud(x, y, z)},

where conn denotes the connectivity probability to each ROI as computed by the

tractography component.

As described in Sec. 3.4 and 4.2, each feature channel is weighted such that the

variance of the feature values across the population has a mean value of 1.0 across

the surface, and thus weighted equally. This is useful to prevent features with large

absolute values (such as spatial location, typically in the range [−128..128]) from

dominating the features with small absolute values (such as connectivity probabilities,

in the range [0..1]).

I compare these performance measures with results obtained from FreeSurfer,

which is one of the most commonly used methods for cortical correspondence. As

discussed in Sec. 2.1.1, the FreeSurfer correspondence method is essentially a two-

step correspondence computation: it is initialized with spatial correspondence (while

computing a spherical parameterization of the surfaces) and then it optimizes the

sulcal depth correspondence. This method is also fundamentally different from the

entropy-based techniques in that it focuses on a pairwise correspondence (subject to

average), whereas the entropy-based method emphasizes a groupwise approach.

As in Chapter 4, I analyze two different measurements for correspondence evalu-

ation purposes, namely, sulcal depth and and cortical thickness. As already pointed

out in Sec. 4.5, the sulcal depth evaluation is biased and is only used to demonstrate

that the generalized entropy framework can be effectively used to achieve a better

sulcal depth match better than FreeSurfer, which is also optimizing for sulcal depth

similarity. However, in order to evaluate the quality of the correspondence results

in an unbiased fashion, I analyze the cortical thickness as an unbiased measurement.
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Figure 5.6: Average variances of cortical thickness and sulcal depth measurements
across the whole cortical surface as well as across the temporal lobe, given different
correspondence maps. The values in parentheses show the standard error associated
with each mean.

For the cortical thickness, in addition to local variability reduction, the generalization

and specificity measurements, discussed in detail in Sec. 2.3.3, are reported to further

analyze the correspondence quality.

In general, XYZ-SD-PC-entropy method is expected to produce improved corre-

spondence over certain regions (specifically, the ones that are strongly identifiable by

fiber tract connections to subcortical regions chosen as ROI’s) and smaller improve-

ment in other regions where no relevant additional local information is provided. The

goal of this approach is to improve local cortical correspondence in given regions by

using relevant data. Note that it would be up to each individual application to define

what regions are important for the given context, and what additional data can be

used to improve the correspondence in these critical regions.

In particular, for this study, because fiber connections to the temporal lobe from

both the corpus callosum and the left caudate are observed, significantly improved

correspondence is expected in the temporal lobe. Therefore, in addition to the cortical

thickness variance averaged across the entire surface, I also report the same values

computed over the temporal lobe only.

The local variability reduction analysis is summarized in Fig. 5.6. FreeSurfer

and SD-entropy both yield much tighter sulcal depth distributions than the other
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Figure 5.7: Cortical thickness based generalization and specificity comparison. For
both evaluation metrics, a lower value indicates a better correspondence. Therefore, it
can be seen that the connectivity-based method outperforms the other two algorithms
regarding these two metrics.

methods, which is to be expected since these methods optimize the sulcal depth simi-

larity itself. Even so, it should be noted that SD-entropy generates a correspondence

map that matches sulcal depth values much better. However, the cortical thickness

measurements show, as seen in the second column, that the connectivity-based en-

tropy system yields the tightest cortical thickness distribution overall among all the

different algorithms tested. In particular, the correspondence quality was signifi-

cantly enhanced in the temporal lobe, which appears to present a ‘problem area’ for

most of the other algorithms (as evidenced by higher than average cortical thickness

variance). The incorporation of additional connectivity information clearly improves

correspondence.

Fig. 5.7 summarizes the generalization and the specificity analysis based on cor-

tical thickness for the FreeSurfer, XYZ-entropy and XYZ-SD-PC-entropy methods.

As pointed out earlier, a lower value of generalization or specificity is associated with

a better correspondence map. Thus, the connectivity-based entropy system clearly

has the best generalization ability, as well as slightly better specificity properties,

independent of the number of shape eigenmodes used (M). Note that generalization

ability is a more important measure for shape analysis purposes, whereas specificity

is more oriented towards shape modeling.
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In this chapter, I presented a novel method that allows using data from diffusion

weighted images along with structural MRI scans in a cortical correspondence setting.

