FLEXIBLE SHARING OF DISTRIBUTED OBJECTS
BASED ON PROGRAMMING PATTERNS

by
Vassi| Roussev

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill
2003

Approved by

(Advisor: Prasun Dewan)

(Reader: Hussein Abdel-Wahab)

(Reader: Ketan Mayer-Patel)

(Reader: F. Donelson Smith)

(Reader: David Stotts)

© 2003
Vassi| Roussev

ALL RIGHTS RESERVED

ABSTRACT
Distributed collaborative applications allow a group of physically dispersed users to work

on a common task. To simplify and lower the cog of developing such applications, alarge
number of collaborative sharing infrastructures have been built. A common approach
employed by sharing infrastructures is to present the programmer with shared programming
abstractions as a basis for implementing multi- user applications. A shared abstraction extends
atraditional single-user abstraction, such as an object, with automatic collaboration support.

In this thesis, we summarize the achievements and limitations of current approaches to
implementing shared abstractions and argue that they have not been successful in
simultaneously addressing the issues of automation, abstraction flexibility, sharing flexibility,
extensibility, and legacy code reuse. We present a new infrastructure model designed to
fulfill these requirements better than existing systems. At the core of the modéd is the notion
of aprogramming pattern based on which we define a new shared abstraction model. A
programming pattern is a consistent naming convention that allows the logical structure of an
object to be implicitly derived from its observable state. We define a pattern specification
language that allows programmers to formally express the patterns they use and show that the
set of supported pattern-based abstractions subsumes the abstraction models of existing
systems.

We complement our abstraction model with an architectural model that allows the
practical use of patterns in the application development. Furthermore, we introduce a sharing
model that subsumes and provides a descriptive mechanism for specifying application
layering.

We describe a prototype implementation of our conceptual model, as well as our
experience in developing collaborative applications with it. We also discuss severa problems
in which we have successfully employed a pattern-based approach outside the domain of
collaboration. Next, we present a requirement- by-requirement evaluation of our work relative

to existing systems showing that, overall, our system performs better in satisfying the

requirements. Finally, we present our conclusions and outline the directions in which we plan
to extend this work in the future.

Keywords: distributed collaborative applications, computer supported cooperative work,
CSCW, programming patterns, distributed object sharing

ACKNOWLEDGEMENTS

First and foremost, | thank my advisor, Prasun Dewan, for his time and patience, his
persistent encouragement, and his numerous lessons in research and writing, without which
this dissertation would not have been possible.

| gratefully acknowledge the support of my committee members, Hussein Abdel-Wahab,
Ketan Mayer-Patel, Don Smith, and David Stotts, whose comments have helped mein
shaping the contents and improving the presentation of this work. | would like to thank the
entire Department of Computer Science at UNC for their persistent support and for creating
the wonderful academic environment that | have had the privilege to be a part of.

Last but not least, | would like to thank my parents, Radka Kanceva and Rossen Roussev,
for their support and encouragement and for their lessons in life that have helped mein

everything | have achieved.

TABLE OF CONTENTS

LIST OF TABLES ... oottt sttt Xi
LIST OF FIGURESooo ettt st st e e e Xii
L. INTRODUCTIONcciiieietseiee sttt sttt s srensene s s 1
1.1 COLLABORATIVE SHARINGccutitiiteetieseeiesiessessessessessessesseessessessessessessessessensensens 2
1.1.1 User interface-based Sharing........cccccceeeeieieeieese e see s 4
1.1.2 RepoSItory-hased SNAringccceeoeeieererereneseseeieeeeeesee e 5
1.1.3 Application-based Sharingc.ccceceeeeerieiesieseere e 6

1.2 INFRASTRUCTURE REQUIREMENTS......ccutiieuiitesteiesestesseeesessessesessessesaesessessessssesses 7
D200 2N 1o 2" 11 o o S 7
A 1= (1 o 1 USSR 8
1.2.3 COUBTOUSE......ueeeeeeeeiteeieeeeesieeieseeste e e e teessesseesseeeesneesseensesseesseennesneensens 11
1.2 4 EXEENSIDIITY....ccueiviieiiiisieieies ettt sttt s ene e 12

IR B 1= S 13
1.4 ORGANIZATION .utveeeuerresteeesessessesessesseseesessessesessessessesessessensnsessessesessessensesessens 17
2. RELATED WORK ...ttt sttt s e e nnnea e 18
2.1 USER INTERFACE SHARING INFRASTRUCTUREScuciviieeireesenensestenessesseseenensesens 18
2.1.1 Shared WINAOW SYSEEIMSc.coieiiiiiesieeie e s 18
2.1.2 Shared Ul TOOIKit SYSIEMS.......ccccieieiieie e e 21
2.1.3 Shared SCreen SYSEEIMS.......occve et 22
2.0 SUMIMBIY.c.eeteeiee ettt b e b e e e st e e e neennennnenns 22

2.2 APPLICATION-BASED SHARING INFRASTRUCTUREScvitiiereeresteseesesseseeenseseas 23
2. 2.1 GIOUPKIT ..ottt b e 24
W o - | o TS 26
G B U1 (= 26
228 IVIBWS.....ocveieeie sttt sttt ettt st b et nenr et e ne s 31

Vi

225 DISCIPLE ..ot s 32

2268 AME-C ...ttt ettt ne s 33
A S ¥ 11072 1Y/ SRS 34
2.3 REPOSITORY-BASED SHARING INFRASTRUCTURESuceieuieieseesteseessessessensennens 35
2.3.1 Traditional Distributed File Systems.........cccovvevvvieereece e 35
P2 1 ©e o -~ WS RRRPR 35
2.3. 3 LOLUSNOLES......cooieiiieiieeee e 36
PG I T Y 011 USSP 37
20 1 T 1\ 38
2.3.8 SPNC.eiieieiesieee ettt et nn e re s 38
2.3.7 SUMIMBIY.c.eeteeiee ittt b e b e s e neesnesneennennnenns 40

3. CONCEPTUAL MODEL ..ocueiiiieieeee ettt 43
3.1 SHARED ABSTRACTION MODELceuteieieiesiesiesiesseeseeseeeessessessessessessessessessennens 44
1300 00 I 1 1 oo [0t o o 1 ST TRRPS 44
3.1.2 Pattern-based Object MOEccoviiiiiiireeee e a7
3.1.3 Programming Patterns in JavaBEaNS.............ccecuveeereerieseesieesieseesieeee e 48
3.1.4 Generalized Properties and Programmer-defined Patterns...................... 51
3.1.5 PatternNS VS, INTEITaCES.......ccvveeieeeeeeseee e e 54
3.2 ARCHITECTURAL MODELveuveuiitiienietesiesiesesseseeessessesaesessessessesessessssessessesessesss 56
3. 2.1 Property HandlersS ..o s 56
3.2.2 Property Handlers vs. ReQUIrEMENtS..........cccceevieeeenieeie e e 58
3.3 SHARING MODELceuviieiiestesiesteeieeeeseessestestestessessesseeseessessessessassessessessessenssenens 59
3.3 L Property EVENIS....coocieiie ettt s 60
3.3.2 NArNG ParametersS.......ccooieieeeieeee s 61
3.3.3 SyNChronization EVENES...........coveceeeeiieie e 66
G I N = S o7 T oo [T 68
G SN @ o] 1=oi B oo S 69
3.3.6 Application Layer Modelccccceeiieiiieiie e 72
3.4 SHARING SPECIFICATION IMODELceteieiesiestestessesseeseeeessessessessessessessessesseenens 77
3.4.1 Inheritance-Based SpeCificationccceeeeveeveeeevecce e 77
3.4.2 POIICY NAIMING ..ottt 79

3.4.3 Macro Command SPeCifiCations..........ccccvveeveeieeeese e 79

3.5 SUMMARY ..ttt sttt sttt et e st e ste s teebeeseeseene et e tenaentesreetesneeneeneeneas 80
3.5. 1 WINAOW SNATING ...ccviiieiieeiecie e re e e nae e nns 81
3.5.2 Latecomer ACCOMMOTALIONcccereereeieriesieeie e 81
3 5.3 ST ettt 82
3.5.4 ASYNCAIONOUS SNAYING ...veeuverieerieeieeieesieesie st se e sae e ses 83

4. INFRASTRUCTURE IMPLEMENTATION ...oooiiiiiiiieeeee e 84

4.1 XML PATTERN SPECIFICATION LANGUAGEcovtiitiateeiieieeeesie e see e snesneeseens 84
4.1 1 Property VEISIONScccoiuiiiiierienieseeee et sbe s s e st e s ssesseeneens 86
4.1.2 Method SemanticS AFIDULE..........cooeiiec e 89
4.1.3 Advanced Naming CONVENTIONS.........ccorererinereneeeeeesee e 89
4.1.4 Property EXCIUSIONS.........cooiiieiiciie ettt 90

4.2 OBXECT NAMING AND REGISTRATION ...ccuveieieriestesrearesseeseeeeseessessessessessessessenses 91
4.2.1 ldentifiable ODJECLS........ccccvieeecicce e 93
4.2.2 ODJECt REQISIIALIONeovieieeieestee ettt 93

A3 EVENT FLOW L.ttt sttt bbbt 95

A4 USER INTERFACE ...ccuteuieuieiestesiestessessessesseessessessessessessessessesssessssssssessessessessensennes 97
4.4.1 ODJECE BIOWSES ..ottt ettt sttt e et 97
4.4.2 PoliCy SPECITICALION.ceeeiieciiecie ettt 101
4.4.3 Layer FPECITICALIONocuereerririieiieeeeeie et 102

4.5 REMOTE COMMUNICATIONcuvertevessesseeseesaesssssessessessessessesssssssssessessessessessensens 104

4.6 SESSION MANAGEMENT ...cuvevitesteeteeseeseeeessessessessessessesseessessessessessessessessessennens 105

A7 INITIALIZATION t.ttttetieieeee e ste sttt siessee e e sse e saesbessesse e e e e sessestesaesbessesnesneenees 106

4.8 PERFORMANCE CONSIDERATIONS......ceuteueeiereessessessessessesseessesssssessessessessessenses 107
4.8.1 RUN-tIME OVErNEAdceoiiiiciieeee s 108

4.8.1.1 TaDl@ LOOKUP...cceieteieeeiiieiee ettt ettt e e e e e e e e e nnneeeeean 108
4.8.1.2 Reflection-based Method INVOCALION.........c.eevveeiiiiiee e 108
4.8.1.3 POlICY LOOKUP ...ttt 109
4.8.1.4 Remote COMMUNICALION.cccuvrreeeiiiieeeesiieeeeeiireeeesireeeessnreeeeeenneeeeans 109
4.8.2 Pattern ANAIYSIS.....ccocveieeiece ettt 110
4.8.3 SUMIMIAIY....eeete ettt r e sn e e sae e sb e e n e sn e n e e nns 111

viii

5. EXPERIENCE ...t 113

5.1 OUTLINE APPLICATION ...eviitiiteeteeseeseeeessessessessessessesseeseessessessessessessessessessesseens 113
5.1.1 ASyNChron0OUS SNATINGcceevuereeieeieeseesteesieseesseessesseesseeeesseesseessesseessens 114
5.1.1.1 Scenario 1: Read/\Write Peer-to-Peer Sharing..........cooceeviieeiiieeiiiieeneens 114
5.1.1.2 Scenario 2: Diff-Based Peer-to-Peer Sharingccooceeviieeiiieeiiiiceieene 117
5.1.1.3 Scenario 3: Centralized Commit-Based Sharing...........ccoecveeviveeiiieeeniinenns 119
5.1.2 Flexible Event-Based SNaring........cccccceveeieieeseeieseese e s s e sneennens 120
5.1.2.1 Scenario 4: Peer-to-Peer Sharingcocccveeeiiiiiie i 120
5.1.2.2 Scenario 5: Centralized Sharing........cccooovieiieiiiiieeee e 122
5.1.2.3 Scenario 6: Model/View Sharing.........ccoceeeieeiiieeiniee e 122

5.2 USER INTERFACE TOOLKIT SHARING.....c.ceitirieieriesieseseeeesseseessesseseessessessesneens 126
5.3 GRAPHDRAW APPLICATIONvtitietieueesieieseestessessessessessesssessessessessessessessessensenns 128
G O Y= 4V 1 SRS 128
5.3.2 Dynamic Multi-layer Sharingccccccevieeieeiie e 129
5.3.3 DeVvElOPMENT COSES.....cuiiuirieriirieieie ettt 132
5.4 SHAPES APPLICATION ..uvetitessestesseeseeesssessessessessessessessessssssesssssessessessessessesnenns 134
5.5 XML-BASED OBJECT SERIALIZATION ..cuveveruesresreesesseeeeeessessessessessessessesseseens 135
5.6 UPNP DEVICE INTEROPERATION ...ccutiuiiieiesiesiestessessesseseessesssssessessessessessessens 140
5.6.1 System Interface Generation............cccceeererererieieeieesesese e 142
5.6.2 User Interface GeNeration...........ccooeverevenieneninieniesie s 145
5.6.3 UPNP SUMIMAIY.....coiiiiiiie et 146
5.7 SUMMARY ..ttt sttt sttt b e s bbbttt e et st be b e b be st e e 147
6. EVALUATION ..ottt sttt sresne e enes 148
6.1 METHOD OF EVALUATION.cctiitiiteetesteeseeeeseesiestestessessesseeseessessessessessessessssnnns 148
6.2 EVALUATION TABLEScouiiiiiesiesiestesiessesee e seestestesse s seeseesaessessessessessessessenns 153
6.3 COMPARATIVE AND ABSOLUTE EVALUATION OF EACH SYSTEMcccceeueeee. 155
GT 0 N ! SRS 155
5.3.2 GrOUPKIT ...ttt 156
5.3.3 C0lAD.....ceeenieieie e 157
TR I S T 158
B.3.5 JVIBINS ...ttt bttt bbbt 159

6.3.6 DISCIPLE ... 160

GG T Y S 161
6.3.8 Traditional Distributed File Systems (DFS)ccccevveveececeececee e, 162
LTRSS oo -~ WO 162
6.3.10 LOtUS INOLES......ceeiiieiee ettt s 163

B.3. 1L BAYOU ..cueeiuieitieeieesiie et et stee st sbe e e sbe e san e e be e st e e nae e snreenneeanneennne s 164
B.3.12 TACT ..ottt bbbttt b et e bbbt 165
TR I IS Vo oSSR 166
6.3.14 OUr INfraStrUCIUNE........cevieeeeeeeceeie e 167

7. CONCLUSIONS AND FUTURE WORKccciiiiiniirininieeeie e 172
7.1 CONCLUSIONS......ueiteeueereeeeeessessessessessessesssessessessessessessessssssessessessessessessessenseens 172
7.2 FUTURE W ORK ...c.titisteeiieseesiestestestesbessessesseeseessessesbessessessesneensessessessessessessessenns 173
7.2.1 Collaborative Infrastructure EXtENSIONS..........ccceeeveeeeeeeeeeeeccieee e 174
7.2.1.1 SEVICE EXIENSIONS. ...uvviiiie ittt et e e 174

7.2.1.2 Integration with Other InfrastruCtures...........cccceveeeeiiiciiiieeeee e 175

7.2.2 Pattern Specification Mechanism Improvements..........ccccceveeeveeccieenienn, 176
7.2.3 Pattern-based Approaches to Non-Collaborative Applications.............. 176
7.2.3.1 AUOMALEd ODJECE TESHNG.eveeeeeeeeeeeeeeee e eeeeeeee e s eneeneeees 176

7.2.3.2 Structured Code GENEXationc.eeeeeiiiieeeeiniiieeeeneee e seeee e snreeeeennes 178

8. APPENDIXooovvoieveoresesssssessssssssss s ssssss s s sssens 179
8.1 XML PROPERTY SPECIFICATION SCHEMAccirtiriirieeeeieiesiesie e seessessessesnenns 179
8.2 GENERIC TABLE PROPERTY SPECIFICATION ..veiveiueeiiereeeeeeseeseesseseessessessennenns 180
8.3 GENERIC SEQUENCE PROPERTY SPECIFICATIONcouviueiieeeneesieseessesiessennenns 182
8.4 SEQUENCE PROPERTY SPECIFICATION FOR JAVA.AWT.COMPONENT 184
8.5 SET PROPERTY SPECIFICATION FOR GRAPHDRAW........cccveiierienieeesieere e, 186

9. REFERENCES........o oottt st 188

LIST OF TABLES

Table 2.1 Surveyed Infrastructures vs. REQUITEMENESccorerierierenenieeieeee s 41
Table 4.1 Pattern AnalysiS EXECULION TIMES.......ccviieiieie ettt 111
Table 5.1 Code Statistics for GraphDraw AppliCatioNccccoeeereririeeieeneesese e 133
Table 6.1 Evauation: Infrastructures vs Requirements (Part 1)cccccoveeeveeveeeesieenen. 153
Table 6.2 Evaluation: Infrastructures vs Requirements (Part 2)ccocevevenenciennne 154

Xi

LIST OF FIGURES

Figure 1.1 Users A and B working together on a shared outline............ccccoceveienenenennne 1
Figure 1.2 Basic Layer-based Application Decomposition...........cccceeveeveeiieseesecieeseene. 3
Figure 1.3 Physical vs. logical VIEW Of SNaringcccceeeeeeieienenisieseseeeeeeee e 4
Figure 1.4 Abstraction vs. Sharing FIexibility.........cccooeviiieiiiiie e 14
Figure 2.1 XTV AIChItECIUIE.......oouiieiieieee e 19
Figure 2.2 Ul Sharing: Shared window and shared toolkit architectures............c.ccccueunee. 21
Figure 2.3 Shared Ul ArChItECIUIEScc.eeiiiiiiieeie et 23
Figure 2.4 Collaborative extension of the MV C architecture using shared environments24
Figure 2.5 SUItEs sharing MOELcooiiiiieiiiccce e 28
Figure 2.6 Sync: Default merge matrix for Repl i cat edDi ctionaryccccceceeveeneene 39
Figure 3.1 Example Outline implementation.............ccooeeireenenie e 45
Figure 3.2 Sharing infrastructures and their shared abstractions...........ccccceeevvrenencniene. 47
Figure 3.3 Phases of update handling...........cccooeiiiiiii i 62
Figure 3.4 N-user Sharing EXample...... ..o s 68
Figure 3.5 Example of multiple notification of causally related events.............ccccceenenee. 72
Figure 3.6 Zipper model of multi-user appliCationscccooerirerienereeeeee e 73
Figure 3.7 Layer decomposition for outline application.............ccceceeveeveiieesecce e 75
Figure 3.8 SUItES Layer MOELooiiieeeee s 82
Figure 4.1 XML specification for smple (JavaBeans) propertiesccccvevververeveeneennns 86
Figure 4.2 Event flow model of the infrastruCture...........ccooeieeie e 95
Figure 4.3 Object Browser with Policy Selection Pop-up Menu...........ccccevevvnenencneenne. 98
Figure 4.4 Collaboration Menu Attached to an Application.............cccoveeveeeviesceesee s, 99
Figure 4.5 Type- and Layer-based Property Filteringcccocovvievininininiesene e 100
Figure 4.6 Coupling PoliCy EItOrccooiiiiiiieece e 102
FIQUIrE 4.7 Layer EQITONccuoiiieeeeieeeee sttt 103
Figure 4.8 RMI-based Multicast ArchiteCture...........ccccveveeieseereeie e 105
Figure 5.1 Model-View decomposition of the Outline application.............cccccevevenennene 114
Figure 5.2 Selective Transmit/CommMit.........cccoceeiiiieieeseeie e 116
Figure 5.3 Centralized Commit-Based Sharing.........cccoceveriinenininnieseeeee e 119
Figure 5.4 (Centralized) Model/VIiew Sharingccccceveereeceseeseeieseese e e e eses e 123

Xii

Figure 5.5 Layer Sharing Specification User Interface.........ccccoevveieieeiecce e, 125

Figure 5.6 Java's GlassPane CONTAINEScooiiirirerieieeiesiese et 126
Figure 5.7 GraphDraw ApPPlICALION..........ccccveieiieiece e 128
Figure 5.8 Layer Dependencies for GraphDraw AppliCation............coceeeevenenereneneens 129
Figure 5.9 GraphDraw application: graph layer sharingcccocveveveeeveecesceeseesieseens 130
Figure 5.10 GraphDraw application: graph view layer sharing..........cccoceeeevnceneniinnenne 130
Figure 5.11 GraphDraw application: graph view and figures layers sharing.................. 131
Figure 5.12 GraphDraw application: window layer sharingccccevveeeieeieeiiieenreenn, 131
Figure 5.13 Shapes appliCaliON..........coerieieriene e 135
Figure 5.14 Example Outline object for XML serialization.............cccccevveveseenecciennnnne, 138
Figure 5.15 XML serialization of example ODJeCt...........ccceviiiiiiiiiieeee 139
Figure 5.16 Possible standardized interfaces for a weather device..........cccocveevvecienee, 140
Figure 5.17 Simulated SIErEODEVICE........ccoiiiiiirierieeieeee et 141
Figure 5.18 Exporting devices through a UPNP ProXy.......cccccceeeveeieieeseesieseeseesee s 142
Figure 5.19 Announcing a UPNP device through aproXyccccceecereeneninneenesieeseene 143
Figure 5.20 Servicing an HTTP FEQUESLccceveeieeie ettt 145

Xiii

1. INTRODUCTION

Distributed collaborative applications (a.k.a. multi- user applications, or groupware)
allow a group of geographically dispersed users to work together on a common task, such as
editing a document. Most often thisis achieved by presenting users with the abstraction of a
shared artifact, which alows multiple users to modify it and to observe the effects of each
other’s actions. An example of a shared artifact is given on Figure 1.1, which shows two
users—A and B—working together on a shared outline of a paper using a multi- user outline
editor. In this case, the application presents both users with the same view of the outline
thereby making them instantly aware of each other’s actions. Another possibility isthat A
and B might be disconnected for a period of time and would like to keep working on separate
versions and be able to merge them automatically. As another example that falls somewhere
in between, consider the case where A and B are updated periodically of each other’s

progress, or only when changes of a given (user-defined) level of significance are introduced.

EEE[USEI_A.]: Flexible Object 5... =] E3 E%’,%[USEI_B]Z Flexible Object 5... =] E3
File Edit Yiew File Edit Yiew
[Title: Flexibla Chject Sharing il 1 Title: Flexible Chiject Sharing |~
] Abstract i] Abstract
? 1. Introduction @ 1. Introduction —
3 1.1 Motivation 3 1.1 Motivation
C11.2 Requirements = 1.2 Requirements -

Figurel.1 Users A and B working together on a shared outline

In genera, there is a whole spectrum of useful sharing scenarios and, ideally, a
collaborative application should be able to dynamically adapt to all the scenarios that are
relevant to its domain. Experience shows that developing such applications from the ground
up is acostly and error-prone process. Therefore, a number of software infrastructures, which
we refer to as sharing, or collaborative infrastructures, have emerged to facilitate the
development effort by providing reusable mechanisms for distributed object sharing that are
applicable to large classes of applications.

However, the sharing mechanisms offered by existing infrastructures have not been
designed to completely meet the needs of collaborative applications. The goa of this research
isto analyze the limitations of existing approaches and to develop a sharing infrastructure
that better addresses the requirements of multi- user applications. We have taken the
following steps to systematically achieve this goal:

Identify generic usage scenarios relevant to awide range of collaborative
applications;

Based on the scenarios and general software engineering principles, derive a set of
generic infrastructure requirements;

Analyze the achievements and shortcomings of existing solutions with respect to the
requirements;

Based on new mechanisms, develop an infrastructure that better meets these
requirements;

Evaluate the result of our work by developing actual collaborative applications and
comparing it with respect to the requirements and existing solutions.

The rest of the presentation successively discusses the above points starting with the

description of three basic sharing scenarios.

1.1 Collaborative Sharing

Since it is nearly impossible to exhaustively enumerate al plausible sharing scenarios
from a user’s point of view, we classify them into three broad categories based on asimple
conceptual model of collaborative applications. Later on, in Chapter 3, we will refine and
formalize this model to enable its incorporation into our sharing infrastructure.

Generally, aregular single-user application works by taking user input, performing some
computation, and displaying back the results to the user. It also alows the user to persistently
store and retrieve the results of the computation. Therefore, as Figure 1.2aillustrates, we can
view an application as consisting of three basic functional layers: user interface (Ul), which
directly interacts with the user, core application, which performs the application specific
computation, and arepository, which is responsible for persistent storage. Centra to this

model is the core application layer, which maintains an abstract representation of the virtual

artifact (or object), which is manipulated through the user interface, and is kept persistent by
the repository.

Application

Application

@ (b)

Figure 1.2 Basic Layer-based Applicati on Decomposition

To extend this model to the domain of distributed collaboration, we add sharing functions
to one, or more, of the application’s layers as shown on Figure 1.2b. The vertica arrows, as
in the single user case, represent the flow and transformation of events that are independent
of the number of users and, thus, represent the baseline single-user semantics of the
application. On the other hand, horizontal lines represent exchange of state information, or
sharing, between peer application layers. The figure shows a logical view of the sharing
process and does not necessarily imply that the layer is physically replicated, or that layers
communicate directly with each other. For example, sharing in distributed file systems, such
asNFS, is achieved by users accessing the same physical copy of the file. However, we can
still apply the logical view of the sharing shown on Figure 1.3.

Application

User Interface

Application

Application Application

(a) Physical architecture (b) Logical architecture

Figure 1.3 Physical vs. logical view of sharing

In any case, since users are physicaly distributed, at least (part of) the user interface layer
must also be distributed. Given this simple model, let us now consider the different scenarios

that can be supported through sharing at each of the three levels.

1.1.1 User interface-based sharing

User interface-based sharing allows collaborators to work together by interacting with the
object through the same user interface (Ul) presentation in multiple computers as shown on
Figure 1.1. Thisis commonly referred to as what-you-see-is-what-I-see (WY SIWIS) sharing.
For this scheme to be effective, users must be able to modify the object and observe each
other’s modifications in real time, or synchronously. WY SIWIS also implies that, at any
given moment, there can be only one user who interacts with the application. Otherwise,
users might issue conflicting commands concurrently and the WY SIWIS abstraction
becomes undefined. Thus, WY SIWIS is useful in cases, such as a moderated editing session,
or aremote presentation, where the restriction of one active user is either desirable or
acceptable.

Ul-based sharing is largely limited to WY SIWIS because the sharing mechanism has no
knowledge of the shared object. Consequently, if user views of the object are alowed to
diverge, this could lead to separate versions with no means to restore consistency. The only
way to relax the WY SIWIS requirement is to allow some aspects of the Ul that do not affect
the state of the object (such as formatting parameters) to be different for different users.

However, such information is inherently applicationspecific and implementing an

application-specific solution would defeat the main advantage of Ul-based sharing—
complete automation.

Complete automation here refers to the fact that a single infrastructure can provide
sharing for large classes of single-user applications at no additional development cost. Thisis
possible due to the fact that, currently, virtually all applications are devel oped using standard
user interface components provided by the basic underlying infrastructure—the window
system (e.g., X Windows) and/or software development toolkits (e.g., Java AWT/Swing).
Thus, it is sufficient to replace the origina single-user implementation of the standard Ul
components with a collaborative one and all applications using the basic infrastructure
become Ul-shareable.

1.1.2 Repository-based sharing

Another approach to complete automation is to use repository-based sharing. It is based
on users taking turns at working on and updating a (logically) single persistent copy of the
shared object. For example, users could use a distributed file system, which gives them
remote access to the same physical file over the network. To exchange state, users must
explicitly commit any updates made to the shared object to make them visible to other users,
which in turn must explicitly request the current version in order to observe the update.

In many respects, this sharing scenario has the opposite characteristics of the previous
one—users are not restricted in their concurrent access to the object, they may have
completely different views of it, and their updates are propagated asynchronously, i.e. there
isno limit on the interval between the time one user makes a change and the time it becomes
visible to others. Asynchrony is an inherent trait of repository-based sharing—due to the
large overhead of communicating with secondary storage, it isimpractical to useit asa
medium to communicate user updates at interactive rates.

Since users may work on the shared object independently, this may lead to the existence
of severa different (and potentially conflicting) versions of it. Therefore, the task of a
collaborative application is to provide a suitable solution that either helps users avoid the
problem altogether or helps them resolve inconsistencies in an automated fashion.

1.1.3 Application-based sharing

Application-based sharing allows the automated exchange of updates to the (in-memory)
abstract representation of the shared object. For example, our outline document can be
represented as arecord consisting of atitle (a string) and a sequence of sections. In turn, each
section is also arecord with a heading and a (potentially empty) list of subsections. Despite
the fact that the structure of the shared object is relatively ssmple, the number of useful
sharing scenarios is nonttrivial even for a small outline document.

Let usfirst consider the issue of what should be shared. In real-world collaboration, it is
quite common for collaborators to split the work among themselves and work individually, or
in small groups on different parts of a document. Hence, to be relevant, a collaborative
application should at least be able to replicate this model of collaboration. For example, it
should be possible for users A and B to share Section 1 of the outline, which they have
agreed to work on together, but not to share the rest as these will be worked on individually.
More generaly, eachand every node of the outline’ s tree structure is potentially shareable so,
ideally, it should be possible to control the sharing of the outline at any level of its hierarchy.
For that purpose, the logical structure of the shared object must be known to the sharing
mechanism. Thisis not a problem for custom-built collaborative applications, however, for
sharing infrastructures this is a challenge because the set of supported abstractionsis
determined at design time. Therefore, an infrastructure should sypport the sharing of as many
abstractions as possible and should be designed in away that alows the set of abstractions to
be easily expanded. We refer to the set of abstractions that an infrastructure can
automatically share as abstraction flexibility.

Another issue to consider is the question of when to share an object. That is, under what
condition(s) the exchange of updates from different users will take place. Two obvious
choices are the synchronous and asynchronous sharing presented in the previous sections.
However, there is a whole spectrum of alternatives in between that can be quite useful. For
example, users may want synchronous collaboration but because of network overload, this
may not be possible. In that case, users may consider periodic updates where exchange takes
place once per user-specified time interval that can range from seconds to days and could be
adjusted depending on network traffic. Even if communication delay is not an issue, some

users may not want to be constantly distracted by being forced to observe every incremental

change of their team members but still want to be informed of “important” updates. While
the notion of importance is somewhat subjective, we can consider proxy criteria for the
exchange based on some measure of correctness, or completeness of the user actions. For
example, send the new value of atext field only after the user has indicated he is done editing
it (by moving to the next item), or after an explicit commit command.

Finally, each user may want to control the way he is sharing with each individual or
group of participating users [Colab, Suite]. Thus, user A, for example, may want to share
synchronously Chapter 1 with user B, while exchanging only hourly updates with C on
Chapter 2. Furthermore, user preferences for sending and receiving updates may be
asymmetric. For example, a user might be willing to send out every incremental change heis
performing but might only want to receive updates from others that are explicitly committed.

In summary, there is awide variety of applicationsharing scenarios but they can be
classified based on three major parameters: what is shared, how isit shared, and with whom is
it shared. For the rest of thisthesis, we refer to a particular combination of the values of these
three parameters as a sharing mode. By exhaustively enumerating al sharing modes
supported by a particular collaborative application or infrastructure, we can get a measure of
itssharing flexibility.

Based on our discussion so far, as well as some basic software engineering principles, we
can identify the following collaboration infrastructure requirements along with the respective
criteria to measure the extent to which any given infrastructure satisfies them. For each
requirement we also provide exanples of systems (or classes of systems) that provide

maximum and minimum support, respectively.
1.2 Infrastructure Requirements

1.2.1 Automation

In general, we can distinguish between two types of software infrastructures—enabling
and automating. The main purpose of the former is to make possible the development of a
new class of applications, whereas the latter seeks to automate the development process of an
existing class of applications. In the case of distributed collaborative applications, we can

consider TCP/IP sockets to be the basic enabling infrastructure upon which all such

applications are built. Therefore, we are interested in comparing infrastructures whose
primary goal is the automation of collaborative applications.

Typicaly, the level of automation provided by an infrastructure is measured by
comparing the amount and complexity of the code a programmer has to write to build a
typical application with and without the infrastructure. In the case of a collaborative
infrastructure, it is a measure the devel oper's effort required to achieve multi- user behavior
with respect to the single-user case.

In this respect, TCP/IP provides the lowest level of automation because it only provides a
basic point-to-point reliable ordered communication mechanism. The application must deal
with issues of multicasting to a dynamic group of users, defining a protocol for
encoding/decoding of updates to the shared object (e.g., insertion of a new section), and
coordinating concurrent updates submitted by users. On the other end of the spectrum, shared
window systems, such as XTV [1], provide the most automation because they require no

development effort to convert regular applications into collaborative ones.

1.2.2 Flexibility

The flexibility offered by a sharing infrastructure is defined by its ability to support a
variety of collaborative applications and scenarios. Conceptually, the requirements of
automation and flexibility present a fundamental trade-off—the more an infrastructure
assumes about the supported applications and scenarios, the more automation it can provide.
Inversely, the less it knows about the application and the usage scenarios, the wider the range
of applications and scenarios it can accommodate (at a higher relative cost). For example,
shared window systems (discussed in detail in the next chapter) provide fully automatic
sharing by assuming one particular sharing mode—WY SIWIS, whereas TCP/IP sockets
place virtually no restrictions on the sharing while providing low automation.

Therefore, to enable meaningful comparisons among different infrastructures’ flexibility
features we must first choose the level of automation at which the infrastructures are
compared. In thiswork, we consider infrastructures that provide high level of automation for
at least one of the scenarios discussed in the previous section.

We distinguish among three aspects of flexibility to better characterize different systems.

Sharing flexibility. An infrastructure should automatically support as many modes of
sharing as possible. In other words, a small amount of development effort should be
required to build an application that supports a variety of sharing modes. To compare two
infrastructures—A and B—with respect to sharing flexibility, we compare the range of
sharing modes they support. If A supports all the sharing modes of B and, in addition,
supports modes that are not supported by B, then A has a higher (degree of) sharing
flexibility.

Furthermore, specification of the sharing modes should follow the logical structure of
the shared object. In other words, it should be possible to specify different sharing
policies for logically autonomous parts of the object. For example, it should be possible
to provide separate sharing specifications for the sharing of the title of the outline and the
sharing of each of the outline’s sections.

Among existing systems, shared window systems are a good example of an
infrastructure that provides no sharing flexibility—only WY SIWIS is supported, whereas
Suite provides the most sharing flexibility through a parameterized sharing mechanism
which systematically covers awhole range of useful sharing modes.

Abstraction flexibility. As part of the task to lower the development cost, an

infrastructure must support automatic sharing of as many types of objects as possible.

Most infrastructures offering high automation provide at |east one shared abstraction.

However, providing only a fixed set of shared abstractions inherently limits the

applications that the infrastructure can support. Therefore, the infrastructure should

support programmer-defined shared abstractions that reflect the specific needs of every
application. Specifically, it should support:

o0 Programmer-defined semantic objects. Semantic objects maintain the most abstract
representation of the object manipulated by the end user and, therefore, the best
understanding of hisintentions. Therefore, sharing of semantic objects offers the most
flexibility in accommodating concurrent updates from a group of users while
preserving their intentiors. Inherently, semantic objects are application specific and,
therefore, the infrastructure should be able to share as many programmer-defined

semantic objects as possible.

o Programmer-defined user interface. For many applications, such as a drawing
editor, the custom features of the graphical user interface through which the semantic
object is manipulated are just as important as the semantic object itself. Therefore, the
infrastructure should support the sharing of programmer-defined Ul and the sharing
of the semantics object should be independent of the implementation of the user
interface.

To compare two infrastructures—A and B—with respect to abstraction flexibility, we
compare the range of sharing abstractions they support. If A supports al the shared
abstractions of B and, in addition, supports abstractions that are not supported by B, then A
has a higher (degree of) abstraction flexibility.

As an example of systems with no abstraction flexibility, consider shared window
systems—they provide only a single abstraction, a shared window with no means to extend
its support. At the other end of the spectrum is Colab with its broadcast methods, which can
be applied to an arbitrary object and, therefore provide maximum abstraction flexibility.

Specification flexibility. An infrastructure should also provide a flexible specification

mechanism that allows users to take full advantage of its the abstraction and sharing

flexibility features at a reasonable cost. Specificaly, it should support:

o Latespecification binding. It should be possible for the sharing modes to be
specified (bound) at different times in the application’s life cycle. In that respect, we
distinguish between early binding performed at compile time by the application
programmer and late binding performed at run time by administrators and/or end-
users. Since late binding provides more flexibility, sharing infrastructures should
support it unless the associated performance or specification overhead is prohibitively
high.

o0 Easeof specification. It should be easy for programmers/users to specify the exact
sharing policy they need. For example, specifying a policy for awhole outline
document should not require specifying a policy for each individual section.
Furthermore, it should be easy for novice users to specify simple, standardized
policies without precluding more complex, customized policies that more experienced
users may want. In essence, this ease-of-specification requirement allows us to judge

the level of automation provided with respect to the specification effort.

10

Suite again, is an example of a system that fulfills both the late specification and ease of
specification requirement. Since its sharing model is controlled by parameters, they can be
dynamically adjusted at run time. To minimize specification effort, Suite uses an inheritance
model, in which parameters can be specified at variable levels of granularity of the shared
object’s structure. It is virtually impossible to point to a system, which supports neither late
binding nor easy specification, because early binding implies no specification effort. AMF-C
[23] is a system, in which the sharing specification can be changed at any time by changing
the communication links between objects, however, it’s per- instance specification requires

significant, even for applications of moderate size.

1.2.3 Code reuse

Often, the development of multi- user applications starts with a fully implemented single-
user version of it. Therefore, the extent to which existing application functionality is reused
has a direct impact on the complexity and cost of the application development. We
distinguish between two types of code reuse:

Compiled code reuse. In a perfect solution, the infrastructure should allow the sharing of

executable single-user code, thereby eliminating development effort. However, there are

fundamental, as well as practical, limitations on how much sharing flexibility can be
achieved while offering compiled code reuse. Thus, if more sharing flexibility is needed,
it is inevitable that the application becomes collaboration-aware. Therefore, a secondary
requirement is to minimize this awareness and the corresponding development effort.

I ncremental collabor ation awar eness. To minimize the effort of making an application

collaboration-aware, the infrastructure should support varying degrees of collaboration

awareness. As astarting point, the infrastructure should support sharing of collaboration
transparent applications. As the application programmer incrementally modifies the
application code to make it more collaboration-aware, the infrastructure should aso
incrementally increase the level of sharing services it provides until the application
reaches the level of service required by the users. This step-wise devel opment process
ensures that the programmer invests only the minimal effort necessary to achieve the
desired collaboration behavior.

11

Shared window systems support compiled code reuse but not incremental collaboration
awareness. GroupKit provides a variety of mechanisms for implementing sharing—shared
environments, multicast RPC, and events, and therefore, provides support for gradually

increasing the collaboration awareness of the application.

1.2.4 Extengbility

Since applications are devel oped after the infrastructure on which they are based, it is
virtualy impossible for the infrastructure designer to foresee al possible future needs.
Therefore, from a software engineering point of view, the infrastructure should be designed
to facilitate future modifications and extensions of existing functions, as well as the
integration of new ones. In the context of collaborative infrastructures, we refine this generic
extensibility requirement into three specific requirements

Separation of shared abstractions and sharing implementation. A sharing

infrastructure should cleanly separate the shared abstraction presented to the application

from its implementation. In particular, it should be possible to compose the application
with a completely different sharing implementation without modifying the application
code.

Separ ation of collaboration functions. Individual sharing functions within the

infrastructure should be implemented as separate modules to allow their implementations

to be varied independently. For example, it should be possible to replace a lock- based
concurrency control module with one based on operational transformations without
disturbing the rest of the system. Furthermore, explicit dependencies among modules
should be avoided to enable the transparent introduction of new functions, such as access
control, without modifying the rest of the infrastructure.

L ate component binding. The previous two separation requirements imply that the

infrastructure must also have a binding mechanism to put together a working system.

Such binding can occur early (at compile time) or late (at run time). Since late binding

offers more flexibility and allows the system to be reconfigured without recompilation, a

sharing infrastructure should implement late binding unless the associated overhead is

prohibitively high.

