
Analyzing the Behavior of Loop Nests in the Memory
Hierarchy: Methods, Tools, and Applications

by
Erin Parker

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2004

Approved by:

Siddhartha Chatterjee, Advisor

Alvin Lebeck, Reader

Frank Mueller, Reader

Jan Prins, Reader

Jack Snoeyink, Reader

David Plaisted

ii

iii

ABSTRACT
ERIN PARKER: Analyzing the Behavior of Loop Nests in the Memory

Hierarchy: Methods, Tools, and Applications.
(Under the direction of Siddhartha Chatterjee.)

Processor speeds are improving at a much faster rate than the speeds of accessing main
memory. As a result, data access time dominates the execution times of many programs.
Understanding the behavior of programs executing in a memory hierarchy is therefore an
important part of improving program performance. This dissertation describes an analytical
framework for understanding the behavior of loop-oriented programs executing in a memory
hierarchy. The framework has three components: 1) an alternative classification of cache misses
that makes it possible to obtain the exact cache behavior of a sequence of program fragments by
combining the cache behavior of the individual fragments; 2) the use of Presburger arithmetic
to model data access patterns and describe events such as cache misses; and 3) algorithms
exploiting the connection among Presburger arithmetic, automata theory, and graph theory
to produce exact cache miss counts.

The analytical framework presented in this dissertation goes beyond existing analytical
frameworks for modeling cache behavior: it handles set-associative caches, data cache and
translation lookaside buffer (TLB) misses, imperfect loop nests, and nonlinear array layouts
in an exact manner. Experiments show both the framework’s value in the exploration of
new memory system designs and its usefulness in guiding code and data transformations for
improved program performance.

iv

v

ACKNOWLEDGMENTS

I thank my thesis advisor Sid Chatterjee for his unwavering guidance and support. Without
his encouragement, the work of this dissertation would not have been possible. In particular,
his persistence and attention even after leaving Chapel Hill in 2001 are greatly appreciated.

I thank my committee members Alvy Lebeck, Frank Mueller, Dave Plaisted, Jan Prins,
and Jack Snoeyink for their advice and for being so generous with their time.

I thank the entire UNC Department of Computer Science for making Sitterson Hall such
an enjoyable place to work and learn. Especially, I thank the administrative and technical
staff of the computer science department, whose assistance has been invaluable. I thank my
UNC classmates and friends for making the last five years a lot of fun. Tom B, Shelby, Dave,
Zac, Kimberly, and Josh, your friendship has made it all worthwhile.

I thank the Department of Energy’s High-Performance Computer Science Fellowship pro-
gram, which has sponsored me for the last four years.

Finally, I thank my family for their amazing support and understanding. I could not
do without the limitless love and encouragement of my father Walt, mother Barbara, sister
Adrienne, sister Amy, and husband Tom. These people deserve more than just their names on
this page. I hope that in real life, I can do enough to thank them.

vi

vii

TABLE OF CONTENTS

LIST OF TABLES xi

LIST OF FIGURES xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Determining Cache Behavior . 5

1.3 Thesis Contributions . 8

1.4 Limitations . 9

1.5 Organization . 10

2 Terminology and Notation 13

2.1 Cache Basics . 13

2.1.1 Static Cache Structure . 13

2.1.2 Dynamic Cache Behavior . 18

2.1.3 A Special Cache—the TLB . 19

2.2 Modeling Loop Nests . 20

2.3 Modeling Array References . 22

2.4 Presburger Arithmetic . 24

2.5 Automata Theory . 26

2.6 Summary . 27

3 A New Classification of Cache Misses 29

3.1 Composability . 29

3.2 Interior-Boundary Miss Classification . 30

3.3 Cache State . 32

3.4 Summary . 35

4 Analyzing Cache Behavior 37

4.1 Program Execution Model . 38

4.2 Neighborhoods and Witnesses . 39

viii

4.3 Expressing Witnesses in Presburger Arithmetic 41
4.3.1 Formulas Describing Program and Memory Structure 41
4.3.2 Formulas Describing Cache Behavior . 43

4.4 Deciding Cache Event Outcomes . 48
4.4.1 Interior Miss . 48
4.4.2 Replacement Miss . 49
4.4.3 Potential Boundary Miss . 49
4.4.4 Cache State . 50

4.5 Summary . 51

5 Counting Cache Misses 52

5.1 Representing Formulas as DFAs . 54
5.1.1 Encoding Free Variable Values . 54
5.1.2 Example DFA . 55
5.1.3 Procedure for Constructing DFAs . 57

5.2 Counting and Enumerating Accepting DFA Paths 58
5.2.1 Treating the DFA as a Graph . 58
5.2.2 DFA Path Length . 59
5.2.3 Counting Accepting Paths . 61
5.2.4 Enumerating Accepting Paths . 63

5.3 Counting Witnesses to Determine Cache Behavior 65
5.3.1 Counting Witnesses . 65
5.3.2 Counting Interior and Replacement Misses 67
5.3.3 Counting Boundary Misses and Updating Cache State 68

5.4 Handling Misses Independent of Associativity 75
5.4.1 Interior Misses in Direct-Mapped Caches 75
5.4.2 Compulsory Misses . 76

5.5 Summary . 76

6 Putting It All Together 77

6.1 The Analysis Framework . 77
6.2 Implementation . 79

6.2.1 Source Code Analysis . 80
6.2.2 Formula Specification and Simplification 81
6.2.3 Counting Cache Events . 81

7 Extensions to Analysis Framework 83

7.1 Nonlinear Data Layouts . 83
7.2 FIFO Cache Replacement Algorithm . 86
7.3 Summary . 87

ix

8 Application and Validation 88

8.1 Single Loop Nests . 89
8.2 Loop Nest Sequence . 103
8.3 Nonlinear Data Layouts . 110
8.4 Loop Transformation . 115

8.4.1 Loop Tiling . 115
8.4.2 Loop Permutation . 117

8.5 Aggregate Array Computations . 118
8.5.1 Partial Summation . 120
8.5.2 Sequence Local Average . 122

8.6 Summary . 123

9 Related Work 127

9.1 Work Based on Reuse Vectors . 127
9.2 Work Based on Stack Distances . 128
9.3 Work Based on Linear Constraints . 129
9.4 Work Based on Reference Traces . 131
9.5 Work Based on Cache State . 132
9.6 Summary . 132

10 Conclusions 135

10.1 Thesis Contributions . 135
10.2 Commentary . 138
10.3 Future Research Directions . 140

10.3.1 Improving Framework Robustness . 140
10.3.2 Modeling More Cache Features and Events 140
10.3.3 Applying the Analysis Framework . 141

10.4 Summary . 142

A Example Witness Formulas and DFAs 143

BIBLIOGRAPHY 155

x

xi

LIST OF TABLES

4.1 Presburger formulas used to describe cache behavior. 42

8.1 Results of using the analysis framework to count misses in-
curred by loop nest Ltri in data caches. 91

8.2 Results of using the analysis framework to count misses in-
curred by loop nest Ltri in TLBs. 92

8.3 Results of using the analysis framework to count misses in-
curred by loop nest Ltri, varying B and S. 93

8.4 Results of using the analysis framework to count misses in-
curred by loop nest Lvec in data caches. 95

8.5 Results of using the analysis framework to count misses in-
curred by loop nest Lvec in TLBs. 95

8.6 Results of using the analysis framework to count misses in-
curred by loop nest Lmm in data caches. 96

8.7 Results of using the analysis framework to count misses in-
curred by loop nest Lmm in TLBs. 97

8.8 Results of using the analysis framework to count misses in-
curred by loop nest Lmm, varying array starting addresses. 98

8.9 Results of using the analysis framework to count misses in-
curred by loop nest Lmm-var in data caches. 100

8.10 Results of using the analysis framework to count misses in-
curred by loop nest Lmm-var in TLBs. 100

8.11 Results of using the analysis framework to count misses in-
curred by loop nest Lcalc3 in data caches. 102

8.12 Results of using the analysis framework to count misses in-
curred by loop nest Lcalc3 in TLBs. 102

8.13 Results of using the analysis framework to count misses in-
curred by the loop nest sequence of calc3 in data caches, for
m = n = 19. 105

8.14 Results of using the analysis framework to count misses in-
curred by the loop nest sequence of calc3 in data caches, for
m = n = 29. 105

8.15 Results of using the analysis framework to count misses in-
curred by the loop nest sequence of calc3 in data caches, for
m = 19 and n = 99. 106

xii

8.16 Results of using the analysis framework to count misses in-
curred by the loop nest sequence of calc3 in data caches, for
m = 99 and n = 19. 107

8.17 Results of using the analysis framework to count misses in-
curred by the loop nest sequence of calc3 in TLBs, for m =
n = 19. 108

8.18 Results of using the analysis framework to count misses in-
curred by the loop nest sequence of calc3 in data caches, for
several problem sizes. 109

8.19 Results of using the analysis framework to count misses in-
curred by loop nest Lvec with nonlinear array layouts, for m =
n = 16. 111

8.20 Results of using the analysis framework to count misses in-
curred by loop nest Lvec with nonlinear array layouts, for m =
16 and n = 32. 112

8.21 Results of using the analysis framework to count misses in-
curred by loop nest Lvec with nonlinear array layouts, for m =
32 and n = 16. 113

8.22 Results of using the analysis framework to count misses in-
curred by loop nest Lvec with nonlinear array layouts, for m =
n = 32. 114

8.23 Results of using the analysis framework to count misses in-
curred by loop nest Ltiled, varying tile size T . 116

8.24 Results of using the analysis framework to count misses in-
curred by all six loop permutations of the matrix multiplication
loop nest. 119

8.25 Results of using the analysis framework to count misses in-
curred by loop nest Lps-orig in data caches. 121

8.26 Results of using the analysis framework to count misses in-
curred by loop nest Lps-opt in data caches. 121

8.27 Results of using the analysis framework to count misses in-
curred by loop nest Lsla-orig in data caches. 123

8.28 Results of using the analysis framework to count misses in-
curred by loop nest Lsla-opt in data caches. 124

9.1 Comparison of frameworks that do static analysis of memory behavior. 134

xiii

LIST OF FIGURES

1.1 The processor-memory performance gap. 2

1.2 The memory hierarchy pyramid. 3

1.3 Examples of analyzable and unanalyzable loop nests. 10

2.1 The portions of a memory byte address. 14

2.2 Representation of an (A, B, C; S) cache. 15

2.3 The shapes of caches with differing associativity. 15

2.4 The wraparound value of a memory byte address. 16

2.5 The running example loop nest Lmm. 17

2.6 Wraparound values for the memory locations accessed by loop
nest Lmm. 17

2.7 An illustration of loop normalization to make step size one. 21

3.1 3-D views of the interior and potential boundary misses in-
curred by loop nest Lmm. 31

3.2 The role of cache state in the composition of program fragments. 33

4.1 Example sequence of accesses in Ax and the contents of cache
set x. 41

4.2 Presburger formula describing the i -witnesses of loop nest Lmm. 45

5.1 DFA recognizing the solutions of an example i -witness formula. 56

6.1 High-level view of the method for modeling cache behavior pre-
sented in this dissertation. 78

6.2 Illustration of how tools fit into the analysis framework. 80

7.1 Example arrangement of array data in memory using nonlinear
array layouts. 84

8.1 The matrix multiplication variation loop nest Lmm-var. 99

8.2 Loop nest Lcalc3 from the calc3 subroutine. 101

8.3 The sequence of four loop nests from the calc3 subroutine. 104

8.4 The six permutations of the matrix multiplication loop nest. 117

8.5 Original partial summation loop nest Lps-orig and optimized ver-
sion Lps-opt. 120

xiv

8.6 Original sequence local average loop nest Lsla-orig and optimized
version Lsla-opt. 122

A.1 Presburger formula describing the r -witnesses of loop nest Lmm. 144
A.2 Presburger formula describing the b-witnesses of loop nest Lmm. 145
A.3 Presburger formula describing the s-witnesses of loop nest Lmm. 146
A.4 DFA recognizing the solutions of an example r -witnesses formula. 147
A.5 DFA recognizing the solutions of an example b-witnesses formula. 148
A.6 DFA recognizing the solutions of an example s-witnesses formula. 148
A.7 Presburger formula describing interior misses of loop nest Lmm

in a direct-mapped cache. 149
A.8 DFA recognizing the solutions of an example Presburger for-

mula describing interior misses in a direct-mapped cache. 150
A.9 Presburger formula describing compulsory misses in loop nest Lmm. 151
A.10 DFA recognizing the solutions of an example compulsory miss formula. 151
A.11 Presburger formula describing the i -witnesses of loop nest Lmm

with a nonlinear array layout. 152
A.12 DFA recognizing the solutions of an example i -witnesses for-

mula with a nonlinear array layout. 153

Chapter 1

Introduction

As advances in processor speeds continue to outstrip those of main memory access, the
processor-memory performance gap grows every year [66, 138]. The time required for accessing
data from main memory is one to two orders of magnitude larger than the time required for
operations on the data. Cache memory, one or more levels of fast memory placed between
the processor and main memory, attempts to reduce the average data access time by capturing
the most frequently referenced data close to the processor. In general, hardware alone does
not solve the the problem of poor memory performance, because not all programs use cache
memory effectively. Therefore, even with the addition of caches, the execution time of many
programs is dominated by the time spent accessing data from main memory.

By modifying a program’s data access patterns or data layout (i.e., the manner in which
program variables map to memory locations), it is possible to use cache memory more effec-
tively and improve the program’s performance. Either a programmer can make code and data
layout changes “by hand”, or a compiler can do so automatically. In transforming a program,
it is critical to know what changes will lead to improved performance, or better yet, what
changes will lead to the best possible performance. The challenge of transforming a program
to reduce its memory access time is understanding the behavior of the program executing in
the presence of cache memory. This dissertation presents a static framework that produces the
exact cache behavior of a program, given virtually any configuration of cache memory. The
remainder of this chapter further motivates the work of analyzing cache behavior (Section 1.1),
reviews a variety of methods for determining cache behavior (Section 1.2), lists the contribu-
tions of this thesis (Section 1.3), points out the limitations of analysis framework presented
here (Section 1.4), and provides a roadmap for the rest of the document (Section 1.5).

1.1 Motivation

Processor and main memory, or dynamic random access memory (DRAM), technologies are
constantly improving, but at different rates. From 1980 to 1986, processor frequency improved

2

10,000

1,000

100

10

1

1980 20001990

Memory

Processor

Performance Gap
Processor-Memory

Year

R
el

at
iv

e
Sp

ee
d

 C
o

m
p

ar
ed

 to
 1

98
0

1985 1995

100,000

2005

Figure 1.1: Processor speed and speed of accessing main memory plotted over time, with speed
in 1980 as a baseline.

by about 35% per year, while from 1987 to 2002, processor frequency improved by about
55% per year [66]. Since 2003, the rate of improvement in processor frequency has slowed
down to about 35% per year [53]. DRAM performance (i.e., the latency of accessing data)
has improved steadily at about 7% per year [66]. The diverging rates of improvement have
formed the processor-memory performance gap. Figure 1.1 shows how processor and memory
performance have improved over time relative to their performance in 1980, with the processor-
memory performance gap clearly evident. For more and more programs, memory access time
determines execution time, and this trend will continue unless the performance gap begins to
close.

In an ideal system, memory would be infinitely large and any data required by a program
would be immediately available to the processor. Given the physical constraints of a computer,
such an ideal is not possible. As early as 1946, Burks, Goldstine, and von Neumann [28]
suggested a hierarchy as a way of arranging memory:

We are therefore forced to recognize the possibility of constructing a hierarchy of
memories, each of which has greater capacity than the preceding but which is less
quickly accessible.

In 1962, Kilburn et al. [79] proposed automatic management of two levels of memory and
demonstrated it in the Atlas computer. A few years later, Wilkes [130] wrote the first paper
describing the concept of a cache. The first commercial computer with cache memory, the
IBM 360/85 [87], followed shortly. Today almost all computer systems have cache memory,
and most have multilevel caches [8, 71, 126].

Figure 1.2 shows the hierarchy of four kinds of memory typically found in systems today. A

3

registers

cache memory

main memory

disk memory

de
cr

ea
si

ng

access
latency bandwidth size resource

manager
unit of
transfer

in
cr

ea
si

ng

compiler

hardware

operating
system

operating
system

4 bytes

32 bytes

4K bytes

0.25 ns

1 ns

100 ns

5 ms

100
GB/sec

10
GB/sec

5
GB/sec

150
MB/sec

cost per
byte

Figure 1.2: The memory hierarchy pyramid and typical values of relevant parameters [66].
Smaller memories are faster to access and more expensive per byte. Data contained in upper
level i is also contained in lower level i+ 1.

relatively small register file located in the processor core is the most quickly-accessible memory.
Disk memory is far from the processor and the slowest to access. Five parameters describe
the levels of a uniprocessor memory hierarchy: speed (indicated by both access latency and
bandwidth), size, cost per byte, manager of the memory level, and the unit of transferring
data between levels. The table in Figure 1.2 gives typical parameter values for each memory
level [66]. Moving up the hierarchy, speed and cost per byte increase, as size decreases. Also,
an upper level of memory is usually a subset of lower levels (i.e., data contained in upper level
i is also contained in lower level i+1). Given the speed of the memory hierarchy’s upper levels,
it would be best to access all data from there, but the expense of fast memory forces the upper
levels to be small in size. These levels, therefore, cannot hold all of the data. As a result,
some of the data is discarded from the upper levels before the program has finished using it.
A program is said to have good locality of reference if it can reuse data while it is still in
the upper levels of memory, which requires that the use and reuse of data be close together
in time. The property of programs to reuse data and instructions they have used recently is
called locality [66], and locality of reference refers to locality in the context of data.

The job of cache memory is to hold frequently referenced data close to the processor. A
cache miss occurs when a program requests data that is not found in cache memory. Miss

penalty is the cost of a cache miss, i.e., the time required to access missed data from the
lower levels of memory. The following equations [66] illustrate the impact of cache misses and
miss penalty on the execution time of a program.

execution time = (CPU clock cycles + memory stall cycles)× clock cycle time (1.1)

memory stall cycles = number of cache misses×miss penalty (1.2)

4

It is clear that more cache misses and/or larger miss penalties slow the overall execution time
of a program by worsening its memory performance. A good measure of memory performance
is average memory access time, the average time spent accessing memory per request, as
given by the following equation [66].

average memory access time = hit time + (miss rate×miss penalty) (1.3)

Hit time is the time to access memory from cache, and miss rate is the fraction of cache
accesses resulting in a miss. Attempts in software to improve the memory performance of
programs (e.g., via transformations in code and data layout) cannot change hit time or miss
penalty, but can shorten the average memory access time by reducing the number of cache
misses. In other words, improving a program’s locality of reference allows execution of the
program to better utilize caches.

Efficient programs have good locality of reference, both temporal, by accessing recently
referenced data together, and spatial, by accessing data with memory addresses near recently
referenced data [114]. Caches exploit locality of reference in a program by capturing blocks
of memory containing recently referenced data close to the processor. A program must have
well-crafted code and data organization in order to achieve good locality of reference, which
is a burden on the programmer, since the relationship between writing a program and its
resulting locality of reference is often not straightforward. Locality of reference is often elusive
and brittle: as an application evolves, seemingly insignificant modifications to its code or to
the machine platform can lead to dramatic changes in its locality of reference.

There are two ways of transforming a program to improve its locality of reference: altering
the order in which the program accesses data, and altering the data layout. Loop trans-
formations [135] change the ordering of operations in loop-oriented programs in a way that
preserves the semantics of the original program while producing a data access sequence with
better locality of reference. Loop interchange [133], loop skewing [135], and iteration-space
tiling [76, 132, 134] are examples of loop transformations. Although the issues of transforma-
tion legality and code generation for transformed loops are well-defined, methods for predicting
the performance benefit of transforming a particular loop are less understood. Existing meth-
ods for evaluating the potential benefit of loop transformations usually offer only approximate
or heuristic findings [40, 84, 93, 101, 108, 109, 132].

Recently, researchers have given some attention to transforming the layout of program
data [7, 32, 33, 35, 36, 57, 84, 108, 109, 119, 131]. Data transformations modify the layout
of data in memory in order to improve the locality of reference for the program’s data access
sequence. Array copying [84, 119], array padding [7, 108, 109], and nonlinear array layouts
[32, 33, 57, 131] are examples of well-known data transformations. Careful placement of data
in C-language structures, either by reordering fields within a single structure or by packing
the frequently-accessed fields of several structures in the same cache line [35, 36], is another

5

example of an effective data transformation. Many code and data transformations have pa-
rameters whose values determine the behavior of the transformed program, such as tile sizes
(for iteration-space tiling) and pad sizes (for array padding). As in the case for loop trans-
formations, predictions of performance improvement due to a data transformation are often
approximations. Rarely are code and data layout transformations beneficial when applied
blindly. At issue are which transformations to apply, in which order to apply them, and how
to set transformation parameters.

In attempting to improve a program’s locality of reference, the goal of code and data trans-
formations is to increase the number of times that the program accesses data from cache mem-
ory rather than from main memory. When successful, the average memory access time of the
program is reduced. Another approach to dealing with large memory access latency is to toler-
ate, or hide, it. Techniques such as nonblocking (or lock-up free) caches [83], software-controlled
prefetching [94, 95, 96], hardware-controlled prefetching [101, 114], stream buffers [70], and
speculative loads [110] overlap data access with operations on previously-accessed data, hid-
ing the large latency of accessing memory. These techniques work by reducing the observed
latency for a group of memory accesses, exploiting concurrency at the hardware level. All of
these methods attempt to cover up the problem of a large average memory access time and do
not attempt to reduce it. Prefetching, stream buffers, and speculative loads potentially access
more data from memory that is needed by the program, creating more contention from mem-
ory resources and possibly worsening the memory performance bottleneck. When effective,
techniques for reducing the average memory access time are preferable over those that tolerate
it. Extensive research has looked at the use of program transformations for reducing average
memory access time, as the next section discusses.

1.2 Determining Cache Behavior

Much research has been devoted to guiding the application of code and data transformations,
and most of the work focuses on loop-oriented programs. Improving the memory performance
of loops has a significant impact on scientific programs, which spend the majority of their
execution time in loops. Scientific programs tend to operate on large amounts of data, of
which the cache can hold only a small amount. If scientific programs are not written in a
manner that leads to good locality of reference, most of the data is displaced from cache
before it can be reused. As a result, scientific programs are often the target of code and data
transformations.

Early techniques for guiding loop and data transformations [7, 58, 84, 108] target specific
loops, cache memory configurations, and/or loop transformations. Lam et al. [84] present a
model for approximating the number of cache misses for tiled matrix multiplication and give an
algorithm for selecting tile size, a parameter for iteration-space tiling. Fricker et al. [58] develop
a model for approximating the number of cache misses for tiled matrix-vector multiplication

6

executing in a specific cache memory. Bacon et al. [7] introduce an algorithm for selecting
pad sizes, a parameter for array padding. Rivera and Tseng [108] put forth techniques for
applying inter- and intra-array padding transformations. Although the work has resulted in
useful insights on the effects of specific transformations, it may not be possible to generalize
these insights to apply to all programs.

Program simulation [46, 85, 91] is a well-established method for gauging memory perfor-
mance. Entire programs can be simulated and there are no limits on cache memory con-
figurations or program transformations. Simulating the execution of a program allows the
effects of back-end compiler phases, such as instruction scheduling and register allocation, to
be reflected in the cache behavior of the program. MemSpy [91] simulates the execution of a
program to provide cache miss rates and causes for particular code and data objects. Simi-
larly, CProf [85] is a cache performance profiler that uses simulation to identify source code
and data structures with poor cache behavior. The Dinero [46] simulator reports the behavior
of one or more cache designs, given as input a list of the memory references that a program
makes during execution. However, there is a potential disadvantage to simulating execution of
a program: the simulation running time greatly exceeds that of the original program, in gen-
eral. Dynamic instrumentation [43] and hardware counters [25, 51] also capture the memory
referencing behavior of a program, and have the same advantages and potential disadvantage
as simulation.

Static analysis [31, 34, 54, 62, 122] gathers information from the source code of a program
and from the configuration of an underlying memory system to determine the exact or ap-
proximate cache behavior without actually running or simulating the program. In particular,
for loops, static analysis, whose complexity relates to the static structure of the loops, has the
potential to be faster than simulation, whose complexity relates to the iteration count of the
loops and is proportional to the execution time of the loops. Static analysis may be especially
useful in profiling the cache activity of programs with very long execution times for which it
is undesirable to do explicit simulation. Just as knowledge of the low-level, machine-specific
arrangement of memory accesses is an advantage for simulation, the lack of such knowledge is
a disadvantage for static analysis. Static analysis must make simplifying assumptions about
the scheduling of instructions, about what data resides in registers, and so on. Memory be-
havior information determined at compile time via static analysis of a program can be used in
a compiler to select program transformations.

Despite the benefits of static cache behavior analysis, there currently exists no compile-
time framework for understanding cache behavior that is flexible, exact, and fast. Chapter 9
discusses several existing frameworks for analyzing memory behavior. The following are six
weaknesses common to some or all of these frameworks.

• Approximating cache behavior. Simplifications in modeling the behavior of a pro-
gram executing in a cache lead to an approximation of the program’s actual cache be-

7

havior. Using sampling to estimate the number of cache misses provides a good un-
derstanding of a program’s cache behavior when there are many cache misses occurring
uniformly throughout the program. When the cache misses are few and sparse through-
out the program, only an exact model of cache behavior guarantees an accurate picture
of a program’s cache performance.

• Modeling only fully-associative caches. The mapping of data from main memory
to cache depends on the organization of the cache. For data caches, the organization is
typically set-associative, sometimes direct-mapped, and almost never fully-associative.
Furthermore, frameworks that model only fully-associative caches usually require that
memory blocks contain only one data element. A cache model with such parameters is
not representative of the caches in today’s systems.

• Modeling data caches only, ignoring misses in the translation lookaside buffer

(TLB). A data cache stores most frequently referenced data close to the processor, while
a TLB stores memory address translations. The misses in both the data cache and TLB
determine a program’s memory performance. Modeling a program’s behavior in a data
cache and TLB is more complete than modeling its behavior in a data cache alone.

• Considering only perfectly-nested loops. A loop nest is a loop containing one or
more other loops, and the nesting may be perfect or imperfect. Considering only perfect
loop nests restricts the programs whose cache behavior can be analyzed.

• Considering loop nests in isolation of each other. Modeling the cache behavior of
loop nests out of the context of the rest of the program is inexact. Not taking into account
the contents of the cache before a loop nest begins execution leads to an overestimation
of the actual cache miss count for the loop nest.

• Handling only canonical array layout functions (i.e. row- and column-major).

Row- and column-major are the standard ways of mapping arrays to memory. However,
the ability to evaluate the potential benefit of nonstandard data layouts is useful.

This dissertation describes an analytical framework for understanding the behavior of loop
nests executing in a memory hierarchy. The framework has three components:

1) an alternative classification of cache misses that makes it possible to obtain the exact
cache behavior of a sequence of program fragments by combining the cache behavior
of the individual fragments (see Chapter 3);

2) the use of Presburger arithmetic [102, 103, 117] to model data access patterns and de-
scribe events such as cache misses (see Chapter 4); and

8

3) algorithms exploiting the connection among Presburger arithmetic, automata theory,
and graph theory to produce exact cache miss counts (see Chapter 5).

The cache analysis framework presented in this dissertation addresses the six weaknesses
outlined above. Given a program consisting of a sequence of loop nests and the configuration
of the underlying cache memory, the framework produces the number of cache misses incurred
by the program, indicating the program’s cache behavior. The framework produces the exact
number of cache misses incurred by a sequence of loop nests. The framework models cache
memories of any organization, including direct-mapped, set-associative, and fully-associative
caches. The framework handles cache memories of virtually any configuration, allowing the
counting of both data cache misses and TLB misses. The framework produces cache miss
counts for arbitrarily-nested loops. The framework gives the actual cache miss count incurred
by a loop nest sequence, and not merely the sum of cache misses incurred by each individual
loop nest in isolation. The framework models the data access patterns of a program whether it
uses a standard row- or column-major array layout, or a novel nonlinear array layout based on
bit interleavings of the binary expansions of the array coordinates. As this document will show,
the cache analysis framework of this dissertation does not suffer from any of the weaknesses
outline above.

1.3 Thesis Contributions

The following are statements of the major contributions in this dissertation.

• A new alternative cache miss classification has advantages over traditional cache miss

classification schemes. Unlike traditional miss classification schemes, the alternative miss
classification allows combining of the cache behaviors of individual program fragments
to obtain the cache behavior of the sequence of such program fragments. Determining
the state of the cache at certain points in program execution is critical to accurately
combining the cache behavior of the program fragments in the sequence. The alternative
miss classification also permits approximation of the number of cache misses incurred by
a program fragment sequence with a small error bound, which avoids the computation
of cache state.

• The cache analysis framework of this dissertation models the behavior of loop nests

executing in set-associative caches. The framework produces the exact cache miss count
incurred by a loop nest executing in caches of arbitrary associativity. Assuming a least-
recently used (LRU) cache replacement policy, a single pass through the method gives
cache miss counts for multiple associativity values.

• The cache analysis framework of this dissertation models the data access patterns of

arbitrarily-nested loops using Presburger arithmetic and exploits connections between

9

Presburger arithmetic, automata theory, and graph theory to identify cache misses. The
framework employs an exact model of the behavior of arbitrarily-nested loops execut-
ing in the presence of set-associative caches, expressed in Presburger arithmetic. To
determine the number of cache misses incurred by a loop nest, the framework applies
automata-theoretic methods for counting and enumerating Presburger formula solutions
to the formulas describing cache behavior. The counting method builds on a connection
between automata theory and graph theory to efficiently count solutions. The automata-
theoretic methods are not specific to cache behavior formulas and are relevant to many
other applications in program analysis, such as load balancing.

• The cache analysis framework of this dissertation is flexible. The inherent flexibility of
the framework derives from the use of Presburger formulas, as any behavior describable
in Presburger arithmetic may be modeled in the framework. As a result, the framework
can identify cache misses according to either the new alternative miss classification or
traditional miss classification. Moreover, the framework handles the row- and column-
major array layout functions, as well as nonlinear array layout functions expressible in
Presburger arithmetic.

• The cache analysis framework of this dissertation is a tool for improving program behav-

ior and exploring the space of memory design. The framework can be used to investigate
the effect of changes in the values of code and data transformation parameters. The
framework models caches of virtually any configuration, making it well suited to model
data cache and translation lookaside buffer (TLB) misses in a wide variety of memory
systems.

1.4 Limitations

There are some limitations on the loop nests whose memory behavior may be analyzed by the
framework presented in this dissertation, pertaining to control structure and data structure.

Control structure. The framework analyzes sequences of nested count-controlled loops
(i.e., loops that execute a specified number of times), and the number of times the loops execute
must be known at compile time. For example, consider the three loop nests in Figure 1.3. Loop
nest a is analyzable because it is clear how many times each of the two loops execute. Loop
nest b is analyzable only if the value of MAX is known at compile time. Loop nest c is not
analyzable since the number of times the loop executes depends on the values stored in array
A, which are not known at compile time.

The framework can analyze loop nest a in Figure 1.3 because the lower and upper bounds
on the loop control variables i and j are either values known at compile time or are linear
expressions of the control variables of the outer loops. The lower bound of loop control variable

10

do i = 0, 1000
do j = 2*i+5, 1000

x += A[i,3*j+i]
enddo

enddo

do i = 0, MAX
do j = 2*i+5, MAX

x += A[i,3*j+i]
enddo

enddo

do while x < 1000
x += A[i]
i += 1

enddo

a. b. c.

Figure 1.3: Example loop nests: a. analyzable by the framework, b. possibly analyzable by
the framework, c. not analyzable by the framework.

j is 2 ∗ i + 5, which is a linear expression of the control variable of the outer loop i. If the
lower bound of loop control variable j were instead 2∗i∗i+5, loop a would not be analyzable
because the expression is not linear in i. This restriction on lower and upper loop bounds is
due to the underlying polyhedral model [47] of loop nests and the use of Presburger arithmetic
to model loop nest behavior.

Also, the framework analyzes loop nests that execute on a uniprocessor.

Data structure. The framework of this dissertation analyzes loop nests that access memory
via array references.

The framework can analyze loop nest a in Figure 1.3 because the expressions for indexing
array A are linear expressions of the control variables in the loops containing the array reference.
The index expressions are i and 3∗j+i. If one of these expressions were instead 3∗i∗j, loop
nest a would not be analyzable because the expression is not linear in i and j. As with lower
and upper loop bounds, this restriction on array index expressions is due to the polyhedral
model and the use of Presburger arithmetic.

If the array reference in loop nest a in Figure 1.3 were instead an indirect reference such
as A[B[i,3*j+i]], the framework could not analyze the loop nest, because the values stored
in array B are not known at compile time.

Given these limitations, the analysis framework presented in this dissertation can analyze
loop nests typically found in dense matrix computations, such as linear algebra, Fourier and
related transforms, and low-level image processing. The framework cannot analyze loop nests
that perform sparse matrix computations, as they tend to have indirect array references. For
more on the types of loop nests whose memory behavior may be analyzed by the framework
of this dissertation, see Section 4.1.

1.5 Organization

The remainder of this dissertation is organized as follows.
Chapter 2 reviews terminology and background material relevant to this dissertation. In

11

particular, this chapter discusses the underlying models of cache memory, loop nests, and array
referencing, which are fundamental to the analytical framework presented here. This chapter
also discusses Presburger arithmetic, automata theory, and their connection, on which the
framework builds to obtain an accurate model of cache behavior.

Chapter 3 introduces a new alternative classification of cache misses that addresses a short-
coming of traditional miss classification schemes. With traditional miss classification schemes,
it is not possible to obtain the exact cache behavior of a sequence of program fragments from
the cache behavior of the individual fragments. This chapter shows the role of cache state
in producing an accurate cache miss count for a sequence of program fragments and provides
an option for approximating the number of cache misses in the sequence with a small error
bound.

Chapter 4 discusses how to model data access patterns in Presburger arithmetic. First,
this chapter introduces the notions of neighborhood and witness, which serve to identify the
situations that cause a cache miss. Then, the chapter shows how to express various types
of witnesses as formulas of Presburger arithmetic and gives rules for identifying cache misses
based on the existence of such witnesses.

Chapter 5 explains how the analysis framework exploits a fundamental connection between
Presburger arithmetic and automata theory to count solutions in Presburger formulas. This
chapter illustrates how accepting DFA paths encode the formula solutions and gives algorithms
for counting and enumerating such paths. The key to efficiently counting the number of
accepting paths in a DFA is to treat the DFA as a directed graph. To reveal the number of
cache misses incurred by a loop nest, the framework applies the automata-theoretic methods
for counting and enumerating Presburger formula solutions to the formulas describing cache
behavior given in Chapter 4.

Chapter 6 provides a high-level view of the analysis framework presented in this dissertation
and describes the tools used in the implementation of the framework. The framework employs
existing tools to extract relevant loop nest parameters from source code, to simplify Presburger
formulas describing cache behavior, and to represent a cache behavior formula as a DFA whose
accepting paths recognize the formula’s solutions.

Chapter 7 extends the analysis framework presented here to handle nonlinear data layouts
expressible in Presburger arithmetic. The analysis framework assumes an LRU cache replace-
ment policy. This chapter also considers the first-in first-out (FIFO) cache replacement policy
and gives insights on why it cannot be completely modeled by the framework.

Chapter 8 applies and validates the analysis framework of this dissertation on a variety
of example programs. Experiments demonstrate the framework’s ability to model exactly the
behavior of loop nests executing in set-associative caches by giving accurate cache miss counts
for virtually any value of associativity for all example programs. This chapter illustrates the
flexibility of the framework by giving cache miss counts for data caches and TLBs and by

12

considering example programs with both canonical and nonlinear data layouts. This chapter
also shows the usefulness of the framework in several example loop transformations.

Chapter 9 compares the analysis framework presented here to existing work for memory
behavior analysis. In particular, this chapter points out how the analysis framework of this
dissertation goes beyond related work by addressing the weaknesses outlined in Section 1.2.

Finally, Chapter 10 concludes the dissertation and provides directions for future work.

Chapter 2

Terminology and Notation

This chapter provides background material and defines notation for the analytical framework
presented in this dissertation. Section 2.1 describes the static structure and dynamic behavior
of cache memory. Section 2.2 gives the underlying model for loop nests, while Section 2.3
gives the underlying model for referencing array variables in loop nests. Section 2.4 reviews
Presburger arithmetic and its worst-case complexity. Section 2.5 discusses the connection
between Presburger arithmetic and automata theory.

2.1 Cache Basics

A cache is a small, fast memory located between the processor and main memory designed to
capture frequently referenced data [64, 66, 67, 104, 105, 114]. This section reviews the static
structure of a cache (Section 2.1.1), the dynamic behavior of a cache (Section 2.1.2), and a
special type of cache—the translation lookaside buffer (Section 2.1.3).

2.1.1 Static Cache Structure

From a hardware perspective, a large number of parameters characterize a cache [105]. How-
ever, it is standard to characterize the primary organization of a cache with the following three
parameters: associativity A, blocksize B, and capacity C [114]. Capacity, expressed in bytes,
is the total amount of data that a cache can hold. The seemingly complex organization of a
cache is motivated by the need to quickly locate data. On request of a memory byte address, a
search of the entire cache is avoided by quickly narrowing the search to a small portion of the
cache. Then, all memory in this limited portion of cache is simultaneously checked to locate
the requested memory address. A memory byte address1 is divided in such a way that this
limited portion of the cache is easily identified. Figure 2.1 shows how a memory byte address

1This address may be either a physical memory address or a virtual memory address. The framework
presented in this dissertation assumes that the data cache is virtually indexed. Fortunately, most operating
systems employ page coloring [78], which ensures that the cache set indexes of physical and virtual addresses
are identical. Therefore, whether it is a physical address or a virtual address is not of concern.

14

memory block address

tag cache set index
block offset

Slog bits2 Blog bits2

Figure 2.1: The portions of a memory byte address. The index selects the cache set, and the
tag disambiguates memory blocks in a set. The block offset locates the desired data within a
memory block at the memory block address.

is divided. First, the higher-order bits specify the address of the memory block containing
the memory byte address, and the block offset identifies the memory byte address within the
memory block. A memory block is the unit of mapping main memory to cache. For a
cache with blocksize B, each memory block holds B contiguous bytes of memory. A cache
has C

B cache frames, and each frame either may be occupied by a memory block or may be
empty. At no time may two cache frames contain the same memory block. The memory block
address is further partitioned, with the higher-order bits specifying a tag and the lower-order
bits specifying a cache set index. The cache set index eliminates the need to search the entire
cache for a memory address by quickly selecting the cache set (a small portion of the cache) to
which a memory block maps. The tag disambiguates memory blocks within the same cache set,
and simultaneous checking of the tags for all memory blocks in the cache set rapidly locates
the requested memory address or determines its absence from the cache. A cache set is the
collection of A frames that a particular memory block may occupy in the cache. A cache set
contains one cache frame at each of A degrees of associativity, and the collection of frames
from all sets at each degree of associativity is called a way. The number of cache sets, S, is
equal to C

AB . Figure 2.2 illustrates the cache structure described above. In general, B and S
are powers of two to allow quick determination of the cache set index and block offset using a
bit-level mask (see Figure 2.1).

Of the four cache parameters A, B, C, and S, only three are independent of one another.
While associativity A, blocksize B, and capacity C are considered the main cache parameters,
the number of sets S is critical in mapping data to cache. Notice that the size of the cache set
index is log2 S. The representation (A, B, C; S) denotes a cache with associativity A, blocksize
B, capacity C, and S cache sets. Consistent with the convention that A, B, and C are the main
cache parameters, the semicolon signifies that S is an auxiliary parameter. If A = C

B , then
S = 1 and a memory block may reside in any frame of the cache; such a cache is designated
fully-associative. If A = 1, then a memory block must reside in a particular frame; such a
cache is designated direct-mapped [66]. Figure 2.3 shows five caches with various values of
associativity A, fixing capacity C and blocksize B. Notice how the number of sets S and the
shape of the cache change with the associativity.

15

set 0

set 1

....

set S − 1

way 0 way 1 way A− 1

a cache frame
(B bytes)

a cache frame
(B bytes)

. . . .

a cache frame
(B bytes)

a cache frame
(B bytes)

a cache frame
(B bytes)

. . . .

a cache frame
(B bytes)

....
....

a cache frame
(B bytes)

a cache frame
(B bytes)

. . . . a cache frame
(B bytes)

Figure 2.2: Representation of an A-way set-associative cache with blocksize B, S cache sets,
and capacity C = A · B · S.

direct-mapped
2-way set associative

4-way set associative

8-way set associative

fully-associative
A =1, S =16

A =2, S =8

A =4, S =4

A =8, S =2

A =16, S =1

Figure 2.3: The different shapes of caches with fixed capacity C and blocksize B, varying
associativity A. Notice how the mapping of data to cache will differ for each shape.

The four cache parameters described above are used to define the mapping2 of blocks from
main memory to cache memory. The Block function (with Block(m) = bm

B c) associates a
memory byte address with a unique memory block address. The Set function (with Set(b) =
b mod S) associates a memory block address with a unique cache set.

For a program executing in a direct-mapped cache, at any point during execution of the
program each set of the cache either contains a memory block or is empty. If a program executes
in a two-way set-associative cache, each set of the cache contains two distinct memory blocks,
one memory block, or is empty at any point during executing of the program. In general,

2Other schemes for mapping from main memory to cache have been proposed, such as skewed-associative
caches [112, 113] and XOR-based cache placement [63], but the scheme reviewed here is the universally accepted
way of mapping blocks of main memory to cache memory in commercial processors.

16

SS-20 1 2

wraparound value 0

memory block address:

. . .
-1

SS-2+1 +2

wraparound value 1 . . .
-1S S S

SS-2+1 +2

wraparound value w-1 . . .
-1S S S

2 2

w w(w-1) (w-1) (w-1)

+1 +2

wraparound value w . . .
Sw Sw Sw -2S(w+1) -1S(w+1)

.
 .

 .
.

 .
 .

m

Figure 2.4: Wraparound value w = Wrap(m), for memory byte address m. The cache set
number s = 1 and wraparound value w identify the memory block address for m.

for an A-way set-associative cache, each set of the cache contains one to A distinct memory
blocks or is empty at any point during execution of the program. The state of the cache is
the collection of memory blocks residing in each cache set at any point during the execution
of a program such that the memory blocks in each cache set are ordered by recency of access.
Maintaining the order of most recently accessed is convenient for determining which memory
blocks are candidates for replacement using the least-recently used (LRU) policy. The state
of cache set s, Cs = {b1, . . . , bn}, is the set of memory block addresses resident in cache set
s, where n ∈ [0,A] is the size of Cs. The state of cache set s is empty if no memory blocks
have yet mapped to cache set s (i.e., Cs = {} and n = 0). The contents of Cs have an implicit
ordering that indicates the most recently accessed. Memory block address bi is more recently
accessed than bj if i < j. The state of the entire cache is C = {(s,Cs) : 0 6 s < S}. Let 〈 〉 be
an indexing operator for the state of the entire cache such that C〈s〉 = Cs.

Recall from Figure 2.1 that the lower-order bits of a memory block address specify the cache
set to which it maps, and the higher-order bits (called the tag) distinguish the memory block
from others in the same set. I refer to the tag in a memory address as the wraparound value.
The Wrap function (with Wrap(m) = bBlock(m)/Sc) associates a memory byte address with a
unique wraparound value. Figure 2.4 shows the wraparound value w for a memory byte address
m, and that all memory byte addresses with a block address equal to xS up to (x + 1)S − 1
have the same wraparound value x. The intuition of a wraparound value w is that memory

17

Lmm: do i = 0, t− 1
do j = 0, u− 1

S0: c = Z[i,j]
do k = 0, v − 1

S1: c += X[i,k] * Y[k,j]
enddo

S2: Z[i,j] = c
enddo

enddo

Figure 2.5: The running example loop nest Lmm.

wraparound 0

wraparound 1

wraparound 2

array X array Y

array Y array Z

array Z

100

200

300

0 127

128 255

256 383

Figure 2.6: Wraparound values for the memory locations accessed by loop nest Lmm.

“wraps around” the cache w times before m maps to set s. Notice that each cache set number
and wraparound value pair identifies a unique memory block address, and each memory block
address has a unique set number and wraparound value pair. Thus, it is a two-dimensional
representation of a memory location (set number, wraparound value), which is an alternative
to the traditional one-dimensional representation (memory byte address). In modeling the
data access patterns of programs, the framework of this dissertation considers the behavior in
each cache set individually and uses wraparound values to specify memory blocks.

In order to demonstrate the concept of a wraparound, consider the loop nest in Figure 2.5,
which is the running example used for illustration throughout this document. Loop nest
Lmm, which is normalized3 and language-neutral, performs the matrix multiplication Zt×u =
Xt×v ·Yv×u. Suppose that t = u = v = 20 and that all arrays contain double-precision elements
of 8 bytes each. For an (A, 32, 4096 · A; 128) cache, Figure 2.6 shows one way of storing the
three arrays in memory. Elements of array X have memory block addresses ranging from 0
to 99 and occupy memory locations with a wraparound value of 0. Some elements in array Y

occupy memory locations with a wraparound value of 0, and other elements are in memory
locations with a wraparound value of 1. Similarly, some elements of array Z occupy memory
locations with a wraparound value of 1, and others with a wraparound value of 2.

