
A Lock-Free Approach to Object Sharing in Real-Time Systems

by

Srikanth Ramamurthy

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill

in partial ful�llment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill

1997

Approved by:

Prof. James Anderson, Adviser

Prof. Prasun Dewan, Reader

Prof. Kevin Je�ay, Reader

ii

c
1997

Srikanth Ramamurthy

ALL RIGHTS RESERVED

iii

Srikanth Ramamurthy. A Lock-Free Approach to Object Sharing in Real-Time

Systems

(Under the direction of Professor James H. Anderson.)

Abstract

This work aims to establish the viability of lock-free object sharing in uniprocessor

real-time systems. Naive usage of conventional lock-based object-sharing schemes in real-

time systems leads to unbounded priority inversion. A priority inversion occurs when a

task is blocked by a lower-priority task that is inside a critical section. Mechanisms that

bound priority inversion usually entail kernel overhead that is sometimes excessive.

We propose that lock-free objects o�er an attractive alternative to lock-based

schemes because they eliminate priority inversion and its associated problems. On the

surface, lock-free objects may seem to be unsuitable for hard real-time systems because

accesses to such objects are not guaranteed to complete in bounded time. Nonetheless,

we present scheduling conditions that demonstrate the applicability of lock-free objects

in hard real-time systems. Our scheduling conditions are applicable to schemes such as

rate-monotonic scheduling and earliest-deadline-�rst scheduling.

Previously known lock-free constructions are targeted towards asynchronous sys-

tems; such constructions require hardware support for strong synchronization primitives

such as compare-and-swap. We show that constructions for uniprocessor real-time sys-

tems can be signi�cantly simpli�ed | and the need for strong primitives eliminated | by

exploiting certain characteristics of real-time scheduling schemes.

iv

Under lock-based schemes, a task can perform operations on many shared objects

simultaneously via nested critical sections. For example, using nested critical sections, a

task can atomically dequeue an element from one shared queue and enqueue that element

in another shared queue. In order to achieve the level of functionality provided by nested

critical sections, we provide a lock-free framework that is based on a multi-word compare-

and-swap primitive and that supports multi-object accesses | the lock-free counterpart to

nested critical sections. Because multi-word primitives are not provided in hardware, they

have to be implemented in software. We provide a time-optimal implementation of the

multi-word compare-and-swap primitive.

Finally, we present a formal comparison of the various object-sharing schemes

based on scheduling conditions, followed by results from a set of simulation experiments

that we conducted. Also, as empirical proof of the viability of lock-free objects in practical

systems, we present results from a set of experiments conducted on a desktop videoconfer-

encing system.

v

Acknowledgements

I would like to thank my adviser Jim Anderson for educating me and advising me over the

years with much enthusiasm and patience. I would also like to thank him for supporting

me for several years.

I would also like to thank my committee: Rance Cleaveland, Prasun Dewan, Rich

Gerber, Kevin Je�ay, and Don Stanat. I thank them for their willingness to �nd time

to attend the myriad pre-proposal meetings, oral examinations, proposals, and one-on-one

meetings. Special thanks to Rance Cleaveland for driving long distances to attend the

various meetings, and to Rich Gerber for enduring many long meetings over the phone and

providing very insighful comments on my work. I am also grateful to Kevin Je�ay for being

extremely supportive and encouraging of my work.

My work has also bene�ted signi�cantly from many discussions with the following

friends and colleagues: Steve Goddard, Rohit Jain, Mark Moir, M. Paramasivam, Tom

White, and Jason Wilson. I would like to thank Dave Bennett, Peter Nee, Mark Parris,

and Don Stone for their help in all the experimental work.

I would also like to thank many of my friends in Chapel Hill for their support

and camaraderie; graduate school would have been boring and weary without them. I am

thankful to my parents for encouraging me to strive for the best always and for their support.

I am also thankful to Ranga and Malathi for their love and support. This dissertation would

not have been possible were it not for the support of my wife Bhuva. She has tolerated a

lot over the past few of years with much cheer.

vi

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Lock-Based Object Sharing in Hard Real-Time Systems : : : : : : : : : : : 3

1.2 Lock-Free Objects : 6

1.3 Background on Real-Time Systems : 11

1.3.1 Real-Time Scheduling Schemes : 12

1.4 Our Contributions : 15

1.4.1 Schedulability of Lock-Free Task Sets : : : : : : : : : : : : : : : : : 15

1.4.2 Eliminating Hardware Support for Strong Primitives : : : : : : : : : 16

1.4.3 A General Framework for Lock-Free Accesses : : : : : : : : : : : : : 17

1.4.4 Experimental Results : 18

1.5 Organization of the Dissertation : 19

2 Background and Related Work 20

2.1 Scheduling Conditions : 20

2.1.1 Static-Priority Scheduling Conditions : : : : : : : : : : : : : : : : : 21

2.1.2 Dynamic-Priority Scheduling Conditions : : : : : : : : : : : : : : : : 23

2.2 Lock-Based Object Sharing : 26

2.2.1 Static-Priority Scheduling Conditions : : : : : : : : : : : : : : : : : 32

2.2.2 Dynamic-Priority Conditions : 33

2.3 Accounting for System Overhead Costs : 35

2.4 Lock-Free Object Implementations : 38

2.4.1 Linearizability : 39

2.4.2 The Consensus Hierarchy : 41

2.4.3 Universal Constructions of Lock-Free Objects : : : : : : : : : : : : 43

2.4.4 Speci�c Objects : 49

3 Scheduling Conditions 51

3.1 Assumptions and De�nitions : 52

3.2 Preliminary Lemmas : 58

3.3 Static-Priority Scheduling Conditions : 63

vii

3.4 Dynamic-Priority Scheduling Conditions : 69

3.5 Accounting for Di�erent Retry-Loop Costs : : : : : : : : : : : : : : : : : : : 74

3.5.1 Additional Notation and De�nitions : : : : : : : : : : : : : : : : : : 75

3.5.2 Bounding Interference Cost : 77

3.5.3 Static-Priority Scheduling Schemes : : : : : : : : : : : : : : : : : : : 78

3.5.4 Dynamic-Priority Scheduling Schemes : : : : : : : : : : : : : : : : : 84

3.6 Static-Priority Scheduling Conditions : 85

3.7 Dynamic-Priority Scheduling Conditions : 88

4 Support for Strong Primitives 90

4.1 The Real-Time Task Model : 91

4.2 De�nitions and Notation : 93

4.3 Universality of Load and Store Instructions : : : : : : : : : : : : : : : : : : 96

4.4 Implementing CAS using Loads and Stores : : : : : : : : : : : : : : : : : : 101

4.4.1 Correctness Proof : 106

4.5 Implementing CAS using Move, Load, and Store Instructions : : : : : : : : 127

4.5.1 Correctness Proof : 130

4.6 Implementing Multi-Word Primitives : 138

4.6.1 A Wait-Free Implementation of MWCAS : : : : : : : : : : : : : : : 138

4.6.2 Correctness Proof : 147

5 A Transactional Framework for Implementing Lock-Free Objects 161

5.1 Lock-Free Transactions : 162

5.1.1 Correctness Proof : 169

6 A Comparative Study of Object-Sharing Schemes 178

6.1 Formal Comparison : 179

6.1.1 Static-Priority Scheduling : 179

6.1.2 Dynamic-Priority Scheduling : 181

6.1.3 Wait-Free Objects : 183

6.2 Simulation Results : 185

6.3 Timing Measurements : 198

6.4 Experiments on a Videoconferencing System : : : : : : : : : : : : : : : : : 205

6.4.1 Experimental Setup : 206

6.4.2 Static-Priority Scheduling : 208

6.4.3 Dynamic-Priority Scheduling : 212

7 Conclusions 215

7.1 Summary : 215

7.2 Conclusions and Future Work : 218

Bibliography 222

viii

List of Figures

1.1 The priority inversion problem. : 4

1.2 Lock-free queue implementation. : 7

1.3 Common real-time scheduling schemes. : 13

2.1 Implementation of a monitor task using using rendezvous primitive. : : : : 26

2.2 Illustrated example depicting schemes that bound priority inversion : : : : 28

2.3 Lock-free queue implementation. : 40

2.4 Example interleavings of lock-free enqueue and dequeue operations. : : : : 40

2.5 De�nitions of common instructions : 43

2.6 Implementation of Herlihy's small object constructions. : : : : : : : : : : : : : : 45

2.7 Illustration depicting Anderson and Moir's large object construction. : : : : 47

3.1 Illustration of the task sets de�ned in Examples 3.1 and 3.2. : : : : : : : : : 56

3.2 Pseudo-code to calculate fv
i
values. : 80

4.1 Operations interleavings on an asynchronous system and on a real-time system 92

4.2 Incorrect solution to consensus using loads and stores. : : : : : : : : : : : : 96

4.3 The enabled late-write problem. : 97

4.4 Consensus using loads and stores. : 98

4.5 Proof of Lemma 4.1. : 99

4.6 Implementation of CAS using loads and stores. : : : : : : : : : : : : : : : : : : 102

4.7 Illustrated example depicting the implementation of CAS using load and

store instructions. : 105

4.8 Proof of Lemma 4.5. : 112

4.9 Subcase 2.1 in the Proof of Lemma 4.14. : 122

4.10 Subcase 2.2 in the Proof of Lemma 4.14. : 123

4.11 Implementation of CAS/Read using move. : : : : : : : : : : : : : : : : : : 128

4.12 Proof of Lemma 4.20. : 133

4.13 Wait-free implementation of MWCAS. : 140

4.14 Illustrated example to explain the MWCAS implementation in Section 4.6 : 144

4.15 Example of a Read operation by Task Tr. : : : : : : : : : : : : : : : : : : : 145

4.16 Some subtleties of the MWCAS implementation in Section 4.6. : : : : : : : 146

4.17 Proof of Lemma 4.29. : 153

ix

5.1 An example transaction. : 163

5.2 Implementation of the MEM array for lock-free transactions (depicted for B = 5). 164

5.3 Lock-free transaction implementation. : 165

5.4 Proof of Lemma 5.8. : 176

6.1 BU and BCU curves for r/w ratio = 0.25 and cost ratio = 0.50 : : : : : : : 189

6.2 BU and BCU curves for r/w ratio = 0.25 and cost ratio = 1.00 : : : : : : : 190

6.3 BU and BCU curves for r/w ratio = 0.25 and cost ratio = 2.00 : : : : : : : 191

6.4 BU and BCU curves for r/w ratio = 0.50 and cost ratio = 0.50 : : : : : : : 192

6.5 BU and BCU curves for r/w ratio = 0.50 and cost ratio = 1.00 : : : : : : : 193

6.6 BU and BCU curves for r/w ratio = 0.50 and cost ratio = 2.00 : : : : : : : 194

6.7 BU and BCU curves for r/w ratio = 0.75 and cost ratio = 0.50 : : : : : : : 195

6.8 BU and BCU curves for r/w ratio = 0.75 and cost ratio = 1.00 : : : : : : : 196

6.9 BU and BCU curves for r/w ratio = 0.75 and cost ratio = 2.00 : : : : : : : 197

6.10 Tasks and shared queues in the videoconferencing system. : : : : : : : : : : 207

x

List of Tables

2.1 Herlihy's consensus-number hierarchy. : 42

6.1 Worst-case execution times of various implementations of strong primitives. 201

6.2 Worst-case cost of operations on commonly used data structures. : : : : : : 202

6.3 Task characteristics in the videoconferencing system. : : : : : : : : : : : : : 209

6.4 Interrupt handler execution times and periods. : : : : : : : : : : : : : : : : 210

Chapter 1

Introduction

A real-time computer system is required to provide timely responses to external

events occurring in its operating environment. The performance of such a system is directly

related to its ability to adhere to timing constraints placed by these external events and the

strictness of these constraints. Based on the nature of these constraints, real-time systems

can be broadly classi�ed into hard and soft real-time systems. Hard real-time systems are

required to meet every timing constraint without fail. The performance of hard real-time

systems must be predictable in a deterministic sense. In contrast, temporal correctness

requirements in soft real-time systems are less stringent | i.e., failure to meet every timing

constraint does not a�ect the correctness of the system.

An example of a hard real-time system is a robot-arm controller in an automated

factory. In such a system, external sensors periodically provide the controlling computer

with information on the position, velocity, orientation, etc., of the di�erent sections of the

arm. Based on this information, the controlling computer determines whether a signal must

2

be sent to an actuator to change the velocity or direction of a section of the arm. If the

computer does not send the signal to the actuator in a timely manner, signi�cant material

damage may be caused. For example, suppose that the external sensors indicate that a

collision with another robot arm is imminent within one second. Clearly, the controlling

computer must process the information from the sensors and ensure that the arm stops

moving within one second, failing which both arms could collide. Thus, timing constraints

in hard real-time systems must never be violated.

On the other hand, consider a videoconferencing system in which audio and video

samples are received from a communications network. Suppose that the video monitor re-

freshes the screen every 33 milliseconds. To ensure good playback quality, each video (audio)

sample must be processed and displayed (played back) within 33 milliseconds. However,

unlike the case of the robot arm, failure to process a video sample within 33 milliseconds

will not result in material damage; it will only result in inferior playback quality. Therefore,

in order to achieve reasonable playback quality, we only need to ensure that the video and

audio samples are processed and played back within 33 milliseconds \most of the time".

In this dissertation, we focus our attention on uniprocessor hard real-time systems.

Such systems are obviously important in their own right. In addition, even if the environ-

ment can tolerate the non-hard-real-time behavior of a system, there is an advantage to

treating the system as if it were a hard real-time system: guarantees of adherence to perfor-

mance constraints can be provided, thereby ensuring that the system exhibits predictable

behavior.

3

1.1 Lock-Based Object Sharing in Hard Real-Time Systems

Typically, a real-time1 system invokes a task | i.e., a sequential program | in

response to each external (or internal) event. External events are repeatedly generated by

sensors monitoring the operating environment, while internal events are triggered by alarms

generated by internal timers. Because a real-time system is required to handle multiple

independent events, tasks associated with di�erent events are usually multiprogrammed on

a single processor. Shared objects are of interest in such systems because they provide a

framework for intertask communication and task synchronization.

A shared object is a data structure (e.g., a queue) that can be accessed or modi�ed

by means of a �xed set of operations (e.g., enqueue and dequeue). Each operation has a

�xed set of input parameters and produces a set of output values. Because uncontrolled

accesses to shared objects can result in corruption of data, shared objects are typically

embedded inside critical sections and are accessed using a mutual exclusion protocol (e.g.,

semaphores, monitors, etc.). Using such protocols, a task �rst acquires a lock associated

with a shared object, accesses the object, and then releases the lock. Tasks contending for

that object must wait for the lock to be released. A key advantage of lock-based protocols

is that they are easy to use and provide a framework for implementing arbitrary shared

objects.

Lock-based object sharing in real-time systems is complicated by the fact that such

systems require predictable upper bounds on object access times. Naive usage of lock-based

objects in such systems can result in unbounded priority inversion. A priority inversion

1Henceforth, we use the terms \real-time system" and \hard real-time system" interchangeably.

4

t0 t 1 t2
Time

Task instance begins Task instance ends Priority Inversion Computation not involving shared object accesses

Time t0
t1 t2

(b)(a)

Th

Tm

Tl

Th

Tm

Tl

Shared Object S

Figure 1.1: (a) Priority inversion. (b) The priority inheritance protocol.

exists when a given task must wait on a task of lower priority to release a critical section,

as illustrated in Figure 1.1(a). In this �gure, at time t0, task Tl is preempted by a higher-

priority task Th while accessing a lock-based shared object S. Because task Tl holds the

lock for object S, Th cannot access S at time t1. Hence, Th relinquishes the processor to

task Tl, which resumes its object access. However, before Tl can complete its object access,

it is preempted by task Tm which has priority lower than Th's priority but higher than Tl's

priority. Thus, Th is prevented from accessing S for a lengthy interval of time because Tl

must wait for Tm to complete before it can release the lock on S. Priority inversion is said

to occur for the duration of time in which Th waits for Tl to release the lock on S.

Unless priority inversions are carefully controlled in a hard real-time system, it

may be di�cult or impossible to ensure that task deadlines are always met. For this reason,

substantial e�ort has been devoted to the problem of bounding the duration of priority

inversions in real-time systems either by using kernel support [19, 26, 44, 69, 71] or by using

scheduling techniques [29, 65, 83]. Because techniques based on the former approach are

very relevant to this dissertation, they are brie
y described below. (All of these techniques

are described in detail in Chapter 2.)

5

Typically, when priority inversion is controlled using kernel support, the kernel

provides a registration mechanism by which tasks identify the objects that they access.

Using this information, the kernel dynamically adjusts task priorities to ensure that a task

within a critical section executes at a priority that is su�ciently high to bound the duration

of any priority inversion. An example of a mechanism that uses kernel support to bound

the duration of priority inversion is the priority inheritance protocol (PIP) [69, 71]. Figure

1.1(b) illustrates the working of the PIP on the task set depicted in Figure 1.1(a). In

Figure 1.1(b), task Th is blocked from accessing S at time t1. However, the PIP ensures

that Tl's priority is raised to that of task Th at that time, thereby precluding task Tm

from preempting Tl at time t2. Thus, the duration of time for which Th is blocked by Tl

is no longer than the time taken to access object S | a signi�cant improvement from the

situation in Figure 1.1(a).

Although the PIP and similar schemes provide a general framework for real-time

synchronization, they su�er from several drawbacks. First, they entail additional operating

system overhead that sometimes can be excessive, particularly if object accesses are of short

duration. In such situations, overhead associated with modifying task priorities may con-

stitute a signi�cant fraction of object access costs. Secondly, using some of these schemes

complicates run-time mode change protocols. Mode changes in real-time systems are char-

acterized by a change in task parameters, or by the addition or removal of tasks from a

system. For example, a change in the sampling rate of a tracking task in a radar system

might require that task to execute at a faster rate; this constitutes a mode change. Mode

change protocols must maintain the semantic requirements of a task set and ensure that

6

deadlines are not missed when tasks are added or deleted. Such protocols are further com-

plicated when tasks access lock-based shared objects under some PIP-like schemes. This is

because, in order to guarantee bounded priority inversion and freedom from deadlock during

mode changes, these mode-change protocols must determine a speci�c order in which tasks

can be added or removed from the system [72]. Furthermore, in some lock-based schemes,

certain operating system tables must be modi�ed when mode changes occur [72].

1.2 Lock-Free Objects

In this dissertation, we consider an alternative approach to interprocess com-

munication in real-time systems. In particular, we show that lock-free shared objects

[22, 37, 52, 62] | i.e., objects that are not critical-section-based | are a viable alter-

native to lock-based schemes in such systems. Such objects are typically implemented using

retry loops that are potentially unbounded. For example, the enqueue operation depicted

in Figure 1.2 is implemented without using any locks and involves executing an unbounded

repeat-until loop. Formally, a shared object implementation is lock-free if, for every opera-

tion by each task T , some operation is guaranteed to complete after a �nite number of steps

of task T , even if other tasks are delayed. Lock-free objects o�er an attractive alternative

to lock-based protocols because they eliminate priority inversion.

In this dissertation, we also consider an important special class of lock-free ob-

jects, namely wait-free objects. Wait-free objects are required to satisfy a strong form of

lock-freedom that precludes all waiting dependencies among tasks, including potentially un-

bounded loops. More precisely, individual wait-free operations are required to be starvation-

7

type Qtype = record data: valtype; next : pointer to Qtype end

shared var Head , Tail : pointer to Qtype

private var old , new : pointer to Qtype; ret : boolean

addr : pointer to pointer to Qtype

procedure Enqueue(input : valtype)

�new := (input, NULL);

repeat old := Tail

if Tail = NULL then addr := &Head else addr := &(old�>next) �

until CAS2(&Tail; addr ; old ;NULL; new ; new)

procedure Dequeue() returns �Qtype

repeat old := Head ;

if old = NULL then return NULL �;

new := old�>next ;

if old = Tail then ret := CAS2(&Head ;&Tail ; old ; old ;NULL;NULL)

else ret := CAS2(&Head ;&(old�>next); old ; new ; new ;NULL)

�

until ret ;

return(old)

Figure 1.2: Lock-free queue implementation.

free. In contrast, lock-free objects guarantee only system-wide progress: if several tasks

concurrently access such an object, then some task will complete its operation. Formally,

an implementation is wait-free if, for every operation by each task T , that operation is guar-

anteed to complete after a �nite number of steps of task T , even if other tasks are delayed.

Note that the requirements of lock-free and wait-free objects preclude the use of locking: if

some task is delayed for a long time while holding a lock to an object, then no other task

can access that object.

As mentioned above, lock-free objects are typically implemented like the shared

queue implementation depicted in Figure 1.2. In the lock-free implementation in Figure 1.2,

an item is enqueued using a two-word compare-and-swap (CAS2) instruction2 to atomically

update a shared tail pointer and the \next" pointer of the last item in the queue. The CAS2

2The �rst two parameters of CAS2 specify addresses of two shared variables, the next two parameters

are values to which these variables are compared, and the last two parameters are new values to assign to

the variables if both comparisons succeed.

8

instruction is attempted repeatedly until it succeeds. Dequeue is implemented similarly.

Note that the queue is never \locked" by any task.

Super�cially, lock-free objects may seem to be unsuitable for hard real-time ap-

plications because concurrent lock-free accesses can interfere with one another; in fact,

repeated interference can delay a task's completion inde�nitely. Wait-free objects seem to

be more appropriate for such systems because they have bounded access times. Unfortu-

nately, satisfying the stronger progress guarantees required of wait-free objects comes at

the expense of algorithmic overhead that cannot be justi�ed for many shared objects.

Another potential disadvantage of lock-free objects is that their implementation

typically requires strong primitives such as compare-and-swap (CAS). Strong primitives are

provided by processors such as Intel's Pentium and Motorola's 68030, 68040, and PowerPC

processors. Unfortunately, processors that are often used in embedded systems such as

Motorola's 68HC11 or 68HC812 do not support strong primitives. If such primitives are not

supported by the underlying hardware, then they must be \simulated", and the most obvious

way to do so is by using lock-based protocols. However, this brings us back to problems

associated with locking | problems that lock-free objects are designed to eliminate.

From a software engineering standpoint, lock-free objects have the reputation of

being di�cult to design and to verify as correct. As a result, even the design of simple

objects such as linked lists requires a lot of creativity. To rectify this situation, many re-

searchers have developed universal constructions that allow easy implementation of lock-free

objects. A universal construction is used to automatically generate lock-free implementa-

tions of arbitrary objects from their sequential implementations. Universal constructions

9

were proposed �rst by Herlihy [36], and improved later by others [2, 7, 20, 37, 42]. To

implement a lock-free object using a universal construction, a programmer �rst writes code

for a sequential implementation of that object. This code is then embedded within a retry

loop that is automatically generated by the universal construction. A lock-free implemen-

tation that is based on a universal construction is guaranteed to be correct if the sequential

implementation of that object is correct.

One shortcoming of the universal constructions just cited is that they only allow

a task to access one shared object at a time. In contrast, when tasks use a lock-based

framework, they may access multiple objects simultaneously via nested critical sections.

For example, using nested critical sections, a task can atomically dequeue an element from

one shared queue and enqueue that element in another shared queue. To achieve similar

functionality in a lock-free system, universal constructions have been proposed that allow a

task to perform operations on multiple objects simultaneously [8, 73]. Unfortunately, these

implementations entail high algorithmic overhead, and are therefore too expensive to be

competitive with nested critical sections in real-time systems. To match the generality and

exibility provided by nested critical sections, an e�cient framework for lock-free object

sharing is required that allows simultaneous accesses to multiple objects.

To summarize, while lock-free objects are attractive from a real-time perspective

because they eliminate priority inversion, their applicability to real-time systems has been

limited because of an apparent lack of predictability, lack of hardware support, and lack

of a general lock-free framework that is competitive with nested critical sections. In this

dissertation, we show that these problems can be solved and that lock-free objects are a

10

viable alternative to lock-based object sharing in real-time systems. The main thesis to be

supported by this dissertation is that

priority inversion is not fundamental to object sharing in uniprocessor hard real-

time systems, and e�cient and predictable use of lock-free objects in such sys-

tems can be achieved with little kernel and hardware support.

All of the work presented in this dissertation supports the above thesis directly.

Our contributions are as follows. First, for each of the task scheduling schemes that we

consider, we derive expressions to predict whether a set of hard real-time tasks that access

lock-free objects will meet their deadlines. Second, we present several original lock-free

implementations for real-time systems that signi�cantly improve on the time and space

overhead costs associated with previously known implementations. In particular, we give

software-based implementations of single- and multi-word compare-and-swap (MWCAS)

primitives that facilitate the use of lock-free objects in real-time systems that lack adequate

hardware support for strong primitives. Third, we provide a lock-free framework that

supports accesses to multiple lock-free objects simultaneously. Such a lock-free framework

provides functionality similar to that of nested critical sections. Finally, we present results

from a set of experiments that compare the performance of lock-free objects with that of

lock-based objects.

Most of the work presented in this dissertation assumes some basic knowledge of

real-time systems. Therefore, before describing our contributions in more detail, we de�ne

some basic terminology and concepts pertaining to uniprocessor hard real-time systems and

present some well-known schemes for scheduling tasks in such systems.

11

1.3 Background on Real-Time Systems

A real-time system can be abstractly visualized as a collection of tasks. A task is

a sequential program that is invoked repeatedly. A single task invocation is called a job.

The time at which a job arrives for execution is called its release time. The deadline of

a job is an instant in real time by which that job must complete execution. The relative

deadline of a task is the elapsed time between the release time of a job of that task and the

deadline of that job. In this dissertation, we assume that the relative deadline of a task is

at most the length of its task period.

A real-time task can be characterized as periodic, sporadic, or aperiodic, based on

the job releases of that task. A task is periodic if and only if the interval between job releases

is constant. The period of such a task is the length of the interval between successive job

releases. A task is said to be sporadic if there exists a minimum (but not a maximum)

separation between successive job releases. The release times of jobs of an aperiodic task

are completely unrelated. A set of real-time tasks is said to be synchronous if the release

time of the �rst job of all tasks coincide; otherwise, the task set is said to be asynchronous.

A set of tasks is said to be independent if the tasks do not access any shared objects, and

if there are no precedence constraints among the tasks. Tasks in a real-time system are

multiprogrammed on a processor by means of a scheduling scheme.

A task set is said to be schedulable under a given scheduling scheme i� all jobs will

meet their deadlines when scheduled under that scheme. A task set is said to be feasible

i� there exists some scheduling scheme under which all jobs will meet their deadlines. A

scheduling scheme is called optimal if it can schedule any feasible task set. Throughout this

12

dissertation, we assume that time is discrete, i.e., all release times and periods are integers.

A task is said to execute at time t if it executes during the interval [t; t+ 1).

1.3.1 Real-Time Scheduling Schemes

In this subsection, we consider some well-known priority-based preemptive schedul-

ing schemes for uniprocessor real-time systems that are relevant to the work in this disser-

tation. A scheme is priority-based if, at every instant, the job scheduled for execution has

the highest priority of all non-idle jobs. A scheme is said to be preemptive if a job can be

preempted by another job during its execution.

Priority-based, preemptive scheduling schemes can be classi�ed into static-priority

and dynamic-priority schemes. Under static-priority scheduling, each task is assigned a

distinct priority that does not change over time. Examples of such schemes include rate

monotonic (RM) scheduling [60] and deadline monotonic (DM) scheduling [58]. Under

dynamic-priority schemes, the priority of a task can vary over time. Examples of such

schemes include earliest-deadline-�rst (EDF) scheduling [60] and least-laxity-�rst (LLF)

scheduling [65]. In this dissertation, we only consider RM, DM, and EDF scheduling; these

scheduling schemes are described using illustrated examples.

DM scheduling: Under the DM scheme, tasks with smaller relative deadlines are assigned

higher priorities. The period of a task scheduled under this scheme is assumed to be at

least as large as that task's relative deadline. When a set of tasks is synchronous and

independent, the DM scheme is an optimal static-priority scheduling scheme [58], i.e., any

task set that is schedulable under any other static-priority scheme is schedulable under the

13

T

T

0 5 10 15 20 25 30 35

T

(a)

0

1

2
T

T

0 5 10 15 20 25 30 35

T

(b)

0

1

2

job release job completionjob deadline job execution

Figure 1.3: (a) DM scheduling (b) EDF scheduling.

DM scheme. The following example illustrates the working of the DM scheme.

Example 1.1: Consider a set of synchronous periodic tasks fT0; T1; T2g scheduled under

the DM scheme. Let the relative deadlines/periods/computation times of tasks T0, T1, and

T2 be 8=18=4 units, 10=11=4 units, and 28=31=7 units, respectively. All tasks are released

simultaneously at time 0.

The execution of the above task set is illustrated in Figure 1:3(a). In this �gure

shaded up-arrows represent job releases, unshaded up-arrows represent job deadlines, and

down-arrows represent job completions.

Under the DM scheme, T0, T1, and T2 are assigned highest priority, intermediate

priority, and low priority, respectively. This is because T0's relative deadline is smaller

than that of T1, which has a smaller relative deadline than T2. Note that any job of T1 can

preempt any job of T2 because all jobs of a given task have the same priority.

RM scheduling: RM scheduling constitutes a special case of DM scheduling in which the

relative deadline of a task is equal to the period of that task. As in the DM scheme, tasks

with smaller relative deadlines (periods) are assigned higher priorities.

14

EDF scheduling: The EDF scheme is a dynamic-priority scheme in which, at every

instant, the job with the closest deadline is scheduled for execution. Under this scheme

task periods need not be related to task deadlines, i.e., a task's period may be larger,

smaller, or equal to its relative deadline. When tasks are independent, the EDF scheme is

an optimal scheduling scheme [60] because it can successfully schedule any task set as long

as the processor is not overloaded. The following example illustrate the working of the EDF

scheme.

Example 1.2: Consider a set of asynchronous periodic tasks fT0; T1; T2g scheduled under

the EDF scheme. The release times/periods/computation times of tasks T0, T1, and T2 are

4=11=4 units, 1=18=6 units, 0=25=9 units, respectively. The relative deadline of every task

is equal to its period.

The execution of the above task set is illustrated in Figure 1:3(b). In this �gure

up-arrows represent both job releases and job deadlines, and down-arrows represent job

completions.

As illustrated in Figure 1:3(b), the job executing on the processor at any instant

has the closest deadline of all jobs that are available for execution at that instant. For

example, at time 19, T2's executes on the processor because it has a deadline at time 25 and

because the deadlines of jobs of tasks T0 and T1 are after time 25. Observe that, unlike the

DM scheme, every job of task T1 cannot necessarily preempt any job of task T2. In Figure

1:3(b), T1's second job cannot preempt T2's job because the latter has an earlier deadline.

15

1.4 Our Contributions

In this section, we provide descriptions of the contributions of this dissertation.

1.4.1 Schedulability of Lock-Free Task Sets

From a real-time perspective, lock-free objects are useful because they eliminate

priority inversion and deadlock with no underlying operating system support for object

sharing. However, it is not apparent that such objects can be employed if tasks must adhere

to strict timing constraints. In particular, repeated executions of lock-free retry loops can

cause a lock-free operation to take an arbitrarily long time to complete. Nonetheless, we

show that lock-free retry loops are bounded when tasks are scheduled under the RM, DM,

or EDF schemes. For each of these schemes, we derive scheduling conditions | based on

the worst-case resource requirements of tasks | that predict whether a set of tasks that

access lock-free objects will meet their deadlines when scheduled under that scheme.

The derivation of our scheduling conditions hinges on determining a bound on the

total wasted computation due to failed retry-loop executions. First, we derive such a bound

based on the assumption that retry-loop costs3 of di�erent shared objects are uniform. (This

assumption is equivalent to assuming that the cost of every retry loop equals that of the

largest retry loop in the system.) Based on this bound, we derive scheduling conditions for

RM, DM, and EDF scheduling. The bound that we estimate can be inaccurate if retry-loop

costs of di�erent lock-free objects can vary widely. Later, we relax the assumption that all

retry-loop costs are uniform, and derive a much tighter bound on wasted computation using

linear programming. Finally, we derive scheduling conditions for each of the RM, DM, and

3The cost of executing one iteration of a lock-free retry loop.

16

EDF schemes based on this tighter bound.

1.4.2 Eliminating Hardware Support for Strong Primitives

A possible criticism of lock-free objects is that they require hardware support for

strong synchronization primitives such as CAS2. The fact that lock-free objects are typically

implemented using strong synchronization primitives is no accident. In his seminal work

[36], Herlihy showed that strong primitives are, in general, necessary for implementing

lock-free objects. Herlihy's results are based upon a categorization of objects by \consensus

number". An object has consensus number N if it can be used to solve N -process consensus,

but not (N+1)-process consensus, in a lock-free manner. In the consensus problem, a set of

N asynchronous processes, each with a given input value, must agree on a common output

value equaling some process's input. Herlihy showed that an object with consensus number

N is universal in a system of N processes. An object is universal in a system of N processes

if it can be used to implement any object in a lock-free (or wait-free) manner in that system.

These results give rise to a \hierarchy" of objects: each object is placed at the level of its

consensus number and, in a system of N processes, it is impossible to construct a lock-free

(or wait-free) implementation of a shared object at level N using any object from a lower

level. Herlihy's results are signi�cant because they imply that primitives with unbounded

consensus numbers, such as CAS and CAS2, are necessary for implementing general-purpose

lock-free objects, i.e., objects that may be accessed by an unbounded number of tasks. Thus,

Herlihy's hierarchy implies that lock-free objects cannot be implemented in processors that

do not support su�ciently strong primitives.

Nevertheless, we show that Herlihy's hierarchy collapses for uniprocessor real-

17

time systems because load and store primitives have unbounded consensus number in such

systems. We also show that lock-free objects tailored for real-time systems are more e�cient

than objects designed for general asynchronous systems. Our results are based on a real-

time task model that exploits certain characteristics of task interleavings that arise when

priority-based schedulers are used. We develop this task model in Chapter 4 and then use

this task model to simplify lock-free object implementations for real-time systems that use

priority-based scheduling. The main results in Chapter 4 are as follows. First, we show that

N -task consensus can be solved using only load and store instructions under the real-time

task model. Second, we provide two CAS implementations based on load/store instructions

and the memory-to-memory move instruction, respectively. Finally, we provide a wait-free

MWCAS implementation that uses single-word CAS instructions.

1.4.3 A General Framework for Lock-Free Accesses

A key advantage of lock-based schemes is that they provide an easy-to-use frame-

work for updating multiple shared objects via nested critical sections. For example, in

order to transfer the contents of one shared queue to another, a task acquires locks for these

two objects in a speci�c order, performs the transfer, and then releases the locks. In con-

trast, universal lock-free constructions that allow updates to multiple objects [7, 73] | the

lock-free counterpart to nested critical sections | are not competitive with nested critical

sections in real-time systems. Another advantage of using lock-based schemes is that, with

little e�ort, any sequential object implementation can be converted to its concurrent ver-

sion. In contrast, there are no known techniques for easily deriving object-speci�c lock-free

implementations of an object from its sequential implementation. Hence, lock-free objects

18

are hard to design correctly.

In Chapter 5, we consider the problem of e�ciently implementing multi-object

lock-free operations and transactions, the lock-free counterpart to nested critical sections.

Towards this end, we present a universal construction that supports lock-free multi-object

operations, and that is based on the MWCAS primitive that we develop in Chapter 4. Our

implementation is more e�cient than previously known universal constructions that support

multi-object operations because it is speci�cally tailored for real-time systems. As explained

in Chapter 5, our universal construction can also be used to implement memory-resident

real-time databases.

1.4.4 Experimental Results

We present experiments that demonstrate the e�ectiveness of the techniques de-

scribed in Chapters 3, 4, and 5. Details of the experiments and the corresponding results are

outlined in Chapter 6. First, we present a formal comparison of the various object-sharing

schemes based on the scheduling conditions derived in Chapter 3. Second, we present

detailed simulation studies that compare the performance of lock-free, wait-free, and lock-

based schemes for various task sets and object access characteristics. Third, we provide a

basis for comparing object-speci�c implementations under lock-based and lock-free schemes

by providing typical access costs of common objects such as queues, stacks, linked lists, and

read/write bu�ers, as measured from an actual implementation. Finally, we describe exper-

iments we performed on a real-time videoconferencing system; these experiments provide

empirical evidence demonstrating the utility of lock-free objects in practical systems. Our

experiments involve comparing the performance of three versions of the videoconferencing

19

system. The �rst version uses lock-based schemes to implement shared queues accessed

by tasks in the system; the second and third versions of the system employ lock-free and

wait-free shared queues, respectively. We compare the performance of the di�erent versions

under di�erent scheduling schemes and tabulate the results.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. A context for our work, along

with related background material, is presented in Chapter 2. Chapter 3 describes scheduling

conditions for hard real-time task sets that access lock-free objects. In Chapter 4, we

present several algorithms and techniques to implement strong primitives in systems that

lack adequate hardware support. An object-sharing framework is presented in Chapter 5

that supports operations on many arbitrary lock-free objects simultaneously. Experimental

results that compare and contrast the behavior of lock-free and lock-based schemes are

presented in Chapter 6. Finally, conclusions and a discussion of future directions for this

research appear in Chapter 7. (This dissertation includes work that is based on previously

published work [9, 11, 12, 13, 14, 70].)

Chapter 2

Background and Related Work

In this chapter, we provide background material on real-time systems and lock-free

objects. First, we present scheduling conditions for various real-time scheduling schemes.

Then, we describe various lock-based object-sharing schemes used in conventional real-time

systems. Finally, we present background material on lock-free objects. In particular, we

explain the relevance of consensus numbers and Herlihy's consensus hierarchy to lock-free

implementations, and then provide a description of the correctness requirements of lock-free

objects. We also present descriptions of universal constructions by Herlihy [36, 37] and by

Anderson and Moir [7, 8] because they are relevant to this dissertation. This chapter con-

cludes with a brief discussion of previous work on object-speci�c lock-free implementations.

2.1 Scheduling Conditions

Scheduling disciplines in real-time systems can be broadly classi�ed into preemptive

and non-preemptive schemes, depending on whether tasks can be preempted during their

21

execution. Under non-preemptive schemes, system calls to lock or unlock an object are not

necessary because the scheduler provides mutual exclusion for free. Hence, object sharing

is not an issue when non-preemptive schemes are used. For this reason, we consider only

preemptive scheduling schemes in this dissertation. Speci�cally, we consider the RM, DM,

and EDF schemes because (i) they are commonly used in practical real-time systems, and

(ii) they are known to be optimal static- and dynamic-priority schemes for scheduling

independent, synchronous task sets on uniprocessor real-time systems. A static-priority

(dynamic-priority) scheme is said to be optimal i� it can successfully schedule any task set

that is schedulable under any other static-priority (dynamic-priority) scheme. As mentioned

earlier, scheduling conditions provide a priori guarantees on the schedulability of real-time

task sets | hard real-time systems require such a priori guarantees. The rest of this

subsection deals with scheduling conditions for the RM, DM, and EDF scheduling schemes.

2.1.1 Static-Priority Scheduling Conditions

In [60], Liu and Layland developed a su�ciency condition for determining the

schedulability of a synchronous, periodic, and independent task set scheduled under the

RM scheme. They showed that, under the RM scheme, schedulability is related to the

achievable worst-case processor utilization. The derivation of their condition is based on

the notion of a critical instant. A critical instant for a task is de�ned to be an instant at

which a request for that task will have the longest response time. The reasoning behind

their critical instant argument is as follows: if a task's job can meet its deadline when

released at its critical instant, then every job of that task will meet its deadline. Liu and

Layland showed that the critical instant of every task occurs at its �rst job release, when

22

it is released along with all higher-priority tasks. They also proved that a set of N periodic

tasks is schedulable under the RM scheme if cumulative processor utilization of the tasks

is at most N � (21=N � 1), which converges to 0.69 as N tends to in�nity. Hence, a periodic

task set is schedulable if the worst-case cumulative processor utilization is at most 69%.

Although Liu and Layland's scheduling condition is appealing because of its simplicity, it

is not very accurate and can lead to under-utilization of the processor.

Later, Lehoczky, Sha, and Ding showed that the maximum achievable utilization

under the RM scheme is close to 88% in practice [57], thereby showing that the condition

developed in [60] is not su�ciently accurate. Based on a critical instant argument, Lehoczky

et al. also developed an exact schedulability test for synchronous, independent, periodic task

sets [57]. According to this test, such a task set is schedulable i� the following condition

holds for every task Ti in the task set, where 0 � i < N .

(9t : 0 < t � pi :
iX

j=0

&
t

pj

'
� cj � t) (2.1)

Expression (2.1) is obtained by determining the worst-case cumulative demand

placed by a set of tasks over an interval. In this expression, the worst-case computational

requirement of task Tj and its task period are denoted by cj and pj, respectively. The

summation on the left-hand side of the inequality denotes the cumulative demand placed

on the processor by Ti and higher-priority tasks in the interval [0; t]. (The term dt=pje

denotes the exact number of job releases of Tj in that interval; each released job demands

cj units of processing.) The right-hand side of the above inequality denotes the maximum

processor time available in the interval [0; t].

As mentioned previously, the RM scheme requires that the relative deadline of

23

every task in the system be equal to its period. From a practical standpoint, this requirement

is too restrictive because a task may have a relative deadline that is di�erent from its period.

For example, in order to ensure that sensor values are propagated to other tasks as soon as

possible, a tracking task in a radar system may execute every 100 milliseconds but have a

relative deadline of 30 milliseconds.

Leung and Whitehead [58] showed that the DM scheme is an optimal static priority

scheme when each task's relative deadline is at most the length of its period. However, they

did not provide scheduling conditions for the DM scheme. Later, in [18], Audsley et al.

developed a necessary and su�cient scheduling condition for periodic and synchronous task

sets scheduled under the DM scheme. The scheduling condition in [18] is similar to (2.1)

with one di�erence: t ranges from 0 to li instead of pi, where li is the relative deadline of

task Ti. When task sets are asynchronous, the conditions for RM and DM scheduling are

no longer both necessary and su�cient. This is because conditions that are necessary and

su�cient for synchronous task sets to be schedulable are only su�cient for asynchronous

task sets [21, 58].

2.1.2 Dynamic-Priority Scheduling Conditions

Under dynamic-priority schemes, a task's priority can change over time. Such

schemes allow higher achievable processor utilization than static-priority scheme, but they

entail higher run-time overhead compared to static-priority schemes. Of the existing

dynamic-priority schemes, EDF and least-laxity-�rst (LLF) scheduling are the most well

known [60, 65]. Under the LLF scheme, at every instant, the job with the smallest laxity

is given highest priority. The laxity of a job J at time t is given by t� d� c, where d and

24

c denote J 's deadline and its unful�lled computation requirement, respectively. Theoreti-

cally, the LLF and the EDF scheduling schemes exhibit similar schedulability because their

scheduling conditions are identical. However, when LLF scheduling is used in practice, sig-

ni�cant run-time overhead is incurred due to excessive context switching. In contrast, under

the EDF scheme, relatively few context switches occur at run-time. Hence, EDF scheduling

is preferred to LLF scheduling in practical uniprocessor real-time systems. For this reason,

EDF scheduling is the only dynamic-priority scheme considered in this dissertation.