12

Component-based systems, such as the Java-based JViews[12], are best suited to satisfy
this requirement because of their emphasis on fine- grained decomposition of application
functions. In addition, Java, with its late binding and reflection mechanism significantly
simplify the task of late component binding. In the other hand, Suite, for example was
designed as a monolithic system, therefore, provides minimal support for extending/

modifying its functionality.

1.3 Thesis

The main objective of the research work described in this dissertation has been to develop
new mechanisms that allowed the development of an infrastructure that better satisfies the
identified generic requirements than existing systems. By better we mean that with respect to
each requirement our system will perform at least as well as the best of the benchmark
systems and, with respect to some requirements, it will support features not present in other
systems.

We should note that the requirements discussed above are not completely independent of
each other and some of them present fundamental trade offs. In such cases, our claim is that
for afixed level of support of one of the requirements, our infrastructure will be at least as
good as the benchmarks. To illustrate this, consider the classification of sharing
infrastructures with respect to abstraction and sharing flexibility shown on Figure 1.4 (a
detailed motivation of the classification itself is presented in the next chapter).

In this case, Suite provides the highest relative sharing flexibility among all systems,
whereas Colab and GroupKit provide the highest (possible) level of abstraction flexibility.
Our contribution claim here is that, given a Suite-like level of sharing flexibility, our system
provides a higher level of abstraction flexibility than any other systems (point G1). Similarly,
given an arbitrary object, we provide more sharing flexibility than Colab or GroupKit (point
G2). However, we do not claim that we can provide Suite-like sharing flexibility for an

arbitrary object, which turns out to be infeasible.

13

Sharing
Flexibility
o A Goal
Suite G
sharing i —) i Ve
modes
JComposer
GZ
XTV/JCI_E Colab
1sharing | GroupKit _ B Sync GroupKit
mode o N .
. Abstraction
1 class A.ny Flexibility
of objects object

Figure 1.4 Abstraction vs. Sharing Flexibility

It is our thesis that we have developed an object-sharing infrastructure that better (as
defined above) addresses the generic infrastructure requirements identified in this chapter
than existing infrastructures. In particular, the infrastructure has achieved the following with
respect to the requirements:

Abstraction flexibility: for agiven level of sharing flexibility, alevel of abstraction
flexibility at least equal to that of existing systems. Moreover, for applicationbased
sharing it supports higher abstraction flexibility than existing infrastructures.
Sharing flexibility: for agiven level of abstraction flexibility, it supports alevel of
sharing flexibility at least equal to that of existing systems.

Soecification flexibility: satisfies the specification flexibility requirements at least as
well as existing systems.

Extensibility: it supports a component-based architecture that is more flexible than
that of existing systems and provides more automation in terms of component
composition.

Codereuse: for given levels of abstraction and sharing flexibility, it supports at |east
the level of code reuse provided by other infrastructures. Moreover, for application
based sharing, it supports a higher level of both compiled code reuse and incremental

collaboration awareness.

14

Automation: it achieves the above goals at an application development cost that is
comparable, or lower than corresponding solutions in other systems. In other words,
given a particular sharing scenario in which the above requirements are satisfied to a
certain degree, the development effort involved using our infrastructure will not
exceed that of analogous solutions.

In order to overcome some of the limitations of existing approaches without
compromising their achievements, we have developed a set of new mechanisms, uponwhich
our infrastructure is based.

Specifically, we formalize the notion of a programming pattern and provide a mechanism
that allows its incorporation into the application development process. A programming
pattern is a generalization of the notion of programming interface used in object-oriented
languages. It islogically equivalent to a family of interfaces, and allows sharing, as well as
other infrastructure services, to be implemented on a per-pattern basis. A programming
pattern is defined implicitly by the application developer through the consistent use of
programming naming conventions. Such patterns are in widespread use nowadays, because
they are considered a part of good programming practices. Nevertheless, they have remained
largely informal and unused in the development process. To take advantage of these patterns,
we define an XML -based specification language that enables programmers to concisely
describe them. Based on the pattern specifications, the infrastructure can decompose an
object into a set of logically autonomous subcomponents, or properties, and,
correspondingly, break down the problem of sharing the entire object into sharing of its
properties. This process is then recursively applied to the values of the properties, until
terminal nodes in the object structures are reached.

This approach allows the infrastructure to provide sharing of all the abstractions provided
by existing systems at a comparable cost. In addition, it can provide sharing of an extensible
class of programmer-defined abstractions at no additional cost, whereas a comparable
solution for existing systems would require effort potentially proportional to the number of
new programmer-defined abstractions.

Another contribution is the development of new generic infrastructure services, such as
object diff-ing and XML object serialization, which improve sharing flexibility. Specifically,

our pattern-based allows these to be implemented at a very local cost compared to the current

15

alternative of object-specific manual implementations. Thus, while the general idea of diff-
ing, for example, has been employed by a number of systems, we are unaware of any other
sharing infrastructure that has attempted to provide a generic solution for object diff-ing.

We also refine and formalize the layer-based application model presented above by
introducing an XML-based layer specification language. Application layer specifications
alow the infrastructure to correctly separate sharing of semantic and Ul objects without any
adding or modifying any code and enables the dynamic changes in the sharing architecture in
amore general setting then currently possible.

Architecturally, our infrastructure design is based on the idea of property handlers, which
encapsul ate the property-specific code related to the implementation of an infrastructure
functions. The binding of handlers to propertiesis given in the pattern specifications and can,
therefore, be changed easily without modification to the application code, or the rest of the
infrastructure. At the same, this loose binding is sufficient to make the composition of shared
objects and sharing functions automatic.

Our component-based architecture also greatly facilitates satisfying the code reuse
requirements. With respect to compiled code reuse, the specification-based binding of objects
and services alows the infrastructure to use Java's computational reflection capabilities to
compose compiled application code with the infrastructure. By the same token, infrastructure
services can be added or modified by adding/modifying the handler implementations and the
whole process would be transparent to both the application and to other servicesin the
infrastructure. Hence, the infrastructure provides a mechanism to incrementally increase the
application’s collaboration awareness through the incremental addition of handler code.
Furthermore, since programming patterns are predominantly a function of programming style
and depend very little on the application, they can readily be reused across applications.

The primary tool in evaluating our infrastructure design and implementation is a
comparison with existing infrastructures. For that purpose, we survey in detail a number of
influential collaborative infrastructures and identify benchmark systems, which provide the
best solution with respect to one, or more, of the requirements. We then compare the
benchmarks with our own work using the above outlined criteria. The comparison consists of
two parts—in the first part, we compare our conceptual design with that of the benchmark

systems and present a basic argument explaining exactly how some of the shortcomings of

16

the benchmarks are overcome. The second part consists of comparing the implementation of
anumber of test cases using our infrastructure and comparing the results with those of the

benchmarks.

1.4 Organization

The dissertation is organized as follows. In this chapter we already motivated our
research and presented a comprehensive set of requirements for sharing infrastructures. In
Chapter 2, we review related work, which includes a number of collaborative infrastructures,
which we use later as benchmarks for evaluating our own. In Chapter 3 we describe the
conceptual framework behind our infrastructure—programming patterns, property handlers,
application layer descriptions—and relate it to that of other systems. In Chapter 4 we lay out
the details of the implementation with the specific issues and approaches that arise in the
process. In Chapter 5, we describe our experience both in building new collaborative
applications using our infrastructure and in converting existing single-user applications into
multi- user ones. We aso share our experience in using some of the devel oped mechanisms
for non-collaboration purposes. In Chapter 6 we evaluate our infrastructure with respect to
the requirements using the criteria presented above and compare them to the benchmark
systems. In Chapter 7 we draw conclusions from our work and outline directions for future

applications and extensions of this research.

17

2. RELATED WORK

In the previous chapter, we discussed a comprehensive set of requirements for
collaborative infrastructures. In this chapter, we outline the design and implementation
choices made in existing infrastructures that have addressed at |east some of these
requirements. Following the basic three-layer decomposition introduced in the introduction—
user interface, core application and repository—we discuss the advantages and drawbacks of
implementing sharing of each of them, by examining the design of representative system. We
also use this discussion to show in detail the rationale behind our choice of benchmark
systems, which we use in our evaluation process in Chapter 6.

2.1 User Interface Sharing Infrastructures

Sharing of the Ul layer is one of the most popular approaches to building groupware
systems and has significant advantages to its credit. From a user’s point of view, sharing of
the Ul represents a simple and intuitive solution, which requires virtually no new skills from
the participants. From a developer’s point of view, Ul sharing offers significant automation
and code reuse, as well as the appeal of cleanly separating the design and implementation
concerns of the core application functions from those regarding the collaboration. On the
downside, however, users may find the Ul sharing model too restrictive, asit is inherently
unsuitable for a whole spectrum of collaboration scenarios.

Based on their choice of abasic shared abstraction, we subdivide Ul sharing
infrastructures into three categories—shared window systems, shared Ul toolkits, and shared
screen system—and describe their most important characteristics with regard to our

requirements.

2.1.1 Shared Window Systems
Shared window systems, such as XTV [1], are based on the notion of a shared window. A

shared window has multiple replicas—one for each participant—that are synchronously

shared. That is, all users are presented with the same up-to-date view of the application

window and the application can take input from any one of the replicas. Thus, by sharing all
application windows, the infrastructure achieves the WY SIWIS sharing described in the
previous chapter (Figure 1.1).

Conceptually, the implementation of a shared window system relies on intercepting and
properly distributing the communication streams between the application and the window
system. In XTV, for example, thisis achieved by installing proxies, which mediate the
communication between the X servers running on each user’s machine and the ore (or more)
X clients where the application (replicas) run. Asillustrated by Figure 2.1, XTV hastwo
versons—a centralized one where all X servers are connected to asingle X client, and afully

replicated one where each server is paired with alocal replica of the client.

= (xow) (xcwen]) [xcwn]

A A A A
Sttt ettt Attt ettt Seeleh, /ntuiaiieiebeleltalete dniaiiaielebe bttt Yoo

1
[XTV Proxﬁ<—>[XTV Proxﬁ<—>[XTV Proxﬁ H

2
v
g
<
y
=2
2
> T
g
<
y
=2
2
v
g
=<

S N [N — y Np— S N | W Y
Y Y Y Y Y Y
X Server X Server X Server X Server X Server X Server
a) Centralized XTV b) Replicated XTV

Figure2.1 XTV Architecture

Regardless of the configuration, XTV (as well as other shared window systems) must
maintain two properties at all times for the system to work properly: 2
All application replicas should receive the same ordered stream of user input events.
Since applications are deterministic, thisin turn ensures that the stream of output
events generated by application replicas will also be the same®.
All window servers should receive the same ordered stream of application output
events. Furthermore, since the window servers may handle events asynchronously,

the infrastructure must ensure that the events are delivered to the servers at the

! Non-deterministic applications, aswell as operations with side effects, such as printing, present special

cases, which are beyond the scope of this discussion.

19

appropriate rate to avoid, for example, an attempt to change the title of a window that
is yet to be created [4].

Since the outlined interception of the event streams can be implemented transparently to
both the application and the window system, this approach alows virtually any application
written for the supported window system to be shared at no additional development cost. In
terms of our requirements, shared window systems provide a maximum level of automation
and code reuse ard, therefore, a useful benchmark in evaluating our infrastructure.

One of the main disadvantages of shared window systems, however, is that the
automation and reuse features come at the expense of sharing flexibility. Namely, only a
single mode of sharing—WY SIWIS—is supported. Some researchers have proposed
approaches that address thisissue in a limited context. For example, Chung’s log-based
approach [4] alows a shared window system to be extended to possibly support some forms
of relaxed-WY SIWIS sharing. However, it does not address the fundamental limitations of
shared window systems, which stem from the fact that the sharing of the window-based user
interface of an object is used as a means of sharing the object itself. Since the two cannot be
separated, it is not possible to implement any form of semantic sharing.

By the same token, a shared window system cannot allow concurrent access to the shared
object because it cannot distinguish concurrent user actions that are in conflict fromthe ones
that are not. Suppose two users decide to edit two different text fields—depending on the
application semantics, this may, or may not be allowable, but the sharing infrastructure has
no basis to make the right decision. In particular, the structure of the Ul presentation is not a
reliable proxy for the logical structure of the underlying semantic object because structural
dependencies among Ul objects are often dictated by formatting needs. Furthermore, if
concurrent updates lead to divergent replicas, the infrastructure has no means to restore
consistency to the underlying semantic object. Thus, shared window systems take a
conservative approach and limit the number of active users to one. More generaly, a decision
based solely on the observed structure, even if it is that of the semantic object, does not
guarantee correctness. However, the higher the level of abstraction at which the decision is
made, the better the chance that it is, in fact, correct.

20

2.1.2 Shared Ul Toolkit Systems

Another approach to sharing the user interface, represented by systems such as JCE [2]
and Habanero [3], is based on creation of shared Ul toolkits. With the recent emergence of
Java as a mainstream programming language, this approach has gained in popularity because
Java provides a standard Abstract Window Toolkit (AWT/Swing) library, which can be
extended to provide sharing. The AWT/Swing toolkit provides a more abstract view of
window systems and, therefore, a Java application’s user interface is no longer bound to the
particular implementation of the window system but to the AWT API. Consequently, the
application can run on any Java platform without modification. Conceptualy, this means that
the toolkit adds a separate layer of abstraction and we can break down our original Ul layer

into window and toolkit layers. Consequently, we can represent shared window and shared

toolkit systems as providing sharing at the window level and toolkit level, respectively

Core Core
Application Application

(Figure 2.2).
Core

Ul Toolkit

Core
Application

Ul Toolkit

Ul Toolkit Ul Toolkit

Y Y
Window Window

a) Shared window system b) Shared Ul Toolkit system

Figure2.2 Ul Sharing: Shared window and shared toolkit architectures

Since Ul toolkits seek primarily to provide a common interface for different window
systems, they provide relatively few abstractions of their own. Hence, the differences
between sharing at the window and toolkit layers are subtle and, by and large,
inconsequential to the end user. As an example, consider a collaborative session of our
shared outline with one of the usersis running an application replica under X Windows,
whereas the other one is running it under MS Windows. The two users see the same window

content in terms of text fields, button, scrollbars, etc, but may not see the same images pixel-

21

for-pixel because of platform specific differences in default fonts, colors, menu appearances,
button shapes, etc.
Nevertheless, the characteristics of the collaboration support provided by sharing the
window system and by sharing the Ul toolkit are very similar:
Full automation and reuse for al code based on the toolkit;
Support only for synchronous collaboration;
No support for concurrent user updates of the shared object. As already discussed in
the context of shared window systems, the infrastructure cannot make an informed
judgment call as to what concurrent user updates are permissible and, therefore, has
little choice but to prevent concurrent access. The argument applies to shared toolkits
because atoolkit does not create new abstractions but ssmply hides the native

implementation details of the Ul components.

2.1.3 Shared Screen Systems

Another aternative to shared windows system is based on lowering the level of
abstraction at which the sharing takes place. Infrastructures, such as VNC [19], have chosen
to implement sharing of the pixel image seen by users by sharing the contents of the frame
buffer of the user machine. Since at the pixel level, the sharing infrastructure cannot
distinguish among application windows, the whole screen image must be shared and the
WY SIWIS model is taken to its extreme by essentially projecting the image of one user’s
screen onto another’s.

With respect to our requirements, VNC-like systems have virtually the same
characteristics as the other Ul-based sharing system—full automation and reuse, no sharing
flexibility, and no concurrent access. The only difference is in the range of supported
applications—because of its pixel-level of abstraction, these systems can share just about any
application on any supported platform. However, this low-level of abstraction also makes the

implementation highly dependent on the graphics hardware.

2.1.4 Summary

In summary, we presented three separate approaches in sharing infrastructures that apply

the same idea of sharing the user interface of an object as a means of sharing the object itself.

22

The only conceptual difference among the three is that their sharing mechanisms are

designed for sharing different layers of the user interface (Figure 2.3).
Application Application
Ul Toolkit Ul Toolkit a) Shared toolkit system

EJ
|
§
[
2
8
=3
g
=
L
Qa
3

Frame Frame) Shared screen system

Figure 2.3 Shared Ul Architectures

We argued that, regardless of the merits of each individual approach, we can treat them
all as representing a single class of systems that share common characteristics with respect to
our infrastructure requirements. Namely, Ul sharing systems:

allow the automatic sharing and reuse of compiled code,

limit sharing flexibility by supporting only WY SIWIS collaboration, and

limit sharing flexibility by allowing only one user at atime to interact with the
application.

Thus, it is sufficient for the purposes of our evaluation to choose one representative
system, with respect to which we can compare our results. Given that our infrastructure
implementation is Java-based, we have chosen another Java-based system—JCE—as our
benchmark system. Although, conceptually, Java is not essential for our evaluation, it allows

us to provide an apples-to-apples implementation comparison.

2.2 Application-Based Sharing Infrastructures

So far, our discussion shows that sharing based on a shared Ul abstraction places inherent
limitations on the sharing flexibility the infrastructure can support. Therefore, to avoid such

limitations, the infrastructure must provide shared abstractions that allow the developer to

23

implement applicationbased sharing and, thus, separate the sharing of the (user) view of an

object from the sharing of its data representation, or model.

2.2.1 GroupKit

One of the early and successful systems that provided application sharing was GroupKit
[20]. One of the design goals of GroupKit was precisely to provide support for collaborative
extensions of application design models that separate the semantic object from its Ul
appearance, such as the Model-View-Controller (MVC) [15] and Abstraction-Link-View
(ALV) [14] paradigms.

To directly support model sharing, GroupKit offers shared environments (dictionary-style
data structures containing keys and associated values) whose replicas, once instantiated, are
automatically kept consistent by the system. Furthermore, environments provide a callback
notification mechanism through which applications can learn of operations performed on the
shared environment—insertions, deletions, and replacements. Thus, GroupKit's environments
can be used to implement a shared version of the data representation of the object, and the
callback mechanism can be used to update the local view of each user. Thisisillustrated by
Figure 2.4, where the arrows show the flow of events initiated by user A’s action. First, the
local controller receives the user action and transforms it into an operation on the local
model. Next, the model updates the local view and the infrastructure automatically applies
the update to the model replica user B's machine. Findly, user B's model updates its local

view object.

Shared environment

Model /L‘I Model

[View][Controller] Controller View

User A User B

Figure 2.4 Collabor ative extension of the MV C ar chitecture using shared environments

24

The main difference of this model, compared to Ul sharing, is that the decision of when
to update the Ul is not bound by the infrastructures. For example, if the callback immediately
updates the local display in response to every remote operation being applied to the local
replica of the shared environment, this would result in WY SIWIS sharing. At the same time,
the callback procedure has the flexibility to arbitrarily delay refreshing the Ul until some
other criterion is met, e.g., the user presses a <r ef r esh> button. However, GroupKit’'s
mechanisms were never intended for such use and, in al likelihood, were never actually
employed in this manner.

Clearly, the above design offers a very flexible solution in choosing the level of sharing
for the Ul. However, thisflexibility comes at the added cost of developing application
specific callback routines that implement it. Furthermore, the developer must have a good
understanding of the distributed issues involved to avoid potential problems, such as
deadlocks, and cyclic event notifications.

Another point we would like to make is that, while the Ul can be shared flexibly,
GroupKit offers no sharing flexibility with respect to the shared environment—they are
always shared synchronously. Hence, while users may see different renderings of the shared
object, the object itself cannot have separate versions for some user-controlled amount of
time.

The choice of a single shared abstraction—environments—presents another important
limitation. To illustrate this, consider the implementation of our example outline object in
GroupKit. Asit turns out, environments are inherently ill-suited for this task because they are
not designed to deal with sequences and recursive structures—in our case an outline has a
seguence of sections and each section can have subsections several levels deep. Therefore,
we would have to implement our own shared structures to support the outline application
using lower level communication mechanisms, such as multicast RPC. Multicast RPC is
GroupKit' s version of the idea of simultaneously performing remote procedure calls on
multiple hosts. The original idea, known as broadcast methods, was conceived and
implemented in Colab. The main difference is that, in GroupKit, there exists the option of
asynchronous multicast RPC, which does not block the sending process until delivery is
complete. This provides more flexibility but also may incur non-trivial programming

overhead as the application will need to supply a coordination mechanism.

25

2.2.2Colab

In Colab, broadcast methods [22] provide a mechanism that automatically and
synchronously replicates alocal method invocation on a set of distributed object replicas.
The rationale behind broadcast methods is to take a single- user implementation and turn it
into a multi- user one by identifying and marking all methods modifying the shared object’s

state as broadcast. In other words, our shared outline would look something like:

public class Qutline {
String getTitle();
broadcast void setTitle(String title);

Section getSection(int i);

i nt get Secti onCount () ;

br oadcast void setSection(int i,Section s);

br oadcast void insertSection(int i,Section s);
broadcast void renoveSection(int i);

}
Assuming that all object replicas start with the same state, broadcast methods would keep

them consistent by automatically propagating and remotely applying changes made to any
one of the replicas. This simple mechanism is fairly generic and can potentialy support the
sharing of almost any object?. Therefore, Colab supports the highest level of abstraction
flexibility of al sharing infrastructures, as well as avery high level of code reuse.
Unfortunately, the price for this abstraction flexibility is the complete lack of sharing
flexibility—objects can only be shared synchronously and the decision which objects are
shared is bound at compile time. This leads us to the conclusion that Colab does not fulfill

our requirements in terms of specification flexibility and extensibility.

2.2.3 Suite

The design of another infrastructure, Suite [8], was focused on providing a high level of
abstraction, sharing, and specification flexibility at minimal development cost. Conceptually,
the system is based on the idea that every interactive application can be represented as an
editor through which the user edits a specific data structure. In Suite' s case, the infrastructure
supports the automatic sharing of arbitrary programmer-defined data typesin C.

To achieve this, Suite uses the type and variable declaratiors provided by the programmer

to extract the structure of the shared data and to generate a corresponding user interface that

2 Some methods cannot be declared broadcast, such as the ones invoking other broadcast methods (directly

or indirectly).

26

allows the collaborative editing of the shared data. In other words, Suite also adheres to the
model-view application architecture, with the view layer being automatically generated and
maintained by dialog managers. Thus, based on the following C declarations of the example

outline, Suite can automatically provide the user interface and sharing functions needed for
its collaborative editing.

typedef char * String;
typedef struct {
unsi gned num secti ons;
Section *sections;
} Secti onSequence,;
typedef struct {
String heading;
Secti onSequence subsecti ons;
} Section;

typedef struct {

String heading;

Sect i onSequence *subsecti ons;
} Section

Central to Suite' s sharing model are the notions of active variable and interaction
variable. An active variable is an application variable that is displayed to and can be edited
by the user through an interaction variable. An interaction variable is a user’s loca version of
an active variable, which is created when the user connects to the object. Thus, to allow users
to share an active variable, Suite creates a corresponding interaction variable for each user
and connects them to the shared active variable (Figure 2.5).

27

Shared
Object

Shared
Active
Variable

Committed Committed

Updates

Interaction
Variable

Interaction
Variable
A

Dialog Coupling

M anager

User A User B

Figure 2.5 Suite'ssharing model

Users work on their local versions and must explicitly commit their changes in order to
modify the shared variable. Committed updates are always communicated to all participants.
In addition, there is a coupling mechanism, which allows users to see each other’s work at
various stages of its completion. Thisis controlled by two parameters: a transmission
parameter, which sets a condition for exchanging updates based on the communication
operation being performed on the variable, and a correctness parameter which controls the
exchange based on the level of correctness of the variable value. The basic rule for
transmitting changes is as follows: the value of an updated interaction variable is transmitted
upon execution of any communication operation on the variable that is greater than, or equal
to, the value of its transmission parameter if the correctness of the value is at least as high as
the one specified by the correctness parameter.

The values of the transmission parameter reflect the following ordered set of
communication operations defined by the system: Increment, Complete, TPeriod, TTime, and
Transmit. By default, every variable update, such asinserting a character, is an Increment
operation. A Complete operation is executed whenever the user has indicated that heis

finished editing the value, e.g., by hitting <t ab> or <r et ur n>. TPeriod and TTime refer to a

28

periodic operation (e.g., every 30 min) and a scheduled time-of-day operation (e.g., at 5pm),
respectively. The Transmit operation is executed whenever the user explicitly requestsit by
pressing a<t ransmi t > button.

The possible values for the correctness parameter (in increasing order) are Raw, Parsed,
Validated, and Committed. By default, any variable value is Raw, unless it has undergone a
successful syntactic check (e.g., the entered string must be a 5-digit number) after which it is
elevated to Parsed. If the value has also passed a check for semantic correctness (e.g., the 5-
digit number must be avalid ZIP code), it becomes Validated. As already suggested,
Committed values are explicitly designated by the user by executing a commit command
(e.g., pressing a<conmi t > button).

The coupling parameters for sending and receiving updates do not have to be identical.
Thus, user A may decide to make available all of his updates to everyone by setting the
transmission threshold to <Increment, Raw>, however, user B may decide that thisis too
much of adistraction and may choose to receive only Committed updates. Going a step
further, Suite alows users to have potentialy different coupling parameters with each
participating user, thereby enabling all possible combinations of user subgroups and sharing
modes to be supported.

Another important abstraction in the Suite model is the notion of a value group, which
groups together a set of related interaction variables and stores sharing, as well as other,
attributes common to these variables. An inheritance relation that follows the ancestral
relationships within the shared data structures is defined among value groups to alow more
specific value groups to inherit attributes from more general ones [9]. For example, a
coupling parameter specified for the outline document provides a default for al sections and
subsections in the object. However, a parameter specified for section 1, for instance,
overrides this default for al of its subsections and their dependents. Thus, to find the
coupling parameters, say, for the heading of section 2.1, Suite would first ook for a specific
value given by the user for that heading. If none is found, the system would lookup the
parameter for the value group associated with the structural parent of the heading—section

2.1, and would successively lookup the parameters for section 2, and the root outline object,

if necessary.

29

An alternative approach to parameter specification in Suiteis based on type-instance
relationships. For example, one could provide a default specification for al instances of type
Section and might expect to see the heading of all sections (including 2.1) to be shared
according to this parameter. Thus, both of the approaches have useful applications in actual
usage scenarios. However, they also create ambiguity as to which hierarchy—the structure-
based or the type-based—should be traversed to find defaults. Therefore, Suite maintains a
separate attribute, which tips the systems to the desired method of resolving this conflict.

For each shared entity, such as a section, users can choose between value or view
coupling. Value coupling specifies sharing of the data representation of the shared entity
whereas view coupling specifies sharing of its user interface. Furthermore, coupling of other
Ul state—scrollbars, pointers, window sizes/positions—can also be independently specified.
Thus, if all aspects of the Ul presentation are shared, this effectively leads to WY SIWIS
sharing. However, if only value coupling is chosen, then we get semantic sharing, which
allows users to have separate views of the object while maintaining semantic consistency.

To summarize, our review of Suite shows that it is the infrastructure that best satisfies our
sharing and specification flexibility requirements. In particular, its exhaustive parameterized
coupling model offers automatically more sharing modes than any other sharing
infrastructure that we are aware of. We draw a similar conclusion about its comprehensive
sharing specification model—it satisfies all aspects of our specification flexibility
requirement better than any comparable system. Therefore, we have chosen Suite as our
comparison benchmark with respect to sharing and specification flexibility.

Suite s primary limitations are with respect to abstraction flexibility, which is constrained
by two factors. The first one is that the system is designed to share a fixed set of concrete
data types and, therefore, its approach cannot be directly applied to abstract data types, such
as Java classes with no public variables. The second one is that the whole coupling
mechanism is tied to the generated user interface, receiving from it Ul-specific change
notifications and invoking Ul-specific operations to update the Ul state. Therefore, Suite
cannot provide collaboration functions for an application with a graphical, or custom-built

user interface.

30

With respect to code use, Suite does not offer compiled code reuse and does not support
incremental collaboration awareness. From an architectural point of view, Suiteisa

monolithic system and, therefore, does not satisfy our extensibility requirement.

2.2.4 JViews
JViews[12] is another infrastructure designed to support the sharing of applications based

on the editing model. However, unlike Suite, its solution advocates a component-based
architecture that allows applications with custom:-built user interfaces to be shared. Since
JViews does not generate the user interface, and, hence, does not control the flow of updates,
it must rely on cooperation from the application. Shared objects must implement a two-phase
system-defined event protocol—they must preannounce intended changes (and be prepared
to roll them back), as well as announce implemented changes after the fact by issuing change
descriptions (events).

The infrastructure implements application sharing by logging, distributing, and replaying
the state changes according to the current, user-selected sharing policy. JViews supports
asynchronous and synchrorous sharing, as well as user- mediated sharing. The latter means
that changes from remote users are displayed in alist, and the receiver can pick the changes
he wants to see applied to his loca replica

Unlike Suite, JViews does not allow policies to be specified on a per object basis and
does not distinguish between sharing of the object and its view. Thisis due to the fact that
changes affecting only the view presentation, such as moving/resizing a window, are mixed
in with semantic changes that affect the shared artifact, such as text editing, and cannot be
controlled separately. Therefore, if a user wants semantic sharing, he must preview and
selectively apply only the semantic changes—a manual process that can lead to mistakes and
consistency problems. Furthermore, if all changes to both the model and view layer are
eventually communicated regardless of whether there are needed, then situations in which
bandwidth is an issue would not be adequately supported.

With respect to abstraction flexibility, JViews supports the sharing of an extensible set of
programmer-defined abstractions that implement system-defined interfaces. However, it does
not directly support the sharing of recursive structures—in order to achieve such sharing,

each component in the structure must be explicitly connected to the infrastructure.

31

On balance, the best features of JViews stem from its component-based approach, which
is naturally suited to support extensibility and code reuse by allowing components to be
added or substituted without affecting the functions of rest of the infrastructure. Also,
incrementally increasing the application’s collaborative features can readily be
accommodated. Therefore, we use JViews as our benchmark in extensibility and code reuse

for application-based sharing.

2.25DISCIPLE
DISCIPLE [Wang, 1999 #20] is another Java-based sharing infrastructure, whose design

approach is based on components. It is designed to share arbitrary JavaBeans objects by
taking advantage of their standardized property and event model. A (Java) bean is aregular
object, which follows a prescribed method naming convention and communicates through a
standardized events. The naming conventions allow an external agent—the Java
Introspector—to discover different attributes, or properties, of the object. A property is
defined by apair of ‘getter’ and ‘setter’ methods, such as the getTitle/setTitle methods used

in our outline example:

public class Qutline {
String getTitle();
void setTitle(String title);

Section getSection(int i);

i nt get Secti onCount () ;

voi d setSection(int i, Section s);
void insertSection(int i,Section s);
voi d renoveSection(int i);

Thus, b}@md on the JavaBeans conventions, the Outline object above has a property
caled title. In addition, a proper bean object would also alow interested objects to register as
listeners and be notified whenever a property value changes.

Based on this model, DISCIPLE is able to provide sharing of any bean object by
registering the infrastructure as a listener and propagating and applying the changes to
remote replicas. While thisis very similar to what JViews does, the main conceptual
difference is that DISCIPLE distinguishes between model and view objects and allows those
to be shared separately. At the same time, it only implements synchronous sharing, thereby
limiting sharing flexibility.

From the point of view of abstraction flexibility, bean objects represent an interesting
class of abjects: on the one hand they allow systems, such as DISCIPLE, to automatically

32

support the sharing of an extensible class of programmer-defined types; on the other hand the
bean model is too restrictive to cover many objects with relatively ssmple logical structure.
For example, our outline has only one property—title—and that is clearly insufficient to fully
describe its structure. Overall, beans represent an interesting class of objects, digoint from
what most other object-sharing infrastructures, such as Sync (described in the next section)
support. Therefore, we use DISCIPLE as one of our benchmarks with respect to abstraction
flexibility.

With respect to reuse and extensibility, these are well-supported by the underlying
JavaBeans framework and, hence, well-supported by DISCIPLE.

226 AMF-C

Another component-based infrastructure, AMF-C [23], has taken on the issue of
providing sharing flexibility by using both the structure of the shared objects (like Suite) and
an event-based communication protocol (like JViews). In AMF-C, an object can be shared
automatically if it publicly advertisesits logica structure through the use of facets A facet is
responsible for a particular aspect of the object's behavior, such as presentation (to the user),
abstraction (functional kernel), and (interaction) control, in the PAC model [6]. Facets have
communication ports through which objects interact by exchanging messages. The event
flow between objects is specified using a graphical formalism similar to the standard notation
for circuit design. The language alows the flow to be controlled using administrator
components (e.g., lock administrator) that can stop event propagation, as well as basic logical
functions— AND, OR, etc.

Asanillustration, consider the implementation of synchronous sharing for the outline
example using AMF-C. First, the outline object must define the standard presentation,
abstraction, and control facets as well as a distant facet—a facet responsible for replaying
actions received from remote sites. Then, the sharing logic must be specified by connecting
the relevant communication ports—in the simplest case, just connecting the output
communication port of the abstraction facet to the remote replay facet achieves a sharing
mode similar that of broadcast methods. Considering the fact that the graphical language

allows arbitrary connections to be made between components, AMF -C provides a mechanism

33

to specify and implement a wide variety of sharing modes. However, this comes a a

relatively high development overhead, which comes from:

= Low-level event processing—the programmer must specify the sharing logic using low-
level events. Consequently, the shared object must implement a messaging protocol for
communicating and applying object updates, as well as methods for manipulating facets

and ports.

= Cumbersome sharing specifications—the specification process itself is tedious because
sharing specifications are made on a per-object basis. Furthermore, the graphical
formalism chosen would lead to complicated diagrams even for applications of relatively

modest complexity.

Overall, AMF-C presents an interesting approach, which offers the potential for
significant specification flexibility, however, its emphasis on low-level primitives means that
the provided level of automation is significantly lower than that of other systems, such
GroupKit and Suite.

2.2.7 Summary

In summary, applicationbased sharing has the potential to provide the highest level of
flexibility asit permits any aspect of the application to be shared. Our survey shows that
infrastructures supporting application-based sharing provide devel opers with reusable
mechanisms that fall into two basic categories—group communication services and shared
programming abstractions.

Group communication services, such as Colab’s broadcast methods, provide a lower
level of abstraction that makes them applicable in a general context. Ultimately, however,
what the programmer actually needs are shared programming abstractions that fit the needs
of the specific application they are developing. In that sense, group communication is
necessary but not sufficient to fulfill the needs of the programmer. Also, any limitations in
the communication service can affect the capabilities of the shared abstractions built on top
of them. For example, shared objects based on broadcast methods are inherently limited to
synchronous sharing.

Shared programming abstractions, such as GroupKit’s shared environments, generally

provide high automation because they can be directly used in the application development.

34

The main challenges for the infrastructure are to provide enough abstraction flexibility to
accommodate the abstractions of alarge class of applications, as well as sharing and
specification flexibility to allow a wide range sharing modes.

The main goal of our work is to provide higher abstraction flexibility for application
based sharing than existing systems and provide sharing and specification flexibility at least
equal to the best infrastructure in this class.

2.3 Repository-Based Sharing Infrastructures

2.3.1 Traditional Distributed File Systems

Traditional distributed file system (DFS), such as AFS and NFS, implement sharing by
giving users remote access to the same (logical) file over the network. In reality, users may
be accessing different physical replicas of the file, in which case the system enforces strong
consistency among the replicas to ensure that the single-copy abstraction is not broken.

The obvious advantages of DFS are that the sharing mechanism can be composed with
any application that uses the file system. Thus, DFS provide asimilar level of automation
and reuse as shared Ul systems. Another similarity is that they both serialize user access to
the shared object and do not permit concurrent updates. This is the result of the fact that in
both cases the sharing infrastructure has no knowledge of the application and must act
conservatively in order to guarantee consistency.

Overall, providing protection boundaries between users is a much higher priority for DFS
than facilitating collaboration. Therefore, classic distributed file systems do not provide a
mechanism that allows applications to extend the basic file-level sharing to afiner

granularity, or to modify the file sharing semantics.

2.3.2 Coda

Coda [17] isadistributed file system specifically designed to alow concurrent file
updates in the presence of disconnected and weakly connected participants. Whenever
disconnected, users work on a cached local copy of the file and the system keeps track of all
operations performed on the file. Upon reconnection to a server, Coda reintegrates the
logged operations with the operations performed on the master file during disconnection. A

variation of this process, called trickle reintegration, can be performed as a background

35

operation to support weakly connected clients using narrow band channels of
communication.

With respect to our requirements, the main feature of Coda isits automatic and
application-transparent support for file-based sharing. Like traditional DFS, this model works
reasonably well for applications that organize their datain multiple files, because there is less
chance of users modifying the same file and having a conflict. However, for applications,
such as word processors that use one big structured file, the file level granularity is
inadequate. Therefore, Coda allows applications to supply specialized procedures for
automatic conflict resolution. These routines understand the underlying structure of the
stored data and can precisely determine whether two concurrent updates are in conflict or
they can be reconciled without requiring user intervention.

From the point of view of abstraction flexibility, applications are given a mechanism
through which they can extend the list of supported shared abstractions beyond the basic file
system abstractions. The basic problem, however, is that any flexibility gains come at the
expense of the application developer who must design and implement the merge procedures.
From the point of view of extensibility, though, Coda supports the basic idea of offering
different level of service to applications with different levels of collaboration awareness,
abeit not in an incremental fashion.

2.3.3 Lotus Notes

Unlike the repository systems discussed so far, which use files as the basic unit of
sharing, Lotus Notes [16] provides sharing based on the notion of document databases. A
document database is aflat collection of Notes documents, which in turn are records of
arbitrary objects. Databases may also contain forms, responsible for entering and displaying
data, and views, which show summaries of database content. Programmers can use formulas
and macros to access and manipulate objects in the database. A formula is a composition of
Notes @ functions through which documents are accessed, whereas a macro is a formula that
performs a procedure on the database. All of the described objects can be shared through a
process of successive replication and merging.

Notes does not use the typical notion of sharing, which is based on the idea of eventual

consistency—if there are no active transactions pending, then all replica must converge to the

36

same values (network conditions permitting). Notes, however, considers replicas to be
consistent if they have equivalent document versions. In other words, not all replicas will
necessarily have the same set of documents.

The sharing process is controlled by the chosen replication topology and four database
attributes. The possible topology configurations include peer-to-peer, hub-and-spoke, tree, as
well as several other variants of these. The four attributes include access control lists, read
access lists, replication settings, and replication formulas. Access control lists determine for
each replica which database elements may be exchanged with other replicas. Read access
lists are defined on a per document basis to control who may receive them during the merge
process. Replication settings give finer control over the replication process, such as the
ability to exclude deletions of document from being replicated. Replication formulas alow
devel opers to specify criteria which select the documents to be shared.

Notes' semi-structured databases provide higher level of abstraction and sharing
flexibility than file systems. Concurrent updates are considered in conflict only if they are
made to the same document, however, the resolution must be handled manually by the users.
Also users have alot of flexibility in controlling which documents should be shared but have

no control over the sharing semantics except for the manual reconciliation.

2.3.4 Bayou

Bayou [24] is another sharing infrastructure that supports disconnected operations. Like
Notes, it is a database-oriented system, which defines tuples (similar Notes' documents) as its
basic unit of sharing. The main difference isthat Bayou specifically addresses the need for
greater sharing flexibility by providing more flexible mechanisms for conflict detection and
resolution. Specifically, Bayou provides a scripting language that allows each individual
write to the database to be accompanied by a conflict-detection query and conflict resolution
procedure. If the actual query result defers from the expected, thisis flagged as a conflict and
an application-specified procedure is invoked to resolve it.

Thus, Bayou provides more sharing flexibility than Notes, although taking advantage of it
may requires writing lower-level code, which lowers automation and increases the
complexity of the sharing specification. Another problem is the relatively low abstraction
flexibility provided by the system. For example, casting the recursive data structure of our

37

outline document would not be a trivial task and will require an additional application layer

to be built to support the tranglation between the application objects and database records.

235TACT

TACT [25] is another infrastructure, which, like Bayou, implements a database- centered
sharing model and has similar design features with respect to our requirements. TACT’s
main advantage over Bayou is that the sharing is controlled through the specification of three
parameters—numerical error, order error, and staleness. Each of these parameters provides
some measure of the differences between replicas. Whenever any of the observed values of
these parameters exceeds an application-specified threshold, an automatic exchange is
triggered to bring the replicas back in line with the specification. For example, if the
specification is set to (0, 0, 0) , then no differences are allowed, which effectively means
synchronous sharing. Conversely, if (¥, ¥, ¥) is given, then asynchronous sharing is
achieved.