3In a normalized loop nest, all loops have step size equal to one [135].

18

Note that the wraparound value of a memory address does not have to be equivalent to its
tag. As Chapter 4 discusses, the analytical framework presented in this dissertation uses the
distinctness of wraparounds, and not their actual values, to model cache behavior. Therefore,
it is always valid to change the starting addresses of all referenced arrays by some multiple of
B·S, in effect changing the actual values of all wraparounds but not their distinctness. Suppose
that for the running example loop nest Lmm (with t = u = v = 20, 8-byte array elements, and
an (A, 32, 4096 · A; 128) cache), the starting address of array X in memory is 12288, the
starting address of array Y is 15488, and the starting address of array Y is 18688. All elements
of array X have a wraparound value of 3. Elements of array Y have either a wraparound value
of 3 or a wraparound value of 4. Elements of array Z have either a wraparound value of 4 or a
wraparound value of 5. Subtracting 12288 = 3 · 32 · 128 from each starting array address gives
the same wraparound values as in Figure 2.6. Thus, loop nest Lmm with starting addresses
12288, 15488, and 18688 has the the same cache miss behavior as with the original starting
array addresses of 0, 3200, and 6400.

2.1.2 Dynamic Cache Behavior

When the processor requests data at a memory address m, a cache hit occurs if Block(m) ∈
C〈Set(Block(m))〉. The cache satisfies the memory request after the hit time (i.e., the time
required to fetch the requested data). A cache miss occurs if Block(m) /∈ C〈Set(Block(m))〉.
During a cache miss, the lower levels of memory satisfy the memory request and place memory
block Block(m) in cache set s = Set(Block(m)), after the miss penalty (see equation (1.3)). A
replacement algorithm selects which cache frame in set s to update with the new memory
block. Ideally, an algorithm should select the cache frame containing the memory block that
will be unused for the longest time in the future; this is known as the optimal replacement
algorithm [13]. Because the optimal replacement algorithm requires perfect knowledge of the
future, it is not implementable in hardware. However, it does serve to gauge the effectiveness
of other replacement algorithms. Least-recently used (LRU), first-in first-out (FIFO),
and random are three popular replacement algorithms [64]. The LRU algorithm chooses to
replace the memory block in set s that has been unused for the longest time. The FIFO
algorithm chooses to replace the memory block that has resided in set s for the longest time.
The random algorithm chooses randomly among the memory blocks currently residing in set
s. Note that for direct-mapped caches, a replacement algorithm is not necessary since each set
holds only one memory block. The analytical framework presented in this dissertation assumes
a LRU replacement policy.4 Section 7.2 discusses why the framework does not assume a FIFO

4As the cache associativity increases, the number of bits required to implement the LRU algorithm grows
exponentially in A [64]. As a result, LRU replacement is most often approximated (called pseudo-LRU) [64].
The framework of this dissertation assumes true LRU replacement. The possibility of a slight mismatch in
a program’s cache behavior with true LRU and its behavior with pseudo-LRU is beyond the scope of this
dissertation.

19

replacement policy.
Assuming an LRU replacement policy, the state of the cache changes after a cache hit or

miss to preserve the most-recently-accessed ordering and to update the contents of cache state
(in the case of a miss).

Definition 2.1 For a memory access a that touches memory block b in cache set s, C〈s〉 =
{b1, . . . , bn} becomes C′〈s〉 = UpdateState(C〈s〉, a) where

UpdateState(C〈s〉, a) =


{b, b1, . . . , bi−1, bi+1, . . . , bn} if b = bi hits,

{b, b1, . . . , bn} if b misses and n < A,

{b, b1, . . . , bn−1} if b misses and n = A.

(2.1)

Traditional cache miss categories are helpful in capturing the cause of a cache miss. A
compulsory miss (or cold miss) occurs on the first access to a memory block because the
block cannot already be resident in cache. Compulsory misses cannot be avoided, except with
prefetching. A capacity miss occurs when accessing a memory block that was previously in
cache but was replaced because the cache could not contain all of the memory blocks needed
to execute a program. Capacity misses are due to the restricted size of the cache. A conflict

miss occurs when accessing a memory block that was previously in a cache set but was replaced
because too many other memory blocks mapped to the same cache set. Conflict misses are
due to too many memory blocks mapping to a fraction of the cache. One way to compare
capacity and conflict misses is to consider associativity. Capacity misses occur independent
of the associativity of a cache (i.e., a capacity miss in an LRU set-associative cache with
capacity C also misses in an LRU fully-associative cache with capacity C). Conflict misses
depend on associativity (i.e., a conflict miss in an LRU set-associative cache with capacity C
hits in an LRU fully-associative cache with capacity C). This classification of cache misses is
known as the 3C model [67]. Because both capacity and conflict misses describe accesses to
memory blocks that have resided in cache but were replaced, they are often grouped together
as replacement misses. I refer to this classification of cache misses as the compulsory-
replacement miss classification.

2.1.3 A Special Cache—the TLB

The cache described above is a data cache, storing the contents of the most frequently refer-
enced blocks of main memory close to the processor. This work also considers another type
of cache—the translation lookaside buffer (TLB). The TLB is a cache of memory address
translations. TLB miss penalties are often larger than data cache miss penalties, contributing
significantly to poor program performance.

Many programs operate on more data than main memory can hold, with the remaining
data contained in secondary storage (i.e., hard disk). Virtual memory is a technique for
automatically managing these two levels of memory so that processes, such as an executing

20

program, need not be aware of whether the required data is in main memory or in secondary
storage [66]. When a program needs data, the processor produces a virtual memory address
for the data. The address space of virtual memory is divided into pages, and each virtual
address is split into a virtual page number and an offset within the page. A page table gives
the physical page number corresponding to a virtual page number, which combines with the
page offset to give the complete physical address. The physical memory address indicates the
actual memory location of the requested data.

The relationship between main memory and disk memory is similar to the relationship
between cache and main memory. While a memory block is the unit of mapping to cache, the
unit of mapping to main memory is a page. A memory block not found in the cache incurs a
cache miss, while a page not found in main memory incurs a page fault. The critical difference
in the two relationships is the placement of memory blocks in cache and the placement of
pages in main memory. A page can be placed anywhere in main memory, and the mapping of
pages to main memory can change over time. A page table is necessary to keep track of the
translations from the virtual addresses of pages in main memory to their physical addresses
in disk memory. The placement of a memory block into a particular set of the cache is well
defined by the memory byte address, and there is no need for a table to keep track of the
mappings from main memory to cache.

Translation from a virtual address to the corresponding physical address is necessary on
every access to memory. Because page tables are usually too large to fit in cache, the over-
head of address translation is large. To avoid address translation on every memory access,
recently-performed address translations are held in a special cache—the TLB. The TLB is a
hardware table containing cross-references between the virtual and physical addresses of re-
cently referenced pages of memory. If the physical page number of a desired page is not in
the TLB, a delay is incurred while the physical page number is determined by a page table
lookup. Thus, the TLB is a special cache that captures the most frequently referenced items
(namely, the mapping from virtual memory addresses to physical memory addresses), where
the cache index is based on the virtual address. TLBs are highly-associative and page sizes are
large (typically 4096 bytes and larger), and this combination makes TLBs difficult to model
analytically. A TLB miss occurs when the physical memory page number of accessed data is
not found in the TLB, and the penalty for such a miss can be hundreds of processor cycles
or more. The analysis framework of this dissertation assumes that the instruction and data
TLBs are distinct, and the framework is used to determine the data TLB misses incurred by
a program.

2.2 Modeling Loop Nests

The analytical framework of this dissertation focuses on count-controlled loops (i.e., loops
that execute a specified number of times) because the number of loop iterations is known at

21

do i = x to y by z
c = A[f(i)]

enddo

original loop

do i = bx/zc to by/zc by 1
c = A[f(z·i + x mod z)]

enddo

normalized loop

Figure 2.7: The normalized loop is a semantically-equivalent version of the original loop,
transformed to make step size equal to one.

compile time. In a count-controlled loop, there is a program variable that is set to an initial
value and incremented/decremented by a constant amount until reaching a specified value
limit. Such a program variable is known as a loop control variable (LCV).

It is sufficient in modeling loop execution to restrict analysis to normalized loops, in which
the step size is equal to one [135]. Normalization simplifies the analysis of loops, but with no
loss of information, since transforming a loop to get a step size of one preserves the semantics
of the original loop (see Figure 2.7). The initial value of the LCV is its lower bound, and the
LCV is incremented by one until reaching the specified value limit that is its upper bound.
The initial and limit values of a LCV, being characteristic of all count-controlled loops, are
easy to identify. For the outermost loop in the running example loop nest Lmm in Figure 2.5
on page 17 with t = 20, the LCV is i with lower bound 0 and upper bound 19.

A loop nest is a loop containing one or more other loops. The model of nested loops
given here is based on the well-known polyhedral model [47]. The depth, d, of the loop nest
indicates the number of nesting levels, numbered 0 for the outermost loop to d − 1 for the
innermost loop. The LCV of the loop at level j, ιj , has lower bound Lj and upper bound
Uj . For each LCV ιj , Lj and Uj must be affine functions of ι0 to ιj−1. This is a restriction
of the polyhedral model and is common among work for analyzing memory behavior. The
set of all valid combinations of LCV values for a loop nest is its iteration space I, and
ι = [ι0, . . . , ιd−1]

T denotes a point in the iteration space (known as an iteration point). For
loop nests, the relationship of iteration point ι executing before iteration point κ, denoted
ι ≺ κ, is equivalent to the lexicographical ordering of iteration points. Consider again the
running example loop nest Lmm in Figure 2.5 with t = u = v = 20. Loop nest Lmm has depth
d = 3. The LCVs are ι0 = i with L0 = 0 and U0 = 19, ι1 = j with L1 = 0 and U1 = 19,
and ι2 = k with L2 = 0 and U2 = 19. For loop nest Lmm, [0, 0, 19]T ≺ [0, 1, 0]T expresses the
temporal ordering relationship of two example iteration points.

The statements in a loop nest are numbered according to the order in which they are
executed by the loop nest. If the innermost loop contains each statement Sh in a loop nest,
the loop nest is perfect. Otherwise, the loop nest is imperfect. It is desirable to model the
cache behavior of both perfect and imperfect loop nests, but it is cumbersome to have the
modeling technique cope with two different kinds of loop nests. Preprocessing imperfect loop
nests into semantically-equivalent perfect loop nests eliminates the need to handle two different

22

cases. Embedding algorithms [2, 3, 76, 77, 86] make it possible to transform an imperfect loop
nest into a perfect loop nest. The transformations introduce guards on statements, which map
statements from their places outside the innermost loop to valid places inside the innermost
loop. The guard Gh(ι) evaluates to true if statement Sh executes at iteration point ι, and
evaluates to false otherwise. Loop nest Lmm in Figure 2.5 has three statements. Because
statements S0 and S2 are outside of the innermost loop, loop nest Lmm is imperfect. Guards
G0([i, j, k]

T) = (k = 0) and G2([i, j, k]
T) = (k = 19) allow movement of statements S0 and

S2 to the innermost loop and then execution only when the appropriate guard is true.

2.3 Modeling Array References

In modeling references to memory, array variables are the primary concern, since referencing
arrays accounts for most of the accesses to cache. Operations on scalar variables have negligible
impact on average memory access time, as they are typically resident in a register. Modeling
references to scalar variables is possible, simply by considering them as one-dimensional arrays
of length one.

Using the terminology of Ghosh et al. [62], a reference is the static instance of an array
variable read or write in the source code of a program, while a particular execution of that
read or write at runtime is an access. Recall the running example loop nest Lmm in Figure 2.5
on page 17, which makes four references to array variables: R0 = Z[i,j] (the read), R1 =
X[i,k], R2 = Y[k,j], and R3 = Z[i,j] (the write). The references in each statement are
ordered according to the order of operations on their corresponding array variables, and given
the ordering among statements, this defines the total ordering of references. An iteration point
and reference pair uniquely defines an access. Composing the lexicographical ordering among
iteration points and the ordering among references specifies a total order among accesses,
denoted as “precedes” and written �.

Definition 2.2 Access (ι, Ru) precedes access (ι′, Ru′) if the iteration given by ι occurs
before the iteration given by ι′, or if ι and ι′ specify the same iteration and Ru comes before
Ru′ in the total ordering of references. The precedes relationship is written (ι, Ru) � (ι′, Ru′).

For loop nest Lmm with t = u = v = 20, ([0, 0, 19]T, R3)�([0, 1, 0]T, R0) expresses the temporal
ordering relationship of two example accesses.

A reference Ru has three components: the name of the array variable referenced, some array
Y (j); the indexing function of the reference, Eu; and the statement containing the reference,
some statement Sh.5 The index expression of reference Ru is Eu · ι, at iteration ι. The running
example loop nest Lmm in Figure 2.5 operates on three arrays: Y (0) = X, Y (1) = Y, and Y (2) =

5It would be straightforward to include a fourth component indicating whether the reference is a read or
write. Because the analytical framework of this dissertation treats memory reads and writes the same, knowing
the read/write status of a reference is unnecessary.

23

Z, and has four references: R0 = (Y (2), E0, S0), R1 = (Y (0), E1, S1), R2 = (Y (1), E2, S1), and
R3 = (Y (2), E3, S2). Given an iteration point, the index expression determines the exact array
element accessed. The index expression for a reference at nesting level k must be an affine
function of the LCVs ι0 . . . ιk, which is an inherent restriction of the polyhedral model [47].
For the four references in loop nest Lmm:

E0 = E3 =

[
1 0 0
0 1 0

]
, E1 =

[
1 0 0
0 0 1

]
, and E2 =

[
0 0 1
0 1 0

]
.

In order to specify the memory addresses of the array elements accessed by a loop nest,
it is necessary to capture properties of each array Y (j). The dimensionality of array Y (j) is
dj , and its length in the (k + 1)th dimension is `k. Byte address µj denotes the location in
memory where the storage of array Y (j) begins, and the number of bytes required to store each
of its elements is βj . For the running example loop nest Lmm in Figure 2.5, suppose that each
array element is double-precision and requires eight bytes (i.e., β0=β1=β2=8). Then, each
array requires 3200 bytes of storage. In order to make the arrays contiguous and adjacent in
memory, suppose the starting addresses are µ0 = 0, µ1 = 3200, and µ2 = 6400. The layout
function Lj associated with array Y (j) stipulates the manner in which an array element maps
to its place in memory. The two canonical array layouts [37] are row-major and column-major,
storing an array by rows and columns, respectively. For a reference Ru = (Y (j), Eu, Sh) and
an iteration point ι, let Eu(ι) = [e0, . . . , edj−1]

T. The two canonical array layout functions are
as follows.

Row-maj(Eu(ι)) =
dj−2∑
p=0

(
dj−1∏

q=p+1

`q)ep + edj−1 (2.2)

Col-maj(Eu(ι)) = e0 +
dj−1∑
p=1

(
p−1∏
q=0

`q)ep (2.3)

The element of array Y (j) accessed by reference Ru at iteration point ι has memory byte
address m = µj + Lj(Eu(ι)) · βj . In other words, m is the memory byte address touched
by access a = (ι, Ru). The Mem function associates an access with the unique memory
byte address that it touches. For the running example loop nest Lmm in Figure 2.5, access
a = ([0, 5, 12]T, R2) maps to memory byte address 4096 in the following way:

Mem(([0, 5, 12]T, R2)) = µ1 + L1(E2([0, 5, 12]T)) · β1
= 3200 + Col-maj(Y[12,5]) · 8

= 3200 + (12 + 5 · 20) · 8

= 4096.

24

2.4 Presburger Arithmetic

The analytical framework presented in this dissertation uses Presburger arithmetic to model
data access patterns and describe events such as cache misses. Presburger arithmetic is the
first-order theory of integers with addition. A Presburger formula consists of affine equality
and/or inequality constraints connected via the logical operators ¬ (not), ∧ (and), ∨ (or), and
the quantifiers ∀ (for all) and ∃ (there exists). A formal grammar for Presburger arithmetic
(in Backus-Naur form) is as follows:

〈formula〉 ::= (〈formula〉) | 〈formula〉 ∧ 〈formula〉 | 〈formula〉 ∨ 〈formula〉 |

¬〈formula〉 | ∃var : 〈formula〉 | ∀var : 〈formula〉 |

〈expression〉〈rel-op〉〈expression〉

〈expression〉 ::= (〈expression〉) | 〈expression〉+ 〈expression〉 | − 〈expression〉 |

integer ∗ 〈expression〉 | var | integer

〈rel-op〉 ::= < | > | 6 | > | =

To improve the readability of Presburger formulas included in this dissertation, I will use cer-
tain obvious shortcuts in writing relationships among expressions such as multiple inequalities
(e.g., 0 6 x ∧ x < 100 is written as 0 6 x < 100).

For example, the following Presburger formula describes a valid iteration point for the
running example loop nest Lmm in Figure 2.5 on page 17:

P(i, j, k; t, u, v) = 0 6 i < t ∧ 0 6 j < u ∧ 0 6 k < v

with free integer variables i, j, and k (denoting the LCVs i, j, and k) and symbolic constants
t, u, and v (denoting the loop upper bounds). The variables t, u, and v are considered symbolic
constants because their values are fixed. From the perspective of Presburger arithmetic, i, j,
k, t, u, and v are all variables. However, from the perspective of a loop nest, variables i, j, and
k are very different from variables t, u, and v. The semicolon in P(i, j, k; t, u, v) denotes this
separation of variables. Given loop nest Lmm with t = u = v = 20, the Presburger formula is

P(i, j, k) = 0 6 i < 20 ∧ 0 6 j < 20 ∧ 0 6 k < 20

with no symbolic constants. A solution to a Presburger formula is any of the values for each
free variable that satisfies the formula. For the example Presburger formula P(i, j, k), i = 9,
j = 0, and k = 5 is one solution.

25

In 1929, Presburger [102, 103, 117] proved that the first-order theory of integers with ad-
dition is complete (i.e., every such formula or its negation is true) and decidable. In proving
completeness, Presburger provided an algorithm which decides the truth of any given sen-
tence in Presburger arithmetic. Presburger’s algorithm is based on quantifier elimination [82].
Quantifier elimination repeatedly transforms a sentence6 with quantifiers (∀, ∃) into an equiv-
alent sentence containing fewer quantifiers until there are no quantifiers left. Any equivalent
sentence containing fewer quantifiers is considered a simplification of the original sentence.
This technique assumes that the truth of a quantifier-free sentence is easy to determine (e.g.,
7 < 3 + 5 is true). Therefore, the truth value of the resulting quantifier-free sentence is the
truth value of the original sentence in Presburger arithmetic.

In 1972, Cooper [41] presented a more efficient algorithm for deciding the truth of Pres-
burger formulas, which is also based on quantifier elimination. Oppen [99] proved that the
upper bound on the size of the sentence produced by Cooper’s algorithm (after elimination
of all variables) and the number of computational steps required is 222pn

for some constant
p > 1, where n is the length of the original sentence. Reddy and Loveland [107] improved
Cooper’s quantifier elimination method for classes of Presburger arithmetic restricted to a
bounded number of alternations of quantifiers. Their improvement yields an upper bound on
the complexity of decidability that is one exponent less than that of full Presburger arithmetic.
Similarly, Weispfenning [129] showed that by weakening the concept of quantifier elimination
slightly to bounded quantifier elimination, the upper and lower bound for quantifier elimina-
tion in Presburger arithmetic can be lowered by exactly one exponential. The complexity of
quantifier elimination is related to the number of alternating blocks of ∀ and ∃ quantifiers in
the sentence and to the numerical values and coprimality relationships of the integer constants
in the sentence [111].

Fischer and Rabin [52] proved that the cost for every algorithm which decides the truth
of Presburger sentences is at least 22cn

for some constant c and a sufficiently large sentence
length n (i.e., there exists n0 such that this is true for all n > n0). The upper bound for
deciding Presburger arithmetic is established to be one exponent lower than Oppen’s bound,
using a result from Ferrante and Rackoff [49].

For the purposes of this dissertation, the main points are twofold: that it is possible to
eliminate the quantifiers in, and decide the truth of any Presburger formula; but that the
complexity is superexponential in the worst case. Considering the undesirable worst-case
complexity for Presburger arithmetic, the framework of this dissertation exploits a connection
between Presburger arithmetic and automata theory to both count and enumerate the solutions
to a Presburger formula, rather than coping with the formula directly. The next section reviews
the connection between Presburger arithmetic and automata theory.

6A sentence in Presburger arithmetic is a formula that has no free variables.

26

2.5 Automata Theory

There is a fundamental connection between Presburger arithmetic and automata theory,
namely, that there exists a deterministic finite automaton (DFA) recognizing the positional
binary representation of the solutions of any Presburger formula.7 Following standard termi-
nology, a DFA M is a 5-tuple (S,Σ, δ, q0, F), where

S is a finite set of states,
Σ is a finite set of symbols called the alphabet,
δ : S × Σ → S is the transition function,
q0 ∈ S is the start state,
F ⊆ S is a set of final states.

The Presburger-DFA connection is perhaps not surprising, given that DFAs can describe
arithmetic on the binary representation of natural numbers. The key point to remember in
transitioning from Presburger arithmetic to DFAs is the move from a domain of values (natural
numbers) to a domain of representations (positional binary encoding).

Büchi [26, 27] originally proved that a subset of ({0, 1}n)∗ is recognizable by a finite state
automaton if and only if it is definable in WS1S (Weak Second-order Theory of One Successor).
Boudet and Comon [23] build on this result. Because Presburger arithmetic can be embedded
in WS1S, there is a DFA recognizing the solutions of a Presburger formula. Boudet and Comon
formalize the connection between Presburger arithmetic and automata in the following claim.

Claim 2.1 (Boudet and Comon) Let φ ≡ Qnxn, . . . , Q1x1ψ be a formula of Presburger
arithmetic where quantifier Qi is either ∃ or ∀ and ψ is an unquantified formula with vari-
ables x1, . . . , xn, y1, . . . , ym. There is a deterministic and complete automaton recognizing the
solutions of φ with at most O(222|φ|

) states.

The proof of the claim is constructive, with the construction procedure defined by induc-
tion on the structure of φ. The base cases are linear equalities and inequalities, for which DFA
recognizers are easy to construct [9, 10, 23]. Logical connectives of subformulas utilize closure
properties of regular sets under intersection, union, and complementation [68]. Existential
quantification is handled by projecting the alphabet and the transition function (producing a
nondeterministic finite automaton) followed by determinization and state minimization. Uni-
versal quantification exploits the tautology ∀xφ ≡ ¬∃x¬φ.

Wolper and Boigelot [137] explain that Boudet and Comon’s proof of Claim 2.1 is incorrect,
although the result itself may not be false. Klaedtke [80] rigorously proves that there is a triple

7The Presburger formula may have either a finite or an infinite number of solutions.

27

exponential upper bound on the size of the minimal deterministic word automaton (DWA)8

for a formula in Presburger arithmetic. The following theorem is the formal statement of the
result.

Theorem 2.1 (Klaedtke) The size of the minimal DWA for a formula of length n is at most

222O(n)

.

The upper bound on automata size given by Klaedtke applies when the first letter of an
integer word solution recognized by an automaton is the most significant bit (MSB). When the
first letter of an integer word solution is the least significant bit (LSB), automata size may be
exponentially smaller than that of the corresponding MSB-first encoding [80]. The converse,
that the automata size for an LSB-first encoding may be exponentially larger than for the
corresponding MSB-first encoding, has not been shown. The precise relationship of MSB-first
and LSB-first encodings for automata representations of Presburger formulas is unknown, and
it is not clear which encoding works best in practice.

Independent of whether the encoding is MSB-first or LSB-first, the cost of constructing au-
tomata recognizing Presburger formula solutions is superexponential in the worst case. There-
fore, converting Presburger formulas to DFAs does not circumvent the difficulty of identifying
solutions to the formulas, as both the complexity of DFA construction and the complexity of
Presburger formula decidability are superexponential in the worst case. The large worst-case
complexity is better understood in the context of DFAs. In the translation of Presburger for-
mulas to DFAs, this complexity manifests in the number of states in the resulting DFA. Specif-
ically, it is the translation of universal quantifiers and negation that causes the exponential
blowup of the automaton [23]. The framework of this dissertation builds on the Presburger-
DFA connection, constructing DFA representations of cache behavior formulas and counting
(or enumerating) the accepting DFA paths to count (or identify) the formula solutions, as
Chapter 5 explains. The potentially large cost of DFA construction does motivate simplifying
the cache behavior formula as much as possible before constructing a DFA recognizing the
formula solutions, which the framework does.

2.6 Summary

Four parameters specify the organization of cache memory and the mapping of data from main
memory to cache: associativity A, blocksize B, capacity C, and the number of sets S. As such,
these parameters play a prominent role in modeling cache behavior. The LRU replacement
algorithm for determining how to update a cache set on a miss is also reflected in how the
framework models cache behavior. Cache state C specifies the contents of each cache set at

8Klaedtke refers to the DFA recognizing the solutions of a Presburger formula as a DWA because the integer
solutions are represented as words.

28

any point during the execution of a program, which is a key component of the alternative
cache miss classification presented in Chapter 3.

The underlying models of loop nests and referencing arrays in loop nests capture informa-
tion about the array elements accessed by a loop nest and the order in which they are accessed.
Preprocessing imperfect loop nests into semantically-equivalent perfect loop nests enables the
analysis framework to model the cache behavior of arbitrarily-nested loops.

The framework presented in this dissertation uses Presburger arithmetic, the first-order
theory of integers with addition, to express the data access patterns of a loop nest and to
describe the cache misses incurred by a loop nest. The worst-case complexity of Presburger
arithmetic is superexponential, motivating an approach for dealing with Presburger formula
solutions indirectly. The analysis framework of this dissertation builds on fundamental con-
nection between Presburger arithmetic and automata theory to determine the solutions to
cache behavior formulas. The worst-case complexity of automata construction is the same
as for Presburger arithmetic, but the complexity is better understood and manageable in the
context of DFAs.

Chapter 3

A New Classification of Cache Misses

Decomposing a program into fragments and considering each fragment individually is critical
for managing the difficulty of analyzing the program’s cache behavior. This strategy for
simplifying the analysis results in no loss of information if there is a way to combine the
cache behaviors of individual fragments meaningfully to obtain the cache behavior of the
program. Section 3.1 reviews two existing cache miss classification schemes and demonstrates
their insufficiency in combining the cache behaviors of program fragments to obtain the cache
behavior of their composition. Section 3.2 introduces a new classification of cache misses
that makes it possible to achieve a meaningful combination of the cache behaviors of program
fragments. Section 3.3 illustrates the role of cache state in combining the cache behaviors of
program fragments. Note that what constitutes a program fragment is purposely vague in this
chapter, since combining the cache behaviors of program fragments does not depend on the
exact nature of the fragments.

3.1 Composability

When using static analysis to count the number of cache misses incurred by a program, it is
simpler to consider each fragment of the program individually than to consider the program
as a whole. This divide-and-conquer strategy improves the tractability of the analysis by
limiting the amount of cache behavior modeled for any one program fragment. Furthermore,
if it is possible to relate the cache misses of each distinct program fragment to the cache
misses of the composition of these fragments, this simplification suffers no loss of information.
For instance, suppose that a program P consists of two fragments F1 and F2, where F12 is
their sequential composition (i.e., P ≡ F12

def= F1; F2). “Combining” the cache misses of
fragments F1 and F2 should be equivalent to the cache misses of F12, and therefore, program
P. Otherwise, the simplification of considering each program fragment individually does result
in loss of information, and the combination of cache misses incurred by each fragment is only an
approximation of the misses incurred by the entire program. Whether or not the combination

30

of cache misses in each program fragment is equivalent to the misses in the entire program
depends on the scheme for classifying cache misses.

Definition 3.1 Composability is the property of a cache miss classification scheme such
that there is an exact way of relating the cache misses of individual program fragments to the
cache misses of the entire program.

Two existing cache miss classification schemes lack the property of composability. The
well-known 3C model [67] is the traditional cache miss classification scheme, classifying a
cache miss into one of three categories: compulsory, capacity, or conflict (see Section 2.1.2).
A compulsory miss is incurred on the first access to a memory block and cannot be avoided.
A capacity miss is a miss in an LRU set-associative cache with capacity C that also misses
in an LRU fully-associative cache with capacity C. A conflict miss is a miss in an LRU set-
associative cache with capacity C that hits in an LRU fully-associative cache with capacity
C. The OPT model [118] for classifying cache misses has the same three categories as the
3C model. However, in classifying capacity and conflict misses, the OPT model compares
caches that use the optimal replacement algorithm [13]. Capacity and conflict misses are often
grouped together as replacement misses. Because the distinction between the 3C model and
the OPT model is in the classification of capacity and conflict misses, the models are identical
in their classification of compulsory and replacement misses.

The compulsory-replacement miss classification schemes can be problematic. First, since
the cache miss categories of the 3C model and the OPT model are architectural in nature,
they are useful in comparing two caches, but that is not the objective of the work in this
dissertation. Second, the compulsory-replacement miss classification schemes lack the vital
property of composability. To observe how the compulsory-replacement miss classification
schemes fall short, suppose that fragment Fi incurs Ci compulsory misses and Ri replacement
misses. By definition, a compulsory miss occurs when a program fragment accesses a memory
block for the first time, without regard to whether the memory block is in cache when the
fragment begins execution. For that reason, there is no simple way to relate the misses of
fragments F1 and F2 (C1, R1, C2, R2) to the misses of their composition F12 (C12, R12).
Certainly, C12 + R12 6= C1 + R1 + C2 + R2, since the compulsory misses in program fragment
F2, C2, may not even be misses in the composition F12. There are two keys to combining the
cache misses of fragments F1 and F2 to get the cache misses of their composition F12—cache
state (defined in Section 2.1.1) and a new classification of cache misses.

3.2 Interior-Boundary Miss Classification

Given a fragment of a program P and a cache configuration (A, B, C; S), all memory accesses
made by the fragment fall into one of three groups: those guaranteed to hit in cache, those
guaranteed to miss in cache, and those that could hit or miss depending on the state of the

31

0

10

20

0

10

20

0

10

20

i

Plot 1: Misses on Array X

j

k

0

10

20

0

10

20

0

10

20

i

Plot 2: Misses on Array Y

j

k

0

10

20

0

10

20

0

10

20

ij

k

Plot 3: Misses on Array Z

pot. boundary
interior

Figure 3.1: 3-D views of the interior and potential boundary misses incurred by loop nest Lmm.
Each plot represents the iteration space of Lmm, and a marked iteration point denotes a miss
at that point for the corresponding array.

cache at the beginning of program fragment execution. Of course, an access that is guaranteed
to hit in cache is simply a cache hit.

Definition 3.2 An interior miss is a memory access that is guaranteed to miss in cache,
independent of the cache state when a program fragment begins execution.

Definition 3.3 A potential boundary miss is a memory access that may hit or miss de-
pending on the cache state when a program fragment begins execution.

Interior misses can be determined by analyzing a program fragment in isolation. The ad-
jective interior conveys the assurance of a cache miss despite peripheral factors. Potential
boundary misses can be determined by analyzing a program fragment in isolation, but con-
sideration of the cache state is necessary to determine whether a potential boundary miss is
actually a cache miss. The adjective boundary conveys dependence on matters outside of the
program fragment, and potential conveys the uncertainty of an actual miss. The method for
modeling cache behavior described in Chapter 4 gives a decision procedure for determining
which memory accesses are interior misses or potential boundary misses.

Consider the running example loop nest Lmm of Figure 2.5 on page 17, where t = u = v = 20
and arrays Y (0) = X, Y (1) = Y, and Y (2) = Z are double-precision and linearized in column-
major order with starting addresses µ0 = 0, µ1 = 3200, and µ2 = 6400. Figure 3.1 provides
three-dimensional views of the interior and potential boundary misses incurred by loop nest
Lmm executing in a (1, 32, 4096; 128) cache. To clearly illustrate the structure of these cache
misses, each plot gives the cache misses incurred by a different array of loop nest Lmm. Notice
that all of the potential boundary misses incurred by array X are on the boundary of the plot

32

where j = 0 (i.e., all such potential boundary misses occur on a first iteration of the j-loop).
Similarly, all potential boundary misses incurred by array Y are on the boundary of the plot
where i = 0, and all potential boundary misses incurred by array Z are on the boundary of
the plot where k = 0.

Given this interior-boundary classification of cache misses, determination of actual cache
misses requires two steps. First, static analysis of a program fragment in isolation identifies
the memory accesses that are interior misses and those that are potential boundary misses.
Second, using the state of the cache at the beginning of program fragment execution to resolve
potential boundary misses identifies such accesses that actually do miss in cache. Resolving a
potential boundary miss with the cache state at the beginning of program fragment execution
involves comparing the memory block accessed on the potential miss, b, with the memory
blocks in the cache state and their ordering by recency of access to determine if memory block
b is in the cache at the time of the potential miss. If b is in the cache, the potential boundary
miss is a cache hit. If b is not in the cache, the potential boundary miss is a boundary miss.

Let Ps = {p1, . . . , pm} be the collection of m potential boundary misses incurred by a
program fragment in cache set s, ordered by �. Let {C0 = C〈s〉,Ci = UpdateState(Ci−1, pi) :
1 < i 6 m} be the sequence of cache states of set s updated for each potential boundary
miss in Ps (see equation (2.1) for UpdateState). The collection of boundary misses incurred
by the program fragment in set s is Bs = Resolve(C〈s〉,Ps) = {pk ∈ Ps : pk /∈ Ck}. The
collection of all potential boundary misses incurred by the program fragment is P = {Ps :
0 6 s < S}, and the collection of all boundary misses incurred by the program fragment is
B = ResolveAll(C,P) = {Bs : 0 6 s < S}.

Definition 3.4 A boundary miss is a potential boundary miss that is resolved to be an
actual cache miss, given the cache state when a program fragment begins execution.

Notice that determination of potential boundary misses does not require the cache state at the
beginning of program fragment execution, but the determination of actual boundary misses
does. Clearly, the interior-boundary approach to classifying misses requires mechanisms for de-
ciding the cache state at the beginning of program fragments and resolving potential boundary
misses given cache state.

3.3 Cache State

Recall from Section 2.1.1 that the state of the cache, C, is the collection of memory blocks
residing in each cache set at any point during the execution of a program, ordered by recency
of access. Suppose that program P consists of the sequential composition of n fragments,
such that P ≡ F1n

def= F1; F2; . . . ; Fn−1; Fn. Let the state of the cache before execution of
fragment Fi and after execution of fragment Fi−1 be C(i−1). The cache state when program
P begins execution is C(0), and the cache state is C(n) when P ends execution. Cache state

33

C(0) F1 C(1) F2 C(2) · · · C(n−1) Fn C(n)

-
execution time increases

Figure 3.2: The role of cache state in the composition of fragments such that program P ≡
F1n

def= F1; . . . ; Fn.

C(i) is a reflection of how program fragment Fi−1 updates the contents of the cache in cache
state C(i−1). Therefore, cache state C(i) depends on both the behavior of fragment Fi−1 and
cache state C(i−1). Figure 3.2 illustrates how cache state fits into the composition of program
fragments in P.

Let I(i) be the set of interior misses incurred by a program fragment Fi, and let Ii = |I(i)|
be the number of interior misses incurred by fragment Fi. Let P(i) be the set of potential
boundary misses incurred by a program fragment Fi. Let B(i) = ResolveAll(C(i−1),P(i)) be
the set of boundary misses incurred by a program fragment Fi executing from cache state C(i−1),
and let Bi = |B(i)| be the number of boundary misses incurred by fragment Fi executing from
cache state C(i−1). Let F1n, the sequential composition of n program fragments F1 through
Fn, incur I1n interior misses and B1n boundary misses when executing from cache state C(0).

Theorem 3.1 Let F1n
def= F1; F2; . . . ; Fn be the sequential composition of n program frag-

ments executing from cache state C(0). Let each Fi incur Ii interior misses and Bi boundary
misses. Then

I1n + B1n =
n∑

j=1

Ij +
n∑

j=1

Bj

Proof. The proof is by induction on n, the number of program fragments. The base case,
which considers two program fragments F1 and F2, is the significant part of the proof. The
induction step is trivial.

Because it is independent of cache state, an interior miss incurred by program fragment F1

or F2 is also an interior miss in F12. Clearly, a boundary miss incurred by F1 executing from
cache state C(0) is also a boundary miss in F12 executing from C(0). Let m be a boundary miss
incurred by F2 executing from C(1). Either the memory block that m misses on, b, is accessed
in F1 (Case 1) or it is not (Case 2).

Case 1 has four subcases: b ∈ C(0) and b ∈ C(1) (Case 1a), b ∈ C(0) and b /∈ C(1) (Case
1b), b /∈ C(0) and b ∈ C(1) (Case 1c), and b /∈ C(0) and b /∈ C(1) (Case 1d). For Cases 1a and
1c, there is an access of b in F1 such that b is not replaced in cache before the end of F1. For
Cases 1b and 1d, b is replaced in cache before the end of F1 for all accesses of b in F1. Given
all subcases of Case 1, because the behavior of accesses to b in F1 is known, cache state C(1)

is not necessary to determine that m is a miss in F12. Thus, m is an interior miss in F12 for
Case 1.

34

Case 2 has three subcases: b ∈ C(0) and b ∈ C(1) (Case 2a), b ∈ C(0) and b /∈ C(1) (Case
2b), and b /∈ C(0) and b /∈ C(1) (Case 2c).1 For Case 2a, there are no accesses in F1 that cause
b to be replaced in cache, and cache state C(0) is necessary to determine that m is a miss in
F12. Thus, m is a boundary miss in F12 executing from C(0) for Case 2a. For Case 2b, there
is an access in F1 that causes b to be replaced in cache. Because the behavior of the access
in F1 replacing b is known, cache state C(1) is not necessary to determine that m is a miss in
F12. Thus, m is an interior miss in F12 for Case 2b. For Case 2c, b maps to cache for the first
time in F2, and cache state C(0) is necessary to determine that m is a miss in F12. Thus, m is
a boundary miss in F12 executing from C(0) for Case 2c.

A boundary miss incurred by F2 executing from C(1) may be either a boundary miss or
an interior miss in F12 executing from C(0), but it is certainly a miss. Therefore, I12 + B12 =
I1 + B1 + I2 + B2 =

∑2
j=1 Ij +

∑2
j=1 Bj , and the base case is true where n = 2 and P ≡ F12.

Assume for n = k and P ≡ F1k that I1k +B1k =
∑k

j=1 Ij +
∑k

j=1 Bj . For n = k+1 and P ≡
F1,k+1, let G1 ≡ F1k and let G2 ≡ Fk+1. Applying the base case to G12 gives I1,k+1 +B1,k+1 =
Iik + Bik + Ik+1 + Bk+1. By the induction hypothesis, I1,k+1 + B1,k+1 =

∑k+1
j=1 Ij +

∑k+1
j=1 Bj

for F1,k+1. 2

Note that assertions stronger than Theorem 3.1, such as I1n =
∑n

i=1 Ii, do not hold in general.
It is possible that a boundary miss in program fragment F2 is an interior miss in F12.

The interior-boundary cache miss classification has an important advantage over its coun-
terpart, the compulsory-replacement miss classification. The boundary misses incurred by a
program fragment are bounded from above by the cache footprint of the data structures that
it accesses, which is in turn bounded from above by the number of cache frames. Thus, the
number of boundary misses for any program fragment is no more than the number of cache
frames, as the following lemma establishes.

Lemma 3.1 The number of boundary misses incurred by a program fragment does not exceed
the number of frames in the cache.

Proof. A potential boundary miss is due to unknown contents of the cache when a program
fragment begins execution. When an access of memory block b incurs a potential boundary
miss, it becomes known that one cache frame contains b, either because b was already in cache
(i.e., the potential boundary miss is actually a cache hit) or because b replaces some other
memory block previously in cache (i.e., the potential boundary miss is a boundary miss). Once
all frames of the cache contain memory blocks brought to cache (or already in cache) during a
potential boundary miss, no subsequent misses can depend on the state of the cache when the
program fragment begins execution because the contents of the cache are known. Therefore,
a program fragment may not incur any more potential boundary misses than there are frames
in the cache. By definition, the number of boundary misses incurred by a program fragment

1Notice that the case in which b /∈ C(0) and b ∈ C(1) is not valid, since it implies that b is accessed in F1.

35

is bounded from above by the number of potential boundary misses. Hence, the number of
boundary misses incurred by any program fragment is bounded from above by the number of
cache frames. 2

Typically, the number of cache frames is much smaller than the number of interior misses
incurred by the program fragment. Therefore, approximation of the number of cache misses
incurred by the composite program F1n as

∑n
i=1 Ii avoids the calculation of cache states, and

the error bound on this approximation is small.

Theorem 3.2 The actual number of cache misses incurred in an (A, B, C; S) cache by a
program P ≡ F1n is in the range

[∑n
i=1 Ii, n · CB +

∑n
i=1 Ii

]
.

Proof. Approximation of the number of cache misses incurred by F1n as
∑n

i=1 Ii ignores
the number of boundary misses incurred. By Lemma 3.1, a program fragment may incur no
more boundary misses than there are frames in the cache. The number of frames in an (A, B,
C; S) cache is C

B . Given that F1n is a composite of n program fragments, this approximation
ignores at most n · CB boundary misses. 2

3.4 Summary

This chapter introduces a new classification of cache misses with the composability property,
which is critical for combining the cache behaviors of individual fragments of a program to
obtain the cache behavior of the entire program. For compulsory-replacement cache miss
classification schemes (including the 3C model [67] and the OPT model [118]), there is no
simple way of relating the cache misses of each program fragment to the misses of the program
because a compulsory miss incurred by a fragment may actually be a cache hit for the entire
program.

The interior-boundary classification has two types of cache misses: misses independent of
cache state when the program fragment begins execution (called interior misses) and misses
dependent on that cache state (called potential boundary misses). Cache state is the glue
between individual program fragments, resolving the potential boundary misses that actually
do miss in cache (called boundary misses). The interior-boundary cache miss classification
scheme overcomes the insufficiency of other miss classification schemes by using the state of
the cache when a program fragment begins execution to determine the actual hit/miss status
of memory accesses for which this status cannot be determined by considering the fragment
alone. Therefore, all cache misses incurred by a program fragment are also misses for the entire
program, and the total number of cache misses incurred by program P is the sum of the cache
miss counts for each of the fragments of P (Theorem 3.1).

Compared to interior misses, determining the boundary misses incurred by a program
fragment does require the additional step of resolving potential boundary misses with the

36

cache state when the program fragment begins execution. However, the number of boundary
misses is typically much smaller than the number of interior misses incurred by the program
fragment. The number of boundary misses for any program fragment is no more than the
number of frames in the cache C

B (Lemma 3.1), and thus, a program with n fragments has no
more than n · CB boundary misses (Theorem 3.2). Therefore, it is possible to approximate the
cache behavior of a program by counting only interior misses, omitting the computation of
cache state and potential boundary misses, yet yielding an approximation of the total cache
miss count with a tight error bound.

Chapter 4

Analyzing Cache Behavior

This chapter presents a method for counting the number of cache misses incurred by a loop
nest executing in a cache memory with associativity A, blocksize B, capacity C, and S sets.
The technique applies to cache events that depend on the associativity value of the cache being
considered.1 Fundamental to the technique are the notions of neighborhood and witness, which
serve to identify the situations that may cause a memory access to miss in cache depending
on the associativity.

A single pass of the method produces the behavior of a loop nest for multiple cache config-
urations in which B and S are fixed for arbitrary A and corresponding C. That is, in a single
pass the method considers the family of caches {(k, B, kBS; S): k > 1}. Varying the number
of cache sets and/or the cache blocksize changes the manner in which memory blocks map to
cache sets. Therefore, it is not possible to consider the family of caches {(k, B, C; C

kB): k > 1}
in one pass, nor is it possible to consider the family of caches {(A, k, C; C

kA): k > 1} in one
pass.

The following are the four steps in the method.

1. Define neighborhoods and witnesses for the specific cache event, expressing witnesses in
Presburger arithmetic.

2. State and prove a theorem to decide the cache event outcome based on a comparison of
the witness count and associativity value A.

3. Represent the witness formula as a DFA and enumerate the solutions.

4. Count the number of witnesses to each memory access and use the theorem stated in
step 2 to determine the cache behavior of the access.

Steps 1 and 2 of the method are problem-specific and depend on the cache event being modeled;
this chapter addresses steps 1 and 2. Steps 3 and 4 of the method are generic, and work for
any type of cache event; the next chapter addresses steps 3 and 4.

1As Section 5.4 explains, there are cache events that do not depend on associativity, and a technique for
handling such events is given.

38

Also fundamental to the technique for counting cache misses is a by-set decomposition of
cache activity. Decomposing the sequence of memory accesses in a loop nest to consider the
activity of each cache set in isolation has the effect of breaking down the analysis problem into
a number of smaller, standalone problems. The events in one cache set are independent of
the events in another, and an alternate way to view a cache set is as a small, fully-associative
cache. This set-centric technique for attacking the cache analysis problem is one of the keys
that makes my approach tractable, but without loss of any information. A memory access a

maps to a set s if the array element specified by access a resides at memory byte address m
and s = Set(Block(m)). Let As be the set of accesses in a loop nest that map to cache set s.