Liu and Layland were also the �rst to derive scheduling conditions for independent,

periodic, synchronous task sets scheduled under the EDF scheme [60]. They showed that a

set of N periodic tasks is schedulable i� the cumulative processor utilization of all tasks in

the system is at most one. Formally, their scheduling conditions is as follows.

N�1X
j=0

cj

pj

� 1 (2.2)

In the derivation of (2.2), the relative deadline of every task Ti is assumed to be

equal to its task period. As mentioned earlier, this assumption is too restrictive because it

does not hold for many task sets in practice. We now consider conditions that determine

the schedulability of an asynchronous task set under the EDF scheme, when tasks' relative

deadlines do not equal their periods.

Because EDF is an optimal scheduling scheme [27], the problem of determining

the schedulability of a task set under the EDF scheme is equivalent to the problem of

determining the feasibility of that task set. (Recall that an optimal scheduling scheme can

schedule any feasible task set.) The feasibility problem was studied by Baruah, Howell, and

Rosier [21], who developed necessary and su�cient conditions for determining the feasibility

25

of an asynchronous set of periodic, independent tasks. They proved that (2.2) is a necessary

(but not su�cient) condition for scheduling tasks under the EDF scheme, when task periods

are di�erent from their deadlines. We now state the su�cient condition developed in [21]

for determining the feasibility of a set of N periodic tasks. The condition below is also a

su�cient condition for schedulability of that task set under the EDF scheme.

(8t : 0 � t :
N�1X
j=0

cj �max (0;
j
t�sj�lj

pj

k
) � t) (2.3)

In (2.3), si and li denote task Ti's �rst job release point and its relative deadline,

respectively, where si � 0. (Other terms in (2.3) are de�ned in the glossary.) In the above

expression, the left-hand side of the inequality denotes the maximum possible demand due

to job releases of all tasks in the interval [0; t], and the right-hand side denotes the available

processor time in that interval. As stated above, the expression cannot be evaluated because

t is unbounded. Fortunately, it is shown in [21] that the above expression only needs to be

checked for values of t that are less than or equal to 2 � L+max 1�i�N (si) +max 1�i�N (li),

where L is the least common multiple (LCM) of the task periods. Thus, in the worst-case,

determining the feasibility of a task set is exponential in the task periods. However, if an

upper bound on the processor utilization is known, then Baruah et al. showed that the

values of t for which the above expression must be evaluated lies in a much smaller range.

Speci�cally, if processor utilization U lies in the interval (0; 1), then t in the above condition

ranges from 0 to M , where M = U

1�U
max 1�i�N (pi � li).

26

Task Object Monitor

begin

rendezvous(any task Ti);

h Access shared object i
rendezvous(Ti)

end

Figure 2.1: Implementation of a monitor task using using rendezvous primitive.

2.2 Lock-Based Object Sharing

The problem of task synchronization and interprocess communication in hard real-

time systems was �rst studied by Al Mok. In his dissertation [65], Mok proved a number of

fundamental results that highlighted the complexity of lock-based real-time object sharing.

In particular, he proved that the problem of deciding whether a schedule exists for a set of

periodic tasks that only use semaphores to enforce mutual exclusion is NP-hard in the strong

sense. As a �rst step towards developing a practical real-time object-sharing scheme, Mok

prescribed the deterministic rendezvous approach and the kernelized monitor approach,

both of which are outlined below.

Under the deterministic rendezvous model, tasks communicate with one another

using ADA-like rendezvous primitives1 and are scheduled using the EDF scheme. Shared

objects under this model are implemented via special monitor tasks as illustrated in Fig-

ure 2.1. To access a shared object, a task Ti executes the following code sequence \ren-

dezvous(Object Monitor); rendezvous(Object Monitor)". To enforce mutual exclusion, the

run-time scheduler modi�es task deadlines using information from a precomputed database

1Using such primitives, task Ti executes rendezvous(Tj) in order to synchronize with task Tj , and vice-

versa. If Ti executes that primitive before Tj , then it waits until Tj executes rendezvous(Ti).

27

| this ensures that a task is never preempted while executing within a monitor. However,

this approach is not very
exible because the database has to be recomputed every time

the task set is modi�ed. Furthermore, this technique su�ers two major shortcomings: �rst,

it places restrictions on the length of the task periods of communicating tasks; second, the

kernel does not di�erentiate between di�erent critical sections, i.e., a single logical shared

object is assumed.

Under the kernelized monitor model, the operating system enforces mutual ex-

clusion by allocating processor time to tasks in time quantums that are larger than the

longest critical section. At time t, the run-time system maintains a database of \forbidden

regions"2 in the interval [kL; (k+1)L], where L is the LCM of the task periods and k is some

integer such that kL � t � (k + 1)L. This database is recycled at run-time every L units

of time. This database is used by the scheduler to make scheduling decisions at run-time.

In particular, the scheduler allocates a time quantum to the task with the earliest deadline

at time t i� t does not lie within a forbidden region. However, this technique works well

only if the critical sections are small and the LCM of task periods is not very large. The

main shortcoming of these techniques is that they lack the
exibility to provide a general

framework for object sharing in real-time systems.

Lampson and Redell were the �rst to recognize priority inversion as a problem

associated with using lock-based objects in priority-based systems [55]. A priority inversion

occurs when a task is delayed by a lower-priority task that is inside a critical section. This

problem is illustrated in Figure 2.2(a). In Figure 2.2, up-arrows and down-arrows indicate

task invocations and task completions, respectively. Tasks are indexed in the order of

2Tasks cannot access shared resources during these forbidden regions.

28

t0
Time

(a)

T
1

T2

T3

T4

t0 t 1 Time

(c)

t0 t Time

(b)

t0 Time

(d)

Computation not involving shared object accessesObject S
1

Object S
2

t

t

t

t2

t3

t2

3

t4

2

2

t4

t4

3

t5

t5

T
1

T2

T3

T4

T
1

T2

T3

T4

T
1

T2

T3

T4

Priority Inversion

Figure 2.2: Illustrated example depicting (a) priority inversion, (b) the priority inheritance

protocol, (c) the priority ceiling protocol, and (d) the stack resource policy.

decreasing priorities; tasks T1 and T4 have the highest and lowest priorities, respectively.

Tasks T3 and T4 access S2 and S1, respectively; task T1 accesses both objects; T2 accesses

neither.

In Figure 2.2(a), after they acquire locks to objects S2 and S1, T4 and T3 are

preempted at times t0 and t2, respectively. At time t3, T1 is blocked from accessing object

S1; it is forced to relinquish the processor to T3. However, T1 is delayed from accessing S1

for a lengthy duration because T4's object access is delayed until jobs of tasks T2 and T3

complete execution. Thus, task T1 can potentially miss its deadline due to a lower-priority

task's object access. Clearly, priority inversion should be avoided, or its ill-e�ects should

be minimized.

29

Priority inversion manifests itself in the form of blocking factors in the scheduling

conditions for priority-based schemes. The blocking factor associated with task Ti represents

the longest duration for which priority inversion can occur during the execution of Ti or

higher-priority tasks. The performance of lock-based schemes for object sharing is measured

in terms of their ability to minimize blocking factors. The rest of this section deals with

mechanisms for reducing blocking factors in lock-based schemes.

Lampson and Redell were the �rst to solve the priority inversion problem using

kernel support by associating with each resource R the priority of the highest-priority task

that may lock that resource [55]. The priority of any task that accesses resource R is

elevated to the priority associated with that resource. However, Lampson and Redell's

work was targeted for the Mesa programming language; they did not provide a general

solution to the priority inversion problem. Later, Sha, Rajkumar, and Lehoczky considered

this problem from a broader perspective of accessing lock-based objects in general priority-

based systems [71]. Based on ideas presented in [55], they developed several mechanisms

for reducing priority inversion. Two such mechanisms were developed by them: the priority

inheritance protocol (PIP) and the priority-ceiling-protocol (PCP) [71, 69]. Under the PIP,

if a task T is blocked by a lower-priority task T
0 that is accessing some object, then T

0

executes at T 's priority level for the remainder of its object access, i.e., T 0 inherits T 's

priority. Figure 2.2(b) illustrates the working of the PIP. As in Figure 2.2(a), tasks T3 and

T4 are preempted during their respective object accesses at times t0 and t2, respectively.

At time t3, task T1 is prevented from accessing object S1; it is forced to relinquish the

processor to T4 which holds the lock to S1 at that time. Before T4 resumes execution, the

30

kernel raises its priority to be equal to that of T1. We say that T4 inherits T1's priority at

time t2. Observe that the priority inheritance mechanism prevents T2 from preempting T4

at time t4. Later, at time t5, T1 is blocked for the second time by task T3, which inherits T1's

priority and completes its object access before relinquishing the processor to T1. Although

the PIP eliminates unbounded priority inversion, it can still su�er large blocking factors

resulting from multiple blocking . Multiple blocking occurs when a task is blocked multiple

times during an invocation. In the example in Figure 2.2(b), T1 is blocked before each

object access.

In order to eliminate multiple blocking, Sha et al. enhanced the basic priority

inheritance mechanism with the notion of a priority ceiling to create the PCP. The priority

ceiling of a shared object is the priority of the highest-priority job that may access that

object. Under the PCP, a task acquires a lock to a shared object i� its priority is greater than

the maximum priority ceiling of any locked shared object, as illustrated in Figure 2.2(c).

In this example, the priority ceiling of both shared objects equals T1's priority. At time t1,

T3 is blocked from accessing S2 because its priority is smaller than the ceiling of object S1,

which is locked by T4. The PCP ensures that T4 inherits T3's priority before it resumes

execution at time t1. Later, before T4 can complete its object access, it is preempted by T1

at time t2. However, because T1's priority is not greater than priority ceiling of object S1,

it is forced to relinquish the processor to T4 at time t3. Task T4 then inherits T1's priority

and successfully completes its object access.

Note that, unlike the PIP, each job is blocked at most once under the PCP. In

particular, the duration for which a job of task T is blocked is bounded by the longest critical

31

section that belongs to some lower-priority task that accesses an object also accessed by T .

However, as evident from this example, the PCP can result in additional context switches.

In Figure 2.2(c), extra context switches occur at times t0, t1, t2, and t3. If context switches

are expensive, the PCP can result in loss of predictability because the currently-known

scheduling analysis [71] for the PCP ignores the e�ect of these extra context switches.

Furthermore, these additional context switches can signi�cantly increase blocking factors.

The stack resource policy (SRP) [19] eliminates additional context switches by

delaying the execution of a task until all required resources become available. Unlike the

PIP/PCP, the SRP di�erentiates between priority levels and preemption levels. The notion

of preemption levels is based on the relative deadlines of tasks; it is independent of priority

levels. In particular, if a task T has a closer relative deadline than task T
0, then T 's

preemption level is higher than that of T 0. Preemption levels are derived from the fact that,

in many common real-time scheduling schemes, a task T cannot preempt another task T 0 if

its relative deadline is at least that of T 0. Examples of such schemes that allow preemption

levels are RM, DM, and EDF scheduling. Because preemption levels are independent of the

underlying scheduling scheme, the SRP can be used for both static- and dynamic-priority

schemes; in contrast, the PCP and PIP can only be used for static-priority schemes.

The SRP introduces the notion of preemption ceilings, akin to the notion of a

priority ceiling in the PCP. The SRP ensures that a task T begins execution only when all

higher-priority tasks are idle and when no object is locked by any task with a preemption

level higher than that of T . In Figure 2.2(d), task indices are inversely related to their

preemption levels; T1 and T4 are at the highest and lowest preemption levels, respectively.

32

The preemption ceilings of S1 and S2 are equal to T1's preemption level. In this example,

task T3 does not start executing at t0 because its preemption level is not greater than S1's

preemption ceiling; T1 does not start executing at time t2 for the same reason. By delaying

a job's execution, the SRP ensures that the job never blocks during its execution. The SRP

successfully addresses many of the problems associated with the PCP: �rst, it minimizes

additional context switching overhead; second, it supports general semaphores.

In [44], Je�ay developed another protocol for lock-based object sharing under

the EDF scheme, namely the earliest-deadline-�rst with dynamic-deadline-modi�cation

(EDF/DDM) protocol. The working of the EDF/DDM scheme is not illustrated here be-

cause it imitates the behavior of the SRP under EDF scheduling. Under the EDF/DDM

scheme, a deadline ceiling is associated with every shared object S. The deadline ceiling of

an object is equal the smallest relative deadline of any task that accesses S. Before access-

ing an object S, task T executes a acquire resource system call that modi�es T 's deadline

so that T cannot be preempted during its access by any other task that accesses S. Upon

completing its access T performs a release resource system call that restores its original

deadline.

2.2.1 Static-Priority Scheduling Conditions

When static-priority schemes are used, scheduling conditions for task sets that

access lock-based objects are similar to those for independent tasks, with one di�erence:

conditions of the former type have an additional blocking factor which gives the maximum

duration of time for which a task can be blocked by lower-priority tasks. Sha, Rajkumar,

and Lehoczky [71] developed a su�cient condition for determining the schedulability of a

33

set of periodic tasks that access lock-based objects and that are scheduled under the RM

scheme. According to their condition, a task set is schedulable under the RM scheme if the

following condition holds for every task Ti.

(9t : 0 < t � pi : Bi +
iX

j=0

&
t

pj

'
� cj � t) (2.4)

Observe that the only di�erence between the above condition and Condition (2.1)

for independent tasks is the blocking factor Bi on the left-hand side of the inequality. The

term Bi denotes the maximum amount of execution time claimed by lower-priority tasks

during the execution of a job of task Ti. For any given task set, the Bi term is usually much

larger for PIP than it is for PCP and SRP. This is because of the multiple blocking problem

explained earlier. In contrast, Bi is at most the length of one critical section, under the

PCP and the SRP. The scheduling condition for lock-based task sets scheduled under the

DM scheme is similar to (2.4) with one di�erence: t ranges up to li rather than pi.

2.2.2 Dynamic-Priority Conditions

The least predictable and least e�cient mechanism for object sharing under

dynamic-priority schemes is the dynamic priority ceiling protocol (DPCP) developed by

Chen and Lin [26]. The DPCP is a straightforward adaptation of the PCP for dynamic-

priority scheduling. One major di�erence between these schemes is that the DPCP modi�es

priority ceilings of objects at run-time. Chen and Lin developed the following scheduling

condition for the DPCP [26].

N�1X
j=0

cj +Bj

pj

� 1 (2.5)

In the above equation, Bj represents the maximum amount of blocking that can

34

experienced by a job of task Tj . The DPCP su�ers from a major shortcoming: maintaining

dynamic priority ceilings entail signi�cant overhead at run-time. Furthermore, the large

blocking factors in Condition 2.5 result in poor predicted schedulability. These problems

were later addressed and solved in the SRP developed by Baker [19] and the EDF/DDM

protocol developed by Je�ay[43, 44]. These schemes perform much better than DPCP

because they result in optimal blocking factors. Although the implementation of the SRP

and EDF/DDM are identical, the scheduling conditions developed for them are di�erent.

Baker developed the following su�cient condition for determining the schedula-

bility of a task set under the EDF scheme, when tasks' relative deadlines are not equal to

their periods [19].

(8k : 0 � k � N � 1 :
Bk

lk

+
kX

j=0

cj

lj

� 1) (2.6)

The term Bk=lk is akin to the blocking factor in (2.4). It denotes the fraction of

processor utilization wasted due a task at a lower-preemption level executing at the level

of task Tk. In [19], Baker also developed a scheduling condition for a set of tasks that

have relative deadlines equal to their periods. This condition is similar to (2.6), with one

di�erence: the lk and lj terms are replaced by pk and pj, respectively. Baker's condition is

also applicable to the DPCP, and is a signi�cant improvement over Chen and Lin's condition

[26].

In [44], Je�ay developed an exact schedulability test for asynchronous, sporadic

tasks scheduled under the EDF/NPD scheme and that access objects using the EDF/DDM

scheme. (As explained earlier, if tasks are periodic, then the condition in [44] is su�cient

but not necessary.) According to this test, such a task set is schedulable i� the following

35

conditions hold.

N�1X
j=0

cj

pj

� 1 (2.7)

(8i; t : 0 6= i � N � 1 ^ xi 6= 0 ^ pxi
< t < pi : ci +

i�1X
j=0

j
t�1+pj�lj

pj

k
cj � t) (2.8)

The terms xi and pxi
denote the index of the shared object that has the smallest

deadline ceiling of any object accessed by Ti and the deadline ceiling of that object, respec-

tively. (xi equals zero if Ti does not access any shared object.) Condition (2.7) states that

the processor utilization is at most one. The left-hand side of the inequality in Condition

(2.8) denotes the maximum total demand, in any interval of length t, due to tasks with

relative deadline less than or equal to Ti's relative deadline. The right-hand side of the

inequality denotes the available processor time in that interval. The above conditions are

also applicable to the DPCP and the SRP schemes, and are signi�cantly more accurate

than Conditions (2.5) and (2.6).

2.3 Accounting for System Overhead Costs

In the experiments described in Chapter 6, we determine the schedulability of a

set of tasks in a videoconferencing system. The tasks in the system are scheduled under

the EDF/NPD scheme or the DM scheme. However, to determine the schedulability of

that task set, we do not use Conditions (2.7) and (2.8) or Condition (2.4) directly, because

these conditions do not account for system overhead costs such as context switch costs and

interrupt handling overhead costs. We now discuss previous work on incorporating system

overhead costs into scheduling conditions for periodic task sets.

36

Context Switching Overhead Costs: In [48], Katcher, Arakawa, and Strosnider devel-

oped a RM scheduling condition that accounted for context-switching overhead costs. They

enhanced Condition 2.4 by including an additional term to account for context switching

overhead costs. In [48], Katcher et al. derived the following expression for CS i(t) the total

additional demand due to context switches in Ti or higher-priority in an interval of length

t.

CS i(t) �
iX

j=0

l
t

pj

m
(Csave + Crest) (2.9)

In (2.9), the worst-case time to save the context and to restore the context of any

task is denoted by Csave and Crest, respectively. The reasoning behind this expression is as

follows. In any interval of length t, dt=pje jobs of Tj are released, and the each release of a

job of Tj entails Csave +Crest units of context switching cost in the worst case: Csave units

to save the context of the currently executing task and Crest units to restore the context a

lower-priority job when Tj 's job completes. Note that this expression is pessimistic because

a lower-priority job need not be executing when a job of task Tj is released; the processor

may be idle or a higher-priority job may be executing. The expressions in [48] were derived

only for the RM scheme, but they also hold for the DM and EDF schemes.

Interrupt Handling Overhead Costs: The problem of accounting for interrupt handling

overhead costs was �rst addressed by Je�ay and Stone in [46]. In their work, Je�ay and

Stone focus on a system in which interrupts arrive periodically and in which a set of periodic

tasks are scheduled under the EDF scheme. They considered a system consisting of a set

of M interrupts fI0; : : : ; IM�1g and N tasks fT0; : : : ; TN�1g, and derived the following

expression that places a bound on IH (t) the total demand due to handling interrupts in

37

any interval of length t.

IH (t) �
M�1X
j=0

l
t

vj

m
ej (2.10)

In (2.10), ej and vj denote the worst-case execution cost and the period of interrupt

Ij, respectively. The reasoning behind (2.10) is as follows: in any interval of length t, there

are at most dt=vje interrupts of type Ij, each of which requires ej units of computation.

Although, the work in [46] considers only the EDF scheme, it is also applicable to static-

priority schemes.

Under the RM scheme, a scheduling condition that accounts for interrupt-handling

and context-switching overhead costs can be achieved by including the terms IH (t) and

CS i(t) in the left-hand side of the inequality in Condition (2.4). (A similar condition for

the DM scheme looks identical that for the RM scheme with one small di�erence: t ranges

from 0 to li instead of 0 to pi.)

In [77], Stone adapted the conditions in [46] for EDF/NPD scheduling to ac-

count for context switching and interrupt handling costs, when tasks access tasks under the

EDF/DDM scheme; these conditions are stated below.

M�1X
j=0

ej

vj

+
N�1X
j=0

cj + Csave + Crest

pj

� 1 (2.11)

(8i; t : 0 6= i � N � 1 ^ xi 6= 0 ^ pxi
< t < pi : CS i(t)+ IH (t)+ ci+

i�1X
j=0

j
t�1+pj�lj

pj

k
cj � t)

(2.12)

38

2.4 Lock-Free Object Implementations

Lock-free shared objects have been proposed as viable alternatives to lock-based

objects in general asynchronous systems by various researchers [1, 3, 4, 36, 37, 49, 54, 67,

68, 74]. In this dissertation, we use the term \lock-free" to refer to object implementations

based on an unbounded retry loop structure like that depicted in Figure 1.2.3 Some lock-

free implementations do not adhere to this characterization. For example, there exists

an important special class of lock-free implementations known as wait-free implementations

[36, 37, 67, 54] in which operations must satisfy a strong form of lock-freedom that precludes

all waiting dependencies among tasks, including potentially unbounded retry loops.

Formally, a shared object implementation is lock-free i� the following holds: if

several objects access a shared object concurrently and a subset of the tasks are delayed,4

an operation by some non-delayed task is guaranteed to complete in a bounded number of

its own steps. Researchers have also proposed the use of wait-free objects, which constitute

a special case of lock-free objects. Wait-free objects are required to satisfy a strong form

of lock-freedom that precludes all waiting dependencies among tasks, including potentially

unbounded loops. An implementation is said to be wait-free i� it is lock-free and every

task accessing that object is guaranteed to complete its execution in a bounded number of

its own steps. Note that the above de�nitions preclude the use of mutual exclusion in the

implementation of lock-free objects, because if a task is permanently delayed within the

critical section, then no task completes its operation. Also, note that the above de�nitions

imply that individual wait-free operations are required to be starvation-free. In contrast,

3Some authors use the term \nonblocking" to refer to such implementations.
4In a uniprocessor system, such delays are typically caused when a task is preempted during its operation.

39

lock-free objects guarantee only system-wide progress: if several tasks concurrently access

such an object, then some access will eventually complete.

In the remainder of this section, we introduce linearizability | the correctness

condition used to verify lock-free implementations | and describe previous research on

such implementations.

2.4.1 Linearizability

An operation on lock-free objects typically requires many atomic statements that

are executed over an interval of time. Because tasks can invoke concurrent operations, two

or more of these intervals may overlap. This gives rise to a partial order over invocations:

if one invocation completes before another invocation starts, then the former precedes the

latter in the partial order, and if two invocations overlap, then they are not ordered. In

order for a shared object implementation to be useful, each operation should \appear" to the

invoking tasks to take e�ect instantaneously at some point during its execution. The formal

correctness condition used to ensure this is linearizability [39]. Linearizability requires that

the partial order that arises from any series of invocations on an object can be extended to

a total order in such a way that the values returned by the invocations in the total order

are consistent with the sequential semantics of the implemented object. In particular, when

an object implementation is linearizable, operations performed on that object can always

be serialized in some order depending on task interleavings at run-time.

Consider a lock-free shared queue based on the implementation given in Figure

2.3. (Other than the line numbers, the implementation in Figure 2.3 is identical to that in

Figure 1.2.) The lock-free enqueue operation in this implementation linearizes to the CAS2

40

type Qtype = record data: valtype; next : pointer to Qtype end

shared var Head , Tail : pointer to Qtype

private var old, new : pointer to Qtype; addr : pointer to pointer to Qtype

procedure Enqueue(input : valtype)

1: �new := (input, NULL);

repeat

2: old := Tail

3: if Tail = NULL then addr := &Head

4: else addr := &(old�>next) �

5: until CAS2(&Tail ; addr ; old ;NULL; new ; new)

procedure Dequeue() returns �Qtype

repeat

6: old := Head ;

7: if old = NULL then return NULL �;

new := old�>next ;

8: if old = Tail then

9: addr := &Tail ;

10: ret := CAS2(&Head ; addr ; old ; old ;NULL;NULL)

else

11: addr := &(old�>next);

12: ret := CAS2(&Head ; addr ; old ; new ; new ;NULL)

�

until ret ;

13: return(old)

Figure 2.3: Lock-free queue implementation.

Head =Tail = NULL

Dequeue

6 7

return NULL

2 5 2 5

Dequeue

8

old = Tail

128

old = Tail/

12

6 7

return
 NULL

1 Dequeue2 4

Dequeue
31 2

Time

Enqueue (45) Enqueue (23)
Ti

Tj
return 45 return 23

Figure 2.4: Example interleavings of lock-free enqueue and dequeue operations.

primitive (line 5), i.e., the enqueue operation takes e�ect i� the CAS2 operation is success-

fully executed. The dequeue operation linearizes to one of three statements, depending on

the number of elements in the queue when the current head of the queue is read in line 6.

The dequeue operation linearizes to: (i) line 6, if the queue is empty; (ii) line 10, if the

queue contains one element; (iii) line 12, if the queue contains more than one element.

Suppose that two tasks Ti and Tj access a common shared queue that is im-

41

plemented as shown in Figure 2.3. Figure 2.4 depicts some possible interleavings of the

operation steps of tasks Ti and Tj. In the �gure, only statement numbers relevant to this

example are shown and the queue is assumed to be empty initially. In the �gure, operations

Enqueue1 and Dequeue1 overlap and their steps are interleaved. These operations linearize

to statements 5 and 6, respectively. However, Ti executes statement 5 after Tj executes

statement 6. Hence, the operations appear as if they are executed in the order \Dequeue1;

Enqueue1(45)". Observe that the return values of these operations correspond to the return

values one would expect if the operations are sequentially executed in the same order. Sim-

ilarly, the linearization statement of operation Enqueue2(23) (Dequeue4) is executed before

that of Dequeue2 (Dequeue3). The operations in the example appear as if they are executed

in the same order in which their linearization statements are executed, i.e., the operations

produce return values as if they were executed in the following serial order: \Dequeue1;

Enqueue1(45); Enqueue2(23); Dequeue2; Dequeue4; Dequeue3".

2.4.2 The Consensus Hierarchy

In the consensus problem, a set of N asynchronous processes, each with a given

input value, must agree on a common output value equaling some process's input. Loui and

Abu-Amara [61] showed that the N -task consensus problem cannot be solved in a wait-free

manner for N > 1 in an asynchronous system using load and store instructions.

Herlihy later extended these results to other primitives by classifying each primitive

according to its consensus number [35, 36]. The consensus number of a primitive is the

maximum number of tasks for which a wait-free (or lock-free) consensus algorithm exists

that relies only on that primitive, and load/store instructions. Herlihy showed that for each

42

Consensus Object

Number

1 read/write registers

2 test&set, swap, fetch&add, queue
...

...

2n� 2 n-register assignment
...

...

1 memory-to-memory move and swap,

compare&swap,

load-linked/store-conditional

Table 2.1: Herlihy's consensus-number hierarchy.

N � 1, there exists a a primitive with consensus number N . More importantly, he also

showed that an object with consensus number N is universal in a system of N tasks. A

primitive is universal in a system of N tasks if it can be used to implement any object5 in

a wait-free (or lock-free) manner in that system. These results give rise to a \hierarchy"

of objects: each object is placed at the level of its consensus number and, in a system

of N tasks, it is impossible to construct a wait-free implementation of a shared object at

level N using any object from a lower level. Herlihy's hierarchy is shown in Figure 2.1.

Herlihy's hierarchy implies that any object can be implemented in a wait-free manner for

any number of tasks in a system that supports instructions like CAS, CAS2, or LL/SC.

(Formal de�nitions of these primitives are given in Figure 2.5) It also implies that, in

general, lock-free objects cannot be implemented using only load and store instructions,

even when they are accessed only by two tasks.

5Note that there is a subtle di�erence between the terms \object" and \primitive". Load and CAS

primitives can be used to access and modify a shared variable, whereas a CAS object is a shared object that

implements a shared variable that can be modi�ed using a CAS operation provided by that implementation.

Conceptually, a shared variable that is accessed (modi�ed) using a load (CAS) primitive can be considered

as a CAS object.

43

CAS(X; v;w) � if X = v then X := w; return true else return false �

CAS2(X;Y; v; w; x; y) � if X = v ^ Y = w then X := x; Y := y; return true

else return false �

MWCAS(N;X; v; w) � for i := 0 to N � 1 do

if X[i] 6= v [i] then return false �

od;

for i := 0 to N � 1 do X [i] := w [i] od;

return false

LL(X) � validX [p] := true; return X

SC(X; v) � if validX [p] then

X := v;

for i := 0 to N � 1 do validX [i] := false od;

return true

else

return false

�

Figure 2.5: Equivalent atomic code fragments for common instructions used. Fragments for LL and
SC are for task Tp. validX is a shared array of booleans associated with variable X . i is a private
variable of task Tp. N is the total number of tasks. The semantics of SC are unde�ned if task Tp
has not previously executed a LL instruction.

2.4.3 Universal Constructions of Lock-Free Objects

In recent years, several groups of researchers have presented methods for automat-

ically \transforming" sequential object implementations into lock-free ones [20, 35, 36, 37,

73]. These methods are called universal constructions. A universal construction relieves

the object designer of the need to reason about concurrency, thereby greatly simplifying

the task of providing a correct lock-free implementation for a particular shared object. We

now outline two universal constructions that are relevant to the work in this dissertation:

one by Herlihy [37], and another by Anderson and Moir [8].

44

Herlihy's Construction

In [37], Herlihy presents two universal constructions for \small" and \large" ob-

jects. Herlihy's lock-free construction for small objects maintains N + 1 copies of the

implemented object | a \current" copy, and a \working" copy for each task. As shown in

Figure 2.6, a shared pointer records which copy contains the current value of the object.

In order to perform an operation, a task Ti reads the pointer to identify the current copy,

and then copies the contents of the current copy to Ti's local copy. Then, Ti performs the

desired operation by executing its sequential code on the local copy. Finally, Ti attempts

to modify the shared pointer so that it points to Ti's local copy, thereby making Ti's copy

current.

In Figure 2.6, tasks Ti and Tj are both attempting to perform an operation. If Ti

and Tj read the same object copy, then both perform their operations on the same object

value. If Ti subsequently modi�es the shared pointer to point to Ti's local copy, and then

Tj modi�es the pointer to point to Tj's local copy, then the e�ect of Ti's operation will

be lost. In order to avoid this condition, the pointer is read and written with two special

instructions, load-linked (LL) and store-conditional (SC). The LL instruction simply returns

the value of the pointer. The SC instruction, when executed by task Ti, writes a new value

to the pointer only if no other SC instruction has successfully modi�ed the pointer since Ti's

last LL on the pointer. Otherwise, the SC does not modify the pointer, and returns false.

Thus, in the scenario described above, Tj 's SC would return false, thereby informing Tj

that its operation had had no e�ect. In that case, Tj can restart the entire operation. Note

that Tj restarts its operation only if some other task successfully completes an operation.

45

Current
copy

p’s local
copy

q’s local
copy

Object pointer

Figure 2.6: Implementation of Herlihy's small object constructions.

Thus, the implementation is lock-free.

Objects that are \small" can be e�ciently implemented using the above technique.

However, if the object in question is \large", then the overhead associated with making a

private copy of the object could be very high. To overcome this problem, Herlihy proposes

that a large object be broken into \fragments" linked together by pointers in order to reduce

the copying overhead. Herlihy's lock-free implementation su�ers from two shortcomings.

First, the programmer has to determine the required fragmentation based on the semantics

of the object. The programmer also has to explicitly determine how the copying is done.

The burden of proving the correctness of an implementation is placed on the programmer.

Secondly, this approach reduces copying overhead only for certain objects such as heaps,

but not for other objects such as queues. To see why this is so, consider a queue that is

implemented as a linked list of blocks. An enqueue operation on such a queue must copy

the whole queue because, in order to link in a new block, the \next" pointer of the last

block must be modi�ed, which in turn necessitates modifying the next-to-last block, and so

46

on. As described below, these drawbacks are addressed in Anderson and Moir's universal

construction for large objects.

Large-Object Construction

Anderson and Moir's large-object construction [7] fragments a large object into

blocks; this is similar to Herlihy's approach for large object constructions. The construction

in [7] di�ers from Herlihy's in two aspects: it is array-based rather than pointer-based, and

it uses long-LL and long-SC primitives6 instead of single-word LL/SC primitives. long-

LL and long-SC primitives are not provided by any machine; they are implemented using

single-word LL/SC primitives. As illustrated in Figure 2.7, a large object is viewed as a

long array MEM that is fragmented into S blocks | where each block consists of B words

| accessible by a bank of pointers BANK . (In this example S equals 5.) In order to modify

the object, a task Ti �rst makes a private copy of the bank of pointers using the long-LL

routine. Then, task Ti accesses and modi�es elements of the array MEM using Read and

Write library routines, which are described below. After modifying the object, task p uses

a long-SC primitive to install its private copy of the bank of pointers as the new bank of

pointers.

The Read routine takes an \address" (this is actually an index intoMEM) as input

and returns the contents of that location. The parameters input to the Write routine are

an address (i.e., an index into MEM) and a new value. The Write procedure is described

using an example illustrated in Figure 2.7. In this example, in order to write into a location

in block 1, task Ti makes a local copy of block 1 and then modi�es its local copy. Task

6Unlike single-word LL/SC primitives, these primitives operate on \large" shared variables containing

multiple words.

47

process p’s
replacement
 pointers

process q’s
replacement
 pointers

process p’s
replacement
for block 1

process q’s
replacement
for block 2

MEM array made up
of S−word blocks

Block 1

Current Blocks

 BANK
 of
Pointers

Writes block 2

Reads block 3
Writes block 1

Reads blocks 3,5

Block 2

Block 3

Block 4

Block 5

Block 1
Copy of

Block 2
Copy of

Task T ’s operation i Task T ’s operationj

Figure 2.7: Implementation of the MEM array for large object constructions.

Ti also modi�es the pointer to block 1 in its bank of replacement pointers such that it

points to Ti's local copy. Task Tj writes into block 2 in a similar manner. The Read and

Write library routines hide from the programmer the implementation details associated

with copying blocks and other associated book-keeping.

Although Anderson and Moir's construction permits a great deal of transparency,

it su�ers from certain shortcomings. First, a task must copy (replace) the whole bank of

pointers even if it accesses (modi�es) only a small number of blocks. Hence, two operations

can interfere with each other even if they access di�erent sets of blocks. In the previous

example, the operations of tasks Ti and Tj can interfere with each other even though they

access di�erent blocks.

Another drawback of Anderson and Moir's construction concerns multi-object ac-

48

cesses, i.e., operations that update multiple objects simultaneously. Multi-object construc-

tions are the lock-free counterpart of nested critical sections. In conventional lock-based

systems, operations on multiple objects can be performed via nested critical sections. For

example, two critical sections might be nested in such a system to transfer the contents of

one shared bu�er to another. To achieve a high degree of concurrency, any implementation

that supports multi-object operations must allow operations on di�erent objects to proceed

concurrently. However, if a multi-object construction is based on Anderson and Moir's

large object construction, then operations of two tasks can interfere with one another even

if they access objects located in di�erent blocks of memory. Hence, their construction is

unsuitable for multi-object operations because it severely restricts concurrency. To rectify

this problem, Anderson and Moir developed a multi-object construction that enables a high

degree of concurrency [8].

Multi-Object Constructions

The multi-object construction presented by Anderson and Moir in [8] is a general-

ization of Herlihy's lock-free construction described previously. As in Herlihy's construction,

a task Ti loads the pointer to each object that it accesses and then makes a local copy of

that object. Then, task Ti applies its multi-object operation on its local object copies.

Finally, Ti tries to \install" new versions of all objects that it modi�es using a multiword

SC (MWSC) primitive.7 Task Ti repeatedly performs the above steps until its MWSC is

successful. Note that if task Ti succeeds its multi-object operation, then each object S

7The MWSC primitive extends the semantics of single-word SC primitive to multiple words. In particular,

the MWSC primitive atomically modi�es multiple words, unlike the Long-SC primitive which atomically

modi�es a single \long" word.

49

accessed by Ti's operation was not modi�ed by another task's operation, after Ti loads the

pointer to object S and before Ti's subsequent MWSC operation.

Anderson and Moir's multi-object construction su�ers from two main drawbacks.

First, because their construction is based on Herlihy's lock-free construction, copying over-

head can be excessive if large objects are accessed. Second, implementing the MWSC

primitive8 used in their construction entails high algorithmic overhead. In particular, the

worst-case running-time of the MWSC implementation presented in [8] is O(N3
M), where

N is the number of tasks in the system andM is the number of implemented shared words.

Thus, although their construction exhibits
exibility similar to that of nested critical sec-

tions, it is not competitive with nested critical sections in uniprocessor real-time systems.

2.4.4 Speci�c Objects

Many researchers have presented lock-free and wait-free implementations for spe-

ci�c shared objects. Such implementations can potentially take advantage of the semantics

of the object under consideration to improve performance. However, most implementations

of speci�c objects have required considerable creative and intellectual e�ort, highlighting

the need for universal constructions. Some speci�c object implementations are listed below.

Many researchers have studied implementations of various kinds of wait-free shared

objects using only read/write registers. These implementations include constructions of

complex registers from simpler registers [23, 24, 49, 50, 54, 59, 66, 67, 68, 75]; atomic

snapshots that allow multiple variables to be read atomically; [1, 3, 17], algorithms for

maintaining timestamps [25, 28]; and mechanisms for implementing any object whose oper-

8The MWSC primitive must be implemented in software because it is not supported by any real machine.

50

ations satisfy certain algebraic requirements [5, 16]. For example, a construction is given in

[5] that implements any object such that, for each pair of operations on the object, either

the two operations commute with each other, or one overwrites the other (i.e., the e�ects

of executing both operations is the same as executing just one of them).

Other researchers have considered wait-free and lock-free implementations using

instructions that are stronger than simple reads and writes. Implementations of various

types of queues have been presented by Lamport [53], by Herlihy and Wing [38], by Israeli

and Rappoport [41], by Wing and Gong [81, 82], and by Michael and Scott [64]. Anderson

and Woll [15] and Lanin and Shasha [56] present implementations for various set operations.

Valois presents lock-free implementations for various data structures, including queues, lists,

trees, and dictionaries [78, 79, 80]. Finally, Massalin and Pu have implemented an entire

operating system using lock-free data structures such as lists, queues, and stacks [63].

Chapter 3

Scheduling Conditions

In this chapter, we derive conditions to predict the schedulability of task sets that

access lock-free objects. The scheduling conditions we derive are essential for enabling the

use of lock-free objects in hard real-time systems. Our conditions are obtained by modi-

fying scheduling conditions for independent tasks to account for the overhead of operation

interferences. Speci�cally, we derive scheduling conditions for the RM, DM, EDF, and

EDF/NPD schemes. For the sake of clarity, when we refer to EDF scheduling in this chap-

ter, we mean EDF scheduling with the restriction that each task's relative deadline equals

its period. We will use the term EDF/NPD (EDF with nonequal deadlines and periods) to

refer to EDF scheduling in which each task's relative deadline is at most its period.

This chapter is organized as follows. In Section 3.1, we present key assumptions

that underlie our task model. We also present notation used in deriving our scheduling

conditions. Then, in Section 3.2, we derive certain key lemmas used in the proofs our

conditions. Scheduling conditions for static-priority and dynamic-priority schemes are pre-

52

sented in Sections 3.3 and 3.4, respectively. These conditions can be used without any

knowledge of a task's object accesses, but are based on the assumption that all retry-loop

costs are relatively uniform. In Section 3.5, we present a general approach based on in-

teger linear programming to bound the cost of operation interferences over an interval of

time. Based on the results in Section 3.5, we derive accurate scheduling conditions for

static-priority and dynamic-priority schemes in Sections 3.6 and 3.7, respectively. We now

present de�nitions and notation used in this chapter. (De�nitions of terms such as period,

relative deadline etc., are de�ned earlier in Section 1.3.)

3.1 Assumptions and De�nitions

We implicitly assume that tasks share a set of objects implemented using lock-free

algorithms. Note that there is no need to explicitly include such objects in our model,

because operations on lock-free objects are implemented by task-level code sequences. For

simplicity, we assume that jobs can be preempted at arbitrary points during their execution,

and ignore system overhead costs like context switching costs, interrupt handling costs, etc.

We say that a job is interfered with (or experiences an interference) if it executes

a lock-free retry loop that does not successfully complete. Unless speci�ed otherwise, we

assume that the deadline of a job of a task is the end of the corresponding period of that

task, i.e., the task's relative deadline equals its period. A task set is schedulable if and only

if all jobs of all tasks meet their deadlines. The following is a list of symbols used in deriving

our scheduling conditions.

� N - The number of tasks in the system. We use i and j as task indices. Unless stated

53

otherwise, we assume that i and j are universally quanti�ed over f0; : : : ; N � 1g.

� Ti - The i
th task in the system.

� pi - The period of task Ti.

� li - The relative deadline of task Ti. Unless speci�ed otherwise, we assume that

li � pi.

� ri(k) - The release time of the k
th job of Ti, where ri(k) = ri(1)+ (k� 1) � pi. We use

k as a job index. Unless stated otherwise, we assume that k is universally quanti�ed

with range k � 1.

� Ji;k - The k
th job of task Ti.

� ei(k) - The completion time of job Ji;k.

� di(k) - The deadline of job Ji;k.

� ci - The worst-case computational cost (execution time) of task Ti when it is the only

task executing on the processor, i.e., when there is no contention for the processor or

for shared objects.

� s - The worst-case computational cost of executing one iteration of any lock-free

retry-loop in the system.

In this chapter, we derive conditions only for some common scheduling schemes.

However, our approach for bounding the cost of interferences is applicable to any scheduling

scheme satisfying the following axioms.

54

Axiom 3.1: If a job of task Ti can preempt a job of task Tj, then no job of Tj preempts

any job of Ti.

Axiom 3.2: The priority of a job does not change while accessing a shared object.

Axiom 3.3: Di�erent jobs of the same task cannot preempt one another.

These axioms hold for the RM, DM, EDF, and EDF/NPD schemes, and for vari-

ations of these schemes in which tasks consist of multiple phases with separate execution

priorities. We make explicit the preemption order between any two tasks | as speci�ed by

Axiom 3.1 | by indexing the tasks such that, if a job of task Ti can preempt a job of task

Tj , then i < j. For the RM, DM, EDF, and EDF/NPD schemes, arranging tasks in the

order of increasing deadlines results in task indices compatible with this indexing scheme.