Thus, TACT’ s model requires lower specification effort than Bayou’s. However, the
problem of mapping object updates to numerical changes of the parameters based on the
system-defined notion of conits (similar to records) requires additional design effort on part
of the developer. From the point of view of our requirements, thisis an illustration of the low
abstraction flexibility provided by the system, forcing the programmer to invest additional
effort to translate between applicationdefined abstractions and the system-defined ones.

2.3.6 Sync

Sync [18] is a repository-based sharing infrastructure that addresses the abstraction
flexibility concerns raised by database systems by providing (asynchronous) sharing of Java
objects. Its basic design ideais to provide replicated (shared) versions of severa basic object
types (e.g., Repl i cat edSt ri ng,Repl i cat edVect or, Repl i cat edDi cti onary) and allow the
application to automatically share object structures built with these primitives. Asthe
following Sync implementation of the shared outline illustrates, programmers can define their
own replicated classes by extending the Repl i cat edRecor d class, which indicates to Sync
that the class contains replicated fields. The replicated fields must be declared public so that
the system can access and automatically share them through Java's (computational)

reflection mechanism [13].

38

public class ReplicatedOutline extends ReplicatedRecord {
public ReplicatedString title;
publ i c ReplicatedSequence sections;

}
In essence, the programming effort of writing a collaborative application with Sync

consists of casting the shared application structures into the set of shared primitives supplied
by the system. The underlying sharing mechanism is based on a table-driven merge
algorithm, which integrates changes made by different users with a master copy maintained
by a Sync server. Each replicated type has a default merge table, which may be overridden by
the programmer, or the end user. The merge procedure runs at the server and compares the
set of updates sent by a client with the set of operations applied to the master copy from the
last synchronization session. As an example, consider the default table for the

Repl i cat edDi cti onary asgivenin [18]:

Server operation (o)

Remote operation (o,) Put(key) Remove(key) Modify(key) null
Put(key) S:@, Cio, S0, C:@ S:@, Ciog S0, C:@
Remove(key) S:@, Cio, S:@, C:@ S:@, C:Put(key) S:o., C:
Modify(key) S, Ciog S, Cho, merge(og, 0c) S:0., C:@
null S:@, Cio, S:@, Cog S:2, Co,

Figure 2.6 Sync: Default merge matrix for Repl i cat edDi cti onary

The rows and columns represent the operations—put, remove, and modify—performed by
the client (o) and the server (0s), respectively (null refers to no operation). The table
provides instructions on how to handle different combinations of operations submitted by the
client and the server using the same key parameter (operations using different parameters are
deemed not to be in conflict). The notation “S:x, C:y” means that the merge algorithm should
apply operation “x” to the server copy and instruct the client to perform “y” on its copy.
Thus, according to the above table, if both the client and the server inserted a new el ement
with the same key (a put operation) then the server operation wins: server keeps its copy (A
means no action) and the client must execute the server put. If two concurrent modifications
to the same entry are submitted then the merge procedure is applied recursively in the hope
that the two can be reconciled at afiner granularity.

The origina Sync implementation supports only asynchronous sharing although there are

no conceptual problems to applying this approach for synchronous sharing, as a subsequent

39

extension has demonstrated [21]. Nevertheless, Sync lacks a mechanism that would alow it
to provide the variety of sharing modes supported by Suite for example. With respect to
abstraction flexibility, however, Sync presents a better solution than Suite, because in
addition to concrete data types, it can share programmer-defined types through inheritance.
However, this comes at the price of exposing the internal structure of the shared types, and is,
therefore, in conflict with the data encapsulation principle of object-oriented programming.

Another flexibility problem is the need to cast application structures into afixed set of
primitives with specific implementations. For example, our outline has a sequence of
sections, however the ReplicatedSequence implementation may not be appropriate because
we might need to, say, automatically renumber all subsections whenever a new section is
added.

Sync does not specifically address extensibility and code reuse. Since the implementation
relies on class inheritance to implement shared abstractions, adding sharing capabilitiesto a
single- user application is equivalent to reengineering (part of) the class hierarchy. Thus, the
effort involved is proportional to the number of shared classes. Furthermore, the
modifications to the code are likely to be nontrivial because Java does not support multiple
inheritance.

Since Sync supports the widest range of shared abstractions, it is also one of the
benchmarks in our evaluation. In other words, we will show that our infrastructure can at
least support Sync' ¢ the range of shared abstraction.

2.3.7 Summary
Table 2.1 provides a concise summary of our survey on existing sharing infrastructures
by mapping their features to our generic infrastructure requirements. A detailed explanation

and justification of each entry is provided in Chapter 6, where we perform an explicit

comparative evaluation of al infrastructures, including our own.

40

Automation Shareq Sharing Modes Code Reuse Shg fhg
Abstraction Specification
Shared Ul . Widget, window, .
Systems High frame buffer WYSIWIS only High None
GroupKit Model:
Shared High Environment synchronous/ High None/Procedural
Environmets View: flexible
GroupKit . . . Synchronous/
Multicast RPC High/Low Arbitrary object Asynchronaus Moderate Procedural
Colab High Arbitrary object Synchronous High Declarative
Concrete types Flexible
Suite High YPes, synchronous/ Low Parameter-based
sequence, record
asynchronous
, Synchronous,
JViews Moderate System-defined asynchronous, High Graphical
abstract types .
user-mediated
. JavaBeans . .
DISCIPLE High (abstract records) Synchronous High Graphical
AMF-C Low AMF Object Flexibile Low Graphical
synchronous
DFS High Directory, File Fixed High None
asynchronous
Coda High/Low Directory, File Fixedfflexiple High None/procedural
asynchronous
Lotus Notes High Database Flexible Low Parameter-based
asynchronous
Flexibl
Bayou Moderate Database exible Moderate Procedural
asynchronous
TACT Moderate Database Spectrum Moderate Parameter-based
Sync High System-defined Flexibile Low Parameter-based
abstract types asynchronous

Table2.1 Surveyed Infrastructures vs. Requirements

The basic conclusion we draw from our discussion is that, while for each of the

requirements there is at least ore infrastructure that satisfies it to a high degree, there is no
single infrastructure that covers all of them. Moreover, very few of the systems cover a

significant fraction of the requirements.

41

In the following chapter we present a new application model that allowed us to build an
infrastructure that better satisfies the set of presented infrastructure requirements. The model
combines some of the successful design approaches of previous systems with a set of new

mechanisms to achieve this goal.

42

3. CONCEPTUAL MODEL

To establish our thesis, we first motivate and present a set of new mechanisms targeted at
some of the specific limitations we have identified in current collaboration infrastructures.
The main rationale behind our approach isto relax or eliminate altogether some of the
assumptions traditionally built into the sharing infrastructure by replacing them with
developer provided specifications. As our discussion will show, this design philosophy
eventualy leads to an infrastructure that is more adaptable to the needs of individual
applications and significantly reduces the programming effort in developing collaborative
applications. The main challenge is to keep the specification mechanisms easy to use and to
ensure that they do not have a noticeable impact on application performance. In this chapter,
we present the conceptual model behind our infrastructure implementation. The details of
implementation are discussed in Chapter 4.

Our model has four different aspects designed to address different requirements:

Shared abstraction model. The primary purpose of our shared abstraction model is to
address our abstraction flexibility requirement. We introduce a pattern language that
allows us to describe and share a class of objects that is a proper superset of the
shared objects in existing systems.

Architectural model. The primary purpose of our architectural model isto combine
the higher level of abstraction flexibility of our pattern-based abstraction model with
high extensibility. For that purpose, we introduce the notion of a property handler
and describe a genera approach to implementing infrastructure functions based on
properties.

Sharing model. The primary purpose of our sharing model is to address our sharing
flexibility requirementsin providing at least as much flexibility as existing systems
for the set of shared abstractions defined by our abstraction model. We extend the
Suite coupling model and introduce application layer specifications to account for the

more general assumptions that our abstraction model makes about the shared objects.

Sharing specification model. The primary objective of the specification model isto

address our specification flexibility requirements. We present a model based on the

Suite inheritance model and we compliment it with layer-based macro commands.

Implicitly, many of the mechanisms also contribute to the fulfillment of our automation

requirement and some support code reuse. In particular, by extending the set of programmer-
defined abstractions that can automatically be shared, we reduce the development effort and
allow existing abstractions used in the single- user implementation to be directly reused. The
architectural model enables the set of these shareable abstractions, as well as the set of
sharing functions, to be incrementally extended. Also, by isolating the applicationspecific
code related to sharing into property handlers, it promotes the reuse of both application and
infrastructure code. Finally, the specification model automates the process of dynamically
specifying the collaboration. For the rest of this chapter, we discuss in detail each of the
above points.

3.1 Shared Abstraction Model

3.1.1 Introduction

Recall that one of the main goals stated in our thesis is to improve abstraction flexibility.
The single most important factor determining the level of abstraction flexibility is the choice
of a basic shared abstraction-the more general the shared abstraction the more flexibility it
provides. In this respect, a system based on sharing windows, for example, would be less
flexible than a system based on sharing objects because the former provides sharing only of
window objects whereas the latter could potentially share arbitrary objects, including window
objects.

In generd, if an infrastructure provides sharing at the level of the basic programming
primitives provided by the underlying programming language (e.g., variables in procedural
languages, objects in object-oriented languages), it does not place any restrictions on the
implementation and, therefore, provides the highest level of abstraction flexibility. Another
aspect in evaluating the abstraction flexibility of an infrastructure is whether it supports the
sharing of concrete or abstract data types—a system that supports the sharing of abstract data

types can also support the sharing of concrete types but not vice versa.

Considering the current prevalence of the object-oriented approach in development
platforms, we have focused our efforts on providing flexible object sharing facilities as the
basis for supporting flexible collaboration. Thus, our ideal system should support the sharing
of arbitrary objects. However, reconciling this goal with object programming principles
presents some non-trivial problems.

The main issue we face is the apparent conflict between data encapsulation and object
sharing-the former mandates that object state be kept private and accessed through
programmer-defined methods, whereas the latter needs to know the object state in order to
shareit. Asit turns out, if we respect data encapsulation and keep the state private, it is
fundamentally impossible to implement the automatic sharing of arbitrary objects. To

illustrate this point, consider the original class definition we used in our outline example:

public class Qutline {
public String getTitle();
public void setTitle(String title);

public Section getSection(int i);

public void set Section(int i,Section s);
public int get Secti onCount () ;

public void i nsertSection(int i,Section s);
public void renoveSection(int i);

Figure 3.1 Example Outline implementation

Assume that we have the two Outline instances that have diverged (e.g., users have been
off-line for awhile) and we need to bring them back into a consistent state. Clearly, applying
a generic mechanism, such as broadcast methods, alone would not solve the problem—the
sharing mechanism would need to have at least some basic understanding of the semantics of
the public methods in order to accomplish the task. However, deriving such knowledge about
the object automatically would amount to solving the halting problem, which is
fundamentally impossible. Consequently, in the general case, it is not possible to provide
fully automatic flexible object sharing while preserving data encapsulation. Therefore, our
realistic goal isto support the flexible automatic sharing of awider range of objects than
currently possible. Since knowing the logical structure of the shared entity is a precondition
for implementing fine- grained sharing services, we have focused an important part of our

efforts on providing a more expressive mechanism for deriving the (logical) structure of

45

shared objects (as opposed to the in-memory physical structure defined by its internal
variables)

Existing infrastructures have taken two different approaches in dealing with the problem
of obtaining the structure of shared objects. The first one, employed by systems such as
JViewsand AMF-C, isto get around it by defining alow-level communication protocol, and
require the application developer to adapt the shared objects so that they can communicate
through this system-defined protocol. The obvious advantage here is that the infrastructure
can accommodate the sharing of any object aslong as it adheres to the protocol. In practice,
however, the additional effort is often nontrivial, and requires modifications that are spread
all over the single-user code. Moreover, since the infrastructure deals with a single stream of
events, it cannot, for example, make a distinction between updates affecting the shared object
and events affecting its appearance. Thus, the infrastructure either does not support different
levels of sharing (JViews), or the programmer must manually establish different
communication channels and manage their coordination (AMF-C). Overal, this leads to less
automation and code reuse than the alternative approach, based on shared programming
abstractions.

Infrastructures, such as XTV, Suite, and Sync, opt to relieve the programmer from the
potentially expensive task of code adaptation by supporting shared primitives that can be
directly incorporated into the application. Although these systems share a common approach,
they provide different levels of support. In XTV, only asingle shared type (shared window) is
supported, whereas Suite and Sync, in addition to several basic types (integer, string, €tc),
also support complex hierarchies of programmer-defined types, built through records,
sequences, and tables (Sync only). As aready discussed in the previous chapter, DISCIPLE
supports sharing of JavaBeans—an altogether different set of objects. The common
advantage among these systems is that they provide a high level of automation because the
shared programming abstractions are directly employed by the application. Their common
limitations stem from the fact the application must use the provided shared abstractions to
achieve sharing. In case those are not suitable, the developer is left with the choice of
implementing custom:-built abstractions, or adapting the application to the supported
abstractions. The latter process can be especially difficult if the starting point is an aready

implemented single-user version.

46

Our godl, as shown on Figure 3.2, is to have a shared abstraction model that subsumes the
existing ones and also shares an extensible range of objects not currently supported by other
systems. To achieve this goal, we have developed a shared abstraction model based on
programming patterns, which we also refer to as pattern-based object model.

Arbitrary objects

Suite

Sequence

DISCIPLE

JavaBeans

Pattern-based Objects

Figure 3.2 Sharing infrastructures and their shared abstractions

3.1.2 Pattern-based Object Model

One of the consequences of data encapsulation is the fact that objects must provide public
methods that permit other objects to access and update its internal state. Furthermore, if
different aspects of the object’s state can be manipulated independently, it is highly desirable
that they be accessible through separate methods. For example, in the implementation of our
outline object, we provided separate methods for updating the title and the list of sections
(setTitl e andset Sect i on), instead of one generic method, e.g. set , which handles all
updates. In essence, this separation of responsibilities among the methods reflects the logical
structure of the object without revealing its implementation.

To make this object structure apparent, good programming practices dictate the use of
sensible method naming conventions—or programming patterns—that help programmers
determine the likely purpose of a method without looking into the code itself. In our outline

example, we named the method responsible for updating the title set Ti t | e to suggest its

a7

purpose. Furthermore, a group of methods dealing with a particular aspect of the object's
state would have certain naming commonality to emphasize that fact. For that reason, we
named the method that gives the current title of the outline asget Ti t | e.

Certainly, other reasonable (and more complicated) programming patterns have been in
use for a while. However, these programming patterns have remained largely informal and,
until recently, there has been no consistent effort to standardize and take advantage of them
for the purposes of automated devel opment. Java, through the introduction of the JavaBeans

platform, has made the first step towards the more genera use of these patterns.

3.1.3 Programming Patternsin JavaBeans

The main goa of JavaBeans is to define a generic component-based architecture for Java
programs. The whole approach is based on the use of the Java Reflection API to achieve run-
time discovery, composition, and customization of application components. As a strongly
typed, interpreted language, Java must retain a lot of the original information provided by the
programmer, such as method signatures and inheritance relationships, to perform run-time
checks. Furthermore, al of thisinformation is kept in its original string form because of
Java's late binding mechanism, which loads class definitions on demand. Thus, the reflection
APl smply provides a standard means of accessing this publicly available information.
Building on this relatively low-level API, JavaBeans defines a more abstract introspection
mechanism that atomates the handling of application objects, caled (Java) beans, which are
structured according to a set of standard conventions.

The most important requirement for a bean object is to advertise its structure in the form
of properties. According to the JavaBeans Specification, 'properties are discrete, named
attributes of a Java bean that can affect its appearance or its behavior'. This, however, isa
rather broad and vague definition, which does not explicitly address the issue of how a
property is defined. Therefore, by summarizing the discussion in the JavaBeans
specification, we use the following, more formal, definition:

An object property is a named attribute of an object that adheresto a predefined
semantics and can be manipulated through a set of dedicated methods.

One straightforward way of specifying an object property is to define an interface

containing the property methods and to require objects that have such a property to

48

implement the interface. For example, we could use the following interface to define atitle
property and allow our outline object to advertise the fact that it has such a property by

implementing the Ti t | ePr oper ty interface as follows:

public interface TitleProperty {
public String getTitle();
public void setTitle(String title);

public class Qutline inplenments TitleProperty {
/1 class inmplementation remai ns unchanged
public String getTitle();
public void setTitle(String title);

-
Similarly, we could define interfaces to explicitly advertise other properties that the

outline might have: date, author, etc. However, to describe the properties of a complex
object, such as a user interface window, we would need a large number of "small"
interfaces—interfaces containing only a few methods—that would appear very similar. This
would clutter the code and may well make the task of understanding it more difficult. More
importantly, programmer-defined interfaces would not be known to the infrastructure. At the
same time, an interface only provides a syntactic contract between two objects and does not
guarantee anything about their behavior.

Building on this fact, JavaBeansturns to programming patterns to define object
propertiesimplicitly rather than explicitly through interfaces. JavaBeans recognizes two
types of properties—-simple and indexed. A simple property is defined by a couple of 'get’ and
'set’ methods of the following form:

<PropertyType> get <PropertyName>()
voi d set <PropertyNanme>(<PropertyType> val ue)

The 'get’ method corresponds to a read operation and returns the current value of the
property, whereas the 'set’ method defines a write operation that assigns a new vaue to the
property. Thus, if amatching 'get'/'set’ pair is found during the object analysis, then a read-
write property named PropertyName of type PropertyType is discovered. In some cases, one
of the methods may be absent in which case the property is considered as write-only/read-
only respectively. Returning to our example, the pair of get Tit1 e/ set Ti t | e methods
defines a simple property called title.

Indexed properties are a straightforward extension of simple properties and approximate

standard array semantics in procedural languages. Whenever a ssimple property of an array

49

type is discovered, it is considered to be an indexed property. The object is then searched for
a second pair of get/set methods that manipulate individual elements by their index. In the
following class definition, the four shown methods define an indexed property called section

of type Section.

public class Qutline {
public Section[] getSection();
public void setSection(Section[] section);
public Section getSection(int i);
public void setSection(int i, Section section);

-
In essence, the described JavaBeans programming patterns for simple and indexed

properties can be interpreted as implicitly defining two families of interfaces, whose names
and member methods are derived using the get/set naming convention. Thus, the programmer
gets the benefits of specifying object properties without the overhead of managing a
multitude of interfaces and the restriction of using only infrastructure-defined interfaces.

However, despite this added expressive power, JavaBeans’ property specification
mechanism has its own expressive limitations. To understand the problems, let us first
consider the impact of hardwiring the syntax of the get/set pattern into Java's introspection
mechanism. The most important consequence is that legacy code must be rewritten to comply
with the exact specification. Thisis a nonttrivial issue, given that even current versions of the
Java APIs are not fully compliant. At the same time, well- written systems tend to follow
similar naming conventions but may use other keywords. For example, instead of 'get’,
developers may have used other verbs to describe the reading of an attribute—'read’, 'check’,
etc. Similarly, write operations may be represented by methods starting with ‘writ€, 'update’,
'reset’, etc., instead of 'set'.

While it is possible to accommodate the above cases by providing additional information
to the introspection mechanism through 'Beaninfo’ specification classes, in practical terms,
this means that the programmer must write an additional Java class for each class containing
exceptions to the standard get/set syntactic rules, and explicitly point the system to the
correct methods. The regular and the specification classes are linked by a naming convention,
which allows the introspection mechanism to automatically discover the specification. For
example, the BeanInfo class for the Outline class, would be named OutlineBeaninfo and

would implement the system-defined Beanlinfo interface. During the introspection process,

50

the system always checks for the presence of a specification class, and, if one isfound, its
content supersedes any information derived implicitly by the system.

However, there are at least two problems with this approach, which severely limit its
applicability. First, using a procedural mechanism to write specifications is rather clumsy and
typicaly results in the writing of many lines of routine code that are not directly relevant to
the application’s functionality. Second, the specification effort is proportional to the number
of classes affected. In the worst case, the number of specification classes could be
proportional to the total number of classes comprising the application.

Another, more important, expressive limitation of JavaBeans' properties is the fact that
their semantics is hardwired into the introspection mechanism. Given our goal of automated
sharing of arbitrary structured objects, the existing Java support for properties is not generd
enough for our purposes. Intuitively, it should be possible, for example, to describe our
section sequence as some kind of JavaBeans property. However, there is no suitable way to
describe the dynamic nature of this property-its ability to incrementally change its structure
through the addition/removal of individual elements.

In summary, the current JavaBeans property model lacks the expressive power to
describe several useful kinds of structured objects and, therefore, a collaborative
infrastructure based on this model would lack the abstraction flexibility to share such objects.
Therefore, we present an extensible framework for describing and using object properties
that remedies the discussed limitations.

3.1.4 Generalized Properties and Programmer-defined Patterns

In an effort to gain expressive power, we separate the problem of specifying a property
from its actual use. For that purpose, we introduce a declarative specification language,
which allows programmers to define object properties in terms of corresponding
programming patterns. We refer to the process of identifying the properties of an object as
(property) introspection, and to the infrastructure service object that implements it as
I ntrospect or . Our actual specification language, described in detail in the next chapter, is
based on XML3. However, for the purposes of this discussion, we use a simplified syntax that

IS more concise and easier to read.

3 http:/Avww.w3.0rg/X ML/

51

We adopt the de facto standard mixedCase naming convention as the basis for our pattern
analysis. Specifically, we assume that method names consist of one or more tokens. The
beginning of each token is marked by a capital letter following a small letter or, in case there
is more than one consecutive capital letters, by a capital |etter followed by a small letter. For
example, get HTM_Gener at or is decomposed into three tokens (get - ht m - gener at or). The
rest of this discussion considers pattern matches at the token granularity.

The first step in the property specification is to define method (signature) patterns, which
select the candidate methods to be matched against the constraints of the property definition.
The method patterns are based on a canonical string representation of method signatures of
the following form

pattern_met hod = <return_type> nethod_nane(argl _type, .,argN type).

Method patterns contain free pattern variables that are assigned string values and, in our
notation, are separated by apair of ‘<’, ‘>’ symbols. For example, to define the standard
JavaBeans 'get’/'set’ methods we use the following declarations:

getter
setter

<Cet Type> get <Pr opNane>()
voi d set <Pr opNanme>(<Set Type>)

Pattern variables are assigned upon the completion of a successful match, and contain the
maximum length match, which may span severa tokens. For example, if the above getter
declaration is matched against the method i nt get XPos() , the values of the pattern
variables would be as follows Get Type == "int" and PropName == " XPos".

The second step is to define the conditions, or constraints under which candidate
methods are grouped together to define properties. A constraint is a simple test of equality
between the string values of two assigned pattern variables:

pattern_met hodl. pattern_vari abl el == pattern_nethod2. pattern_vari abl e2

Candidate methods that have satisfied al the constraints of a property definition are
called pattern methods. In addition to these, each property also has a naming rule based on
which the introspector can assign a name thet distinguishes among all the object properties
satisfying the same definition:

nane = pattern_nethod. pattern_variable | literal

Theliteral option refersto the ability to specify afixed name for the property. Thisis

necessary to deal with cases in which the pattern variables do not provide suitable

52

information to generate a unique property name. Evidently, this also implies that such a
property definition should not match more then one property per object.
To illustrate the whole specification of a property, consider the following complete

declaration of the standard JavaBeans properties:

property
type = sinple
nmet hods
getter = <Get Type> get <PropNanme>()

setter = void set <PropName>(<Set Type>)
constraints
getter. PropName == setter.PropNane
getter. Get Type == setter. Set Type
nanme = getter.PropNanme

end

The specification states that a property of type “simple” is defined whenever two pattern
methods can be found such that they match the getter/setter patterns, and their respective
pattern variables satisfy the given constraints. The last line specifies the naming rule for the
property. Note that, at this point, a property is a purely syntactic construct that can be
discovered but not yet interpreted by the infrastructure. Thus, the string specified by thet ype
clause is merely an identifier that has no bearing to the interpretation of the property.

Recall that one of the shortcomings of the JavaBeans model was the inability to provide
alternative patterns for the same type of property. To show how we handle this issue,
consider describing the specia case of properties of bool ean type. As an exception to the
standard JavaBeans naming conventions, it is permissible for the getter method to have the
following form:

bool ean i s<PropertyName>()

Describing this exception in our model is straightforward—all we need is an aternative
definition for the getter method and the rest of the definitions will work as before:

getter = <bool ean> is. PropNane. ()

Other, programmer-defined patterns can be described in a similar fashion. For example,
applying the following definition to our example Outline class produces a sequence property
called Section.

property
type = sequence
met hods
insert = void insert<PropName> (int, <lnsType>)
renove = void renove<PropNanme> (int)
| ookup = <Get Type> get <PropName>(i nt)

53

set = void set<PropName> (int, <SetType>)

count = int get<PropName>Count ()
constraints

i nsert. PropNane == renove. PropNanme
i nsert. PropName == | ookup. PropNane
i nsert. PropNanme == set. PropNane

i nsert. PropNane == count. PropNane
i nsert.InsType == | ookup. Set Type

i nsert.InsType == | ookup. Get Type
name = insert.PropName

end

By default, our prototype implementation comes with three basic property definitions for
simple, sequence, and table properties that allow us to simulate the abstractions provided by
our benchmark systems. Furthermore, versions of the sequence and table definitions are
tailored so that they describe properties in the standard (and widely used) vect or and
Hasht abl e classes, respectively. We discuss the role of property specification versions in the
next chapter in infrastructure implementation.

In summary, the described pattern description language allows, unlike any of the
mechanisms in current infrastructures, the descriptionof the structure of our origina Outline
object implementation with no modifications. Also, we showed that JavaBeans properties are
aspecial case of the use of patterns that can be succinctly described in one property

definition. Next, we consider the relationship between patterns and interfaces.

3.1.5 Patternsvs. I nterfaces
Asit turns out, interfaces are another special case of the use of patterns—one in which
method patterns contain no free variables (consequently, the constraint clause is a'so empty).

Asan illustration, consider the description of Sync’s ReplicatedSequence class:

property
type = sequence
met hods
insert = void insertEl ement At (int, Object)
renove = voi d renoveEl enent At (int)
| ookup = Object getElenent(int)
set = void setEl ement (int, Object)
count = int size()
constraints
nanme == ‘' El ement’
end

The above pattern-based specification is logically equivalent to the following Java
interface-based specification in the sense that whenever an object implements the Sequence

interface below (or extends an object that does) it will also have the above sequence property.

54

public interface Sequence {
voi d insertEl ement At (int, Object);
voi d renoveEl ement At (i nt);
Cbj ect getEl enent (int);
voi d setEl ement (int, Object);
int size();

}
To better understand the advantage of using patterns over interfaces, consider the

implementation of a shared outline and a shared sequence using patterns and interfaces. For
the purposes of this example, assume that the task at hand is to replay a remote insert
operation and we want to compare the cost and flexibility of the two approaches. Using

patterns, the insert can be replayed in two lines of code:

void replaylnsert(Cbject target, int pos, Object arg) {
Met hod i nsert Met hod = I ntrospector. get Met hod(target,“El enent”, “insert”)
i nsert Met hod. i nvoke(target, {pos, arg})

}

Thel nt rospect or refersto the system object, which performs the identification of
properties and provides an API to access the results from the pattern analysis. Thus, the
get Met hod call asksfor a reference to the method matching the “insert” method pattern, of
property “Element” of object t ar get . The second line is a reflective invocation of the insert
method on the target object with the given arguments. We should note that even if the set of
patterns describing sequences extends further, only additional property specifications would
be needed—the above code would still work.

In contrast, the interface-based solution requires two interfaces—one including all the
“section” methods from the aut 1 i ne class and another including the Sequence ones shown
above. An interface-based solution would need to separately handle each of the two
interfaces, which would require more coding. More important, however, is the fact that
references to the interfaces are hardwired into the code and would need to be modified every
time anew “similar” interface is introduced due to variations of the programming patterns.

Thus, in terms of expressive power, our specification language completely subsumes both
interfaces and JavaBeans properties and automatically supports an extensible set of objects
not covered by existing mechanisms. Specifically, the logical structure of any object that uses
a combination of the set of patterns given to the system would automatically be recognized.
Furthermore, by using a specification mechanism outside the programming language we

improved code reuse and automation by allowing new object types to be accommodated with

55

little or no extra effort on part of the developer, and in particular without writing any extra

code.
3.2 Architectural Model

3.2.1 Property Handlers

So far, our object model has addressed the issue of discovering the structure of the
objects to be shared. However, we also need a mechanism that puts together the object and
the sharing mechanism such that we satisfy our extensibility requirements. Recall that
systems based on a common communication protocol exhibit high extensibility at the
expense of automation, whereas systems based of shared programming abstractions tend to
offer the reverse combination of features—high automation and low extensibility.
Consequently, a primary objective of our architectural model isto combine the higher level
of abstraction flexibility of our pattern-based model with high extensibility without
increasing the devel opment effort.

To motivate our approach, let us continue with the analysis of our Outline object. So far,
based on two property specifications we can discover that the outline consists of atitle (a
string value) and a sequence (of Sect i ons). However, to discover the complete hierarchical
structure of the shared outline, we need to recursively analyze each of the Section objects
until we reach leaf nodes of atomic types. For that purpose, the infrastructure needs to know
how to obtain the current value of each type of property. However, hardwiring such
information into the infrastructure implementation would largely defeat the benefits of our
patternbased object model—the infrastructure would be able to discover new types of
properties based on new specifications but it would be unable to interpret them, e.g., get their
current values.

To resolve this problem, we introduce the notion of a property handler—a method
(procedure) that implements a system-defined operation, such as reading the current value,
for aparticular property type. Since handlers are defined on a per-property bass, the natural
place for their specification is the property definitions, where we add a handl er s clauseasin
the following example:

property

type = sinple
//same definition as before

56

handl ers
read = col ab. Si npl ePropert yReader
/'l nore handl ers may be defined
end

The interpretation of the handler declarations is as follows: the left-hand side gives the
name an abstract operation on the property, whereas the right-hand side points to a Java class
that implements a specific method known to the infrastructure. In this example, the read
handler implements the method

public Object[] getVal ue(Object target, Property property).

The two arguments in the get Val ue methods permit the writing of generic, class-
independent property handlers. The target argument identifies the run-time object on which
the operation is to be performed, while the property argument makes available to the
programmer the results of the pattern matching performed by the introspection process. In
particular, it provides references to all the method matches discovered. As an example,

consider the following generic implementation of read handler for simple properties:

public Object[] getVal ue(Object target, Property property) {
Met hod get Met hod = property. get Met hod("getter");
Cbj ect[] value = new Object[1];
val ue[0] = get Met hod. i nvoke(target, null);
return val ue

}
Theproperty. get Met hod("getter") call returns areference to the a method matching

the getter pattern (getter = <Get Type> get <Pr opNanme>()) from the specification of a
simple property (and satisfies all applicable constraints). The two arguments of the i nvoke
call represent the instance on which the method should be invoked and the list of arguments
(in this case none), respectively. Once the read operation is defined on all properties, we can
apply the property analysis in a recursive manner to discover the entire hierarchical structure

as shown below:

Cbj ect V4l k(obj ect)
if object == null || object in visited Iist
return
<add object to visited list>
<process object>
for each property p; of object do

reader = | ookup read handler for p
if reader != nul
val ues[] = reader. getVal ue(object, pi)

for each v in val ues
Obj ect Val k(v)
end

57

fi
end
end

In essence, the generic oj ect Wal k procedure shown above uses the introspection
analysis to decompose objects into properties and to delegate the problem of interpreting a
property to a property-specific handler. Thus, property handlers provide a level of abstraction
that isolates the infrastructure from the actual set of properties used in the application. Since
the binding of an infrastructure service and the handlers is performed at run time through the
property specifications, a handler can be reused for multiple objects. For example, the
sequence read handler would work with both the cut I'i ne and the Sect i on objects (the latter
needs to maintain a sequence of subsections). The binding of the application objects and

handlersis implicit via programming patterns.

3.2.2 Property Handlers vs. Requirements

To conclude our discussion on property handlers, let us examine how property handlers

map to our stated requirements:
Extensibility: The use of handlers completely separates the shared object from the
sharing functions by isolating collaboration-aware code into a separate object.
Combined with the declarative binding mechanism, which permits run-time
composition, we can reasonably claim that handlers support extensibility.
Automation: Depending on the consistent use of programming patterns, property
handlers are likely to significantly reduce the programming effort involved in sharing
new abstractions. Thisis based on the fact that a property handler can be directly
reused in sharing objects that are unrelated in the class hierarchy. In other words,
application objects do not have to implement infrastructure-defined interfaces in order
to be shareable. Consequently, the overall effort to implement sharing of a set of
abstractionsis likely to be smaller compared to an implementation based solely on
interfaces. In the worst case, when no programming pattern is reused (which aso
implies that al objects are unrelated) the infrastructure must, in essence, provide a
custom implementation by dealing with each individual abstraction separately. In this
situation, a property-based implementation provide requires approximately the same

effort as a standard object-based implementation that uses classes and interfaces.

58

Code reuse: handlers support both compiled code reuse and incremental collaboration
awareness. There are three different aspects of our support for reuse: application code
reuse, infrastructure code reuse, and handler code reuse.

Using handlers allows single-user application code to be completely reused
because the functions related to sharing are implemented separately in the handler
code. Furthermore, if new properties and corresponding handlers are needed, their
incremental addition will be transparent to the infrastructure (as well the application)
and will allow the reuse of infrastructure code. Finally, the handler code itself is also
readily reusable—most patterns are a function of programming style and are
independent of the application semantics. In other words, most patterns, such as the
sequence pattern defined in the previous section, are so generic that are likely to be
used in many applications. Hence, the property handlers written for such patterns
(such asaread handler for sequence properties) can be reused in any application that

uses the pattern at virtually no cost.

3.3 Sharing Model

The basic units of sharing in our model are object properties. We assume that the sharing
of each individual property of the shared object structure can be controlled independently of
the rest of the shared structure. Here, we present a sharing model that addresses our sharing
flexibility requirements at the finest granularity—properties. In the following section, we
complement this basic sharing model with a sharing specification model that satisfies our
sharing specification requirements. We should note that the model we describe here is not
sufficient to handle infrastructure services such as access control or (pessimistic)
concurrency control. Such control mechanisms require that the infrastructure receive
announcements of intended operations before they are performed. While we do not address
the issue in this work, our event model design is compatible with future planned extension
and we describe our ideas in this respect in Chapter 7.

Recall that our benchmark with respect to sharing and specification flexibility is Suite.
Therefore, our sharing model is based on a generalization of the Suite coupling model that
was described in the previous chapter. One fundamental difference between our approach
and Suit€ sisthat we do not assume full control over the editing of the shared object.

59

Therefore, we need an explicit event model that provides a generic communication protocol
between the application and the infrastructure. Given that properties are our basic unit of
sharing, it is natural to consider events that encode property updates as the basis of our

communication model.

3.3.1 Property Events

This approach is similar to the event model adopted by JavaBeans where all property
changes are communicated through instances of the system-defined PropertyChangedEvent
class. It encodes the source object of the update, the name of the property affected, as well as
the old and new values for the property. Sincein JavaBeansthereis only one operation
modifying the property values—write-this single class is sufficient to meet all communication
needs.

In our case, we need a more general approach and, therefore, our event model assumes
that property events encode corresponding operations performed on a particular property, i.e.,
an invocation on one the property’ s methods. Thus, an update event is a four-tuple, which
contains:

A global identifier of the object on which the operation is performed.

The name of the property affected.

The name of the pattern method invoked as defined in the property specification (e.g.,

"insert”, not a reference to the insertElementAt method)

A list of arguments (perhaps empty).

For example, inserting a new section into the outline would look as follows:

<"Qutline”, “section”, “insert”, {2, section}>.

Given this information, and our property-based introspection analysis of the object, it is
relatively straightforward to replicate the encoded operation at a remote site (the details of
this process are discussed in the next chapter). While this mechanism may resemble the static
broadcast methods of Colab, it is much more flexible because, depending on the
collaboration policies in place, the sharing infrastructure may dynamically choose to delay,
transform, merge, or discard property operations to achieve the desired sharing mode.

As an added advantage, this mechanism facilitates the adaptation of application specific
event models for the purposes of object sharing. Usually, event processing in single- user

60

applications is asymmetric—an object issuing notifications of a particular type is not
designed to receive and process such notifications from peer objects. For example, a standard
Text Fi el d object issues Text Event nhotifications but it is not designed to react to such
events. Thus, there are two inherently application-specific operations that the infrastructure
must perform to adapt a single user event model. First, upon acquiring an event, it must
transform it so that it can be transmitted and replicated remotely, and second, it must
transform the event into a suitable method invocation at the remote site. By choosing the
above-described format for property events, we effective merge the two transformations into
asingle one that is performed at the original site by an event adapter. Once transmitted, the
property event can be applied at the remote replica without knowledge of the adapted event
model. Hence, the adaptation of an application event model is reduced to writing asingle
adapter that maps application events to property events.

3.3.2 Sharing Parameters

In this section, we discuss the rationale and meaning of the sharing parameters, while the
implementation details of how these are put together in practice are discussed in Chapter 4.
We should note that the model we describe here is designed to address the issue of flexible
object sharing by managing the updates notified by multiple object replicas. However, it does
not address issues related to controlling access to the object, such as (pessimistic)
concurrency control and access control (possibly preventing updates in the first place). These
are the subject of our future work and do require an extension of this model that alows the
infrastructure to control updates before they have occurred.

We distinguish among three phases in the handling of property events. acquisition,
processing, and installation (Figure 3.3), and each of these phasesis controlled by its own
parameters. In the acquisition phase, a description of the user update is obtained by the
infrastructure. In the processing phase, the infrastructure buffers, transforms, and
communicates the update to the remote parties based on the current sharing policy. Finaly, in
the installation phase, the update is merged with the current state of the remote object to
which it is delivered.

61

ALTigtion Infrastructure Installation nstTIIan on
.

—

Object
(A)

Object
(B)

g Processing g

User A User B

Figure 3.3 Phases of update handling

We associate with each shared entity four different parameters: Transmission,
Correctness, Acquisition, and Installation. The first two we inherit from the Suite model and
control the processing phase. The last two parameters form our extension to the model and
control the acquisition and installation phases of the event handling, respectively. We refer to
the combination of sharing parameters regarding a shared entity as a collaboration (or
sharing) policy.

Like Suite, the processing parameters have two instances—one placing restrictions on
outgoing events and one on incoming events specified by the sending and receiving user,
respectively. Like Suite, we expect these to be different so we also have a Suite-like
reconciliation mechanism based on conservative matching. By conservative we mean that of
the two versions of each processing parameter (outgoing and incoming) we pick the one that
has a higher value and, thus, come up with an effective collaboration policy. Realizing that an
outgoing policy that is more libera (sends out more events) than its incoming counterpart
would lead to the communication of events that will be held at the receiver site for delivery,
we perform the matching at the sending site to avoid sending such eventsin the first place.
Hence, the receiving site does not perform filtering of incoming events but proceeds directly
to install them. Performing the policy matching at the sender, as Suite does, implies that
policy changes must be sent to the corresponding user(s) every time a user modifies the
incoming policy. This, however, is a good trade off because policy updates are much less
frequent than object updates.

Let us now describe the values and the meaning of each parameter in our mode.

62

Transmission: This parameter has the same purpose and semantics as Suite's
transmission parameter. It controls the transmission of updates based on the
communication operation performed on the shared entity and has four possible values:
Increment, Complete, Scheduled, and Transmit. Asin Suite, each individual updateisan
Increment operation. A Compl ete operation is executed whenever the user has indicated
that he is finished editing the value, e.g., by hitting <t ab> or <r et ur n>. (Note that, unlike
Suite, we have no control over the user interface. Therefore, for application-specific
operations such as Complete we rely on the programmer to issue a synchronization event,
which is discussed in the next section.) The concrete mechanism by which thisis
accomplished is described in Chapter 4. A Scheduled operation is triggered by timer
expiration and has two parameters—execution time and a period. The semantics here is
that the operation is first triggered at the specified (wall clock) time and it is then
triggered periodically. Thus, thisis a combination of Suite s TPeriod and TTime time-
based operations. The Transmit operation is executed whenever the user explicitly
requests it by pressing a<t r ansmi t > button provided by the infrastructure.