The remainder of this chapter is organized as follows. Section 4.1 provides the assumptions
about program execution that guide the analysis framework of this dissertation. Section 4.2
introduces the notions of neighborhood and witness. Section 4.3 illustrates how witnesses are
expressed as formulas of Presburger arithmetic. Section 4.4 gives theorems to decide cache
event outcomes. Throughout this chapter several associativity-dependent cache events are
considered—interior miss, replacement miss, potential boundary miss, and cache state.

4.1 Program Execution Model

The analysis framework presented in this dissertation models the cache behavior of a program
P, subject to the following assumptions.

• P consists of a sequence of count-controlled loop nests. (Any program statements outside
of a loop may be easily folded into a loop of one iteration.)

• All loops are normalized to have a step size of one.

• For each loop at level j, the upper and lower bounds of loop control variable (LCV) ιj
are affine functions of LCVs ι0 . . . ιj−1.

• The index expression of a reference R (located at nesting depth j) is an affine function
of the LCVs belonging to all loops containing the reference (ι0 . . . ιj).

• The values of any constants used in the calculation of loop bounds and/or index expres-
sions are known at compile time.

• P executes on a uniprocessor system with a single-level data cache that has an LRU
replacement policy. The execution of P is in order and there is no prefetching of data.
The cache processes data requests one at a time and treats data reads and writes the
same, i.e., the framework models a blocking, write-allocate cache with no prefetching.

39

4.2 Neighborhoods and Witnesses

The key to determining whether a memory access a ∈ As misses in a cache is knowing whether
b, the memory block requested by a, is resident in cache set s when the access occurs. We show
how the presence of b in the cache relates to the number of distinct memory blocks mapping
to set s that are accessed in the neighborhood of a.

We call a memory block a witness if its presence in the cache may cause a memory access
to suffer a cache miss, depending on the associativity value being considered. Notice the
asymmetry of the term. A memory block is a witness to a memory access. The neighborhood

of an access a limits how much of a loop nest’s memory access sequence must be considered
to determine whether a is a cache miss. Thus, it is sufficient to look in the neighborhood of
a memory access to find the witnesses that may cause it to miss. To determine whether a
memory access a is a miss, we avoid considering the entire sequence of memory accesses in two
ways: decomposing the sequence by cache set (discussed above) and defining neighborhoods
(discussed below).

Neighborhoods and witnesses are named for the type of cache event that they affect. An
access incurring an interior miss has an i -neighborhood and i -witnesses. An access incurring
a replacment miss has an r -neighborhood and r -witnesses. An access incurring a potential
boundary miss has a b-neighborhood and b-witnesses. An access affecting the cache state at
the end of program fragment execution has a s-neighborhood and s-witnesses. If yet another
type of cache event interests the reader, the corresponding neighborhood and witness terms
should be defined in the manner of the examples given here.

Recall from Section 3.2 that an interior miss is a memory access that is guaranteed to miss
in cache, independent of the cache state when a program fragment begins execution.

Definition 4.1 The i-neighborhood of an access a ∈ As is the set of all accesses in As

occurring between a and the most recent access (in the total ordering of accesses, � given in
Definition 2.2) touching the same memory block as a; or between a and the beginning of the
program fragment, if a is the earliest access to the memory block it touches. Memory block b
is an i-witness to access a if b is touched by an access in the i -neighborhood of a, and if b is
distinct from the memory block touched by a.

Recall that replacement misses include capacity and conflict misses from the traditional
3C model [67]. There is a subtle difference between the i -neighborhood and r -neighborhood
definitions: an i -neighborhood includes accesses occurring between access a and the beginning
of the program fragment, while a r -neighborhood does not.

Definition 4.2 The r-neighborhood of an access a ∈ As is the set of all accesses in As

occurring between a and the most recent access (in the total ordering of accesses, �) touching

40

the same memory block as a. Memory block b is an r-witness to access a if b is touched by
an access in the r -neighborhood of a, and if b is distinct from the memory block touched by a.

Recall that a potential boundary miss is a memory access that may hit or miss in cache,
depending on the cache state when a program fragment begins execution.

Definition 4.3 The b-neighborhood of an access a ∈ As is the set of all accesses in As

occurring between a and the beginning of the program fragment, if a is the earliest access to
the memory block it touches. The b-neighborhood of a is empty if a is not the earliest access
to the memory block it touches. Memory block b is a b-witness to access a if b is touched by
an access in the b-neighborhood of a, and if b is distinct from the memory block touched by a.

Recall that the cache state at the end of program fragment execution indicates the contents
of the cache just as execution of the program fragment completes.

Definition 4.4 The s-neighborhood of an access a ∈ As is the set of all accesses in As

occurring between a and the end of the program fragment, if a is the latest access to the
memory block it touches. The s-neighborhood of a is empty if a is not the latest access to the
memory block it touches. Memory block b is an s-witness to access a if b is touched by an
access in the s-neighborhood of a, and if b is distinct from the memory block touched by a.

There are two ways in which multiple memory accesses may touch the same memory block:
several memory accesses may touch the same array element, and a memory block may contain
multiple array elements. Consider the running example loop nest Lmm of Figure 2.5 on page
17 where t = u = v = 20. Reference R1 = X[i,k] accesses the same array element on each
iteration of the j-loop. For example, array element X[3,10], and hence the memory block to
which it maps, is touched by all memory accesses {([3, j, 10]T, R1) : 0 6 j < 20}. Suppose
that the arrays of loop nest Lmm have a column-major layout and that each memory block
holds four array elements (i.e., array elements are 8 bytes each and B = 32 bytes). Given
a memory block whose first array element is X[i,j], array elements X[i+1,j], X[i+2,j],
and X[i+3,j] are in the same memory block. For example, the memory block containing
array elements X[0,10], X[1,10], X[2,10], and X[3,10] is touched by all memory accesses
{([i, j, 10]T, R1) : 0 6 i 6 3 ∧ 0 6 j < 20}.

Figure 4.1 gives an example sequence of memory accesses a, b, c, d, e, and f that map
to cache set x. Each type of box around an access denotes a distinct memory block. Notice
that accesses a and c touch memory block m, accesses b and e touch memory block n, and
accesses d and f touch memory block o. For example, consider access d. Memory blocks m and
n are i -witnesses to access d. Access d has no r -witnesses because there is no earlier access
to memory block o. Memory blocks m and n are b-witnesses to access d. Memory block n

is an s-witness to access d. As another example, consider access e. Memory blocks m and o

are i -witnesses to access e. Memory blocks m and o are r -witnesses to access e. Access e has

41

a cb ed f

?

? ? ? ?

?

? ?

?

?

?set x

Ax

memory block m: memory block n: memory block o:

A = 1

set x
A = 2
set x

A = 3

ordered by

Figure 4.1: Example sequence of accesses in Ax and the contents of cache set x after each
memory access, given caches with associativity values 1 to 3.

no b-witnesses because it is not the earliest access to memory block n. Memory block o is an
s-witness to access e.

4.3 Expressing Witnesses in Presburger Arithmetic

Formulas of Presburger arithmetic express the i -witnesses, r -witnesses, b-witnesses, and s-
witnesses to memory accesses executed by a loop nest. Section 4.3.1 presents Presburger
formulas to describe basic features of program and memory. Section 4.3.2 gives formulas
expressing various types of witnesses using the basic formulas from Section 4.3.1.

4.3.1 Formulas Describing Program and Memory Structure

The following are basic Presburger formulas describing the structure of the program and mem-
ory system being modeled. Table 4.1 organizes the Presburger formulas presented in Sections
4.3.1 and 4.3.2, matching formulas descriptions with equation numbers and page numbers.

Valid iteration point. The predicate ι ∈ I describes the condition in which iteration point
ι = [ι0, . . . , ιd−1]T belongs to the iteration space I (defined in Section 2.2).

ι ∈ I def=
d−1∧
j=0

(Lj 6 ιj) ∧ (ιj 6 Uj) (4.1)

Lexicographical ordering of accesses. The predicate (ι, Ru) � (κ,Rv) describes the con-
dition in which the memory access made to reference Ru at iteration point ι precedes (defined
in Section 2.3) the memory access made by Rv at iteration point κ. Notice that any access

42

Formula Description Eqn. No. Page No.
ι ∈ I 4.1 41

(ι, Ru) � (κ,Rv) 4.2 42
Map(m,w, s) 4.3 42

m′ = Row-maj(Eu(ι)) 4.4 43
m′ = Col-maj(Eu(ι)) 4.5 43

((ι, Ru), e) ∈ i -witness(L) 4.6 43
((ι, Ru), e) ∈ r -witness(L) 4.7 44
((ι, Ru), e) ∈ b-witness(L) 4.8 46
((ι, Ru), e) ∈ s-witness(L) 4.9 46

(ι, Ru) ∈ Earliest(L) 4.10 47
(ι, Ru) ∈ Latest(L) 4.11 47

Table 4.1: Presburger formulas used to describe cache behavior.

occurring at an iteration point ι precedes memory access (κ,Rv) if ι ≺ κ. Access to references
Rt, such that t < v, at iteration point κ also precede memory access (κ,Rv).

(ι, Ru) � (κ,Rv)
def= (4.2)

ι ∈ I ∧ κ ∈ I ∧
((d−1∨

j=0

(ιj < κj ∧
j−1∧
k=0

ιk = κk)
)
∨

(d−1∧
j=0

ιj = κj ∧ u < v
))

Mapping memory locations to cache sets. Recall the Block and Set relations from
Section 2.1.1. Memory byte address m maps to cache set s = Set(Block(m)). The following
formula describes this mapping of memory addresses to cache sets, where w is the auxiliary
wraparound term (defined in Section 2.1.1), and w = Wrap(m). Recall that B is the cache
blocksize and S is the number of cache sets, and that the values of B and S are fixed. Therefore,
the multiplication in the following formula is multiplication by a constant, which is permitted
in Presburger arithmetic.

Map(m,w, s) def= B ∗ (w ∗ S + s) 6 m < B ∗ (w ∗ S + s) + B (4.3)

Data layouts in memory. Recall the row-major and column-major layout functions from
Section 2.3. The following formulas give layouts for reference Ru = (Y (x), Eu, Sh) and iteration
point ι. Recall that Eu(ι) = [e0, . . . , edx−1]T is the index expression of reference Ru evaluated
for iteration point ι. Also recall that `n is the length of array Y (x) in the (n+ 1)th dimension
and its value is constant. Therefore, the multiplication in the following formula is allowed in

43

Presburger arithmetic. The memory byte address of the array element accessed by reference
Ru at iteration point ι is m = µx +m′ · βx.

(
m′ = Row-maj(Eu(ι))

) def= m′ > 0 ∧
(
m′ =

(dx−2∑
j=0

(
dx−1∏

k=j+1

`k) · ej
)

+ edx−1

)
(4.4)

(
m′ = Col-maj(Eu(ι))

) def= m′ > 0 ∧
(
m′ = e0 +

dx−1∑
j=1

(
j−1∏
k=0

`k) · ej
)

(4.5)

4.3.2 Formulas Describing Cache Behavior

The formulas presented in Section 4.3.1 fit together to express cache events. The following
Presburger formulas capture i -witnesses, r -witnesses, b-witnesses, and s-witnesses.

i-witnesses. Suppose that an access a ∈ As touches a memory block b, and that an earlier
access a′ ∈ As touches a memory block b′ such that b 6= b′. If there does not exist an access a′′

between a′ and a touching b, then access a′ is in the i -neighborhood of a and b′ is an i -witness
to memory access a. Let access a comprise reference Ru = (Y (x), Eu, Sh) and iteration point
ι, let access a′ comprise reference Rv = (Y (y), Ev, Si) and iteration point κ, and let access a′′

comprise reference Rw = (Y (z), Ew, Sj) and iteration point ρ. Recall from Section 2.1.1 that
another way of representing memory block b′ is with the pair (s, e), where b′ maps to cache
set s with wraparound value e. Because i -witnesses are expressed for a particular cache set s,
e represents the distinct memory block b′. The following formula expresses the condition that
memory block b′ (represented by the wraparound value e) is an i -witness to memory access
a = (ι, Ru).

(
((ι, Ru), e) ∈ i -witness(L)

) def= (4.6)

ι ∈ I ∧(
∃d : Map(µx + Lx(Eu(ι)) ∗ βx, d, s) ∧(

∃κ, v : (κ,Rv) � (ι, Ru) ∧Map(µy + Ly(Ev(κ)) ∗ βy, e, s) ∧

¬(∃ρ,w : (κ,Rv) � (ρ,Rw) � (ι, Ru) ∧Map(µz + Lz(Ew(ρ)) ∗ βz, d, s))
)
∧

¬(d = e)
)

The i -witness formula describes the condition that a memory block identified by wraparound
value e is an i -witness to access (ι, Ru). Line 2 of the i -witness formula indicates that access
(ι, Ru) occurs at a valid iteration point. Line 3 indicates that access (ι, Ru) maps to cache set
s and touches a memory block with wraparound value d. Line 4 says that there is an access

44

(κ,Rv) occurring before (ι, Ru) that maps to cache set s and touches a memory block with
wraparound value e. Line 5 says that there is no access (ρ,Rw) occurring after (κ,Rv) and
before (ι, Ru) that maps to cache set s and touches a memory block with wraparound value
d (i.e., touches the same memory block as access (ι, Ru)). Line 6 indicates that wraparound
values d and e are not equal, which means that the memory blocks they identify are distinct.

In summary, access (κ,Rv) occurs before access (ι, Ru) and each access touches a different
memory block (identified by wraparound values e and d, respectively) mapping to the same
set. Furthermore, there is no access to the memory block touched by (ι, Ru) occurring between
(κ,Rv) and (ι, Ru). By definition, the memory block touched by access (κ,Rv) is an i -witness
to access (ι, Ru). Figure 4.2 shows the Presburger formula constructed to describe the i -
witnesses of the running example loop nest Lmm in Figure 2.5 for cache set 0,2 considering (A,
32, 4096 · A; 128) caches with any associativity value A. Notice that the free variables in the
Presburger formula of Figure 4.2 are ι0, ι1, ι2, u, and e, where ι0, ι1, ι2, and u represent the
memory access in loop nest Lmm with an i -witness represented by wraparound value e.

r-witnesses. Suppose that an access a ∈ As touches a memory block b, and that an earlier
access a′′ touches the same memory block. If there does not exist an access a′′′ between a′′

and a touching b, then access a′′ is the most recent access touching b. Suppose that an access
a′ ∈ As touches a memory block b′ such that b 6= b′. If a′ is between a′′ and a, then access
a′ is in the r -neighborhood of a and b′ is an r -witness to memory access a. Let access a

comprise reference Ru = (Y (x), Eu, Sh) and iteration point ι, let access a′ comprise reference
Rw = (Y (z), Ew, Sj) and iteration point ρ, let access a′′ comprise reference Rv = (Y (y), Ev, Si)
and iteration point κ, and let access a′′′ comprise reference Rt = (Y (q), Et, Sg) and iteration
point ν. The following formula expresses the condition that memory block b′ (represented by
the wraparound value e) is an r -witness to memory access a = (ι, Ru) in loop nest L.

(
((ι, Ru), e) ∈ r -witness(L)

) def= (4.7)

ι ∈ I ∧(
∃d : Map(µx + Lx(Eu(ι)) ∗ βx, d, s) ∧(

∃κ, v : (κ,Rv) � (ι, Ru) ∧Map(µy + Ly(Ev(κ)) ∗ βy, d, s) ∧

¬(∃ν, t : (κ,Rv) � (ν,Rt) � (ι, Ru) ∧Map(µq + Lq(Et(ν)) ∗ βq, d, s)) ∧

(∃ρ,w : (κ,Rv) � (ρ,Rw) � (ι, Ru) ∧Map(µz + Lz(Ew(ρ)) ∗ βz, e, s))
)
∧

¬(d = e)
)

The Presburger formula constructed to describe the r -witnesses of the running example loop
nest Lmm is given in Appendix A.

2For the purpose of illustration, all examples in Chapters 4 and 5 are kept manageable by showing formulas
and DFAs that describe the behavior of just one cache set. The results given in Chapter 8 are for entire caches.

45

0 6 ι0, ι1, ι2 < 20 ∧(
∃d : ((ι2 = 0 ∧ u = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))∨

(u = 1 ∧ 32 ∗ (128 ∗ d) 6 (ι0 + 20 ∗ ι2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(u = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ι2 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ι2 = 19 ∧ u = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))) ∧(
∃κ0, κ1, κ2, v : 0 6 κ0, κ1, κ2 < 20 ∧
(κ0 < ι0 ∨ (κ0 = ι0 ∧ κ1 < ι1) ∨
(κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 < ι2) ∨
(κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 = ι2 ∧ v < u)) ∧
((κ2 = 0 ∧ v = 0 ∧ 32 ∗ (128 ∗ e) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(v = 1 ∧ 32 ∗ (128 ∗ e) 6 (κ0 + 20 ∗ κ2) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(v = 2 ∧ 32 ∗ (128 ∗ e) 6 3200 + (κ2 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(κ2 = 19 ∧ v = 3 ∧ 32 ∗ (128 ∗ e) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1))) ∧
(¬(∃ρ0, ρ1, ρ2, w : 0 6 ρ0, ρ1, ρ2 < 20 ∧

(ρ0 < ι0 ∨ (ρ0 = ι0 ∧ ρ1 < ι1) ∨
(ρ0 = ι0 ∧ ρ1 = ι1 ∧ ρ2 < ι2) ∨
(ρ0 = ι0 ∧ ρ1 = ι1 ∧ ρ2 = ι2 ∧ w < u)) ∧
(κ0 < ρ0 ∨ (κ0 = ρ0 ∧ κ1 < ρ1) ∨
(κ0 = ρ0 ∧ κ1 = ρ1 ∧ κ2 < ρ2) ∨
(κ0 = ρ0 ∧ κ1 = ρ1 ∧ κ2 = ρ2 ∧ v < w)) ∧
((ρ2 = 0 ∧ w = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ρ0 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(w = 1 ∧ 32 ∗ (128 ∗ d) 6 (ρ0 + 20 ∗ ρ2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(w = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ρ2 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ρ2 = 19 ∧ w = 3 ∧ 32 ∗ (128 ∗ d) 6 6200 + (ρ0 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)))))

)
∧ ¬(d = e)

)
Figure 4.2: Presburger formula describing the i -witnesses of loop nest Lmm for cache set 0.

46

b-witnesses. Suppose that an access a ∈ As touches a memory block b, and that an earlier
access a′ ∈ As touches a memory block b′ such that b 6= b′. If there does not exist an access a′′

occurring before a touching b (i.e., a is the earliest access to memory block b), then access a′

is in the b-neighborhood of a and b′ is a b-witness to memory access a. Let access a comprise
reference Ru = (Y (x), Eu, Sh) and iteration point ι, let access a′ comprise reference Rv =
(Y (y), Ev, Si) and iteration point κ, and let access a′′ comprise reference Rw = (Y (z), Ew, Sj)
and iteration point ρ. The following formula expresses the condition that memory block b′

(represented by the wraparound value e) is a b-witness to memory access a = (ι, Ru).

(
((ι, Ru), e) ∈ b-witness(L)

) def= (4.8)

ι ∈ I ∧(
∃d : Map(µx + Lx(Eu(ι)) ∗ βx, d, s) ∧(

∃κ, v : (κ,Rv) � (ι, Ru) ∧Map(µy + Ly(Ev(κ)) ∗ βy, e, s)
)
∧

¬
(
∃ρ,w : (ρ,Rw) � (ι, Ru) ∧Map(µz + Lz(Ew(ρ)) ∗ βz, d, s)

)
∧

¬(d = e)
)

The Presburger formula constructed to describe the b-witnesses of the running example loop
nest Lmm is given in Appendix A.

s-witnesses. Suppose that an access a ∈ As touches a memory block b and a later access
a′ ∈ As touches a memory block b′ such that b 6= b′. If there is no access a′′ occurring
after a touching b (i.e., a is the latest access to memory block b), then access a′ is in the
s-neighborhood of a and b′ is an s-witness to memory access a. Let access a comprise reference
Ru = (Y (x), Eu, Sh) and iteration point ι, let access a′ comprise reference Rv = (Y (y), Ev, Si)
and iteration point κ, and let access a′′ comprise reference Rw = (Y (z), Ew, Sj) and iteration
point ρ. The following formula expresses the condition that memory block b′ (represented by
the wraparound value e) is an s-witness to memory access a = (ι, Ru).

(
((ι, Ru), e) ∈ s-witness(L)

) def= (4.9)

ι ∈ I ∧(
∃d : Map(µx + Lx(Eu(ι)) ∗ βx, d, s) ∧(

∃κ, v : (ι, Ru) � (κ,Rv) ∧Map(µy + Ly(Ev(κ)) ∗ βy, e, s)
)
∧

¬
(
∃ρ,w : (ι, Ru) � (ρ,Rw) ∧Map(µz + Lz(Ew(ρ)) ∗ βz, d, s)

)
∧

¬(d = e)
)

The Presburger formula constructed to describe the s-witnesses of the running example loop
nest Lmm is given in Appendix A.

47

Earliest. In order to count boundary misses and update cache state, it is necessary to
specify the earliest and latest memory accesses to map to each cache set (in the total ordering
of accesses, � given in Definition 2.2). The earliest access to map to a cache set s has 0
b-witnesses and is a potential boundary miss. The latest access to map to a cache set s has 0
s-witnesses and is in the cache state of set s, C〈s〉, at the end of program fragment execution.
Refer to Section 5.3.3 to see how the earliest and latest accesses mapping to each cache set are
used to count boundary misses and update cache state.

Suppose that an access a ∈ As touches a memory block b. If there does not exist an
access a′ ∈ As occurring before a touching a memory block b′, then access a is the earliest
memory access in loop nest L mapping to cache set s. Let access a comprise reference Ru =
(Y (x), Eu, Sh) and iteration point ι, and let access a′ comprise reference Rv = (Y (y), Ev, Si)
and iteration point κ. The following formula expresses the condition that memory access
a = (ι, Ru) is the earliest memory access (in the total ordering of accesses, �) to map to cache
set s.

(
(ι, Ru) ∈ Earliest(L)

) def= (4.10)

ι ∈ I ∧(
∃d : Map(µx + Lx(Eu(ι)) ∗ βx, d, s) ∧

¬
(
∃κ, v, e : (κ,Rv) � (ι, Ru) ∧Map(µy + Ly(Ev(κ)) ∗ βy, e, s)

))

Latest. Suppose that an access a ∈ As touches a memory block b. If there does not exist
an access a′ ∈ As occurring after a touching a memory block b′, then access a is the latest
memory access in loop nest L mapping to cache set s. Let access a comprise reference Ru =
(Y (x), Eu, Sh) and iteration point ι, and let access a′ comprise reference Rv = (Y (y), Ev, Si)
and iteration point κ. The following formula expresses the condition that memory access
a = (ι, Ru) is the latest memory access (in the total ordering of accesses, �) to map to cache
set s.

(
(ι, Ru) ∈ Latest(L)

) def= (4.11)

ι ∈ I ∧(
∃d : Map(µx + Lx(Eu(ι)) ∗ βx, d, s) ∧

¬
(
∃κ, v, e : (ι, Ru) � (κ,Rv) ∧Map(µy + Ly(Ev(κ)) ∗ βy, e, s)

))

48

4.4 Deciding Cache Event Outcomes

The second step of the method for identifying the cache misses incurred by a loop nest is
to state and prove a theorem to decide the cache event outcome of a memory access based
on a comparison of the number of witnesses to the access and the value of associativity A
being considered. Statements and proofs of theorems to decide the outcome of interior miss
(Section 4.4.1), replacement miss (Section 4.4.2), boundary miss (Section 4.4.3), and cache
state (Section 4.4.4) events follow.

Recall from Section 2.1 that each set of an (A, B, C; S) cache can hold at most A distinct
memory blocks. If a cache set s already contains A distinct memory blocks upon access of yet
another distinct memory block mapping to set s, the least recently used of the original memory
blocks is replaced with the new memory block. Comparing the witness count for a memory
access a ∈ As with the value of A determines if the memory block accessed by a is among the
A memory blocks in set s; and therefore, the comparison determines the event outcome for
access a in a cache with associativity A.

4.4.1 Interior Miss

To determine whether a memory access a touching memory block b incurs an interior miss in a
cache with associativity value A, it is necessary and sufficient to know two things: that there
are at least A earlier accesses to distinct memory blocks mapping to the same cache set as b;
and that there is no access to b between these earlier accesses and a.

Theorem 4.1 Memory access a is an interior miss if and only if there are A or more i-
witnesses to access a.

Proof. Suppose that memory access a requests memory block b. If there are A or more
i -witnesses to a, then, by definition, there are A or more earlier accesses requesting unique
memory blocks mapping to the cache set and there is no access to b between these earlier
accesses and a. These unique memory blocks fill the frames of the cache set and ensure that b
does not reside there, forcing access a to incur an interior miss.

If memory access a is an interior miss, then a incurs a cache miss independent of cache state
when the program fragment begins execution. Either a is the earliest access to memory block
b (Case 1) or it is not (Case 2). For Case 1, b is guaranteed to be absent from the cache set
only if A or more unique memory blocks are requested between access a and the beginning of
the program fragment. By definition, these memory blocks are i -witnesses to memory access
a. For Case 2, b is brought to the cache set during access a′ (the most recent access requesting
b), but it is not resident at the time of access a. Memory block b may be displaced only if A
or more unique memory blocks are requested between accesses a and a′. By definition, these
memory blocks are i -witnesses to memory access a. 2

49

Figure 4.1 displays the contents of cache set x before and after each memory access in the
example sequence of accesses, for associativity values 1 to 3. For example, consider access e,
which has two i -witnesses (memory blocks m and o). Access e is an interior miss for A = 1
and A = 2, but access e is a cache hit for A = 3. This can be seen from the contents of cache
set x just before execution of access e. Notice that in the A = 3 case, witnesses do not cause
an interior miss.

4.4.2 Replacement Miss

A memory access a touching memory block b incurs a replacement miss in a cache with as-
sociativity value A if a is not the earliest access to memory block b and there are at least A
accesses to distinct memory blocks mapping to the same cache set as b occurring between the
most recent access to memory block b and access a.

Theorem 4.2 Memory access a is a replacement miss if and only if there are A or more
r-witnesses to access a.

Proof. Suppose that memory access a requests memory block b, and let a′ be the most
recent access touching the same memory block. If there are A or more r -witnesses to a, then,
by definition, there are A or more unique memory blocks mapping to the same cache set as b
between accesses a and a′. These unique memory blocks cause block b, which is in the cache
set during access a′, to be displaced and force access a to incur a replacement miss.

If memory access a is a replacement miss, then memory block b is brought to the cache
set during an access a′ (the most recent access requesting b), but b is not resident at the time
of access a. Memory block b may be displaced from the cache set only if A or more unique
memory blocks are requested between accesses a and a′. By definition, these memory blocks
are r -witnesses to memory access a. 2

Consider access c in Figure 4.1, which has one r -witness (memory block n). Access c is a
replacement miss for A = 1, but access c is a cache hit for A = 2 and A = 3. This can be seen
from the contents of cache set x just before execution of access c. Notice that in the A = 2
and A = 3 cases, the witness does not cause a replacement miss.

4.4.3 Potential Boundary Miss

A memory access a touching memory block b incurs a potential boundary miss in a cache with
associativity value A if a is the earliest access to memory block b and there are fewer than A
earlier accesses to distinct memory blocks mapping to the same cache set as b.

Theorem 4.3 Memory access a is a potential boundary miss if and only if there are fewer
than A b-witnesses to a access a.

50

Proof. If there are fewer than A b-witnesses to access a, then fewer than A distinct memory
blocks mapping to cache set s are accessed between a and the beginning of the program
fragment. Let X be the set of these fewer than A distinct memory blocks. At the time of
access a, the A frames of cache set s are filled with memory blocks from the set X and a subset
of the original cache blocks contained in the cache state of set s at the beginning of program
fragment execution. Access a is a cache hit if it is in the subset of cache state, and it is a
boundary miss if it is not. Because the actual miss status of a depends on cache state, it is a
potential boundary miss.

If memory access a is a potential boundary miss, then a may hit or miss depending on the
cache state when the program fragment begins execution. In order for the actual miss status of
a to depend on cache state, at the time of memory access a one or more of the frames of cache
set s must contain an original cache block from the cache state at the beginning of program
fragment execution. If one or more original cache blocks remain in set s at the time of access
a, then fewer than A distinct memory blocks mapping to set s are accessed between a and
the beginning of the program fragment. By definition, these memory blocks are b-witnesses
to memory access a. 2

Notice that if there are A or more b-witnesses to a memory access a, then a is an interior
miss. This case is already covered above in Theorem 4.1, since i -witnesses and b-witnesses to
an access a overlap if a is the earliest access to the memory block that it touches.

Consider access d in Figure 4.1, which has two b-witnesses (memory blocks m and n).
Access d is an interior miss for A = 1 and A = 2. Access d is a potential boundary miss for
A = 3, and whether access d is an actual boundary miss or a cache hit depends on the memory
block represented by ? in the contents of cache set x just before execution of access d. If the
mystery memory block is o, access d is a cache hit. If it is any other memory block, access d

is a boundary miss. Cache state provides such information.

4.4.4 Cache State

The state of a cache set x at the end of program fragment execution contains the A memory
blocks mapping to set x that are the latest touched (fewer if the program fragment accesses
fewer than A blocks of memory). Figure 4.1 shows the state of cache set x after execution of
the example sequence of accesses for associativity values 1 to 3. The state of set x is given
by its contents after execution of access f. A memory block b touched by access a belongs to
the cache state of set x at the end of program fragment execution if a is the latest access to
memory block b and there are fewer than A later accesses to distinct memory blocks mapping
to cache set x.

Theorem 4.4 The memory block touched by access a is in the cache state at the end of
program fragment execution if and only if there are fewer than A s-witnesses to memory access

51

a. Such a memory block is the kth most recently-accessed of all memory blocks in the cache
state at the end of program fragment execution, where k− 1 < A is the number of s-witnesses
to access a.

Proof. Suppose that memory access a touches memory block b. If there are k−1 s-witnesses
to access a, then k − 1 distinct memory blocks mapping to cache set s are accessed between a

and the end of the program fragment. Let X be the set of these memory blocks. At the end of
program fragment execution, cache set s contains the A memory blocks mapping the set s that
are accessed latest in the program fragment. Because set X contains fewer than A memory
blocks, memory block b is among the A latest accessed and must be in the cache state at the
end of program fragment execution. The memory blocks in X are more recently accessed than
b and aside from the memory blocks in X, b is the most recently accessed of all the memory
blocks in the cache state at the end of program fragment execution. Therefore, b is the kth

most recently-accessed of all memory blocks in the cache state at the end of program fragment
execution.

If the memory block accessed by a is in the cache state at the end of program fragment
execution, then it must be one of the A memory blocks accessed latest in the program fragment.
In order for the memory block accessed by a to be one of the A latest accessed memory blocks,
there must be fewer than A distinct memory blocks accessed between a and the end of the
program fragment. By definition, these memory blocks are s-witnesses to memory access a. 2

Consider access e in Figure 4.1, which has one s-witness (memory block o). For A = 1,
the memory block n touched by access e is not in the final cache state. For A = 2 and A = 3,
memory block n is in the final cache state.

4.5 Summary

This chapter introduces the notions of neighborhood and witness to identify the conditions
of a cache event outcome for a memory access. Associativity-dependent cache events include
interior misses, replacement misses, potential boundary misses, and whether a memory block is
in the cache state at the end of program fragment execution. For other cache events of interest,
the reader can define neighborhood and witness terms using the examples provided here as
guides. A memory block is a witness to a memory access if its presence in the cache causes
the access to incur a cache event, depending on the value of associativity A. Theorems 4.1 to
4.4 serve as rules to decide the outcome of particular cache events based on the witness count
of a memory access and the value of associativity A. Given a Presburger formula describing
the witnesses to memory accesses executed by a loop nest, it is then sufficient to count the
number of witnesses to each memory access and use the rules to determine the cache behavior
of the access. The next chapter presents the method for counting witnesses, which first requires
enumerating the solutions to the Presburger formula describing witnesses.

52

Chapter 5

Counting Cache Misses

Given a Presburger formula describing the witnesses for a particular cache event, the goal is to
count the number of witnesses to each memory access and determine the cache behavior of the
access for an associativity value A. A witness formula describes the witnesses of all memory
accesses in a loop nest. Each solution to the formula expresses a memory access and one of its
witnesses (or its only witness). To count the witnesses for each memory access, it is necessary
to enumerate the solutions of the witness formula, collect the solutions describing a particular
memory access, and count such solutions expressing unique witnesses for the access.

Recall from Section 2.4 that computing the integer solutions to a Presburger formula
can be a difficult problem, as the complexity of quantifier elimination and decidability for
Presburger arithmetic is superexponential in the worst case. Unlike some techniques that
attack Presburger formulas directly [38, 106, 125], the approach presented here is to convert
a Presburger formula to a different form and then compute its solutions. The key of this
indirect approach is to exploit a fundamental connection between Presburger arithmetic and
automata theory, namely, that there exists a deterministic finite automaton (DFA) recognizing
the positional binary representation of the solutions of any Presburger formula.

Recall from Section 2.5 that the worst-case complexity of constructing the DFA recognizing
the solutions of a Presburger formula is superexponential. Therefore, converting Presburger
formulas to DFAs does not circumvent the difficulty of computing formula solutions, since
the worst-case complexities of automata construction and Presburger arithmetic decidability
are the same. However, the worst-case complexity is better understood in the context of
DFAs. In the translation of Presburger formulas to DFAs, this complexity manifests in the
number of states in the resulting DFA. Specifically, it is the translation of universal quantifiers
and negation that causes the exponential blowup of the automaton [23]. Another desirable
side effect of exploiting the Presburger arithmetic-DFA connection is that one can obtain the
minimal DFA representation of a formula. Given these advantages, the analytical framework
of this dissertation builds on the Presburger-DFA connection to compute the solutions of cache
behavior formulas.

54

Recall from Chapter 4 that step 3 of the method for counting the number of cache misses
incurred by a loop nest represents the witness formula as a DFA and enumerates its solutions.
Section 5.1 explains how to represent a Presburger formula as a DFA, and Section 5.2 shows
how to enumerate the accepting paths of a DFA. Step 4 of the method counts the number of
witnesses to each memory access and determines the cache behavior of the access by comparing
its witness count to associativity value A. Section 5.3 discusses how to count witnesses given
the enumeration of formula solutions and how to compare witness counts with associativity
values. Finally, Section 5.4 discusses a special case for handling cache events that do not
depend on the associativity value of the cache.

5.1 Representing Formulas as DFAs

To illustrate how a DFA represents the solutions of a Presburger formula, Section 5.1.1 explains
how accepting DFA paths encode the free variable values that constitute each solution to
the formula, Section 5.1.2 gives the DFA recognizing the solutions of an example Presburger
formula, and Section 5.1.3 reviews the DFA construction procedure.

5.1.1 Encoding Free Variable Values

Given the DFA representation of a Presburger formula, each accepting path in the DFA encodes
free variable values that constitute a solution to the formula. The encoding is the standard
binary representation of the integer values of the free variables, proceeding from least significant
bit (LSB) to most significant bit (MSB).1 Formally, an encoding of a non-negative integer c is
a word cm . . . c0 over the alphabet {0, 1} and c =

∑m
i=0 ci2

i. (We show below how to handle
the mismatch between this conventional MSB-first representation of integers and the LSB-first
encoding by the DFA.) For a fixed word length m+ 1, the encoding of c as cm . . . c0 is unique,
but it is possible to encode c using words of different lengths. For c = 5, the word 101 of
length 3 and the word 0101 of length 4 both encode c.

A tuple of non-negative integers is encoded by stacking their binary representations. In
stacking binary representations, it is necessary that each non-negative integer in the tuple is
encoded by words of the same length. It is straightforward to make two words the same length
without changing the values that they encode. For a v-length word and a w-length word such
that v < w, attach w − v zeros in the MSBs of the v-length word. Let c(i−1) be the ith non-
negative integer in an n-tuple, and let c(i−1)

j−1 be the jth letter of the word encoding c(i−1). A

1The automata-construction procedure [9, 10] used by the framework presented in this dissertation encodes
values such that the first letter of an integer word recognized by the automaton is the LSB. It is possible to
construct automata such that the MSB is first. As Section 2.5 explains, it is unknown whether an LSB-first or
a MSB-first encoding is superior.

55

stack of letters

tj−1 =

c
(0)
j−1

c
(1)
j−1
...

c
(n−1)
j−1

represents the jth letter in each word encoding an n-tuple of non-negative integers. The
concatenation of letter stacks tm . . . t0 is the stack of binary representations for the n-tuple,
where the length of each binary representation is m+ 1. The part of a stack which gives the
binary representation of the ith non-negative integer in an n-tuple, c(i−1), is referred to as the
ith track of the stack.

For a DFA M = (S,Σ, δ, q0, F), let Σi be the finite set of i-length strings that are concate-
nations of the alphabet symbols. For DFAs recognizing the standard binary representations
of an n-tuple of integers, the alphabet is

Σ =


x0

x1

...
xn−1

: xj ∈ {0, 1}

 .

Let the function δi : S × Σi → S transition from one DFA state to another via an i-length
string of alphabet symbols. Let a path of length i from state p to state q, denoted Pi(p, q), be a
string A ∈ Σi such that δi(p,AR) = q where string AR is the reversal of string A. (The string
reversal is a notational device to resolve the mismatch between the conventional MSB-first
representation of numbers and the LSB-first consumption of the encoding by the DFA.)

The algorithms for counting and enumerating accepting DFA paths rely on knowing the
set of states reachable from another set of states. Therefore, to easily identify one set of
states reachable from another set of states, extend the transition function δ : S × Σ → S to
∆ : 2S → 2S , defined by ∆(S′) =

⋃
p∈S′{δ(p, a) : a ∈ Σ}.

5.1.2 Example DFA

Given a DFA that recognizes the positional binary representation of the solutions of a Pres-
burger formula, each accepting path in the DFA encodes a solution to the formula. Figure 5.1
shows a DFA that recognizes the solutions of the Presburger formula in Figure 4.2, which
represents the i -witnesses of the running example loop nest Lmm in Figure 2.5 on page 17 for
cache set 0. Notice that a state numbered 1 is missing from this DFA. State 1 is the garbage
state.2 The garbage state and the edges leading to it have been pruned from this DFA, making

2A state that is not part of any accepting path is a garbage state, or dead state. One example of a garbage
state is a state that is not a final state and has transitions to itself for all symbols of the alphabet. Another
example of a garbage state is any of a strongly connected component of states with transitions among themselves,
but no transition to a state outside this component of states.

56

12

0
0
0
0
0

0

20 1
0 0
0 0
1 1
1,1

3

0
1
0
0
0

4
0 1
1 1
0 0
0 0
1,1

5

1
1
0
0
0

6

X
1
0
0
0

7

0
0
0
1
0

8

0
0
0
1
1

9

0
1
0
0
0

10

1
0
0
1
0

11

1
0
0
1
1

X
1
0
0
0

X
0
0
1
0

X
0
0
1
1

0
1
0
0
0

13

X
1
1
0
0

14

0
1
1
0
0

1
0
0
0
0

0
1
1
0
0

1
1
1
0
0

0
0
1
0
0

1
0
1
0
0

ι
ι
ι
u
e

0

1
2

Figure 5.1: DFA recognizing the solutions of the example Presburger formula in Figure 4.2.
State 0 is the start state q0, and the final state denoted with double circles is state 12. A label
on each edge is a stack of 0s and 1s corresponding to the binary representations of the non-
negative integer values for each free variable ι0,ι1,ι2,u,e (in that order from top to bottom).
An X in a stack indicates that either a 0 or 1 is possible in that position.

57

it less cluttered and easier to read. It is only the accepting paths of a DFA that encode formula
solutions; thus, ignoring the states and edges that are not part of any accepting path results
in no loss of information.

Recall that the Presburger formula in Figure 4.2 has five free variables: ι0, ι1, ι2, u, and
e. For the stacks that label DFA edges, the ordering of binary representations corresponding
to the free variable values is not critical to the construction of the DFA. For the DFA in
Figure 5.1, the ordering is ι0, ι1, ι2, u, e from top to bottom. Using a different ordering of
these free variables produces the same DFA in Figure 5.1, except that the labels reflect the
different ordering.

To exemplify the path concept introduced in Section 5.1.1, consider the DFA in Figure 5.1.
The accepting paths of the example DFA encode values for the 5-tuple (ι0,ι1,ι2,u,e) that are
formula solutions. One path from the start state 0 to state 2, P1(0, 2), is [0; 0; 0; 1; 1] (where
semicolons separate each row of the stack). The path is a stack of letters representing the
first letter (i.e., the LSB) of each word encoding a solution for the 5-tuple (ι0,ι1,ι2,u,e). One
accepting path of the DFA, P4(0, 12), is [0110; 1011; 0000; 0000; 0001], which goes through
states 4, 9, and 6, proceeding from LSB to MSB. The stack specified by P4(0, 12) gives the
binary representations of the values for the 5-tuple (ι0,ι1,ι2,u,e) that constitute one solution to
the formula in Figure 4.2. The first track of P4(0, 12), 0110, identifies the value corresponding
to the first non-negative integer of the tuple (i.e., ι0 = 6). The second track identifies the
values corresponding to the second non-negative integer of the tuple (i.e., ι1 = 11), and so
on. Therefore, the DFA in Figure 5.1 recognizes ι0 = 6, ι1 = 11, ι2 = 0, u = 0, and e = 1 as
one solution to the example formula. To demonstrate the ∆ function for identifying one set of
states reachable from another set of states, ∆({6, 12, 13, 14}) = {12} in the example DFA of
Figure 5.1.

5.1.3 Procedure for Constructing DFAs

The following is the BNF grammar for Presburger arithmetic given in Section 2.4, annotated
with a scheme for translating Presburger formulas to DFAs:

〈formula〉 ::= 〈formula〉 ∧ 〈formula〉 { 〈DFA〉 ∩ 〈DFA〉 }

| 〈formula〉 ∨ 〈formula〉 { 〈DFA〉 ∪ 〈DFA〉 }

| ¬〈formula〉 { 〈DFA〉 }

| ∃var : 〈formula〉 { project(var , 〈DFA〉) }

| ∀var : 〈formula〉 { project(var , 〈DFA〉) }

| 〈expression〉〈rel-op〉〈expression〉 { 〈LC DFA〉 }

The base cases are DFAs representing linear equalities and inequalities, denoted 〈LC DFA〉
to indicate a DFA representing the solutions of a single linear constraint. Such DFAs are easy to

58

construct from DFAs that describe arithmetic on the binary representation of natural numbers.
A finite state machine (FSM) representing the addition of v variables is the basis of all DFA
construction for linear equalities and inequalities. An FSM with v states, one for each possible
carry value, is sufficient to represent the addition. At any point, the FSM considers the current
bit of all v variables (x1, . . . , xv), writing (k +

∑v
i=1 xi) mod 2 to output and moving to the

state for carry b(k +
∑v

i=1 xi)/2c, where k is the carry value at the current state [9].

In handling logical connectives of subformulas, the DFA-construction procedure utilizes
closure properties of regular sets under intersection (i.e., 〈DFA〉∩〈DFA〉), union (i.e., 〈DFA〉∪
〈DFA〉), and complementation (i.e., 〈DFA〉) [68]. Existential quantification is handled by
projecting the alphabet and the transition function (i.e., project(var , 〈DFA〉)). Projection
produces a nondeterministic finite automaton, which is followed by determinization and state
minimization to get a minimal DFA. Universal quantification exploits the tautology ∀xφ ≡
¬∃x¬φ.

5.2 Counting and Enumerating Accepting DFA Paths

This section addresses both the counting and enumeration of Presburger formula solutions,
given a DFA whose accepting paths encode the solutions to the formula. The method for
counting Presburger formula solutions counts the accepting paths of the corresponding DFA,
and the method for enumerating solutions is an extension of the counting method. To begin,
the key to counting accepting paths is discussed in Section 5.2.1. Section 5.2.2 derives the
termination condition for both the counting and enumerating methods, related to DFA path
length. Section 5.2.3 presents the algorithm for counting Presburger formula solutions, and
Section 5.2.4 presents the algorithm for enumerating Presburger formula solutions.

5.2.1 Treating the DFA as a Graph

The key to the algorithm for counting accepting paths in a DFA is to treat the DFA as a
weighted, directed graph. For states p and q, let wt(p, q) = |{a ∈ Σ : δ(p, a) = q}| be
the number of alphabet symbols that cause transition from state p to state q. Given DFA
M = (S,Σ, δ, q0, F), define a directed, edge-weighted graph asG(M) = (V,E,W) = (S, {(p, q) |
∃a ∈ Σ : δ(p, a) = q}, λ(p, q).wt(p, q)).

For any choice of path length L, the number of accepting paths of that length in graph
G(M) is equivalent to the number of solutions to the Presburger formula represented by DFA
M such that the value of each free variable comprising the solution is in the range [0, 2L − 1].
Therefore, the problem of counting the number of solutions represented by a DFA M reduces to
a problem of counting the number of accepting paths in the graphG(M). LetNi(q) = |Pi(q0, q)|
be the number of paths of length i from the vertex q0 to vertex q. Build up Ni by induction
on the path length i as follows.

59

Theorem 5.1 For any vertex q and integer i > 0, Ni+1(q) =
∑

e=(p,q)∈E Ni(p) · W (e).
If q = q0 then N0(q) = 1, else N0(q) = 0.

