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ABSTRACT 

Distributed collaborative applications allow a group of physically dispersed users to work 

on a common task. To simplify and lower the cost of developing such applications, a large 

number of collaborative sharing infrastructures have been built. A common approach 

employed by sharing infrastructures is to present the programmer with shared programming 

abstractions as a basis for implementing multi-user applications. A shared abstraction extends 

a traditional single-user abstraction, such as an object, with automatic collaboration support. 

In this thesis, we summarize the achievements and limitations of current approaches to 

implementing shared abstractions and argue that they have not been successful in 

simultaneously addressing the issues of automation, abstraction flexibility, sharing flexibility, 

extensibility, and legacy code reuse. We present a new infrastructure model designed to 

fulfill these requirements better than existing systems. At the core of the model is the notion 

of a programming pattern based on which we define a new shared abstraction model. A 

programming pattern is a consistent naming convention that allows the logical structure of an 

object to be implicitly derived from its observable state. We define a pattern specification 

language that allows programmers to formally express the patterns they use and show that the 

set of supported pattern-based abstractions subsumes the abstraction models of existing 

systems. 

We complement our abstraction model with an architectural model that allows the 

practical use of patterns in the application development. Furthermore, we introduce a sharing 

model that subsumes and provides a descriptive mechanism for specifying application 

layering.  

We describe a prototype implementation of our conceptual model, as well as our 

experience in developing collaborative applications with it. We also discuss several problems 

in which we have successfully employed a pattern-based approach outside the domain of 

collaboration. Next, we present a requirement-by-requirement evaluation of our work relative 

to existing systems showing that, overall, our system performs better in satisfying the 
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requirements. Finally, we present our conclusions and outline the directions in which we plan 

to extend this work in the future. 

Keywords: distributed collaborative applications, computer supported cooperative work, 

CSCW, programming patterns, distributed object sharing 
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1. INTRODUCTION 

 Distributed collaborative applications (a.k.a. multi-user applications, or groupware) 

allow a group of geographically dispersed users to work together on a common task, such as 

editing a document. Most often this is achieved by presenting users with the abstraction of a 

shared artifact, which allows multiple users to modify it and to observe the effects of each 

other’s actions. An example of a shared artifact is given on Figure 1.1, which shows two 

users—A and B—working together on a shared outline of a paper using a multi-user outline 

editor. In this case, the application presents both users with the same view of the outline 

thereby making them instantly aware of each other’s actions. Another possibility is that A 

and B might be disconnected for a period of time and would like to keep working on separate 

versions and be able to merge them automatically. As another example that falls somewhere 

in between, consider the case where A and B are updated periodically of each other’s 

progress, or only when changes of a given (user-defined) level of significance are introduced. 

Figure 1.1 Users A and B working together on a shared outline 

In general, there is a whole spectrum of useful sharing scenarios and, ideally, a 

collaborative application should be able to dynamically adapt to all the scenarios that are 

relevant to its domain. Experience shows that developing such applications from the ground 

up is a costly and error-prone process. Therefore, a number of software infrastructures, which 

we refer to as sharing, or collaborative infrastructures, have emerged to facilitate the 

development effort by providing reusable mechanisms for distributed object sharing that are 

applicable to large classes of applications.  
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However, the sharing mechanisms offered by existing infrastructures have not been 

designed to completely meet the needs of collaborative applications. The goal of this research 

is to analyze the limitations of existing approaches and to develop a sharing infrastructure 

that better addresses the requirements of multi-user applications. We have taken the 

following steps to systematically achieve this goal: 

• Identify generic usage scenarios relevant to a wide range of collaborative 

applications;   

• Based on the scenarios and general software engineering principles, derive a set of 

generic infrastructure requirements; 

• Analyze the achievements and shortcomings of existing solutions with respect to the 

requirements; 

• Based on new mechanisms, develop an infrastructure that better meets these 

requirements; 

• Evaluate the result of our work by developing actual collaborative applications and 

comparing it with respect to the requirements and existing solutions. 

The rest of the presentation successively discusses the above points starting with the 

description of three basic sharing scenarios. 

1.1 Collaborative Sharing 

Since it is nearly impossible to exhaustively enumerate all plausible sharing scenarios 

from a user’s point of view, we classify them into three broad categories based on a simple 

conceptual model of collaborative applications. La ter on, in Chapter 3, we will refine and 

formalize this model to enable its incorporation into our sharing infrastructure.  

Generally, a regular single-user application works by taking user input, performing some 

computation, and displaying back the results to the user. It also allows the user to persistently 

store and retrieve the results of the computation. Therefore, as Figure 1.2a illustrates, we can 

view an application as consisting of three basic functional layers: user interface (UI), which 

directly interacts with the user, core application, which performs the application-specific 

computation, and a repository, which is responsible for persistent storage. Central to this 

model is the core application layer, which maintains an abstract representation of the virtual 
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artifact (or object), which is manipulated through the user interface, and is kept persistent by 

the repository. 