Correctness: This parameter also has the same purpose and semantics asin Suite. Its
possible values (in increasing order) are Raw, Parsed, Validated, and Committed. By
default, any updated value is Raw, unless it has undergone a successful syntactic check
after which it is elevated to Parsed. If the value has also passed a check for semantic
correctness, it becomes Validated. Aswith Complete operations, we rely on the
application to issue appropriate synchronization events to tag updates as Parsed or
Validated. As before, Committed values are explicitly designated by the user by
executing acommit command, i.e., selecting an infrastructure-provided <conmmi t > menu
item.

Acquisition: This parameter controls the method used to obtain the replica update
whenever the infrastructure is notified that one is (potentially) available. By update we
mean any change in the observable state of the replica. The update notification usually
comes from user actions but it can also be triggered by a timer mechanism. Currently, we
distinguish among four different acquisition methods. Read, Log, Effective Log, and Diff.
To illustrate the differences among them let us consider the simple scenario of a user

63

editing the title of our outline through a text field and see how the different combinations
of Transmit and Acquisition parameters lead to different results.

Assume that a user has just typed a character and the infrastructure got notified,
say, by automatically capturing an event from the window. How should the
infrastructure record the change? In Java, for example, the Text Event object does not
provide the details of the operation but merely informs that one has occurred.
Therefore, one option is to record the end result of the user action by obtaining the
current value of the field. In other words, whenever it receives a Text Event
notification, the infrastructure uses aread handler to obtain the current value of the
text field and subsequently installs it remotely using a corresponding write handler.
We specify this option through by setting the acquisition parameter to Read.

While this approach is attractively simple, it does not work very well when the
field is concurrently edited by multiple users and we would like to merge their work.
For instance, one user inserts a character in the beginning while another adds another
one at the end of thetitle. In al likelihood, users would like to see their changes
merged rather than giving preference of one over the other. More generally, knowing
the exact fine-grained operations performed greatly increases the chances of the
infrastructure being able to automatically detect (syntactically) non-conflicting
updates and merge them according to user expectations. Therefore, the programmer
might develop atext field object that automatically notifies the exact insert/delete
operation performed by the user. (Alternatively, the insert/del ete operation could be
derived by alistening object that keeps track of previous state.)

By al means, once an incrementa update is available, the logical choice for the
acquisition parameter is Log-ing. It tells the system to record and later on (depending
on the current transmission/correctness parameters) replay the event remotely. Thus,
the main conceptual difference between using Read and Log options is that the former
specifies the transfer of the entire state of an entity (property, object, application),
wheress the latter installs only incremental changes. The latecomer accommodation
problem discussed in Section 3.5.2 below provides an example of the differences at

the application level.

Over time, however, the log of operations can become rather long if, say, one of
the users is off-line for a prolonged period of time. Therefore, log-based approaches,
such as Chung’s[4], provide mechanisms for compressing the log by removing
operations whose effects will be undone by subsequent operations. We refer to this
method as Effective Log. In the following chapter we describe a generic scheme that
performs effective logging for property operations. Although it is not as
comprehensive as Chung’'s scheme, it requires only minimal specification effort on
part of the developer. Our model also alows for an external logging module to be
plugged in. For that purpose, the developer must specify al og property handler for
each of the shared object properties. If the current acquisition method is Log and the
infrastructure finds that al og handler is specified, it simply delivers the event to the
handler. If the goal isto employ Chung'’slogging service, the property specification
should point to an object that can tranglate property events into the generic model
used by Chung and deliver them to remote users as appropriate. In addition to remote
delivery, the externa service logging must aso take responsibility of translating back
into property events so that updates can be applied correctly.

The log-based approach assumes that it can obtain updates at a fine granularity
from the application. However, in many cases the application does not provide a
suitable notification mechanism to tap into. In that situation, using Diff-ing may
provide a good solution. Diff-ing refers to the process of automatically deriving the
fine-grained operations from two snapshots of the object’s state. While the idea of
diff-ing is not new, implementing object-based diff-ing presents a challenge and we
are unaware of any work that presents a generic solution. However, our pattern-based
approach has enabled us to come up with a new solution that is generic enough to
make it a plausible choice. We defer the detailed description of this solution to
Section3.3.5.

Installation: Once an update is acquired and processed, it needs to be installed on the
remote object. We distinguish among three different ways in which this can be
achieved: Replay, Real-time Replay, and Merge. The Replay option is the smplest
choice—the operation is replayed on the remote object. However, depending on the
intent of the collaborators, this may not be the best option. Suppose we have a late-

65

coming participant who wants to replay the sequence of changes made prior to his
joining of the collaboration. If the operations are simply replayed one after the other,
the user will likely have a“fast forward” experience in which minutes of
collaboration are compressed into seconds. Due to network jitter, similar problems
can arise on asmaller scale [Kum, Gutwin] and disrupt real- time collaboration, e.g., a
sow, smooth mouse gesture can be perceived as random jumping of the mouse
pointer because numerous small movements are delivered in a short burst and,
consequently, replayed so fast that they are imperceptible by the user. Also, to
maintain interactivity, end-to-end delay must also be managed to avoid, for example,
a situation in which a mouse gesture noticeably lags the voice narration and creates
confusion. We refer to this time-controlled replay process as Real-time Replay.

The Merge installation option refers to the use of a specialized merge procedure
that integrates the update with the current version of the object. In other words, thisis
necessary when the smple replay of the updates (atrivia form of merging) is no
longer sufficient. This type of installation is commonly used in asynchronous sharing
when two, or more, replicas have diverged and conflicts only become apparent during

the installation phase.

3.3.3 Synchronization Events

Our sharing model aso defines synchronization events which are meta-events that carry
sharing information about the property events in the system and support the sharing
parameters described above. To motivate the need for such events let us consider the
following sharing scenario: users A and B are editing a together aform, which consists of a
number of text fields. They want the system to log their changes and communicate them only
when a change is complete that is, the user has moved from one text field to the next. To
implement this, the infrastructure must buffer every character insertion and deletion in a
gueue because these are incremental changes. However, it also needs to know when all of
these changes become a compl ete change and flush the queue. The end-of-editing event is
inherently application-specific: in our example, leaving the field would signal an end to
editing, however, in adrawing editor, the moving of afigure may be considered complete

when the user stops dragging it. Thus, the infrastructure needs to be informed of such events

66

but also must not be bound to specific application events. To solve this problem we define
standard synchronization events that allow such information to be passed along to the
infrastructure.

A synchronization event redefines the values of the transmission and correctness
attributes of the property operations that are still in the buffer. Specifically, such an eventisa
four-tuple consisting of:

A global identifier of the object on which the operation(s) are performed;

The name of the property affected. This parameter could be nul 1, in which case all
properties of the object are implied;

A new value for the transmission parameter (Increment, Complete, Scheduled, or
Transmit);

A new value for the correctness parameter (Raw, Parsed, Validated, or Committed).

For example,

<"Qutline”, “section”, “Conplete”, “Raw’>.

specifiesthat all property operations on the section property of the object named
“Qutline” should be relabeled as Complete and Raw unless they have higher values already.
Once relabeled, all affected events must be reevaluated with respect to the current sharing
policy and sent out, if necessary.

Our implementation uses synchronization events to implemert the explicit transmit and
commit commands, that is, whenever the user issues a transmit/commit command, a
corresponding synchronization event isissued. Similarly, timer-initiated communication is
also implemented by generating appropriate synchronization events. This scheme also allows
for system-defined communication operations—transmit/commit—to be triggered
automatically as a side effect of specific user actions, such as releasing a shape object in a
drawing editor.

By default, synchronization events affecting an object are a'so implicitly applied to all
dependent objects in the structural hierarchy. Thus, a commit event on a section would
commit all changes in that section, while a commit event on the root outline object commits
all changes to the whole outline.

67

3.3.4 N-user Sharing

So far, we have only considered the simplest case of sharing, which involves sharing of
two peer objects. In general, however, we expect that more than two users may participate
and may have different preferences in their collaboration. To accommodate this scenario, we
extend our model to the N-user case, by representing it as a set of pair wise collaborations.
Since every user could potentially have a different sharing policy for each of his
collaborators, logically, we need to maintain separate state information regarding the sharing
with each remote user. For that purpose, for each user (or group of users), we maintain a
Separate outgoing queue, which is governed by the current effective sharing policy with the
respective user.

Figure 3.4 depicts the configuration for three users—at each replica there are two
outgoing queues, which enables the infrastructure to support different sharing modes between
each pair of users. For example, user A may share incremental updates with user B but only
completed updates with user C. Thus, as A edits the outline, its ‘ B' outgoing queue stays
empty because all updates are sent out immediately. At the same time, the *C’ outgoing

gueue would buffer incremental updates until it receives a proper synchronization event.

[e ‘
BE Ec AE Ec A|E EB

Outline A 1« —| Outline B ¢ p| Outline C
User A User B User C

Figure 3.4 N-user Sharing Example

Thus, each property and synchronization event is (logically) replicated and filed in all
outgoing queues ard each copy is subjected to the rules of the effective sharing policy for
that queue. Also, if diff-ing is used, as shadow reference copy of the shared object reflecting
the state of the object at the last diff invocation with respect to each user is maintained. Thus,

the model allows the sharing parameters for each pair of usersto be potentially different.

68

Like Suite, we also provide a mechanism through which users can ensure that they have
identical policies—e.g., user B wants to have the same policies as user A. To implement this,
we reuse our policy notification mechanism. Recall that every time a policy changes, a
corresponding notification must be sent to all affected parties and the policy matching must
be performed again. Thus, to ensure identical policies, instead of performing a match, we
replace the policy with that of the reference user. In the above example, every time user B

receives a policy notification from A, its current policy is directly replaced with the received

policy.

3.3.5 Object Diff-ing

Let us now return to the generic object diff-ing service that can generate events on behalf
of applications that do not implement a suitable notification mechanism. As adriving
problem, consider the semantic sharing of the outline object. Since in the single- user case the
application does not need to issue events in response to changes to its state, there may be no
suitable notification mechanism that the developer can adapt for the multi- user case.
However, performing a diff operation on aregular basis would provide most of the benefits
of fine-grained shared without incurring the cost of modifying the original application.

The basic idea of object diff-ing isto look at consecutive snapshots of the state of an
object and to deduce the sequence of operations that have been applied in the interim period.
We should first acknowledge that thisis not a problem that can be solved unambiguously. In
fact, for every starting and ending state there are an infinite number of possible operations
that would be consistent with the starting and ending state. However, in most situations, an
educated guess will be a good enough approximation of the real operations that took place.
For example, if the starting value of the outline title was ' Tittle' and the end value was
‘Title', it isasafe bet that a“‘t’ has been deleted. Whether the deletion occurred at position 2
or 31is, in all likelihood, irrelevant to the users. In most situations, the chance for correct
deduction increase dramatically as the time between successive diffs decreases. Alternatively,
we could trigger a diff whenever a change is known or is likely to have occurred (e.g., end of
mouse dragging in a drawing area). While the latter option is largely applicationspecific, its

implementation is trivial because it is reduced to issuing a synchronization event.

69

The basic structure of the diff-ing procedure is very similar to the bj ect Wal k procedure
discussed earlier in the chapter. In this case, however, two object structures are traversed in
parald in search of differences. The oj ect Di f f er, which is the service interface, uses
property specifications to decompose objects into properties and then, for each property, it
looks up and invokes the corresponding property diff handler to obtain the difference. The
results are aggregated and returned to the caller. As before, thel ookup online 6 refersto a
lookup in the handl er s clause of the relevant property specification. The handler is

implicitly instantiated, if necessary, and an object reference is returned.

ObjectDiffer(ol dObject, newlbject)
if ol dOnject == nul
return newQbj ect
result = nul
for each property p; of ol dObject do

O~NO O~ WNEPRE

differ = I ookup diff handler d;i for p;
result = result + dj(ol dObject, newObject, pj)
end
9 return result
10 end

The diff handlers, for their part, follow a similar hierarchical approach, shown below. A
diff handler takes as arguments two object instances representing the old and the new state of
the object and a property with respect to which to compare the objects. The property differ
checks whether values are primitive to the procedure and, if so, directly computes their
difference. In all other cases, it recursively refers the diff-ing of the retrieved property values
to the global diff procedure for further processing. This also implies that the global differ

must keep track of visited objects to avoid cycles in the object structure.

1 DiffHandl er (ol dObj ect, newObject, property)

2 reader = | ookup read handl er for property

3 ol dval ue = reader. get Val ue(ol dObj ect, property)

4 newval ue = reader. get Val ue(newObj ect, property)

5 if oldvalue and newal ue are primtive

6 result = conpute diff from ol dval ue and newval u
7 return result

8 el se

9 return ObjectDiffer(ol dval ue, newal ue)

10 end

Thus, to extend the set of properties that can be handled by the infrastructure, it is
sufficient to add property-specific differs and include them in the property specifications.
More importantly, we can use the same property-based approach to implement other services

in a modular fashion. In particular, the implementation of two other generic services—

70

equality testing and deep cloning—can be based on the exact same approach. The need for
these services was originally motivated by our work on the object-sharing infrastructure,
however, ou further research has shown these to be very useful in applications not related to
collaboration, such as our ongoing work on object testing described in Chapters 5 and 7.

Equality testing refers to the process of determining whether two object structures are
equivaent and isimplicitly used by property handlers in computing the difference (line 6 of
theDi f f Handl er code above). In Java, al objects have an equal s method whose
implementation determines object equivalence. However, in practice, this method israrely
implemented by programmer-defined classes and the default implementation, which
compares whether the two object references point to the same physical object is not helpful
because we need to compare independent copies of the object structure. Furthermore, even if
the equal s method is overridden, the infrastructure cannot determine if the provided
implementation is useful for diff-ing purposes (object equality may be defined in multiple
ways depending on application needs). Therefore, it is sensible for the infrastructure to have
an implementation it can rely on.

Deep cloning refers to the process of obtaining an independent copy of the entire object
structure. Deep cloning is needed to create an independent copy of the current state of the
object after a diff invocation. By independent we mean that changes to one of the copies does
not affect the other. The copy (initially nul I) serves as abasis for comparison on the next diff
invocation. In Java, object cloning is afirst-class concept, and every object tagged as
Cl oneabl e gets a default implementation of the service. However, thisimplementation is a
shallow version of the cloning, which does not provide independence copies. For example,
cloning the standard Vect or class produces a copy whose elements are references to the
same objects as the original one. In short, asin the case of equality testing, the infrastructure
has no means of determining whether a shared object implements cloning that is useful for
diff-ing purposes.

As dready stated, property-based implementation of equality testing and deep cloning
can provide reliable basis for implementing diff-ing. Since the implementations follow the

exact same template as object diff-ing, we omit its detailed description to avoid repetition.

71

3.3.6 Application Layer Model

The described property-based sharing model provides for fine-grained sharing services,
however, it also raises some correctness issues. Suppose that the outline title is edited
through atext field and both the text field and the outline object provide appropriate
notifications to the infrastructure. An implementation of the sharing service, which does not
take into account the dependency between the text field and the outline would produce
incorrect results. Such a scenario is shown onFigure 3.5: as aresult of user A’s action, anew
character is inserted into the title.

Title K / Title

; ? Event(Title, insert(‘a’, 2)) Event(Title, insert(‘'a’, 2)) {}

Title.insert(‘a’, 2) Infrastructure Title.insert(‘a’, 2)

TextField Event(TextField, insert(‘a’, 2)) Event(TextField, insert(‘a’, 2)) TextField

I.

Figure 3.5 Example of multiple notification of causally related events

This results in a method invocation on the local Outline object and a notification event
received by the infrastructure. If the infrastructure also captures and transmits the notification
of the Outline object, this would eventually result in the peer Outline object receiving the
origina event twice, which would lead to a duplicate character insertion.

The above example is symptomatic of a more general problem that we need to address—
multiple notifications of causally related events. For that purpose, we need a conceptual
model that allows us to identify such events and prevent multiple notifications. Dewan’'s
Zipper model [7] provides a generic framework to reason about the issue. It isa
generalization of the concrete layered model we used in our Related Work chapter.

72

Layer 1

'

Layer 1

Layer 2

'

Layer 1

v
:

Layer 2

'

v
:

Layer 2

v
:

Layer n Layer n Layer n
User User A lser B
a) Single-user layered architecture b) Multi-user layered architecture:

sharing may be implemented at any layer
Figure 3.6 Zipper model of multi-user applications

According to the model, a single-user application consists of a number of layers with
different levels of abstraction (Figure 3.64). At the top is the most abstract layer, which
maintains the abstract state of the application. Each subsequent layer adds more syntactic
details and brings the representation closer to the one seen by the user. The user interacts
with the lowest layer and the relevant updates go up through the layers until they reach the
top layer. In the other direction, changes to the abstract state are communicated from layer to
layer and are gradually transformed into the representation seen by the user.

Given this application structure, the zipper model represents collaborative applications as
two (or more) application instances whose state is shared by sharing the state of peer layers
(Figure 3.6b). Returning to our multiple notification problem, we notice that causally related
notifications occur as a result of user actions being trandated from a less abstract to a more
abstract representation, with each successive translation triggering a separate notification.
The most common solution among existing infrastructures is to provide sharing at one fixed
layer (e.g., shared window systems provide sharing at the window layer). The shared layer
processes events received from remote replicas the same way it processes local events and
propagates the results to upper (more abstract) layers, thereby achieving the sharing of those
layers as well. This approach automatically eliminates the correctness problem for the
application at the expense of sharing flexibility.

73

To increase sharing flexibility, Suite provides sharing at two levels (model and view) that
can be dynamically switched at run-time. Thisis possible because the system supplies the
user interface and knows the precise application layering. However, in our model, we do not
have control over the user interface and, hence, we need an alternative mechanism to derive
the application layering. Current programming languages do not provide any suitable
mechanism to specify such architectural features so we introduce an XML-based layer
description language for that purpose. An application layering definition consists of two
parts—Ilayer mapping and layer dependencies. Logically, the layer mapping is a set of tuples
of the following form:

<cl ass, property, |ayer>

The interpretation is straightforward: the specified property of al object instances of the
given class belong to the given layer. Since giving adefinition for each individual property
would be prohibitively costly, we support two rules for supplying default layer assignments.
First, the property could be nul I, in which case al properties in the class are implied.
Second, if no explicit definition is found for a particular class, we recursively lookup the
definitions for the superclasses until an appropriate one is found. Following the class-
inheritance hierarchy can be very efficient: for example, al Ul widgets (windows, icons,
menus, etc.) in Java descent from thej ava. awt . Component class. Thus, with a one-line
definition—<j ava. awt . Conponent, nul |, ”vi ew’ > —we can specify that all widgets
belong to the view layer.

Layer dependencies describe i s-an-editor-of relationships between any two layers, e.g.,
view 2 model. To illustrate application layering descriptions, let us consider the example

layer decomposition of our outline application shown on Figure 3.7.

74

Model

class Qutline {
String getTitle();
voi d setTitle(String title);

voi d insertSection(int i, Section s);
voi d removeSection(int i);
Section getSection(int i);
voi d set Section(int i, Section s);
int get Secti onCount () ;
}
T\ﬁew Appearance

[&5 [User_B): Flexible Object 5...

File Edit View

@ []1.2 Requirements
& (1.3 Related Waork
3 1.3.1 ¥TWIICE
3 1.3.2 Suite
[C31.3.3 Sync
& 3 (2. Design goalg| |
& [3. Implementation
&= [4. Evaluatian

T~

E=S [User_BI: Flexible Object 5... [H[=] E3
File Edit Wiew

& [1.2 Reguirements
@ 1.3 Related Waork
3 1.3.1 *TVIJCE
3 1.2.2 Suite
31.2.2 Sync
@ (2. Design goals]
@ [3. Implementation
@ [4. Evaluation

Window

-

[}

Figure 3.7 Layer decomposition for outline application

At the lowest level is the window layer, which consists of the single application window
through which all objects are edited. The view layer consists of the window’s menu and a
JTr ee object through which the outline object is edited. The appearance layer consists of the
elements of the application window that do not affect the state of the outline, such as the
scrollbar. In this example, a user action may trigger one of two sequences of events. If the
user performs an action that modifies the outline, the process triggers three causally related

notifications at the window, view, and model layers, respectively. Alternatively, if a user

75

action (e.g., dragging the scrollbar) concerns only the appearance layer, it triggers a
sequence of two causally related notifications—at the window and at the appearance layers.

Thus, if window sharing is specified, all notifications from other layers must be
suppressed. If view sharing is specified, then model and window notifications must be
suppressed. Similarly, if model sharing is specified, window/view events are suppressed.
Since the appearance layer is independent of both the model and view layers, its sharing can
be turned on/off independently of the model and the view.

In addition to correctness, this generic layer model aso gives us a high-level mechanism
for sharing specification by dynamically changing the shared layer. In other words, it enables
us to dynamically “open” and “close” the zipper. Opening isin fact atrivia task because we
move from tighter sharing modes to more relaxed ones and all we really need to do isto
switch from sharing window eventsto sharing model/appearance events. However, the
reverse process is nonttrivial in the genera case. To illustrate this, consider the following
scenario: Initially, users are using asynchronous sharing of the model, which means that they
may have completely different versions of the shared object. If they want to switch to view
sharing, the infrastructure must first bring the outline model versions into a consistent state.
To switch to window sharing, both the view and the appearance must be consistent
beforehand.

In general, to switch the sharing from a higher (more abstract) layer L to alower layer
Lm, the infrastructure must ensure that al layers that depend on Ly, are brought into
consistercy first. Note that the above transition process must be followed consistently step by
step starting with layer Ly as described in the above example. We could not, for example,
take the user interface of replica A of the outline, clone it and attach it to replica B.
Conceptually, the problem is that the connections between the semantic object and its user
interface are inherently applicationspecific and, hence, recreating them cannot be done
without input from the programmer. In practical terms, cloning user interface objectsin Java,
for example, does not yield any usable results because part of the internal state of the
standard user interface objects is related to the native implementation of the window system.

From the above discussion we conclude that, a layer description mechanism, such as

ours, is necessary in order to implement dynamic switching of the shared layer.

76

3.4 Sharing Specification Model

Our basic approach of using properties as the fundamental unit of sharing implies that all
collaboration policy specifications will have to be expressed at the property level. Given that
the number of properties can easily run into the hundreds even for applications of modest
size, the specification effort would be too costly to be practical. Therefore, we employ an
inheritance-based specification model, similar to that of Suite, layer-based macro commands,
and policy naming to considerably lower the cost of specification. As the following
discussion shows, the main conceptual difference between our inheritance model and that of
Suiteisin the way we define the inheritance hierarchies and, in particular, the structural
hierarchy of shared objects. In Suite, it is based on an interpretation of the concrete
implementation of the shared objects, whereas in ours it is based on the observable logical
dependencies among these objects. Once the hierarchies are established, however, we follow

the same rules to find suitable sharing policies as Suite does.

3.4.1 Inheritance-Based Specification

Like in Suite, the basic idea behind inheritance model is to employ the existing,
programmer-defined hierarchies among shared objects to provide default sharing parameters
at various levels of granularity. The basic idea is that parameters for objects higher in the
hierarchy provide default values for those that are below.

In our model, we utilize two kinds of hierarchies: structure-based and type-based.
Structure-based (or structural) hierarchies arise as aresult of Has-A parent-child
dependencies within application structures. In our case, we use the set of observable object
properties to determine such relationships. Thus, the outline Has-A title property and Has-A
section property. In turn, the title Has-A value and the section Has-A set of values and the
analysisis carried out recursively on the corresponding property values. Thus, the title
property, having a string value, defines a single child, whereas the section property
potentially defines multiple children—one for each section. In practical terms, to find a
default parameter value, we use the inverse, Is-Part-Of relationship, as we need to traverse
the hierarchy bottom up. Since objects are dynamically created and destroyed, their
corresponding Is-Part-Of relationships also change dynamically. Unlike other infrastructures,

such as JCE and Suite, we do not use object names to store structural hierarchical

77

information (e.g., Section 1.2 may have an identifier such as ‘ Outline.Section[1].Section[2]’).
Instead, we generate object names from a flat namespace and maintain a table of structural
dependencies using information from property events (implementation details are given in
Section 4.2.2). This approach was chosen to avoid the need of having to rename (potentially
large parts) of the shared structures whenever structural changes are introduced and to avoid
parsing the names to locate a target object. Our experience shows that the associated
overhead does not present a performance issue.

Type-based hierarchies arise as aresult of IS-A child-parent dependencies among
application objects. For example, a section instance IS-A Sect i on, which IS-A Obj ect .
Since such relationships are defined at compile time and remain static, there is no need for
our infrastructure to maintain any additional information.

As aready pointed out in our discussion on Suite, inheriting parameters along the
structural and type-based hierarchies is appropriate in different scenarios that, generally,
compliment each other. However, they aso create ambiguity, e.g., if no parameter is given
for Section 1.1 should we look up to the structural parent (the section property of the outline
object) or the type-based parent (the Sect i on class) for guidance. We associate an optional
Suite- like inheritance directive parameter, which points to the desired direction of resolution
and has the following values:

structure-first: traverse up the structural hierarchy; upon failure, traverse the type-
based one;

structure-only: traverse up the structural hierarchy only.

type-first: traverse up the type-based hierarchy, upon failure, traverse the type-based
one;

structure-only: traverse up the type-based hierarchy only.

By default, we use the structure-first option. The rationale here is that the structural
hierarchy is closer to the user’s perception of the hierarchical relationships within the shared
object (we also display it in a separate window). The type-based hierarchy implies some
knowledge of the implementation classes and is more suitable for specification by a

programmer/administrator and as a backup to user-specified parameters.

78

3.4.2 Policy Naming

Our model provides for sharing policies to be given names and stored persistently, which
allows, for example, a more experienced person to define a number of appropriately named
policies that can be used by less experienced ones. I n other words, this allows users to reuse
policies they have found useful in previous collaborations. It also facilitates their social
coordination when using out-of-band communication, such as alive audio connection or a
chat session, by providing a common name to refer to specific policies.

Also, the infrastructure uses naming to locate policies of last resort: if the hierarchical
lookup described above fails, the infrastructure looks up a “default” policy, which comes
with the infrastructure and must always be present. In all cases, the user has the last say and
can either select a new named policy or bring up a policy editor and fine-tune the policy to

his liking.

3.4.3 Macro Command Specifications

Another mechanism we provide to simplify the specification process are layer macro
commands to manipulate the sharing parameters of entire application layers. Unlike the
inheritance approach, the automation is not based on providing default values but on setting
concrete values for each object (or property) of an ertire application layer. The motivation
behind macros is smple—if the users are satisfied with the basic layer sharing scenarios,
e.g., commit-based model sharing, they should be able to directly specify it. Depending on
the application design, however, this may not be readily achievable under the inheritance
schemes.

One problem comes from the fact that application object structures often follow more
complicated patterns that the clear parent-child relationships we assumed so far. For
example, amodel object and its corresponding view object often keep observable references
to each other. Thus, depending on the starting point of our structural analysis, we may
conclude either one of the two objects to be the structural parent of the other. Given that
object structures change at run time, shifting structural inheritance may lead to user
confusion, or undesirable results. The type-based approach, in addition to being more
difficult for end- users, may also be unsuitable. Application objects sometimes mix functions
typical of different layers by inheriting from a class that belongs to a different layer. Thus,

79

objects belonging to the same layer would not have a suitable common predecessor that
would alow an easy type-based specification of layer sharing.

In contrast, layer macros offer a simple mechanism that is easy to understand—the user
points to alayer in the layer tree and selects a sharing policy. Returning to our problem of
specifying commit-based sharing for model objects, the user can simply bring up the layer
tree, point to the model layer and select (or create) a commit-based policy. Based on the layer
descriptions, the infrastructure automatically adjusts the policy for objects/properties in the
layer. The macro operation, while potentially expensive for large applications, should be a
relatively infrequent event and is unlikely to adversely affect the collaboration.

An aternative approach to implement layer-based specification is, again, through
inheritance by employing the Is-Part-Of relationship between objects and layers to define the
hierarchy. However, we have made the conscious choice not to go along this path because we
believe that the process of figuring out the exact sequence in which the three hierarchies
(structural, type, and layer-based) would be traversed and what would the outcome be
introduces too much complexity and confusion for the user.

3.5 Summary

In this chapter, we described the conceptual basis upon which our infrastructure
implementation is built. We introduced a shared abstraction model based on programming
patterns that enables the infrastructure to automatically derive the logical structure of alarger
class of abstractions than currently possible. We showed that, as a means of describing
abstractions, programming interfaces and JavaBeans are special cases of the use of patterns.

We introduced a new architectural model based on property handlers that separates
application-specific and collaboration concerns and, thereby, facilitates extensibility,
automation and code reuse.

We aso presented a new sharing model that permits flexible parameter-controlled object
sharing based on properties. The set of supported parameters provides control at variable
levels of granularity starting from the entire shared application artifact down to the individual
property. Our sharing parameters a proper extension of the original Suite coupling parameters
and allow awider spectrum of sharing modes supported by current infrastructures to be

modeled. Furthermore, we have introduced object diff-ing as generic service that allows fine-

80

grained asynchronous object sharing to be performed while reusing in full the single-user
object implementation. We have defined a generic event protocol consisting of property and
synchronization events that allows collaboration features to be gradually introduced into the
application and permits application-specific events to be used as triggers for collaboratior
related operations. Finally, we developed a layer specification mechanism that allows correct
object sharing to be implemented at different layers of the application while allowing a
dynamic switch of the shared layer.

Our specification model adapts the original Suite hierarchical model to alow
collaboration specification based on structural inheritance and type-based inheritance for
object-based programs. We have employed object properties as a means of defining and
dynamically maintaining structural dependencies and have introduced macro commands as
an easy way to dynamically control sharing based on application layers.

We conclude our discussion by outlining how our sharing model can handle different

sharing modes supported by reference infrastructures.

3.5.1 Window Sharing

The implementation of window sharing is rather straightforward—we modd it as
synchronous sharing of the window event queue. The queue is modeled as a simplified
version of a sequence property defined by the postEvent/peekEvent pair of pattern methods.
The input events generated by the active user are captured by a specialized adapter object,
trandated into property events, and eventually replicated at al other participants. To achieve
synchronous sharing, we choose Log for the acquisition parameter, <Raw,Increment> for
both the outgoing and incoming processing parameters, and Playback for the installation.
Thus, as soon as a Ul event is captured, it isimmediately transmitted to, and posted in the
window event queues of all participants. As a side effect of the posting, the window system
receives and processes a local representation of the remote event, and triggers normal
application processing. In this specia case, there is no need to define any property handlers

because the actual processing of eventsis handled by the Ul toolkit.

3.5.2 Latecomer Accommodation

In actual collaboration, not all users may participate from the very beginning of the

session. Hence the need for a mechanism that brings latecomers up to speed. Generally, there

81

are two approaches—Ilog replay and current state transfer—and our framework readily
accommodates both. To achieve log replay, the users must specify Log for the acquisition
parameter, playback for the installation parameter and a communication parameter that is
higher than Raw, e.g., Transmit. Thus, whenever the new user joins, a simple transmit
command would result in the log being sent to the latecomer. Alternatively, users could use a
state transfer by specifying Read for the acquisition, instead of Log. Thus, upon a transmit
command, the infrastructure will read the current state and send it to the newcomer. We also
offer a third option, which is to use Diff instead of Read as an acquisition parameter. Thus,
assuming that both the sender and the newcomer started with the same version of the shared
object, e.g., loaded from afile, the Diff option will generate a history of updates between the

base and the current version.

3.5.3 Suite

Since we used Suit€ s sharing model as a basis for our own, we can naturally
accommodeate its different sharing modes by fixing the acquisition and installation
parameters to Read and Replay, respectively. To simulate its model based on active and
interaction entities, we use an additional, master copy of the shared object, which is not
associated with any user and we set its sharing policy to Committed. Thus, the ssimulated
active entity receives only committed updates, whereas interaction entities, edited by

different users, can exchange intermediate results (as in Suite, committed updates are forced

on al users).
Modd Format Salection e Scrollbar
Window
(not shared by Suite)

Figure 3.8 Suite's Layer Model

To model Suit€ s layering model, we map the model object, as well as the separately
controllable Ul coupling attributes—sel ection, format, window size/position, etc.—to

separate layers with no dependencies among them (Figure 3.8). In other words, in Suité's

82

case there is no issue with correctness because each user action affects exactly one layer of
the application. While this approach works for the system-defined user interface, it does not
generalize to the (typical) case of custom-built Ul, such as the one in our Outline application.

We should aso note that Suite' s implementation of WY SIWIS sharing is different from
that of shared Ul systems—it relies on sharing al the layers it defines above the window
layer defined by OS as a means of presenting identical views of the application to all users.
Again, thisis only alimited implementation, which would only work for applications with
Suite-generated Ul.

Finally, we also support N-user sharing with arbitrary combinations of sharing parameters
as Suitedoes.

3.5.4 Asynchronous Sharing

Asynchronous sharing, such as the one in Sync, can be modeled by Log-ing all updates
and transmitting them explicitly. In turn, the response from the Sync server, will be sent back
as aset of Committed updates, forcing the client to execute the corrective commands. The
merge handlers will perform the actual merge of updates, which could be parameter-driven
(e.g., Sync, TACT) or a specialized procedure (Bayou). Our Diff capability gives us the
additional option of deriving the changes in case the application does not use a notification

mechanism.

83

4. INFRASTRUCTURE IMPLEMENTATION

In the previous chapter, we presented a conceptual model for implementing a flexible
object-sharing infrastructure that better satisfies our requirements. In this chapter, we
motivate and explain the specific implementation choices that we have made in mapping this
conceptual model to a specific implementation based on Java and XML. Later on, we use this
prototype implementation in our evaluation process.

We use our outline example to walk through the implementation steps necessary to
implement a multi- user version of it. In the process, we describe the details of our
implementation and their relationship to the developmert effort.

4.1 XML Pattern Specification Language

Recall that our driving problem is to implement flexible, fine-grained sharing of the
example implementation of the cut | i ne object shown on Figure 3.1. For that purpose, we
first need to specify the programming patterns that would permit the infrastructure to extract
the object’ s logical components—its properties. Our general approach has been to provide an
extensible framework in which property definitions can be plugged in as needed. At the same
time, we need to provide aminimal set of ready-to-use patterns that directly support the
sharing of the most commonly used abstractions. To determine this set, we have used
previous work as guidance—the basic rationale is to be able to simulate the abstractions of
existing systems, such as Sync. Therefore, by default, we support three basic types of object
properties—simple, sequence, and table properties. Simple properties are identical to
JavaBeans properties, sequence properties have the same semantics to Sync’s
ReplicatedSequence, whereas table properties correspond to Sync’ s ReplicatedDictionary
abstraction.

In the Outline case, we need two of the definitions—the ones for simple and sequence
properties. Figure 4.1 shows the actual XML property specification for simple properties,
with the sequence (and table) definitions given in the Appendix. Although more verbose, the
XML specification shown on Figure 4.1 is, in fact, equivalent to the one we described in the

previous chapter using a simplified syntax, with the addition of several minor features, whose

purpose is explained below.

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE property_spec SYSTEM "PropertySpec. dtd">

<property_spec type = "sinple" version = "1.1">
<pattern nane = "getter" semantics = “accessor”>
<return_type>
<vari abl e name = "CGet Type"/>

</return_type>
<net hod_nane>
<literal >get</literal >
<vari abl e name = "Cet Nane"/>
</ met hod_nane>
</ pattern>
<pattern nane = "setter" semantics = "nodifier">
<return_type>
<literal >void</literal >
</return_type>
<net hod_nane>
<literal >set</literal >
<vari abl e name = " Set Nane"/>
</ met hod_nane>
<ar gunent _type>
<vari abl e name = "Set Type"/>
</ argurent _type>
</ pattern>

<constraint predicate = "equal s">
<l hs> <!-- Left-hand side of the constraint -->
<reference variable = "getter"/>
<reference variable = "Get Type"/>
</| hs>
<rhs> <!-- Right-hand side of the constraint -->
<reference variable = "setter"/>
<reference variable = "Set Type"/>
</rhs>
</ constrai nt >
<constrai nt>
<l hs>
<reference variable = "getter"/>
<reference variable = "CGet Nane"/ >
</ hs>
<r hs>
<reference variable = "setter"/>
<reference variable = "Set Nane"/ >
</rhs>
</ constrai nt >
<name_rul e>
<reference variable = "Get Nane"/ >
</ nane_rul e>
<type_rul e>
<reference variable = "Get Type"/ >

</type_rul e>

<handl er operation

<handl er operation

<handl er operation

<handl er operation
</ property_spec>

"read" class_nane
"wite" class_nane
"cl one" class_nane
"diff" class_nane

"handl er s. Si npl eReader "/ >
"handl ers. Sinpl eWiter"/>
"handl ers. Si npl ed oner"/ >
"handl ers. SimplebDiffer"/>

85

Figure4.1 XML specification for simple (JavaBeans) properties

4.1.1 Property Versions

One of the features not included in our conceptual description isthever si on attribute of
the property. Its main purpose is to help resolve ambiguities in determining which property
definition is used in cases where more than one specification define a property with the same
name. To illustrate, consider the following index-based implementation of a sequence
property. To avoid repetition, we omit the exact property specification but indicate as
comments the names of the pattern methods used.

public void i nsertSection(int i,Section s); // “insert” nethod
public void removeSection(int i); /1 “renpove” met hod
public Section getSection(int i); /1 "1 ookup” nethod
public int get Secti onCount () ; /1l “count” method

It implements the bare minimum of methods necessary to manipulate the sequence.
However, a subclass, may implement an extended version featuring additional (convenience)
methods, such as the ones shown below

public void setSection(int i,Section s);
public void renmoveAll Sections();

Hence, if the developer presents two versions of the sequence—one matching the
minimal pattern above and one matching the extended one—the infrastructure would
discover that they both define a property named Section in the subclass. To resolve the

ambiguity, the infrastructure picks the property specification with the higher version number.

By convention, versions that have the same major version number should only differ in
their method names. In other words, they should have the same number of methods with the
same signatures and semantics, which enables them to directly reuse handler code. For
example, if we used atitle/setTitle naming convention for our title property methods, we
would need an aternative simple property specification, which would have the same major
version and handl er elements but a different minor version and get t er method pattern
specification.

In contrast, properties with different major version numbers may not be able to directly
share handler code because they may have incompatible implementations. Consider the
following aternative implementation of a sequence property based on aJava's

Enuner ati on:

86

public void insertSection(int i,Section s); // “insert” method
public void renmoveSection(int i); /1l “renpbve” nethod
publ i ¢ Enumeraton get Sections(); /1 “list” nethod

TheEnuner at i on allows asingleiteration over the el ements of a collection of objectsin
the proper order. It has two methods:

public Object nextEl enent()
publ i ¢ bool ean hasMoreEl ement s()

The first one returns the next element in the enumeration (throws an exception if none),
whereas the second one is a predicate, which tests whether the enumeration has more objects
that have not been inspected so far.

While the index-based and enumeration-based sequence implementations are logically
equivalent in that all the operations of one implementation can be emulated using the other,
there is no one-to-one correspondence of individual methods and, therefore, handler code
cannot be directly reused. However, the property implementation differences are transparent
to the infrastructure services because handlers export the same programming interface by
defining the same abstract property operations regardless of the underlying property
implementation.

To illustrate, let us consider the actual implementation® of the object registration that is
invoked by the application’s startup code to register shared objects. Essentialy, the
registration consists of traversing the object tree as described in our basic Obj ect Wal k
algorithm from Chapter 3 and registering all | dent i fi abl e objects with the
Central Regi stry. To perform this registration, the infrastructure needs a read handler for
each discovered property so that it can perform the recursive analysis. In this example, we
need a read handler for each of the two property versions (index- and enumeration-based).

The infrastructure is insulated by the specifics of the read handler implementations by
requiring them to implement the Pr oper t yReader interface:

PropertyReader interface:

i mport java.io.Serializable;
i mport col ab. bus. pattern. Property;

public interface PropertyReader extends Serializable {
public Object[] getValue(Object target, Property property);
}

% For presentation purposes some details, such as exception handling, have been omitted.