Proof.∑
e=(p,q)∈E

Ni(p) ·W (e) =
∑
p∈V

Ni(p) · wt(p, q)

=
∑
p∈V

|{A = a1a2 . . . ai ∈ Σi : δi(q0, AR) = p}| · |{a0 ∈ Σ : δ(p, a0) = q}|

=
∑
p∈V

|{A′ = a0A = a0a1 . . . ai ∈ Σi+1 : δi(q0, AR) = p ∧ δ(p, a0) = q}|

= |
⋃

p∈V

{A′ = a0A = a0a1 . . . ai ∈ Σi+1 : δi(q0, AR) = p ∧ δ(p, a0) = q}|

= |{A′ = a0a1 . . . ai ∈ Σi+1 : δi+1(q0, A′R) = q}|

= Ni+1(q).

The base case of the recurrence is trivial. 2

5.2.2 DFA Path Length

It is important to take into account the length of the accepting paths in the DFA. The fun-
damental reason for this is that the map from values to representations is one-to-many, since
any representation of a value may be arbitrarily extended with leading 0s without chang-
ing the value that it represents. For example, the DFA in Figure 5.1 recognizes at least
two different encodings for the free variable values ι0 = 6, ι1 = 11, ι2 = 0, u = 0, and
e = 1. Two possible paths are P4(0, 12) = [0110; 1011; 0000; 0000; 0001] and P5(0, 12) =
[00110; 01011; 00000; 00000; 00001]. Despite that these two different encodings are recognized
by the DFA, they specify only one solution to the Presburger formula represented by the DFA.
To avoid counting this solution twice, count all solutions identified by accepting paths of the
same length (i.e., all values of free variables encoded in a certain number of bits).

In order for counting to be meaningful, the number of solutions to the Presburger formula
must be finite. The analysis framework presented here uses Presburger formulas to describe the
cache behavior of loop nests that have bounded iteration spaces, and are therefore representable
by bounded polytopes. The number of solutions to the cache behavior formulas corresponds
to the number of integer points in such polytopes, and the bounded nature of the polytopes
ensures a finite number of solutions.

Recall from Section 5.1.1 that accepting paths encode the binary representations of integer
values satisfying the Presburger formula represented by the DFA (LSB to MSB). Each integer
value has a unique binary representation with the exception of leading 0s. Therefore, a unique
formula solution is represented in the DFA by a single accepting path that may be arbitrarily
extended with 0s. Let R be the regular expression representing the set of all strings accepted
by a DFA that recognizes a Presburger formula P . In order for P to have a finite set of

60

solutions (in the value domain), the Kleene star operator can appear only in limited positions
in R.

Lemma 5.1 Let DFA M recognize Presburger formula P , and let regular expression R repre-
sent all accepting paths of M . Formula P has a finite number of solutions if and only if R is
of the form 0*S, where S is a regular expression free of the Kleene star operator.

Proof. If formula P has a finite number of solutions, then the set of paths accepted by
DFA M must represent a finite set of values. The regular expression representing all accepting
paths M , R, must represent a finite number of strings, with the exception of any number of
0s at the beginning. Therefore, R is of the form 0*S, and S must be free of the Kleene star
operator.

If regular expression R is of the form 0*S, then the accepting paths in DFA M are unique
except for any number of 0s at the beginning. Therefore, DFA M recognizes a finite set of
solution values. 2

Lemma 5.1 gives a property of accepting DFA paths that is critical to the algorithm for
counting such paths, and it relates the property to the finiteness of Presburger formula solution
counts. Note that this property does not apply to non-accepting paths. Henceforth, a DFA
corresponding to a Presburger formula with a finite number of solutions is called a finite-
solution DFA.

Let Vi be the set of vertices reachable from vertex q0 via paths of length i. To start, q0 is
the only vertex reachable from itself with path length 0 (i.e., V0 = {q0}). In general, the set of
vertices reachable from vertex q0 with path length i is Vi = ∆(Vi−1). The following theorem
establishes that when Vi = Vi−1, the sets of vertices reachable from vertex q0 via paths of
length k > i are identical. In other words, the set of vertices reachable from the starting
vertex with paths of a certain length reaches a steady state.

Theorem 5.2 Given a finite-solution DFA, if Vi = Vi−1, then Vk = Vi−1, ∀k > i.

Proof. By definition, Vj = ∆(Vj−1),∀j > 1. Applying ∆ to both sides of the theorem’s
premise gives ∆(Vi) = ∆(Vi−1). Applying the definition gives Vi+1 = Vi, and applying the
premise gives Vi+1 = Vi−1. Now let Vi+1 = Vi−1 be the premise and continue as many times
as desired to get Vk = Vi−1, ∀k > i. 2

The following theorem relates the condition for the set of vertices reaching a steady state
to the number of accepting paths, showing that when Vi = Vi−1, the number of paths of length
i from q0 to accepting vertices is the same as the number of such paths of length i− 1.

Theorem 5.3 Given a finite-solution DFA, if Vi = Vi−1, then∑
q∈F∩Vi

Ni(q) =
∑

q∈F∩Vi−1
Ni−1(q).

61

Proof. Given the property in Lemma 5.1, every accepting path may have any number of
0s in the MSBs. Therefore, for any vertex q such that q ∈ F ∩ Vi, the only edge involving q is
(q, q) such that wt(q, q) = 1. Finally,∑

q∈F∩Vi

Ni(q) =
∑

q∈F∩Vi

∑
e=(p,q)∈E

Ni−1(p) ·W (e)

=
∑

q∈F∩Vi

Ni−1(q) · wt(q, q)

=
∑

q∈F∩Vi

Ni−1(q).
2

Given Theorems 5.2 and 5.3, when the set of vertices reaches a steady state (Vk = Vi−1,
∀k > i), so does the number of accepting paths (

∑
q∈F∩Vk

Nk(q) =
∑

q∈F∩Vk
Ni−1(q), ∀k > i).

Notice that set Vk can contain garbage states, but the paths reaching steady state are only
the accepting paths. The algorithm for counting accepting paths terminates when Vi = Vi−1

because it is certain that the number of accepting paths in the DFA has converged.

5.2.3 Counting Accepting Paths

The path-counting algorithm (Algorithm 5.1) counts the number of accepting paths of length
L in a directed, edge-weighted graph G(M).

Algorithm 5.1 Counting solutions to Presburger formula.
Input: Finite-solution DFA M = (S,Σ, δ, q0, F) corresponding to Presburger formula P .
Output: Path length L, number of solutions to formula P such that the value of each free

variable is in the range [0, 2L − 1].
Method:

1 Construct the graph G(M) = (V,E,W) from M .
2 V0 ← {q0}
3 i ← 0
4 repeat
5 i ← i+ 1
6 Vi ← ∅
7 for all q ∈ V : ∃p ∈ Vi−1 ∧ (p, q) ∈ E do
8 Vi ← Vi ∪ {q}
9 Calculate Ni(q) using Theorem 5.1.

10 enddo
11 until Vi = Vi−1

12 L ← i− 1
13 return L,

∑
q∈F NL(q)

62

For the analysis of Algorithm 5.1, assume a representation of DFA M = (S,Σ, δ, q0, F) that
includes the following components.

1. states, a list of all states in the DFA;

2. final, a flag for each state p indicating if p ∈ F ;

3. to, for each state p a list of the states q such that there exists a transition from p to q;
and

4. trans, a transition table such that an element p, q is the list of alphabet symbols causing
transition from state p to state q (note that in general this table is quite sparse).

Notice that Algorithm 5.1 counts the number of accepting paths in a directed graph without
enumerating each accepting path. Therefore, the cost of the algorithm is sublinear in the
number of solutions.

Lemma 5.2 Algorithm 5.1 counts the number of accepting paths of length L in graph G(M)
with worst-case complexity O(|V |3), where |V | is the number of vertices in G(M).

Proof. Line 1 of Algorithm 5.1 constructs the directed, edge-weighted graph G(M) from
DFA M . The set of vertices V is simply the set of states S. The set of edges E is computed
from the to lists of all states. The weight matrix W is computed from the table trans.
Element W (i, j) is the count of all alphabet symbols in the list at trans(i, j). The cost of line
1 is O(|V |+ |E|).

Lines 7–10 of Algorithm 5.1 consider all vertices q such that there is an edge from a vertex
p ∈ Vi−1 to vertex q. This step does not require enumeration of all vertices q ∈ V to check if
(p, q) ∈ E. Instead, the to list of each vertex p ∈ Vi−1 gives all such vertices q. The complexity
of lines 7–10 is O(|E|), and the cost clearly depends on the sparsity of table trans. At worst
there is an edge from every vertex p to every vertex q, making the worst-case complexity of
lines 7–10 O(|V |2). In general, the cost of computation is much smaller.

Finally, line 13 of Algorithm 5.1 requires only a query to the final flag of each state, and
its cost is O(|V |). The complexity of the entire algorithm depends on the number of times
lines 4–11 repeat, which is indicated by the output parameter L. Therefore, the complexity of
Algorithm 5.1 is output-sensitive, which is as expected since the structure of G(M) depends
on the solutions recognized by M . At worst, one or more accepting paths pass through all
vertices of G(M), making O(|V |) the upper bound on L. The bound on the complexity of the
entire algorithm is O(|E| · L), which is at worst O(|V |3). 2

Applying the path-counting algorithm (Algorithm 5.1) to the DFA in Figure 5.1, the num-
ber of accepting paths is 18 and the path length L is 4.

63

5.2.4 Enumerating Accepting Paths

Recall that the analysis framework presented in this dissertation determines the cache behavior
of a memory access by counting the number of witnesses to the access and comparing the
witness count with an associativity value A. To count the witnesses for each memory access,
it is necessary to enumerate the solutions of the witness formula. This section presents an
extension of the path-counting algorithm (Algorithm 5.1) that enumerates the solutions of a
Presburger formula by enumerating the accepting paths in the DFA recognizing the solutions
of the formula.

The enumeration algorithm (Algorithm 5.2) enumerates the free variable values encoded
by all accepting paths of length L in DFA M , where L is the path length at which the set of
states converges (i.e., Sk = SL,∀k > L). This algorithm does not depend on the type of cache
behavior expressed by the formula.

Algorithm 5.2 Enumerating solutions to Presburger formula.
Input: Finite-solution DFA M = (S,Σ, δ, q0, F) corresponding to Presburger formula P .
Output: Path length L, set of solutions to formula P with f free variables (i.e., a set of

f -vectors such that the value of each free variable is in the range [0, 2L − 1]).
Method:

1 S0 ← {q0}
2 for all p ∈ S do
3 T0,p ← {[0 0 . . . 0]}
4 enddo
5 i ← 0
6 repeat
7 i ← i+ 1
8 Si ← ∅
9 for all q ∈ S : ∃p ∈ Si−1 ∧ ∃a ∈ Σ : δ(p, a) = q do

10 Si ← Si ∪ {q}
11 Ti,q ← ∅
12 for all a ∈ Σ : ∃δ(p, a) = q do
13 for all t ∈ Ti−1,p do
14 Ti,q ← Ti,q ∪ {t+ a ∗ 2i−1}
15 enddo
16 enddo
17 enddo
18 until Si = Si−1

19 L ← i− 1
20 return L, TL,q∈F

64

Let Si be the set of states reachable from the start state via paths of length i (i.e.,
Si = ∆(Si−1)). For a finite-solution DFA, when the set of states reachable from the start
state converges (i.e., Sk = Si−1,∀k > i), the number of accepting paths does as well (see
Theorem 5.3). This fact is used as a condition for terminating the enumeration.

Recall that an alphabet symbol a ∈ Σ is a stack of f 0s and 1s, where f is the number of free
variables. Let an f -vector, a vector of f non-negative integers, contain the free variable values
encoded by a single accepting path. In Algorithm 5.2, each element of the two-dimensional
table T is a set of f -vectors. Element Ti,p corresponds to the set of free variable values
encoded by all paths of length i from vertex q0 to vertex p. To begin, line 3 assigns to T0,p a
set containing a single f -vector of all 0s, for all states p. The output of Algorithm 5.2 is a set
of f -vectors, where each f -vector contains values of the f free variables comprising a solution.
Because DFA M is minimal,3 each solution encoded by an accepting path of M is unique.

The enumeration algorithm (Algorithm 5.2) is similar to the path-counting algorithm (Al-
gorithm 5.1). Both terminate when the set of states (or vertices) reachable from q0 reaches
steady state, because it is shown that the enumerations (or number) of accepting paths con-
verges at that point. Unlike Algorithm 5.1, Algorithm 5.2 must consider the value of each
alphabet symbol causing transition among states (not just the number of such alphabet sym-
bols). Therefore, the DFA may neither be treated simply as a directed, edge-weighted graph
nor experience the cost benefits of ignoring the values of alphabet symbols. Both the worst-case
and observed complexity of Algorithm 5.2 demonstrates this.

Lemma 5.3 Algorithm 5.2 enumerates the free variable values encoded by all accepting paths
of length L in DFA M with worst-case complexity O((|S| · 2f · f)|S| · 2f · |S|3), where |S| is the
number of states in M and f is the number of free variables.

Proof. Lines 9–17 of Algorithm 5.2 consider all states q such that there is a transition from
a state p ∈ Si−1 to state q. The to list of each state p ∈ Si−1 (of the DFA representation
outlined in Section 5.2.3) gives all such states q. In the worst case, it is possible to transition
from each state in the DFA to all states in the DFA, making it possible for lines 9–17 to iterate
|S|2 times. In general, this quantity is much less.

Lines 12–16 examine all alphabet symbols causing transition from state p to state q. Ele-
ment (p, q) of the trans table gives the list of such symbols. The number of which is |Σ| at
worst. Note that |Σ| = 2f .

Lines 13–15 add to the values encoded by paths of length i−1 from q0 to state p to compute
the values of encoded by paths of length i from q0 to state q. The multiplication in line 14 is
an f -vector multiply. In the worst case, the number of paths of length i − 1 from q0 to state
p is (|S| · |Σ|)i. The worst-case complexity of lines 13–15 is (|S| · |Σ| · f)i.

The cost of the entire algorithm depends on the number times lines 6–18 repeat, which is

3The analysis framework presented here uses automata-construction tools [9, 10, 81] that generate the min-
imal DFA representation of a given Presburger formula.

65

indicated by the output parameter L. At worst, one or more accepting paths pass through
all states of DFA M , making O(|S|) the upper bound on the value of L. The bound on the
complexity of the entire algorithm isO((|S|·|Σ|·f)L·|Σ|·|S|2·L), which isO((|S|·2f ·f)|S|·2f ·|S|3)
at worst. As in the case of the path-counting algorithm (Algorithm 5.1), this bound represents
an extreme worst case, and in general, the cost of enumeration is much less. 2

Using the enumeration algorithm (Algorithm 5.2) to enumerate the solutions encoded by
the DFA in Figure 5.1, which represents the i -witnesses of the running example loop nest Lmm

in Figure 2.5 on page 17 for cache set 0, gives L = 4 and

TL,q∈F =


0

5

12

2

0

,

0

6

0

1

1

,

1

5

12

2

0

,

1

6

0

1

1

,

2

5

12

2

0

,

2

6

0

1

1

,

3

5

12

2

0

,

3

6

0

1

1

,

4

5

12

2

0

,

4

11

0

0

0

,

4

11

0

0

1

,

5

5

12

2

2

,

5

11

0

0

1

,

6

5

12

2

2

,

6

11

0

0

1

,

7

5

12

2

2

,

7

11

0

0

1

,

8

5

12

2

2

 ,

where TL,q∈F is the set of satisfying values for free variables ι0, ι1, ι2, u, and e.

5.3 Counting Witnesses to Determine Cache Behavior

Recall that a witness formula describes the witnesses of all memory accesses in a loop nest and
each solution to the formula expresses a memory access and one of its witnesses (or its only
witness). Given an enumeration of the witness formula solutions, it is then necessary to collect
the solutions describing a particular memory access and count the number of such solutions
expressing unique witnesses for the access. Finally, comparison of a memory access’s witness
count with associativity A determines the cache event outcome of the access.

This section discusses how to count the number of witnesses for each memory access and
how to compare such witness counts with associativity values to determine cache event out-
comes. Section 5.3.1 presents the algorithm for counting witnesses to each memory access,
given an enumeration of the witness formula solutions. Section 5.3.2 explains how to interpret
i -witness and r -witness counts to determine the number of interior misses and replacement
misses incurred, respectively. Section 5.3.3 explains how to use the b-witnesses to determine
the boundary misses incurred and how use to the s-witnesses to update cache state. The key
ideas of this section are counting witnesses and using the theorems stated in Section 4.4 to
determine cache behavior.

5.3.1 Counting Witnesses

Each solution to the witness formulas of Section 4.3.2 consists of the free variables that rep-
resent a memory access (loop control variables and array reference number) and the free
variable to represent a memory block that is a witness to the access. Recall that a wraparound
value is sufficient to designate the memory block. The free variable that is the wraparound
value is called the e-value. Recall that the enumeration algorithm (Algorithm 5.2) enumerates

66

the solutions represented by a minimal DFA. The minimality of the DFA is a result of the
automata-construction tools used by the analysis framework presented here. As a result, each
enumerated solution is unique, which ensures that the e-values associated with each memory
access are distinct.4 Once Algorithm 5.2 has enumerated all solutions, it is necessary and
sufficient to count the number of e-values for each memory access. Counting e-values is nec-
essary because each e-value associated with a particular memory access represents a witness
to the access, and the e-value count for each memory access is equivalent to its witness count.
Counting e-values is sufficient because the e-values associated with a particular memory access
are guaranteed distinct (due to the minimality of the DFA), and there is no need to identify
and compare the actual e-values.

The witness-counting algorithm (Algorithm 5.3) counts e-values (and thus, witnesses), by
grouping together memory accesses with the same witness count and reporting the number of
such accesses for each witness count. This algorithm does not depend on the type of witnesses
being counted.

Algorithm 5.3 Counting the number of witnesses to each memory access.
Input: Set of solutions X to the original Presburger formula.
Output: The maximum e-value count emax and the histogram N of the number of memory

accesses with i distinct e-values for each i ∈ [1, emax].
Method:

1 emax ← 1
2 for all x ∈ X do
3 k ← Key(x)
4 h ← Find(k,H)
5 if h = NULL
6 Insert 〈k, 1〉 into H
7 else
8 h.val ← h.val + 1
9 emax ← max(emax, h.val)

10 endif
11 enddo
12 for all i = 1 to emax do
13 Ni ← 0
14 enddo
15 for all h ∈ H do
16 Nh.val ← Nh.val + 1
17 enddo
18 return emax, N

Algorithm 5.3 builds a histogram of witness counts and requires two steps. First, the set of
enumerated solutions X condenses to a list of key-value pairs H. For h ∈ H, h.key identifies

4In contrast, if the DFA was non-minimal, its enumerated solutions would not be guaranteed unique, and it
would not be safe to assume that the e-values associated with each memory access are distinct.

67

a memory access, and h.val counts the number of distinct e-values for the access. Given
x ∈ X, let Key(x) return the associated key. For the example set of solutions enumerated in
Section 5.2.4, solution x = [0; 5; 12; 2; 0] has Key(x) = [0; 5; 12; 2]. It is not necessary to keep
track of the actual e-values because they are guaranteed to be distinct. Let Find(k,H) be a
function that returns h = 〈k, v〉 if H contains h and returns NULL otherwise. The maximum
e-value count, emax, is dynamically updated during the process of building H. In the analysis
framework of this dissertation, H is implemented using hashing so that maintaining, updating,
and searchingH can be expected to require constant time. Second, the value fields of the entries
of H are used to build a histogram N .

The complexity of Algorithm 5.3 is O(f · |X|), where |X| is the size of the solution set for
which witnesses are counted and each key has f components.5 The result of Algorithm 5.3 is a
histogram of the number of memory accesses with i distinct e-values (i.e., witnesses) for each
value of i from 1 to emax. For all i > emax, the number of memory accesses with i distinct
e-values is 0.

5.3.2 Counting Interior and Replacement Misses

Based on Theorem 4.1, which states that a memory access is an interior miss if and only
if there are A or more i -witnesses to the access, the following gives the number of memory
accesses that incur an interior miss for associativity value A, int-misses(A), given the output
of the witness-counting algorithm (Algorithm 5.3) for i -witnesses.

int-misses(A) =
emax∑
i=A

Ni (5.1)

Using the witness-counting algorithm (Algorithm 5.3) to count the number of i -witnesses
for the memory accesses encoded by the DFA in Figure 5.1 gives emax = 2, N1 = 16, and
N2 = 1 (i.e., the maximum e-value count is 2, there are sixteen memory accesses with one
witness, and there is one memory access with two witnesses). Therefore, int-misses(1) = 17,
int-misses(2) = 1, and int-misses(A) = 0 for all A > 3. Loop nest Lmm in Figure 2.5 incurs
seventeen interior misses in set 0 of a (1, 32, 4096; 128) cache, one interior miss in set 0 of a
(2, 32, 8192; 128) cache, and no interior misses in set 0 of all {(k, 32, 4096k; 128): k > 3}
caches.

The DFA recognizing the r -witnesses of the running example loop nest Lmm for cache set
0 (i.e., the solutions of the Presburger formula in Figure A.1) is given in Figure A.4. Using
the enumeration algorithm (Algorithm 5.2) to enumerate the solutions encoded by the DFA
in Figure A.4 gives L = 4 and

TL,q∈F =


0

6

0

1

1

,

1

5

12

2

0

,

1

6

0

1

1

,

2

5

12

2

0

,

2

6

0

1

1

,

3

5

12

2

0

,

3

6

0

1

1

,

4

5

12

2

0

,

5

5

12

2

2

,

5

11

0

0

1

,

6

5

12

2

2

,

6

11

0

0

1

,

7

5

12

2

2

,

7

11

0

0

1

,

8

5

12

2

2

 .

5The original formula contains f free variables.

68

Based on Theorem 4.2, which states that a memory access is a replacement miss if and only
if there are A or more r -witnesses to the access, the following gives the number of memory
accesses that incur a replacement miss for associativity value A, repl-misses(A), given the
output of the witness-counting algorithm (Algorithm 5.3) for r -witnesses.

repl-misses(A) =
emax∑
i=A

Ni (5.2)

Using the witness-counting algorithm (Algorithm 5.3) to count the number of r -witnesses
for the memory accesses encoded by the DFA in Figure A.4 gives emax = 1 and N1 = 15.
Therefore, int-misses(1) = 15 and int-misses(A) = 0 for all A > 2. Loop nest Lmm incurs
fifteen interior misses in set 0 of a (1, 32, 4096; 128) cache and no interior misses in set 0 of
all {(k, 32, 4096k; 128): k > 2} caches.

5.3.3 Counting Boundary Misses and Updating Cache State

To enumerate b-witnesses and s-witnesses, it is necessary to identify (not just count) the
memory accesses with a certain number of witnesses. Comparison of these memory accesses
with the cache state at the beginning of program fragment execution resolves whether potential
boundary misses are indeed misses and determines the cache state at the end of program
fragment execution. Furthermore, in order to determine boundary misses and cache state, it
is necessary to identify the earliest and latest memory accesses to map to each cache set (in
the total ordering of accesses, �). The earliest access has zero b-witnesses and is a potential
boundary miss. The latest access has zero s-witnesses and is in the cache state at the end of
program fragment execution. For Presburger formulas describing such accesses, see Section
4.3.2.

Let Zi
s be the set of memory accesses in As with witness count i. In fact, for each cache set

s, set Zi
s for b-witnesses contains at most one access and set Zi

s for s-witnesses contains at most
one access (both properties are proven below). That is, no two accesses in As with non-empty
b-neighborhoods may have the same number of b-witnesses. Similarly, no two accesses in As

with non-empty s-neighborhoods may have the same number of s-witnesses.

Theorem 5.4 There is exactly one memory access in As with b-witness count i, and the value
of i ranges from 0 to one less than the total number of memory blocks accessed by program
fragment F that map to cache set s.

Proof. Any memory access a that has a non-empty b-neighborhood (i.e., a is the earliest
access to the memory block that it touches) has a b-witness count i > 0. Let Es be the set of
such accesses in As. By definition, all accesses in Es touch distinct memory blocks. There is
some access a1 ∈ Es that is the earliest in the total order of all accesses executed by program
fragment F. Recall that a memory block b is a b-witness to access a if b is touched by an

69

access in the b-neighborhood of a and b is distinct from the memory block touched by a.
Access a1 has 0 b-witnesses because there are no accesses in As between a1 and the beginning
of fragment F (i.e., there are no accesses in the b-neighborhood of a1). Similarly, there is
some access a2 ∈ Es − {a1} that is the earliest. Access a2 has one b-witness because only
access a1 occurs between a2 and the beginning of fragment F. In general, there is some access
ak ∈ Es − {a1, . . . , ak−1} that is the earliest. Access ak has k − 1 b-witnesses because accesses
a1, . . . , ak−1 occur between ak and the beginning of fragment F. If |Es − {a1, . . . , ak−1}| = 1,
then |Es| = k and ak has the largest b-witness count k − 1.

Let x be the total number of memory blocks accessed by fragment F that map to cache
set s. Because Es is the set of accesses in As that are the earliest among all accesses executed
by fragment F to touch their respective memory blocks, the size of Es is x. Therefore, for
b-witness counts 0 to x− 1, there is exactly one access in As with that number of b-witnesses.
2

The fact that an access has a b-witness count i does not imply that it is a boundary miss
or even a potential boundary miss. As Section 4.4 explains, if i > A, then a is an interior miss
for a given associativity value A.

Theorem 5.5 There is exactly one memory access in As with s-witness count i, and the value
of i ranges from 0 to one less than the total number of memory blocks accessed by program
fragment F that map to cache set s.

Proof. The proof is the same as for Theorem 5.4 with b-witness, b-neighborhood, and
earliest replaced by s-witness, s-neighborhood, and latest, respectively. 2

To count boundary misses and update cache state, it is necessary to identify the memory
accesses with certain witness counts. Given the enumeration of witness formula solutions,
The witness-identifying algorithm (Algorithm 5.4) identifies the set of memory accesses with
i distinct e-values (i.e., witnesses) for each value of i from 0 to emax. As established by
Theorems 5.4 and 5.5, for either b-witnesses or s-witnesses, the set of memory accesses with
i witnesses contains one memory access. The maximum e-value count, emax, is dynamically
updated. Let Earliest(s) return the earliest memory accesses mapping to cache set s. Let
Latest(s) return the latest memory accesses mapping to cache set s. In the case of b-witnesses,
let Wi be the result of Earliest(i). In the case of s-witnesses, let Wi be the result of Latest(i).
Let H be a list of key-value pairs as in the witness-counting algorithm (Algorithm 5.3). Let
Set(key) be a function that returns the cache set number corresponding to the memory access
represented by the key. The result of Algorithm 5.4 is the sets of memory accesses with i

distinct e-values, Zi
s, for each i ∈ [0, emax] and s ∈ [0,S]. For all i > emax, the set of memory

accesses with i distinct e-values is empty. The complexity of the entire algorithm is O(f · |X|),
where |X| is the size of the solution set for which witnesses are identified and each key has f
components. Notice that the witness-identifying algorithm (Algorithm 5.4) is similar to the

70

witness-counting algorithm (Algorithm 5.3), but witnesses are being identified instead of just
being counted.

Algorithm 5.4 Identifying memory accesses with i witnesses.
Input: Set of solutions X to the original Presburger formula.
Output: The maximum e-value count emax and the sets of memory accesses with i distinct

e-values Zi
s, for each i ∈ [0, emax] and s ∈ [0,S].

Method:

1 emax ← 1
2 for all x ∈ X do
3 k ← Key(x)
4 h ← Find(k,H)
5 if h = NULL
6 Insert 〈k, 1〉 into H
7 else
8 h.val ← h.val + 1
9 emax ← max(emax, h.val)
10 endif
11 enddo
12 for all i = 0 to emax do
13 for all s = 0 to S do
14 Zi

s ← ∅
15 enddo
16 enddo
17 for all h ∈ H do
18 s ← Set(h.key)
19 Zh.val

s ← Zh.val
s ∪ {h.key}

20 enddo
21 for all s = 0 to S − 1 do
22 Z0

s ← Z0
s ∪ {Ws}

23 enddo
24 return emax, Z

Boundary Misses

Based on Theorem 4.3, which states that a memory access is a potential boundary miss if and
only if there are fewer than A b-witnesses to the access, the following gives the collection of
memory accesses that are potential boundary misses in cache set s for associativity value A,
given the output of the witness-identifying algorithm (Algorithm 5.4) for b-witnesses.

potential-bnd-misses(A) =
min(A−1,emax)⋃

i=0

Zi
s (5.3)

71

To determine which of the potential boundary misses are actual cache misses (i.e., boundary
misses), it is necessary to consider the cache state at the beginning of program fragment
execution.

Recall from Section 2.1.1 that the state of cache set s, C〈s〉, is the collection of memory
blocks residing in s at any point during the execution of a program, ordered by recency of
access. It is sufficient to represent each memory block in C〈s〉 with its wraparound value. The
function Size(C〈s〉) returns the number of memory blocks in C〈s〉. Let C〈s〉 be extended to
represent the state of cache set s for multiple associativity values, which is possible since the
ordering of memory blocks by recency of accesess (i.e. due to the LRU replacement algorithm)
has the stack inclusion property [92].6 For any particular A, the cache state of set s is the first
n memory blocks of C〈s〉, where n = min(A,Size(C〈s〉)). For any A > Size(C〈s〉), cache set s
contains A− Size(C〈s〉) unoccupied frames.

For example, consider C〈s〉 = {0, 10, 4}, where the first memory block (with wraparound
value 0) is the most-recently accessed, and the last memory block (with wraparound value 4) is
the least-recently accessed. Size(C〈s〉) returns 3. For a cache with A = 1, cache set s contains
one memory block represented by the pair (s, 0). For a cache with A = 2, set s contains
two memory blocks represented by the pairs (s, 0) and (s, 10). For a cache with A > 3, set
s contains three memory blocks represented by the pairs (s, 0), (s, 10), and (s, 4). For caches
with A > 3, set s contains A− 3 unoccupied frames.

Recall the Resolve function from Section 3.2, which returns the collection of boundary
misses incurred by a program fragment in set s given the cache state of s and the collection of
potential boundary misses incurred in s. The resolving algorithm (Algorithm 5.5) for resolving
potential boundary misses with cache state illustrates the operation of Resolve. The algorithm
takes as input the cache state of set s at the beginning of program fragment execution, Cin

s , and
the collection of memory accesses with i distinct b-witnesses for cache set s, Zi

s. The algorithm
gives as output the number of boundary misses for associativity A = i, Bi, where i ranges
from 1 to emax′ = max(Size(Cin

s), emax). Function Add(Cin
s , w) adds the memory block with

wraparound value w to the state of cache set s as the most recently accessed block (i.e., w goes
at the beginning of Cin

s). Function Delete(Cin
s , i) deletes the ith most recently accessed block

from Cin
s . Function GetItem(Cin

s , i) returns the ith most recently accessed block in Cin
s . Function

Wraparound(a) returns the wraparound value associated with the memory block touched by
access a. The complexity of the entire algorithm is O(emax · |Zi

s| · (emax+Size(C〈s〉))), where
the value of emax is at most the number of wraparounds in the memory footprint of the loop
nest (designated W) and the value of |Zi

s| is 1 (as indicated by Theorems 5.4 and 5.5). In the
worse case, the cost of Algorithm 5.5 is O(W 2 +W · Size(C〈s〉)). For caches with associativity
values A > emax′, the number of boundary misses is Bemax′ . To resolve all potential boundary
misses, Algorithm 5.5 is performed for every set s = 0 to S − 1.

6The inclusion property states that, at a given time, the contents of a memory of size k frames is a subset
of the contents of memory of size k + 1 frames.

72

Algorithm 5.5 Resolving Potential Boundary Misses with Cache State.
Input: The cache state of set s at the beginning of program fragment execution Cin

s , the maximum
b-witness count emax, the set of memory accesses with i distinct b-witnesses Zi

s, for each
i ∈ [0, emax]

Output: The number of actual boundary misses for cache set s in a cache with A = i, Bi, for each
i ∈ [1, emax′].

Method:

1 emax′ ← Size(Cin
s) + emax

2 for all i = 1 to emax′ do
3 Bi ← 0
4 enddo
5 for all i = 0 to emax do
6 for all z ∈ Zi

s do
7 if Size(Cin

s) = 0
8 Add(Cin

s ,Wraparound(z))
9 for all k = i+ 1 to emax′ do

10 Bk ← Bk + 1
11 enddo
12 else
13 for all j = 1 to Size(Cin

s) do
14 t ← GetItem(Cin

s , j)
15 if t = Wraparound(z)
16 Delete(Cin

s , j)
17 Add(Cin

s , t)
18 break
19 else if j = Size(Cin

s)
20 Add(Cin

s ,Wraparound(z))
21 for all k = max(j + 1, i+ 1) to emax′ do
22 Bk ← Bk + 1
23 enddo
24 endif
25 if j > i
26 Bj ← Bj + 1
27 endif
28 enddo
29 endif
30 enddo
31 enddo
32 return B

73

The DFA recognizing the b-witnesses of the running example loop nest Lmm in Figure 2.5 for
cache set 0 (i.e., the solutions of the Presburger formula in Figure A.2) is given in Figure A.5.
Using the enumeration algorithm (Algorithm 5.2) to enumerate the solutions encoded by the
DFA in Figure A.5 gives L = 4 and

TL,q∈F =


4

11

0

0

0

,

0

5

12

2

0

,

4

11

0

0

1

 ,

where TL,q∈F is the set of satisfying values for free variables ι0, ι1, ι2, u, and e. In the
running example, Earliest(0) returns memory access (0, 0, 0, R1). Using the witness-identifying
algorithm (Algorithm 5.4) to identify the memory accesses with certain b-witness counts for
loop nest Lmm in cache set 0 gives emax = 2 and

Z0
0 =

{
0

0

0

1

}
, Z1

0 =

{
0

5

12

2

}
, Z2

0 =

{
4

11

0

0

}
,

where Zi
0 is the set of memory accesses in A0 with i distinct e-values for each i ∈ [0, 2].

Suppose that the cache state of set 0 at the beginning of program fragment execution is
Cin

0 = {0, 2, 1}. Given the result of the witness-identifying algorithm (Algorithm 5.4) for the
running example, the resolving algorithm (Algorithm 5.5) returns emax′ = 5, B1 = 0, B2 = 1,
and Bi = 0,∀3 6 i 6 5. Therefore, loop nest Lmm incurs no boundary misses in set 0 of a (1,
32, 4096; 128) cache, one boundary miss in set 0 of a (2, 32, 8192; 128) cache, and no boundary
misses in set 0 of all {(k, 32, 4096k; 128): k > 3} caches. It may seem strange that a cache
with larger associativity and capacity (A = 2, C = 8192) incurs more boundary misses than a
cache with smaller associativity and capacity (A = 1, C = 4096) in cache set 0. For A = 1,
there is one potential boundary miss that is actually a cache hit. For A = 2, there are two
potential boundary misses; one is a cache hit and one is a boundary miss. Furthermore, the
memory access that is a boundary miss for A = 2 is still a miss for A = 1—it is an interior
miss.

Cache State

In determining the cache state after execution of a program fragment, the objective is to appro-
priately update the representation of cache state before execution of the program fragment, Cin

s .
The updating algorithm (Algorithm 5.6) determines the cache state of set s at the end of pro-
gram fragment execution, Cout

s . The complexity of the entire algorithm is O(emax ·Size(C〈s〉)),
where the value of emax is at most the number of wraparounds in the memory footprint of the
loop nest (designated W). In the worse case, the cost of Algorithm 5.6 is O(W · Size(C〈s〉)).
Algorithm 5.6 is performed for every set s = 0 to S − 1.

74

Algorithm 5.6 Updating Cache State.
Input: The cache state of set s at the beginning of program fragment execution Cin

s , the maximum
s-witness count emax, the set of memory accesses with i distinct s-witnesses Zi

s, for each
i ∈ [0, emax]

Output: The cache state of set s at the end of program fragment execution Cout
s .

Method:

1 Cout
s ← Cin

s

2 for all i = emax to 0 do
3 for all z ∈ Zi

SET do
4 if Size(Cout

s) = 0
5 Add(Cout

s ,Wraparound(z))
6 else
7 for all j = 1 to Size(Cout

s) do
8 t ← GetItem(Cout

s , j)
9 if t = Wraparound(z)

10 Delete(Cout
s , j)

11 Add(Cout
s , t)

12 break
13 else if j = Size(Cout

s)
14 Add(Cout

s ,Wraparound(z))
15 endif
16 enddo
17 endif
18 enddo
19 enddo
20 return Cout

s

The DFA recognizing the s-witnesses of the running example loop nest Lmm in Figure 2.5 for
cache set 0 (i.e., the solutions of the Presburger formula in Figure A.3) is given in Figure A.6.
Using the enumeration algorithm (Algorithm 5.2) to enumerate the solutions encoded by the
DFA in Figure A.6 gives L = 5 and

TL,q∈F =


3

19

0

1

1

,

7

11

19

3

1

,

3

19

0

1

2

 ,

where TL,q∈F is the set of satisfying values for free variables ι0, ι1, ι2, u, and e. In the running
example, Latest(0) returns memory access (19, 5, 15, R2). Using the witness-identifying algo-
rithm (Algorithm 5.4) to identify the memory accesses with certain s-witness counts for loop
nest Lmm in cache set 0 gives emax = 2 and

Z0
0 =

{
19

5

15

2

}
, Z1

0 =

{
7

11

19

3

}
, Z2

0 =

{
3

19

0

1

}
,

75

where Zi
0 is the set of memory accesses in A0 with i distinct e-values for each i ∈ [0, 2]. Suppose

that the cache state of set 0 at the beginning of program fragment execution is empty, Cin
0 = {}.

Given the result of the witness-identifying algorithm (Algorithm 5.4) for the running example,
the updating algorithm (Algorithm 5.6) returns the cache state of set 0 at the end of the
program fragment, Cout

0 = {1, 2, 0}.

5.4 Handling Misses Independent of Associativity

For misses that occur independent of the cache’s associativity, it is not necessary to apply
the neighborhood and witness concepts. In such cases, it is sufficient to describe the cache
miss situation as a Presburger formula, represent the formula as a DFA, and count (without
enumeration), using the path-counting algorithm (Algorithm 5.1), the accepting paths in the
DFA to get the number of solutions.

As examples, Section 5.4.1 presents the case of modeling interior misses in direct-mapped
caches, and Section 5.4.2 presents the case of modeling compulsory misses.

5.4.1 Interior Misses in Direct-Mapped Caches

When the cache being considered is direct-mapped (i.e., A = 1), the task of counting interior
misses may be accomplished using the method described in Chapter 4. Alternatively, it is
possible to count interior misses without enumeration. The following formula expresses the
condition that memory access (ι, Ru) incurs an interior miss in a direct-mapped cache.

(
(ι, Ru) ∈ i -miss(L)

) def= (5.4)

ι ∈ I ∧(
∃d : Map(µx + Lx(Eu(ι)) · βx, d, s) ∧(

∃e, κ, v : (κ,Rv) � (ι, Ru) ∧Map(µy + Ly(Ev(κ)) · βy, e, s) ∧

¬(∃ρ,w : (κ,Rv) � (ρ,Rw) � (ι, Ru) ∧Map(µz + Lz(Ew(ρ)) · βz, d, s)) ∧

¬(d = e)
))

For any loop nest, applying the path-counting algorithm (Algorithm 5.1) to count the
solutions in the Presburger formula given above reveals the number of interior misses in a
direct-mapped cache. The Presburger formula constructed to describe the interior misses of
the running example loop nest Lmm in Figure 2.5 on page 17 is given in Figure A.7, and the
DFA recognizing the solutions to this formula is given in Figure A.8. Using the path-counting
algorithm (Algorithm 5.1) to count the solutions encoded by the DFA in Figure A.8 gives
L = 4 and 17 accepting paths (i.e., solutions).

76

5.4.2 Compulsory Misses

The compulsory misses (from the 3C model [67]) incurred by a program are independent of the
associativity value of the cache. It is straightforward to describe a compulsory miss situation
as a Presburger formula. Any memory access that is the first to request a memory block in
the loop nest incurs a compulsory miss. Let reference Ru = (Y (x), Eu, Sh) at iteration point ι
access memory block bu. Access (ι, Ru) is a compulsory miss if there does not exist a reference
Rv = (Y (y), Ev, Si) at iteration point κ accessing memory block bu, such that (κ,Rv)� (ι, Ru)
(i.e., (ι, Ru) is the earliest access to memory block bu). The following formula expresses the
condition that memory access (ι, Ru) incurs a compulsory miss.

(
(ι, Ru) ∈ c-miss(L)

) def= (5.5)

ι ∈ I ∧(
∃d : Map(µx + Lx(Eu(ι)) · βx, d, s) ∧

¬
(
∃κ, v : (κ,Rv) � (ι, Ru) ∧Map(µy + Ly(Ev(κ)) · βy, d, s)

))
The Presburger formula constructed to describe the compulsory misses of the running

example loop nest Lmm is given in Figure A.9, and the DFA recognizing the solutions to this
formula is given in Figure A.10. Using the path-counting algorithm (Algorithm 5.1) to count
the number of solutions encoded by the DFA in Figure A.10, gives L = 4 and 3 accepting
paths.

5.5 Summary

This chapter shows how to count witnesses for each memory access by first representing the
witness formula as a DFA and enumerating the DFA’s accepting paths, which encode the
formula solutions. The automata-theoretic method for counting and enumerating solutions to
Presburger formulas is not specific to formulas describing cache behavior and can be applied to
any formula of Presburger arithmetic. To decide whether a memory access suffers an interior
miss or a replacement miss, it is sufficient to count its i -witnesses or r -witnesses. To decide
whether a memory access suffers a boundary miss or affects cache state, it is necessary to
identify its b-witnesses or s-witnesses and compare them with the cache state before the loop
nest begins execution.

Chapter 6

Putting It All Together

Chapters 3 to 5 give the theoretical foundations of the analytical framework presented in this
dissertation, which models the behavior of loop-oriented programs executing in a memory
hierarchy. This chapter provides the high-level view of the framework. Section 6.1 illustrates
the framework’s method for counting the cache misses incurred by a loop nest and shows how
the analysis flows through each step of the method. Section 6.2 discusses the tools used in
the implementation of the analysis framework to extract relevant loop nest parameters from
source code, to simplify Presburger formulas describing cache behavior, and to represent a
cache behavior formula as a DFA whose accepting paths recognize the formula’s solutions.

6.1 The Analysis Framework

Figure 6.1 gives a high-level view of the method for modeling cache behavior presented in this
dissertation. In modeling the cache behavior of a loop nest L, the figure shows the flow of
analysis both for associativity-dependent cache events (the number of interior, replacement,
and boundary misses incurred by L, and the cache state after execution of L for any associa-
tivity value A) and for cache events not dependent on associativity (the number of interior
misses incurred by L for direct-mapped caches and the number of compulsory misses incurred
by L).

To begin, the method for each cache event is the same. The framework expresses the
occurrence of a particular type of event as a formula in Presburger arithmetic using relevant
parameters from the loop nest L, and the blocksize B and number of cache sets S of the
cache being considered. The framework then constructs the DFA recognizing the solutions
of the formula1 according to the fundamental connection between Presburger arithmetic and
automata theory (discussed in Sections 2.5 and 5.1).

1Simplifying this Presburger formula before converting it to a DFA is critical to the success of the DFA
construction, since the original formula is often too complicated for efficient conversion to a DFA.

78

br

D
FA

i-w
it

Construct DFA recognizing formula solutions

fo
rm

ul
a

i-w
it

A
lg

 5
.2

en
um

er
at

e

so
lu

tio
ns

fo
rm

ul
a

A
lg

 5
.1

co
un

t

so
lu

tio
ns

fo
rm

ul
a

A
lg

 5
.3

co
un

t
w

itn
es

se
s

A
lg

 5
.4

id
en

tif
y

w
itn

es
se

s

i

D
FA

r-
w

it

D
FA

b-
w

it

D
FA

s-
w

it

D
FA

i-m
is

s

D
FA

c-
m

is
s

s i c

i c

i

i r bb s

i r sb

in
t-m

is
se

s(
A

)
Eq

n
5.

1
&

i r

bo
un

da
ry

re
so

lv
e

m
is

se
s

ca
ch

e
st

at
e

up
da

te

b s

IN
PU

T:
A

IN
PU

T:

o

f i
n

te
ri

o
r

m
is

se
s

in
fo

r A

ca
ch

e
st

at
e

af
te

r

c

i r b s

o

f r
ep

la
ce

m
en

t
m

is
se

s
in

o

f b
o

u
n

d
ar

y
m

is
se

s
in

o

f i
n

te
ri

o
r

m
is

se
s

in
fo

r A
=

 1

o

f c
o

m
p

u
ls

o
ry

m

is
se

s
in

fo
r a

n
y

 A

IN
PU

T:

B
S

,
,

fo
r A

fo
r A

fo
r A

Th
m

 4
.1

re
pl

-m
is

se
s(

A
)

Eq
n

5.
2

&
Th

m
 4

.2

A
lg

 5
.5

 &
Th

m
 4

.3

A
lg

 5
.6

 &
Th

m
 4

.4

Section 5.1

Eq
n

4.
6

fo
rm

ul
a

r-
w

it

Eq
n

4.
7

fo
rm

ul
a

b-
w

it

Eq
n

4.
8

fo
rm

ul
a

s-
w

it

Eq
n

4.
9

fo
rm

ul
a

i-m
is

s

Eq
n

5.
4

fo
rm

ul
a

c-
m

is
s

Eq
n

5.
5

F
ig

ur
e

6.
1:

H
ig

h-
le

ve
l
vi

ew
of

th
e

m
et

ho
d

fo
r

m
od

el
in

g
ca

ch
e

be
ha

vi
or

pr
es

en
te

d
in

th
is

di
ss

er
ta

ti
on

.