Under RM scheduling, we assume that if two tasks have the same period, then the task

with the smaller task index has higher priority. Under EDF scheduling, we assume that

if two jobs have the same deadline, then the job with the earlier release time has higher

priority; if two such jobs are released at the same time, then the one with the smaller index

has higher priority.

In Sections 3.3 and 3.4, we assume that s units of execution time is required for

one loop iteration of any lock-free object, i.e., the lock-free retry-loop cost is the same of all

objects. We obtain conditions for schedulability by determining the worst-case unful�lled

demand of each task. The unful�lled demand of task Ti at time t is the remaining computa-

tion time of Ti's job executing at that time. The unful�lled demand of Ti decreases by one

from time t to time t+1 if a job of Ti executes at time t. When a job of task Ti is released,

55

Ti's unful�lled demand increases by ci. Task Ti's unful�lled demand can also increase due

to interferences experienced by its jobs. Such increases are characterized by the following

interference assumptions. Note that Assumption IA2 below holds only for the results in

Sections 3.3 and 3.4. This assumption is relaxed later in Section 3.5.

IA1 A job J experiences an interference at time t if and only if, for some t
0 � t, (i) J

executes at time t
0� 1, (ii) J is preempted at time t

0
by some higher-priority job, (iii)

only higher-priority jobs execute in the interval [t0; t], (iv) no higher-priority job that

accesses an object in common with J is released in [t0; t), and (v) at least one such

job is released at time t. (This implies that job J can be interfered with at most once

during any interval when it is preempted.)

IA2 Each interference experienced by a job Ji;k increases Ti's unful�lled demand by s.

IA1 is pessimistic because the preempted job J may not, in fact, be accessing

any shared object when preempted. IA2 is pessimistic because the cost of executing one

iteration of the retry loop of any object is assumed to be s units. If retry loop costs are not

the same, IA2 essentially requires that the unful�lled demand of a task Ti be increased by

the cost of the largest retry loop, for each interference in jobs of Ti.

In the proofs of our scheduling conditions, we also use the notion of task \demand",

which is related to the notion of unful�lled demand. The demand placed by a task Ti on the

processor in an interval [t; t0] is the amount of processing time required by jobs of Ti in that

interval [45]. In particular, task Ti's demand in [t; t0] includes Ti's unful�lled demand at

time t, ci time units for each job release of Ti in (t; t
0], and s time units for each interference

occurring within (t; t0] in jobs of task Ti. A task is said to be inactive at time t if it places

56

Successful update of SSuccessful update of S1 2 Failed update

T

T

0 5 10 15 20 25 30 35 40 45 50 55

T

60

No objects accessed

T

T

0 5 10 15 20 25 30 35 40 45 50 55

T

60

(a)

(b)

0

1

2

0

1

2

Figure 3.1: Illustration of the task sets de�ned in Examples 3.1 and 3.2.

no demand on the processor at that time. The following examples illustrate some of the

subtleties of our task model.

Example 3.1: Let a task Ti be given by the tuple (ri(1); ci; pi). Consider the following set

of periodic tasks scheduled under the RM scheme.

T0 = (3; 4; 11) T1 = (0; 4; 18) T2 = (1; 7; 35)

Assume that object S1 is accessed by T1 and T2, and S2 is accessed by T0, T1, and T2. Tasks

T0 and T1 access S1 and S2 in that order. Also, assume that s = 2.

The execution of the above task set is illustrated in Figure 3.1(a). In this �gure,

up-arrows represent job releases, down-arrows represent job completions, and shaded regions

represent shared object accesses. Because the deadline of a job of a task corresponds to the

release of the next job of that task, up-arrows also denote job deadlines.

We see that job J2;1 experiences an interference at time 14, when job J0;2 is re-

leased. This is because job J0;2 is the earliest job that accesses an object in common with

57

J2;1 and that is released in the closed interval between J2;1's preemption at time 14 and its

subsequent resumption at time 22. Thus, J2;1's operation on S2 that begins at time 13 fails.

This operation is retried at time 23, when it is successfully completed. Observe that J2;1

experiences only one interference in the interval [14; 22], even though two jobs (J0;2 and

J1;2) are released in that interval that can potentially interfere with J2;1's object access. By

IA1, we assume that J1;4 interferes with J2;2 at time 54 (because J1;4 preempts J2;2), even

though J2;2 is not actually accessing a shared object at that point. Thus, the upper bound

on interference costs in the analysis presented later is rather pessimistic.

Task T2's unful�lled demand increases by 7 units at time 1 due to a job release

and increases by 2 units at time 14 due to an interference by J0;2. Also, task T2's unful�lled

demand decreases by one unit at every instant in the interval [11; 14] because it executes on

the processor. The demand placed by T2 on the processor in the interval [5; 37] is 16 units;

7 units due to T2's unful�lled demand at time 5, 2 units due to an interference in J2;1 at

time 14, and 7 units due the release of J2;2 at time 36.

Example 3.2: Consider the following set of periodic tasks scheduled under the EDF scheme.

T0 = (4; 4; 11) T1 = (1; 4; 18) T2 = (0; 7; 33)

Assume that object S1 is accessed by T1 and T2, and S2 is accessed by T0 and T1. Task

T1 accesses S1 and S2 in that order; T2 accesses S1 twice. As in the previous example, we

assume that s = 2.

The execution of the above task set is illustrated in Figure 3.1(b). We see that

job J2;1 experiences an interference at time 4 while accessing S1, when job J0;1 is released.

J0;1 has an earlier deadline than J2;1 and is the �rst job that accesses an object in common

58

with J2;1 and that is released in the closed interval between J2;1's preemption at time 1 and

its subsequent resumption at time 11. Observe that J1;1 also experiences an interference at

time 4 while accessing object S2 due to the release of J0;1. The total demand placed in the

interval [0; 25] by jobs with deadlines at or before 25 is 10 units; 4 and 6 units due to tasks

T0 and T1, respectively. Of the 6 units of T1's demand, 2 units are due to an interference

in T1 at time 4. Note that we do not include the demand due to jobs J0;2, J1;2 and J2;1

because their deadlines are after time 25.

3.2 Preliminary Lemmas

Before we present our scheduling conditions, we prove several lemmas used in the

proofs of these conditions. In [60], it is shown that for independent tasks (i.e., tasks that do

not share objects), the longest response time of a task occurs at a critical instant of time,

at which jobs of that task and all higher-priority tasks are released. However, this is not

necessarily the case if tasks share lock-free objects, as illustrated in Example 3.1. In this

example, the longest response time of task T2 does not occur when its job is released along

with higher-priority jobs at time 36. The job released at time 1 has a longer response time.

Instead of de�ning the critical instant, we introduce the notion of a \busy point".

The busy point bi(k) of job Ji;k is the latest point in time at or before ri(k) when jobs that

have priority at least that of Ji;k are either inactive or have a job release. For example, in

Figure 3.1, the busy point of J2;1 occurs at time 0, i.e., b2(1) = 0. Because each task is either

inactive or releases a job at time 0, bi(k) is well-de�ned for any i and k. Our scheduling

conditions are obtained by inductively counting interferences over intervals of time. A busy

59

point provides a convenient instant at which to start such an inductive argument, because

tasks that are inactive or that have just released a job have experienced no interferences.

Lemma 3.1: Consider any t 2 [bi(k); ri(k+1)) at which Ji;k has positive unful�lled demand.

Let v be the priority of Ji;k. In the interval [bi(k); t], the number of interferences in jobs

with priority at least v is bounded by the number of instants in the interval (bi(k); t] at which

some job with priority greater than v is released.

Proof: To simplify the proof, we prove a slightly stronger statement: the number of inter-

ferences in the interval [bi(k); t] in jobs with priority at least v is bounded by the di�erence

between (i) the number of instants in the interval (bi(k); t] at which some job with priority

greater than v is released and (ii) the number of preempted jobs at time t that have not

been interfered with1 and that have priority at least v. The proof is by induction on t.

Basis: We show that the lemma holds at bi(k), Ji;k's busy point. There can be no in-

terferences in the interval [bi(k); bi(k)] in jobs with priority at least v because Ji;k and

higher-priority jobs are either inactive or have a job release at bi(k). For the same reason,

there are no preempted jobs at bi(k) with priority at least v. Clearly, there are zero instants

in the interval (bi(k); bi(k)] at which some job is released that has priority greater than v.

Hence, the basis of the induction holds.

Induction Step: Assume that the above lemma holds at time t� 1 � bi(k). Let J be some

job executing at time t � 1. (Such a job J must exist by the de�nition of bi(k).) Suppose

that there are f interferences in the interval [bi(k); t � 1] in jobs with priority at least v,

1Note that jobs that have been released but have not yet executed cannot be interfered with.

60

and that there are w instants in the interval (bi(k); t � 1] at which some job with priority

greater than v is released. Also, suppose that there are x preempted jobs at time t� 1 that

have priority at least v and that have not been interfered with. Our inductive hypothesis

can be formally written as f � w � x. We now consider two cases.

Case 1: If no job is released at time t that has priority greater than v, then by IA1, no

interference can occur at that time in any job with priority at least v. Hence, there are

f interferences in [bi(k); t] and w instants in (bi(k); t] at which some job is released that

has priority greater than Ji;k's priority. Also, the number of preempted jobs at time t is

either x � 1 or x, depending on whether J completes at time t or not. In either case, the

lemma holds at time t because our inductive hypothesis implies both f � w � (x� 1) and

f � w � x.

Case 2: If y > 0 jobs are released at time t that have priority greater than v, then there

are w + 1 instants in the interval (bi(k); t] at which some job is released that has priority

greater than v. Suppose that some number q of the x preempted jobs incur an interference

at time t due to some newly released job that accesses a common object. We consider three

subcases.

J has higher priority than all newly released jobs. It follows from IA1 that none

of the jobs released at time t can interfere with J . Thus, there are f + q interferences in

[bi(k); t] and x� q preempted jobs that have not been interfered with. (The y jobs released

at time t cannot be interfered with because they have not started execution yet.) The

lemma holds at time t because our inductive hypothesis implies f + q � (w + 1)� (x� q).

61

J is preempted at time t but none of the newly released jobs accesses an object in

common with J . By IA1, none of the newly released jobs can interfere with J . Therefore,

the number of interferences in [bi(k); t] is f + q. The number of preempted jobs that have

not been interfered with is x� q+1 (including J). The lemma holds at time t because our

inductive hypothesis implies f + q � (w + 1)� (x� q + 1).

J is preempted at time t and some newly released job accesses an object in common

with J . It follows from IA1 that J is interfered with at time t. Hence, the number of

interferences in [bi(k); t] is f + q + 1. The number of preempted jobs that have not been

interfered with is x�q. Again, our inductive hypothesis implies f+q+1 � (w+1)�(x�q).

Lemma 3.2: Consider any t 2 [bi(k); ri(k + 1)). Under the DM scheme, the number of

interferences in Ti and higher-priority tasks in the interval [bi(k); t] is at most

i�1X
j=0

l
t�bi(k)
pj

m
:

Proof: From Lemma 3.1, it follows that the number of interferences in jobs with priority at

least that of Ji;k in the interval [bi(k); t] is bounded by the number of instants in (bi(k); t]

at which some job is released that has priority greater than that of Ji;k. Under the DM

scheme, only jobs of tasks T0 through Ti�1 have priority greater than Ji;k, and the number

of jobs of task Tj released in the interval (bi(k); t] is at most d(t� bi(k))=pje. Therefore, the

number of interferences in Ti and higher-priority tasks in the interval [bi(k); t] is bounded

by
P

i�1
j=0

l
t�bi(k)
pj

m
.

Lemma 3.3: Under the DM scheme, if, at time di(k)�1, Ti has positive unful�lled demand

62

and the total unful�lled demand of Ti and higher-priority tasks is greater than one, then,

for any t in the interval [bi(k); di(k)), the di�erence between (i) the total demand placed on

the processor by Ti and higher-priority tasks in the interval [bi(k); t], and (ii) the available

processor time in that interval, is greater than one.

Proof: The proof can be established by contradiction. To this end, suppose that there

exists a t 2 [bi(k); di(k)) such that the di�erence between the total demand placed by tasks

T1 through Ti in the interval [bi(k); t] and the available processor time in that interval is

at most one. It follows that the total unful�lled demand of tasks T0 through Ti at time

t equals zero or one. Because the total unful�lled demand of Ti and higher-priority tasks

is greater than one at time di(k) � 1, t 6= di(k) � 1 holds. Also, either tasks T0 through

Ti are inactive at time t, or one of tasks T0 through Ti has unit unful�lled demand and is

the highest-priority job executing on the processor. In both cases, it follows that Ti and

higher-priority tasks are either inactive or have a job release at time t+1. To complete the

proof, we show that this leads to a contradiction.

By the de�nition of a busy point, bi(k) is the latest time at or before ri(k) at which

Ti and higher-priority tasks are either inactive or have a job release. Thus, it follows that

t + 1 cannot lie in the interval (bi(k); ri(k)]. Also, as explained earlier, t 6= di(k) � 1, i.e.,

t + 1 6= di(k). Hence, t + 1 lies in the interval (ri(k); di(k)). Ti clearly cannot have a job

release in the interval [t+ 1; di(k)) because t+ 1 > ri(k) and di(k) � ri(k + 1). Thus, Ti is

inactive | and hence has no unful�lled demand | throughout the interval [t + 1; di(k)),

contradicting our assumption that Ti has positive unful�lled demand at time di(k)� 1.

Lemma 3.4: Under the EDF/NPD scheme, the number of interferences in jobs with a

63

deadline at or before di(k) in the interval [bi(k); di(k)) is at most

N�1X
j=0

j
di(k)�bi(k)�2+pj�lj

pj

k
:

Proof: It follows from Lemma 3.1 that the number of interferences in [bi(k); di(k)) is

bounded by the number of instants in (bi(k); di(k)) at which some job is released that

has priority greater than Ji;k's priority, i.e., the released job's deadline is before di(k). Un-

der the EDF scheme, the number of jobs of Tj released in the interval (bi(k); di(k)) that

have a deadline before di(k) is at most
j
(di(k)�1)�(bi(k)+1)+(pj�lj)

pj

k
. Therefore, the number of

interferences in jobs with deadlines at or before di(k) in the interval [bi(k); di(k)) is bounded

by
P

N�1
j=0

j
di(k)�bi(k)�2+(pj�lj)

pj

k
.

Corollary 3.1: Under the EDF scheme, the number of interferences in jobs with a deadline

at or before ri(k + 1) in the interval [bi(k); ri(k + 1)) is at most

N�1X
j=0

j
ri(k+1)�bi(k)�2

pj

k
:

Proof: Follows from Lemma 3.4, by substituting pi for li and ri(k + 1) for di(k). (Recall

that, under the EDF scheme, pi = li and di(k) = ri(k + 1) for any task Ti and any k � 1.)

3.3 Static-Priority Scheduling Conditions

In this section, we give separate necessary and su�cient conditions for the schedu-

lability of a set of periodic tasks that share lock-free objects under the DM scheme. These

conditions assume that priority is assigned by the DM scheme [58], in which tasks with

64

smaller relative deadlines have higher priorities. We also brie
y consider the RM scheme,

which is special case of DM scheduling.

The following theorem gives a necessary scheduling condition for the DM scheme.

The left-hand side of the quanti�ed expression given below gives the minimum demand |

which arises when there are no interferences | placed on the processor by Ti and higher-

priority tasks in the interval [0; t], where 0 < t � pi. The right-hand side gives the available

processor time in that interval.

Theorem 3.1: (Necessity under DM) If a set of periodic tasks that share lock-free objects

is schedulable under the DM scheme, then the following condition holds for every task Ti.

h9t : 0 < t � li :
iX

j=0

$
t

pj

%
� cj � ti

Proof: Consider some task Ti belonging to a set of tasks schedulable under the DM scheme.

Let tm be any time such that tm > rj(1), for any task Tj. Suppose that Ji;k is some job

released after tm. Because the task set is schedulable, Ji;k completes within li instants after

its release, i.e., ei(k) � ri(k) � li. Because Ti executes on the processor at time ei(k) � 1,

Ti has unit unful�lled demand and all higher-priority tasks are inactive | and hence, have

no job releases | at that time. It follows that the di�erence between (i) the total demand

Di(ri(k); ei(k)� 1) due to Ti and higher-priority tasks in the interval [ri(k); ei(k)� 1], and

(ii) the available processor time in that interval, is at most one. This observation can be

formally stated as follows.

Di(ri(k); ei(k)� 1)� (ei(k) � ri(k)� 1) � 1 (3.1)

65

The previous expression can also be expressed as follows.

Di(ri(k); ei(k)� 1) � ei(k)� ri(k) (3.2)

We now derive a least upper bound on Di(ri(k); ei(k) � 1). The term Di(ri(k);

ei(k) � 1) is comprised of two components: (i) D0

i
(ri(k)), the unful�lled demand at time

ri(k) due to jobs of Ti and higher-priority tasks released before ri(k), and (ii) the demand

due to jobs of those tasks released during [ri(k); ei(k) � 1]. The minimum number of jobs

of Tj released in the interval [ri(k); ei(k)� 1] is given by b(ei(k)� ri(k))=pjc, and each job

requires cj units of computation. Hence, we have

Di(ri(k); ei(k)� 1) � D
0

i(ri(k)) +
iX

j=0

j
ei(k)�ri(k)

pj

k
cj :

Because D0

i
(ri(k)) � 0, the previous expression implies

Di(ri(k); ei(k)� 1) �
iX

j=0

j
ei(k)�ri(k)

pj

k
cj :

The previous inequality, along with (3.2), implies the following.

iX
j=0

j
ei(k)�ri(k)

pj

k
cj � ei(k)� ri(k)

Now, ri(k) < ei(k) � ri(k) + li, i.e., 0 < ei(k) � ri(k) � li holds. Replacing ei(k) � ri(k)

with t in the above expression, where 0 < t � li, we have the following.

iX
j=0

$
t

pj

%
cj � t

Theorem 3.1 also is also a necessary condition for the RM scheme because the DM

scheme reduces to the RM scheme when li = pi. The resulting necessary condition for the

66

RM scheme di�ers slightly from that in [57] because we allow tasks to release their �rst

jobs at arbitrary times. In particular, the
oor functions within the summation expression

in Theorem 3.1 are replaced by ceiling functions.

The next theorem gives a su�cient scheduling condition for the DM scheme. The

left-hand side of the quanti�ed expression given below gives the maximum demand placed

by Ti and higher-priority tasks in the interval [0; t). The �rst summation represents the

demand placed on the processor by Ti and higher-priority tasks, not including the demand

due to interferences. The second summation represents the total additional demand placed

on the processor due to interferences in Ti and higher-priority tasks. The right-hand side

of the expression is the available processor time in [0; t). Observe that this condition can

be applied without knowledge of which tasks access which objects.

Theorem 3.2: (Su�ciency under DM) A set of periodic tasks that share lock-free objects

is schedulable under the DM scheme if the following condition holds for every task Ti.

h9t : 0 < t � li :
iX

j=0

&
t

pj

'
� cj +

i�1X
j=0

&
t� 1

pj

'
� s � ti

Proof: We prove that if a task set is not schedulable, then the negation of the above

expression holds. Assume that the given task set is not schedulable. Let Ji;k be the �rst

job to miss its deadline. (If several jobs simultaneously miss their deadline along with

Ji;k, then let Ji;k be the one with highest priority, i.e., smallest task index.) Consider

any t in the interval [bi(k); di(k)). We begin by deriving a bound on D(bi(k); t), the total

demand placed on the processor by Ti and higher-priority tasks in the interval [bi(k); t].

D(bi(k); t) is comprised of the demand placed by job releases and the extra demand placed

67

by interferences. Recall that at the busy point bi(k), Ti and all higher-priority tasks are

either inactive or have a job release. Each job release of some task Tj introduces a demand

of cj on the processor, and there are at most d(t � bi(k) + 1)=pje job releases of that task

in the interval [bi(k); t]. Therefore, the total demand placed on the processor due to job

releases of Ti and higher-priority tasks is at most
P

i

j=0d(t� bi(k) + 1)=pjecj .

By Lemma 3.2, the number of interferences in jobs of Ti and higher-priority tasks

in the interval [bi(k); t] is bounded by
P

i�1
j=0d(t � bi(k))=pje. By IA2, each interference

introduces s units of additional demand on the processor. Therefore, the total additional

demand due to interferences in jobs of Ti and higher-priority tasks is at most
P

i�1
j=0d(t �

bi(k))=pjes. Therefore, we have

D(bi(k); t) �
iX

j=0

&
t� bi(k) + 1

pj

'
cj +

i�1X
j=0

&
t� bi(k)

pj

'
s:

Job Ji;k will miss its deadline if and only if, at time di(k) � 1, Ti has positive

unful�lled demand and the total unful�lled demand of Ti and higher-priority tasks is greater

than one. By Lemma 3.3, it follows that the di�erence between the total demand due to

Ti and higher-priority tasks in the interval [bi(k); t] and the available processor time in that

interval is greater than one. Hence, we have the following.

D(bi(k); t) � (t� bi(k)) > 1

Using the bound on D(bi(k); t) derived above, the previous expression implies the following.

iX
j=0

&
t� bi(k) + 1

pj

'
cj +

i�1X
j=0

&
t� bi(k)

pj

'
s > t� bi(k) + 1

68

The above expression holds for all t in the interval [bi(k); di(k)). Because this expression is

independent of the end points (it is a function of the length of the interval), we can replace

t�bi(k) with t
0, where t0 = t�bi(k) and t

0 2 [0; di(k)�bi(k)). Hence, we have the following.

iX
j=0

&
t
0 + 1

pj

'
cj +

i�1X
j=0

&
t
0

pj

'
s > t

0 + 1

Now, replace t0 with t in the above expression, where t = t
0 + 1 and t 2 (0; di(k) � bi(k)].

Then, the following holds for all t 2 (0; di(k)� bi(k)].

iX
j=0

&
t

pj

'
cj +

i�1X
j=0

&
t� 1

pj

'
s > t

By de�nition, bi(k) � ri(k). Therefore, the interval (0; di(k)�ri(k)] is completely contained

in (0; di(k)� bi(k)]. Also, by de�nition, di(k)� ri(k) = li. Therefore, the expression above

holds for all t in (0; li].

Because RM scheduling is a special case of DM scheduling, the following corollaries

follow from Theorems 3.1 and 3.2.

Corollary 3.2: (Necessity under RM) If a set of periodic tasks that share lock-free objects

is schedulable under the RM scheme, then the following condition holds for every task Ti.

h9t : 0 < t � pi :
iX

j=0

$
t

pj

%
� cj � ti

Corollary 3.3: (Su�ciency under RM) A set of periodic tasks that share lock-free objects

is schedulable under the RM scheme if the following condition holds for every task Ti.

h9t : 0 < t � pi :
iX

j=0

&
t

pj

'
� cj +

i�1X
j=0

&
t� 1

pj

'
� s � ti

69

In the videoconferencing system described in Chapter 6, tasks are sporadic rather

than periodic. However, the scheduling conditions that we derive also apply if tasks are

sporadic.

3.4 Dynamic-Priority Scheduling Conditions

In this section, we give separate necessary and su�cient conditions for the schedu-

lability of a set of periodic tasks that share lock-free objects under the EDF scheme. The

following theorem gives a necessary scheduling condition for the EDF/NPD scheme. Ac-

cording to this theorem, a task set is schedulable only if processor utilization is at most

one. This condition also holds when tasks periods are equal to their relative deadlines, and

is identical to the condition in [60].

Theorem 3.3: (Necessity under EDF/NPD) If set of periodic tasks that share lock-free

objects is schedulable under the EDF/NPD scheme, then

N�1X
i=0

ci

pi

� 1:

Proof: Consider a set of tasks that is schedulable under the EDF/NPD scheme. Let tm

be the earliest instant such that tm � rj(1) for any task Tj. Consider any job Ji;k such that

ri(k) � tm. We begin by deriving a lower bound on D(0; di(k)), the total demand due to

all jobs with deadline at or before time di(k), in the interval [0; di(k)].

By assumption, we have di(k) > tm � rj(1). Hence, there are b(di(k) � rj(1) +

pj� lj)=pjc jobs of task Tj released in the interval [0; di(k)] that have a deadline at or before

di(k), and each job requires cj units of computation. It follows that the total demand placed

70

by tasks T1 through TN is given by
P

N�1
j=0 b(di(k)� rj(1)+ pj � lj)=pjccj . Therefore, we the

following.

D(0; di(k)) =
N�1X
j=0

$
di(k)� rj(1) + pj � lj

pj

%
cj

Because no job misses its deadline at time di(k), it follows that the total demand placed by

tasks T1 through TN in the interval [0; di(k)] is at most the available processor time in that

interval, i.e., D(0; di(k)) � di(k). Therefore, we have the following.

N�1X
j=0

$
di(k)� rj(1) + pj � lj

pj

%
cj � di(k)

Because b(di(k)� rj(1) + pj � lj)=pjc is at least ((di(k)� rj(1) + pj � lj)=pj)� 1, we have

N�1X
j=0

di(k)� rj(1) + pj � lj

pj

� 1

!
cj � di(k):

Rearranging the terms in the above expression yields the following.

0
@N�1X

j=0

cj

pj

� 1

1
A
di(k) �

N�1X
j=0

(rj(1) + lj) � cj
pj

The right-hand side of the above inequality is a positive constant, but di(k) can

take arbitrarily large values. (Recall that Ji;k is any job released after tm.) Hence, it

follows that the term (
P

N�1
j=0

cj

pj
� 1) on the left-hand side is at most zero. Hence, we have

P
N�1
j=0

cj

pj
� 1.

The following theorem gives a su�cient condition for schedulability under the

EDF/NPD scheme. Like the DM and RM su�ciency conditions of the previous section,

71

conditions for EDF and EDF/NPD schemes can be applied without knowledge of which

tasks access which objects.

Theorem 3.4: (Su�ciency under EDF/NPD) A set of periodic tasks that share lock-free

objects is schedulable under the EDF scheme if the following condition holds.

h8t : t � 0 :
N�1X
j=0

$
t+ pj � lj

pj

%
� cj +

N�1X
j=0

$
t� 2 + pj � lj

pj

%
� s � ti

Proof: We prove that if a task set is not schedulable then the following expression holds

for some t � 0.

N�1X
j=0

$
t+ pj � lj

pj

%
� cj +

N�1X
j=0

$
t� 2 + pj � lj

pj

%
� s > t

Assume that the given task set is not schedulable. Let Ji;k be the �rst job to miss

its deadline. (If several jobs simultaneously miss their deadline along with Ji;k, then let

Ji;k be the one with lowest priority.) We begin by deriving a bound on D(bi(k); di(k)� 1),

the total demand placed on the processor by Ji;k and higher-priority jobs, i.e., jobs with

deadlines at or before di(k), in the interval [bi(k); di(k)). D(bi(k); di(k) � 1) is comprised

of the demand placed by job releases and the extra demand placed by interferences. Recall

that at Ji;k's busy point, all jobs of equal or higher priority either are inactive or have a job

release. Each job of some task Tj can place a demand of cj on the processor, and there are

at most b(di(k) � bi(k) + pj � lj)=pjc job releases of that task in the interval [bi(k); di(k))

that have a deadline at or before di(k). Therefore, the total demand placed on the processor

due to such jobs is at most

N�1X
j=0

$
di(k) � bi(k) + pj � lj

pj

%
� cj :

72

By Lemma 3.4, the total number of interferences in jobs with deadlines at or before di(k) in

the interval [bi(k); di(k)) is bounded by the term
P

N�1
j=0 b(di(k)� bi(k)�2+pj� lj)=pjc. By

IA2, each interference requires s units of additional demand. Therefore, the total additional

demand due to interferences is at most

N�1X
j=0

$
di(k)� bi(k)� 2 + pj � lj

pj

%
� s:

Job Ji;k will miss its deadline if and only if the di�erence between the total demand due

to tasks with a deadline at or before di(k) in the interval [bi(k); di(k)) and the available

processor time in that interval is greater than one. Therefore, we have

N�1X
j=0

�
di(k)� bi(k) + pj � lj

pj

�
� cj +

N�1X
j=0

�
di(k)� bi(k)� 2 + pj � lj

pj

�
� s� (di(k)� bi(k)� 1) > 1;

which can be rewritten as

N�1X
j=0

$
di(k)� bi(k) + pj � lj

pj

%
� cj +

N�1X
j=0

$
di(k)� bi(k)� 2 + pj � lj

pj

%
� s > di(k)� bi(k):

Replacing (di(k) � bi(k)) by t yields the following expression, where 0 � t < di(k) � bi(k);

this completes the proof.

N�1X
j=0

$
t+ pj � lj

pj

%
� cj +

N�1X
j=0

$
t� 2 + pj � lj

pj

%
� s > t

As formulated above, the expression in Theorem 3.4 cannot be veri�ed because

the range of t is unbounded. However, there is an implicit bound on t. For example, if all

tasks are released at time 0, then we only need to consider values less than or equal to L

the least common multiple of the task periods. On the other hand, if task Ti is released at

73

time vi, where vi � 0 and vi 6= vj for some i and j, then we need to consider values of t less

than or equal to 2 � L+max 0�i<N (vi) +max 0�i<N (li).

In [21], Baruah, Howell, and Rosier t showed that the range of t can be further

reduced if these exists an upper bound on processor utilization. Speci�cally, Baruah et. al.

show that if there exists an upper bound U on processor utilization, then values of t range

over the interval (0; U

1�U
max 0�i<N (pi � li)]. Fortunately, in practical systems such as the

videoconferencing system considered in Chapter 6, there exists an implicit upper bound on

U . In such systems, system overhead costs due to context switching, interrupt processing,

etc., consume a non-negligible of processor utilization.

We now prove a su�cient condition for EDF scheduling for the special case when

pj = lj for any task Tj. The following condition states that a task set is schedulable if

processor utilization is at most one, when interferences are taken into account.

Theorem 3.5: (Su�ciency under EDF) A set of periodic tasks that share lock-free objects

is schedulable under the EDF scheme if the following condition holds.

N�1X
j=0

cj + s

pj

� 1

Proof: We prove that if a task set is not schedulable then
P

N�1
j=0 (cj + s)=pj > 1 holds.

Assume that the given task set is not schedulable. Because the EDF scheme is a special

case of the EDF/NPD scheme, it follows from Theorem 3.4 that the following expression

holds for some t � 0.

N�1X
j=0

$
t+ pj � lj

pj

%
� cj +

N�1X
j=0

$
t� 2 + pj � lj

pj

%
� s > t

Because pj = lj for all Tj, we have the following.

74

N�1X
j=0

$
t

pj

%
� cj +

N�1X
j=0

$
t� 2

pj

%
� s > t

The above expression implies

N�1X
j=0

t

pj

� cj +
N�1X
j=0

t

pj

� s > t:

Cancelling t from both sides of the inequality yields the following, thus completing the

proof.

N�1X
j=0

cj + s

pj

> 1

The conditions derived so far assume that the cost of executing all retry loops

is uniform. The above conditions allow us to check the schedulability without knowledge

of the tasks' object accesses. However, when retry-loop costs can vary widely, the above

conditions are not very accurate, i.e., for many task sets, they are liable to provide incorrect

predictions on task schedulability. To improve the accuracy of these conditions, we now

derive scheduling conditions to account for the actual costs of the various retry loops while

deriving the scheduling conditions.

3.5 Accounting for Di�erent Retry-Loop Costs

The task model described previously is inadequate when di�erent retry-loop costs

are considered because it does not incorporate knowledge about the di�erent object access

costs of each task. We now present a task model that is more suitable for the purpose of

accounting for di�erent retry-loop costs.

75

3.5.1 Additional Notation and De�nitions

We assume that each job is composed of distinct nonoverlapping computational

fragments or phases. Each phase is either a computation phase or an object-access phase.

Shared objects are not accessed during a computation phase. An object-access phase con-

sists of exactly one retry loop in which one or more objects are accessed. The cost of an

object-access phase is equal to the cost of its associated retry loop.

The following is a list of symbols that will be used repeatedly in deriving our

scheduling conditions. These symbols are using in conjunction with some of the notation

described earlier in Section 3.1.

� w(i) - The number of phases in a job of task Ti. The phases are numbered from 1 to

w(i). We use u and v to denote phases.

� c
v
i
- The worst-case computational cost of the vth phase of task Ti's job, where 1 �

v � w(i), assuming no contention for the processor or shared objects. We denote total

cost over all phases by ci =
Pw(i)

v=1 c
v
i
.

� m

i;v

j
(t) - The worst-case number of interferences in Ti's v

th phase due to Tj in an

interval of length t.

� f
v
i
- An upper bound on the number of interferences of the retry loop in the vth phase

of Ti during a single execution of that phase.

As in Sections 3.3 and 3.4, we obtain scheduling conditions by determining the

worst-case demand of each task, and by accounting for the cost of operation interferences.

As in our previous model, Tj's unful�lled demand at time t decreases by one if it executes on

76

the processor at that, and it increases by cj if it has a job release at that time. Interference

assumption IA1 still holds under the new task model. However, IA2 does not hold because

we do not assume that all retry loop costs are uniform. Hence, Assumption IA2 is rede�ned

as follows for the rest of this chapter.

IA2 Each interference experienced by the v
th

phase of job Ji;k increases Ti's unful�lled

demand by s
i;v

j
.

IA2 holds because if the vth phase of a job of Ti is interfered with, then s

i;v

j
units

of additional demand is placed on the processor, because another execution of the retry-

loop iteration in Ti's v
th phase is required. Note that IA2 does not distinguish between

computation phases and object-access phases. This is because we appropriately de�ne si;v
j

to account for the fact that computational phases cannot be interfered with. Formally, si;v
j

is de�ned as follows.

De�nition 3.1: Let Ti and Tj be two distinct tasks, where Ti has at least v phases. Let zj

denote the set of objects modi�ed by Tj, and a
v
i
denote the set of objects accessed in the

v
th phase of Ti. Then,

s

i;v

j
=

8>>><
>>>:

c
v
i

if j < i ^ a
v
i
\ zj 6= ;

0 otherwise.

If phase v of task Ti is an object-access phase, then the cost of an interference in

v equals cv
i
| the cost of the retry loop associated with this phase | if Tj can interfere

77

with the operation in the vth phase of Ti, where j < i. Hence, if phase v of task Ti is a

computation phase, then the cost of an interference in v is zero.

3.5.2 Bounding Interference Cost

Before deriving scheduling conditions for the various schemes, we outline a general

approach to bound the total additional demand due to interferences over an interval I. To

this end, we de�ne an expression that gives the exact worst-case cost of interferences in

tasks T0 through Ti in any interval of length t.

De�nition 3.2: The total cost of interferences in jobs of tasks T0 through Ti in any interval

of length t, denoted Ei(t), is de�ned as follows.

Ei(t) �
iX

j=0

w(j)X
v=1

j�1X
l=0

m

j;v

l
(t)s

j;v

l
:

The term m

j;v

l
(t) in the above expression denotes the worst-case number of in-

terferences caused in Tj's v
th phase by jobs of Tl in an interval of length t. The term

s

j;v

l
represents the amount of additional demand required if Tl interferes once with Tj 's v

th

phase. The expression within the leftmost summation denotes the total cost of interferences

in a task Tj over all phases of all jobs of Tj in an interval of length t.

Expression Ei(t) accurately re
ects the worst-case additional demand placed on

the processor in an interval I of length t due to interferences in tasks T0 through Ti. Of

course, to evaluate this expression, we �rst must determine values for the mj;v

l
(t) terms.

Unfortunately, in order to do so, we potentially have to examine an exponential number

78

of possible task interleavings in the interval I. Instead of exactly computing Ei(t), our

approach is to obtain a bound on Ei(t) that is as tight as possible. We do this by viewing

Ei(t) as an expression to be maximized. The m

j;v

l
(t) terms are the \variables" in this

expression. These variables are subject to certain constraints. We obtain a bound for Ei(t)

by using integer linear programming to determine a maximum value of Ei(t) subject to

these constraints. We now explain how appropriate constraints on the m
j;v

l
(t) variables are

obtained.

3.5.3 Static-Priority Scheduling Schemes

In this explanation, we focus on the DM scheme. Later, we explain how similar

constraints can be obtained for other schemes. We impose three sets of constraints on the

m

i;v

j
(t) variables. All of these constraints are straightforward. However, the third constraint

involves terms (fv
i
) that are not completely straightforward to calculate. Most of the rest

of this subsection is devoted to explaining how these terms are computed. For a set of tasks

scheduled under the DM scheme, and an interval of length t, the three sets of constraints

are as follows.

Constraint Set 1:

(8i; j : j < i ::

w(i)X
v=1

m

i;v

j
(t) �

l
t+1
pj

m
):

Constraint Set 2:

(8i ::
iX

j=0

w(j)X
v=1

j�1X
l=0

m

j;v

l
(t) �

i�1X
j=0

l
t+1
pj

m
):

Constraint Set 3:

(8i; v ::
i�1X
j=0

m

i;v

j
(t) �

l
t+1
pi

m
f
v

i):

79

The �rst set of constraints follows because the number of interferences in jobs of

Ti due to Tj in an interval I of length t is bounded by the maximum number of jobs of Tj

that can be released in I. The second set of constraints follows from Lemma 3.1, which

states that the total number of interferences in jobs of tasks Ti and higher-priority tasks in

an interval I of length t is bounded by the maximum number of jobs of tasks T0 through

Ti�1 released in I. In the third set of constraints, the term f
v
i
is an upper bound on the

number of interferences of the retry loop in the vth phase of Ti during a single execution of

that phase. The details of calculating fv
i
are described later. The reasoning behind this set

of constraints is as follows. If at most fv
i
interferences can occur in the vth phase of a job

of Ti, and if there are n jobs of Ti released in an interval I, then at most nfv
i
interferences

can occur in the vth phase of Ti in I.

We use an inductive approach to calculate f
v
i
for any i and v. This inductive

approach is expressed in pseudo-code in Figure 3.2. The compute retries procedure in this

�gure computes all fv
i
values. This procedure begins by setting f

v
0 to zero for all phases

of T0 (line 1). This is because, by Axiom 3.1 and our ordering on tasks, operations of T0

can never be interfered with. We then calculate the f values for tasks T1 through TN�1,

respectively. If the vth phase of task Ti is a computation phase, then f
v
i
is set to zero (line

5) because a computation phase cannot be interfered with. Lines 6 through 10 are executed

if the vth phase of task Ti is an object-access phase. In this case, we �rst calculate a bound

R1 on the maximum time it takes to execute phase v, given that at most k interferences of

phase v can occur (line 7). We then calculate a bound R2 on the maximum time it takes to

execute phase v, given that at most k + 1 interferences of phase v can occur (line 8). The

80

procedure compute retries()

1: for v := 1 to w(0) do f
v
0 := 0 od; =� Task T0 cannot be interfered with �=

2: for i := 1 to N � 1 do

3: for v := 1 to w(i) do =� Consider each phase v of task Ti �=

4: if Ti's v
th phase is a computational phase then

5: f
v
i := 0 =� Computational phase cannot be interfered with �=

else =� Phase v is an object-access phase �=

6: for k := 0 to 1 do

7: R1 := (min t :: cvi +
Pi�1

j=0
d(t� 1)=pjecj+int cost(i; v; k; t� 1) � t);

8: R2 := (min t :: cvi +
Pi�1

j=0
d(t� 1)=pjecj+int cost(i; v; k + 1; t� 1) � t);

9: if R2 � pi then f
v
i := 1; break �; =� Period exceeded, give up �=

10: if R2 = R1 then f
v
i := k; break � =� At most k interferences can occur �=

od

�

od

od

=� Procedure int cost computes bound on interference costs in Ti and higher-priority tasks in an interval

of length t during the vth phase of Ti in which Ti is interfered with at most k times �=

procedure int cost(i; v; k; t) returns integer

return the maximum value ofPi�1

j=0
m

i;v
j (t)s

i;v
j +

Pi�1

j=0

Pw(j)

u=1

Pj�1

l=0
m

j;u

l (t)s
j;u

l

subject to the following constraints:

(a)
Pi�1

j=0
m

i;v
j (t) � k

(b) (8j : 0 � j < i :: mi;v
j (t) �

l
t+1
pj

m
)

(c) (8j; l : j < l < i ::
Pw(l)

u=1
m

l;u
j (t) �

l
t+1
pj

m
)

(d) (8l : l<i ::
Pl

j=0

Pw(j)

v=1

Pj�1

l0=0
m

j;v

l0
(t) �

Pl�1

j=0

l
t+1
pj

m
)

(e) (8l; u : 0 � l < i ::
Pl�1

j=0
m

l;u
j (t) �

l
t+1
pl

m
f
u
l)

Figure 3.2: Pseudo-code to calculate fv
i
values.

81

manner in which R1 and R2 are determined is described below. If R2 exceeds the period

of task Ti, then we have failed to �nd a constraint that can be imposed on the number of

interferences in phase v (line 9). If R1 equals R2, then phase v of Ti can experience at most

k interferences (line 10).

We now explain the manner in which R1 is determined; R2 is calculated in a

similar manner. R1 is assigned a value t that is an upper bound on the length of an interval

that includes n � k + 1 iterations of phase v of task Ti; the interval begins with the �rst

statement execution in the �rst iteration of phase v, and ends with the last statement

execution of the nth execution of phase v. In line 7, the �rst component in the left-hand

side of the inequality denotes the portion of time in the interval that is taken to execute the

last iteration of phase v. The second component denotes the time spent executing jobs of

higher-priority tasks, excluding interferences in those tasks. (In the interval of length t in

question, there can be no higher-priority job releases at the �rst point in the interval, and

any such job released at the (t+ 1)st point in the interval executes after the interval. This

is why t� 1 appears in this expression.) The third component denotes an upper bound on

the additional time spent executing additional iterations of loops that have been interfered

with in Ti's v
th phase and in higher-priority tasks.

The third component is calculated by invoking int cost(i, v, k, t), which determines

an upper bound on the interference cost in tasks T0 through Ti�1 and the vth phase of task

Ti in an interval of length t in which Ti is interfered with at most k times. Determining an

exact bound is di�cult, so we use integer linear programming within int cost to obtain an

upper bound. The constraints for int cost(i, v, k, t) only use f values of tasks T0 through

82

Ti�1, so there is no circularity.

The maximum value of the expression given in int cost is determined subject to

�ve constraint sets, labeled (a) through (e). The set of constraints labeled (a) follows from

our de�nition of the interval to be determined. For example, for R1, the interval ends with

the completion of the n
th iteration of phase v of task Ti, where n � k + 1. The set of

constraints labeled (b) follows from the fact that the number of times a higher-priority task

Tj can interfere with Ti's v
th phase in an interval is bounded by the number of jobs of Tj

released in that interval. The rest of the constraint sets are similar to Constraint Sets 1

through 3 given earlier. We now show that the bounds returned by compute retries are

correct by proving the following lemma.

