
An Open Architecture for Transport-level
Coordination in Distributed Multimedia

Applications

by
David Edward Ott

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2005

Approved by:

Ketan Mayer-Patel, Advisor

F. Donelson Smith, Reader

Kevin Jeffay, Reader

Prasun Dewan, Reader

Amin Vahdat, Reader



ii

c© 2005

David Edward Ott

ALL RIGHTS RESERVED



iii

ABSTRACT
DAVID EDWARD OTT: An Open Architecture for Transport-level

Coordination in Distributed Multimedia Applications.
(Under the direction of Ketan Mayer-Patel.)

Complex multimedia applications of the future will employ clusters of computing

hosts and devices where single endpoint hosts once sufficed. Communication between

clusters will require an increasing number of data flows as new media types and sophis-

ticated modes of interactivity continue to be developed.

With an increase in the number of data flows sharing the same forwarding path

comes a need for coordinated use of network resources. Unfortunately, modern trans-

port protocols like TCP, UDP, SCTP, TFRC, DCCP, etc. are designed to operate

independently and lack mechanisms for sharing information with peer flows and coor-

dinating data transport within the same application.

In this dissertation, we propose an open architecture for data transport that sup-

ports the exchange of network state information, peer flow information, and application-

defined information among flows sharing the same forwarding path between clusters.

Called simply the Coordination Protocol (CP), the scheme facilitates coordination of

network resource usage across flows belonging to the same application, as well as aiding

other types of coordination.

We demonstrate the effectiveness of our approach by applying CP to the problem of

multi-streaming in 3D Tele-immersion (3DTI). Laboratory results show that CP can

be used to significantly increase transport synchrony among video streams while, at

the same time, minimizing buffering delay, maintaining good network utilization, and

exhibiting fairness to TCP traffic competing on the same forwarding path. Experi-

ments on the Abilene backbone network verify these results in a scaled, uncontrolled

environment.



iv

ACKNOWLEDGMENTS

I would like to express my gratitude to many individuals who assisted me in various

ways throughout this work.

First is my advisor, Ketan Mayer-Patel, whose instruction and guidance was in-

strumental throughout. Thank you. My thanks also to my committee members, Don

Smith, Kevin Jeffay, Amin Vadhat, and Prasun Dewan, who gave of their time to assist

me at various points during the process and whose suggestions were always valuable.

With respect to equipment and lab support, I thank Don Smith and Kevin Jeffay

for graciously providing me with access to the Distributed and Real-time Systems

laboratory in Sitterson Hall. Herman Towles and Henry Fuchs provided additional

equipment support from the Office of the Future. Kostas Daniilidis from the University

of Pennsylvania generously provided yet additional equipment support from the General

Robotics, Automation, Sensing and Perception (GRASP) Lab.

My thanks to the technical support staff in the Department of Computer Science,

especially Bil Hays, Murray Anderegg, and Mike Stone, for their expertise and timely

assistance with issues as they arose.

My thanks to fellow students in the Distributed and Real-time Systems research

group whose input and assistance helped me a great deal at various points. Some of

these individuals include Felix Hernandez Campos, Long Le, Jay Aikat, Michele Clark

Weigle, Mikkel Christiansen, Vivek Sawant, and Mark Parris. Thanks also to Travis

Sparks who assisted with the original CP-RUDP prototype.

On a more personal note, I am grateful to my family, especially sisters Jeanne Marie

and Rebecca, for their friendship and support. Reg Pendergraph provided a much-

needed outsider’s perspective and many stimulating technical conversations. Finally,

yet perhaps most important of all, I am grateful to my wife, Malai, whose patience and

encouragement played an essential role in my successful completion of this challenge.



v

TABLE OF CONTENTS

LIST OF TABLES xiii

LIST OF FIGURES xiv

1 Introduction 1

1.1 Office of the Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Problem of Flow Coordination . . . . . . . . . . . . . . . . . . . . 4

1.2.1 An Illustration: Peer TCP Flows . . . . . . . . . . . . . . . . . 6

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 The Cluster-to-Cluster Application Model . . . . . . . . . . . . . . . . 10

1.5 Characterizing Cluster-to-Cluster Flows . . . . . . . . . . . . . . . . . . 11

1.5.1 Flow Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.2 Peer Flow Relationships . . . . . . . . . . . . . . . . . . . . . . 12

1.5.3 Network Resource Usage . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 The Coordination Protocol (CP) . . . . . . . . . . . . . . . . . . . . . 16

1.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . 18



vi

2 Related Work 19

2.1 In-network Bandwidth Sharing Approaches . . . . . . . . . . . . . . . . 19

2.1.1 Differentiated Services . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Traffic Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Aggregate Congestion Control . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Flow Segmentation and Bundling . . . . . . . . . . . . . . . . . 25

2.2.2 Congestion Manager . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Bandwidth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Equation-based Congestion Control . . . . . . . . . . . . . . . . 29

2.3.2 TCP-friendly Rate Control (TFRC) . . . . . . . . . . . . . . . . 30

2.3.3 Rate Adaptation Protocol (RAP) . . . . . . . . . . . . . . . . . 32

2.4 Open Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 The End-to-End Argument . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Active Networking . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Ephemeral State Processing . . . . . . . . . . . . . . . . . . . . 38

3 Coordination Protocol 41

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Why a new protocol layer? . . . . . . . . . . . . . . . . . . . . . 44

3.1.2 CP Packet Headers . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 AP State Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Assigning Cells of the State Table . . . . . . . . . . . . . . . . . 48

3.2.2 Report Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



vii

3.2.3 Network Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.4 Flow Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.5 General Purpose Addresses . . . . . . . . . . . . . . . . . . . . 51

3.2.6 An Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Implementing Flow Coordination . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 CP-enabled Transport Protocols . . . . . . . . . . . . . . . . . . 54

3.3.2 Coordination Schemes . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Aggregate Congestion Control 59

4.1 Measuring Network Conditions . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Network Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Packet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Estimating Available Bandwidth . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 TCP-Friendly Rate Control (TFRC) . . . . . . . . . . . . . . . 65

4.2.2 Rate Adaptation Protocol (RAP) . . . . . . . . . . . . . . . . . 67

4.3 Single Flowshare Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Comparing TFRC and CP-TFRC . . . . . . . . . . . . . . . . . 71

4.3.3 Comparing RAP and CP-RAP . . . . . . . . . . . . . . . . . . 73

4.4 Multiple Flowshares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Naive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Handling Packet Loss . . . . . . . . . . . . . . . . . . . . . . . . 76



viii

4.4.3 Bandwidth Filtered Loss Detection . . . . . . . . . . . . . . . . 78

4.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . 81

4.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.4 Delay Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.5 Bottleneck Bandwidth Experiments . . . . . . . . . . . . . . . . 86

4.5.6 Random Loss Experiments . . . . . . . . . . . . . . . . . . . . . 89

4.5.7 Traffic Load Experiments . . . . . . . . . . . . . . . . . . . . . 90

4.5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Aggregation Point Implementation and Performance 93

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Avoiding System Time Calls . . . . . . . . . . . . . . . . . . . . 97

5.2.2 Fixed Point Calculations . . . . . . . . . . . . . . . . . . . . . . 98

5.2.3 IP Checksum Modifications . . . . . . . . . . . . . . . . . . . . 100

5.2.4 Square Root Calculations . . . . . . . . . . . . . . . . . . . . . 102

5.2.5 Lazy Evaluation for GP Aggregation Operations . . . . . . . . . 103

5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Kernel Module Execution Profile . . . . . . . . . . . . . . . . . 105

5.3.2 Measuring Per Packet Processing Overhead . . . . . . . . . . . 107



ix

5.3.3 Overall Forwarding Performance . . . . . . . . . . . . . . . . . . 109

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Coordinated Multi-streaming for 3D Tele-immersion 118

6.1 3D Tele-immersion (3DTI) . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 The Problem of Multi-streaming . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Multi-streaming with TCP . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Multi-streaming with CP-RUDP . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Coordination Schemes for CP Multi-streaming . . . . . . . . . . . . . . 127

6.6 Laboratory Testbed Experiments . . . . . . . . . . . . . . . . . . . . . 130

6.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6.3 TCP Send Buffer Configuration . . . . . . . . . . . . . . . . . . 136

6.7 Laboratory Testbed Results: Equal Frame Size . . . . . . . . . . . . . . 138

6.7.1 Round Trip Time . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.7.2 Packet Loss Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.7.3 Number of Streams . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.7.4 Frame Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.7.5 Network Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.8 Laboratory Testbed Results: Unequal Frame Size . . . . . . . . . . . . 160

6.8.1 Frame Size Dispersion (Random Loss) . . . . . . . . . . . . . . 162

6.8.2 Frame Size Dispersion (Load) . . . . . . . . . . . . . . . . . . . 166



x

6.8.3 Dynamic Reconfiguration . . . . . . . . . . . . . . . . . . . . . 173

6.8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.9 Abilene Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.9.1 Network configuration . . . . . . . . . . . . . . . . . . . . . . . 177

6.10 Abilene Results: Equal Frame Size . . . . . . . . . . . . . . . . . . . . 179

6.10.1 Number of Streams . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.10.2 Frame Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.11 Abilene Results: Unequal Frame Size . . . . . . . . . . . . . . . . . . . 187

6.11.1 Frame Size Dispersion . . . . . . . . . . . . . . . . . . . . . . . 188

6.11.2 Dynamic Reconfiguration . . . . . . . . . . . . . . . . . . . . . 194

6.12 Abilene Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . 196

7 Conclusions and Future Work 199

7.1 Coordination Protocol Review . . . . . . . . . . . . . . . . . . . . . . . 201

7.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A CP Header Formats 207

A.1 Standard Prefix Format . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.2 Format for Endpoint-to-AP Packet Exchanges . . . . . . . . . . . . . . 208

A.2.1 Operation Field Format . . . . . . . . . . . . . . . . . . . . . . 208

A.3 Format for AP-to-AP Packet Exchanges . . . . . . . . . . . . . . . . . 209



xi

A.3.1 Timestamp Format . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.4 Format for AP-to-Endpoint Packet Exchanges . . . . . . . . . . . . . . 211

A.4.1 Report Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.5 C Source Code for Generic CP Header . . . . . . . . . . . . . . . . . . 212

B Laboratory Testbed 213

B.1 Emulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

B.2 Background Web Traffic Generation . . . . . . . . . . . . . . . . . . . . 215

C Reliable-UDP (RUDP) 219

C.1 Header Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

C.1.1 SYN and FIN Format (9 Bytes) . . . . . . . . . . . . . . . . . . 221

C.1.2 SYN ACK Format (9 Bytes) . . . . . . . . . . . . . . . . . . . . 221

C.1.3 Data Format (9 Bytes) . . . . . . . . . . . . . . . . . . . . . . . 222

C.1.4 ACK Format (13 Bytes) . . . . . . . . . . . . . . . . . . . . . . 223

C.2 Application Programming Interface (API) . . . . . . . . . . . . . . . . 223

C.2.1 Manipulating Connections . . . . . . . . . . . . . . . . . . . . . 223

C.2.2 Manipulating Packets . . . . . . . . . . . . . . . . . . . . . . . . 224

C.2.3 Read/Write Packet Header Fields . . . . . . . . . . . . . . . . . 224

D CP Application Programming Interface (API) 225

D.1 Socket Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

D.2 Assignment Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

D.3 Report Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226



xii

D.4 CP Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

E CP-RUDP Application Programming Interface (API) 227

E.1 Connection Setup and Termination . . . . . . . . . . . . . . . . . . . . 227

E.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

E.3 Send and Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

E.4 Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 228

BIBLIOGRAPHY 229



xiii

LIST OF TABLES

5.1 Heavily hit functions as revealed by gprof execution profile. . . . . . . 106

5.2 CP packet handling overhead measured in cycles. . . . . . . . . . . . . 108

5.3 CP packet handling overhead converted to microseconds. . . . . . . . . 108

6.1 Multi-streaming performance issues and their correspond-

ing metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Unequal frame size with dynamic reconfiguration. . . . . . . . . . . . . 173

6.3 Unequal frame size with dynamic reconfiguration (Abilene). . . . . . . 194

B.1 Elements of the HTTP traffic model. . . . . . . . . . . . . . . . . . . . 216



xiv

LIST OF FIGURES

1.1 The Office of the Future. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 A simple distributed application. . . . . . . . . . . . . . . . . . . . . . 6

1.3 (a) Throughput and (b) throughput divergence for two

TCP flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 (a) Throughput and (b) throughput divergence for six

TCP flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Cluster-to-cluster application model. . . . . . . . . . . . . . . . . . . . 10

3.1 CP network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 CP operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 CP packet header format. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 CP state table maintained at each AP. . . . . . . . . . . . . . . . . . . 48

3.5 Illustrating state table operation. CP headers and AP

state table contents as a cluster endpoint sends and re-

ceives packets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 CP-enabled transport-level protocol schematic. . . . . . . . . . . . . . . 56

4.1 CP header contents as packet is forwarded between APs. . . . . . . . . 61

4.2 Timeline of AP packet exchanges. . . . . . . . . . . . . . . . . . . . . . 62

4.3 CP header contents for

various packets in Figure 4.2. . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Simulation testbed in ns2. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Configuration parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 CP-TFRC: Number of competing TFRC flows. . . . . . . . . . . . . . . 71



xv

4.7 CP-TFRC: Number of constituent CP flows. . . . . . . . . . . . . . . . 71

4.8 CP-RAP: Number of competing RAP flows. . . . . . . . . . . . . . . . 73

4.9 CP-RAP: Number of constituent CP flows. . . . . . . . . . . . . . . . . 73

4.10 CP-TFRC: Multiple flowshares using the naive approach. . . . . . . . . 75

4.11 CP-RAP: Multiple flowshares using the naive approach. . . . . . . . . . 75

4.12 Loss event rate calculation for TFRC. . . . . . . . . . . . . . . . . . . . 76

4.13 Virtual packet event stream construction by BFLD. . . . . . . . . . . . 79

4.14 CP-TFRC: Multiple flowshares using BFLD. . . . . . . . . . . . . . . . 80

4.15 CP-RAP: Multiple flowshares using BFLD. . . . . . . . . . . . . . . . . 80

4.16 CP-TFRC: Mean loss event interval. . . . . . . . . . . . . . . . . . . . 80

4.17 CP-RAP: Number of lost packets. . . . . . . . . . . . . . . . . . . . . . 80

4.18 Experimental network setup. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.19 Normalized throughput ratio as RTT varies. . . . . . . . . . . . . . . . 85

4.20 C.O.V. ratio as RTT varies. . . . . . . . . . . . . . . . . . . . . . . . . 85

4.21 Normalized throughput ratio as RTT varies. . . . . . . . . . . . . . . . 85

4.22 C.O.V. ratio as RTT varies. . . . . . . . . . . . . . . . . . . . . . . . . 85

4.23 Normalized tput ratio as bottleneck bandwidth varies. . . . . . . . . . 87

4.24 C.O.V. ratio as bottleneck bandwidth varies. . . . . . . . . . . . . . . 87

4.25 Normalized tput ratio as bottleneck bandwidth varies. . . . . . . . . . 87

4.26 C.O.V. ratio as bottleneck bandwidth varies. . . . . . . . . . . . . . . 87

4.27 Normalized throughput ratio as loss varies. . . . . . . . . . . . . . . . 88

4.28 C.O.V. ratio as loss varies. . . . . . . . . . . . . . . . . . . . . . . . . 88



xvi

4.29 Normalized throughput ratio as loss varies. . . . . . . . . . . . . . . . 88

4.30 C.O.V. ratio as loss varies. . . . . . . . . . . . . . . . . . . . . . . . . 88

4.31 Normalized throughput ratio as load varies. . . . . . . . . . . . . . . . 91

4.32 C.O.V. ratio as load varies. . . . . . . . . . . . . . . . . . . . . . . . . 91

4.33 Normalized throughput ratio as load varies. . . . . . . . . . . . . . . . 91

4.34 C.O.V. ratio as load varies. . . . . . . . . . . . . . . . . . . . . . . . . 91

4.35 Loss rates generated by background web traffic. . . . . . . . . . . . . . 91

4.36 Loss rates generated by background web traffic. . . . . . . . . . . . . . 91

5.1 AP forwarding performance. Per packet overhead CDF

expressed as (a) clock cycles and (b) microseconds. . . . . . . . . . . . 110

5.2 AP forwarding performance. Per packet overhead CDF

expressed as (a) clock cycles and (b) microseconds. . . . . . . . . . . . 110

5.3 AP forwarding performance. Offered load versus through-

put in (a) Mb/s and (b) Pkt/s as measured in the middle

of the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 AP forwarding performance. Offered load versus through-

put in (a) Mb/s and (b) Pkt/s as measured by receivers. . . . . . . . . 113

5.5 AP forwarding performance. Offered load versus through-

put differential as measured (a) in the middle of the net-

work and (b) by receivers. . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 AP forwarding performance. Offered load in (a) Mb/s

and (b) Pkt/s versus packet loss rate as measured by receivers. . . . . . 114

5.7 AP1 inbound forwarding performance. Offered load ver-

sus throughput in (a) Mb/s and (b) Pkt/s. . . . . . . . . . . . . . . . . 116

5.8 AP1 outbound forwarding performance. Offered load

versus throughput in (a) Mb/s and (b) Pkt/s. . . . . . . . . . . . . . . 116



xvii

5.9 AP1 combined forwarding performance. Offered load ver-

sus throughput in (a) Mb/s and (b) Pkt/s. . . . . . . . . . . . . . . . . 116

5.10 AP2 inbound forwarding performance. Offered load ver-

sus throughput in (a) Mb/s and (b) Pkt/s. . . . . . . . . . . . . . . . . 117

5.11 AP2 outbound forwarding performance. Offered load

versus throughput in (a) Mb/s and (b) Pkt/s. . . . . . . . . . . . . . . 117

5.12 AP2 combined forwarding performance. Offered load ver-

sus throughput in (a) Mb/s and (b) Pkt/s. . . . . . . . . . . . . . . . . 117

6.1 3D Tele-immersion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 3D Tele-immersion architecture. . . . . . . . . . . . . . . . . . . . . . . 121

6.3 The effect of different send buffer sizes. . . . . . . . . . . . . . . . . . . 123

6.4 Diagram of CP-RUDP internals. . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Chain of encapsulation in CP-RUDP. . . . . . . . . . . . . . . . . . . . 127

6.6 Experimental network setup. . . . . . . . . . . . . . . . . . . . . . . . . 130

6.7 Completion asynchrony. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.8 TCP send buffer size results. (a) Completion asynchrony

and (b) stall time versus send buffer size. . . . . . . . . . . . . . . . . . 135

6.9 TCP send buffer size results. (a) End-to-end delay and

(b) normalized flowshare versus send buffer size. . . . . . . . . . . . . . 135

6.10 TCP send buffer size results. (a) Frame ensemble rate

and (b) frame ensemble interarrival jitter versus send

buffer size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.11 Round trip time results. (a) Completion asynchrony and

(b) stall time versus round trip time. . . . . . . . . . . . . . . . . . . . 140

6.12 Round trip time results. (a) End-to-end delay and (b)

normalized flowshare versus round trip time. . . . . . . . . . . . . . . . 140



xviii

6.13 Round trip time results. (a) Frame ensemble rate and

(b) frame ensemble interarrival jitter versus round trip time. . . . . . . 140

6.14 Round trip time results. (a) Completion asynchrony and

(b) stall time versus round trip time. . . . . . . . . . . . . . . . . . . . 141

6.15 Round trip time results. (a) End-to-end delay and (b)

normalized flowshare versus round trip time. . . . . . . . . . . . . . . . 141

6.16 Round trip time results. (a) Frame ensemble rate and

(b) frame ensemble interarrival jitter versus round trip time. . . . . . . 141

6.17 Packet loss rate results. (a) Completion asynchrony and

(b) stall time versus packet loss rate. . . . . . . . . . . . . . . . . . . . 144

6.18 Packet loss rate results. (a) End-to-end delay and (b)

normalized flowshare versus packet loss rate. . . . . . . . . . . . . . . . 144

6.19 Packet loss rate results. (a) Frame ensemble rate and (b)

frame ensemble interarrival jitter versus packet loss rate. . . . . . . . . 144

6.20 Packet loss rate results. (a) Completion asynchrony and

(b) stall time versus packet loss rate. . . . . . . . . . . . . . . . . . . . 145

6.21 Packet loss rate results. (a) End-to-end delay and (b)

normalized flowshare versus packet loss rate. . . . . . . . . . . . . . . . 145

6.22 Packet loss rate results. (a) Frame ensemble rate and (b)

frame ensemble interarrival jitter versus packet loss rate. . . . . . . . . 145

6.23 Number of streams results. (a) Completion asynchrony

and (b) stall time versus number of streams. . . . . . . . . . . . . . . . 148

6.24 Number of streams results. (a) End-to-end delay and (b)

normalized flowshare versus number of streams. . . . . . . . . . . . . . 148

6.25 Number of streams results. (a) Frame ensemble rate and

(b) frame ensemble interarrival jitter versus number of streams. . . . . 148



xix

6.26 Number of streams results. (a) Completion asynchrony

and (b) stall time versus number of streams. . . . . . . . . . . . . . . . 149

6.27 Number of streams results. (a) End-to-end delay and (b)

normalized flowshare versus number of streams. . . . . . . . . . . . . . 149

6.28 Number of streams results. (a) Frame ensemble rate and

(b) frame ensemble interarrival jitter versus number of streams. . . . . 149

6.29 Frame size results. (a) Completion asynchrony and (b)

stall time versus frame size. . . . . . . . . . . . . . . . . . . . . . . . . 151

6.30 Frame size results. (a) End-to-end delay and (b) normal-

ized flowshare versus frame size. . . . . . . . . . . . . . . . . . . . . . . 151

6.31 Frame size results. (a) Frame ensemble rate and (b)

frame ensemble interarrival jitter versus frame size. . . . . . . . . . . . 151

6.32 Bottleneck router queue results. (a) Queue length and

(b) dropped packets for a sample CP-RUDP run with

4000 browsers and 150 KB frame size. . . . . . . . . . . . . . . . . . . . 154

6.33 Bottleneck router queue results. Throughput in (a) pack-

ets per second and (b) megabits per second for a sample

CP-RUDP run with 4000 browsers and 150 KB frame size. . . . . . . . 154

6.34 Bottleneck router queue results. (a) Queue length CDF

and (b) dropped packets CDF for runs with CP-RUDP

and 150 KB frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.35 Network load results. (a) Packet loss rate and (b) packet

loss rate standard deviation for 25 KB frame size. . . . . . . . . . . . . 155

6.36 Network load results. (a) Packet loss rate and (b) packet

loss rate standard deviation for 150 KB frame size. . . . . . . . . . . . 155

6.37 Network load results. (a) Completion asynchrony and

(b) stall time versus network load. . . . . . . . . . . . . . . . . . . . . . 157



xx

6.38 Network load results. (a) End-to-end delay and (b) nor-

malized flowshare versus network load. . . . . . . . . . . . . . . . . . . 157

6.39 Network load results. (a) Frame ensemble rate and (b)

frame ensemble interarrival jitter versus network load. . . . . . . . . . . 157

6.40 Network load results. (a) Completion asynchrony and

(b) stall time versus network load. . . . . . . . . . . . . . . . . . . . . . 158

6.41 Network load results. (a) End-to-end delay and (b) nor-

malized flowshare versus network load. . . . . . . . . . . . . . . . . . . 158

6.42 Network load results. (a) Frame ensemble rate and (b)

frame ensemble interarrival jitter versus network load. . . . . . . . . . . 158

6.43 Frame size dispersion (random loss) results. (a) Com-

pletion asynchrony and (b) stall time versus frame size

dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.44 Frame size dispersion (random loss) results. (a) End-to-

end delay and (b) normalized flowshare versus frame size

dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.45 Frame size dispersion (random loss) results. (a) Frame

ensemble rate and (b) frame interarrival jitter versus frame

size dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.46 TCP frame size dispersion (random loss) results. (a)

Completion asynchrony and (b) stall time versus frame

size dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.47 TCP frame size dispersion (random loss) results. (a)

End-to-end delay and (b) normalized flowshare versus

frame size dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . 164

6.48 TCP frame size dispersion (random loss) results. (a)

Frame ensemble rate and (b) frame ensemble interarrival

jitter versus frame size dispersion factor. . . . . . . . . . . . . . . . . . 164



xxi

6.49 CP-RUDP frame size dispersion (random loss) results.

(a) Completion asynchrony and (b) stall time versus frame

size dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.50 CP-RUDP frame size dispersion (random loss) results.

(a) End-to-end delay and (b) normalized flowshare versus

frame size dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . 165

6.51 CP-RUDP frame size dispersion (random loss) results.

(a) Frame ensemble rate and (b) frame ensemble interar-

rival jitter versus frame size dispersion factor. . . . . . . . . . . . . . . 165

6.52 Frame size dispersion (load) results. (a) Completion asyn-

chrony and (b) stall time versus frame size dispersion factor. . . . . . . 168

6.53 Frame size dispersion (load) results. (a) End-to-end delay

and (b) normalized flowshare versus frame size dispersion factor. . . . . 168

6.54 Frame size dispersion (load) results. (a) Frame ensemble

rate and (b) frame interarrival jitter versus frame size

dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.55 TCP frame size dispersion (load) results. (a) Completion

asynchrony and (b) stall time versus frame size dispersion factor. . . . . 169

6.56 TCP frame size dispersion (load) results. (a) End-to-

end delay and (b) normalized flowshare versus frame size

dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.57 TCP frame size dispersion (load) results. (a) Frame en-

semble rate and (b) frame interarrival jitter versus frame

size dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.58 CP-RUDP frame size dispersion (load) results. (a) Com-

pletion asynchrony and (b) stall time versus frame size

dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



xxii

6.59 CP-RUDP frame size dispersion (load) results. (a) End-

to-end delay and (b) normalized flowshare versus frame

size dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.60 CP-RUDP frame size dispersion (load) results. (a) Frame

ensemble rate and (b) frame interarrival jitter versus frame

size dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.61 Unequal frame size. Throughput over time for CP-RUDP. . . . . . . . 172

6.62 Unequal frame size. Throughput over time for TCP. . . . . . . . . . . . 172

6.63 Unequal frame size with dynamic reconfiguration. Through-

put over time for CP-RUDP. . . . . . . . . . . . . . . . . . . . . . . . . 175

6.64 Unequal frame size with dynamic reconfiguration. Through-

put over time for TCP with 64 KB send buffer configuration. . . . . . . 175

6.65 Unequal frame size with dynamic reconfiguration. Through-

put over time for TCP with 1 MB send buffer configuration. . . . . . . 175

6.66 Throughput results. (a) Frame throughput and (b) ag-

gregate throughput versus number of streams. . . . . . . . . . . . . . . 180

6.67 Throughput over time for 6 CP-RUDP flows. . . . . . . . . . . . . . . . 181

6.68 Throughput over time for (a) 6 TCP flows with 64 KB

send buffer and (b) 6 TCP flows with 1 MB send buffer. . . . . . . . . 181

6.69 Number of streams results (Abilene). (a) Completion

asynchrony and (b) stall time versus number of streams. . . . . . . . . 184

6.70 Number of streams results (Abilene). (a) End-to-end de-

lay and (b) normalized flowshare versus number of streams. . . . . . . . 184

6.71 Number of streams results (Abilene). (a) Frame ensem-

ble rate and (b) frame ensemble interarrival jitter versus

number of streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



xxiii

6.72 Frame size results (Abilene). (a) Completion asynchrony

and (b) stall time versus frame size. . . . . . . . . . . . . . . . . . . . . 186

6.73 Frame size results (Abilene). (a) End-to-end delay and

(b) normalized flowshare versus frame size. . . . . . . . . . . . . . . . . 186

6.74 Frame size results (Abilene). (a) Frame ensemble rate

and (b) frame ensemble interarrival jitter versus frame size. . . . . . . . 186

6.75 Unequal frame size results (Abilene). (a) Completion

asynchrony and (b) stall time versus frame size disper-

sion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.76 Unequal frame size results (Abilene). (a) End-to-end de-

lay and (b) normalized flowshare versus frame size dis-

persion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.77 Unequal frame size results (Abilene). (a) Frame ensemble

rate and (b) frame interarrival jitter versus frame size

dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.78 Unequal frame size results (Abilene). (a) Completion

asynchrony and (b) stall time versus frame size disper-

sion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.79 Unequal frame size results (Abilene). (a) End-to-end de-

lay and (b) normalized flowshare versus frame size dis-

persion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.80 Unequal frame size results (Abilene). (a) Frame ensemble

rate and (b) frame interarrival jitter versus frame size

dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.81 Unequal frame size results (Abilene). (a) Completion

asynchrony and (b) stall time versus frame size disper-

sion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



xxiv

6.82 Unequal frame size results (Abilene). (a) End-to-end de-

lay and (b) normalized flowshare versus frame size dis-

persion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.83 Unequal frame size results (Abilene). (a) Frame ensemble

rate and (b) frame interarrival jitter versus frame size

dispersion factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.84 Unequal frame size (Abilene). Throughput over time for

CP-RUDP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.85 Unequal frame size (Abilene). Throughput over time for

TCP with 64 KB send buffer. . . . . . . . . . . . . . . . . . . . . . . . 193

6.86 Unequal frame size (Abilene). Throughput over time for

TCP with 1 MB send buffer. . . . . . . . . . . . . . . . . . . . . . . . . 193

6.87 Unequal frame size with dynamic reconfiguration (Abi-

lene). Throughput over time for CP-RUDP. . . . . . . . . . . . . . . . 197

6.88 Unequal frame size with dynamic reconfiguration (Abi-

lene). Throughput over time for TCP with 64 KB send

buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.89 Unequal frame size with dynamic reconfiguration (Abi-

lene). Throughput over time for TCP with 1 MB send

buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.1 Experimental network setup. . . . . . . . . . . . . . . . . . . . . . . . . 213

B.2 Experimental network setup. . . . . . . . . . . . . . . . . . . . . . . . . 214

B.3 Request size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.4 Response size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.5 Thttp browser configuration and resulting network load. . . . . . . . . . 218



Chapter 1

Introduction

Its been more than a decade since application developers and researchers made tele-

conferencing a reality. Early pioneering efforts by researchers like K.A. Lantz [Lan86]

and S.R. Ahuja [AEH86] set the stage for a flurry of innovative systems and products

in the early 1990s. IBM’s PicTel was released in 1991, followed by Cornell’s CU-SeeMe

for MacIntosh in 1992 and Novell’s VocalChat for IPX networks in 1993. In 1996, Mi-

crosoft introduced NetMeeting, originally from PictureTel’s Liveshare Plus, followed by

VocalTec’s Internet Phone for Windows in the same year. [Wil04] Each of these systems

sought to provide a desktop-to-desktop conferencing experience in real-time that was

easy to use, ran on widely used platforms, and required little by way of custom network

support.

The late 1990s and early 2000s saw systems of increasing complexity that extended

the notion of desktop teleconferencing to new, more sophisticated group environments.

One particular system of note in this context is the Access Grid introduced by Ar-

gonne National Laboratory in 1998. [Gri, CDO+00] The original Access Grid configu-

ration [Ols03] required each participant to have four computing hosts: a display host,

a video capture host, an audio capture host, and a control host. With some addi-

tional equipment (audio processing hardware, microphones, video cameras, projectors)

and middleware software developed by ANL, Access Grid provided a group-to-group

collaboration environment with advanced display and interaction modes.

Distributed multimedia applications of the future promise even greater sophistica-

tion as tele-immersion becomes a driving vision for bringing remote users together.

Tele-immersion improves upon collaborative environments like the Access Grid by

tracking the presence and movement of individuals and objects, and reconstructing

them in a shared 3D display environment. Such systems, which combine both virtual



2

reality (VR) and digital video into the same environment [LDE+97], are bandwidth in-

tensive and involve a large number of computing hosts and media devices. A prototype

of one such system, the Office of the Future [RWC+98], is described in Section 1.1.

The evolution of desktop teleconferencing into more involved multimedia environ-

ments, and then complex tele-immersion environments, illustrates several important

trends in cutting-edge distributed multimedia applications. First is an increase in

computing hosts and application devices. While a single host was sufficient for a video

teleconferencing endpoint with CU-SeeMe, Access Grid required four, and Office of the

Future requires many more. Similarly, the number of digital cameras, audio devices,

and display devices involved in the application has increased. While an application

endpoint was once a single host and a couple of associated devices, it is now a whole

environment with numerous hosts and a large number of devices.

Second is an increase in the number of application data flows. Simple video telecon-

ferencing with CU-SeeMe generated incoming and outgoing audio and video streams

and relatively little else. Meanwhile, the Access Grid generated four outgoing and four

(or more) incoming video streams, at least one full duplex audio stream, a secondary

communication channel for debugging, and possibly other types of interactive data

flows. [CDO+00]. Office of the Future requires even more streams as the number of

capture, reconstruction, and display hosts and devices is scaled to accommodate larger

shared environments and greater freedom of user movement.

Application streams, furthermore, share complex semantic relationships with one

another. Media data may be layered across streams [MJV96], flows may share tem-

poral relationships and possess synchronization requirements, video streams may share

geometric relationships based on camera positioning in the capture environment, text

streams may annotate the changing content of media streams, control flows may give

instructions for handling stream data based on current application state, etc.

Finally, complex distributed multimedia applications require substantial network

bandwidth. This follows naturally from the number of application streams employed,

and the data types involved (e.g., digital video). Ideally, an application’s end-to-end

path would be provisioned to comfortably support these demanding requirements. In

practice, however, such provisioning may be prohibitively expensive or impossible due

to the number of service providers involved in a given end-to-end path. The result is

that application designers need to be aware of network resource limitations and design

communication schemes that accommodate them in intelligent ways.



3

Figure 1.1: The Office of the Future.

1.1 Office of the Future

A good illustration of a future distributed multimedia applications is Office of the

Future, conceived of by Fuchs et al. [RWC+98] at the University of North Carolina at

Chapel Hill. In this application, tens of digital light projectors are used to make almost

every surface of an office (walls, desktops, etc.) a display surface. Similarly, tens of video

cameras are used to capture the office environment from a number of different angles. At

real-time rates, the video streams are used as input to stereo correlation algorithms that

extract 3D geometry information. Audio is also captured from a set of microphones.

The video streams, geometry information, and audio streams are all transmitted to

a remote Office of the Future environment. At the remote environment, the video

and audio streams are warped using both local and remote geometry information and

stereo views are mapped to light projectors. Audio is spatialized and sent to a set of

speakers. Users within each Office of the Future environment wear shutter glasses that

are coordinated with the light projectors.

The result is an immersive 3D experience in which the walls of one office environment

essentially disappear to reveal the remote environment and provide a tele-immersive

collaborative space for the participants. Synthetic 3D models may additionally be

rendered, incorporating them into both display environments as part of the shared,



4

collaborative experience. Figure 1.1 is an artistic illustration of the application. A

prototype of the application is described in [RWC+98].

From a networking standpoint, the Office of the Future is a challenging application

because the endpoints are collections of devices rather than single hosts. Two similarly

equipped offices must exchange myriad data streams, involving both heterogeneous

data types and complex semantic relationships among streams. While few streams (if

any) share a complete end-to-end communication path, all of the data streams span a

common shared path between participant Office of the Future environments.

The local network environment of each Office of the Future instance is not likely to

be a significant source of congestion, loss, or other dynamic network conditions because

it can be provisioned to support the Office of the Future application. The shared

Internet path between two Office of the Future environments, however, is not under

local control and thus will be the source of dynamic network conditions.

1.2 The Problem of Flow Coordination

A fundamental problem in distributed multimedia applications like Office of the

Future is that of flow coordination. Such applications employ a large number of

flows that share a common forwarding path between remote computing environments.

This path, since it typically cannot be provisioned end-to-end, is a dynamic source of

network latency, packet loss, and changes in available bandwidth.

Ideally, an application would be aware of changing network conditions and make

controlled adjustments to some or all flows to compensate for them. If, for example,

more network bandwidth becomes available, then it might choose to apportion this

bandwidth to particular flows based on their role in the application at the time. If

network delay and loss increase, then the application may choose to adjust the sending

rate of less essential data flows until conditions improve. In general, an application

will have specific priorities and objectives that it can use to make adjustments for

changing network conditions. This strategy includes exploiting inter-stream tradeoffs

to use limited network resources as effectively as possible.

Consider once again the Office of the Future. While media streams share a common

forwarding path between Office environments, not every stream is of equal priority. The

orientation and position of the user’s head, for instance, indicates a region of interest

within the environment. Media streams that are displayed within that region of interest



5

may require higher resolutions and frame rates than media streams that are outside

the region of interest. Ideally, the application should apportion available bandwidth

among streams dynamically as a user’s region of interest changes. This is particularly

important during periods when bandwidth resources become scarce. Without careful

resource allocation, the application as a whole can fail to achieve its desired objective

as lower priority streams compromise the performance of higher priority streams within

the application.

While application control over network resource allocation in response to changing

network conditions is desirable, in practice it is hardly ever realized. This is because

application flows use transport protocols that:

• Operate in isolation from one another,

• Share no consistent view of network conditions, and

• Fail to respond to network delay and congestion in application-defined ways.

Consider, for example, an application where endpoints use UDP to transmit media

data of varying priority levels and TCP to transmit high-priority control messages.

During periods of network congestion, media streams may be unaware of network of

conditions and continue to send at constant data rates. This lack of responsiveness

increases latency and loss for all media streams and, in particular, makes the perfor-

mance of high priority streams unacceptable. Meanwhile, TCP control flows back off

considerably in response to packet loss. Yet high loss rates continue to impact the

transmission of control message when, in fact, control messages are drastically needed

to make application adjustments on the receiving cluster and to inform the user.

Fundamentally, lack of flow coordination stems from the inherent limitations of

today’s widely used transport-level protocols. Among these limitations include:

1. Many protocols lack mechanisms to measure and respond to network

conditions. Non-responsive flows, as they are referred to in [BCC+98], are most

often UDP-based and frequently associated with media streaming applications. Such

protocols provide no way for an application to respond adaptively to network conditions

as they change dynamically.

2. Protocols with congestion response mechanisms achieve inconsistent

results across flows. This effect may follow from the fact that not all flows are

using the same congestion response algorithm. For example, one flow may be using



6

SAP

S1

S2

Sn

AAP

1A

2A

nA

2I1I

Bottleneck Link

Figure 1.2: A simple distributed application.

TCP Reno while another uses DCCP [KHF04]. Or, two flows may use TCP but with

different implementations (e.g., Windows XP and Redhat Enterprise LINUX) or with

different options (e.g., SACK, window scaling). Equally as important, roughly identical

flows may experience significantly different sets of packet loss events despite sharing

the same network forwarding path. This effect is illustrated in Section 1.2.1.

3. Protocols operate without awareness of peer flows. Transport-level

protocols typically provide no mechanisms for recognizing peer flows sharing the same

bottleneck link, the same intermediary forwarding path, the same end-to-end path,

or even the same source or destination hosts. As such, they are unable to exchange

information or coordinate data transport in any significant way.

4. Protocols lack mechanisms for configuring adaptive behavior. Protocols

with congestion response mechanisms (e.g., TCP [Pos81], SCTP [XMS+00]) typically

respond to network conditions in a transparent manner, leaving no higher order control

for an application that wishes to modify response behavior in some way.

1.2.1 An Illustration: Peer TCP Flows

To illustrate the problem of coordination, consider a distributed application like the

one modeled in Figure 1.2. In this experiment, all flows use TCP to transport exactly

the same data in a reliable, congestion responsive manner. Each host, furthermore,

uses the same base operating system with the same protocol implementation and the

same configuration.

While the network topology consists of only a few intermediary hops between com-

puting clusters, these hops are shared by all flows in the system. In particular, all flows

share the same bottleneck link which has been congested using Web background traffic.

(Full details of our laboratory testbed and the Web traffic generated are provided in

Appendix B.)



7

Figure 1.3: (a) Throughput and (b) throughput divergence for two TCP flows.

One might expect flow behavior in this scenario to be markedly similar across flows

since:

• The data to be transported is the same for all flows.

• The transport protocol (i.e., TCP) employed is the same for all flows.

• Windows size and other protocol configuration parameters are the same for all

flows.

• Network conditions on the shared data path between clusters are the same for all

flows.

Given this homogeneity, it would seem reasonable to hypothesize that flow behavior

will naturally exhibit a high degree of coordination. This is because flows use the same

congestion control algorithm to respond to the same conditions on the same bottleneck

link.

Figure 1.3 and Figure 1.4 demonstrate that this is not at all the case. In Figure 1.3

(a), we see the difference in throughput for an application consisting of two flows. First,

we observe that throughput for each TCP flow generally oscillates over time. Presum-

ably, this follows from additive increases in congestion window size and multiplicative

decreases when losses are encountered and congestion avoidance behavior results. What

is important to note here, however, is that this oscillation behavior is not synchronized.

That is, one flow may be increasing its throughput while another is decreasing it, and

vice versa. Likewise, the period between oscillation events may vary both within the

same flow and between flows. All of this implies that the difference in how each flow

experiences loss events over the shared data path between clusters is significant.



8

Figure 1.4: (a) Throughput and (b) throughput divergence for six TCP flows.

This conclusion is underscored by the period during which flow 2 receives signifi-

cantly less bandwidth than flow 1. This period, between seconds 190 and 191, suggests

that flow 2 experienced a congestion event that caused it to begin slow start. Mean-

while, flow 1 experienced no such event and thus behaved very differently during the

same interval.

This lack of coordination between two identical flows is further illustrated in Fig-

ure 1.3 (b) where the difference in bandwidth between the two flows, referred to as

throughput divergence, is shown. Divergence values can commonly be seen to spike

at 6 Mb/sec or more, with a long spike over 8 Mb/sec between seconds 190 and 191.

Coordinated flows would ideally show values near zero throughout indicating a high

degree of adaptive synchrony.

All of these conclusions are seen even more starkly in Figure 1.4 plots where the

number of identical flows in the application has been increased to six. Plot (a) once

again shows the considerable differences that exist in throughput for various flows

over a 10-second period. For any given interval, one or more flows is likely to receive

significantly more bandwidth than peer flows within the same application, while another

flow receives significantly less.

This difference is once again underscored by the throughput divergence plot in

Figure 1.4 (b). Values in this plot give the maximum throughput difference across all

flow pairs within the application for the given point in time. In general, values remain

significantly high throughout, suggesting that lack of coordination increases with the

number of identical flows within the system.

In summary, Figure 1.3 and Figure 1.4 illustrate the problem of flow coordination

for even the most rudimentary of scenarios, i.e., when flows transport artificially homo-



9

geneous data and use identical transport-level protocols. These flows share the same

forwarding path and are thus subject to the same dynamic path characteristics, yet

they still exhibit a striking lack of coordination. This is due to the lack of consistency

of network information across flows as each flow encounters loss events within the same

system somewhat differently.

1.3 Thesis Statement

The thesis of this dissertation may be stated as follows:

Using strategically placed information sharing mechanisms within the network, a

distributed application can coordinate flows to significantly improve application

performance.

Furthermore, this can be done:

• Without the use of buffering, scheduling, or shaping mechanisms within the net-

work,

• Without disrupting the semantics of end-to-end transport-level protocols, and

• While maintaining correct aggregate congestion response behavior over the shared

data path.

In this dissertation, we will describe how information sharing mechanisms can be

implemented within each locally administrated cluster and how an application can

use such elements to implement flow coordination. Our scheme represents an open

architecture that puts the application in control over the details of coordination, thus

freeing it to respond to network conditions in any way that best meets its objectives.

Since performance improvements are naturally application-specific, we will apply

our scheme to a proof-of-concept application in Chapter 6. Our results demonstrate

the dramatic improvements that follow from even simple coordination schemes that

exploit information consistency to coordinate application flows.



10

��� ������
������
���
������
������

������
���
������������������ ������

���	�		�	


�

�


�

�


�


������
������ ������

������
���


�

�


�

�
 ���

�
��

Point (AP)
Aggregation

Point (AP)
Aggregation EndpointsEndpoints

C−to−C Data Path

Cluster A Cluster B

Figure 1.5: Cluster-to-cluster application model.

1.4 The Cluster-to-Cluster Application Model

To better focus the problem of flow coordination in distributed multimedia appli-

cations, we define the notion of a cluster-to-cluster application in this section. We then

go on to discuss various properties of this model architecture that are important to flow

coordination.

We define a cluster as a set of endpoints distributed over a set of endpoint hosts

(computers or communication devices) and a single aggregation point or AP. Each

endpoint is a process that sends and/or receives data from another endpoint belonging

to a remote cluster. The AP, typically a first-hop router, functions as a gateway node.

The common traversal path between aggregation points is known as the cluster-to-

cluster data path. Figure 1.5 illustrates this model.

Two important characteristics of cluster-to-cluster applications are as follows:

• Minimal communication overhead within a cluster. Each cluster typically repre-

sents a local area network (LAN) and is under local administrative control. As

such, it can be provisioned to comfortably support the communication needs of

the application and does not represent a significant source of network delay or

packet loss. 1

• Dynamic conditions on the cluster-to-cluster data path. In contrast, the cluster-

to-cluster data path is shared with other Internet flows and typically cannot be

1Wireless clusters have somewhat different assumptions and are not treated here.



11

provisioned end-to-end. Hence, it represents a significant source of network delay

and packet loss for application packets.

While few application flows share the exact same end-to-end path in a cluster-to-

cluster application, all flows are subject to the same network delay, delay jitter, packet

loss, and other performance characteristics. This is because intra-cluster network effects

are largely insignificant compared to inter-cluster network effects. This is especially

true as the number of forwarding nodes along the shared path grows, the physical

distance traversed between clusters increases, bottleneck links are encountered on the

path, and the number of Internet flows competing with application flows increases.

Two more properties of the cluster-to-cluster application model are worth noting.

These include:

• Flow convergence. Each AP represents a natural point at which application flows

originating from various endpoints within a cluster converge to the same forward-

ing node.

• Shared network resources. Since all flows share the same intermediary path be-

tween clusters, network resources are naturally shared among flows. Thus, an

increase in bandwidth usage by some flows under conditions of limited band-

width will result in a decrease in bandwidth available to other flows sharing the

path.

Each of these characteristics play a significant role in the problem solution pre-

sented in Chapter 3. In particular, they highlight the need for coordinating bandwidth

usage among flows and point out an important architectural feature that can be ex-

ploited in accomplishing this objective; namely, that of flow convergence within the

local environment at the aggregation point.

1.5 Characterizing Cluster-to-Cluster Flows

Flows within a cluster-to-cluster application share several properties significant to

this dissertation. Here we divide them into several categories: flow heterogeneity, peer

flow relationships, and network resource usage.



12

1.5.1 Flow Heterogeneity

Flows within a cluster-to-cluster application exhibit heterogeneity on at least two

levels:

1. Data heterogeneity. Complex multimedia applications may employ flows with

a variety of data types. Some examples include images, text, audio, video, haptic data,

geometry data, and control data. Each data type presents a unique set of transport

requirements. For example, video streaming often requires significant bandwidth while

haptic data is less bandwidth intensive but very sensitive to delay and delay jitter. In

contrast, control data may be far less bandwidth- or delay-sensitive, but it places a

high demand on data integrity and reliable delivery.

2. Transport-level protocol heterogeneity. Each data flow must be matched

with a transport-level protocol appropriate to its requirements. Continuous media types

like audio and video, for example, may require a streaming protocol like RTSP [SLR98]

with specially designed session control and synchronization features. Control data,

on the other hand, may use TCP [Pos81] which provides reliable, in-order delivery

semantics.

Data and transport-level heterogeneity imply the need for cluster-to-cluster appli-

cation transport services to be managed independently, on a per-flow basis. This is

because different flows have different transport requirements, and no one transport-

level protocol can satisfy all sets of requirements.

1.5.2 Peer Flow Relationships

Flows within a cluster-to-cluster application, despite their heterogeneity, share peer-

ing relationships in various ways. In this section, we identify several types of relation-

ships important to the problem of flow coordination.

1. Semantic relationships among flows. Flows in a cluster-to-cluster appli-

cation may share complex semantic relationships with other flows. An application,

for example, may divide complex media objects into multiple streams with specific

encoding relationships. Different media streams may share temporal relationships and

require synchronization mechanisms for an orchestrated delivery at the destination clus-

ter. Flows may transport data with geometric relationships based on device positioning

within the media capture environment. Control or annotation data may describe the

content of other data flows. Priority relationships may exist as some flows transport pri-



13

mary data while other flows transport secondary or predictive data. Such relationships

can be complex and change dynamically to reflect changing application state. Further-

more, they are known only to the application. This implies the need for application

control over flow coordination mechanisms, as well as considerable flexibility.