79

For the DFAs recognizing the solutions of the witness formulas (i.e., the i -wit, r -wit, b-wit,
and s-wit DFAs), the framework enumerates the solutions using the enumeration algorithm
(Algorithm 5.2), producing the witnesses of all memory accesses in loop nest L. The framework
counts the number of witnesses to each memory access for i -witnesses and r -witnesses using
the witness-counting algorithm (Algorithm 5.3). Then, given an associativity value A, the
number of interior misses incurred by loop nest L in an (A, B, A · B · S; S) cache is computed
from the i -witnesses counts of each memory access using equation (5.1) and Theorem 4.1.
Similarly, given an associativity value A, the number of replacement misses incurred by loop
nest L in an (A, B, A·B ·S; S) cache is computed from the r -witnesses counts of each memory
access using equation (5.2) and Theorem 4.2.

From the enumeration of solutions recognized by the b-wit and s-wit DFAs, the framework
identifies the witnesses to each memory access for b-witnesses and s-witnesses using the witness-
identifying algorithm (Algorithm 5.4). Then, given an associativity value A and the state of
the cache when loop nest L begins execution C, the framework uses the resolving algorithm
(Algorithm 5.5) to determine the potential boundary misses incurred by L, resolves these
potential misses with cache state C, and counts the number of boundary misses incurred by
loop nest L in an (A, B, A · B · S; S) cache. Similarly, given an associativity value A and
the state of the cache when loop nest L begins execution C, the framework uses the updating
algorithm (Algorithm 5.6) to determine the state of the cache after execution of L for an (A,
B, A · B · S; S) cache.

Because the interior misses described by the i -miss formula occur in direct-mapped caches,
the associativity value is fixed such that A = 1. It is not necessary to apply the neighbor-
hood and witness concepts to count such misses. Therefore, it is sufficient to count (without
enumeration) the solutions recognized by the i -miss DFA using the path-counting algorithm
(Algorithm 5.1). The solution count gives the number of interior misses incurred by loop nest
L in a (1, B, B · S; S) cache. Similarly for the compulsory misses described by the c-miss for-
mula, it is not necessary to apply the neighborhood and witness concepts to count such misses,
since they occur regardless of the associativity of the cache. The solution count produced by
using the path-counting algorithm (Algorithm 5.1) on the c-miss DFA gives the number of
compulsory misses incurred by loop nest L in an (A, B, A · B · S; S) cache.

6.2 Implementation

This section describes three tools included in the analysis framework of this dissertation and
discusses the leveraging of these tools to implement the theory described in Chapters 4 and 5.
Figure 6.2 shows the role of each tool in the division of work.

80

 SUIF Compiler Omega Library MONA Tool

 Formula
 Specification &
 Simplification

Source Code
 Analysis

 Counting
Cache Events

parameters constraints w/
free variables

a measure of
cache behavior

a program

Figure 6.2: Illustration of how tools fit into the analysis framework.

6.2.1 Source Code Analysis

The first phase of the analysis framework presented in this dissertation analyzes the source
code of a program, extracting the parameters relevant to its cache activity. To accomplish
the source code analysis, the framework examines the intermediate representation (IR) of the
source code generated by the SUIF compiler [116]. The compiler translates the source code
of a program into an IR that is not tied to either the source language or the target machine
language. The SUIF compiler provides both high-level and low-level representations of the
source code. Low-level representations consist of sequential instruction lists and facilitate
scalar code optimizations, as well as code generation. High-level representations preserve
program constructs such as loop nests by means of tree data structures, which are convenient
for loop-based analysis of all kinds.

One advantage of the low-level representation is a precise knowledge of each loop nest’s
memory accesses. The compiler may apply optimizations altering the nature of these accesses,
which is not evident in the high-level representation. For example, the compiler may choose
to keep a loop-invariant array access in a register over the life of that loop. In spite of
this potential shortage of information, the high-level representation is structured, providing
concisely the access patterns of each loop nest. Therefore, the analysis framework of this
dissertation uses the high-level representation of the source code, despite its limitations.

The SUIF compiler infrastructure consists of a kernel (definition of the IR and functions for
accessing and manipulating the IR) and a toolkit of compiler passes built on top of the kernel.
The SUIF compiler accepts either C- or Fortran-language source code. The implementation of
source code analysis phase is a SUIF compiler pass. The compiler pass invokes SUIF library
functions for accessing the high-level IR generated for the given source code.

The compiler pass traverses the IR tree and considers each loop nest individually. Upon
encountering a loop in the IR, it extracts the LCV and its bounds from the loop’s header
nodes. In addition, the compiler pass searches the body of the loop both for other loops and
for statements containing array variables. For each array variable referenced, the compiler
pass gathers its dimensionality and the length in each dimension from the declaration of the
array variable, and determines the byte size of each array element from the base type of the
array variable. Given C-language source code, the compiler pass chooses row-major layout for

81

all arrays, and given Fortran-language source code, it chooses column-major layout. At the
site of each reference to an array variable, the compiler pass extracts its index expression from
the expression tree in the IR. Finally, if the loop body contains other loops, the compiler pass
repeats the process above, updating the nesting depth appropriately.

6.2.2 Formula Specification and Simplification

The second phase of the analysis framework presented in this dissertation expresses a cache
event as a Presburger formula and simplifies the formula to facilitate DFA construction in
the next phase. To build and simplify Presburger formulas, the framework uses the Omega
Library. The Omega Library [74, 75] is a set of functions for the manipulation of integer tuple
relations and sets described using Presburger formulas. The Presburger formulas in Section
4.3.2 describe the cache events of interest. Parameters extracted from the SUIF compiler pass
are used as values for the symbolic constants in these formulas. Given a Presburger formula
as input, the Omega Library can provide a simplified version of the formula as output. The
simplification process is critical, since the original formulas are often too complicated for
efficient translation to DFAs in the next phase.

6.2.3 Counting Cache Events

The last phase of the analysis framework presented in this dissertation counts or enumerates
the solutions to a Presburger formula. Interpretation of these results produces the number
of cache events occurring during execution of a program. In order to count or enumerate
formula solutions, the framework first constructs a DFA recognizing the solutions of the formula
and then counts or enumerates the accepting DFA paths. The framework uses the DFA-
construction algorithms of Bartzis and Bultan [9, 10] to build the DFAs, and uses the MONA
tool to access the DFA when counting or enumerating its accepting paths.

MONA [81] is an automata manipulation tool that also implements decision procedures for
WS1S (Weak Second-order theory of One Successor) and WS2S (Weak Second-order theory
of Two Successors). The automata are represented by shared, multi-terminal Binary Decision
Diagrams. The DFA package includes operations such as union, intersection, complementation,
and projection, used to combine DFAs representing linear constraints into a DFA representing
a Presburger formula.

Bartzis and Bultan [9, 10] present algorithms for constructing finite automata that repre-
sent integer sets satisfying linear constraints. Compared to similar approaches for automata
representation [22, 136, 137], the methods of Bartzis and Bultan give bounds on the size of
generated automata that are tighter than the established worst-case upper bound for automata
construction [23, 80]. The Bartzis and Bultan construction algorithms are used in the anal-
ysis framework to represent an affine equality/inequality constraint as a deterministic finite
automaton. Using the MONA tool’s DFA operations of union, intersection, complementation,

82

and projection, I combine DFA representations of the affine equality/inequality constraints
constituting a Presburger formula to get the DFA representation of the formula. Bartzis and
Bultan use the MONA tool’s DFA package to implement their procedures for constructing
DFAs from linear constraints. Implementation of Algorithms 5.1 and 5.2 invoke functions of
DFA package to access the generated DFA’s state and transition information.

Chapter 7

Extensions to Analysis Framework

The cache analysis framework presented in this dissertation is flexible. As shown in previ-
ous chapters, the framework models multiple arbitrarily-nested loops executing in LRU set-
associative caches. In addition to the canonical row- and column-major array layouts, the
framework also handles nonlinear data layouts expressible in Presburger arithmetic, as Section
7.1 shows. However, there are limits to the analysis framework, in particular for modeling the
first-in first-out (FIFO) cache replacement algorithm, as Section 7.2 discusses.

7.1 Nonlinear Data Layouts

As Section 1.1 explains, the arrangement of memory in today’s systems is hierarchical. In
contrast, for row- and column-major layouts, the linearization of arrays in memory is flat. The
intuition of nonlinear array layouts is to arrange array data in a way that more closely matches
the hierarchical nature of memory. This intuition has proven to be correct for some numerical
codes, in which nonlinear array layouts have better cache performance than the canonical
array layouts [32, 33, 57, 131]. Understanding how and when nonlinear array layouts yield
better cache performance than canonical array layouts is still an open area of research, which
motivates a cache analysis framework that handles such layouts.

The task of an array layout is to map an array element to its location in memory. For an
array Y (y) with dimensionality dy, the layout function takes dy array coordinates as input and
gives a memory offset as output. To get the actual memory address, multiply the offset by
the byte size of Y (y)’s elements and add the starting address of Y (y) in memory. Canonical
array layouts are affine functions of the numerical values of the array coordinates, whereas
nonlinear array layout functions interleave bits in the binary expansions of the array coordi-
nates. Specification of canonical layouts using Presburger arithmetic is straightforward, given
their simple and affine nature (see Section 2.3). In contrast, the description of nonlinear array
layouts based on bit interleaving is complicated, and specifying these layouts using Presburger
arithmetic requires some extra effort. The reader should be aware that the following discussion
is dense with the details of bit interleaving.

84

0,0 1,0 0,1 1,1 3,0 2,1 3,1 0,22,0 1,2 0,3 1,3 2,2 2,3 3,3 4,0 5,03,2 4,1 5,1 6,0 7,0 7,1 4,2 5,2 4,36,7 5,3 6,2 7,2 6,3 7,3

 σ = 0 1 0 1 0

µA µ + 32β − 1A A

0,0 1,0 2,0 3,0 1,1 2,1 3,1 4,00,1 5,0 6,0 7,0 4,1 6,1 7,1 0,2 1,25,1 2,2 3,2 0,3 1,3 3,3 4,2 5,2 6,22,3 7,2 4,3 5,3 6,3 7,3

 σ = 1 0 1 0 0

µA µ + 32β − 1A A

Figure 7.1: Two example arrangements of the data of an 8×4 array A in memory distinguished
by different (3, 2)-interleavings.

To start, it is necessary to model the binary expansion of some non-negative integer c,
which is the coordinate for the (j + 1)th dimension of array Y (y) where j ∈ [0, dy−1]. For
the length of the array in this dimension, `j , assume that `j = 2qj . Consequently, the binary
expansion of c has qj bits, with the least significant bit numbered 0 and the most significant bit
numbered qj − 1. The binary sequence cqj−1 . . . c0 is identified with c, where c =

∑qj−1
i=0 ci2i.

The set of all binary sequences of length qj is denoted as Bqj , and extension of the above
identifies Bqj with the interval [0, 2qj − 1].

Nonlinear layout functions determine the memory address of an array element by inter-

leaving the bits of the binary expansions of its array coordinates. There are a variety of ways
to interleave such bits. For example, consider two array coordinates a = 7 and b = 1 for a two-
dimensional array with `0 = 23 and `1 = 22, such that a2a1a0 = 111 ∈ B3 and b1b0 = 01 ∈ B2.
One interleaving a2b1a1b0a0 = 10111 produces the memory offset 23, and yet another inter-
leaving b1a2b0a1a0 = 01111 produces the memory offset 15. A nonlinear array layout function
is parameterized according to σ, which describes the order in which bits from the dy array co-
ordinates are interleaved to linearize the array Y (y) in memory. An (q0, ..., qdy−1)-interleaving,
σ, is a sequence of length p (where p =

∑dy−1
i=0 qi) over the alphabet {0, . . . , (dy − 1)} contain-

ing qi i’s. In the example above, two different σ’s define the interleaving of bits, but both are
(3, 2)-interleavings of length 5 over the alphabet {0, 1} containing 3 0s and 2 1s.

Given an (q0, ..., qdy−1)-interleaving σ, it is necessary to define a map from dy array coor-
dinates to a memory offset. This is equivalent to defining a map Θ : Bq0 × · · · ×Bqdy−1

→ Bp,

which is done in the following way. If x(i) = x
(i)
qi−1 . . . x

(i)
1 x

(i)
0 ∈ Bqi∀i ∈ [0, dx − 1], then

Θ(x(0), . . . , x(dy−1)) is the sequence obtained by replacing the jth u from the right in σ with
x

(u)
j , where Θ is the mixing function indexed by σ. Note that Θ(0, . . . , 0) = 0 for any σ. In

the example above, the mixing function Θ(111, 01) indexed by σ = 01010 produces the mem-
ory offset 23, and indexed by σ = 10100 produces the memory offset 15. Figure 7.1 illustrates
how the layout of an 8 × 4 array A in memory differs when σ = 01010 and σ = 10100 define
the interleaving of bits.

85

Expression of these nonlinear layout functions as Presburger formulas requires the definition
of bit values in the binary expansion of a memory offset using Presburger arithmetic. For an
array Y (y) whose layout is specified with an (q0, . . . , qdy−1)-interleaving σ, the following dy × p
matrix M(σ) is computed. Letting g = σf , the f th column of M(σ) consists of 2e in the gth

position, where σf is the eth g from the right, and zeros in every other position. Conceptually,
M(σ) is a transformation that when applied to the binary expansion of a memory offset o
produces the coordinates of the array element at memory address m = µy + oβy. For the
(3, 2)-interleavings in the example above,

M(01010) =

[
4 0 2 0 1
0 2 0 1 0

]
and M(10100) =

[
0 4 0 2 1
2 0 1 0 0

]
.

For a reference Ri = (Y (y), Ei, Sh) and an iteration point ι, the following formula maps Ei

and M(σ) to a memory offset o. Recall that p =
∑dy−1

i=0 qi, and let O = [op−1, . . . , o0]T .

(
o = Interleave(Ei(ι),M(σ)

) def=

∃op−1, . . . , o0 : 0 6 op−1, . . . , o0 6 1 ∧ o > 0 ∧ Ei(ι) = M(σ)O ∧ o =
p−1∑
k=0

ok2k

The memory byte address m of the element accessed by reference Ri at iteration point ι
is calculated as m = µy + Ly(Ei(ι)) · βy. By simply using the formula above as the layout
function Ly, the cache behavior formulas given in Sections 4.3.2 and 5.4 characterizes the
access patterns of an array with such nonlinear layouts. Thus, the analysis framework of this
dissertation is capable of determining the cache behavior of loop nests referencing arrays with
nonlinear array layouts expressible in Presburger arithmetic.

The Presburger formula constructed to describe the i -witnesses of the running example loop
nest Lmm in Figure 2.5 on page 17 with a nonlinear array layout is given in Figure A.11, and the
DFA recognizing the solutions to this formula is given in Figure A.12. In this instance of the
running example, t = u = v = 16 and all arrays are linearized according to a nonlinear array
layout specified by the (4, 4)-interleaving σ = 01010011. Using the enumeration algorithm
(Algorithm 5.2) to enumerate the solutions encoded by the DFA in Figure A.12, gives L = 4
and

TL,q∈F =


0

0

0

1

1

,

0

0

15

3

0

,

0

1

0

1

1

,

0

1

15

3

0

,

0

2

0

1

1

,

0

2

15

3

0

,

0

3

0

1

1

,

0

3

15

3

0

,

0

4

0

1

1

 .

Using the witness-counting algorithm (Algorithm 5.3) to count the number of i -witnesses
for the memory accesses encoded by the DFA in Figure A.12, gives emax = 1 and N1 = 9.
Therefore, int-misses(1) = 9 and int-misses(A) = 0,∀A > 2. Loop nest Lmm with the nonlinear
array layout incurs nine interior misses in set 0 of a (1, 32, 4096; 128) cache and no interior
misses in set 0 of all {(k, 32, 4096k; 128): k > 2} caches.

86

7.2 FIFO Cache Replacement Algorithm

Chapter 4 demonstrates how to model the behavior of a program executing in a cache that
uses the LRU cache set replacement algorithm. This section considers whether it is possible
to model the first-in first-out (FIFO) cache set replacement algorithm using the cache analysis
framework.

In contrast to the LRU cache set replacement algorithm, which evicts from a cache set
the memory block that has been unused longest, the FIFO replacement algorithm evicts the
memory block that has been resident longest. The FIFO status of a cache block is an integer
that indicates its position in the ordering of cache blocks to be replaced by incoming cache
blocks in the cache set. Let a cache block have a FIFO status of A if it is the most recent
cache block placed in the cache set (and the last to be replaced), where A is the associativity
value of the cache being considered. Let a cache block have a FIFO status of 1 if it is the least
recent cache block placed in the cache set (and the first to be replaced).

Let i -witnesses be defined as in Section 4.2 and described as with equation (4.6). For
an LRU cache, Theorem 4.1 decides whether a memory access incurs an interior miss based
on a comparison of its i -witness count with associativity value A. The following theorem
decides whether an access incurs an interior miss in a FIFO cache given a similar comparison
of i -witness count and associativity.

Theorem 7.1 If an access a to memory block b has 2A−1 or more i-witnesses, then it suffers
an interior miss in an A-way cache employing a FIFO cache set replacement algorithm.

Proof. Either a is the earliest access to memory block b (Case 1) or it is not (Case 2). For
Case 1, the existence of A or more i -witnesses to a ensures that a misses in cache, regardless
of cache state before loop nest execution. Therefore, 2A − 1 i -witnesses certainly ensure an
interior miss.

For Case 2, let access a′ be the most recent access to memory block b. Just after access
a′, the cache set to which b maps contains b and A − 1 other memory blocks. There may be
subsequent accesses to these memory blocks that do not affect the FIFO status of b. Thus,
it is possible to have at most A− 1 i -witnesses to access a that do not alter the FIFO status
of memory block b. Any access in the i -neighborhood of a to a memory block not contained
in the cache set just after access a′ does cause the FIFO status of memory block b to change.
To change the FIFO status of memory block b from A to 1, A − 1 additional i -witnesses are
necessary. One more i -witnesses then causes the displacement of b from cache before it is
accessed again at access a. Therefore, the maximum number of i -witnesses not affecting the
FIFO status of b, A − 1; the maximum number of i -witnesses required to change b’s FIFO
status, A−1; and the i -witness causing displacement of b add up to a total of 2A−1 i -witnesses
guaranteeing an interior miss. 2

Theorem 7.1 has the following implications,

87

1. There is no guarantee of the hit/miss status of accesses with fewer than 2A−1 i-witnesses.
In fact, accesses with anywhere from 1 to 2A− 2 i -witnesses may still suffer an interior
miss. The actual hit/miss status of such accesses cannot be determined using the cache
analysis framework. The difficulty in modeling behavior in a FIFO cache is knowing the
FIFO status of a memory block. For all memory blocks contained in a cache set, their
FIFO statuses change only during a cache miss in that set. The existence of a cache miss
is known in the last phase of the analysis framework, and even then it depends on an
associativity value. For all memory blocks contained in a cache set, the LRU statuses
change during each memory accesses mapping to that cache set. Such information is built
into the formulation of cache behavior, making LRU status more natural to determine
analytically than FIFO status. However, it is possible that fundamental changes to the
cache analysis framework would allow the modeling of a FIFO replacement algorithm.

2. One can expect an LRU cache with associativity A to be at least as effective as a FIFO
cache with associativity 2A− 1. In an LRU cache, accesses with A or more i -witnesses
suffer interior misses, and accesses with fewer than A i -witnesses are either cache hits
or boundary misses. In a FIFO cache, accesses with 2A − 1 or more i -witnesses suffer
interior misses, and accesses with fewer than 2A − 1 i -witnesses are either cache hits,
boundary misses, or interior misses.

Therefore, in the cache analysis framework, it is not possible to completely model behavior
in a cache employing the FIFO replacement algorithm.

7.3 Summary

The inherent flexibility of the analysis framework presented in this dissertation derives from
the use of Presburger formulas. The framework’s ability to handle nonlinear array layouts
expressible in Presburger arithmetic demonstrates this flexibility. Of course, since row- and
column-major layouts are the standard ways of mapping arrays to memory, handling nonlinear
array layouts is not critical to determining the cache behavior of program. However, the ability
of the analysis framework to evaluate and understand the potential benefit of nonlinear array
layouts is useful.

The analysis framework does not have unlimited flexibility. In particular, the assumption
that caches employ the LRU replacement algorithm is fundamental to the way in which the
framework expresses cache behavior. As a result, it may not be possible to use the analysis
framework to model the behavior of caches employing other replacement algorithms.

88

Chapter 8

Application and Validation

This chapter applies and validates the analysis framework presented in this dissertation by
using it to accurately determine the cache behavior of a number of program fragments. In
Section 8.1, I consider several cases of isolated, single loop nests and use the framework to
determine the number of cache misses incurred in each case. In Section 8.2, I produce the
number of cache misses incurred by a sequence of loop nests, employing the interior-boundary
miss classification and cache state to precisely compose the cache miss count for each loop
nest into a total cache miss count for the entire sequence. In Section 8.3, I use the analysis
framework to compute the number of cache misses incurred by a loop nest when the data
layout is nonlinear. In Section 8.4, I apply the analysis framework to two loop optimization
problems—finding the optimal tilesize for a matrix-vector multiplication loop nest and finding
the optimal permutation of loops for a matrix multiplication loop nest. In Section 8.5, I
give the number of cache misses incurred by several loop nests that perform aggregate array
computations, before and after optimizations based on incrementalization.

Every cache miss count provided here has been validated against the counts produced by a
(specially-written) cache simulator. In all cases, the cache miss count generated by the analysis
framework is exactly the same as the count given by the simulator, so I refrain from giving the
simulator’s miss counts in addition to the framework’s miss counts. All execution times were
collected on a 2GHz Intel Xeon processor running Red Hat Linux 7.3.

8.1 Single Loop Nests

First, I demonstrate the analysis framework for single loop nests, isolated from the programs
containing them. To indicate the flexibility of the cache analysis techniques, I give compulsory
and replacement miss counts for some loop nests and interior and potential boundary miss
counts for others. Because I am considering each loop nest isolated from the rest of the
program (i.e., cache state before the loop nest begins execution is unknown), the total cache
miss count reported may be an overestimate of the actual miss count incurred by the loop nest

90

in the context of a program. Given the compulsory-replacement cache miss classification, the
total number of cache misses is overestimated by at most the number of compulsory misses.
For a loop nest that accesses N bytes of memory and executes in an (A, B, C; S) cache,
the number of compulsory misses incurred is the number of memory blocks it accesses (i.e.,
N
B blocks). Given the interior-boundary cache miss classification, the total number of cache
misses is overestimated by at most the number of potential boundary misses, which is bounded
from above by the number of cache frames (i.e., C

B frames), as stated by Lemma 3.1.
I demonstrate the analysis framework on five loop nests, each in data caches and translation

lookaside buffers (TLBs). Existing compiler frameworks for analyzing memory behavior (see
Chapter 9) have focused on data caches, despite the impact of TLB misses on the performance
of a loop nest. The penalty for a TLB miss can be hundreds of processor cycles, and for
that reason, examining and reducing the TLB misses incurred by a program can result in
significant improvement in its performance. Because the TLB is a cache, I can use the analysis
framework to compute the number of TLB misses for a program fragment. The key to modeling
the cache activity of a TLB is to set the “cache” blocksize equal to the page size, since that
is the granularity of contiguous memory addresses. For example, to model a fully-associative
TLB with page size 8192 bytes, I set B = 8192 and S = 1.

Triad loop nest. Consider the following loop nest Ltri.

Ltri: do i = 0, n− 1
R[i] = P[i] + Q[i]

enddo

Suppose that the arrays Y (0) = P, Y (1) = Q, and Y (2) = R are double-precision (i.e., β0 = β1 =
β2 = 8 bytes) with starting addresses µ0 = 0, µ1 = µ0 + 8n, and µ2 = µ1 + 8n.

Table 8.1 gives the results of using the framework to count the number of compulsory
and replacement misses incurred by Ltri for several problem sizes in (A, 64, 16384 · A; 256)
data caches. Results include the time required for formula expression and simplification, the
time required for DFA construction, the time required to enumerate formula solutions and
count witnesses, and the number of cache misses for associativity value A. For some problem
sizes, the reported time required to count misses is 0.00 seconds. This indicates that the time
required is actually less than 0.01 seconds, since the timing granularity is 10 milliseconds. Note
that when compulsory miss counts are given, the number is independent of A and C. Solution
times are for counting misses in all cache sets.

In Table 8.1, notice that problem sizes n = 16, 380 and n = 131, 070 have large DFA-
construction times relative to the other problem sizes. This is due to the thrashing1 caused by

1Thrashing occurs when frequently used memory blocks replace each other in cache. The cache blocks are
written back to main memory before their reuse is complete, and unnecessary cache misses are the consequence.
Thrashing is often caused by an alignment of data structures in memory such that distinct memory blocks map
to the same cache set, yet they are accessed repeatedly one after the other.

91

n

solution time (sec) # of # of
simplify build count compulsory replacement
formula DFA misses misses misses

10,000 0.05 0.12 0.00 3,750 A > 1 0

16,380 0.08 10.61 0.21 6,143
A = 1 24,571

2 6 A 6 22 1
A > 23 0

100,000 0.06 0.21 0.00 18,750 A > 1 0

131,070 0.11 27.70 5.50 49,152

A = 1 278,522
A = 2 147,452

3 6 A 6 190 2
A > 191 0

1,000,000 0.05 0.65 0.00 375,000 A > 1 0

Table 8.1: Results of using the analysis framework to count the number of compulsory and
replacement misses incurred by loop nest Ltri for several problem sizes in (A, 64, 16384 · A;
256) data caches.

these two problem sizes. The thrashing results in a large amount of cache activity that must
be represented by a DFA and leads to relatively long construction times. For the problem
sizes without thrashing, there are no replacement misses for any value of A. Loop nest Ltri has
no temporal reuse of data. Therefore, if the spatial reuse can be exploited without conflict,
then the only cache misses are compulsory. Notice that the cache miss counts in each table
of this chapter are for all A > 1, because the analysis framework produces miss counts for all
values of A in a single pass. The values of A found in real caches, such as A = 1, 2, 3, 4, 6, 8,
and so on, are the most interesting. However, other values of A may be useful in considering
experimental caches. Furthermore, for every loop nest, there is a value k for which the loop
nest incurs no replacement (or interior) misses in {(A, B, A · B · S; S): A > k} caches. This
maximum associativity value, beyond which the loop nest incurs no such misses, is a useful
characteristic of the loop nest.

Table 8.2 gives the results of using the framework to count the number of compulsory and
replacement misses incurred by Ltri for several problem sizes in (A, 8192, 8192 · A; 1) TLBs.
In Table 8.2, notice that there are replacement misses for several values of A for all problem
sizes. Even though loop nest Ltri has no temporal reuse, the spatial reuse cannot always be
exploited without conflict because there is only one cache set (i.e., S = 1). Contention for the
only cache set results in replacement misses for smaller values of A.

Table 8.3 gives the results of using the framework to count the number of compulsory and
replacement misses incurred by Ltri for n = 10, 000 in (A, B, 8192 · A; S) caches with varying
values of B and S. The purpose of this variation is to observe how the cache behavior of loop
nest Ltri changes with B and S, even though the capacity C of the cache remains the same
(i.e., for each value of A, C remains 8192 · A). In Table 8.3, notice that the replacement miss

92

n

solution time (sec) # of # of
simplify build count compulsory replacement
formula DFA misses misses misses

1,000 0.07 0.16 0.03 3
A = 1 2,949
A = 2 2,853
A > 3 0

5,000 0.06 8.31 0.12 15

A = 1 14,985
A = 2 14,985

3 6 A 6 13 2
A > 14 0

10,000 0.07 15.81 0.25 30
1 6 A 6 2 29,970
3 6 A 6 28 2
A > 29 0

50,000 0.07 79.61 2.25 147
1 6 A 6 2 149,853

3 6 A 6 145 2
A > 146 0

Table 8.2: Results of using the analysis framework to count the number of compulsory and
replacement misses incurred by loop nest Ltri for several problem sizes in (A, 8192, 8192 · A;
1) TLBs.

count increases as the value of S decreases, and the compulsory miss count increases as the
value of B decreases. The spatial reuse in Ltri cannot always be exploited without conflict
when there are only a few cache sets (i.e., 1 6 S 6 4). Contention for a small number of cache
sets causes large numbers of replacement misses for small values of A when the value of S is
small. Recall that the number of compulsory misses incurred by a loop nest is equal to the
number of memory blocks it accesses. Because the total number of memory bytes accessed
by loop nest Ltri is constant, decreasing the blocksize increases the number of memory blocks
accessed, and thus, increases the number of compulsory misses. In Table 8.3, notice that
solution times are not proportional in any obvious way to the values of B and S. However,
relationships between solution times and cache miss counts are more evident, as discussed with
other general observations at the end of this section.

Matrix-vector multiplication loop nest. Consider the following loop nest Lvec.

Lvec: do i = 0, m− 1
r = Y[i]

do j = 0, n− 1
r += A[i,j]*X[j]

enddo

Y[i] = r

enddo

93

B S

solution time (sec) # of # of
simplify build count compulsory replacement
formula DFA misses misses misses

8,192 1 0.07 15.81 0.25 30
1 6 A 6 2 29,970
3 6 A 6 28 2
A > 29 0

4,096 2 0.10 7.45 0.16 59
A = 1 20,549
A = 2 1,769

3 6 A 6 28 2
A > 29 0

2,048 4 0.09 4.99 0.04 118
A = 1 2,342

2 6 A 6 28 2
A > 29 0

1,024 8 0.08 0.04 0.00 235
1 6 A 6 28 2
A > 29 0

512 16 0.09 0.04 0.00 469
1 6 A 6 28 2
A > 29 0

256 32 0.09 0.05 0.00 938
1 6 A 6 28 1
A > 29 0

128 64 0.13 0.03 0.00 1,875 A > 1 0
64 128 0.05 0.05 0.00 3,750 A > 1 0
32 256 0.05 0.12 0.00 7,500 A > 1 0
16 512 0.08 0.27 0.00 15,000 A > 1 0
8 1,024 0.04 0.70 0.00 30,000 A > 1 0

Table 8.3: Results of using the analysis framework to count the number of compulsory and
replacement misses incurred by loop nest Ltri for n = 10, 000 in (A, B, 8192 ·A; S) caches with
varying values of B and S.

94

Suppose that the arrays Y (0) = A, Y (1) = X, and Y (2) = Y are double-precision (i.e., β0 = β1 =
β2 = 8 bytes) with starting addresses µ0 = 0, µ1 = µ0 + 8m · n, and µ2 = µ1 + 8n. Array Y (0)

is linearized in column-major order.
Table 8.4 gives the results of using the framework to count the number of interior and

potential boundary misses incurred by Lvec for several problem sizes in (A, 64, 16384 · A; 256)
data caches. In Table 8.4, notice that the number of potential boundary misses increases with
problem size (for A > 1 if m = n = 40 and for A > 2 otherwise). The reason is that the
cache footprint of the memory blocks accessed by loop nest Lvec increases with problem size.
Recall that the potential boundary miss count is equal to this cache footprint. Notice also
that the number of interior misses does not necessarily increase with problem size. The three
arrays referenced by loop nest Lvec are stored contiguously (or back-to-back) in memory, and
certain problem sizes cause the arrays to be aligned in ways that induce more conflicts, and
thus, larger interior miss counts.

Table 8.5 gives the results of using the framework to count the number of interior and
potential boundary misses incurred by Lvec for several problem sizes in (A, 8192, 8192 · A;
1) TLBs. In Table 8.5, notice that the number of interior misses essentially increases with
problem size. That is, as problem size increases, there are more values of A with non-zero
miss counts and for such values of A the miss counts increase. The reason is that as the values
of m and n increase, the number of distinct memory blocks mapping to the only cache set
increases, creating more contention for the set. For example, when m = n = 40 two memory
blocks accessed by loop nest Lvec map to the cache set, and when m = n = 60 four memory
blocks accessed by Lvec map to the cache set.

Matrix multiplication loop nest. Recall the following loop nest Lmm, used as a running
example.

LMM: do i = 0, t− 1
do j = 0, u− 1

c = Z[i,j]

do k = 0, v − 1
c += X[i,k] * Y[k,j]

enddo

Z[i,j] = c

enddo

enddo

Suppose that the arrays Y (0) = X, Y (1) = Y, and Y (2) = Z are double-precision (i.e., β0 =
β1 = β2 = 8 bytes) and linearized in column-major order with starting addresses µ0 = 0,
µ1 = µ0 + 8t · v, and µ2 = µ1 + 8v · u.

Table 8.6 gives the results of using the framework to count the number of interior and
potential boundary misses incurred by Lmm for several problem sizes in (A, 64, 16384 ·A; 256)

95

m n

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

40 40 0.27 0.00 0.03 A > 1 0 A > 1 210

50 40 0.23 0.03 0.04
A = 1 6 A = 1 256
A > 2 0 A > 2 262

50 50 0.65 0.44 0.04
A = 1 918 A = 1 256
A > 2 0 A > 2 325

50 60 0.70 0.59 0.06
A = 1 1,681 A = 1 256
A > 2 0 A > 2 389

60 60 0.53 0.51 0.05
A = 1 355 A = 1 256
A > 2 0 A > 2 465

Table 8.4: Results of using the analysis framework to count the number of interior and potential
boundary misses incurred by loop nest Lvec for several problem sizes in (A, 64, 16384 · A; 256)
data caches.

m n

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

40 40 0.33 0.01 0.01
A = 1 2,048 A = 1 1
A > 2 0 A > 2 2

50 40 0.50 0.30 0.01
A = 1 2,091 A = 1 1
A = 2 127 A = 2 2
A > 3 0 A > 3 3

50 50 0.33 1.30 0.02
A = 1 4,096 A = 1 1
A = 2 99 A = 2 2
A > 3 0 A > 3 3

50 60 0.60 2.70 0.02

A = 1 4,135 A = 1 1
A = 2 176 A = 2 2
A = 3 115 A = 3 3
A > 4 0 A > 4 4

60 60 0.53 3.14 0.02

A = 1 6,144 A = 1 1
A = 2 179 A = 2 2
A = 3 178 A = 3 3
A > 4 0 A > 4 4

Table 8.5: Results of using the analysis framework to count the number of interior and potential
boundary misses incurred by loop nest Lvec for several problem sizes in (A, 8192, 8192 · A; 1)
TLBs.

96

t = u = v

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

20 1.34 0.05 0.03 A > 1 0 A > 1 150

30 2.07 0.69 0.04
A = 1 114 A = 1 256
A > 2 0 A > 2 338

40 21.61 32.89 0.12
A = 1 5,262 A = 1 256
A = 2 88 A = 2 512
A > 3 0 A > 3 600

Table 8.6: Results of using the analysis framework to count the number of interior and potential
boundary misses incurred by loop nest Lmm for several problem sizes in (A, 64, 16384 ·A; 256)
data caches.

data caches. In Table 8.6, notice that the formula-simplification times are quite a bit longer
than for loop nest Ltri in Table 8.1, despite that the problem sizes are much smaller. There
are two reasons for this. First, loop nest Lmm references two-dimensional arrays while Ltri

references one-dimensional arrays. For t = u = v = 20, each array of Lmm has 400 elements.
For n = 1000, each array of Ltri has 1000 elements. Second, loop nest Lmm is more complex
than loop nest Ltri. The complexity of a loop nest is related to its nesting depth, the loop
bound expressions, the number of references and their index expressions, the number of arrays
referenced, and if it is an imperfect loop nest. Loop nest Ltri has nesting depth 1, is perfectly-
nested, and all three references have the same index expression. Loop nest Lmm has nesting
depth 3, is imperfectly-nested, and three of four references have different index expressions.
These factors can cause the simplification of a cache behavior formula to be more difficult and
require more time. Also notice that for problem size t = u = v = 20, there are no interior
misses for any value of A because all array elements referenced by Lmm fit in cache and never
get replaced.

Table 8.7 gives the results of using the framework to count the number of interior and
potential boundary misses incurred by Lmm for several problem sizes in (A, 8192, 8192 · A;
1) TLBs. In Table 8.7, notice that for t = u = v = 40 the number of potential boundary
misses is A for 1 6 A 6 5 and 5 for A > 5. Recall that the number of potential boundary
misses incurred by a loop nest is the cache footprint of the memory blocks it accesses, which
is bounded from above by the number of cache frames (see Lemma 3.1). For problem size
t = u = v = 40, Lmm accesses five 8192-byte pages of memory (or 4800 8-byte array elements).
The number of frames in the cache is C

B = 8192·A
8192 = A. For 1 6 A 6 5, the number of cache

frames A bounds the cache footprint of memory blocks accessed, and the number of potential
boundary misses is A. For A > 5, the cache footprint is 5 frames, and the number of potential
boundary misses is 5.

97

t = u = v

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

20 0.92 0.06 0.00
A = 1 391 A = 1 1
A > 2 0 A > 2 2

30 1.31 0.57 0.08
A = 1 47,511 A = 1 1
A = 2 2,015 A = 2 2
A > 3 0 A > 3 3

40 1.54 11.38 0.27

A = 1 117,007 A = 1 1
A = 2 6,079 A = 2 2
A = 3 3,638 A = 3 3
A = 4 279 A = 4 4
A > 5 0 A > 5 5

50 1.86 86.00 0.63

A = 1 242,755 A = 1 1
A = 2 12,199 A = 2 2
A = 3 9,848 A = 3 3
A = 4 8,098 A = 4 4
A = 5 699 A = 5 5
A = 6 248 A = 6 6
A = 7 197 A = 7 7
A > 8 0 A > 8 8

Table 8.7: Results of using the analysis framework to count the number of interior and potential
boundary misses incurred by loop nest Lmm for several problem sizes in (A, 8192, 8192 · A; 1)
TLBs.

98

µ0 µ1 µ2

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

0 7,200 14,400 1.25 0.05 0.03
A = 1 82 A = 1 256
A > 2 0 A > 2 338

0 8,000 16,000 0.72 0.06 0.04
A = 1 107 A = 1 232
A > 2 0 A > 2 339

0 16,384 32,768 1.44 53.73 0.08
A = 1 3,595 A = 1 113
A = 2 2,728 A = 2 226
A > 3 0 A > 3 339

7,200 0 14,400 0.93 0.18 0.04
A = 1 161 A = 1 256
A > 2 0 A > 2 338

7,200 14,400 0 1.13 1.21 0.03
A = 1 162 A = 1 256
A > 2 0 A > 2 338

Table 8.8: Results of using the analysis framework to count the number of interior and potential
boundary misses incurred by loop nest Lmm for m = n = 30 in (A, 64, 16384 · A; 256) data
caches with varying values of µ0, µ1, and µ2.

Table 8.8 gives the results of using the framework to count the number of interior and
potential boundary misses incurred by Lmm for m = n = 30 in (A, 64, 16384 · A; 256) data
caches, where arrays Y (0) = X, Y (1) = Y, and Y (2) = Z are double-precision (i.e., β0 = β1 =
β2 = 8 bytes) and linearized in row-major order with varying starting addresses µ0, µ1, and µ2.
In Table 8.8, notice that varying array starting addresses in memory can have a dramatic effect
on the number of cache misses. The different potential boundary miss counts are an indication
of how changes in array starting addresses can affect the cache footprint of the memory blocks
accessed by a loop nest. For example, when µ0 = 0, µ1 = 16, 384 and µ2 = 32, 768 all three
arrays map “on top” of one another in cache2 and occupy only 113 cache sets (113 is the
number of memory blocks in each array). When µ0 = 0, µ1 = 7200 and µ2 = 14, 400 all three
arrays are contiguous in memory and occupy all 256 cache sets. The different interior miss
counts are an indication of how changes in array starting addresses can affect the number of
conflicts among arrays. In particular, when all three arrays map on top of one another in
cache (i.e., µ0 = 0, µ1 = 16, 384 and µ2 = 32, 768) there are many conflicts leading to a large
number of interior misses for A = 1 and 2, as expected.

Matrix multiplication loop nest variation. The matrix multiplication loop nest Lmm of
Figure 2.5 is imperfectly nested because it stores array element Z[i,j] in the scalar variable c

2I say that array Y (p) maps “on top” of array Y (q) in cache when the difference in array starting addresses is

a multiple of cache capacity, i.e., ∃k > 0 : |µp−µq| = k ·C. The effect is that the ith elements in the linearizations

of each array map to the same cache set, for i ∈ [0, min(
∏dp−1

x=0 `x,
∏dq−1

x=0 `x). For µ0 = 0, µ1 = 16, 384 and
µ2 = 32, 768, all three arrays map on top of one another in cache when A = 1, and arrays Y (0) and Y (2) map
on top of each other in cache when A = 2.

99

Lmm-var: do i = 0, (t− 1)/2
do j = 0, (u− 1)/2

c0 = Z[2i,2j]
c1 = Z[2i+1,2j]
c2 = Z[2i,2j+1]
c3 = Z[2i+1,2j+1]
do k = 0, v − 1

c4 = X[2i,k]
c5 = X[2i+1,k]
c6 = Y[k,2j]
c7 = Y[k,2j+1]
c0 = c4 * c6 + c0
c1 = c5 * c6 + c1
c2 = c4 * c7 + c2
c3 = c5 * c7 + c3

enddo
Z[2i,2j] = c0
Z[2i+1,2j] = c1
Z[2i,2j+1] = c2
Z[2i+1,2j+1] = c3

enddo
enddo

Figure 8.1: The matrix multiplication variation loop nest Lmm-var.

so that it is register-resident for all iterations of the innermost loop with LCV k. A perfectly-
nested version of the matrix multiplication loop nest accesses array element Z[i,j] during
every iteration of the k-loop. Storing Z[i,j] in a scalar variable is an optimization that
prevents any cache misses on the array element during the k-loop. As a variation on loop nest
Lmm, one can extend this optimization to store several array elements from arrays X, Y, and
Z in scalar variables. Consider loop nest Lmm-var in Figure 8.1 as such a variation on matrix
multiplication. One can expect the cache performance of loop nest Lmm-var to be as good or
better than loop nest Lmm because of the scalar replacement optimization.

In loop nest Lmm-var, the upper bounds on the i-loop and j-loop may look a bit strange.
This is a consequence of loop normalization.3 In the original matrix multiplication variation
loop nest, i goes from 0 to t − 1 in steps of 2, and j goes from 0 to u − 1 in steps of 2. In
order to make the step sizes of the i-loop and j-loop equal to one (a requirement of the cache
analysis framework), I performed loop normalization to get loop nest Lmm-var. Suppose that
the arrays Y (0) = X, Y (1) = Y, and Y (2) = Z are double-precision (i.e., β0 = β1 = β2 = 8 bytes)
and linearized in column-major order with starting addresses µ0 = 0, µ1 = µ0 + 8t · v, and
µ2 = µ1 + 8v · u.

Table 8.9 gives the results of using the framework to count the number of interior misses

3Loop normalization transforms all loops in a loop nest into normal form, in which all step sizes are equal
to one [135].

100

t = u = v

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

20 36.74 0.05 0.03 A > 1 0 A > 1 150

30 70.24 0.74 0.04
A = 1 114 A = 1 256
A > 2 0 A > 2 338

40 83.15 21.16 0.08
A = 1 2,754 A = 1 256
A = 2 88 A = 2 512
A > 3 0 A > 3 600

Table 8.9: Results of using the analysis framework to count the number of interior and potential
boundary misses incurred by loop nest Lmm-var for several problem sizes in (A, 64, 16384 · A;
256) data caches.

t = u = v

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

20 6.69 0.02 0.01
A = 1 115 A = 1 1
A > 2 0 A > 2 2

30 8.37 0.43 0.06
A = 1 11,954 A = 1 1
A = 2 524 A = 2 2
A > 3 0 A > 3 3

40 14.20 23.89 0.12

A = 1 30,559 A = 1 1
A = 2 4,403 A = 2 2
A = 3 994 A = 3 3
A = 4 191 A = 4 4
A > 5 0 A > 5 5

50 19.85 94.37 0.24

A = 1 61,586 A = 1 1
A = 2 4,719 A = 2 2
A = 3 2,669 A = 3 3
A = 4 2,226 A = 4 4
A = 5 564 A = 5 5
A = 6 123 A = 6 6
A = 7 97 A = 7 7
A > 8 0 A > 8 8

Table 8.10: Results of using the analysis framework to count the number of interior and
potential boundary misses incurred by loop nest Lmm-var for several problem sizes in (A, 8192,
8192 · A; 1) TLBs.

101

Lcalc3: do j = 1, n
do i = 1, m

UOLD[i,j] = U[i,j] + a*(UNEW[i,j] - 2*U[i,j] + UOLD[i,j])
VOLD[i,j] = V[i,j] + a*(VNEW[i,j] - 2*V[i,j] + VOLD[i,j])
POLD[i,j] = P[i,j] + a*(PNEW[i,j] - 2*P[i,j] + POLD[i,j])
U[i,j] = UNEW[i,j]
V[i,j] = VNEW[i,j]
P[i,j] = PNEW[i,j]

enddo
enddo

Figure 8.2: Loop nest Lcalc3 from the calc3 subroutine.

incurred by Lmm-var for several problem sizes in (A, 64, 16384·A; 256) data caches. In Table 8.9,
notice that all components of the solution times are larger than for corresponding problem sizes
in Table 8.6 for loop nest Lmm. The reason is that loop nest Lmm-var is more complex than
loop nest Lmm. In particular, Lmm-var makes many more array references than Lmm. Also notice
that the optimization does lead to fewer interior misses for problem size t = u = v = 40 and
associativity value A = 1. Otherwise, the cache misses counts are the same as in Table 8.6.