This technique allows for the fiber connectivity information extracted from the DWI

to be effectively projected on the cortical surface using a novel surface deflation tech-

nique. I use the entropy-based dynamic particle framework to seamlessly integrate

this information with geometrical cues, such as spatial location and sulcal depth, in

order to improve cortical correspondence.

My results illustrate the powerful generalizability of this technique: the user can

improve the correspondence in all regions of the cortical surface, as long as strongly

identifiable local features can be provided. Such local features can be extracted

from structural images, DTI, or other imaging modalities such as magnetic resonance

angiography (MRA).
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Chapter 6

Discussion

6.1 Summary of contributions and thesis

At the end of this dissertation, I revisit the contributions and the thesis that were

presented in Section 1.5 to summarize how each one was addressed. The contributions

of this dissertation are as follows:

1. I demonstrate that the use of an approach allowing for the incorporation of ar-

bitrary local features into the similarity metric to be used for correspondence

optimization enhances correspondence, as measured by objective evaluation cri-

teria.

This claim summarizes my thesis and has been dealt with throughout this disser-

tation. In particular, a novel parametric correspondence algorithm (presented

in Chapter 3) and a novel nonparametric correspondence algorithm (presented

in Chapter 4) were developed, both of which allow using arbitrary local features

for defining the similarity metric. These algorithms were applied to a variety of

anatomical surfaces (caudate, femur, striatum, lateral ventricle, cortex) using

a variety of local features (curvature, sulcal depth, fiber connectivity). In all

these experiments, objective evaluation criteria presented in Sec. 2.3.3 were

used to demonstrate that correspondence quality significantly improves when



additional local information is used. These results were presented in Sec. 3.4,

4.5 and 5.3.

Thus, the usage of additional features improves anatomical correspondence. The

key insight is that both frameworks presented here allow for the use of arbitrary

local features as long as their absolute difference defines a metric in the feature

space. Therefore, given a particular application, the user can incorporate all

the information about the surfaces, whether these come from geometric com-

putations, different image modalities or any other source, depending on what is

available as well as what the user considers to be an anatomically meaningful

similarity criterion.

2. I present a novel parametric groupwise correspondence optimization method that

allows using arbitrary local features for establishing correspondence.

Chapter 3 presents an extension to the Minimum Description Length (MDL)

algorithm that incorporates local features into the correspondence optimiza-

tion. This is accomplished by extending MDL’s data matrix to represent not

just spatial locations of sample points but the feature values at these sample

locations.

3. I demonstrate that using geometric information, such as local curvature mea-

sures, as additional local features improves correspondence quality when the ob-

jects in the population exhibit complex geometry.

The original MDL algorithm that only considers spatial proximity of sample

points typically performs poorly on objects of complex geometry, suggesting

that additional geometric information can improve correspondence for such ob-

jects. In Sec. 3.4, I show that using curvature measures in addition to spatial

location significantly improves correspondence quality for objects of complex

geometry such as the femur and the striatum. For objects of simpler geometry,
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such as the caudate and the lateral ventricle, no significant improvement was

observed, since location-based MDL already performs quite well on these ob-

jects. However, the generalized MDL technique has limited applicability to large

datasets with high numbers of vertices due to computational complexity associ-

ated with both the algorithm itself as well as with the necessary preprocessing

stage to generate the surface parameterizations.

4. I present a novel nonparametric groupwise correspondence optimization method

that allows using arbitrary local features for establishing correspondence.

The entropy-based particle framework, presented in Chapter 4, is a nonparamet-

ric groupwise correspondence optimization method. I extended it to incorporate

arbitrary local features. This method is far more efficient compared to MDL and

can process large datasets in relatively short time. This is an important con-

sideration since the computational cost of MDL becomes prohibitive for large

datasets as in the case of human cortical surfaces.

5. I show that this nonparametric groupwise correspondence technique can be ap-

plied to the human cortex despite the geometric challenges presented by the

convoluted surface; inflation of the surfaces as a preprocessing step solves this

problem by producing surfaces smooth enough to avoid these challenges. Fur-

thermore, I show that cortical correspondence significantly improves when sulcal

depth is used as an additional local feature.