2. Common application goals. While flows in a cluster-to-cluster application

can be both numerous and diverse, each belongs to the same application. As such,

each shares the same set of global application goals which take precedence over any

single flow’s individual requirements. For example, an application may be designed to

present a complex information visualization environment that is responsive to certain

types of user feedback. Particular flows within the application each have data transport

needs, but the overall quality of presentation and user responsiveness is the primary

consideration. For this reason, all flows share a vested interest in cooperating to achieve

the application’s global objective.

3. Shared intermediary path. Flows in a cluster-to-cluster application share

a common intermediary path between clusters. Whenever resources are limited, the

behavior of any individual flow within the application impacts directly peer flows within

the same application. A flow that is unresponsive to network congestion events, for

example, may negatively impact all other flows by taking a disproportionate share of

bandwidth and making conditions persist. Meanwhile, responsive flows may continue to

reduce their sending rate, but with little effect. In a different scenario, a flow that takes

less than its fair share of bandwidth may naturally make more bandwidth available to

other flows in the same application.

While data and transport-level heterogeneity imply the need for cluster-to-cluster

application transport services to be treated on an individual flow basis, peer flow rela-

tionships imply the need for these services to be treated on an aggregated basis. That is,

flows sharing a common global objective, a common intermediary forwarding path, and

particular semantic relationships would best be managed using a coordination scheme

that can consider the aggregate effect of various resource allocation policies. This is

because performance depends not on the transport success of any particular flow, but

upon the overall success of the right flows in concert with one another.

1.5.3 Network Resource Usage

Finally, cluster-to-cluster application flows share two common properties with re-

spect to network resource usage.



14

1. Transport requirements exceed available resources. While the precise

number of flows and bandwidth requirements depend entirely on the application, it is

not unreasonable to expect most cluster-to-cluster applications to be naturally high-

bandwidth in character. Specifically, such applications are likely to have bandwidth

requirements that, at least to some extent, exceed the resources available to them on

the shared cluster-to-cluster data path. Recall, as mentioned above, the shared cluster-

to-cluster data path typically cannot be provisioned end-to-end and is shared with an

indeterminate number of public Internet flows. Furthermore, the nature of multimedia

data types (e.g., digital video) naturally lends itself to high bandwidth requirements.

2. Complex adaptation requirements. With limited resources comes the need

for adaptive behavior that takes into account the global objectives of the application.

In part, this is a problem of dynamic resource allocation among flows. An application

must be able to apportion limited network resources (i.e., bandwidth) to individual

flows in a way that best serves its global objectives at the time. But this is also a

problem of enabling individual flow adaptation. Given appropriate information about

network conditions, flows may exhibit adaptive behavior individually on various levels.

For example, a flow may be able to modify the amount of data to be sent by altering

encoding strategies, modifying compression techniques, changing sampling rates, etc.

These properties imply the need for mechanisms that inform application flows of

changing network conditions on the cluster-to-cluster data path, and facilitate priori-

tized bandwidth allocation on a global level.

1.6 Design Goals

In this section, we identify a number of important design goals for our solution to

the flow coordination problem described in Section 1.2. These goals help to motivate

our approach described briefly in Section 1.7, and at length in Chapter 3 and Chapter 4.

1. Information sharing among flows. The problems described in Section 1.2

imply the need for mechanisms to exchange information among flows. Such information

must, among other things, include information about network conditions on the shared

cluster-to-cluster data path, and information about peer flows in the same application.

In addition, these mechanism might allow an application to designate other types of

information to be shared as well. Consistency of information is an essential property

for enabling coordinated flow behavior.



15

2. Preserving transport-level protocol semantics. Data heterogeneity within

a cluster-to-cluster application implies that different transport-level protocols will be

employed, each with somewhat different semantics. A solution to the flow coordi-

nation problem should address the cluster-to-cluster concerns of information sharing

and resource allocation among flows while still preserving the end-to-end concerns of

transport-level protocol semantics. That is, coordination mechanisms may enhance,

but never obstruct, end-to-end transport-level protocol semantics. For example, reli-

able, in-order delivery semantics (as provided by TCP) should still be achievable after

coordination mechanisms have been added to the cluster-to-cluster application archi-

tecture.

3. Leveraging application-level adaptation. One approach to solving the flow

coordination problem is to use in-network mechanisms that are transparent to applica-

tion endpoints. While this approach has the benefit of not requiring changes at each

endpoint, it fails to leverage application-level adaptation fully. In other words, by shar-

ing information with each endpoint about network conditions, an application can assist

with adaptation by adjusting the amount of data it produces for transmission. This

can be done, for example, by modifying its encoding techniques, compression strategies,

media sampling rates, etc. Additionally, endpoint-centered adaptation avoids the need

for complex buffering and scheduling schemes within the network which unnecessarily

inhibit forwarding performance.

4. Aggregate measurement of network throughput, delay, loss, and avail-

able bandwidth. An important component of flow coordination is obtaining infor-

mation on network delay, packet loss, and aggregate bandwidth available on the shared

data path between clusters. Rather than letting individual flows measure these condi-

tions independently, it would seem advantageous to measure them once with a single

mechanism. The information could then be disseminated to all flows in a consistent

and timely manner. This not only relieves individual transport-level protocols of the

measurement burden, it insures that measurement results are consistent across all flows.

5. Aggregate congestion responsiveness. It is important for aggregate appli-

cation traffic to be responsive to congestion within the network for three reasons. First,

it prevents unfairness to competing flows sharing the same network path. Second, it

prevents the possibility of congestion collapse [FF99]. Third, it minimizes unnecessary

loss and retransmissions for flows within the application. TCP-compatibility [FHPW00]

is one way to measure congestion responsiveness and will be used throughout this dis-



16

sertation.

6. Flexibility for the application. A flow coordination architecture needs to

provide flexibility for the application for several reasons. First, the requirements for

coordination depend entirely on the flows involved and the nature of the application

itself. One application may require some form of token-passing to implement flow

coordination in a video conferencing application, while another requires a class-based

hierarchical scheme in a gaming application. Second, a coordination scheme may change

dynamically over time as application state changes and user input modifies an appli-

cation’s operational mode. Thus, an application should be free to exploit trade-offs

without constraint. That is, a coordination mechanism should not preclude dynamic

changes in bandwidth usage among flows, or enforce any particular scheme for estab-

lishing bandwidth usage relationships between flows. The application should be free

to implement whatever adaptation policy is most appropriate using whatever means is

most appropriate.

1.7 The Coordination Protocol (CP)

Our solution to the problem of flow coordination in cluster-to-cluster applications

is called the Coordination Protocol, or CP. CP operates between the network layer and

transport layer, making it transparent to IP routers on the cluster-to-cluster forwarding

path while preserving end-to-end semantics for CP-based transport protocols.

Data packets transmitted by an endpoint include a CP header that identifies the

cluster application and the source flow. Additionally, it may contain state information

to be exchanged with peer flows in the same cluster. The local AP provides special

handling for CP packets, in part, by storing the state information to be shared with

other flows in a table for future reference.

The AP keeps a table of bandwidth usage statistics on flows in the same cluster-to-

cluster application, also tracking the number of flows and aggregate bandwidth usage

by the cluster-to-cluster application as a whole. It also conspires with the remote AP

to measure network conditions (network delay, packet loss, and available bandwidth)

across the shared data path in the following way.

When an AP receives a data packet from an endpoint participating in the cluster-

to-cluster application, it processes the incoming information and then overwrites the

CP header with network probe information. This piggybacked information is received



17

by the remote AP and used to collect network statistics. Since packets are available

for the same purpose on the return path, the two APs can establish a probe exchange

protocol that monitors network conditions on the shared path in considerable detail as

the application runs.

To estimate bandwidth available to the application, we use a TCP modeling equa-

tion that takes as input current network loss events, round trip time, average packet

size, and several other values. In particular, we make use of the TFRC [HFPW03]

equation, giving a throughput estimate that is both gradually responsive to network

congestion and TCP-compatible. In addition, this dissertation presents techniques to

extend single-flow modeling equations to multiple-flow scenarios. This allows cluster-

to-cluster application flows to receive an aggregate bandwidth equivalent to the number

of independent flows in the application, rather than attempting to multiplex a single

flow.

A packet originating from a remote endpoint and traversing the path toward a

particular local endpoint will be processed by a receiver’s local AP as the last hop on

the forwarding path. The AP will place information in the CP header, and then forward

the packet to the destination endpoint. A consistent view of network conditions across

flows follows from the fact that the same information is shared among all endpoints.

Transport-level protocols at application endpoints are built on top of CP. Using

information on aggregate bandwidth availability, loss rate, round trip time, number

of application flows, etc., as well as various application configuration parameters, the

transport protocol can choose an appropriate sending rate that reflects an application’s

global coordination strategies. Information on peer flows and network conditions is also

made available to the application layer directly, allowing it to modify data encoding

parameters or perform others types of adaptive behavior.

While CP provides the essential building blocks to enable cluster-to-cluster flow

coordination, the implementation of a particular flow coordination scheme is left to the

application. This is necessarily the case since it alone knows the nature and function

of various data flows, the semantic relationships between them, and how best to use

limited bandwidth during any given time interval.

1.8 Contributions

The contributions of this dissertation to the field of Computer Science are as follows:



18

• We identify an important class of forward-looking distributed multimedia ap-

plications known as cluster-to-cluster applications and describe their generalized

characteristics.

• We define the flow coordination problem. This problem is fundamental to cluster-

to-cluster applications, but also of interest to multiflow Internet applications gen-

erally.

• We propose a novel open architecture, called the Coordination Protocol (CP),

that solves the flow coordination problem in cluster-to-cluster applications.

• We identify the multiple flowshare problem and solve it using a novel technique

called bandwidth filtered loss detection (BFLD). Using this technique, almost any

single-flow congestion control algorithm can be scaled to a multiple-flow cluster-

to-cluster application context.

• We implement an experimental prototype of CP and evaluate various aspects of its

performance. Our implementation includes both kernel extensions for FreeBSD

software routers and a reliable transport protocol called CP-RUDP that uses CP

information to perform coordinated adaptation.

• We demonstrate how CP can be applied to the problem of multi-streaming in

3D Tele-immersion (3DTI), a complex cluster-to-cluster application developed

at UNC, for dramatically improved communication performance.

1.9 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 describes

background and related work. Chapter 3 presents the Coordination Protocol in detail,

with a focus on state table design and how coordination schemes can be constructed.

Chapter 4 presents CP congestion control mechanisms. This includes our scheme for

applying single-flow congestion control algorithms to the multiple-flow context. In

Chapter 5, we discuss aggregation point (AP) implementation and performance. In

Chapter 6, we describe how CP can be applied to solve the problem of synchronized

multi-streaming in 3D Tele-immersion (3DTI). Chapter 7 presents some conclusions

and future work.



Chapter 2

Related Work

In this chapter, we discuss related work. First, we describe some well-known in-

network approaches for apportioning bandwidth among flows and consider whether

they can be applied to solve the problem of flow coordination in cluster-to-cluster

applications. Next, we consider the issue of aggregate congestion control. This includes

several schemes that have been proposed for applying congestion control to flow bundles,

most notably the Congestion Manager by Balakrishnan et al. [BRS99]. Next, we discuss

the issue of bandwidth estimation. Our focus here is on TCP-based modeling equations

and how they may be used to estimate a sending rate given particular input parameters

describing network path conditions. TCP-compatibility is an important property of the

calculated rate, one which ensures both stability and fairness to competing flows on

the Internet path. Finally, we briefly look at programmable network architectures,

including active networks [TW96] and ephemeral state processing [CGW02]. These

ideas provide useful background to our approach described in Chapter 3.

2.1 In-network Bandwidth Sharing Approaches

The problem of flow coordination in distributed multimedia applications is princi-

pally concerned with how to apportion aggregate bandwidth among application flows

sharing the same network path. Several approaches to this problem have been sug-

gested over the years that rely on mechanisms within the network. These approaches

are often desirable because they require few, if any, modifications to end systems host-

ing flow endpoints. Here, we consider two such approaches: differentiated services and

traffic shaping.



20

2.1.1 Differentiated Services

From a high level viewpoint, one may wonder whether the problem of flow coordi-

nation in distributed multimedia applications hasn’t already been solved by previous

work in Quality of Service (QoS). Some examples of such work include [FJ95, Zha95,

GGPS96, PJS99]. Broadly stated, QoS provides a framework for provisioning network

resources (e.g., buffering, bandwidth) along the forwarding path between endpoints to

insure minimal throughput and bounded delay.

In particular, consider differentiated services [BCD+98]. Diffserv, as it is commonly

referred to, provides a framework for offering tiered service levels at forwarding nodes

based upon pre-arranged customer agreements. In general, a customer and provider

may negotiate a service level (e.g., leased line emulation, better than best-effort) for

their particular traffic profile and pay accordingly for the service. Traffic falling within

the profile is guaranteed that service level while traffic exceeding that profile may be

treated in a variety ways depending upon the provider’s infrastructure and policy (e.g.,

best effort forwarding, dropping).

Diffserv works by associating packets with a particular pre-established Service Level

Agreement (SLA). Packets are marked using a subset of bits in the Type of Service

(TOS) field of the IP header known as the DS field. A Service Level Specification (SLS),

which includes a Traffic Conditioning Specification (TCS), gives a set of detailed service

parameters that include expected throughput, drop probability, latency, service scope

(ingress and egress points), etc. An SLA can take many forms, but generally provides

some sort of bandwidth allocation characterized by the parameters of a leaky token

bucket [Tan96].

Diffserv, and QoS more generally, might ideally be used to provision aggregate C-to-

C application traffic and avoid the need for congestion response and resource allocation

mechanisms entirely. Purchasing a service agreement to serve this purpose for high-

bandwidth applications is likely to be prohibitively expensive, however. In part, this

is because a complex cluster-to-cluster application will employ many flows and require

considerable network resources. But it is also because service agreements need to be

negotiated with providers spanning the entire forwarding path. For clusters separated

by large geographic distances, there can be many service providers involved.

A more economical solution would be to use diffserv to provision for the minimum

bandwidth required for the lowest acceptable application performance level, and then

make use of best-effort, shared bandwidth whenever possible. In this case, how to



21

provide coordinated congestion response and resource allocation among flows remain

important open problems since application demands exceed provisioning. Neither diff-

serv, nor QoS generally, provide a framework for solving these problems.

Another issue is that of flexibility. As mentioned above, using a single SLA to specify

a minimum service level for cluster-to-cluster application traffic does little to eliminate

the need for flow coordination. In an alternative use of diffserv, an application might

employ multiple SLAs to provide different service levels for different application flows

depending on their role within the application. For example, high priority streaming

flows might be associated with an SLA that provides considerable guaranteed band-

width and minimal delay while low priority bulk data flows are associated with an

SLA that provides merely best-effort forwarding. By associating flows with different

service levels, an application effectively provisions flows differently and thus provides a

naturally tiered (and to some extent coordinated) use of network resources.

This approach is not without its problems, however. Provisioning each flow with its

own SLA might not be cost effective. Furthermore, changes in application architecture

(i.e., number of devices in either cluster, flow endpoints, flow profiles, etc.) would

require a new set of SLAs. To avoid this problem, an application might employ a set of

SLAs on an aggregate rather than individual flow basis. That is, an application’s many

flows would be associated with a smaller number of SLAs such that many or all SLAs

service more than one flow. How to coordinate changes in SLA association dynamically,

and how to handle SLAs that provision inadequate bandwidth for the number of flows

associated with it are both open questions. Once again, neither diffserv nor QoS more

generally provide a framework for solving these problems.

Finally, a practical consideration should be noted. At the date of this writing,

diffserv has yet to be widely deployed on today’s production Internet. Nor is there a

movement to realize widespread deployment in the near future. Without such deploy-

ment, cluster-to-cluster path provisioning using diffserv remains an academic exercise.

This dissertation, in contrast, offers a real-world solution that is readily deployable in

the present.

2.1.2 Traffic Shaping

Another approach that might be considered is that of traffic shaping. In this ap-

proach, traffic entering the network through a particular forwarding node is modified

to conform to a specification or profile. This profile can, as with a Traffic Conditioning



22

Specification (TCS) in diffserv, be expressed as a static set of parameters like those

of a leaky token bucket [Tan96]. These include an average output rate (the rate at

which tokens are generated) and a maximum burst size (the number of credits or to-

kens that can be stored in the bucket). In fact, diffserv mechanisms may include traffic

shapers. Diffserv, however, is distinct from traffic shaping in that it deals with service

level agreements while traffic shapers are merely mechanisms that modify the profile of

incoming traffic to a particular output specification.

Traffic shaping in a cluster-to-cluster application would logically be done at each AP.

Unlike simple leaky bucket rate regulation which provides a constant average output

rate, however, each traffic shaper is charged with estimating dynamically an output rate

that reflects current network path conditions. It then buffers packets from individual

flows and transmits them at the target rate in a way that is responsive to conditions on

the cluster-to-cluster data path. This need for congestion control follows partly from

the fact that no provisioning is employed in this approach, and partly from the fact

that application traffic will share the cluster-to-cluster data path with an indeterminate

number of other flows on the public Internet. Without dynamic adjustments in output

rate, an application may cause excessive packet loss when network congestion occurs,

fail to utilize bandwidth when it becomes available, or cause unfairness to competing

flows on the same forwarding path.

The important open problem in this approach, then, is that of determining a conges-

tion responsive output rate that reflects current conditions along the shared forwarding

path between clusters. Traffic shaping, in and of itself, provides no solution to this

problem. In contrast, this dissertation describes mechanisms in Chapter 3 and Chap-

ter 4 for accomplishing this task in an efficient and non-intrusive way. (Non-intrusive

refers to the fact that no additional packets are introduced into the network in the

process.)

Assuming a solution to the problem of output rate adjustment, another serious

problem is that of coordinating bandwidth distribution across application flows. Given

an output rate that is less, either temporarily or on an average, than the aggregate

flow input rate, how can bandwidth be apportioned among flows in a way that reflects

changing application priorities and inter-stream trade-offs?

What is needed are additional mechanisms within the shaper. One such approach is

to employ a hierarchical scheduling scheme (hierarchical round robin [KK90], weighted

fair queuing [PG93], weighted round robin [KSC91], class-based queuing [FJ95], etc.).



23

In class-based queuing (CBQ), for example, traffic is divided into classes (flat or hi-

erarchical) and given separate queues at the output link. Each queue is assigned a

bandwidth share that is enforced by a link-scheduler when limitations exist on avail-

able bandwidth due to network congestion. The scheme also requires a packet classifier

that identifies a packet’s class and queues it appropriately upon arrival.

While this approach addresses the problem of flow coordination to some extent,

we believe the solution is less than ideal for several reasons. First, the approach does

not lend itself to dynamic reconfiguration. As flows within a complex cluster-to-cluster

application change in the amount and priority of data to be sent, classifier, queuing,

and scheduling mechanisms operate according to a static configuration. Even if this

configuration could be changed dynamically, such changes might cause interruptions in

service and would generally be problematic to implement.

An equally serious problem is that of transparency. A traffic shaper is intended to

operate in a transparent manner with respect to individual flows. While potentially

a desirable feature when flows are unrelated and relative priorities static, cluster-to-

cluster application flows require information on network performance (i.e., available

bandwidth, loss rates, etc.) to make dynamic adaptation decisions at the source. These

decisions take into account semantic relationships among flows, changing priority levels,

and salient aspects of application state, all of which cannot be known by the scheduler.

For example, a flow may adjust its media encoding strategy at key points given changes

in available bandwidth and a particular user event.

Finally, the approach relies on buffering at the shaping node to adjust bandwidth

usage among flows. This necessarily results in additional network delay as data packets

for some flows wait in particular queues to be scheduled. Clearly this is a disadvantage

for real-time interactive applications where network delay and jitter are critical per-

formance parameters. Much like the authors of the Congestion Manager (discussed in

Section 2.2.2), we believe that application control over data transmission events repre-

sents a better design strategy than the extensive use of buffering within the network.

2.2 Aggregate Congestion Control

The need for congestion control in networked applications is discussed at length in

[FF99]. In general, the problem with unresponsive flows (flows that do not reduce their

level of bandwidth usage when subjected to packet drops) on the Internet is first, the



24

danger of congestion collapse, and second, unfairness to competing flows.

Congestion collapse occurs when an increase in network load results in a decrease

of useful work done by the network. In classical congestion collapse, for example, flows

continually retransmit packets but fail to achieve goodput levels (bandwidth delivered

to the receiver excluding duplicate packets) in keeping with the bandwidth used at the

sender. Floyd and Fall [FF99] identify several other types of congestion collapse, in-

cluding collapse from undelivered packets, fragmentation-based collapse, collapse from

increased control traffic, and collapse from stale or unwanted packets.

The notion of fairness pertains to bandwidth usage relative to competing flows

sharing the same network link. A flow is unfair if it uses a disproportionate amount

of bandwidth compared to peer flows. This relativistic definition naturally begs the

question, “How much bandwidth do peer flows use?” Given the widespread use of the

Transmission Control Protocol (TCP) [Pos81] by Internet applications, including the

World Wide Web [CMT98, SCJO01], the prevailing standard for determining fairness

is TCP-compatibility or TCP-friendliness. A flow that is TCP-compatible sends at a

rate that does not exceed the rate of a conformant TCP flow under the same network

conditions. [FF99].

The challenge in cluster-to-cluster applications is to regulate an application’s traffic

so that it is congestion responsive on an aggregate level. This not only prevents un-

necessary packet loss for the application’s flows, it reduces the potential for congestion

collapse and provides fairness to flows from independent applications sharing various

portions of the cluster-to-cluster data path. Addressing this problem on the aggregate

(as opposed to individual) flow level serves two purposes. First, it allows us to provide

a single congestion control mechanism for all flows. Second, it allows flexibility in ap-

portioning bandwidth among flows without affecting overall aggregate traffic behavior.

(This is addressed more fully in Chapter 3.)

One further consideration is that of multiple flowshares. A multiple-flow cluster-to-

cluster application must not only be responsive to network congestion on an aggregate

level, it should receive the bandwidth equivalent to the number of participating flows.

That is, an m-flow application should, as an aggregate, receive bandwidth equivalent

to m congestion-responsive flows or simply m flowshares. While receiving less has little

adverse effect on the network, it results in significant unfairness to the application.

(This will be addressed more fully in Chapter 4.)



25

2.2.1 Flow Segmentation and Bundling

One possible approach to providing congestion control for flow aggregates is to

multiplex the flows of a cluster-to-cluster application together into a single congestion

controlled flow between aggregation points, and then to demultiplex them at the remote

cluster. This could be done explicitly at the application-level or transparently by a

mechanism implemented at the AP. This approach is taken by [KW99] in their work

on TCP trunking for connections that traverse a common backbone path.

Kung and Wang define a TCP trunk as “an aggregate traffic stream whose data

packets are transported at a rate dynamically determined by TCP’s congestion con-

trol.” Individual flows sending data along the same intermediary path do so using

whatever transport-level protocol is appropriate for their purposes. When the packets

reach the endpoint of the trunk, they are buffered until they can be sent by a single

management connection to the remote endpoint of the trunk and then forwarded to

their destination. What makes the trunk congestion responsive is the fact that the

management connection employed is a TCP connection.

Another variation of this approach, known as aggregated TCP (ATCP), is pre-

sented in [PCN00]. In this approach, an end-to-end connection is divided into a local

subconnection with the portal router and a shared remote subconnection between this

router and a commonly accessed remote host. (In the context of a cluster-to-cluster

application, the remote subconnection might further be divided into an intermediary

subconnection between APs, and a remote subconnection between the remote AP and

endpoint host.) While the authors’ original intention is to improve the performance

of TCP connections by growing congestion windows more quickly and using persistent

connections, the approach might be applied to cluster-to-cluster traffic as a way of

introducing aggregate congestion control.

Each of these approaches, when applied to the cluster-to-cluster application context,

present significant difficulties. First, the approach reduces aggregate application traffic

to a single flowshare as multiple flows utilize a single management or remote subcon-

nection. We argue in Chapter 4 that limiting aggregate cluster-to-cluster application

traffic to a single congestion responsive flow is unfairly restrictive in circumstances

where the application employs numerous flows or is competing with numerous flows at

the bottleneck link.

Second, the approach fails to inform cluster-to-cluster application endpoints of cur-

rent network performance. Much like traffic shaping, the congestion controlled man-



26

agement connection between clusters operates in a manner transparent to each flow

source. As such, endpoints receive no information about network conditions (available

bandwidth, loss rates, etc.) that is crucial in order to provide any kind of adaptive

response. In this way, application endpoints cannot fully exploit specific inter-stream

adaptation schemes of the type described in Chapter 1.

Third, this approach may result in substantial end-to-end delay as application pack-

ets are buffered at the trunk node waiting to be forwarded in a congestion controlled

manner. As mentioned in Section 2.1.2, this is a clear a disadvantage for real-time

interactive applications where network delay and delay jitter are critical performance

parameters.

Fourth, the end-to-end semantics of the individual flows are not preserved if the

communication is segmented into subconnections (i.e., endpoint to AP, AP to AP, AP to

endpoint). For example, reliability semantics dictate that an acknowledgment received

by a sender indicates that a receiver has successfully received the transmitted data. In

the segmentation approach, however, an acknowledgment may inform an endpoint only

that the data was successfully transmitted to the next multiplexing agent. There is no

way to know whether the data was actually received by the destination endpoint on

the remote cluster.

Finally, the approach once again fails to provide a framework for coordinated band-

width allocation across flows. This problem can be solved to some degree by using the

same scheduling mechanisms described in Section 2.1.2 at the multiplexing point, but

with the same drawbacks also described.

2.2.2 Congestion Manager

The congestion manager (CM) architecture, proposed by Balakrishnan et al. in

[BRS99], provides a compelling solution to the problem of applying congestion control

to aggregate traffic where flows share the same end-to-end path. Unlike the above

schemes, CM emphasizes application control by informing flows of bandwidth available

to them and avoiding the buffering of flow data during the forwarding process.

The CM architecture consists of a sender and a receiver. At the sender, a congestion

controller adjusts the aggregate transmission rate based on its estimate of network

congestion, a prober sends periodic probes to the receiver, and a flow scheduler divides

available bandwidth among flows and notifies applications when they are permitted

to send data. At the receiver, a loss detector maintains loss statistics, a responder



27

maintains statistics on bytes received and responds to CM probes, and a hints dispatcher

sends information to the sender informing them of congestion conditions and available

bandwidth. An API is presented that allows an application to request information

on round trip time and current sending rate, and to set up a callback mechanism to

regulate send events according to its apportioned bandwidth.

It should be noted that CM is solving the problem of providing aggregate congestion

control for flows that share the entire end-to-end path. That is, all flows share the same

source and destination hosts. In contrast, flows in the cluster-to-cluster context share

the same intermediary path but not the same end-to-end path. That is, flows share a

significant portion of the forwarding path, but not the entire path end-to-end. Another

important contrast is that flows in CM are not necessarily part of the same application,

while in cluster-to-cluster applications they are.

To some extent, the work presented in this dissertation represents our proposal for

applying CM concepts to the cluster-to-cluster application model. We agree with CM’s

philosophy of putting the application in control, though for CM this means allowing

unrelated flows to know the individual bandwidth that is available to them, while

for cluster-to-cluster applications it means allowing endpoints to know the aggregate

bandwidth available to the application. Furthermore, we believe CM’s notion of using

additional packet headers for detecting loss and identifying flows is a good one, and

this is reflected in our own architecture as described in Chapter 3 and Chapter 4.

On the other hand, applying the CM architecture to the cluster-to-cluster applica-

tion context is not without its problems and issues. First, CM’s use of a flow scheduler

to apportion bandwidth among flows is problematic in the cluster-to-cluster context for

many of the same reasons given in our discussion of traffic shaping. Because cluster-

to-cluster applications can have complex schemes for adding and deleting flows, and

for responding to changes in available bandwidth and changes in application state, we

expect adaptation strategies to result in very dynamic rate adjustments for individual

flows. As a result, characterizing each flow’s rate requirements is difficult to do a priori.

This kind of characterization is required with CM because individual flow requirements

are reconciled within a hierarchical fair-service curve (HFSC) scheduler. The HFSC

scheduler at the core of CM also serves to police the aggregate sending rate and en-

sures that the resulting traffic conforms to the calculated congestion controlled rate.

Thus, while CM is able to take a set of well-characterized flows and static priorities and

build a hierarchical schedule for bandwidth allocation, this approach is less suitable in



28

the more dynamic cluster-to-cluster context.

Likewise, CM’s callback structure for handling application send events is difficult to

implement in the cluster-to-cluster application context. This is because in CM, flows

share the same sending host. For senders on the same host, a callback architecture

is reasonably implemented as a simple system call provided by the OS. In contrast,

individual flow endpoints of a cluster-to-cluster application commonly reside on differ-

ent computing and communication devices. A callback scheme using send notification

messages from the AP to various application endpoints would result in significant com-

munication overhead, making it impractical. Our approach, as will be seen in Chapter 3,

is to instead provide individual endpoints with global information about aggregate net-

work performance of the larger application and then allow each flow to independently

determine an appropriate share of the aggregate bandwidth using an application-specific

configuration. This allows for complex adaptation schemes that would be difficult to

reconcile in a centralized scheduler. The onus is now on the application to ensure that

individual endpoint decisions result in the appropriate aggregate behavior.

Finally, CM is designed to multiplex a single congestion responsive flow among

application flows sharing the same end-to-end path. As argued with the multiplex-

ing approach, it may be undesirable to constrain a cluster-to-cluster application which

commonly employs a large number of flows to a single flow share. Our solution allows

aggregate cluster-to-cluster traffic to use multiple flow shares while remaining conges-

tion responsive.

2.3 Bandwidth Estimation

Coordinating flows in a cluster-to-cluster application involves knowing about the

network resources currently available to the application and apportioning them among

flows in a way that best meets problem-specific objectives. In this section, we consider

background work on the issue of estimating the amount of network resources available to

the application. Specifically, we look at recent work in equation-based congestion con-

trol, including both a TCP modeling equation and a transport-level protocol (TFRC)

that applies that model to the problem of smoothed, congestion responsive data trans-

port.



29

2.3.1 Equation-based Congestion Control

Given a particular cluster-to-cluster data path, including information on its current

round trip time, average packet size, and the rate of packet loss, how can we choose a

sending rate that is both congestion responsive and fair to other Internet flows sharing

portions of the same forwarding path?

It was mentioned in Section 2.2 that the Transmission Control Protocol (TCP) [Pos81]

has emerged as the prevailing standard for determining a fair sending rate. This is

partly because of its widespread deployment in today’s Internet (e.g., Web applica-

tions [CMT98, SCJO01]) and partly because of its stability properties [CJ89]. A flow

is said to be TCP-compatible or TCP-friendly if it sends at a rate that does not exceed

the rate of a conformant TCP connection under the same network conditions. [FF99].

To achieve a conformant send rate, one could always replicate the window-based

mechanisms of TCP in full detail. Recent work in equation-based congestion con-

trol [FF99, PFTK98, FHPW00], however, provides an alternative. Work in this area

began with Floyd and Fall [FF99] who recognized the need for a TCP-friendliness test

that could be used by routers to identify misbehaving flows. Toward this end, they

develop an analytic expression that models TCP steady state behavior characterized

by the familiar additive increase multiplicative decrease (AIMD) rate control policy.

The equation is as follows:

T =
1.5

√
2
3
B

R
√

p
(2.1)

Here, T is the maximum TCP-friendly send rate (bytes/sec), B is packet size (bytes),

R is round trip time (sec), and p is the packet loss rate. The model assumes that each

data packet arrival generates an acknowledgment packet in return, and doesn’t take

into account retransmission timeouts or consecutive packet drops.

Padhye et al. expand on this approach in [PFTK98] by handling:

• Triple duplicate ACK loss indicators (four ACKs received with the same acknowl-

edgment number),

• Retransmission timeout loss indicators, and

• Limitations in receiver window size.



30

The approach is based on TCP Reno (a widely deployed version of TCP) and models

congestion avoidance behavior in the form of rounds where each round is the transmis-

sion of a window of data over the course of one round trip time. The analytic expression

is as follows:

X =
s

R
√

2bp
3

+ tRTO(3
√

3bp
8

)p(1 + 32p2)
(2.2)

Here, X is the TCP-conformant transmission rate (bytes/sec) to be calculated, s is the

packet size (bytes), R is the round trip time (sec), p is the loss rate on the interval

[0, 1.0], tRTO is the TCP retransmission timeout (sec), and b is the number of packets

acknowledged by a single TCP acknowledgment.

Some additional assumptions in this model include loss independence between rounds

and correlated packet loss within a round. The former means that a packet loss within

a round of data transmission does not change the probability that a packet will be lost

in a subsequent round. The latter assumption means that if a packet is lost, then all

remaining packets transmitted until the end of the round are also lost. Clearly this is a

somewhat crude approximation of the real world where correlations among packet loss

events are a complex affair. [Pax97]

Equation 2.2 allows one to calculate a TCP-friendly send rate dynamically as con-

ditions on the cluster-to-cluster data path change. Furthermore, using a rate-based

approach allows us to encapsulate information about the bandwidth available to an

application flow explicitly in the form of a numerical value. This value can be passed

to application endpoints to enable both send rate modification at the transport level

and various kinds of adaptation at the application level.

2.3.2 TCP-friendly Rate Control (TFRC)

In [FHPW00] and [HFPW03], Floyd et al. show how equation 2.2 can be used to

construct a transport-level protocol that is less abrupt in its rate changes than TCP

yet still TCP-compatible. Known as TCP-Friendly Rate Control, or TFRC [FHPW00,

HFPW03], the protocol provides a more moderate response to transient changes in

congestion. As such, it represents an attractive alternative for multimedia streaming

in a best effort, unicast networking context.

TFRC avoids abrupt changes in sending rate in part by smoothing round trip time



31

values, an important input parameter to equation 2.2. To accomplish this purpose, an

exponentially weighted moving average is used as follows:

Ravg = βRsample + (1− β)Ravg (2.3)

[HFPW03] suggests a value of 0.1 for the sample weighting factor β. A more complex

scheme for preventing oscillation behavior may optionally be used, but at the expense

of a square root computation.

Smoothing is furthermore incorporated into the handling of loss rate, another crucial

input parameter for equation 2.2. Rather than using a simple packet loss rate, TFRC

uses a somewhat more sophisticated value called the loss event rate designed to better

model TCP behavior in the face of multiple losses. Let d0 be the sequence number of the

first lost packet in a sequence of data packets transmitted by a flow. After a dampening

interval of one round trip time, the next lost packet is noted and its sequence number

becomes d1. A loss interval s0 is then defined as the difference between these two

values or d1−d0. Ignoring losses following an initial loss within the dampening interval

is intended to model TCP which reduces its congestion window only once under such

circumstances. This is because additional losses will be hidden by the duplicate ACK

mechanism signaling a congestion event.

To apply smoothing, TFRC uses a loss history to calculate an average loss interval.

This averaging is intended to reduce the impact of sudden, transitory values that are

unrepresentative of prevailing values on the whole. A loss history includes simply the

last n consecutive loss event values. (RFC 3448 [HFPW03] suggests a value of n = 8.)

An average loss interval is then calculated as a weighted moving average using the

formula:

savg =

∑n
i=1 wi ∗ si∑n

i=1 wi

(2.4)

where

wi = 1 for 1 ≤ i ≤ n

2

wi = 1−
i− n

2
n
2

+ 1
for

n

2
≤ i ≤ n

An additional technique called history discounting is used to reduce the weighting of



32

older history values when the current loss event becomes larger than twice the current

value of savg.

Note that both loss event and history discounting calculations require knowing the

approximate arrival time of packets that were lost in transit. This can be done through

interpolation using the equation below:

Tlost = Tbefore + ((Tafter − Tbefore) ∗ (Slost − Sbefore)/(Safter − Sbefore)) (2.5)

Here, Slost is the sequence number of a lost packet, Sbefore is the sequence number of

the last packet to arrive prior to the lost packet, Safter is the sequence number of the

first packet to arrive after the lost packet, Tlost is the arrival time of the lost packet (to

be calculated), Tbefore is the arrival time of the last packet to arrive prior to the lost

packet, and Tafter is the arrival time of the first packet to arrive after the lost packet.

TFRC is important to this dissertation because it provides a reasonably tested set

of congestion control techniques that can be applied to the cluster-to-cluster problem

scenario. Its smoothing features make it an appealing choice for complex multimedia

applications that are sensitive to abrupt changes in bandwidth. Its rate-based approach,

which encapsulates estimation results into a single value, lends itself well to information

sharing among endpoints. Finally, its congestion response behavior is compatible with

TCP flows sharing the cluster-to-cluster data path.

It should be noted, however, that the solution architecture presented in Chapter 3

and Chapter 4 does not depend on TFRC. As we will argue later, almost any equation-

based congestion control scheme could be used with suitable result, provided that the

scheme demonstrates the right set of properties (e.g., TCP-compatibility).

2.3.3 Rate Adaptation Protocol (RAP)

While bandwidth estimation in our implementation of CP makes use of equation

2.2 and TFRC’s method for loss handling, work on aggregate congestion control in

Chapter 4 also considers the Rate Adaptation Protocol (RAP) proposed by R. Rejaie

et al. in [RHE99].

RAP is a transport protocol designed for real-time media streams over the Internet

(e.g., digital video or audio playback applications). While it is designed to be TCP-

compatible, its novel contribution lies in the way its rate-based approach separates



33

congestion control mechanisms from error control mechanisms. As the authors argue,

this is because congestion control depends solely upon the network while error control

is an application-level concern.

RAP achieves TCP-compatibility by employing TCP’s familiar additive increase,

multiplicative decrease (AIMD) algorithm. Rather than applying this scheme to a

window of transmission data, however, it makes adjustments to an inter-packet gap, or

IPG, defined as the current packet size divided by the current sending rate.

Additive increase contains both step length and step height dimensions. Step length

refers to the frequency with which the increase is made. Since feedback delay in the

system is one round trip time (RTT ), RAP adopts the smoothed round trip time

(SRTT ) as its IPG update interval. (Less frequent updates may result in unresponsive

behavior while more frequent updates may result in oscillations.) Step height refers to

the increase in transmission rate at each update point. Translated into IPG terms, the

update is defined as

IPGi+1 =
IPGi ∗ C

IPGi + C
(2.6)

where C has the dimension of time and controls the rate of transmission increase. To

maintain the TCP invariant of exactly one additional packet transmission per step, a

value of SRTT is chosen for C. (See [RHE99] for a more detailed discussion.)

Multiplicative decrease is handled using a β parameter that adjusts the current IPG

as follows:

IPGi+1 =
IPGi

β
(2.7)

In keeping with TCP, β is defined to be the constant 0.5. Also like TCP, a multiplicative

decrease update is applied immediately upon detecting network congestion.

Clustered losses in RAP are handled using a cluster-loss-mode. A lost packet with

sequence number SeqFirstLoss will cause a back-off event. After that, subsequent losses

with sequence numbers in the range SeqLastLoss ≥ Seq > SeqFirstLoss, where SeqLastLoss

is the last packet that has already been transmitted, will be ignored. This mechanism,

as the authors point out, is similar to that of TCP-SACK [MMFR96, FMMP00, FF96].

While RAP’s rate-based AIMD implementation provides a coarse-grained level of

adaptation, additional fine-grained mechanisms are also proposed for increasing stabil-

ity and responsiveness to transient congestion. This includes, among other things, a



34

feedback signal Feedbacki defined as Feedbacki = FRTTi

XRTTi
where FRTTi and XRTTi

are short- and long-term exponential moving averages of RTT . This dimension-less,

zero-mean signal provides fine adjustments to the inter-packet gap using the update

expression IPG′
i = IPGi ∗ Feedbacki.

The RAP module described in the authors’ design architecture is charged with

detecting packet loss and continuously modifying transmission rate at the sender. How

the application layer responds to error events is left open to the application. For

example, an application may adjust its encoding scheme, provide complete or partial

error recovery using data retransmissions, or implement forward error correction with a

chosen level of robustness. Regardless of the approach taken, data transmission cannot

exceed that of the rate-governed RAP module.

RAP is important to this dissertation because it represents another TCP-conformant,

rate-based scheme for congestion control. As such, it provides an interesting alternative

to TFRC for implementing aggregate congestion control within the cluster-to-cluster

application context. While TFRC uses a modeling equation to calculate an instan-

taneous TCP-friendly send rate given current network conditions, RAP calculates a

sequence of relative rate changes in a way that closely mimics the behavior of TCP.

Each of these approaches will be discussed further in Chapter 4.

2.4 Open Network Architectures

State sharing among flows in a cluster-to-cluster application could be handled in

a variety of ways, including application-level control connections, network-level multi-

cast, or even physical layer broadcast using a suitable technology like ethernet. One

attractive option for a variety of reasons, however, is that of extensible router services

that interact with application endpoints via pre-defined directives carried by applica-

tion data packets. Such schemes are often referred to as programmable networks or

open network architectures.

Open network architectures provide a superior alternative to control connections,

multicast schemes, or broadcast channels in that they provide more than just a commu-

nication technology. Information in such architectures can be deposited into persistent

storage, exchanged among flows traversing the same forwarding node, and modified

using pre-defined programming directives. The result is a powerful and flexible way

to solve complex communication problems [Wet99b, CMK+99, CGW02] by leveraging



35

resources within the network.

In this section, we first discuss the classic end-to-end argument for system design

proposed by Saltzer, Reed, and Clark in [SRC84]. Then, we consider active network-

ing [TW96, Wet99b] which is seen as the seminal work in programmable networks.

Finally, we consider a more recent contribution to open network architectures called

ephemeral state processing (ESP) [CGW02] which focuses more directly on the issue of

state exchange among flows.

2.4.1 The End-to-End Argument

The end-to-end argument for system design was first proposed by Saltzer, Reed, and

Clark in their classic 1984 paper “End-to-end Arguments In System Design” [SRC84].

Quoting from the paper, the argument is given as follows:

Functions placed at low levels of the system may be redundant or of little value

when compared with the cost of providing them at that low level.

To paraphrase for the networking context, designers should avoid placing functionality

in the low-level forwarding infrastructure of the middle of the network when it can be

implemented at the end systems.

The canonical example for this design principle is transport reliability. Building

reliability mechanisms directly into the network at a low level (e.g., between each

forwarding node) provides the service for all flows, but not without paying a price in

forwarding performance.

The obvious problem, of course, is that some applications (e.g., certain kinds of

media streaming) may not require reliable transport. Such applications end up paying

a performance price for an unnecessary service when, in fact, network forwarding per-

formance (reflected in end-to-end delay and throughput performance metrics) may be

critical to the application.

An even more serious problem is that low-level reliability mechanisms in the net-

work still fail to solve the problem of transport reliability. While the reliability of data

exchange between hops in the network is important, transport reliability is fundamen-

tally an end-to-end notion and must be handled at the endpoints of communication.

Thus, mechanisms in the network that govern segments of the end-to-end forwarding

path do little to prevent the need for end-to-end mechanisms that provide the same



36

functionality in a more comprehensive way. Some other examples of similar end-to-end

functionality include packet sequencing, encryption, duplicate packet detection, and

delivery acknowledgments.

While the end-to-end argument is persuasive when considering services like trans-

port reliability, it is important to note that not all services are fundamentally end-to-end

in nature. Bhattacharjee, Calvert, and Zegura argue in [BCZ98] that some network ser-

vices are either possible or greatly enhanced by leveraging information available only

within the network. Some examples are determining the location of network congestion,

identifying global access patterns in the World Wide Web, and constructing multicast

distribution tree topologies.

For this reason, the end-to-end argument as a design philosophy has been disputed

in recent years, especially among researchers in the programmable networks commu-

nity [Wet99b, CMK+99, CGW02]. Such researchers have proposed in-network solutions

for such diverse problem areas as

• Topology discovery.

• Overlay, virtual, and peer-to-peer networks,

• Multicast feedback thinning,

• Pricing, accounting, and billing services,

• Proxies, middleboxes, and mediation devices, and

• Network security.

As we will see in Chapter 3, limited use of edge-routers as information exchange

points by cluster-to-cluster application flows provides an elegant and deployable solution

to the problem of flow coordination. It also represents only a minor re-interpretation of

the end-to-end principle: rather than end hosts representing the domain boundaries of

the end-to-end principle, cluster gateways or aggregation points (APs) do. The nodes

between each AP remain unmodified in keeping with the end-to-end principle, thus

avoiding redundant services and unnecessary forwarding overhead within the network

core.



37

2.4.2 Active Networking

Active networking was first proposed in 1996 by Tennenhouse and Wetherall [TW96].

The main idea of the approach is to allow computation to occur within the network

where previously only simple forwarding was provided. While the idea appears to

fly in the face of the well-established end-to-end design argument, the authors argue

that in-network computation is by no means new. Firewalls, Web proxies, multi-point

communication, and certain types of mobile/nomadic computing have all done exactly

that.

In Tennenhouse and Wetherall’s original vision of active networking, end systems

were given the ability to program the behavior of forwarding nodes as application

data packets are received. This can be done in one of two ways. First, a packet, or

capsule, might contain a header that references a particular program or operation on

the router that should be applied to the application data contained within. Second,

a packet might contain both program instructions and data to be operated on. A

router would then execute the instructions using a standardized run-time environment

deployed throughout the network.

Active network nodes have both a transient run-time environment that is reclaimed

when packet has completed its execution, and a persistent environment that may be

associated with the application flow. The latter might include foundation components

that provide controlled access to router resources like routing tables and transmission

links, active storage for data to be exchanged among packets or updated over time,

and extensible components that can be built by an application flow and later referenced

concisely using brief program instructions.

Since their original conception, a variety of active networking systems have built [Wet99b,

A+97, D+98, vdM+98, YdS96, H+99, N+99, S+99]. They demonstrate the power and

flexibility of the approach for creating new and customized network services. Such ser-

vices often make direct use of network topology information, loss and load information,

or the ability to make more efficient services that are widely dispersed across the net-

work. Some examples include reliable multicast [LGT98], anycast [PMM93], explicit

congestion notification (ECN) [RF99], and Web cache routing [Wet99a].

While the benefits of active networking are clear, the challenges posed by the ap-

proach are considerable. First is that of code mobility. For the approach to be enabled,

a computation model, including both instruction set and available resources, must be

standardized across all forwarding nodes. [TW96] Second, resources must be carefully



38

managed. This includes both properly restricting access to only those resources owned

by the flow, and preventing a flow from consuming too many resources by injecting a

large number of packets into the system. [Wet99b]

A third challenge is maintaining adequate forwarding performance. Capsule exe-

cution must be suitably bound and must not starve non-active network flows sharing

the network. Finally, active nodes must be widely deployed for active services to be

effective. Unfortunately, it is unlikely that this will be the case in the near future.

While active networking may be difficult to realize in its original vision, it represents

a significant step in developing a framework for open network architectures. Subsequent

work (including that presented here) builds upon many of these ideas but in ways that

are less ambitious and far more deployable.

2.4.3 Ephemeral State Processing

[CGW02] presents a lightweight active networking scheme called ephemeral state

processing (ESP) that allows IP packets to manipulate small amounts of state at routers

using a set of pre-defined operations. State in this scheme is stored and retrieved using

(tag, value) pairs where tags are randomly chosen from a very large tag space. The size

of the space minimizes the chance of collisions within the ephemeral state store (ESS)

which is organized as an associative lookup table using a hash function.

ESP addresses the issue of resource management by using the space-time product as

a natural bound for resource consumption. That is, conventional soft state is created

by a user and then maintained as long as a user can continue to refresh it. The

holding time of such state is thus unbounded. In contrast, state in ESP has a bounded

lifetime of approximately 10 seconds before it is forcibly reclaimed. Thus, the resource

requirements for a given flow (as well as all flows collectively) are naturally bounded

by the space-time product as old state is reclaimed as fast as new state can be created.

ESP addresses the issue of performance in at least two ways. First, ESS access

operations are designed to be simple and efficient. Memory access requires a simple

hash which can be done in constant time and in hardware. Collisions are very unlikely

given a tag size of 64 bits, and the entire ESS is naturally bounded in size by the space-

time product. Second, the ESS instructions are likewise very simple and efficient. Each

packet is allowed only one instruction, thus providing a bounded execution time. The

authors envision an instruction set of not more than a few dozen instructions, with some

examples being COUNT (counts the number of packets before reaching a threshold),



39

COMPARE (compares a new value with a value in the ESS), and COLLECT (applies

an operation to a value in the ESS and then returns a value when a counter reaches

zero).

While ESP is comparatively lightweight in its design compared to Tennenhouse

and Wetherall’s original active networking vision, it is nonetheless powerful in solving

otherwise difficult problems. The authors demonstrate this by applying the approach to

the problem of topology discovery, multicast feedback thinning, and data aggregation

across participant flows.

The scheme we present in Chapter 3 shares much in common with the ESP approach.