Table 8.10 gives the results of using the framework to count the number of interior misses
incurred by Lmm-var for several problem sizes in (A, 8192, 8192 · A; 1) TLBs. In Table 8.10,
notice that all components of the solution times are larger than for corresponding problem
sizes in Table 8.7 for loop nest Lmm, due to the relative complexity of loop nest Lmm-var (as
is the case for the data cache results above). Also notice that the optimization does lead to
fewer interior misses in all cases.

Calc3 loop nest. Consider the loop nest Lcalc3 from the calc3 subroutine of swim.f in
SPECfp95 [115] in Figure 8.2. Suppose that the arrays Y (0) = U, Y (1) = V, Y (2) = P,
Y (3) = UNEW, Y (4) = VNEW, Y (5) = PNEW, Y (6) = UOLD, Y (7) = VOLD, and Y (8) = POLD are
double-precision (i.e., βk = 8 bytes, ∀k ∈ [0, 8]) and linearized in column-major order with
starting addresses µ0 = 0 and µk = µk−1 + 8m · n,∀k ∈ [1, 8].

Table 8.11 gives the results of using the framework to count the number of compulsory and
replacement misses incurred by Lcalc3 for several problem sizes in (A, 64, 16384 · A; 256) data
caches. In Table 8.11, notice that for problem size m = 128, n = 50 the DFA-construction
time is large relative to that of the other problem sizes. The large DFA-construction time is
due to the thrashing caused by this problem size. The thrashing results in a large amount of
cache activity that must be represented by a DFA and leads to a relatively long construction
time. For problem size m = 750, n = 25 there is some isolated thrashing that leads to a small
amount of cache activity. For the problem sizes without thrashing, there are no replacement
misses for any value of A. Like loop nest Ltri, loop nest Lcalc3 has no temporal reuse of data.
Therefore, if the spatial reuse can be exploited without conflict, then the only cache misses

102

m n

solution time (sec) # of # of
simplify build count compulsory replacement
formula DFA misses misses misses

100 100 2.51 0.38 0.00 11,250 A > 1 0

128 50 1.30 5.67 0.16 7,200
A = 1 12,000
A > 2 0

750 25 4.15 0.82 0.00 21,094
1 6 A 6 81 6
A = 82 3
A > 83 0

500 500 2.50 1.27 0.00 281,250 A > 1 0
1,000 1,000 1.26 2.25 0.00 1,125,000 A > 1 0

Table 8.11: Results of using the analysis framework to count the number of compulsory and
replacement misses incurred by loop nest Lcalc3 for several problem sizes in (A, 64, 16384 · A;
256) data caches.

m n

solution time (sec) # of # of
simplify build count compulsory replacement
formula DFA misses misses misses

20 20 3.26 0.06 0.02 2
A = 1 5,503
A > 1 0

30 30 4.54 8.25 0.07 4

A = 1 18,648
A = 2 11,201
A = 3 4,159
A > 4 0

Table 8.12: Results of using the analysis framework to count the number of compulsory and
replacement misses incurred by loop nest Lcalc3 for several problem sizes in (A, 16384, 16384·A;
1) TLBs.

are compulsory misses.
Table 8.12 gives the results of using the framework to count the number of compulsory

and replacement misses incurred by Lcalc3 for several problem sizes in (A, 16384, 16384 · A; 1)
TLBs. In Table 8.12, notice that even though the problem sizes are smaller than in Table 8.11,
the solution times are essentially larger. The reason for this is that in the TLB with only one
cache set, there is much contention for the set resulting in a large amount of cache activity,
which must be modeled.

General Observations. The following are some observations on all of the results for single
loop nests presented in this section.

1. The time required for formula expression and simplification increases as loop nests be-
come more complex, but does not necessarily increase with problem size or cache miss

103

count. The complexity of a loop nest is related to its nesting depth, the loop bound
expressions, the number of references and their index expressions, the number of arrays
referenced, and whether it is an imperfect loop nest.

2. The time required for DFA-construction increases with the number of cache misses.
This increase is most evident for replacement, interior, and potential boundary misses
because the DFAs represents zero or more r -witnesses, i -witnesses, or b-witnesses for
each memory access. For compulsory misses, the increase is less evident because such
misses occur independent of associativity and the DFAs represent actual misses, and as
a result, encode less information than when representing witnesses.

3. The time required to count misses increases with the number of cache misses. Recall
that counting replacement, interior, and potential boundary misses involves enumerating
the accepting paths in the DFA representing a r -witness, i -witness, or b-witness formula
and counting the number of such witnesses to each memory access. To count compulsory
misses, one can simply count the number of accepting paths in the DFA representing
a compulsory-miss formula (see Section 5.4.2). As a consequence, it requires much less
time to count the number compulsory misses in a loop nest than to count other types of
cache misses.

8.2 Loop Nest Sequence

To demonstrate the composability of program fragments allowed by the interior-boundary miss
classification, I give cache miss counts for the sequence of four loop nests in Figure 8.3, from
the calc3 subroutine of swim.f in SPECfp95. Notice that even though L3 is not a true loop
nest, it can be treated as one by including its statements in a loop with one iteration. Suppose
that the arrays Y (0) = U, Y (1) = V, Y (2) = P, Y (3) = UNEW, Y (4) = VNEW, Y (5) = PNEW,
Y (6) = UOLD, Y (7) = VOLD, and Y (8) = POLD are double-precision (i.e., βk = 8,∀k ∈ [0, 8]
bytes) and linearized in column-major order with starting addresses µ0 = 0 and µk = µk−1 +
8(m+ 1) · (n+ 1),∀k ∈ [1, 8].

Tables 8.13 to 8.16 give the results of using the framework to count the number of boundary
and interior misses incurred by each loop nest in calc3 for several problem sizes in (A, 64,
16384 · A; 256) data caches. The cache is assumed to be cold at the beginning of the loop nest
sequence (i.e., the cache state is empty). Results include the time required for formula expres-
sion and simplification, the time required for DFA construction, the time required to enumerate
formula solutions and count witnesses, and the number of cache misses for associativity value
A. Solution time (for each problem size and loop nest) is the total time for computing interior
misses, boundary misses, and cache state. The total number of cache misses incurred by the
loop nest sequence is the sum of misses incurred by all of the loop nests. Table 8.17 gives the

104

L0: do j = 1, n
do i = 1, m

UOLD[i,j] = U[i,j] + a*(UNEW[i,j] - 2*U[i,j] + UOLD[i,j])
VOLD[i,j] = V[i,j] + a*(VNEW[i,j] - 2*V[i,j] + VOLD[i,j])
POLD[i,j] = P[i,j] + a*(PNEW[i,j] - 2*P[i,j] + POLD[i,j])
U[i,j] = UNEW[i,j]
V[i,j] = VNEW[i,j]
P[i,j] = PNEW[i,j]

enddo
enddo

L1: do j = 1, n
UOLD[m+1,j] = UOLD[1,j]
VOLD[m+1,j] = VOLD[1,j]
POLD[m+1,j] = POLD[1,j]
U[m+1,j] = U[1,j]
V[m+1,j] = V[1,j]
P[m+1,j] = P[1,j]

enddo
L2: do i = 1, m

UOLD[i,n+1] = UOLD[i,1]
VOLD[i,n+1] = VOLD[i,1]
POLD[i,n+1] = POLD[i,1]
U[i,n+1] = U[i,1]
V[i,n+1] = V[i,1]
P[i,n+1] = P[i,1]

enddo
L3: UOLD[m+1,n+1] = UOLD[1,1]

VOLD[m+1,n+1] = VOLD[1,1]
POLD[m+1,n+1] = POLD[1,1]
U[m+1,n+1] = U[1,1]
V[m+1,n+1] = V[1,1]
P[m+1,n+1] = P[1,1]

Figure 8.3: The sequence of four loop nests from the calc3 subroutine.

105

m n L

solution time (sec) # of # of
simplify build count interior boundary
formula DFA misses misses misses

19 19

L0 11.78 0.49 0.11
A = 1 180 A = 1 252
A > 2 0 A > 2 432

L1 2.22 0.17 0.07
A = 1 19 A = 1 81
A > 2 0 A > 2 0

L2 1.44 0.04 0.07
A > 1 0 A = 1 21

A > 2 12
L3 0.55 0.01 0.07 A > 1 0 A > 1 0

Table 8.13: Results of using the analysis framework to count the number of boundary and
interior misses incurred by the loop nest sequence in calc3 for m = n = 19 in (A, 64,
16384 · A; 256) data caches.

m n L

solution time (sec) # of # of
simplify build count interior boundary
formula DFA misses misses misses

29 29

L0 21.00 4.18 0.17

A = 1 729 A = 1 256
A = 2 473 A = 2 512
A = 3 217 A = 3 768
A > 4 0 A > 4 985

L1 5.05 1.42 0.08

A = 1 42 A = 1 143
A > 2 0 A = 2 118

A = 3 55
A > 4 0

L2 2.15 0.04 0.10

A > 1 0 A = 1 38
A = 2 34
A = 3 34
A > 4 19

L3 0.49 0.02 0.08 A > 1 0 A > 1 0

Table 8.14: Results of using the analysis framework to count the number of boundary and
interior misses incurred by the loop nest sequence in calc3 for m = n = 29 in (A, 64,
16384 · A; 256) data caches.

106

m n L

solution time (sec) # of # of
simplify build count interior boundary
formula DFA misses misses misses

19 99

L0 11.44 25.89 0.19

A = 1 1,976 A = 1 256
A = 2 1,720 A = 2 512
A = 3 1,464 A = 3 768
A = 4 1,208 A = 4 1,024
A = 5 952 A = 5 1,280
A = 6 696 A = 6 1,536
A = 7 440 A = 7 1,792
A = 8 200 A = 8 2,032
A > 9 0 A > 9 2,232

L1 2.17 6.23 0.14

A = 1 638 A = 1 256
A = 2 382 A = 2 508
A = 3 139 A = 3 688
A > 4 0 A = 4 597

A = 5 453
A = 6 420
A = 7 379
A = 8 160
A > 9 0

L2 1.44 0.04 0.09

A > 1 0 A = 1 30
A = 2 28
A = 3 23

4 6 A 6 7 18
A = 8 13
A > 9 12

L3 0.54 0.01 0.09 A > 1 0 A > 1 0

Table 8.15: Results of using the analysis framework to count the number of boundary and
interior misses incurred by the loop nest sequence in calc3 for m = 19, n = 99 in (A, 64,
16384 · A; 256) data caches.

107

m n L

solution time (sec) # of # of
simplify build count interior boundary
formula DFA misses misses misses

99 19

L0 13.16 70.62 0.23

A = 1 1,886 A = 1 256
A = 2 1,630 A = 2 512
A = 3 1,374 A = 3 768
A = 4 1,118 A = 4 1,024
A = 5 862 A = 5 1,280
A = 6 606 A = 6 1,536
A = 7 392 A = 7 1,750
A = 8 190 A = 8 1,952
A > 9 0 A > 9 2,142

L1 2.25 6.19 0.09

A = 1 47 A = 1 115
A > 2 0 A = 2 117

A = 3 94
A = 4 82
A = 5 79
A = 6 75
A = 7 62
A = 8 23
A > 9 0

L2 2.25 0.40 0.11

A = 1 76 A = 1 71
A = 2 8 A = 2 134
A > 3 0 A = 3 139

4 6 A 6 5 138
A = 6 105
A = 7 100
A = 8 89
A > 9 72

L3 0.54 0.02 0.10
A > 1 0 A = 1 6

A = 2 2
A > 3 0

Table 8.16: Results of using the analysis framework to count the number of boundary and
interior misses incurred by the loop nest sequence in calc3 for m = 99, n = 19 in (A, 64,
16384 · A; 256) data caches.

108

m n L

solution time (sec) # of # of
simplify build count interior boundary
formula DFA misses misses misses

19 19

L0 16.65 4.09 0.06

A = 1 7,367 A = 1 1
A = 2 4,174 A = 2 2
A = 3 1,139 A = 3 3
A > 4 0 A > 4 4

L1 1.77 0.19 0.00

A = 1 64 A = 1 1
A = 2 63 A = 2 1
A = 3 29 A = 3 2
A > 4 0 A > 4 0

L2 0.87 0.05 0.00

A = 1 75 A = 1 1
A = 2 74 A = 2 2
A = 3 73 A = 3 3
A > 4 0 A > 4 0

L3 0.51 0.02 0.00

A = 1 3 A = 1 1
A = 2 2 A = 2 2
A = 3 1 A = 3 3
A > 4 0 A > 4 0

Table 8.17: Results of using the analysis framework to count the number of boundary and
interior misses incurred by the loop nest sequence in calc3 for m = n = 19 in (A, 8192,
8192 · A; 1) TLBs.

results of using the framework to count the number of boundary and interior misses incurred
by each loop nest in calc3 for problem size m = 19, n = 19 in (A, 8192, 8192 · A; 1) TLBs.

For comparison, I also give cache miss counts for the sequence of loop nests in calc3 using
the compulsory-replacement classification of misses. Table 8.18 gives the results of using the
framework to count the number of compulsory and replacement misses incurred by each loop
nest in calc3 for several problem sizes in (A, 64, 16384 · A; 256) data caches. For Tables 8.13
to 8.17 shown above, which give interior and boundary misses, the total number of cache
misses incurred by the loop nest sequence is the sum of misses incurred by all of the loop
nests. In contrast, the sum of misses incurred by all of the loop nests in Table 8.18 is not
necessarily the total number of cache misses incurred by the loop nest sequence. In fact, the
sum of misses incurred by all of the loop nests is likely an overestimation of the total number
of cache misses incurred by the loop nest sequence. The overestimation is due to compulsory
misses incurred by loop nests L1, L2, and L3 that may actually be cache hits. The compulsory-
replacement miss classification assumes that the cache is empty at the beginning of each loop
nest. In particular for this sequence of loop nests from calc3, in which all loop nests access
closely related data, assuming an empty cache leads to a misclassification of some cache hits
as misses. It is precisely the aim of the interior-boundary classification to avoid overestimating
miss counts.

109

m n L

solution time (sec) # of # of
simplify build count compulsory replacement
formula DFA misses misses misses

99 99 L0 2.33 0.39 0.00 11,142 A > 1 0
L1 0.41 3.81 0.00 894 A > 1 0
L2 0.29 0.02 0.00 156 A > 1 0
L3 0.09 0.01 0.00 12 A > 1 0

127 49 L0 1.17 5.41 0.16 7,056
A = 1 11,662
A > 2 0

L1 0.17 0.80 0.00 588 A > 1 0

L2 0.27 0.03 0.01 192
A = 1 444
A > 2 0

L3 0.12 0.00 0.00 12 A > 1 0
749 24 L0 3.75 0.58 0.00 20,256 A > 1 0

L1 1.00 10.22 0.00 184 A > 1 0

L2 0.47 0.22 0.00 1,131
1 6 A 6 6 3
A = 7 1
A > 8 0

L3 0.15 0.00 0.00 9 A > 1 0
499 499 L0 2.43 1.37 0.00 280,692 A > 1 0

L1 0.41 11.96 0.00 4,494 A > 1 0
L2 0.30 0.27 0.00 756 A > 1 0
L3 0.10 0.01 0.00 12 A > 1 0

999 999 L0 1.19 2.46 0.00 1,123,875 A > 1 0
L1 0.15 5.05 0.00 11,988 A > 1 0
L2 0.26 0.89 0.00 1,500 A > 1 0
L3 0.10 0.01 0.00 12 A > 1 0

Table 8.18: Results of using the analysis framework to count the number of compulsory and
replacement misses incurred by the loop nest sequence in calc3 for several problem sizes in
(A, 64, 16384 · A; 256) data caches.

110

Observations. The following are some observations on the results for the calc3 loop nest
sequence presented in this section.

1. In Tables 8.13 and 8.17 the formula-simplification times are roughly the same for corre-
sponding loop nests, despite the differing problem sizes and cache configurations.

2. Loop nest L0 is the most complicated of the calc3 sequence with 21 references (compared
to 12 for each of the other loop nests), a nesting depth of 2 (compared to 1 for each of the
other loop nests), and more complex index expressions. As a consequence, the solution
times for L0 are considerably larger than for the other loop nests in all tables.

3. In Tables 8.13 and 8.17 the number of actual boundary misses are given, rather than
the number of potential boundary misses. Actual boundary misses in loop nest Li are
determined by resolving the potential boundary misses in Li against the computed cache
state at the end of Li-1’s execution (see Section 3.2). The potential boundary misses in
L0 are resolved against an empty cache state.

4. Notice that the problem sizes in Table 8.18 for compulsory and replacement misses are
larger than those in Tables 8.13 to 8.17 for boundary and interior misses. Furthermore,
the solution times given in Table 8.18 are essentially smaller than those given in Ta-
bles 8.13 to 8.17. Because there is no temporal reuse in the loop nests of calc3, they
incur no replacement misses except in cases of thrashing (see problem sizes m = 127,
n = 49 and m = 749, n = 24), and the majority of misses are of the compulsory type.
As discussed previously, the time required to build DFAs and count misses is usually
smaller for compulsory misses, than for other types of misses.

8.3 Nonlinear Data Layouts

To demonstrate the ability of the cache analysis framework to handle nonlinear data layouts
(see Section 7.1 for background), I give cache miss counts for the matrix-vector multiplication
loop nest Lvec where array Y (2) = A has a nonlinear data layout. Suppose that the arrays
Y (0) = A, Y (1) = X, and Y (2) = Y are double-precision (i.e., β0 = β1 = β2 = 8 bytes) with
starting addresses µ0 = 0, µ1 = µ0 + 8m · n, and µ2 = µ1 + 8n. The data of array Y (0) is laid
out in memory according to a (m,n)-interleaving σ, which describes the order in which bits
from the two array coordinates are interleaved to linearize array Y (0).

Tables 8.19 to 8.22 give the results of using the framework to count the number of potential
boundary and interior misses incurred by loop nest Lvec for several problem sizes in (A, 64,
16384 · A; 256) data caches. Results include the time required for formula expression and
simplification, the time required for DFA construction, the time required to enumerate formula
solutions and count witnesses, and the number of cache misses for associativity value A.

111

σ

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

00001111 1.80 0.04 0.00
A = 1 33 A = 1 64
A > 2 0 A > 2 72

00100111 7.91 0.04 0.00
A = 1 23 A = 1 64
A > 2 0 A > 2 72

00011011 15.69 0.04 0.00
A = 1 17 A = 1 64
A > 2 0 A > 2 72

00110011 9.48 0.04 0.00
A = 1 18 A = 1 64
A > 2 0 A > 2 72

01000111 4.28 0.04 0.00
A = 1 23 A = 1 64
A > 2 0 A > 2 72

10000111 3.13 0.04 0.00
A = 1 23 A = 1 64
A > 2 0 A > 2 72

10010011 9.56 0.04 0.00
A = 1 18 A = 1 64
A > 2 0 A > 2 72

11110000 1.90 0.04 0.00
A = 1 63 A = 1 64
A > 2 0 A > 2 72

Table 8.19: Results of using the analysis framework to count the number of interior and
potential boundary misses incurred by loop nest Lvec for m = n = 16 and various (4, 4)-
interleavings σ in (A, 32, 2048 · A; 64) data caches.

Observations. The following are some observations on the results for nonlinear data layouts
presented in this section.

1. For m = 2x and n = 2y, an interleaving of x 0s followed by y 1s is equivalent to a
row-major layout, and an interleaving of y 1s followed by x 0s is equivalent to a column-
major layout. Loop nest Lvec usually incurs fewer interior misses when array Y (0) has a
nonlinear data layout compared to row- and column-major.

2. For each problem size, the interleaving(s) with the fewest interior misses for some value
of A may not have the fewest number for other values of A.

3. For each problem size, all interleavings have the same boundary miss counts, as expected.

4. The time required for formula simplification varies with different interleavings, but tends
to increase with the degree of interleaving (i.e., σ = 00110011 is more interleaved than
σ = 10000111).

5. The time required for DFA-construction does not seem to be related to the degree of
interleaving or miss counts.

112

σ

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

000011111 2.25 0.23 0.00
A = 1 182 A = 1 64
A = 2 12 A = 2 128
A > 3 0 A > 3 140

000111011 17.80 0.17 0.01
A = 1 102 A = 1 64
A = 2 12 A = 2 128
A > 3 0 A > 3 140

010001111 4.78 0.20 0.01
A = 1 138 A = 1 64
A = 2 12 A = 2 128
A > 3 0 A > 3 140

010101011 18.66 0.17 0.01
A = 1 104 A = 1 64
A = 2 12 A = 2 128
A > 3 0 A > 3 140

011111000 4.00 0.24 0.01
A = 1 212 A = 1 64
A = 2 12 A = 2 128
A > 3 0 A > 3 140

100001111 3.61 0.24 0.01
A = 1 133 A = 1 64
A = 2 17 A = 2 128
A > 3 0 A > 3 140

100110011 17.46 0.23 0.00
A = 1 100 A = 1 64
A = 2 16 A = 2 128
A > 3 0 A > 3 140

111110000 2.43 0.39 0.00
A = 1 513 A = 1 64
A = 2 124 A = 2 128
A > 3 0 A > 3 140

Table 8.20: Results of using the analysis framework to count the number of interior and
potential boundary misses incurred by loop nest Lvec for m = 16, n = 32 and various (4, 5)-
interleavings σ in (A, 32, 2048 · A; 64) data caches.

113

σ

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

000001111 2.31 0.20 0.00
A = 1 130 A = 1 64
A = 2 12 A = 2 128
A > 3 0 A > 3 140

000100111 11.53 0.17 0.00
A = 1 108 A = 1 64
A = 2 12 A = 2 128
A > 3 0 A > 3 140

000110011 16.93 0.17 0.00
A = 1 97 A = 1 64
A = 2 12 A = 2 128
A > 3 0 A > 3 140

010000111 4.83 0.18 0.00
A = 1 108 A = 1 64
A = 2 12 A = 2 128
A > 3 0 A > 3 140

011110000 3.92 0.24 0.01
A = 1 187 A = 1 64
A = 2 12 A = 2 128
A > 3 0 A > 3 140

100000111 3.61 0.16 0.00
A = 1 105 A = 1 64
A = 2 15 A = 2 128
A > 3 0 A > 3 140

100010011 16.60 0.15 0.01
A = 1 94 A = 1 64
A = 2 15 A = 2 128
A > 3 0 A > 3 140

111100000 2.40 0.36 0.01
A = 1 477 A = 1 64
A = 2 50 A = 2 128
A > 3 0 A > 3 140

Table 8.21: Results of using the analysis framework to count the number of interior and
potential boundary misses incurred by loop nest Lvec for m = 32, n = 16 and various (5, 4)-
interleavings σ in (A, 32, 2048 · A; 64) data caches.

114

σ

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

0000011111 2.44 0.44 0.01

A = 1 428 A = 1 64
A = 2 144 A = 2 128
A = 3 80 A = 3 192
A = 4 16 A = 4 256
A > 5 0 A > 5 272

0001110011 18.15 0.27 0.01

A = 1 266 A = 1 64
A = 2 144 A = 2 128
A = 3 80 A = 3 192
A = 4 16 A = 4 256
A > 5 0 A > 5 272

0011000111 10.60 0.30 0.01

A = 1 290 A = 1 64
A = 2 144 A = 2 128
A = 3 80 A = 3 192
A = 4 16 A = 4 256
A > 5 0 A > 5 272

0100001111 5.67 1.20 0.01

A = 1 326 A = 1 64
A = 2 154 A = 2 128
A = 3 80 A = 3 192
A = 4 16 A = 4 256
A > 5 0 A > 5 272

0101000111 11.38 0.90 0.01

A = 1 280 A = 1 64
A = 2 154 A = 2 128
A = 3 80 A = 3 192
A = 4 16 A = 4 256
A > 5 0 A > 5 272

1100000111 5.43 0.37 0.00

A = 1 269 A = 1 64
A = 2 155 A = 2 128
A = 3 87 A = 3 192
A = 4 19 A = 4 256
A > 5 0 A > 5 272

1110000011 7.62 0.30 0.01

A = 1 246 A = 1 64
A = 2 155 A = 2 128
A = 3 87 A = 3 192
A = 4 19 A = 4 256
A > 5 0 A > 5 272

1111100000 2.61 0.82 0.03

A = 1 1045 A = 1 64
A = 2 978 A = 2 128
A = 3 910 A = 3 192
A = 4 266 A = 4 256
A > 5 0 A > 5 272

Table 8.22: Results of using the analysis framework to count the number of interior and
potential boundary misses incurred by loop nest Lvec for m = n = 32 and various (5, 5)-
interleavings σ in (A, 32, 2048 · A; 64) data caches.

115

6. The time required to count misses remains basically constant no matter the degree of
interleaving or miss counts.

8.4 Loop Transformation

Loop transformations [134] alter the ordering of operations in a loop nest in a way that
preserves the semantics of the original loop nest while modifying the way in which it accesses
data. The new data access sequence may have better locality of reference than the original,
and thus incur fewer cache misses. Certainly, the goal of applying a loop transformation is a
reduction in cache misses, but this is not guaranteed. The modified loop nest may incur more
cache misses than the original, and it is difficult to predict how a loop transformation will
affect cache behavior. I demonstrate how the analysis framework can be used to examine the
effects of two loop transformations—loop tiling and loop permutation.

8.4.1 Loop Tiling

Loop tiling (or loop blocking) is a loop transformation that can improve the performance of
a loop nest by decreasing the number of cache misses. Loop tiling causes the iterations of
one or more loops to be executed in “tiles” or “blocks”. Consider the original matrix-vector
multiplication loop nest Lorig and a tiled matrix-vector multiplication loop nest Ltile with tile
size T , both given below. Note that the upper bound on the jj-loop, which may look strange,
is a consequence of loop normalization. Selecting the optimal size T for such tiles is a difficult
problem [29, 40, 84].

Lorig: do i = 0, m− 1
r = Y[i]

do j = 0, n− 1
r += A[i,j]*X[j]

enddo

Y[i] = r

enddo

Ltile: do jj = 0, (n− 1)/T
do i = 0, m− 1
r = Y[i]

do j = T*jj, min(T ∗ jj + T − 1, n− 1)
r += A[i,j]*X[j]

enddo

Y[i] = r

enddo

enddo

Suppose that the arrays Y (0) = A, Y (1) = X, and Y (2) = Y are double-precision (i.e., β0 = β1 =
β2 = 8 bytes) with starting addresses µ0 = 0, µ1 = µ0 + 8m · n, and µ2 = µ1 + 8n. Array Y (0)

is linearized in column-major order.

Table 8.23 gives the results of using the framework to count the number of interior misses
incurred by Ltiled for m = n = 60 in (A, 64, 8192 ·A; 128) data caches, varying the value of tile
size T . Potential boundary misses are not counted because the count is unaffected by tile size.

116

T

solution time (sec) # of
simplify build count interior
formula DFA misses misses

5 2.10 33.51 0.01

A = 1 479
A = 2 209
A = 3 81
A > 4 0

10 2.41 38.91 0.03

A = 1 509
A = 2 209
A = 3 81
A > 4 0

20 2.00 71.53 0.03

A = 1 947
A = 2 211
A = 3 81
A > 4 0

30 1.67 59.43 0.05

A = 1 1,751
A = 2 244
A = 3 82
A > 4 0

60 0.68 50.33 0.06

A = 1 2,570
A = 2 380
A = 3 100
A > 4 0

Table 8.23: Results of using the analysis framework to count the number of interior misses
incurred by loop nest Ltiled for m = n = 60 in (A, 64, 8192 · A; 128) data caches with varying
values of tile size T .

For comparison, the following gives the results of using the framework to count the interior
misses incurred by Lorig for m = n = 60 in (A, 64, 8192 · A; 128) data caches.

solution time (sec) # of
simplify build count interior
formula DFA misses misses

0.66 49.42 0.04

A = 1 2,570
A = 2 380
A = 3 100
A > 4 0

Observations. The following are some observations on the results for loop tiling presented
in this section.

1. For tile size T = 60, the interior miss count of loop nest Ltile is identical to that of loop
nest Lorig (for m = n = 60), as expected.

117

Lijk: do i = 0, t− 1
do j = 0, u− 1

c = Z[i,j]
do k = 0, v − 1

c += X[i,k]*Y[k,j]
enddo
Z[i,j] = c

enddo
enddo

Likj: do i = 0, t− 1
do k = 0, v − 1

c = X[i,k]
do j = 0, u− 1

Z[i,j] += c*Y[k,j]
enddo

enddo
enddo

Ljik: do j = 0, u− 1
do i = 0, t− 1

c = Z[i,j]
do k = 0, v − 1

c += X[i,k]*Y[k,j]
enddo
Z[i,j] = c

enddo
enddo

Ljki: do j = 0, u− 1
do k = 0, v − 1

c = Y[k,j]
do i = 0, t− 1

Z[i,j] += X[i,k]*c
enddo

enddo
enddo

Lkij: do k = 0, v − 1
do i = 0, t− 1

c = X[i,k]
do j = 0, u− 1

Z[i,j] += c*Y[k,j]
enddo

enddo
enddo

Lkji: do k = 0, v − 1
do j = 0, u− 1

c = Y[k,j]
do i = 0, t− 1

Z[i,j] += X[i,k]*c
enddo

enddo
enddo

Figure 8.4: The six permutations of the matrix multiplication loop nest.

2. For all tile sizes T ∈ {5, 10, 20, 30}, loop nest Ltile incurs fewer interior misses than loop
nest Lorig for 1 6 A 6 3. For A = 1, tile size T = 5 yields the fewest interior misses.
For A = 2, tile sizes T = 5 or 10 yield the fewest interior misses. For A = 3, tile sizes
T = 5, 10, or 20 yield the fewest interior misses.

3. The time required to count interior misses increases with the miss count. Formula-
simplification times and DFA-construction times are not necessarily proportional to miss
counts or problem size.

8.4.2 Loop Permutation

Loop permutation is a loop transformation that can be useful in improving the performance
of a loop nest by decreasing the number of cache misses it incurs. Loop permutation changes
the nesting order of some or all loops. Consider the matrix multiplication loop nest Lijk in
Figure 8.4, which is identical to loop nest Lmm in Figure 2.5. Array element Z[i,j] is reused
during every iteration of the innermost loop of Lijk (the k-loop). Loop nest Lijk stores array

118

element Z[i,j] in the scalar variable c so that it is register-resident for all iterations of the
k-loop. Interchanging the j-loop and the k-loop gives loop nest Likj in Figure 8.4. Now, array
element X[i,k] is reused during every iteration of the innermost loop of Likj and is stored in
c so that it is register-resident. Other permutations of the matrix multiplication loop nest
are written similarly. Figure 8.4 shows all six permutations of the matrix multiplication loop
nest: Lijk, Likj, Ljik, Ljki, Lkij, and Lkji. Each permutation has different access patterns and
potentially different memory performance.

Suppose that the arrays Y (0) = X, Y (1) = Y, and Y (2) = Z are double-precision (i.e.,
β0 = β1 = β2 = 8 bytes) and linearized in column-major order with starting addresses µ0 = 0,
µ1 = µ0+8t·v, and µ2 = µ1+8v ·u. Table 8.24 gives the results of using the framework to count
the number of interior and potential boundary misses incurred by all six loop permutations
for several problem sizes in (A, 64, 16384 · A; 256) data caches.

Observations. The following are some observations on the results for loop permutation
presented in this section.

1. For each problem size, all six permutations incur the same number of boundary misses.
This is as expected, since all loop nests access the same data in memory.

2. For problem size t = u = v = 20, there are no interior misses for any value ofA because all
array elements referenced by the loop nests fit in cache and never get replaced. Therefore,
all six permutations have the same cache miss count. Despite identical problem size and
cache miss count, the six permutations require a variety of formula-simplification times
because the data access patterns described for each permutation are different.

3. For problem size t = u = v = 30 and A = 1, loop nests Lijk and Likj have the fewest cache
misses, and loop nest Ljki has the most cache misses. For A >= 2, all six permutations
have the same cache miss count. Solution times are not proportional to cache miss count.

4. For problem size t = u = v = 40 and A = 1, loop nest Ljki has the fewest cache misses,
and loop nest Likj has the most cache misses. For A = 2, loop nests Lijk, Likj, Ljik, and Ljki

have the smallest cache misses, and loop nest Lkji has the most cache misses. Solution
times are not proportional to cache miss count.

5. No single permutation of the matrix multiplication loop nest will always yield the smallest
number of cache misses.

8.5 Aggregate Array Computations

An aggregate array computation is a loop or collection of loops that computes accumulated
quantities over elements of arrays. Such computations are commonly found in programs, and

119

t = u = v L

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

20

Lijk 1.34 0.05 0.03 A > 1 0 A > 1 150
Likj 2.56 0.06 0.04 A > 1 0 A > 1 150
Ljik 0.74 0.01 0.04 A > 1 0 A > 1 150
Ljki 0.71 0.02 0.04 A > 1 0 A > 1 150
Lkij 3.48 0.04 0.03 A > 1 0 A > 1 150
Lkji 0.64 0.02 0.04 A > 1 0 A > 1 150

30

Lijk 2.07 0.69 0.04
A = 1 114 A = 1 256
A > 2 0 A > 2 338

Likj 5.47 0.69 0.05
A = 1 114 A = 1 256
A > 2 0 A > 2 338

Ljik 1.18 0.23 0.03
A = 1 161 A = 1 256
A > 2 0 A > 2 338

Ljki 0.75 0.22 0.04
A = 1 349 A = 1 256
A > 2 0 A > 2 338

Lkij 5.90 0.99 0.04
A = 1 162 A = 1 256
A > 2 0 A > 2 338

Lkji 1.06 0.30 0.05
A = 1 348 A = 1 256
A > 2 0 A > 2 338

40

Lijk 21.61 32.89 0.12
A = 1 5,262 A = 1 256
A = 2 88 A = 2 512
A > 3 0 A > 3 600

Likj 27.40 39.96 0.18
A = 1 20,936 A = 1 256
A = 2 88 A = 2 512
A > 3 0 A > 3 600

Ljik 0.95 12.97 0.07
A = 1 2,870 A = 1 256
A = 2 88 A = 2 512
A > 3 0 A > 3 600

Ljki 0.55 8.57 0.07
A = 1 952 A = 1 256
A = 2 88 A = 2 512
A > 3 0 A > 3 600

Lkij 24.81 37.63 0.19
A = 1 19,360 A = 1 256
A = 2 107 A = 2 512
A > 3 0 A > 3 600

Lkji 0.79 7.49 0.08
A = 1 2,904 A = 1 256
A = 2 153 A = 2 512
A > 3 0 A > 3 600

Table 8.24: Results of using the analysis framework to count the number of interior and
potential boundary misses incurred by all six loop permutations of the matrix multiplication
loop nest for several problem sizes in (A, 64, 16384 · A; 256) data caches.

120

Lps-orig: do i = 0, n− 1
S[i] = 0
do j = 0, i

S[i] = S[i] + A[j]
enddo

enddo

Lps-opt: S[0] = A[0]
do i = 0, n− 1

S[i] = S[i-1] + A[i]
enddo

Figure 8.5: Original partial summation loop nest Lps-orig and optimized version Lps-opt.

the array elements required often overlap, creating redundancy in the overall computation. Liu
et al. [88, 89] present a method for eliminating such redundancies to improve the performance of
the aggregate array computation. The method is based on incrementalization, which updates
the values of aggregate array computations from iteration to iteration, instead of starting
from scratch in each iteration. The optimization method is designed to reduce the number
of operations in the aggregate array computation, and it is of interest how the optimization
method effects the cache behavior of an aggregate array computation. I demonstrate how
the analysis framework can be used to determine the number of cache misses incurred by
an aggregate array computation, before and after applying Liu et al.’s optimization method.
The following sections consider two aggregate array computations—partial summation and
sequence local average.

8.5.1 Partial Summation

Given an array of n elements, the objective is to sum elements 0 to i for each i from 0 to
n− 1. Loop nest Lps-orig in Figure 8.5 performs this computation in a straightforward manner,
requiring O(n2) time. Loop nest Lps-opt in Figure 8.5 performs the same computation, but
in only O(n) time. Notice that Lps-opt is not actually a loop nest because statement S[0] =

A[0] is not contained in a loop. In order to analyze Lps-opt, I treat its contents as if they are
contained in a loop of one iteration.

Suppose that the arrays Y (0) = A and Y (1) = S are double-precision (i.e., β0 = β1 = 8
bytes) with starting addresses µ0 = 0 and µ1 = µ0 + 8n. Table 8.25 gives the results of using
the framework to count the number of interior and potential boundary misses incurred by
the original loop nest Lps-orig for several problem sizes in (A, 64, 32768 · A; 512) data caches.
Table 8.26 gives the results for the optimized loop nest Lps-opt.

Observations. The following are some observations on the results for the original and opti-
mized versions of partial summation presented in this section.

1. Loop nest Lps-opt makes significantly fewer accesses to arrays S and A than loop nest
Lps-orig. As a result, Lps-opt incurs fewer interior misses than Lps-orig in the direct-mapped
cache.

121

n

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

2,000 0.20 0.06 0.17 A > 1 0 A > 1 500

3,000 0.34 0.31 0.52
A = 1 30,939 A = 1 512
A > 2 0 A > 2 750

4,000 0.37 0.22 0.70
A = 1 63,439 A = 1 512
A > 2 0 A > 2 1,000

5,000 0.50 2.51 1.61
A = 1 132,721 A = 1 512
A = 2 226 A = 2 1,024
A > 3 0 A > 3 1,250

6,000 0.35 2.39 3.64
A = 1 516,971 A = 1 512
A = 2 476 A = 2 1,024
A > 3 0 A > 3 1,500

Table 8.25: Results of using the analysis framework to count the number of interior and
potential boundary misses incurred by loop nest Lps-orig for several problem sizes in (A, 64,
32768 · A; 512) data caches.

n

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

2,000 0.07 0.00 0.18 A > 1 0 A > 1 500

3,000 0.08 0.01 0.15
A = 1 238 A = 1 512
A > 2 0 A > 2 750

4,000 0.10 0.02 0.23
A = 1 488 A = 1 512
A > 2 0 A > 2 1,000

5,000 0.13 0.59 0.19
A = 1 738 A = 1 512
A = 2 226 A = 2 1,024
A > 3 0 A > 3 1,250

6,000 0.18 0.54 0.18
A = 1 988 A = 1 512
A = 2 476 A = 2 1,024
A > 3 0 A > 3 1,500

Table 8.26: Results of using the analysis framework to count the number of interior and
potential boundary misses incurred by loop nest Lps-opt for several problem sizes in (A, 64,
32768 · A; 512) data caches.

122

Lsla-orig: do i = 0, n− k
s = 0
do j = i, i + k − 1

s = s + A[j]
enddo
AVE[i] = s/k

enddo

Lsla-opt: S[0] = 0
do j = 0, k − 1

S[0] = S[0] + A[j]
enddo
AVE[0] = S[0]/k
do i = 1, n− k

S[i] = S[i-1] - A[i-1] + A[i-1+k]
AVE[i] = S[i]/k

enddo

Figure 8.6: Original sequence local average loop nest Lsla-orig and optimized version Lsla-opt.

2. For A > 2, loop nests Lps-orig and Lps-opt incur the same number of interior misses.

3. Loop nests Lps-orig and Lps-opt incur the same number of potential boundary misses, since
the cache footprint of the memory blocks accessed by each loop nest is the same.

8.5.2 Sequence Local Average

Given an array of n elements, the objective is to sum elements i to i+k−1 for each i from 0 to
n−k. Loop nest Lsla-orig in Figure 8.6 performs this computation in a straightforward manner,
requiring O(nk) time. Loop nest Lsla-opt in Figure 8.6 performs the same computation, but in
only O(n) time. In order to analyze Lsla-opt, I treat its contents as if they are contained in a
loop of one iteration.

Suppose that the arrays Y (0) = A, Y (1) = AVE, and Y (2) = S are double-precision (i.e.,
β0 = β1 = β2 = 8 bytes) with starting addresses µ0 = 0, µ1 = µ0 +8n, and µ2 = µ1 +8(n−k).
Table 8.27 gives the results of using the framework to count the number of interior and potential
boundary misses incurred by the original loop nest Lsla-orig for several problem sizes in (A, 64,
32768 · A; 512) data caches. Table 8.28 gives the results for the optimized loop nest Lsla-opt.

Observations. The following are some observations on the results for the original and opti-
mized versions of sequence local average computation presented in this section.

1. Loop nest Lsla-opt has fewer operations than loop nest Lsla-orig, but it requires an additional
array S. Therefore, the cache footprint of the memory blocks accessed by Lsla-opt is larger
than those accessed by Lsla-orig for n = 5, 000 and A > 3, n = 15, 000 and A > 8, and
n = 25, 000 and A > 12. As a result, loop nest Lsla-opt incurs more potential boundary
misses than Lsla-orig in these cases.

2. Despite the additional accesses to array S in loop nest Lsla-opt, the reduction in the overall
number of array accesses results in fewer interior misses for n = 5, 000 and A = 1 and
for n = 25, 000 and A = 1. In all other cases, accesses to the extra array S causes more
interior misses in Lsla-opt.

123

n

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

5,000 0.11 16.98 0.24
A = 1 8,114 A = 1 512
A = 2 102 A = 2 1,024
A > 3 0 A > 3 1,126

15,000 0.10 4.91 0.36

A = 1 3,114 A = 1 512
A = 2 2,602 A = 2 1,024
A = 3 2,090 A = 3 1,536
A = 4 1,578 A = 4 2,048
A = 5 1,066 A = 5 2,560
A = 6 554 A = 6 3,072
A = 7 42 A = 7 3,584
A > 8 0 A > 8 3,626

25,000 0.12 39.38 1.33

A = 1 50,614 A = 1 512
A = 2 5,102 A = 2 1,024
A = 3 4,590 A = 3 1,536
A = 4 4,078 A = 4 2,048
A = 5 3,566 A = 5 2,560
A = 6 3,054 A = 6 3,072
A = 7 2,542 A = 7 3,584
A = 8 2,030 A = 8 4,096
A = 9 1,518 A = 9 4,608
A = 10 1,006 A = 10 5,120
A = 11 494 A = 11 5,632
A > 12 0 A > 12 6,126

Table 8.27: Results of using the analysis framework to count the number of interior and
potential boundary misses incurred by loop nest Lsla-orig for several problem sizes in (A, 64,
32768 · A; 512) data caches.

8.6 Summary

In this chapter, I have applied and validated the analysis framework presented in this disserta-
tion by using it to accurately determine the cache behavior of a number of program fragments,
given a variety of cache configurations, data layouts, and cache miss classifications. Every
cache miss count provided here matches that of a cache simulator, establishing the correctness
of the analysis framework.

The following points summarize the capabilities of the analysis framework and how they
have been demonstrated.

1. The results provided in Tables 8.2, 8.5, 8.7, 8.10, 8.12, and 8.17 demonstrate that the
framework counts TLB misses, in addition to data cache misses. Furthermore, the frame-
work analyzes cache behavior given any values of the cache configuration parameters

124

n

solution time (sec) # of # of pot.
simplify build count interior boundary
formula DFA misses misses misses

5,000 2.26 3.28 0.18

A = 1 1,529 A = 1 512
A = 2 990 A = 2 1,024
A = 3 90 A = 3 1,536
A > 4 0 A > 4 1,626

15,000 2.26 18.83 0.58

A = 1 6,589 A = 1 512
A = 2 4,353 A = 2 1,024
A = 3 3,841 A = 3 1,536
A = 4 3,329 A = 4 2,048
A = 5 2,871 A = 5 2,560
A = 6 2,305 A = 6 3,072
A = 7 1,793 A = 7 3,584
A = 8 1,281 A = 8 4,096
A = 9 769 A = 9 4,608
A = 10 257 A = 10 5,120
A > 11 0 A > 11 5,376

25,000 1.18 20.54 1.32

A = 1 11,561 A = 1 512
A = 2 8,103 A = 2 1,024
A = 3 7,591 A = 3 1,536
A = 4 7,079 A = 4 2,048
A = 5 6,567 A = 5 2,560
A = 6 6,055 A = 6 3,072
A = 7 5,543 A = 7 3,584
A = 8 5,031 A = 8 4,096
A = 9 4,519 A = 9 4,608
A = 10 4,007 A = 10 5,120
A = 11 3,495 A = 11 5,632
A = 12 2,983 A = 12 6,144
A = 13 2,471 A = 13 6,656
A = 14 1,959 A = 14 7,168
A = 15 1,447 A = 15 7,680
A = 16 935 A = 16 8,192
A = 17 422 A = 17 8,704
A > 18 0 A > 18 9,126

Table 8.28: Results of using the analysis framework to count the number of interior and
potential boundary misses incurred by loop nest Lsla-opt for several problem sizes in (A, 64,
32768 · A; 512) data caches.

125

(i.e., A, B, C, and S), real or imagined. The framework is well suited to investigate the
behavior of programs on experimental, non-existent caches.