Lemma 3.5: The value returned for fv
i
by compute retries is an upper bound on the

number of times the vth phase of Ti can be interfered with in a single job of Ti.

Proof: We consider the execution of the loop at lines 6 through 10 in Figure 3.2 for a given

i and v. If fv
i
is assigned a value at line 9, then the lemma is clearly true for i and v. In

the remainder of the proof, we assume that fv
i
is assigned a value in line 10. (Showing that

the loop eventually terminates and assigns a value to fv
i
is straightforward.) Suppose that

the value m is assigned to fv
i
in line 10, and let Rm

1 and Rm
2 denote the values computed in

lines 7 and 8, respectively, during the �nal loop iteration. By line 10, these two values are

equal. Also, from the discussion in Section 3.5.2, it is fairly easy to see that Rm
1 (and hence

R
m
2) is an upper bound on the time it takes to complete n � m+ 1 iterations of phase v in

Ti.

We now prove that there cannot be a job of Ti in which h > m interferences occur

83

in Ti's v
th phase. Suppose, to the contrary, that there exists such a job. Suppose the vth

phase in this job begins execution at time t0, and that the nth loop iteration of Ti's v
th

phase completes at time tn, where 1 � n � h+1. Now, consider the (m+1)st loop iteration

in [t0; th+1]. Because R
m
1 is an upper bound on the worst-case time taken to execute m+ 1

loop iterations, we have R
m
1 � tm+1 � t0. Furthermore, because h > m, the (m + 1)st

iteration in [t0; tm+1] fails, i.e., phase v of Ti is interfered with m + 1 times in [t0; tm+1].

This implies that phase v of Ti is interfered with at least m+ 1 times in [t0; t0 + R
m
1]. We

now show that there can be at most m interferences of phase v of Ti in any interval of

length R
m
1 , which will give the desired contradiction.

Let W be the set of higher-priority tasks that can interfere with the vth phase

of Ti. By De�nition 3.1, s
i;v

j
equals cv

i
if j 2 W , and s

i;v

j
equals zero if j =2 W . With

this notation, we can rewrite the �rst term of the expression to maximize in int cost as

c
v
i

P
j2W m

i;v

j
(t). Constraint (a) in int cost can be rewritten as

P
j2W m

i;v

j
(t) � k. Also,

constraint (b) implies
P

j2W m

i;v

j
(t) �

P
j2W d(t + 1)=pje. Hence, the maximum value of

c
v
i
�
P

j2W m

i;v

j
(t) is given by cv

i
�min(k;

P
j2W d(t+ 1)=pje).

We now make three important observations. First, in the expression maximized

by int cost , the �rst summation term is contingent on constraints (a) and (b) only, and the

second summation term depends on constraints (c) through (e) only. Second, the expression

maximized by int cost(i, v, k, t� 1) is identical to that maximized by int cost(i, v, k + 1,

t� 1). Third, the constraints for these calls are the same, except for constraint (a).

Now, consider the procedure calls int cost(i, v, m, t� 1) and int cost(i, v, m+ 1,

t � 1) in lines 7 and 8 when R
m
1 and R

m
2 , respectively, are determined. Based on the

84

observations made in the previous paragraph and the fact that the values returned by these

two calls are the same, cv
i
�min(m;

P
j2W dR

m
1 =pje) equals c

v
i
�min(m+ 1;

P
j2W dR

m
2 =pje).

Hence,
P

j2W dR
m
1 =pje =

P
j2W dR

m
2 =pje < m+ 1. This implies that the number of higher-

priority jobs in any interval of length R
m
1 that can interfere with Ti's v

th phase is less than

m+ 1, a contradiction.

The constraints considered so far apply not only to DM scheduling, but to any

static-priority scheduling scheme. We now present similar constraints can be derived for

the EDF and EDF/NPD schemes.

3.5.4 Dynamic-Priority Scheduling Schemes

The constraint sets for the EDF/NPD scheme is very similar to those derived for

the DM scheme. By comparing the constraints below to those for static-priority schemes, we

see that the constraint sets di�er only in the terms on the right-hand side of each constraint.

This is because the number of jobs with higher priority than Ji;k released in any interval

of length t is di�erent for these two schemes. The following constraint sets hold for the

EDF/NPD scheme.

Constraint Set 4:

(8i; j : j < i ::

w(i)X
v=1

m

i;v

j
(t) �

j
t+pj�lj

pj

k
):

Constraint Set 5:

(8i ::
iX

j=0

w(j)X
v=1

j�1X
l=0

m

j;v

l
(t) �

i�1X
j=0

j
t+pj�lj

pj

k
):

Constraint Set 6:

(8i; v ::
i�1X
j=0

m

i;v

j
(t) �

j
t+pi�li

pi

k
f
v

i):

85

The �rst set of constraints follows because the number of interferences in jobs of

Ti due to Tj in an interval I of length t is bounded by the maximum number of jobs of

Tj released in I with deadlines at or before the end of that interval. The second set of

constraints follows from Lemma 3.1. Hence, the total number of interferences in jobs of

tasks with deadline at or before the end of an interval I of length t is bounded by the

maximum number of jobs of released in I with deadlines before the end of that interval.

The reasoning behind the third set of constraints is similar to that for Constraint Set

3. The compute retries and int cost procedures for static-priority schemes can be directly

used to derive fv
i
values under EDF/NPD. However, we must use ceilings instead of
oors

in these procedures because the actual task deadlines are not considered when bounding

interferences in its phases.

3.6 Static-Priority Scheduling Conditions

In this section, we derive scheduling conditions for static- and dynamic-priority

schemes based on the results derived in the previous section. Speci�cally, we present su�-

cient scheduling conditions for the RM, DM, EDF, and EDF/NPD schemes. The necessary

conditions for these schemes are identical to those derived in Sections 3.3 and 3.4. In each of

these conditions, we give an expression that represents the maximum demand in an interval

I of length t, and require that total demand over I is less than or equal to the available

processor time in I. The expression for demand consists of two components: the �rst rep-

resents demand due to job releases, and the second represents demand due to interferences.

Recall that Ei(t) is the actual worst-case cost of interferences in jobs of tasks T0 through

86

Ti in any interval of length t. We let E0

i
(t) denote a bound on Ei(t) that is determined as

described in the previous subsection. The scheduling condition for the DM scheme is as

follows.

Theorem 3.6: Under the DM scheme, a set of tasks is schedulable if the following holds

for every task Ti.

(9t : 0 < t � li ::
iX

j=0

l
t

pj

m
cj +E

0

i(t� 1) � t)

Proof: We prove that if a task set is not schedulable, then the negation of the above

expression holds. Let the kth job of some task Ti be the �rst to miss its deadline. Consider

any t in the interval [bi(k); di(k)). We begin by deriving a bound on D(bi(k); t), the total

demand placed on the processor by Ti and higher-priority tasks in the interval [bi(k); t].

D(bi(k); t) is comprised of the demand placed by job releases and the extra demand placed

by interferences. Recall that at the busy point bi(k), Ti and all higher-priority tasks are

either inactive or have a job release. Each job release of some task Tj introduces a demand

of cj on the processor, and there are at most d(t � bi(k) + 1)=pje job releases of that task

in the interval [bi(k); t]. Therefore, the total demand placed on the processor due to job

releases of Ti and higher-priority tasks is at most
P

i

j=0d(t� bi(k) + 1)=pjecj .

The total cost of interferences in jobs of Ti and higher-priority tasks in the interval

[bi(k); t] is given by Ei(t). As mentioned earlier, the term E
0

i
(t) denotes a bound on Ei(t).

Therefore, the total additional demand due to interferences in jobs of Ti and higher-priority

tasks is at most E0

i
(t). Therefore, we have

D(bi(k); t) �
iX

j=0

&
t� bi(k) + 1

pj

'
cj +Ei(t� bi(k)):

87

Job Ji;k will miss its deadline if and only if, at time di(k) � 1, Ti has positive

unful�lled demand and the total unful�lled demand of Ti and higher-priority tasks is greater

than one. By Lemma 3.3, it follows that the di�erence between the total demand due to

Ti and higher-priority tasks in the interval [bi(k); t] and the available processor time in that

interval is greater than one. Hence, we have the following.

D(bi(k); t) � (t� bi(k)) > 1

Using the bound on D(bi(k); t) derived above, the previous expression implies the following.

iX
j=0

&
t� bi(k) + 1

pj

'
cj +Ei(t� bi(k)) > t� bi(k) + 1

The above expression holds for all t in the interval [bi(k); di(k)). Because this expression is

independent of the end points (it is a function of the length of the interval), we can replace

t�bi(k) with t
0, where t0 = t�bi(k) and t

0 2 [0; di(k)�bi(k)). Hence, we have the following.

iX
j=0

&
t
0 + 1

pj

'
cj +Ei(t

0) > t
0 + 1

Now, replace t0 with t in the above expression, where t = t
0 + 1 and t 2 (0; di(k) � bi(k)].

Also, E0

i
(t0) � Ei(t

0). Therefore, the following holds for all t 2 (0; di(k) � bi(k)].

iX
j=0

&
t

pj

'
cj +E

0

i(t� 1) > t

By de�nition, bi(k) � ri(k). Therefore, the interval (0; di(k)�ri(k)] is completely contained

in (0; di(k)� bi(k)]. Also, by de�nition, di(k)� ri(k) = li. Therefore, the expression above

holds for all t in (0; li].

88

Because RM scheduling is a special case of DM scheduling, the above scheduling

condition also holds for the RM scheme.

3.7 Dynamic-Priority Scheduling Conditions

We now derive a su�cient condition for schedulability of task set scheduled under

the EDF/NPD scheme. In the expression below, the �rst and second terms on the left-hand

side of the inequality denote the demand due to jobs of all tasks released during an interval

of length t and the total interference cost in all tasks during that interval.

Theorem 3.7: Under the EDF/NPD scheme, a set of tasks is schedulable if the following

holds.

(8t ::
N�1X
j=0

j
t+pj�lj

pj

k
cj +E

0

N�1(t� 1) � t)

Proof:We prove that if a task set is not schedulable then
P

N�1
j=0

j
t+pj�lj

pj

k
�cj+E

0

N�1(t�1) >

t holds for some t � 0. Assume that the given task set is not schedulable. Let Ji;k be the

�rst job to miss its deadline. (If several jobs simultaneously miss their deadline along

with Ji;k, then let Ji;k be the one with lowest priority.) We begin by deriving a bound on

D(bi(k); di(k) � 1), the total demand placed on the processor by Ji;k and higher-priority

jobs, i.e., jobs with deadlines at or before di(k), in the interval [bi(k); di(k)). D(bi(k); di(k)�

1) is comprised of the demand placed by job releases and the extra demand placed by

interferences. Recall that at Ji;k's busy point, all jobs of equal or higher priority either are

inactive or have a job release. Each job of some task Tj can place a demand of cj on the

89

processor, and there are at most b(di(k)� bi(k)+pj� lj)=pjc job releases of that task in the

interval [bi(k); di(k)) that have a deadline at or before di(k). Therefore, the total demand

placed on the processor due to such jobs is at most

N�1X
j=0

$
di(k) � bi(k) + pj � lj

pj

%
� cj :

The exact total additional demand due to interferences in all jobs with deadlines at or

before di(k) in the interval [bi(k); di(k)) is given by EN�1(di(k)� bi(k)� 1). Therefore, the

total additional demand due to interferences is at most E0

N�1(di(k)� bi(k)� 1).

Job Ji;k will miss its deadline if and only if the di�erence between the total demand

due to tasks with a deadline at or before di(k) in the interval [bi(k); di(k)) and the available

processor time in that interval is greater than one. Therefore, we have

N�1X
j=0

$
di(k)� bi(k) + pj � lj

pj

%
� cj +E

0

N�1(di(k)� bi(k)� 1)� (di(k)� bi(k)� 1) > 1;

which can be rewritten as

N�1X
j=0

$
di(k)� bi(k) + pj � lj

pj

%
� cj +E

0

N�1(di(k)� bi(k)� 1) > di(k)� bi(k):

Replacing (di(k) � bi(k)) by t yields the following expression, where 0 � t < di(k) � bi(k),

thus completing the proof.

N�1X
j=0

$
t+ pj � lj

pj

%
� cj +E

0

N�1(t� 1) > t

As formulated above, the expression in Theorem 3.4 cannot be veri�ed because the

value of t is unbounded. Nonetheless, as explained in Section 3.4, t is bounded in practice.

Chapter 4

Support for Strong Primitives

As explained in Chapter 2, Herlihy's hierarchy implies that hardware support for

strong primitives1 to implement lock-free objects in general asynchronous systems. Nev-

ertheless, we present several wait-free implementations of strong primitives from weaker

primitives, for uniprocessor real-time systems. Our results are based on the fact that

priority-based scheduling schemes used in hard real-time systems give rise to only a sub-

set of the task interleavings possible in general asynchronous systems. In particular, we

show that, in uniprocessor real-time systems, the consensus problem can be solved for any

number of tasks using only load and store instructions. Our results imply that Herlihy's

hierarchy collapses in uniprocessor real-time systems, and that sophisticated hardware sup-

port is not required to implement lock-free objects in such systems. In fact, using the

universal constructions described in [36, 42], it is possible to implement any lock-free object

using only consensus protocols. However, we eschew such an approach to implementing

lock-free objects because practical implementations of such objects are usually based on

1Primitives with unbounded consensus number.

91

strong primitives such as CAS. Towards this end, we present wait-free implementations of

the single-word and multi-word2 CAS (MWCAS) primitives.

This chapter is organized as follows. First, we present our real-time task model,

followed by a description of notation used in the correctness proofs of our implementations.

Then, we present our solution to the N -task consensus problem using only load and store

instructions. We also present two implementations of single-word CAS: the �rst is based

on load and store instructions, and the second uses a memory-to-memory move (move)

instruction in addition to load and store instructions. Finally, we present an implementation

of the MWCAS primitive that uses load, store, and single-word CAS instructions.

4.1 The Real-Time Task Model

The basis for the results presented in this chapter is the realization that the use

of priority-based schedulers in hard real-time systems precludes the occurrence of certain

task interleavings. For example, if a task Ti accesses an object in the time interval [t; t0],

and if another task Tj on the same processor accesses that object in the interval [u; u0],

then it is not possible to have t < u < t
0
< u

0, because the higher-priority task must �nish

its operation before relinquishing the processor. Requiring an object implementation to

correctly deal with this interleaving is pointless because it cannot arise in practice. The

distinction between traditional asynchronous systems, to which Herlihy's work is directed,

and hard real-time systems is illustrated in Figure 4.1. Operations of di�erent tasks in a

traditional asynchronous system can arbitrarily overlap one another. In contrast, in a real-

2Multi-word CAS extends the semantics of single-word CAS to multiple words.

92

(a) (b)

Figure 4.1: (a) Interleaved operations in a asynchronous system. (b) Interleaved operations

in a uniprocessor real-time system. Line segments denote operations on shared objects with

time running from left to right. Each level corresponds to operations by a di�erent task.

time system, operations of higher-priority tasks are completely contained within operations

of lower-priority tasks.

The real-time task model we assume is characterized by two key requirements: (i)

on a given processor, a task Ti may preempt another task Tj only if Ti has higher priority

than Tj ; (ii) a task's priority can change over time, but not during any object access.

Requirement (i) is fundamental to all priority-driven scheduling policies. When tasks are

scheduled under such policies, a high-priority task can arbitrarily preempt any low-priority

task executing on the same processor. Requirement (ii) holds for most common scheduling

policies, including RM, DM, and EDF scheduling and variations of these in which tasks

are broken into phases that are allowed to have distinct priorities [33]. The only common

scheduling policy that we know of that violates requirement (ii) is LLF scheduling [65].

Under LLF scheduling, the priority of a task invocation can change during its execution.

Observe that requirements (i) and (ii) expressly preclude the use of locking within

a processor. In particular, if a high-priority task Ti attempts to lock an object that is

already locked by a low-priority task Tj, then to ensure progress, Tj must be allowed to

resume execution. To ensure that requirement (i) is met, Tj's priority must be raised to

93

exceed Ti's before Tj is resumed. However, raising Tj's priority during its object access

violates requirement (ii). An object implementation in this task model is lock-free (wait-

free) i�, for any set of tasks with overlapping operation executions, some (each) task in that

set completes its operation in a bounded number of its own steps.

4.2 De�nitions and Notation

We begin by describing our model of program execution. We assume that shared

objects are accessed or modi�ed via a �xed set of operations. We assume that operations

on shared objects are implemented as procedure calls, and that such operations are invoked

by a �xed collection of tasks. We model the execution of these tasks by state transitions.

A state is a mapping that assigns a value to all shared memory locations and to all private

task variables (including the program counter for each task). A history is a totally-ordered

sequence of states, with each pair of consecutive states separated by a task step that causes

the computation to go from the �rst state to the second. Thus, in the history s0
q:1
�!

s1
p:1
�! s2

p:2
�! :::, the initial state is s0; the execution of task Tq's �rst statement causes

the computation to go from state s0 to state s1; the execution of task Tp's �rst statement

causes the computation to go from state s1 to state s2, and so on. We assume that each

labeled statement within a procedure is atomic, i.e., causes a single transition between a

pair of states when executed. When we refer to an interval of states [t,u], we are referring

to a subsequence in the execution history of a task set that starts at state t and ends at

state u. We say that an operation executes within the interval [t; u] i� the �rst statement

execution of that operation occurs after state t and the last statement execution of that

94

operation occurs before state u.

The correctness condition we use for our lock-free and wait-free implementations is

linearizability [39]. An implementation of an object is linearizable if, in every history h, the

partial order over the operation invocations in h can be extended to a total order such that

the sequence of operations in the total order is consistent with the sequential semantics of the

implemented operations. In our linearizability proofs, we show that this total order exists

by de�ning, for each operation invocation, a unique point in time, called its linearization

point (di�erent invocations of the same operation can have di�erent linearization points).

We say that an invocation is linearized to its linearization point. We also de�ne a \current"

value of the implemented object. We then show that, at the linearization point of each

invocation, the value of the implemented object before and after that point is consistent

with the semantics of the implemented operation, and that the invocation returns the same

value as the sequential operation would if executed atomically at that linearization point.

We abstract away from the task scheduler by de�ning an environment that de-

termines task priorities and enables tasks to execute on the processor. The behavior of

the environment is contingent on the underlying scheduling scheme. In this chapter, we

consider only systems in which the environment has the following properties: (i) it does

not modify task variables or program counters; (ii) it does not modify the priority of a task

during a shared object access; (iii) it assigns unique priorities to the di�erent tasks. Note

that this implies that if a given task begins executing one of the numbered statements in

our procedures (e.g., see Figure 4.2), then no lower-priority task may execute any state-

ment until that procedure invocation completes. In the proofs of the implementations that

95

follow, we will only concern ourselves with statement executions that arise from invoking

our procedures, i.e., we abstract away from the other activities of the tasks invoking these

procedures.

The space complexity of our algorithms is measured in terms of the total space

required, which includes the space required for shared variables and for private variables.

The time complexity of our lock-free algorithms is measured in terms of contention-free time

complexity , which is the time taken to perform an operation in the absence of contention.

(Lock-free objects have unbounded execution time in the presence of contention, but are

required to terminate in the absence of contention.)

Notation. Unless stated otherwise, q and r are assumed to be universally quanti�ed

over task identi�ers, and t, u, and v are assumed to be states. If s is a statement label,

then the predicate q@s holds i� the statement with label s is the next statement to be

executed by task Tq. We use q@S, where S is a set of statement labels, as shorthand for

(9s : s 2 S :: q@s). Unless stated otherwise, labeled program fragments are assumed to be

atomic. Each such fragment accesses at most one shared variable. We use q:s to denote

the statement with label s of task Tq, and q:v to denote Tq's local variable v. If a task Tp

is not executing one of our procedures, we consider it to be executing within a remainder

section, which is denoted by statement p:0. We use the term en(p) to indicate that some

statement of task Tp is enabled for execution, i.e., Tp is the highest-priority task executing

on the processor. We require that if a given task has an enabled statement at a state, then

no lower-priority task has an enabled statement at that state.

For any state assertionsB and C, B unless C denotes an unless property. Formally,

96

shared var Final : valtype [?

initially Final = ?

procedure incorrect-decide(val : valtype) returns valtype

1 : if Final = ? then

2 : Final := val

�;
3 : return Final

Figure 4.2: Incorrect solution to consensus using loads and stores.

B unless C holds i� for each statement, if B ^:C holds before that statement is executed,

then B _ C holds after (intuitively, if B holds, then it must continue to hold unless C

eventually holds).

4.3 Universality of Load and Store Instructions

In this section, we show that load and store instructions are universal in a unipro-

cessor system by solving the consensus problem for an arbitrary number of tasks using only

these instructions. The main di�culty to be faced in our solution to the consensus problem

is the \enabled late-write problem". We explain this problem by considering an incorrect

solution to the consensus problem.

In Figure 4.2, procedure incorrect-decide gives an incorrect solution to the consen-

sus problem. Procedure incorrect-decide uses a variable Final , in which the decision value

is stored. Each task that does not detect another task's input in Final (line 1) writes its

own value into Final (line 2). The procedure returns the value in Final (line 3). The main

problem with this solution is that two tasks may reach di�erent decisions. This problem

arises from the fact that once a task Tp is enabled to modify Final at p:2, it is committed to

do so even if it is preempted by a higher-priority task Tq. Consider Figure 4.3. In this �gure,

97

 executes p.2 and "corrupts"
 Final by overwriting value v

 is enabled
 to execute p.2

 writes v
 into Final

Tq

Tp

Tq

Tp Tp

Tr

 Tasks decide on value v

 does not write into Final

Figure 4.3: The enabled late-write problem.

Tq and Tr complete their entire operations and decide on some value v, before relinquishing

the processor to Tp. When Tp resumes execution, it chooses a value di�erent from v because

its enabled late-write overwrites the value in Final .

In solving the consensus problem, we overcome the late-write problem by means

of a two-step procedure depicted in Figure 4.4. In this �gure, procedure decide uses two

shared variables, Propose and Final . In the �rst step of the procedure, a task \proposes"

its value in Propose, if no other task has already written into Propose. In the second step,

the task copies the value in Propose to Final . This two-step procedure solves the late-

write problem by ensuring that if task Tp is committed to writing a variable Propose, then

before it does so, the �rst (and correct) value written to Propose has already been copied

to another variable Final, which Tp cannot subsequently modify. In Figure 4.4, procedure

decide solves consensus on a real-time uniprocessor using loads and stores. Each task that

does not detect the input of another task in Propose or Final writes its own value into

Propose. Having ensured that some value has been proposed (lines 1 to 3), a task copies

the proposed value to Final , if necessary (lines 4 to 6); it is easy to see that no task returns

98

shared var Final, Propose : valtype [?

private var v : valtype
initially Final = ? ^ Propose = ?

procedure decide(val : valtype) returns valtype

1 : if Final = ? then

2 : if Propose = ? then

3 : Propose := val

�;
4 : if Final = ? then

5 : v := Propose;
6 : Final := v

�

�;
7 : return Final

Figure 4.4: Consensus using loads and stores.

before some task's input value is written into Final, and that all tasks return a value read

from Final . The following lemma implies that all tasks return the same value, and therefore

yields the theorem below.

Lemma 4.1: The �rst value written into Propose is the only value written into Final.

Proof: Let Tp be the �rst task to write its value p:val into Propose. Recall that no higher-

priority task is executing when p:3 is executed. Thus, if task Tq executes between p:3 and

p:7, then q:1 occurs after p:3, which implies that Tq does not modify Propose. Therefore,

Propose = p:val holds continuously between p:3 and p:7. (Refer to Figure 4.5.)

Now, consider how some task Tq can modify Final after p:3 (note that Tq could be

Tp). If Tq starts execution after p:7, then q:1 reads Final 6= ?, so Tq does not write Final .

If Tq starts execution before p:3 is executed, and q 6= p, then by the assumption that p:3

writes Propose �rst, q@f1::3g holds when p:3 is executed. This implies that Tq has lower

priority than Tp, and therefore does not execute again until after Tp completes execution.

Thus, the test at q:4 fails and Tq does not write Final. Therefore, if task Tq writes Final

99

p

1 2

1 2 3 6 74 5

3

First
to
assign
Propose

Do not
update
Final

Enabled "late write"
corrupts Propose

Tp

p

Do not assign Propose

Propose = T ’ s input here
Tasks that read Final = here assign Final := T’ s input
(At least one task updates Final)

Figure 4.5: Proof of Lemma 4.1.

after p:3, then either p = q or Tq starts execution between p:3 and p:7. The latter implies

that Tq has higher priority than Tp, which implies that Tq completes execution before p:7. In

either case, because Propose = p:val holds continuously between p:3 and p:7, q:5 establishes

q:v = p:val and q:6 establishes p:val = Final .

Theorem 4.1: Consensus can be implemented with constant time and space using loads

and stores on a real-time uniprocessor system.

Proof: By Lemma 4.1, exactly one value is written into Final and all tasks decide on the

value in Final . Hence, it follows that all tasks decide on the same value.

Using consensus objects, any shared object can be implemented in a wait-free

100

(and hence lock-free) manner [36, 42]. However, such implementations usually entail high

overhead; practical wait-free and lock-free implementations are typically based on primitives

such as CAS and LL/SC. To enable the use of such practical implementations in real-time

uniprocessor systems, we present two implementations of a shared object that supports

Read and CAS operations.3 (LL/SC can be implemented using Read and CAS in constant

time [8].) These implementations use load/store and move instructions, respectively.

The key problem to be faced in our implementations is the problem of enabled late

writes described in Section 4.3. Each of our implementations employ a di�erent technique

to solve this problem. In the CAS implementation described in Section 4.4, an enabled late-

write instruction can potentially modify the current value of the shared object. The late-

write problem is handled by replicating the value of the shared object in 2N � 1 variables,

where N denotes the number of tasks accessing the object. The \current" value of the

object is given by the value found in a majority of the 2N � 1 variables. A task Tq ensures

that the same value is written to all of 2N � 1 shared variables before relinquishing the

processor to lower-priority tasks. Each lower-priority task can have at most one pending

late-write operation and can corrupt one of the 2N � 1 variables, potentially. Thus, even if

all N � 1 of the lower-priority tasks subsequently modify one of these variables, the value

written by Tq is still in a majority of the 2N � 1 variables.

The CAS implementation presented in Section 4.5 uses move, load, and store in-

structions. This implementation uses Propose and Final variables like in our consensus

algorithm described previously. The value of the implemented object is contained in shared

3Henceforth, we use the term \Read" to denote a read operation on any implemented shared object; this

distinguishes such read operations from reads of shared variables.

101

variable Final . To change the value of the shared object, a task �rst proposes a value in Pro-

pose and uses a move instruction to copy Propose to Final . An enabled late-move operation

of a low-priority task can potentially overwrite the value of the object by copying Propose

to Final. To ensure that enabled late moves of low-priority tasks do not overwrite Final ,

each task ensures that the same value is stored in Final and Propose before relinquishing

the processor.

4.4 Implementing CAS using Loads and Stores

Our load/store implementation of Read and CAS for N tasks is given in Figure

4.6,4 where N � 2. Values of the implemented object are stored in the Val array, which

contains one element Val [p] for each task Tp. The component of Val that holds the current

value of the object is determined from the array Buf , which contains 2N�1 task identi�ers.

Component Rv [r] of array Rv is used by Tr to detect if its CAS operation was successful.

Similarly, component Pm[r] of array Pm is used by Tr to detect whether its CAS or Read

operation has been preempted and interfered with. The shared variable V is used by tasks

to communicate return values of Read operations invoked by lower-priority tasks.

The following informal de�nition states that the current \value" CV of the shared

object is determined by the task identi�er that is stored in a majority of the locations Buf [1]

through Buf [2N � 1]. (A formal de�nition of CV is given later.)

CV � (Val [p] :: p is a majority in Buf)

4For simplicity, the shared object is not explicitly passed as a parameter to the Read and CAS procedures

shown in this �gure.

102

shared var

Val : array [0::N � 1] of valtype; =� If r is majority identi�er in Buf , Val [r] is current value �=

Buf : array [1::2N � 1] of 0::N � 1; =� Array of task identi�ers used to determine current value �=

Rv : array [0::N � 1] of valtype [?; =� Indicates success/failure of a CAS operation �=

Pm : array [0::N � 1] of boolean; =� Flag Pm[p] is set when

a higher-priority task modi�es CV during Tp's operation �=

V : valtype =� If Buf changes during a Read operation m, then V contains return value of m �=

initially (8k :: Buf [k] = 0) ^ V al[0] = initial value

private var =� For Task Tp, where 0 � p � N � 1 �=

i : integer; w, maj : 0::N � 1; current : valtype; count : array [0::N � 1] of 0::2N � 1

procedure Read() returns valtype

1 : Pm[p], count := false, (0; : : : ; 0);

2 : for i := 1 to 2N � 1 do

3 : w, count [w] := Buf [i], count [w] + 1

od;

4 : maj := select q : (8r :: count [q] � count [r]);

5 : current := Val [maj];

6 : if Pm[p] then

7 : current := V

�;

8 : return current

procedure CAS(old, new) returns boolean

9 : Pm[p] := false;

10 : Rv [p], count := ?; (0; : : : ; 0);

11 : for i := 1 to 2N � 1 do

12 : w := Buf [i]; count [w] := count [w] + 1

od;

13 : maj := select q : (8r :: count [q] � count [r]);

14 : current := Val [maj];

=� CAS continued.... �=

15 : if :Pm [p] ^ current = old then

16 if old = new then return true �;

17 : if maj 6= p then Rv [maj], i := current , 1;

18 : while :Pm[p] ^ i � 2N � 1 do

19 : Buf [i], i := maj , i+ 1

od

�;

20 : Val [p], i := new , 1;

21 : while :Pm[p] ^ i � 2N � 1 do

22 : Buf [i], i := p, i+ 1

od;

23 : if i > 2N � 1 _ Rv [p] = new then

24 : V := new ;

25 : for i := 0 to N � 1 do

26 : Pm[i] := true

od;

27 : return true

�

�;

28 : return false

Figure 4.6: Implementation of CAS using loads and stores.

103

In order to perform a CAS operation, a task Tp �rst attempts to determine CV.

This is achieved by clearing Tp's \preempted"
ag Pm[p] (line 9 in Figure 4.6), reading the

entire Buf array, and counting the task identi�ers read (line 11-13). Then, Tp attempts to

�nd a majority maj among the identi�ers read. (Because Tp does not read Buf atomically,

it is possible that Tp does not �nd a majority, but in any case, Tp chooses some valid task

identi�er.) Tp then reads Val [maj] (line 14). It can be shown that if Pm[p] is set between

p:9 and p:15, then the value of CV changed in this interval (see Lemma 4.3). In this case,

p.old 6= CV holds either before or after the change of CV , so Tp's CAS can fail at that point.

Also, if Pm[p] is not set between p:9 and p:15, then it can be shown that no task modi�es

Buf in this interval (see Lemma 4.2). In this case, Tp correctly determines the majority maj

and therefore correctly determines CV at line 14. If p:current | the value determined for

CV | di�ers from p:old then Tp fails immediately (line 15). Also, if p:current = p:old and

p:old = p:new , then Tp can succeed (line 16), because its successful CAS would not modify

the implemented object. This leaves CAS operations that determine that CV = p:old , and

that must attempt to change CV from p.old to p.new . Such operations can succeed by �rst

writing Val [p] := p:new (line 20), and by then establishing Tp as the majority in Buf (lines

21 and 22).

A Read operation determines CV (lines 1 to 5) the same way as a CAS operation

does (lines 9 to 14). If Buf changes while the Read operation executes lines 2 and 3, then

it can be shown (see Lemma 4.17) that the value read from V (line 7) is the value of CV

at some point during the Read.

Several subtle di�culties arise in this implementation. First, it is important to

104

ensure that the majority is not changed by \late" writes to Buf . This could potentially

occur if a task is preempted while writing Buf , and continues writing an \old" value when

it resumes running. This possibility is avoided by ensuring that, when a new majority q

is established, q is written into all 2N � 1 locations of Buf before the next majority is

established, and by also ensuring that each of at most N � 1 lower-priority tasks can write

only one \late" value. (Observe that this ensures that at least N elements of Buf still

contain q.) The latter is achieved by having successful CAS operations set the Pm
ags of

all tasks (lines 25 and 26), and having each task check its Pm
ag before proceeding with

each write (lines 18 and 21). Thus, each task can perform at most one \late" write before

detecting the overlapping operation and failing. In order to ensure that all 2N �1 locations

of Buf are written whenever a new majority is established (the task that established the

new majority may have been preempted before �nishing its writes to Buf), each task writes

the majority read to all elements of Buf (lines 18 and 19) before attempting to change the

majority to its own identi�er (lines 21 and 22).

As explained above, if Tp detects that Pm[p] is true before establishing itself as a

majority, then Tp can fail, because it can be shown that (see Lemma 4.7) an overlapping

CAS changed the value of CV. However, it is possible for a task Tp to succeed in making

its own identi�er the majority, and to be subsequently preempted and therefore fail to

detect that it achieved a majority. In this case, the fact that Tp achieved a majority is

\communicated" to Tp via Rv[p] (line 17). Then, when Tp executes line 23, it detects that

it did achieve a majority, and hence that it succeeded.

Example: Figure 4.7 depicts the e�ects of three CAS operations m0, m1, and m2 by tasks

105

Rv

false false false

12 53 77Val

Buf [1..5]

[0..2]

Pm [0..2]

[0..2]

0 0 0 1

Rv

false false false

12 77Val

Buf [1..5]

[0..2]

Pm [0..2]

[0..2]

0 001

12CV = 12

1

CV = 12

27

Rv

Val

Buf [1..5]

[0..2]

Pm [0..2]

[0..2]

22 2 2 2

65

true true

12

true

12 CV = 65

27

Rv

Val

Buf [1..5]

[0..2]

Pm [0..2]

[0..2]

2 2 2

65

true true

12

true

12 CV = 65

27

1 0

Task T
0

Task T
1

Task T
2

1

(a) (b)

(c) (d)

(e)

returns true

returns false

returns truem
0

m1

m2

CV = 53

Figure 4.7: Tasks invoke CAS operations m0, m1, and m2 with old/new values 53/12,

12/27, and 12/65, respectively. The contents of the relevant variables are shown (a) at the

beginning of T1's operation; (b) at the beginning of T2's operation; (c) at the end of T2's

operation; (d) at the end of T0's operation. The corresponding operation interleaving is

shown in (e).

106

T0, T1, and T2, respectively. The old/new values of the m0, m1, and m2 are 53/12, 12/27,

and 12/65, respectively. The value of CV equals 53 when m0 begins execution. Inset (a)

shows the contents of the various variables just before m1 begins. At this time, CV equals

12 and T0 is enabled to write zero into Buf [4]. (Note that m0 has established a majority

in Buf by this point.) During m1, task T1 detects zero as the majority task identi�er in

Buf (lines 11 and 12 in Figure 4.6). Then, m1 informs T0 that m0 succeeded by assigning

m0's new value (12) to Rv [0] (line 17). Task T1 then assigns zero to all components of Buf

(lines 18 and 19). However, before T1 can establish a new majority identi�er in Buf (lines

21 and 22), it is preempted by T2. (T1 is enabled to write into Buf [3] at the preemption

point.) Insets (b) and (c) show the relevant variables at the beginning and at the end of

operation m2, respectively. T2 successfully changes CV by writing its new value (65) into

Val [2] and by writing its task identi�er (2) into all components of Buf . Before returning, T2

writes true into all components of Pm to inform lower-priority tasks that their operations

have been interfered with. Inset (d) shows the relevant variables at the termination of m0.

Observe that CV does not change when the enabled late writes of T0 and T1 modify Buf [4]

and Buf [3], respectively. Also, as expected, when m1 (m0) resumes execution, T1 fails (T0

succeeds) the test at line 23 and returns false (true).

4.4.1 Correctness Proof

Before we present some properties required of our implementation, we �rst de�ne

a few terms used in the correctness proof of our CAS implementation.

De�nition 4.1: NUM (p) � jfn : 1 � n � 2N � 1 :: Buf [n] = pgj:

107

De�nition 4.2: MAJ (p) � (8q : q 6= p :: NUM (p) > NUM (q)).

De�nition 4.3: CV � (V al[p] :: MAJ (p))

According to De�nition 4.1, NUM (p) denotes the number of locations in Buf that

contain task identi�er Tp. According to De�nition 4.2, MAJ (p) is a boolean expression that

evaluates to true if a majority of the locations in Buf contain task identi�er Tp; it evaluates

to false otherwise. De�nition 4.3 formally de�nes the current value of the implemented

object.

The correctness proof of our CAS implementation proceeds as follows. We �rst

state the properties required of our implementation. Then, we establish several lemmas

required to prove the stated properties.

Property 4.1: A CAS operation invoked by task Tr returns true from line 27 i� one of

the following holds.

(i) :Pm[r] ^ CV = r :old ^ r :maj = r holds immediately before line 20 is executed,

and CV = r:new holds immediately after.

(ii) :Pm[r] ^ CV = r :old ^ r:i = N holds immediately before line 22 is executed and

CV = r:new holds immediately after.

Property 4.2: A CAS operation invoked by task Tr returns from line r:16 only if CV =

r :old ^ r :old = r :new holds immediately before r:15 is executed.

Property 4.1 implies that each successful CAS operation that changes CV lin-

108

earizes either to line 20 or to line 22. Property 4.2 implies that each successful CAS

operation that does not change CV linearizes to line 15.

Property 4.3: A CAS operation invoked by a task Tr returns from line 28 only if CV 6=

r:old holds at some point during that operation.

Property 4.3 states that if a CAS fails, then the operation linearizes to some state

in which the operation's old value does not match the current value of the implemented

object.

Property 4.4: The value returned by a Read operation equals the value of CV at some

point during that operation.

Property 4.4 states that a Read operation can be linearized to some state during

that operation at which the value of the implemented shared object equals the return value.

Before proving the above properties, we �rst state and prove following lemmas.

Lemma 4.2: If r@f2::6; 10::24g ^ :Pm[r] holds when a statement of Tr is enabled for

execution, then no other task modi�es Buf or Val during Tr's operation.

Proof: Suppose that r@f2::6; 10::24g ^ :Pm[r] holds at some state u during an operation

m invoked by Tr, when a statement of Tr is enabled for execution. Let t be the state

immediately following the execution of r:1 or r:9 by m. The proof is by contradiction.

Assume that some higher-priority task invokes a CAS operation that modi�es Buf and Val

during the interval [t; u]. (Note that Read operations do not modify Buf or Val .) Let m0 be

a CAS operation that modi�es Buf and Val and that is invoked by Tq the highest-priority

109

task to execute during the interval [t; u]. It follows from the real-time task model that

Tq's operation is completely contained within [t; u] and that no other task modi�es Buf or

Val during Tq's operation. Also, no other task executes lines 25 and 26 during m
0. (If

some task executes lines 25 and 26 during m0, then that task also modi�es Val .) Therefore,

:Pm[q] is not falsi�ed by another task after the execution of q:9 until Tq executes q:26 when

q:i = q. From the program (lines 18-22), it follows Tq successfully updates all locations of

Buf . Hence, Tq succeeds the test at q:23 and writes true into Pm[r] before it returns from

m
0. Also, the execution of any statement other than r:9 (r:1) cannot establish :Pm[r] after

m
0 completes and before state u. Therefore, Pm[r] holds at state u, a contradiction.

Lemma 4.3: If r@f2::6; 10::24g ^ Pm[r] holds when a statement of Tr is enabled for

execution, then some other task modi�es Buf and Val during Tr's operation.

Proof: Suppose that r@f2::6; 10::24g ^ Pm[r] holds at some state u during an operation

m invoked by Tr, when a statement of Tr is enabled for execution. Let t be the state

immediately following the execution of r:1 or r:9 by m. Then, Tr is preempted by some

higher-priority task that executes line 26 during the interval [t; u]. Consider Tq the highest-

priority task to execute line 26 that preempts Tr during [t; u], i.e., :Pm[q] holds throughout

Tq's operation. From the program text (lines 18-22), it follows that Tq successfully updates

Val [q] and Buf .

Lemma 4.4: :Pm[r] ^ r@f21::22g) (r :maj = r ^ NUM (r) = 2N � 1) _ (r :maj 6=

r ^ NUM (r) = r:i� 1 ^ NUM (r:maj) = 2N � r:i).

Proof: Suppose that :Pm[r] ^ r@f21; 22g holds at state u. Let t be the state immediately

110

following the execution of r:9. By Lemma 4.2, no other task modi�es Buf or Val during

[t; u], which, by Lemma 4.3 implies that :Pm[r] holds throughout [t; u]. From the program

code, we see that Tr establishes NUM (r:maj) = 2N � 1 by writing into all components of

Buf at r:18 and :19 before it executes r:20. We need to consider the following two cases.

Case: 1 If r :maj = r holds before the execution of r:20, then r:20 establishes :Pm[r] ^

r@f21::22g ^NUM (r:maj) = 2N�1 ^NUM (r) = 2N�1 ^ r:i = 1. Hence, NUM (r:maj) =

2N�1 ^ NUM (r) = 2N�1 holds before Tr executes r:21 for the �rst time and the execution

of r:21 and r:22 does not a�ect NUM (r). Because no other task modi�es Buf until state u,

this implies that NUM (r) = 2N � 1 holds at state u.

Case: 2 If r :maj 6= r holds before the execution of r:20, then r:20 establishes :Pm[r] ^

r@f21::22g ^ NUM (r:maj) = 2N � 1 ^ NUM (r) = 0 ^ r:i = 1. Hence, NUM (r) =

r:i � 1 ^ NUM (r:maj) = 2N � r:i holds before Tr executes r:21 for the �rst time. After

each loop iteration, both NUM (r) and r:i increase by one and NUM (r:maj) decreases

by one. Because no other task modi�es Buf until state u, this implies that NUM (r) =

r:i� 1 ^ NUM (r:maj) = 2N � r:i holds at state u.

Lemma 4.5: In every state, there exists some Tq such that MAJ (q) holds.

Proof: Initially, the lemma holds because MAJ (0) holds. We now inductively show that

if there is a unique majority in Buf in all states until some state v and the execution of a

statement by Tr results in a transition from state v to state v0, then there exists a unique

majority in state v0. We only need to consider statements of Tr that modify Buf , namely

r:19 and r:22.

111

Let t be the state immediately following the execution of r:9. Observe that r:19

and r:22 are executed only if :Pm[r] held previously at r:18 and r:21, respectively. If

:Pm[r] holds at r:18 or r:21, then, by Lemma 4.2, no other task modi�es Buf while Tr

reads it at r:11 and r:12. Therefore, The majority task identi�er read by Tr from Buf at

r:11 and r:12 is assigned to r.maj at r:13, i.e., MAJ (r:maj) holds after r:13. (Because a

majority exists in Buf until state v, there is a unique majority in Buf after r:13.) We now

consider statements r:19 and r:22.