Both present open architectures and support the exchange of soft state between flows

with arbitrary, application-defined semantics. Furthermore, both provide operations

that allow state to be aggregated across flows in various ways.

Unlike ESP, however, the CP approach relies on enhanced forwarding services only

at first- and last-hop routers (APs) and, in this way, is more deployable than ESP.

While the ESP authors mention the possibility of incremental deployment and deploy-

ment only at network edges, they acknowledge that the approach is as effective as the

proportion of nodes participating in it.

CP’s approach is also distinct from that of ESP in the way it handles persistent

state information. First, it treats state information as soft state that can be refreshed

rather than ephemeral state that will be reclaimed. Resource management is not a

problem in this approach because the state table itself is bounded in size. Second,

while operations on ESS state are handled using packet-carried instructions, the CP

approach relies solely on simple read and write operations. This is possible because

many values held in the state table are the result of various pre-defined operations

(computed on-demand for efficiency). Finally, CP extends ESP’s approach by providing

state information in addition to storing/retrieving deposited state. This information

includes both shared network path state (obtained through probing mechanisms) and

application flow state.

Overall, ESP presents a generalized infrastructure spread throughout the network

for solving many types of problems that rely on topology information and the exchange

of state between flows. While the approach is powerful, it still presents a considerable

deployment challenge. In contrast, the CP approach is more tightly coupled with the

cluster-to-cluster application architecture and more deployable in that cluster aggrega-

tion points are already under local administrative control and no additional support is



40

required from routers on the cluster-to-cluster data path between APs.



Chapter 3

Coordination Protocol

In this chapter, we describe our solution to the problem of flow coordination in

cluster-to-cluster applications. Our focus here will be on information sharing mecha-

nisms: how information can be stored and shared within the network, how application

endpoints can read and write state information, how transport-level protocols can in-

corporate shared information into their operation, and how information sharing can be

used to implement coordination among flows.

Issues and mechanisms related to aggregate congestion control, an important part

of the Coordination Protocol, are deferred to Chapter 4 where they will be discussed

in greater detail.

3.1 Overview

The Coordination Protocol (CP) architecture was designed with several goals in

mind:

• To inform endpoints of network conditions over the cluster-to-cluster data path,

including aggregate bandwidth available to the application as a whole,

• To provide an infrastructure for exchanging state among flows and allowing an

application to implement its own flow coordination scheme, and

• To avoid the problems of centralized adaptation by relying on individual endpoints

rather than scheduling or policing mechanisms at aggregation points.



42

Aggregation
Point

Aggregation
PointEndpoint Endpoint

IP

CP

C−TCP C−UDP

C−RTP

IP

CP

C−TCP C−UDP

C−RTP

IP*

IP * = modified IP packet with new checksum.
Packet Path

Network Layer
Coordination Layer

Application Layer

Transport Layer

CP

IP*
CP

Figure 3.1: CP network architecture.

To realize these goals, CP makes use of a shim header inserted by application end-

points into each data packet. Ideally, this header is positioned between the network-

layer header and the transport-layer header. The network stacks of each cluster end-

point and their associated AP are modified to process CP packet headers, while all

other nodes along the cluster-to-cluster data path require no special modifications (i.e,

CP is transparent to forwarding agents between each application cluster).

CP mechanisms are largely implemented at each aggregation point (AP) where

there is a natural convergence of flow data to the same forwarding host. This may be

the cluster’s first hop router, or a forwarding agent in front of the first hop router. As

mentioned in Section 1.4, an AP is part of each cluster’s local computing environment

and, as such, is under local administrative control.

Figure 3.2 summarizes CP operation by tracing a packet traversing the path between

source and destination endpoints. The CP header is processed by the AP during packet

forwarding. Essentially, the AP uses information in the CP header to maintain a per-

application state table. Flows deposit information (e.g., their current priority) into the

state table of their local AP as packets traverse the outbound path from an endpoint

to the local AP, and then onward toward the remote cluster. Packets traversing the

inbound path in the reverse direction pick up entries from the AP state table (e.g.,

the priority of peer flows, estimated bandwidth available) and report them to each

endpoint.

In addition, the two APs conspire to measure characteristics of the cluster-to-cluster

data path such as round trip time, packet loss rate, available bandwidth, etc. These

measurements are made by exchanging probe information via the CP headers available

from application packets traversing the data path in each direction. Measurements use

all packets from all flows belonging to the same cluster-to-cluster application and thus

monitor network conditions in a fine-grained manner. Resulting values are inserted into



43

2. Local AP 
into application state table and then
overwrites CP header with network
probe information.

deposits incoming state

��
�
�� ������

������
���

������
������

������
���
������������������ 	�		�	

	�	
�

�


������
������
������
������ 
�

�



�

�


�


������
������ ����

Src Dst

4. Destination endpoint 
report information to make adaptation
decisions using a coodination scheme
defined by the application.

1. Source endpoint 

application and flow, and specifying any
state it wishes to deposit at the local AP.

into CP header identifying the C−to−C
writes information

3. Remote AP 
information to measure delay and
loss before overwriting the CP header with
report information from the state table.

uses incoming

uses incoming probe

Figure 3.2: CP operation.

the state table.

Report information is received by an application endpoint on a per packet basis.

This information can take several forms, including information on current network

conditions on the cluster-to-cluster data path (round trip time, loss, available band-

width), information on peer flows (number of flows, aggregate bandwidth usage), and/or

application-specific information exchanged among flows using a format and semantics

defined by the application. An endpoint uses a subset of available information to make

send rate and other adjustments (e.g., encoding strategy) to meet application-defined

goals for network resource allocation and other coordination tasks.

It is important to emphasize that CP is an open architecture. It’s role is to pro-

vide information “hints” useful to application endpoints in implementing their own

self-designed coordination schemes. In a sense, it is merely an information service pig-

gybacked on packets that already traverse the cluster-to-cluster data path. As such,

aggregation points do no buffering, scheduling, shaping, or policing of application flows.

Instead, coordination is implemented by the application which must configure endpoints

to respond to CP information with appropriate send rate and other adjustments that

reflect the higher objectives of the application.



44

3.1.1 Why a new protocol layer?

The decision to create a new protocol layer between the network and transport layers

rather than handling information sharing and flow coordination at the application layer

requires some justification.

Consider, for example, a scheme in which simple socket connections are used be-

tween endpoints on the same cluster to allow information sharing among hosts and

coordinated send rate adjustments. Such a scheme would have the advantage of re-

quiring no fundamental modifications to participating network components, including

network stacks and transport-level protocols on each endpoint and forwarding routines

on the AP.

We argue that application-level schemes of this type, while perhaps easier to deploy,

fall short from a variety of standpoints. First and foremost, they fail to exploit the

problem topology effectively. Here we again note that a cluster’s AP provides a natural

point of convergence on the outgoing data path. Likewise, data on the incoming path

must first pass this final forwarding hop before fanning out to application endpoints

within the cluster. As such, a natural point for information exchange and dissemination

exists without relying on extra connectivity between hosts.

Furthermore, piggybacking information sharing services on existing data flows ef-

fectively solves a host of problems associated with the endpoint-to-endpoint based ap-

proach, including

• Communication failures due to host failures or frequent join/leave events,
• Information inconsistencies due to propagation delay among endpoints,
• The need for peer directory services, and
• Group protocols for joining or leaving the cluster application.

Nor do application-level approaches solve the problem of providing centralized

cluster-to-cluster network path measurement, bandwidth estimation, or aggregate statis-

tics collection (application throughput, number of participating flows, etc). Such ser-

vices can easily, however, be implemented at each AP due to its position within the

application topology. This is because the AP handles the forwarding of all data packets

from all flows in both directions, and thus is in an easy position to collect aggregate

statistics, observe network performance, and estimate bandwidth available to the ap-

plication.

Another objection might take the form of CP header placement. Even if we accept

CP’s solution architecture, couldn’t headers be implemented at the application layer

rather than between the network and transport layers?



45

ID
Protocol

ID
C−to−C
App ID

Flow
ID

Protocol
IDV Flags

Addr

Echo Timestamp

Transport−level

Packet Data

IP Header

CP Header

C−to−C
App ID

Flow

From endpoint to AP: From AP to AP: From AP to endpoint:

Timestamp

V Flags

Report 1

Report 2

Report 3

Report 0

Header

Addr

Addr

Addr

Val

Val

Val

Val

C−to−C
App ID

Flow
ID

Protocol
IDV Flags

VID

VID

VID

VIDSeq.
No.

Loss
Rate

Bandwidth
Available

Echo
Delay

Echo
Delay

Timestamp
Echo

0

2

1

22

33

1

0

3

1

0

Figure 3.3: CP packet header format.

First we note that by placing CP below the transport-layer, we preserve the end-

to-end semantics of individual transport-level protocols. This is a key requirement

mentioned in Section 1.3 and Section 1.6. Second, we argue that CP logically belongs

in this position. While the network layer handles next-hop forwarding on a packet-by-

packet basis without regard to the notion of a flow, and the transport layer handles end-

to-end semantics for individual flows, CP is concerned with the behavior of aggregate

flows that may share a significant number of hops along the forwarding path but not

the entire end-to-end path.

Nevertheless, we acknowledge that it is certainly possible to implement CP headers

and mechanisms at the application layer (with some loss of efficiency). In fact, our im-

plementation (described in Chapter 4) places the CP header in the first 20 bytes of UDP

data. This implementation has the benefit of requiring no network stack changes on

cluster endpoints. To make packet forwarding at the AP more efficient, software routers

use kernel-based “deep processing” (header processing that goes below the IP header

level) as an alternative to application-level handling. This approach demonstrates that

implementation options exist, and that hybrid approaches are possible.

Finally, an important point to emphasize here is that the issue of header placement

is merely one of implementation, and that the merits and disadvantages of a particular

scheme should not obscure the core ideas proposed by CP. These ideas include, among

other things, measuring network conditions across all application flows, maintaining

shared state information at each AP, applying existing congestion control algorithms

to the aggregate flow context, and providing the application with a framework for

implementing sophisticated, inter-stream adaptation strategies.



46

3.1.2 CP Packet Headers

Figure 3.3 illustrates the CP header and its contents at different points on the

forwarding path between source and destination endpoints. The header is exactly 20

bytes in length. Each of the three formats use the same prefix consisting of the following

five fields:

Version (4 bits)

Coordination Protocol (CP) version number.

Cluster ID (5 bits)

Cluster-to-cluster application identifier.

Flow ID (7 bits)

Flow identifier.

Protocol (8 bits)

Transport protocol employed by this flow.

Flags (8 bits)

Flags directing AP to handle this packet in special ways.

A source endpoint will initially assign all of these fields when a data packet is created

and a CP header inserted into the appropriate position. How an endpoint obtains a

cluster ID and a flow ID may be handled a variety of ways. For example, a cluster

ID may be assigned offline by network administrators and flow IDs by application

designers. Alternatively, an ID server may be deployed on the local cluster.

The current version of CP allows up to 31 cluster-to-cluster applications per AP,

and up to 128 flows per application. (See Section 3.2.) In addition, up to 255 different

transport protocols may potentially be employed that use CP information in specialized,

application-specific ways.

Flag fields currently include DATAPATH, LSCOPE, and REFLECT. DATAPATH

is used to indicate that a packet is traversing the cluster-to-cluster portion of the end-

to-end path. If set, a receiving AP will interpret header fields accordingly. LSCOPE

refers to locally scoped and prompts the AP to process a packet received from a local

endpoint and then drop it. This allows an endpoint to deposit or refresh state at the AP

during periods when it has no data to send. REFLECT refers to a reflected packet. A



47

packet of this type, after being received by an AP from an endpoint on the local cluster,

will be sent back to the source host along with report information. That is, it will never

traverse the cluster-to-cluster data path. This can be useful when an endpoint requires

state reports from its local AP, but no incoming data packets are available.

A key point to note is that the content and role of the CP header change as the

packet traverses the end-to-end path between a source endpoint on one cluster and a

destination endpoint on another. As shown in Figure 3.2, this includes the following

path segments and their corresponding header contents:

Source endpoint to local AP. Header contents identify the packet and contain in-

formation to be deposited in the state table at the local AP.

Local AP to remote AP. Header contents include probe information being exchanged

by APs. This information will be used to measure cluster-to-cluster path condi-

tions and estimate available bandwidth.

Remote AP to destination endpoint. Header contents contain state information

requested by the destination endpoint. This information will be used by the

endpoint to make coordinated adaptation decisions.

Header contents are modified as a packet is forwarded by each AP. In addition to

re-writing the header with a new format and constituent values, an IP checksum is

recomputed. To be more precise, the current IP checksum is altered based on modifi-

cations to the five 32-bit words comprising the header. (Recomputing the checksum in

its entirety turns out to be unnecessary.) More will be said about the IP checksum in

Section 5.2.3.

Finally, the details of endpoint-to-AP operation fields are discussed in Section 3.2.1,

AP-to-AP probe fields in Chapter 4, and AP-to-endpoint report fields in Section 3.2.2.

CP header specifications are also provided in Appendix A.

3.2 AP State Tables

An AP creates a state table for each cluster-to-cluster application currently in service

that acts as a repository for network and flow information, as well as application-specific

information shared between flows in the cluster-to-cluster application.

The organization of a state table is as follows:



48

max
min
sum

aggtput
num

pktsize2
1
0 rtt

loss
bw

GP1 GP250 R1 R2 R3 R4 NET FLOW

(Unused)

O
ff

se
t

Address

255

127
128
129
130

Figure 3.4: CP state table maintained at each AP.

• The table is a two dimensional grid of cells, each of which can be addressed by an

address and an offset. (We will use the notation address.offset when referring

to particular cells.)

• There are 256 addresses divided into four types: report pointers, network statistics,

flow statistics, and general purpose addresses.

• For each address, 256 offsets are defined. The value and semantics of the partic-

ular cell located by the offset depend on the address context.

Each cell in the table contains a 24-bit value. (See Section 3.2.1 for details.) Our

current implementation uses four bytes per cell to align memory access with word

boundaries, making the state table a total of 256 KB in size. Even with a number of

concurrent cluster-to-cluster applications, tables can easily fit into AP memory.

An endpoint may read any location (address.offset) in the table by using the report

address mechanism described below. In contrast, an endpoint may only write specific

offsets of the report and general purpose addresses; network and flow statistic addresses

are assigned by the AP and are read-only. The state table is illustrated in Figure 3.4.

3.2.1 Assigning Cells of the State Table

An endpoint can use the CP header of outgoing packets to assign the value of

up to four cells in the state table per packet sent. When an outbound packet (i.e., a



49

packet leaving the local cluster) arrives at the AP, the CP header includes the following

information:

• The flow id (fid) of the specific flow to which this packet belongs.

• Four “operation” fields which are used to assign the value of specific cells in the

state table. The operation field is comprised of two parts. The first is an 8-bit

address (Addri) and the second is a 24-bit value (V ali). The i subscript is in the

range [0, 3] and simply corresponds to the index of the four operation fields in the

header. Figure 3.3 illustrates this structure.

When an AP receives an outbound packet, each operation field is interpreted in the

following way. The cell to be assigned is uniquely identified by Addri.fid. The value of

that cell is assigned V ali. In this manner, each flow is uniquely able to assign exactly

one of the first 128 cells associated with that address.

Although the address specified in the operation field is in the range [0, 255], not all

of these addresses are writable (i.e., some of the addresses are read-only). Similarly,

since a flow id is restricted to the range [0, 127], in fact only 128 of the offsets associated

with a particular writable address can be assigned. As mentioned, the address space

is divided into four address types. The mapping between address range and type is

illustrated in Figure 3.4. The semantics of a cell value at a particular offset depends

on the specific address type and is described in the following subsections.

3.2.2 Report Pointers

Four of the writable addresses in the state table are known as report pointers. Values

held in these address act as pointers to other locations in the state table. An application

endpoint can select report information by assigning each of these report fields. The AP

will then use the assigned values to select information to be passed back to the endpoint

via the CP header as shown in Figure 3.3.

Specifically, each flow uses the mechanisms described above to write a 24-bit value

into Rj.fid where Rj is one of the four report pointers (i.e., R1, R2, R3, and R4 in

Figure 3.4) and fid is the flow id. The value of these four cells control how the AP

processes inbound packets (i.e., packets arriving from the remote cluster) of a particular

flow.



50

When an inbound packet arrives, the AP looks up the value of Rj.fid for each of the

four report addresses. The 24-bit value of the cell is interpreted in the following way.

The first 8 bits are interpreted as a state table address (address). The second 8 bits

are interpreted as an offset (offset) for that address. The final 8 bits are interpreted

as a validation token (vid). The AP then copies into the CP header the 24-bit value

located at (address.offset) concatenated with the 8-bit validation token vid. This is

done for each of the four report fields. In this way, any cell in the state table may be

read.

Thus, outbound packets of a flow are used to write a value into each of four report

pointers, R1 through R4. These configure the AP to report values in the state table

using inbound packets. The validation token has no meaning to the AP per se, but can

be used by the application endpoint to disambiguate between different reports. This is

important because report pointer values can change over time as they are assigned by

the endpoint. (See Section 3.2.6 for an illustration.) Reports following an assignment

event would be ambiguous without being associated with a validation token chosen by

the endpoint.

3.2.3 Network Statistics

One of the addresses in the table is known as the network statistics address (NET ).

This is a read-only address. The offsets of this address correspond to different network

statistics about the cluster-to-cluster data path as measured by APs across the aggre-

gate of all flows in the cluster-to-cluster application. The most important offsets of this

address include:

• Round trip time (NET.rtt)

• Loss rate (NET.loss)

• Bandwidth available (NET.bw)

In fact, each of these values is associated with a whole family of related offsets, including

the most recent sample value, mean and median values, a smoothed average, sample

variance, minimum and maximum values, etc. Up to 256 network-related statistics are

potentially available using offsets in the NET address.

NET.bw provides an estimate of the bandwidth available to a single TCP-compatible

flow given the current round trip time, packet loss rate, average packet size, etc. How



51

this estimate is calculated, and how the value can be scaled to n application flows is

described in Chapter 4.

3.2.4 Flow Statistics

While statistics characterizing the cluster-to-cluster data path are available through

the NET address, statistics characterizing application flows are provided by offsets of

the flow statistics address FLOW . Offsets of this address are similarly read-only and

include, among other things, information about:

• Number of active flows (FLOW.num)

• Throughput (FLOW.tput)

• Average packet size (FLOW.pktsize)

Once again, each value is associated with a whole family of related offsets giving the

most recent sample value, mean and median values, a smoothed average, sample vari-

ance, minimum and maximum values, etc. Up to 256 different statistics can be provided.

Each AP collects these statistics by measuring various features of application traffic

as it is forwarded. Maintaining these statistics requires relatively simple per-packet

accounting and periodic averaging.

3.2.5 General Purpose Addresses

The general purpose addresses (i.e., GP1 through GP250) in Figure 3.4 give a

cluster-to-cluster application a set of tools for sharing information among flows in an

application-defined way that facilitates coordination. For example, general purpose

addresses may be used to implement floor control, dynamic priorities, consensus al-

gorithms, dynamic bandwidth allocation, etc. General purpose addresses may also

be useful in implementing coordination tasks among endpoints not directly related to

networking.

Offsets for each general purpose address are divided into two groups: assignable flow

offsets and read-only aggregate function offsets. We have already discussed how the

offsets equal to each flow id can be written by outbound packets of the corresponding

flow. These are the flow offsets. While this accounts for the first 128 offsets of each



52

of general purpose address, the remaining 128 offsets are used to report aggregate

functions of these first 128 flow offsets. Some examples are:

• Statistical offsets for functions such as sum, min, max, range, mean, and stan-

dard deviation.

• Logical offsets for functions such as AND, OR, and XOR.

• Pointer offsets. For example, the offset of the minimum value, the offset of the

maximum value, etc.

• Usage offsets. For example, the number of assigned flow offsets or the most

recently assigned offset.

Function offset values are computed using lazy evaluation for efficiency. (See Sec-

tion 5.2.5 for further details.) Flow offsets are treated as soft state and time out if not

refreshed.

3.2.6 An Illustration

Figure 3.5 illustrates state table operation as a cluster endpoint (cid = 1, fid = 2)

sends and receives packets. Both outbound and inbound packets are received by the

endpoint’s local AP which performs read and write operations on the state table before

forwarding the packet. CP packet headers are used for exchanging information between

the endpoint and its local AP. The contents of these headers are shown to the left of

the figure. To the right, state table contents are shown as the endpoint makes new

assignments to various cells.

Packet A assigns to GP1.fid the value 250, and to report addresses R1.fid and

R2.fid the values NET.rtt and NET.bw, respectively. The latter assignments act as

pointers that will be used by the AP to assign CP reports when an inbound packet

becomes available. This is shown in Figure 3.5 when packet B arrives and is assigned

report values 17.2 and 872.

Note the use of validation tokens (“00” and “01”) to identify report values. These

tokens serve two purposes. First, they reduce the number of bits required to identify

the state table cell associated with a report value. Second, they allow the endpoint



53

Outbound

Outbound

Inbound

Inbound

Inbound

Send

Send

Receive

Receive

GP1 R1 R2 NET

2

sum

rtt

bw
250

GP1 R1 R2 NET

2

sum

rtt

bw

920

Receive

Endpoint Local AP

780

Noop

R1

R2

GP1

NET

NET

250

00

01bw

Noop

Noop

Noop

Noop

Noop

Noop

1 2

1 2

1

1 2

1 2

00

01

R2

01

01

R1

NET bw 01

872

872

780

17.2

17.2

17.6

920

B

A

C

D

E

00

rtt

2

17.2

250
872

AP State Table (CID=1)

AP State Table (CID=1)

GP1 sum

Noop

Noop

T
im

e

T
im

e

CP packet headers

02

02

Figure 3.5: Illustrating state table operation. CP headers and AP state table
contents as a cluster endpoint sends and receives packets.



54

to disambiguate between CP reports when new report assignments are issued. This is

illustrated in Figure 3.5 when the endpoint sends packet C with a new set of report

pointer assignments. While packet D is received by the endpoint after this transmission,

the reports in the CP header follow the previous assignments made by packet A. (This

is because packet D is forwarded by the AP before packet C has been received.) Not

until packet E has been received do CP reports now reflect the new report address as-

signments. By observing validation tokens “00”, “01”, and “02”, however, the endpoint

is able to interpret reports without ambiguity throughout the transition period.

The use of validation tokens allow an endpoint to cycle reports through a large

number of state table cells. This is important because the CP header allows only four

reports per packet. By using the validation token space of up to 256 values and the

mechanisms illustrated in Figure 3.5, an endpoint may change report content often

without generating ambiguity in the values received.

3.3 Implementing Flow Coordination

While CP provides network and flow information, as well as facilities for exchang-

ing information, it is up to the cluster-to-cluster application to exploit these services to

achieve coordination among flows. The details of how an application goes about this

may vary widely since much depends on the specifics of the problem an application is

trying to solve. Most, however, will want to employ some type of CP-enabled trans-

port protocol that can be configured to participate in one or more application-specific

coordination schemes.

3.3.1 CP-enabled Transport Protocols

A CP-enabled transport protocol provides data transport services to an endpoint

application using both information provided by CP and configuration provided by the

application. Its behavior takes into account not only the data transport needs of the

application endpoint it is serving, but the wider concerns of the cluster-to-cluster ap-

plication as a whole. It is at the same time network-aware, peer flow-aware, and a

participant in a larger context of cooperative resource sharing and information ex-

change.

Figure 3.6 shows a generic CP-enabled transport-level protocol in schematic form.



55

In essence, it is charged with managing at least three functions:

• Send rate adaptation.

• State sharing with peer flows.

• Disseminating information to the application layer.

Send rate adaptation involves using CP information and configuration parameters to

maintain a flow send rate that is both responsive to network congestion and reflective of

application priorities. The endpoint, for example, might be configured to send at CP’s

suggested available bandwidth rate unless the number of peer flows reach a particular

threshold. Or, it may send at a constant rate which is announced to peer flows in the

same application using the state table mechanisms described above.

CP-enabled transport protocols may furthermore participate in coordination schemes

that require extensive state sharing with peer flows. For example, general purpose ad-

dresses in the AP state table may be used to implement floor control or dynamic

priority assignments. The transport protocol may be configured to participate in such

algorithms by reading and writing particular table items and modifying its send rate

when certain conditions are met.

Another function is responding to application-layer requests for CP information.

Like the Congestion Manager [BRS99] described in Chapter 2, an important goal in

CP design is to put the application in control over the data transmission process. This

means sharing with the application layer information about path conditions and peer

flows, and allowing the application to make decisions about what data should be sent

given the resources available.

Furthermore, the application layer on a given endpoint may wish to coordinate

with other application endpoints on matters not directly related to data transport.

For example, changes in a camera’s physical position may be significant to all the

endpoints within the same cluster in a video capture application. Using a special API,

the application may instruct the transport layer to read and write particular cells in

the AP state table in order to share information on the change with peer endpoints.

Whether a CP-enabled transport-level protocol is implemented as an application-

level library or an operating system service depends on the implementation details of

the CP header. In Section 3.1.1, we noted that the CP header logically fits between the



56

Buffering
Receive Send

Buffering

Extraction
CP info

Control
Transport

Information
CP

Handling
Info request

Application
Layer

Layer
Transport

Regulator
Send rate

CP header
Assignment

Configuration

Incoming packets Outgoing packets

Receive data Send dataCP info requests

Figure 3.6: CP-enabled transport-level protocol schematic.

network and transport layers, but that an application-level implementation is likewise

possible.

A transport-level service API could provide a fairly seamless substitute for the

current TCP/IP socket interface, providing additional options for assigning cluster and

flow id values. Or, it could be designed to pass various types of state table information

directly to the application, for example, to help regulate media encoding adaptation.

Still other transport-level protocols might simply provide a thin layer of mediation for

an application to both read and write values from a local AP’s state table; for example,

using the information to coordinate media capture events across endpoints.

The principal function of a CP-enabled transport-level protocol is to use both CP

information and application configuration to regulate a flow’s sending rate as network

conditions change on the shared cluster-to-cluster data path. How this configuration

is accomplished and the degree of transparency to the application are both left to the

protocol designer. In general, we believe that the expanded operational and informa-

tional context of transport-level protocols in the CP problem domain represent a rich

frontier for future research.



57

3.3.2 Coordination Schemes

A flow coordination scheme is used by cluster-to-cluster application designers to

define global application objectives and specify individual flow behavior in realizing

those objectives. While CP provides the raw tools needed for coordination (network

information and state sharing mechanisms), it is up to the application to define its

objectives and use these services to achieve coordination in the manner desired. In this

sense, CP is an open architecture for creating flow coordination solutions and not a

solution in and of itself.

The focus in this dissertation is on coordination schemes that apportion bandwidth

among flows. To illustrate, we provide two brief examples below.

Example 1. Flows A, B, and C are always part of the same cluster-to-cluster appli-

cation, but flows D and E join and leave intermittently. Each requests NET.bw

reports to inform them of the estimated bandwidth available to a single ap-

plication flow. In addition, they request FLOW.num reports that tell them

how many flows are currently part of the application. Since the application is

configured to run at no more than 3 Mbps, each flow sends at the rate R =

min(3Mbps/FLOW.num, Net.bw).

Example 2. Flow A is a control flow. Flows B and C are data flows. All flows request

NET.bw and GP1.fid(A), the latter of which informs them of the value flow A

has assigned to general purpose address 1 at the offset equal to its flow id. When

running, the application has two states defined by the value flow A has assigned

to GP1.fid(A): NORMAL (GP1.fid(A) = 0) which indicates normal running

mode, and UPDATE (GP1.fid(A) = 1) which indicates that a large amount of

control information is being exchanged to update the state of the application.

During NORMAL, A sends at the rate R = (3 ∗ NET.bw) ∗ .1 while B and C

each send at no more than R = (3 ∗ NET.bw) ∗ .45. During UPDATE, A sends

at the rate R = (3 ∗ NET.bw) ∗ .9 while B and C each send at no more than

R = (3 ∗NET.bw) ∗ .05.

These examples are “miniature” in that realistic cluster-to-cluster applications are

likely to have many more flows and networking requirements that are more complex

and change dynamically. Nonetheless, they serve to illustrate how CP information and

state sharing can be used to coordinate bandwidth usage among flows in a manner that

requires no centralized control.



58

An important point to note here is that aggregate bandwidth available to the appli-

cation as a whole (equal to CP’s bandwidth estimate for a single flow times the number

of active flows in the application) may be distributed across endpoints in any manner.

That is, it is not necessarily the case that a given application flow receives exactly

1/n of the aggregate bandwidth in an n-flow application. In fact, an application may

apportion bandwidth across endpoints in any manner as long as the aggregate band-

width level (n ∗NET.bw) is not exceeded. We believe this to be a powerful feature of

our protocol architecture with the potential to dramatically enhance overall application

performance in a wide variety of circumstances.

In addition to bandwidth distribution, an application may use CP mechanisms to

perform one or more types of context-specific coordination. That is, an application may

use CP state exchange mechanisms to achieve coordination for any arbitrary problem.

Some examples include leader election, fault detection and repair, media capture syn-

chronization, coordinated streaming of multiple data types, distributed floor control,

dynamic priority assignment, and various types of group consensus.

3.4 Summary

In this chapter, we have described the Coordination Protocol (CP), our solution

to the problem of flow coordination in cluster-to-cluster applications. Our discussion

has focused on AP state table design and its use by cluster endpoints, as well as

CP header mechanisms that carry information to and from application endpoints. In

Chapter 4, we discuss CP mechanisms related to aggregate congestion control. This

includes available bandwidth estimation and a method for scaling estimation results to

multiple flowshares.



Chapter 4

Aggregate Congestion Control

An important issue for cluster-to-cluster applications is that of congestion control.

While individual flows within the application may use a variety of transport-level proto-

cols, including those without congestion control, it is essential that aggregate application

traffic is congestion responsive. Failure to exhibit such responsiveness, as described in

Section 2.2, will result in unfairness to other Internet flows sharing the same bottleneck

link and, even worse, the potential for congestion collapse. [FF99] Within the applica-

tion itself, a lack of responsiveness by some flows may affect the performance of other

flows, as well as the application’s ability to maintain coordinated control of available

network resources. Without this control, application performance on an aggregate level

will suffer.

In this section, we describe CP mechanisms for achieving aggregate congestion con-

trol. Our scheme provides the following benefits:

• Almost any rate-based, single-flow congestion control algorithm may be applied

to make aggregate cluster-to-cluster traffic congestion responsive.

• Cluster-to-cluster applications may receive multiple flowshares and still exhibit

correct aggregate congestion responsiveness.

• Individual flow behavior is decoupled from aggregate congestion response behav-

ior, thus freeing the application to realize aggregate responsiveness using any

self-designed bandwidth allocation scheme.

Define a bandwidth flowshare, or simply flowshare, for transport-level protocol P to

be the bandwidth used by a conformant P -flow under comparable network conditions.



60

For example, a TCP flowshare is simply the bandwidth taken by a TCP-conformant

flow with unlimited data to send under a particular set of network path conditions

(round trip time, bottleneck bandwidth, packet loss rate, number of competing flows,

etc.).

While a flowshare may be defined using any number of transport-level protocols,

the widespread deployment of TCP implies a de facto standard that will be observed

in this work. As will be seen, however, the use of TCP as a standard for defining

flowshares does not imply that TCP must be employed as a transport-level protocol.

Nor does it imply that each individual flow within a cluster-to-cluster application must

employ the same TCP-equivalent protocol. The requirement, instead, is to realize TCP

flowshare equivalence using any assortment of heterogeneous transport-level protocols

and a bandwidth coordination mechanism (i.e., CP).

In this dissertation, we assert that a cluster-to-cluster application employing m flows

should receive the equivalent of m flowshares. To see why, consider a cluster-to-cluster

application with m flows sharing a bottleneck link with n additional flows. Let the

total bottleneck bandwidth available be B. If each of m application flows uses a single

flowshare, then any given flow will receive a bandwidth share of B
m+n

. If, however, m

flows share a single flowshare, then any given application flow will receive a bandwidth

share of only B
m(n+1)

. As m or n grow, this difference becomes significant.

Less formally, an application employing m independent flows will naturally receive

m flowshares using current transport protocols like TCP. In order to avoid penaliz-

ing a complex cluster-to-cluster application for using CP, we must provide an equiv-

alent number of flowshares to emulate (in aggregate) the bandwidth realized by an

independent-flow approach. For this reason, we believe each of the single flowshare

approaches to congestion control described in Chapter 2 ([BRS99], [PCN00], [KW99])

to be unduly restrictive for a multi-flow cluster-to-cluster application.

The organization of this chapter is as follows. First, we first discuss CP mechanisms

for measuring path conditions and estimating the bandwidth available for a single ap-

plication flowshare. Included in this discussion are both TCP-Friendly Rate Control

(TFRC) [FHPW00, HFPW03] and Rate Adaptation Protocol (RAP) [RHE99], two rep-

resentative rate-based schemes that provide TCP-friendly bandwidth estimation. We

then describe simulation results that demonstrate the success of our approach when

aggregate application traffic conforms to a single flowshare. Next, we discuss the prob-

lem of scaling aggregate application traffic to multiple flowshares. Bandwidth filtered



61

Header
Transport−level

Packet Data

IP Header

CP Header
Seq.
No.

Echo
Delay

Bandwidth
Available

Loss
Rate

C−to−C
App ID

Flow
ID

Protocol
ID

Timestamp

Echo Timestamp

V Flags

Figure 4.1: CP header contents as packet is forwarded between APs.

loss detection (BFLD) is presented as a technique for making single-flow bandwidth

estimation algorithms work when aggregate traffic uses multiple flowshares. We then

demonstrate the effectiveness of our approach by presenting TFRC- and RAP-based

simulation results, followed by a more extensive set of TFRC-based implementation

results taken from our laboratory testbed. (See Appendix B.) Our results demonstrate

the viability of our approach for a wide range of network conditions.

4.1 Measuring Network Conditions

As described in Section 3, all packets from all flows in a cluster-to-cluster application

are used by CP to measure network conditions on the shared data path between APs.

As each outbound packet is sent by an endpoint to its local AP, it will have network

probe information written into its CP header. The packet will then be forwarded

over the cluster-to-cluster data path toward the remote cluster. When the packet is

received by the remote AP, its probe information will be processed before forwarding

the packet to its destination endpoint. Application packets on the reverse path allow

probe information to be exchanged in both directions. In general, the number of packets

available for exchanging probe information is large since cluster-to-cluster applications

typically employ many flows and are high bandwidth in character. As a result, network

probing on the cluster-to-cluster data path can take place on a very fine-grained level.

Figure 4.1 shows the CP header contents for a packet that this being forwarded

between APs. Timestamp, echo timestamp, and echo delay fields are used for measuring

round trip time and are explained in Section 4.1.1. Sequence number and loss rate fields

are used for measuring packet loss and are explained in Section 4.1.2. The bandwidth

available field is used to pass the results of bandwidth estimation between APs and

is covered in Section 4.2. To review information on the first four bytes of the header



62

720

460

400

280

60

20

A

B

C

D

E

F

AP1 AP2

1325

1260

1020

950

900
870

620

AP
1 

Sy
st

em
 C

lo
ck

 V
al

ue
s AP2 System

 Clock Values

Figure 4.2: Timeline of AP
packet exchanges.

Packet Sequence
Number

Time-
stamp

Time-
stamp
Echo

Echo
Delay

B 14 900 60 30
C 15 950 60 80
D 16 1020 60 150
F 17 1325 460 65
A 76 60 620 40
E 77 460 1020 60

Figure 4.3: CP header contents for
various packets in Figure 4.2.

(C-to-C application id, flow id, etc.), refer to Section 3.1.2 of the previous chapter.

4.1.1 Network Delay

To measure RTT, the APs use a timestamp-based mechanism. An AP inserts a 24-

bit timestamp into the timestamp field of the CP header (refer to Figure 3.3) of each

packet on the forwarding path. (See Appendix A for details on how this timestamp is

formatted.) This timestamp represents the time at which the packet begins its traversal

of the cluster-to-cluster data path.

The remote AP will then echo the timestamp of the last packet received from the

remote AP by placing the value in the 24-bit timestamp echo field of the CP header of

the next packet traveling on the reverse path back to the sending AP. Along with this

timestamp, a delay value will be placed in the 24-bit echo delay field of the CP header

indicating the length of time between the arrival of the original packet timestamp

and the time when a packet became available in the reverse direction for carrying the

timestamp echo.

By noting the time when a timestamp echo packet is received (Tarrival), the AP

can calculate the round trip time as (Tarrival − Techo) − Tdelay. In our example of

Figure 4.2 and Figure 4.3, AP2 receives packet B at time 280. The CP header contains

the timestamp echo 60 and an echo delay value of 30. Thus, the round trip time is

calculated as 280− 60− 30 = 190. This value, along with a smoothed average of recent

samples and a sample variance, are placed in the AP’s state table at various offsets in



63

the NET address.

Note that there is no one-to-one correspondence between timestamps sent and time-

stamps echoed between APs. It may be the case that more than one packet is received

by a remote AP before a packet traversing the reverse path is available to echo the

most current timestamp. The AP simply makes use of available packets in a best effort

manner. In Figure 4.2 this can be seen as AP2 receives both packets B and D before

packet E is available to send on the return path. Likewise, an AP may echo the same

timestamp more than once if no new CP packet arrives with a new timestamp. In our

example, this occurs when AP1 sends packets B, C, and D with a timestamp echo value

of 60, which it received from packet A, and increasing values of echo delay.

4.1.2 Packet Loss

To detect loss, the APs employ a sequence number mechanism. Each AP inserts

a monotonically increasing number into the 16-bit sequence number field of the CP

header. It is important to note that this sequence number bears no relationship to ad-

ditional sequence numbers appearing in the end-to-end transport-level protocol header

nested within the packet. As with all CP probe mechanisms, the underlying transport-

level protocol remains unaffected as CP operates in a manner that is transparent to

end-to-end concerns.

At the receiving AP, losses are detected by observing gaps in the sequence number

space. In our example of Figure 4.2 and Figure 4.3, AP2 detects the loss of packet

C when the sequence number received skips from 14 (packet A) to 16 (packet D). To

increase robustness in the face of packet re-ordering, CP follows the TCP practice of

recognizing a packet as “lost” only after three subsequent packets have arrived. In

other words, only after three subsequent packets fail to “fill in” the sequence number

gap detected does CP conclude that a packet loss (or losses) has occurred.

As with RTT, the current loss sample, along with a smoothed average of recent

samples and a sample variance, are placed in the AP’s state table at various offsets

in the NET address. In addition, a simple packet loss rate is reported back to the

remote AP using the 16-bit loss fraction field in the CP header. This is necessary

because losses are detected at the receiving cluster’s AP, after application packets have

already traversed the cluster-to-cluster data path. Measured values, however, need to

inform endpoint senders who may wish to make encoding, compression, forward error

correction, or rate adjustments directly based on packet loss statistics.



64

4.2 Estimating Available Bandwidth

An important function of each AP is estimating the congestion-responsive level of

bandwidth available to the application given current conditions on the cluster-to-cluster

data path. To accomplish this task, we leverage current work on single-flow, rate-

based congestion control algorithms. In particular, we look at both TCP-Friendly Rate

Control (TFRC) [FHPW00, HFPW03] and Rate Adaptation Protocol (RAP) [RHE99]

which we have implemented using simulation. Later, we will also present results for a

TFRC-based implementation using FreeBSD software routers and a laboratory testbed.

We emphasize, however, that the CP architecture and its related mechanisms are

not tied to any particular bandwidth estimation algorithm. In fact, almost any single-

flow, rate-based congestion control algorithm could be adopted for use. This is be-

cause nearly all such algorithms make use of information readily available at each AP:

round trip time and round trip time variance, average packet size, packet loss events,

packet loss rate, current clock time, etc. As work in equation-based congestion con-

trol [FHPW00, PFTK98] continues, for example, modifications to Equation 4.1 can

readily be applied to CP without mandating changes in CP header format or basic

probe exchange mechanisms.

An important clarification point to note is that the estimated bandwidth available,

calculated by each AP, is for a single flowshare. This value (calculated as X in Equation

4.1), is stored in an offset of the network statistics address (NET.bw) at each AP. To

scale this value to multiple flowshares and obtain the bandwidth available to the entire

application as a whole, an endpoint may simply multiply the value by the number of

active flows within the application. As described in Section 3.2.4, this value is stored

in an offset of the flow statistics address (FLOW.num).

So, while an m-flow application may use up to m flowshares, the estimated band-

width availability is maintained for a single flowshare. This is done for several reasons.

First, the value is easier to represent than its scaled counterpart in the 24-bit field

within each AP’s state table. Storing the scaled version would mean a loss of precision

as a much larger number still must be represented within the same 24-bit field. Sec-

ond, storing the scaled version would require all endpoints to obtain both NET.bw and

FLOW.num values from AP state tables in almost all circumstances. This is because

NET.bw cannot properly be interpreted without understanding the number of flows

that have scaled the value. In contrast, many applications may wish to simply have a



65

subset of their flows send at a single flowshare. For these flows, it is sufficient to obtain

only the NET.bw value and nothing else. Hence, maintaining a single flowshare value

in NET.bw provides a useful component value that can either be used by an endpoint

directly, or scaled at the endpoint host using additional information.

Finally, we emphasize that the role of the congestion control algorithm at each

AP is merely to estimate the congestion-responsive level of bandwidth available to a

single flow in the cluster-to-cluster application. This value is placed in the state table

and passed back to individual endpoints on demand using the CP header and related

mechanisms described in Section 3.2. The algorithm is not used by the AP to perform

traffic shaping, policing, or packet scheduling in any manner whatsoever. Instead, CP’s

approach is to inform application endpoints of bandwidth available to them and allow

them to make their own coordinated rate adjustments. Justification for this approach

is provided in Section 2.1 where we discuss the shortcomings of transparent, in-network

traffic shaping schemes.

4.2.1 TCP-Friendly Rate Control (TFRC)

TCP-Friendly Rate Control [HFPW03], or simply TFRC, is based upon fairly recent

work on equation-based congestion control [FHPW00, PFTK98]. In this approach, an

analytic model for TCP Reno congestion avoidance behavior (in steady state) is derived

that can be used to estimate an instantaneous TCP-friendly sending rate given various

channel properties like round trip time, loss rate, and average packet size. In particular,

the analytic expression used is given as follows:

X =
s

R
√

2bp
3

+ tRTO(3
√

3bp
8

)p(1 + 32p2)
(4.1)

Here, X is the TCP-conformant transmission rate (bytes/sec) to be calculated, s is the

packet size (bytes), R is the round trip time (sec), p is the loss rate on the interval

[0, 1.0], tRTO is the TCP retransmission timeout (sec), and b is the number of packets

acknowledged by a single TCP acknowledgment. Since Section 2.3.1 already describes

background related to Equation 4.1 in some detail, we will not repeat such exposition

here. Instead, we consider how this approach is actually applied in the CP context. To

do this, we consider how an AP handles each input value into the equation, and then

the calculation itself.



66

First we note that b, the number of packets acknowledged by a single acknowledg-

ment, is simply a constant value. [HFPW03] recommends that this value be set to 1

on the grounds that many TCP Reno implementations do not use delayed acknowledg-

ments. The value could be set to 2 in the future if, empirically, the situation were to

change.

R, the round trip time (sec), is already obtained using the mechanisms described in

Section 4.1.1. To implement the smoothing described in Section 2.3.2, per-packet round

trip time updates are passed into a TFRC handler that performs the weighted averaging

given in Equation 2.3 with relatively few calculations. Furthermore, tRTO, the TCP

retransmission timeout (sec), can be approximated using tRTO = 4 ∗R. The authors in

[HFPW03] refer to [Wid00] in support of the claim that more precise calculations for

tRTO provide relatively little increase in fairness with existing TCP implementations.

The value s, packet size (bytes), is already obtained by each AP as part of the flow

(FLOW ) statistics described in Section 3.2.4. Like many other statistics in the AP

state table, the most recent measured value, along with a smoothed average of recent

samples and a sample variance, are all kept at various offsets in the FLOW address.

Here, a smoothed average is an appropriate value to adopt for input into Equation 4.1.

This leaves p, the loss rate on the interval [0, 1.0]. As described in Section 2.3.2, loss

rate handling in TFRC is somewhat intricate and represents by far the most complex

input component into Equation 4.1. Rather than use a simple packet loss rate, a

somewhat more sophisticated value called the loss event rate is employed that better

models TCP behavior in the face of multiple losses. Essentially, round trip time is used

to dampen the effect of subsequent losses once an initial loss has been encountered. This

is intended to model TCP’s round trip time delay before acknowledgments can establish

the missing segment. Weighted averaging of a loss event history, as well as history

discounting, are then used to further smooth resulting statistics. (See Section 2.3.2 for

additional details.)

The important thing to note here is that CP already provides the required raw

information to handle loss event rate calculations. That is, the mechanisms described

in Section 4.1.2 already identify lost packets and provide a round trip time estimate.

Calculating TFRC’s loss event rate, then, requires merely an additional lost packet

handler that calculates loss event intervals, maintains a history of such intervals and a

weighted average, and applies history discounting.

Calculation of X, the TCP-conformant transmission rate, is done on a per packet



67

basis using Equation 4.1. For efficiency, a lookup table can be employed to approximate

square root values in the denominator. Fixed point techniques can furthermore be used

to reduce the number of cycles required for multiplication and division operations.

Chapter 5 describes these techniques in some detail.

Available bandwidth, like packet loss rate, is calculated by the receiving AP and

reported back to the sending AP using the 24-bit available bandwidth field in the CP

header. For example, in Figure 1.5, the AP for Cluster B maintains an estimate for

available bandwidth from Cluster A to Cluster B and reports this estimate back to

endpoints in Cluster A within the CP header of packets traversing the reverse path. In

the same manner, Cluster A maintains an estimate of available bandwidth from Cluster

B to Cluster A.

In general, it is advantageous to do bandwidth estimation at the receiving AP

because this is where loss packet events are handled. In the case of TFRC, it would be

difficult to pass loss event size and history information back to the sending AP using

the CP header. It would be even more difficult to implement history discounting at the

sending AP. In contrast, it is relatively easy to handle such complexity at the receiving

AP and pass a single result value (i.e., available bandwidth) back to the sending AP

using the CP header.

4.2.2 Rate Adaptation Protocol (RAP)

While TFRC uses a modeling equation to calculate an instantaneous TCP-friendly

send rate given current path conditions, RAP [RHE99] calculates a sequence of relative

rate changes in a way that closely mimics the behavior of TCP congestion control. In

general, adapting RAP to the CP context is a good deal easier than that of TFRC.

This is because there are fewer input parameters, and treatment of lost packets is much

simpler.

Two types of rate changes must be handled in RAP: additive increase and multiplica-

tive decrease. The former, as described in Section 2.3.3, uses a step height parameter α

defined as Packetsize
RTT

. As described in Chapter 3, both average packet size (Packetsize)

and round trip time (RTT ) are maintained in the AP state table as FLOW.pktsize

and NET.rtt respectively. Updating α, then, is a relatively simple affair requiring a

short per-packet calculation that can be done using the fixed point methods described

in Chapter 5. Multiplicative decrease is handled using a β rate parameter defined to

be simply 0.5. As a constant, the value requires no updating whatsoever.



68

Step length, or the time between two additive increases is set to be one SRTT ,

or smoothed round trip time, a value defined by Jacobson in [Jac88]. As mentioned

in Section 4.1.1, a smoothed round trip time value is already kept in the state table

at each AP. If, however, the smoothing factor requires a different sample weight or

specialized handling for whatever reason, then it can easily be implemented with a

handling routine that takes as input new round trip time samples obtained using the

mechanisms described in Section 4.1.1.

To update the current available bandwidth estimate, each AP maintains a timer

that expires after the current step length. If no losses occur before the timer expires,

then the current rate is updated using the α parameter. If, on the other hand, a packet

loss is detected, then the β parameter is immediately applied to update the current

sending rate.

Cluster-loss-mode (see Section 2.3.3) can be implemented simply by applying backoff

parameter β only once for an entire cluster of contiguous lost packets rather than once

for each lost packet individually. Feedback signal Feedbacki, used to increase stability

and responsiveness to transient congestion, can be used to adjust the current rate

in a fine-grained manner. This value, defined as Feedbacki = FRTTi

XRTTi
, can easily be

calculated by maintaining a short-term exponential moving average FRTTi and long-

term exponential moving average XRTTi. The value can be computed with each packet

arrival or calculated periodically (e.g., every one millisecond) and applied to the current

rate accordingly.

What makes RAP a particularly interesting candidate for a TCP-friendly bandwidth

estimator in CP is both its rate-based approach, and its separation of congestion control

from error control. That is, while rate adjustments and loss detection are fundamental

to the algorithm, packet retransmissions and error recovery are an orthogonal concern.