2. All results provided in this chapter demonstrate that the framework identifies cache
misses according to either the compulsory-replacement classification or the interior-
boundary classification. Moreover, given the generality of the technique for express-
ing and counting cache misses, it is possible to use the framework to determine cache
behavior according to yet other miss classifications.

3. The results provided in Tables 8.19 to 8.22 demonstrate that the framework counts
cache misses in the presence of data layouts other than the canonical row- and column-
major layouts. The framework’s flexibility in handling nonlinear data layouts allows
investigation into the behavior and potential benefit of experimental modes of placing
data in memory.

4. The results provided in Tables 8.13 to 8.18 demonstrate that the numbers of cache
misses incurred by single loop nests are combined to accurately give the number of cache
misses incurred by the sequence of such loop nests using the interior-boundary miss
classification.

5. All results provided in this chapter demonstrate that the framework gives miss counts for
multiple caches in one pass. Given actual values for blocksize and the number of cache
sets, say B = 64 and S = 256, one pass through the framework determines the number
of misses incurred in all caches with capacity C = 16, 384 · A for all A > 1.

For some of the results provided in this chapter, the amount of time required by the
framework to analyze the cache behavior of a loop nest (or sequence of loop nests) is too large
to make such analysis feasible within an optimizing compiler. In particular, the pursuit of
exact cache miss counts and flexible models contributes to the large solution times. Use of the
analytical framework is best suited for pre-hardware design exploration in which its ability to
model experimental caches is critical.

The analysis framework uses the Omega Library [75] to simplify cache behavior formulas
and the automata-construction algorithms of Bartzis and Bultan [9, 10] with the MONA
tool [81] to construct DFAs recognizing the solutions of cache behavior formulas. The large
solutions times required to simplify formulas and build DFAs are due both to limits in the
underlying theory of the tools and the lack of robustness in their implementations. Some
instances of cache behavior attack weaknesses of the implementation, while others approach the
worst-case complexity associated with Presburger arithmetic. Efforts to improve the efficiency
of either the Omega Library or the automata-construction tools will certainly improve the
efficiency of the analysis framework. Therefore, to some extent, the limitation of large solution
times may eventually be removed. However, if any of the large solution times are due to

126

the worst-case complexity of Presburger arithmetic, such a limitation is fundamental to the
analysis framework’s method for describing cache behavior.

Chapter 9

Related Work

This chapter discusses work related to analyzing memory behavior and compares the work to
the framework described in this dissertation. I organize pieces of related work according to
the most salient feature of the approach, although some pieces could fall into more than one
category.

9.1 Work Based on Reuse Vectors

The Cache Miss Equations (CMEs) framework of Ghosh et al. [59, 60, 61, 62] generates linear
Diophantine equations that characterize the cache misses of a single loop nest. Ghosh et al.
use the CMEs to understand the cache behavior of a loop nest and select program transfor-
mations to improve its memory performance. In generating the CMEs, Ghosh et al. use reuse
vectors obtained from traditional compiler reuse analysis. A reuse vector connects any two
iteration points at which a reference accesses the same memory block. Ghosh et al. require
that loops be perfectly-nested, whereas my framework handles arbitrarily-nested loops. The
method of Ghosh et al. does not capture reuse between loop nests, and instead assumes a
cold-start cache for each loop nest in a program, in which the loop nest begins execution with
the cache containing none of the data it accesses. Such an assumption leads to an inaccurate
and pessimistic cache miss count because it overestimates the number of compulsory misses.
My framework uses cache state to link the loop nests in a program, thereby taking into con-
sideration the actual contents of the cache as a loop nest begins execution and accurately
determining the number of cache misses incurred by the loop nest. Solving the Diophantine
equations is difficult, and in general, Ghosh et al. do not use them to find the number of
cache misses explicitly. Instead, they use the CME model indirectly to optimize the number
of cache misses on a case-by-case basis, and as a result the generality of their framework is
compromised. Due to the translation of Presburger formulas into DFAs, my framework has
a way of finding the number of cache misses explicitly, which I have found to be quite useful
in practice. Also, reuse vectors do not exist in the presence of nonlinear array layouts; thus,

128

the CME framework is limited to arrays with row- and column-major layouts. Of course, this
is not a serious limitation since row- and column-major are the standard ways of mapping
arrays to memory. However, the ability of my framework to evaluate the potential benefit of
nonlinear array layouts is useful.

Vera et al. [121, 122, 123, 124] introduce an extension of traditional reuse vectors to quantify
reuse between array references contained in multiple loop nests, thereby enhancing the CME
framework and matching the capability of my framework to handle multiple loop nests. In ad-
dition, Vera et al. offer techniques for handling if-statements, call statements, and arbitrarily-
nested loops. For if-statements, the conditional guards must be expressions consisting of LCVs
and constants. My framework can also handle such if-statements using the statement guards
presented in Section 2.2. Vera et al. handle call statements by abstractly inlining informa-
tion about the memory accesses of a subroutine at the sites of its call statements. As is, my
framework does not handle such call statements, but it likely could using a similar approach
that inserted the access trace of a subroutine at the call sites in the program’s access trace.
Even Vera et al. avoid solving the generated Diophantine equations by sampling the iteration
space of a program fragment and approximating its total number of cache misses based on the
miss count of the sample. Other works [54, 55, 56, 65] have also used sampling to make the
calculation of cache behavior more tractable.

The sampling method for counting cache misses and our Presburger-DFA method for count-
ing cache misses have complementary strengths. The sampling method provides a good esti-
mation of the cache miss count when the number of cache misses is large and the misses are
distributed uniformly throughout the iteration space of a program fragment. Our Presburger-
DFA method gives an exact cache miss count even when the misses are sparsely distributed in
the iteration space and works best when the number of cache misses is small. In the task of
optimizing code, where the objective is to move from a high-miss point to a low-miss point,
both methods are of use.

9.2 Work Based on Stack Distances

Computing stack or reuse distance [67], the amount of unique data requested between two
accesses to the same memory location, is a technique used by both Caşcaval [30, 31] and Beyls
and D’Hollander [14, 15, 16, 17, 18].

The work of Beyls and D’Hollander [14, 15, 16, 17, 18] generates cache hints that both esti-
mate the latency of accessing data items and influence the replacement of data items in cache,
with the purpose of diminishing the effect of misses in a multilevel cache hierarchy. Beyls and
D’Hollander generate such cache hints based on a reuse distance locality metric. Comparison
of the Beyls and D’Hollander framework with mine is useful, despite our differing goals. Reuse
distance, which represents the amount of unique data addressed between two accesses to the
same memory location, is very similar to the witness notion of my analysis framework. How-

129

ever, there is one key difference—the technique of Beyls and D’Hollander considers a trace
for the entire program in the computation of reuse distance, while my framework takes a set-
centric approach (see Chapter 4). As a consequence, Beyls and D’Hollander use their metric
to indicate the behavior of fully-associative caches in which memory blocks contain only one
data element, whereas my framework handles caches of any associativity and blocksize. An-
other point of comparison is the method of determining a locality metric for each data access,
which highlights an important tradeoff. The use of analytical methods restricts my framework
to program structures that are loop nests. Because their framework uses program profiling,
Beyls and D’Hollander experience no such restriction, but this flexibility comes at the cost of
speed. Their method is akin to simulation (whose potential drawbacks Chapter 1 describes),
and its additional running time is not worth the slight precision gained over my method in the
case of structured programs. Beyls investigates using the polyhedral model to calculate reuse
distances analytically [14, 125], and finds the success of an analytical approach closely related
to the limited equation-solving capabilities of current polyhedral tools.

Caşcaval [30, 31] uses a histogram of stack distances to estimate the number of cache misses
incurred by a loop nest. At compile time, Caşcaval computes the stack distance histogram
from the data dependence distance vectors in a loop nest, and the resulting histogram is a
locality metric for loop nests that is independent of cache. Like for Beyls and D’Hollander,
Caşcaval’s technique for computing the locality metric is not set-centric, distinguishing it from
my technique. Therefore, his method yields a valid prediction only for fully-associative caches
in which memory blocks contain one data element, and it must deduce the number of misses
in set-associative caches using a probabilistic argument. By not including inter-nest data
dependencies in his analysis, Caşcaval considers each loop nest in isolation of the rest of the
program. As in the CME model, this leads to an inaccurate and overestimated cache miss
count. The cache state concept of my framework prevents such an inaccuracy.

9.3 Work Based on Linear Constraints

Many techniques for modeling program behavior use sets of linear constraints to model the
behavior of interest and then count or enumerate the solutions satisfying such constraints.
In particular, Presburger arithmetic has been used to model various aspects of programming
languages such as the memory locations touched by a loop nest [50], as well as in other areas
such as timing verification [5, 6]. The work of this dissertation and its predecessors [34, 100]
fall into this category.

Clauss [39] computes the number of distinct memory locations touched by a loop nest, in-
formation used to improve the cache miss rate of a program. His problem is similar to mine, in
that the objective for both is to determine the number of integer solutions resulting from a set
of linear constraints. In Clauss’ strategy, the integer solutions are represented geometrically
as integer points belonging to polytopes, and he computes the number of points using Ehrhart

130

polynomials [45]. Recall that in my framework, Presburger formulas are translated into DFAs
in order to determine the number of integer solutions to the formulas. There exist canoni-
cal ways of translating Presburger formulas into DFAs with the minimum number of states.
Moreover, it is understood how the worst-case complexity of the translation manifests (see
Section 2.5). In contrast, even though the polytope approach experiences the same worst-case
complexity, its manifestation is not as well-understood. There is no canonical way of dividing
a set of overlapping polytopes into a set of disjoint polytopes, which is critical for obtaining
an accurate count of the solutions. Clauss’ method is also subject to geometric degeneracies
for many problems of interest. The Polylib library [90] contains an implementation of Clauss’
method.

Verdoolaege et al.. [125] extend Clauss’ Ehrhart method for counting integer points in a
parameterized polytope. In particular, they handle the problem of degenerate domains to
some extent. By extending Barvinok’s algorithm for computing the number of integer points
in a non-parameterized polytope [11], Verdoolaege et al. compute Ehrhart polynomials analyt-
ically. This analytical solution is in contrast to Clauss’ method of interpolation for computing
the Ehrhart polynomial, which is vulnerable to failure in many cases. Despite improvements
in Ehrhart methods for counting solutions, the lack of smoothness in formulas describing cache
behavior (i.e., solutions counts change dramatically as a function of input parameters) results
in polynomials of high degree with impractically large numbers of coefficients. Ehrhart meth-
ods have the advantage of producing a symbolic expression of the solution count, but are often
impractical for non-smooth formulas, such as those describing cache misses. The Presburger-
DFA method for counting solutions gives solutions counts that are not symbolic, but performs
well for non-smooth formulas. Furthermore, the usefulness of symbolic capabilities demon-
strated by Clauss and Verdoolaege et al. is not limitless, since Presburger arithmetic does
not allow the multiplication of two or more symbolic values. For instance, the index expres-
sion for accessing an array with two or more dimensions of symbolic size is not describable in
Presburger arithmetic.

Several other works are concerned with counting solutions to Presburger formulas. Pugh’s
method [106] is based on computing sums and expresses the number of solutions symbolically.
For a given summation problem, the choice of which techniques to apply and the order in
which to apply them seems to require human intelligence, and no software implementation
of Pugh’s method exists. Barvinok’s algorithm [11] (with subsequent improvements by Dyer
and Kannan [44]) counts the number of integer points inside a convex polyhedron of fixed
dimension in polynomial time. The LattE (Lattice point Enumeration) tool [42], the first
known implementation of Barvinok’s algorithm, is software for the enumeration of all lattice
points inside a rational convex polyhedron. To count the number of solutions to a Presburger
formula, Barvinok’s algorithm requires a geometric preprocessing step to express the formula
as a disjoint union of polyhedra, like Clauss’ method. Boigelot and Latour [19, 20] represent

131

a Presburger formula as a Number Decision Diagram and then count its accepting paths to
produce the number of solutions. At first glance, this method looks quite similar to the one
described in Section 5.2 and in [100]; however, there are several critical differences. In the
Boigelot and Latour method, accepting paths represent satisfying variable values by interleav-
ing the binary expansions of the values, while in my method, the binary expansions are stacked
(see Section 5.1.1) resulting in DFAs with fewer numbers of states. Also, the Boigelot and La-
tour method encodes the binary expansions of satisfying variable values most-significant-bit
first. The least-significant-bit-first ordering of my method has enabled the derivation of con-
vergence properties (see Section 5.2.2) that determine when to terminating counting to ensure
an accurate count. The LASH toolset [21] contains an implementation of the Boigelot and
Latour method.

Bastoul and Feautrier [12] present a method, known as chunking, for improving data locality
in a program. Essentially, their approach is to partition the program’s operations into subsets
small enough so that the data accessed by each chunk fits into cache. They evaluate the
memory traffic of each chunk, and their optimization algorithm uses this information to find
the reordering of program operations that minimizes memory traffic. In order to determine the
number of memory blocks copied to cache during by each chunk, Bastoul and Feautrier must
simplify the cache model significantly. They assume a fully-associative cache, and assume
that the cache is flushed between execution of chunks. Clearly, such assumptions lead to
an estimation of the number of cache misses a program incurs, which is sufficient for their
optimization method. The goal of my cache analysis framework is different, requiring an
accurate evaluation of misses for caches of any associativity.

9.4 Work Based on Reference Traces

Early approaches to analyzing memory behavior [1, 120] extracted parameters from the trace of
memory references made by a program. The novel approach of Weikle [127, 128] views caches as
filters. To gain insight on a program executing in a multilevel cache system, Weikle analyzes a
synthetic trace of its memory accesses. Given an input sequence of memory accesses, the cache
“filters” out the accesses that hit in the cache leaving the accesses that miss to pass through
the cache filter. The work of Weikle introduces new locality metrics computed at every point
in the trace, emphasizing recent behavior. Since these metrics are unique to Weikle’s cache
filter approach, my framework does not have any quantities that are comparable. Weikle’s
framework executes a program to generate its memory access trace, and thus, it is not limited
to considering a particular program structure. Beyls and D’Hollander [14, 15, 16, 17, 18] also
work from a memory access trace to compute reuse distances. Like Beyls and D’Hollander,
Weikle trades speed for the flexibility of handling any program feature. Brehob and Enbody [24]
offer models for measuring the locality of a reference trace and the expected cache behavior of
the trace, using stack distance.

132

9.5 Work Based on Cache State

Ferdinand and Wilhelm [4, 48] apply abstract interpretation to the problem of classifying
the cache behavior of memory references and use this information in predicting the WCET
(Worst Case Execution Time) of a program or task. Their approach derives from the abstract
cache state notion of Mueller et al. [97, 98], which applies to instruction caches. The work
of Ferdinand and Wilhelm is similar to my framework in two ways. First, they also use
a set-centric approach to cache behavior classification, considering an A-way set-associative
cache as S fully-associative caches. Second, Ferdinand and Wilhelm also have the notion of a
cache state, although it is somewhat different from mine. They use cache state in classifying
all memory accesses as cache misses or hits, whereas I use cache state only for classifying
actual boundary misses. Also, the cache state technique of their framework is approximate,
identifying memory blocks that are definitely in the cache (always a cache hit), memory blocks
that definitely are not in the cache (always a cache miss), and memory blocks that may be in
the cache (not classified). Ferdinand and Wilhelm must assume that the non-classified memory
blocks incur cache misses. Therefore, they can predict an upper bound on the number of cache
misses. Cache state in my framework is exact and leads to an exact prediction of cache misses.

9.6 Summary

The following revisits the six weaknesses given in Chapter 1 that are common to some or all
of the existing frameworks for analyzing memory behavior discussed in this chapter.

• Approximating cache behavior. The CME framework of Ghosh et al. [59, 60, 61,
62] is based on reuse vectors, and as a result, only captures reuse among uniformly-
generated references (i.e., array references whose index expressions differ at most by
a constant value). By sampling the iteration space of a program fragment, Vera et
al. [121, 122, 123, 124] approximate the total number of cache misses incurred by the
fragment based on the miss count of the sample. Beyls and D’Hollander [14, 15, 16, 17, 18]
and Caşcaval [30, 31] use probabilistic arguments to deduce the approximate number
of misses in set-associative caches from their cache behavior predictions valid in fully-
associative caches with unit blocksize. Ferdinand and Wilhelm [4, 48] estimate cache
behavior by giving an upper bound on the number of cache misses incurred by a program.

• Modeling only fully-associative caches. Beyls and D’Hollander, Caşcaval, and
Bastoul and Feautrier [12] all present cache behavior models that consider only fully-
associative caches in which memory blocks contain one data element.

• Modeling data caches only, ignoring misses in the translation lookaside buffer

(TLB). None of the existing frameworks for analyzing memory behavior discussed here
have been used to determine the number of TLB misses incurred by a program fragment.

133

• Considering only perfectly-nested loops. In modeling the cache behavior of a loop
nest, Ghosh et al. require that the loop nest be perfectly-nested.

• Considering loop nests in isolation of each other. In modeling the cache behavior
of multiple loop nests, both Ghosh et al. and Caşcaval assume a cold-start cache for
each loop nest.

• Handling only canonical array layout functions (i.e. row- and column-major).

None of the existing frameworks for analyzing memory behavior discussed here have been
used to determine number of misses incurred by a program fragment that uses nonlinear
array layouts.

As Chapter 1 claims, and the rest of this document demonstrates, the analysis framework
presented in this dissertation does not suffer from any of the weaknesses listed above. Ta-
ble 9.1 summarizes the comparison of several significant frameworks for doing static analysis
of memory behavior with the analysis framework presented in this dissertation. The last row
of Table 9.1 indicates whether the amount of time required by each framework to analyze the
cache behavior of a loop nest (or sequence of loop nests) is small enough to make such analysis
feasible within an optimizing compiler, and the entries of this row reflect my own opinion.

134

G
ho

sh
et

al
.

V
er

a
et

al
.

B
ey

ls
an

d
D

’H
ol

la
nd

er
C

aş
ca

va
l

T
hi

s
[5

9,
60

,6
1,

62
]

[1
19

,1
20

,1
21

,1
22

]
[1

4,
15

,1
6,

17
,1

8]
[3

0,
31

]
D

is
se

rt
at

io
n

H
an

dl
es

m
ul

ti
pl

e
lo

op
ne

st
s

no
ye

s
ye

s
no

ye
s

H
an

dl
es

im
pe

rf
ec

tl
y-

ne
st

ed
lo

op
s

no
ye

s
ye

s
ye

s
ye

s

E
xa

ct
ly

m
od

el
s

ca
ch

e
be

ha
vi

or
no

no
ex

ac
t

fo
r

fu
lly

-
ex

ac
t

fo
r

fu
lly

-
ye

s
as

so
ci

at
iv

e
ca

ch
es

as
so

ci
at

iv
e

ca
ch

es
w

it
h

un
it

bl
oc

ks
iz

e
w

it
h

un
it

bl
oc

ks
iz

e
P

ro
du

ce
s

be
ha

vi
or

fo
r

da
ta

ca
ch

es
ye

s
ye

s
ye

s
ye

s
ye

s
P

ro
du

ce
s

be
ha

vi
or

fo
r

T
L
B

s
no

no
no

no
ye

s
H

an
dl

es
no

nl
in

ea
r

ar
ra

y
la

yo
ut

s
no

no
no

no
ye

s
H

an
dl

es
sy

m
bo

lic
pr

ob
le

m
si

ze
s

no
no

in
so

m
e

ca
se

s
in

so
m

e
ca

se
s

no
P

ra
ct

ic
al

to
ru

n
at

co
m

pi
le

ti
m

e
no

ye
s

ye
s

ye
s

ye
s

T
ab

le
9.

1:
C

om
pa

ri
so

n
of

se
ve

ra
l

si
gn

ifi
ca

nt
fr

am
ew

or
ks

fo
r

do
in

g
st

at
ic

an
al

ys
is

of
m

em
or

y
be

ha
vi

or
w

it
h

th
e

an
al

ys
is

fr
am

ew
or

k
pr

es
en

te
d

in
th

is
di

ss
er

ta
ti

on
.

(R
ef

er
to

di
sc

us
si

on
in

Se
ct

io
n

9.
6

fo
r

de
ta

ils
.)

Chapter 10

Conclusions

Data access time continues to dominate the execution times of many programs. An important
part of applying code and data transformations to improve program performance is understand-
ing the behavior of programs executing in a memory hierarchy. This dissertation presents an
analytical framework that determines the exact cache behavior of a program, given virtually
any configuration of cache memory. In handling set-associative caches, data cache and TLB
misses, imperfect loop nests, and nonlinear array layouts in an exact manner, the analytical
framework given here goes beyond existing analytical frameworks for modeling cache behav-
ior. This dissertation concludes with a list of the major thesis contributions (Section 10.1),
commentary on how development of the analysis framework began and on the limitations of
the framework (Section 10.2), and several directions for future research related to the analysis
framework of this dissertation (Section 10.3).

10.1 Thesis Contributions

This dissertation describes and demonstrates an analytical framework for understanding the
behavior of loop nests executing in a memory hierarchy. The framework has three components:
1) an alternative classification of cache misses that makes it possible to obtain the exact cache
behavior of a sequence of program fragments by combining the cache behavior of the individual
fragments; 2) the use of Presburger arithmetic to model data access patterns and describe
events such as cache misses; and 3) algorithms exploiting the connection among Presburger
arithmetic, automata theory, and graph theory to allow an exact model of cache behavior.
The following are the major contributions of this dissertation revisited.

• A new alternative cache miss classification has advantages over traditional cache miss

classification schemes. Chapter 3 introduces the interior-boundary cache miss classi-
fication scheme as an alternative to compulsory-replacement cache miss classification
schemes. The interior-boundary miss classification has the vital property of composabil-
ity, meaning that there is an exact way of relating the cache misses of individual program

136

fragments to the cache misses of the entire program. As Section 3.1 shows, compulsory-
replacement miss classification schemes lack composability, primarily because compulsory
misses incurred by individual program fragments may not even be misses in a composition
of such fragments.

The new miss classification has two types of cache misses: misses independent of cache
state when a program fragment begins execution (called interior misses) and misses
dependent on that cache state (called potential boundary misses). Determination of
cache state before and after program fragment execution is used to resolve the potential
boundary misses that actually do miss in cache (called boundary misses), and is the key
to precisely combining the cache behavior of individual program fragments.

The total number of cache misses incurred by a program is the sum of the interior and
boundary misses incurred by each fragment of the program. It is possible to approxi-
mate the cache behavior of a program by counting only interior misses, which omits the
computation of cache state and potential boundary misses, yet yields an approximation
of the total cache miss count with a tight error bound.

The interior-boundary cache miss classification and its composability property are demon-
strated on a sequence of four loop nests from the calc3 subroutine of swim.f in SPECfp95.
Section 8.2 gives the results of using the cache analysis framework to compute the num-
ber of interior and boundary misses incurred by the calc3 sequence. For each individual
loop nest, the framework counts the number of interior misses incurred, identifies the po-
tential boundary misses, and determines the cache state after execution of the loop nest.
Then, the framework counts the boundary misses incurred by the loop nest by resolving
the potential boundary misses with the cache state after execution of the preceding loop
nest.

• The cache analysis framework of this dissertation models the behavior of loop nests

executing in set-associative caches. The cache analysis framework models the exact
behavior of loop nests in LRU caches of arbitrary associativity. For a fixed blocksize B
and number of cache sets S, the framework produces the cache behaviors of loop nests
for all {(k, B, kBS; S): k > 1} caches in one pass.

In just one pass through the cache analysis framework, each set of results in Chapter 8
gives the cache miss counts for all associativity values A > 1. Therefore, the framework
is useful in determining the behavior of loop nests in real systems, and in imagining the
behavior of loop nests in experimental systems.

• The cache analysis framework of this dissertation models the data access patterns of

arbitrarily-nested loops using Presburger arithmetic and exploits connections between

Presburger arithmetic, automata theory, and graph theory to identify cache misses. The

137

cache analysis framework uses Presburger arithmetic to express various kinds of wit-
nesses, which identify the situations that may cause a memory access to miss in cache
depending on the cache’s associativity. Section 4.3.2 gives the Presburger formulas de-
scribing witnesses for four types of associativity-dependent cache events: interior misses,
replacement misses, potential boundary misses, and whether a memory block is in the
cache state at the end of program fragment execution. For other associativity-dependent
cache events of interest, the reader can define neighborhood and witness terms using
these four examples as guides.

Exploiting a fundamental connection between Presburger arithmetic and automata the-
ory, the analysis framework converts witness formulas to DFAs whose accepting paths
encode the solutions of the formulas. Enumeration of the accepting paths in such DFAs
determines the witnesses of each memory accesses. For each memory access, its witness
count is compared with the value of A to determine the outcome of a cache event for a
cache with associativity A.

To determine the outcome of cache events not dependent on cache associativity, the
cache analysis framework uses Presburger arithmetic to express the occurrence of the
cache event directly. Section 5.4 gives the Presburger formulas describing interior misses
in direct-mapped caches and compulsory misses. The analysis framework constructs
DFAs recognizing the solutions of the miss formulas, exploiting the Presburger-DFA
connection. To efficiently count (without enumerating) the accepting paths of such a
DFA, the analysis framework treats the DFA as a weighted, directed graph. The number
of solutions encoded by the accepting DFA paths is thus the number of cache misses
described by the formula.

The automata-theoretic methods for counting and enumerating solutions to Presburger
formulas work well for cache behavior formulas, and are relevant to many applications
in program analysis that use linear constraints to model a behavior of interest.

• The cache analysis framework of this dissertation is flexible. The cache analysis frame-
work models the occurrence of cache events that depend on associativity (such as inte-
rior misses, replacement misses, boundary misses, and cache state) and those that do
not (such as interior misses in direct-mapped caches and compulsory misses). Chapter 8
gives the results of using the framework to produce the behaviors of various loop nests
according to associativity-dependent cache events and non-associativity-dependent cache
events.

The analysis framework counts both data cache misses and TLB misses. Misses in the
TLB are often overlooked in static analysis because their large associativity values and
blocksizes are difficult to model. Chapter 8 gives the results of using the framework to
produce data cache miss counts and TLB miss counts for various loop nests.

138

The cache analysis framework is also flexible in handling row- and column-major array
layouts, as well as, nonlinear array layouts expressible in Presburger arithmetic. Section
8.3 gives the results of using the framework to produce cache miss counts for loop nests
with various nonlinear array layouts.

• The cache analysis framework of this dissertation is a tool for improving program behav-

ior and exploring the space of memory design. The analysis framework considers cache
memories of virtually any configuration, which allows the determination of TLB miss
counts, in addition to data cache miss counts. TLB misses have a significant impact
on the performance of a loop nest. The penalty for a TLB miss can be hundreds of
processor cycles, and for that reason, examining and reducing the TLB misses incurred
by a program can result in a major improvement in its performance.

In Chapter 8, results of using the cache analysis framework on a variety of problems give
exact cache miss counts for many cache configurations, including data caches and TLBs.
The framework is especially valuable for examining the effect of parameter change, such
as for array starting addresses, blocksize, and number of cache sets. The framework is
also useful in modeling configurations currently unrepresented by hardware.

Section 8.4 considers two loop optimizations for reducing the cache misses incurred by
a loop nest—loop tiling and loop permutation. In producing the cache miss counts for
various tile sizes, the cache analysis framework is useful in selecting the best tile size,
and in producing the cache miss counts for all permutations of a loop nest, the cache
analysis framework is useful in selecting the best permutation.

10.2 Commentary

The work of this dissertation initially began in response to the Cache Miss Equations (CMEs)
framework of Ghosh et al. [59, 60, 61, 62]. This well-known work based on reuse vectors
generates linear Diophantine equations characterizing the cache misses of a single loop nest
(see Section 9.1 for more description). My first observation of the CME work was the lack of
support for multiple loop nests, both because traditional reuse vectors do not exist from loop
nest to loop nest and because the compulsory-replacement misses of each loop nest do not
combine to give those of a loop nest sequence. Furthermore, using reuse vectors to capture
data access patterns is an abstraction that is not valid for all loop nests. I was struck that
the CME work was not exploiting information available in loop nests to characterize the exact
behavior of an entire sequence of loop nests. This led me to create a new interior-boundary
classification of cache misses that addresses specifically the precise cache behavior of multiple
loop nests.

My second observation of the CME work was the apparent difficulty of counting solutions
to the cache miss equations. In fact, Ghosh et al. use the CMEs in ways that avoid counting

139

their solutions directly, and the generality of the CME framework suffers as a result. I was
encouraged to develop a method for counting formula solutions directly that works well for the
types of formulas describing cache behavior. Polyhedral methods are one approach to counting
solutions directly. However, while powerful mathematical results (such as the existence of
Ehrhart polynomials) are known for polytopes, the corresponding algorithms are complex and
subject to geometric degeneracies. Another approach is to express cache behavior as formulas
of Presburger arithmetic, although the large worst-case complexity of Presburger arithmetic
decision procedures is deterring at first. In order to count Presburger formula solutions, I
choose to exploit the powerful connection between Presburger arithmetic and deterministic
finite automata (DFAs). Taking advantage of this connection does not circumvent the difficulty
of counting solutions directly, but its manifestation is better understood and manageable in
the context of DFAs. Unlike parametric methods for counting solutions, the Presburger-DFA
method produces solution counts that are not symbolic. Parametric methods are not always
useful, in particular when arrays have two or more dimensions of symbolic size, since their
index expressions are not expressible in Presburger arithmetic. Of course, the real success of
the Presburger-DFA method for counting solutions is demonstrated in Chapter 8.

The overall objective of my cache analysis framework is to produce exact cache miss counts,
in contrast to the CME work. Certainly, in achieving such a goal it is necessary to forego
the shortcuts of making approximations in the cache behavior. I really want to push the
limits of generating exact cache miss counts. I often find that as the complexity and problem
sizes of loop nests increase, so does the likelihood of failure in one of the tools employed
by the framework. This is particularly true for formula simplification (performed by the
Omega Library [75]) and DFA-construction (accomplished with the construction algorithms of
Bartzis and Bultan [9, 10] and MONA’s DFA Library [81]). Failures are due either to limits
in the underlying theory of the tools or the lack of robustness in their implementations. I
believe that both reasons share the responsibility, as some instances of cache behavior attack
weaknesses of the implementation, while others approach the worst-case complexity associated
with Presburger arithmetic. Improvements in any of the tools utilized by my cache analysis
framework will lead to more success in and improve the speed of producing cache miss counts.

Even with its limitations, the cache analysis framework presented in this dissertation is
an effective tool for measuring the cache performance of a loop nest sequence. The interior-
boundary classification of cache misses has the vital property of composability and provides
a new way of looking at cache behavior. It can be used with its counterpart the compulsory-
replacement miss classification to study the cache performance of programs. Orthogonal to the
new miss classification is a new method for expressing and counting the cache misses incurred
by a loop nest executing in set-associative caches. The Presburger-DFA method’s flexibility
in handling imperfectly-nested loops and a variety of data layouts while considering caches of
any associativity permits the study of virtually any loop nest and any cache configuration.

140

10.3 Future Research Directions

The cache analysis framework presented in this dissertation offers several opportunities for
future research. Improving the success rate and the time required to produce the cache behavior
of a loop nest would have the most significant impact on the effectiveness of the framework
(Section 10.3.1). Extending the framework to model more cache features and events would
enhance the generality of the framework (Section 10.3.2). Finally, applying the framework to
a broader class of programs would increase the framework’s value (Section 10.3.3).

10.3.1 Improving Framework Robustness

To model the cache behavior of loop nests, the analysis framework presented here depends on
existing tools to perform formula simplification and automata construction. The framework
utilizes the Omega Library [75] to simplify cache behavior formulas before constructing the
DFAs representing the formulas. Formula simplification is a critical phase of the framework
since unsimplified formulas are often too complicated for efficient translation to DFAs. As the
complexity and problem sizes of loop nests increase, so does the likelihood that the Omega
Library will fail during cache formula simplification. The Omega Library is designed for use in
data dependence analysis, where formulas typically contain small coefficients and constants.
With relatively large coefficients and constants, cache behavior formulas can push the Omega
Library to its limit.

The analysis framework uses the automata-construction algorithms of Bartzis and Bul-
tan [9, 10] and the MONA tool [81] to construct DFAs recognizing the solutions of cache
behavior formulas. The likelihood of failures during DFA construction also increases with the
complexity and problem sizes of loop nests. Like the Omega Library, the DFA-construction
tools are not designed to handle formulas as large and complicated as the cache behavior formu-
las. Efforts to make either the Omega Library or the automata-construction tools more robust
for large formulas will certainly improve the robustness of the analysis framework. Further-
more, both the Omega Library and the automata-construction tools are generalized to handle
any Presburger formula. It is possible that formula simplification and/or DFA construction
specialized for cache behavior formulas could lead to improvements in the running time of
the cache analysis framework. There are similarities among the formulas and DFAs generated
to describe the cache behaviors of all loop nests, and exploitation of such commonalities to
improve the speed of analysis is one direction for future work.

10.3.2 Modeling More Cache Features and Events

The analysis framework of this dissertation models a basic cache. It may be possible to use the
analysis framework to model auxiliary cache features, if the behavior of such cache features
is expressible in Presburger arithmetic. Some candidates for inclusion in the framework are

141

common in systems today, such as software prefetching [94, 95, 96], hardware prefetching [70,
101], and victim caches [70]; and some are novel features, such as cache bypassing [69] and
cache decay [72, 73]. The key to modeling prefetching lies in the description of iteration points
for memory references, to capture the point at which a memory block is prefetched. It is
likely that the modeling techniques developed for the main cache can be adapted to handle
the victim cache, a small fully-associative cache acting as a write buffer. For cache bypassing,
a technique that reads and writes data directly to main memory in cases of no reuse, it may
be possible both to identify instances without reuse (i.e., cache bypass candidates) and to
describe the actual bypassing of the cache. Cache decay, a mechanism for leakage-reduction
that turns off “dead” cache lines, would benefit from an analytical determination of the last
access to a memory block before its eviction from cache.

Given my experience working with Presburger arithmetic, I believe that all of the cache
features above, as well as others, can be described using Presburger formulas. The analysis
framework presented in this dissertation is fundamentally flexible. The cache modeling tech-
niques at its core may be adapted and extended to model any feature of a program or cache
memory describable in Presburger arithmetic. Furthermore, the framework may be used to
determine the outcome of other cache events expressed in Presburger arithmetic, using the
cache events used as examples throughout this dissertation as guidelines. Applying the anal-
ysis framework presented here to model more cache features and events is one direction for
future work.

10.3.3 Applying the Analysis Framework

The analysis framework of this dissertation for understanding the behavior of loop nests exe-
cuting in a memory hierarchy is useful for exploring new memory system designs and guiding
code and data transformations for improved program performance. Another use of the anal-
ysis framework would be to leverage the strengths of both static and dynamic analysis to
profile a broader class of programs. One reason for favoring static cache analysis over explicit
cache simulation is speed. Generally speaking, 90% of a program’s running time is spent ex-
ecuting only 10% of the code. If the frequently-executed code happens to be analyzable loop
nests, then static analysis of this code is often faster than explicit simulation. On the other
hand, some program features are difficult or impossible to analyze at compile time, but can
be captured effectively by explicit simulation. Static analysis must either neglect or attempt
to approximate the cache behavior of such features.

It seems ideal to combine the strengths of both static analysis and dynamic simulation in a
mixed-mode cache simulator. The static portion of the simulator would handle all analyzable
loop nests, and the dynamic portion would handle everything else. The key to making the
transition from dynamic simulation to static analysis is cache state, which is precisely modeled
by the analysis framework presented here. Development of a mixed-mode cache simulator that

142

switches between explicit simulation and static analysis of a program, thereby utilizing the
cache state feature of this dissertation, is one direction for future work.

10.4 Summary

This dissertation presents an analytical framework for understanding the behavior of loop-
oriented programs executing in a memory hierarchy. The framework has three components: the
interior-boundary cache miss classification, the use of Presburger arithmetic to describe cache
events, and the exploitation of connections among Presburger arithmetic, automata theory,
and graph theory to model cache behavior exactly. These components allow the framework
to handle set-associative caches, data cache and translation lookaside buffer (TLB) misses,
imperfect loop nests, and nonlinear array layouts in an exact manner. With such capabilities,
the framework of this dissertation goes beyond existing analytical frameworks for modeling
cache behavior. The framework is useful in guiding code and data transformations for improved
program performance and in exploring new memory system designs.

143

Appendix A

Example Witness Formulas and DFAs

Figures A.1 to A.3 give the Presburger formulas constructed to describe various types of
witnesses for the running example loop nest Lmm in Figure 2.5 on page 17. The formulas are
for for cache set 0 and consider all (A, 32, 4096 · A; 128) caches with any associativity value
A. The general Presburger formulas for describing r -witnesses, b-witnesses, and s-witnesses
are given in Section 4.3.2. Figures A.4 to A.6 show the DFAs that recognize the solutions of
the Presburger formulas in Figures A.1 to A.3.

Figure A.7 gives the Presburger formula constructed to describe interior misses for the
running example loop nest Lmm in Figure 2.5. The formula is for cache set 0 and considers
a (1, 32, 4096; 128) cache. The general Presburger formulas for describing interior misses in
direct-mapped caches is given in Section 5.4.1. Figure A.8 shows the DFA that recognizes the
solutions of the Presburger formula in Figure A.7.

Figure A.9 gives the Presburger formula constructed to describe compulsory misses for the
running example loop nest Lmm in Figure 2.5. The formula is for cache set 0 and considers all
(A, 32, 4096 · A; 128) caches with any associativity value A. The general Presburger formulas
for describing compulsory misses is given in Section 5.4.2. Figure A.10 shows the DFA that
recognizes the solutions of the Presburger formula in Figure A.9.

Figure A.11 gives the Presburger formula constructed to describe i -witnesses for the run-
ning example loop nest Lmm in Figure 2.5. In this instance of the running example, t = u =
v = 16 and all arrays are linearized according to a nonlinear array layout specified by the (4, 4)-
interleaving σ = 01010011. The formula is for cache set 0 and considers all (A, 32, 4096 · A;
128) caches with any associativity value A. Figure A.12 shows the DFA that recognizes the
solutions of the Presburger formula in Figure A.11.

144

0 6 ι0, ι1, ι2 < 20 ∧(
∃d : ((ι2 = 0 ∧ u = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1)8 < 32 ∗ (128 ∗ d+ 1))∨

(u = 1 ∧ 32 ∗ (128 ∗ d) 6 (ι0 + 20 ∗ ι2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(u = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ι2 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ι2 = 19 ∧ u = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))) ∧(
∃κ0, κ1, κ2, v : 0 6 κ0, κ1, κ2 < 20 ∧ (κ0 < ι0 ∨ (κ0 = ι0 ∧ κ1 < ι1) ∨
(κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 < ι2) ∨ (κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 = ι2 ∧ v < u)) ∧
((κ2 = 0 ∧ v = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(v = 1 ∧ 32 ∗ (128 ∗ d) 6 (κ0 + 20 ∗ κ2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(v = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (κ2 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(κ2 = 19 ∧ v = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))) ∧
(¬(∃ν0, ν1, ν2, t : 0 6 ν0, ν1, ν2 < 20 ∧ (ν0 < ι0 ∨ (ν0 = ι0 ∧ ν1 < ι1) ∨

(ν0 = ι0 ∧ ν1 = ι1 ∧ ν2 < ι2) ∨ (ν0 = ι0 ∧ ν1 = ι1 ∧ ν2 = ι2 ∧ t < u)) ∧
(κ0 < ν0 ∨ (κ0 = ν0 ∧ κ1 < ν1) ∨ (κ0 = ν0 ∧ κ1 = ν1 ∧ κ2 < ν2) ∨
(κ0 = ν0 ∧ κ1 = ν1 ∧ κ2 = ν2 ∧ v < t)) ∧
((ν2 = 0 ∧ t = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ν0 + 20 ∗ ν1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(t = 1 ∧ 32 ∗ (128 ∗ d) 6 (ν0 + 20 ∗ ν2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(t = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ν2 + 20 ∗ ν1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ν2 = 19 ∧ t = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ν0 + 20 ∗ ν1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))))) ∧

(∃ρ0, ρ1, ρ2, w : 0 6 ρ0, ρ1, ρ2 < 20 ∧ (ρ0 < ι0 ∨ (ρ0 = ι0 ∧ ρ1 < ι1) ∨
(ρ0 = ι0 ∧ ρ1 = ι1 ∧ ρ2 < ι2) ∨ (ρ0 = ι0 ∧ ρ1 = ι1 ∧ ρ2 = ι2 ∧ w < u)) ∧
(κ0 < ρ0 ∨ (κ0 = ρ0 ∧ κ1 < ρ1) ∨ (κ0 = ρ0 ∧ κ1 = ρ1 ∧ κ2 < ρ2) ∨
(κ0 = ρ0 ∧ κ1 = ρ1 ∧ κ2 = ρ2 ∧ v < w)) ∧
((ρ2 = 0 ∧ w = 0 ∧ 32 ∗ (128 ∗ e) 6 6400 + (ρ0 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(w = 1 ∧ 32 ∗ (128 ∗ e) 6 (ρ0 + 20 ∗ ρ2) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(w = 2 ∧ 32 ∗ (128 ∗ e) 6 3200 + (ρ2 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(ρ2 = 19 ∧ w = 3 ∧ 32 ∗ (128 ∗ e) 6 6400 + (ρ0 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1))))

)
∧ ¬(d = e)

)
Figure A.1: Presburger formula describing the r -witnesses of loop nest Lmm for cache set 0.

145

0 6 ι0, ι1, ι2 < 20 ∧(
∃d : ((ι2 = 0 ∧ u = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))∨

(u = 1 ∧ 32 ∗ (128 ∗ d) 6 (ι0 + 20 ∗ ι2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(u = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ι2 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ι2 = 19 ∧ u = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))) ∧(
∃κ0, κ1, κ2, v : 0 6 κ0, κ1, κ2 < 20 ∧

(κ0 < ι0 ∨ (κ0 = ι0 ∧ κ1 < ι1) ∨
(κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 < ι2) ∨
(κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 = ι2 ∧ v < u)) ∧
((κ2 = 0 ∧ v = 0 ∧ 32 ∗ (128 ∗ e) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(v = 1 ∧ 32 ∗ (128 ∗ e) 6 (κ0 + 20 ∗ κ2) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(v = 2 ∧ 32 ∗ (128 ∗ e) 6 3200 + (κ2 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(κ2 = 19 ∧ v = 3 ∧ 32 ∗ (128 ∗ e) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)))

)
∧(

¬(∃ρ0, ρ1, ρ2, w : 0 6 ρ0, ρ1, ρ2 < 20 ∧
(ρ0 < ι0 ∨ (ρ0 = ι0 ∧ ρ1 < ι1) ∨
(ρ0 = ι0 ∧ ρ1 = ι1 ∧ ρ2 < ι2) ∨
(ρ0 = ι0 ∧ ρ1 = ι1 ∧ ρ2 = ι2 ∧ w < u)) ∧
((ρ2 = 0 ∧ w = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ρ0 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(w = 1 ∧ 32 ∗ (128 ∗ d) 6 (ρ0 + 20 ∗ ρ2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(w = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ρ2 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ρ2 = 19 ∧ w = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ρ0 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))))

)
∧ ¬(d = e)

)
Figure A.2: Presburger formula describing the b-witnesses of loop nest Lmm for cache set 0.

146

0 6 ι0, ι1, ι2 < 20 ∧(
∃d : ((ι2 = 0 ∧ u = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))∨

(u = 1 ∧ 32 ∗ (128 ∗ d) 6 (ι0 + 20 ∗ ι2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(u = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ι2 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ι2 = 19 ∧ u = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))) ∧(
∃κ0, κ1, κ2, v : 0 6 κ0, κ1, κ2 < 20 ∧

(ι0 < κ0 ∨ (ι0 = κ0 ∧ ι1 < κ1) ∨
(ι0 = κ0 ∧ ι1 = κ1 ∧ ι2 < κ2) ∨
(ι0 = κ0 ∧ ι1 = κ1 ∧ ι2 = κ2 ∧ u < v)) ∧
((κ2 = 0 ∧ v = 0 ∧ 32 ∗ (128 ∗ e) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32(128 ∗ e+ 1)) ∨
(v = 1 ∧ 32 ∗ (128 ∗ e) 6 (κ0 + 20 ∗ κ2) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(v = 2 ∧ 32 ∗ (128 ∗ e) 6 3200 + (κ2 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(κ2 = 19 ∧ v = 3 ∧ 32 ∗ (128 ∗ e) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)))

)
∧(

¬(∃ρ0, ρ1, ρ2, w : 0 6 ρ0, ρ1, ρ2 < 20 ∧
(ι0 < ρ0 ∨ (ι0 = ρ0 ∧ ι1 < ρ1) ∨
(ι0 = ρ0 ∧ ι1 = ρ1 ∧ ι2 < ρ2) ∨
(ι0 = ρ0 ∧ ι1 = ρ1 ∧ ι2 = ρ2 ∧ u < w)) ∧
((ρ2 = 0 ∧ w = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ρ0 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(w = 1 ∧ 32 ∗ (128 ∗ d) 6 (ρ0 + 20ρ2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(w = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ρ2 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ρ2 = 19 ∧ w = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ρ0 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))))

)
∧ ¬(d = e)

)
Figure A.3: Presburger formula describing the s-witnesses of loop nest Lmm for cache set 0.