87

The infrastructure code (shown below) uses the introspection mechanism to discover the

object properties and locate a read handler for each of the propertiesit discovers. If anew

property definition isintroduced, this would result in (potentially) discovering more

properties, however, this will require no changes to the infrastructure or application code.

The only piece of code that needs to be added is aread handler for the new property.

Object registration code (infrastructure service):

voi d df sRegi ster(Object node, Object parent, PropertySpec[] specs) {

i f(node == null) /1 lgnore null objects
return;

if(isPrimtive(node)) /'l lgnore primtive types, e.g. int
return;

i f(visitedObjects.containsKey(node)) // Ignore visited objects
return;

i f(node instanceof ldentifiable) // Register ldentifiable objects
Central Regi stry. bind((Identifiable)node);

vi sitedCbj ects. put(node, ""); /1 Add object to visited |ist
String classNanme = node. get Cl ass() . get Name();
Property[] np = Introspector. get Mat chedProperties(classNane, specs);

for(int i=0; np!'=null && i<np.length; i++) {
PropertyReader reader = ((PropertyReader)np[i].getHandler(“read”);
bj ect[] values = reader. getVal ue(node, np[i]);
for(int j=0; values !'= null && j<values.length; j++)
df sRegi ster(values[j], node, specs);

}

To complete our example, we also present concrete implementations of the read handlers

of the two version of the sequence property.

Read handler for the index-based implementation:

i nport java.lang. reflect. Method;
i mport col ab. bus. pattern. Property;

public class I ndexSequencePropertyReader inplenents PropertyReader ({
public Object[] getVal ue(Object target, Property property) {
Met hod count Met hod = property. get Met hod(“count”);
int count = count Met hod. i nvoke(target, null);
Met hod | ookupMet hod = property. get Met hod(“!l ookup”);
bj ect[] values = new Object[count];
for(int i=0; i<count; i++) {
bject[] arg = new Object[] {new Integer(i)};
val ues[i] = | ookupMet hod. i nvoke(target, arg});
}

return val ues;

88

Read handler for enumeration-based implementation:

i mport java.lang.reflect. Method;

i mport java.util.Enumeration

i mport java.util.Vector;

i mport col ab. bus. pattern. Property;

public class EnunSequencePropertyReader inplenments PropertyReader {
public Object[] getVal ue(Object target, Property property) {
Vector seq = new Vector();
Met hod |i st Method = property. getMethod(“list”);
Enunmeration list = |istMethod.invoke(target, null);
whi | e(list.hasMoreEl enents())
seq. addEl enent (1 i st. next El enent) ;
bj ect[] values = seq.toArray();
return val ues;

}
}

4.1.2 Method Semantics Attribute

Another important attribute we have not discussed so far isthe semant i cs of a method. It
provides a basic classification of the method' s functionality, which is necessary to correctly
implement sharing and to maintain the registration information about the shared objects. We
distinguish among four types of methods—accessors, constructors, modifiers, and
destructors. Accessor methods, such as the getter in simple properties, are used to obtain
information about the state of an object without modifying it. Constructors, such as the insert
method in sequence properties, structurally change the property by expanding it with
additional elements. Destructors, such as the remove method in sequence properties, are the
opposite of constructors—they reduce the property structure by removing elements.
Modifiers, such as the setter in simple properties, update the property but do not introduce
structural changes. In Section 4.2.2 we describe how these values are used to dynamically

maintain the correctness of object registration information.

4.1.3 Advanced Naming Conventions

The XML schema also enables the description of more complex, but common,
programming patterns than the ones discussed so far. Consider the following three methods,
part of the standard j ava. awt . W ndow class, which we would like to represent as a version

of a sequence property, called components

public java.awt. Conponent add(java.awt. Conponent conp);
public void renove(java. awt. Conponent conp);

89

public java.awt. Conponent[] get Conponents();
To accommodate such cases, we provide three additional tags to be used in the

constraint clauses:
shor t —denotes the abbreviated version of the class name after removing the
package prefix, e.g., short (j ava. awt . Conponent) == Conponent ;
pl ur al —denotes the plural form of anoun, e.g., pl ur al (Conponent) ==
Conponent s,
pl ur al _shor t —denotes the combination of the above two, e.g.,
pl ural _short (java. awt. Conmponent) == Conponents.

Using these tags, it is fairly straightforward to create a version of the sequence property

specification that accommodates the above case—the exact XML code is given the Appendix.

4.1.4 Property Exclusions

In practice, property definitions must allow for exceptions to the basic rules by enabling
the exclusion of a property that conforms to the syntax but not the assumed semantics of a
particular property. As an exclusion example, consider the following actua piece of the
implementation of the standard j ava. awt . Conponent class (the superclass for all user

interface objects):

public class Conponent {
public Rectangl e getBounds() {
return new Rectangle(x, y, width, height);
}

public void setBounds(Rectangle r) { .}
-

Apparently, the pair of get Bounds/ set Bounds methods defines a simple Bounds
property. Thus, during the property analysis, the get Bounds method would be invoked to
obtain the current value of the property. Following the recursive property analysis, the
resulting Rect angl e would also be analyzed. Unfortunately, the Rect angl e also has a

bounds property, which isimplemented in a similar fashion:

public class Rectangle {
public Rectangl e getBounds() {
return new Rectangle(x, y, width, height);
}

public void setBounds(Rectangle r) { .}

90

Further property analysis of the Rect angl e following the bj ect val k agorithm from
Section 3.2.1 (essentially, a depth-first traversal) would result in an infinite recursion
because, as a side effect of the invocation of the get t er pattern method, the object structure
would grow infinitely. Since new objects would be generated at every step of the analysis,
the standard mechanism of keeping track of visited objects to avoid cycles would be of no
help to break the infinite recursion (newly generated objects would never be on the visited
list).

Generdly, it is hard envisage a scheme that would automatically detect and get around
such problems. Our solution isto add an excl ude tag to the property definitions that would

detect such a property, thereby directing the infrastructure to ignore it:

<excl ude cl ass_nane="j ava. am . Rect angl e” nane="Bounds” scope="subcl ass”/>

The scope attribute here specifies that, unless otherwise marked, Conponent subclasses
would also inherit the exclusion. Note that exclusion is only necessary if it not possible to
observe the current state of a property (through the read handler) without modifying it. Thus,
recursive properties (ones in which the read handler returns the same type of object as the
analyzed object) are perfectly legitimate. For example, if in the following implementation the
Sect i on classget Subsect i on and get Subsect i onCount methods necessary to obtain the
current state do not modify the state of the Sect i on object (or create new objects), the
property analysis can proceed without problems.

public class Section {
public Section getSubsection(int i);

public void set Subsection(int i, Section s);
public int get Subsecti onCount () ;
public void i nsert Subsection(int i,Section s);

public void removeSubsection(int i);
-

4.2 Object Naming and Registration

So far we dealt with the implementation of the logical decomposition of shared objects.
With that step accomplished, we are ready to look into the implementation of the run-time
sharing mechanism. The first issue we need to resolve is what is being shared. For two, or
more, distributed object replicas to be shared, they must have a common, globally unique
identifier (or rame), which allows the sharing mechanism to match the replicas and to

distinguish them from al other objects. Since the issue of global naming does not arise in the

91

single- user case, we face the choice of implementing an implicit naming mechanism, which
handles the issue transparently, or an explicit mechanism, which can take naming
information from the programmer. While the implicit approach implies more automation, it
also provides less flexibility in the range of sharing modes that can be supported. In
particular, if two replicas are created concurrently and independently, their system-generated
global identifiers would be different and the infrastructure would have no means to establish
that they correspond to each other. As a simple example, suppose thet users A and B have
each started an instance of the Outline application. This would automaticaly initialize a
number of shareable objects—theroot cut | i ne object and its user interface—each with their
own unique global identifiers. However, if A and B want to share (some of) these objects,
then corresponding replicas must have the same global identifier. Since the infrastructure has
no information to establish the correspondence, and the programmer has no mechanism to
provide it, the infrastructure must either seek help from the user, or place restrictions on the
replica instantiation process (e.g., Smultaneous instantiation at all sites) to ensure consistent
naming. Implicitly, restrictions on replica instantiation impose restrictions on the supported
sharing modes (e.g, simultaneous instantiation precludes asynchronous sharing).

Therefore, we have made the design decision to take an explicit approach to naming by
making the global name part of the logical structure of each shareable object. This gives us
the flexibility of getting help from the programmer in establishing a naming scheme. In
addition to being more flexible, this also simplifies the trandation from alocal object
reference to a global identifier and bypasses a registry lookup. Another benign side effect of
this design is that it smplifies the management of the registry used to trand ate between local
and global names because the global name is serialized along with the rest of the object,
saving the infrastructure the need to keep track of what registry information needs to be
disseminated along with every event, or the need to maintain a global registry.

We should note that, an explicit scheme becomes, for all practical purposes, implicit if
the burden of assigning names is placed entirely on the infrastructure. Thus, in sharing
scenarios where thisis possible, the infrastructure can take charge and provide the benefits of
automation typical of implicit schemes. Finally, as the following discussion shows, the
additional development effort required is trivia and can be largely automated for Java
programs.

92

4.2.1 Identifiable Objects

Specifically, to implement our naming scheme, we require that all shareable objects
implement the following interface:

public interface lIdentifiable {
public G D getd D();
public void setG D(G D gid);
}
where d D is defined as follows:

public interface G D extends java.io.Serializable {}

The infrastructure provides default string-based and integer-based implementations of the
G D interface. In addition, the system supplies a Repl i cat edObj ect class, whose main
purpose is to provide a default implementation of thel dent i fi abl e interface and to be sub-
classed by application objects in lieu of sub-classing j ava. | ang. Obj ect (the root of the
Java object hierarchy). Ultimately, the transition from sub-classing bj ect to sub-classing
Repl i cat edObj ect can be completely automated even for compiled Java code by
performing it at load time by a specialized class loader using an object- instrumentation tool
such as JOIE [5]. Currently, this technique is not part of our prototype as it does not bring
anything conceptually new to our approach. However, we do plan to eventually incorporate it

as part of our prototype to provide a more complete implementation.

4.2.2 Object Registration

The trandation from global to alocal reference requires that the infrastructure maintain a
table, or registry, which maps global to local references. We refer to the process of
establishing such mapping as (object) registration, and we store al such information in a
Cent ral Regi st ry object. Another aspect of the registration is also the discovery of parent-
child structural dependencies, which we storein a DependencyRegi st ry object

Object registration is triggered in one of three ways: explicitly, as aresult of the
application’ s request to bi nd an object to a specific G D; implicitly, asaresult of recursive
registration, or as a side effect of a property operation. Explicit registration is typicaly
necessary for the root object of a shared object structure, such asthe cut I i ne object where
the application must specify a‘well-known’ name. However, in a situation where the
infrastructure controls the instantiation (and, therefore the naming) of shared objects, this

process can also be automated. For example, in our shared window implementation, the

93

infrastructure automatically ensures that al window replicas and their components have
matching names. This is achieved by listening for w NDOW OPEN events and automatically
renaming the newly created W ndow object so that all replicas have the same name. The
naming scheme is based on a counter that is consistently advanced across all application
instances.

The registration of shared object structures typically follows a recursive fashion. This has
two advantages. first, it frees the developer from the need to invent a naming scheme for al
shared objects; second, it allows the discovery of parent-child relationships that define the
structural hierarchy of the shared objects. As already discussed, our infrastructure maintains
the inverse, Is-Part-Of, relationship.

Once discovered, structural dependencies must be maintained up-to-date with the run-
time changes to the structure as a result of property operations. For example, if a subsection
1.2 ismoved to section 2 as subsection 2.5, obvioudly, the structural dependencies would
have to be updated. Thus, as a side effect of a property method, we may aso need to update
the dependency registry. For that purpose, we employ the semant i cs attribute of the invoked
method as follows:

If the executed method is an accessor, no update is necessary.

Otherwise, if the list of parameters containsasingle 1 denti fi abl e object (e.g., a

Sect i on), we assume that the property operation manipulates the association between the

parameter object and the target object whose property is being modified (e.g., Qut I i ne).

Thus, we interpret the operations as follows:

o If the executed method is a constructor, then a new association between the argument

and the target is established.

o If the executed method is a destructor, then we remove the association between the

argument and the target.

o If the executed method is a modifier, then we replace the current association for the

argument.

If the list of parameters contains more than onel denti fi abl e object, it is unclear what

association is being manipulated. Therefore, we take a conservative approach and

recursively rebuild the property dependencies starting with the affected property.

94

4.3 Event Flow

After resolving the object naming issue, we can follow step-by-step the processing of
user updates from one replica to another. Our discussion is illustrated by Figure 4.2, which
gives a graphic presentation of the event flows generated by our conceptual model and
summarizes possible ways in which individual updates can be shared between two, or more,

replicas.
Application |
Diff, Read Coupler
| J P Registry —Péi% | -
Event Adapter 7~
App Triggers : <Commit>
Timer
Application
|-> Replay
Coupler
» » « —P Registry — I 1T1TT] |
Merge

—p Property Event —-—= Synchronization Event —— Trigger

Figure4.2 Event flow model of theinfrastructure

As astarting point, we assume that the pattern analysis of the shared object (as suggested
by the tree structure in the “ Application” box) has been performed. Likewise, we assume that
initial object naming and registration have also been completed and as a result of user
actions, the local copy of the shared object is modified and a corresponding modification of
the peer replicas must eventually be performed.

As afirst step, we need an update notification to be issued by the application. This can
happen either directly, or indirectly. By directly we mean that the application creates an

instance of the infrastructure-defined Pr oper t yOper at i on object and passes it to the

95

infrastructure. This approach is typical of collaborative applications that are built from
scratch.

Indirect notification is typical for applications with fully developed single-user
functionality and a custom event mechanism. Usually, tapping into custom event mechanism
and providing an event adapter, which trand ates the application specific eventsinto
Proper t yOper at i ons isthe most economica way of interfacing the application with the
infrastructure. Currently, our implementation provides two reusable event adapters—
AWFEvent Adapt er and BeanEvent Adapt er . The former trandates the standard Ul events
issued by the AWT/Swing library, whereas the latter trandates the standard
Propert yChangeEvent Sissued by JavaBeans objects into Pr opert yOper at i ons.

An dternative, “pull-based”, means of obtaining property eventsisto perform a Diff, or
Read operation on (part of) the shared structure. Such an operation is invoked by the Coupler
in response to a synchronization event whenever the current acquisition policy parameter is
st to Diff/Read. Thisis useful when the application has not been coded to “push” events to
the environment.

Synchronization events are issued as result of user action (e.g., commit), timer
expirations, or application trigger activations. An application trigger is an object that listens
for application-specific events (e.g., mouse release in a drawing area) and issues
corresponding synchronization events (e.g., edit complete).

In al cases, events are delivered through a static, ‘well-known’ object, thereby bypassing
the need for explicit composition between the application objects generating the event and
the Coupl er object that eventually receives them. Once the Coupl er receives an event, its
first job is to update the registry information (for that reason the diagram shows the event
going through the Regidtry first). There are two registries that may need to be updated—the
Cent ral Regi st ry and the DependencyTabl e. The update is based on an analysis of the
semant i cs attribute of the operation and its accessor/ constructor/ destructor/ modifier
classfication. The DependencyTabl e isrefreshed based on the rules already described in
Section 4.2.2. The Cent ral Regi stry isrefreshed in asimilar fashion—any | denti fi abl e
arguments of a constructor/modifier operations are added to the registry, whereas any Gl D
arguments of a destructor are removed.

96

Next, the event is filed with each of the outgoing queues associated with individual users
(or groups of users) and is then evaluated with respect to the each of the corresponding
policies based on the associated user and the target object of the property operation. Events
that meet the minimum requirements set by the policy are immediately sent to their
respective recipients using the event multicast service described below in Section 4.5.

After the remote Site receives the incoming event, it is processed aong the same lines as
outgoing events. First, the local registry and dependency tables are updated, then the local
Coupl er looks up the installation policy, selects the installation method, ard applies the
updates to the application object.

4.4 User Interface

To control the sharing of application objects, the users need an appropriate interface that
allows them to control the mapping of shared objects to sharing policies, fine-tune the
policies themselves, as well as execute Transmit/Commit operations. Such an interface must
be generic and flexible enough to accommodate arbitrary applications and avoid the cost of
building of specific interfaces for each application. Moreover, from a user’s point of view,
having a unified interface also allows the transfer of collaboration experience from one

application to ancther.

4.4.1 Object Browser

The user interface of our infrastructure is built around the idea of an object browser. The

Obj ect Browser shows, in adedicated window, atree representation of the structural
hierarchy of the shared objects registered with the infrastructure (Figure 4.3).

97

Egﬁl]hject Browser - Application - |EI|£|

Filters

Group -
PP ST -
D Ij =Graph=ucigraph.DefaultGraphModel @632a53 —
DY “E policy » Commit-Diff =
? Ij =M . i
Explore Commit-Increment b
P ef Sample|
& Transmit Complete-Increment B3
@ Commit Increment-Increment 1 Samplet
@ [=Figun Coupling Scheduled30-Increment || ks

¢ 1 <E Layers Transmit-Increment
D b Edit |
1 =Figs= -
a '? 2 7 Set As Default T 1| |

Hone

Figure 4.3 Object Browser with Policy Selection Pop-up Menu

The browser provides a generic interface that allows users to navigate the tree and
execute operations on the selected objects. The operations are, in fact, callback methods
registered with the browser during startup. Usually, they are infrastructure-provided, such as
setting policies and committing updates. As Figure 4.4 shows, one of the operations
registered is the “explore” command implemented by the browser itself. It creates an
independent view (in a separate window) of the selected object and its children. The
application can also take advantage of the browser and register its own operations that
require a custom implementation (e.g., save, print, etc.)

The operations are triggered by the user through buttons, menu items, and context-
sensitive pop-up menus. The user-selected object becomes an implicit argument in callback
invocations. Furthermore, callbacks can register lists of possible values for a second
argument, which are presented to the user as submenus. For example, in setting a sharing
policy, the policy manager needs two arguments—the object to which the policy applies and
the policy itself. As shown on the figure above, specification of these parameters can be
accomplished by the user in a couple of mouse clicks: aright-click on the object and a

selection of the policy from the list of named policies in the submenu.

98

To connect the bj ect Br owser with the application user interface, the application
invokes (in the startup code) aregistration call, which automatically adds a “ Collaboration”

menu to the specified application window:
Col abJMenu. addCol abMenu(mai nW ndow) ;

The collaboration menu allows the user to show/hide the browser, as well as to execute

general commands thet do not require target selection, such as committing/transmitting all

changes (Figure 4.4).

Egﬁﬁraphnraw: Dilbert =10l x|

File Edit View Arrange Cullahuratiun|

k q ol o Object Browser E) E:} "o

(=)

Transmit All Py
Commit All Bx
Shutdown
Exit

|« b

Figure4.4 Collaboration Menu Attached to an Application

One practical issue that arises for most applications that the sheer number of properties
discovered by the analysis leads to alarge object tree, which may be difficult to navigate. To
reduce the clutter, we offer users the option of filtering out properties based on their type or
layer (Figure 4.5). In our experience, filtering out simple properties, for example, istypicaly
sufficient to reduce the tree to a manageable size. We should note that the filtering is only for
visualization purposes and does not affect the behavior of the system. Users may open

severa browser windows and have different filters for each one of them.

99

x| x|
i] Include Layer Mame
[i ey
[*default*
[madel
Apply | Cancel | Apphy Cancel

Figure4.5 Type- and Layer-based Property Filtering

Another practical issueis related to user orientation in the application structures. In
particular, how does the user map the selected node in the browser window to the actual
object in the application window? Short of integrating the application and infrastructure
interfaces in a custom-built interface, the best solution is to highlight in the application the
object selected in the browser window. We can automatically perform this (on alimited
basis) for the standard Ul components, such as text fields, buttons, and panels (the
infrastructure ssimply checks if the selected object is a subclass of j ava. awt . Conponent and,
if s0, swaps the foreground and background colors). However we cannot automatically solve
the problem for non-UI objects without help from the programmer.

Currently, there are two ways for the programmer to pass on such information—by
naming convention and through a “highlight” callback routine. In the first case, the devel oper
must explicitly name the user interface component that renders the non-UI object by adding a
“.view” suffix to its global identifier. In other words, if the globa name of the non-UlI object
is“xyz”, then its rendering object must be named “ xyz. vi ew’ . When the object named xyz
is selected in the object browser, the infrastructure automatically looks for a registered
xyz. vi ewobject and, if it finds it, swaps the values of its foreground and background
properties (if present). Note that the developer does not have to generate the G D for the non
Ul object.

The second, more flexible but less automated solution, is for the developer to register a
“highlight” callback routine that changes the rendering of the selected object in the
application window whenever the underlying object is selected/deselected in the browser.

100

Once registered, the routine is automatically invoked whenever the selection changes and the
new selection is passed on as an argument. (Our name-based scheme actually uses this
mechanism by registering an appropriate callback during initialization.)

4.4.2 Policy Specification

As suggested by Figure 4.3, one of the main purposes of the browser to provide a point-
and-click interface for specifying both persistent and dynamic, or custom, sharing policies.
Persistent policies are maintained in the form of XML files and are automatically loaded at
startup from a default directory and shown to the user as a submenu. Thus, the list of
available policies can be controlled by adding/removing the corresponding XML files and the
policies can be tailored using generic XML editing tools. An example policy, called
Increment-Increment, which allows all (incremental) changes to be sent and received without
restriction, is specified below.

<?xm version="1.0" encodi ng="UTF-8" ?>

<obj ect javaC ass="col ab. bus. coupl i ng. Coupl i ngPolicy">
<name val ue="Increnent-Ilncrenent" />
<transm t Event val ue="0" />
<transm t Correct ness val ue="0" />
<transm t Peri od val ue="0" />
<transm tTi nme val ue="0" />
<transm t Met hod val ue="0" />
<l i stenEvent val ue="0" />
<l i stenCorrectness val ue="0" />
<listenPeriod val ue="0" />
<listenTinme value="0" />
<install Met hod val ue="0" />

</ obj ect >

The main conceptual difference between custom and persistent policiesis that the former
are referred to by value, whereas the latter are referred to by name. Thus, naming provides a
level of indirection, which simplifies the policy management and lessens the need for novice
users to understand the full capabilities of the sharing model before using it. On the other
hand, the option of specifying custom policies gives users complete control of the sharing
process at the finest granularity

To specify a custom policy, the user performs aright-click on the target object (in the
object browser) and selects “Policy” - “Edit” option shown on Figure 4.3. This brings up
the coupling policy editor shown on Figure 4.6.

101

[=3 Coupling Policy Editor x|
~ Policy Parameters
Name:
- Transmit
Event Correctness Transmit Method
Increment el Committed ™~ || Diff -
- Listen
Event Correctness Install Method
Increment b Raw * || Playhack b
Hew Apphy Cancel Save As

Figure 4.6 Coupling Policy Editor

If the target object/property already has a specified policy, it will be displayed as a
starting point of the editing process. After editing is complete, the user has the choice of

Apply-ing it to the target object/property, or Save-ing it as a persistent policy .

4.4.3 Layer Specification

Specifying the application layers is very similar to the policy specification above in that
all specifications are kept in XML format and can also be edited through an infrastructure-
provided editor. XML files are linked to the classes by a simple naming convention—the

specification file has the same name as the class with an * .xml’ extension. For example,

assuming that our cut | i ne classis part of the out I i ne package, the corresponding layer
definition would look as follows:

outline.Outline.xml:

<?xm version="1.0" encodi ng="UTF-8""?>
<obj ect class = "outline.CQutline">
<l ayer nanme="nodel ">
<Title />
<Section />
</l ayer>
</ obj ect >

Since, in this case, all object properties belong to the same layer, we could have also used
ashorthand <ALL> tag to indicate that fact:

102

<?xm version="1.0" encodi ng="UTF-8""?>

<obj ect class = "outline.CQutline">
<l ayer nanme="nodel ">
<ALL />
</l ayer>

</ obj ect >
Recall that alayer definition for a class also provides default layer assignments for
properties of its subclasses. Hence, whenever a new class is encountered, the infrastructure
may have to traverse several levelsin the class hierarchy to find an appropriate definition. To
speed up this process, we load all available layer definitions at startup time to make them
available for quick table lookup.

As with sharing policies, we aso provide an editor that frees the users from the low- level
details of the XML definitions:

E%Larer Definitions for uci.graph.DefaultGraph™odel - |I:I|£|
~Layers — | | Layer Assignments
view Froperty Mame Layer
default Edoes W
muodel MHodes view -
Mletlist view
default
model
Add Remove Hew Open Save Copy From Apphy To Close

Figure4.7 Layer Editor

Finally, we need away of specifying the layer dependencies that are essential for the
correctness of our sharing model. This isimplemented via a Layer Dependencies.xml file,
which defines layer relationships specific for a particular application. For example, the layer

dependencies for our Outline application are succinctly defined as follows:

<?xm version="1.0" encodi ng="UTF-8" ?>
<l ayer _dependenci es>
<wi ndow>
<vi ew>
<nmodel / >
</ vi ew>
<appear ance/ >
</ wi ndow>
</ | ayer _dependenci es>

103

We should note that layer dependencies do not have to be a strict tree structure. For
example, if we attached a chat tool to the outline editor the layer dependency structure could
look as a forest with the editing and chat parts having separate dependency trees (assuming
they run in separate windows):

<?xm version="1.0" encodi ng="UTF-8" ?>
<l ayer _dependenci es>
<out | i ne_wi ndow>
<outline_view>
<out | i ne_nvodel / >
</ vi ew>
<out | i ne_appear ance/ >
</ outline_w ndow>
<chat _wi ndow>
<chat _vi ew>
<chat _nodel / >
</ vi ew>
<chat _appear ance/ >
</ chat _wi ndow>
</l ayer _dependenci es>

4.5 Remote Communication

As amatter of design choice, we have not bound the implementation of our sharing
mechanisms to a particular remote communication mechanism. Instead, we assume afairly
basic event multicast service and do not rely on the lower-level communication infrastructure
to provide sophisticated ordering and delivery options. We define asimple, high-level
interface, which alows the underlying multicast implementation to be replaced transparently
by the infrastructure.

The concrete service implementation we have developed in our prototype uses a
centralized event multicast server, based on Java’'s RMI mechanism, as the basic means of
remote event delivery (Figure 4.8). Whenever the Coupler decides that an event must be
transmitted, it passesit on to its local multicast client. The client makes a request for delivery
by invoking the appropriate version of the server’s not i f y method, with the event object to
be delivered and the recipient(s), which can be a particular user or a whole group. Figure 4.8
shows an example, in which the coupler at site A must deliver an event to the rest of the
group. In this case, as suggested by the single outgoing queue, the coupling policy isidentical
for al participants. Thus, the client invokes the not i f yat her s method of the server, which

places a copy of the event in the corresponding server delivery queues for Band C. If we had

104

separate coupling queues for B and C at the sender, then events would be unicast one at a
time using the not i f yMenber server method.

To avoid deadlocks, as well as improve local response time, it is essentia to make the
notification mechanism asynchronous. For that purpose, the server maintains a separate

gueue and delivery thread (Ta, Tg, and T¢) for each connected client.

Coupler B

{8 ¢} i
(coporn 85— faenn] | (o)

Server

Figure4.8 RMI-based Multicast Architecture

The sole function of a delivery thread is to contact its client and immediately deliver all
events currently waiting in its queue. As soon as that is accomplished, the thread goesinto a
deep state. Thus, whenever an event multicast request is received from aclient, thenoti fy
method places a copy of the event into the queues of its intended recipients and immediately
returns control to the caller. Before returning, the not i f y method wakes up all delivery
threads with non-empty buffers so that they get a chance to run afterwards and deliver the

contents of their buffersto their respective clients.

4.6 Session Management

A collaborative session refers to the virtua computer- mediated meeting of a group of
users that allows them to work together on a shared object. Session management refersto the
infrastructure function that allows users to create, join and leave a collaborative session.

Thus, by definition, session management is an indispensable part of any multi- user

105

application. However, unlike other systems, such as JCE, we do not consider session
management to be a separate concept from object sharing. Instead, like GroupKit, we have
chosen to model it as a shared structure and apply the described sharing mechanisms to it.
Specifically, a session is a string name with an associated dynamic list of users
maintained by a Sessi onSer ver object, which runs at awell-known location.
Sessi ondl i ent's (representing different users) join/leave the session by contacting the
server, which in turn expands/reduces the list of users and sends corresponding notifications
to the rest of the users on the list. Such notifications can be used as triggers for collaborative

functions such the transfer of the current state of a shared object to a newcomer.

4.7 Initialization

To complete our implementation description, we show the initialization steps that an
application developer has to perform in order to use the infrastructure. Our discussion is
based on an actual piece of code written for the GEF (Graph Editing Framework) sharing
example, the details of which are described in the following chapter. For now, we will merely
state that GEF is a nontrivial piece of software and itsinitialization code shown below is
typical of the effort required to compose the single- user application with the sharing services

of our infrastructure.

public class G aphDraw {
public static void main(String argv[]) throws Exception {
SystenBoot.init(argv); [/ Command line processing
Syst enBoot . specslnit(); // Property specs loading
SystenBoot.clientlnit(); // Sharing services initialization

/' Original single-user startup code

String frameTitle = "GraphDraw. " + System get Property("argv.u");
JGraphFrame jgf = new JG aphFrane(franmeTitle);

j gf . set Tool Bar (new Sanpl ePal ette());

j gf . set Bounds(0, 0, 400, 300);

jof.setVisible(true);

/1 Root object registration

Def aul t G-aphModel nodel = (Defaul t GaphModel)| gf. get G-aphModel ();
PropertyRegi strar. registerPersistent(nodel, "G aph");

Layer figs = jgf.getGaph().getEditor().getlLayer Manager().getActivelLayer();
PropertyRegi strar.registerPersistent(figs, "Figures");

/1 Event adapter installation

new GraphMbdel Adapt er (nodel);
new Edi t or ModeAdapter(jgf.getGaph());

106

/1 Object browser initialization

Coupl i ngObj ect Br owser . addRoot Obj ect (nodel) ;
Coupl i ngObj ect Br owser . addRoot Obj ect (| ayer);
Coupl i nghj ect Browser . set Vi si bl e(true);

/| Collaboration menu attachment
Col abJMenu. addCol abMenu(j gf);

}
}

Thefirst three lines of the startup code—the Syst enBoot invocations—provide general
infrastructure initialization that does not depend on the particular application. The first two
steps—command line argument processing and the loading of property specifications—are
optional in that the application may elect to implement them differently. However, by using
the set of infrastructure-defined command line parameters, such as the location of the
property specifications, the application can pass onto the infrastructure the handling of such
details that are largely irrelevant to the application’s functions

Next, the general application initialization (which is independent of the sharing) is
performed, followed by the registration of the root objects through ther egi st er Per si st ent
calson the infrastructure. (Note that the creation the nodel and fi gs object happens as a
result of instantiating the JG aphFr amre earlier. Here, we merely obtain references to these
already initialized objects. The Layer object refersto GEF’s own visua layers and is not
related to our notion of application layers, which are given only as XML specification and
never show up in the application code.) We have also developed two adapter objects that
trandate application-specific events into property and synchronization events and these
adapters are installed next. Finally, the startup is completed by initializing the object browser

and attaching a ‘ Collaboration’ menu to the application’s standard user interface.

4.8 Performance Considerations

Since our design relies on adding (multiple) levels of indirection at various points on the
critical path of event processing, we need to evaluate the impact of this performance
overhead on the end- user experience. Ideally, we would like to measure end-to-end delay
experienced by the user and break it down into its components. In practical terms, however,
this turns out to be a difficult task because there are multiple threads participating in the

event processing and the scheduling decisions are beyond our control. Furthermore, our

107

analysis shows, in amost all cases, the added overhead cannot be adequately measured
because it falls well below the granularity of the Java time routine.

Thus, we take a bottom up approach, in which we measure the basic cost of the overhead
added at each point of the event processing and produce a conservative quantitative estimate
of the accumulated overhead.

4.8.1 Run-time Over head

Our extensibility requirement has lead us to an implementation, which commonly
replaces a direct method invocation with a table lookup, followed by a reflection-based
method invocation (e.g., looking up and invoking a property handler). Therefore, measuring
the cost of these operationsis our first step in estimating our overhead. For that purpose, we
used test programs that allowed us to obtain long-term averages over alarge number of
operations (10°-10°). All tests were performed on a system with a 1.6GHz Pentium 4
processor running MS Windows XP and version 1.4.0 of the Java Runtime Environment from

Sun Microsystems.

4.8.1.1 Table Lookup

Throughout our implementation we have consistently used the standard
java. util . Hasht abl e for storing table information. Thus, we are interested in the
performance of the basic get and put operations. As it turns out, both of these are quite

affordable. On average,
A get takes between 1. 2x10-3ns and 1. 4x10 3ms as the size of the table varies
between 100 and 500, 000 entries,
A put takes between 1. 3x10%ns and 1. 9x10 3ns asthe size of the table varies

between 100 and 500, 000 entries.

4.8.1.2 Reflection-based Method Invocation

To measure the cost of reflection-based invocation, we compare the time it takes to
invoke an empty method with three arguments using direct invocation and reflection-based
invocation (the exact number of arguments only marginally affects execution time).

On average,

A direct method invocation takes approximately 1. 1x10 °ns;

108

A reflectionbased method invocation takes approximately 1. 7x10 *ns.

The above numbers, show that, in relative terms, a reflection-based invocation is quite
costly compared to a direct one. However, in absolute terms, it is clear that reflection is quite
affordable, even after multiplying the above numbers by a factor of 6 to account for the fact
that the test program fits in the CPU cache entirely. We obtain the factor as the ratio of CPU
cache speed (1.6GHz) and main memory speed (266MHz).

4.8.1.3 Policy Lookup

Given the hierarchical approach to specifying policy lookups, a coarse-grain specification
(e.g., asingle policy for the root object) can make the policy lookup expensive for large
application structures. For example, suppose that there is a single policy specification given
for the AWT Conponent class, that provides adefault for Ul objects. Now consider a policy
lookup for a property of aJcheckBox of the standard Swing library (this could be triggered
by a user clicking on the checkbox). Using the default structure-first traversal policy, it
would take at least 10 lookups to find a policy: The structural hierarchy must be at least 3
levels deep (immediate container, root container, and bounding frame), whereas the
JCheckbox classis5 level below Conponent in the class hierarchy. In addition, alookup for
the affected property and the JcheckBox itself would also be performed. Hence, it is
desirable to avoid paying such costs repeatedly.

Therefore, we use a policy cache, which retains the results of recent policy lookups.
Furthermore, by taking into account that policies are typically specified at the object-level
granularity (rather than property-level granularity), we can further improve the efficiency of
the caching. For that purpose, whenever we lookup a property-level policy and the parent
object does not have a specified policy, we cache the result both at the property and the
object level. This effectively pre-fetches the policy for other properties of the same object.
For example, if the user modifies the position of a shape object in adrawing, followed by a

change of the size, the policy lookup for the size property would take a maximum of two
steps.

4.8.1.4 Remote Communication

The overhead of communicating property events across the network consists of two

major parts: object serialization and transmission. The former represents the cost of

109

converting a Java object into a suitable byte representation that can be transmitted over a
TCP/1P socket connection. The latter is the actua time required for the transmission itself.
Since the transmission cost is dominated by network characteristics and will have to be paid
by any infrastructure, we focus our attention on the serialization cost as it is a function of the
specific approach we have taken.

We performed a series of tests to quantify the cost of serializing aPr opert yOperati on
object, which carries the property updates across the network. The time it takes to
serialize/deserialize such an object, carrying three operation arguments was approximately
0. 03ns in our experimental setup. Given that our centralized multicast service
implementation requires an extra serialization/deserialization cycle at the server, we estimate
that the overall serialization overhead we incur on the critical path of a property event is
about 0. 12ns. Thus, seridization has a margina impact on user experienced end-to-end
delay.

4.8.2 Pattern Analysis

Another component of the processing overhead is the initial pattern analysis of shared
objects, which based in the programmer-provided specifications, discovers the properties of
an object. To estimate the cost of this analysis, we measured the amount of time it takes to
perform it under differert circumstances. The complexity of the current (un-optimized)
version of the analysis algorithm is approximately proportional to the product of the number
of methods of the analyzed object and the number of property specifications. Therefore, we
performed a number of tests on actual classes from the JDK with the actual property
definitions we have used in various applications.

In the table below we present, what we consider, extreme cases to illustrate the range of
observed executions times. We have chosentwo commonly used classes—one with few
methods and properties (j ava. util . Vect or) and one with numerous methods and
properties (j avax. swi ng. JFr ame) —and measured the actua time it took to perform the
analysisusing 1 and 12 property definitions (the maximum number we have used in our

application implementations).

110

Class Number of Number of Number of | Execution

Methods | Specifications | Properties | Time (ms)
java. util. Vector 50 1 1 60
java.util. Vector 50 12 1 100
j avax. swi ng. JFrame 286 1 27 180
j avax. swi ng. JFrane 286 12 33 320

Table4.1 Pattern Analysis Execution Times

Asthe numbersin Table 4.1 suggest, pattern analysis is expensive but practical given the
fact that it is a one-time effort for a given class. However, if arelatively large number of
classes must be analyzed at once (e.g., at startup), this can cause a user perceived ‘pause’ in
the execution. Therefore, once the analysisis performed, we cache the results persistently to
make them readily available for the next execution. This technique can be taken a step further
by performing the property analysis entirely off-line as a post-compilation step, thereby

minimizing the computational overhead associated with pattern analysis.

4.8.3 SuUmmary

In summary, the measurements of the intrinsic steady-state costs (those incurred after the
initial pattern analysis) incurred by the implementation show that the impact on user
experience is negligible, even by our most conservative estimates. For example, if the
infrastructure performs 100 put operations and 100 lookups on the critical event path—a
highly unlikely case—at the cost of 2x10-3ns and 1. 5x10-3ms, respectively, the overall effect
on end-to-end delay would still be no more than 0. 3ms. Combined with an estimated
serialization cost of about 0. 12ns, we obtain as a conservative estimate of the infrastructure-
incurred computational overhead of lessthan 0. 5ms. Thus, on afast local areanetwork with
round-trip timesin the order of 0. 25ms (under good conditions) we can reasonably expect the
estimated end-to-end delay to be below 1ns. Clearly, on awide area network, end-to-end
delay will be dominated by the network delay, with typical round-trip times between 20ms
(for the local metro area) and 100ms (coast-to-coast) °.

We also showed that pattern analysis is an affordable operation that can aso be

performed off-line to further minimize its impact on performance. Finaly, we should note

5 Measurements taken witht r acer out e

111

that in our qualitative experience, the largest impact on user-perceived delay (on afast loca
network) is the refreshing of the user interface performed by the Java Virtual Machine in
response to user actions. Unfortunately, we were unable to obtain a direct measurement

because of the asynchronous nature of such updates.

112

5. EXPERIENCE

In this chapter, we present our experience in building collaborative applications using our
prototype infrastructure implementation, as well as the use of pattern-based approachesto
problems not related to collaboration. In the collaboration side, we start with the outline
example and work through the details of implementing various sharing scenarios. The outline
application was chosen as an example of a structured text editor that is comparable to the
editors supported by our benchmark system for sharing flexibility—Suite. Next, we describe
our shared user interface toolkit implementation, which is an example of Ul sharing for
applications based on Java's Swing library and is directly comparable to another benchmark
system—JCE. Next, we use describe our experience with the GraphDraw and Shapes
applications. The two are structured graphical editors that have been developed by third
parties and we use them demonstrate the effort in converting an existing third-party single-
user application into a collaborative one. In all cases, our primary interest isto measure the
extent and complexity of the development effort involved, as well as the respective flexibility
benefits.

Next, we use three examples of generic nortcollaboration infrastructure services that we
have developed based on our abstraction and architectural models. These include XML -based
serialization of Java objects, UPnP system interface generation, and UPnP user interface
generation. In all cases, our pattern-based approach yields significant automation gains and

provides more general solutions than currently possible.

5.1 Outline Application

Our discussion of the Outline application follows the implementation of differert sharing
scenarios. We begin with the most basic sharing scenario, which requires the least amount of
development effort and has the least amount of flexibility, and we gradually increase the
sophistication of the application’s sharing capabilities and present the respective
devel opment effort.