(This is in stark contrast to TCP which incorporates data retransmissions directly into

its congestion detection and response mechanisms.) The separation of concerns works

well for CP which requires congestion control functionality alone. Error control, when

it is needed, may be handled on an individual flow basis using an appropriately selected

transport-level protocol.



69

4.3 Single Flowshare Evaluation

In this section, we evaluate the effectiveness of CP congestion control mechanisms

for cluster-to-cluster applications configured to send at an aggregate rate equivalent to

a single flowshare.

Our evaluation makes use of the ns2 [BEF+00] network simulator. ns2 is a widely

used discrete event simulator that originated in 1989 as a variant of the REAL net-

work simulator [KMJ+]. Over the past 15 years, it has received substantial support

from DARPA, and code contributions from LBL, Xerox PARC, UCB, USC/ISI, ACIRI,

CMU, and Sun Microsystems. Additional contributions have been made by countless

researchers (and graduate students) in the network community as ns2 has been ex-

tended repeatedly to support new work in diverse areas of the field. At the date of this

writing, it is one of the most comprehensive (if not unwieldy) simulators of its type.

It is worth noting that ns2 was chosen to evaluate work on CP aggregate con-

gestion control for at least two reasons. First, it provided a manageable environment

for working with several different congestion control algorithms. In particular, both

TFRC and RAP were implemented for study as TCP-friendly bandwidth estimators at

each AP. By studying more than one algorithm, we gained valuable perspective on CP

mechanisms in their generality.

Second, ns2 provided implementations of both TFRC and RAP single-flow trans-

port protocols. This was important in validating our implementation. The point to be

noted here is an important separation of concerns. While TFRC and RAP both claim

to be TCP-compatible, how well each competes with peer TCP flows, while important,

is not our first concern. Our first concern is how well a TFRC- and RAP-based CP

implementation competes with peer TFRC and RAP flows. ns2 allows us to make

such comparisons by providing standard implementations of TFRC and RAP, written

by the algorithm authors themselves. Such implementations, to our knowledge, were

not available to the FreeBSD or LINUX world at the time this work was undertaken.

Later, Section 4.5 will present results from a TFRC-based implementation run in

our laboratory testbed at UNC. Among other things, these results serve to demonstrate

the effectiveness of our approach in the context of competing TCP flows.



70

SAP

S1

S2

Sn

AAP

1A

2A

nA

2I1I

Bottleneck Link

Figure 4.4: Simulation testbed in ns2.

Parameter Value

Packet size 1 K
ACK size 40 B
Bottleneck delay 50 ms
Bottleneck bandwidth 15 Mb/sec
Bottleneck queue length 300
Bottleneck queue type DropTail
Simulation duration 180 sec

Figure 4.5: Configuration parameters.

4.3.1 Configuration

We refer to our ns2 [BEF+00] implementations of TFRC and RAP congestion con-

trol algorithms in CP as CP-TFRC and CP-RAP, respectively. Each uses the same

CP mechanisms for measuring network path conditions and exchanging state between

application endpoints and AP. The only difference is in the algorithm used to estimate

bandwidth availability. With either method, the value is placed in each AP state table

at the location NET.bw. Application endpoints can then request the value using the

mechanisms described in Chapter 3.

Figure 4.4 shows our simulation topology. Sending agents, labeled S1 through Sn,

transmit data to APS where it is forwarded through a bottleneck link to remote APA

and ACK agents A1 through An. For any given simulation, the set of sending and ACK

agents is partitioned into two subsets, one for CP agents and the other for competing

TFRC or RAP agents.

In general, links in this topology are configured to provide 2 ms delay, have a

bandwidth of 200 Mb/s, and use DropTail queuing with a queue length of 200. There

are two exceptions. First, links between ACK agents A1 through An and APA are

assigned delay values that vary but do not exceed 2.0 ms. This allows some variation

in RTT for different end-to-end flows. Second, the bottleneck link is parameterized

with respect to link speed, delay, queue type, and queue length. Table 4.5 summarizes

these and other parameters.

CP flows in our simulated cluster-to-cluster application are configured to take an

equal fraction of the current bandwidth available to the application. That is, if m

cluster-to-cluster endpoints share a flowshare bandwidth estimate of B, then each end-

point sends at a rate of B/m. More complex configurations are possible, and the reader

is referred to [OMP02], [OSMP04], and [OMP04] for further illustrations.



71

Figure 4.6: CP-TFRC: Number of
competing TFRC flows.

Figure 4.7: CP-TFRC: Number of con-
stituent CP flows.

4.3.2 Comparing TFRC and CP-TFRC

Our goal in this section is to compare aggregate CP-TFRC traffic using a single

flowshare with competing TFRC flows sharing the same cluster-to-cluster data path.

While it would be of interest to know how well CP-TFRC performs with respect to

competing TCP flows, or other flow types, our principle concern is that of TFRC-

conformancy. That is, here we are not concerned with evaluating the properties (eg.,

TCP-compatibility) of a particular congestion control scheme, but rather examining

how close we conform to known TFRC flow behavior.

In Figure 4.6, a cluster-to-cluster application consisting of 24 flows competes with

a varying number of TFRC flows sharing the same cluster-to-cluster data path. Nor-

malized throughput for protocol X (Fnorm.X) is obtained by dividing the throughput

for a single flowshare (Fx) by the mean flowshare in the simulation (Fmean).

Fnorm,X =
Fx

Fmean

(4.2)

Fx for TFRC (or FTFRC) is equal to the mean TFRC flow throughput across all flows.

(The mean throughput for each TFRC flow is averaged across all flows.) This is because

each TFRC flow takes the bandwidth equivalent to one flowshare. Fx for CP-TFRC

(or FCP−TFRC) is equal to the mean throughput for all CP-TFRC flows taken as an

aggregate. This is because all CP-TFRC flows combined comprise a single flowshare.

The value of Fmean can be calculated by dividing the aggregate throughput for all flows

by the number of flowshares in the system. Here, the number of flowshares is equal to



72

the number of TFRC flows plus one. A normalized flowshare value of 1.0 represents

an average throughtput level for a single flow that is ideally fair. Values greater than

1.0 indicate an average throughput level that exceeds fair, while values less than 1.0

indicate an average level that falls short of fair.

The performance of TFRC flows is presented two ways. First, normalized through-

put values for a single run at each given configuration is presented as a series of points.

Each point represents the normalized throughput received by a single flow, and illus-

trates the range in values naturally occurring in a single run. Second, a line connects

points representing the average (mean) flowshare received by a TFRC flow, additionally

averaging this value across 20 different trials of the same configuration. Since the num-

ber of TFRC flows completely dominates the total number of flowshares used within

the simulation, this value is very close to 1.0 for each configuration.

The CP-TFRC line connects points representing the aggregate normalized through-

put received by 24 CP flows averaged over 20 trials. For each trial, this aggregate flow

competed as only a single flowshare within the simulation. We see from this plot that

as the number of competing TFRC flows increases, cluster-to-cluster flows receive only

slightly less than their fair share, dropping somewhat when 64 TFRC flows compete

for bandwidth along the same data path. These values are within (or very close to) the

normal range of variance seen for competing TFRC flows.

Figure 4.7 shows per-flow normalized throughput when the number of competing

TFRC flows is held constant at 24, and the number of CP-TFRC flows is increased.

Once again, the aggregate CP-TFRC traffic competed with TFRC flows on the same

cluster-to-cluster data path for a single flowshare. All other details are similar to

the previous plot. We see from this plot that once again aggregate CP-TFRC traffic

received very close to its fair share of available bandwidth, with normalize values of

greater than .8 throughout. Values are once again within (or very close to) the normal

range of variance seen for competing TFRC flows.

We conclude from these experiments overall that CP-TFRC is reasonably successful

in achieving the aggregate band with equivalent to a single TFRC flowshare. This is

true both as the number of competing TFRC flows is increased, and as the number of

application flows comprising aggregate CP-TFRC traffic is increased.



73

Figure 4.8: CP-RAP: Number of com-
peting RAP flows.

Figure 4.9: CP-RAP: Number of con-
stituent CP flows.

4.3.3 Comparing RAP and CP-RAP

In this section we consider the performance of CP-RAP using the same simulation

scenarios described in the previous section. In general, we find that CP-RAP performs

far less consistently than CP-TFRC, but reasonably well for a subset of configuration

parameters.

Figure 4.8 shows the bandwidth share received by aggregate CP-RAP traffic as the

number of competing RAP flows is varied. Once again, CP-RAP flows are configured to

send an aggregate of one single flowshare as calculated by the CP-RAP implementation.

We see immediately that CP-RAP flows receive somewhat more than a single flowshare

when the number of competing connections is 16 or less, and somewhat less than

a single flowshare when the number of competing connections is greater than 32. For

competing connections within the range 24 ≤ n ≤ 32, CP-RAP flows are very successful

in obtaining an accurate fair share of available bandwidth.

Clearly our implementation of CP-RAP requires some additional tuning to increase

fairness and consistency at both low and high extremes. We note, however, that the

variations seen at the extremes were not enough to affect competing RAP flows dras-

tically. Even when aggregate CP-RAP traffic received 1.4 times its bandwidth share,

the competing 8 RAP connections received better than .9. Similarly, 16 competing

connections seem almost entirely unaffected.

Figure 4.9 shows per-flow normalized throughput when the number of competing

RAP flows is held constant at 24, and the number of CP-RAP flows is increased.



74

As usual, the aggregate CP-RAP traffic competed with other RAP flows for a single

flowshare. We see somewhat more variation than in the case of CP-TFRC, but in

general normalized throughput for aggregate CP-RAP traffic remained fairly close to

a single flowshare with values for most configurations less than or equal to 1.1. These

values are within (or very close to) the normal range of variance seen for competing

RAP flows.

4.4 Multiple Flowshares

In this section, we consider the problem of scaling aggregate cluster-to-cluster ap-

plication traffic to support multiple flowshares. As explained in the introduction to

this chapter, an application employing m independent flows will naturally receive m

flowshares if each flow operates independently using a congestion responsive transport

protocol like TCP. In order to avoid penalizing a complex cluster-to-cluster applica-

tion for using CP, we must provide an equivalent number of flowshares to emulate (in

aggregate) the bandwidth realized by an independent-flow approach.

Several approaches ([BRS99], [PCN00], [KW99]) were reviewed in Chapter 2 that

show how one may implement aggregate congestion control using a single flowshare. To

our knowledge, however, we are unaware of any approach that considers the multiple

flowshare problem. The reason for this, we believe, is that single-flow congestion control

algorithms break when a sender fails to limit their sending rate to the rate calculated

by the algorithm.

Here we use simulation to show how this is the case for CP-TFRC and CP-RAP.

After discussing the issue in some detail, we present a new technique, bandwidth filtered

loss detection, or BFLD, that solves the problem. Our approach works by reducing

the packet arrival and loss events that will be considered by a given congestion control

algorithm. With an appropriate level of loss feedback, the algorithm will continue to

correctly estimate the bandwidth available to a single flow under a particular set of

network path conditions.

4.4.1 Naive Approach

A naive approach to achieving multiple flowshares is simply to have each cluster-

to-cluster application endpoint multiply the estimated bandwidth availability value B



75

Figure 4.10: CP-TFRC: Multiple flow-
shares using the naive approach.

Figure 4.11: CP-RAP: Multiple flow-
shares using the naive approach.

by a scaling factor m, where m is the number of flows in the application. (Recall from

Section 4.2 that B is estimated for a single flowshare and stored in the AP state table at

the location NET.bw. m is stored at the location FLOW.num.) Thus, each endpoint

behaves as if the bandwidth available to the application as a whole is mB instead of

B. No other mechanisms or techniques are employed.

One might justify this approach by arguing that probe information exchanges be-

tween APs maintain a closed feedback loop. That is, an increase in aggregate sending

rate beyond appropriate levels will result in increases in network delay and loss. In

turn, this will cause calculated values of B to decrease, thus responding to the change.

Ideally, the system will settle on a new value of B which, when multiplied by m, results

in the appropriate congestion-controlled level that would have otherwise been achieved

by m independent flows.

Figure 4.10 and Figure 4.11 show that this is not the case. For each of these

simulations, the number of flows competing with the cluster-to-cluster application’s

aggregate flow is held constant at 24. The number of flowshares used by cluster-to-

cluster flows is then increased using the naive approach. In other words, the aggregate

send rate of the cluster-to-cluster flows is set to k ≤ m times the estimated available

rate reported by CP. The factor k is given by the x-axis. The normalized throughput

ratio (with 1.0 representing perfect fairness) is given by the y-axis.

In Figure 4.10, increases in the number of flowshares cause the average bandwidth

received by an average competing TFRC flow to drop unacceptably low. By k = 16,

TFRC flows receive virtually no bandwidth, and beyond k = 16, growing loss rates



76

Loss Event
Rate =1/6

1 2 3 4 5 6 7 8 9

RTT

Loss Event Interval= 8−2 = 6

Loss Event
Rate =1/12

1 2 3 4 5 6 7 8 109 11 12 13 1514 1617 18 19 20 21 22

RTT

Loss Event Interval= 15−3 = 12

Single
Flowshare

Multiple
Flowshare

Figure 4.12: Loss event rate calculation for TFRC.

eventually trigger the onset of congestion collapse.

The results shown in Figure 4.11 are less dramatic, but nevertheless, distinctive.

Even when k = 2, cluster-to-cluster flows receive nearly half the bandwidth they should

receive, a pattern that continues as values of k are increased up to 24.

From these two examples, we conclude that single-flow congestion control algo-

rithms cannot be scaled to multiple flowshares using the naive approach. Furthermore,

the manner in which bandwidth availability calculations fail depends entirely on the

algorithm. Different algorithms will fail in different ways. A congestion control algo-

rithm that does not fail may exist, but in our work we are trying to leverage established

algorithms.

4.4.2 Handling Packet Loss

In the case of CP-TFRC, recall that RTT and loss event rates are the primary inputs

to Equation 2.2. We note that increasing the cluster-to-cluster aggregate sending rate

should have no marked effect on RTT measurements since APs simply use any available

CP packets for the purpose of probe information exchanges. In fact, increasing the

number of available packets should make RTT measurements even more accurate since

more packets are available for probing.

On the other hand, we note that a large increase in cluster-to-cluster aggregate

traffic has a drastic effect on loss event rate calculations in CP-TFRC. TFRC marks

the beginning of a loss event when a packet loss Pi is detected. The loss event ends

when, after a period of one RTT, another packet loss Pj is detected. An inter-loss event



77

interval I is calculated as the number of sequence numbers between the two lost packets

(I = j−i) and, to simplify somewhat, a rate R is calculated by taking the inverse of

this value (R = 1/I). Here we note that the effect of drastically increasing the number

of packets in the aggregate traffic flow is to increase the inter-loss event interval I.

This is true because, while the likelihood of encountering a packet drop soon after the

RTT damping period has expired increases, the number of packet arrivals during the

damping period also increases. The result is a longer interval, or a smaller loss event

rate, and hence an inflated available bandwidth calculation.

This situation is depicted in Figure 4.12. In the single flowshare case, a loss event

begins with packet number 2 and ends with packet number 8, the first packet lost after

the round trip time dampening period has expired. This gives a loss event interval if

I = 6 and a loss event rate of R = 1/6. In the multiple flowshare case, a loss event

begins with packet number 3 and ends with packet number 15. While the raw packet

loss rate is roughly the same as the single flow case, lost packet number 15 occurs much

earlier than lost packet 8 in the single flowshare case. Instead of a smaller loss event

interval value, however, the value I = 12 is much larger and the resulting loss event

rate is much smaller R = 1/12. This is because of the dense arrival stream during the

round trip time dampening period.

The situation for CP-RAP is somewhat different. When a packet loss is detected

in RAP, a response will be made which reduces the available bandwidth value by

β = 0.5, in keeping with its AIMD control algorithm. Like TFRC, a damping period

of one RTT must then elapse before another packet loss may trigger a second backoff

event. In this case, drastically increasing the number of packets in the cluster-to-

cluster aggregate traffic has the effect of sharply decreasing the time elapsed beyond

the damping interval before another lost packet is encountered. The result is that

the algorithm applies backoff behavior too frequently, and available bandwidth values

remain below what they should be.

In a sense, each algorithm suffers from the problem of inappropriate feedback. For

CP-TFRC, too many packets received in the damping period used to calculate a loss

event rate artificially inflates the inter-loss event interval, while in CP-RAP, too many

packets artificially increases the frequency of multiplicative decrease events. In both

cases, the algorithms have been tuned for the appropriate amount of feedback which

would be generated by a flow source that is conformant to a single flowshare sending

rate.



78

4.4.3 Bandwidth Filtered Loss Detection

Our solution to the problem of loss handling in a multiple flowshare context is called

bandwidth filtered loss detection (BFLD). BFLD works by sub-sampling the space of

CP packets in the network, effectively reducing the amount of loss feedback to an

appropriate level. Essentially, the congestion control algorithm is driven by a “virtual”

packet stream which is stochastically sampled from the actual aggregate packet stream.

BFLD makes use of two different bandwidth calculations. First is the available

bandwidth, estimate Bavail (stored in the state table at NET.bw) which is calculated by

the congestion control algorithm employed at the AP. This represents the congestion

responsive sending rate for a single flowshare as defined by a particular congestion

control scheme like TFRC or RAP. Second is the aggregate arrival bandwidth, or Barriv.

The value Barriv is the total bandwidth currently being used by the cluster-to-cluster

application. The value of Barriv is maintained as a weighted moving average.

An important point to note is that the value of Barriv includes not only actual

packet arrivals, but an estimate of lost packets as well. Barriv is calculated from the

complete arrival stream where the size of lost packets is estimated from long-term

moving averages and the time of arrival, were the packet not lost, is interpolated. (See

Section 2.3.2 for how this may be calculated.)

Using these values, a sampling fraction F is calculated as F = Bavail/Barriv. If

Bavail > Barriv, then F is set to 1.0. Conceptually, this value represents the fraction

of arriving packets and detected losses to sample in order to create the virtual packet

stream that will drive the congestion control algorithm. We refer to this virtual packet

stream as the filtered packet event stream. (The term “packet event stream” refers to

both packet arrivals and losses over a given time interval.)

To determine whether a packet arrival or packet loss should be included in the

filtered packet event stream, a simple stochastic technique is used. Whenever a packet

event occurs (i.e., a packet arrives or a packet loss is detected), a random number r

is generated in the interval [0, 1.0]. If r is within the subinterval 0 ≤ r ≤ F , then an

arrival or loss is generated for the virtual packet event stream. Otherwise, no virtual

packet event is generated.

Packets chosen by this filtering mechanism are given a virtual packet sequence num-

ber that will be used by the congestion control algorithm for loss detection, computing

loss rates, updating loss histories, etc. Figure 4.13 illustrates the effect of this pro-

cess for TFRC. In this figure, we see that a subset of the multiple flowshare packet



79

Virtual
Flowshare

Loss Event
Rate = 1/7

1 2 4 5 6 7 8 9 10 123 11

Loss Event Interval= 10−3 = 7

RTT

Multiple
Flowshare

1 2 3 4 5 6 7 8 109 11 12 13 1514 1617 18 19 20 21 22

Stochastically chosen to generate virtual packet events.

Figure 4.13: Virtual packet event stream construction by BFLD.

event stream is stochastically chosen to generate a virtual packet event stream. Virtual

sequence numbers are assigned to packet events within this stream. As a result, the

TFRC calculation for the loss event interval decreases from 12 to 7, remedying the

problem illustrated in Figure 4.12. An interesting feature of this techniques is that it

can be applied regardless of the number of flowshares used by the cluster-to-cluster ap-

plication. This is because the factor F adjusts with the amount of aggregate bandwidth

used.

4.4.4 Evaluation

Figure 4.14 and Figure 4.15 show the results of applying BFLD to the simulations

of Figure 4.10 and Figure 4.11 in Section 4.4.1. As before, the number of CP flows

and competing TFRC or RAP flows are both held constant at 24, while the number of

flowshares taken by CP as an aggregate is increased from k = 1 to m.

The results show a dramatic improvement. Normalized throughput for CP-TFRC

flowshare configurations are close to .95 as the number of flowshares increases from 12 to

24. Throughput levels achieved by competing TFRC flows are consistently close to 1.0.

The reason for this improvement can be seen in Figure 4.16 which shows the mean loss

event interval over time. Loss event interval values without BFLD are approximately

17 times more than with BFLD.

For CP-RAP, normalized throughput values increase somewhat at 4 flowshares, but

then converge to exactly 1.0 as the number of flowshares increase to 24. Throughput

levels achieved by competing TFRC flows are consistently close to 1.0. The reason for

this improvement can be seen clearly in Figure 4.17 which shows the number of lost



80

Figure 4.14: CP-TFRC: Multiple flow-
shares using BFLD.

Figure 4.15: CP-RAP: Multiple flow-
shares using BFLD.

Figure 4.16: CP-TFRC: Mean loss
event interval.

Figure 4.17: CP-RAP: Number of lost
packets.



81

packet events considered by the RAP congestion control algorithm. Without BFLD,

the total number of losses is often 10 to 16 times more than the number of virtual losses

considered using BFLD.

4.5 Implementation and Evaluation

In this section, we briefly describe our implementation of the Coordination Protocol

using FreeBSD and LINUX, including packet header placement, router modifications,

application API, endpoint traffic generation, and experimental setup. 1 We then go

on to present results showing how BFLD performs in our laboratory testbed with

competing TCP connections and various levels of network delay, bottleneck bandwidth,

random loss, and background traffic loads.

Our implementation makes use exclusively of the TFRC congestion control algo-

rithm in estimating the bandwidth available to a single application flowshare. There

are several reasons for this. First, a real-world implementation was a substantial under-

taking and limitations in time and resources did not permit the development of multiple

algorithms. (As mentioned above, simulation provided an easier context to explore al-

ternative congestion control schemes.) Second, TFRC is more widely recognized and

accepted by the networking research community. This is evident from work surrounding

RFC 3448 (“TCP Friendly Rate Control (TFRC): Protocol Specification” [HFPW03])

and the very large number of [FHPW00] citations in the networking literature com-

pared to [RHE99]. Finally, Figure 4.8 seems to suggest that RAP may be less stable

than TFRC under some circumstances.

Unlike the simulations in the previous section where we compare CP-TFRC through-

put to that of competing TFRC flows, in this section we consider the performance of

CP-TFRC (now referred to simply as “CP”) with that of competing TCP flows. In

part, this is because a real-world implementation of TFRC was difficult to obtain at the

time that this work was undertaken. More importantly, however, we wished to examine

the performance of CP in the context of real-world traffic. Such traffic is dominated

by TCP flows, in part due to the World Wide Web which has emerged as a substantial

fraction of Internet traffic as a whole. [SCJO01]

In general, all of our experiments make use of multiple flowshares and BFLD. The

number of cluster-to-cluster application endpoints and the number of flowshares have

1See Appendix B for a more complete description of our laboratory testbed.



82

been matched. In addition, an equal number of competing TCP flows have been em-

ployed. We find overall that CP does quite well in maintaining TCP-compatibility

under a wide variety of network conditions.

4.5.1 Implementation

Our implementation of the CP architecture is a compromise between the approach

described in Chapter 3 and an application-level approach. The implementation uses

UDP with CP packet headers nested within the first 20 bytes of application data. Using

UDP allowed us to avoid the requirement that application endpoints have modified

network stacks. This makes CP easier to deploy.

While the endpoint implementation is handled at the application level, the AP im-

plementation is handled at the kernel level using a dynamically loadable kernel module

written for FreeBSD version 4.7. (See Chapter 5 for additional information on AP

implementation and performance.) This module extends IP forwarding capabilities of

first and last hop routers to provide full AP functionality. The module is configured to

recognize UDP packets from particular source-destination host pairings as CP packets,

triggering “deep processing” (header processing beyond the IP layer) of the CP packet

header nested within UDP application data. All state maintained at the AP is “soft”

(i.e., created on demand and torn down by timeout).

An application-level library provides a thin layer of indirection within application

send and receive calls at the endpoints. For send calls, the library handles packetization

and inserts a CP header at the beginning of each send buffer. For receive calls, the

library removes and processes the CP header, and then passes data to the application

level. API calls are provided that allow the application to query network and flow

information.

To drive the system, we constructed a test application comprised of two endpoint

clusters exchanging data as infinite data sources. Each of m endpoints acts essentially

as a rate-based traffic generator, sending mock data to a remote endpoint at a rate

equal to B, where B is the available bandwidth estimate for a single flowshare reported

by CP. The total aggregate traffic produced by the cluster-to-cluster application is mB.

Our test application lacks the rich semantic relationships seen in real-world distributed

multimedia applications, but provides us with the tools we need to verify system cor-

rectness and study overall AP performance. Endpoint hosts include both LINUX 9

hosts (kernel version 2.4) and FreeBSD 4.5 hosts.



83

Figure 4.18: Experimental network setup.

4.5.2 Experimental Setup

Our laboratory testbed configuration is shown in Figure 6.6. CP hosts and their

local AP on each side of the network represent two clusters that are part of the same

cluster-to-cluster application and exchange data with one another. Each endpoint sends

and receives data on a 100 Mb/s link to its local AP, a FreeBSD router that has been

CP-enabled as described above. Aggregate cluster-to-cluster traffic leaves the AP on a

1 Gb/s uplink. At the center of our testbed are two routers connected using two 100

Mb/s Fast Ethernet links. This creates a bottleneck link, and by configuring traffic

from opposite directions to use separate links, emulates the full-duplex behavior seen

on wide-area network links.

Competing TCP flows are generated by two clusters of TCP hosts on opposite sides

of the network. These hosts use the well-known utility iperf [Ipe] to generate long-

lived flows with unlimited data. Each host is connected to its local switch using 100

Mb/s Fast Ethernet. TCP flows share the same bottleneck link with CP flows and

thus compete with them for bandwidth. These flows allow us to measure the fairness

of CP to other application flows sharing the bottleneck link on the cluster-to-cluster

data path.

Also sharing the bottleneck link are background flows between traffic hosts on each

end of the network. These flows are used in several experiment groupings where the

effect of background traffic workload on CP performance is considered. More will be

said about the purpose and configuration of these flows in Section 4.5.7.

Finally, network monitoring during experiments is done in two ways. First, tcpdump

is used to capture TCP/IP headers from packets traversing the bottleneck, and then

later filtered and processed for detailed performance data. Second, a software tool



84

is used in conjunction with ALTQ [Ken98] extensions to FreeBSD to monitor queue

size and packet drop events on the outbound interface of the bottleneck routers. The

resulting log information provides packet loss rates with great accuracy.

Our description here has been brief. See Appendix B for a more complete presen-

tation of our laboratory testbed setup.

4.5.3 Performance Metrics

Overall, our goal is to compare aggregate CP flow performance to that of TCP

under various network conditions. In particular, we’re looking to see whether CP prob-

ing, bandwidth estimation, and state sharing mechanisms result in a TCP-compatible

aggregate traffic that successfully realizes the equivalent of m flowshares. To measure

our success, we make use of two comparative metrics closely related to those described

in [FHPW00].

First is normalized throughput ratio defined as the ratio of normalized average

throughput for a single TCP flow to the normalized average throughput for a single

CP flowshare.

RTCP,CP =
FTCP

FCP

(4.3)

Here FTCP and FCP are normalized flowshares as defined in Section 4.3.2 and represent

the average throughput for a single TCP flow or CP flowshare, normalized so that 1.0

is an ideal fair share. A value greater than 1.0 indicates that TCP flows on an average

have received more bandwidth than CP flowshares, while for values less than 1.0 the

reverse is true.

The second metric is the coefficient of variance (C.O.V.) ratio and is meant to

compare the degree of throughput variation seen in aggregate TCP and CP traffic:

C.O.V.TCP,CP =
C.O.V.TCP

C.O.V.CP

(4.4)

C.O.V. [Jai91] is computed as the standard deviation of aggregate throughput samples

for TCP or CP divided by the mean. A value greater than 1.0 indicates that more

variance is seen in aggregate TCP throughput samples than in CP, while for values less

than 1.0 the reverse is true.



85

Figure 4.19: Normalized throughput
ratio as RTT varies.

Figure 4.20: C.O.V. ratio as RTT
varies.

Figure 4.21: Normalized throughput
ratio as RTT varies.

Figure 4.22: C.O.V. ratio as RTT
varies.

4.5.4 Delay Experiments

To test CP under various network delay conditions, we made use of the dum-

mynet [Riz97] traffic shaper found in FreeBSD 4.5. Dummynet provides support for

classifying packets and dividing them into flows. A pipe abstraction is then applied

that emulates link characteristics including bandwidth, propagation delay, queue size,

and packet loss rate.

For this set of experiments, we configured dummynet on the two bottleneck routers

to simulate a range of combined propagation delays between 10 and 130 ms. Various

combinations of CP and TCP flows are run to explore the effects of scaling and unequal

flow distributions on CP performance. Expressed using the format “l − m”, where l



86

is the number of CP flows and m is the number of TCP flows within the same run,

these combinations include 7-7, 14-14, 21-21, 28-28, 35-35, 7-35, and 35-7. For each

combination, each of m CP flows sends at the reported bandwidth availability rate,

for a total of m flowshares of aggregate cluster-to-cluster traffic. Runs lasted for four

minutes and begin after a 20 second ramp-up and stabilization period. Trials using a

longer ramp-up and run interval did not show significantly different results. Dummynet

loss rates were held constant at 1%.

Figure 4.19 shows normalized throughput ratio results for runs with an equal number

of TCP and CP flows. In general, values remain very close to 1.0 for all trials, with

average TCP flows receiving only slightly more bandwidth. C.O.V. ratios in Figure 4.20

likewise remain fairly close to 1.0 but show somewhat more variance in TCP for the

7-7 configuration at a round trip time of 130 milliseconds.

Figure 4.21 shows normalized throughput ratio results for runs with an unequal

number of TCP and CP flows. Like the previous configurations, values generally remain

very close to 1.0 with TCP receiving only slightly more bandwidth. Interestingly,

Figure 4.22 results seem to indicate that some difference in throughput variation exists

when the number of competing flows is unequal. In the 7-35 configuration, 7 TCP flows

exhibit much more throughput variation than 35 CP flows. In the 35-7 configuration,

the situation is reversed. although the difference is not nearly as extreme. This would

seem to suggest that fewer flows generally results in more throughput variation during

the run, especially for TCP.

4.5.5 Bottleneck Bandwidth Experiments

To test CP under conditions of various bottleneck bandwidths, we again used dum-

mynet on the bottleneck FreeBSD routers. This time we varied the bottleneck band-

width configuration from 10 to 80 Mb/s, meanwhile maintaining a constant 40 ms

round trip time and 1% loss rate.

Normalized throughput results in Figure 4.23 are fairly close to 1.0 for nearly all

configurations with an equal number of TCP and CP flows. Figure 4.24 shows a very

balanced throughput variance for the same configurations as seen by values that are

strikingly close to 1.0 throughout.

There is somewhat less fairness seen in the unequal flow number configurations.

While Figure 4.25 shows the 7-35 configuration to be very close to 1.0 in the normalized

throughput ratio results for nearly all bottleneck bandwidths, the 35-7 configuration re-



87

Figure 4.23: Normalized tput ratio as
bottleneck bandwidth varies.

Figure 4.24: C.O.V. ratio as bottleneck
bandwidth varies.

Figure 4.25: Normalized tput ratio as
bottleneck bandwidth varies.

Figure 4.26: C.O.V. ratio as bottleneck
bandwidth varies.



88

Figure 4.27: Normalized throughput
ratio as loss varies. Figure 4.28: C.O.V. ratio as loss varies.

Figure 4.29: Normalized throughput
ratio as loss varies. Figure 4.30: C.O.V. ratio as loss varies.

sult in values that are significantly less than 1.0. Values are the lowest when bottleneck

bandwidth is at its lowest, and improve steadily as bottleneck bandwidth improves.

Differences in throughput variation are even more stark for unequal flow number

configurations. As seen in Figure 4.26, the 7-35 configuration results in a strikingly large

amount of throughput variation for the 7 TCP flows compared to the 35 CP flows. The

situation is most extreme at very low bottleneck bandwidth levels and improves steadily

as bottleneck bandwidth increases. The 35-7 configuration once again results in slightly

more throughput variation for the 7 CP flows compared to the 35 TCP flows. This

improves only slightly as bottleneck bandwidth increases.

We note here that most laboratory testbed experiments in this dissertation use a

100 Mb/s bottleneck bandwidth configuration. Hence, the fairness issue observed for



89

very low bottleneck bandwidth configurations in this section (e.g., 10 Mb/s) do not

re-surface in our subsequent experiment sets.

4.5.6 Random Loss Experiments

To test CP under various loss levels we once again used the dummynet traffic shaper

on bottleneck FreeBSD routers. We varied random packet loss levels from 1 to 5%,

meanwhile maintaining a constant 40 ms round trip time.

Normalized throughput results in Figure 4.27 show a marked drop in ratio values

for equal flow configurations as loss levels are increased. This indicates that TCP

flows are increasingly losing bandwidth to CP flows. This is a known problem with

TFRC that has been described in [Wid00]. Widmer theorizes that higher packet loss

rates increasingly interfere with TCP’s ability to maintain self-clocking since timeouts

become more frequent. SACK TCP would likely perform better than FreeBSD’s New

Reno in this context, but it is not supported by FreeBSD version 4.5 and hence the

issue could not be explored.

Figure 4.28 indicates that TCP and CP throughput variation is largely similar for

most configurations, evident by the fact that most values remain close to 1.0. This is

not true, however, for flow configuration 7-7 and, to a lesser degree, 14-14, both of which

increasingly show more throughput variation in TCP as packet loss rates increase.

Figure 4.29 shows the same drop in normalized throughput ratio values as packet

loss rates increase for unequal flow configurations. Similarly, configuration 7-35 in Fig-

ure 4.30 shows the same increase in throughput variation for TCP as loss rates increase.

In contrast, the 35-7 configuration once again results in slightly more throughput vari-

ation for the 7 CP flows compared to the 35 TCP flows. This improves only slightly as

loss rates increase.

Overall, we conclude that CP, using the TFRC congestion control algorithm to

perform bandwidth estimation, achieves a high degree of fairness when random packet

loss levels do not exceed 2%. Beyond these levels, Equation 2.2 begins to overestimate

available bandwidth somewhat, a problem documented by the original authors of TFRC

in [Wid00].



90

4.5.7 Traffic Load Experiments

While testing CP performance under various dummynet loss conditions is instruc-

tive, a random loss model is unrealistic. In reality, losses induced by drop tail queues in

Internet routers are bursty and correlated. To better capture this dynamic, we tested

CP performance against various background traffic workloads using a Web traffic gen-

erator known as thttp.

Thttp uses empirical distributions from [SCJO01] to emulate the behavior of Web

browsers and the traffic that browsers and servers generate on the Internet. Distri-

butions are sampled to determine the number and size of HTTP requests for a given

page, response sizes, the amount of “think time” before a new page is requested, etc. A

single instance of thttp may be configured to emulate the behavior of hundreds of Web

browsers and significant levels of TCP traffic with real-world characteristics. Among

these characteristics are heavy-tailed distributions in flow ON and OFF times, and

significant long range dependence in packet arrival processes at network routers.

We ran four thttp servers and four clients on each set of traffic hosts seen in Fig-

ure 6.6. Emulated Web traffic was given a 20 minute ramp-up interval and competed

with TCP and CP flows on the bottleneck link in both directions. We varied the number

of browsers emulated from 1000 to 6000 (see Appendix B) and ran experiments using

the same flow configurations used above. Resulting loss rates are shown in Figure 4.35

and Figure 4.36 as measured on bottleneck router queues.

Figure 4.31 shows normalized throughput ratios for equal numbers of TCP and CP

flows. Results look improved over dummynet random loss trials shown in Figure 4.27,

perhaps due to fewer timeouts in TCP as losses are encountered in bursts rather than

randomly distributed. As the number of browsers increases to 6,000, throughput ratios

are very close to 1.0 for all configurations. At smaller browser numbers, however, 7-

7 and 35-35 configurations are less and more than 1.0, respectively. This indicates

that CP flows receive somewhat more bandwidth for the former, and somewhat less

bandwidth for the latter.

C.O.V. ratio results in Figure 4.32 show very similar levels of throughput variation

in TCP and CP. Only the 7-7 configuration shows some divergence from 1.0 with CP

exhibiting somewhat more throughput variation for runs with fewer browsers.

The situation with an unequal number of TCP and CP flows is somewhat different

for normalized throughput ratios shown in Figure 4.33. Configuration 7-35 show CP

flows receiving somewhat more throughput for several configurations, though values



91

Figure 4.31: Normalized throughput
ratio as load varies.

Figure 4.32: C.O.V. ratio as load
varies.

Figure 4.33: Normalized throughput
ratio as load varies.

Figure 4.34: C.O.V. ratio as load
varies.

Figure 4.35: Loss rates generated by
background web traffic.

Figure 4.36: Loss rates generated by
background web traffic.



92

are reasonably close to 1.0 throughout. In contrast, configuration 35-7 shows TCP

receiving more bandwidth for 5,000 and 6,000 browser levels. Note in Figure 4.36 that

configuration 35-7 also experienced substantial loss rates for those browser configura-

tions.

C.O.V. ratio results in Figure 4.34 show very similar levels of throughput variation

in TCP and CP. Only the 7-35 configuration shows some divergence from 1.0 with CP

exhibiting somewhat more throughput variation for runs with small and large (but not

intermediate) numbers of browsers.

4.5.8 Summary

In this section, we described our implementation of CP in a laboratory testbed

and looked at various experimental results related to aggregate congestion control.

Specifically, we looked at the performance of CP using multiple flowshares under various

network conditions (round trip time, bottleneck bandwidth, random loss rates, and Web

traffic loads). BFLD was used to enable correct bandwidth estimation as the cluster-

to-cluster application uses multiple flowshares.

Our performance study made use of competing TCP flows as a standard for conges-

tion responsiveness and network-friendly resource usage. The metrics used, normalized

bandwidth ratio and C.O.V. ratio, compare the throughput and throughput variance

between TCP and CP flows. Our overall goal was to establish the TCP-compatibility

of CP under a wide range of network conditions.

Our results show that CP exhibits TCP-compatibility over a wide range of round

trip times. Results for different bottleneck bandwidths were likewise solid, although

runs with a small number of CP flows versus a large number of TCP flows resulted

in somewhat higher throughput variability. For random loss levels, CP performed well

when values did not exceed 2%. Beyond this point, CP increasingly receives more

bandwidth than competing TCP. These conditions appear to re-create a TFRC mod-

eling flaw that is described in [Wid00]. Loss produced in a more realistic environment

where traffic load periodically causes drop tail queue overflow produced much better

results. In general, CP behavior was sound for equal flow configurations with greater

than 1,000 Web browsers and acceptable for unequal flow configurations with less than

5,000 Web browsers.



Chapter 5

Aggregation Point Implementation

and Performance

In this chapter, we discuss aggregation point (AP) implementation and performance

within the Coordination Protocol architecture. First, we provide an overview of AP

deployment within our laboratory testbed, describing both hardware and software con-

figuration in some detail. Then, we describe a number of kernel module implementation

techniques that were used to improve CP packet handling performance. Finally, we

present some performance results that quantify the level of performance we achieved

with our prototype.

We note here that our approach to AP implementation (i.e., enhanced FreeBSD

software routers) is by no means the only one. LINUX might have been used instead,

or network processors like Intel’s IXP product family. The Coordination Protocol does

not presuppose any particular implementation platform any more than it presupposes

a particular congestion control algorithm for estimating available bandwidth. Hence,

the implementation described in this chapter represents merely a case study; one that

may provide useful information for subsequent implementations.

5.1 Overview

Each AP within our laboratory testbed (see Figure B.2) was implemented using an

Intel-based PC workstation running FreeBSD 4.9.

The machine is a Dell Precision 650 MiniTower workstation purchased in October

of 2003. It has a single 3.20 GHz Intel XEON processor with a 533 MHz front side bus,



94

8 KB level 1 data cache, 512 KB advanced transfer level 2 cache, and 1 MB full-speed

level 3 cache. For main memory, it uses 2 GB of 266 MHz, dual channel DDR SDRAM

equipped with ECC in the form of four 512 MB modules. Two 73 GB hard drives are

SCSI Ultra 320 controlled and spin at 15K RPM. Network adapters are Intel PRO/1000

MF Dual Port Server Adapters for 1000BASE-SX multi-mode fiber. The adapter has

128 KB of onboard memory and uses DMA to transfer data on a 133 MHz PCI-X bus.

On this PC workstation, we ran FreeBSD version 4.9 Release. The kernel for this

system was compiled with optimization options “-02” and “-funroll-loops”, and uses a

configuration trick to increase clock granularity from 100 Hz to 1000 Hz. Some addi-

tional configuration changes include increasing network mbufs to 65536 and enabling

ipfirewall and dummynet options.

CP enhancements to FreeBSD are implemented as a dynamically linked kernel mod-

ule. Beginning with FreeBSD 3.1, dynamic kernel linker utilities became available that

can add and remove kernel extensions from a running FreeBSD system without the

need to reboot. This feature was originally designed for developing device drivers, but

it quickly became the tool of choice for kernel development in other spheres as well

(e.g., Kenjiro’s ALTQ [Ken98]). In its compiled form, the CP kernel module is about

45 KB and takes only a few seconds to load using kldload.

Adding CP packet handling capability required creating a point of indirection within

FreeBSD’s native IP handling routine. This routine is called ip input() and is located

in the source tree at src/sys/netinet/ip input.c. To create the indirection, a func-

tion pointer is declared within the same file with the same arguments and return type

as ip forward() (also in ip input.c), and then assigned to point at ip forward() as

per the original configuration.

static void (*ip_forward_ptr)(struct mbuf *m, int srcrt,

struct sockaddr_in *next_hop) = ip_forward;

Within ip input(), subsequent calls to ip forward() like the following:

ip_forward(m, 0, args.next_hop); /* original */

are then replaced with calls to the function pointer

(*ip_forward_ptr)(m,0,args.next_hop); /* new version */



95

Upon loading the CP kernel module, the current value of this function pointer is

saved, and the pointer is re-assigned to point to a dynamically linked CP routine

(hook ip forward()) that does CP packet classification and calls additional handling

routines for recognized CP packets. At the close of the routine, the original function

pointer value is used to call ip forward() and return control to FreeBSD’s native IP

forwarding code.

To identify CP packets, a system call was created that allows an administrator to

add IP address and port ranges to a table. Incoming UDP packets with source and

destination addresses contained within the table are flagged for CP handling. There

are, of course, other ways to handle the packet classification issue, including methods

that are less static in character. This one was chosen merely because it met our needs

at the time.

Another system call is used to configure the AP to recognize which interface is on its

local cluster and which is on the cluster-to-cluster data path. CP packets coming from

the local cluster (i.e., outbound packets) will be parsed for state table assignment direc-

tives before overwriting their headers with network probe information and forwarding

them on toward the remote cluster. CP packets coming from the remote cluster (i.e.,

inbound packets) will be parsed for network probe information before overwriting their

headers with CP report information and forwarding them to their destination endpoint

on the local cluster.

A cluster-to-cluster application table is maintained and a new entry added each

time a new cluster id (cid) is encountered. Associated with each application is also a

flow table which tracks a small number of per-flow statistics (e.g., throughput) as an

application runs. When a new flow id (fid) is encountered, it is added to this table.

All operations involving application or flow table access can be performed in constant

time. This is because the former is implemented as a direct index table while the latter

uses a hash-based approach.

It should be emphasized that CP handling routines at each AP perform a bounded

amount of work. That is, CP packet handling costs cannot exceed certain fixed over-

heads that depend upon the packet’s position on the forwarding path. For an outbound

packet, the following operations will be performed:

• State table assignments. An AP will make up to four state table assignments

based upon the contents of the four operation fields in the CP header. (Some

of these fields may contain a NOOP flag value indicating that no assignment is



96

requested.)

• CP header assignments. The CP header will be overwritten with six net-

work probe fields, including timestamp, echo timestamp, echo delay, bandwidth

available, loss fraction, and sequence number.

• IP checksum update. Five IP checksum modifications (see Section 5.2.3) will

be made, one for each 32-bit word in the CP header that has been modified.

• Flow accounting updates. Several flow-related accounting updates are made,

including outbound packet size, flow throughput, and aggregate flow throughput.

The situation for inbound packets is only slightly more complex:

• Probe information processing. An AP will process incoming probe infor-

mation by using timestamp, echo timestamp, and echo delay values to calculate

a round trip time sample, and using the sequence number to identify any lost

packets.

• Bandwidth estimation. Using the configured algorithm and updated round

trip time and loss rate values, a new bandwidth estimation will be made. For

TFRC, this means handling loss event rate calculations and then applying Equa-

tion 4.1.

• State table updates. Probe and bandwidth estimation values will be used to

update several offsets in the NET portion of the state table.

• CP header assignments. The CP header will be overwritten with four report

values taken from the AP state table. While many values can simply be read

from the table, a worst case scenario involves four GP addresses with aggregate

operation offsets. Even in this case, however, the number of flow offsets involved

is bounded.

• IP checksum update. Five IP checksum modifications (see Section 5.2.3) will

be made, one for each 32-bit word in the CP header that has been modified.

• Flow accounting updates. Several flow-related accounting updates are made,

including inbound loss rate, packet size, flow throughput, and aggregate flow

throughput.



97

To summarize, bounded handling overhead stems from the small number of fields to

be handled and written within the CP header, the limited size of AP state tables, and

the fact that all complex aggregation operations in general purpose addresses (e.g.,

GP3.mean) are bounded in input size and updated only on demand.

Finally, it is also important to recognize the scope of AP function within the network.

While backbone routers in the middle of the network provide forwarding service for tens

of thousands of flows, an AP is charged with handling only the flows belonging to a

single cluster. Hence, performance requirements are not nearly as stringent. Even

if a number of cluster-to-cluster applications are operating simultaneously, the total

number of flows and aggregate bandwidth should be manageable using a commodity

processor like the one described in this chapter.

5.2 Implementation Notes

In this section, we describe a number of implementation techniques used in the

kernel module code to improve efficiency and reduce packet handling overhead. These

include avoiding system time calls, use of fixed point calculations, using IP checksum

modifications, implementing square root calculations with a lookup table, and employ-

ing lazy evaluation for general purpose aggregation operations.

5.2.1 Avoiding System Time Calls

Getting the current clock time is a frequent operation within each AP. Clock time

is needed to calculate throughput rates for aggregate application traffic and individual

flows, to calculate loss rates at regular intervals, to create timestamps for CP probe

headers, to calculate round trip time when receiving a CP probe header, and to time

out soft state.

While FreeBSD offers a set of kernel-based system calls for getting the time (get-

microtime() and getnanotime()) more efficiently than application-level gettimeof-

day(), the most efficient way to get the system time is to use the CPU cycle count

register. Within /usr/include/machine/cpufunc.h is the following assembly routine:

static __inline u_int64_t

rdtsc(void)

{



98

u_int64_t rv;

__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));

return (rv);

}

This machine-level routine provides a very efficient way to obtain the CPU cycle count

as an unsigned, 64-bit value. This value, which is read directly from a system register,

increases monotonically without cycling. Using a calibration routine at module load

time, one can easily establish the relationship between cycle count and clock time:

start_cycles = rdtsc();

getmicrotime(&end_ts);

do_dummy_task(); /* time-intensive dummy task */

end_cycles = rdtsc();

getmicrotime(&end_ts);

diff_usec = (u_int64_t) getDiffUsec(&end_ts,&start_ts);

diff_cycles = end_cycles - start_cycles;

cycles_per_usec = diff_cycles / diff_usec;

Now, getting the clock time is easy. Simply get the cycle count and then convert to

microseconds (if needed) using cycles per usec and a single integer multiply.

5.2.2 Fixed Point Calculations

Calculating available bandwidth using Equation 4.1, interpolating lost packet arrival

time, and maintaining packet loss statistics all require floating point calculations. Un-

fortunately, the floating point arithmetic unit (FPU) is not available in kernel code and

any attempts at a floating point operation will promptly result in a system exception.

It is just as well, however, since floating point calculations are overly time-consuming

for the kernel context and a more efficient approach is needed. Fortunately, fixed point

is an established alternative for floating point computations; one that relies exclusively

on unsigned integer data types.