Even though computational time is no longer an issue when the nonparametric

correspondence approach is used, the human cortex still presents a challenging

application target, because smoothly and slowly varying tangent planes is an

underlying assumption for this algorithm. Circumventing this assumption by

incorporating geodesic distances would lead to significant increase in computa-

tional time, making the method unsuitable for large datasets. In Sec. 4.3, I
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showed that inflating the cortical surface sufficiently solves this problem, as re-

flected by the experimental results presented in Fig. 4.6. It can be seen that the

particle framework performs better than FreeSurfer even without the additional

local features (XYZ-entropy). Moreover, using sulcal depth to incorporate ge-

ometric information further improves cortical correspondence, as demonstrated

on two different datasets in Sec. 4.5.

6. I present a novel framework for integrating white matter (WM) fiber connec-

tivity information into cortical correspondence, the first such method that uses

fiber connectivity patterns to establish structural correspondence. To this end,

I compute probabilistic connectivity maps from diffusion weighted images via a

stochastic tractography algorithm. I project these connectivity values to the cor-

tical surface by a new cortical deflation algorithm. I present empirical evidence

showing that using connectivity features enhances cortical correspondence.

This is the featured result of this dissertation and the main focus of Chapter

5. Structural MRI scans show WM as a mostly homogeneous region, making

it impossible to infer information about WM fiber tracts. Such information

on the WM fiber tracts can be determined from diffusion-weighted images. I

presented a method for mapping the fiber tract structure to the cortical surface

and used this information for correspondence optimization. This is achieved by

executing a stochastic tractography algorithm to generate connectivity maps to

subcortical ROI’s. I showed that using the connectivity values at the WM/GM

boundary is undesirable since the highly isotropic diffusion in this region makes

the tractography results strongly dependent on the sulcal depth. Instead, I

developed a mean curvature evolution algorithm constrained by sulcal depth

and local curvature to deflate the cortical surface. Connectivity values at this

deflated surface are used as correspondence features.

Sec. 5.3 presented empirical evidence that using these connectivity features
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in addition to structural information (i.e., spatial location and sulcal depth)

significantly improves correspondence quality. Correspondence is enhanced es-

pecially in the regions that show strong connectivity to the chosen set of ROI’s.

This finding supports the argument that given a particular application’s con-

text, the user can choose the features whose similarity is most anatomically

meaningful to drive the correspondence optimization. These features can be

chosen to cover the entire surface, such as the sulcal depth; they can also be

only provided for the regions where an accurate correspondence is critical, such

as the connectivity values that are non-zero only in limited surface patches.

7. I develop open-source software that implements all the above techniques, as well

as a visualization tool that allows qualitative examination of the surfaces, the

local features associated with them and the surface samples used in the corre-

spondence algorithm.

Throughout this dissertation I presented results obtained using the parametric

(MDL) and nonparametric (entropy-based) correspondence optimization soft-

ware that I extended to allow the generalized similarity functions. Furthermore,

I developed software that implements the analytical computation of various ge-

ometric features (curvature measures, first and second fundamental forms, etc.)

based on SPHARM representation, in order to compute the various geometric

feature candidates discussed in Sec. 3.3. For the entropy-based particle cor-

respondence method, I implemented a front-to-end correspondence framework

that takes surface meshes as input, computes the level-set representation used

by the correspondence algorithm and reconstructs the surfaces after the cor-

respondence optimization, using the technique discussed in Sec. 4.4. I also

implemented the brain deflation algorithm discussed in Sec. 5.2.2. All the sur-

face visualizations in this dissertation were created using KWMeshVisu, a tool

that I developed for visualizing surfaces, the local features associated with these
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surfaces whether in scalar, vector or tensor form, as well as the surface samples

used for representing the correspondence.

All the above software is open-source and publicly available online through the

UNC NeuroLib repository [67], both as stand-alone programs and as Slicer3

modules. Articles describing some of this software have been published [68, 45]

to facilitate the dissemination of these tools.

Thesis: Statistical shape analysis of anatomical structures, which is essential to

understanding the structural changes in anatomy in various stages of growth or dis-

ease, requires establishing accurate correspondence across object populations. How-

ever, anatomical correspondence is rarely a direct result of spatial proximity of sam-

ple points on the surface. A generalized correspondence framework that incorporates

the similarity of non-spatial local features provides a more accurate correspondence

of sample points across populations of surfaces. In particular, incorporating features

based on cortical geometry as well as the fiber connectivity of the white matter signif-

icantly improves correspondence of the human cortical surfaces.