113

Our starting point is arelatively straightforward single-user implementation of the
Outline application. It is based on two objects—model and view—with the former being a
concrete implementation of the skeleton code shown throughout our presentation and the
latter using aJ Tr ee component from the standard Java AWT/Swing user-interface toolkit to
render and edit the model. In other words, the cut | i ne object represents the model layer of
the application, whereas the JTr ee represents the view layer, as shown below:

Modd View

Public class Qutline { D SL G

String getTitle(): & [11.2 Reguirements

. . . . 1.3 Related Work
voi d setTitle(String title); QI__.I[_:HE?;TWJD(;E

[C31.3.2 Suite

voi d insertSection(int i, Section s); 3 1.3.3 Sync

voi d removeSection(int i); & (2. Design goalsl |
Section getSection(int i); & [3. Implementation

voi d setSection(int i, Section s); = I__=I_ 4. Evaluation

i nt get Secti onCount () ;

Figure5.1 Model-View decomposition of the Outline application

Theaut | i ne object also implements a number of methods from the standard
Mut abl eTr eeNode interface, which facilitate its interaction with the JTr ee object. Since
these methods are routine and irrelevant to our discussion, we have opted to leave them out.
Similarly, we skip many other details, such as the precise mechanisms used by the
application to handle insertions/del etions of sections, that have no bearing on our sharing

problem.

5.1.1 Asynchronous Sharing

Our first group of scenarios represents the model-level sharing of the cut | i ne object
without assuming update notification. The rationale here is that the baseline (single-user)
implementation does not require the aut | i ne object to issue update notifications so we

should explore the possibilities under this condition first.

5.1.1.1 Scenario 1: Read/Write Peer-to-Peer Sharing

The lack of a notification mechanism implies that we are restricted to asynchronous
sharing, in which the infrastructure must poll the shared object to obtain updates. In its

simplest form, such polling is reduced to obtaining the current state of the replica. In our

114

model, thisis specified through the use of a sharing policy that has a read vaue for its
acquisition parameter. For example, we can specify a<Read, |ncrement, Raw, Replay>
policy for the cut I i ne object, which indicates that updates are acquired by read-ing the
object, then are transmitted with no constraints with respect to the communication operation
(I ncrenent) or leve of correctness (Raw), and the values are directly installed on peer
replicas (Repl ay). (Throughout this chapter, when we give policies, we always consider the
effective policies resulting from the combination of the outgoing policy of the sender and the
incoming policy of the receiver.)

As aready discussed in Section 4.3, the triggering mechanism for obtaining and
communicating the update mechanism can be an explicit Transmit/Commit operation, timer
expiration, or an application trigger (Figure 4.2). In the case of explicit initiation, one option
for the user isto select the ‘ Transmit All’/’Commit All" item from the ‘ Collaboration’” menu,
which generates a synchronization event for each of the objects registered as root with the
infrastructure; in this case the aut | i ne. As aresult, the coupler consecutively reads the
current values of each of the object’s properties and transmits them as (over)write property
operations. The operations are tagged according to the transmit parameter of the triggering
synchronization event—Transmit or Commit; the transmit parameter is set to Scheduled
whenever the event is triggered by atimer.

Upon delivery at the remote site, the coupler looks up the respective write handlers for
each property and uses them to overwrite the current values. In effect, this schemeis very
similar to the classic file-based sharing and requires that users take turns at editing the outline
to avoid overriding each other’ s changes. However, since the infrastructure is aware of the
logical structure of the outline, we can do better than file-based sharing by transmitting parts
of the shared structure. For that purpose, users can open the object browser, select the object

they want to transmit/commit, and issue the respective command, as shown on Figure 5.2.

115

[230bicct Browser - Application =10l %]

Fillers
Group - |
[application -

¢ [pistributed Obiect Sharir
§ [J<Sectior Palicy #
@[] Abs!l Explore

@ 11 In
D Transmil %
® =14 Cormirmit s
o[Resuest |,

[Coupling nents
Wifark

Figureb5.2 Selective Transmit/Commit

Thus, if user A works on section 1, while user B works on section 2, the two can
exchange updates without overriding each other’s changes by selectively sending the values
of section 1 and 2, respectively.

To conclude our discussion on this scenario, let us summarize the devel opment steps
involved in achieving this type of sharing:

Modify the cut I i ne classto either implement the | denti i abl e interface, or
subclass Repl i cat edObj ect .

Define two XML property specifications for simple and sequence properties, such as
the ones discussed in the previous chapter. Since the infrastructure fully supports
simple, sequence, and table properties, it provides default such specifications that can
either be reused directly, or with minor revisions.

I mplement four property handlers: aread and awrite handler for each of the two
property types (simple and sequence). The infrastructure provides default
implementations and those can be reused directly, or with minimal revisions, such as
the reordering of arguments. The implementations themselves are rather
straightforward and require between 10 and 20 lines of code each.

Modify the startup code to include initialization of sharing functions. For this
application, this trandates into 4-5 additional lines of code, as shown below (in bold):

116

public static void main(String[] argv) throws Exception {
SystenmBoot.initAll(argv);
/1 Single-user initialization
Qutline outline = initQutline();
JFranme outlineView = initQutlineView outline);
out!lineView setVisible(true);
I
Col abJMenu. addCol abMenu(outlineVi ew);
PropertyRegi strar.registerPersistent(outline, "Qutline");
Coupl i ngObj ect Br owser . addRoot Obj ect (outline);
Coupl i ngCbj ect Browser. setVisible(true); // optional
}

5.1.1.2 Scenario 2: Diff-Based Peer-to-Peer Sharing

Although we can leverage the knowledge of the outline's logical structure to implement
fine-grain sharing, the read/write model may be too inflexible to accommodate user needs,
even if they are satisfied with the general idea of asynchronous sharing. For example,
consider the insertion of a new top-level section into the outline—it requires that the state of
the whole outline be transferred for the insertion to be shared. Moreover, it also implies that
recelving users must stop working while the insertion is performed and communicated to
avoid their changes being overwritten. More generally, users must carefully coordinate their
actions and must keep track of the changes they make to avoid rolling back other users
actions.

To avoid such problems, a developer may use the infrastructure-provided object diff-ing
service. From a user’s point of view, the only difference is the policy specification of the
acquisition parameter—instead of Read it is set to Diff. From adeveloper’s point of view, the
effort is very similar to that of the previous case. The only difference is that instead of write
handlers, the devel oper must provide diff handlers. Arguably, these require a somewhat
greater effort—the default implementations supplied by the infrastructure are between 50 and
100 lines of code. However, since diff-ing discovers user updates at a finer granularity, it also
allows the infrastructure to make better decision in interleaving them so that user intentions
are preserved. Moreover, we expect the default diff handlers to be used in most applications.

Recall that, to achieve this finer granularity, the diff-ing is performed in arecursive
manner. Hence, it would be necessary, in addition to the aut 1 i ne, to anayze also the
Sect i on object. Fortunately, depending on the concrete implementation chosen, this requires
little or no extra effort in our infrastructure. To illustrate the point, let us consider two options

for the implementation of Sect i on and their respective costs to the developer

117

Thefirst oneisto establish an I s-A class inheritance relationship between the Sect i on
and the aut 1 i ne. Indeed, since they have similar logical structure and are related, it is
reasonable to move the implementation of the basic functionality (the seven methods shown
on Figure 3.1) into the Sect i on and for the cut | i ne to inherit it. In other words, the design
establishes that the aut | i ne IS-A Sect i on. Like other infrastructures (e.g., Sync) ours
requires no additional effort to share a subclass, if the superclassis already shared. Thus, if
everything isin place for the Sect i on, the cut I i ne will automatically be shared.

However, a second line of reasoning is to conclude that, while the cut | i ne Has-A
number of Secti ons, it isnot a special case of aSect i on because, eventually, its logical
structure may differ significantly in that it may have to maintain a lot of other information,
such alist of authors, a set of keywords, etc. Thus, we may end up with two unrelated (in
terms of inheritance) classes, which partially share logical structure but may have deifferent

implementations. For example, the Sect i on class may look as follows:

public class Section extends ReplicatedObject {
public String getHeading();
public void set Headi ng(String heading);

public Section[] getSubsections();
public void i nsert Subsection(int i, Section s);
public void renoveSubsection(int i);

}
Thus, we will need a second version for the sequence property specification, aswell asa

(trivial) new property read handler. However, we would be able to directly reuse the most
expensive part of the implementation—the diff handler—by appropriately structuring its

implementation. To illustrate, consider the following template for the sequence diff handler:

SequenceDi ffer (Obj ect obj1, Object obj2, Property property) {
PropertyReader reader = (PropertyReader)property.getHandl er(“read”);
Cbj ect[] valuel = reader.getVal ue(obj 1, null);

Cbj ect[] value2 = reader.getVal ue(obj2, null);
/1l Conpute diff of valuel and val ue2 ...

-
By using the read handler to abstract away the details of the read operation, we were able
to fully reuse the differ across multiple sequence property implementations, thereby

minimizing developer’s effort.

118

5.1.1.3 Scenario 3: Centralized Commit-Based Sharing

Another extension to our first scenario is to supplement the peer object replicas with a
centralized master copy, which keeps only the committed state of the shared object (Figure
5.3). This approach is analogous to the Suite' s sharing model, although the implementation is
achieved differently. Conceptually, the master copy, which corresponds to Suite' s active
object, isjust another replica of the shared object. Its main characteristic is that it accepts
only those incoming changes that are marked as committed. Specificaly, it has the following

fixed sharing policy: <Read, Increment, Commit, Replay>.

Outline
(Master Copy)

User A User B

Figure5.3 Centralized Commit-Based Sharing

Since the master copy does not interact with the user directly, it runs a modified version
of the application code that does not include the user interface part. Thus, the master copy
also never initiates updates, which could become a problem if a user working on his local
(non-committed) version decides to revert to the committed one. To support this case we give
the user the option to request the current state of an object by selecting it on the object
browser and issuing arequest command. The request, which resembles Suite install
command, may be directed at any of the participating users or the master copy. From an
implementation point of view, the request is smply a synchronization event that is triggered
by the actions of a remote user rather than the local one. When the request is received by the
master copy, it uses the current acquisition method—read in this case—to obtain the current

state of the object and send it back to the requesting user. If the acquisition were set to Log,

119

the corresponding outgoing queue of events would be flushed, which is the semantics
implemented by Suitesinstall.

From the discussion so far, it should be clear that the decision to use a peer-to-peer or a
centralized architecture for the shared object is independent of the mechanisms used to obtain
the updates. Therefore, the described master copy approach can be used for asynchronous
sharing both with read-based and diff-based policies.

To summarize the devel oper’ s effort—it is the same as in the corresponding peer-to-peer
case (Scenarios 1 and 2) with the additional need to set up and run a master copy. In the
Outline example, the master copy version isimplemented by simply omitting the Ul

initialization in the application startup code, which reduces it to the following:

public static void main(String[] argv) throws Exception {
SystenBoot.initAll(argv);
/1 Single-user initialization
Qutline outline = initQutline();
e
PropertyRegi strar.registerPersistent(outline, "Qutline");

}
5.1.2 Flexible Event -Based Sharing
So far we discussed scenarios in which the multi- user application code is practically the
same as the single-user version except for the implementation of the | denti fi abl e interface
by shared objects and the inclusion of collaboration services in the startup code. Let us now
consider the case where the application programmer provides specific collaboration support
in the form of a notification mechanism, which may, in fact, be provided even in anon -

collaborative application to componentize it.

5.1.2.1 Scenario 4: Peer-to-Peer Sharing

The basic precondition for implementing event-based sharing is that the application
should issue an appropriate property event whenever a change to the state of areplicais
introduced. In our application, this transates into issuing a Pr oper t yOper at i on event after
the invocation of each of the four methods that modify the cut | i ne object—set Tit 1 e,

i nsert Section, removeSection, andset Secti on. In practical terms, this can be
implemented in five lines of code as follows. The first step is, as part of the object
initialization, to obtain from the registry areference to the coupler, where all events are to be
delivered:

120

public class Qutline extends ReplicatedObject {
Col abEvent Li st ener coupl er = (Col abEventLi stener)
Central Regi stry. | ookup(“service. Central Event Di spat cher”);

}
Next, for each of the four modifier methods, add a statement issuing a notification before

completing the method invocation. For instance:
public void setTitle(String title) {

éaupler.dispatch(new PropertyOperation(this.get@dD(), “title”,
“setter”,new Object[] {title}));

Once the coupler receives the notification, the rest of the sharing is handled autormatically
based on the current policies in place. Thus, the basic investment into a notification
mechanism on part of the developer isfairly modest. Yet it provides additional flexibility to
the user.

Firgt, it allows asynchronous sharing, similar to Scenarios 1-3, to be implemented
through event logging/replay: by default, all property eventsare | ncr ement and Raw; if the
effective policy specifiesthat only Transmi t / Conmi t events should be communicated, then
exchange takes place only upon the explicit user command. Similarly, Schedul ed events are
transmitted at user-defined times.

Second, it allows for synchronous semantic sharing of the outline, which can be achieved
by setting a sharing policy that allows all incremental updates to pass through without
placing restrictions on their correctness.

To take full advantage of the sharing options presented by our model, the application
must also provide additional information about the level of correctness of the updates and the
communication operation executed. Generally, the model- level object (i.e., the cut I i ne)
must be aware of the level of correctness of each change, asit isits job to ensure it. Hence, it
only needs to pass along this information by tagging the updates as Par sed, or Vval i dat ed. In
terms of implementation, this corresponds to one more line of code for each modifier
method:

b%bpertycperation po = new PropertyQOperation(outline,“sections”,

“insert”, newSection);

po.set Correctness(2); // extra line: set correctness to Validated
coupl er. di spat ch(po);

121

Indicating a Conpl et e editing operation (the only value of the transmission parameter
not covered by asynchronous sharing) is sightly more complicated, as it involves the user
interface. One of the inexpensive ways to realize thisin our example is to replace the default
editor for the JTr ee nodes—a text field edito—with a custom one that, in addition to
performing the editing operations, also issues synchronization events whenever the editing is
completed. By subclassing the standard Snving Def aul t Tr eeCel | Edi t or , the actual
implementation takes about 15 lines of additional code.

In summary, depending on the desired level of support, we need 20-35 lines of
application code to incorporate evert-based sharing, in addition to the two property

specifications and two read handlers, which are identical to the previous cases.

5.1.2.2 Scenario 5: Centralized Sharing

This scenario extends the previous one in the same way as Scenario 3 extends Scenario 2
in the asynchronous case, by adding a master copy, which holds the committed state of the
shared object. The cost is identical to the one discussed in Section 5.1.1.3 and includes the
creation and setup of a version of the code that has no user interface (the exact same one used

in Scenario 3).

5.1.2.3 Scenario 6: Model/View Sharing

So far we have only considered the sharing of the semantic cut | i ne object and not its
user interface presentation. While semantic sharing is likely to cover a significant fraction of
actual usage scenarios, it is not always sufficient. For example, in our implementation, the
set Ti t| e/ set Headi ng methods of the Qut | i ne/ Sect i on objects are not invoked until the
user has finished editing the corresponding field. However, it may be desirable for users see
and discuss incremental changes, such as inserting a character, as they happen. Furthermore,
observing changes also provides implicit awareness of other user’s actions, even if the
individual changes are not that important. For example, user A may observe that some other

user is editing section 2 and decide to work on a different section.

122

Outline

User A User B

Figure5.4 (Centralized) Model/View Sharing

Let us now consider the scenario depicted on Figure 5.4, which extends previous ones by
incorporating the sharing of the view layer. The dotted rectangle in the picture represents the
fact that we consider both the peer-to-peer and centralized versions of this sharing scenario.
The effort to create and manage the master copy is identical to the previous centralized
scenarios. However, there are some minor differences in the event handling in the two cases,
which we will point out in due course.

Recall that we use XML definitions to describe the application layers as well as their
inter-dependencies. In our simple example, the application consists of three classes—

Qut | i ne, Sect i on, and JTr ee—with the first two comprising the model layer and the last
one the view. Since the model (i.e., the JTr ee) is the editing interface through which all
changes to the model are introduced, we consider the model to be dependent on the view.

Following the XML definitions described in Chapter 4, we specify this application layering as

follows:
<?xm version="1.0" encodi ng="UTF-8" ?>
<obj ect class = "outline.CQutline">
<l ayer nanme="nodel ">
<ALL />
</l ayer>
</ obj ect >

123

<?xm version="1.0" encodi ng="UTF-8" ?>
<obj ect class = "outline. Section">
<l ayer nanme="nodel ">
<ALL />
</l ayer>
</ obj ect >

<?xm version="1.0" encodi ng="UTF-8" ?>
<obj ect class = "javax.sw ng.JTree">
<l ayer nane="vi ew'>
<ALL />
</l ayer>
</ obj ect >

<?xm version="1.0" encodi ng="UTF-8" ?>
<l ayer _dependenci es>
<vi ew>
<nmodel / >
</ vi ew>
</l ayer _dependenci es>

Recall that the basic problem we address though layering description is to avoid multiple
notification of causally related events. Such events occur as aresult of the transformation of
user actions from one layer of abstraction to the next. Thus, given the layer dependencies and
a specified shared layer, the infrastructure must ensure that events from the specified shared
layer get through, while filtering out events received that are dependents of or editors of the
given layer are filtered out. Translated into our example, this means that whenever model
sharing is chosen, no view updates should be communicated. Conversaly, if view sharing is
chosen, then no model updates should go through.

The latter rule, however, has an important exception when the application has a master
copy. In this case, model updates (identified by the fact they belong to a layer with no
dependents®) are specifically communicated to the master copy but not other replicas (by
conventions, the master copy is one with the special name of “ * Mast er Copy*”). More
generally, the master copy must always receive committed model updates regardless of the
sharing policy. The reasoning here is fairly straightforward—because the master copy
belongs to one layer, there is no chance of multiple notifications. Furthermore if model
updates are not delivered even when the model layer of not shared, the master copy will be of

no use.

® This may lead to the communication of some non-model events, which are ignored if they refer to an
object that does not exist at the master (e.g., window). A planned extension of the layer specification

mechanism will solve this by specifically tagging the layersthat are present at the master copy.

124

The user view of the shared layer specification is very simple—the user pulls up the
“Collaboration” menu and selects the “ Shared Layer” item, which brings up the tree
representation of the layer dependencies shown on Figure 5.5 (prefix “[Increment]” marks a
currently shared layer). A right-click on the layer name pops up the list of available policies
and, upon selection, the sharing for dependent layers is automatically reset.

& Shared Layer Editor =10 x|

[windaow ‘
G 1 [Increment] granh wis:
D graph Cormrmit-DifT

[y appearance = Commitincrement
Complete-Increment
Increment-Increment
Scheduled30D-Increment
Transmit-Increment
Edit

Set As Default

OK

None

Figure5.5 Layer Sharing Specification User Interface

The next step is to connect the view and the coupler so that the view can deliver
notifications. As before, this can be achieved by looking up the coupler, which is registered
under a well-known name from the registry. However, this would require the programmer to
implement the trandation of JTr ee events into property events. To automate this process, the
infrastructure provides an AWrEvent Adapt er object, which is a static object, and
automatically trandates all AWT/Swing events it receives into property operations and
delivers them to the coupler. Thus, the connection is reduced to making the

AWFEvent Adapt er alistener of all relevant JTr ee events:
AWrEvent Adapter.transl ate(jtree);

The AWT event adapter isinitialized at startup time and installs itself as alistener of the
system event queue, through which all events pass. It also maintains a table of objects for
which the trandation must be performed. Whenever an event is received, the source is looked
up in the table and, if present, the event is trandated. Thus, the abovet r ansl at e invocation
simply adds the jtree object to the table. The adapter also has methods for trandating all
events and for removing specific, or all, objects from the table.

125

Finally, we need to register the JTr ee object with the registry to establish its global name
mapping. This achieved by adding the following line to the startup code:

PropertyRegi strar.registerPersistent(outlineView, "View');

To summarize, the effort to add view sharing option to the model sharing of previous
scenarios consists primarily of providing appropriate layer definitions and registering the
view objects. The trandation of the standard Ul events to property eventsis largely
automated by the provided adapter.

5.2 User Interface Toolkit Sharing

Conceptually, our Ul toolkit sharing has the same goals and has similar mechanisms to
that of our benchmark system—JCE—however the actual implementation is somewhat
simpler’. Most notably, unlike JCE, we do not replace the standard implementations of the
AWT/Swing components so that we can intercept their event stream. Instead, we use a
specialized version of the standard @ assPane® container, called Shar edG assPane, which
we place on top of every shared frame, asillustrated by Figure 5.6.

| J'rd_,fLsn-'ered Fane

henu Bar

Root Pane m—Glass Pane

.

Content Pan

Figureb5.6 Java's GlassPane container

The main purpose of this graphically transparent object is to gain complete control over
the capture and replay of all user actions. Whenever the Shar ed@ assPane’s transparent
property isset to t r ue, the Ul toolkit delivers all mouse/keyboard events to it, and allows the
infrastructure to decide how the event is processed. In particular, the events initiated by the
active user are allowed to proceed as usua and are also replicated at all other sites. At the
same time, local events of inactive users are blocked, which guarantees the exclusivity of

’ Some of the Java features we use were not available at the time when JCE was first devel oped.

8 http://java.sun.com/docs/books/tutorial /uiswing/components/rootpane.htmi

126

user access required to ensure the correctness of Ul sharing. Thus, we effectively share the
gueue of Ul events generated by the active user’s actions.

A secondary purpose of the shar edd assPane IS to support the use of telepointers, such
asthe ones provided by GroupKit. A telepointer is ssimply alocal presentation of a remote
user’s pointer/cursor (usually with a different shape or color to help distinguish it). The only
notable difference in our implementation is that it is provided (and managed) as part of a
shared Ul system, whereasin GroupKit it is provided as awidget that must be explicitly
managed by the application.

In our implementation, the only change required to the standard Ul library is to make all
Ul components| denti fi abl e SO that peer objects can be identified and events are delivered
properly. Since all such components are subclasses of j ava. awt . Conponent , it isthe only
one we have modified and replaced in the standard library.

Like JCE, the naming of Ul components is hardled automatically by the infrastructure in
cases where window sharing is used throughout an entire collaborative session. However, if
dynamic multi-layer sharing is to be supported, the application programmer may need to
provide some minimal support. In particular, if the application creates more than one
application window, the developer must explicitly provide names for al root windows.
Otherwise, the infrastructure may be unable to conclusively match application window
replicas after a period of non-window sharing.

In summary, given the scenario of continuous window sharing, our infrastructure
provides the same features and development effort as JCE. In addition, we support a
transition scheme that allows the application to switch from nonwindow to window sharing.
In this case, the programmer may need to provide minimal additional support in the form of
naming. We should also note that such a transition may not always be possible—if one user
has two application windows opened while another only one, it is not possible to reconcile
the two versions regardless of who initiates the exchange. (Simply recreating the missing
window would not solve the problem because the Ul components would not be connected to
the respective application objects being rendered and we would end up with a“mockup”

window.)

127

5.3 GraphDraw Application

5.3.1 Overview

The GraphDraw application is a sample application provided as part of the GEF (Graph
Editing Framework) developed at the University of Californiaat Irvine by J.Robbins. The
basic goa of GEF isto provide a Ul toolkit for the development of various applications
requiring graph editing, such as circuit design, or a Petri net editor. All of our experiments
were performed with version 0.6 of the implementation. A more recent versionof GEF®
serves as the Ul platform for the open source ArgoUML editor .

The GraphDraw application (Figure 5.1), consisting of 9 Java classes, isfairly smplein
that it defines two types of graph nodes and two types of graph edges and registers them with
the framework, which handles everything else. Thus, the essentia task we performed and
measured was the transformation of GEF from a single-user toolkit into a multi- user one.
The main reason we chose GEF was that it made extensive and consistent use of
programming patterns and, therefore, made a good test case for our assertion that we can
provide alow-cost high-flexibility sharing solution based on patterns for existing code.

& GraphDraw: Dilbert o] 4]

File Edit View Arrange Collaboration

L ENEEEISHASEE)E

(=]
ODO

Source E :'01. Destination
=

Filters

[«

| ¢

Figure5.7 GraphDraw Application

Overal, GEF consist of 171 Java classes totaling over 26, 000 lines of code. A GEF
graph diagram consists three basic layers—a graph layer, agraph view layer, and afigures

® http://gef tigris.org/
10 http://argouml tigris.org/

128

layer. The graph layer represents the abstract graph (nodes and edge) being edited.
Applications can add specific semantics to the nodes and edges (e.g., implement a Petri net)
by reacting notifications whenever new nodes/edge are created, connected, disconnected, and
destroyed. The graph view provides the specific graphic representation through which users
can manipulate the nodes and edges of graphs. The figures layer consists of a number of
standard shapes, such as ovals, rectangles, and text boxes that can be used to annotate the
graph. In general, the graph and the figures layers are separate and may exist independently
of each other—a graph may not have annotations and an annotations-only diagram is smply
adrawing like the ones produced by any standard drawing editor. In addition, we define a
window and an appearance layer much like we did for the Outline application. The window
layer encompasses all objects within the application window, whereas the appearance layer
consists of the window components/attributes that do not affect the editing of the graph—
window size/position, scrollbar position, etc. The resulting decomposition is shown on Figure
5.8.

Graph
Figures Graph View Appearance
5 5 5
Window

Figure5.8 Layer Dependenciesfor GraphDraw Application

Although we have implement the peer-to-peer versions of all of the scenarios mention
above, to avoid repetition, we focus the following discussion on two scenarios that we have
not discussed so far—dynamic multi-layer sharing and window sharing.

5.3.2 Dynamic Multi-layer Sharing

Multi-layer sharing is the natural generalization of the model/view sharing discussed in
the previous section. In the model/view case the sharing of one layer automatically precludes
the sharing of the other. In multi-layer sharing, any combination of layers that are not
dependent on each other may be shared at the same time. For example, any combination of
shared graph, figures, and appearance layers is admissible and the judgment call about the

usefulness any particular combination is left to the users (or applications). Consequently, it is

129

also crucial to allow users to explore sharing modes and dynamically switch on and off the
sharing of each individual layer. Let us briefly consider some of the possibilities presented by
different combinations:

1. Sharegraph layer only (Figure 5.9). In this mode, the topology of the graph would be
shared but its visual appearance and annotations may differ. Note that, as a side effect
of replicating the insertion of a graph node/edge into the graph, a corresponding view
object will also be inserted. Initially, the insert position of the view object would be

the same as the original; however, subsequent updates would not be reflected

[GraphDraw: User_a =10l x| [GraphDraw: User_B =181
File Edit Wiew Arrange Collaboration File Edit Wiew Arrange Collaboration
L ENSEEINNMEEIEE N ENE E R NNREENEE)
Rt T e F
- 9
) o
9. o=

4
[«

['»] [«

Figure5.9 GraphDraw application: graph layer sharing

2. Sharegraph view layer only (Figure 5.10). This leads to the sharing of both the
topology and the graphic presentation of the graph. Annotations, however, may be
different. Thisis useful when different users work on different aspect of the graph
and their annotations of the graph are largely private.

R I=1E =k
File Edit View Arrange Collaboration File Edit View Arrange Collaboration

LYENEIEEI NI S EE)E

o
oo
o

DNENEEENANEERE

. e
o E@} :&l Filter 1 . E@} F1

[»]

L]
oo
o

ED|
&

[«
L]

|« [

Figure5.10 GraphDraw application: graph view layer sharing

130

3. Sharegraph view and figureslayers (Figure 5.11). Essentially, the graphic
representation of the graph with all its annotations will be shared in its entirety,

however, users retain the freedom to navigate autonomously and edit the graph

concurrently.
]]
-loix] =loix
File Edit “iew Arrange Collaboration File Edit Wiew Arrange Collaboration

LYEREIE NN S EE)E LYENEI= I N S E S

el BN eclEems S0
) on FER

o
o0

o
oo

|
B

4|
[«

[ETE

Figure5.11 GraphDraw application: graph view and figureslayerssharing

4. Share the window layer (Figure 5.12). Thisis aform of the Ul-based sharing we
discussed in Section 2.1—all users have identical views of the application and only

one user at atime can be active. The details of thisimplementation are given in the

next section.
-0l x| o]
File Edit View Arrange Collaboration File Edit Yiew Arrange Collaboration

LEREEENNSEE)E LENEEEINN S EE)E

N 9

o
o0

o
oo

ED|
ED

4|
[«

L] [l

Figure5.12 GraphDraw application: window layer sharing

Experience shows that the above sharing modes are the most likely to be used in actual
collaboration and that the ability to switch from one mode to another is highly desirable [10,
11]. Therefore, let us now consider how the actual transition would be achieved. From a
user’s point view, the effort consists of clicking on the respective layer and selecting a

sharing policy.

131

From the point of view of the infrastructure, the transition from a higher-numbered (in
the above list) sharing mode to alower one is trivia—the infrastructure smply stops sharing
the updates of the non-shared layers and the different replicas eventually diverge. The reverse
transition requires more work and, in the general case, is not possible without application
specific information. In our case, we employ the layering information and the property
specifications and handlers to achieve this transition.

Suppose that we want to switch form graph sharing to window sharing. Initialy, users
may have completely different views of the shared graph, however, before we switch to
window sharing, they must become identical. To accomplish this, we walk the tree of layer
dependencies (Figure 5.8) in a depth-first manner starting with the new shared layer and, at
each step, synchronize the state of the respective layer. For the GraphDraw application, one
possible layer walk is figures, graph, graph view, appearance. The layer synchronization
involves finding all registered shared objects that belong to the layer, finding their
corresponding properties with their read handlers, reading the current state, and sending it as
a set of committed overwrite operations to remote users. We use the state of the user
reguesting the sharing mode switch as the master copy with respect to which al other
replicas are made consistent. Once dependent layers become consistent, the infrastructure is
ready to start window sharing.

5.3.3 Development Costs
The development costs related to adding collaborative functions to the GraphDraw

application fall into two categories—XML declarations and Java code. Let us first examine
the XML specification effort, which consists primarily of property specifications.

Asit turns out, GEF employs only three basic patterns in the object structures we want to
share—standard simple (JavaBeans) properties, as well as two versions of set properties to
maintain a variety of list structures. A set property resembles a sequence, however, it has no
explicit methods to control the ordering of its elements as illustrated by the following piece

of code;

public void add(Fig fig);
public void renmove(Fig fig);
public Vector getFigs();

132

The actual specifications are smplified versions of the sequence property definitions and
are given in the Appendix. The corresponding property handlers are also reused with nominal
changes. The layer specifications are also quite simple, owing to the fact that all objects
belonging to the figureslayer and the graph layers are subclasses of the Fi g and
Net Pri mitive classes defined by GEF. Hence, a single definition for these classes covers all
the different objects that can belong to them.

Table 5.1 summarizes the Java coding effort to achieve the described collaboration
behavior for al peer-to-peer sharing scenarios for the GraphDraw application. To build a
centralized version, additional effort would be required to decouple the abstract graph
representation from its user interface. While in GEF these are separated in different classes,
the architecture is not designed for dynamic composition. Therefore, untangling the graph
objects and their user interface requires redesign effort, which we consider beyond the scope
of our work. One simple way around this problem isto run an extra copy of the existing
application version (with the user interface) that is not used by any user with the appropriate
commit-based sharing policy.

GraphDraw GEF
Action Modified Modified Added Total
Total Lines of Code 26 76 102 204
Affected Classes 5 13 4 22
Code Complexity
I nport statements 11 15 12 38
I f statements 0 3 1
f or statements 0 5 1 6

Table5.1 Code Statistics for GraphDraw Application

Let us now consider in more detail the breakdown of the numbersin Table 5.1. We have
broken dl satistics into two basic categories related to the GEF infrastructure, which would
be reusable with any GEF-based application, and changes to the example GraphDraw
application. As the numbers suggest, the bulk of the effort is concentrated on adapting and
extending GEF. The first line gives the sum total of the lines of code that have been
added/modified (all changes were tagged at the time of introduction to enable the collection

of this data). The affected classes row gives the number of classes in which at least one

133

change related to collaboration has been made (we exclude bug fixes to the original
implementation). In the last three lines of the table we provide some basic measures of the
complexity of changes introduced. Approximately 20% of all changes arei nport statements,
which exist solely for convenience reasons and do not represent a computation. The rest of
the effort is fairly straightforward linear code—mostly variable declarations and invocations
of infrastructure services—with the exception of four i f and six f or Statements.

The added infrastructure code consists primarily of three event adapters that trandate
GEF-defined events into property and synchronization events. Although this code nominally
represents more than 50% of the changes to GEF, its implementation is largely routine, as

illustrated by the following typical method:

public void edgeAdded(G aphEvent e) {
PropertyQOperati on po = new PropertyQOperation(nodel G D, "Edges",
"add", e.getArg());
coupl er. di spatch(po);

}
Thus, the overall coding effort in terms of lines of code represents less than 1% of the

origina GEF code, which supports the automation and reuse claims of our thesis. In our
experience, a much greater effort was expended on reverse engineering the design of GEF
and fixing some of its bugs (the code was a work- in-progress version) rather than adapting it

to collaboration.

5.4 Shapes Application

In this section we briefly describe an earlier experience with creating a collaborative
version of the Shapes application, which was developed for teaching purposes at UNC. As
Figure 5.13 shows, the application is a drawing editor featuring the customary commands of
such applications. It isa simpler application than the GraphDraw, however, not a trivia
one—it consists of 76 classes and almost 5000 lines of code.

Our primary goa was the validation of our object diff-ing technique and, therefore, we
applied diff-based sharing to the main object structure of the application, which consists of a
Hasht abl e of Shape objects. The origina results, featuring a work- in-progress version of our
infrastructure, were reported in [21]. Since much of the infrastructure has changed, we

provide an updated accounting of the development effort.

134

For this application, we used an application trigger, which listened for any user command
and in response triggered a diff on the Hasht abl e by issuing a synchronization event. The
coding of this application trigger took about 15 lines of code. In addition, we needed an
additional 8 linesin the startup code (very similar to the ones already described for the other
applications), 4 additional lines to make the shape table and all shape objects| denti fi abl e
(by extending Repl i cat edObj ect), and 5 additional lines of code to provide global names to
all shared application objects. Since the shared table used the standard table pattern we did
not have to add any property specifications or handler code. Thus, our overall effort was
capped at 25 lines of additional code.

ESuser_aataz =10l x|

ITe}dFieId

Lndo

Redo I

Clear

|»

tazc3

Load taz13 “azl4
Save tazrl tazol
Keys
Labels ©
Lahel
" Select
" Move
' Resize
” Delete
@ Line;
 Cval
" Rectangle
" Camponent
[~ Immediate

I~ Prampt _ILI
a | B

Figure5.13 Shapes application

So far, the driving problem behind our effort has been the implementation of flexible
object sharing. In the following sections we look at the utility of the mechanisms that we
have devel oped by applying these mechanism to a set of problem that are unrelated to
collaboration.

5.5 XML-Based Object Serialization
Our first problem was originally motivated by the needs of our infrastructure to store

various objects, such as sharing policies, persistently. In that respect, Java seemsto provide
an excellent solution through its generic Java Serialization mechanism. The programmer’s

effort is reduced to tagging the object as Seri al i zabl e (that is, the object implements an

135

empty interface called j ava. i 0. Seri al i zabl e) and executing thewr i t eObj ect method of
the Qbj ect Qut put St r eam Which represents the persistent store. In addition to the object
itself, the serialization will also store copies of any dependent objects to which the serialized
object holds references and will recursively apply the seriaization algorithm to the dependent
objects until an entire self-contained object structure is serialized.

While the outlined mechanism is very convenient, it aso suffers from at least two major
problems that limit its applicability. The first one we call the fragile serialization problem.
Since the serialization stores the internal physical structure of the object, any changesto it,
such as adding alocal variable, would change the physical layout of the local variables,
which, in turn, would render the serialized state of the old version unusable. In some
situations, the serialization can break even without recompiling code if in the serialization
process some execution environment state is also stored: upon deserialization in a different
environment, some of the resources that the object refers to may not exist, thereby rendering
the whole serialized object useless.

The second problem is that Java stores its objects in a proprietary format. Hence, the data
is bound to its Java object presentation and cannot be used autonomously. Thus, if the
serialization breaks, the stored data would be irrecoverable, which largely contradicts the
idea of reliable persistent storage.

With the emergence of XML as a universal standard for storing structured data, the
obvious choice for resolving the proprietary format issue is to replace it with XML. However,
as demonstrated by KOML*?, simply changing the encoding while still relying on the
physical object layout does nothing to solve the fragility problem.

Currently, there are two basic approaches to solving the fragility problem. The first one
(most widely used) is to shift the burden back on the shoulders of the devel opers by,
essentially, requiring them to implement the XML serialization manually. This approach is
most prominently illustrated by the standardization effort'? currently under way, called Java
data binding, that seeks to define a standard APl for mapping Java objectsto XML. While
this standardization would be helpful, it would still leave the implementation in the hands of

Yhttp://koala.ilog.fr/kom

2http://java. sun. com about Java/ communi t ypr ocess/j sr

136

the application developer. Thus, we have a mechanism with maximum flexibility but, unlike
the original Java object serialization, virtualy no automation.

The second approach, exemplified by KBML*3, isto extract the logical structure of the
object based on JavaBeans properties. This allows the seriaization to be completed
automatically and to store the datain XML format that is independent of the serialized object,
which solves the fragility problem. The main issue here is that the JavaBeans model is very
limited in its ability to describe programmer-defined abstractions (this issues was already
discussed in the context of object sharing).

Our solution is can be viewed as extending the KBML approach by utilizing our pattern
based abstraction model to provide automatic XML serialization to a wider range of
abstractions than currently possible. We also rely on our architectural model to obtain an
extensible solution that promotes code reuse (the implementation of the serialized object
remains untouched).

The actual service, caled XM_Seri al i zer , follows the same generic Obj ect Wal k
algorithm we first presented in Chapter 3. The only minor difference is that, at each step, the
processing (i.e., XML encoding) of an object is split into three parts—generation of opening
XML tag, recursive serialization of properties, and generation of closing XML tag—instead of

two shown in the generic version:

XM.Seri al i zer (obj ect)
if object == null || object in visited list
return
<add object to visited list>
<start XM. encodi ng of object>
for each property p; of object do

reader = | ookup read handler for p
if reader != nul
val ues[] = reader. getVal ue(object, pi)

for each v in val ues
Obj ect Wl k(v)

end
f
end
<conpl ete XM. encodi ng of object> // extra processing
end

Note that, in this case, we need only the standard read handlers to complete the task

because the only operation we need from the property isto obtain its current state. Thus, any

Bhttp://koala.ilog.fr/kbm/

137

object property defined through our specification mechanism is automatically XML
serializable.

To illustrate the work of our service consider the serialization of the example object
structure shown graphically on Figure 5.14. On the diagram, rectangles represent objects,
whereas rounded rectangles represent object properties. The generated XML representation is
shown on Figure 5.15. It is worth noting that the end result is an XML document that is
completely independent of the original Java object. The only reference to it isthej avacl ass
attribute, which is the minimum information we need to enable the reverse deserialization
process.

Outline

String

Cseoton -

Section

String

[Heading ¥—| “Section 1.1" |

Section

Subsection

i

Figure5.14 Example Outline object for XML serialization

138

<?xm version="1.0" encodi ng="UTF-8" ?>
<outline javaCl ass = “outline.Qutline">
<title>Title</title>
<sections>
<section javaC ass = “outline. Section”>
<headi ng>Secti on 1</ headi ng>
<subsecti ons>
<section javaC ass = “outline. Section”>
<headi ng>Secti on 1. 1</ headi ng>
<subsections/ >
</ section>
</ subsecti ons>
</ section>

<section javaC ass = “outline. Section”>
<headi ng>Secti on 5</ headi ng>
<subsecti ons/ >
</ section>
</ sections>
</outline>

Figure5.15 XML serialization of example object

In summary, our outlined XML serialization implementation has the following properties:

Automation. Once the set of properties and respective handlers is defined, the conversion
is done automatically and requires no further intervention. As already discussed, application
programmers tend to use arelatively small number of patterns relative to the number of
classes in an application. By defining the serialization on a per-pattern basis, rather than per-
class basis, the developer could realize significant savings, as well as smplify the
management of any changes to the conversion scheme. Also, patterns are likely to change
little from application to application, opening the possibility for complete reuse of the
serialization handlers.