Statement r:19: Suppose that Tr executes r:18 and r:19 at states u and v, respectively, and

that r:i = k holds at state u and state v, where 1 � k � 2N � 1. Statement r:19 destroys

the majority in Buf only if, for some q, MAJ (q) ^ r :maj 6= q holds at state v. However,

Tr executes r:19 at state v only if :Pm[r] holds at state u. By Lemma 4.2, no other task

modi�es Buf during [t; u]. This, when combined with the fact thatMAJ (r:maj) holds when

r:13 is executed, implies that MAJ (r:maj) holds at state u. Because MAJ (q) ^ r:maj 6= q

holds at state v, it follows that Buf is modi�ed by some other task during [u; v]. Let m0 be

the last CAS operation to execute statement 9 during [u; v] that modi�es Buf and that is

not preempted by any other task that modi�es Buf . Let Tq0 be the task that invokes m0.

(Refer to Figure 4.8.)

Because no other task modi�es Buf or Val during m
0, it follows from Lemma

4.3 that :Pm[q0] is not falsi�ed by some other task during m
0. From the program code

(lines 20-26), it can be seen that Tq0 writes q
0 into all components of Buf and ensures that

(8p : Pm[p]) holds before returning from m
0. By our assumption about Tq0 , tasks that

execute after m0, and before state v, have lower priority than Tq0 and have already executed

112

Tr

 state u
(before r.18)

 state t
 (after r.9)

 m’

 state v
(before r.19)

true assigned to all components of Pm;
all components of Buf contain q’

Tq’
q’.10

Each task here can corrupt
at most one location in Buf

Figure 4.8: Proof of Lemma 4.5.

statement 9. Other than Tr, there are at most N � 2 such tasks, and each such task can

modify at most one component of Buf before failing the test at line 18 or 21. Hence, at

most N�2 components of Buf contain values di�erent from q
0 at state v, i.e., at least N+1

components of Buf contain q
0 at state v. Therefore, the execution of r:19 at state v will

not falsify MAJ (q0).

Statement r:22: Suppose that r:22 is executed at state v when r:i = k holds, where 1 � k �

2N � 1. We consider two possibilities.

:Pm[r] holds at state v: If r :maj = r ^ r:i = k holds at state v, then, by Lemma 4.4, the

execution of r:22 establishes :Pm[r] ^ r@21 ^ r:i = k + 1 ^ NUM (r) = 2N � 1, which

implies that MAJ (r) holds at state v0. On the other hand, if r :maj 6= r ^ r:i = k holds at

state v, then, by Lemma 4.4, Pm[r] ^ r@21 ^ r:i = k+1 ^ NUM (r) = k ^ NUM (r:maj) =

2N � k � 1 holds at state v0. This implies that either MAJ (r:maj) or MAJ (r) holds at

state v0 depending on whether 1 � k < N or N � k � 2N � 1.

113

Pm[r] holds at state v: Suppose that Tr executes r:21 at state u. Observe that Tr executes

r:22 at state v only if :Pm[r] holds at state u. By Lemmas 4.2 and 4.3, it follows that Buf

is modi�ed by some other task during [u; v]. By following an argument similar to the one

in the proof of statement r:19, we can show that the execution of r:22 does not destroy the

majority in Buf .

For the rest of the proofs in this section, we assume that a unique majority always

exists in Buf | we do not explicitly quote Lemma 4.5 to establish this fact.

Lemma 4.6: Task Tr cannot change the majority in Buf by executing r:19.

Proof: Similar to the proof of statement r:19 in Lemma 4.5.

Lemma 4.7: If r@f2::6; 10::24g ^ Pm[r] holds, then some task Tq returns from line 27

during Tr's operation.

Proof: Suppose that r@f2::6; 10::24g ^ Pm[r] holds during a CAS or Read operation m

invoked by task Tr. Then, some higher-priority task executes line 26 during m and returns

from line 27.

Lemma 4.8: r@f10::24g ^ Pm[r]) :MAJ (r):

Proof: Suppose that Tr invokes a CAS operation m. Let t be the state immediately

following the execution of r:9 bym, and let v be some state duringm at which r@f10::24g ^

Pm[r] holds. By Lemma 4.3, some higher-priority task updates Buf in [t; v]. Using an

argument similar to the one in the proof of statement r:19 of Lemma 4.5, we can show

114

that a CAS operation of some higher-priority task Tr0 updates all components of Buf and

establishes (8p : Pm[p]) before it returns, and that tasks with priority between Tr and Tr0

can write a value di�erent from r
0 in at most N � 2 locations before state v. Task Tr can

also write a value di�erent from r
0 into at most one component of Buf when it resumes

execution. This implies that MAJ (r0) holds at state v.

Lemma 4.9: MAJ (r) ^ r@f21::22g ^ :Pm[r] unless Rv [r] = Val [r] _ r:i > 2N � 1.

Proof: Let A � MAJ (r) ^ r@f21::22g ^ :Pm[r]. Our proof obligation is to show that,

for any enabled statement s, the following Hoare triple holds.

fA ^ :(Rv [r] = Val [r] _ r:i > 2N � 1)g s fA _ (Rv [r] = Val [r] _ r:i > 2N � 1)g (4.1)

Among statements of task Tr, we only need to consider r:21 and r:22 because they

can falsify A. Statement r:21 falsi�es A by establishing r@23 only if r:i > 2N � 1 holds

before the execution of r:21. Statement r:22 cannot falsify MAJ (r) because Tr assigns r

into Buf . Therefore, (4.1) holds if s is a statement of Tr.

Among statements of some higher-priority task Tq, we only need to consider q:19,

q:22, and q:26. (4.1) holds if s is q:19 because, by Lemma 4.6, q:19 cannot falsify MAJ (r).

However, there is a danger that q:22 can falsify MAJ (r), or that q:26 can falsify :Pm[r].

(Note that the real-time task model implies that Tq's operation is completely contained

within Tr's operation.) To complete the proof, we show that if s is q:22 or q:26, then the

precondition in (4.1) does not hold.

Suppose that q:22 (q:26) is executed at state u. Let t be the last state before u at

which a statement of Tr is executed. Suppose that A ^ :(Rv [r] = Val [r] _ r:i > 2N � 1)

115

holds at state t. If Pm[r] holds at state u, then, by Lemma 4.8, MAJ (r) does not hold at

state u. On the other hand, if :Pm[r] holds at state u, then no other task assigns true to

Pm[q] during the interval [t; u]. To see why this is so, assume that :Pm[r] holds at state u

and that some higher-priority task updates Pm[q] during [t; u]. Then, by Lemma 4.7, some

higher-priority task Tq0 returns from line 27 during Tq's operation before state u. From the

program text (lines 25 and 26), it follows that (8p : Pm[p]) holds when Tq0 returns from

its operation. This implies that Pm[r] holds at state u, a contradiction. Therefore, no

other task writes true into Pm[q] during [t; u]. Having established this, we now consider

statements q:22 and q:26.

Statement q:22: Suppose that q:22 is executed at state u when :Pm[r] holds. Because no

other task writes true into Pm[q] during [t; u], and because Tq does not write into Pm[q]

until the execution of q:26, it follows that :Pm[r] ^ :Pm[q] holds at state u. By Lemma

4.2, no other task modi�es Buf or Val during Tq's execution until state u. Because MAJ (r)

holds at state u, this implies that MAJ (r) holds throughout Tq's operation. It follows that

Tq detects r as the majority in Buf at q:11 and q:12. Then, q:13 establishes r = q :maj , q:14

establishes Val [r] = q :current , and q:17 establishes Val [r] = Rv [r]. Furthermore, Val [r] is

not modi�ed by any task after q:17 and before state u. Therefore, Rv [r] = Val [r] holds at

state u.

Statement q:26: Suppose that statement q:26 is executed at state u, when :Pm[r] holds.

Because no higher-priority task assigns true to Pm[q] in the interval [t; u], it follows that

:Pm[q] holds during Tq's operation at least until q:25 is executed. From the program code

(lines 21 and 22), it follows that Tq assigns q to all 2N � 1 components of Buf . Because Tr

116

executes no statements in [t; u], this implies that MAJ (r) does not hold at state u.

In our implementation, the value of CV does during the execution of an operation

by task Tr as long as :Pm[r] holds when Tr is enabled to execute. This is formalized by

the following two lemmas. The en(r) terms in the expressions in these lemmas are required

because, even if :Pm[r] ^ r@f16::20g holds, these expressions do not hold in the interval

between the time some higher-priority task Tq preempts Tr and changes CV and the time

Pm[r] is established by some higher-priority task.

Lemma 4.10: en(r) ^ :Pm[r] ^ r@f16::20g) r :current = CV ^ CV = Val [r :maj]:

Proof: Initially, the above lemma holds because r@0 holds. The antecedant in the above

lemma can be established by statement r:15 of task Tr, or by the environment5, which can

establish en(r). Suppose that en(r) ^ :Pm[r] ^ r@15 holds at some state u during a

CAS operation m of task Tr. Let t be the state immediately after the execution of r:9 by

m, and let q be the majority identi�er in Buf at state t, i.e., CV = Val [q] ^ MAJ (q)

holds at state t. By Lemma 4.2, no other task modi�es Buf or Val during [t; u]. Hence, the

following holds throughout [t; u].

CV = Val [q] ^ MAJ (q) (4.2)

By (4.2), and by examining lines 11 through 15 of the program text, we see that

r:15 establishes r :maj = q ^ r :current = Val [r :maj]. Along with (4.2), this implies that

the execution of r:15 establishes the lemma.

If en(r) becomes true at some state u when :Pm[r] ^ r@f16::20g holds, then

5Refer to Section 4.2.

117

the consequent holds. This is because, by Lemma 4.2, no other task modi�es Buf or Val

during m until state u, and, we have already shown that the execution of r:15 establishes

the consequent.

We now consider statements that can potentially falsify the above lemma. State-

ments of any task Tq, where q 6= r, cannot falsify the lemma because, by the real-time

task model, no statement of any other task Tq is enabled when en(r) holds. Among the

statements of Tr, only r:20 can falsify the lemma by changing CV . However, the execution

of r:20 falsi�es the antecedant by establishing r@21.

Lemma 4.11: en(r) ^ :Pm[r] ^ r@f21::22g ^ r :maj 6= r ^ r:i � N) r :current =

CV ^ CV = Val [r :maj]:

Proof: Let A � en(r) ^ :Pm[r] ^ r@f21::22g ^ r:maj 6= r ^ r:i � N and let

B � r :current = CV ^ CV = Val [r :maj]. Initially, the above lemma holds because

r@0 holds. A can be established by statement r:20 of Tr, or by the environment, which can

establish en(r). Observe that A is established only if r:20 is executed when en(r) ^ :Pm[r] ^

r@20 ^ r :maj 6= r holds. By Lemma 4.10, this implies that B holds immediately before

the execution of r:20. B also holds immediately after r:20 because r:20 does not change

Val [r:maj] when r:maj 6= r. Hence, r:20 establishes the above lemma.

If en(r) becomes true at some state t when :Pm[r] ^ r@f21::22g ^ r:maj 6=

r ^ r:i � N holds, then the consequent holds. This is because, by Lemma 4.2, no other task

modi�es Buf or Val during m until state t, and we have already shown that r:20 establishes

the consequent.

118

We now consider statements that can potentially falsify the above lemma. State-

ments of any task Tq, where q 6= r, cannot falsify the lemma because, by the real-time

task model, no statement of some other task Tq is enabled when en(r) holds. Among the

statements of Tr, only statement r:22 can potentially falsify B by changing CV .

Suppose that r:22 is executed at state u when A ^ B holds. Observe that r:22

establishesMAJ (r) | and changes the value of CV | only if r :maj 6= r ^ NUM (r) = N�1

holds at state u. By Lemma 4.4, A implies that NUM (r) = r:i � 1 holds at state u.

Combining the above facts, it follows that r:i = N holds at state u. Hence, the execution

of r:22 at state u falsi�es A by establishing r:i > N .

Lemma 4.12: A CAS operation m invoked by task Tr changes the value of CV i� (i) m

executes r:20 when :Pm[r] ^ r:maj = r holds or (ii) m executes r:22 when :Pm[r] ^

r:maj 6= r ^ r:i = N holds.

Proof: Task Tr can change CV either by changing the current majority in Buf or by

changing Val [r] when r is the majority in Buf . From the program, it follows that only

statements r:19, r:20, and r:22 can potentially change CV . However, it follows from Lemma

4.6 that the execution of r:19 cannot modifyCV . Hence, we only need to consider statements

r:20 and r:22.

Statement r:20: Suppose that r:20 is executed at state u. Note that the value of CV can be

changed by r:20 i� r@20 ^ MAJ (r) holds at state u. By Lemma 4.8, it follows that :Pm[r]

holds at state u. By Lemma 4.2, this implies that no other task has modi�ed Buf during

Tr's operation. Also, by Lemma 4.6, r:19 cannot modify the majority in Buf . From these

119

facts, and from the fact that MAJ (r) holds at state u, it follows that r is the majority task

identi�er in Buf when Tr reads Buf at r:11 and r:12, and that r:13 establishes r :maj = r.

Therefore, :Pm[r] ^ r :maj = r holds at state u.

Statement r:22: Suppose that r:22 is executed at state u. Let v be the state immediately

following u and let t be the state immediately following the execution of r:9. Observe that

CV can be changed by r:22 i� r@22 ^ MAJ (q) ^ q 6= r ^ NUM (r) = N � 1 holds

at state u. Because the execution of r:22 establishes MAJ (r) at state v, it follows from

Lemma 4.8 that :Pm[r] holds at state v. By Lemma 4.2, this implies that no other task

modi�es Buf during the interval of states [t; v], which, by Lemma 4.3, implies that :Pm[r]

holds throughout [t; v]. Also, by Lemma 4.6, r:19 does not destroy the majority in Buf .

From these facts, and from the fact that MAJ (q) holds at state u, it follows that q is the

majority task identi�er in Buf when Tr reads Buf at r:11 and r:12, and that r:13 establishes

r :maj = q. Therefore, r@22 ^ :Pm[r] ^ r :maj 6= r holds at state u. Along with Lemma

4.4 and the fact that NUM (r) = N � 1 holds at state u, this implies that r:i = N holds at

state u as well.

Lemma 4.13: Suppose that a CAS operation m invoked by Tr changes CV. Then, m

changes CV from r.old to r.new, and returns true from line 27.

Proof: By Lemma 4.12, if Tr invokes a CAS operation m that modi�es CV then, either (i)

Tr executes r:20 when r@20 ^ :Pm[r] ^ r :maj = r holds, or (ii) Tr executes r:22 when

r@22 ^ :Pm[r] ^ r :maj 6= r ^ r :i = N holds. Suppose that (i) or (ii) happens at some

state t. Observe that Tr executes r:20 or r:22 only if Tr succeeds the test at line 15, i.e.,

120

r :current = r :old holds at state t. Along with Lemma 4.10, this implies that CV = r :old

holds at state t. To complete the proof we need to show that m changes CV to r.new and

returns true.

Suppose that (i) happens at state t. From Lemma 4.10 and De�nition 4.3, the

following holds at state t.

:Pm[r] ^ CV = Val [r :maj] ^ r :maj = r ^ MAJ (r) (4.3)

(4.3) implies that the execution of r:20 establishes MAJ (r) ^ r@f21::22g ^ :Pm[r] ^

Val [r] = r :new , which implies that CV = r :new . Along with Lemma 4.9, this also implies

that Tr succeeds the test at line 23 and returns from line 27.

Suppose next that (ii) happens at some state t. From the program text, the

execution of r:20 establishes Val [r] = r :new , which holds until m completes. Because the

execution of r:22 at state t changes CV by establishingMAJ (r), it follows that the execution

of r:22 at state t changes CV to r.new and establishes MAJ (r) ^ r@f21::22g ^ :Pm[r].

From Lemma 4.9 and from the fact that Val [r] = r :new holds at state t until the completion

of m, it follows that Tr succeeds the test at line 23 and returns from line 27.

Lemma 4.14: If task Tr invokes a CAS operation that returns from line 27, then Tr

modi�es CV from r.old to r.new during its operation.

Proof: Suppose that Tr invokes a CAS operation m that returns from line 27. Our proof

obligation is to show that either condition (i) or (ii) in Lemma 4.12 is satis�ed. (By Lemma

4.13, if condition (i) or (ii) in Lemma 4.12 is satis�ed, then Tr changes CV from r.old to

r.new .) Let t (v) be the state immediately following (preceding) the execution of r:9 (r:23).

121

If Tr returns from line r:27, then r@23 ^ (r:i > 2N � 1 _ Rv [r] = r :new) holds at state

v and r :old 6= r :new holds during m. We need to consider the following two cases.

Case 1: Suppose that r:i > 2N � 1 holds at state v. This implies that Tr updates all

components of Buf in the loop at lines 21 and 22. From the program text, it follows that

:Pm[r] holds at all states following t, at least until some state at which r@21 ^ r:i = 2N�1

holds. Hence, if r :maj = r holds at state v, then :Pm[r] ^ r :maj = r holds immediately

before the execution of of r:20, and condition (i) in Lemma 4.12 holds. On the other hand,

if r :maj 6= r holds at state v, then r@22 ^ :Pm[r] ^ r :maj 6= r ^ r:i = N holds at some

state when r:22 is executed, and condition (ii) of Lemma 4.12 holds.

Case 2: Suppose that r@23 ^ r :i � 2N � 1 ^ Rv [r] = r :new holds at state v. Let u be

the state immediately following the execution of r:15. From the program code (line 15), it

follows that :Pm[r] ^ r@16 ^ r :old = r :current holds at state u. By Lemma 4.10 and

De�nition 4.3, the following also holds at state u.

CV = r :current ^ CV = Val [r :maj] ^ r :old = r :current ^ MAJ (r:maj) (4.4)

Because Rv [r] = r :new holds at state v, it follows that, after the execution of r:10,

some higher-priority task assigns r.new to Rv [r]. (Observe that Tr cannot update Rv [r]

at r:17.) Let m0 be the �rst CAS operation to update Rv [r] during the execution of m.

Because m0 executes during m, it follows from the real-time task model that m0 is invoked

by a higher-priority task and that m0 is completely contained within m. Let Tq be the task

that invokes m0. Observe that the execution of q:17 updates Rv [r] only if q:13 establishes

q :maj = r. This implies that Tq detects r as the majority task identi�er in Buf at q:11 and

122

T
r

 state v
(before r.23)

execution
 of r.20

Tq

 q.17 assigns
 r.new to Rv[r]

Val[r] = r.old Val[r] = r.new

 finds r as
majority in Buf
Tq

First higher−priority
task to update Rv[r]
during operation m

 reads r.new
from Val[r]
Tq

 state u
 (after r.15)

 m’

 m

Figure 4.9: Subcase 2.1 in the Proof of Lemma 4.14.

q:12. Also, Tq executes q:17 only if :Pm[q] holds at q:15. By Lemma 4.2, this implies that

no other task modi�es Buf or Val between the execution of q:9 and q:15. From the above

facts, it follows that MAJ (r) holds before q:15. We now consider the following subcases.

Subcase 2.1: Suppose that r :maj = r holds at state u. By (4.4), Val [r] = r :old holds at

state u until the execution of r:20, which establishes Val [r] = r :new . (Refer to Figure 4.9.)

We now show that m0 is executed after the execution of r:20 by m.

Suppose that Tq executes m
0 before r:20 is executed by m. Then, q:14 establishes

q :current = r :old and q:17 establishes Rv [r] = r :old . Furthermore, Pm[r] is established by

Tq or some higher-priority task before m0 completes. (If :Pm[q] holds between q:10 and

q:24, then Tq establishes Pm[r] at q:26. Otherwise, if Pm[q] is established between q:10 and

q:24, then, by Lemma 4.7, some other higher-priority task returns from line 27, and hence

establishes Pm[r].) From the program text (lines 21 and 22), this implies that Tr cannot

123

T
r

 state v
(before r.23)

Tq

 q.17 assigns
 r.new to Rv[r]

 finds r as
majority in Buf
Tq

First higher−priority
task to update Rv[r]
during operation m

 reads r.new
from Val[r]
Tq

MAJ(r) does
not hold

MAJ(r) holds

 establishes MAJ(q)Tq

 m

 m’

 state u
 (after r.15)

 state u’
 (before r.22)

Figure 4.10: Subcase 2.2 in the Proof of Lemma 4.14.

establish MAJ (r) before state v and after m0 completes. This implies that any higher-

priority task that preempts Tr after r:20 will not detect r as a majority in Buf and hence

will not update Rv [r]. This implies that Rv [r] = r :old holds at state v, a contradiction.

Therefore, Tq executes m
0
after the execution of r:20 by m.

By (4.4), MAJ (r) holds at state u. As shown previously, MAJ (r) holds before

q:15. Hence, it followsMAJ (r) is not falsi�ed between state u and q:15. (If some other task's

operation falsi�es MAJ (r) between state u and q:15, then that task detects r as a majority

in Buf and hence updates Rv [r] before m0, which contradicts our assumption about m0.)

Therefore, MAJ (r) holds immediately before the execution of r:20 by m. By Lemma 4.8,

this implies that :Pm[r] holds before the execution of r:20. Also, because r :maj = r holds

at state u, it also holds before the execution of r:20. Therefore, :Pm[r] ^ r :maj = r holds

when r:20 is executed, and condition (i) of Lemma 4.12 holds.

124

Subcase 2.2: Suppose that r :maj 6= r holds at state u. Along with (4.4) and De�nition 4.3,

this implies that MAJ (r) does not hold at state u. By examining lines 15 through 22, we

see that if some higher-priority task Tq0 preempts Tr, after state u and before Tr establishes

MAJ (r), then (i) Tq0 does not write to Rv [r], and (ii) Tq0 assigns either q
0
:maj or q0 to Buf ,

where q 0:maj 6= r ^ q
0 6= r. This impliesMAJ (r) can be established during m only by task

Tr in the loop at lines 21 and 22 (by Lemma 4.6, the loop at lines 18 and 19 cannot establish

MAJ (r)). Because Tq detects r as a majority in Buf at q:11 and q:12, it follows that Tq

preempts Tr after Tr establishes a majority in Buf at r:21 and r:22. (Refer to Figure 4.10.)

Let u0 be the state at which the execution of r:22 establishes MAJ (r), and let u00

be the state immediately following u0. Because MAJ (r) does not hold at state u0 but holds

at state u00, it follows that NUM (r) = N (NUM (r) = N � 1) holds at state u00 (state u0).

Because r@21 ^ MAJ (r) holds at state u00, it follows from Lemma 4.8 that :Pm[r] holds

at state u00 | :Pm[r] holds at state u0 as well because r:22 does not modify Pm[r]. Hence,

r@22 ^ :Pm[r] ^ NUM (r) = N � 1 ^ r :maj 6= r holds at state u0. By Lemma 4.4, this

implies that :Pm[r] ^ r :maj 6= r ^ r:i = N holds at state u0. Hence, condition (ii) of

Lemma 4.12 holds.

Lemma 4.15: If Tr executes r:15 when r.current = r.old ^ r.old = r.new ^ :Pm[r]

holds, then CV = r:old also holds, and Tr returns from line 16.

Proof: Suppose that Tr invokes a CAS operation m. Also, suppose that Tr executes

r:15 when r :current = r :old ^ r :old = r :new ^ :Pm[r] holds. The execution of r:15

establishes r@16 ^ :Pm[r] ^ r :old = r :new ^ r :current = r :old . By Lemma 4.10,

125

CV = r :current ^ CV = Val [r :maj] holds after r:15. Hence, CV = r:old holds after r:15

| CV = r:old also holds before r:15 because r:15 does not change CV . Clearly, Tr returns

from r:16.

Lemma 4.16: If Tr invokes a CAS operation m that returns from r:28, then m does not

change CV and CV 6= r :old holds at some state during m.

Proof: Suppose that Tr invokes a CAS operation m that returns from r:28. By Lemma

4.13, if m modi�es CV , then it returns from r:27. Hence, m does not change CV . We now

show that CV 6= r :old holds at some state during m. Task Tr can fail m by failing the test

either at r:15 or at r:23. Consider the following three cases.

Case 1: Suppose that r:15 is executed when :Pm[r] ^ r :current 6= r :old holds. The exe-

cution of r:15 establishes r@16 ^ :Pm[r] ^ r :current 6= r :old . Along with Lemma 4.10,

this implies that CV 6= r :old holds in the state following the execution of r:15.

Case 2: Suppose that r:15 is executed when Pm[r] holds. By Lemma 4.7, some higher-

priority task Tq returns from q:27 during Tr's operation. By Lemma 4.14, Tq modi�es

CV during its operation from q.old to q.new . In this case, CV 6= r:old holds in the state

preceding or the state following Tq's linearization step.

Case 3: Suppose that r:23 is executed when r :i � 2N � 1 ^ Rv [r] 6= r :new holds. Because

Tr does not write into all 2N �1 locations of Buf at lines 21 and 22, it follows that Pm[r] is

established during or before the loop at line 21. By Lemma 4.7, some higher-priority task

Tq returns from q:27 during Tr's operation. As in Case 2, CV 6= r :old holds in the state

126

preceding or in the state following Tq's linearization step.

Lemma 4.17: If Tr invokes a Read operation, then, at some state during Tr's operation,

CV equals the value returned by the operation.

Proof: Suppose that Tr invokes a Read operation m. If :Pm[r] holds at r:6, then by

Lemma 4.2, no other task modi�es Buf or Val during Tr's operation, and Tr assigns to

r.maj the majority task identi�er in Buf at r:4, and assigns CV to r.current at r:5. On the

other hand, if Pm[r] holds at r:6, then m returns V , and it follows from Lemma 4.7 that

one or more higher-priority tasks return from line 27 during m | these tasks also update

V . Of these tasks, let Tq be the last task to update V before the execution of r:6 by m.

From the real-time task model, it follows that Tq's operation is completely contained within

Tr's operation. Also, by Lemma 4.14, Tq changes CV to q.new and establishes q :new = V

at q:24. This implies that Tr returns the value of CV at the state immediately following

Tq's linearization step.

Theorem 4.2: Read and CAS can be implemented on a real-time uniprocessor system with

O(N) time and O(N2) space complexity.

Proof: Properties 4.1 through 4.4 follow directly from the above lemmas. Speci�cally,

Property 4.1 follows from Lemmas 4.12, 4.13, and 4.14; Property 4.2 from Lemma 4.15;

Property 4.3 from Lemma 4.16; and Property 4.4 follows from Lemma 4.17. This proves

that the program in Figure 4.6 correctly implements a shared object that supports CAS

and Read. Clearly, our implementation has O(N) time complexity. The implementation

has O(N2) space complexity because each task requires O(N) private variables.

127

Corollary 4.1: On a uniprocessor real-time system, any object can be implemented in a

lock-free manner with time complexity O(N) using only load and store instructions.

Proof: The proof follows directly from the following observations: (i) any shared object

can be implemented in a lock-free manner by using a constant number of LL and SC

instructions [37]; (ii) an object that supports LL and SC operations can be implemented

using only CAS, load, and store instructions with worst-case time complexity O(1) [7]; and,

(iii) by Theorem 4.2, in any uniprocessor hard real-time system consisting of N tasks, an

object that supports CAS and Read operations can be implemented using only load and

store instructions with O(N) worst-case time complexity.

4.5 Implementing CAS using Move, Load, and Store Instruc-

tions

We now present an implementation of a shared object that supports Read and

CAS operations. This implementation uses the move instruction in addition to loads and

stores. The move instruction is widely available on most systems, e.g., uniprocessor systems

based on Intel's 80x86 and Pentium line of processors support the move instruction.

In our implementation, a task modi�es (reads) the value of the implemented object

by invoking the CAS (Read) procedure shown in Figure 4.11.6 Shared variable Rv [r] is used

by Tr to detect whether a CAS operation by it was successful. The shared variable Run is

used by a task Tr to determine whether a CAS operation by it has been interfered with.

6For simplicity, the shared object is not explicitly passed as parameter to the CAS and Read operations.

128

type objtype = record val : valtype ; tid : 0::N � 1 end =� These �elds are packed into one word �=

shared var Rv : array [0::N � 1] of valtype [?; =� Indicates success/failure of a CAS operation �=

Final : objtype; =� Stores the current value of the object �=

Propose : objtype; =� Used to propose a new value for the object �=

Run : 0::N � 1 =� Used to determine whether a CAS operation has been interfered with �=

private var oldf : objtype =� For task Tp, where 0 � p � N � 1 �=

procedure CAS(old, new : valtype) returns boolean

1 : if old = new then return Final.val = old �;

2 : if Final.val 6= old then return false �;

3 : Run := p;

4 : Rv [p] := ?;

5 : oldf := Final;

6 : Rv [oldf:tid] := oldf.val;

7 : if Final.val = old then

8 : Propose := (new, p);

9 : if Run = p then

10 : Final := Propose; =� Move the proposed value to Final �=

11 : if Run = p then return true �;

12 : if Rv [p] = new then return true �

�;

13 : Propose := Final =� Move Final to Propose to handle enabled late-move problem �=

�;

14 : return false

procedure Read() returns valtype

15 : return Final.val

Figure 4.11: Implementation of CAS/Read using move.

129

The words that may be accessed by the CAS and Read procedures are assumed to be of

type objtype. A word of this type consists of two �elds: a val �eld, which contains the value

of the implemented object, and a tid �eld that stores the identi�er of the task that wrote

that value. We use the variables Final and Propose in a manner similar to the consensus

object implementation in Section 4.3. Speci�cally, a task that invokes a CAS operation

�rst proposes a value in Propose and �nalizes the value by copying Propose to Final .

However, our CAS object implementation is more complicated than the consensus object

implementation because a CAS object can be assigned values many times. In contrast, a

consensus object can be assigned a value only once.

The Read operation is simply implemented by a read of Final.val . If old = new

(line 1), then a CAS(old; new) operation by task Tp succeeds or fails immediately, depend-

ing on the value of Final.val . Also, if Tp detects that Final :val 6= old, its CAS can fail

immediately (lines 2 and 7). Otherwise, Tp writes its new value into Propose (line 8) and,

if it does not detect an overlapping successful CAS operation (line 9), it attempts to move

its new value from Propose into Final (line 10), thereby succeeding. It is possible for a task

Tp to successfully moves its new value to Final and then get preempted before executing

p:11. In this case, Tp cannot detect that it succeeded. To solve this problem, before a task q

modi�es Final , it �rst \informs" the task that previously modi�ed Final that it succeeded

(lines 5 and 6). The preempted task Tp can therefore detect by reading Rv [p] (line 12)

that it succeeded. To ensure that a low-priority task does not modify Final \late", thereby

\corrupting" the value written by a previous CAS operation, each CAS operation ensures

that, if it modi�es Propose or Final , then Propose = Final holds before it relinquishes the

130

processor (line 13). This ensures that the \late" move operation has no e�ect on Final .

4.5.1 Correctness Proof

We �rst de�ne some terms and state the properties required of our CAS imple-

mentation. Then, we prove several lemmas used to prove the stated properties.

De�nition 4.4: The current value of the shared object is given by Final.val .

Property 4.5: The value returned by a Read operation invoked by a task Tr equals the

value of the shared object immediately before r:15 is executed.

Property 4.6: Suppose that Tr invokes a CAS operation that returns true from r:1.

Then, Final :val = r :old ^ r :old = r :new holds immediately before r:1 is executed, and

Final :val = r :new holds immediately after.

Property 4.7: Suppose that Tr invokes a CAS operation that returns true from r:11 or

r:12. Then, Final :val = r :old ^ Propose = (r:new; r) holds immediately before r:10 is

executed, and Final :val = r :new holds immediately after.

Property 4.8: Suppose that Tr invokes a CAS operation that returns false. Then,

Final :val 6= r :old holds at some state during Tr's operation.

Property 4.5 states that a read operation linearizes to r:15. Property 4.6 states

that a successful CAS operation linearizes to line 1 if it does not modify the value of the

shared object. Property 4.7 states that a successful CAS operation linearizes to r:10 if

it changes the value of the object. Property 4.8 states that if a CAS operation returns

131

false, then the old value does not match the value of the object at some point during the

operation. It is easy to see that Properties 4.5 and 4.6 hold. We now prove the following

lemmas in order to establish the remaining properties.

Lemma 4.18: If r@f4::13g ^ Run = r holds when a statement of Tr is enabled to execute,

then no other task has modi�ed Final or Propose since Tr executed r:3.

Proof: Suppose that Tr invokes a CAS operationm. Let t be the state immediately after the

execution of r:3 by m. Let u be some subsequent state duringm when r@f4::13g ^ Run = r

holds and Tr is enabled to execute. The proof is by contradiction. Suppose that some other

task Tq invokes a CAS operation m0 that modi�es Final or Propose in the interval of states

[t; u]. Then, Tq has higher priority than Tr, and from the real-time task model, m0 is

completely contained within m. Before Tq modi�es Final or Propose, it �rst establishes

Run 6= r by executing q:3. Now, Tr cannot establish Run = r after m0 because r:3 is

executed before state t. Also, higher-priority tasks cannot establish Run = r. Therefore,

Run 6= r holds at state u, a contradiction.

Lemma 4.19: If r@f4::13g ^ Run 6= r holds when Tr is enabled to execute, then some

task changes Final.val and writes to Propose after Tr executes r:3.

Proof: Suppose that Tr invokes a CAS operation m. Let t be the state immediately after

the execution of r:3. Let u be some subsequent state during m when r@f4::13g ^ Run 6= r

holds and Tr is enabled to execute. Observe that Run 6= r holds at state t only if some

other task modi�es Run in the interval of states [t; u]. Consider the highest-priority task

Tq that invokes a CAS operation m0 that updates Run after Tr's preemption and before its

132

subsequent resumption. Observe that Tq updates Run only if q :old 6= q :new holds during

m
0. Also, observe that Tq updates Run only if q@2 ^ Final :val = q :old holds before q:2.

Since no other task modi�es Run during m0, it follows that no other task modi�es Final

or Propose during m
0. (If a task updates Final or Propose, then it also modi�es Run.)

Therefore, Tq succeeds the test at q:7, assigns (q:new; q) to Propose at q:8, succeeds the test

at q:9, and changes Final.val from q.old to q.new at q:10.

Lemma 4.20: If Run 6= r holds immediately before r:10 is executed during a CAS operation

by Tr, then Final is not modi�ed by the execution of r:10.

Proof: Suppose that Tr invokes a CAS operation m and that, during m, r:10 is executed

at state u when r@10 ^ Run 6= r holds. By Lemma 4.19, during Tr's operation, some

higher-priority task invokes a CAS operation that modi�es Final.val and writes to Propose.

Consider the last CAS operation m0 to execute line 3 before state u. Let Tq be the task that

invokes m0. (Refer to Figure 4.12.) Observe that Tq executes q:3 only if Final :val = q :old

holds when Tq executes q:2. Because no other task modi�es Propose or Final during m
0

(otherwise, Tq is not the last task to execute line 3 before state u), it follows from Lemma

4.19 that Run = q holds throughout Tq's execution. These facts imply that Tq succeeds the

tests at q:7, q:9, and q:11, and establishes Run = q ^ Final = Propose before it returns

from m
0.

Let A denote the expression Run = q ^ Final = Propose . Let t be the state

immediately after m0 completes. We have that A holds at state t. We now prove that

A holds at state u. The proof is by induction over the priority levels, i.e., we show that

if A holds when a task resumes execution during [t; u], then it also holds when that task

133

Run = q Final = Propose

T

Tr

 m’q q.3

q assigned
 to Run

(q.new, q)
assigned to Fin

state t state u

 m

Figure 4.12: Proof of Lemma 4.20.

completes. Consider a task Tp that executes during [t; u]. By our induction assumption, A

holds when Tp resumes execution. Also, because Tq is the last task to execute q:3 before

state u, it follows that p@f4::14g holds when Tp resumes, and that Tp is not preempted

during [t; u] by any other task that modi�es Final or Propose (if some other task preempts

one of these tasks and modi�es Final or Propose, then Tq is not the last task to execute

line 3). Task Tp can potentially falsify A only by changing Final or Propose. However, if

Tp executes p:8 after it resumes, then it fails the test at p:9, and Tp executes p:13, which

ensures that A holds when it returns from p:14. On the other hand, if Tp executes p:10 when

it resumes, then it does not modify Final . This ensures that A holds before Tp returns from

p:11, p:12 or p:14. Thus, A holds when Tp returns from its CAS operation. This concludes

the proof of our induction step. Therefore, A holds at state u, which implies that r:10 does

not modify Final .

Lemma 4.21: r@11 ^ Final = (r :new ; r) unless r@0 _ (r@f11; 12g ^ Rv [r] = r :new).

134

Proof: Let A � r@11 ^ Final = (r:new; r) and let B � r@0 _ (r@f11; 12g ^ Rv [r] =

r :new). (Recall that r@0 denotes the execution of Tr within the remainder section; see

Section 4.2.) Our proof obligation is to show that, for any enabled statement s, the following

Hoare triple holds.

fA ^ :Bg s fA _ Bg (4.5)

Only statement r:11 of Tr and statement q:10 of some higher-priority task Tq can

potentially falsify (4.5). We now consider these two statements.

Statement r:11: Suppose that r:11 is executed when r@11 ^ Final = (r :new ; r) holds.

From the program text (lines 1 and 7), we see that r:11 is executed only if r :old 6= r :new ^

Final :val = r :old holds at r:7. From these facts, it follows that Final was modi�ed by the

execution of r:10. (Other tasks cannot assign r to Final.tid .) By Lemma 4.20, this implies

that Run = r holds immediately before the execution of r:10, and hence after. We need to

consider two cases.

Case 1: If Run = r holds immediately before Tr executes r:11, then the execution of r:11

establishes r@0.

Case 2: If Run 6= r holds before the execution of r:11, then one or more higher-priority

tasks modify Run after the execution of r:10. Of these tasks, consider Tq, the �rst task to

execute line 10 after the execution of r:10. Because the execution of q:10 modi�es Final , it

follows from Lemma 4.20, that Run = q holds before the execution of q:10. Also, because

no other task executes line 10 between r:10 and q:10, it follows that Tq assigns (r :new ; r)

to oldf at q:5. Hence, the execution of q:6 establishes Rv [r] = r :new which holds until the

135

execution of q:10, which establishes Final :tid 6= r. Higher-priority tasks that execute after

the execution of q:10 will not detect r in Final.tid at line 5, and hence will not modify Rv [r]

at line 6. Therefore, Rv [r] = r :new holds before the execution of r:11 and hence after. It

follows that (4.5) holds if s is r:11.

Statement q:10: Suppose that the execution of q:10 falsi�es Final = (r :new ; r). Because

r@11 holds when q:10 is executed, Tq is a higher priority that preempts Tr. Also, because

Final = (r:new; r) holds immediately before q:10 is executed, it follows that q:5 establishes

q :oldf = (r :new ; r) at q:5, and that q:6 establishesRv [r] = r :new . Therefore, Rv [r] = r :new

holds immediately before q:10 is executed and hence after. It follows that (4.5) holds if s is

q:10.

Lemma 4.22: If Tr invokes a CAS operation m that changes Final.val, then Final :val =

r :old ^ Propose = (r:new; r) holds before the execution of r:10 by m, and m returns true

from r:11 or r:12.

Proof: Task Tr can change Final.val only by executing r:10. Because Tr's operation

modi�es Final , it follows from Lemma 4.20 that Tr executes r:10 when Run = r holds.

By Lemma 4.18, this implies that no other task modi�es Final or Propose between

r:3 and r:10. Because the execution of r:7 establishes Final :val = r :old and the ex-

ecution of r:8 establishes Propose = (r:new; r), it follows from the above facts that

Final :val = r :old ^ Propose = (r:new; r) holds before r:10 is executed. Hence, the

execution of r:10 establishes r@11 ^ Final = (r:new; r). From Lemma 4.21, it follows that

Tr returns from r:11 or r:12.

136

Lemma 4.23: If Tr invokes a CAS operation m that returns true from r:11 or r:12, then

m executes r:10 when Final :val = r :old ^ Propose = (r:new; r) holds.

Proof: Suppose that Tr invokes a CAS operation m that returns true from r:11 or r:12.

Observe that Tr executes r:11 or r:12 only if (i) r :old 6= r :new holds during m and (ii)

Run = r holds immediately before the execution of r:9. By Lemma 4.18, (ii) implies that

no other task modi�es Final or Propose between r:3 and r:9. From the program text (line

7) and from the above facts, the following holds between the execution of r:3 and r:9.

r@f4::9g ^ Run = r ^ Final :val = r :old (4.6)

We now consider the statements from which m returns.

Statement r:11: Suppose that Tr executes r:11 and returns from m. Observe that Tr returns

from r:11 only if r@11 ^ Run = r holds before the execution of r:11, which implies that

no other task modi�es Run between the executions of r:3 and r:11. By Lemma 4.18, this

implies that no other task modi�es Final or Propose after r:3 is executed and before r:11 is

executed. This fact, along with (4.6) and the fact that r:8 establishes Propose = (r:new; r),

implies that Final :val = r :old ^ Propose = (r :new ; r) holds immediately before r:10.

Statement r:12: Suppose that Tr executes r:12 and returns from m. Observe that Tr returns

from r:12 only if Run 6= r ^ Rv [r] = r :new holds before the execution of r:12. Therefore,

Tr or some higher-priority task reads (r :new ; r) from Final at line 5 and assigns r :new to

Rv [r] at line 6. However, Tr cannot assign r.new to Rv [r] because it follows from (4.6)

that r:5 reads r.old from Final.val and that r:6 can only assign r.old to Rv [r]. Therefore,

some higher-priority task preempts Tr and assigns r.new into Rv [r]. This implies that

137

Final = (r:new; r) is established during m. However, higher-priority tasks cannot write

r into Final.tid , and, by the real-time task model, lower-priority tasks do not take a step

during m. Therefore, Tr assigns (r :new ; r) to Final when it executes r:10. This implies

that Propose = (r :new ; r) holds immediately before r:10 is executed and that no other task

updates Propose between r:8 and r:10. Because a task can modify Final only updating

Propose, this implies that no other task modi�es Final between r:8 and r:10. Along with

(4.6), this implies that Final :val = r :old holds before the execution of r:10. Therefore,

Final :val = r :old ^ Propose = (r :new ; r) holds immediately before r:10 is executed.

Lemma 4.24: If Tr invokes a CAS operation that returns false, then Final :val 6= r :old

holds at some state during that operation.