147

12

0
0
0
0
0

0

2

0 1
0 0
0 0
1 1

3

0
1
0
0
0

4

0
1
0
0
1

5

1
1
0
0
0

6

1
1
0
0
1

7

X
1
0
0
0

8

0 1
0 0
0 0
1 1

9

0
0
0
1
1

10

1
0
0
1
0

11

1
1
0
0
0

X
0
0
1
1

X
0
0
1
0

X
1
0
0
0

0
1
0
0
0

13

1
1
1
0
0

14

0
1
1
0
0

0
1
1
0
0

1
0
0
0
0

0
0
1
0
0

1
0
1
0
0

ι
ι
ι
u
e

0

1

2

1 1

0 1,

,

Figure A.4: DFA recognizing the solutions of the example Presburger formula in Figure A.1.

148

8

0
0
0
0
0

0

2

0
1
0
0
0

3

0
1
0
0
1

4

0
0
0
1
0

5

0
1
0
0
0

0
1
0
0
0

6

0
1
1
0
0

7

1
0
0
0
0

0
0
1
0
0

0
1
0
0
0

0
1
2

ι
ι
ι
u
e

Figure A.5: DFA recognizing the solutions of the example Presburger formula in Figure A.2.

11

0
0
0
0
0

0

2

1
1
0
1
0

3

1
1
0
1
1

4

1
1
1
1
1

5

1
1
0
0
1

1
1
0
0
0

6

1
1
1
1
0

7

0
0
0
0
0

8

1
0
0
0
0

9

0
0
0
0
0

10

0
1
0
0
0

0
1
0
0
0

0
0
1
0
0

0

1
2

ι
ι
ι
u
e

Figure A.6: DFA recognizing the solutions of the example Presburger formula in Figure A.3.

149

0 6 ι0, ι1, ι2 < 20 ∧(
∃d : ((ι2 = 0 ∧ u = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))∨

(u = 1 ∧ 32 ∗ (128 ∗ d) 6 (ι0 + 20 ∗ ι2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(u = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ι2 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ι2 = 19 ∧ u = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))) ∧(
∃e, κ0, κ1, κ2, v : 0 6 κ0, κ1, κ2 < 20 ∧
(κ0 < ι0 ∨ (κ0 = ι0 ∧ κ1 < ι1) ∨
(κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 < ι2) ∨
(κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 = ι2 ∧ v < u)) ∧
((κ2 = 0 ∧ v = 0 ∧ 32 ∗ (128 ∗ e) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(v = 1 ∧ 32 ∗ (128 ∗ e) 6 (κ0 + 20 ∗ κ2) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(v = 2 ∧ 32 ∗ (128 ∗ e) 6 3200 + (κ2 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(κ2 = 19 ∧ v = 3 ∧ 32 ∗ (128 ∗ e) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ e+ 1))) ∧
(¬(∃ρ0, ρ1, ρ2, w : 0 6 ρ0, ρ1, ρ2 < 20 ∧

(ρ0 < ι0 ∨ (ρ0 = ι0 ∧ ρ1 < ι1) ∨
(ρ0 = ι0 ∧ ρ1 = ι1 ∧ ρ2 < ι2) ∨
(ρ0 = ι0 ∧ ρ1 = ι1 ∧ ρ2 = ι2 ∧ w < u)) ∧
(κ0 < ρ0 ∨ (κ0 = ρ0 ∧ κ1 < ρ1) ∨
(κ0 = ρ0 ∧ κ1 = ρ1 ∧ κ2 < ρ2) ∨
(κ0 = ρ0 ∧ κ1 = ρ1 ∧ κ2 = ρ2 ∧ v < w)) ∧
((ρ2 = 0 ∧ w = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ρ0 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(w = 1 ∧ 32 ∗ (128 ∗ d) 6 (ρ0 + 20 ∗ ρ2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(w = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ρ2 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ρ2 = 19 ∧ w = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ρ0 + 20 ∗ ρ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)))))

)
∧ ¬(d = e)

)
Figure A.7: Presburger formula describing interior misses of loop nest Lmm in a direct-mapped
cache.

150

ι
ι
ι
u

9

0
0
0
0

0

2
0 1
0 0
0 0
1,1

3

0
1
0
0

4

1
1
0
0

5

X
1
0
0

6
0
0
0
1

7

0 1
1 1
0 0
0,0

8

1
0
0
1

X
1
0
0

X
0
0
1

0
1
0
0

10

0
1
1
0

11
1
1
1
0

1
0
0
0

X
1
1
0

X
0
1
0

0
0
1
0

0
1
2

Figure A.8: DFA recognizing the solutions of the example Presburger formula in Figure A.7.

151

0 6 ι0, ι1, ι2 < 20 ∧(
∃d : ((ι2 = 0 ∧ u = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))∨

(u = 1 ∧ 32 ∗ (128 ∗ d) 6 (ι0 + 20 ∗ ι2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(u = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (ι2 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ι2 = 19 ∧ u = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (ι0 + 20 ∗ ι1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))) ∧(
¬(∃κ0, κ1, κ2, v : 0 6 κ0, κ1, κ2 < 20 ∧

(κ0 < ι0 ∨ (κ0 = ι0 ∧ κ1 < ι1) ∨ (κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 < ι2) ∨
(κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 = ι2 ∧ v < u)) ∧
((κ2 = 0 ∧ v = 0 ∧ 32 ∗ (128 ∗ d) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(v = 1 ∧ 32 ∗ (128 ∗ d) 6 (κ0 + 20 ∗ κ2) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(v = 2 ∧ 32 ∗ (128 ∗ d) 6 3200 + (κ2 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨

(κ2 = 19 ∧ v = 3 ∧ 32 ∗ (128 ∗ d) 6 6400 + (κ0 + 20 ∗ κ1) ∗ 8 < 32 ∗ (128 ∗ d+ 1))))
))

Figure A.9: Presburger formula describing compulsory misses in loop nest Lmm for cache set
0.

2

0
0
0
00

0
0
0
1

3

0
1
0
0

4

0
0
0
1

5

0
1
0
0

6

0
1
1
0

7

1
0
0
0

0
0
1
0

0
1
0
0

0
1
2

ι
ι
ι
u

Figure A.10: DFA recognizing the solutions of the example Presburger formula in Figure A.9.

152

0 6 ι0, ι1, ι2 < 16 ∧(
∃d : (∃o, o7, o6, o5, o4, o3, o2, o1, o0 : 0 6 o7, o6, o5, o4, o3, o2, o1, o0 6 1∧

o > 0 ∧ o = o0 + 2 ∗ o1 + 4 ∗ o2 + 8 ∗ o3 + 16 ∗ o4 + 32 ∗ o5 + 64 ∗ o6 + 128 ∗ o7 ∧
((ι2 = 0 ∧ u = 0 ∧ ι0 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ ι1 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ d) 6 6400 + o ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(u = 1 ∧ ι0 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ ι2 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ d) 6 o ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(u = 2 ∧ ι2 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ ι1 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ d) 6 3200 + o ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ι2 = 19 ∧ u = 3 ∧ ι0 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ ι1 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ d) 6 6400 + o ∗ 8 < 32 ∗ (128 ∗ d+ 1)))) ∧(
∃κ0, κ1, κ2, v : 0 6 κ0, κ1, κ2 < 20 ∧ (κ0 < ι0 ∨ (κ0 = ι0 ∧ κ1 < ι1) ∨

(κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 < ι2) ∨ (κ0 = ι0 ∧ κ1 = ι1 ∧ κ2 = ι2 ∧ v < u)) ∧
(∃o, o7, o6, o5, o4, o3, o2, o1, o0 : 0 6 o7, o6, o5, o4, o3, o2, o1, o0 6 1 ∧
o > 0 ∧ o = o0 + 2 ∗ o1 + 4 ∗ o2 + 8 ∗ o3 + 16 ∗ o4 + 32 ∗ o5 + 64 ∗ o6 + 128 ∗ o7 ∧
((κ2 = 0 ∧ v = 0 ∧ κ0 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ κ1 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ e) 6 6400 + o ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(v = 1 ∧ κ0 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ κ2 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ e) 6 o ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(v = 2 ∧ κ2 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ κ1 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ e) 6 3200 + o ∗ 8 < 32 ∗ (128 ∗ e+ 1)) ∨
(κ2 = 19 ∧ v = 3 ∧ κ0 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ κ1 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ e) 6 6400 + o ∗ 8 < 32 ∗ (128 ∗ e+ 1)))) ∧
(¬(∃ρ0, ρ1, ρ2, w : 0 6 ρ0, ρ1, ρ2 < 20 ∧ (ρ0 < ι0 ∨ (ρ0 = ι0 ∧ ρ1 < ι1) ∨

(ρ0 = ι0 ∧ ρ1 = ι1 ∧ ρ2 < ι2) ∨ (ρ0 = ι0 ∧ ρ1 = ι1 ∧ ρ2 = ι2 ∧ w < u)) ∧
(κ0 < ρ0 ∨ (κ0 = ρ0 ∧ κ1 < ρ1) ∨ (κ0 = ρ0 ∧ κ1 = ρ1 ∧ κ2 < ρ2) ∨
(κ0 = ρ0 ∧ κ1 = ρ1 ∧ κ2 = ρ2 ∧ v < w)) ∧
(∃o, o7, o6, o5, o4, o3, o2, o1, o0 : 0 6 o7, o6, o5, o4, o3, o2, o1, o0 6 1 ∧
o > 0 ∧ o = o0 + 2 ∗ o1 + 4 ∗ o2 + 8 ∗ o3 + 16 ∗ o4 + 32 ∗ o5 + 64 ∗ o6 + 128 ∗ o7 ∧
((ρ2 = 0 ∧ w = 0 ∧ ρ0 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ ρ1 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ d) 6 6400 + o ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(w = 1 ∧ ρ0 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ ρ2 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ d) 6 o ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(w = 2 ∧ ρ2 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ ρ1 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ d) 6 3200 + o ∗ 8 < 32 ∗ (128 ∗ d+ 1)) ∨
(ρ2 = 19 ∧ w = 3 ∧ ρ0 = 8 ∗ o7 + 4 ∗ o5 + 2 ∗ o3 + o2 ∧ ρ1 = 8 ∗ o6 + 4 ∗ o4 + 2 ∗ o1 + o0 ∧
32 ∗ (128 ∗ d) 6 6400 + o ∗ 8 < 32 ∗ (128 ∗ d+ 1))))))

)
∧

¬(d = e)
)

Figure A.11: Presburger formula describing the i -witnesses of loop nest Lmm for cache set 0,
where all arrays are laid out according to the (4, 4)-interleaving σ = 01010011.

153

2

4

0
0
0
0
0

5

0
1
0
0
0

0
X
0
0
0

0
0
0
0
0

0

0
0
0
1
1

0
1
0
1
1

3

0 0
0 1
1 1
1 1
0, 0

6

0
X
1
1
0

7

0
0
1
0
0

0
0
1
0
0

ι
ι
ι
u
e

0

1
2

Figure A.12: DFA recognizing the solutions of the example Presburger formula in Figure A.11.

154

155

BIBLIOGRAPHY

[1] Anant Agarwal, Mark Horowitz, and John Hennessy. An analytical cache model. IEEE
Transactions on Computers, 7(2):184–215, May 1989. 131

[2] Nawaaz Ahmed. Locality Enhancement of Imperfectly-nested Loop Nests. PhD thesis,
Department of Computer Science, Cornell University, August 2000. 22

[3] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling imperfectly-nested loop
nests. Technical Report TR2000-1782, Department of Computer Science, Cornell Uni-
versity, 2000. 22

[4] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Cache be-
havior prediction by abstract interpretation. In Radhia Cousot and David A. Schmidt,
editors, Proceedings of the Third International Static Analysis Symposium, volume 1145
of Lecture Notes in Computer Science, pages 51–66, Aachen, Germany, September 1996.
Springer. 132

[5] Tod Amon, Gaetano Borriello, Taokuan Hu, and Jiwen Liu. Symbolic timing verification
of timing diagrams using Presburger formulas. In Proceedings of the 34th Conference on
Design Automation, pages 226–231, Anaheim, CA, June 1997. ACM Press. 129

[6] Tod Amon, Gaetano Borriello, and Jiwen Liu. Making complex timing relationships
readable: Presburger formula simplification using don’t cares. In Proceedings of the 35th
Conference on Design Automation, pages 586–590, San Francisco, CA, June 1998. ACM
Press. 129

[7] David F. Bacon, Jyh-Herng Chow, Dz ching R. Ju, Kalyan Muthukumar, and Vivek
Sarkar. A compiler framework for restructuring data declarations to enhance cache
and TLB effectiveness. In Proceedings of the 1994 Conference of the IBM Centre for
Advanced Studies on Collaborative Research, Toronto, Canada, October-November 1994.
IBM Press. 4, 5, 6

[8] Jean-Loup Baer and Wen-Hann Wang. On the inclusion properties for multi-level cache
hierarchies. In Proceedings of the 15th Annual International Symposium on Computer
Architecture, pages 73–80, Honolulu, HI, May-June 1988. IEEE Computer Society Press.
2

[9] Constantinos Bartzis and Tevfik Bultan. Automata-based representations for arithmetic
constraints in automated verification. In Jean-Marc Champarnaud and Denis Maurel,

156

editors, Proceedings of the 7th International Conference on Implementation and Appli-
cation of Automata, volume 2608 of Lecture Notes in Computer Science, pages 282–288,
Tours, France, July 2002. Springer. 26, 54, 58, 64, 81, 125, 139, 140

[10] Constantinos Bartzis and Tevfik Bultan. Efficient symbolic representations for arithmetic
constraints in verification. International Journal of Foundations of Computer Science,
14(4):605–624, August 2003. 26, 54, 64, 81, 125, 139, 140

[11] Alexander I. Barvinok. A polynomial time algorithm for counting integral points in
polyhedra when the dimension is fixed. Mathematics of Operations Research, 19(4):769–
779, November 1994. 130

[12] Cédric Bastoul and Paul Feautrier. Improving data locality by chunking. In Görel Hedin,
editor, Proceedings of CC 2003 International Conference on Compiler Construction,
volume 2622 of Lecture Notes in Computer Science, pages 320–335, Warsaw, Poland,
April 2003. Springer. 131, 132

[13] Laszlo Belady. A study of replacement algorithms for a virtual storage computer. IBM
Systems Journal, 5(2):78–101, 1966. 18, 30

[14] Kristof Beyls. Software Methods to Improve Data Locality and Cache Behavior. PhD
thesis, Department of Electronics and Information Systems, Ghent University, 2004. 128,
129, 131, 132

[15] Kristof Beyls and Eric D’Hollander. Reuse distance-based cache hint selection. In
Burkhard Monien and Rainer Feldmann, editors, Proceedings of the Eighth International
European Conference on Parallel Processing, volume 2400 of Lecture Notes in Computer
Science, pages 265–274, Paderborn, Germany, August 2002. Springer. 128, 131, 132

[16] Kristof Beyls and Erik D’Hollander. Reuse distance as a metric for cache behavior. In
T. Gonzalez, editor, Proceedings of the 2001 International Association of Science and
Technology for Development (IASTED) International Conference on Parallel and Dis-
tributed Computing and Systems, pages 617–622, Anaheim, CA, August 2001. IASTED.
128, 131, 132

[17] Kristof Beyls and Erik D’Hollander. Compile-time cache hint generation for EPIC archi-
tectures. In Proceedings of the 2nd workshop on Explicitly Parallel Instruction Computing
Architectures and Compiler Techniques, Istanbul, Turkey, November 2002. 128, 131, 132

[18] Kristof Beyls and Erik D’Hollander. Platform-independent cache optimization by pin-
pointing low-locality reuse. In Marian Bubak, Geert Dick van Albada, Peter M. A. Sloot,
and Jack Dongarra, editors, Proceedings of the 4th International Conference on Com-
putational Science, volume 3038, pages 448–455, Kraków, Poland, June 2004. Springer.
128, 131, 132

157

[19] Bernard Boigelot and Louis Latour. Counting the solutions of Presburger equations
without enumerating them. In Bruce W. Watson and Derick Wood, editors, Proceedings
of the 6th International Conference on Implementation and Application of Automata,
volume 2494 of Lecture Notes in Computer Science, pages 40–51, Pretoria, South Africa,
July 2001. Springer. 130

[20] Bernard Boigelot and Louis Latour. Counting the solutions of Presburger equations
without enumerating them. Theoretical Computer Science, 313(1):17–29, February 2004.
130

[21] Bernard Boigelot, Louis Latour, and Axel Legay. The Liège Automata-based Symbolic
Handler (LASH). http://www.montefiore.ulg.ac.be/∼boigelot/research/lash/.
131

[22] Bernard Boigelot and Pierre Wolper. Representing arithmetic constraints with finite
automata: An overview. In Peter J. Stuckey, editor, Proceedings of the 18th International
Conference on Logic Programming, volume 2401 of Lecture Notes in Computer Science,
pages 1–19, Copenhagen, Denmark, July-August 2002. Springer. 81

[23] Alexandre Boudet and Hubert Comon. Diophantine equations, Presburger arithmetic
and finite automata. In Hélène Kirchner, editor, Proceedings of the 21st International
Colloquium on Trees in Algebra and Programming, volume 1059 of Lecture Notes in
Computer Science, pages 30–43, Linköping, Sweden, April 1996. Springer. 26, 27, 53, 81

[24] Mark Brehob and Richard Enbody. A mathematical model of locality and caching.
Technical Report TR-MSU-CPS-96-TBD, Michigan State University, November 1996.
131

[25] Shirley Browne, Jack Dongarra, N. Garner, Kevin S. London, and Philip Mucci. A
scalable cross-platform infrastructure for application performance tuning using hardware
counters. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing, Dallas,
TX, November 2000. IEEE Computer Society Press. 6

[26] Julius Richard Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960. 26

[27] Julius Richard Büchi. On a decision method in restricted second-order arithmetic. In
E. Nagel, P. Suppes, and A. Tarski, editors, Proceedings of the International Congress
on Logic, Methodology and Philosophy of Science 1960, pages 1–11, Stanford, CA, 1962.
Stanford University Press. 26

[28] Arthur W. Burks, Hermann H. Goldstine, and John von Neumann. Preliminary dis-
cussion of the logical design of an electronic computing instrument. Report to the U.S.

http://www.montefiore.ulg.ac.be/~boigelot/research/lash/

158

Army Ordnance Department, 1946. Also in A.H. Taub, ed., 1963: Collected Works of
John von Neumann. Macmillan, 5: 34-79. 2

[29] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler optimizations for
improving data locality. In Proceedings of the Sixth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, volume 28(11) of
SIGOPS Operating System Review, pages 252–262, San Jose, CA, October 1994. ACM
Press. 115

[30] Cǎlin Caşcaval. Compile-Time Performance Prediction of Scientific Programs. PhD
thesis, Department of Computer Science, University of Illinois at Urbana-Champaign,
2000. 128, 129, 132

[31] Cǎlin Caşcaval. Estimating cache misses and locality using stack distances. In Proceed-
ings of the 2003 ACM International Conference on Supercomputing, pages 150–159, San
Francisco, CA, June 2003. ACM Press. 6, 128, 129, 132

[32] Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra, and Mithuna
Thottethodi. Nonlinear array layouts for hierarchical memory systems. In Proceedings
of the 1999 ACM International Conference on Supercomputing, pages 444–453, Rhodes,
Greece, June 1999. ACM Press. 4, 83

[33] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and Mithuna Thottethodi.
Recursive array layouts and fast parallel matrix multiplication. In Proceedings of the
Eleventh Annual ACM Symposium on Parallel Algorithms and Architectures, pages 222–
231, Saint-Malo, France, June 1999. ACM Press. 4, 83

[34] Siddhartha Chatterjee, Erin Parker, Phil J. Hanlon, and Alvin R. Lebeck. Exact analysis
of the cache behavior of nested loops. In Proceedings of the 2001 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 286–297, Snowbird,
UT, June 2001. ACM Press. 6, 129

[35] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious structure
definition. In Proceedings of the 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 13–24, Altanta, GA, May 1999. ACM Press.
4

[36] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure lay-
out. In Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 1–12, Altanta, GA, May 1999. ACM Press. 4

[37] Michal Cierniak and Wei Li. Unifying data and control transformations for distributed
shared memory machines. In Proceedings of the 1995 ACM SIGPLAN Conference on

159

Programming Language Design and Implementation, pages 205–217, La Jolla, CA, June
1995. ACM Press. 23

[38] Philippe Clauss. Counting solutions to linear and nonlinear constraints through Ehrhart
polynomials: Applications to analyze and transform scientific programs. In Proceedings
of the 1996 ACM International Conference on Supercomputing, pages 278–285, Philadel-
phia, PA, May 1996. ACM Press. 53

[39] Philippe Clauss. Handling memory cache policy with integer points countings. In Chris-
tian Lengauer, Martin Griebl, and Sergei Gorlatch, editors, Proceedings of the Third
International European Conference on Parallel Processing, volume 1300 of Lecture Notes
in Computer Science, pages 285–293, Passau, Germany, August 1997. Springer. 129

[40] Stephanie Coleman and Kathryn S. McKinley. Tile size selection using cache organization
and data layout. In Proceedings of the 1995 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 279–290, La Jolla, CA, June 1995. ACM
Press. 4, 115

[41] D. C. Cooper. Theorem proving in arithmetic without multiplication. In Bernard Meltzer
and Donald Michie, editors, Proceedings of the Seventh Annual Machine Intelligence
Workshop, volume 7 of Machine Intelligence, pages 91–99, Edinburgh, Scotland, 1972.
Edinburgh University Press. 25

[42] Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida. Effective
lattice point counting in rational convex polytopes. http://www.math.ucdavis.edu/
∼latte/pdf/lattE.pdf, March 2003. 130

[43] Luiz De Rose, Kattamuri Ekanadham, Jeffrey K. Hollingsworth, and Simone Sbaraglia.
SIGMA: A simulator infrastructure to guide memory analysis. In Proceedings of the
2002 ACM/IEEE conference on Supercomputing, pages 1–13, Baltimore, MD, November
2002. ACM Press. 6

[44] Martin Dyer and Ravi Kannan. On Barvinok’s algorithm for counting lattic points in
fixed dimension. Mathematics of Operations Research, 22(3):545–549, August 1997. 130

[45] Eugène Ehrhart. Polynômes arithmétiques et Méthode des Polyédres en Combina-
toire, volume 35 of International Series of Numerical Mathematics. Birkhäuser Verlag,
Basel/Stuttgart, 1977. 130

[46] Jan Elder and Mark D. Hill. Dinero IV: Trace-driven uniprocessor cache simulator.
http://www.cs.wisc.edu/∼markhill/DineroIV, 1998. 6

[47] Paul Feautrier. Dataflow analysis of array and scalar references. International Journal
of Parallel Programming, 20(1):23–54, 1991. 10, 21, 23

http://www.math.ucdavis.edu/~latte/pdf/lattE.pdf
http://www.math.ucdavis.edu/~latte/pdf/lattE.pdf
http://www.cs.wisc.edu/~markhill/DineroIV

160

[48] Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior pre-
diction for real-time systems. Real-Time Systems: The International Journal of Time-
Critical Computing Systems, 17(2/3):131–181, 1999. 132

[49] Jeanne Ferrante and Charles Rackoff. The computational complexity of logical theories.
Lecture Notes in Mathematics, 718, 1979. 25

[50] Jeanne Ferrante, Vivek Sarkar, and Wendy Thrash. On estimating and enhancing cache
effectiveness. In Uptal Banerjee et al., editors, Proceedings of the Fourth Annual Work-
shop on Programming Languages and Compilers for Parallel Computing, volume 589
of Lecture Notes in Computer Science, pages 328–343, Santa Clara, CA, August 1991.
Springer. 129

[51] Tiago C. Ferreto, Luiz De Rose, and César A. F. De Rose. A hardware counters based
tool for system monitoring. In Harald Kosch, László Böszörményi, and Hermann Hell-
wagner, editors, Proceedings of the Ninth International European Conference on Parallel
Processing, volume 2790 of Lecture Notes in Computer Science, pages 7–16, Klagenfurt,
Austria, August 2003. Springer. 6

[52] Michael J. Fischer and Michael O.Rabin. Super-exponential complexity of Presburger
arithmetic. In R. M. Karp, editor, Complexity of Computation, volume 7 of SIAM-AMS
Symposium in Applied Mathematics Proceedings, pages 27–41, 1974. 25

[53] International Technology Roadmap for Semiconductors. Executive summary, 2003 edi-
tion. http://public.itrs.net/Files/2003ITRS/Home2003.htm. 2

[54] Basilio B. Fraguela, Ramon Doallo, Juan Touriño, and Emilio L. Zapata. A compiler
tool to predict memory hierarchy performance of scientific codes. Parallel Computing,
30(2):225–248, February 2004. 6, 128

[55] Basilio B. Fraguela, Ramon Doallo, and Emilio L. Zapata. Automatic analytic modeling
for the estimation of cache misses. In Proceedings of the 8th International Conference
on Parallel Architectures and Compilation Techniques, pages 221–231, Newport Beach,
CA, October 1999. IEEE Computer Society Press. 128

[56] Basilio B. Fraguela, Ramon Doallo, and Emilio L. Zapata. Probabilistic miss equa-
tions: Evaluating memory hierarchy performance. IEEE Transactions on Computers,
52(3):321–336, March 2003. 128

[57] Jeremy D. Frens and David S. Wise. Auto-blocking matrix-multiplication or tracking
BLAS3 performance with source code. In Proceedings of the Sixth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, volume 32(7) of SIGPLAN
Notices, pages 206–216, Las Vegas, NV, June 1997. ACM Press. 4, 83

http://public.itrs.net/Files/2003ITRS/Home2003.htm

161

[58] Christine Fricker, Olivier Temam, and William Jalby. Influence of cross-interference
on blocked loops: A case study with matrix-vector multiply. ACM Transactions on
Programming Languages and Systems, 17(4):561–575, July 1995. 5

[59] Somnath Ghosh. Cache Miss Equations: Compiler analysis framework for tuning mem-
ory behavior. PhD thesis, Department of Electrical Engineering, Princeton University,
November 1999. 127, 132, 138

[60] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equations: An
analytical representation of cache misses. In Proceedings of the 1997 ACM International
Conference on Supercomputing, pages 317–324, Vienna, Austria, July 1997. ACM Press.
127, 132, 138

[61] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Precise miss analysis for pro-
gram transformations with caches of arbitrary associativity. In Proceedings of the Eighth
International Conference on Architectural Support for Programming Languages and Op-
erating Systems, volume 32(5) of SIGOPS Operating System Review, pages 228–239, San
Jose, CA, October 1998. ACM Press. 127, 132, 138

[62] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equations: A
compiler framework for analyzing and tuning memory behavior. ACM Transactions on
Programming Languages and Systems, 21(4):703–746, July 1999. 6, 22, 127, 132, 138

[63] Antonio González, Mateo Valero, Nigel P. Topham, and Joan-Manuel Parcerisa. Elim-
inating cache conflict misses through XOR-based placement functions. In Proceedings
of the 1997 ACM International Conference on Supercomputing, pages 76–83, Vienna,
Austria, July 1997. ACM Press. 15

[64] Jim Handy. The Cache Memory Book. Academic Press, San Diego, CA, 2nd edition,
1998. 13, 18

[65] John. S. Harper, Darren J. Kerbyson, and Graham R. Nudd. Analytical modeling of
set-associative cache behavior. IEEE Transactions on Computers, 48(10):1009–1024,
October 1999. 128

[66] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanitative Ap-
proach. Morgan Kaufmann, San Francisco, CA, 3rd edition, 2002. 1, 2, 3, 4, 13, 14,
20

[67] Mark D. Hill and Alan J. Smith. Evaluating associativity in CPU caches. IEEE Trans-
actions on Computers, 38(12):1612–1630, December 1989. 13, 19, 30, 35, 39, 76, 128

[68] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979. 26, 58

162

[69] Teresa L. Johnson, Daniel A. Connors, Matthew C. Merten, and Wen-mei W. Hwu. Run-
time cache bypassing. IEEE Transactions on Computers, 48(12):1338–1354, November
1999. 141

[70] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, pages 364–373, Seattle, WA, June
1990. IEEE Computer Society Press. 5, 141

[71] Norman P. Jouppi and Steven J. E. Wilton. Tradeoffs in two-level on-chip caching.
In Proceedings of the 21st Annual International Symposium on Computer Architecture,
pages 34–45, Chicago, IL, April 1994. IEEE Computer Society Press. 2

[72] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache decay: Exploiting gen-
erational behavior to reduce cache leakage power. In Proceedings of the 28th Annual
International Symposium on Computer Architecture, pages 240–251, Göteborg, Sweden,
June-July 2001. IEEE Computer Society Press. 141

[73] Stefanos Kaxiras, Zhigang Hu, Girija J. Narlikar, and Rae McLellan. Cache-line decay:
A mechanism to reduce cache leakage power. In Babak Falsafi and T. N. Vijaykumar,
editors, Proceedgins of the First International Workshop on Power-Aware Computer
Systems, number 2008 in Lecture Notes in Computer Science, pages 82–96, Cambridge,
MA, November 2000. Springer. 141

[74] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and David
Wonnacott. The Omega Calculator and Library, Version 1.1.0, November 1996. http:

//www.cs.umd.edu/projects/omega. 81

[75] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and David
Wonnacott. The Omega Library Version 1.1.0 Interface Guide, November 1996. http:

//www.cs.umd.edu/projects/omega. 81, 125, 139, 140

[76] Wayne Kelly and William Pugh. A framework for unifying reordering transformations.
Technical Report CS-TR-3193, Department of Computer Science, University of Mary-
land, April 1993. 4, 22

[77] Wayne Kelly and William Pugh. Finding legal reordering transformations using map-
pings. Technical Report CS-TR-3297, Department of Computer Science, University of
Maryland, June 1994. 22

[78] Richard E. Kessler and Mark D. Hill. Page placement algorithms for large real-indexed
caches. ACM Transactions on Computer Systems, 10(4):338–359, November 1992. 13

http://www.cs.umd.edu/projects/omega
http://www.cs.umd.edu/projects/omega
http://www.cs.umd.edu/projects/omega
http://www.cs.umd.edu/projects/omega

163

[79] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. One level storage
system. IRE Transactions on Electronic Computers, 12(2):223–235, April 1962. 2

[80] Felix Klaedtke. On the automata size for Presburger arithmetic. In Nineteenth Annual
IEEE Symposium on Logic in Computer Science, page TBD, Turku, Finland, July 2004.
26, 27, 81

[81] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual, January 2001.
http://www.brics.dk/mona. 64, 81, 125, 139, 140

[82] Georg Kreisel and Jean Louis Krivine. Elements of Mathematical Logic. North-Holland,
Paris, 1967. 25

[83] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceedings
of the 8th Annual International Symposium on Computer Architecture, pages 81–88,
Minneapolis, MN, May 1981. IEEE Computer Society Press. 5

[84] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance
and optimizations of blocked algorithms. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems,
volume 25 of SIGOPS Operating System Review, pages 63–74, Santa Clara, CA, April
1991. ACM Press. Special Issue. 4, 5, 115

[85] Alvin R. Lebeck and David A. Wood. Cache profiling and the SPEC benchmarks: A
case study. IEEE Computer, 27(10):15–26, October 1994. 6

[86] Amy W. Lim and Monica S. Lam. Maximizing parallelism and minimizing synchroniza-
tion with affine transforms. In Proceedings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 201–214, Paris, France, January
1997. ACM Press. 22

[87] J. S. Liptay. Structural aspects of the System/360 Model 85, part ii: The cache. IBM
Systems Journal, 7(1):15–21, 1968. 2

[88] Yanhong A. Liu and Scott D. Stoller. Loop optimization for aggregate array compu-
tations. In Proceedings of the 1998 IEEE International Conference on Computer Lan-
guages, pages 262–271, Chicago, IL, May 1998. IEEE Computer Society Press. 120

[89] Yanhong A. Liu, Scott D. Stoller, Ning Li, and Tom Rothamel. Optimizing aggregate ar-
ray computations in loops. ACM Transactions on Programming Languages and Systems.
To appear. 120

[90] Vincent Loechner. PolyLib: A Library for Manipulating Parameterized Polyhedra, March
1999. 130

http://www.brics.dk/mona

164

[91] Margaret Martonosi, Anoop Gupta, and Thomas E. Anderson. MemSpy: Analyzing
memory system bottlenecks in programs. In Proceedings of the 1992 ACM SIGMET-
RICS Conference on the Measurement and Modeling of Computer Systems, volume 20
of Performance Evaluation Review, pages 1–12, Newport, RI, June 1992. ACM Press. 6

[92] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal, 9(2):78–117, 1970. 71

[93] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Karin Högstedt. Quantifying
the multi-level nature of tiling interactions. In Zhiyuan Li, Pen-Chung Yew, Siddhartha
Chatterjee, Chua-Huang Huang, P. Sadayappan, and David C. Sehr, editors, Proceedings
of the Tenth Annual Workshop on Programming Languages and Compilers for Parallel
Computing, volume 1366 of Lecture Notes in Computer Science, pages 1–15, Minneapolis,
MN, August 1998. Springer. 4

[94] Todd C. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching. PhD
thesis, Computer Systems Laboratory, Stanford University, March 1994. 5, 141

[95] Todd C. Mowry. Tolerating latency in multiprocessors through compiler-inserted
prefetching. ACM Transactions on Computer Systems, 16(1):55–92, February 1998. 5,
141

[96] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of a com-
piler algorithm for prefetching. In Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, volume 26
of SIGOPS Operating System Review, pages 62–73, Boston, MA, October 1992. ACM
Press. Special Issue. 5, 141

[97] Frank Mueller. Timing analysis for instruction caches. Real-Time Systems: The In-
ternational Journal of Time-Critical Computing Systems, 18(2/3):209–239, May 2000.
132

[98] Frank Mueller, David B. Whalley, and Marion Harmon. Predicting instruction cache
behavior. In Proceedings of the ACM SIGPLAN Workshop on Language, Compiler, and
Tool Support for Real-Time Systems, Orlando, FL, June 1994. ACM Press. 132

[99] Derek C. Oppen. A 222pn

upper bound on the complexity of Presburger arithmetic.
Journal of Computer and System Sciences, 16(3):323–332, July 1978. 25

[100] Erin Parker and Siddhartha Chatterjee. An automata-theoretic algorithm for counting
solutions to Presburger formulas. In Evelyn Duesterwald, editor, Proceedings of CC
2004 International Conference on Compiler Construction, volume 2985 of Lecture Notes
in Computer Science, pages 104–119, Barcelona, Spain, March-April 2004. Springer. 129,
131

165

[101] Allan Kennedy Porterfield. Software Methods for Improvement of Cache Performance
on Supercomputer Applications. PhD thesis, Department of Computer Science, Rice
University, Houston, TX, May 1989. Available as technical report CRPC-TR89009. 4,
5, 141

[102] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Sprawoz-
danie z I Kongresu matematyków krajów slowiańskich, Warszawa 1929 (Comptes-rendus
du I Congrès des Mathématiciens des Pays Slaves), pages 92–101, Warsaw, Poland, 1930.
7, 25, 165

[103] Mojżesz Presburger. On the completeness of a certain system of arithmetic of whole
numbers in which addition occurs as the only operation. History and Philosophy of
Logic, 12(2):225–233, 1991. English translation of the article [102] by Dale Jacquette. 7,
25

[104] Betty Prince. High Performance Memories: New Architecture DRAMs and SRAMs—
Evolution and Function. John Wiley, Chichester, NY, 1996. 13

[105] Steven A. Przybylski. Cache and Memory Hierarchy Design: A Performance-Directed
Approach. Morgan Kaufmann, San Mateo, CA, 1990. 13

[106] William Pugh. Counting solutions to Presburger formulas: How and why. In Proceed-
ings of the 1994 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 121–134, Orlando, FL, June 1994. ACM Press. 53, 130

[107] C. R. Reddy and Donald W. Loveland. Presburger arithmetic with bounded quantifier
alternation. In Conference Record of the Tenth Annual ACM Symposium on Theory of
Computing, pages 320–325, San Diego, CA, May 1978. ACM Press. 25

[108] Gabriel Rivera and Chau-Wen Tseng. Data transformations for eliminating conflict
misses. In Proceedings of the 1998 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 38–49, Montreal, Canada, June 1998. ACM
Press. 4, 5, 6

[109] Gabriel Rivera and Chau-Wen Tseng. Eliminating conflict misses for high performance
architectures. In Proceedings of the 1998 ACM International Conference on Supercom-
puting, pages 353–360, Melbourne, Australia, July 1998. ACM Press. 4

[110] Anne Rogers and Kai Li. Software support for speculative loads. In Proceedings of
the Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, volume 26 of SIGOPS Operating System Review, pages 38–50,
Boston, MA, October 1992. ACM Press. Special Issue. 5

166

[111] Uwe Schöning. Complexity of Presburger arithmetic with fixed quantifier dimension.
Theory of Computing Systems, 30(4):423428, July 1997. 25

[112] André Seznec. A case for two-way skewed-associative caches. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, pages 169–178, San Diego,
CA, May 1993. IEEE Computer Society Press. 15

[113] André Seznec and François Bodin. Skewed-associative caches. In Arndt Bode, Mike
Reeve, and Gottfried Wolf, editors, Proceedings of the 5th International PARLE Con-
ference, Parallel Architectures and Languages Europe, volume 694 of Lecture Notes in
Computer Science, pages 304–316, Munich, Germany, June 1993. Springer. 15

[114] Alan J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, September
1982. 4, 5, 13

[115] Standard Performance Evaluation Corporation. SPECint95 Benchmark/SPECfp95
Benchmark, August 1995. 101

[116] The Stanford Compiler Group. SUIF: An Infrastructure for Research on Parallelizing
and Optimizing Compilers. http://suif.stanford.edu. 80

[117] Ryan Stansifer. Presburger’s article on integer arithmetic: Remarks and translation.
Technical Report TR84-639, Department of Computer Science, Cornell University, 1984.
7, 25

[118] Rabin A. Sugumar and Santosh G. Abraham. Efficient simulation of caches under optimal
replacement with applications to miss characterization. In Proceedings of the 1993 ACM
SIGMETRICS Conference on the Measurement and Modeling of Computer Systems,
volume 21 of Performance Evaluation Review, pages 24–35, Santa Clara, CA, May 1993.
ACM Press. 30, 35

[119] Olivier Temam, Elana D. Granston, and William Jalby. To copy or not to copy: a
compile-time technique for assessing when data copying should be used to eliminate
cache conflicts. In Proceedings of the 1993 ACM/IEEE conference on Supercomputing,
pages 410–419, Portland, OR, November 1993. ACM Press. 4

[120] Dominique Thiebaut and Harold S. Stone. Footprints in the cache. IEEE Transactions
on Computers, 5(4):305–329, November 1987. 131

[121] Xavier Vera, Jaume Abella, Antonio González, and Josep Llosa. Optimizing program
locality through CMEs and GAs. In Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Techniques, pages 68–78, New Orleans, LA,
October 2003. IEEE Computer Society Press. 128, 132

http://suif.stanford.edu

167

[122] Xavier Vera, Nerina Bermudo, Josep Llosa, and Antonio González. A fast and accurate
framework to analyze and optimize cache memory behavior. ACM Transactions on
Programming Languages and Systems, 26(2):263–300, March 2004. 6, 128, 132

[123] Xavier Vera, Josep Llosa, Antonio González, and Nerina Bermudo. A fast and accu-
rate approach to analyze cache memory behavior. In Arndt Bode, Thomas Ludwig II,
Wolfgang Karl, and Roland Wismüller, editors, Proceedings of the Sixth International
European Conference on Parallel Processing, volume 1900 of Lecture Notes in Computer
Science, pages 194–198, Munich, Germany, August 2000. Springer. 128, 132

[124] Xavier Vera and Jingling Xue. Let’s study whole-program cache behaviour analytically.
In Proceedings of the Eighth International Symposium on High Performance Computer
Architecture, pages 175–186, Boston, MA, February 2002. IEEE Computer Society Press.
128, 132

[125] Sven Verdoolaege, Kristof Beyls, Maurice Bruynooghe, Rachid Seghir, and Vincent
Loechner. Analytical computation of Ehrhart polynomials and its applications for em-
bedded systems. In Proceedings of the 2nd Workshop on Optimizations for DSP and
Embedded Systems, Palo Alto, CA, March 2004. 53, 129, 130

[126] Wen-Hann Wang, Jean-Loup Baer, and Henry M. Levy. Organization and performance of
a two-level virtual-real cache hierarchy. In Proceedings of the 16th Annual International
Symposium on Computer Architecture, pages 140–148, Jerusalem, Israel, June 1989.
IEEE Computer Society Press. 2

[127] Dee A. B. Weikle. Caches As Filters: A Framework for the Analysis of Caching Systems.
PhD thesis, Department of Computer Science, University of Virginia, May 2001. 131

[128] Dee A. B. Weikle, Sally A. McKee, and William A. Wulf. Caches as filters: A new
approach to cache analysis. In Proceedings of MASCOTS’98, Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, pages 2–12, Montreal, Canada,
July 1998. IEEE Computer Society Press. 131

[129] Volker Weispfenning. Complexity and uniformity of elimination in Presburger arithmetic.
In Proceedings of the 1997 ACM SIGSAM International Symposium on Symbolic and
Algebraic Computation, pages 48–53, Maui, HI, July 1997. ACM Press. 25

[130] Maurice V. Wilkes. Slave memories and dynamic storage allocation. IEEE Transactions
on Electronic Computers, pages 270–271, April 1965. 2

[131] David S. Wise, Jeremy D. Frens, Yuhong Gu, and Gregory A. Alexander. Language
support for Morton-order matrices. In Proceedings of the Eighth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, volume 36(7) of SIGPLAN
Notices, pages 24–33, Snowbird, UT, June 2001. ACM Press. 4, 83

168

[132] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In Pro-
ceedings of the 1991 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 30–44, Toronto, Canada, June 1991. ACM Press. 4

[133] Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, Depart-
ment of Computer Science, University of Illinois at Urbana-Champagian, 1982. Available
as technical report 82-1009. 4

[134] Michael J. Wolfe. More iteration space tiling. In Proceedings of the 1989 ACM/IEEE
conference on Supercomputing, pages 655–664, Reno, NV, November 1989. ACM Press.
4, 115

[135] Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cam-
bridge, MA, 1989. 4, 17, 21, 99

[136] Pierre Wolper and Bernard Boigelot. An automata-theoretic approach to Presburger
arithmetic constraints (extended abstract). In Alan Mycroft, editor, Proceedings of the
Second International Static Analysis Symposium, volume 983 of Lecture Notes in Com-
puter Science, pages 21–32, Glasgow, UK, September 1995. Springer. 81

[137] Pierre Wolper and Bernard Boigelot. On the construction of automata from linear arith-
metic constraints. In Susanne Graf and Michael I. Schwartzbach, editors, Proceedings of
the Sixth International Conference on Tools and Algorithms for Construction and Anal-
ysis of Systems, volume 1785 of Lecture Notes in Computer Science, pages 1–19, Berlin,
Germany, April 2000. Springer. 26, 81

[138] William A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the
obvious. ACM SIGARCH Computer Architecture News, 23(1):20–24, March 1995. 1

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Determining Cache Behavior
	Thesis Contributions
	Limitations
	Organization

	Terminology and Notation
	Cache Basics
	Static Cache Structure
	Dynamic Cache Behavior
	A Special Cache---the TLB

	Modeling Loop Nests
	Modeling Array References
	Presburger Arithmetic
	Automata Theory
	Summary

	A New Classification of Cache Misses
	Composability
	Interior-Boundary Miss Classification
	Cache State
	Summary

	Analyzing Cache Behavior
	Program Execution Model
	Neighborhoods and Witnesses
	Expressing Witnesses in Presburger Arithmetic
	Formulas Describing Program and Memory Structure
	Formulas Describing Cache Behavior

	Deciding Cache Event Outcomes
	Interior Miss
	Replacement Miss
	Potential Boundary Miss
	Cache State

	Summary

	Counting Cache Misses
	Representing Formulas as DFAs
	Encoding Free Variable Values
	Example DFA
	Procedure for Constructing DFAs

	Counting and Enumerating Accepting DFA Paths
	Treating the DFA as a Graph
	DFA Path Length
	Counting Accepting Paths
	Enumerating Accepting Paths

	Counting Witnesses to Determine Cache Behavior
	Counting Witnesses
	Counting Interior and Replacement Misses
	Counting Boundary Misses and Updating Cache State

	Handling Misses Independent of Associativity
	Interior Misses in Direct-Mapped Caches
	Compulsory Misses

	Summary

	Putting It All Together
	The Analysis Framework
	Implementation
	Source Code Analysis
	Formula Specification and Simplification
	Counting Cache Events

	Extensions to Analysis Framework
	Nonlinear Data Layouts
	FIFO Cache Replacement Algorithm
	Summary

	Application and Validation
	Single Loop Nests
	Loop Nest Sequence
	Nonlinear Data Layouts
	Loop Transformation
	Loop Tiling
	Loop Permutation

	Aggregate Array Computations
	Partial Summation
	Sequence Local Average

	Summary

	Related Work
	Work Based on Reuse Vectors
	Work Based on Stack Distances
	Work Based on Linear Constraints
	Work Based on Reference Traces
	Work Based on Cache State
	Summary

	Conclusions
	Thesis Contributions
	Commentary
	Future Research Directions
	Improving Framework Robustness
	Modeling More Cache Features and Events
	Applying the Analysis Framework

	Summary

	Example Witness Formulas and DFAs
	BIBLIOGRAPHY