The idea in fixed point math is to divide an unsigned integer into an integer compo-

nent consisting of some number of leftmost bits and a fractional component consisting

of some number of rightmost bits. For example, a 32-bit unsigned integer may be



99

divided into 20 leftmost integer bits and 12 rightmost fractional bits. To convert an

integer into fixed point, use the bit shift operator to “scale” the original representation

by shifting it left by 12 bits. (Care must be taken in fixed point to make sure values

can be represented correctly with fewer digits.) To convert a fixed point number to

an integer, use the bit shift operator to “unscale” the value by shifting it right by 12

bits. (Rounding it first may be desirable.) A convenient set of C macros for performing

these operations are as follows:

#define FP32_SHIFT 12

#define FP32_UNIT (((u_int32_t)1) << (FP32_SHIFT))

#define FP32_HALF (((u_int32_t)1) << (FP32_SHIFT-1))

#define FP32_SCALE(x) ((x) << FP32_SHIFT)

#define FP32_UNSCALE(x) ((x) >> FP32_SHIFT)

#define FP32_UNSCALE_ROUNDED(x) (((x) + FP32_HALF) >> FP32_SHIFT)

The benefit obtained by using fixed point representations is that numeric calcula-

tions can be performed with bitwise shift and integer math operations. To see this,

consider the rules for fixed point arithmetic using unsigned integers:

• Adding two numbers. Make sure both numbers have been scaled, and then

simply add. (Fractional carry works correctly without any additional steps.)

• Subtracting two numbers. Make sure both numbers have been scaled, and

then simply subtract them. (Fractional borrow works correctly without any ad-

ditional steps.)

• Multiplying two numbers. For a fixed point number and a whole number,

simply multiply them. For two fixed point numbers, multiply them and then

unscale the result by shifting the product 12 bits to the right. The result is still

a fixed point number.

• Dividing two numbers. For a fixed point dividend and a whole number divisor,

simply divide them. For two fixed point numbers, scale the dividend by shifting

it 12 bits to the left, then divide. The result is still a fixed point number.

Rules for signed fixed point are only slightly more complex. Interestingly, most Intel

machines will hold the sign of a number that is scaled or unscaled using the bit shift

operator (<< and >>).



100

CP uses both 32-bit and 64-bit fixed point depending upon the range of values

involved and the need for precision. Floating point values are kept in fixed point

representation at all times. 24-bit state table fields also use fixed point representations

(e.g., NET.loss) to inform endpoints of fractional values.

5.2.3 IP Checksum Modifications

Each application packet arriving at an AP will have its CP header overwritten. For

outbound packets, state table assignment operators will be overwritten with network

probe information. For inbound packets, network probe information will be overwritten

by CP report information meant for the destination host.

An unavoidable complication that results from modifying the CP header during

forwarding is that the IP checksum associated with the packet becomes invalid. One

way to handle the situation, of course, is to recompute the checksum in its entirety. This

fairly complex operation is expensive, not only because of the header manipulations

required, but because it must read every last byte of the packet in the process.

Fortunately, a better option exists. Instead of recomputing the entire checksum,

the current checksum can simply be modified based on the bytes that have changed.

(RFC 1071 [BBP88] mentions the notion of incremental updates and provides some

discussion of the mathematical basis for it.) The code excerpt below was authored by

Darrell Anderson from Duke University (with some very slight modifications) and pays

tribute to code in Darren Reed’s IPFilter implementation. The routine, which was

used in our CP kernel module implementation, modifies the current IP checksum based

upon changes to 32-bit word units.

#define LONG_SUM(in) (((in) & 0xffff) + ((in) >> 16))

#define CALC_SUMD(s1, s2, sd) { \

(s1) = ((s1) & 0xffff) + ((s1) >> 16); \

(s1) = ((s1) & 0xffff) + ((s1) >> 16); \

(s2) = ((s2) & 0xffff) + ((s2) >> 16); \

(s2) = ((s2) & 0xffff) + ((s2) >> 16); \

if ((s1) > (s2)) (s2)--; \

(sd) = (s2) - (s1); \

(sd) = ((sd) & 0xffff) + ((sd) >> 16); \

}



101

void udp_rewrite_word(struct mbuf *m, int off, u_int32_t new_val)

{

struct udpiphdr *uihdr = mtod(m, struct udpiphdr *);

u_int32_t old, sum1, sum2, sumd, len;

if (m->m_pkthdr.csum_flags != CSUM_UDP) {

old = *((u_int32_t *)(mtod(m, caddr_t) + off));

sum1 = LONG_SUM(ntohl(new_val));

sum2 = LONG_SUM(ntohl(old));

CALC_SUMD(sum1, sum2, sumd);

if ((sumd = (sumd & 0xffff) + (sumd >> 16)) != 0) {

sum1 = (~ntohs(uihdr->ui_sum)) & 0xffff;

sum1 += ~(sumd) & 0xffff;

sum1 = (sum1 >> 16) + (sum1 & 0xffff);

sum1 = (sum1 >> 16) + (sum1 & 0xffff); /* again */

if ((uihdr->ui_sum = htons(~(u_short)sum1)) == 0) {

uihdr->ui_sum = 0xffff;

}

}

*((u_int32_t *)(mtod(m, caddr_t) + off)) = new_val;

}

*((u_int32_t *)(mtod(m, caddr_t) + off)) = new_val;

if (m->m_pkthdr.csum_flags == CSUM_UDP) {

len = m->m_pkthdr.len - sizeof(struct udpiphdr);

uihdr->ui_sum = in_pseudo(uihdr->ui_src.s_addr, uihdr->ui_dst.s_addr,

htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));

}

}



102

5.2.4 Square Root Calculations

Square roots in the TFRC equation (Equation 4.1) pose a difficult problem. They

are expensive to compute yet must be used on a per-packet basis to update the current

bandwidth availability estimate for a single flowshare (NET.bw in the state table). To

get around this problem, we employ a pre-calculated lookup table.

To understand the approach, we first observe that each square root expression in

Equation 4.1 contains only two variables: b, the number of packets acknowledged by a

single TCP ACK packet, and p, the loss rate on the interval [0, 1.0]. As explained in

Section 4.2.1, b is merely a constant with a value of 1 or 2. Constructing a lookup table,

then, requires merely anticipating possible values for p that might be encountered as

an application runs over a particular network path.

Recall from Section 2.3.2 that loss rate is handled in TFRC as a loss event rate

which employs a RTT dampening mechanism to avoid responding to packet loss more

than once during the same round trip time interval. Furthermore, it uses a loss history

to compute a weighted average of the last eight loss events. Both of these techniques

work to smooth bursts in packet loss behavior and make values of p resilient to spikes.

Our approach, then, is provide lookup table coverage for a reasonable range of values

and then use brute force calculations when a truly anomalous value for p comes along.

The square root lookup table is wrapped in a function called fpsqrt32(). This

function takes a 32-bit fixed point input parameter and treats it as an integer index

into the lookup table contained within. This table has 2732 values which cover all

possible fixed point values in the range [0, 0.6666]. (Remember that each fractional

unit value for a 12-bit fractional representation space is 1/212.) At four bytes per

value, the table occupies approximately 10 KB of kernel memory.

u_int32_t fpsqrt32(u_int32_t x)

{

static u_int32_t root[] = { 0, 64, 90, 110, ... 3343, 3343, 3344 };

if ( x > 2731 ) {

return fpsqrt32_compute(x);

}

return root[x];

}



103

For values that lie outside the input range, an additional function is provided for calcu-

lating the square root of a 32-bit fixed point value on the fly. The code is shown below

and has been adapted from a contribution by Ken Turkowski to the popular series of

books known as Graphics Gems [Pae95]. Resulting values were exhaustively tested and

are accurate up to three decimal digits.

u_int32_t fpsqrt32_compute(u_int32_t x)

{

register unsigned long root, remHi, remLo, testDiv, count;

if (x == 0) return 0;

root = 0; /* Clear root */

remHi = 0; /* Clear high part of partial remainder */

remLo = x; /* Get arg into low part of partial remainder */

count = 15 + (FP32_SHIFT >> 1); /* Load loop counter */

do {

remHi = (remHi <<2) | (remLo >> 30); /* Get 2 bits of arg */

remLo <<= 2;

root <<= 1; /* Get ready for the next bit in the root */

testDiv = (root << 1) + 1; /* Test radical */

if (remHi >= testDiv) {

remHi -= testDiv;

root += 1;

}

} while (count-- != 0);

return(root);

}

5.2.5 Lazy Evaluation for GP Aggregation Operations

In Section 3.2.5, we described the structure of general purpose state table addresses

(GP1 through GP250). In summary, GP addresses are used by flows in a cluster-

to-cluster application to solve application-specific problems. The first 128 offsets are



104

writable by application flows (each flow using its flow id as an offset) using a represen-

tational format defined by the application. Offsets in the range [128, 255] contain the

results of various aggregation operations. Some of these operations include min, flow

id of the min value, max, flow id of the max value, sum, mean, logical OR, logical AND,

etc.

With so many aggregation offsets, the question becomes how an AP can keep them

all updated without allowing performance to suffer. After all, a single write to the

flow-writable range [0, 127] could potentially result in up to 128 updates to values in

the range [128, 255]. Since a single CP packet holds up to four assignment operations,

this could mean up to 512 updates total.

The answer lies in the well-known evaluation technique called lazy evaluation. Essen-

tially, aggregation operations are performed on demand only when explicitly requested

by a flow using the mechanisms described in Section 3.2.2. For example, the logical OR

offset for general purpose address 7 (GP7.OR) will be updated only before the value

is actually required to assign a report value in some CP header.

Further efficiency can be achieved by the use of flag bits in each state table offset.

(Recall that 32-bit offsets are used in our state table implementation, each of which

holds a 24-bit value and has 8 bits left over for miscellaneous use.) An assigned bit

is used to distinguish between offsets that have been assigned and those that have

not. Use of this flag reduces the number of values that need to be considered when

performing aggregation operations. A dirty bit flag is used to indicate that an offset has

been newly assigned. When no dirty bits have been detected for a particular address,

then the results of a previous aggregation operation can be reused without calculating

a new value.

5.3 Performance

In this section we present results that help to quantify the performance of our

AP implementation, and to provide insight into what comprises CP packet handling

overhead. First, we present the results of a gprof kernel module execution profile.

Next, we describe timing measurements made in our laboratory testbed that quantify

per packet overhead for various scenarios. Finally, we look at overall throughput results

in comparison with the baseline IP forwarding capabilities of FreeBSD running on the

machine described in Section 5.1.



105

5.3.1 Kernel Module Execution Profile

Table 5.1 shows a CP kernel module execution profile made with the well-known

GNU utility gprof. In general, obtaining a FreeBSD kernel module profile using gprof

is not an easy task. In part, this is because profiling requires a specially compiled

kernel. More importantly, however, is the fact that a kernel module is dynamically

linked. After loading the specially compiled module, a separate symbol table and offset

address must be manually linked to the executables before gprof can identify module-

based routines. 1

Results show AP overhead to be dominated by TFRC calculations, comprising some

24% of overall cycle time. These calculations are done on a per-packet basis and use

64-bit fixed point computations for precision. Clearly more work needs to be done to

improve the efficiency of this computation. Perhaps using 32-bit fixed point compu-

tations might help, as might pre-computing portions of the equation with predictable

sub-results. Another idea might be to amortize the cost of the calculation over a small

number of packets rather than re-computing for each packet arrival. Alternatively,

employing a simpler bandwidth estimation algorithm might be advantageous.

The next three heavy hitters include is cp host(), update incoming bwavail(),

and cp handler(). cp handler() is the main CP packet handling routine which in-

cludes, among other things, parsing CP headers, writing CP headers, maintaining net-

work and flow statistics, and performing aggregation operations for general purpose

registers. In general, it seems that very little can be done to reduce processing require-

ments for this routine.

is cp host() checks the CP flow table to see whether a packet belongs to CP or

not. As explained above, this table is configured by an administrator using a CP system

call designed especially for this purpose. is cp host() is a heavy hitter because it is

called twice for every packet, once for the source address and once for the destination

address. The hash algorithm used to check the table, while not particularly complex, is

perhaps slightly more complex than it needs to be. An improved version might combine

source and destination addresses in some way and then employ a more streamline hash

function. The former would reduce the number of calls to is cp host() by half, and

the latter would reduce the computation required for each call.

update incoming bwavail(), as well as update incoming pktsize() and

1Thanks to Kenneth G. Yocum from Duke University Computer Science for his generous assistance
with gprof profiling.



106

Time % Calls Function name Brief summary
24.0 1821 tfrc bwavail() Calculates bandwidth availabil-

ity using TFRC equation and
loss event history.

12.0 3594 is cp host() Checks host table to determine
whether UDP packet belongs to
a cluster-to-cluster application.

12.0 1821 update incoming bwavail() Updates statistics on estimated
bandwidth availability (min,
max, mean, mean deviation,
etc.)

12.0 1797 cp handler() Main handling routine for a CP
packet. Includes header parsing
and assignment.

8.0 1779 update incoming pktsize() Updates statistics on packet size
(min, max, mean, mean devia-
tion, etc.)

8.0 1779 update lossrate() Updates statistics on packet loss
rate (min, max, mean, mean de-
viation, etc.)

5.0 hook ip forward() Manipulates mbuf format, ex-
amines header information, and
calls CP and IP handling rou-
tines.

4.0 8985 L4 udp rewrite word() Modifies IP checksum based on
changes in a 32-bit word.

4.0 6052 fp64 update avg mdev() Updates average and mean devi-
ation values given a new sample.
(Uses 64-bit fixed point.)

3.0 3642 fpsqrt32() Uses lookup table to obtain 32-
bit fixed point square root value.
Calculates if not found in table.

3.0 393 timevalIncrUsec() Increment UNIX timeval data
structure by specified value.

Table 5.1: Heavily hit functions as revealed by gprof execution profile.



107

update lossrate() which received 8% of CPU cycles each, update statistics used in

bandwidth availability estimation. This includes, most importantly, a weighted mean

and mean deviation computation done by the helper routine fp64 update avg mdev().

Once again, 64-bit fixed point values are used for precision during the computation. A

more streamline implementation, however, might use 32-bit fixed point values to reduce

cycle count. A more efficient mean deviation calculation furthermore may be possible.

5.3.2 Measuring Per Packet Processing Overhead

To measure total per-packet processing overhead, we instrumented our kernel and

CP module with timing calls before and after CP handling routines. Four cases were

then examined:

• Empty stub. Control of IP packet handling is turned over to CP which then

promptly returns control back to the IP stack. This measures the overhead of our

“hook” (point of indirection) inserted into FreeBSD’s native IP forwarding code.

• Packet classification only. CP handling includes classifying UDP packets as

belonging to CP or not. This requires flow table lookups on source and destination

addresses.

• Normal operation. CP packets are identified and handled for a single cluster-

to-cluster application. Endpoints request report information from the network

statistics (NET ) and flows statistics (FLOW ) addresses in the AP state table.

• Worst case operation. CP packets are identified and handled for a worst case

scenario: 32 cluster-to-cluster applications, each with 128 flows. Each endpoint

furthermore cycles through all 250 general purpose addresses in the AP state

table, assigning flow offsets and requesting reports exclusively from aggregate

function offsets.

To create the worst case operation scenario, endpoint flows were configured to cycle

through both cluster ids and flow ids as CP packets were sent over the network. While

not a typical use of CP, it was an effective means by which a small number of endpoints

could introduce packets from a much larger set of cluster-to-cluster applications and

emulate a very large number of flows. CP, in its current implementation, does not



108

Mean Std. dev. Minimum Maximum
Stub 111 24 100 1212
Classify only 225 88 172 4164
Normal (outbound) 4068 1038 3380 29032
Normal (inbound) 3415 7000 2796 492160
Worst (outbound) 4945 1122 3716 31184
Worst (inbound) 5796 32609 2776 515260

Table 5.2: CP packet handling overhead measured in cycles.

Mean Std. dev. Minimum Maximum
Stub .036 .008 .033 .397
Classify only .074 .029 .056 1.363
Normal (outbound) 1.331 .340 1.106 9.500
Normal (inbound) 1.118 2.290 .915 161.047
Worst (outbound) 1.618 .367 1.216 10.204
Worst (inbound) 1.897 10.670 .908 168.606

Table 5.3: CP packet handling overhead converted to microseconds.

preclude a single endpoint from participating in multiple applications or maintaining

multiple flow identifiers.

For all cases above, 5000 timing samples were collected and stored in kernel memory.

Upon termination of the run, the values were dumped to the system log file and then

post-processed for various descriptive statistics. Results measured in cycles are given

in Table 5.3. These values were converted to microseconds in Table 5.3 using the

conversion factor 3056 cycles = 1 microsecond. This equivalency was obtained using a

calibration procedure that considers cycle counts over large time intervals.

We note from Table 5.2 that stub handling overhead is just over 100 cycles, and

that adding packet classification approximately doubles this value. Normal and worst

case packet handling, in contrast, are 150-250 times larger suggesting that the overhead

for indirection and packet classification is relatively small.

Both normal and worst case scenarios show differing overheads for incoming versus

outgoing packet handling. For the normal case, inbound packet handling shows 19

percent less cycle overhead than outbound packet handling. For the worst case scenario,

inbound packet handling requires 17 percent more cycles. A key factor here appears



109

to be the type of state table reports requested by a flow. While flows in the normal

scenario request network and flow information that has been pre-computed, flows in

the worst case scenario request aggregate function offsets in general purpose addresses.

Such functions require iterating across all flow offsets and possibly incurring cache

misses in the process.

Also striking is the large variability associated with the inbound direction compared

to the outbound direction. Standard deviation values for the normal inbound case are

seven times larger than what they are for the outbound case. For the worst inbound

case, they are 32 times larger. Maximum values for both reflect this difference as

well. Overhead differences of this magnitude would appear to imply the presence of

context switching. Indeed, kernel interrupts in FreeBSD have priority levels, and longer

handling intervals are more vulnerable to such events.

Figure 5.1 shows packet handling overhead as a cumulative distribution function.

Plot (a) is given in terms of clock cycles while plot (b) converts values to microseconds.

These plots illustrate the significant difference in overhead between stub or classification

overhead and normal operation overhead. Worst case operation overhead is seen to

be somewhat more than normal operation overhead, although perhaps somewhat less

than one might expect. Slopes are fairly steep indicating that most values lie within a

relatively small range. Note, however, the “knee” that occurs in normal and worst case

overhead data sets. Values at the knee appear to represent a predominating range, while

those at the “tail” jump significantly. Once again, we believe this is due to additional

overhead from context switching as the kernel handles higher priority interrupts.

Figure 5.2 shows packet handling overhead for normal and worst case scenarios

expanded, with inbound and outbound handling shown separately. In general, the

“knee” for inbound handing is higher than outbound handling, particularly for the

normal case. Also evident is a heavy tail reflecting the large variability of numbers seen

in Table 5.2 and Table 5.2.

5.3.3 Overall Forwarding Performance

In this section, we consider the overall forwarding performance of our AP imple-

mentation. To do so, we remove the 100 Mb/s bottleneck link in our laboratory testbed

shown in Figure B.2 by reconfiguring it to be 1 Gb/sec. Then, we generate CP traffic

in both directions at fixed aggregate rates. That is, sending endpoints simply ignore

the bandwidth estimate made by CP and continue to send at exactly the rate given



110

Figure 5.1: AP forwarding performance. Per packet overhead CDF expressed as
(a) clock cycles and (b) microseconds.

Figure 5.2: AP forwarding performance. Per packet overhead CDF expressed as
(a) clock cycles and (b) microseconds.



111

by their configuration. The idea is to slowly increase the level of aggregate traffic until

noticeable packet loss occurs and throughput levels no longer reflect offered load levels.

At that point, we have reached the performance ceiling of our implementation.

To quantify this performance limit, we consider three metrics.

• Throughput. This is the level of aggregate CP traffic (measured in bits per

second or packets per second) forwarded by an AP. Outbound throughput can

be measured using traffic monitor hosts in the middle of the network (see Ap-

pendix B). Inbound throughput can be measured by combining receive statistics

on application endpoints.

• Throughput differential. Calculated as throughput/offered load, this is an

alternative way of looking at throughput that shows more clearly when forwarding

performance is not keeping up. If APs can keep up with the offered load, then

values will remain at 1.0. As the APs begin to have trouble, then values will

decrease on the interval [0, 1.0].

• Loss fraction. This is a receiver-based metric with values on the interval [0, 1.0].

Values greater than zero indicate that APs are beginning to have trouble keeping

up.

To drive AP performance experiments, we used seven hosts on each cluster. Each

host sent UDP or UDP-based CP packets at a fixed rate. Offered loads did not ex-

ceed 450 Mb/s aggregate in a single direction, or 65 Mb/s for each host. Packet size

(including CP, UDP, and IP headers) was held constant at 1460 bytes.

While we originally planned to explore a number of configuration parameters (num-

ber of applications, number of flows, CP report selection, etc.), we found from our

experiments that only three performance scenarios were necessary:

• UDP. This is a baseline configuration that considers the maximum forwarding

performance of our laboratory network without using CP. APs in this configura-

tion do simple IP forwarding, as do the “bottleneck” routers (see Figure B.2).

• Normal operation. This is a single cluster-to-cluster application sending CP

packets using seven flows. Endpoints request report information from the network

statistics (NET ) and flows statistics (FLOW ) addresses in the AP state table.



112

• Worst case operation. This is a worst case performance scenario: 32 cluster-

to-cluster applications, each with 128 flows. Each endpoint furthermore cycles

through all 250 general purpose addresses in the AP state table, assigning flow

offsets and requesting reports exclusively from aggregate function offsets.

Figure 5.3, Figure 5.4, and Figure 5.5 show our overall results. Figure 5.3 and Fig-

ure 5.5 (a) present throughput results taken from our monitor host in the middle of

our laboratory testbed (see Figure B.2). Throughput, in these plots, refers to the level

of aggregate traffic seen after a single AP. That is, packets have been received from

senders by an AP and forwarded over the cluster-to-cluster data path. Since each

AP receives and handles packets going in both directions, throughput levels have been

combined for a single total. Offered load refers to the combined traffic generated by

application endpoints sending on both clusters of the application.

The results are striking. Aggregation points are able to handle just over 750 Mb/s,

or approximately 65,000 packets per second, after which throughput levels off. This

performance, we argue, should be adequate for most high-performance applications on

the public Internet today. Just as striking is the fact that CP throughput levels, even

for the worst case scenario described above, show almost no difference from those of

basic IP (i.e., UDP) forwarding. We believe that the explanation for this performance

outcome lies in the fact that APs in our laboratory testbed are not the performance

bottleneck. Instead, the bottleneck routers, with lesser machine specs than our APs,

are the constraining factor for all three scenarios. In support of this theory, we point

out that each AP is an Intel-based machine with a 3.20 GHz Xeon processor, 8 KB of

L1 cache, 512 KB L2 cache, 1 MB L3 cache, 2 GB of main memory, and a 533 MHz

front side bus. In contrast, each bottleneck router is an Intel-based machine with a 1

GHz Pentium III processor, 256 KB L2 cache, 1 GB main memory, and a 133 MHz

front side bus. Even with our artificially constructed worst case, we apparently were

unable to create a performance bottleneck on our laboratory testbed due solely to AP

processing overhead.

Figure 5.3 and Figure 5.5 (b) present throughput results taken from receivers.

Throughput, in these plots, refers to the level of aggregate traffic after being forwarded

by both APs. That is, packets have been handled at the first AP, traversed the end-

to-end data path, and then been handled by the second AP. Once again, offered load

and throughput values for both directions have been combined since each AP handles

traffic from both directions.



113

Figure 5.3: AP forwarding performance. Offered load versus throughput in (a)
Mb/s and (b) Pkt/s as measured in the middle of the network.

Figure 5.4: AP forwarding performance. Offered load versus throughput in (a)
Mb/s and (b) Pkt/s as measured by receivers.

Figure 5.5: AP forwarding performance. Offered load versus throughput differ-
ential as measured (a) in the middle of the network and (b) by receivers.



114

Figure 5.6: AP forwarding performance. Offered load in (a) Mb/s and (b) Pkt/s
versus packet loss rate as measured by receivers.

Results are similar to the previous case except that maximum performance num-

bers drop just slightly for the two CP cases. While the UDP case shows a maximum

throughput level of just over 750 Mb/s, the two CP cases (normal and worst) seem to

slip slightly at this level. Interestingly, packet per second throughput results do not

show this difference, with all cases resulting in the same 65,000 packets per second

maximum value.

Loss results in Figure 5.6 once again support the case that no performance difference

exists between CP and basic IP forwarding. In plot (a), we see that loss begins to appear

at approximately 750 Mb/s, as measured by receivers. In terms of packets per second

(plot (b)), 65,000 packets marks the beginning of non-zero loss levels.

The next two series of plots show the forwarding performance of each AP individu-

ally, including inbound, outbound, and combined performance numbers. An interesting

contrast exists between AP1 and AP2 results: while uni-directional forwarding per-

formance for AP1 begins to level off only somewhat after 380 Mb/s (33,000 pkt/s),

AP2 shows a significant drop before that level. This can be observed by comparing

both inbound (Figure 5.7 (a) and Figure 5.10 (a)) and outbound (Figure 5.7 (b) and

Figure 5.10 (b)) plots, as well as both combined plots (Figure 5.9 and Figure 5.12).

The reason for this asymmetry is not entirely clear. However, we note once again that

values drop for all three cases: CP, CP (worst), and UDP. We believe this to be an

indication that CP handling is not a critical factor in the performance issue. Instead,

it seems most likely that the bottleneck router lying between AP2 and the monitor

host, with its lesser machine specifications, has reached its performance limit. Why



115

this limit is somewhat less than its companion bottleneck routing host is unclear.

Interestingly, this difference does not manifest itself in plots that focus on through-

put measured in packets per second (Figure 5.7 (b) and Figure 5.10 (b), and Figure 5.8

(b) and Figure 5.11 (b)).

5.4 Summary

In this section, we described our AP implementation using a fairly high end but

commodity PC workstation running FreeBSD. To achieve the best performance possi-

ble, we used kernel-level handling using a dynamically linked kernel module that inserts

CP handling into the IP forwarding chain. Various techniques were described to keep

our implementation efficient, including the avoidance of system time calls, fixed point

calculations, IP checksum modifications, square root lookup table, and lazy evaluation

for aggregation offsets in general purpose state table addresses.

Our implementation was able to achieve a throughput capacity of just over 750

Mb/s or 65,000 packets per second. In general, it did not appear that our AP im-

plementation created a bottleneck in our experimental testbed, despite some minor

variation in performance results between UDP and CP handling at the 750 Mb/s load

level. Our implementation stands as proof that CP can be implemented inexpensively

and with a performance level that is adequate for most cluster-to-cluster applications

on the public Internet.



116

Figure 5.7: AP1 inbound forwarding performance. Offered load versus through-
put in (a) Mb/s and (b) Pkt/s.

Figure 5.8: AP1 outbound forwarding performance. Offered load versus through-
put in (a) Mb/s and (b) Pkt/s.

Figure 5.9: AP1 combined forwarding performance. Offered load versus through-
put in (a) Mb/s and (b) Pkt/s.



117

Figure 5.10: AP2 inbound forwarding performance. Offered load versus through-
put in (a) Mb/s and (b) Pkt/s.

Figure 5.11: AP2 outbound forwarding performance. Offered load versus
throughput in (a) Mb/s and (b) Pkt/s.

Figure 5.12: AP2 combined forwarding performance. Offered load versus
throughput in (a) Mb/s and (b) Pkt/s.



Chapter 6

Coordinated Multi-streaming for

3D Tele-immersion

In this chapter, we examine how CP may be applied to a real-world application in

order to increase communication efficiency and overall application performance. The

problem to be solved is that of video multi-streaming, or the concurrent streaming

of video frames by multiple application flows sharing the same cluster-to-cluster for-

warding path. What makes this problem especially challenging are several stringent

application requirements: reliable delivery, minimal buffering, and responsiveness to

network congestion.

First, we describe the application, 3D Tele-immersion or 3DTI, and the general

problem of multi-streaming. Central to this problem are the notions of a frame ensemble

and arrival asynchrony. We then describe the role originally played by TCP in this

application, and how CP can be used instead to both apportion bandwidth among

streams in a coordinated way and to size send buffers dynamically in accordance with

changing network path characteristics.

After describing our implementation briefly, we present results from our laboratory

testbed, described in some detail in Appendix B. We divide these results into two

sets: equal frame size and unequal frame size. As discussed in Section 6.5, the CP

coordination algorithm for apportioning bandwidth within each set is somewhat dif-

ferent. A number of experimental configurations is then explored, including various

network configurations (loss level, round trip time, background traffic load) and appli-

cation configurations (number of hosts, frame size, frame size dispersion, and dynamic

re-configuration).



119

We then present proof-of-concept results taken from the Abilene backbone net-

work [Abi]. Multi-streaming in these experiments took place between the University of

Pennsylvania in Philadelphia and the University of North Carolina at Chapel Hill over

Abilene. Results test the effectiveness of our approach in an uncontrolled environment

for bandwidth levels and host numbers that have been scaled up significantly.

Overall, our experiments demonstrate the performance improvement possible by us-

ing the Coordination Protocol. In particular, CP may be used in the multi-streaming

context to simultaneously improve arrival synchrony, minimize network delay, and

maintain throughput levels that are fair to competing TCP connections yet fully uti-

lized. In contrast, multi-streaming using TCP results in a set of undesirable tradeoffs

that depend upon send buffer size configuration. We show that no single configuration

can match the performance of CP for this problem scenario.

6.1 3D Tele-immersion (3DTI)

The goal of tele-immersion is to enable users in physically remote spaces to interact

with one another in a shared space that mixes both local and remote realities, and

allows participants to share a mutual sense of presence. In the 3D Tele-immersion

(3DTI) [TKS+03, KZM+03] system, a user wears polarized glasses and a head tracker

as a view-dependent scene is rendered in real-time on a large stereoscopic display in

3D. This scene brings a remote location (and its participants) to the user, creating a

seamless continuum between the user’s experience of local and remote space within the

application.

3DTI1 was jointly developed by the University of North Carolina at Chapel Hill and

the University of Pennsylvania and provides an ideal environment for studying cluster-

to-cluster data transport dynamics. The application is comprised of two multi-host

environments, a scene acquisition subsystem and a reconstruction/rendering subsystem,

that must exchange data in complex ways over a common Internet path.

The scene acquisition subsystem in 3DTI (see Figure 6.2) is charged with capturing

video frames simultaneously on multiple cameras and streaming them to the 3D re-

construction engine at a remote location. The problem of synchronized frame capture

is solved using a single triggering mechanism across all cameras. Triggering can be

13DTI is a sub-project of Office of the Future [RWC+98] that was described in Section 1.1. It
focuses more narrowly on 3D reconstruction issues.



120

handled periodically or in a synchronous blocking manner in which subsequent frames

are triggered only when current frames have been consumed. The triggering mecha-

nism itself can be hardware-based (using a shared 1394 Firewire bus) or network-based

(using message passing).

The current version of 3DTI uses synchronous blocking and message passing to

trigger simultaneous frame capture across all hosts. A master-slave configuration is

used in which each camera is attached to a separate LINUX host (i.e., slave) that waits

for a triggering message to be broadcast by a trigger host (i.e., master). Once a message

has been received, a frame is captured and written to the socket layer which handles

reliable streaming to an endpoint on the remote reconstruction subsystem. As soon as

the write call returns (i.e., the frame can be accommodated in the socket-layer send

buffer), a message is sent to the trigger host notifying it that the capture host is ready

to capture again. When a message has been received for all hosts, the trigger host

broadcasts a new trigger message and the process repeats.

The reconstruction/rendering subsystem in 3DTI represents essentially a cluster of

data consumers. Using distributed processing, video frames taken from the same instant

in time are compared with one another using complex pixel correspondence algorithms.

The results, along with camera calibration information, are used to reconstruct depth

information on a per pixel basis which is then assembled into view-independent depth

streams. Information on user head position and orientation (obtained through head

tracking) are then used to render these depth streams in real time as a view-dependent

scene in 3D using a stereoscopic display.

Figure 6.1: 3D Tele-immersion.



121

Trigger
Server

...
...

C
ap

tu
re

 H
os

ts

Reconstruction/Rendering

R
econstruction H

osts

Media Capture

Acknowledgements

Frame data

Figure 6.2: 3D Tele-immersion architecture.

6.2 The Problem of Multi-streaming

Our concern within 3DTI is with the problem of video multi-streaming between

scene acquisition and 3D reconstruction subsystems. Specifically, we are interested in

providing parallel streaming services for frame ensembles between computing clusters.

Here we define a frame ensemble as a set of n video frames captured from n cameras

at the same instant in time. Each frame will be streamed independently by a different

source and destination host in 3DTI, although more complex configurations are possible.

What makes multi-streaming in 3DTI especially demanding, are several additional

requirements. These include:

• Reliable frame delivery. The 3D reconstruction subsystem is unable to apply

pixel correspondence algorithms to extract depth information if video frame data

is incomplete. Thus, it is a basic application requirement that multi-streaming

provide reliable data delivery.

• Frame ensemble completeness. In order for 3D reconstruction to proceed, all

frames from the same ensemble must be present in their entirety. Once again, this

is because pixels from different frames cannot be compared without a full set of

source data. It is also because data and computation cannot be properly divided

and distributed among reconstruction hosts without all parts being present.

• Minimal end-to-end delay. 3DTI is a real-time, interactive application. As



122

such, minimal end-to-end communication delay is a fundamental requirement.

One implication of this requirement is that asynchrony among streams cannot

simply be corrected with additional buffering at the receiver.

Congestion responsiveness is also an important requirement. In part, this is be-

cause 3DTI places such importance on reliable delivery and minimal end-to-end delay.

Without mechanisms to adapt streaming rates to changing network conditions, queue

build-up at bottleneck routers along the cluster-to-cluster data path is likely to occur.

Increasing queue sizes means longer forwarding latency, packet loss as bursts in queue

arrivals cannot be accommodated, and retransmissions. In addition, we wish to provide

application streaming services that are fair to competing flows in the network and, by

design, prevent the possibility of congestion collapse [FF99].

Both reliable transport and frame ensemble completeness requirements imply the

need for frame arrival synchrony. This is the notion that frames within the same en-

semble are received by hosts within the reconstruction subsystem at the same time. A

low degree of frame synchrony will result in stalling as some flows within the applica-

tion wait for other flows to finish. In general, frame arrival asynchrony slows the 3D

reconstruction pipeline because receivers must wait for frame ensemble data to arrive

in its entirety before parallel reconstruction can begin. Stalling furthermore results in

low network utilization as some flows are forced to stop sending while they wait for the

next capture trigger.

6.3 Multi-streaming with TCP

In the original 3DTI design, TCP was chosen to be the transport-level protocol

for each video stream. TCP, while not typically known as a streaming protocol, was

an attractive choice to the 3DTI developers for several reasons. First, it provided

in-order, reliable data delivery semantics which, as mentioned above, is an important

requirement in the 3DTI multi-streaming problem domain. Second, it is congestion

responsive. Use of TCP for multi-streaming in 3DTI insures that cluster-to-cluster

traffic as an aggregate is congestion responsive by virtue of the fact that individual

flows are congestion responsive. The original developers had hoped that by using

relatively large capacity networks (e.g., Abilene), performance would not be an issue.

The resulting application performance, however, was poor, but not necessarily be-

cause of bandwidth constraints. Instead, the uncoordinated operation of multiple TCP



123

Frame i

Flow 1 Flow 2 Flow 3

(1.25 * frame size)

Frame data exceeds
send buffer capacity

(3.5 * frame size)
Small send buffer Large send buffer

Stalled Asynchrony
increases

Flow 1 Flow 2 Flow 3

Frame i+1

Frame i+2

Frame i+3

Figure 6.3: The effect of different send buffer sizes.

flows between the acquisition and reconstruction clusters resulted in large end-to-end

latencies and asynchronous delivery of frames by different flows. Such inefficiency

significantly slowed the capture-reconstruction pipeline and often interrupted normal

operation of the application. (Our results later in this chapter will illustrate this.)

The problem with TCP in the multi-streaming context of 3DTI is the inherent lack

of coordination among flows. That is, individual flows operate independently of peer

flows within the same application. Each TCP flow independently detects congestion

and responds to loss events using its well-know algorithm for increasing and decreas-

ing congestion window size. While the result is a congestion responsive aggregate,

differences in congestion detection can easily result in a high degree of asynchrony as

some flows detect multiple congestion events and respond accordingly while other flows

encounter few or no congestion events and maintain a congestion window that is, on

average during the streaming interval, larger. For equal size frames, the result is that a

subset of flows end up streaming frames belonging to the same ensemble more quickly

and at the expense of peer flows that gave up bandwidth in the process.

The problem is even more extreme when video frames are of unequal size. Frames

within an ensemble may differ in size after compression has been applied, or when

different resolutions are used to favor camera angles close to an end user’s field of

interest. A flow with more data to send might, in some cases, encounter more congestion

events and, as a result, back off more than a flow with less data to send. The result

is an even higher probability of stalling as flows with less data finish first and wait as



124

flows with more data continue to send.

The problem of stalling can be mitigated, of course, by increasing send buffering.

This approach, is, however, undesirable for two reasons. First, it increases end-to-end

delay as additional buffer wait time is added to the transport pipeline. This is a highly

undesirable result given that 3DTI is an interactive, real-time application. Second, it

increases the potential for frame arrival asynchrony. To see this, consider Figure 6.3

which illustrates the effect of using small and large send buffer sizes. Small buffer sizes

may result in frequent stall events as one flow waits without data for others to finish.

This is seen as flow 3 waits for flows 1 and 2 in a buffer that is 1.25 times current frame

size. Increasing buffer size to 3.5 times current frame size lessons the chance that any

one flow has no data to send. However, the amount of frame asynchrony may increase

dramatically. This can be seen in flow 3 which now streams frame i+3 while flow 1

streams frame i.

What is needed, we argue, is both coordinated congestion response and network

responsive send buffering. The former prevents flows from seeing different congestion

events and manages bandwidth distribution among flows in the application. The latter

ensures that the amount of send buffering is adequate to maintain a full data pipeline at

all times, but small enough to minimize unnecessary end-to-end delay. Since available

bandwidth changes dynamically, it would furthermore be advantageous if such buffering

could be adjusted dynamically to suit changing network conditions.

6.4 Multi-streaming with CP-RUDP

To address the problems described in the previous section, we turned to the Coor-

dination Protocol. Using CP first required that we deploy CP-enabled software routers

in front of capture and reconstruction clusters to act as APs. Details on hardware and

software specifications of these routers were presented in Chapter 5. Essentially, each

router is a high-end Intel-based machine running FreeBSD 4.9 with a special kernel

module. This module extends IP forwarding capabilities to include all of the mecha-

nisms described in Chapter 3 and Chapter 4.

Next, we developed a new CP-based protocol called CP-RUDP and deployed it

on each endpoint host in the application. CP-RUDP is an application-level transport

protocol that provides TCP-like reliable, in-order delivery semantics, but bases all send

rate adjustments on information provided by CP. As its name suggests, CP-RUDP



125

A
PI RUDP

UNIX
Network
Stack

A
PI CPA
PI

CP−RUDP

So
ck

et
 A

PI

Send buffer

Recv buffer

Incoming UDP packets

Outgoing UDP packets

Application

Recv

Send

Figure 6.4: Diagram of CP-RUDP internals.

is a UDP-based protocol implemented at the application level. While this sacrifices

some efficiency compared to a stack-based, kernel implementation, it is more easily

deployable as end hosts do not require any operating system modifications.

At the core of CP-RUDP is Reliable-UDP (RUDP) 2, a connection-oriented trans-

port protocol that provides reliable, in-order delivery semantics using UDP. RUDP

manages UDP sockets much like standard TCP sockets in UNIX. This is because of

RUDP’s connection-oriented design which generally mimics that of TCP. A receiver

will bind their socket to an address, listen for incoming connections, and then accept

one when it arrives. Meanwhile, the sender will connect with a remote receiver before

initiating a series of send calls, etc.

RUDP is implemented as a multi-threaded, UDP-based protocol that makes use

of additional packet headers nested within the first 9-13 bytes of UDP data. Packet

types include SYN, SYN-ACK, DATA, ACK, and FIN. Connection setup uses TCP’s

familiar three-way handshake packet exchange sequence, and connection termination

involves a bi-directional FIN-ACK exchange. Stream-oriented data transport takes

place using DATA packets that are acknowledged by the receiver using ACK packets.

Both sequence numbers and packet numbers are used to track data and lost packets,

and retransmissions are used to fill in gaps created by packet loss. (See Appendix C

for a more complete description of RUDP.)

While RUDP provides reliable, in-order data delivery, it is entirely devoid of con-

gestion control mechanisms. To provide this functionality, another layer of indirection

is used between RUDP and the UNIX socket layer. As illustrated in Figure 6.4, this is

2Thanks to Travis Sparks and Ketan Mayer-Patel for their work on RUDP design and version 1.0
implementation.



126

the CP layer which provides rate control using information provided by CP. While the

RUDP layer decides what to send, it is CP that decides when to send it.

CP is implemented as a library of functions that encapsulate RUDP packet data

and headers into CP packets with an additional CP header. Using the mechanisms

described in Chapter 3, CP will request and receive information from its local AP

via these headers. In particular, it will receive information on the current bandwidth

estimation for a single flowshare (NET.bw), the current round trip time (NET.rtt),

the number of flows in the application (FLOW.num), and, for some configurations,

information on the frame size streamed by peer flows in the application.

CP uses this information to perform two functions:

• Adjust the current sending rate to match conditions on the cluster-to-cluster data

path, and

• Adjust RUDP’s send buffer size to maintain a full transmission pipe at all times

but without unnecessary buffering.

To implement the former, CP hints on available bandwidth are given to a rate-based

packet scheduling routine that uses clock cycle time to track send intervals and schedule

data transmissions. The latter is accomplished using a statically sized send buffer and

a threshold value. The threshold value gives a maximum size value beyond which no

new data will be accepted into the queue. Data that cannot fit into the send queue will

be held in user space as the application blocks until space becomes available.

Both RUDP and CP operate as components in the CP-based transport protocol CP-

RUDP. CP-RUDP’s API looks much like the standard socket API of TCP seen on most

UNIX systems (socket(), bind(), listen(), connect(), close(), send(), receive(), setsock-

opt(), getsockopt(), etc.), reflecting RUDP’s connection-oriented approach to reliable,

in-order transport. Additionally, functions may be added (e.g., cprudp get rtt est())

that provide CP information directly to the application layer to drive application-level

adaptation as needed. (See Appendix E for a list of currently supported CP-RUDP

functions.)

CP-RUDP ultimately passes data to the UNIX socket API in the form of write calls

sized so that they will not exceed the payload portion of a single UDP packet. The

UNIX socket layer will, of course, add a UDP header (and subsequently an IP header)

before transmitting the packet over the network. Incoming packets are delivered to CP-

RUDP as single UDP datagrams using the UNIX socket API. Thus, extracting data



127

data

RUDP
CP

Chksum
Dst portSrc port

Length

data

CP
RUDP

UDP

Op 3
Op 2
Op 1

FlagsProtFIDCIDV

Op 4

data

RUDP

Pkt number
Seq number

Type

RUDP
Packet

����������������������������������������������������������������������������

CP
Packet

UDP
Packet

data

Application
Data

��������������������������������������

Figure 6.5: Chain of encapsulation in CP-RUDP.

and headers nested within a UDP data payload is an easy operation. (See Figure 6.4

and Figure 6.5 for illustrations.)

6.5 Coordination Schemes for CP Multi-streaming

In this section, we describe how 3DTI endpoints may be configured to use CP

information to solve the coordination problem described in Section 6.3. In general,

algorithms that make use of CP information to coordinate the sending behavior of

multiple application flows are referred to in this dissertation as coordination schemes.

Section 3.3.2 introduced the notion of a coordination scheme and provided several

examples to illustrate.

The problem of flow coordination in 3DTI multi-streaming manifests itself in the

issue of frame arrival asynchrony. As described in Section 6.3, uncoordinated flows

using TCP may “see” congestion events on the shared data path somewhat differently,

leading to adaptive behavior that varies across flows. (Recall Figure 1.3 and Figure 1.4

in Section 1.2.1.) This variation leads to variation in frame transfer time across flows

for frames belonging to the same frame ensemble.

In fact, this problem has two cases: equal frame size ensembles and unequal frame

size ensembles. In the former, all frames in the ensemble have exactly the same size.

This may occur when each endpoint captures a frame with exactly the same resolu-

tion, using the same encoding scheme, and avoiding the use of compression algorithms

that achieve different results depending upon image content. This is the default mode

currently used by 3DTI.

To solve the flow coordination problem in the equal frame size case, we merely need

to distribute bandwidth evenly across all flows participating in the multi-streaming.

To accomplish this, we can rely on an inherent property of the Coordination Proto-



128

col architecture: consistency of information across endpoints. In the CP architecture,

APs measure the changing properties of the cluster-to-cluster data path for the appli-

cation as a whole and make a single estimate of the available bandwidth for a given

cluster. Resulting values (round trip time, packet loss rate, available bandwidth, etc.)

are propagated to all cluster endpoints using the state table mechanisms described in

Chapter 3. Uniform values across all flows is ensured by commonality of source.

To distribute bandwidth evenly among all flows in 3DTI, then, we merely need

to configure each endpoint to send at exactly the estimated bandwidth available to a

single flowshare. CP-RUDP can obtain this value by requesting from its local AP a CP

report from the NET.bw cell in its state table. As updates are received, CP-RUDP on

each endpoint can continually adjust its sending rate to conform to this value confident

that peer flows in the same application are doing the same.

The situation for unequal frame sizes is somewhat more complicated. Here, our

goal is once again the simultaneous arrival of frames within the same frame ensemble.

However, due to different capture resolutions or the effects of data compression on

images that vary somewhat in content, frame size is not uniform across flows. To

coordinate multi-streaming in this case, we need to distribute bandwidth available to

the application across flows in proportion to the amount of frame data that each has

to send.

To do this, each endpoint first requires information on the bandwidth available

to the application as a whole. CP-RUDP, running on each endpoint, can obtain this

value by requesting the values NET.bw (the estimated bandwidth available for a single

flowshare) and FLOW.num (the number of application flows) from its local AP. The

bandwidth available to the application as a whole is then computed as the product of

these two values.

To get the fraction of bandwidth available to an individual flow, each endpoint writes

its frame size to a general purpose address that we will refer to as FSIZE. Recall that

each cluster endpoint has a unique flow id, fid, that is used to designate the offset

available for writing. FSIZE.fid is thus the cell uniquely written by each endpoint.

At the same time, an endpoint will request both FSIZE.fid and FSIZE.sum values

from the local AP, where FSIZE.sum represents the sum of all flow offsets in the

FSIZE address. That is, it is the total amount of frame data to be streamed in that

ensemble. Requesting both FSIZE.fid and FSIZE.sum helps to insure that values

are associated with the same frame ensemble since some lag exists before a new frame



129

size value can be assigned to FSIZE.fid.

Using FSIZE.fid and FSIZE.sum, each endpoint can calculate a fraction that

represents the portion of total ensemble data to be streamed by that individual flow.

This fraction can then be multiplied by the total bandwidth available to the application

as a whole to determine X, the flow-specific sending rate:

X =
FSIZE.fid

FSIZE.sum
∗ (NET.bw ∗ FLOW.num) (6.1)

The remaining issue is that of dynamic send buffer sizing. Recall from Section 6.3

that the issue here is how to maintain a buffer size that is simultaneously

• Large enough to maintain a full pipe (i.e., never fall short of its designated sending

rate due to buffering limitations), yet

• Small enough to minimize the effect of buffer wait time on end-to-end streaming

latency.

Since conditions on the cluster-to-cluster data path change over time, it would also be

desirable if send buffer size could be adjusted dynamically to reflect changing network

conditions.

Fortunately, application endpoints can easily solve the dynamic send buffer sizing

problem using CP. Each endpoint already receives NET.bw reports from the local AP

as part of the flow coordination schemes above. Requesting the current round trip,

NET.rtt, in addition would allow CP-RUDP to compute a bandwidth delay product

(BDP) as NET.bw ∗ NET.rtt. To accommodate additional room for retransmission

data and data that is waiting to be acknowledged, we use an additional multiplicative

factor of 1.5 as a heuristic. Thus, the instantaneous send buffer size, B, given current

network conditions, can be calculated by each endpoint as:

B = 1.5 ∗ (NET.bw ∗NET.rtt) (6.2)

As described in Section 6.4, buffer size modifications can be implemented at each end-

point using a statically sized send buffer and a moving threshold value that regulates

when new data can be admitted.

Experimental results in subsequent sections explore the effectiveness of these coor-

dination schemes.



130

Figure 6.6: Experimental network setup.

6.6 Laboratory Testbed Experiments

In the next few sections, we present performance results taken from our laboratory

testbed, described briefly here and more completely in Appendix B. Our overall goal is

to compare the performance of 3DTI multi-streaming with and without the coordination

mechanisms described in this chapter and, more generally, in this dissertation. In

particular, we will demonstrate the effectiveness of our approach in improving frame

arrival synchrony, reducing end-to-end delay, and maintaining throughput levels that

utilize network bandwidth well yet are fair to competing TCP traffic.