I showed throughout this dissertation that correspondence methods that are based

only on spatial location produce suboptimal results. In particular, I showed that

location-only MDL performs poorly on populations of surfaces of complex geome-

try. Several datasets were presented in Section 3.4 to support the argument that

using local curvature information in addition to spatial location significantly im-

proves correspondence in these populations. This is the result summarized in Claim

3. Furthermore, I showed that in the nonparametric setting presented in Chapter 4,

incorporating geometric features improves correspondence compared to methods that

only use spatial location. In particular, I showed that cortical correspondence can

be improved using sulcal depth as a feature to drive the similarity measure (Section

4.5), as summarized in Claim 4 and 5. Finally, in Chapter 5 I presented a methodol-

ogy that allows using DTI-based connectivity maps as a correspondence feature. As
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discussed above regarding Claim 6, I showed that incorporating these connectivity

maps as a correspondence feature in addition to spatial location and sulcal depth

significantly improves cortical correspondence, as evidenced by significantly reduced

variability in sulcal depth and cortical thickness in the population as well as improved

generalization properties (Section 5.3).

I have thus shown that incorporating local features into the similarity metric signif-

icantly improves correspondence quality, as assessed by objective evaluation criteria.

I presented a framework where arbitrary features can be used for correspondence. The

only constraint is that the absolute difference of the feature should define a metric

in the feature space. The choice of particular features to be used for correspondence

is otherwise left to the user. The user is in the best position to decide what features

constitute anatomically meaningful correspondences depending on the particular ap-

plication context. This dissertation explored the effects of using certain geometric

features as well as DTI-based connectivity features. Some further alternatives will be

discussed in the next section; however, it is impossible to make an exhaustive list of

features that might prove useful for correspondence optimization, and it therefore is

the user’s responsibility to decide what features provide relevant information on the

population.

One of the striking results of my research is that when the connectivity features

were used, correspondence was improved significantly even when the additional in-

formation was only available in limited patches of the surface. The connectivity data

illustrates this finding: even though the connectivity probability is simply 0 for most

of the cortical surface, the correspondence is nevertheless improved, particularly in

those regions where the probability is nonzero. This finding further suggests that

the choice of features should be indeed left to the user to allow the framework to be

adapted to different application contexts. For instance, if the correspondence accu-

racy is more critical in the frontal lobe than elsewhere for a particular study, the user
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might choose DTI features based on ROI’s that are known to be strongly connected

to the frontal lobe.

6.2 Future work and discussion

There are a number of questions and directions for future research related to this

dissertation. Some of these are reviewed in this section.

There are several different kinds of local attributes that can be used for corre-

spondence that were not discussed in this dissertation. Finding suitable mappings

of these attributes to the surfaces and investigating whether they do indeed improve

correspondence quality is a major future research direction. Three kinds of attributes

that stand out among these are discussed in the following.

Magnetic resonance angiography (MRA) is a technique for imaging blood vessels.

Since blood vessels carrying oxygen and other nutrients are closely coupled with

the development and the function of the body, it is conceivable that incorporating

knowledge about the vasculature structure into the similarity metric would improve

correspondence. This information can be extracted from MRA images and mapped

onto the surface in form of distance to the nearest vessel, distance to a particular set

of major vessels or the nearest vessel of a given minimum size.

Image intensities from MRI scans is another candidate for useful correspondence

features. These intensities can be themselves used directly, or quantities derived

from them, such as image gradients or texture-based features that represent the local

intensity patterns, can be used for correspondence optimization. Furthermore, the

intensity-based entropy can be either computed on the surfaces, as the other features

presented in this dissertation, or on the entire volumes, which would amount to an

entropy-based groupwise registration approach. This last effect can be achieved by

removing the constraint that the particles must live on the zero level set of the implicit
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representation. In situations where the image contrast clearly differentiates between

tissue types, using the image intensities as a correspondence feature seems sensible.

On the other hand, ignoring the geometry of the surfaces and focusing solely on image

registration might lead to insufficient correspondence results, such as misaligned sulci

patterns. Using the intensities as an additional feature on the surface rather than the

sole feature on the volume might provide a satisfactory middle ground.

Different ways of incorporating the WM fiber structure knowledge into cortical

correspondence need to be explored. Using cortical regions rather than subcortical

structures as the initial ROI’s might produce better connectivity maps since the

tracts might not have to pass through the densely populated areas where many fiber-

crossings are likely to occur; however, these connections might be weaker and not

produce suitable connectivity values. Better connectivity maps would reduce the

amount of cortex deflation needed, leading to a more accurate representation of the

connectivity of the cortical surface itself.