Proof: It is easy to see that Final :val 6= r :old holds if Tr returns from r:1, r:2, or from r:14

after failing the test at r:7. If Tr returns from r:14 after failing the test at r:9 or the tests

at r:11 and r:12, then Run 6= r holds during Tr's operation. By Lemma 4.19 and from the

real-time task model, it follows that a CAS operation invoked by some higher-priority task

Tq executes within Tr's operation and changes Final.val . It follows that Final :val 6= r :old

holds in the state preceding or following the linearization step of Tq's CAS operation.

Theorem 4.3: Read and CAS can be implemented on a real-time uniprocessor system with

constant time and O(N) space complexity using move, load, and store instructions.

Proof: Property 4.5 holds trivially because Final.val contains the implemented value. It

is easy to see that Property 4.6 holds. Property 4.7 follows from Lemmas 4.22 and 4.23;

Property 4.8 from Lemma 4.24. It is also easy to see that the time and space complexity

138

of the CAS implementation are O(1) and O(N), respectively.

4.6 Implementing Multi-Word Primitives

In this section, we implement MWCAS, which extends the semantics of CAS to

multiple words. MWCAS is a useful primitive for two reasons. First, it simpli�es the im-

plementation of many lock-free objects, e.g., queues are easy to implement with MWCAS,

but hard to implement with single-word primitives. Second, it can be used to implement

multi-object operations and transactions. For example, an operation that atomically de-

queues an item o� one queue and enqueues that item onto another could be implemented by

combining the body of the retry loops in the enqueue and dequeue procedures in Figure 1.2,

and by using MWCAS at the bottom of the loop to make a pointer changes. In Chapter 5,

we further illustrate the utility of MWCAS by using it to implement lock-free transactions.

4.6.1 A Wait-Free Implementation of MWCAS

Figure 4.13 depicts our implementation of MWCAS and an associated Read prim-

itive. The implementation requires a CAS instruction. Requiring CAS is not a severe limi-

tation because hardware on the Motorola 680x0 line of processors and on the Intel Pentium

support the CAS instruction. A shared object that supports Read and CAS operations

can also be easily implemented using LL and SC| the LL/SC instructions are currently

supported by most processors, including Motorola's PowerPC and DEC's Alpha. Further-

more, in a system consisting of N tasks, CAS can be implemented in O(N) time using

load and store instructions, as described in Section 4.4, or in constant time using the move

139

instruction, as described in Section 4.5.

In our implementation, a task performs a MWCAS operation on a collection of

words by invoking the MWCAS procedure. This procedure takes as input an integer pa-

rameter indicating the number of words to be accessed, an array containing the addresses of

the words to be accessed, and arrays containing old and new values, respectively, for these

words. We assume that each MWCAS operation accesses at most B words. A task performs

a Read operation by invoking the Read procedure, which takes as input the address of the

word to be read. The words that may be accessed by the MWCAS and Read procedures

are assumed to be of type wordtype. A word of this type consists of four �elds: a val �eld,

which contains an application-dependent value, and count (dlogBe bits), valid (one bit),

and tid (dlogNe bits) �elds, which are used in the implementation. In most applications,

the val �eld contains an object pointer, and perhaps a small amount of control information.

For example, in the implementation of lock-free transactions presented in Chapter 5, the val

�eld consists of a pointer to a region of shared memory and a \version counter". Assuming

a 32-bit word, these �elds can be de�ned to allow transactions by over one thousand tasks,

on several thousand objects.

We present below a detailed description of the MWCAS and Read procedures.

We begin with an overview of the MWCAS procedure. We follow this by an example that

illustrates the key ideas. After this, we present a brief overview of the Read procedure. We

then conclude by considering several subtleties of the implementation that are not addressed

in our initial overview.

A MWCAS operation by task Tr is executed in three phases. In the �rst phase

140

type =� Assume N tasks, each MWCAS accesses at most B words �=

wordtype = record val : valtype; count: 0::B � 1; valid : boolean; tid : 0::N � 1 end; =� All of these �elds

are stored in one word; the val �eld is application dependent; the valid �eld should be initially true �=

addrlisttype = array[0::B � 1] of pointer to wordtype; =� Addresses to perform MWCAS on �=

vallisttype = array[0::B� 1] of valtype =� List of old and new values for MWCAS �=

shared var

Status: array[0::N � 1] of integer initially 0;

=� Status of task's latest MWCAS: 0 if pending, 1 if invalid, 2 if valid �=

Save: array[0::N � 1; 0::B � 1] of valtype

=� Used to temporarily save value from a word during a MWCAS on that word �=

private var =� For task p, where 0 � p < N �=

init, assn: array[0::B � 1] of wordtype; =� Values initially read and assigned to words by MWCAS �=

i,j: 0::B + 1; retval : boolean; word : wordtype; val : valtype

procedure MWCAS(numwds: 0::B; addr : addrlisttype;

old , new : vallisttype) returns boolean

1: Status[p] := 0;

2: i := 0;

3: while i < numwds ^ Status[p] = 0 do

4: init[i] := �addr [i];

5: if init[i]:valid _ Status[init[i]:tid] = 2 then

6: val := init[i]:val

else

7: val := Save[init[i]:tid; init[i]:count]

�;

8: Save[p; i] := val ;

9: if old [i] 6= val then

10: Status[p] := 1

else

11: assn[i] := (new [i]; i; false; p);

12: if :CAS(addr [i]; init [i]; assn [i]) then

13: Status [p] := 1

�;

14: i := i+ 1

�

od;

=� MWCAS continued �=

15: retval := CAS(&Status[p]; 0; 2);

16: for j := 0 to i� 1 do

17: if old [j] 6= new [j]^ retval then

18: CAS(addr [j]; assn [j]; (new [j]; 0; true; p));

19: if :init [j]:valid then CAS(&Status[init[j]:tid]; 0; 1)

�

20: else if :CAS(addr [j]; assn[j]; init[j]) then

21: if :init [j]:valid then CAS(&Status[init[j]:tid]; 0; 1)

�

�

od;

22: return(retval)

procedure Read(addr : pointer to wordtype)

returns valtype

23: word := �addr ;

24: if word :valid _ Status[word :tid] = 2 then

25: return(word :val)

else

26: return(Save[word :tid ;word :count])

�

Figure 4.13: Wait-free implementation of MWCAS.

141

(lines 1 through 14), the kth word that is accessed by Tr | call it w | is updated so that

its val �eld contains the desired new value, the count �eld contains the value k, the valid

�eld is false, and the tid �eld contains the value r (see lines 11 and 12). In addition, the

old value of w is saved in the shared variable Save[r; k] (line 8). The tid and count �elds

of w are used by other tasks to retrieve the old value from the Save array. The tid �eld is

also used as an index into the Status array, the role of which is described below.

To understand the \e�ect" the �rst phase has on the words that are accessed,

it is necessary to understand how each word's \current value" is de�ned. This notion is

formalized in the following de�nition.

De�nition 4.5: Let w denote a shared variable of type wordtype that is accessible by a

MWCAS or Read operation. At any state, the current value of word w is given by the

following expression.

Val(w) =

8>>><
>>>:

w:val if w:valid _ Status [w:tid] = 2

Save[w:tid ; w:count] otherwise

The shared variable Status [r] | which a�ects Val(w) when w:tid = r | gives the

\status" of task Tr's latest MWCAS operation. Status [r] is initialized to 0 when such an

operation begins (line 1). If the operation is interfered with by other MWCAS operations,

or if the current value of some word accessed by the operation di�ers from the old value

speci�ed for that word, then Status [r] is assigned the value 1 (lines 10, 13, 19, and 21). A

value of 2 in Status [r] indicates that task Tr's latest MWCAS operation has succeeded.

With De�nition 4.5 in mind, the \e�ect" of the �rst phase of a MWCAS operation

142

can now be understood. This phase does not change the current value of any word that is

accessed. However, if this phase is \successful" | i.e., the operation does not get interfered

with, nor does it �nd that the current value of some word di�ers from the old value speci�ed

for that word | then at the end of the �rst phase, the proposed new value for each word

is contained within the val �eld of that word.

The second phase of a MWCAS operation consists of only one statement: the CAS

at line 15. This CAS attempts to both validate and commit the operation by changing the

value of Status [r] from 0 to 2. Status [r] = 0 will hold when the CAS at line 15 is performed

i� the �rst phase was \successful". By De�nition 4.5, this CAS, if successful, atomically

changes the current value of each word accessed to the desired new value.

A complication arises from the way in which Status [r] is used. If a new MWCAS

operation is attempted by task Tr, then changing Status [r] to 0 at line 1 might have the

undesired e�ect of changing the current value of words previously accessed by Tr. The third

phase of the MWCAS (lines 16 through 22) ensures that reinitializing Status [r] during the

next MWCAS does not cause this problem. In this phase, each word w that is accessed by

the MWCAS operation of Tr is \cleaned up" so that, upon completion of that operation,

w:tid 6= r _ w:valid holds; this implies that the current value of word w does not depend

on Status [r].

Lines 19 and 21 are executed to invalidate any pending lower-priority MWCAS

operation that has been interfered with. Note that such a pending operation exists for word

w if task Tr detects that w:valid is false. Line 19 is executed by task Tr only if its own

operation has succeeded in changing the value of some word. Line 21 is executed by task Tr

143

only if its attempt to \clean up" a word fails. This failure signi�es that that word has been

modi�ed by a higher-priority task during Tr's execution, so it is appropriate to invalidate

any pending lower-priority operation that accesses that word.

Example. Figure 4.14 depicts the e�ects of a MWCAS operation m by task T4 on three

words x, y, and z, with old/new values 12/5, 22/10, and 8/17, respectively. Inset (a) shows

the contents of various variables just before m begins. Note that the current value of each

word matches the desired old value. Inset (b) shows relevant variables after the �rst phase

of m has completed, assuming no interferences by higher-priority tasks. The current value

of each word is unchanged. Note that changing the value of Status [4] from 0 to 2 in inset

(b) would have the e�ect of atomically changing the current value of each of x, y, and

z to the desired new value. Inset (c) shows relevant variables at the termination of m,

assuming no interferences by higher-priority tasks. The current value of each word is now

the desired new value, and all valid �elds are true (so the value of Status [4] is no longer

relevant). Before returning, task T4 updates Status [3] (line 19 of Figure 4.13) to indicate

that task T3 (which must be of lower priority) has been interfered with. Inset (d) shows

relevant variables at the termination of m, assuming an interference on word z by task T9

(which must be of higher-priority) with new value 56. Status [4] is now 1, indicating the

failure of task T4's operation. Status [3] is left unchanged in this case. Observe that task T4

has successfully restored the original values of words x and y. Insets (e) and (f) show the

operation interleavings corresponding to insets (c) and (d), respectively.

Having dispensed with the MWCAS procedure, the Read procedure can be readily

explained. If the Read procedure is invoked with the address of word w as input, then it

144

val count valid tid

x: 12 2 true 2 Val(x) = 12

y: 3 1 false 3 Val(y) = 22

z: 8 3 true 4 Val(z) = 8

Save[3; 1]: 22 Status [3]: 0

(a)

val count valid tid

x: 5 0 true 4 Val(x) = 5

y: 10 0 true 4 Val(y) = 10

z: 17 0 true 4 Val(z) = 17

Save[3; 1]: 22 Status [3]: 1

Status [4]: 2

(c)

val count valid tid

x: 5 0 false 4 Val(x) = 12

y: 10 1 false 4 Val(y) = 22

z: 17 2 false 4 Val(z) = 8

Save[3; 1]: 22 Status [3]: 0

Save[4; 0]: 12 Save[4; 1]: 22

Save[4; 2]: 8 Status [4]: 0

(b)

val count valid tid

x: 12 2 true 2 Val(x) = 12

y: 3 1 false 3 Val(y) = 22

z: 56 4 true 9 Val(z) = 56

Save[3; 1]: 22 Status [3]: 0

Status [4]: 1

(d)

T3Task

T4Task

(e)

T3Task

T4Task

T9Task

(f)

Figure 4.14: Task T4 performs a MWCAS operation on words x, y, and z, with old/new

values 12/5, 22/10, and 8/17, respectively. The contents of relevant shared variables are

shown (a) at the beginning of the operation; (b) after the loop in lines 3..17; (c) at the end

of the operation, assuming success; and (d) at the end of the operation, assuming failure on

word z. The operation interleaving that results in (c) is shown in (e) (T4 preempts T3). The

operation interleaving that results in (d) is shown in (f) (T4 preempts T3, and T9 preempts

T4).

145

Status[q,c] does not change here
Save[q] = 0 or 1 here

TrREAD by Task

TqMWCAS by Task

Figure 4.15: Example of a Read operation by Task Tr.

simply computes the current value of w as given in De�nition 4.5. Note that the current

value of each word accessed by the MWCAS procedure is computed within that procedure

in the same way as done in the Read procedure (see lines 4 through 9).

Although the above description conveys the basic idea of the implementation, there

are some subtleties that we have not yet addressed. We now attempt to explain some of

these subtleties.

One such subtlety concerns the Read procedure. If this procedure is invoked to

read word w, and if line 23 is executed when w:tid = q ^ w:count = c holds, then the

value of Val(w) could potentially be determined incorrectly if the values of Status [q] or

Save[q; c] were to change during the execution of the Read procedure. However, Status [q]

and Save[q; c] a�ect the value of Val(w) only if w:valid is false when line 23 is executed.

As explained above, any MWCAS operation of task Tq that accesses word w \cleans up"

in its third phase, thereby ensuring that w:tid 6= q _ w:valid holds upon termination of

that operation. Thus, if w:tid = q ^ :w:valid holds when line 23 of the Read procedure

is executed by task Tr, then it must be the case that Tr has preempted Tq as illustrated in

Figure 4.15. Because Tq has been preempted, the value of Save[q; c] cannot change during

the execution of the Read procedure. Also, it must be the case that Status [q] 6= 2 holds

146

m
3
(1,[x],[0],[5])

m
1
(2,[x,y],[0,1],[0,2])

m
2
(2,[x,z],[0,3],[0,4])

initially
x=0, y=1, z=3

succeeds

succeeds

m
1
(2,[x,y],[0,1],[0,2])

m
2
(2,[x,z],[0,3],[0,4])

initially
x=0, y=1, z=3

(a)

.
succeeds

fails

fails

(b)

15

Figure 4.16: (a) Two overlapping MWCAS operations m1 and m2. Parameters are shown

as (number of words, [list of words accessed], [list of old values], [list of new values]). The

only potential con
ict is on word x, which neither m1 nor m2 changes, so both succeed. (b)

m1 and m2 are overlapped by a third MWCAS operation, m3, which does change x; m3

preempts m2 just after m2 executes the CAS at line 15. m3 causes m2 to fail by updating

m2's Status variable; m2 passes the failure along to m3 by updating m3's Status variable.

during the execution of this procedure (the value of Status [q] could potentially be changed

by a higher-priority task from 0 to 1, but this does not a�ect the value of Val(w)).

A �nal subtlety that we consider involves MWCAS operations in which some word

is accessed but not modi�ed. Such an access should not interfere with accesses of that

word by other tasks. To see how this is accomplished in our implementation, consider the

situation in Figure 4.16(a). The only word in common between operations m1 and m2 is

x. Neither operation changes the value of x, so both succeed. In particular, note that m2

restores the value of x (line 20) before completing. Thus, it appears to m1 that no other

task has updated x. In contrast, consider the situation in Figure 4.16(b). In this situation,

m1 and m2 are preempted by a third operation m3 that does modify x. In this case, m3

causes m2 to fail by updating m2's Status variable (line 19). m2 in turn passes the failure

along to m1 by updating m1's Status variable (line 21).

147

4.6.2 Correctness Proof

Before presenting the correctness proof of our MWCAS implementation, we present

some de�nitions that are used in the proof. Our implementation requires the following of

the address-list parameter passed to any invocation of the MWCAS procedure by task Tr.

Requirement 4.1: (8k; l : 0 � k; l < r:numwds ^ k 6= l :: r :addr [k] 6= r :addr [l]):

Requirement 4.1 states that there must be no duplications in the list of addresses

passed as inputs to any MWCAS operation. We now state the properties we intend to prove

for the implementation. There are four such properties, the �rst of which is as follows.

De�nition 4.6: A MWCAS operation of task Tr accesses word w
7 i� r@12 ^ r:i =

k ^ r:addr [k] = address(w) holds at some state during the execution of that operation.

De�nition 4.7: A MWCAS operation of task Tr modi�es word w i� r@12 ^ r:i =

k ^ r:addr [k] = address(w) ^ r:old [k] 6= r:new [k] holds at some state during the execution

of that operation.

Note that a MWCAS operation that modi�es word w may in fact fail, in which

case that operation actually leaves w unchanged.

Property 4.9: Suppose that task Tr executes statement r:23 at state t as a result of an

invocation of the Read procedure with input parameter r:addr = address(w). Let v be the

value returned by this procedure invocation. Then, Val(w) = v holds at state t.

7Henceforth, we use the term w and address(w) to denote a word of type wordtype and the address of

that word, respectively.

148

Property 4.10: Task Tr can change the value of Val(w) only by executing statement

r:15.

Property 4.11: Suppose that r:retval is assigned the value true by r:15. Then, (8k : 0 �

k < r:numwds :: Val(�r:addr [k]) = r:old [k]) holds immediately before r:15 is executed and

(8k : 0 � k < r:numwds :: Val(�r:addr [k]) = r:new [k]) holds immediately after.

Property 4.9 implies that a Read operation on word w can be linearized to the

state at which w is read. Properties 4.10 and 4.11 imply that each successful MWCAS

operation can be linearized to the state at which the CAS at line 15 is performed, and that

each failed MWCAS operation does not change the value of any of the implemented words.

Property 4.12: Suppose that task Tr executes statement r:15 while executing a MWCAS

operation. Let t (u) be the state immediately before (after) the �rst (last) statement

execution of that operation. If r:retval is assigned the value false by r:15, then for some

word w, where r:addr [k] = address(w), 0 � k < r:numwds , there exists a state in [t; u] at

which Val(w) 6= r:old [k].

Property 4.12 deals with failed MWCAS operations. If operation m fails, then it

can be linearized to a state such that, for some word accessed by m, the current value of

that word di�ers from the old value speci�ed for that word as an input parameter to m.

Before proving the properties stated above, we �rst state and prove a number of lemmas.

The �rst of these lemmas is as follows.

Lemma 4.25: w:tid = q ^ :w:valid) (9k :: w:count = k ^ ((q@14 ^ q:i =

149

k ^ �addr [k] = w) _ (q@f3::14 ^ q:i > k))) _ q@f15::22g.

Proof: If a task Tq performs a MWCAS operation that accesses word w, then statements

q:18 and q:20 ensure that once q:22 has been executed, w:tid 6= q _ w:valid holds. w:tid =

q ^ :w:valid can be subsequently established only by q:12, which also establishes the

consequent.

The next lemma formalizes the claims made previously in the discussion of the

example that uses Figure 4.15. This lemma shows that the value of Val(r:word) remain

unchanged while Tr computes a return value in the Read procedure. This lemma is used

below to prove Property 4.9.

Lemma 4.26: r@f24::26g ^ :r:word :valid ^ r:word :tid = q ^ r:word :count = c ^

Save[q; c] = b ^ Status [q] 6= 2 unless :r@f24::26g.

Proof: Let B = :r:word :valid ^ r:word :tid = q ^ r:word :count = c ^ Save[q; c] =

b ^ Status [q] 6= 2. Our proof obligation is to show that, for any enabled statement s,

fr@f24::26g ^ Bg s f:r@f24::26g _ Bg: (4.7)

Statements r:24, r:25, and r:26 do not update any of the variables appearing in B, so (4.7)

clearly holds if s is a statement of task Tr. (4.7) also clearly holds if s is not a statement

of task Tq (the only variable in B that could be updated by such a statement is Status [q],

but a task other than Tq cannot falsify Status [q] 6= 2). On the other hand, if s is a

statement of task Tq, then there is a danger that s modi�es either Status [q] or Save[q; c].

However, by Lemma 4.25, r:23 can establish r@f24::26g ^ :r:word :valid ^ r :word :pid = q

150

only if executed when q@f3::22g holds, which implies that Tr is of higher priority than Tq.

Because Tr has higher priority than Tq, if r@f24::26g holds, then Tq has no currently-enabled

statement. Thus, s is not a statement of Tq.

We now prove Property 4.9, which is restated below.

Property 4.9: Suppose that task Tr executes statement r:23 at state t as a result of an

invocation of the Read procedure with input parameter r:addr = address(w). Let v be the

value returned by this procedure invocation. Then, Val(w) = v holds at state t.

Proof: Let r, t, and w be as de�ned in the statement of the lemma. Let u be the state

immediately following the execution of r:23. Let v be the value of Val(w) at state u. We

need to consider two cases.

Case 1: Suppose that w.valid holds at state u. By De�nition 4.5, this implies that Val(w) =

w :val holds at state u. From the program text (lines 23-25), and from the fact that the

procedure returns v, it follows that w :val = v holds at state u. Because r:23 does not

modify w, this implies that Val(w) = v holds at state t.

Case 2: Suppose that :w :valid ^ Status [w :pid] = 2 holds at state u. Let q be the value

of w.pid at state u. By Lemma 4.25, q@f3::22g holds at state u, which implies that Tq is a

lower-priority task. If Status [q] = 2 holds before the execution of r:24, then Status [q] = 2

holds at state t. This is because only Tq can establish Status [q] = 2 and because Tq cannot

take steps after the execution of r:23 until Tr completes its operation. By De�nition 4.5,

and from the fact that the value v is returned by Read, this implies that w :val = v holds

151

at state u, and hence at state t also.

On the other hand, if Status [q] 6= 2 holds before the execution of r:24, then

by Lemma 4.26, Val(r:word) = v holds at state u (the lemma implies that the value of

Val(r:word) is stable while the return value of the Read procedure is being determined).

By the program text, r:23 establishes r:word = w. Thus, Val(w) = v holds at state u |

and hence also at state t.

Lemma 4.27: ((r@f3::22g ^ r:i > k) _ (r@f5::22g ^ r:i = k)) ^ :r:init [k]:valid ^

r:init [k]:tid = q ^ r:init [k]:count = c ^ Save[q; c] = b ^ Status [q] 6= 2 unless :r@f3::22g.

Proof: Similar to the proof of Lemma 4.26.

Corollary 4.2: ((r@f3::22g ^ r:i > k) _ (r@f5::22g ^ r:i = k)) ^ Val(r:init [k]) =

v unless :r@f3::22g.

According to the next lemma, if the CAS at line 12 succeeds when executed by a

task Tr, then Tr has a \correct" old value for the word with address r:addr [i].

Lemma 4.28: r@12 ^ r:i = k ^ �r:addr [k] = r:init [k]) Val(�r:addr [k]) = r:old [k].

Proof: If statement r:4 is executed when r@4 ^ r:i = k holds, then it establishes

r@5 ^ r:i = k ^ Val(r:init [k]) = v (4.8)

for some value v. By Corollary 4.2, Val(r:init [k]) has the same value at the state prior to

the execution of r:12 as it does at the state following the execution of r:4. Thus,

r@12 ^ r:i = k ^ �r:addr [k] = r:init [k]) Val(�r:addr [k]) = v: (4.9)

152

By the program text (lines 4 through 7), Lemma 4.27, the de�nition of v, and De�nition

4.5,

r@12 ^ r:i = k) r:val = v (4.10)

By the program text (line 9),

r@12 ^ r:i = k) r:old [k] = r:val : (4.11)

Combining (4.9), (4.10), and (4.11), we have r@12 ^ r:i = k ^ �r:addr [k] = r:init [k])

Val(�r:addr [k]) = r:old [k].

Lemma 4.29: Let [t; u] be an interval of states during the execution of a MWCAS operation

by task Tr. If Tr performs no CAS on w (lines 12, 18, and 20) in the interval [t; u], and

if no successful MWCAS operation that modi�es w executes within [t; u], then w has the

same value at both states t and u.

Proof: Let [t; u] be an interval of states during the execution of a MWCAS operation m by

task Tr. Assume that Tr performs no CAS on w in [t; u], and that no successful MWCAS

operation that modi�es w executes within [t; u]. Given these assumptions, we show that w

has the same value at both states t and u.

Observe that w can be modi�ed in [t; u] only if some task executes a CAS on w

at line 12, 18, or 20. By assumption, the only task that may do so is a task other than Tr

that executes a MWCAS operation that accesses w within [t; u] or that fails its attempt to

modify w within [t; u]. By our priority-based task model, such operations \overlap" m as

illustrated in Figure 4.17.

We now prove by induction on priority level that each overlapping MWCAS oper-

153

state t state u

m does not perform a CAS on w here

m

m
1

m
2

m
3

m
4

overlapping
MWCAS
operations −−
none
modify
word w

Figure 4.17: Proof of Lemma 4.29.

ation restores the value of w to that which existed before the execution of that operation.

Consider an overlapping MWCAS m0 that accesses w or that fails its attempt to modify w,

and assume that all higher-priority MWCAS operations that access w successfully restore

the value of w. Because m0 accesses w or fails to modify w, m0 executes the CAS at line

20 on word w. Because all MWCAS operations that overlap m
0 either do not access w or

successfully restore the value of w, this CAS succeeds, restoring the value of w. It follows

from this argument that w has the same value at both states t and u.

We now prove Property 4.10, which is repeated below.

Property 4.10: Task Tr can change the value of Val(w) only by executing statement r:15.

Proof: Task Tr could potentially change the value of Val(w) by executing any of the

statements r:1, r:8, r:10, r:12, r:13, r:15, r:18, r:19, r:20, and r:21. These are the statements

that can change either w itself or a component of the Save or Status arrays. We consider

154

each statement other than r:15 below.

Statement r:1: By the contrapositive of Lemma 4.25, w:tid 6= r _ w:valid holds prior to

the execution of r:1. Thus, this statement does not change the value of Val(w).

Statement r:8: By the contrapositive of Lemma 4.25, w:tid 6= r _ w:valid _ w:count 6= r:i

holds prior to the execution of r:8. Because the execution of r:8 changes Val(w) only if

:w :valid ^ w :tid = r holds prior to the execution of r:8, it follows that r:8 does not change

the value of Val(w).

Statement r:10: Status [r] = 0 is established by statement r:1, and Status [r] = 2 can only

be subsequently established by statement r:15. Thus, Status [r] 6= 2 holds before r:10 is

executed. It follows that r:10 cannot change the value of Val(w).

Statement r:12: Let u (u0) be the state immediately preceding (following) the execution

r:12 when r:i = k and r:addr [k] = address(w). The CAS of statement r:12 could potentially

change the value of Val(w) only if it succeeds. Suppose this is the case, i.e., r@12 ^ r:i =

k ^ w = r:init [k] holds at state u. By Lemma 4.28, this implies that Val(w) = r:old [k]

holds at u.

We now show that Val(w) = r:old [k] holds at state u
0. First, observe that r:8

establishes Save[r; k] = r:val when r:i = k, and that r:9 ensures that r:val = r:old [k] holds

at u0 (see line 11). Combining these two facts, we have that Save[r; k] = r:old [k] holds at

u
0. Because r:12 succeeds when executed at u, we also know that :w:valid ^ w:tid =

r ^ w:count = k holds at u0. In addition, observe that r:1 establishes Status [r] = 0 and

r:15 is the only statement that can establish Status [r] = 2. Hence, Status [r] 6= 2 holds at

155

state u0. Putting all of this together, we can assert that the following expression holds at

state u0.

:w:valid ^ w:tid = r ^ w:count = k ^ Save [r; k] = r:old [k] ^ Status [r] 6= 2

By De�nition 4.5, this implies that Val(w) = r:old [k] holds at state u0. Thus Val(w) has

the same value at both states u and u
0.

Statement r:13: Similar to the proof for statement r:10.

Statement r:18: Suppose r:18 is executed at state u. Note that the value of Val(w) could

potentially be changed by r:18 only if r@18 ^ r:j = k ^ r:addr [k] = address(w) ^ w =

r:assn [k] holds at u. Also, observe that statement r:18 is executed only if statement r:15

previously established Status [r] = 2. No higher-priority task can falsify Status [r] = 2 before

state u by executing line 19 or 21. Thus, we have the following at state u.

r:j = k ^ w = r:assn [k] ^ Status [r] = 2

Because of the value assigned to r:assn [k] by r:11 (line 11), this implies that Val(w) =

r:new [k] holds at u. By examining statement r:18, it is clear that Val(w) = r:new [k] also

holds at the state following u.

Statement r:19: The value of Val(w) could potentially be changed by r:19 only if r@19 ^

r:j = k ^ r:init[k]:tid = q ^ w:tid = q ^ :w:valid ^ Status[q]:tid = 0 holds. However,

in this case, r:19 establishes Status [q]:tid 6= 2. This implies that the value of Val(w) is not

changed by the execution of r:19.

Statement r:20: Suppose that r:20 is executed at state u. Note that the value of Val(w) could

156

potentially be changed by r:20 only if r@20 ^ r:j = k ^ r:addr [k] = address(w) ^ w =

r:assn [k] holds at u. Also, observe that statements r:8 and r:9 ensure that Save[r; k] =

r:old [k] holds at state u (note that if r:old [k] 6= r:val holds when r:9 is executed, then r:i is

not incremented by r:14 and the loop at lines 3 through 14 terminates). Furthermore, note

that statement r:20 is executed only if r:15 did not previously establish Status [r] = 2 |

which implies that Status [r] 6= 2 holds at u | or if r:old [k] = r:new [k] holds at u. Putting

all of this together, we conclude that the following holds at state u.

r:j = k ^ w = r:assn [k] ^ Save[r; k] = r:old [k] ^

(Status [r] 6= 2 _ (Status [r] = 2 ^ r:old [k] = r:new [k]))

This implies that Val(w) = r:old [k] holds at u. By examining lines 4 through 9,

and from Lemma 4.27, it follows that Val(r:init [k]) is stable between r:4 and r:9. Hence,

Val(r:init [k]) = r:old [k] holds at state u, and statement r:22 does not change the value of

Val(w).

Statement r:21: Similar to the proof for statement r:19.

Next, we prove Property 4.11, which is repeated below.

Property 4.11: Suppose that r:retval is assigned the value true by r:15. Then, (8k : 0 �

k < r:numwds :: Val(�r:addr [k]) = r:old [k]) holds immediately before r:15 is executed and

(8k : 0 � k < r:numwds :: Val(�r:addr [k]) = r:new [k]) holds immediately after.

Proof: Consider a MWCAS operation m of task Tr. Let u be the state immediately prior

to the execution of r:15 by m. Suppose that r:retval is assigned the value true by r:15, i.e.,

157

Status [r] = 0 holds at u. Consider k, where 0 � k < r:numwds , and let w = �r:addr [k].

Our proof obligation is to show that Val(w) = r:old [k] holds at u and that the execution of

r:15 at state u establishes Val(w) = r:new .

To this end, let t be the state immediately following the execution of the CAS at

r:12 by m when r:i = k ^ r :addr [k] = address(w) holds. Since Status [r] = 0 holds at state

u, the CAS at r:12 succeeds when r:i = k ^ w = r :init [k] holds (otherwise, Status [r] 6= 0 is

established by r:13). By Property 4.10, the execution of r:12 by m does not change Val(w).

By Lemma 4.28, this implies that Val(w) = r:old [k] holds at state t.

By Lemma 4.29, this implies that either Val(w) = r:old [k] holds at state u, or some

successful MWCAS operation that modi�es w executes within the interval [t; u]. However,

in the latter case, because w:tid = r at state t, the �rst such MWCAS to read w at line 4

would establish Status [r] = 1 at line 19. This would imply that Status [r] 6= 0 at state u,

which is a contradiction. We therefore conclude that Val(w) = r:old [k] holds at state u.

Because the CAS at r:12 succeeds, the execution of r:12 establishes w :val =

r :new ^ w :tid = r at state t. As explained above, no other task modi�es w in the

interval [t; u]. Hence, it follows that w :val = r :new ^ w :tid = r. The execution of r:15

at state u establishes Val(w) = r :new by establishing Status [r] = 2. This establishes our

proof obligation.

Finally, we prove Property 4.12, which is restated below.

Property 4.12: Suppose that task Tr executes statement r:15 while executing a MWCAS

operation. Let t (u) be the state immediately before (after) the �rst (last) statement

158

execution of that operation. If r:retval is assigned the value false by r:15, then for some

word w, where r:addr [k] = address(w), 0 � k < r:numwds , there exists a state in [t; u] at

which Val(w) 6= r:old [k] holds .

Proof: Consider a MWCAS operation m by task Tr. Let t be the state immediately

following the execution of statement r:1 by m, and let u be the state immediately prior

to the execution of statement r:18 by m. Suppose that the CAS of line 15 executed by m

fails, i.e., Status [r] 6= 0 at state u. Observe that Status [r] = 0 at state t. Thus, Tr or some

higher-priority task assigns the value 1 to Status [r] between states t and u by executing line

10, 13, 19, or 21.

Suppose that Status [r] is assigned the value 1 by Tr at line 10 when r:i = k holds,

where k � r:numwds . By examining lines 4 though 9 of the program, we see that the exe-

cution of r:4 during the kth loop iteration establishes Val(�r :addr [k]) = Val(r :init [k]). By

Lemma 4.27, it follows that V al(r :init [k]) does not change between r:4 and r:9. Combining

the above facts, it follows that r:old [k] 6= Val(�r:addr [k]) holds in the state following the

execution of r:4 by m when r:i = k holds.

Suppose next that Status [r] is assigned the value 1 by Tr at line 13. Then, the

CAS at line 12 fails for some word w when r:i = k ^ w 6= r :init [k] ^ w:tid = q holds,

where address(w) = r :addr [k]. Because Tr previously established w = r :init [k] at line 4

and because w:tid = q holds at line 12, it follows that w was modi�ed by task Tq during Tr's

operation. Task Tq has higher priority than Tr because lower-priority tasks cannot modify

w during Tr's execution. By the contrapositive of Lemma 4.25, it follows that w:valid holds

at r:12. This implies that Tq succeeded the CAS at q:18. From the program text (line 17),

159

it follows that if the execution of q:18 modi�es w, then q:j = l ^ q:retval ^ q:old[l] 6=

q:new[l] ^ addr [l] = address(w) holds before the execution of q:18. This implies that Tq's

MWCAS operation successfully executes the CAS at q:15. By Property 4.11, Tq changes

Val(w). It follows that Val(w) 6= r :old holds in the state preceding or the state following

the execution of q:15.

Suppose next that Status [r] is assigned 1 by Tr or some higher-priority task Tq at

line 19. We consider two cases.

Case 1: Suppose Tr modi�es Status [r] by executing r:19. Observe that the execution of

r:19 by m modi�es Status [r] only if r:j = k ^ r :addr [k] = address(w) ^ :r :init [k]:valid ^

r :init [k]:tid = r holds prior the execution of r:19 by m. This implies that r:i = k ^

r :addr [k] = address(w) ^ :w :valid ^ w:tid = r holds prior to the execution of r:4 by

m when r:i = k holds. By Requirement 4.1, it follows that w :tid = r was established by

some previous MWCAS operation m
0 invoked by Tr. By Lemma 4.25, this implies that

w :valid ^ r :addr [k] = address(w) holds prior to the execution of r:4 by m, a contradiction.

Case 2: Suppose that Status [r] is assigned 1 by some higher-priority task Tq that executes

q:19 when q:j = k ^ address(w) = q :addr [k] holds. Observe that task Tq executes q:19 only

if q:retval ^ q :old [k] 6= q :new [k] holds before the execution of q:19. From Property 4.11 and

from the program, it follows that Tq's MWCAS successfully changes Val(w) from q :old [k]

to q :new [k] by executing q:15. Therefore, Val(w) 6= r :old holds in the state preceding or

the state following the execution of q:15.

Finally, suppose that Status [r] is assigned the value 1 by some higher-priority

160

task Tq at line 21. (We can show that Status [r] is not assigned the value 1 by Tr using

the argument outlined in Case 1 above.) Suppose that q:21 is executed at state v when

q:j = k ^ q :addr [k] = address(w) ^ r :init [k]:tid = r ^ :r :init [k]:valid holds. From the

program text (line 16), it follows that q:i > q:j holds at state v. Hence, q:i > k holds at

state v. This implies that w = q :assn [k] is established by the execution of q:12 when r:i = k

holds (observe that if Tq fails the CAS at q:12, then q:i is not incremented by q:14 and

the loop at lines 3 through 14 terminates when q:i = k). However, Tq executes q:21 only if

w 6= q :assn [k] holds at q:20. By the contrapositive of Lemma 4.29, some successful MWCAS

operationm0 modi�es the value of w after the execution of q:12 bym when q:i = k holds and

before the execution of q:20 by m. By Property 4.10, m0 changes Val(w) by executing line

15. Hence, Val(w) 6= r :old holds in the state preceding or the state following the execution

of line 15 by m0.

The following theorem follows from the program code and from the fact that our

MWCAS implementation satis�es the required properties.

Theorem 4.4: A Read operation and a W -word MWCAS operation can be implemented

in a wait-free manner from CAS with O(1) and O(W) time complexity, respectively, on a

real-time uniprocessor system.

Chapter 5

A Transactional Framework for

Implementing Lock-Free Objects

In this chapter, we present a framework for implementing lock-free transactions

and multi-object operations | the lock-free counterpart to nested critical sections | on

memory-resident data. The framework that we present is based on universal lock-free con-

structions by Anderson and Moir for implementing large objects and for implementing

multi-object operations in asynchronous systems [7, 8]. The behavior of transactions imple-

mented under our transactional framework is very similar to the behavior of transactions

implemented under conventional optimistic concurrency control (OCC) schemes [51].

One aspect in which our implementation di�ers from conventional OCC implemen-

tations is that we use a strong synchronization primitive at the user level to validate and

commit transactions | transactions can be preempted during their validate and commit

phases. In contrast, transactions in conventional OCC schemes cannot be preempted dur-

162

ing their validate and commit phases [40] | such transactions entail a blocking factor due

to the validate and commit phases of lower-priority transactions. Our transactional frame-

work di�ers from conventional real-time database systems in another aspect. In conventional

memory-resident database systems, major functional components are implemented as sepa-

rate modules (e.g., transaction manager, lock manager, etc.), each of which consists of one

or more processes. Transactions interact with these modules by invoking special calls (e.g.,

Begin Transaction, End Transaction, Read , Write, Commit , Abort). Although structur-

ing a system in this manner is attractive from a software engineering standpoint, such an

arrangement potentially can result in signi�cant interprocess communication overhead. In

contrast, transactions in our implementation are invoked by a collection of prioritized tasks

executing on the processor. Transactions of a task access shared data by invoking user-level

routines.

5.1 Lock-Free Transactions

In this section, we present a detailed description of our transaction implementation.

Our implementation consists of three procedures, Tr Read , Tr Write, and Tr Exec, which

are given in Figure 5.2. These procedures support the \illusion" of a contiguous shared array

MEM of memory words. In reality, data is not stored in contiguous locations of memory,

but is composed of a number of blocks. The user writes transaction code in a sequential

manner using the Tr Read (Tr Write) procedure to read words from (write words to) the

MEM array. The Tr Exec procedure takes this user-supplied transaction code as input and

executes it within the body of a lock-free retry loop. The input transaction is validated and

163

constant Tail = 0; Head = 1; maxsize = 10

local variable newtail : integer

procedure enqueue(item: integer returns (SUCCESS, FULL)

Tr Write(Tr Read(Tail),item);

newtail = (Tr Read (Tail) + 1) mod maxsize;

if (newtail == Tr Read(Head)) then

return FULL

�;

Tr Write(Tail, newtail);

return SUCCESS

Figure 5.1: An example transaction.

committed in Tr Exec using a MWCAS operation. Because we assume that the MWCAS

operation is implemented as described in Section 4.6, the MWCAS primitive is used in

conjunction with the Read operation described in that section. Also, we assume that Read

and MWCAS operations are atomically executed because, as shown in the correctness proof

of the MWCAS/Read implementation in Section 4.6, these operations linearize to a distinct

step.

When a transaction � of task Tp accesses a word in the implemented array of

memory words, say MEM [k], the block containing the kth word is identi�ed. If � writes into

MEM [k], then Tp must replace the corresponding block. The details of identifying blocks

and replacing modi�ed blocks are hidden from the programmer by means of the Tr Read

and Tr Write routines, which perform all necessary address translation and bookkeeping.

These routines are called within the programmer's transaction code in order to read or

write a word of the MEM array. Thus, instead of writing \MEM [1] := MEM [10]", the

programmer would write \Tr Write(1; Tr Read(10))". Figure 5.1 shows a simple example

transaction, which enqueues an item onto a shared queue. This transaction is executed by

a task by calling Tr Exec(enqueue).

164

Block 1

Current Blocks

 BANK
 of
Pointers Replacement Blocks

Writes block 2

Reads block 3

Writes block 1

Reads blocks 3,5

Writes block 5

Reads block 4

Block 2

Block 3

Block 4

Block 5

Block 1
Copy of

Block 2
Copy of

Modified Block Pointers

Unmodified Block Pointers

MEM array made up
of B blocks of size S

Block 5
Copy of

Transaction Transaction Transaction 31 2

Figure 5.2: Implementation of the MEM array for lock-free transactions (depicted for B = 5).

The implemented array MEM is partitioned into B blocks of size S. (We assume

a constant block size here for simplicity.) Figure 5.2 depicts this arrangement for B = 5.

The �rst block contains array locations 0 through S � 1, the second contains locations S

through 2S � 1, and so on. A bank of pointers | one for each block | is used to point

to the blocks that make up the array. (These are really array indices, not pointers.) In

order to modify the contents of MEM , a task makes a copy of each block to be modi�ed,

and then attempts to atomically replace the old blocks with their modi�ed copies using the

MWCAS primitive.