6.6.1 Experimental Setup

Our experimental network setup is shown in Figure 6.6. (See Appendix B for a more

complete description.) CP hosts and their local AP on each side of the network repre-

sent two clusters that are part of the same cluster-to-cluster application and exchange

data with one another. Each endpoint sends data on a 100 Mb/s link to its local AP,

a FreeBSD router that has been CP-enabled as described in Chapter 3 and Chapter 4.

Aggregate cluster-to-cluster traffic leaves the AP on a 1 Gb/s uplink. At the center of

our testbed are two routers connected using two 100 Mb/s Fast Ethernet links. This

creates a bottleneck link, and by configuring traffic from opposite directions to use

separate links, emulates the full-duplex behavior seen on wide-area network links.

In order to calibrate the fairness of application flows to TCP flows sharing the same

bottleneck link, we use two sets of hosts (labeled “TCP hosts” in Figure 6.6) and the

well-known utility iperf [Ipe]. Iperf flows are long-lived TCP flows that compete with

application flows on the same bottleneck throughout our experiment. The normalized



131

flowshare metric described in Section 6.6.2 then provides a way of quantifying CP’s

fairness to these competing flows.

Also sharing the bottleneck link for many experiments are background TCP flows

between traffic hosts on each end of the network. These hosts are used to generate Web

traffic at various load levels and their associated patterns of bursty packet loss. More

is said about these flows in Section 4.5.7 and in Appendix B.

Finally, network monitoring during experiments is done in two ways. First, tcpdump

is used on monitor hosts to capture headers from packets traversing the bottleneck, and

then later filtered and processed for detailed performance data. Second, a software tool

is used in conjunction with ALTQ [Ken98] extensions to FreeBSD to monitor queue

size, packet forwarding events, and packet drop events on the outbound interface of the

bottleneck routers. The resulting log information provides packet loss rates with great

accuracy.

Experiments in this section are run using the frame software utility 3 which emulates

application behavior as described in Section 6.1. As with the actual 3DTI system,

a trigger host is used to coordinate simultaneous frame capture across application

endpoints in the media capture cluster. After each trigger, frame acquisition endpoints

will write a frame to their send buffer (perhaps blocking for some time in the process)

and then send a message to the trigger server indicating that they are ready for the next

frame trigger. When a message has been received from all the endpoints, the trigger

server initiates the next capture event. Receiving hosts in this architecture act simply

as a data sink, though some instrumenting has been done to collect statistics on frame

arrival performance.

“TCP” in our laboratory testbed refers to TCP Reno as implemented in FreeBSD 4.5

and RedHat LINUX 9 (kernel version 2.4). System configuration parameters relating to

socket buffer size were increased to prevent buffer limitations from constraining overall

congestion control behavior.

Multi-streaming using “CP” or “CP-RUDP” refers to the implementation described

in Section 6.4 and the coordination schemes presented in Section 6.5. These schemes

implement flow coordination by distributing bandwidth among endpoints in controlled

ways and dynamically adjusting send buffer size based upon CP information.

3Thanks to Travis Sparks for his work on frame design and version 1.0 implementation.



132

Issue Performance Metrics

Transport synchrony Completion asynchrony, Stall time
Latency End-to-end delay
Fairness/Network utilization Normalized flowshare
Overall performance Frame ensemble (FE) rate, FE interarrival jitter

Table 6.1: Multi-streaming performance issues and their corresponding metrics.

6.6.2 Performance Metrics

In this section, we define a number of metrics for measuring multi-streaming per-

formance in 3DTI. Our performance discussion in this section will center around four

issues: transport synchrony, latency, fairness and network utilization, and overall ap-

plication performance. Associated with these issues are six key metrics: completion

asynchrony, stall time, end-to-end delay, normalized flowshare, frame ensemble trans-

fer rate, frame ensemble interarrival jitter. (See Table 6.1 for a summary.)

The level of transport synchrony in multi-streaming can be measured using two

metrics. The first is completion asynchrony which quantifies how staggered frames

within the same frame ensemble arrive at the receiving cluster. When frames within

the ensemble are of equal size, completion asynchrony measures how evenly bandwidth

was distributed among flows sharing the cluster-cluster data path. When frames are of

unequal size, it measures how well flows have adapted their bandwidth usage to match

the distribution of frame data in the ensemble.

Within any given frame ensemble i, there is some receiving host that receives frame

i in its entirety first. Call this time of completion cf,i. There is another host that

receives frame i in its entirety last (i.e., after all other hosts have already received

frame i). Call this time of completion cl,i. Completion asynchrony Ci is defined as the

time interval between frame completion events cl,i and cf,i. Intuitively, it reflects how

staggered frame transfers are across all application flows in receiver-based terms. (See

Figure 6.7.)

Ci = cl,i − cf,i (6.3)

A second metric looking at transport synchrony in multi-streaming is stall time. The

time interval between two frames within a given flow is typically small unless stalling

occurs. A flow is said to stall when it completes its transmission of the current frame

and must wait before sending a new one. Short waits may be caused by a flow’s packet



133

Flow 1

Flow 3
Flow 4
Flow 5
Flow 6

Trigger

Flow 2

Time

Last flowFirst flow
completes completes

Frame Ensemble i

asynchrony
Completion

Figure 6.7: Completion asynchrony.

scheduling algorithm which regulates when packets from the new frame can be sent out

over the network. More significant, however, are longer intervals that occur when a

flow must wait for the next trigger event before streaming a new frame. Just how long

it must wait depends upon how long it takes remaining flows to finish streaming their

frame from the previous ensemble.

To capture this phenomenon, we simplify the notion of stall time to mean the time

interval between two frames within a single stream. While this definition does not

distinguish between routine packet spacing and interruptions in frame streaming due

to wait events, it nevertheless is quite effective in quantifying the results of the latter

when they occur. To see how stall time is calculated, we first note that each frame

ensemble has a mean stall interval smean,i, measured simply as the average time across

all flows between the completion of frame i and the beginning of frame i+1. Stall time

is defined as the mean of the mean stall intervals smean for the entire run interval p.

A second performance issue is streaming latency. The transmission time for each

frame, including send and receive buffering, is averaged across all flows into a mean

delay value dmean,i for frame ensemble i. We define end-to-end delay to be the mean

of all mean delay values dmean for the run interval p. Delay values reflect a variety of

factors including frame size, buffering at the sender, network queuing delay, and the

number of retransmissions required to reliably transmit frame data in its entirety.

A third performance issue for multi-streaming in 3DTI is that of fairness to com-

peting TCP traffic and network utilization. While seemingly two separate issues, here

they are intricately related since aggregate multi-streaming traffic should take up to,



134

but not more than, its fair share of bandwidth. Taking too much bandwidth results in

unfairness to competing TCP traffic sharing the same bottleneck link with application

traffic. Taking too little bandwidth results in poor network utilization and hinders

frame ensemble throughput generally.

To compare the bandwidth taken by flows in the application to that of TCP flows

competing over the same bottleneck link, we define average flowshare (F ) to be the

mean aggregate throughput divided by the number of flows. The normalized flowshare

is then the average flowshare among a subset of flows, for example CP-RUDP flows

(FCP−RUDP ), divided by the average flowshare for all flows (Fall). (All flows here refers

to CP-RUDP flows and competing TCP iperf flows, but not background traffic flows.)

FCP−RUDP =
FCP−RUDP

Fall

(6.4)

1.0 represents an ideal fair share. A value greater than 1.0 indicates that CP-RUDP

flows on an average have received more than their fair share, while for less than 1.0 the

reverse is true.

A final issue is that of overall application performance. Here, two metrics are of

interest. First is the frame ensemble rate which we define as the number of complete

frame ensemble arrivals f over time interval p. In general, higher frame ensemble rate

numbers indicate better network utilization and the absence of stalling due to frame

transport asynchrony.

A similarly important metric is that of frame ensemble interarrival jitter, defined

as the standard deviation of frame ensemble interarrival intervals ti over a larger run

interval p. Small jitter values are important to prevent the reconstruction/rendering

pipeline from backing up or starving as the application runs in real-time.

It should be pointed out that frame ensemble rate and frame ensemble arrival jitter

are, by themselves, inadequate for measuring the success of multi-streaming in 3DTI.

This is because an application may do well in these areas but lack transport synchrony

or have excessive end-to-end delay. The former, while not slowing the transmission

pipeline, will greatly slow the 3D reconstruction pipeline at the receiving cluster which

cannot proceed without all frame ensemble data present. The latter undermines 3DTI’s

goal of being a real-time, interactive application. In fact, all of these metrics must be

considered simultaneously to adequately gage the success of a multi-streaming scheme.



135

Figure 6.8: TCP send buffer size results. (a) Completion asynchrony and (b)
stall time versus send buffer size.

Figure 6.9: TCP send buffer size results. (a) End-to-end delay and (b) normalized
flowshare versus send buffer size.

Figure 6.10: TCP send buffer size results. (a) Frame ensemble rate and (b) frame
ensemble interarrival jitter versus send buffer size.



136

6.6.3 TCP Send Buffer Configuration

Experiments in this chapter will generally compare TCP, which 3DTI authors orig-

inally used for reliable multi-streaming, with CP-RUDP, our proposed scheme for re-

liable multi-streaming using the coordination mechanisms described in Chapter 3 and

Chapter 4. Before doing so, however, we must first consider the issue of TCP send

buffer size configuration.

TCP send buffer size can be manipulated using the setsockopt() system call in

the UNIX socket API. The option name for this call is SO SNDBUF. The minimum,

maximum, and default values for this parameter are determined by kernel variables

which vary in name across systems (FreeBSD, LINUX, Solaris, NetBSD, etc.). In this

dissertation, maximum values have been increased significantly using the sysctl utility

in order to allow for a wide range of values configured directly by the application.

To study the issue of TCP send buffer size, we ran four sets of experiments, each

of which look at the effect of increasing send buffer size under a particular set of frame

size and round trip time configurations. Send buffer size values were as follows: 16 KB,

32 KB, 64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 1.5 MB, and 2 MB. Configurations

included: (1) 50 ms round trip time and 25 KB frame size, (2) 50 ms round trip time

and 150 KB frame size, (3) 150 ms round trip time and 25 KB frame size, and (4) 150

ms round trip time and 150 KB frame size. For each configuration, we ran three trials

and then averaged the results to create a single data point for each metric. To avoid

network interface contention within the same host, we ran only one stream on each

available capture host for a total of six streams.

Bottleneck bandwidth was set to the default 100 Mb/s. Dummynet was used at

each bottleneck router to emulate network characteristics like round trip time and

network loss. In particular, delay was set to half the round trip time configuration

(for a bi-directional sum equal to round trip time) and packet loss rate was set to .01.

Experiments were given a 5-minute stabilization period after which data was collected

for the next 10 minutes.

Figure 6.8, Figure 6.9, and Figure 6.10 show results for the metrics described in

Section 6.6.2. In Figure 6.8 (a), we see that completion asynchrony increases linearly

with send buffer size for all round trip and frame size configurations. While frame size

seemed to make little difference, round trip determined the slope of the increase with

150 ms resulting in a larger slope than the 50 ms configuration.

Figure 6.8 (b) shows that stall time varies inversely with send buffer size. This



137

was true for all configurations, although different configurations showed different stall

values for a given send buffer size. The most stalling occurred with the large frame size,

large round trip time configuration. Next was large frame size, small round trip time.

Next was small frame size, large round trip time. Finally, small frame size, small round

trip time showed the lowest stall values. Differences in these configurations became less

pronounced as send buffer sizes increased from 512 KB to 2.0 MB. Very small buffer

sizes resulted in very large increases in stall time generally.

Figure 6.9 (a) shows the effect of send buffer size on end-to-end delay. As one might

guess, delay values increase linearly with send buffer size. This is the effect of buffer

wait time as frame data must pass through a large buffer before being transmitted over

the network. Like completion asynchrony, larger round trip times resulted in a sharper

slope and results appear to be insensitive to frame size.

Figure 6.9 (b) shows the results for normalized flowshare. It is interesting to note

here that all configurations led to exactly the same results, demonstrating that only

send buffer size was a critical factor. The results show that small buffer sizes result in

under-utilization of network bandwidth. This can be seen in average values of .7 to .9

for small buffer size configurations. Only when buffer sizes were increased to 1 MB and

beyond do values approach 1.0, indicating that flows received nearly their fair share of

bandwidth.

Frame ensemble rates, given in Figure 6.10 (a), show the results for all configura-

tions having the same shape as normalized flowshare results. This indicates that frame

ensemble rates do indeed depend a great deal upon normalized flowshare values. How-

ever, each configuration resulted in different values. Rates were highest for the small

frame size, small round trip time configuration. Next was small frame size, large round

trip time. Next was large frame size, small round trip time. Finally, large frame size,

large round trip time showed the lowest frame ensemble rates. This is not unexpected

as clearly small frame size results in larger frame ensemble throughput, and small round

trip times result in less asynchrony and stalling.

Finally, Figure 6.10 (b) shows the effect of send buffer size on frame interarrival

jitter. In general, the large frame size, large round trip time configuration showed sig-

nificantly more jitter than the other configurations. Similarly, the small frame size,

small round trip time configuration showed significantly less jitter than the other con-

figurations. The other two configurations both showed similar intermediate results. All

configurations show somewhat more jitter as send buffer size increases, although the



138

effect quickly levels off once send buffer size achieves 512 KB.

After considering the results from each metric, the decision was made in this work

to choose two TCP send buffer configurations for subsequent experimentation: 64 KB

and 1 MB. Our reasoning was twofold. First, each configuration represents a polar

opposite set of multi-streaming performance characteristics:

• 64 KB. Pros: Low completion asynchrony, low end-to-end delay, somewhat lower

frame ensemble interarrival jitter. Cons: Large stall times, low network utiliza-

tion, low frame ensemble rate.

• 1 MB. Pros: Small stall times, good network utilization, high frame ensemble

rates. Cons: High completion asynchrony, large end-to-end delays, higher frame

interarrival jitter.

By looking at the results from each extreme, we better understand the TCP configu-

ration space than if we chose a single, middle-of-the-road value. Second, for any given

set of results below, one can generally deduce the results for a median value simply by

looking at the results for each extreme. When the extremes are divergent, the median

value is generally in the middle. If the extremes coincide, then median values generally

also coincide.

6.7 Laboratory Testbed Results: Equal Frame Size

In this section, we look at experimental results for equal frame size ensembles.

Frames captured by each endpoint following a trigger in this scheme are identical in

size. This will occur when all endpoints use exactly the same resolution, the same

encoding scheme, and avoid applying compression algorithms. This is the default mode

currently used by 3DTI.

Endpoints using CP-RUDP, as described in Section 6.5, are configured to send at

exactly the rate given by NET.bw in the AP state table. This is the congestion respon-

sive send rate for a single flowshare, as estimated by each AP using the TFRC equation

presented in Section 2.3.2. This scheme naturally results in an even distribution of

available bandwidth among flows.



139

6.7.1 Round Trip Time

In this section we compare the performance of TCP and CP-RUDP under conditions

of differing round trip time. To study this issue, we used the dummynet shaping utility

on bottleneck routers to create the following round trip time values: 4, 10, 20, 50, 80,

and 120 milliseconds. In addition, we ran two sets of results, one for a frame size of 25

KB and another for a frame size of 150 KB.

As with the TCP send buffer experiments, we used a total of six streams (one for

each capture host available in our network), bottleneck bandwidth was configured to

be 100 Mb/s, and dummynet packet loss rate was set to .01. Once again, we ran

three trials and then averaged the results to create a single data point for each metric.

Experiments were given a 5-minute stabilization period after which data was collected

for the next 10 minutes.

Figure 6.11, Figure 6.12, and Figure 6.13 show the results for a frame size of 25 K,

while Figure 6.14, Figure 6.15, and Figure 6.15 show results for a frame size of 150 K.

Figure 6.11 (a) and Figure 6.14 (a) results show completion asynchrony increasing with

round trip time for both TCP configurations. Values for TCP with large send buffer

size increase much more sharply, however, than TCP with small send buffer size. CP-

RUDP values increase somewhat as well, but remain significantly low throughout. In

fact, they are less than the TCP small send buffer size in each and every configuration.

Figure 6.11 (b) and Figure 6.14 (b) results show CP-RUDP exhibiting minimal

stalling for nearly all round trip time configurations, with a slight increase in stall time

seen for the largest round trip time and the 25 K frame size. Meanwhile, both TCP

configurations show significantly higher stall time numbers generally, and a marked

increase in stall time as round trip time increases. This is most pronounced for the

smaller send buffer configuration.

In Figure 6.12 (a) and Figure 6.15 (a), we see both TCP and CP-RUDP increasing

their end-to-end delay values linearly as round trip time increases. But, a significant

difference exists in both the amount of delay and the rate of delay increase. For the

25 KB frame size, TCP with a large send buffer configuration shows markedly higher

delay values that increase sharply as round trip time increases. CP-RUDP, on the other

hand, shows markedly low values that increase only slightly as round trip time increases.

TCP with a small send buffer configuration is similar to CP-RUDP, but shows slightly

higher values and slightly more increase. Interestingly, the situation between these two

is swapped for the 150 KB frame size configuration, although the values remain very



140

Figure 6.11: Round trip time results. (a) Completion asynchrony and (b) stall
time versus round trip time.

Figure 6.12: Round trip time results. (a) End-to-end delay and (b) normalized
flowshare versus round trip time.

Figure 6.13: Round trip time results. (a) Frame ensemble rate and (b) frame
ensemble interarrival jitter versus round trip time.



141

Figure 6.14: Round trip time results. (a) Completion asynchrony and (b) stall
time versus round trip time.

Figure 6.15: Round trip time results. (a) End-to-end delay and (b) normalized
flowshare versus round trip time.

Figure 6.16: Round trip time results. (a) Frame ensemble rate and (b) frame
ensemble interarrival jitter versus round trip time.



142

close.

Normalized flowshare results in Figure 6.12 (b) and Figure 6.15 (b) show TCP with

a large buffer size configuration getting exactly its full share of bandwidth throughout

all configurations of round trip time. (Values remain at 1.0 throughout.) Meanwhile,

TCP with a small buffer size configuration gets less than its fair share, with values of

approximately .8 throughout. Presumably, this is the result of significant stalling as

seen in Figure 6.11 (b) and Figure 6.14 (b). CP-RUDP gets somewhat more than its

fair share for very small round trip time values (4 and 10 ms), but values then remain

between 1.1 and 1.0 as round trip time increases, with values approaching 1.0 as round

trip time increases to 120 ms.

Frame ensemble rates in Figure 6.13 (a) and Figure 6.16 (a) show CP-RUDP re-

ceiving somewhat better rates than either TCP configuration for all round trip time

settings. TCP with a large buffer size configuration does better than TCP with a small

buffer size configuration. These results generally follow normalized flowshare results,

but to some degree also reflect stall time results in Figure 6.11 (b) and Figure 6.14 (b).

Recall that frame ensemble rate, while an important metric in examining overall multi-

streaming performance, does not consider the issue of arrival synchrony or end-to-end

latency.

Finally, Figure 6.13 (b) and Figure 6.16 (b) show frame ensemble interarrival jitter

increasing as round trip time increases for all runs. However, both TCP configurations

show more jitter and a greater increase in jitter than CP-RUDP. TCP with a large send

buffer configuration scores highest in both of these areas.

6.7.2 Packet Loss Rate

In this section we compare the performance of TCP and CP-RUDP under conditions

of differing packet loss rates. To study this issue, we once again used the dummynet

shaping utility on bottleneck routers running FreeBSD. Our packet loss rate values

were: .005, .01, .02, .03, and .04. In addition, we ran two sets of results, one for a frame

size of 25 KB and another for a frame size of 150 KB.

As with the TCP send buffer experiments, we used a total of six streams (one for

each capture host available in our network), bottleneck bandwidth was set to 100 Mb/s,

and dummynet delay was set to 25 milliseconds (for a 50 ms total round trip time).

Once again, we ran three trials and then averaged the results to create a single data

point for each metric. Experiments were given a 5-minute stabilization period after



143

which data was collected for the next 10 minutes.

Figure 6.17, Figure 6.18, and Figure 6.19 show results for a frame size of 25 KB,

and Figure 6.20, Figure 6.21, and Figure 6.22 show results for a frame size of 150 KB.

In general, results are similar but with a few subtle differences. (Hence, both are pre-

sented here.) Figure 6.17 (a) and Figure 6.20 (a) show CP-RUDP exhibiting minimal

completion asynchrony as packet loss rate increases. TCP with a small send buffer con-

figuration exhibits somewhat more completion asynchrony. Both are relatively small,

however, compared to TCP with a large send buffer configuration which exhibits a

strikingly large amount of completion asynchrony that increases starkly as packet loss

rates increase.

Figure 6.17 (b) and Figure 6.20 (b) results show CP-RUDP once again getting the

lowest stall time values. These values increase slightly as packet loss rates increase,

especially for the 25 KB frame size set. TCP with a large send buffer configuration

shows somewhat higher stall time values. These values likewise increase somewhat with

increasing packet loss rates. In contrast to both, however, is TCP with a small send

buffer configuration which shows significantly larger values that increase significantly

as packet loss rate increases. Interestingly, the rate of increase is sharper for the 150

KB frame size.

End-to-end delay values in Figure 6.18 (a) and Figure 6.21 (a) show CP-RUDP once

again receiving the smallest delay values in the 25 KB frame size set. These values

increase somewhat as packet loss rate increases. TCP with a small buffer configuration

receives similarly small delay values, and in the 150 KB frame size set, the two are

swapped. TCP with a large send buffer configuration shows strikingly higher values,

and values that sharply increase as packet loss rates increase.

Figure 6.18 (b) and Figure 6.21 (b) show normalized flowshare values for both CP-

RUDP and TCP that increase significantly as packet loss rate increases. For the 25 KB

frame size, CP-RUDP values begin at approximately 1.1 and then increase to 1.33 as

packet loss rates increase to .04. As discussed in Section 4.5.6, this is a known problem

with the TFRC bandwidth estimation equation [Wid00]. It is enough for us to notice

that values for .01 perform reasonably well, and hence are used extensively for the

experimental work presented in this chapter.

Much more mysterious is why normalized flowshare values would increase for TCP

as packet loss rates increase. For the 25 KB frame size, values for TCP with a small

send buffer configuration begin at .78 and increase to about 1.13. Values for TCP with



144

Figure 6.17: Packet loss rate results. (a) Completion asynchrony and (b) stall
time versus packet loss rate.

Figure 6.18: Packet loss rate results. (a) End-to-end delay and (b) normalized
flowshare versus packet loss rate.

Figure 6.19: Packet loss rate results. (a) Frame ensemble rate and (b) frame
ensemble interarrival jitter versus packet loss rate.



145

Figure 6.20: Packet loss rate results. (a) Completion asynchrony and (b) stall
time versus packet loss rate.

Figure 6.21: Packet loss rate results. (a) End-to-end delay and (b) normalized
flowshare versus packet loss rate.

Figure 6.22: Packet loss rate results. (a) Frame ensemble rate and (b) frame
ensemble interarrival jitter versus packet loss rate.



146

a large send buffer configuration begin at .95 and increase to about 1.26. It should

be noted that frame senders in the network configuration shown in Figure 6.6 are

Redhat LINUX 9 hosts paired with FreeBSD 4.5 receive hosts. In contrast, competing

iperf flows that share the network bottleneck and are used for normalized flowshare

calculations are generated by FreeBSD 4.5 pairs. One wonders whether differences in

LINUX and FreeBSD TCP implementations become important in this context. [SK02],

for example, describe a number of ways in which LINUX departs from more standard

implementations.

Figure 6.19 (a) and Figure 6.22 (a) show both CP-RUDP and TCP dropping in

frame ensemble rate as packet loss rates increase. Once again, values for CP-RUDP are

higher for all configurations, following naturally from the fact that CP-RUDP receives

somewhat more bandwidth and stalls much less than TCP. TCP with a small send

buffer configuration shows lower frame ensemble rates than TCP with a large send

buffer configuration.

Finally, Figure 6.19 (b) and Figure 6.22 (b) show frame ensemble interarrival jitter

results. CP-RUDP is consistently lower than either TCP configuration, although values

generally increase with packet loss values. Values also increase for both TCP configu-

rations, but TCP with a large buffer configurations consistently shows the higher jitter

values. The .04 packet loss level shows an interesting switch in results between the two

TCP configurations for the 25 KB frame size.

6.7.3 Number of Streams

In this section, we compare the performance of TCP and CP-RUDP when the

number of streams participating in multi-streaming varies. To study this issue, we

used application configurations with 2, 3, 4, 5, and 6 streaming hosts. (The number

of streaming hosts was constrained both by the number of CP hosts available in our

laboratory testbed, and by the our wish to avoid the possibility of network interface

contention by employing only one stream per host. See Section 6.10.1 for real-world

results with a larger number of streams.) Once again, we ran two sets of results, one

for a frame size of 25 KB and another for a frame size of 150 KB.

In keeping with our previous experiments, we used a bottleneck bandwidth of 100

Mb/s, a dummynet delay setting of 25 milliseconds (for a 50 ms total round trip time),

and a dummynet loss setting of .01. Once again, we ran three trials and then averaged

the results to create a single data point for each metric. Experiments were given a



147

5-minute stabilization period after which data was collected for the next 10 minutes.

Figure 6.23, Figure 6.24, and Figure 6.25 show results for a frame size of 25 KB,

and Figure 6.26, Figure 6.27, and Figure 6.28 show results for a frame size of 150 KB.

Overall, the number of streams had very little effect on CP-RUDP which shows nearly

constant values for most metrics. In contrast, TCP values often varied with the number

of streams somewhat, and sometimes in unpredictable ways.

Figure 6.23 (a) and Figure 6.26 (a) once again show CP-RUDP show exhibiting min-

imal completion asynchrony while TCP with a small send buffer configuration showed

only slightly more. In stark contrast, TCP with a large buffer configuration showed

much higher asynchrony numbers and a much sharper increase in values as the number

of streams was increased.

Figure 6.23 (b) and Figure 6.26 (b) show CP-RUDP exhibiting negligible stall times

for all configurations, while both TCP configurations received significantly higher val-

ues. TCP with a large send buffer configuration showed fairly constant values while

TCP with a small send buffer configuration showed increasing values as the number of

streams increased.

End-to-end delay results in Figure 6.24 (a) and Figure 6.27 (a) are somewhat sur-

prising. CP-RUDP values for both configurations remain fairly low and constant as the

number of streams increase. For both TCP values, however, values decrease linearly as

the number of streams increase. It is unclear why this is the case. Once again, TCP

with a large send buffer configuration exhibits far higher end-to-end delay values than

TCP with a small send buffer configuration.

Normalized flowshare results are shown in Figure 6.24 (b) and Figure 6.27 (b).

Results generally follow previous trends which show CP-RUDP receiving just slightly

above its fair share level, TCP with a large send buffer configuration receiving very close

to it, and TCP with a small send buffer configuration receiving strikingly less than its

fair share. Values for CP-RUDP and TCP with a large send buffer configuration remain

nearly constant as the number of streams increases for both frame size configurations.

TCP with a small send buffer configuration, in contrast, shows numbers that drop.

This follows from its increase in stall time as the number of streams is increased.

Figure 6.25 (a) and Figure 6.28 (a) show frame ensemble rate results. Once again,

CP-RUDP shows the highest values due to strong utilization and few stall events. These

values furthermore remain constant as the number of streams increases. TCP with a

large send buffer configuration exhibits likewise constant values that are slightly less



148

Figure 6.23: Number of streams results. (a) Completion asynchrony and (b) stall
time versus number of streams.

Figure 6.24: Number of streams results. (a) End-to-end delay and (b) normalized
flowshare versus number of streams.

Figure 6.25: Number of streams results. (a) Frame ensemble rate and (b) frame
ensemble interarrival jitter versus number of streams.



149

Figure 6.26: Number of streams results. (a) Completion asynchrony and (b) stall
time versus number of streams.

Figure 6.27: Number of streams results. (a) End-to-end delay and (b) normalized
flowshare versus number of streams.

Figure 6.28: Number of streams results. (a) Frame ensemble rate and (b) frame
ensemble interarrival jitter versus number of streams.



150

than CP-RUDP. TCP with a small send buffer configuration, in contrast, shows both

much lower values and values that decrease somewhat as the number of streams increase.

This follows from both decreasing normalized flowshare numbers, and increasing stall

time numbers as the number of streams increases.

Finally, Figure 6.25 (b) and Figure 6.28 (b) show frame ensemble interarrival jitter

results. CP-RUDP shows consistently low numbers that remain constant as the number

of streams increases. TCP with a small send buffer configuration shows much higher

numbers that likewise remain constant. In contrast, TCP with a large send buffer

configuration shows higher numbers that increase as the number of streams increases.

6.7.4 Frame Size

In this section we compare the performance of TCP multi-streaming with that of

CP-RUDP using various frame sizes. Unlike the unequal frame sizes of Section 6.8,

frames within the same ensemble are always equal in size, as is frame size from one

frame ensemble to the next throughout the entire run. To study this issue, we use

separate runs for each frame size configuration and then compare performance results

between different runs. Once again, three trials were run for each configuration and

results were averaged to create a single data point for each metric.

Frame size can be easily configured using commandline arguments during frame

invocation on sending endpoints. The following frame sizes were used: 10, 25, 50,

100, 150, and 200 KB. In keeping with previous experiments, we used a bottleneck

bandwidth of 100 Mb/s, a dummynet delay setting of 25 milliseconds (for a 50 ms

total round trip time), and a dummynet loss setting of .01. Experiments were given a

5-minute stabilization period after which data was collected for the next 10 minutes.

Completion asynchrony results in Figure 6.29 (a) show a dramatic difference between

TCP with a large send buffer configuration and CP-RUDP. This gap is drastically

reduced by decreasing send buffer size as seen in the much improved performance of

TCP with a small send buffer configuration. Interestingly, values increase only slightly

as frame size increases.

Stall time results in Figure 6.29 (b) show CP-RUDP exhibiting very low stall time

numbers that remain constant as frame size increases. TCP with a small send buffer

configuration shows numbers that increase somewhat as frame size increases, while

TCP with a large send buffer configuration shows numbers that increase dramatically

as frame size increases.



151

Figure 6.29: Frame size results. (a) Completion asynchrony and (b) stall time
versus frame size.

Figure 6.30: Frame size results. (a) End-to-end delay and (b) normalized flow-
share versus frame size.

Figure 6.31: Frame size results. (a) Frame ensemble rate and (b) frame ensemble
interarrival jitter versus frame size.



152

In Figure 6.30 (a), we see CP-RUDP with low end-to-end delay values that increase

slowly with the size of the frame. TCP with a large send buffer configuration shows

significantly higher values that likewise increase. Values for TCP with a small send

buffer configuration, in contrast, rise somewhat and then maintain a constant value

as frame size continues to increase. This puzzling behavior is not what it appears. A

limitation in our delay measurement methodology makes it difficult to quantify end-to-

end delay precisely as frame sizes become much larger than send buffer sizes. Hence,

delay values are shown in the plot as leveling off when, in fact, end-to-end delay may

continue to increase somewhat.

Figure 6.30 (b) shows normalized throughput results. As usual, TCP with a large

send buffer configuration is fairly close to 1.0 for almost all frame size configurations,

CP-RUDP is just above 1.0, and TCP with a small send buffer configuration is signifi-

cantly lower. These results once again demonstrate that TCP with a small send buffer

configuration fails to get its fair share of bandwidth due to stalling, while both TCP

with a large send buffer configuration and CP-RUDP do fairly well without stealing

bandwidth from competing bottleneck flows.

Figure 6.31 (a) shows that frame size is inversely related to frame ensemble rate

for all CP-RUDP and TCP configurations. In general, CP-RUDP does just slightly

better than TCP with a large send buffer configuration which does significantly better

than TCP with a small send buffer configuration. These numbers reflect normalized

flowshare results as seen in Figure 6.30 (b).

Finally, Figure 6.31 (b) shows all frame ensemble interarrival numbers to increase

with frame size for both CP-RUDP and TCP. Values for CP-RUDP are the lowest,

while TCP with a large send buffer configuration shows the highest.

6.7.5 Network Load

While testing CP performance using dummynet is instructive, a random loss model

is somewhat unrealistic. Although effective in modeling low-level transmission errors,

it fails to model losses that occur from network congestion. Such losses, the result

of queue overflow in Internet routers, are known to be bursty and correlated. [Pax99]

To better capture this dynamic, we tested TCP and CP-RUDP performance against

various background traffic workloads using a Web traffic generator known as thttp.

Thttp uses empirical distributions from [SCJO01] to emulate the behavior of Web

browsers and the TCP traffic that browsers and servers generate on the Internet. Em-



153

pirical distributions are sampled to determine the number and size of HTTP requests

for a given page, the size of a response, the amount of “think time” before a new page

is requested, etc. A single instance of thttp may be configured to emulate the behav-

ior of hundreds of Web browsers and significant levels of TCP traffic with real-world

characteristics. Among these characteristics are heavy-tailed distributions in flow ON

and OFF times, and significant long range dependence in packet arrival processes at

network routers. (See Appendix B for a more complete description of thttp.)

We ran four thttp servers and four clients on each set of traffic hosts seen in Fig-

ure 6.6. Emulated Web traffic was given a 20 minute ramp-up interval and competed

with TCP and CP-RUDP flows on the bottleneck link in both directions. We varied

the number of browsers emulated from 2000 to 6000. Figure B.5 shows the workload

generated as the number of browsers emulated increases.

To monitor loss and to configure queue size, ALTQ (see Section B.1) was run on each

bottleneck router. ALTQ is a FreeBSD kernel extension that supports the configuration

and monitoring of outbound queuing on a FreeBSD forwarding host. ALTQ provides

detailed statistics on packet forwarding and drop events, as well as queue length over

time. We configured queue size to be 100 packets 4 and set our statistics collection

interval to be 100 ms.

Figure 6.32 (a) shows queue length for a sample time interval on the bottleneck

router between video capture and reconstruction hosts. Hosts send 150 KB frames

using CP-RUDP and compete with 4000 thttp browsers. While mean queue length

generally spikes at 40-60 packets, maximum values quite frequently spike to 100 packets.

Figure 6.32 (b) shows what happens when queue length exceeds maximum. Here we

note that packet losses seem to occur in “bursts” that correspond to moments when

the queue length has reached and exceeded its maximum size. Figure 6.33 (a) and (b)

show the bottleneck bandwidth to be nearly link capacity (100 Mb/s) and the number

of packets per second to be between 1600 and 1950.

Figure 6.34 (a) shows the cumulative distribution function (CDF) for all mean queue

length intervals. While more than 30 percent of all 100 ms intervals are zero, values

increase significantly after that. Figure 6.34 (a) shows that the number of drops per

interval increasing significantly for higher browser loads. Browser loads of 2000 show

90 percent of all intervals with zero drops, and of the remaining intervals, more than

4Experiments with larger queue sizes mandated larger browser loads to produce the same loss levels
but showed little difference in resulting performance.



154

Figure 6.32: Bottleneck router queue results. (a) Queue length and (b) dropped
packets for a sample CP-RUDP run with 4000 browsers and 150 KB frame size.

Figure 6.33: Bottleneck router queue results. Throughput in (a) packets per sec-
ond and (b) megabits per second for a sample CP-RUDP run with 4000 browsers
and 150 KB frame size.

Figure 6.34: Bottleneck router queue results. (a) Queue length CDF and (b)
dropped packets CDF for runs with CP-RUDP and 150 KB frames.



155

Figure 6.35: Network load results. (a) Packet loss rate and (b) packet loss rate
standard deviation for 25 KB frame size.

Figure 6.36: Network load results. (a) Packet loss rate and (b) packet loss rate
standard deviation for 150 KB frame size.

half are less than 30 packets. In contrast, browser loads of 6000 show only 68 percent

of all intervals with no drops, and a large fraction of remaining intervals with over 50

packet drops.

Figure 6.35 and Figure 6.36 show overall loss levels for the various run configurations

in this experiment set. Once again, we ran TCP with two sender buffer configurations,

64 KB and 1 MB, and used two frame sizes, 25 KB and 150 KB. As before, we used

a bottleneck bandwidth of 100 Mb/s and a dummynet delay setting of 25 milliseconds

(for a 50 ms total round trip time). We ran three trials and then averaged the results

to create a single data point for each metric. Experiments were given a 10-minute

stabilization period after which data was collected for the next 10 minutes. Both



156

Figure 6.35 (a) and Figure 6.36 (a) show loss rates increasing from .001-.002 to .008-

.009 as the number of browsers increase from 2000 to 6000. Standard deviations in

Figure 6.35 (b) and Figure 6.36 (b) show increasing variance in values as the number of

browsers increase, with CP-RUDP showing a markedly higher variance than TCP for

the lowest browser number setting. Experiments with even lower browser numbers seem

to indicate that TFRC has trouble estimating bandwidth when very little loss exists

in the system. Values in the denominator of Equation 4.1 approach zero, triggering

a minimum default sending rate that may or may not be well-matched to current

conditions on the cluster-to-cluster forwarding path.

Figure 6.37 (a) and Figure 6.40 (a) show that as background TCP traffic increases,

completion asynchrony remains consistently low for CP-RUDP. TCP with a small send

buffer size also stays fairly low, although rising slightly. Stall time results in Figure 6.37

(b) and Figure 6.40 (b) once again show CP-RUDP being very low and relatively

insensitive to increases in thttp traffic load. In stark contrast, both TCP configurations

are significantly higher and increase as load increases.

End-to-end delay values in Figure 6.38 (a) and Figure 6.41 (a) show CP-RUDP and

TCP with a small send buffer size configuration remaining quite low while for TCP with

a larger send buffer size, this is not the case. In the latter, values are significantly higher

and increase a great deal as the background traffic load increases. Normalized flow share

values in Figure 6.38 (b) and Figure 6.41 (b) show CP-RUDP getting somewhat more

than its fair share for the 2000 browser level, but then remaining fairly close to 1.0 for

the other configurations. Once again, we suspect this is an issue related to too little

loss in the system and the difficulty TFRC has with driving Equation 4.1 when values

in the denominator approach zero. In general, both TCP configurations under-utilize

network bandwidth for both frame size configurations, especially the smaller send buffer

size configuration.

Figure 6.39 (a) and Figure 6.42 (a) show frame ensemble rate results. In all cases,

as background traffic load increases, frame ensemble throughput decreases. As with

normalized flowshare results in Figure 6.38 (b) and Figure 6.41 (b), CP-RUDP gets

significantly better frame ensemble rates than TCP. The latter with a small send buffer

configuration consistently performs the worst. Finally, Figure 6.39 (b) and Figure 6.42

(b) show CP-RUDP being relatively insensitive to increases in background traffic load in

terms of frame ensemble interarrival jitter. In contrast, numbers increase significantly

for both TCP configurations and are the highest for TCP with a large send buffer



157

Figure 6.37: Network load results. (a) Completion asynchrony and (b) stall time
versus network load.

Figure 6.38: Network load results. (a) End-to-end delay and (b) normalized
flowshare versus network load.

Figure 6.39: Network load results. (a) Frame ensemble rate and (b) frame en-
semble interarrival jitter versus network load.



158

Figure 6.40: Network load results. (a) Completion asynchrony and (b) stall time
versus network load.

Figure 6.41: Network load results. (a) End-to-end delay and (b) normalized
flowshare versus network load.

Figure 6.42: Network load results. (a) Frame ensemble rate and (b) frame en-
semble interarrival jitter versus network load.



159

configuration.

6.7.6 Summary

Results for equal frame size configurations presented in this section demonstrate the

superior performance of CP-RUDP over TCP. In support of this statement, we cite the

following facts and observations:

• CP-RUDP invariably shows less completion asynchrony than either TCP config-

uration.

• CP-RUDP invariably shows less stall time than than either TCP configuration.

• CP-RUDP shows less end-to-end delay than either TCP configuration for 25 KB

frames. For 150 KB frames, it is very close to that of TCP with a small send

buffer configuration.

• CP-RUDP shows less frame ensemble interarrival jitter than either TCP config-

uration.

• CP-RUDP typically achieves full link utilization and, as a result, shows better

frame ensemble rates.

We furthermore point out that no single TCP configuration can compete with the per-

formance of CP-RUDP for all metrics simultaneously. While TCP with a small send

buffer configuration offers low completion asynchrony, low end-to-end delay, and lower

frame ensemble interarrival jitter, it also results in longer stall times, poor network

utilization, and lower frame ensemble rate numbers. TCP with a large buffer con-

figuration, on the other hand, offers lower stall times, good network utilization and

fairness, and good frame ensemble rate numbers. At the same time, it results in high

completion asynchrony, large end-to-end latency values, and higher frame ensemble

interarrival jitter. CP-RUDP, on the other hand, offers the best of both worlds and

exhibits performance that often exceeds the best that either TCP configuration can

offer.

Caveats to this performance summary include mildly over-aggressive bandwidth

estimation of CP-RUDP when (1) very little network load exists, and (2) very high

random loss rates are seen. Each of these is an artifact of Equation 4.1, used by



160

CP-RUDP (and TFRC) to estimate a congestion-responsive sending rate. The former

problem occurs when very small loss event rate values drive the denominator to near

zero, and the latter occurs when the problem documented in [Wid00] is invoked. Both

of these problems may be solved in the future as research in equation-based congestion

control [FF99, PFTK98, FHPW00] continues to advance. When this occurs, CP-RUDP

can be easily modified to incorporate the improvements to solve these performance

issues.

6.8 Laboratory Testbed Results: Unequal Frame

Size

In this section, we look at experimental results for unequal frame size ensembles.

Unequal frame sizes within a frame ensemble may occur when a different capture res-

olution is used for frames within a user’s field of interest, or due to the effects of data

compression on images that vary somewhat in content. The unequal frame size scheme

used in this section focuses on the former scenario, and in particular the worst case

scenario in which the same capture hosts continually have more data to send than peer

capture hosts in the same application. (Normally, a user’s field of interest would change

over time, potentially averaging out some frame size differences.)

Once again, six capture endpoints are used. Each, in this scheme, is configured to

send either a large or small frame depending upon the configuration. Five configurations

were explored as follows:

• Mmmmmm. Large, small, small, small, small, and small.

• MMmmmm. Large, large, small, small, small, and small.

• MMMmmm. Large, large, large, small, small, and small.

• MMMMmm. Large, large, large, large, small, and small.

• MMMMMm. Large, large, large, large, large, and small.

The precise size of “large” and “small” depends upon three configuration parameters:

mean frame size, number of frames, and dispersion factor. Mean frame size, µ, is kept

constant across all configurations in the set. In the results presented below, a value of



161

25 KB was used throughout. The number of frames, n, in an ensemble is likewise a

constant. A value of six was used throughout corresponding to the number of capture

hosts available in our laboratory testbed. Dispersion factor, f , is an input parameter

and is used to calculate small frame size (Ssmall) as follows:

Ssmall = µ− (f ∗ µ) (6.5)

Values for f used for our results include 0, .05, .1, .2, .3, .4, and .5. Using Ssmall, large

frame size (Slarge) is then calculated as:

Slarge =
(µ ∗ n)− (Ssmall ∗ nsmall)

nlarge

(6.6)

For example, if µ = 25KB, n = 6, and f = .3, then the following frame sizes (in bytes)

are used:

• Mmmmmm. 64000, 17920, 17920, 17920, 17920, and 17920.

• MMmmmm. 40960, 40960, 17920, 17920, 17920, and 17920.

• MMMmmm. 33280, 33280, 33280, 17920, 17920, and 17920.

• MMMMmm. 29440, 29440, 29440, 29440, 17920, and 17920.

• MMMMMm. 27136, 27136, 27136, 27136, 27136, and 17920.

Note that the total number of bytes in a single frame ensemble remains constant across

all configurations in the set.

Endpoints using CP-RUDP, as described in Section 6.5, are configured to send at

a rate that reflects both network path conditions and the fraction of frame ensemble

data represented by their particular frame size. Equation 6.1 shows exactly how this

sending rate is calculated.

Finally, we also consider briefly the effect of changing frame sizes within the same

run on multi-streaming performance. In this scenario, a particular configuration (e.g.,

MMmmmm) is continually re-mapped to endpoint hosts in a dynamic manner, simu-

lating changes that might occur in 3DTI as a user changes their field of interest. This

serves to demonstrate another important feature of the Coordination Protocol, namely

the ability to perform dynamic reconfiguration within a flow coordination scheme. Dy-

namic reconfiguration is easily implemented using the state sharing mechanisms de-

scribed in Chapter 3. In fact, the unequal frame size coordination scheme described in



162

Section 6.5 will naturally handle dynamic send rate reconfiguration in its current form.

This is because endpoints continually update the AP state table with their current

frame size as part of the algorithm.

6.8.1 Frame Size Dispersion (Random Loss)

In this section we compare the performance of TCP multi-streaming with that of

CP-RUDP using unequal frame sizes and random loss generated by dummynet. Frame

size configurations are described in the previous section (Section 6.8). We refer to these

configurations here and within plot labels using the shorthand Mmmmmm, MMmmmm,

MMMmmm, MMMMmm, and MMMMMm. A frame dispersion parameter is varied

from 0 to .5 using a step size of .1. For each step, a new set of unequal frame size

configurations is generated.

Throughout the run, we used a dummynet packet loss rate of .01. Bottleneck

bandwidth was once again 100 Mb/s and round trip time was 50 ms. To simplify the

results somewhat, a single TCP send buffer configuration was used (400 KB). This

buffer size represents a compromise between the 64 KB and 1 MB extremes studied in

Section 6.7. Experiments were given a 5-minute stabilization period after which data

was collected for the next 10 minutes. Three trials were run for each configuration and

results were averaged to create a single data point for each metric.

Plots are organized as follows: Figure 6.43, Figure 6.44, and Figure 6.45 show a

comparison between TCP and CP-RUDP for two representative configurations. Fig-

ure 6.46, Figure 6.47, and Figure 6.48 show the complete TCP results for all configura-

tions. Figure 6.49, Figure 6.50, and Figure 6.51 show the complete CP-RUDP results

for all configurations.

It is interesting to note from Figure 6.49, Figure 6.50, and Figure 6.51 that CP-

RUDP, with its coordination scheme described in Section 6.5, is completely insensitive

to both unequal frame size configuration and frame dispersion factor. This is evident

from the straight line seen across dispersion values, and the fact that these straight

lines roughly coincide for each configuration.

In contrast, Figure 6.46, Figure 6.47, and Figure 6.48 show a great deal of per-

formance variation, with the exception of completion asynchrony where all dispersion

values result in roughly the same values for all unequal frame size configurations. Mm-

mmmm results in the worst performance, as evident by the largest increases in stall

time (Figure 6.46 (b)), the largest decreases in normalized flowshare (Figure 6.47 (b)),



163

Figure 6.43: Frame size dispersion (random loss) results. (a) Completion asyn-
chrony and (b) stall time versus frame size dispersion factor.

Figure 6.44: Frame size dispersion (random loss) results. (a) End-to-end delay
and (b) normalized flowshare versus frame size dispersion factor.

Figure 6.45: Frame size dispersion (random loss) results. (a) Frame ensemble
rate and (b) frame interarrival jitter versus frame size dispersion factor.



164

Figure 6.46: TCP frame size dispersion (random loss) results. (a) Completion
asynchrony and (b) stall time versus frame size dispersion factor.

Figure 6.47: TCP frame size dispersion (random loss) results. (a) End-to-end
delay and (b) normalized flowshare versus frame size dispersion factor.

Figure 6.48: TCP frame size dispersion (random loss) results. (a) Frame ensemble
rate and (b) frame ensemble interarrival jitter versus frame size dispersion factor.



165

Figure 6.49: CP-RUDP frame size dispersion (random loss) results. (a) Comple-
tion asynchrony and (b) stall time versus frame size dispersion factor.

Figure 6.50: CP-RUDP frame size dispersion (random loss) results. (a) End-to-
end delay and (b) normalized flowshare versus frame size dispersion factor.

Figure 6.51: CP-RUDP frame size dispersion (random loss) results. (a) Frame
ensemble rate and (b) frame ensemble interarrival jitter versus frame size disper-
sion factor.



166

the largest decreases in frame ensemble rate (Figure 6.48 (a)), and the largest increases

in frame ensemble interarrival jitter (Figure 6.48 (b)). Interestingly, Mmmmmm did

better in terms of end-to-end delay (Figure 6.47 (a)), presumably because many small

frames naturally reduce the mean end-to-end values since they are averaged across flows.

Completion asynchrony (Figure 6.46 (a)) appears to be dominated by send buffer size,

and hence remained constant throughout.