There are also alternative ways of projecting the connectivity probabilities to

the cortical surface instead of using the values on the corresponding deflated surface

location. One example is to stop the fiber tracking before the fiber samples reach the

region of isotropic diffusion near the cortical boundary and to project the connectivity

values to the surface by following the last known direction of the fiber. For this

approach, it is necessary to detect which fiber samples will be projected to the surface,

because voxels of isotropic diffusion that are located far from the WM/GM boundary

are not suitable for this purpose. Furthermore, if only one direction per fiber is used

for projection to the surface, it is not guaranteed that all the cortical voxels will be

assigned connectivity values, even if they are very close to fiber path endpoints. Using

several projection directions and introducing a soft penalty for the angle between the

projection direction and the last known fiber direction might be a more appropriate

approach.
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Whether the cortical surface is deflated or the fiber tracts are followed outwards, it

is clear that the projection of the connectivity values to the cortical surface requires

some guesswork. This is a limitation of my work inherited from the current DTI

and fiber tracking technology; more sophisticated tractography algorithms or better

DTI scans can reduce the amount of noise in the connectivity probabilities obtained,

leading to a more robust correspondence optimization.

One of the limitations of the generalized correspondence approach that I presented

is that the computation time increases with the number of feature channels used.

This might not be a problem in smaller datasets or with a relatively low number of

features, but it could become prohibitive with larger datasets or when a quick, coarse

correspondence computation is aimed for (perhaps as an initialization to an algorithm

that requires roughly corresponding surface sample points). Therefore, the user must

decide whether the correspondence accuracy gained from using a particular feature

is sufficient to justify the increase in computational time.

Since the framework I presented in this dissertation gives the user complete free-

dom regarding the choice of features, selecting “good” features is very important.

However, there is not an objective way of judging how useful a particular feature

is for correspondence optimization without actually trying them. In my experience,

features that represent different levels of detail complement each other well (i.e., a

coarse-level feature and a fine-level feature). Furthermore, features that represent

different aspects of the population are more valuable as opposed to several features

that represent similar information (i.e., a geometric feature and a connectivity fea-

ture as opposed to 3 different curvature features). However, validating these intuitive

ideas as well as formulating them as objective criteria for feature selection is beyond

the scope of this dissertation and remains as a future research direction. It would

be also interesting to investigate whether “default” features can be extracted given

all the information that is available regarding the population (such as T1-, T2- and
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diffusion-weighted images for each subject). This scenario might be useful in a situ-

ation where the user does not have sufficient insight into the application context or

might want to perform a preliminary exploration of the data before committing to a

final feature set.

The relative weighting of these features is a further area of investigation. In all

the experiments presented in this dissertation, I have weighted the features such that

each feature channel had the same variance (1.0) across the population. However,

it is again up to the user to judge the relative importance of each feature given the

application. The weights that would lead to the best correspondence results from

a pure optimization point of view can be computed by increasing the dimensional-

ity of the search space; however, not only this would lead to significant increase in

computation time but also it would be unclear what such a weighting scheme means

from an anatomical point of view. A more sensible approach might be to compute

these weights based on the information content of each feature, using ideas from in-

formation theory. Such an approach might also help compensate for a poor choice of

features, by assigning lower weights to features that contain similar information (such

as several curvature measures) so that the other features can be allowed to have a

more significant impact on the correspondence results.

In addition to different features that can be used for improving correspondence,

other evaluation methods also need to be explored. For the cortical correspondence,

functional MRI (fMRI) scans can provide a means of validating the cortical corre-

spondence. Although there is no clear evidence that functional correspondence is

equivalent to structural correspondence, it is nonetheless valuable to explore whether

functional correspondence is improved when additional features are used, especially

in the case of diffusion-based features that offer a significantly different source of

information than merely the geometry of the cortex. Whether functional data or

cortical thickness (as presented in this dissertation) is used for evaluation, hypothesis
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tests can be applied to confirm that the correspondence improvement is statistically

significant.