Generality. The conversion scheme can be applies to an extensible set of objects through
the addition of property specifications. In particular, unlike other data binding, it is
independent of any particular API. Furthermore, it can cover awider range of abstractions
than JavaBeans-based schemes.

Sability. Our approach solves the fragile serialization problem in a more general case
than existing systems

Reversibility. Using an analogous recursive procedure, the reverse XML-to-object
conversion can also be executed, thereby providing support for the complete

serialization/deserializatrion cycle.

139

5.6 UPnP Device Interoperation

Let us now consider a problem that arises in the context of device interoperation. To
enable such interoperation, a number of (sometimes competing) protocols, such as UPnP*
(Universal Plug-and-Play), Jini*® (for Java objects), and WSDL (Web Services Description
Language). From the point of view of a device developer, this presents the problem of having
to maintain a number of external interfaces that are not directly relevant to the device's
functions and, therefore, present development overhead. For example, a weather station
device can be exported as a UPnP device, a Jini device (if its implemented in Java), or it
could be treated as a web service and be exported using WSDL (Figure 5.16).

UPNP Device

Jini Device

Web Service (WSDL)

Figure5.16 Possible standardized interfacesfor a weather device

Idedlly, it should be possible for the developer to focus entirely on developing and
improving the device and have the external descriptions automatically generated.
Unfortunately, to the best of our knowledge, no such tools currently exist. In fact, the tools
that are in use take the exact opposite approach—they start with the respective device
specification and generate a skeleton programming language implementation, which the
developer must fill in. While it is usualy straightforward to implement such an approach, it
carries at least two nonttrivial limitations.

The first oneis that each specialized tool takes care of specific protocol and it is unlikely
that two separate tools will generate compatible skeleton implementations. The second one is

that, over the lifecycle of a device, its description is likely to change as new versions are

Yhttp://upnp.org
Bhttp://jini.org
B http:// ww. wa. or g/ TR wsdl

140

developed. Existing approaches poorly support this process because they force the devel oper
to come up with a new device description, generate a new skeleton, and again fill in the code.

Clearly, both of the above problems stem from the fact that (skeleton) device code is
generated based on the external description, whereas what is truly needed is support for the
reverse process—generation of an external description based on the native device
implementation. This would alow the developer to focus on the device and use protocol-
specific tools to automatically deal with the external protocol representation.

In this section, we present our experience in generating external descriptions of Java-
based devices using the UPnP protocol. UPnP uses XML -encoded device descriptions and
commands communicated via HTTP to facilitate device interoperation. The main obligations
of aUPNP can be summarized as follows:

Export XML descriptions of services and actions. Generally, it is expected for UPnP
services to be rather smple. To illustrate, consider the simulated StereoDevice shown
below (Figure 5.17). In this case, the device might define four services. power
management, input selection, track navigation, and volume (control). The actions, for
the power service, for example, could be getPower (obtain the current power status)
and setPower (change the power setting, turning the device on/off). For the track
navigation, possible actions include getTrack/ setTrack, but also nextTrack/

previousTrack.
Y = B
Power Input Track ‘olume
Off co || 1:|| 5=
Pwrsave FM
On

Figure5.17 Simulated StereoDevice

Provide HTML-based user interface. Each device is expected to provide an HTML
interface to observe and control its status.
Generate events. A device may generate events announcing changes in its state that
other devices can subscribe to receive.

Taken together, the above UPNP requirements can incur significant development

overhead, especially for a device undergoing active development with frequent changes.

141

Therefore, the goa of our work has been to automate the process by providing automatic
support for all of the above requirements. In this section, we present our experiencein
addressing the first two requirements and sketch ideas on how to extend support to the third
one.

The basic design is based on the idea of providing a UPnP proxy service, which
automatically fulfills the UPNnP obligations on behalf of native devices (Figure 5.18) and in
the following sections we successively describe our pattern-based approach to providing such

aproxy service for Java objects.

Native Devices

e | ' UPNnP
> UPnP Proxy [% >

Figure5.18 Exporting devices through a UPnP proxy

5.6.1 System Interface Generation

The essentia idea of our design is to use properties to define (UPNP) services and pattern
methods to define actions. Our actual implementation relies on the Java UPnP Stack'’
implementation from Semens to handle the low-level details of the protocol. The UPnP
Sack provides a high-level object API and handles, for example, the actual cumbersome
XML generation of device/service description. However, the programmer is still responsible
for defining the device, services, and actions in using the system-provided Device, Service,
and Action classes, respectively.

To make our discussion more concrete, let us use the smulated StereoDevice presented
above to illustrate our discussion. In particular, we use the following device implementation
for that purpose:

public class StereoDevice {
public static final String[] PONER _VALUES = {"Of","Pw Save","On"};
public static final String[] I NPUT_VALUES = {"CD"',"FM'};
public static final int[] VOLUVME_RANGE = {0, 10};

Yhttp:// ww. pl ug- n- pl ay-t echnol ogi es. com

142

public
public

public
public

public
public
public
public
public
public

public
public
public
public

}

String get Power ();

voi d

set Power (String input);

String getlnput();

voi d
i nt
voi d
voi d
voi d
i nt
i nt
i nt
voi d
voi d
voi d

setlnput(String input);

get Track();

set Track(int track);
next Track();
prevTrack();

get TrackM n() ;

get TrackMax() ;

get Vol une() ;

set Vol ume(i nt vol une);
vol umeUp() ;

vol unmeDown() ;

The first task of every device is to announce its presence and advertise its services. As

aready mentioned, we use properties as a guide to define services and we map each object

property to a device service. The entire processisillustrated by Figure 5.19, where each

numbered arrow represents a step in the process and is explained below in detail.

Power: Switch]

Input: Switch

Track: Nav

[Introspector }

On

N

1ol
Power Input Track Volume 1 UPnP
e e 4 .
S] s Proxy Device

~

)

]
Volume: Nav]

_/

Handlers:

Switch Action Mapper

Switch HTML Gen

Nav Action Mapper

— N "'oY A

Nav HTML Gen

—

1 7 device.announce()

Java UPnP
Stack

Figure5.19 Announcing a UPnP device through a proxy

1. Our starting point is an instance of the device object (St er eoDevi ce), whichis

created by the proxy.

143

. Since the proxy has no knowledge of any particular device, it hands the device object
tothel ntrospect or for property analysis, which is based on a set of provided
specifications. In the example, we define two types of properties. switch and
navigation (referred to in diagrams as nav). These are both versions of the smple
properties we used before. The difference is that a switch property isof St ri ng type
and can take one of a fixed set of values (the name refers to the fact that is used to
model switches that users manipulate). Navigation properties are distinct from the
simple ones in that they are of integer type and define additional increment and
decrement methods.

. Based on these definitions (the actual XML definitiors are aimost identical to the
simple property definitions), the I nt r ospect or decomposes the object into a set of
properties.

. Given aset of properties, the proxy defines a service for each discovered property.
There are two switch properties (power and input) and two navigation properties
(track and volume) in our St er eoDevi ce object for which services are defined.

. Next, the proxy must map (that is, encode in XML) the actions of service, which
correspond to our pattern methods. Such encoding is inherently property method-
specific and, therefore, is not embedded into the proxy. Instead, an act i on_napper
property handler is defined for each property that performs this task. The proxy uses
the specification to lookup and invoke the respective handler for each of the switch
properties.

. Similarly, the proxy uses the specification to lookup and invoke the respective
handler for each of the navigation properties.

. Once the object encoding of the device is completed, it is handed off the UPnP stack
with an announcement request.

. The UPnP stack announces the device to the world using the UPNnP protocol (it will
also remember this announcement and present it to any future inquiries it might

receive).

144

5.6.2 User Interface Generation

As part of the announcement, the device must include a URL at which an HTML user
interface for interacting with the device must be specified. Again, thisis atask that, from the
point of view of the device developer, is pure overhead and should also be automated. To the
best of our knowledge, current UPNP toolkits provide little in the way of automating this
task, largely because they have no means of interpreting the device services/actionsin a
generic way. In contrast, we employ property-specific handlers to enable the automatic
generation of the HTML interface. We use the following diagram to explain our solution step
by step. Note that, at this point, the property analysis has been completed and the device has
been announced.

Power: Switch
Input: Switch
Track: Nav
Volume: Nav Handlers:
4, Handler lookup :
=[0ix 5,6 getHtml() Switch HTML Gen
Power Input ~ Track Volume ~
3 7| (3. Update))
MO RO |]) T Upne proxy [J
PwrSave FM .
On 7,8 getHtml() Nav HTML Gen]
2. proxy.processGetRequest(...)
vy 9. HTML page 1 GET URL
Java UPnP 4
Stack >
10. 200 OK __

Figure5.20 Servicingan HTTP request

1. TheUPnP stack receivesaregular HTTP GET request from aclient.
2. The URL of the request is passed on to the proxies, which has registered at startup as the
handler for such requests.

145

3. The proxy parses the URL and executes any commands that might have been encoded
(thisis syntactic process and can be applied to any object).

4. The proxy looks up the (cached) list of properties for the device object.

5.— 8. Based on the specifications, it consecutively looks up and invokes the corresponding
html_generator property handler for each of the four properties. Since we have two types
of properties, there are two actual handlers defined.

9. Combining the HTML produced by the handlers with some wrapping code for the whole
device, the proxy returnsthe HTML page to the stack.

10. The UPnP stack responds to the client request.

5.6.3 UPnP Summary

Above, we presented the implementation of a UPNnP proxy service, which uses the
developed patternbased mechanisms to automate the process of exporting a native device as
aUPnNP device. Our solution has several notable properties:

Device-centric. To the best of our knowledge, no other existing tool provides support for
automatically exporting a device. As already discussed, this better supports the development
cycle and leaves open the possibility to generate multiple (independent) external system
interfaces, through which the device is accessible.

Generic. The proxy can work for any device object, as long as it has defined properties.
Note that, at no point does our solution require changes to the original device implementation
and the addition of new devices does not require changes to the proxy.

Extensible and customizable. The set of recognizable properties and, hence, device
services can be extended by adding more property definitions and respective handlers
without recompiling device or proxy code. Moreover, by swapping property handlers the
system can be incrementally customized, e.g., change the HTML interface, or provide
multiple versions of it.

Code reuse. In addition to fully reusing device and proxy code, our infrastructure allows
handler code to be readily reused across devices (e.g., multiple devices are likely to have
switch/navigation properties and they can share the HTML interface).

Finally, we would like to point out that our diff-ing service could be used to deduce and

announce changes on behalf of a device that does not, by default, issue events.

146

5.7 Summary

In this chapter we shared part of our experience in developing multi- user application
using our prototype implementation, as well as presented our experience with non
collaboration problems. Through this effort we sought to demonstrate that the design
rationale of our conceptual model is supported in practice. Our primary focus has been on
measuring the implementation effort in order to quantify the infrastructure’ s achievements
with respect to automation and code reuse.

Our results show that we were able to achieve alevel of sharing flexibility that is as high
asthat of our benchmark systems—Suite—at the cost of less than 1% of the original single-
user code for a nonttrivial piece of software, such as GEF. Furthermore, for the special case
of WY SIWIS sharing we require no specific collaboration support from the application just
like our benchmark system JCE.

With respect to code reuse, we should point out that virtually all modifications to the
original code were ssmple additions and did not require changes the logic of the single-user
code. Furthermore, our mechanisms are designed to be complimentary to the basic reuse
mechanism in object-oriented programming—class inheritance. That is, in addition to sharing
code with their superclasses, by default, subclasses also share the XML-based specifications
and respective property handler code. This feature is a direct result of the fact that patterns, as

amechanism to describe the object’ s logical structures, completely subsumes inheritance.

147

6. EVALUATION

The goal of this research has been the design and implementation of a collaborative
infrastructure that better satisfies the generic infrastructure requirements of automation,
flexibility, extensibility, and code reuse, as defined in Chapter 1. Recall that by better we
mean that for a given alevel support for three of the requirements, our infrastructure will
exceed, or at least match, the achievements of the benchmark systems with respect to the
fourth requirement (in some cases, existing solutions are optimal so matching them is the
best we can hope for). The results of our evaluation are summarized in a evauation tables,
which rank each surveyed system with respect to each of the infrastructures requirements.

6.1 Method of Evaluation

We have used two primary methods of evaluating the sharing infrastructures discussed in
this dissertation with respect to the requirements—inspection and simulation. Inspection
refers to the use of objective observations of the design and implementation of each system
to establish the degree to which a certain requirement is met. For example, by examining the
design and usage of an infrastructure, we can answer the question of whether or not the
system supports compiled code reuse.

To establish comparative results between atarget infrastructure and our own we use
simulation as our primary tool. That is, we compare the original implementation of a
reference application using a particular infrastructure, with an analogous implementation that
uses our infrastructure and simulates the features of the given infrastructure. As aready
discussed in Chapter 1, the basic criterion upon which we draw conclusions is the following:
if our infrastructure can simulate the main (conceptual) features of another infrastructure with
respect to a particular requirement with a comparable amount of effort, we consider our
infrastructure to be at least as good as the other. If, in addition, we support features not
present in the other infrastructure, we consider ours to be better with respect to the

requirement.

In practical terms, providing complete implementation simulations for all of the surveyed

systems is not feasible for at |east two reasons. First, the different infrastructures are based on

different software platforms that may exhibit features that are simply not available to our

Java implementation. Second, the sheer implementation effort puts such a study beyond the

scope of this dissertation. Therefore, our approach isto simulate severa of the systems, an

effort already described in the previous chapter, and provide an implementation sketch for

the rest of the systems.

Let us now describe the scoring scale for each of the requirements, as well as the criteria

used to assign the specific scores. A more detailed explanation of individual scoresis given
after the tables.

Automation: Low/M oderate/High/Complete. We rate the automation of a system as Low
if the effort to implement collaboration using the infrastructure becomes comparable to
that of implementing it without the infrastructure. This may be due either to the low level
of shared abstraction, which would require the developer to build higher-level
abstractions, or the assumption of avery specific programming model that would
essentially require the redesign of most applications.

A Moder ate designation means that the implementation effort requires some nornt
trivial mapping between the application’ s shared structures and the shared abstractions
provided by the infrastructure. After this mapping is established, however, the
infrastructure takes care of all the implementation details from that point on.

By High automation, we mean that the needs of a wide range of applications can be
directly accommodated by the shared abstractions provided by the infrastructure and, as a
result, the implementation effort for the multi- user application version is comparable to
that of the single-user version. The programmer is required to provide some basic
information and, perhaps, run some specialized initialization code but, by and large, no
serious changes are required to implement collaboration.

Completeis the highest rating and means that the single- and multi- user versions of
the application code are identical. As the following tables suggest, this can only be

achieved in alimited number of scenarios.

149

Sharing flexibility:

o Concurrent updates: Yes/No. With respect to this requirement, we ask whether the
infrastructure permits concurrent updates to a shared object by multiple users.

0 Semantic sharing: Yes/No. We ask whether the infrastructure supports the
independent sharing of a semantic object.

0 User interface sharing: Yes/No. We ask whether the infrastructure supports the
sharing of the user interface of the application.

o Sharing modes: Sync/Async/Flexible. The score with respect to this category
describes (at a very high level) the types of sharing modes supported by the
infrastructure. The Sync and Async vaues correspond to (pure) synchronous and
asynchronous sharing, while an entry of Flexible indicates that the infrastructure also
support some intermediate forms either based on parameters (e.g., Suite, TACT), or
fixed points (e.g., JViews).

Abstraction flexibility:

0 Programmer-defined semantic objects. Any/No/<Object description>. With respect
to this requirement, we have no fixed-point scale to differentiate among the
infrastructures. By Any we mean that potentially any object can be turned into a
shared object (at anominal effort), if the sharing mode is fixed. By No we mean that
it is not possible for the application programmer to define objects that are directly
shared by the infrastructure. If neither Any nor No applies, we briefly describe the
range of shareable objects and provide a detailed explanation in the respective
narrative section explaining the score.

0 Programmer-defined user interface: Yes/No. To evaluate with respect to this
requirement, we ask the question: Isit possible for the developer to write a custom
user interface and till get sharing from the infrastructure for sharing both the
semantics and the user-interface? This category applies only to infrastructures that
support Ul sharing; those that do not are marked with N/A.

Soecification flexibility:

o Late specification binding: Y es/No. With respect to this requirement, we pose the
guestion: Isit possible for the user to specify the sharing mode without recompiling
the application?

150

o0 Ease of specification: Low/Moderate/High. By Low we mean that the infrastructure
requires a procedural specification of the sharing mode (i.e., writing code), which
effectively precludes the user from routinely adjusting it at run time. A Moderate
designation refers to a system that is parameter-based but its parameters values do not
directly relate to the application objects manipulated by the user. Rather, they apply
to an abstract model defined by the infrastructure. Therefore, the developer would
have to map application abstractions to the model and build a specialized user
interface to make these parameters available to the end user in an intuitive form. By
High we mean that the specification mechanism closely follows the logical structure
of the objects seen by the user and the infrastructure provides a generic user interface
through which the user can manipulate the sharing parameters. Finally, we should
note that we link this category to the previous one in that we only evaluate
infrastructures that have a late specification binding mechanism. For those that do
not, the requirement is trivially satisfied and, therefore, is marked with N/A.

Codereuse:

o Compiled code reuse: Y es/No/Complete. With respect to this requirement, we ask
whether it is possible to directly reuse compiled code from the single- user version of
the application to build the collaborative one. Apart from the obvious Yes/No
answers, we aso designate with Complete al infrastructures in which this kind of
reuse is taken to the extreme by reusing the entire application code without
recompiling.

0 Incremental collaboration awareness: Yes/No. Recall that, by incremental
collaboration awareness, we mean the ability of an infrastructure to accommodate the
gradual transformation of aregular application into a collaborative one. An
infrastructure supporting such incremental approach provides multiple levels of
service, depending on the collaboration awareness of the application. Thus, the table
entry reflects whether or not thisis the case.

Extensibility:

0 Separation of shared abstractions and their implementation: Y es/No. The evaluation
of this requirement is based on answering the question: Isit possible to compose the
application with a completely different sharing implementation without modifying the

151

application code? Specificaly, does the infrastructure design envision and facilitate
such atrangition.

Sharing functions separation: Y es/No. The evaluation of this requirement is based on
answering the question: Is it possible to vary the implementation of one infrastructure
function without modifying, or even knowing of, other infrastructure functions?

Late component binding: Y es/No. Here, we pose the question: Isit possible to
compose the application and infrastructure services, as well as the different
infrastructure services, at run time? Evidently, this question is only valid for
infrastructures satisfying at least one of the two preceding requirements; those that do
not are marked with N/A.

152

6.2 Evaluation Tables

REQUIREMENTS \ INFRASTRUCTURES OUR JCE GroupKit Colab Suite JViews DISCIPLE
AUTOMATION Comigfte/ Complete HighHigh High High High High
FLEXIBILITY
Sharing flexibility
Concurrent updates Yes No Yes/Yes Yes Yes Yes Yes
Semantic sharing Yes No Yes/Yes Yes Yes Yes Yes
Ul sharing Yes Yes No/No No Yes Yes Yes
Sharing modes Flexible Sync Sync/Sync Sync Flexible Flexible Sync
Abstraction Flexibility
Programmer-defined semantic objects Pattel?:-yéased Any No/Any Any C(:;;Leste i\éjzgz JavaBeans
Programmer-defined user interface Yes Yes N/A N/A No Yes Yes
Specification flexibility
Late specification binding Yes No No No Yes Yes Yes
Ease of specification High N/A N/A N/A High High Low
CODE REUSE
Compiled code reuse C0¢Efte/ Complete No/No No No Yes Yes
Incremental collaboration awareness Yes No Yes/Yes Yes No No No
EXTENSIBILITY
Shared abstraction/implementation separation Yes No No/No No No Yes Yes
Sharing functions separation Yes No No/No No No No Yes
Late component binding Yes N/A N/A N/A N/A Yes Yes
Simulatable NIA Yes Yes/Yes Yes* Yes* Yes* Yes

Table 6.1 Evaluation: Infrastructures vs Requirements (Part 1)

153

REQUIREMENTS \ INFRASTRUCTURES OUR AMF-C DFS Coda Notes Bayou TACT Sync
AUTOMATION Com.plete/ Low Complete Complete/ High Low Moderate High
High Low
FLEXIBILITY
Sharing flexibility
Concurrent updates Yes Yes No Yes Yes Yes Yes Yes
Semantic sharing Yes Yes Yes Yes Yes Yes Yes Yes
Ul sharing Yes Yes No No No No No No
’)) . Async,
Sharing modes Flexible Flexible Async Async Async Async Flexible Sync
Abstraction Flexibility
gof - Any/ AMF Notes Database ~ Database Replicated
Programmer-defined semantic objects Pattern-based objects Ay Any Objects Records ~ Records Objects
Programmer-defined user interface Yes Yes N/A N/A N/A N/A N/A N/A
Specification flexibility
Late specification binding Yes Yes No \'(\lgé Yes Yes Yes Yes
— . N/A/ .)
Ease of specification High Low N/A Low High Low Moderate High
CODE REUSE
Compiled code reuse Corszlsete/ No Complete Complete No No No No
Incremental collaboration awareness Yes No No Yes No Yes Yes Yes
EXTENSIBILITY
Shared abstraction/implementation separation Yes Yes No Yes No Yes No No
Sharing functions separation Yes No No No No No No No
Late component binding Yes Yes N/A Yes N/A Yes N/A N/A
Simulatable N/A No Yes Yes Yes* Yes No* Yes

Table 6.2 Evaluation: Infrastructures vs Requirements (Part 2)

154

6.3 Comparative and Absolute Evaluation of Each System

In the following sections, we evaluate each of the systems in the survey, aswell as our
own, and explain the specific tables entries that we have given for each system. Generally,
the narration for each of the systems follows the order of the requirements in the above
evaluation tables. We aso perform a comparative evaluation of our work relative to the

benchmarks to show that we have met our original design goals.

6.3.1JCE

Recall that JCE is one of our benchmark systems with respect to automation and code
reuse. Like other user interface-based systems described in Section 2.1, it uses the sharing of
the user interface representation of an object to share the object itself.

Based on thismode, it provides fully automatic WY SIWIS sharing of arbitrary Java
applications and, therefore, Compl ete automation. Since JCE has no rotion of the underlying
shared semantic object defined by the application, it disallows concurrent updates and cannot
support separate sharing of the semantic object. At the same time, the WY SIWIS model
implies synchronous (only) sharing of the user interface.

With respect to abstraction flexibility, JCE’s model places no restrictions on the user
interface implementation or the underlying semantic object. With respect to specification
flexibility, none is supported in that there is a single sharing mode, which in turn implies no
(need for) late binding mechanism.

As already discussed, the compiled code reuse requirement is completely satisfied,
however, incremental awareness is not in that the application cannot help improve the
sharing support it gets provided by the infrastructure. Moreover, the infrastructure itself was
not designed to be extensible in any way so that its sharing support can be improved upon.

Asour discussion on Section 5.2 showed, we were able to ssmulate JCE's model for Java
Swing-based applications by sharing the input/output event queues of the application. The
Swing library is a second-generation implementation of the standard Java user interface
toolkit designed to replace the first generation AWT. We did not implement sharing of Java
AWT-based user interfaces and the reason for thisis purely technica—the AWT
implementation is closely tied to the underlying window system and sharing it required

numerous modifications to the standard AWT library to gain complete control of the event

155

streams. Since such modification would be irrelevant to our primary goals, and would be
largely repeating the solutions employed by JCE, we have opted not to include them as part
of our infrastructure.

6.3.2 GroupKit

In the case of GroupKit, we have an infrastructure that provides two distinct sharing
mechanisms—shared environmentsand multicast RPC—and our evaluation accounts for that
by giving two corresponding scores. With respect to multicast RPC, we consider only the
synchronous version because it can be directly used to implement object sharing. The
asynchronous version we consider a general-purpose multicast mechanism that requires non
trivial additional design and programming effort to build a shared abstraction.

Since the programmer can directly employ both of GroupKit’s basic mechanisms,
overal, the system provides a High level of automation. The system supports concurrent
updates and it appears that, absent an application-defined coordination mechanism, the exact
results depends on how the communi cation mechanism serializes the sequence of operations.
Both shared environments and multicast RPC were designed with the idea of semantic object
sharing and it was assumed that achieving the desired level of Ul consistency is the
responsibility of the developer. Hence, despite the fact that GroupKit provides collaborative
widgets, such as telepointers and multi- user scrollbars, it does not provide an automatic
mechanism for sharing the application’s Ul.

With respect to abstraction flexibility, there is no mechanism that would permit the
definition of programmer-defined abstractions, other than the use of multicast RPC, which
can potentially be applied to Any object. Because of its exclusive focus on synchronous
sharing, GroupKit provides No sharing flexibility.

Compiled code reuse was not a design consideration for GroupKit and, hence, no specific
support is provided. In contrast, it is possible to take an application and to gradually add
collaborative features to it adding multicast RPC invocations on select objects. Finally, there
are no specific design features that allow the infrastructure services to be easily extended or
replaced by the developer.

Environment sharing is a special case of the sharing provided by our infrastructure and

can be readily smulated. For example, one way to implement a shared environment is to

156

subclass Java’' s standard Hasht abl e class and add a notification mechanism to enable
synchronous sharing as sketched below:

public class SharedEnvironment extends Hashtable inplenments Identifiable {
Coupl er coupler = Central Regi stry. | ookup(<coupl er Nane>);
/1 ldentifiable inplenentation
public A DgetdD() {.}
public void setG@D(GAD gid) {.}
/1 Override nodifier methods
public (oject put(oject key, Cbject value) {
super . put (key, val ue) ;
coupl er. di spatch(new PropertyQperation(..));

}
public Object renmove(bject key) {.}

By default, our infrastructure supports the sharing of table properties and has a property
specification that matches the pattern used in the Hashtable class. Hence, with the exception
of aregistration call upon object instantiation, the above few lines of code are everything
needed to implement shared environments. Furthermore, our implementation would get
support for other sharing modes at no additional effort. A ssmulation of the multicast RPC

mechanism is provided for object-oriented context in the following section.

6.3.3 Colab

Colab is another one of our benchmark systems. In essence, it provides synchronous
sharing for arbitrary objects (subject to some nominal restrictions) by automatically
performing invocations of broadcast methods on &l replicas. Hence, the emphasisis on
automation with virtually no flexibility. The specific table entries here are identical to those
for GroupKit’s multicast RPC (the values after the slash) which reflects the fact that two
mechanisms are anal ogous and the same reasoning applies in justifying the table entries.

With respect to simulating Colab’ s broadcast methods, our infrastructure provides a
Renot eMet hodCal | object, which encapsulates a method invocation that can be replicated on
aremote host. The difference between our mechanism and Colab’s is that the latter is a
compile-time mechanism, whereas ours is not. Consequently, the application object must
explicitly construct and send the Rerot eMet hodCal | object (1-2 lines of code per method).
Certainly, this requires a bit more effort, however, compiler-support options do not appear

very appealing. Two points are relevant here.

157

First, since we cannot legally add a new keyword in Java, compiler support would
essentially mean a precompiler, which replaces either a new keyword (e.g., broadcast) or
special comments (a.k.a coding between the lines) with generated code. In both cases, the
resulting code violates the basic principle (if not the technical definition) of Javaasa
standardized language. Second, tagging broadcast methods alone is not sufficient when
implementing flexible sharing because the semantics of each method and its relationships
with other methods remain unknown.

We should also point out that our infrastructure allows broadcast methods to be defined
in multiple layers of the application. In Colab, broadcast methods must be restricted to one
layer because otherwise replicas may get multiple executions (in [22] the authors describe an
informal methodology for selecting broadcast methods, which roughly transates into
identifying modifier methods of shared semantic objects). However, by treating broadcast
calls like property operations ard using the application layering information, we can suppress

causally related multiple notifications and maintain correctness.

6.3.4 Suite

Suiteis our most important benchmark system with respect to automation, sharing
flexibility, and specification flexibility. Among the surveyed systems, it is the only one that
satisfies all aspects of these requirements. In short, Suite has the most comprehensive sharing
model and automatically supports the widest range of sharing scenarios through its
parameterized coupling model. It coordinates the simultaneous input of multiple users and
addresses the need for flexibility in both semantic and Ul object sharing. The hierarchical
specification model provides flexible, run-time specifications at various levels of granularity
that can easily be specified by the user.

. Since our sharing and specification models, described in Chapter 3, have been built as
proper extensions of those of Suite, the simulation of the latter istrivial. The only major
difference is that we have extended its essential approach from sharing of concrete data types
to an extensible set of programmer-defined abstract data types. Let us briefly consider the
mapping of Suite' s shared entities to our own.

Variables. We map these to JavaBeans simple properties with the essential read and write

operations performed by the getter/setter methods, respectively.

158

Records. By decomposing an object into a static set of properties, we can view it as
record. In other words, wherever Suite uses a record, we can map that to an object with the
same set of recognizable properties. Reading/writing the values of each property is
performed through read/write handlers.

Sequences. Our infrastructure explicitly supports sequence properties as one of the basic
property types. Hence, wherever Suit€ s uses a sequence, we replace that with an object that
has a recognizable sequence property. The essential insert/del ete operations are performed
through appropriate insert/delete handlers.

Thus, we were able to map Suit€ s shared structures to our own and were able to
implement their sharing without assuming a specialized user interface. Consequently, we
claim to have implemented a logically equivalent version of the Suite model rather than an
exact replica. (Notably, we provide none of the user interface generation facilities upon
which Suiterelies.) The supporting argument was already provided in Chapters 3 and 5, in
which discussed the conceptual and implementation issues involved in ssimulating the Suite
modd.

6.3.5JViews

JViews shares many of its design objectives with our own. Specifically, it provides shared
(JViews) objects that support High automation, as well as most aspects of sharing
flexibility—concurrent updates, separate model/view sharing and two modes of sharing:
synchronous and asynchronous (we classify the manual application of updates as
asynchronous because it has to be explicitly triggered by the user). |

In terms of abstraction flexibility, JViews supports only a fixed set of system-defined
abstractions for the semantic objects and does not deal with hierarchical shared structures.
However, the basic sharing mechanism, which focused on low-level event flow routing as a
means of achieving sharing, is readily applicable to Ul objects. The specification model is
static providing severa fixed sharing policies (one synchronous and severa user-mediated
versions of asynchronous) that are common to all objects. Hence, late binding of the sharing
specification is not supported.

JView takes advantage of Java’'s late binding mechanisms and supports compiled code

reuse of JViews and JavaBeans objects. However, the low-level event model does not

159

provide a good basis for gradually introducing collaboration awareness—the developer must
understand the whole communication/coordination mechanism before making changes to the
origina code. Other consequences of this implementation model include shared objects
sharing mechanisms separation (a shared object issues events that are processed by the
infrastructure) and direct dependencies among infrastructure objects implementing different
aspects of the event processing. This, in turn, makes separation of function a difficult task.

With respect to the simulation, our infrastructure is capable of sharing any fixed number
of systemdefined abstractions and, in this sense, capable of implementing JViews sharing
model. The approach would be very similar to the effort involved in converting the
GraphDraw application described in Section 5.3. The main programming effort would be the
conversion of the application event model to property operations.

As a matter of design choice, we do not support user-mediated application of remote
updates, athough it would trivial to do so by ssimply visualizing the queue of pending
property operations. The main reason for this choice is that our goal is to provide some
predictable sharing behavior. Once control is relinquished to the user, the system can no
longer guarantee the correctness of sharing. Thisis especially true when switching between

the sharing of different application layers.

6.3.6 DISCIPLE

DISCIPLE was primarily designed for synchronous sharing of JavaBeans objects and
shares many of its characteristics with JViews Thus, instead of repeating the same
arguments, we focus on highlighting the differences. The first notable difference is the
exclusive support for synchronous sharing, which appears to be a matter of design choice,
rather than an inherent limitation. The abstraction mode! is a subset of that of JView's
because, by design, a JavaBean is a special case of a JView object.. It is possiblein
DISCIPLE to compose and run the all the application and infrastructure components at run
time using a standard visual bean composition tool (called BeanBox), which, in principle
supports late binding. However, this visua interface was not designed for run-time
adjustments to the sharing process. Rather, its intended purpose was to create an application
configuration and save it for later use. Therefore, to bend its use for run-time adjustments

would require alot of work on part of the user (hence, the Low ease of specification).

160

The code reuse and extensibility arguments are, essentially, the same as that of JViews
The only notable difference is that DISCIPLE features a component-based architecture where
different phases of event processing are well-defined, thereby allowing for clean separation
of infrastructure functions.

As aready discussed, our infrastructure can directly share JavaBeans objects. The only
effort required on part of the developer is to ensure thet shared objects implement the
| denti fi abl e interface and to attach as a listener the provided BeanEvent Adapt er class

that converts bean events into property operation events.

6.3.7AMF-C

Being a collaborative extension of the single-user AMF infrastructure, AMF-C was
designed to flexibly share objects originaly implemented according to the AMF architecture.
Hence, to alarge extent, the system satisfies our sharing and abstraction flexibility. The main
problem here is that very few applications are actually developed using AMF and, therefore,
flexibility comes almost entirely at the expense of additional programming effort. That is, we
can expect a nontrivial redesign and re-implementation effort to fit an arbitrary application
to the AMF-C model. Hence, the Low scores for automation and code reuse. Furthermore,
because of the low-level event flow specification used to define sharing, the specification
effort is considerable, which makes it impractical for manipulation by end users.

With respect extensibility, AMF-C’ s features are similar to those of JViews because both
systems employ lowlevel event processing mechanism to implement sharing. Therefore,
while the sharing mechanism is separate from the shared objects, it is difficult to separate
different infrastructure service because they directly refer to each other.

We believe that our abstraction model can accommodate AMF objects, each of which
defines facets that, generally, map to properties on our model. However, our sharing model
works at a higher level of abstraction (programmer-defined objects) than AMF-C counterpart
(application-defined events that are opague to the infrastructure). Hence, while it is possible
to smulate lower-level abstractions with higher-level ones, we do not believe that in this case
the solution would be contrived.

In conclusion, we should note that AMF-C is not one of our benchmarks because it does

not provide a high level of automation Recall that our basic requirement is automation and,

161

therefore, we compare flexibility features of infrastructures that provide high automation,

such as ours.

6.3.8 Traditional Distributed File Systems (DFS)

Traditional DFS, provide an interesting counterpoint to shared Ul systems (e.g., JCE)—
they provide the same Compl ete automation and compiled code reuse of Any programmer-
defined semantic object. However, they use the repository rather the Ul as a shared medium.
Hence, for performance reasons, the sharing is effectively limited to asynchronous mode, and
no sharing of Ul objects is feasible. Furthermore, having only access to the persistent state of
the application, DFS has no idea of the user interface.

In Chapter 5, we showed how we can simulate the basic DFS asynchronous sharing
model, which is based on users taking turns at updating a shared object. To turn thisinto a
true file system simulation, we can define a generic File object as a sequence of bytes and the
directories as sequences of Files. Thus, files would appear as nodes a tree structure and

updates to different files would be detected as non-conflicting (asin aregular DFS).

6.3.9 Coda

In the evaluation of Coda, we represent two separate evaluation points, which correspond
to the two ways in which the infrastructure can be used. The first one is its basic operation,
which is practically identical to traditional DFS. The main difference here is the option of
trickle integration, which is primarily a performance consideration and has virtualy no
bearing on the sharing semantics. The second option for using Coda is to take advantage of
the opportunity to provide procedures for automatic conflict resolution. This considerably
improves the sharing flexibility of the application but comes at a high development cost.
Since conflict resolutions procedures are not needed until an actual conflict is flagged, the
infrastructure can support late binding of these routines, which serve as procedural
specification of the sharing mode. As already noted, there is little in the way of automation in
this process and using procedural sharing specifications (in the form of conflict resolution
routines) make user-level specification difficult. The last difference is the separation of the
shared object (file) and its sharing implementation—the conflict-resolution procedure.

The smulation of Coda is similar to that of traditional DFS. The type-specific procedures

supplied by the programmer can be implemented as merge handlers in our infrastructure.

162

That is, we can take the conflict resolution procedure and place it as a property handler in the
property specification. At run time, the infrastructure will lookup and invoke the handler to
update areplica.

6.3.10 Lotus Notes

Notes presents a challenge in terms of evaluation because of its peculiar sharing model.
Unlike the rest of the surveyed systems, the notions of replication ard replica consistency are
entirely decoupled. The replication of a document is controlled by a set of replication
attributes that determine with whom a Notes document is shared. However, the system makes
no attempt to reconcile concurrent updates to a document—it merely flags the conflict,
creates a new version of the document and leaves the users to sort it out. In other words,
conflict detection is coarse-grained and automatic, whereas conflict resolution is manual.
Thus, in terms of our requirements, Notes' evaluation is similar to that of DFS, with the
exception of abstraction and specification flexibility. Unlike DFS, where the shared object is
opaque to the system, Notes' sharing model is based on a database of document records.
Thus, the system is able to provide a variety of user-controlled replication and access control
parameters, which in terms of out requirements means late specification binding and High
ease of specification.

To simulate Notes sharing model, we define represent its documents is as objects with a

sequence of document versions—one primary and a number of response ones. For example,

public class NotesDocunent inplenents Identifiable {
public G D getd D();
public void setG D(G D gid);
public void addVersi on(Not esVersi on version);
public void renoveVersi on(NotesVersion version);

}

Whenever alocal replica receives a remote document with the same identifier, it does not
attempt to merge but rather adds it to the list of version. In this case, the GID property
provides a convenient unique identifier, which can be used as a key into a Notes database.
The database itself can readily be represented by atable, and concurrent updates can be
detected using the document’s GID. Since conflicts are detected late and “handled” in a
predefined manner, we need a simple merge handler for the database table, which adds a new

version should it detect a conflict with the local database.

163

Simulating the replication model requires some more work, but can still be achieved
within the framework of our model. Recall that we can specify the sharing for any subgroup
of users and, in particular specify whether the entity should be shared at all. Hence, what is
needed is to store persistently those parameters so that whenever changes are committed they
would be communicated to the respective remote users.

One aspect we cannot accommaodate is the replication architecture (e.g., peer-to-peer,
hub-and-spoke, tree) because these are parameters of the communication layer that we do not
control. Another aspect is access control, which is an issue we have not so far addressed and

is one of the first problems we plan to address in the future.

6.3.11 Bayou

The main feature of Bayou in terms of fulfilling our requirements is its use of conflict-
detection queries and procedures. This alows its mechanisms to be composed with any
application because the translation between shared application structures and Bayou'’ s tuples
is entirely the responsibility of the developer. This resultsin increased flexibility, satisfying
our semantic object sharing and late specification requirements, but also implies reduced
automation reflected on our Low scores on automation and ease of specification.
Furthermore, as with all asynchronous sharing system, the Ul cannot be shared directly.

Code reuse was never on Bayou's agenda so programmers must modify the single-user
application to use the system’s mechanisms. Support for extensibility is a byproduct of the
fact that developers must write an intermediate layer of adaptation code that allows the
application to use infrastructure services. Hence, if the intermediate code is structured
properly, the application and the infrastructure implementation can be varied independently.

Like other database-oriented infrastructures, Bayou'’ s tuples can be represented as objects
consisting of simple properties that are being inserted into and removed from atable. User
can write specialized merge handlers for the tables that can perform queries and
automatically resolve conflicts. In fact, the query and conflict resolution parts can be
separated into different handlers with the latter being invoked only when a conflict arises.

The one feature we do not directly support is the query language. However, it could be
developed as a separate infrastructure service with potentially more sophisticated features. In
particular our knowledge of the structural dependencies within the shared objects would

164

allow us to detect conflicts at a finer granularity by using a version of the object diff-ing
routine. In this case, we would not keep a shadow copy of the objects but would compare two
objects being inserted under the same key to find out if thisis atrue conflict by examining

their differences at a finer granularity using property-based decomposition.