The MMMMMm configuration resulted in the best TCP performance, as evident

by the smallest increases in stall time (Figure 6.46 (b)), the smallest decreases in

normalized flowshare (Figure 6.47 (b)), the smallest decreases in frame ensemble rate

(Figure 6.48 (a)), and the smallest increases in frame ensemble interarrival jitter (Fig-

ure 6.48 (b)). Interestingly, MMMMMm did the worst in terms of end-to-end delay

(Figure 6.47 (a)).

Comparing TCP with CP-RUDP for the Mmmmmm and MMMmmm configurations

in Figure 6.43, Figure 6.44, and Figure 6.45, we see CP-RUDP significantly outperform-

ing TCP in every metric. CP-RUDP shows far lower completion asynchrony numbers

(Figure 6.43 (a)), low stall time numbers that do not increase with the dispersion factor

(Figure 6.43 (b)), end-to-end delay values that are consistently low (Figure 6.44 (a)),

normalized flowshare values that remain close to 1.0 (Figure 6.44 (b)), frame ensemble

rate values that are consistently high for all dispersion values (Figure 6.45 (a)), and

frame ensemble interarrival jitter values that remain consistently low (Figure 6.45 (b)).

Clearly, the coordination scheme described in Section 6.5 has done its job in improving

multi-streaming performance even more significantly than in various equal frame size

cases studied in Section 6.7.

6.8.2 Frame Size Dispersion (Load)

In this section, we compare the performance of TCP multi-streaming with that

of CP-RUDP using unequal frame sizes under conditions of substantial TCP back-

ground traffic workload. To generate this traffic, the thttp Web traffic emulator (see

Appendix B) was used with a configuration of 5000 browsers. As mentioned in Sec-

tion 6.7.5, thttp traffic loads generate network congestion behavior at bottleneck routers

in a way that closely corresponds to the real Internet. This includes outbound queuing

delay and packet loss patterns that are bursty and correlated. [Pax99]

Once again, frame size configurations use the Mmmmmm, MMmmmm, MMMmmm,

MMMMmm, and MMMMMm scheme described in Section 6.8. A frame dispersion



167

parameter is varied from .1 to .5 using a step size of .1, and with a mean frame size

of 25 KB. For each step, a new set of unequal frame size configurations is generated.

Bottleneck bandwidth was once again 100 Mb/s and round trip time was 50 ms. The

TCP send buffer configuration used was 400 KB. Experiments were given a 5-minute

stabilization period after which data was collected for the next 10 minutes.

Once again, Figure 6.52, Figure 6.53, and Figure 6.54 show a comparison between

TCP and CP-RUDP for two representative configurations. Figure 6.55, Figure 6.56,

and Figure 6.57 show the complete TCP results for all configurations. Figure 6.58,

Figure 6.59, and Figure 6.60 show the complete CP-RUDP results for all configurations.

In general, results match those in the previous section. CP-RUDP, with its coordi-

nation scheme described in Section 6.5, is almost completely insensitive to both unequal

frame size configuration and frame dispersion factor. This is seen from Figure 6.58,

Figure 6.59, and Figure 6.60 in the straight horizontal lines across all dispersion values,

and the fact that lines for different unequal frame size configurations coincide with one

another on each plot. There is one exception: normalized flowshare for the Mmmmmm

configuration which increases somewhat as the frame dispersion factor increases from

.2 to .5. It is unclear what is causing this anomaly.

In contrast, TCP in Figure 6.55, Figure 6.56, and Figure 6.57 exhibits a great deal

of performance variation depending upon the metric. Once again, Mmmmmm results

in the worst performance, as evident by the largest increase in stall time (Figure 6.55

(b)), the largest decrease in normalized flowshare (Figure 6.56 (b)), the largest decrease

in frame ensemble rate (Figure 6.57 (a)), and largest increase in frame ensemble inter-

arrival jitter (Figure 6.57 (b)). Interestingly, Mmmmmm did somewhat better in terms

of completion asynchrony (Figure 6.55 (a)) and end-to-end delay (Figure 6.56 (a)).

The MMMMMm configuration once again resulted in the best TCP performance,

as evident by the smallest increase in stall time (Figure 6.46 (b)), the smallest decrease

in normalized flowshare (Figure 6.47 (b)), the smallest decrease in frame ensemble rate

(Figure 6.48 (a)), and among the smallest increases in frame ensemble interarrival jitter

(Figure 6.48 (b)). Interestingly, MMMMMm did the worst in terms of frame arrival

asynchrony (Figure 6.46 (a)) and end-to-end delay (Figure 6.47 (a)).

Comparing TCP with CP-RUDP for the Mmmmmm and MMMmmm configurations

in Figure 6.52, Figure 6.53, and Figure 6.54, we see CP-RUDP significantly outperform-

ing TCP in every metric. CP-RUDP shows far lower completion asynchrony numbers

that do not increase with the dispersion factor (Figure 6.52 (a)), low stall time numbers



168

Figure 6.52: Frame size dispersion (load) results. (a) Completion asynchrony and
(b) stall time versus frame size dispersion factor.

Figure 6.53: Frame size dispersion (load) results. (a) End-to-end delay and (b)
normalized flowshare versus frame size dispersion factor.

Figure 6.54: Frame size dispersion (load) results. (a) Frame ensemble rate and
(b) frame interarrival jitter versus frame size dispersion factor.



169

Figure 6.55: TCP frame size dispersion (load) results. (a) Completion asynchrony
and (b) stall time versus frame size dispersion factor.

Figure 6.56: TCP frame size dispersion (load) results. (a) End-to-end delay and
(b) normalized flowshare versus frame size dispersion factor.

Figure 6.57: TCP frame size dispersion (load) results. (a) Frame ensemble rate
and (b) frame interarrival jitter versus frame size dispersion factor.



170

Figure 6.58: CP-RUDP frame size dispersion (load) results. (a) Completion
asynchrony and (b) stall time versus frame size dispersion factor.

Figure 6.59: CP-RUDP frame size dispersion (load) results. (a) End-to-end delay
and (b) normalized flowshare versus frame size dispersion factor.

Figure 6.60: CP-RUDP frame size dispersion (load) results. (a) Frame ensemble
rate and (b) frame interarrival jitter versus frame size dispersion factor.



171

that do not increase with the dispersion factor (Figure 6.52 (b)), end-to-end delay val-

ues that are consistently low (Figure 6.53 (a)), normalized flowshare values that remain

fairly close to 1.0 and do not drop as the dispersion factor increases (Figure 6.53 (b)),

frame ensemble rate values that are consistently high for all dispersion values (Fig-

ure 6.54 (a)), and frame ensemble interarrival jitter values that remain consistently low

(Figure 6.54 (b)). Once again, the coordination scheme described in Section 6.5 has

done its job in improving multi-streaming performance even more significantly than in

various equal frame size cases studied in Section 6.7.

Finally, it is interesting to compare the throughput behavior of TCP and CP-RUDP

within a run for a moment in order to better visualize why CP-RUDP performs so much

better in the context of multi-streaming with unequal frame sizes. Figure 6.61 and Fig-

ure 6.62 show flow throughput results over time for CP-RUDP and TCP, respectively.

Each of six flows is shown individually within each plot, with the first plot showing 5

seconds of a run and the second plot showing 15 seconds. Each run used the MMmmmm

unequal frame size configuration with a maximum dispersion value of 0.5.

Figure 6.61 shows two of six CP-RUDP flows receiving consistently more bandwidth

than the other four flows, a result in keeping with coordination scheme described in

Section 6.5. These flows stream large frames and thus require a larger fraction of

aggregate bandwidth to maintain synchrony with smaller frame size streams. Two

other observations should also be noted. First, streams in each subgroup (large and

small frame size) exhibit a substantial degree of send rate correspondence with one

another. This is especially evident in the smaller frame size where throughput values

nearly coincide for all four flows. Second, note that stall events are not seen. A stall

event, if it occurred, would appear in the plot as one or more flows dropping to a zero

throughput level for some transient period before throughput levels increase once again.

Figure 6.62 shows all six TCP flows competing with one another in an unsynchro-

nized manner. While two flows tend to show higher throughput values than the other

four, this is not always the case. In addition, stall events appear common as many

flows have throughput values that drop to zero, sometimes for a substantial interval

of time. In summary, flows lack coordination and, as a result, tend to use available

bandwidth inefficiently. The result is higher completion asynchrony, larger stall times,

lower network utilization, and the other effects described above.



172

Figure 6.61: Unequal frame size. Throughput over time for CP-RUDP.

Figure 6.62: Unequal frame size. Throughput over time for TCP.



173

Metric TCP (64 KB Sndbuf) TCP 1 MB Sndbuf CP-RUDP
Completion Asynchrony 0.173000 2.312000 0.063000
Stall Time 0.018633 0.008733 0.004200
End-to-end Delay 0.118800 1.345300 0.057567
Normalized Flowshare 0.672667 0.811000 1.095000
Frame Ensemble Rate 14.932333 18.869000 21.717000
FE interarrival Jitter 0.080333 0.117000 0.029667

Table 6.2: Unequal frame size with dynamic reconfiguration.

6.8.3 Dynamic Reconfiguration

In this section, we compare briefly the performance of TCP multi-streaming with

that of CP-RUDP using unequal frame sizes that change among endpoints dynamically

over time. The MMmmmm unequal frame size configuration was chosen for these

experiments, with a 25 KB mean and maximum dispersion factor of 0.5. For each

100 frames, flows modify their frame size by trading configurations with a peer flow,

meanwhile maintaining the invariant that two flows are streaming large frames at all

times and four are streaming small frames. This dynamic re-configuration models a

user’s changing field of interest within the application, and the use of higher resolutions

for streams that are currently within this field.

Once again, we use thttp to generate background Web traffic in a realistic way, with

a total of 5000 browsers configured. Bottleneck bandwidth is 100 Mb/s and round trip

time is 50 ms. Experiments were given a 5-minute stabilization period after which data

was collected for the next 10 minutes. TCP runs were performed with two send buffer

sizes: 64 KB and 1 MB.

Table 6.2 shows the results. In general, CP-RUDP outperforms both TCP configu-

rations for all metrics. In particular, the following results are seen:

• Completion asynchrony is significantly lower for TCP with the small send buffer

size than for TCP with the large send buffer size. Even so, this value is 2.7 times

larger than CP-RUDP.

• Stall time is significantly less for TCP with the large send buffer size. It is still 2

times larger than CP-RUDP, however.

• End-to-end delay is least for TCP with a small buffer size. Still, it is 2 times

larger than CP-RUDP.



174

• Normalized flowshare is higher for TCP with a large buffer size. This value is still

almost 0.2 below the fair share value of 1.0. CP-RUDP achieves a value slightly

greater than 1.0. These numbers are further reflected in frame ensemble rates

which are 18.9 and 21.7, respectively.

• TCP with a smaller send buffer configuration shows the lowest values for frame

ensemble interarrival jitter. Still, it is 2.7 times the performance value achieved

by CP-RUDP.

Once again, the coordinated multi-streaming with CP-RUDP outperforms TCP sub-

stantially. It not only combines the best of both TCP send buffer configurations, it

outperforms the best TCP can provide in either scenario.

Figure 6.63, Figure 6.64, and Figure 6.65 show sample flow throughput results over

time for CP-RUDP, TCP configured with a small send buffer, and TCP configured with

a large send buffer. Each of six flows is seen individually, with the first plot showing 5

seconds of a run and the second plot showing 15 seconds.

Figure 6.63 shows two of six CP-RUDP flows receiving consistently more bandwidth

than the other four flows, following the coordination scheme described in Section 6.5.

Unlike Figure 6.61 in the previous section, however, which two flows of the set changes

over time. Figure 6.63 shows, for example, a transition between time 103 and 104.

Once again, a high degree of synchrony is seen among flows, as well as an absence of

stall events.

Figure 6.64 shows sample flow throughput results for TCP configured with a small

send buffer size. Very little synchrony is seen among flows, and stall events (seen when

throughput levels fall to zero) are commonplace. In Figure 6.65, we see flow throughput

results for TCP configured with a large send buffer size. While overall throughput levels

appear better, once again we see a lack of synchrony and numerous stall events. Several

sub-intervals exist where one flow appears to dominate throughput. Each is followed

by a substantial stall interval and then a subsequent interval of apparent competition

among all flows.

These plots serve to illustrate the effects of flow coordination in the unequal frame

size context where dynamic reconfiguration occurs periodically. The summary statistics

in Table 6.2 quantify the overall outcome of these effects and generally make the case

for a coordinated approach to multi-streaming in this application context.



175

Figure 6.63: Unequal frame size with dynamic reconfiguration. Throughput over
time for CP-RUDP.

Figure 6.64: Unequal frame size with dynamic reconfiguration. Throughput over
time for TCP with 64 KB send buffer configuration.

Figure 6.65: Unequal frame size with dynamic reconfiguration. Throughput over
time for TCP with 1 MB send buffer configuration.



176

6.8.4 Summary

In this section, we compared CP-RUDP multi-streaming performance with that of

TCP for scenarios in which frame size among flows is not equal. The coordination

scheme described in Section 6.8 is applied by each CP-RUDP flow to scale its sending

rate according to the frame size it is currently assigned. In contrast, flows in each

TCP run operate in an independent manner with no higher-level coordination scheme

present.

The results from Section 6.8.1 and Section 6.8.2 show CP-RUDP to be insensitive

to both unequal frame size configuration and increasing differences in frame size (i.e.,

dispersion factor). Furthermore, CP-RUDP outperforms TCP for every metric consid-

ered in this chapter: completion asynchrony, stall time, end-to-end delay, normalized

throughput, frame ensemble rate, and frame ensemble interarrival jitter. Each of these

experiment sets focus on a worst case scenario: that which occurs when the same

flows persistently stream larger frames than all other flows in the same application. In

summary, the scenario is one which exacerbates the problems seen in Section 6.7 on

equal frame sizes and shows even more clearly the benefits of flow coordination with

CP-RUDP.

In Section 6.8.3, we saw that CP-RUDP could furthermore be used to coordinate

multi-streaming when frame size is reconfigured among application flows dynamically.

This models a 3DTI user scenario in which a user’s field of interest, implemented with

higher resolution video images, changes over time. Again, our results show CP-RUDP

outperforming TCP in literally every metric considered in this chapter. Interestingly,

the coordination scheme described in Section 6.8 needed no real changes to handle what

might at first appear to be a difficult twist on the unequal frame size scenario. This is

because CP-RUDP naturally provides the infrastructure for dynamically reconfiguring

flow coordination on the fly.

6.9 Abilene Experiments

In this section we present experimental results taken from the Abilene backbone

network comparing coordinated multi-streaming with CP-RUDP and uncoordinated

streaming with TCP. These results are significant in two ways. First, they represent a

chance to test out our multi-streaming scheme in a public network environment; that

is, outside of our isolated laboratory testbed. In this way, they provide proof-of-concept



177

in an authentic context. Second, these results demonstrate CP-RUDP’s performance

for a significantly scaled context. Throughput levels achieved approached 200 Mb/s in

these experiments, and the number of capture endpoints was scaled three to four times

the original number used in our laboratory testbed.

Overall, the results underscore those seen for both equal and unequal frame size

configurations in our laboratory testbed. As such, they provide additional evidence

of CP’s effectiveness in coordinating multi-streaming within the 3D Tele-immersion

application.

6.9.1 Network configuration

The capture cluster (see Figure 6.2) for the Abilene experiments is located in the

University of Pennsylvania GRASP 5 lab within the School of Engineering. The cluster

is comprised of a collection of Dell Precision 530 workstations with dual 2.4 GHz Intel

Xeon processors, 512 MB of RAM, and an Intel Pro/100 ethernet adapter (100 Mb/s)

attached to a 100 MHz PCI-X bus. Each machine runs LINUX RedHat 9 (kernel

version 2.4.20-8smp or 2.4.18-17.8.0smp).

Each host in the capture cluster sends packets over a local LAN to an AP with the

same specifications as described in Chapter 5. This AP has a gigabit ethernet uplink

(1000 Mb/s) to an Extreme Summit 1i switch which in turn has a gigabit ethernet

uplink to a Juniper M10 router. This router is configured to do traffic shaping with

bandwidth limiting set to 200 Mb/s and burst limiting set to 5 Mb/s. 6 A gigabit

ethernet uplink leads to backbone routers within the MAGPI GigaPoP, and then an

OC-48 uplink to the Abilene backbone network [Abi] administrated by Qwest.

The reconstruction cluster is located in the University of North Carolina’s Computer

Science Department. Machines consist of an array of Dell Precision 650 Workstations,

each with a single 3.2 GHz Intel Xeon processor, 2 GB of main memory, and an onboard

10/100/1000 Mb/s Intel ethernet adapter. The bus architecture is PCI-X and runs at

100 MHz. Each machine runs RedHat LINUX version 9 (kernel version 2.4.20-19.9smp).

Each reconstruction host exchanges packets with a local AP (see Chapter 5 specifi-

cations) using a 100 Mb/s link. The AP has a gigabit ethernet uplink to an Enterasys

Matrix E7 switch which in turn has an uplink to a Cisco 6500 router. This router

is administrated by the university and represents the principal ingress/egress point

5GRASP is an acronym for General Robotics, Automation, Sensing and Perception.
6Bandwidth was leased from MAGPI GigaPoP for the purpose of these experiments.



178

for campus traffic. A gigabit ethernet uplink then connects this campus router to a

Cisco 7609 router on the NC-REN (North Carolina Research Network) administrated

by MCNC, a non-profit organization located in Research Triangle Park, NC. Within

NC-REN in the RTP area, DWDM technology is used to create several gigabit ethernet

“channels” between backbone routers, until finally a Cisco GSR 12410 forwards packets

to the Abilene backbone network over an OC-48 uplink.

The traceroute listing below shows the hops between the capture cluster in Pennsyl-

vania and the reconstruction cluster in North Carolina. APs in the trace are 128.91.58.1

and marina.cs.unc.edu. Round trip time is seen to be approximately 15.8 milliseconds.

ti04> traceroute 152.2.141.32

traceroute to 152.2.141.32 (152.2.141.32), 30 hops max, 38 byte packets

1 128.91.58.1 (128.91.58.1) 0.367 ms 0.281 ms 0.269 ms

2 EXTERNAL-GE2.ROUTER.UPENN.EDU (165.123.217.1) 0.406 ms 0.790 ms 0.396 ms

3 local.upenn.magpi.net (198.32.42.249) 0.361 ms 0.339 ms 0.338 ms

4 phl-02-01.backbone.magpi.net (216.27.100.221) 0.689 ms 0.576 ms 0.530 ms

5 remote.oc48.abilene.magpi.net (216.27.100.22) 2.969 ms 2.732 ms 2.763 ms

6 washng-nycmng.abilene.ucaid.edu (198.32.8.85) 7.093 ms 7.367 ms 7.220 ms

7 rlgh1-gw-abilene-oc48.ncren.net (198.86.17.65) 14.120 ms 14.068 ms 14.050 ms

8 rlgh7600-gw-to-rlgh1-gw.ncren.net (128.109.70.38) 14.389 ms 14.349 ms 14.303 ms

9 unc7600-gw-to-rlgh7600-gw.ncren.net (128.109.70.30) 15.556 ms 15.515 ms 15.480 ms

10 ciscokid.internet.unc.edu (128.109.36.253) 15.706 ms 15.695 ms 15.737 ms

11 marina.cs.unc.edu (152.2.137.137) 15.761 ms 15.707 ms 15.732 ms

12 lookout02a-colab.cs.unc.edu (152.2.141.32) 15.831 ms 15.814 ms 15.775 ms

The return path traceroute is shown below with a similar, but not identical, set of

forwarding hops. Round trip time is approximately 16.1 milliseconds perhaps reflecting

the addition of two hops.

lookout02a> traceroute 128.91.58.33

traceroute to 128.91.58.33 (128.91.58.33), 30 hops max, 38 byte packets

1 lookout-colab-router.cs.unc.edu (152.2.141.49) 0.369 ms 0.207 ms 0.218 ms

2 ciscokid-cs.net.unc.edu (152.2.31.1) 0.379 ms 0.422 ms 0.361 ms

3 unc7600.internet.unc.edu (128.109.36.254) 0.492 ms 0.496 ms 0.362 ms

4 rlgh7600-gw-to-unc7600-gw.ncren.net (128.109.70.29) 1.739 ms 2.011 ms 1.990 ms

5 rlgh1-gw-to-rlgh7600-gw.ncren.net (128.109.70.37) 1.859 ms 1.913 ms 1.745 ms

6 abilene-wash.ncni.net (198.86.17.66) 8.984 ms 8.981 ms 8.982 ms

7 nycmng-washng.abilene.ucaid.edu (198.32.8.84) 13.228 ms 13.597 ms 27.470 ms

8 local.oc48.abilene.magpi.net (216.27.100.21) 15.351 ms 15.382 ms 15.477 ms

9 phl-01-02.backbone.magpi.net (216.27.100.222) 15.853 ms 15.769 ms 15.726 ms



179

10 remote.upenn.magpi.net (198.32.42.250) 15.855 ms 16.007 ms 15.849 ms

11 external2-fe.router.upenn.edu (165.123.237.11) 16.116 ms 15.847 ms 16.096 ms

12 EXTERNAL3-GE.ROUTER.UPENN.EDU (165.123.237.15) 16.224 ms 15.900 ms 15.878 ms

13 ti-freebsd-router.grasp.upenn.edu (128.91.58.30) 15.882 ms 16.098 ms 15.982 ms

14 ti04-2.grasp.upenn.edu (128.91.58.33) 16.352 ms 16.021 ms 16.107 ms

Finally, we note that the GRASP host cluster in Pennsylvania possessed enough

machines to separate frame capture hosts from competing TCP iperf hosts. This was

not the case for North Carolina where the same set of machines acted as receivers for

both contexts. We point out, however, that the flow of data was highly one-directional

in that all frame and iperf data flows exclusively from Pennsylvania to North Carolina,

and only acknowledgments flowed in the reverse direction. Therefore, there was little

sending contention on North Carolina hosts. Furthermore, aggregate data communica-

tions for any given host at North Carolina generally did not exceed a maximum of 40

Mb/s. For this reason, we believe that using North Carolina hosts for both had very

little effect on our results overall.

6.10 Abilene Results: Equal Frame Size

In this section, we look at experimental results for equal frame size ensembles over

the Abilene backbone network. Frames captured by each endpoint following a trigger

in this scheme are identical in size. This will occur when all endpoints use exactly the

same resolution, the same encoding scheme, and avoid applying compression algorithms.

This is the default mode currently used by 3DTI.

Endpoints using CP-RUDP, as described in Section 6.5, are configured to send at

exactly the rate given by NET.bw in the AP state table. This is the congestion re-

sponsive sending rate for a single flowshare as estimated by each AP using the TFRC

equation presented in Section 2.3.2. This scheme naturally results in an even distribu-

tion of available bandwidth among flows. In addition, send buffer size is dynamically

adjusted to match network conditions as described in Section 6.5.

6.10.1 Number of Streams

In this section, we compare the performance of multi-streaming with TCP and

CP-RUDP over Abilene when the number of streams participating in multi-streaming

varies. To study this issue, we used application configurations with 6, 9, 12, 15, 18,



180

Figure 6.66: Throughput results. (a) Frame throughput and (b) aggregate
throughput versus number of streams.

21, 24, 27, and 30 streams. (Six capture machines at Pennsylvania hosted multiple

streams as necessary. A machine was additionally used as a trigger server.) We used

a frame size of 100 KB for all runs in this experiment set. Two trials were run for

each configuration. After a 90-second stabilization period, data was collected for 180

seconds.

Before looking at results for the six metrics presented in Section 6.6.2, it might first

be instructive to look at the overall throughput results we achieved with our network

setup. Figure 6.66 (b) shows the aggregate throughput for all experimental traffic

between Pennsylvania and North Carolina for various stream number configurations.

As the number of streams approaches 30, aggregate traffic levels off at the 195-200

Mb/s range. This corresponds to the bandwidth ceiling imposed by MAGPI at the

University of Pennsylvania egress point.

Aggregate frame traffic is shown in Figure 6.66 (a) and depends upon the transport

protocol used for multi-streaming. Both CP-RUDP and TCP with a large send buffer

are in the 90-100 Mb/s level as the number of streams approaches 30. Interestingly, this

level is higher for CP-RUDP with a small number of streams, but lower for TCP with a

small number of streams. Throughput for TCP with a small send buffer configuration

failed to exceed 60 Mb/s.

Figure 6.67 and Figure 6.68 show throughput by flow over time for sample TCP

and CP-RUDP runs. A total of six streams was used for each run, and an interval

of 10 seconds is presented. Figure 6.67 shows CP-RUDP flows behaving in a highly

synchronous fashion with throughput levels for each flow largely coinciding with one



181

Figure 6.67: Throughput over time for 6 CP-RUDP flows.

Figure 6.68: Throughput over time for (a) 6 TCP flows with 64 KB send buffer
and (b) 6 TCP flows with 1 MB send buffer.



182

another for the entire interval. Stall events do not occur. Figure 6.68 (a) and (b) show

TCP with a 64 KB and 1 MB send buffer configuration, respectively. Throughput in

both plots appears to vary far more than Figure 6.67. TCP with a small send buffer

configuration shows a fair amount of synchrony but significant oscillation. Interestingly,

very few stall events occur, although sharp throughput drops are common. TCP with

a large send buffer configuration shows greater asynchrony among flows, as well as

numerous stall events.

Figure 6.69, Figure 6.70, and Figure 6.71 show results for the six metrics presented

in Section 6.6.2. Figure 6.69 (a) shows the results for completion asynchrony. CP-

RUDP shows the lowest completion asynchrony of all three experiment sets, with value

rising only slightly as the number of streams increases to 30. TCP with a small send

buffer configuration is only slightly higher, with a similarly small increase. TCP with

a large send buffer size exhibits far higher completion asynchrony, with values that

increase significantly as the number of streams increases.

Figure 6.69 (b) shows stall time results. CP-RUDP maintains low stall time values

throughout, though interestingly, TCP with a large send buffer configuration shows

even less. In contrast, stall time is significantly higher for TCP configured with a small

send buffer configuration. This is particularly true as the number of streams exceeds

20.

In Figure 6.70 (a), we see CP-RUDP and TCP with a small send buffer config-

uration achieving similarly low end-to-end delay values for nearly all stream number

configurations. As the number of streams increase, these values increase very slowly.

TCP with a large send buffer configuration, in contrast, shows significantly higher end-

to-end delay for all stream number configurations, with values increasing much more

sharply as the number of streams increase.

Figure 6.70 (b) shows TCP configured with a large send buffer getting only slightly

less than its fair share in the context of normalized throughput. Values seem to ap-

proach 1.0 as the number of streams increases to 30. CP-RUDP shows values that are

significantly above fair while the number of streams is less than or equal to 12. Values

significantly improve beyond that point and approach 1.0 as the number of streams

increases to 30. The problem of over-aggressive behavior for small stream number con-

figurations is, we expect, related to the TFRC problem mentioned in Section 6.7.5. The

problem occurs when very little loss in the system drives the value of p in Equation

4.1 very close to zero. As p approaches zero in the denominator, bandwidth estimation



183

results tend toward infinity. To counter this problem, a default maximum rate is used

until estimation results can improve. This value may not, however, be suitably matched

to the properties of a particular cluster-to-cluster data path. In this case, it apparently

results in somewhat more aggressive behavior than TCP. Finally, we note that TCP

with a small send buffer size configuration gets significantly less than its fair share of

bandwidth on an average, and values deteriorate significantly as the number of streams

approach 30.

Frame ensemble rate results in Figure 6.71 (a) parallel those of normalized flow-

share in Figure 6.70 (b). TCP configured with a large send buffer shows somewhat

lower values than CP-RUDP for small stream numbers. As the the number of streams

approaches 30, however, the frame ensemble rate becomes identical between the two

experiment sets. TCP configured with a small buffer, in contrast, receives much lower

values for all configurations. For all three runs, the frame ensemble rate generally

decreases as the number of streams increases. This is to be expected as more flows

require a portion of available resources for streaming and send rates for each stream

are reduced in the process.

Finally, Figure 6.71 (b) shows frame ensemble interarrival jitter values as the number

of participating streams increases. Values are the highest and rise the most for TCP

configured with a large send buffer. Values are similar for CP-RUDP and TCP with

a small sender buffer size for stream numbers up to 18. (TCP shows somewhat less

jitter for some configurations.) After 18, however, jitter for TCP rises more than with

CP-RUDP.

Overall, CP-RUDP performance is comparable or better than the best TCP config-

uration for any given metric. Like TCP configured with a small send buffer, CP-RUDP

shows very low completion asynchrony numbers, very low end-to-end delay numbers,

and fairly low frame ensemble interarrival jitter values. Like TCP configured with a

large send buffer, however, CP-RUDP shows low stall time numbers, good network

fairness and utilization (for 15 streams and higher), and good frame ensemble rates.

What is important to note once again, however, is that CP-RUDP provides all of these

advantages simultaneously. This is not possible with any single TCP configuration

which must balance the inherent tradeoffs described in latter part of Section 6.6.3.



184

Figure 6.69: Number of streams results (Abilene). (a) Completion asynchrony
and (b) stall time versus number of streams.

Figure 6.70: Number of streams results (Abilene). (a) End-to-end delay and (b)
normalized flowshare versus number of streams.

Figure 6.71: Number of streams results (Abilene). (a) Frame ensemble rate and
(b) frame ensemble interarrival jitter versus number of streams.



185

6.10.2 Frame Size

In this section we compare the performance of multi-streaming with TCP and CP-

RUDP over the Abilene backbone network using various frame sizes. To clarify, frames

within the same ensemble are always equal in size across all streams, as are frames from

one ensemble to the next within the same stream. Studying the effect of frame size

entails, rather, changing the default frame size from one run to the next and comparing

performance results for different runs.

Frame sizes used in this experiment set include 10, 25, 50, 100, 150, and 200 KB.

24 streams were used throughout, and results were averaged from two trials. Each trial

was given a 90-second stabilization period and then data was collected for 180 seconds.

Results are shown in Figure 6.72, Figure 6.73, and Figure 6.74.

Completion asynchrony results in Figure 6.72 (a) show CP-RUDP getting the lowest

values for all configurations. Values for TCP configured with a small send buffer size

are quite low as well, and in stark contrast to TCP large send buffer size results. In

general, completion asynchrony increases only somewhat as frame size increases.

Figure 6.72 (b) shows TCP configured with a large send buffer size once again

getting the lowest stall time averages. CP-RUDP values are nearly as low, however,

and do not increase as frame size increases. In contrast, TCP configured with a small

send buffer size shows much larger stall time values and increases considerably as frame

size increases. Values for the 200 KB configuration are more than 15 times larger than

for CP-RUDP.

Results for end-to-end delay are shown in Figure 6.73 (a). Values remain consistently

low for CP-RUDP but increase somewhat as frame size increases. TCP configured with

a small send buffer gets similarly low values throughout, but differs from CP-RUDP

in that values do not increase as frame size increases. As mentioned in Section 6.7.4,

the latter behavior is not what it appears. A limitation in our delay measurement

methodology makes it difficult to quantify end-to-end delay precisely as frame sizes

become much larger than send buffer sizes. Hence, delay values are shown in the plot

as leveling off when, in fact, end-to-end delay may increase somewhat. Values for

TCP with a large send buffer size are significantly larger than either of the other two

configurations and grow slightly as the frame size configuration grows.

Figure 6.73 (b) shows normalized flowshare results. Both CP-RUDP and TCP

with a large send buffer configuration maintain values that are very close to 1.0 for all

configurations. In contrast, TCP configured with a small send buffer shows significantly



186

Figure 6.72: Frame size results (Abilene). (a) Completion asynchrony and (b)
stall time versus frame size.

Figure 6.73: Frame size results (Abilene). (a) End-to-end delay and (b) normal-
ized flowshare versus frame size.

Figure 6.74: Frame size results (Abilene). (a) Frame ensemble rate and (b) frame
ensemble interarrival jitter versus frame size.



187

low values (0.5-0.65) indicating that streams utilize much less bandwidth than they are

entitled to. Frame ensemble rate results in Figure 6.74 (a) reflect these utilization

results. CP-RUDP and TCP with a large send buffer configuration generally show

very similar frame ensemble rates, but with TCP doing somewhat better for only the

very smallest frame sizes. TCP with a small send buffer configuration achieves frame

ensemble rates that are significantly lower for all configurations.

Finally, Figure 6.74 (b) shows CP-RUDP outperforming both TCP configurations

for frame interarrival jitter. Values are seen to increase as frame size increases, but

remain beneath TCP. TCP configured with a large sending buffer shows the most

interarrival jitter, with values increasing significantly as frame size increases. TCP

with a small sending buffer shows significantly large values that increase only slightly

as frame size increases.

6.11 Abilene Results: Unequal Frame Size

In the next two sections we look at multi-streaming performance results over the

Abilene backbone network for unequal frame size ensembles. As described in Sec-

tion 6.8, such ensembles are comprised of some combination of large and small frames.

This may occur in the 3DTI application when a different capture resolution is used for

frames within a user’s field of interest.

Section 6.11.1 focuses on the worst case scenario: the case when the same set of

streams continually have more data to send than the remaining streams in the same

application. To study this scenario, we chose several frame size configurations (namely,

Mmmmmm, MMMmmm, and MMMMMm) and varied the frame size dispersion factor

for each configuration. Section 6.8 describes this configuration in greater detail.

In Section 6.11.1, we consider the scenario in which streams change their frame size

dynamically during multi-streaming. That is, for a given unequal frame size configura-

tion, which frame size is streamed by a particular endpoint changes over time. Within

3DTI, this models a user’s changing field of interest in the context of differing capture

resolutions.



188

6.11.1 Frame Size Dispersion

Experiments in this section explore the effect of unequal frame size where application

streams maintain a static configuration throughout the run. The unequal frame size

configurations considered were chosen from the set presented in Section 6.8 and include

Mmmmmm, MMMmmm, and MMMMMm. To map this scheme onto a scaled number

of streams, the number of flows chosen was a multiple of six and the same configuration

was simply applied multiple times. Throughout the experiments in this section, we used

a total of 18 streams.

Like Section 6.8.1, we looked at the performance for these frame size configurations

as the frame size dispersion factor increased. A mean frame size of 25 KB was used,

with an ensemble size constant of 6 and a dispersion parameter that ranged between

0.1 and 0.5. Step size for the latter was set to be 1.0.

Once again, a 90-second stabilization interval was used before collecting performance

data for 180 seconds. The results of two trials are averaged. Two TCP configurations

are again studied, the first with a 1 MB send buffer size and the second with a 64

KB send buffer size. As explained in Section 6.6.3, results for intermediate sized send

buffers would simply lie between the extremes explored in these experiments.

Figure 6.75 (a), Figure 6.78 (a), and Figure 6.81 (a) show completion asynchrony

results. For all unequal frame size configurations, CP-RUDP values remain distinctively

low and insensitive to increases in frame size dispersion. While both TCP configurations

likewise appeared insensitive, values were significantly higher. For TCP with a smaller

send buffer configuration, values were approximate 5 times larger. For TCP with a

large send buffer configuration, values were more than 31 times higher.

Stall time results in Figure 6.75 (b), Figure 6.78 (b), and Figure 6.81 (b) differ

somewhat. In the Mmmmmm results of Figure 6.75 (b), CP-RUDP maintains very low

values that are insensitive to increases in frame dispersion. Meanwhile, TCP configu-

rations show much larger values that increase significantly with the level of dispersion.

In the MMMmmm results of Figure 6.78 (b) and the MMMMMm results of Figure 6.81

(b), however, all configurations appear somewhat less sensitive to increases in frame size

dispersion and TCP with a large send buffer maintains the smallest stall time values.

Notice that values, in general, are much lower than the Mmmmmm unequal frame size

configuration.

In Figure 6.76 (a), Figure 6.79 (a), and Figure 6.82 (a) CP-RUDP receives the

smallest end-to-end delay values. These values do not increase with the frame size



189

Figure 6.75: Unequal frame size results (Abilene). (a) Completion asynchrony
and (b) stall time versus frame size dispersion factor.

Figure 6.76: Unequal frame size results (Abilene). (a) End-to-end delay and (b)
normalized flowshare versus frame size dispersion factor.

Figure 6.77: Unequal frame size results (Abilene). (a) Frame ensemble rate and
(b) frame interarrival jitter versus frame size dispersion factor.



190

Figure 6.78: Unequal frame size results (Abilene). (a) Completion asynchrony
and (b) stall time versus frame size dispersion factor.

Figure 6.79: Unequal frame size results (Abilene). (a) End-to-end delay and (b)
normalized flowshare versus frame size dispersion factor.

Figure 6.80: Unequal frame size results (Abilene). (a) Frame ensemble rate and
(b) frame interarrival jitter versus frame size dispersion factor.



191

Figure 6.81: Unequal frame size results (Abilene). (a) Completion asynchrony
and (b) stall time versus frame size dispersion factor.

Figure 6.82: Unequal frame size results (Abilene). (a) End-to-end delay and (b)
normalized flowshare versus frame size dispersion factor.

Figure 6.83: Unequal frame size results (Abilene). (a) Frame ensemble rate and
(b) frame interarrival jitter versus frame size dispersion factor.



192

dispersion factor. TCP configured with a small send buffer maintains similarly small

delay values while TCP configured with a large send buffer shows significantly higher

values. The results of all unequal frame size configurations are very similar.

Figure 6.76 (b), Figure 6.79 (b), and Figure 6.82 (b) show normalized flowshare

results. All unequal frame size configurations show CP-RUDP receiving very close to

an ideal value of 1.0. In Figure 6.76 (b), TCP configured with a large send buffer

receives significantly less bandwidth on average than CP-RUDP, while in Figure 6.79

(b) and Figure 6.82 (b), values are only slightly less. Similarly, TCP configured with a

small send buffer shows exceedingly poor numbers for Figure 6.76 (b) (in fact, they fall

out of the lower range shown on the plot) and poor but better numbers for Figure 6.79

(b) and Figure 6.82 (b).

These results are broadly reflected in the frame ensemble rate plots of Figure 6.77

(a), Figure 6.80 (a), and Figure 6.83 (a). In the first set, CP-RUDP achieves sig-

nificantly better rates than TCP configured with a large send buffer which, in turn,

achieves significantly better rates than TCP configured with a small send buffer. In

the remaining cases, rates for CP-RUDP and TCP with a large send buffer are more

similar, with the latter receiving only slightly better numbers. Both however, greatly

outperform TCP configured with a small send buffer. All values decrease somewhat as

the frame dispersion factor increases.

Finally, Figure 6.77 (b), Figure 6.80 (b), and Figure 6.83 (b) show CP-RUDP ex-

hibiting the least frame ensemble interarrival jitter for all dispersion values. TCP with

a small send buffer configuration shows higher values, and TCP with a large send buffer

configuration shows even higher values. Values for the latter also increase significantly

as the frame dispersion factor increases for Figure 6.77 (b).

Plots in Figure 6.84, Figure 6.85, and Figure 6.86 may be helpful in understanding

the underlying behavior producing the performance results discussed in this section.

Each shows flow throughput over time for a sample run, with the first plot presenting a

10 second time window and the second plot presenting a 50 second time window. The

unequal frame size configuration used was Mmmmmm.

In Figure 6.84, we see CP-RUDP flows producing a fairly synchronized set of

throughput levels. Large and small frame size streams are clearly represented in the

plot, with throughput levels for individual flows largely coinciding. Note, however, the

periodic drop in bandwidth across all flows. This was not seen in the laboratory testbed

results of Section 6.8.2 and presents something of a mystery. It helps in explaining,



193

Figure 6.84: Unequal frame size (Abilene). Throughput over time for CP-RUDP.

Figure 6.85: Unequal frame size (Abilene). Throughput over time for TCP with
64 KB send buffer.

Figure 6.86: Unequal frame size (Abilene). Throughput over time for TCP with
1 MB send buffer.



194

Metric TCP (64 KB Sndbuf) TCP 1 MB Sndbuf CP-RUDP
Completion Asynchrony 0.244000 1.765000 0.053500
Stall Time 0.003400 0.000200 0.002550
End-to-end Delay 0.119500 0.970100 0.047950
Normalized Flowshare 0.585000 0.945000 0.994500
Frame Ensemble Rate 13.698500 24.538000 21.585000
FE Interarrival Jitter 0.097000 0.329500 0.040500

Table 6.3: Unequal frame size with dynamic reconfiguration (Abilene).

however, the presence of some stalling seen in CP-RUDP and the odd inversion of frame

ensemble rates between CP-RUDP and TCP with a large send buffer for some unequal

frame size configurations.

Plots in Figure 6.85 show what appears to be an unsynchronized but bimodal set

of throughput values for streams using TCP with a small send buffer configuration.

Significant stalling among small frame size streams is seen as large frame size streams

compete with one another. Note the large oscillations present in the latter.

Plots in Figure 6.86 illustrate a very similar phenomenon for TCP configured with

a large send buffer. Competition among flows, large oscillations in bandwidth, and

frequent stalling among small frame size flows characterize the plot.

6.11.2 Dynamic Reconfiguration

In this section, we compare briefly the performance of TCP multi-streaming over

Abilene with that of CP-RUDP using unequal frame sizes that change among endpoints

dynamically over time. Once again, the MMmmmm unequal frame size configuration

was chosen for these experiments, with a 25 KB mean and maximum dispersion factor

of 0.5. For each 100 frames, flows modify their frame size by trading frame size config-

uration with a peer flow, meanwhile maintaining the invariant that, for every set of six

flows, two flows are streaming large frames at all times and four are streaming small

frames. This dynamic re-configuration models a user’s changing field of interest within

the application, and the use of higher resolutions for streams that are currently within

that field.

Experiments were given a 90-second stabilization interval before collecting perfor-

mance data for 180 seconds. TCP runs were performed with two send buffer sizes: 64

KB and 1 MB.



195

Table 6.3 shows the results which may be summarized as follows:

• CP-RUDP has the lowest completion asynchrony. TCP with a small send buffer

size is 4.7 times as large and TCP with a large buffer size is more than 33 times

as large.

• Stall time is least for TCP with a large send buffer size configuration. In general,

values are fairly low for all three streaming configurations.

• CP-RUDP shows the lowest end-to-end delay value. TCP values are 2.5 (small

send buffer) and 20 (large send buffer) times larger.

• Normalized flowshare is very near 1.0 for CP-RUDP (.9945). The value for TCP

with a large send buffer size configuration is likewise close to 1.0 (.9701). In

contrast, TCP with a small send buffer size configuration shows a very low value

(.5850).

• TCP with a large send buffer configuration receives the highest frame ensemble

rate (24.5). CP-RUDP is similar (21.6) while TCP with a small send buffer

configuration shows a significantly lower value (13.7).

• CP-RUDP shows the smallest frame ensemble arrival jitter value (.041) while

TCP with a smaller send buffer configuration shows a similarly low value (.097).

TCP with a large send buffer configuration shows a significantly larger value

(.329).

It is indeed a curiosity that while CP-RUDP shows the best network utilization, as

seen in the normalized flowshare results, it does not manage to receive the best frame

ensemble rate values. Throughout our laboratory testbed results, the two metrics

appeared directly related.

Upon closer examination, Figure 6.66 showed the maximum aggregate bandwidth

achievable by CP-RUDP to be somewhat less than TCP with a large sender buffer

configuration. Aggregate throughput numbers taken during the runs in this section

would seem to support this case: for TCP configured with a large send buffer, ap-

proximately 199.6 Mb/s was achieved while for CP-RUDP runs, only 186.9 Mb/s was

achieved. (The aggregate value includes both multi-streaming traffic and competing

iperf traffic.)



196

In addition, we note the periodic drops in bandwidth seen in Figure 6.84 and Fig-

ure 6.87. We suspect a packet drop interaction between CP-RUDP and MAGPI’s

Juniper M10 traffic shaper in Philadelphia. (See Section 6.9.1.) This is supported by

the fact that we saw no such effect in our laboratory testbed where throughput limits

were a function of maximum link speed and not artificial rate limiting.

Still, it should be pointed out that background traffic on the Abilene backbone

network during the time of these experiments was uncontrolled. It might well have

been the case that TCP and CP-RUDP runs experienced different conditions leading

to overall differences in aggregate throughput and, hence, differences in frame ensemble

rates. If this is were the case, then CP-RUDP’s normalized flowshare numbers (0.9945)

convince us that CP-RUDP performed as well as could be expected given the conditions

at the time.

Figure 6.87, Figure 6.88, and Figure 6.89 sample flow throughput results over time

for CP-RUDP and two TCP configurations. 18 flows were used and the unequal frame

size configuration was Mmmmmm. (Large and small frame sizes are traded dynamically

between streaming hosts.) The first plot shows 10 seconds of a run while the second

plot shows 50 seconds of the same run.

We see in Figure 6.87 the familiar throughput synchronization patterns of CP-

RUDP, with distinctive small and large frame size streams. Both plots show streams

that change from high throughput (large frame size) to low throughput (small frame

size) sending modes and vice versa. Also seen are periodic drops in bandwidth. One

wonders whether this is caused by traffic shaping on the Juniper M10 router as traffic

is forwarded from MAGPI in Pennsylvania to the Abilene backbone.

Plots in Figure 6.88 show TCP configured with a small send buffer and plots in

Figure 6.89 show TCP configured with a large send buffer. Streams show a markedly

different character: complete lack of synchrony between streams, significantly large

oscillations among all flows, and numerous stall events.

6.12 Abilene Results Summary

In this section, we have compared CP-RUDP multi-streaming performance with that

of TCP over the Abilene backbone network between the University of Pennsylvania in

Philadelphia and the University of North Carolina in Chapel Hill. Not only does this

provide an authentic network context for proof-of-concept results, it tests the scalability



197

Figure 6.87: Unequal frame size with dynamic reconfiguration (Abilene).
Throughput over time for CP-RUDP.

Figure 6.88: Unequal frame size with dynamic reconfiguration (Abilene).
Throughput over time for TCP with 64 KB send buffer.

Figure 6.89: Unequal frame size with dynamic reconfiguration (Abilene).
Throughput over time for TCP with 1 MB send buffer.



198

of CP-RUDP in terms of both aggregate throughput and number of streams.

In Section 6.10, we looked at equal frame size ensemble configurations with varying

numbers of streams and varying frame sizes. In general, we found that CP-RUDP offers

the lowest completion asynchrony and frame ensemble interarrival jitter numbers. As

for the other four metrics, it achieves performance equivalent to the best of either TCP

send buffer size configurations: stall rates that are nearly as low as TCP configured

with a large send buffer, end-to-end delay values as low as TCP configured with a small

send buffer, normalized flow share values as good as TCP configured with a large send

buffer or better, and frame ensemble rates that are nearly as high as TCP configured

with a large send buffer. Once again, we point out that CP-RUDP achieves all of these

performance attributes simultaneously, and that no one TCP configuration is able to

do so.

In Section 6.11, we looked at unequal frame size ensemble configurations, including

static and dynamic modes of operation. We found that CP-RUDP once again offers

comparable or better performance than the best of TCP: lower completion asynchrony

values than TCP configured with a small send buffer, stall time results nearly as low

as TCP configured with a large send buffer, end-to-end delay values that are less than

TCP configured with a small send buffer, normalized flowshare values as good as or

better than TCP configured with a large send buffer, frame ensemble rates comparable

to TCP configured with a large send buffer, and frame ensemble interarrival jitter values

that are better than TCP configured with a small send buffer.

While Abilene results were generally very successful in demonstrating CP-RUDP’s

performance advantages for multi-streaming over TCP, we once again note the peri-

odic throughput drops that hampered CP-RUDP performance by lowering aggregate

throughput somewhat and reducing overall frame ensemble rates. These can be seen

in Figure 6.84 and Figure 6.87. We believe this is to be an artifact of traffic shaping

at the MAGPI GigaPoP in Philadelphia and not an effect inherent to our approach or

implementation. Further investigation, however, is needed.



Chapter 7

Conclusions and Future Work

The problem addressed in this dissertation is that of coordination among application

flows sharing the same intermediary forwarding path between computing clusters. This

problem is motivated by several trends in distributed multimedia applications: an

increase in the number of computing hosts and communication devices deployed by a

single application node, the use of multiple data flows to stream an ever-growing number

of media types and manage sophisticated modes of user interaction, and an increase in

application bandwidth requirements which make network resource management on the

shared, public Internet essential.

The cluster-to-cluster application model captures these trends in a single network

architecture that is at once a realistic application scenario in itself, and a building

block for more complex, multi-cluster applications. The endpoints of communication

in a cluster-to-cluster application are not single hosts, but clusters of computing hosts

and associated devices. Data flows in this model share a common intermediary path

between clusters, but not the entire end-to-end path.