In Figure 5.2, BANK is a B-word shared array. Each element of BANK contains a

pointer to a block of size S and a version number (see below) for that pointer. The B blocks

pointed to by BANK constitute the current version of the MEM array. We assume that an

upper bound C is known on the number of blocks modi�ed by any transaction. Because a

165

constant N = Number of tasks in the system

B = Number of blocks that constitute array MEM

S = Block size in words

C = Maximum number of blocks modi�ed by a transaction

type

blktype = array [0::S � 1] of memwdtype;

valtype = record blid : 0::B +NC � 1; ver : 0::V � 1 end;

wdtype = record val : valtype; count : 0::B � 1; valid : boolean; pid : 0::N � 1 end

=� The count, valid , and pid �elds are used by the MWCAS/Read procedures �=

shared var

BANK : array [0::B � 1] of wdtype; =� Bank of pointers to array blocks �=

BLK : array [0::B +NC � 1] of blktype =� Array and copy blocks �=

initially

(8k : 0 � k < B :: BANK [k] = ((NC + k; 0); 0; 0; true; 0) ^ BLK [NC + k] = initial value of kth block)

private var

copy : array [0::C � 1] of 0::B +NC � 1; =� Indices for copy block of task Tp �=

curr : array [0::B � 1] of valtype; =� Task Tp's current view of the MEM array �=

addrlist : array [0::B � 1] of pointer to wdtype ; =� Addresses for MWCAS �=

blklist : array [0::B � 1] of 0::B � 1; =� List of blocks that have been accessed �=

oldval ,newval : array [0::B � 1] of valtype; =� Old and new values for MWCAS �=

dirty : array [0::B � 1] of 0::2; =� 0 if block not accessed, 1 if read, 2 if modi�ed �=

dcnt : 0::C � 1; done: boolean; i, j,numblks,blk : 0::B; tmp: 0::B +NC � 1;

env : jmp buf =� Used by setjmp and longjmp system calls �=

initially (8k : 0 � k < C :: copy [k] = pC + k) ^ (8k : 0 � k < B :: dirty [k] = 0)

procedure Tr Read(memwd : 0::BS � 1)

returns memwdtype

1: blk := memwd div S;

2: if dirty [blk] = 0 then

3: dirty [blk] := 1;

4: curr [blk] := Read(&BANK [blk]);

5: addrlist [numblks] := &BANK [blk];

6: blklist [numblks] := blk ;

7: oldval [numblks] := curr [blk];

8: numblks := numblks + 1

�;

9: v := BLK [curr [blk]:blid][memwd mod S];

10: if Read(&BANK [blk]) = curr [blk] then

return v

11: else longjmp(env ; 1)

�

procedure Tr Write(memwd : 0::BS � 1;

value: memwdtype)

12: blk := memwd div S;

13: if dirty [blk] = 0 then

14: curr [blk] := Read(&BANK [blk]);

15: addrlist [numblks] := &BANK [blk];

16: blklist [numblks] := blk ;

17: oldval [numblks] := curr [blk];

18: numblks := numblks + 1

�;

19: if dirty [blk] 6= 2 then

20: dirty [blk] := 2;

21: memcpy(BLK [copy [dcnt]];

BLK [curr [blk]:blid];

sizeof (blktype));

22: curr [blk]:blid := copy [dcnt];

23: dcnt := dcnt + 1

24: if Read(&BANK [blk]) 6= curr [blk] then

25: longjmp(env ; 1)

�

�;

26: tmp := curr [blk]:blid ;

27: BLK [tmp][memwd mod S] := value

Figure 5.3: Lock-free transaction implementation.

166

procedure Tr Exec(tr : function ptr)

28: done := false;

29: while :done do

30: dcnt ; numblks := 0; 0;

31: if setjmp(env) 6= 1 then

32: �tr ();

33: for j := 0 to numblks � 1 do

34: i := blklist [j];

35: newval [j] := curr [i];

36: if dirty [i] = 2 then

37: newval [j]:ver := newval [j]:ver + 1 mod V

�

od;

38: done := MWCAS(numblks; addrlist ; oldval ; newval)

�;

39: i := 0;

40: for j := 0 to numblks � 1 do

41: if done ^ dirty [blklist [j]] = 2 then

42: copy [i] := oldval [blklist [j]]:blid ;

i := i+ 1

�;

43: dirty [blklist [j]] := 0

od

od

Figure 5.3: (continued) Lock-free transaction implementation.

task's transaction copies a block before modifying it, C \copy" blocks are required per task.

Therefore, a total of B +NC blocks are used. These blocks are stored in the array BLK .

Initially, blocks BLK [NC] to BLK [NC + B � 1] are the blocks of the MEM array, and

BLK [pC] to BLK [(p+1)C�1] are task Tp's copy blocks. However, the roles of these blocks

are not �xed. If Tp successfully completes a transaction, then Tp reclaims the replaced

blocks as copy blocks (lines 39-43). Thus, some of Tp's copy blocks become part of the

current array, and vice versa.

As mentioned above, user-supplied transaction code accesses the MEM array in

a sequential manner using the Tr Read and Tr Write procedures. The Tr Read procedure

�rst computes the index of the block containing the accessed word (line 1). If the block

167

has not yet been read by this transaction, then it is marked as having been read (line 3),

and is recorded in the transaction's curr array (line 4). This array gives the transaction's

\current view" of MEM . The block index is also recorded in an array blklist (line 6), which

is used later in reclaiming copy blocks when the transaction successfully completes. In

addition, the address and old value of the block pointer are saved in arrays (lines 5 and

7) that are later used as parameters to the MWCAS procedure. The new value of the

block pointer is determined later, prior to invoking MWCAS (lines 33-37). The Tr Read

procedure completes by retrieving a value from the appropriate o�set within the block that

is accessed (line 9), and by performing a consistency check (lines 10 and 11), the purpose

of which we describe below. The Tr Write procedure is similar to the Tr Read procedure,

except that, when a block is �rst modi�ed, it is recorded as having been modi�ed (line 20),

and a local copy of the block is made (line 21).

The ver counter associated with each block pointer in BANK records the current

version number of the corresponding block. If a transaction successfully replaces a modi�ed

block, then it increments that block's version number. In contrast, if a block is read but

not modi�ed, then its block pointer and version number are not changed. This ensures

that read-only transactions do not interfere with each other. A transaction can determine

whether the ith block has been changed by comparing the version number that it last read

from BANK [i] to the current version number of BANK [i]. The ver counter is assumed to

be large enough so that it cannot cycle around during the execution of any transaction.

Speci�cally, in a system with N periodic tasks that invoke transactions, the version counter

of a block will not cycle during the execution of a transaction if the size of the counter

168

is larger than Pmax=Pmin, where Pmax and Pmin are the longest period and the shortest

period, respectively, of all tasks that access the MEM array.

Before concluding this description, one subtlety that we have glossed over must

be mentioned. If the BANK variable is modi�ed by a transaction of task Tq during the

execution of a transaction of some lower-priority task Tp, then Tp may read inconsistent

values from the MEM array. Because its MWCAS operation will subsequently fail, Tp will

not be able to install corrupted data. However, there is a risk that Tp's sequential operation

might cause an error, such as a division by zero or a range error. This problem is solved by

ensuring that, if the version number of one of the blocks accessed by a transaction changes

during that transaction, then control is returned from the Tr Read or Tr Write procedure to

line 31 in Tr Exec using Unix-like longjmp calls. In this event, relevant data structures are

reinitialized (lines 40-43) and the transaction is retried. Transactions can take advantage of

this mechanism by re-reading previously accessed blocks in order to fail early in the event

that such a block has been modi�ed by another transaction.

In our implementation, read-only transactions do not interfere with one another,

nor do transactions that modify disjoint sets of blocks. This is illustrated in Figure 2.7,

which depicts three concurrent transactions �1, �2, and �3. Transactions �1 and �2 do

not interfere with each other because neither of them modi�es a block accessed by both.

However, �3 can potentially interfere with �1 because �3 modi�es block 5, which is read by

transaction �1.

The transaction implementation in Figure 5.2 can be optimized in several ways.

For example, the code can be modi�ed to support di�erent block sizes. This would help

169

to avoid false-sharing and fragmentation problems when using the MEM array to store a

mixed collection of objects of di�erent sizes. Also, small objects such as queues can be

incorporated into the implementation without using a copy-based solution. The Tr Read

and Tr Write procedures can also be optimized by ensuring that the overhead associated

with calling the Tr Read and the Tr Write procedures is incurred only when a block is

accessed for the �rst time during a transaction; subsequent accesses to that block can be

executed as macros. Also, if every transaction accesses or modi�es only a few blocks, then

the MWCAS operation can be implemented as a short kernel call; interrupts are disabled

during the execution of the call.

5.1.1 Correctness Proof

We now state and prove the properties required for the correctness of our imple-

mentation. We begin by de�ning a few terms.

De�nition 5.1: A transaction � accesses block k i� � invokes a Tr Read operation that

reads a word in the block pointed to by BANK [k].

De�nition 5.2: A transaction � modi�es block k i� � invokes a Tr Write operation that

writes a word in the block pointed to by BANK [k].

De�nition 5.3: An update of a transaction � constitutes the execution of one iteration of

the lock-free retry-loop at lines 29-43.

De�nition 5.4: An update of a transaction � is successful i� the MWCAS operation at

line 38 is successfully executed during that update; the update fails otherwise.

170

According to De�nitions 5.3 and 5.4, a transaction � can be viewed as a sequence

of zero or more failed updates followed by one successful update. The correctness of our

implementation is contingent on the following requirement.

Requirement 5.1: During the execution of any transaction, the version number of each

block pointer in the BANK array changes no more than V times, where V is the size of the

ver �eld in the BANK array.

We now state and prove some simple properties of our implementation.

Lemma 5.1: At any given state, each task has a distinct set of copy blocks that are di�erent

from other task's copy blocks and from the blocks that constitute the MEM array.

Proof: Initially the above lemma holds because the copy blocks of task Tr are di�erent

from the blocks constituting the MEM array and from other tasks' copy blocks. The above

lemma can be falsi�ed only if a transaction � of some task Tr executes r:38 successfully

and then reclaims a block at r:42 that is either one of the blocks currently constituting the

MEM array or a copy block of some other task Tq. However, if the lemma holds before

the execution of r:38 by � , then it also holds after Tr reclaims its copy blocks at r:42. To

see why this is so, observe that, for any block bi modi�ed by � , curr [bi] points to one of

Tr's own copy block. Along with the program text (lines 33-37) and our assumption that

the lemma holds until the execution of r:38, this implies that the successful execution of

r:38 by � ensures that (i) the blocks placed by � in MEM are di�erent from other blocks

in MEM and from other tasks' copy blocks; (ii) the blocks displaced from the MEM array

are no longer part of the MEM array or parts of another task's copy blocks. These facts

171

imply that blocks reclaimed by � (lines 40-43) are di�erent from all other tasks' copy blocks.

Therefore, the above lemma holds after Tr reclaims its copy blocks in the loop at line 40.

In the following proofs, we do not explicitly quote Lemma 5.1; we assume that it

always holds.

Because a task only modi�es its own copy blocks or its private variables when it

executes statements other than line 38, it is easy to see that the following lemma holds.

Lemma 5.2: A transaction modi�es the contents of the MEM array only by executing the

MWCAS operation at line 38.

Observe that a failed update either does not execute line 38 (if a longjmp call is invoked

during a Tr Read or Tr Write procedure call) or fails the MWCAS at line 38. In either

case, the MEM array is not modi�ed by the transaction, and we have the following.

Lemma 5.3: A failed update of a transaction � does not modify the MEM array.

Lemma 5.4: If a transaction invoked by some task Tr accesses some block bi for the �rst

time during a successful update by calling the Tr Read procedure when r :numblks = l
0
, then

the following holds immediately after the execution of r:10 during that Tr Read procedure

call.

r :numblks � l
0 ^ r :blk = bi ^ r :curr [bi] = r :oldval [l0] ^

r :oldval [l0] = �r :addrlist [l0] ^ �r :addrlist [l0] = BANK [bi] ^ r :dirty [bi] = 1 (5.1)

172

Proof: Suppose that a task Tr invokes a transaction � that accesses block bi. Let

r :numblks = l
0 hold when � calls procedure Tr Read to access block bi for the �rst time

during a successful update m. Observe that � accesses block bi during that procedure call

only if r :memwd div S = bi holds during that call. Also, observe that r :dirty [bi] = 0 holds

before the execution r:29 during an update. (For any 0 � l � B � 1, r :dirty [l] = 0 holds

initially. It is also established by r:43 before Tr completes the execution of an update.)

Also, from our assumption that m is a successful update, it follows that the Tr succeeds the

test at r:10. Therefore, r :curr [r :blk] = BANK [r:blk] holds before the execution of r:10 by

� . From this fact, and by examining lines 3-8 of the program code, we see that (5.1) holds

immediately before the execution of r:10, and hence immediately after.

Lemma 5.5: If a transaction invoked by some task Tr modi�es some block bi for the �rst

time during a successful update by calling the Tr Write procedure when r :numblks = l
0
, then

the following holds immediately after the execution of r:24 during that Tr Write procedure

call.

r :numblks � l
0 ^ r :blk = bi ^ r :curr [bi] 6= r :oldval [l0] ^

r :oldval [l0] = �r :addrlist [l0] ^ �r :addrlist [l0] = BANK [bi] ^ r :dirty [bi] = 2 (5.2)

Proof: Similar to the proof of Lemma 5.4.

Lemma 5.6: Suppose that a transaction invoked by task Tr accesses block bi for the �rst

time during a successful update by calling procedure Tr Read when r :numblks = l
0
holds and

that the procedure call establishes (5:1). Then, (5:1) can only be falsi�ed by the execution of

line 38 during a successful update by Tr or some higher-priority task that modi�es block bi.

173

Proof: Let r, bi, and l
0 be as de�ned in the lemma. Suppose that task Tr invokes a

transaction � and that (5.1) is established during the execution of a successful update m by

� . Observe that (5.1) cannot be falsi�ed during that update by subsequent Tr Read calls by

that access block bi. (This is because � will fail the test at r:2, and hence not modify any of

the variables in (5.1).) It follows that after � establishes (5.1), the expression can be falsi�ed

only by changing the value of BANK [bi]. However, by Lemma 5.2, BANK [bi] can only be

changed by the execution of line 38, and, by the real-time task model, lower-priority tasks

cannot take steps during Tr's execution. These facts imply that (5.1) can only be falsi�ed

by the execution of line 38 by Tr or some higher-priority task. To complete the proof, we

show that the execution of line 38 by a higher-priority transaction �
0 can falsify (5.1) only

if � 0 modi�es block bi.

Suppose that a higher-priority transaction �
0 executes after � accesses or modi�es

block bi for the �rst time during m and before � executes r:38 during m, and that � 0 does

not modify block bi. Let Tq be the task that invokes � 0. We consider the following two

possibilities.

Case 1: If � 0 does not access or modify block bi, then BANK [bi] | and hence (5.1) | is

not a�ected by the execution of q:38 by � 0.

Case 2: If � 0 executes a failed update, then � 0 does not modify BANK [bi] and hence cannot

falsify (5.1). If � 0 executes a successful update that accesses but does not modify block bi,

then we have the following. Consider the execution of the loop at lines 33-37 by �
0 when

q :j = l ^ q :blklist [l] = bi holds, where l � q :numblks . Because the execution of the Tr Read

operation on a block bi cannot establish q :dirty [bi] = 2, it follows that q:35 establishes

174

q :newval [l] = q :curr [bi] and that � 0 fails the test at q:36 during the lth iteration of the loop.

By Lemma 5.4, and the fact that q :oldval [l] = �q :addrlist [l] holds before the execution of

q:38 (because � 0 executes a successful update), it follows that q :oldval [l] = q :newval [l] holds

before the execution of q:38. Therefore, the execution of q:38 does not modify BANK [bi],

and hence does not falsify (5.1).

Lemma 5.7: Suppose that a transaction invoked by task Tr modi�es block bi for the �rst

time during a successful update by calling procedure Tr Write when r :numblks = l
0
holds and

that the procedure call establishes (5:2). Then, (5:2) can only be falsi�ed by the execution of

line 38 during a successful update by Tr or some higher-priority task that modi�es block bi.

Proof: Similar to the proof of Lemma 5.6.

Lemma 5.8: Suppose that task Tr invokes a transaction � that accesses or modi�es blocks

b1; : : : ; bk in the MEM array. Then, � succeeds the MWCAS operation at r:38 i� no other

transaction modi�es any block bi, where 1 � i � k, after � accesses or modi�es bi and before

� executes r:38.

Proof: Suppose that Tr invokes a transaction � that accesses or modi�es blocks b1,: : :,bk in

the MEM array. Observe that the Tr Read and Tr Write procedures store the address of

any block pointer accessed by � exactly once in the addrlist array. (This ensures that the

address list parameter passed to the MWCAS procedure (line 38) satis�es Requirement 4.1

in Chapter 4, which states that no address in the address list parameter may be duplicated.)

First, we show that if � successfully executes r:38 then no other transaction mod-

i�es any of the blocks accessed or modi�ed by � . If, before the execution of r:38 by � , some

175

transaction �
0 of a higher-priority task Tq modi�es some block bi that is also accessed or

modi�ed by � , then �
0 increments the ver �eld of BANK [bi] before it completes, ensuring

that � fails the MWCAS at r:38 when it resumes execution. (Refer to Figure 5.4(a).) Thus,

if � succeeds the MWCAS at r:38, then no other transaction modi�es any block accessed

(modi�ed) by � , after � reads from (writes to) that block for the �rst time.

To complete the proof, we need to show that if no other transaction modi�es

any block accessed or modi�ed by � , after � accesses or modi�es that block for the �rst

time during an update and before � executes r:38 during that update, then � succeeds the

MWCAS operation at r:38. Consider any block bi accessed or modi�ed during the execution

of an update m by transaction � . By Lemmas 5.4 and 5.5, either (5.1) or (5.2) is established

when � accesses or modi�es block bi for the �rst time during m. By Lemmas 5.6 and 5.7,

and the fact that higher-priority tasks do not modify block bi, this implies that (5.1) or

(5.2) holds for block bi before the execution of r:38. Thus, all old values match when �

executes the MWCAS operation at r:38, and � succeeds the MWCAS operation at r:38.

The space complexity of the shared variables in the algorithm in Figure 5.2 is

O(B +NCS), and the space complexity of the private variables for each of the N tasks is

O(B+C). Thus the overall space complexity of the algorithm isO(NB+NCS). As shown in

Chapter 4, the time complexity of executing one MWCAS operation that accesses W words

is O(W). Because each operation is assumed to modify at most C blocks, line 21 is executed

at most C times, where each execution of line 21 requires O(S) running time. Furthermore,

a transaction can potentially access all B blocks and perform a MWCAS operation on B

words. From these observations, and from Lemma 5.8, we have the following theorem.

176

Transaction accesses or
modifies block b for the
first time during an update

Transaction accesses or
modifies block b for the
first time during an update

Transaction ’
accesses block b

Transaction ’ does not increment
version number of block b
by executing MWCAS operation

Transaction ’

Tr

(a)

Tr

i

(b)

Transaction ’ increments
version number of block b
by executing MWCAS operation

i

 Transaction

Transaction ’

Transactions do not modify
any block that is accessed
or modified by

 Transaction

i

i

Transaction ’
modifies block b

fails MWCAS
(before r.38)

succeeds MWCAS
(before r.38)

i

i

Figure 5.4: Proof of Lemma 5.8.

177

Theorem 5.1: In a uniprocessor real-time system, lock-free transactions can be imple-

mented with O(NB +NCS) space complexity and O(CS + B) contention-free time com-

plexity, where N denotes the number of tasks that access theMEM array, B denotes the size

of the BANK array, C denotes the maximum number of blocks modi�ed by any transaction,

and S denotes the block size in the MEM array.

Chapter 6

A Comparative Study of

Object-Sharing Schemes

In this chapter, we compare the performance of lock-free objects to that of conven-

tional lock-based schemes and wait-free schemes. First, we provide a theoretical comparison

of lock-free and lock-based object sharing based on scheduling conditions. This comparison

is only somewhat accurate because it is based on the assumption that access costs of all

objects are identical. Then, we present a set of experiments that compare the di�erent

object-sharing schemes by simulating the execution of randomly-generated sets of periodic

tasks that access shared objects. This is followed by a presentation of typical worst-case exe-

cution times of operations on various lock-free and lock-based objects measured from actual

implementations. Finally, we present a set of experiments that evaluate the performance of

the di�erent object sharing schemes in an actual application | a desktop videoconferencing

system.

179

6.1 Formal Comparison

The formal comparison presented in this section is based upon the scheduling con-

ditions presented in Sections 3.3 and 3.4, and scheduling conditions for lock-based schemes

found in the literature [44, 69]. In deriving the scheduling conditions in Sections 3.3 and 3.4,

we assume that the execution of the retry-loops of the di�erent objects in the system are

identical. We also assume that tasks do not invoke multi-object operations. In this section,

in order to more easily compare the object sharing schemes, we assume that all accesses to

lock-based objects require r units of time, and that tasks do not perform any nested object

calls. Thus, the computation time ci of a task Ti can be written as ci = ui + mi � tacc,

where ui is the computation time not involving accesses to shared objects, mi is the num-

ber of shared object accesses by Ti, and tacc is the maximum computation time for any

object access, i.e., s for lock-free objects and r for lock-based objects. (Recall that ci is

the computation time of Ti when it is the only task executing on the processor, i.e., it does

not including blocking terms associated with priority inversions in the lock-based case or

interference costs in the lock-free case.)

6.1.1 Static-Priority Scheduling

We begin by comparing the overhead of lock-free object sharing under RM schedul-

ing with the overhead of the lock-based priority ceiling protocol (PCP) [69]. When tasks

synchronize by locking, a higher-priority job can be blocked by a lower-priority job that

accesses a common object; the maximum blocking time is called the blocking factor . Under

the PCP, the worst-case blocking time equals the time required to execute the longest crit-

180

ical section. Since we do not consider nested critical sections, the blocking factor equals r,

the time to execute a single critical section. We denote the schedulability condition for pe-

riodic tasks using the PCP by the predicate sched PCP , which on the basis of the analysis

in [69], is de�ned as follows.

sched PCP � h8i 9t : 0 < t � pi : r +
P

i

j=1

l
t

pj

m
(uj +mj � r) � ti

In the above equation, the �rst term on the left-hand side represents the blocking

factor. In the second term, uj +mj � r represents the computation time of task Tj. The

expression on the left-hand side represents the maximum demand due to Ti and higher-

priority tasks in a interval of length t.

We now derive conditions under which lock-free objects are guaranteed to perform

at least as well as lock-based objects under the PCP. Consider the following derivation.

h8j : j � i : (mj + 1) � s � mj � ri ^ sched PCP

fSubstituting (mj + 1) � s for mj � r in sched PCPg

) h8i 9t : 0 < t � pi :
P

i

j=1

l
t

pj

m
(uj +mj � s) +

P
i

j=1

l
t

pj

m
� s+ r � ti (6.1)

) h8i 9t : 0 < t � pi :
P

i

j=1

l
t

pj

m
(uj +mj � s) +

P
i�1
j=1

l
t�1
pj

m
� s � ti (6.2)

Because cj = uj + mj � s in the lock-free case, the last expression in this derivation is

equivalent to the scheduling condition of Theorem 3.2. Note that s � r

2
implies that

h8j : j � i : (mj +1) � s � mj � ri because, for positive mj,
1
2
�

mj

mj+1
< 1. Thus, if the time

taken to execute one iteration of a lock-free retry loop is less than half the time it takes

to access a lock-based object under the PCP, then any task set that is schedulable under

the PCP is also schedulable when using lock-free objects. This also implies that there are

181

certain task sets that are schedulable when lock-free objects are used, but not under the

PCP.

In deriving (6.2) from (6.1) in the comparison above, we dropped the term r,

e�ectively ignoring the e�ect of blocking under the PCP. If blocking times are considerable,

then lock-free objects would be more competitive than this comparison indicates. It should

also be noted that our scheduling analysis is very pessimistic. In reality, a preempted task

need not be accessing a shared object, and hence may not necessarily have an interference

as we have assumed.

6.1.2 Dynamic-Priority Scheduling

We now compare the overhead of lock-free objects with the dynamic deadline

modi�cation (DDM) scheme under EDF scheduling (EDF/DDM) [44], which is a lock-based

protocol for dynamic-priority schemes. Under this scheme, tasks are divided into one or

more phases. During each phase, a task accesses at most one shared resource. Before a task

Ti accesses a shared object Sm, its deadline is modi�ed to the deadline of some task Tj that

accesses Sm and that has the smallest deadline of all tasks that access Sm. Upon completing

the shared object access, Ti's deadline is restored to its original value. In our comparison,

we assume that phases in which some shared object is accessed are r units in length. Under

the EDF/DDM scheme, r includes the cost of a system call to modify the task deadline

before accessing an object, the cost of performing the shared-object operation, and the cost

of a system call to restore the task deadline after an access. Based on the analysis of [44],

a su�cient condition for the schedulability of a set of periodic tasks under the EDF/DDM

scheme, sched DDM , can be de�ned as follows.

182

sched DDM � (
P

N

j=1
uj+mj �r

pj
� 1) ^

h8i; t : Pi < t < pi : r +
P

i�1
j=1

j
t�1
pj

k
� (uj +mj � r) � ti

In the �rst conjunct of the above equation, the expression in the left-hand side

of the inequality represents the total processor utilization due to tasks in the system. The

term uj+mj � r represents the computation time of Tj. In the second conjunct, the term Pi

is de�ned as the minimum pj such that Tj shares a common object with Ti. The �rst term

on the left-hand side of the inequality in the second conjunct represents the maximum time

Ti can block tasks with smaller periods, and the second term represents the total demand on

the processor due to tasks with smaller periods in an interval of length t�1. The expression

on the left-hand side of the inequality represents the maximum demand that can be placed

on the processor during an interval of length t.

We now derive conditions under which lock-free objects are guaranteed to perform

at least as well as objects implemented using the DDM scheme. Consider the following

derivation.

h8j : (mj + 1) � s � mj � ri ^ sched DDM (6.3)

fBy the de�nition of sched DDM g

) h8j : (mj + 1) � s � mj � ri ^
P

N

j=1
uj+mj �r

pj
� 1 (6.4)

fSubstituting (mj + 1) � s for mj � rg

)
P

N

j=1
uj+(mj+1)�s

pj
� 1

Because cj = uj + mj � s in the lock-free case, the last expression in this derivation is

equivalent to the scheduling condition of Theorem 3.5. As noted previously, s � r

2
implies

183

h8j : (mj+1) �s � mj �ri. Thus, as with the PCP, if the time taken to execute one iteration

of a lock-free retry loop is less than half the time it takes to access an object using the DDM

scheme, then any task that is schedulable under the EDF/DDM scheme is also schedulable

under EDF scheduling using lock-free objects. As mentioned previously, s is likely to be

smaller than r for many objects.

In deriving (6.4) from (6.3) in the above comparison, we dropped the second con-

junct in sched DDM , e�ectively ignoring the e�ect of blocking under the EDF/DDM scheme.

If blocking times are considerable, then lock-free objects would perform better than as in-

dicated above.

6.1.3 Wait-Free Objects

Wait-free shared objects di�er from lock-free objects in that wait-free objects are

required to guarantee that individual tasks are free from starvation. Most wait-free univer-

sal constructions ensure termination by requiring each task to \help" every other task to

complete any pending object access [36, 37]. To see how this works, consider the lock-free

universal construction of Herlihy [37], which is described in Subsection 2.4.3. This construc-

tion does not guarantee termination because the store-conditional operation of each retry

loop iteration may fail. Herlihy extends this construction to be wait-free by requiring each

task to \announce" any pending operation by recording it in a shared array. Using this

information, each task is able to \help" other tasks with pending operations by performing

their operations in addition to its own. If a task is repeatedly unsuccessful in modifying the

shared object pointer, then it is eventually helped by another task | in fact, after at most

two retry loop iterations.

184

Note, however, that on a uniprocessor, lower-priority tasks cannot help higher-

priority tasks because a higher-priority task does not release the processor until its demand

has been ful�lled. Thus, each task only helps lower-priority tasks. Hence, the greater the

task priority, the larger the access time. In some sense, the problem of priority inversion still

exists, because a medium-priority task will have to wait while a high-priority task helps a

low-priority task. On the other hand, when lock-free objects are used, the time to complete

an object access decreases with increasing priority. For these reasons, some task sets that

are schedulable when using lock-free objects will not be schedulable when using wait-free

objects. This is true of the task set evaluated in Section 6.4.

In order to more formally compare lock-free and wait-free objects, let us assume

that objects are implemented using Herlihy's universal constructions. First, note that tasks

that share wait-free objects can be viewed as independent tasks, i.e., the scheduling con-

ditions derived in [57] and [60] apply. These conditions are the same as those given in

Theorems 3.2 and 3.5, respectively, when s = 0. The computational cost cj in this case

equals uj +mj � twf , where twf is the worst-case access time of a wait-free object, which

occurs when all lower-priority tasks with pending operations are helped. If s is the time

taken for the retry loop in Herlihy's less-complicated lock-free construction, then we would

expect twf = c � s, for some c� 1. Observe that if c � 2, then the cj term in the wait-free

case is greater than or equal to uj + (mj + 1) � s. Note also that uj + (mj + 1) � s is at

least as large as the terms corresponding to Tj in Theorems 3.2 and 3.5. Thus, if a task set

is schedulable using Herlihy's wait-free universal construction, then it is also schedulable

using Herlihy's lock-free universal construction.

185

The conclusion drawn above that lock-free implementations always perform better

than wait-free ones may not apply if wait-free objects are implemented using techniques

other than a Herlihy-like helping scheme. In fact, Anderson, Ramamurthy, and Jain have

shown recently that it is possible to dramatically reduce helping overhead in wait-free im-

plementations for priority-based real-time systems [10]. For such implementations, it may

indeed be the case that wait-free implementations of some objects are superior to their

lock-free counterparts, although the extent to which this is true is currently unknown.

6.2 Simulation Results

In this section, we present results from simulation experiments conducted to com-

pare lock-free, wait-free, and lock-based object implementations under the RM scheme.

These experiments involved randomly generated task sets consisting of 10 tasks and 5

shared objects, obtained by varying four parameters: r/w ratio, cost ratio, con
icts, and

nesting level. The r/w ratio parameter speci�es the fraction of all operations that are read-

only. This parameter is of interest because, as explained in Chapter 5, read-only operations

do not interfere with each other in lock-free implementations. The cost ratio parameter

speci�es the ratio of the cost of a lock-free (wait-free) object access to that of a lock-based

access; e.g., the retry-loop cost of a lock-free object is (on average) twice as expensive as

a lock-based access if the cost ratio parameter is 2. The cost of a lock-based operation

includes the cost of acquiring and releasing a lock; for lock-based objects, an implementa-

tion based on the stack resource policy was assumed [19]. If the con
icts parameter is k,

then at least one object is accessed by k tasks, and no object is accessed by more than k

186

tasks. In our experiments, tasks were modeled as a sequence of three phases, of which only

the second is an object-access phase. The nesting level parameter speci�es the number of

objects accessed in this phase, and ranges from 1 to 3 (the word \nesting" refers to nested

locks in lock-based implementations).

In order to bound the simulation lengths, task periods were randomly selected

from a predetermined set of 36 periods. For the set of periods considered, the LCM of the

periods was 134,534,400 time units, and the minimum and maximum periods were 8,448

and 1,747,200 time units, respectively. Computation phase costs ranged between 1 and 500

time units, and were randomly generated subject to the constraint that overall utilization

is at most one. In all experiments, context switch times were ignored.

Lock-based object access costs were randomly generated assuming a normal distri-

bution with mean and standard deviation of 128 and 20 time units, respectively. The overall

cost of each object-access phase depends on both the nesting level and the object access

costs. In our experiments, nesting levels 1, 2, and 3 were selected with probability 0.6, 0.25,

and 0.15, respectively. We selected this distribution based on our belief that multi-object

accesses are less frequent than single-object accesses in practice.

To compare the performance of the di�erent schemes, we calculated the breakdown

(computation) utilization of each task set that was generated. The breakdown utilization

(BU) of a task set is obtained by scaling the cost of task phases, and is de�ned to be the

maximum utilization at which the task set is still schedulable. The total utilization of all

computation phases of all tasks at the breakdown point is called the breakdown computation

utilization (BCU).

187

Typical BU and BCU curves resulting from our experiments are shown in Figure

6.1. The r/w ratio and cost ratio in the graphs in Figure 6.1 equals 0.25 and 0.50, re-

spectively. (Corresponding graphs for various r/w ratio and cost ratio values are given in

Figures 6.2 through 6.9.) Each curve in these �gures was obtained from 4,000 generated

task sets. Experimental BU (BCU) values for lock-based and lock-free schemes are given

by \blocking experimental" and \lockfree experimental", respectively. These values were

obtained for each generated task set by checking schedulability in a brute force manner,

i.e., by checking to the LCM of the task periods. Predicted BU (BCU) values for lock-based

objects are given by \blocking predicted". Values for this case were obtained by using the

scheduling condition given in [69]. BU (BCU) values predicted by the scheduling conditions

presented in Section 3.5 and in Section 3.3 are given by \lockfree predicted new" and \lock-

free predicted old", respectively. Observe that the RM scheduling condition presented in

Section 3.5 is much tighter than the one presented in Section 3.3. Also, the new condition

results in better predictions when there are fewer con
icts and when most operations are

read-only. (Refer to the graphs in Figures 6.7 through 6.9.) BU (BCU) values for wait-free

objects are given by \waitfree"; these values were obtained by using the RM scheduling

condition in [57]. Experimental BCU values are not tabulated for this case because the RM

condition in [57] is necessary and su�cient.

Our simulations indicate that only the cost ratio parameter signi�cantly a�ects

relative performance. In examining the e�ects of various cost ratios, it is best to focus

on BCU values. This is because the BU curves include overhead associated with object

accesses, and because the experimental BU curves do not show much variation. (A high BU

188

curve can be misleading, because much of the utilization accounted for in the BU values

may be due to object sharing overhead; an ine�cient object sharing scheme may give rise

to high BU values solely because of this overhead.) The BCU curves in Figures 6.4 through

6.6 indicate that when the r/w ratio parameter equals 0.5, lock-free objects perform better

than lock-based schemes when the cost ratio is less than one (Figure 6.4(b)), slightly worse

than lock-based schemes when the cost ratio equals one (Figure 6.5(b)), and worse than

lock-based schemes when the cost ratio is greater than one (Figure 6.6(b)).

The main conclusion to be drawn from these experiments is that, when lock-free

loop costs are (on average) less than corresponding lock-based access costs, lock-free imple-

mentations are likely to perform better. As indicated by the �gures in Table 6.2, lock-free

implementations of common objects like queues, stacks, and linked lists are likely to be more

e�cient than lock-based implementations. On the other hand, lock-based implementations

of more complex objects like balanced trees are likely to be more e�cient than lock-free

ones. Wait-free implementations perform better than their lock-free counterparts in all sit-

uations when access costs are identical. However, in practice, wait-free operation costs are

typically much higher than corresponding lock-free costs, due to the additional algorithmic

overhead required to ensure wait-freedom.

Although our results indicate that the r/w ratio parameter is not very signi�cant,

in practice, a high r/w ratio will result in a low cost ratio for lock-free objects. This is

because, for many objects, read-only operations do not require copying and are therefore less

expensive than read-write operations. Thus, lock-free implementations may be preferable

if most operations are read-only. In our experiments, we did not account for the fact that

189

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.25 Cost Ratio = 0.50

"tot_blocking_experimental"
"tot_blocking_predicted"

"tot_lockfree_experimental"
"tot_lockfree_predicted_new"
"tot_lockfree_predicted_old"

"tot_waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.25 Cost Ratio = 0.50

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

Figure 6.1: The r/w ratio and cost ratio parameters are 0.25 and 0.50, respectively, for these

�gures. (a) Breakdown utilizations. (b) Corresponding breakdown computation utilizations.

190

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.25 Cost Ratio = 1.00

"tot_blocking_experimental"
"tot_blocking_predicted"

"tot_lockfree_experimental"
"tot_lockfree_predicted_new"
"tot_lockfree_predicted_old"

"tot_waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.25 Cost Ratio = 1.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

Figure 6.2: The r/w ratio and cost ratio parameters are 0.25 and 1.00, respectively, for these

�gures. (a) Breakdown utilizations. (b) Corresponding breakdown computation utilizations.

191

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.25 Cost Ratio = 2.00

"tot_blocking_experimental"
"tot_blocking_predicted"

"tot_lockfree_experimental"
"tot_lockfree_predicted_new"
"tot_lockfree_predicted_old"

"tot_waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.25 Cost Ratio = 2.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

Figure 6.3: The r/w ratio and cost ratio parameters are 0.25 and 2.00, respectively, for these

�gures. (a) Breakdown utilizations. (b) Corresponding breakdown computation utilizations.

192

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 0.50

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 0.50

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

Figure 6.4: The r/w ratio and cost ratio parameters are 0.50 and 0.50, respectively, for these

�gures. (a) Breakdown utilizations. (b) Corresponding breakdown computation utilizations.

193

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 1.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 1.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

Figure 6.5: The r/w ratio and cost ratio parameters are 0.50 and 1.00, respectively, for these

�gures. (a) Breakdown utilizations. (b) Corresponding breakdown computation utilizations.

194

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 2.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.50 Cost Ratio = 2.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

Figure 6.6: The r/w ratio and cost ratio parameters are 0.50 and 2.00, respectively, for these

�gures. (a) Breakdown utilizations. (b) Corresponding breakdown computation utilizations.

195

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.75 Cost Ratio = 0.50

"tot_blocking_experimental"
"tot_blocking_predicted"

"tot_lockfree_experimental"
"tot_lockfree_predicted_new"
"tot_lockfree_predicted_old"

"tot_waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.75 Cost Ratio = 0.50

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

Figure 6.7: The r/w ratio and cost ratio parameters are 0.75 and 0.50, respectively, for these

�gures. (a) Breakdown utilizations. (b) Corresponding breakdown computation utilizations.

196

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.75 Cost Ratio = 1.00

"tot_blocking_experimental"
"tot_blocking_predicted"

"tot_lockfree_experimental"
"tot_lockfree_predicted_new"
"tot_lockfree_predicted_old"

"tot_waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.75 Cost Ratio = 1.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

Figure 6.8: The r/w ratio and cost ratio parameters are 0.75 and 1.00, respectively, for these

�gures. (a) Breakdown utilizations. (b) Corresponding breakdown computation utilizations.

197

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.75 Cost Ratio = 2.00

"tot_blocking_experimental"
"tot_blocking_predicted"

"tot_lockfree_experimental"
"tot_lockfree_predicted_new"
"tot_lockfree_predicted_old"

"tot_waitfree"

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

B
re

ak
do

w
n

C
om

pu
ta

tio
n

U
til

iz
at

io
n

Conflicts

R/W Ratio = 0.75 Cost Ratio = 2.00

"blocking_experimental"
"blocking_predicted"

"lockfree_experimental"
"lockfree_predicted_new"
"lockfree_predicted_old"

"waitfree"

(b)

Figure 6.9: The r/w ratio and cost ratio parameters are 0.75 and 2.00, respectively, for these

�gures. (a) Breakdown utilizations. (b) Corresponding breakdown computation utilizations.

198

read-only operations are usually more e�cient than updates in lock-free implementations. In

addition, the larger con
icts parameter values considered (which resulted in less accurate

predications for lock-free) may not be re
ective of what one would �nd in practice. In

fact, as explained in the following section, in many practical real-time systems, write-write

con
icts cannot occur between concurrently executing tasks [31], implying that the con
icts

parameter is likely to be small. Furthermore, because most shared objects in such systems

are single-writer multi-reader read/write bu�ers and because most of the operations in such

a system are likely to be read-only, the average cost of a lock-free access is likely to be smaller

than the average cost of a lock-based access. (As indicated by the timing measurements in

the following section, this is true even if objects are implemented under our transactional

framework.)

6.3 Timing Measurements

Since the above comparison between lock-free objects and the PCP rests on r and

s values, it is instructive to take a closer look at what these values are actually comprised

of in practice. s is the cost of one lock-free retry loop. For most simple data structures like

read/write bu�ers, queues, linked lists, and stacks, s is often simply the cost of a simple,

straight-line code sequence. For more complex data structures like skew heaps [76] | a

data structure similar to a balanced heap | and balanced trees, a lock-free implementation

would be more complicated, and corresponding s values might be relatively high. In some

applications, s might also include the time taken to copy the implemented object if a

universal construction were being used, or the time taken to simulate a synchronization

199

primitive such as CAS2 if such primitives were not provided in hardware. Under the PCP,

r includes the cost of a system call to modify the calling task's priority before accessing

an object, the cost of actually performing the shared-object operation, and the cost of a

system call to restore the calling task's priority after an access.

What are typical values of s and r? A performance comparison of various lock-

free objects is given by Massalin in [62]. Massalin reports that, given hardware support

for primitives like compare-and-swap, s varies from 1.3 microseconds for a counter to 3.3

microseconds for a circular queue. In the absence of hardware support, such primitives can

be simulated by a trap, adding an additional 4.2 microseconds. Massalin's conclusions are

based on experiments run on a 25 MHz, one-wait-state memory, cold-cache 68030 CPU. In

contrast, lock-based implementations fared much worse in a recent performance comparison

of commercial real-time operating systems run on a 25 MHz, zero-wait-state memory 80386

CPU [30]. In this comparison, the implementation of semaphores on LynxOS took 154.4

microseconds to lock and unlock a semaphore in the worst case. The corresponding �gure

for POSIX mutex-style semaphores was 243.6 microseconds. These �gures cannot be re-

garded as de�nitive because s values can vary widely depending on the implemented object.

(However, they do give some indication as to the added overhead when operating-system-

based locking mechanisms are used.) To provide a better comparison of these schemes, we

provide s and r values for many common objects measured from actual object implementa-

tions. The objects were implemented under the YARTOS kernel developed at UNC [47, 77],

on a 66-MHz, 80486-based IBM PC. To ensure a fair comparison, the lock and unlock calls

in the YARTOS kernel were optimized as much as possible.

200

Because the 80486 does not support strong primitives other than the memory-to-

memory move instruction, we simulated CAS, CAS2, and MWCAS in software. Because

the cost of lock-free access is directly a�ected by the cost of implementing strong primitives,

we compared the cost of di�erent strong-primitive implementations to determine the most

e�cient scheme of implementing strong primitives. The schemes that we considered imple-

mented strong primitives either as short non-preemptible code fragments or as user-level

procedure calls using the algorithms presented in Chapter 4.

Typical execution times of various implementations of CAS, CAS2, and MWCAS

primitives are given in Table 6.1. In the table, strong primitive implementations denoted by

\Disable Interrupts" were implemented as non-preemptible code fragments by disabling in-

terrupts while executing the primitive. Implementations based on the algorithms in Chapter

4 are identi�ed by their section numbers. The �gures in Table 6.1 indicate that primitives

implemented as short non-interruptible code fragments are the least expensive. Of the

remaining software-based implementations, the CAS implementations based on the move

primitives is the most e�cient. These �gures also indicate that, if the number of tasks that

access a shared object is three or less, then the load/store implementation CAS in Section

4.4 is practical. (Recall that the running time of the implementation in Section 4.4 is linear

in the number of tasks accessing that word.) Also, MWCAS implementations that are im-

plemented as non-interruptible code fragments signi�cantly outperform the software-based

implementation present in Section 4.6. Based on the above results, we implemented all

strong primitives in our experiments as non-preemptible code fragments.