The methodology presented in this dissertation has been also applied to popula-

tions other than cortical surfaces, demonstrating a wide range of applications for this

work. Lee et al. have applied it to populations of mouse brains in a cortical thickness

study. Paniagua et al. have applied it to populations of human mandibles of healthy

controls and osteoarthritis patients in a clinical study. Liu et al. have applied it

to populations of lung surfaces reconstructed from CT scans. The methodology has

successfully computed correspondences for these populations, and the results are in

various stages of publication. Only local curvature has been used in addition to spatial

position in these studies, and the development of application-specific correspondence

features remains future work.

Finally, applying this framework to larger datasets, especially ones that include

both healthy and diseased anatomies, is an important next step to validate the

methodology presented in this dissertation.
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Appendix A: Spherical Harmonics

This appendix presents a mathematical overview of the spherical harmonics basis

functions and describes how to use them to represent surfaces. Given the SPHARM

representation, it is possible to analytically compute differential surface features such

as first and second fundamental form as well as curvatures.

A-1 Surface representation

Spherical harmonic basis functions Y m
l , −l ≤ m ≤ l of degree l and order m are

defined on θ ∈ [0, π]× φ ∈ [0, 2π) based on the associated Legendre polynomials Pm
l

via the following equations:

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos(θ))eimφ (A-1)

Y −ml (θ, φ) = (−1)mY ∗ml (θ, φ) (A-2)

Pm
l (w) =

(−1)m

2ll!
(1− w2)

m
2
dm+l

dwm+l
(w2 − 1)l (A-3)

where ∗ denotes complex conjugation.

To express a surface using spherical harmonics, the coordinate functions are de-

composed and the surface x(θ, φ) = (x(θ, φ)), y(θ, φ)), z(θ, φ)))T takes the form:

x(θ, φ) =
∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) (A-4)

where the coefficients cml are three-dimensional vectors due to the three coordinate

functions. These coefficients are obtained by solving a least-squares problem, as

discussed in [14] and [15].

99



A-2 Partial derivatives

The first and second order partial derivatives of the Cartesian coordinates x(θ, φ)

with respect to the spherical coordinates θ and φ are necessary for the computation

of fundamental forms and therefore curvatures.

The first order partial derivatives ∂x(θ, φ)/∂θ and ∂x(θ, φ)/∂φ can be computed

using the partial derivatives of the spherical harmonic basis functions by applying the

chain rule.

∂x(θ, φ)

∂φ
=

∂

∂φ

∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) (A-5)

=
∞∑
l=0

l∑
m=−l

cml
∂Y m

l (θ, φ)

∂φ
(A-6)

with

∂Y m
l (θ, φ)

∂φ
=

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos(θ))

∂

∂φ
eimφ (A-7)

=

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos(θ))(−msin(mφ) + imcos(mφ)) (A-8)

=

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos(θ))eimφim (A-9)

= imY m
l (θ, φ) (A-10)

Similarly,

∂x(θ, φ)

∂θ
=
∞∑
l=0

l∑
m=−l

cml
∂Y m

l (θ, φ)

∂θ
(A-11)

with

∂Y m
l (θ, φ)

∂θ
=

√
2l + 1

4π

(l −m)!

(l +m)!

dPm
l (cos(θ))

dθ
(−sin(θ))eimφ (A-12)
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The Legendre polynomial’s derivative can be computed as

dPm
l (w)

dw
=

(−1)m

2ll!
[(1− w2)

m
2
−1m

2
(−2w)]

dm+l

dwm+l
(w2 − 1)l

+
(−1)m

2ll!
(1− w2)

m
2
dm+l+1

dwm+l+1
(w2 − 1)l (A-13)

= Pm
l (w)

−mw
1− w2

+ Pm+1
l (w)

−1√
1− w2

(A-14)

Substituting,

∂Y m
l (θ, φ)

∂θ
= −sinθ

√
2l + 1

4π

(l −m)!

(l +m)!
eimφ

(Pm
l (cos(θ))

−mcos(θ)
sin2(θ)

+ Pm+1
l (cos(θ))

−1

sin(θ)
) (A-15)

= mcot(θ)Y m
l (θ, φ) +

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPm+1

l (cos(θ)) (A-16)

= mcot(θ)Y m
l (θ, φ) +

√
(l −m)(l +m+ 1)e−iφY m+1

l (θ, φ) (A-17)

The second order partial derivatives can be then computed using the first order

derivatives.