Flows in a cluster-to-cluster application may employ a variety of transport protocols,

each of which are selected to meet the communication requirements of a particular

data type. At the same time, flows may share complex semantic relationships with

one another in the larger context of the application. For example, flows may share

temporal relationships and possess synchronization requirements, video streams may

share geometric relationships based on camera positioning in the capture environment,

text streams may annotate the changing content of media streams, control flows may

give instructions for handling stream data based on current application state, etc. Office

of the Future was cited as an example of a cluster-to-cluster application with strong

semantic relationships among flows.



200

The fundamental problem in cluster-to-cluster applications like Office of the Future

is that of flow coordination. Applications employ a large number of flows that share

a common forwarding path between remote computing clusters. This path, since it

typically cannot be provisioned end-to-end and is shared with other Internet flows, is

a dynamic source of network latency, packet loss, and changes in available bandwidth.

Ideally, an application would be aware of changing network conditions and make con-

trolled adjustments to some or all flows to compensate for them. Adjustments would

reflect application priorities and state, and exploit inter-stream tradeoffs to use limited

network resources as effectively as possible.

In practice, however, application control over network resource usage in the face of

changing network conditions is hardly ever realized. This is because application flows

use transport protocols that operate in isolation from one another, share no consis-

tent view of network conditions, and fail to respond to network delay and congestion

in application-defined ways. The result is competition among flows rather than a co-

ordinated use of resources. Fundamentally, lack of flow coordination stems from the

inherent limitations of today’s widely used transport-level protocols. Unicast protocols

like TCP, UDP, SCTP, DCCP, TFRC, etc. were designed to operate independently and,

as a result, lack mechanisms for coordinating with peer flows in the same application

or configuring adaptive response behavior within a larger application context.

In-network approaches to this problem using well-studied techniques like traffic

shaping or flow segmentation are undesirable for several reasons. First, they invari-

ably require buffering as data from various flows awaits its rate-controlled time of

transmission at management nodes. This increases end-to-end delay and hurts the per-

formance of real-time, interactive applications. Second, the transparency of in-network

approaches hides information from application endpoints. While transparency may be

a feature in some contexts, here it prevents data sources from exercising adaptive be-

havior such as adjusting compression parameters, modifying media sampling rates, or

interrupting low-priority data transfers temporarily. Finally, such approaches do not

typically lend themselves to dynamic reconfiguration. As cluster-to-cluster applications

change state and receive user feedback, flow requirements and priorities may be contin-

ually modified. While in-network based approaches like traffic shaping do not preclude

reconfiguration, a source-based approach naturally affords more flexibility since control

remains in the hands of the application as needs change dynamically.



201

7.1 Coordination Protocol Review

Our overall approach in designing the Coordination Protocol is to provide informa-

tion sharing services to flow endpoints participating in the cluster-to-cluster application,

and then to rely on application self-configuration to implement flow coordination in a

problem-specific way. This approach avoids the use of in-network shaping, buffering,

or scheduling mechanisms, and does not disrupt the semantics of end-to-end transport

protocols employed by application flows. Our approach represents an open architecture

in that CP provides a toolset for implementing application-specific flow coordination,

not a ready-made solution.

In providing information sharing services, CP exploits the natural features of the

cluster-to-cluster problem topology. First, cluster aggregation points (APs) provide

a natural point of convergence on the outgoing data path, and a final aggregation

hop before fanning out to application endpoints on the incoming path. As such, APs

provide a natural point of information exchange that is within local administrative

control. Second, application packets to and from individual endpoints provide a natural

mechanism for exchanging information with an AP. Application packets between APs

also provide a natural mechanism for exchanging probe information without introducing

additional packets into the network.

Information exchange in CP is implemented using a per application state table

maintained by each AP. The table is 256 KB in size and easily fits into AP memory

as a cluster-to-cluster application runs. Application endpoints may read and write to

cells in the table using CP headers piggybacked on application data packets. The CP

state table maintains statistics on the cluster-to-cluster data path as well as the flows

participating in the application. Some of the more important statistics include round

trip time, packet loss rate, estimated bandwidth available to a single flow, number of

flows in the application, average packet size, and aggregate application throughput.

Measurement of cluster-to-cluster data path conditions is accomplished on behalf

of all application flows using probe information exchanges between APs. Rather than

introducing new packets into the system, CP headers on existing application packets

are simply overwritten with probe information as packets traverse the cluster-to-cluster

data path in each direction. Since packets from all application flows can be used, path

measurement is naturally fine-grained. Path information collected using this method

includes both round trip time and packet loss events.



202

To estimate the bandwidth available to the cluster-to-cluster application, we lever-

age existing work on single flow, rate-based congestion control. In particular, our work

has made extensive use of equation-based congestion control [FF99, PFTK98, FHPW00]

and TCP-Friendly Rate Control (TFRC) [HFPW03]. It should be pointed out, how-

ever, that CP does not preclude the use of other congestion control algorithms as

appropriate. In fact, nearly any single-flow, rate-based congestion control algorithm

may be applied to the CP context to perform bandwidth estimation. This is because

CP probing mechanisms and network statistics naturally provide the input parameters

necessary to drive such algorithms. To demonstrate this, our work has made limited

use of the Rate Adaptation Protocol (RAP) [RHE99] in addition to TFRC.

CP’s approach to bandwidth estimation is to calculate a TCP-friendly sending rate

appropriate for a single flowshare. An application may then multiply this value by

the number of flows in the application (available from the AP state table) in order to

obtain the aggregate bandwidth available to the application as a whole. In realizing this

aggregate sending rate, an application may distribute bandwidth among flows in any

manner. That is, it need not be the case that a single flow receives a single bandwidth

flowshare.

Scaling the estimated bandwidth for a single flowshare to multiple flowshares was

shown to cause problems for single-flow congestion control algorithms used in the esti-

mation. This is typically because lost packet dynamics, an important input parameter

to most algorithms, are strongly affected by the increase in packet arrival stream density.

To solve this problem, we present a technique called bandwidth filtered loss detection

(BFLD) that constructs a virtual packet arrival stream sub-sampled from the aggregate

packet arrival stream. Experiments using the ns2 simulator and our laboratory testbed

demonstrate the effectiveness of our approach in maintaining TCP-friendly send rates

for a wide variety of network conditions.

Experiments in our laboratory testbed explore the performance overhead of CP

packet handling at AP routers. Using a 3.20 GHz Intel-based PC workstation con-

figured to do software routing with FreeBSD, we were able to achieve a bi-directional

throughput of 750 Mb/s or 65,000 packets. For the testbed configuration available to

us, we were unable to reach a performance limit for CP handling distinct from baseline

IP forwarding, even when going to considerable lengths to generate a worst case per-

formance scenario. Our implementation, we argue, demonstrates the feasibility of our

approach for most cluster-to-cluster applications on the commodity Internet today.



203

Finally, the effectiveness of our approach to flow coordination in cluster-to-cluster

applications is demonstrated using the problem of multi-streaming in 3D Tele-immersion

(3DTI). In this application, multiple endpoints capture video frames from different an-

gles of a scene at the same instant of time. These frames must be streamed to a

reconstruction cluster in a reliable manner such that the arrival time of frames within

the same frame ensemble is approximately the same. CP can be used in this context

to dynamically apportion bandwidth among endpoints in proportion to the amount of

frame data each has to send. It may also be used to adjust send buffer sizing on each

endpoint to dynamically match the bandwidth delay product on the cluster-to-cluster

data path.

Experiments in our laboratory testbed demonstrate the effectiveness of CP in im-

proving reliable multi-streaming performance when compared to uncoordinated TCP

streaming. In particular, CP provides low arrival completion asynchrony, low end-to-

end delay, and minimal stalling while, at the same time, maintaining frame ensemble

streaming rates and network utilization that are appropriately high. While TCP may

be configured to achieve some of these results, no single configuration is possible that

can compete with CP which achieves all of them simultaneously. Results for unequal

frame size ensembles demonstrate these conclusions even more strongly. Experiments

using the Abilene backbone network support these conclusions in an uncontrolled en-

vironment with significant scaling.

7.2 Research Contributions

The contributions of this dissertation to the field of Computer Science may be

summarized as follows:

• We identify an important class of forward-looking distributed multimedia ap-

plications known as cluster-to-cluster applications and describe their generalized

characteristics.

• We define the flow coordination problem. This problem is fundamental to cluster-

to-cluster applications, but also of interest to multiflow Internet applications gen-

erally.

• We propose a novel open architecture, called the Coordination Protocol (CP),

that solves the flow coordination problem in cluster-to-cluster applications.



204

• We identify the multiple flowshare problem and solve it using a novel technique

called bandwidth filtered loss detection (BFLD). Using this technique, almost any

single-flow congestion control algorithm can be scaled to a multi-flow cluster-to-

cluster application context.

• We implement an experimental prototype of CP and evaluate various aspects of its

performance. Our implementation includes both kernel extensions for FreeBSD

software routers and a reliable transport protocol called CP-RUDP that uses CP

information to perform coordinated adaptation.

• We demonstrate how CP can be applied to the problem of multi-streaming in

3D Tele-immersion (3DTI), a complex cluster-to-cluster application developed

at UNC, for dramatically improved communication performance.

7.3 Future Research Directions

In this section, we describe several directions for future work. These include ap-

plying CP to wireless cluster-to-cluster applications which have somewhat different

assumptions than our original problem model, addressing the issue of network secu-

rity, developing new CP-based transport protocols, and exploring novel coordination

schemes that exploit CP information and state exchange mechanisms.

Wireless clusters. One important area of future work is modifying CP to work

with wireless clusters. The cluster-to-cluster application model described in Section 1.4

makes the assumption that communication within an application cluster contributes

very little to overall end-to-end delay and packet loss. This is because clusters are

within local administrative control and can be provisioned to comfortably support the

networking requirements of the application. This assumption is violated in wireless

clusters where transmission errors and significant delay are inherent to the technology.

One approach that we have considered is designing transport protocols that can use

CP to distinguish between local (i.e., wireless) and AP-to-AP sources of delay and loss.

This can be done by creating mechanisms that measure end-to-end path properties and

then compare them to CP state table values. Significant changes that diverge from CP

values indicate local effects while corresponding changes point to the cluster-to-cluster

data path. Adaptive measures taken by the application in response to these two types

of network effects may differ as appropriate.



205

Security. Another area of future work is that of network security. Our current

AP implementation uses a pre-configured flow table to recognize CP packets and au-

thorize state table read and write operations. This flow table is configured manually

by a network administrator who must know in advance the source and destination ad-

dresses/ports involved. While this setup provides some measure of protection against

malicious users, it is not nearly enough. For example, packets with legitimate destina-

tion addresses but spoofed source addresses may be directed at APs and match entries

in the flow table. Such packets may then modify state table values, falsify network

probe information, create additional state tables for non-existent cluster-to-cluster ap-

plications, or contribute additional flows to existing applications where such flows do

not exist.

To prevent such malicious behavior, an authentication protocol might be added to

CP. The protocol could begin with a key exchange of some sort. Keys, for example,

might be distributed to application endpoints offline, and placed in the AP flow table

by an administrator. The initial exchange could then take place using the operation

fields of CP headers in outgoing packets and report fields of incoming packets. Once the

exchange has occurred, a validation token could be issued by the AP and then required

by each CP packet before state table operations will be performed. Such tokens could

be changed periodically for additional robustness against attack. How this validation

token would be placed in the CP header is an issue for further exploration.

New CP-based transport protocols. As described in Section 3.3.1, a CP-

based transport protocol provides an application with data transport services that take

into account the larger context of application flow coordination. Since this context is

application-specific, we expect many such protocols to be tightly woven to the problem

domain and data types involved. The CP-RUDP prototype discussed in Section 6.4

serves as an example of one CP-based transport protocol designed to meet the specific

requirements of multi-streaming in 3DTI. In general, the expanded operational and

informational context of transport-level protocols create a wide open space for future

research.

New CP-based transport protocols might display peer dependencies in a novel man-

ner. For example, CP information sharing might allow the reliability semantics of one

flow to be tied to the performance of another flow. Or, the mere presence of one flow

may trigger the start or stop of other flows within the same application. CP-based

transport protocols may interact with applications in a variety of ways. Some proto-



206

cols may operate in a fairly transparent manner and provide an API that looks much

like the socket API on most UNIX systems. Others may provide only a thin library that

exposes interactions with an AP state table to the application. Callbacks, for example,

could be set up to drive application-level adaptation and allow the direct manipulation

of transmission rates. A myriad of hybrid approaches is also possible.

New application coordination schemes. Coordination schemes, as described in

Section 3.3.2, are used to define global application objectives and specify the behavior

of individual flows using CP to achieve those objectives. In 3DTI, for instance, the goal

of coordinated data transport is the synchronous arrival of video frames captured by

multiple endpoints at the same instant in time. To achieve this goal for unequal frame

sizes, application bandwidth is apportioned among streaming hosts in proportion to the

amount of frame data each has to send. Implementing this scheme requires the use of

general purpose, network, and flow addresses within the state table, and the exchange

of frame size information among flows.

In general, creating new algorithms that exploit CP state sharing mechanisms to

achieve flow coordination in various ways is a open area of future research. Many

such algorithms will focus on how limited bandwidth may be apportioned among flows

to most effectively achieve application goals during a particular interval of time. In

addition, however, an application may use CP mechanisms to perform one or more types

of context-specific coordination. That is, an application may use CP state exchange

mechanisms to achieve coordination for any arbitrary problem. Some examples include

leader election, fault detection and repair, media capture synchronization, coordinated

streaming of multiple data types, distributed floor control, dynamic priority assignment,

and various types of group consensus.

7.4 Summary

In this chapter we summarized the work presented in this dissertation. First, we

reviewed the problem of flow coordination in distributed multimedia applications and

several motivations. Then, we summarized on a very high level various features of the

Coordination Protocol, our solution to this problem. Finally, we described several areas

of future work including wireless clusters, network security, new CP-based transport

protocols, and new flow coordination schemes.



207

Appendix A

CP Header Formats

A.1 Standard Prefix Format

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ver | clus id | flow id | protocol | flags |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

This single-word prefix includes the following fields:

Version (4 bits)

Coordination Protocol (CP) version number.

Cluster ID (5 bits)

Cluster-to-cluster application identifier.

Flow ID (7 bits)

Flow identifier.

Protocol (8 bits)

Transport protocol employed by this flow.

Flags (8 bits)

Flags directing AP to handle packet in special ways.



208

A.2 Format for Endpoint-to-AP Packet Exchanges

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ver | clus id | flow id | protocol | flags |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| op 1 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| op 2 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| op 3 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| op 4 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.2.1 Operation Field Format

Each operation (“op”) field may take one of two formats: general purpose (GP)

address assignment and report address assignment.

General Purpose (GP) Address Assignment

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| address | value |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Address (8 bits)

General Purpose (GP) address to assign.

Value (24 bits)

Value to be stored at Addr.flowid.



209

Report Address Assignment

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| report address | address | offset | id |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Report address (8 bits)

Report address to assign.

Address (8 bits)

Address locating reported value.

Offset (8 bits)

Offset locating reported value.

ID (8 bits)

Application-chosen identifier to be associated with reported value.

A.3 Format for AP-to-AP Packet Exchanges

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ver | clus id | flow id | protocol | flags |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| timestamp | echo |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| timestamp | echo |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| delay | bandwidth available |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| loss fraction | seq no |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Timestamp (24 bits)

Send time of packet.



210

Echo timestamp (24 bits)

Timestamp taken from the last packet received from remote AP.

Echo delay (24 bits)

Time between last packet received from remote AP and send time of current

packet.

Bandwidth available (24 bits)

Estimated bandwidth (KB/sec) available to a single TCP-conformant flow.

Loss fraction (16 bits)

Fraction of packets lost. (Unit value is 1/216.)

Sequence number (16 bits)

Sequence number used for detecting packet loss.

A.3.1 Timestamp Format

Timestamp, echo timestamp, and delay fields make use of the following format:

0 1 2

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| seconds | microseconds |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Seconds (8 bits)

8 least significant bits in 32-bit seconds portion of UNIX time.

Microseconds (16 bits)

16 most significant bits in 32-bit microseconds portion of UNIX time.



211

A.4 Format for AP-to-Endpoint Packet Exchanges

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ver | clus id | flow id | protocol | flags |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| report 1 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| report 2 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| report 3 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| report 4 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

A.4.1 Report Format

Each report field makes use of the following format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| id | value |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ID (8 bits)

Application-defined identifier.

Value (24 bits)

Value taken from state table on local AP.



212

A.5 C Source Code for Generic CP Header

struct cphdr {

#if BYTE_ORDER == LITTLE_ENDIAN

u_short ch_fid:7, /* flow id */

ch_cid:5, /* cluster id */

ch_ver:4; /* version */

#endif

#if BYTE_ORDER == BIG_ENDIAN

u_short ch_ver:4, /* version */

ch_cid:5, /* cluster id */

ch_fid:7; /* flow id */

#endif

u_char ch_prot;

u_char ch_flags;

u_long ch_w1;

u_long ch_w2;

u_long ch_w3;

u_long ch_w4;

};



213

Appendix B

Laboratory Testbed

Much of the experimental work in this dissertation was done using the laboratory

testbed pictured in Figure B.1 and shown diagrammatically in Figure B.2. Overall,

the testbed is designed to emulate the topology shown in Figure 1.5, making further

provisions for competing TCP flows used to measure fairness and additional background

traffic used to generate various network loads.

CP hosts and their local AP on each side of the network represent two clusters

that are part of the same cluster-to-cluster application and exchange data with one

another. Each endpoint is an Intel-based machine running RedHat 9 (kernel version

2.4) or FreeBSD 4.5 and sending data on a 100 Mb/s link to its local AP. Each AP

is an Intel-based machine (Xeon 3.06 GHz processor, 512K cache, 2 GB of memory)

running FreeBSD 4.9 that has been configured to do software-based IP-forwarding using

static routes. In addition, each AP has been CP-enabled with a special kernel module

implementing all of the mechanisms described in Chapter 3 and Chapter 4. Aggregate

cluster-to-cluster traffic arrives and leaves the AP on 1 Gb/s links. (See Chapter 5 for

a more complete description of our AP implementation.)

At the center of our testbed are two routers connected using two 100 Mb/s FastEth-

ernet links. This creates a bottleneck and, by configuring traffic from opposite directions

to use separate links, emulates the full-duplex behavior seen on wide-area network links.

Figure B.1: Experimental network setup.



214

Figure B.2: Experimental network setup.

Each router is an Intel-based machine (1 GHz Pentium III with over 1 GB memory)

running FreeBSD 4.5 and configured to do software-based IP-forwarding using static

routes. In addition, each router runs ALTQ [Ken98] kernel extensions to FreeBSD and

makes use of FreeBSD dummynet [Riz97] to emulate various link characteristics. (Each

of these is explained below.)

In order to measure the fairness of cluster-to-cluster application flows to TCP flows

sharing the same bottleneck link, we use two sets of end hosts (labeled “TCP hosts”

in Figure B.2) and the well-known utility iperf [Ipe]. Each host is once again an Intel-

based machine running FreeBSD 4.5. Iperf flows in this network are long-lived TCP

Reno flows that compete with application flows on the same bottleneck throughout the

experiment. The amount of bandwidth received by these flows is compared with that

received by cluster-to-cluster application traffic in order to quantify CP’s fairness to

competing TCP flows. Some metrics used to make this comparison include normalized

throughput ratio from Section 4.5.3 and normalized flowshare from Section 6.6.2.

Also sharing the bottleneck link for many experiments are background traffic flows

that generate various network loads on the bottleneck link in the center of the network.

The end systems used for these flows, labeled “Traffic hosts” in Figure B.2, are once

again Intel-based machines of various specs running FreeBSD 4.5. Each runs either a

client or server installation of the thttp Web traffic emulator described below.

Finally, network monitoring during these experiments is done in two ways. First,

two Intel-based monitor hosts running FreeBSD 4.5 use tcpdump to capture TCP/IP

headers from packets traversing the bottleneck link. These traces are then filtered and

processed for detailed performance data. Second, a software tool is used in conjunction

with ALTQ [Ken98] extensions to FreeBSD to monitor queue size, packet forwarding



215

events, and packet drop events on the outbound interface of the bottleneck routers.

The resulting log information provides packet loss rates with great accuracy.

B.1 Emulation Tools

An important link emulation tool used in our laboratory testbed is dummynet [Riz97].

Dummynet is a FreeBSD utility that performs traffic shaping on a designated network

interface at the kernel level. Dummynet may be used to classify packets and divide

them into flows. A pipe abstraction is then applied that emulates link characteristics

including bandwidth, propagation delay, queue size, and packet loss rate.

One way dummynet is commonly used in the laboratory testbed is to configure

bottleneck link characteristics. This is done by creating a pipe on each of the two router

hosts for the outbound, 100 Mb/s link. This pipe is then configured for particular delay

values (to increase round trip time) and various packet loss rates. Dummynet may also

be used by end systems to shape particular flows. For example, Web flows generated

by the thttp traffic generator are assigned a random round trip time using dummynet

as described below.

Another emulation tool used is ALTQ [Ken98]. ALTQ is a FreeBSD kernel module

that extends IP-output queuing routines in order to enable research on queue-related

issues in IP forwarding. Such issues include queue size, queue management discipline

(RED [FJ93], ARED [FGS01], PI [HMTG01], REM [ALLY01], etc.), and various qual-

ity of service schemes (CBQ [FJ95], Diffserv [BCD+98], etc.). While these issues are

of great interest to the network research community generally, ALTQ is used in this

dissertation merely to configure queue size on the outbound link of bottleneck routers

and log packet loss events that occur due to queue overflow. Information logged in

this way provides a very detailed and accurate account of packet loss due to network

congestion at bottleneck routers.

B.2 Background Web Traffic Generation

Synthetic Web traffic is used within the laboratory testbed for many experiments

that look at network workload as an important input parameter. This traffic is gener-

ated by the thttp traffic generator developed at UNC Chapel Hill. The current version



216

Element Description

Request size HTTP request length in bytes.
Response size HTTP reply length in bytes (top-level & embedded).
Page size Number of embedded (file) references per page.
Think time Time between retrieval of two successive pages.
Persistent connections Number of requests per persistent connection.
Servers per page Number of unique servers used for all objects in a page.
Consecutive page retrievals Number of top-level pages requested from a server.

Table B.1: Elements of the HTTP traffic model.

of thttp 1 is based on a recent large-scale analysis of Web traffic in [SCJO01] and a

modified empirical model of HTTP first proposed by [Mah97]. This analysis considers

both HTTP/1.0 and HTTP/1.1 and reflects the use of HTTP in many contemporary

browsers and servers.

Thttp works by dividing HTTP Web requests and responses into a set of measurable

components or elements. The most important of such elements are given in Table B.1.

For each element, [SCJO01] provides a distribution function that describes the distri-

bution of values actually seen across a large number of Web transfers from the data set.

For example, the distribution of HTTP request and response sizes is given in Figure B.3

and Figure B.4, respectively. 2

To emulate Web traffic, both client and server portions of thttp are constructed as

simple state machines that follow the HTTP model described in [SCJO01]. For each

element in the model, the appropriate distribution function is sampled to obtain a value

that will dictate behavior. For example, think time (the time between Web requests)

is sampled by the client and then observed, request size is sampled before making a

Web request with exactly that size, server response time and server response size are

sampled by the server before responding with a Web object, and so on. Some more

complex values in the model include the number of parallel TCP connections that are

employed by the client browser, the number of nested objects associated with a Web

page, and whether or not the client browser makes use of persistent connections to

make multiple Web requests.

While the statistical similarity between thttp generated traffic and real Web traffic is

impressive, what makes thttp an especially powerful tool for networking research is that

1See [CJOS00] and [LAJS03] for additional details on thttp.
2Thanks to Long Le for permission to use Figure B.3, Figure B.4, Figure B.5, and Table B.1. Each

appears in [LAJS03].



217

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Request size (bytes)

Empirical distribution
Generated request sizes

Figure B.3: Request size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000  10000 100000 1e+06  1e+07  1e+08  1e+09

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Response size (bytes)

Empirical distribution
Generated response sizes

Figure B.4: Response size.

a small number of program instances can be used to emulate the behavior of thousands

of Web users. Figure B.5 shows the results of calibration experiments in [LAJS03].

These experiments demonstrate the linear relationship between number of emulated

browsers and network workload, and establish the ability of thttp to effectively emulate

the behavior of more than 17,000 Web browsers. (Levels used in this dissertation do

not exceed 6,000.)

In order to better emulate real-world Web traffic, dummynet was used to vary end-

to-end network latency across flows. To do this, traffic hosts in the laboratory testbed,

each running FreeBSD 4.5, were equipped with a locally-modified version of dummynet

that created a random minimum delay between 10 and 150 milliseconds for each TCP

flow generated by a thttp client. This delay scheme emulates the wide range of round

trip times seen on the Internet as both Web browsers and Web servers exchange data

in a world that is widely dispersed geographically. The values 5 and 150 were chosen

because the range of round trip times approximate those seen in the continental United

States. (See [CJOS00] for more information on this point.)

Finally, it should be noted that the Web traffic generated by thttp uses heavy-

tailed distributions for both browser think times (OFF times) and server response

size (ON times). This leads to a substantial degree of long-range dependency (LRD)

in resulting aggregate packet arrival processes[LAJS03]. This property is important

partly because it means that the traffic generated by thttp closely resembles that of

real network traffic which as been shown to exhibit this characteristic. [WTSW97] It is

also important because of the loss properties generated when drop tail queues on the

outbound link of each bottleneck router interacts with such traffic. Instead of single



218

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 2000  4000  6000  8000  10000  12000  14000  16000  18000

Li
nk

 th
ro

ug
hp

ut
 (

bp
s)

Browsers

Measured
10457.7012 * x + 423996

Figure B.5: Thttp browser configuration and resulting network load.

losses separated by random intervals, packet loss from queue overflow events are bursty

and correlated. [Pax99] Using thttp, we are able to capture this real-world dynamic in

our laboratory testbed.

thttp requires a startup period of approximately 20-30 minutes to achieve a stable

workload level. Experiments in this dissertation make use of this rampup period before

going on to collect various types of performance data.



219

Appendix C

Reliable-UDP (RUDP)

Reliable-UDP, or RUDP 1, is an application-level transport protocol implemented

as an object-based library on top of UDP. Its principle function is to provide reliable,

connection-based data transport without congestion control. (Additional layering based

on CP will provide congestion control as explained in Section 6.4.) RUDP is stream-

oriented, despite its implementation using UDP datagrams.

Like TCP, RUDP uses several packet types to manage connection setup, data ex-

change, and connection termination. These include SYN, SYN-ACK, DATA, ACK,

and FIN. Connection setup is accomplished using TCP’s familiar three-way hand-

shake [Pos81] (SYN, SYN-ACK, ACK) to insure that each endpoint is able to par-

ticipate. Similarly, connection termination is accomplished using a mutual FIN and

ACK exchange. Data streaming is accomplished using sender DATA packets and re-

ceiver ACK packets. Each packet type is associated with a particular header as seen

in Section C.1.

RUDP uses several mechanisms to implement reliability. These include the follow-

ing:

• Sequence numbers. Data is uniquely indexed using per-packet sequence num-

bers. A DATA packet will include a sequence number of the data contained in the

packet. An ACK packet will included a cumulative sequence number indicating

that all data packets have been received up to that point.

• Packet numbers. Each data packet is assigned a monotonically increasing

packet number, including retransmission packets. Packet numbers are echoed in

each ACK packet and provide senders with information useful in disambiguating

between duplicate ACKs and quickly recognizing lost packets.

1Thanks to Travis Sparks and Ketan Mayer-Patel for their work on RUDP design and version 1.0
implementation.



220

• Hole numbers. Acknowledgment packets each contain the sequence number of

the first “hole” or “gap” in the receive buffer. Much like a lightweight version of

TCP-SACK[MMFR96, FMMP00], this number acts as a retransmission hint; it

allows the sender to retransmit a packet before duplicate acknowledgments and

timeouts establish that a loss has occurred.

Section C.1 provides information on precisely how these values are contained within

RUDP packet headers.

Internally, RUDP is implemented as a multi-threaded finite state machine. A multi-

threaded design is required in order to listen for and handle incoming packets while

servicing API calls (e.g., send, receive) from the application. The finite state machine

is a familiar device for prompting actions in particular situations and transitioning

to further actions in sequence. For example, connection setup may conveniently be

described using a series of states and possible transitions depending upon a remote

endpoint’s response actions.

The use of multi-threading requires that shared internal data structures be protected

using OS-supported mutual exclusion primitives. The POSIX thread library (pthreads)

supplied this functionality and was used throughout. In particular, mutual exclusion

primitives were needed for data structures related to send buffers, receive buffers, and

a free list of pre-allocated data packets.

RUDP’s application programming interface (API), in general, looks much like the

standard TCP socket API in UNIX. In part, this is because of RUDP’s connection-

oriented design which mimics that of TCP. A receiver will bind their socket to an

address, listen for incoming connections, and then accept one when it arrives. Mean-

while, the sender will connect with a remote receiver before initiating data transfer.



221

C.1 Header Formats

C.1.1 SYN and FIN Format (9 Bytes)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| type | packet_number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| pack_num | sequence_number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| seq_num |

+-+-+-+-+-+-+-+-+

Type (8 bits)

Packet type (SYN, FIN, data, etc.).

Packet number (32 bits)

Packet number.

Sequence number (32 bits)

Data sequence number.

C.1.2 SYN ACK Format (9 Bytes)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| type | packet_echo |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| pack_echo | ack_number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ack_num |

+-+-+-+-+-+-+-+-+

Type (8 bits)

Packet type (SYN, FIN, data, etc.).



222

Packet echo (32 bits)

Packet number echo.

ACK number (32 bits)

Data sequence number acknowledged.

C.1.3 Data Format (9 Bytes)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| type | packet_number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| pack_num | sequence_number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| seq_num | (Begin data)

+-+-+-+-+-+-+-+-+

Type (8 bits)

Packet type (SYN, FIN, data, etc.).

Packet number (32 bits)

Packet number.

Sequence number (32 bits)

Data sequence number.



223

C.1.4 ACK Format (13 Bytes)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| type | packet_echo |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| pack_echo | ack_number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ack_num | hole_number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| hole_num |

+-+-+-+-+-+-+-+

Type (8 bits)

Packet type (SYN, FIN, data, etc.).

Packet echo (32 bits)

Packet number echo.

ACK number (32 bits)

Data sequence number acknowledged.

Hole number (32 bits)

Data sequence number of first packet missing.

C.2 Application Programming Interface (API)

C.2.1 Manipulating Connections

static RUDPConn *createConnection(int sock fd, struct sockaddr in

*to addr, const unsigned int cluster id, const unsigned int flow id) - Create

a new connection.

static RUDPConn *getConnection(int fd) - Get a current connection.

static void closeConnection(RUDPConn *conn) - Close connection.

static void destroyConnection(RUDPConn *conn) - Destroy connection.



224

C.2.2 Manipulating Packets

static RUDPPacket* createPacket(RUDPConn *conn) - Create a new packet.

static void destroyPacket(RUDPPacket *p) - Destroy packet.

static void freePacket(RUDPConn *conn, RUDPPacket *p) - Free packet

memory.

C.2.3 Read/Write Packet Header Fields

static int getPacketType(unsigned char *pdata) - Read packet type field.

static unsigned int getSeqNum(unsigned char *pdata) - Read sequence num-

ber field.

static unsigned int getPackNum(unsigned char *pdata) - Read packet number

field.

static unsigned int getAckNum(unsigned char *pdata) - Read sequence num-

ber acknowledgement field.

static unsigned int getPackEcho(unsigned char *pdata) - Read packet number

echo field.

static unsigned int getHoleNum(unsigned char *pdata) - Read hole number

field.

static void setPacketType(unsigned char *pdata, int ptype) - Set packet type

field.

static void setSeqNum(unsigned char *pdata, unsigned int snum) - Set se-

quence number field.

static void setPackNum(unsigned char *pdata, unsigned int pnum) - Set

packet number field.

static void setAckNum(unsigned char *pdata, unsigned int anum) - Set se-

qunce number acknowledgement field.

static void setPackEcho(unsigned char *pdata, unsigned int pecho) - Set

packet number echo field.

static void setHoleNum(unsigned char *pdata, unsigned int hnum) - Set

hole number field.



225

Appendix D

CP Application Programming

Interface (API)

D.1 Socket Library

struct cpcb* cpsock create(const int socket fd, const u short cid, const

u short fid, const u char protocol) - Create socket.

void cpsock init cpbuf(const struct cpcb *cb, struct cpbuf *b) - Initialize send

buffer.

int cpsock send(const struct cpcb *cb, const struct cpbuf *b) - Send data.

int cpsock sendto(const struct cpcb *cb,const struct cpbuf *b, const struct

sockaddr in *sa) - Send data to designated address.

int cpsock recv(struct cpcb *cb, struct cpbuf *b) - Receive data.

void cpsock exit(struct cpcb* cb) - Terminate socket and exit.

D.2 Assignment Functions

void cpsock set(struct cpcb* cb, const u long opfield, const u char addr,

const u long value) - Set operation field to given value.

void cpsock set report(struct cpcb* cb, const u long opfield, const u char

addr, const u char report addr, const u char report offset, const u char

report id) - Assign operation field to report request.

void cpsock set report NOOP(struct cpcb* cb, const u long opfield) - Assign

operation field to NOOP.



226

D.3 Report Functions

int cpsock verify report id(const struct cpbuf* cpb, const u long reportno,

const u char report id) - Return true if report number matches.

int cpsock is valid report(const struct cpbuf* cpb, const u long reportno)

- Return true if not a NOOP report.

u char cpsock get report id(const struct cpbuf* cpb, const u long reportno)

- Return report ID.

u long cpsock get report value(const struct cpbuf* cpb, const u long re-

portno) - Return report value.

D.4 CP Buffer

struct cpbuf { /* cp buffer */

void *buf; /* ptr to allocated buffer */

size_t buflen; /* buffer length */

size_t len; /* data length (cphdr + cpdata) */

void *data; /* ptr to start of data */

};

struct cpcb { /* cp control block */

int sockfd;

struct cphdr hdr;

};

struct cpbuf* cpbuf create() - Creates CP buffer object.

void cpbuf destroy(struct cpbuf *c) - Destroys CP buffer object.



227

Appendix E

CP-RUDP Application

Programming Interface (API)

E.1 Connection Setup and Termination

int cprudp socket() - Create CP-RUDP socket.

int cprudp bind( const int rudpd, const int port ) - Bind socket to an address.

int cprudp listen( const int rudpd ) - Listen for connections.

int cprudp accept( const int rudpd, const unsigned int cluster id, const

unsigned int flow id ) - Accept connections.

int cprudp connect( const int rudpd, const char* server, const int port,

const unsigned int cluster id, const unsigned int flow id ) - Connect with

remote socket.

int cprudp close(const int rudpd) - Close socket.

E.2 Configuration

int cprudp set send buffer size( const int rudpd, const int size ) - Configure

send buffer size.

int cprudp set receive buffer size( const int rudpd, const int size ) - Con-

figure receiver buffer size.

int cprudp setsockopt( const int rudpd, const int level, const int optname,

const void* optval, const int size ) - Set (UNIX) socket option.

int cprudp getsockopt( const int rudpd, const int level, const int optname,

void* optval, int* size ) - Get (UNIX) socket option.



228

E.3 Send and Receive

int cprudp read( const int rudpd, const void *buffer, const int size ) - Read

data from socket.

int cprudp write( const int rudpd, const void *buffer, const int size ) -

Write data to socket.

int cprudp send(const int rudpd, const void *buffer, const int size, ...) -

Send data using socket.

int cprudp receive(const int rudpd, const void *buffer, const int size) -

Send data using socket.

E.4 Miscellaneous Functions

unsigned int cprudp get rtt est(const int rudpd) - Get RTT estimation.

const char* cprudp get remote addr( const int rudpd ) - Get address of local

endpoint.

const char* cprudp get local addr( const int rudpd ) - Get address of remote

endpoint.



229

BIBLIOGRAPHY

[A+97] D.S. Alexander et al. Active bridging. Proceedings of SIGCOMM’97, pages

101–111, September 1997.

[Abi] Abilene. http://abilene.internet2.edu/.

[AEH86] S.R. Ahuja, J.R. Ensor, and D.N. Horn. The rapport multimedia conferencing

system. Proceedings of the Conference on Office Information Systems (ACM-

SIGOIS ’88), March 1986.

[ALLY01] Sanjeewa Athuraliya, Victor H. Li, Steven H. Low, and Qinghe Yin. REM:

Active queue management. IEEE Network, 15(3):48 – 53, May/June 2001.

[BBP88] R. Braden, D. Borman, and C. Partridge. RFC 1071: Computing the Internet

Checksum, September 1988.

[BCC+98] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,

S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrish-

nan, S. Shenker, J. Wroclawski, and L. Zhang. RFC 2309: Recommendations on

Queue Management and Congestion Avoidance in the Internet. Internet Engi-

neering Task Force, April 1998.

[BCD+98] D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC 2475:

An Architecture for Differentiated Services. Internet Engineering Task Force,

December 1998.

[BCZ98] S. Bhattacharjee, K. Calvert, and E. Zegura. Commentaries on active net-

working and end-to-end arguments. IEEE Network, May/June 1998.

[BEF+00] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang,

S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances in network simulation.

IEEE Computer, 33(5):59–67, May 2000.

[BRS99] Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan Seshan. An integrated

congestion management architecture for internet hosts. Proceedings of ACM SIG-

COMM, September 1999.



230

[CDO+00] L. Childers, T. Disz, R. Olson, M. Papka, R. Stevens, and T. Udeshi. Access

grid: Immersive group-to-group collaborative visualization. In Proceedings of the

4th International Immersive Projection Technology Workshop, 2000.

[CGW02] Kenneth L. Calvert, James Griffioen, and Su Wen. Lightweight network

support for scalable end-to-end services. In Proceedings of ACM SIGCOMM,

August 2002.

[CJ89] D.-M. Chiu and R. Jain. Analysis of the increase and decrease algorithms

for congestion avoidance in computer networks. Computer Networks and ISDN

Systems, 17(1):1–14, June 1989.

[CJOS00] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith. Tuning RED for web

traffic. Proceedings of ACM SIGCOMM 2000, September 2000.

[CMK+99] Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho

Miki, John B. Vicente, , and Daniel Villela. A survey of programmable networks.

ACM SIGCOMM Computer Communications Review, 29(2):7–23, April 1999.

[CMT98] K. Claffy, G. Miller, and K. Thompson. The nature of the beast: Recent

traffic measurements from an internet backbone. In Internet Society INET’98,

1998.

[D+98] D. Decasper et al. Router plugins: A software architecture for next generation

routers. Proceedings of SIGCOMM’98, pages 229–240, September 1998.

[FF96] Kevin Fall and Sally Floyd. Simulation-based comparisons of Tahoe, Reno and

SACK TCP. Computer Communication Review, 26(3):5–21, July 1996.

[FF99] Sally Floyd and Kevin R. Fall. Promoting the use of end-to-end congestion

control in the internet. IEEE/ACM Transactions on Networking, 7(4):458–472,

1999.

[FGS01] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An algorithm for

increasing the robustness of RED, 2001.

[FHPW00] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based con-

gestion control for unicast applications. Proceedings of ACM SIGCOMM, pages

43–56, 2000.



231

[FJ93] Sally Floyd and Van Jacobson. Random early detection gateways for congestion

avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[FJ95] S. Floyd and V. Jacobson. Link-sharing and resource management models for

packet networks. IEEE/ACM Transactions on Networking, 1(4):365–386, 1995.

[FMMP00] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. RFC 2883: An Ex-

tension to the Selective Acknowledgement (SACK) Option for TCP. Internet

Engineering Task Force, July 2000.

[GGPS96] L. Georgiadis, R. Guérin, V. Peris, and K. Sivarajan. Efficient network

QoS provisioning based on per node traffic shaping. IEEE/ACM Transactions

on Networking, 4(4):482–501, 1996.

[Gri] Access Grid. http://www.accessgrid.org.

[H+99] M. Hicks et al. Plannet: An active internetwork. Proceedings of INFOCOM’99,

pages 1124–1133, March 1999.

[HFPW03] M. Handley, S. Floyd, J. Padhye, and J. Widmer. RFC 3448: TCP Friendly

Rate Control (TFRC): Protocol Specification. Internet Engineering Task Force,

January 2003.

[HMTG01] C. V. Hollot, Vishal Misra, Donald F. Towsley, and Weibo Gong. On design-

ing improved controllers for AQM routers supporting TCP flows. In INFOCOM,

pages 1726–1734, 2001.

[Ipe] Iperf. http://dast.nlanr.net/Projects/Iperf.

[Jac88] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM ’88,

pages 314–329, Stanford, CA, August 1988.

[Jai91] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley and

Sons, 1991.

[Ken98] C. Kenjiro. A framework for alternate queueing: Towards traffic management

by PC-UNIX based routers. In USENIX 1998, pages 247–258, June 1998.

[KHF04] Eddie Kohler, Mark Handley, and Sally Floyd. Internet Draft: Datagram

Congestion Control Protocol (DCCP). Internet Engineering Task Force, Novem-

ber 2004.



232

[KK90] C. R. Kalmanek and H. Kanakia. Rate controlled servers for very high-speed

networks. Proceedings of the Conference on Global Communications (GLOBE-

COM), pages 12–20, 1990.

[KMJ+] S. Keshav, S. McCanne, S. Jamin, K.K. Ramakrishnan,

R. Sethi, D. Ferrari, and S. Shenker. REAL Network Simulator.

http://www.cs.cornell.edu/skeshav/real/overview.html.

[KSC91] Manolis Katevenis, Stefanos Sidiropoulos, and Costas Courcoubetis. Weighted

round-robin cell multiplexing in a general-purpose ATM switch chip. IEEE Jour-

nal on Selected Areas in Communication, 9(8):1265–1279, 1991.

[KW99] H.T. Kung and S.Y. Wang. TCP trunking: Design, implementation and per-

formance. Proc. of ICNP ’99, November 1999.

[KZM+03] N. Kelshikar, X. Zabulis, J. Mulligan, K. Daniilidis, V. Sawant, S. Sinha,

T. Sparks, S. Larsen, H. Towles, K. Mayer-Patel, H. Fuchs, J. Urbanic, K. Ben-

ninger, R. Reddy, and G. Huntoon. Real-time terascale impementation of tele-

immersion. International Conference on Computation Science, June 2003.

[LAJS03] Long Le, Jay Aikat, Kevin Jeffay, and F. Donelson Smith. The effects of

active queue management on web peformance. Proceedings of ACM SIGCOMM

2003, August 2003.

[Lan86] K.A. Lantz. An experiment in integrated multimedia conferencing. Proceedings

of ACM Conference on Conference on Computer Supported Cooperative Work

(CSCW ’86), 1986.

[LDE+97] Jason Leigh, Thomas A. DeFanti, Andrew E.Johnson, Maxine D. Brown,

and Daniel J. Sandin. Global tele-immersion: Better than being there. In 7th

Annual International Conference on Artificial Reality and Tele-Existence, De-

cember 1997.

[LGT98] Li-Wei H. Lehman, Stephen J. Garland, and David L. Tennenhouse. Active

reliable multicast. In INFOCOM (2), pages 581–589, 1998.

[Mah97] Bruce A. Mah. An empirical model of HTTP network traffic. In INFOCOM

(2), pages 592–600, 1997.



233

[MJV96] Steven McCanne, Van Jacobson, and Martin Vetterli. Receiver-driven layered

multicast. In ACM SIGCOMM, volume 26,4, August 1996.

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC 2018: TCP

Selective Acknowledgement Options. Internet Engineering Task Force, April 1996.

[N+99] E. Nygren et al. Pan: A high-performance active network node supporting

multiple code systems. Proceedings of OPENARCH’99, 1999.

[Ols03] Robert Olson. Access Grid Hardware Specification. Argonne National Labora-

tory, July 2003. http://www.accessgrid.org/agdp/guide/spec.html.

[OMP02] D. Ott and K. Mayer-Patel. A mechanism for TCP-friendly transport-level

protocol coordination. USENIX 2002, June 2002.

[OMP04] D. Ott and K. Mayer-Patel. Coordinated multi-streaming for 3D tele-

immersion. ACM Multimedia 2004, October 2004.

[OSMP04] D. Ott, T. Sparks, and K. Mayer-Patel. Aggregate congestion control for

distributed multimedia applications. Proceedings of IEEE INFOCOM ’04, March

2004.

[Pae95] Alan W. Paeth. Graphics Gems V (The Graphics Gems). Morgan Kaufmann,

1995.

[Pax97] V. Paxson. End-to-end internet packet dynamics. Proceedings of ACM SIG-

COMM, 1997.

[Pax99] Vern Paxson. End-to-end Internet packet dynamics. IEEE/ACM Transactions

on Networking, 7(3):277–292, 1999.

[PCN00] P. Pradhan, T. Chiueh, and A. Neogi. Aggregate TCP congestion control

using multiple network probing. Proc. of IEEE ICDCS 2000, 2000.

[PFTK98] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput:

A simple model and its empirical validation. Proceedings of ACM SIGCOMM,

1998.

[PG93] A. Parekh and R. Gallager. A generalized processor sharing approach to flow

control in integrated services networks: the single node case. IEEE/ACM Trans-

actions on Networking, 1(3):344–357, 1993.



234

[PJS99] M. Parris, K. Jeffay, and F. Smith. Lightweight active router-queue manage-

ment for multimedia networking, 1999.

[PMM93] C. Partridge, T. Mendez, and W. Milliken. RFC 1546: Host Anycasting

Service. Internet Engineering Task Force, November 1993.

[Pos81] Jon Postel. RFC 793: Transmission Control Protocol. Internet Engineering

Task Force, September 1981.

[RF99] K. Ramakrishnan and S. Floyd. RFC 2481: A Proposal to add Explicit Conges-

tion Notification (ECN) to IP. Internet Engineering Task Force, January 1999.

[RHE99] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-end rate-based con-

gestion control mechanism for realtime streams in the internet. Proc. of IEEE

INFOCOM, March 1999.

[Riz97] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network pro-

tocols. ACM CCR, 27(1):31–41, January 1997.

[RWC+98] Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin, and

Henry Fuchs. The office of the future: A unified approach to image-based mod-

eling and spatially immersive displays. Proceedings of ACM SIGGRAPH, 1998.

[S+99] B. Schwarts et al. Smart packets for active networks. Proceedings of OPE-

NARCH’99, 1999.

[SCJO01] F.D. Smith, F. Hernandez Campos, K. Jeffay, and D. Ott. What TCP/IP

protocol headers can tell us about the web. In ACM SIGMETRICS, pages 245–

256, June 2001.

[SK02] P. Sarolahti and A. Kuznetsov. Congestion control in linux tcp, 2002.

[SLR98] H. Schulzrinne, R. Lanphier, and A. Rao. RFC 2326: Real time streaming

protocol (RTSP). Internet Engineering Task Force, April 1998.

[SRC84] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2(4), November 1984.

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 3rd edition, 1996.



235

[TKS+03] Herman Towles, Sang-Uok Kum, Travis Sparks, Sudipta Sinha, Scott Larsen,

and Nathan Beddes. Transport and rendering challenges of multi-stream 3D tele-

immersion data. NSF Lake Tahoe Worksthop on Collaborative Virtual Reality

and Visualization (CVRV 2003), October 2003.

[TW96] D. L. Tennenhouse and D. Wetherall. Towards an active network architecture.

Multimedia Computing and Networking, January 1996.

[vdM+98] J. van der Merwe et al. The Tempest - a practical framework for network

programmability. IEEE Network Magazine, 12(3), May/June 1998.

[Wet99a] D. Wetherall. Service introduction in an active network, 1999.

[Wet99b] David Wetherall. Active network vision and reality: lessons from a capsule-

based system. Operating Systems Review, 34(5):64–79, December 1999.

[Wid00] Jorg Widmer. Equation-Based Congestion Control. PhD thesis, University of

Mannheim: Dept of Mathematics and Computer Science, February 2000.

[Wil04] Lori Wilkerson. The History of Video Conferencing. Evaluseek Publishing,

2004.

[WTSW97] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wil-

son. Self-similarity through high-variability: statistical analysis of Ethernet LAN

traffic at the source level. IEEE/ACM Transactions on Networking, 5(1):71–86,

1997.

[XMS+00] Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina,

M. Kalla, L. Zhang, and V. Paxson. RFC 2960: Stream Control Transmission

Protocol. Internet Engineering Task Force, October 2000.

[YdS96] Y. Yemini and S. da Silva. Towards programmable networks. International

Workshop on Distributed Systems Operations and Management, October 1996.

[Zha95] H. Zhang. Service disciplines for guaranteed performance service in packet-

switching networks. Proceedings of IEEE, 83(10):1374–96, October 1995.