It should be noted that the above timing measurements do not imply that prim-

201

Primitive Implementation WCET

(in �seconds)

CAS Disable Interrupts Read/CAS

2 tasks 1/3

CAS Section 4.4 Read/CAS

2 tasks 14/23

3 tasks 16/28

4 tasks 17/31

5 tasks 19/34

CAS Section 4.5 Read/CAS

1.5/5

CAS2 Disable Interrupts Read/CAS

2 tasks 1/5

MWCAS Disable Interrupts Read/CAS

1 word 1/4

3 words 1/6

5 words 1/8.5

7 words 1/10

9 words 1/12

10 words 1/13

20 words 1/24.5

MWCAS Section 4.6 Read/MWCAS

1 word 3/17.5

3 words 3/35

5 words 3/52

7 words 3/66

9 words 3/81

10 words 3/88

20 words 3/169

Table 6.1: Worst-case execution times (WCET) of various implementations of strong prim-

itives. Times are given in �seconds.

202

Shared Object Worst-Case Execution Time (WCET)

Lock-Based (r) Lock-Free (s)

Object Speci�c Transaction-based

Read/Write Bu�er Update Read Update Read Update Read

37 35 5 4 24 22.5

Stack Push/Pop Peek Push/Pop Peek Push/Pop Peek

36/36 35 7/7 4 24/23.5 22

Queue Enq./Deq. Peek Enq./Deq. Peek Enq./Deq. Peek

37/37 35 7/7 5 22.5/19 16

Skew Heap Enq./Deq. Peek Enq./Deq. Peek Enq./Deq. Peek

5 nodes 54.5/48 35 N/A N/A 56/51 24

9 nodes 62/49.5 35 N/A N/A 73/68 24

17 nodes 69/55 35 N/A N/A 95/85.5 24

33 nodes 76/58 35 N/A N/A 121.5/104 24

65 nodes 83/60.5 35 N/A N/A 134/126 24

Linked List Ins./Del. Search Ins./Del. Search Ins./Del. Search

10 nodes 60/53.5 51 31/23.5 19 57/52 33.5

20 nodes 70.5/61 60 44.5/40 30 69.5/67 48

30 nodes 77/70.5 64.5 59.5/52 43 84/81 58

40 nodes 93/79 72 74/64.5 53 96/95 68

50 nodes 97/87 80.5 78/85.5 74 110/105 75.5

Table 6.2: Worst-case cost of operations on commonly used data structures. Times are

given in �seconds.

itives implemented as non-preemptible code fragments are always less expensive than

software-based implementations. For example, if instructions to disable and enable in-

terrupts in a system are privileged instructions, i.e., they cannot be executed by user-level

code, then, in order to disable interrupts, a user task must execute a kernel call to switch

from user mode to kernel mode | and crossing the user/kernel boundary can sometimes

be expensive. In such situations, implementations of primitives based on the algorithms in

Chapter 4 may be more appropriate.

In Table 6.2, we present typical s and r values for three di�erent implementa-

203

tions of read/write bu�ers, stacks, queues, skew heaps, and linked lists. Under each object

implementation scheme, �gures in the column on the left are execution times for update

operations on the object, whereas �gures in the column on the right indicate the execu-

tion times for read-only operations. The lock-based versions of these data structures were

implemented under the EDF/DDM scheme. For objects other than skew heaps,1 the object-

speci�c lock-free implementations were based on implementations presented elsewhere. In

particular, the read/write bu�er, stack, and queue implementations are from [62], and the

linked list implementations are from [32]. Transaction-based lock-free object implementa-

tions are based on the transactional framework described in Chapter 5. However, unlike the

implementation described in Chapter 5, the implementation used in our experiments did

not employ the MWCAS implementation described in Section 4.6. Instead, for e�ciency

reasons, we implemented the MWCAS primitive as a non-interruptible code fragment. Also,

the size of the blocks in our implementation of the transactional framework is 32 bytes, and

no transaction performed a MWCAS operation on more than 8 words.

The �gures in Table 6.2 indicate that object-speci�c lock-free implementations of

read/write bu�ers, stacks, queues, and linked lists signi�cantly outperform their lock-based

counterparts. This is due to the fact that, when implementations of these objects are lock-

based, the total cost of executing a lock/unlock sequence is much greater than the time

taken to perform an operation on the shared object. In contrast, the cost of executing a

strong primitive is approximately equal to the time taken to perform a operation on the

lock-free implementations of these objects.

1Because all known implementations of skew heaps are based on universal constructions, we did not

measure execution times for object-speci�c implementations of skew heaps.

204

Of the implementations based on our transactional framework, read/write bu�ers,

queues, and stacks are less expensive than their lock-based counterparts | however, they

are more expensive than their object-speci�c lock-free counterparts. The �gures in Table 6.2

indicate that lock-free implementations of data structures such as skew heaps and balanced

trees are likely to be more expensive than their lock-based counterparts. These �gures also

indicate that read-only operations under either lock-free implementations are less expensive

than their lock-based counterparts. Read-only operations are less expensive under our

transactional framework because a signi�cant part of the overhead entailed during a write

operation is associated with making a local copy of blocks modi�ed by an operation.

It should be noted that the above execution times and the formal analysis in

Section 6.1 do not necessarily imply that implementations based on lock-free transactions

will always perform worse than lock-based scheme. This is because of two main reasons.

First, although our transactional framework is an important step in making lock-free object

sharing viable in real-time systems, much more research needs to be directed towards a

more e�cient transactional framework. Second, for a given task set, the choice of one

object sharing scheme over another depends entirely on the schedulability of the task set

under these schemes. For example, in many practical real-time systems, write-write con
icts

cannot occur between concurrently executing tasks [31]. In such systems, most shared

objects are single-writer multi-reader read/write bu�ers, and most of the operations in such

a system are likely to be read-only. Because read-only operations do not interfere with each

other under the transactional framework, the worst-case number of interferences in such a

system is likely to be low. Our transactional framework is likely to outperform lock-based

205

schemes in such situations because, as shown in Table 6.2, read-only operations under our

transactional framework are more e�cient than their lock-based counterparts. Furthermore,

objects implemented under our transactional framework can be optimized for certain task

sets. For example, if most of the objects in a system are single-writer objects and if the

writer task has higher-priority than all the reader tasks, then the Tr Write operation for the

writer task can be optimized to eliminate copying overhead entirely. Also, future work on

developing e�cient lock-free constructions is necessary to further improve the performance

of lock-free objects.

6.4 Experiments on a Videoconferencing System

In this section, we provide empirical evidence that lock-free objects are superior to

their lock-based counterparts. This evidence comes from a set of experimental comparisons

performed using a real-time desktop videoconferencing system implemented at UNC [47].

We modi�ed this system to support lock-free shared objects implemented under both DM

and EDF scheduling, semaphores implemented using the PCP under DM scheduling, and

semaphores implemented under EDF/DDM scheduling. We also considered wait-free shared

objects implemented under both DM and EDF scheduling. The formal analysis for each

synchronization scheme was applied to determine whether it was theoretically possible to

ensure that no deadlines would be missed. We then executed the system using each synchro-

nization scheme under a variety of loading conditions, and compared the actual performance

to that predicted by the formal analysis. In all cases, the formal analysis predicted the ac-

tual behavior of the system. Moreover, our lock-free synchronization schemes frequently

206

led to higher levels of sustainable system utilization than was possible with lock-based

synchronization. Also, our experiments con�rm that, for the objects considered, lock-free

implementations are superior to wait-free implementations based on Herlihy-like helping

schemes, for real-time computing on uniprocessors. The following subsection describes the

videoconferencing system in more detail.

6.4.1 Experimental Setup

The videoconferencing system considered in our investigations acquires analog

audio and video samples on a workstation and then digitizes, compresses, and transmits the

samples over a local-area network to a second workstation where they are decompressed and

displayed. Here we consider only the portion of the system responsible for the acquisition,

compression, and network transmission of media samples by the sending workstation.

Abstractly, the tasks on the sending workstation are organized as a software

pipeline. Communication between stages is realized through a queue of media samples

that is shared using a simple producer/consumer protocol. These queues must support a

get length operation in addition to enqueue and dequeue, which slightly complicates their

implementation. Queues of shared media samples exist between the digitizing task and the

compression task and between the compression task and the network transmission tasks.

The real-time constraints on the operation of the pipeline require media samples to
ow

through the pipeline in a predictable manner. These media samples arrive sporadically and

are manipulated by a set of sporadic tasks. Each task must process arriving media samples

before a prespeci�ed deadline that does not coincide with that task's period, and no media

samples may be lost due to bu�er over
ows.

207

(S)

(S)

(S)

(S)

(S)

(S)

(S)

(S)

Screen

15

17

14

Task

Shared Object

21

20

18

Packetize2

Camera

Keyboard

UserTimer

 InitXmit1

Compress

Audio

Xmit1

Xmit2

Xmit3 InitDigit

Packetize1

Transmit Queue

Transmit Video

Transmit Audio

19Audio Free

Compress Sink

Compress Free

Next Digitize

16Compress Source

1−13(S)

InitComp

InitXmit2

Message Queues

Figure 6.10: Tasks and shared queues in the videoconferencing system.

A comprehensive view of the tasks (dashed boxes) and shared queues (solid boxes)

on the sending workstation is given in Figure 6.10. In this �gure, an arrow is directed from

each task to each of the shared objects it accesses. The message queues (S1�S13) are used

for inter-task communication. For our purposes, it su�ces to consider the tasks in Figure

6.10 to be an abstract set of tasks | details regarding the function of each task, and how

the tasks interact are not important to us. For a more detailed description of this system,

we refer the interested reader to [77].

We evaluated the performance of the system when the shared queues were im-

plemented using lock-free algorithms, wait-free algorithms, and lock-based techniques. We

implemented lock-free queues by using the shared queue implementation given in [62] (mod-

i�ed to support the get length operation), and wait-free queues by using the wait-free uni-

versal construction given in [37]. Massalin's queue implementation requires CAS (needed

for the dequeue operation) and CAS2 (needed for the enqueue operation), and Herlihy's

208

construction requires load-linked and store-conditional . We implemented these primitives

by short kernel calls; interrupts were disabled for the duration of these calls.

We found that the videoconferencing task set was not schedulable, in any ex-

periment, when the shared queues were implemented using Herlihy's wait-free universal

construction. This is due to the high overhead of helping, as discussed in Section 6.1.3.

In contrast, our lock-free implementations required very little overhead, with interferences

occurring only rarely. For example, in ten executions of the system, only 363 interferences

occurred in 415,229 enqueue operations. We also found that multiple interferences of a

single operation never occurred. In the following two subsections, we discuss results of ex-

periments that were conducted to compare lock-free and lock-based schemes under static-

and dynamic-priority scheduling.

6.4.2 Static-Priority Scheduling

In this subsection, we discuss the results of experiments that compare the over-

head of lock-free objects to lock-based objects implemented using the PCP. In both cases

scheduling was performed using the DM scheduling algorithm [58].

Qualitatively, when queue synchronization was achieved using semaphores, approx-

imately seven media samples were lost in the pipeline every second due to bu�er over
ow.

In contrast, no media samples were lost when lock-free objects were used.

This result is predicted by the formal analysis of the system, which we now present.

The model we consider consists of a set of N = 15 sporadic tasks, M = 21 shared objects,

and Q = 12 periodic and sporadic interrupt handlers. The ith task in the system is given by

the tuple hci; pi; li; aii, where ci and pi have the usual meanings, li is the relative deadline

209

Table 6.3: Task characteristics. Times are given in �seconds.

Task Name Cost [DM] Cost [EDF] Period Deadline WC Responsey

Ti ci ci pi li t
�

i
t
��

i

PCP LF DDM LF

InitXmit1 T1 579 459 687 649 33333 6705 4743 4623

Xmit1 T2 147 147 147 147 45603 6705 4890 4807

Xmit2 T3 147 147 147 147 45603 6705 5037 4991

Xmit3 T4 147 147 147 147 45603 6705 5184 5175

Compress T5 602 528 669 624 9573 8000 5786 5740

Camera T6 396 396 416 416 15746 15000 6182 6173

Audio T7 1017 953 1024 966 15746 15000 7199 7163

InitDigit T8 1110 1046 1137 1096 31492 15000 8309 8246

InitComp T9 1332 746 1069 640 31492 15000 10243 9029

InitXmit2 T10 710 604 821 982 33333 19850 11287 10235

Packetize1 T11 8315 8315 8315 8315 40842 33333 22651 21943

Packetize2 T12 8315 8315 8315 8315 40842 33333 N/A 30860

UserTimer T13 126 122 102 137 54538 54538 37872 31385

Keyboard T14 580 549 637 589 490853 490853 39054 37065

Screen T15 142 71 148 78 1963379 1963379 39196 37173

y Worst-case (WC) response times apply to DM scheduling.

of Ti, and ai is the set of shared objects accessed by Ti. We assume that tasks are indexed

in the order of nondecreasing deadlines. The ith interrupt handler is given by the tuple

hei; vii, where ei is the execution time of the handler and vi is the minimum time between

interrupts. Interrupt handlers are executed in a �rst-come-�rst-served manner and always

have priority over application tasks. The periods, relative deadlines, and the execution

times of the tasks in our formal model are shown in Table 6.3. The periods and execution

times of the interrupt handlers are shown in Table 6.4.

The formal model of the experimental system can be analyzed by using the schedul-

ing condition given in Theorem 3.2 when lock-free objects are used, and that given in [57]

when lock-based objects are used. Note, however, that these conditions do not consider the

210

Table 6.4: Interrupt handler execution times and periods. Times are given in �seconds.

Ii I1 I2 I3 I4�5 I6�7 I8�9 I10�12

ei 254 333 333 183 389 389 389

vi 54925 16666 10493 15492 45666 42603 47666

cost of handling interrupts, and hence cannot be used directly. Fortunately, this problem

can be overcome by using techniques derived in [46]. The idea is to derive an expression that

bounds the demand due to interrupt handlers in any given interval, and to then account

for this demand in the scheduling conditions of Theorem 3.2 and [57].

Informally, we account for the cost of interrupt handlers as follows (see [46] for

a more formal version of this argument). First, we de�ne the term F (t) to be the cost

of handling interrupts over an interval of length t. In order to derive a bound on F (t),

consider Ii, the i
th interrupt in the system, and consider an interval [t0; t0 + t) of length

t, where t0 � 0. Ii occurs at most dt=vie times in that interval, and requires ei units of

processor time for every occurrence. Hence, the total demand placed on the processor by

Ii in the interval is at most dt=vie � ei. It then follows that the total demand due to all

the interrupt handlers, F (t), is bounded by the summation on the right-hand side of the

following inequality.

F (t) �
PQ

j=1

l
t

vj

m
� ej (6.5)

Using (6.5), we can obtain a schedulability condition when the tasks synchronize

using lock-based objects and the PCP. This involves modifying the condition presented in

[57] to account for the demand placed by interrupt handlers, as given by (6.5). The resulting

211

condition is as follows.

h8i 9t : 0 < t � li : r +
P

i

j=1

l
t

pj

m
� cj +

PQ

j=1

l
t

vj

m
� ej � ti (6.6)

The �rst term in (6.6) gives the worst-case blocking time in the system, and the

second term gives the demand placed by Ti and higher-priority tasks on the processor. The

third term gives the maximum demand placed by all interrupt handlers in the same interval.

In our system, r equals 151. In Table 6.3, t�
i
gives a value of t in the interval (0; li]

that satis�es (6.6). The analysis shows that the task Packetize2 is not schedulable. This

task copies compressed media sample bu�ers to the network adapter. When Packetize2

does not meet its deadline, the sender drops (never transmits) some of the media samples.

This analysis explains why some media samples were lost when the system was run using

lock-based objects and the PCP.

We now consider the system when the tasks synchronize using lock-free objects. A

schedulability condition for this case is obtained by modifying the condition of Theorem 3.2

to account for the demand placed by interrupt handlers, as given by (6.5). The resulting

condition is as follows.

h8i 9t : 0 < t � li :
P

i

j=1

l
t

pj

m
� cj +

P
i�1
j=1

l
t�1
pj

m
� s+

PQ

j=1

l
t

vj

m
� ej � ti (6.7)

In the above equation, the �rst term gives the demand placed on the processor

due to Ti and higher-priority tasks. The second term gives the additional demand due to

interferences, and the third term gives the maximum demand placed on the processor by

interrupt handlers in the same interval. In our system, s equals 37. (Observe that s is

less than r=2 in our system.) In Table 6.3, t��
i

gives a value of t in the interval (0; li] that

212

satis�es (6.7). It can be seen that all tasks are schedulable when lock-free objects are used.

This is con�rmed by the fact that no media samples are lost during the execution of the

system.

6.4.3 Dynamic-Priority Scheduling

In this subsection, we discuss the results of experiments that compare the overhead

of lock-free objects under the EDF scheme to lock-based objects under the EDF/DDM

scheme. Our experiments showed that the task set of Tables 6.3 and 6.4 is schedulable

under both schemes. This is result is predicted by the formal analysis of the system, which

we now present.

Our analysis of the EDF/DDM scheme is based upon the following scheduling

condition, which is proved in [77].

(
P

N

j=1 cj=pj +
PQ

j=1 ej=vj � 1) ^

h8t : p1 � t � BDDM :
P

N

j=1

j
t�lj+pj

pj

k
� cj +

PQ

j=1

l
t

vj

m
� ej � ti ^

h8i; t : p1 < t < pi : r +
P

i�1
j=1

j
t�1�lj+pj

pj

k
� cj +

PQ

j=1

l
t

vj

m
� ej � ti

In the second conjunct above, BDDM � (
P

N

j=1 cj +
PQ

j=1 ej)=(1 �
P

N

j=1 cj=pj +

PQ

j=1 ej=vj). The �rst and third conjuncts above correspond to the two conjuncts of

sched DDM given in Section 6.1.2. However, these conjuncts have been modi�ed to account

for the overhead of interrupt handlers, and to re
ect the fact that in the videoconferencing

system deadlines and job releases do not necessarily coincide. In the left-hand side of the

inequality in the second conjunct, the �rst and second summation terms give the maximum

demand due to the tasks and interrupt handlers, respectively, in an interval of length t. The

213

right-hand side of the inequality gives the available processor time in that interval. It can

be shown that this scheduling condition holds for the abstract task set de�ned in Tables 6.3

and 6.4.

Our analysis of the system when lock-free objects are used is based upon the

scheduling condition below. This condition is based upon the conditions given in Theorems

3.5 and 3.4 and the techniques given in [46] for accounting for the overhead of interrupt

handlers.

(
P

N

j=1(cj + s)=pj +
PQ

j=1 ej=vj � 1) ^

h8t : t 2 [p1; BLF] :
P

N

j=1

�j
t�lj+pj

pj

k
� cj +

j
t�1�lj+pj

pj

k
� s
�
+
PQ

j=1

l
t

vj

m
� ej � ti

In this expression, BLF � (
P

N

j=1(cj + s) +
PQ

j=1 ej)=(1 �
P

N

j=1(cj + s)=pj +

PQ

j=1 ej=vj). The �rst conjunct above is the condition of Theorem 3.5 augmented to include

utilization due to interrupt handlers. The second conjunct follows from Theorem 3.4 and

results of [46]. The three summation terms in this conjunct give the maximum demand

due to the tasks, interferences, and interrupt handlers, respectively, in an interval of length

t. The right-hand side of the stated inequality gives the available processor time in that

interval. It can be shown that this scheduling condition holds for the abstract task set

de�ned in Tables 6.3 and 6.4.

In order to more precisely compare lock-free objects with objects implemented

under the EDF/DDM scheme, we introduced a dummy task T16, given by the tuple hc16;

2342664; 2342664; fS17�21gi, to increase the processor utilization of the system. This

dummy task consists of a bounded loop. During each loop iteration, the task performs

some busy work and accesses some shared objects. The demand on the processor was

214

varied by modifying the number of loop iterations executed by the dummy task.

Our experiments showed that processor utilization was higher under the

EDF/DDM scheme for all task loads. Under the EDF/DDM scheme, tasks started to

miss deadlines when the dummy task performed approximately 3500 loop iterations. The

processor utilization corresponding to this load was close to 99.4%. For the same load, the

processor utilization was only 94% when lock-free objects were used. Processor utilization is

higher under EDF/DDM for the same load due to the overhead of modifying task deadlines

for each shared object access. This con�rms the prediction of Section 6.1.2 that lock-free

objects often require less overhead than object implemented under the EDF/DDM scheme.

In our experiments, when lock-free objects were used, tasks started missing deadlines when

processor utilization was about 99.1%.

Chapter 7

Conclusions

In this chapter, we �rst give a brief summary of the results presented in this

dissertation, and discuss some of the lessons learned from this research.

7.1 Summary

In Chapter 3, we presented two sets of scheduling conditions for the DM and the

EDF scheduling schemes. These scheduling conditions are an essential step towards utilizing

lock-free objects in hard real-time systems. The �rst set of conditions that we developed

was based on the assumption that retry-loop costs for all lock-free objects are relatively

uniform. These conditions do not perform well if the retry-loop costs of the objects in

the system can vary widely. We removed this restricting assumption in the second set of

conditions presented in Section 3.5. The scheduling conditions developed in this section are

based on integer linear programming, and are therefore more expensive to evaluate than

the �rst set of conditions. However, as indicated by the experimental results in Chapter 6,

216

the second set of conditions are much more accurate than the �rst set of conditions.

The constructions presented in Chapter 4 exploit the fact that scheduling in real-

time systems is usually priority-based. Speci�cally, we presented a solution to the consensus

problem, for a uniprocessor real-time system, that uses only load and store instructions. Our

consensus protocol implies that Herlihy's hierarchy collapses in uniprocessor hard real-time

systems. In this chapter, we also presented two software-based implementations of CAS.

The �rst implementation uses only load and store instructions, and the second uses the

memory to memory move instruction. This chapter concluded with an implementation of

MWCAS primitive that uses single-word CAS primitives. The running time of our MWCAS

implementation is optimal | the running time is O(W) for a MWCAS on W words.

In Chapter 5, we presented a framework for implementing lock-free transactions

and lock-free multi-object operations. This framework allows the programmer to implement

lock-free objects without having to prove the correctness of those implementations. How-

ever, the programmer is required to use the Tr Read (Tr Write) procedures to read from

(write to) shared memory. When an object is implemented in this fashion, the resulting

code closely resembles the sequential code for the object. Under this lock-free framework,

operations that access di�erent blocks of the array MEM can execute concurrently, without

fear of interferences | these operations may even be on the same object. For example, an

enqueue operation on a shared queue and a dequeue operation on that queue can execute

concurrently because the head and the tail of the queue can be located in di�erent blocks.

Also, read-only operations on objects implemented under our lock-free framework do not

interfere with each other. Objects implemented under our lock-free framework are likely to

217

perform well in systems where objects are accessed by a single writer and multiple readers,

and where most of the operations are read-only.

In Chapter 6, we presented experimental results that validate the claims made

earlier on in the dissertation. Speci�cally, we presented a formal comparison of lock-free

and lock-based objects which indicates that the performance of these schemes hinge on the

values of s and r, where s denotes the cost of executing a lock-free retry-loop once and r

denotes the cost of a lock-based access | including the time to lock and unlock the object.

Speci�cally, if s � r=2, then any task that is schedulable under lock-based protocols is also

schedulable under lock-free schemes. Then, we presented simulation results that compare

the performance of lock-free and lock-based objects. The results of this simulation indicate

that choosing a scheme for implementing an object must be based on the average object

access cost. If most of the object accesses are read-only, then it is likely that the average

object-access cost will be smaller when lock-free schemes are used. We then presented s and

r values for many di�erent objects. The execution times that we presented indicate that

s � r=2 holds for simple objects such as read/write bu�ers, stacks, queues, and linked lists,

but not for more complicated objects such as skew heaps and balanced trees. These timing

measurements indicate that objects such as queues, stacks and read/write bu�ers should

always be implemented using object-speci�c lock-free implementations. To demonstrate

the utility of lock-free objects in practical applications, we also presented results of some

experiments on a videoconferencing system developed at UNC. These experiments indicate

that lock-free queue implementations are superior to their lock-based counterparts.

218

7.2 Conclusions and Future Work

In the course of our work, we learned several lessons about implementing shared

objects in uniprocessor hard real-time systems.

� Hardware support for implementing strong synchronization primitives is not essen-

tial (but preferable) in uniprocessor hard real-time systems. In such situations, im-

plementing strong primitives as short non-interruptible code fragments is the most

e�cient method of implementing primitives such as CAS, CAS2, and MWCAS, if

the cost of disabling/enabling interrupts is very small. Otherwise, implementations

based on the algorithms in Chapter 4 are more appropriate. If the move instruction

is supported by the underlying architecture, then an object that supports Read and

CAS operations can be implemented very e�ciently. It remains to be seen whether

a MWCAS implementation based on the move primitive is inexpensive enough to be

practical in uniprocessor hard real-time systems.

� Wait-free implementations that are based on Herlihy's universal constructions are not

competitive with lock-free schemes. In order to be more competitive with lock-free

schemes, the helping overhead has to be signi�cantly reduced. In fact, on uniprocessor

systems, it is possible to implement wait-free objects that are competitive with lock-

based and lock-free schemes using a technique called incremental helping [10]. This

technique exploits the real-time task model to ensure that a task helps at most one

lower-priority task complete its operation before it performs its own operation. The

scheduling conditions for task sets that employ this technique is very similar to the

conditions for conventional lock-based schemes. Each task entails a \helping factor"

219

(the amount of time spent helping lower-priority tasks complete their operation) akin

to blocking factors encountered in conventional lock-based systems.

� The work presented in this dissertation focuses only on object implementations in

uniprocessor real-time systems. Although lock-free objects perform well in such sys-

tems, they likely to perform poorly in multiprocessor systems because, in such a

system, a lock-free operation on one processor can interfere with an operation on an-

other processor | accurately determining the worst-case wasted computation in this

case is very di�cult. Lock-based schemes also perform very poorly in multiproces-

sor systems because the blocking factors entailed by a task can be signi�cant [69].

As demonstrated in [6], wait-free object implementations that use the cyclic helping

technique, in conjunction with incremental helping, can signi�cantly reduce helping

overhead on a multiprocessor real-time system. Under the cyclic-helping scheme,

processors in a system are thought of as if they were part of a logical ring. Tasks exe-

cuting on these processors are helped through the use of a \help counter", which cycles

around the ring. To advance the help counter from processor R to the next processor

on the ring, a process must �rst help the currently announced process on processor

R. In order to perform an operation, a process does the following: it �rst repeatedly

advances the help counter until any pending announced (lower-priority) operation on

its own processor has been completed; it then announces its own operation; it then

repeatedly advances the help counter until is own operation has been completed.

Using techniques such as cyclic-helping and incremental-helping, the amount of help-

ing overhead entailed by a task is proportional to the number of processors in the

220

system. In contrast helping overhead under conventional wait-free schemes is propor-

tional to the number of tasks in the system. Another important issue that warrants

further research is the development of an e�cient transactional framework for object

sharing in multiprocessor systems.

� A CAS operation on an object implemented using the algorithm presented in Section

4.4 requires execution time proportional to the number of tasks accessing that object.

It remains to be seen whether CAS can be implemented in constant-time using only

load and store instructions. Also, it remains to be seen whether information about

a task's priority can be used to simplify the constructions presented in Chapter 4.

Another research issue to be tackled is the development of a MWCAS implementation

based on the move primitive. Such a primitive is likely to be more e�cient than the

MWCAS implementation presented in Section 4.6.

� Most of the focus in Chapter 5 is on designing shared objects using our transac-

tional framework. Extensive work is required to determine the extent to which our

transactional framework can be adapted in order to implement real-time databases.

Speci�cally, techniques are required for performing logging and recovery in databases

implemented using our transactional framework. Furthermore, by adapting our trans-

actional framework to use information about transaction priorities, the amount of

wasted computation due to retries can be reduced, potentially | such techniques are

likely to result in a signi�cant reduction of missed transaction deadlines [34].

� Although we have developed some simple rules for choosing an object sharing scheme,

the right choice of a scheme for implementing an object in an application is entirely

221

dependent on the task set of the application. Further research is required on the issue

of determining appropriate object-sharing schemes for a given application.

� The conclusions drawn from the experimental results presented in Section 6.4 cannot

be extended to all real-time systems in general because all shared objects in the

experimental videoconferencing system were queues. To better evaluate these schemes,

applications other than videoconferencing must be considered that employ both simple

objects, like queues, stacks, etc., and more complicated objects, such as skew heaps

and balanced trees.

222

Bibliography

[1] Y. Afek, H. Attiya, D.Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots
of shared memory. In Proceedings of the Ninth Annual ACM Symposium on Principles

of Distributed Computing, pages 1{14. ACM, August 1990.

[2] Y. Afek, D. Dauber, and D. Touitou. Wait-free made fast (extended abstract). In
Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pages 538{
547. ACM, 1995.

[3] J. Anderson. Composite registers. In Proceedings of the Ninth Annual ACM Symposium

on Principles of Distributed Computing, pages 15{30. ACM, August 1990.

[4] J. Anderson and B. Gro�selj. Beyond atomic registers: Bounded wait-free implementa-
tions of nontrivial objects. Science of Computer Programming, 19(3):197{237, Decem-
ber 1992.

[5] J. Anderson and M. Moir. Towards a necessary and su�cient condition for wait-free
synchronization. In Proceedings of the Seventh International Workshop on Distributed

Algorithms, pages 39{53, September 1993.

[6] J. H. Anderson, R. Jain, and S. Ramamurthy. Wait-free object-sharing schemes for
real-time uniprocessors and multiprocessors. In Proceedings of the Eighteenth IEEE

Real-Time Systems Symposium (to appear), 1997.

[7] J. H. Anderson and M. Moir. Universal constructions for large objects. In Proceedings of
the Ninth International Workshop on Distributed Algorithms, pages 168{182. Springer
Verlag, September 1995.

[8] J. H. Anderson and M. Moir. Universal constructions for multi-object operations. In
Proceedings of the 14th Annual ACM Symposium on Principles of Distributed Com-

puting, pages 184{193. ACM, August 1995.

[9] J. H. Anderson and S. Ramamurthy. A framework for implementing objects and
scheduling tasks in lock-free real-time systems. In Proceedings of the 17th IEEE Real-

Time Systems Symposium, pages 92{105. IEEE, December 1996.

[10] J. H. Anderson, S. Ramamurthy, and R. Jain. Implementing wait-free objects in
priority-based systems. In Proceedings of the 16th Annual ACM Symposium on Prin-

ciples of Distributed Computing, pages 229{238. ACM, August 1997.

223

[11] J. H. Anderson, S. Ramamurthy, and K. Je�ay. Real-time computing with lock-free
objects. Technical Report TR95-021, Department of Computer Science, University of
North Carolina, Chapel Hill, North Carolina, 1995.

[12] J. H. Anderson, S. Ramamurthy, and K. Je�ay. Real-time computing with lock-free
objects. ACM Transactions on Comp. Sys., 15(6):388{395, May 1997.

[13] J. H. Anderson, S. Ramamurthy, M. Moir, and K. Je�ay. Lock-free transactions for
real-time systems. In Proceedings of the First International Workshop on Real-Time

Databases, pages 107{114, March 1996.

[14] J. H. Anderson, S. Ramamurthy, M. Moir, and K. Je�ay. Lock-free transactions for
real-time systems. In Real-Time Databases: Issues and Applications. Kluwer Academic
Publishers, Amsterdam, 1997.

[15] R. Anderson and H. Woll. Wait-free parallel algorithms for the union-�nd problem.
In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages
370{380. ACM, August 1991.

[16] J. Aspnes and M. Herlihy. Wait-free data structures in the asynchronous pram model.
In Proceedings of the Second Annual ACM Symposium on Parallel Architectures and

Algorithms, pages 340{349, June 1990.

[17] H. Attiya and O. Rachman. Atomic snapshots in o(n logn) operations. In Proceedings of
the Twelveth Annual ACM Symposium on Principles of Distributed Computing, pages
29{40. ACM, August 1993.

[18] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-time schedul-
ing: The deadline monotonic approach. In Proceedings of the Eighth Workshop on

Real-Time Operating Systems and Software, pages 133{138, May 1991.

[19] T. P. Baker. Stack-based scheduling of real-time processes. Real-Time Systems,
3(1):67{99, March 1991.

[20] G. Barnes. A method for implementing lock-free shared data structures. In Proceedings

of the Fifth Annual ACM Symposium on Parallel Architectures and Algorithms, pages
261{270. ACM, 1993.

[21] S. K. Baruah, R. R. Howell, and L. E. Rosier. Feasibility problems for recurring tasks
on one processor. Theoretical Computer Science, 118:3{20, 1993.

[22] B. Bershad. Practical considerations for non-blocking concurrent objects. In Proceed-

ings of the Thirteenth International Conference on Distributed Computing Systems,
pages 264{274, May 1993.

[23] B. Bloom. Constructing two-writer atomic registers. IEEE Trans. on Computer Sys-

tems, 37(12):1506{1514, December 1988.

[24] J. Burns and G. Peterson. Constructing multi-reader atomic values from non-atomic
values. In Proceedings of the Eighth Annual ACM Symposium on Principles of Dis-

tributed Computing, pages 222{231, August 1987.

[25] C.Dwork and O. Waarts. Simple and e�cient bounded and concurrent timestamping
or bounded concurrent timestamp systems are comprehensible! In Proceedings of the

24th Annual ACM Symposium on Theory of Computing, pages 655{666. ACM, April
1992.

224

[26] M. I. Chen and K. J. Lin. Dynamic priority ceiling: A concurrency control protocol
for real time systems. Real-Time Systems, 2(1):325{346, 1990.

[27] M. Dertouzos. Control robotics: The procedural control of physical processors. In
Proceedings of the IFIP Congress, pages 807{813, 1974.

[28] D. Dolev and N.Shavit. Bounded concurrent timestamp systems are constructible!
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages
78{92. ACM, April 1989.

[29] S. R. Faulk and D. L. Parnas. On synchronization in hard real-time systems. Comm.
of the ACM, 31(3):275{287, 1988.

[30] B. O. Gallmeister and C. Lanier. Early experience with posix 1003.4 and posix 1003.4a.
In Proceedings of the Twelveth IEEE Real-Time Systems Symposium, pages 190{198.
IEEE, December 1991.

[31] M. H. Graham. How to get serializability for real-time transactions without having
to pay for it. In Proceedings of the Fourteenth IEEE Real-Time Systems Symposium,
pages 56{65, 1993.

[32] M. Greenwald and D. Cheriton. The synergy between non-blocking synchronization
and operating system structure. In Proceedings of the USENIX Association Second

Symposium on Operating Systems Design and Implementation, pages 123{136, 1996.

[33] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Fixed priority scheduling of periodic
tasks with varying execution priority. In Proceedings of the Twelveth IEEE Symposium

on Real-Time Systems, pages 116{128. IEEE, December 1991.

[34] J. Haritsa, M. Carey, and M. Livny. On being optimistic about real-time constraints.
In Proceedings of the Ninth ACM Symposium on Principles of Database Systems, pages
331{343, 1990.

[35] M. Herlihy. Impossibility and universality results for wait-free synchronization. In
Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Com-

puting, pages 276{290. ACM, August 1988.

[36] M. Herlihy. Wait-free synchronization. ACM Trans. on Programm. Lang. Syst.,
13(1):124{149, 1991.

[37] M. Herlihy. A methodology for implementing highly concurrent data objects. ACM

Trans. on Programm. Lang. Syst., 15(5):745{770, 1993.

[38] M. Herlihy and J. Wing. Axioms for concurrent objects. In Proceedings of the Four-

teenth ACM Symposium on Principles of Programming Languages, pages 13{26. ACM,
1987.

[39] M. Herlihy and Jeanette Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. on Programm. Lang. Syst., 12(3):463{492, 1990.

[40] J. Huang, J. Stankovic, K. Ramamritham, and D. Towsley. Experimental evaluation
of real-time optimistic concurrency control schemes. In Proceedings of the Seventeenth

International Conference on Very Large Databases, pages 35{46, 1991.

[41] A. Israeli and L. Rappaport. E�cient wait-free implementation of a concurrent pri-
ority queue. In Proceedings of the Seventh International Workshop on Distributed

Algorithms, pages 1{16, October 1993.

225

[42] P. Jayanti and S. Toueg. Some results on the impossibility, universality, and decidabil-
ity of consensus. In Proceedings of the Sixth International Workshop on Distributed

Algorithms, pages 69{84. Springer Verlag, November 1992.

[43] K. Je�ay. The Real-Time Producer/Consumer Paradigm: Towards Veri�able Real-

Time Computations. PhD thesis, University of Washington, Seattle, WA, 1989.

[44] K. Je�ay. Scheduling sporadic tasks with shared resources in hard real-time systems.
In Proceedings of the Thirteenth IEEE Symposium on Real-Time Systems, pages 89{98.
IEEE, December 1992.

[45] K. Je�ay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of periodic
and sporadic tasks. In Proceedings of the Twelveth IEEE Symposium on Real-Time

Systems, pages 129{139. IEEE, December 1991.

[46] K. Je�ay and D. Stone. Accounting for interrupt handling costs in dynamic priority task
systems. In Proceedings of the Fourteenth IEEE Symposium on Real-Time Systems,
pages 212{221. IEEE, December 1993.

[47] K. Je�ay, D. Stone, and F. D. Smith. Kernel support for live digital audio and video.
Computer Communications, 15(6):388{395, July 1992.

[48] Dan I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering and analysis of �xed-
priority schedulers. IEEE Trans. on Software Engineering, 19(9):920{934, September
1993.

[49] L. Kirousis, E. Kranakis, and P. Vitanyi. Atomic multireader register. In Proceedings of
the Second International Workshop on Distributed Algorithms, pages 278{296, October
1987.

[50] L. Kirousis, P. Spirakis, and P. Tsigas. Reading many variables in one atomic operation:
Solutions with linear or sublinear complexity. In Proceedings of the Fifth International

Workshop on Distributed Algorithms, pages 229{241, September 1991.

[51] H. Kung and J. Robinson. On optimistic methods for concurrency control. ACM Trans.

on Database Systems, 6(2):213{226, December 1981.

[52] L. Lamport. Concurrent reading and writing. Commun. ACM, 20(11):806{811, Novem-
ber 1977.

[53] L. Lamport. Specifying concurrent program modules. ACM Transactions on Program-

ming Languages and Systems, 5(2):190{222, 1983.

[54] L. Lamport. On interprocess communication, parts 1 and 2. Distributed Computing,
1:77{101, 1986.

[55] B. W. Lampson and D. D. Redell. Experiences with processes and monitors in mesa.
Communications of the ACM, 23(2):105{117, 1980.

[56] V. Lanin and D. Shasha. Concurrent set manipulation without locking. In Proceedings

of the Seventh Annual ACM Symposium on Principles of Database Systems, pages
211{220. ACM, 1988.

[57] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Ex-
act characterization and average case behavior. In Proceedings of the Tenth IEEE

Symposium on Real-Time Systems, pages 166{171. IEEE, December 1989.

226

[58] J. Y. T. Leung and J. Whitehead. On the complexity of �xed-priority scheduling of
periodic, real-time tasks. Performance Evaluation, 2(4):237{250, 1982.

[59] M. Li, J. Tromp, and P. Vitanyi. How to construct wait-free variables. In Proceedings of
International Colloquium on Automata, Languages, and Programming, pages 288{505,
1989.

[60] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real{time
environment. Journal of the ACM, 30:46{61, January 1973.

[61] M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, 4:163{183, 1987.

[62] H. Massalin. Synthesis: An E�cient Implementation of Fundamental Operating System

Services. PhD thesis, Columbia University, New York, New York, 1992.

[63] H. Massalin and C. Pu. A lock-free multiprocessor os kernel. Technical Report CUCS-
005-91, Columbia University, New York, New York, 1991.

[64] M. Michael and M. Scott. Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on

Principles of Distributed Computing, pages 267{276. ACM, May 1996.

[65] A. K. Mok. Fundamental Design Problems of Distributed Systems for Hard Real-Time

Environments. PhD thesis, Massachusetts Institute of Technology, Cambridge, Mass.,
1983.

[66] R. Newman-Wolfe. A protocol for wait-free, atomic, multi-reader shared variables. In
Proceedings of the Sixth Annual Symposium on Principles of Distributed Computing,
pages 232{248, 1987.

[67] G. L. Peterson. Concurrent reading while writing. ACM Trans. on Programm. Lang.

Syst., 5(1):46{55, 1983.

[68] G. L. Peterson and J. Burns. Concurrent reading while writing ii: The multi-writer
case. In Proceedings of the 28th Annual ACM Symposium on Foundation of Computer

Science. ACM, 1987.

[69] R. Rajkumar. Synchronization In Real-Time Systems { A Priority Inheritance Ap-

proach. Kluwer Academic Publishers, Boston, 1991.

[70] S. Ramamurthy, M. Moir, and J. H. Anderson. Real-time object sharing with minimal
support. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of

Distributed Computing, pages 233{242. ACM, May 1996.

[71] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach
to real-time system synchronization. IEEE Transactions on Computers, 39(9):1175{
1185, 1990.

[72] L. Sha, R. Rajkumar, J. P. Lehoczky, and K. Ramamritham. Mode change protocols
for priority-driven preemptive scheduling. Real-Time Systems Journal, 1(1):243{264,
1989.

[73] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the

Fourteenth Annual ACM Symposium on Principles of Distributed Computing, pages
204{213. ACM, August 1995.

227

[74] A. Singh, J. Anderson, and M. Gouda. The elusive atomic register, revisited. In Pro-

ceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing,
pages 206{221. ACM, August 1987.

[75] A. Singh, J. Anderson, and M. Gouda. The elusive atomic register. Journal of the

ACM, 41(2):311{339, 1994.

[76] D. D. Sleator and R. E. Tarjan. Self adjusting binary trees. In Proceedings of the

Fifteenth ACM Symposium on Theory of Computing, pages 52{59, 1983.

[77] D. L. Stone. Managing the E�ect of Delay Jitter on the Display of Live Continuous

Media. PhD thesis, University of North Carolina, Chapel Hill, North Carolina, 1995.

[78] J. Valois. Implementing lock-free queues. In Proceedings of the Seventh International

Conference on Parallel and Distributed Systems, pages 64{69, 1994.

[79] J. Valois. Lock-Free Data Structures. PhD thesis, Renesselaer Polytechnic Institute,
Troy, New York, 1995.

[80] J. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the Four-

teenth Annual ACM Symposium on Principles of Distributed Computing, pages 214{
222. ACM, August 1995.

[81] J. Wing and C. Gong. A library of concurrent objects and their proofs of correctness.
Technical Report CMU-CS-90-151, Carnegie Mellon University, Pittsburg, PA, 1990.

[82] J. Wing and C. Gong. Testing and verifying concurrent objects. Journal of Parallel

and Distributed Computing, 17(2):164{182, December 1993.

[83] J. Xu and D. L. Parnas. Scheduling processes with release times, deadlines, precedence,
and exclusion relations. IEEE Trans. on Software Engineering, 16(3):360{369, 1990.