∂2x(θ, φ)

∂φ2
=
∞∑
l=0

l∑
m=−l

cml
∂2Y m

l (θ, φ)

∂φ2
(A-18)

with

∂2Y m
l (θ, φ)

∂φ2
=

∂

∂φ
(
∂Y m

l (θ, φ)

∂φ
) (A-19)

=
∂

∂φ
(imY m

l (θ, φ)) (A-20)

= im
∂Y m

l (θ, φ)

∂φ
(A-21)

= −m2Y m
l (θ, φ) (A-22)
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Similarly,

∂2x(θ, φ)

∂φ∂θ
=
∞∑
l=0

l∑
m=−l

cml
∂2Y m

l (θ, φ)

∂φ∂θ
(A-23)

with

∂2Y m
l (θ, φ)

∂θ∂φ
=

∂

∂θ
(
∂Y m

l (θ, φ)

∂φ
) (A-24)

=
∂

∂θ
(imY m

l (θ, φ)) (A-25)

= im(mcot(θ)Y m
l (θ, φ) +

√
(l −m)(l +m+ 1)e−iφY m+1

l (θ, φ)) (A-26)

Finally,

∂2x(θ, φ)

∂θ2
=
∞∑
l=0

l∑
m=−l

cml
∂2Y m

l (θ, φ)

∂θ2
(A-27)

with

∂2Y m
l (θ, φ)

∂θ2
=

∂

∂θ
(
∂Y m

l (θ, φ)

∂θ
) (A-28)

=
∂

∂θ
(mcot(θ)Y m

l (θ, φ) +
√

(l −m)(l +m+ 1)e−iφY m+1
l (θ, φ)) (A-29)

= mcot(θ)
∂

∂θ
Y m
l (θ, φ)−mcsc2(θ)Y m

l (θ, φ) +
√

(l −m)(l +m+ 1)e−iφ

((m+ 1)cot(θ)Y m+1
l (θ, φ) +

√
(l −m− 1)(l +m+ 2)e−iφY m+2

l (θ, φ))

(A-30)

Let a =
√

(l −m)(l +m+ 1) and b =
√

(l −m− 1)(l +m+ 2) for brevity. Then,

∂2Y m
l (θ, φ)

∂θ2
= mcot(θ)(mcot(θ)Y m

l (θ, φ) + ae−iφY m+1
l (θ, φ))−mcsc2(θ)Y m

l (θ, φ)

+ ae−iφ(m+ 1)cot(θ)Y m+1
l (θ, φ) + abe−2iφY m+2

l (θ, φ) (A-31)

= Y m
l (θ, φ)m(mcot2(θ)− csc2(θ)) + Y m+1

l (θ, φ)ae−iφcot(θ)(1 + 2m)

+ Y m+2
l (θ, φ)abe−2iφ (A-32)
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A-3 Surface normal

The unit surface normal is given by the cross product of the two tangent vectors

n =

∂x
∂θ
× ∂x

∂φ∣∣∂x
∂θ
× ∂x

∂φ

∣∣ . (A-33)

A-4 First and second fundamental forms

The scalar coefficients of the first and second fundamental form, (E,F,G) and (e, f, g)

respectively, can be calculated from the following dot-products [69]:

E =
∂x

∂θ
· ∂x
∂θ

(A-34)

F =
∂x

∂θ
· ∂x
∂φ

(A-35)

G =
∂x

∂φ
· ∂x
∂φ

(A-36)

e =
∂2x

∂θ2
· n (A-37)

f =
∂2x

∂θ∂φ
· n (A-38)

g =
∂2x

∂φ2
· n (A-39)

A-5 Curvature metrics

The principal curvatures κ1 and κ2 can be computed from [69]

κi =
e+ 2fλi + gλ2

i

E + 2Fλi +Gλ2
i

, i = 1..2 (A-40)

where λ1 and λ2 are the solutions to the quadratic equation

(Fg −Gf)λ2 + (Eg −Ge)λ+ Ef − Fe = 0 (A-41)
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Once the principal curvatures are obtained, mean curvatureH, Gaussian curvature

K, shape index S and curvedness C are

H =
1

2
(κ1 + κ2) (A-42)

K = κ1κ2 (A-43)

S = − 2

π
tan−1(

κ1 + κ2

κ1 − κ2

) (A-44)

C =
2

π
ln(

√
κ2

1 + κ2
2

2
) (A-45)
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