6.3.12 TACT

TACT presents an interesting point of evaluation because its goals and implementation
are, to alarge extent, complimentary to our own. It exclusively focuses on the problem of
implementing a flexible consistency model that is independent of the application’s shared
object structures. Rather, it is up to the application programmer to perform the non-trivial
task of mapping those structures to the infrastructure-defined abstraction of a conit (smilar to
a database record). Once the mapping is completed, the infrastructure automatically provides
the sharing of the structures. Hence, overall, this scheme provides a Moder ate level of
automation.

One major problem with TACT’ s read/write database model is that it is too restrictive and
does not perform well for dynamic structures that grow/shrink as a result of user actions. As
already discussed in the context of JavaBeans’ model, the main issues are the detection of
false conflicts and the inability to reconcile concurrent user updates. Thus, overall, we
evaluate the sharing flexibility as Moderate

Since the developer is tasked with tranglating shared objects into conits there are few
limitations on abstraction flexibility (albeit at the expense of automation). The sharing
specification is based on parameters so it supports late binding. A parameter-based
mechanism is generally easy to specify, however, in this case the specification metrics are
somewhat unusual and it is not always obvious how they map to changes in the sharing
behavior,. Therefore, we consider it a system with Moder ate ease of specification.

TACT implicitly requires that the application define conits and explicitly manage their
dependencies. Thus, it is not possible to directly reuse compiled code but it conceivable to
make the application gradually collaboration-aware step by step. The system is not designed
for extensibility, which is not surprising given that it attempts to subsume most consistency

models currently in use.

165

Overadl, our infrastructure can simulate TACT by defining read/write handlers that
implement its model and by assuming (as it is done in the origina implementation) that
applications only preannounce the updates and these are carried out by the infrastructure at
the appropriate time. However, this approach would be tantamount to re-implementing TACT
and, therefore, we are interested in interfacing our infrastructure with TACT so that we can
get the benefits of its generic consistency model at alow specification cost. In particular, we
believe that properties are good a basis for defining conits and structural dependencies can

automate the process of identifying dependencies between read and write operations.

6.3.13 Sync

Due to its predefined shared abstractions, which can be directly employed by the
application developer, Sync provides a High level of automation. Once the shared structures
are built from the shared primitives, the infrastructure handles the sharing process
automatically. The system allows programmers/users to specify a wide range of sharing
(conflict resolution) policies. Originally, the system was limited to synchronous sharing,
however, follow up work has demonstrates its use for synchronous sharing. Supporting
intermediate, Suite-like, sharing modes cannot be currently accommodated.

Sync provides sharing of semantic objects thet either directly use the shared classes, or
inherit from them. Hence, the sharing is independent from the user interface aspect of the
application—in fact, Sync assumes that the semantic object and its Ul is implemented in
separate classes and the Ul classes are ignored for the sharing purposes, thus the Ul cannot
be shared

Sync was designed to provide flexible table-driven merging, which implies late, run-time
binding of policy and mechanism. Furthermore, it provides multiple ways of specifying
default policies, which considerable lowers the specification effort on part of the user.

Code reuse was not a primary goal directly addressed by Sync. As our discussion in
Chapter 2 showed, converting asingle-user application into a multi- user one requires re-
engineering of its class hierarchy, which implies that compiled code reuse is not supported.
However, the infrastructure does support a gradual introduction of collaboration awarenessin

that the programmer may start with some default policies, then move on to custom policies

166

specified by merge tables, and eventually define additional replicated classes should the
standard ones prove inadequate.

Finally, Sync's design does not address our extensibility requirements the way other
Java-based infrastructures—such as DISCIPLE and JViews—do. Although by virtue of
implicitly using Java’'s dynamic class loading, it is technically possible to replace the
implementation of the replicated classes without modifying the application, we do not
consider Sync to fulfill our requirement of separating the shared abstraction and sharing
mechanism because of the use of inheritance, which binds the abstraction and mechanism
together. Along the same lines, the infrastructure was not designed to accommodate new
functions by simple composition.

A simulation of Sync’s merge model fits well in our infrastructure model. The
hierarchical top-down approach is analogous to what we used in our basic design for
infrastructure services, such as diff-ing. Sync’ SRepl i cat edRecor ds correspond to anobject
being decomposed into a set of properties. Sync’s replicated basic types—int, string, etc—
map to ssimple read/write properties in our model, whereas its complex types—

Repl i cat edSequence and Repl i cat edDi ct i onar y—correspond to objects with asingle
sequence/table property, respectively, and would be covered by the standard property
specifications that are part of our infrastructure. Hence, only suitable merge handlers that
deal with merging of individual properties (based on merge tables) must be defined to
complete the simulation of a SyncClient.

To smulate the SyncServer part of the system, we need a master copy version of our
architecture like ones we used in the examples in Section 5.1. Accordingly, a server version
of the merge procedure must also be developed. The main difference here is that the server
merge procedure may have to respond back with alist of property operations that a client
must execute to achieve consistency. Naturally, a commit-based sharing policy would be

used to control the sharing on both ends.

6.3.14 Our Infrastructure
Column ‘Our’ of Table 6.1 (repeated in Table 6.2) summarizes the evaluation of our

infrastructure with respect to the original requirements. The assessment is made based on the

167

detailed discussion in Chapters 3, 4, and 5, and the following points provide a recapitul ation
of the essential arguments behind our claims with respect to each requirement.

Automation. Our support for automation falls into three separate cases, following our

basic classification of sharing scenariosin Chapter 1. For user interface-based sharing,

we provide WY SIWIS sharing equivalent to that of other systems at no development
cost. For application-based sharing, we provide a functionally equivalent mechanism to

Colab’ s broadcast method although without the compiler support. We provide direct

automatic sharing of the abstractions supported by GroupKit, Suite, and Sync. For

repository-based infrastructures, such support can be added at the nominal cost of
providing property specifications and appropriate handlers for each property type. For
infrastructures that rely on conflict resolution, such as Coda and Bayou, this translates
into providing merge handlers, in addition to the required read handler.

Sharing Flexibility.

o0 Concurrent updates. Our infrastructure, like most of the rest, supports concurrent
updates from multiple users. The only exception is Ul-based sharing where
simultaneous access must be blocked to ensure correctness.

0 Semantic sharing. As our discussion in Chapter 5 showed, our work can support the
flexible sharing of semantic objects independent of their user interface

0 User interface sharing. Similarly, we demonstrated sharing that can be applied to the
user interface of any semantic object and, thereby, implement Ul-based sharing of the
abstraction.

o Sharing modes. Our sharing model supports the sharing provided by Suite, which is
the infrastructure with the highest sharing flexibility for applicationbased sharing.
Also, by explicitly separating the event processing into three distinct phases and
adding parameters to control each phase, our extension of the model alows afiner
grain control of the sharing process and can integrate as special cases awider variety
of sharing mechanisms in use today. By introducing a description mechanism for
application layers, we enabled higher-level control of the application sharing that in
addition to accommodating the layer-based sharing of existing systems, allows multi-
layer sharing to be implemented under more general assumptions than currently

possible.

168

Abstraction Flexibility

0 Programmer-defined semantic objects Again, we have two cases. The first one isthe
use of Colab-like broadcast methods, which can be correctly applied to (almost) any
object under the assumption of synchronous sharing. The second one the sharing of
programming pattern-based objects. As already discussed, all of the abstractions
shared by other infrastructures can be modeled as special cases of the use of patterns.
At the same time, the class of pattern-based objects that can automatically be shared
isaproper superset of the ones supported by any of the other systems.

o0 Programmer-defined user interface. As with most other sharing infrastructures, our
sharing mechanisms are independent of the user interface implementation.
Furthermore, the described experience in developing applications shows that they can
be applied to any application layer. Notably, by using the programmer-specified
dependencies, we can enable the simultaneous sharing of multiple layers that do not
depend on each other, as well as prevent the simultaneous sharing of dependent layer
to ensure correctness.

Soecification flexibility.

0 Late specification binding. Our parameter-based specifications have their own
external representation based on XML. Therefore, they are completely independent of
the sharing mechanisms that implement them and the two are composed at run time.
Moreover, even the binding of procedural specifications, such as a conflict detection
routine, is performed at run time through a property specification.

0 Ease of specification. Our specification model builds on that of Suite s and, therefore,
our infrastructure provides alevel of support that is at least as high as that of Suite.
Our main task has been to adapt Suite s inheritance-based specification approach so
that it can be applied to object-based programming. Going a step further, we have
provided the policy specifications with a standardized externa representation. This
permits an administrator to assume the responsibility of defining a set of standard
policies, which end-users can employ without knowing the details of the sharing
model.

169

Codereuse

o Compiled code reuse. Code reuse has been a mgjor objective of our work and we
claim thet we have satisfied this goal better than existing infrastructures. Specifically,
for Ul- and repository-based sharing, our infrastructure can provide complete
automation, such as the one exhibited by other infrastructures. However, we also
address reuse in the context of application-based sharing, which, as our evaluation
table shows, has been achieved by very few systems. In particular, out of the
surveyed systems, only JViewsand DISCIPLE have such mechanisms and we showed
that both can be handled as special cases of our pattern-based approach. Recall that
the set of object properties and the corresponding property handlers can be extended
without modifying the shared objects. Hence, we can potentially add support for
arbitrary new types of shared objects without recompiling existing code, which is not
possible with any of the other systems.

Another aspect of our support for reuse is the ability to reuse handler code across
objects that belong to unrelated branches of the class hierarchy. In our model
description we showed that patterns are a more general concept than interfaces and,
therefore, an implementation based on patternsis more general and can be directly
reused with awider range of objects.

0 Incremental collaboration awareness. As we showed in Chapter 5, our system
facilitates a devel opment approach in which collaboration features are incrementally
introduced into the application. At each step, a new set of default capabilities become
available, enabling the programmer to minimize the devel opment effort. For example,
if users need only asynchronous sharing, there is no need for the application to
implement a notification mechanism. Furthermore, if certain services are not directly
needed, the programmer need not provide them. For example, if diff-ing is not
needed, the application does not need to specify any diff handlers.

Extensibility. Our work supports all three aspects of this requirement—separation of

shared abstraction and implementation, separation of infrastructure functions, and late

component binding. The main mechanism implementing this support is, again, the

property specification language, which allows the composition of shared abstractions and

170

sharing functions to be performed late. Similarly, different infrastructure functions may

interact indirectly, using the specification as a means of discovering each other.

171

7. CONCLUSIONSAND FUTURE WORK

A common approach employed by sharing infrastructures is to present the programmer
with shared programming abstractions as a basis for implementing multi- user applications.
We have identified a set of generic automation, reuse and flexibility requirements that such
sharing infrastructures should satisfy. However, our survey of a number of influential
systems lead us to the conclusion that, while individual requirements have been met, none of
the existing infrastructures fulfills a substantial subset of the requirements as a whole.
Therefore, we have developed a new model and a corresponding prototype implementation
of an infrastructure for sharing of distributed objects that fulfills the set of requirements
better than current systems. Below we present our conclusions, as well as ideas on extending

this research in the future.

7.1 Conclusions

Based on the presented results of our work, we draw the following main conclusions:
For each of the generic infrastructure requirements identified in Chapter 1—
automation, flexibility, code reuse, and extensibility—there exists at least one system
that satisfies it to high degree. However, no single system fulfills al of the
requirements, or even a substantial subset of them.

Our new object-sharing infrastructure better satisfies the infrastructure requirements

than current systems. That is, for any given sharing scenario, it satisfies the

requirements at least as well as existing systems and, for alarge number of scenarios,
it satisfies a subset of the requirements to a higher degree than existing systems. The
developed conceptual model and prototype implementation make severa research
contributions:

0 The introduced property specification language formalizes the notion of a
programming pattern and extends the abstraction flexibility of the sharing
infrastructure. We showed that the shared abstractions supported by other systems
can be modeled as specia cases of the use of patterns.

0 The developed component architecture, based on property handlers, provides a
means to completely separate the core application code from the infrastructure
services by providing a means to flexibly compose them based on specifications.

o Theintroduced application layer specification enables the generic description of
application layers and their dependencies, thereby enabling the dynamic switching
of the shared layer at run time, while maintain correct sharing semantics.

0 The introduced sharing model, based on the original Suite coupling model,
provides a more genera framework for controlling the sharing semantics than
existing approaches. This includes the incorporation of new services, such as
object diff-ing, and the integration of a number of additional sharing options that
allow the system to support the sharing models of other infrastructures.

The developed formal pattern specification language and the associated component

architecture based on property handlers are generic software engineering tools. We

have demonstrated their use outside the immediate scope of collaboration and we
have concrete ideas to apply them to a number of other areas, which we discuss below
as part of our future work.

Our infrastructure model does not explicitly incorporate a number of collaboration

functions, such as access control and multi- user undo/redo, and support for others,

such as concurrency control and session management is limited to the minimum
required to demonstrate a working sharing implementation. While our design was

developed with such extensions in mind, clearly, further work is needed to achieve a

comprehensive sharing infrastructure model. In the following section we discuss our

ideas in that respect.

7.2 Future Work

Our ideas on extending this work can be grouped into three distinct categories that are

discussed as follows. First, we consider the extension of the current infrastructure model and

implementation to (ultimately) provide a comprehensive collaboration model that covers all

aspects of the design space for collaborative applications. Such an extension isto be

accomplished in two ways: adding new collaboration services and integrating our work with

existing systems that are complementary. Next, we present our thoughts on improving our

173

patternbased mechanisms to make them more general and easier to use. Finally, we give our

ideas on applying pattern-based approaches to noncollaborative applications.
7.2.1 Collabor ative I nfrastructur e Extensions

7.2.1.1 Service Extensions

Recall that we have only explicitly addressed concurrency control only in the limited case
of Ul-based sharing (Section 5.2) for purposes of correctness. By concurrency control we
mean a mechanism that allows a group of collaborators to explicitly coordinate their actions
to ensure the desired level of consistency of the shared artifact. There is a wide range of
useful concurrency control schemes employed by existing systems. On the one end, we have
the most liberal option of no application mediated control (implicitly assumed by nost of our
current work), which relies on users coordinating their actions through social protocol. On
the other end, we have the most conservative scheme, which only allows one user at atime to
modify the shared object (as in Ul-based or file-based sharing). In between, there are
numerous other options that can broadly be classified into optimistic and pessimistic. The
former seek to maximize concurrency by assuming that conflicts are rare and, therefore, in
most cases it is advantageous to alow concurrent user actions to proceed and to defer
conflict detection/resolution to a later time. The latter places an emphasis on providing firm
consistency guarantees, often at the price of lower concurrency, by using enforcement
mechanisms that prevent inconsistercies altogether A pessimistic approach inherently
implies that the infrastructure must have complete control over updates of the shared object.
Hence, we would need a mechanism by which the application (pre-)announces intended
changes and the infrastructure has the power to prevent them from taking place. Accordingly,
we would need to extend our event model to accommodate a two-phase announce/notify
protocol.

Our ultimate goal with respect to concurrency control would be to develop a model that
accommodates as many of the currently existing options as possible under one roof, and to
allow users to dynamically select the scheme that fits their collaboration best. Furthermore,
we would like to provide multiple levels of support based on the notification mechanism
implemented by the application. In particular, since most applications do not employ two-

phase notification, the open issue we seek to explore is: how much support can we provide

174

under these circumstances? Is it possible to automatically generate a pre-announcement on
behalf of the application or compensate for the lack of pre-announcement through an undo
mechanism? Another interesting research topic is to explore the opportunities for inter-
operation among different concurrency control schemes that fit the developed model.

Access control determines which users have access to various operations on a protected
object. By definition, access control requires a preventive enforcement mechanism that has
the power to effectively deny access to the object’ s operation by an unauthorized user. Our
goal would be to develop an access control model that can be composed with the rest of our
infrastructure.

Our infrastructure would also benefit from the presence of a generic multi- user undo/redo
mechanism similar to thet of Suite. In addition to resolving the immediate issues of the
semantics of the undo command, it could also help in implementing some of the concurrency
control options outlined above. In particular, an interesting issue is, given a generic
undo/redo mechanism, which requires only update notification (and not pre-announcement),
isit possible to effectively simulate pessimistic concurrency control without requiring pre-
announcement. That is, implement a scheme under which it may be possible for an object
replicato temporarily become inconsistent (due to an unauthorized local operation being
applied first notified later) but be automatically brought back into consistency through a

corresponding undo operation.

7.2.1.2 Integration with Other Infrastructures

To acertain degree, the concrete implementation of our infrastructure has been
influenced by the idea of integrating certain functions already implemented by other systems
with our own. A prime example in that respect is session management. As our description in
Chapter 4 shows, we have implemented the bare minimum necessary to test our
infrastructure. Our rationale has always been to eventually utilize the comprehensive session
management mechanism offered by JCE. Such an integration would also strengthen our
argument that we have developed an extensible infrastructure.

Another complimentary mechanism we would like integrate with is Sync’ s table-driven
merge mechanism. Recall that our model allows for custom merge property handlers to be

defined, thereby enabling the ssmulation of Sync’c merging model. However, we have chosen

175

not to replicate Sync’s full implementation effort largely because we believe that our work
can be composed with Sync’s merging mechanism with a reasonable effort. Furthermore, we
would like to explore the integration with our object diff-ing mechanism, which is a natural
complement to merging.

Another direction for our integration work would be an effort to compose our work with
Chung’ s generic logging mechanism, which provides for replication flexibility—the ability to
dynamically change the physical replication architecture of the application to adapt to
network conditions and user preferences. In particular, we believe that we can leverage
knowledge of the object and application structures (through properties and layers,
respectively), as well as the semantics of property events, to automate the process of mapping
application-specific communication protocols to the generic I/O protocol upon which
Chung’'swork is based.

7.2.2 Pattern Specification M echanism Improvements

One of the practical issues we have encountered in our work with property specification
has been the need to verify that the XML-based specifications do indeed find the properties
they are designed to find. A wrong specification may lead to some properties not being
recognized, which may be difficult problem to spot in a larger software project. Therefore we
would like to develop more user-friendly tools that facilitate the specification process. Asa
first step, we would like to devel op a specificationby-example tool that would allow usersto
bring up the list of methods for a particular classes and provide examples of specific patterns,
based on which our infrastructure would deduce the exact pattern specification. A more
challenging issue isto develop atool that automatically examines the code of an application

and generates alist of candidate property definitions to the developer.
7.2.3 Pattern-based Approachesto Non-Collabor ative Applications

7.2.3.1 Automated Object Testing

As an ongoing project, we are currently developing a framework for automated object
testing based on patterns. The fundamental idea behind it is to use the object property
analysis to break down the problem of testing the whole object into a problem of testing a set

of object properties. Each individual property comes with its own autonomous semantics that

176

could, in many cases, be tested separately. The testing of an individual property is based on
the use of Guttag-style algebraic specifications. We use the semantics attribute classification
of pattern methods (constructor, destructor, modifier, and accessor) to automatically
generate test cases. The basic ideais to generate a large set of test cases by performing all
possible combinations of constructor method invocations using the test points as arguments.
For example, if an object has a property with constructor method called addEl enent , and a

set of three test points— 17, “ 2, and * 3” —the test cases would be generated as follows:

obj ect . addEl enent (“1")

obj ect. addEl ement (“1”). addEl enent (“1")

obj ect . addEl ement (“1”). addEl ement (“1”). addEl ement(“1")
obj ect . addEl ement (“1”). addEl ement (“1”). addEl ement (“2")
obj ect. addEl enent (“1”). addEl enent(“1”). addEl enent (“3")
obj ect . addEl ement (“1”). addEl ement (“2”). addEl ement(“1")
obj ect . addEl ement (“2")

obj ect . addEl ement (“2”). addEl enent (“1")

éﬁject.addElenEnt(“S")
obj ect . addEl enent (“3”). addEl enent (“ 3") . addEl enent (“3")

For each generated test case, the infrastructure invokes each of the other methods and
compares the result with the expected one by invoking a corresponding programmer-defined
predicate. For example, for ar enoveEl enent destructor method, the developer must specify

the following predicate:

bool ean renoveEl enent Test (ol dState, newState, arguments)

The predicate invocation can be interpreted as asking folloing question:

Given the ol dst at e of the object, the fact that ther emoveEl ement method has been
invoked with the given ar gunent s, does the observed newst at e agree with the desirable
results?

Ideally, the above question should be answerable based on formal axiomatic
specifications, however, even using this procedural form, which is compatible with the de
facto standard JUnit*® testing tool we expect to see considerable benefits. Namely, with a

comparable effort development effort, our infrastructure will perform automatic exhaustive

Bhttp://wwv junit.org

177

testing of all test point combinations as opposed to the manual ad- hoc testing practices that
are prevalent today.

To address the fact that properties may have dependencies, we apply a similar exhaustive
testing idea to test combinations of properties. While this results in a combinatorial that may
become too computationally expensive, it is quite possible to control it by seeking
information from the developer on which properties are, in fact, independent and exclude
them from the test case generation. Conversely, the testing can help in certifying that the
properties are indeed independent as expected by the developer.

Finally, we would like to take the pattern a step further to allow automated testing based
on design patterns. At the very minimum, we currently have the basic mechanisms to
automatically match objects that implement recognized design patterns by examining their
programming patterns. For example, one could define observer and observable programming
patterns and recognize that an object implementing the former and an object implementing

the latter may, together, be implementing a design pattern.

7.2.3.2 Sructured Code Generation

Following a set of programming patternsis especially desirable in any software
engineering team because members interact with each other’s code. In our work we have
primarily used property specifications to identify patternsin already existing code. However,
it is quite possible to perform the reverse process, in which case the users can provide values
for the free variables in the pattern specifications, and allow the infrastructure to
automatically generate the application code, which would be guaranteed to follow the given
patterns.

178

8. APPENDIX

8.1 XML Property Specification Schema

<?xm enc
<! ENTI TY
<! ENTI TY

<IENTI TY
<IENTI TY
<IENTITY
<IENTITY
<IENTI TY
<IENTI TY
<IENTI TY

<! ELEMENT

<l ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<! ELEMENT
<! ELEMENT

<! ELEMENT
<! ELEMENT
<I ATTLI ST
<! ELEMENT

<! ELEMENT
<l ATTLI ST
<! ELEMENT
<! ELEMENT

<! ELEMENT
<I ATTLI ST

<! ELEMENT
<I ATTLI ST

<! ELEMENT
< ATTLI ST

<! ELEMENT
<I ATTLI ST

<! ELEMENT
<! ELEMENT

<! ELEMENT

odi ng="UTF- 8" ?>
% EXPR "reference | plura
% PATTERN_REF "reference">

short

pl ural _short">

"<literal>void</literal >">
"<literal>int</literal >">
"<literal >bool ean</literal >">
"<literal>java.lang. String</literal >">
"<literal>java.util.Enunmeration</literal >">
"<literal>[]</literal >">

"<literal >java.util.Vector</literal >">

VO D

I NT
BOCOL
STRI NG
ENUM
ARRAY
VECTOR

constraint*,
handl er +) >

property spec (pattern+,
excl ude*,

nanme_rul e, type_rule,

property_spec

type CDATA #REQUI RED

ver si on CDATA #REQUI RED>

pattern (return_type, method_nane,

pattern nane | D #REQUI RED>

pattern semantics (unknown |
nodi fier

return_type (literal

argunent _type (litera

met hod_nane (literal

argunent _type*)>

accessor | constructor
| destructor) "unknown">
variable | (variable,literal)
| variable | | GNORE)>
(literal ?, variable,

I
| I GNORE) >
literal?)) >

literal (#PCDATA)>

vari abl e EMPTY>

vari abl e name | D #REQUI RED>
| GNORE EMPTY>

constraint (lhs, rhs)>

constraint predicate (equals | subcl assof)
| hs ((YPATTERN_REF;), (%EXPR;))>

rhs ((Y%ATTERN_REF;), (%EXPR;))>

"equal s" >

ref erence EMPTY>
reference vari abl e | DREF #REQUI RED>

short EMPTY>
short vari abl e | DREF #REQUI RED>

EMPTY>
vari abl e | DREF #REQUI RED>

pl ural
pl ural

plural _short EMPTY>
pl ural _short variabl e | DREF #REQUI RED>

nane_rule (litera
type_rule (litera

(YEXPR;)) >
reference) >

excl ude EMPTY>

179

<I ATTLI ST excl ude
cl ass_nanme CDATA #REQUI RED
nane CDATA #REQUI RED
scope (subclass | self} "subcl ass">

<! ELEMENT handl er EMPTY>

<I ATTLI ST handl er
operati on CDATA #REQUI RED
cl ass_nanme CDATA #REQUI RED>

8.2 Generic TABLE Property Specification

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE property_spec SYSTEM "PropertySpec.dtd">

<l-- "table" property version 1.1
Exanple (fromjava.util.Hashtable):
public Object put(Cbject obj, Object value)
public Object renove(Object obj)
public Object get(Object key)
public Enumeration keys()

nane: El enent

type: Object

-->

<property_spec type = "table" version = "1.1">
<l-- "bind" pattern -->
<pattern nane = "bind">

<return_type><| GNORE/ ></return_type>
<net hod_nanme>
<literal>put</literal >
</ met hod_nanme>
<ar gument _type>
<vari abl e nane
</ argument _type>
<ar gument _t ype>
<vari abl e nane
</ argunent _type>
</ pattern>
<l-- "unbind" pattern -->
<pattern nanme = "unbind">
<return_type><lI GNORE/ ></return_type>
<nmet hod_nane>
<literal >renove</literal >
</ met hod_nane>
<ar gument _t ype>
<vari abl e name = "Unbi ndKeyType"/ >
</ argument _type>
</ pattern>
<l-- "l ookup" pattern -->
<pattern nane = "l ookup">
<return_type>
<vari abl e name = "LookupVal ueType"/ >
</return_type>
<nmet hod_nanme>
<literal >get</literal >

"Bi ndKeyType"/ >

"Bi ndVval ueType"/ >

180

</ met hod_nane>
<ar gument _t ype>
<vari abl e name = "LookupKeyType"/>
</ argunent _type>
</ pattern>

<l-- "get _keys" pattern -->
<pattern name = "get_keys">
<return_type>
&ENUM

</return_type>
<net hod_nane>
<literal >keys</literal >
</ met hod_nane>
</ pattern>
<l -- Bi ndKeyType == Unbi ndKeyType -->
<constraint predicate = "equal s">
<l hs>
<reference vari abl e
<reference variabl e
</l hs>
<r hs>
<reference variable
<reference vari abl e
</rhs>
</ constraint>
<l -- BindKeyType == LookupKeyType -->
<constraint predicate = "equal s">
<l hs>
<reference variabl e
<reference variabl e
</l hs>
<rhs>
<reference vari abl e
<reference vari abl e
</rhs>
</ constraint>
<l -- BindVal ueType == LookupVal ueType -->
<constraint predicate = "equal s">
<l hs>
<reference variable
<reference vari abl e
</l hs>
<rhs>
<reference vari abl e
<reference vari abl e
</rhs>
</ constraint>
<nane_rul e>
<literal >Table</literal >
</ nanme_rul e>
<l-- typing rule -->
<type_rul e>
&VO D
</type_rul e>
<!-- handlers -->
</ property_spec>

"bi nd"/ >
"Bi ndKeyType"/ >

"unbi nd"/ >
"Unbi ndKeyType"/ >

"bind"/ >
"Bi ndKeyType"/ >

"l ookup"/>
"LookupKeyType"/ >

"bi nd"/>
"Bi ndVval ueType"/ >

"l ookup"/>
"LookupVal ueType"/ >

181

8.3 Generic SEQUENCE Property Specification

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE property_spec SYSTEM "PropertySpec.dtd">

<l-- "sequence" property version 1.1

Exanple (fromjava.util.Vector):
public void insertEl enment At (Obj ect obj, int index)
public void renoveEl enment At (i nt i ndex)
public void setEl ement At (Obj ect obj, int index)

public Object elenmentAt(int index)
public int size()

nane: El ement

type: Object

-->

<property_spec type = "sequence" version = "1.1">
<l-- "insert" pattern -->
<pattern nane = "insert">

<return_type><| GNORE/ ></return_type>
<nmet hod_nanme>
<literal >insert</literal >
<vari abl e name = "InsertNane"/>
<literal >at</literal >
</ met hod_nanme>
<ar gument _t ype>
<variabl e name = "InsertType"/>
</ argunent _type>
<argunent _type>&l NT; </ argunent _type>
</ pattern>
<l-- "renmpve" pattern -->
<pattern nane = "renove">
<return_type><| GNORE/ ></return_type>
<net hod_nane>
<literal >renpve</literal >
<vari abl e name = "RenobveNane"/>
<literal >at</literal >
</ met hod_nane>
<argunent _type>&l NT; </ argunent _type>
</ pattern>
<l-- "set" pattern -->
<pattern nane = "set">
<return_type><| GNORE/ ></return_type>
<net hod_nane>
<literal >set</literal >
<vari abl e name = " Set Nane"/ >
<literal >at</literal >
</ met hod_nane>
<ar gument _t ype>
<vari abl e name = "Set Type"/>
</ argument _type>
<argunent _type>&l NT; </ argunent _t ype>
</ pattern>
<l-- "count" pattern -->

182

<pattern nanme = "count">
<return_type>& NT; </return_type>
<net hod_nane>
<literal >size</literal >
</ met hod_nane>
</ pattern>
<l-- "lookup" pattern -->
<pattern nane = "Il ookup">
<return_type>
<vari abl e name = "LookupType"/>
</return_type>
<net hod_nane>
<vari abl e name = "LookupNanme"/>
<literal >at</literal >
</ met hod_nane>
<argunent _type>&l NT; </ argunent _type>
</ pattern>

<l-- InsertType == Set Type -->
<constraint predicate = "equal s">
<l hs>
<reference variable = "insert"/>
<reference variable = "Insert Type"/>
</1 hs>
<r hs>
<reference variable = "set"/>
<reference variable = "Set Type"/>
</rhs>

</ constrai nt >
<l-- SetType == LookupType -->

<constraint predicate = "equal s">
<l hs>
<reference variable = "set"/>
<reference variable = "Set Type"/>
</l hs>
<r hs>
<reference variabl e "l ookup"/>

<reference variabl e "LookupType" />

</rhs>
</ constraint>
<l-- Insert Nane == RenpveNane -->
<constraint predicate = "equal s">
<l hs>

"insert"/>
"l nsert Nane"/ >

<reference vari abl e
<reference vari abl e

</l hs>
<r hs>
<reference variable = "renove"/>
<reference variable = "RenoveNane"/>
</ rhs>
</ constraint>
<! -- RermoveNane == Set Nane -->
<constraint predicate = "equal s">
<l hs>

"renove"/ >
"RenpveNane"/ >

<reference vari abl e
<reference vari abl e
</l hs>
<r hs>

183

Ilset Il/>
" Set Nane"/ >

<reference variabl e
<reference variable

</rhs>
</ constrai nt >
<l-- Set Name == LookupNane -->
<constraint predicate = "equal s">
<l hs>

"set"/>
" Set Nanme"/ >

<reference vari abl e
<reference vari abl e
</l hs>
<r hs>
<reference variabl e
<reference variable

"l ookup"/>
"LookupName"/ >

</rhs>
</ constraint>
<l-- nanmng rule -->

<nane_rul e>
<reference variabl e

</ name_rul e>

<l-- typing rule -->

<type_rul e>
<reference vari abl e

</type_rul e>

<l-- handlers -->

</ property_spec>

nsert Nane"/ >

"l nsert Type"/>

8.4 SEQUENCE Property Specification for java.awt.Component

<property_spec type = "sequence" version = "2.1">
<l -- Exanple: java.awt . Conponent
add: public java.awt. Conmponent add(java.awt.Conponent conp);
remove: public void renmove(java. awm . Conponent conp);
list: public java.awt. Conmponent[] get Conponents();
-->
<l-- "add" pattern -->
<pattern nanme = "add">
<return_type>
<| GNORE/ >

</return_type>
<nmet hod_nanme>
<literal >add</literal >
</ met hod_nane>
<ar gument _t ype>
<vari abl e name = "AddType"/>
</ argunment _type>
</ pattern>

<l-- "renpve" pattern -->
<pattern nane = "renove">
<return_type>
<| GNORE/ >

</return_type>
<net hod_nane>
<literal >renpve</literal >

184

</ met hod_nane>
<ar gument _t ype>
<vari abl e name = "RenoveType"/>
</ argunent _type>
</ pattern>

<l-- "list" pattern -->
<pattern nane = "list">
<return_type>
<vari abl e name = "ListType">
&ARRAY;

</return_type>
<net hod_nane>
<literal >get</literal >
<vari abl e name = "ListNanme"/>
</ met hod_nane>
</ pattern>

<l-- AddType == RenoveType -->

<constraint predicate = "equal s">
<l hs>
<reference variable = "add"/>
<reference variable = "AddType"/>
</l hs>
<r hs>
<reference variable = "renove"/>
<reference variable = "RenoveType"/>
</rhs>

</ constraint>

<l-- AddType == ListType -->

<constraint predicate = "equal s">
<l hs>
<reference variable = "add"/>
<reference variable = "AddType"/>
</l hs>
<r hs>
<reference variable = "renmove"/>
<reference variable = "ListType"/>
</rhs>
</ constrai nt >
<l-- plural (short (AddType)) == ListNane -->
<constraint predicate = "equal s">
<l hs>
<reference variable = "add"/>

<plural _short variable = "AddType"/ >
</l hs>
<r hs>
<reference variabl e
<reference variabl e
</ rhs>
</ constraint>

"list"/>
"Li st Name"/ >

<nane_rul e>
<reference variable = "ListNanme"/>
</ name_rul e>

185

<l-- typing rule -->
<type_rul e>

<reference variable = "AddType"/>
</type_rul e>

<l-- handlers -->
<handl er operation

"read" class_nanme =

“col ab. bus. property. handl ers. SequenceReader "/ >
"write" class_nane =

"col ab. bus. property. handl ers. ArrayWiter"/>

<handl er operati on

</ property_spec>

8.5 SET Property Specification for GraphDraw

<property_spec type = "set" version = "1.1">
<l-- "list" pattern -->
<pattern nane = "list">
<return_type>
&VECTOR

</return_type>
<met hod_nane>
<literal >get</literal >
<vari abl e nane = "ListNanme"/>
</ met hod_nane>
</ pattern>

<l-- "add" pattern -->
<pattern name = "add">
<return_type>
<| GNORE/ >

</return_type>
<nmet hod_nanme>
<literal >add</literal >
</ met hod_nane>
<argunent _type>
<vari abl e name = "AddType"/>
</ argunment _type>
</ pattern>

<l-- "renmpve" pattern -->
<pattern nane = "renpve">
<return_type>
<| GNORE/ >

</return_type>
<net hod_nane>
<literal >renpve</literal >
</ met hod_nane>
<ar gument _type>
<vari abl e name = "RenobveType"/>
</ argunent _type>
</ pattern>

<l-- AddType == RenobveType -->

<constraint predicate = "equal s">
<l hs>

186

<reference variable = "add"/>
<reference variable = "AddType"/>
</l hs>
<r hs>
<reference variable = "renove"/>
<reference vari able = "RenoveType"/>
</rhs>
</ constraint>
<l-- plural (short(AddType)) == ListNane -->
<constraint predicate = "equal s">
<l hs>
<reference variable = "add"/>

<pl ural _short variable = "AddType"/>
</l hs>
<rhs>
<reference vari abl e
<reference vari abl e
</rhs>
</ constraint>

"list"/>
"Li st Nanme"/ >

<name_r ul e>
<reference vari abl e
</ name_rul e>

"Li st Name"/ >

<l-- typing rule -->

<type_rul e>
<reference variabl e

</type_rul e>

"AddType"/ >

<l-- handlers -->
<handl er operation

"read" class_name =

<handl er operation

</ property_spec>

"col ab. bus. property. handl ers. Vect or Reader "/ >
"write" class_nane =
"col ab. bus. property. handl ers. VectorWiter"/>

187

[1]

[2]

[3]

[4]

[3]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

9. REFERENCES

Abdel-Wahab, H., Jeffay, K., Issues, problems, and solutions in sharing clients on
multiple displays. Internetworking: Research and Experience, 1994. 5: p. 1-15.

Abdel-Wahab, H., Kvande, B., Kim, O., Favreau, J.P. An Internet Collaborative
Environment for Sharing Java Applications. in 5th Workshop on Future Trends of
Distributed Computing Systems October 1997. Tunisia.

Chabert, A., Grossman, E., Java Object-Sharing in Habanero. Communications
of the ACM, June 1998. 41(6): p. 69-76.

Chung, G., Dewan, P., Rgaram, S. Generic and Composable Latecomer
Accommodation Service for Centralized Shared Systems in HCI. September
1998.

Cohen, G.A., Jeffrey S. Chase, David L. Kaminsky. Automatic Program
Transformation with JOIE. in USENIX Annual Technical Symposium. 1998.

Coutaz, J., Nigay, L. From Sngle-User Architectural Design to PAC*: A Generic
Software Architecture Model for CSCW. in HCI. 1997. Atlanta.

Dewan, P., Architectures for Collaborative Applications. Trends in Software,
special issue on Computer Supported Cooperative Work, 1998. 7: p. 169-194.

Dewan, P. and R. Choudhary, A High-Level and Flexible Framework for
Implementing Multiuser User Interfaces. ACM Transactions on Information
Systems, October 1992. 10(4): p. 345-380.

Dewan, P., Choudhary, R., Coupling the User Interfaces of a Multiuser Program.
ACM Transactions on Computer Human Interaction, March 1995. 2(1): p. 1-39.

Dourish, P., Bellotti, V. Awareness and Coordination in Shared Workspaces. in
Proceedings of the ACM Conference on Computer Supported Cooper ative Work.
1992. Toronto, Ontario: ACM Press.

Greenberg, S., Marwood, D. Real time groupware as a distributed system:
Concurrency control and its effect on the interface. in Proceedings of the ACM
Conference on Computer Supported Cooperative Work. 1994. Chapel Hill, North
Carolinac ACM Press.

Grundy, J. Engineering component-based, user-configurable collaborative editing
systems in EHCI. 1998.

Hamilton, G., JavaBeans specification. 1997, Sun Microsystems.

Hill, R.D. The Abstraction-Link-View Paradigm: Using Constraints to connect
User Interfaces to Applications. in In Human Factors in Computing Systems:
CHI'92 Conference Proceedings. 1992. Monterey, California.

Krasner, G.E., Pope, S. T., A Cookbook for Using the Model-View-Controller
User Interface Paradigmin Smalltalk-80. Journal of Object-Oriented
Programming, 1988. 1(3): p. 26-49.

188

[16]

[17]

[18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]

L. Kawdl Jr., SB., T. Halvorsen, R. Ozzie, and |. Grief. L. Kawell Jr., S.
Beckhardt, T. Halvorsen, R. Ozzie, and I. Grief. in Proc. 2nd Cond. on Computer -
supported Cooperative Work. 1988.

Mummert, L.B., Ebling, M.R., and Satyanarayanan, M., Exploiting weak
consistency for mobile file access. Operating Systems Review, 1995. 29(5): p.
143-155.

Munson, J., Dewan, P., Sync: a Java framework for mobile collaborative
applications, in Computer. 1997. p. 231-242.

Richardson, T., Stafford-Fraser, Q. et al, Virtual Network Computing. IEEE
Internet Computing, 1998. 2(1).

Roseman, M., Greenberg, S., Building real -time groupware with GroupKit, a
groupware toolkit. ACM Transactions on Computer-Human Interaction, 1996.
3(1): p. 66-106.

Roussev, V., Dewan, P., Jain, V. Composable Collaboration Infrastructures
Based on Programming Patterns. in Proceedings of the 2000 ACM conference on
Computer supported cooper ative work. 2000. Philadel phia, Pennsylvania.

Stefik, M., et a., Beyond the Chalkboard: Computer Support for Collaboration
and Problem Solving in Meetings. CACM, January 1987. 30(1): p. 32-47.

Tarpin-Bernard, F., David, B.T., Primet, P. Frameworks and Patter ns for
Synchronous Groupware : AMF-C Approach. in EHCI. September 1998. Greece.

Terry, D.B., Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J.
Spreitzer and Carl H. Hauser. Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Sorage System. in Proceedings of the fifteenth ACM
symposium on Operating systems principles. 1995. Copper Mountain, Colorado,.

Yu, H., Vahdat, A. Design and Evaluation of a Continuous Consistency Model for
Replicated Services. in Proceedings of the Fourth Symposium on Operating
Systems Design and | mplementation (OSDI). 2000.

189