 

Figure 1.2 Basic Layer-based Applicati on Decomposition 

To extend this model to the domain of distributed collaboration, we add sharing functions 

to one, or more, of the application’s layers as shown on Figure 1.2b. The vertical arrows, as 

in the single user case, represent the flow and transformation of events that are independent 

of the number of users and, thus, represent the baseline single-user semantics of the 

application. On the other hand, horizontal lines represent exchange of state information, or 

sharing, between peer application layers. The figure shows a logical view of the sharing 

process and does not necessarily imply that the layer is physically replicated, or that layers 

communicate directly with each other. For example, sharing in distributed file systems, such 

as NFS, is achieved by users accessing the same physical copy of the file. However, we can 

still apply the logical view of the sharing shown on Figure 1.3. 

Core
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Figure 1.3 Physical vs. logical view of sharing 

    

In any case, since users are physically distributed, at least (part of) the user interface layer 

must also be distributed. Given this simple model, let us now consider the different scenarios 

that can be supported through sharing at each of the three levels. 

1.1.1 User interface-based sharing 

User interface-based sharing allows collaborators to work together by interacting with the 

object through the same user interface (UI) presentation in multiple computers as shown on 

Figure 1.1. This is commonly referred to as what-you-see-is-what-I-see (WYSIWIS) sharing. 

For this scheme to be effective, users must be able to modify the object and observe each 

other’s modifications in real time, or synchronously. WYSIWIS also implies that, at any 

given moment, there can be only one user who interacts with the application. Otherwise, 

users might issue conflicting commands concurrently and the WYSIWIS abstraction 

becomes undefined. Thus, WYSIWIS is useful in cases, such as a moderated editing session, 

or a remote presentation, where the restriction of one active user is either desirable or 

acceptable. 

UI-based sharing is largely limited to WYSIWIS because the sharing mechanism has no 

knowledge of the shared object. Consequently, if user views of the object are allowed to 

diverge, this could lead to separate versions with no means to restore consistency. The only 

way to relax the WYSIWIS requirement is to allow some aspects of the UI that do not affect 

the state of the object (such as formatting parameters) to be different for different users. 

However, such information is inherently application-specific and implementing an 
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application-specific solution would defeat the main advantage of UI-based sharing—

complete automation. 

Complete automation here refers to the fact that a single infrastructure can provide 

sharing for large classes of single-user applications at no additional development cost. This is 

possible due to the fact that, currently, virtually all applications are developed using standard 

user interface components provided by the basic underlying infrastructure—the window 

system (e.g., X Windows) and/or software development toolkits (e.g., Java AWT/Swing). 

Thus, it is sufficient to replace the original single-user implementation of the standard UI 

components with a collaborative one and all applications using the basic infrastructure 

become UI-shareable. 

1.1.2 Repository-based sharing 

Another approach to complete automation is to use repository-based sharing. It is based 

on users taking turns at working on and updating a (logically) single persistent copy of the 

shared object. For example, users could use a distributed file system, which gives them 

remote access to the same physical file over the network. To exchange state, users must 

explicitly commit any updates made to the shared object to make them visible to other users, 

which in turn must explicitly request the current version in order to observe the update. 

In many respects, this sharing scenario has the opposite characteristics of the previous 

one—users are not restricted in their concurrent access to the object, they may have 

completely different views of it, and their updates are propagated asynchronously, i.e. there 

is no limit on the  interval between the time one user makes a change and the time it becomes 

visible to others. Asynchrony is an inherent trait of repository-based sharing—due to the 

large overhead of communicating with secondary storage, it is impractical to use it as a 

medium to communicate user updates at interactive rates.  

Since users may work on the shared object independently, this may lead to the existence 

of several different (and potentially conflicting) versions of it. Therefore, the task of a 

collaborative application is to provide a suitable solution that either helps users avoid the 

problem altogether or helps them resolve inconsistencies in an automated fashion. 
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1.1.3 Application-based sharing 

Application-based sharing allows the automated exchange of updates to the (in-memory) 

abstract representation of the shared object. For example, our outline document can be 

represented as a record consisting of a title (a string) and a sequence of sections. In turn, each 

section is also a record with a heading and a (potentially empty) list of subsections. Despite 

the fact that the structure of the shared object is relatively simple, the number of useful 

sharing scenarios is non-trivial even for a small outline document. 

Let us first consider the issue of what should be shared. In real-world collaboration, it is 

quite common for collaborators to split the work among themselves and work individually, or 

in small groups on different parts of a document. Hence, to be relevant, a collaborative 

application should at least be able to replicate this model of collaboration. For example, it 

should be possible for users A and B to share Section 1 of the outline, which they have 

agreed to work on together, but not to share the rest as these will be worked on individually. 

More generally, each and every node of the outline’s tree structure is potentially shareable so, 

ideally, it should be possible to control the sharing of the outline at any level of its hierarchy. 

For that purpose, the logical structure of the shared object must be known to the sharing 

mechanism. This is not a problem for custom-built collaborative applications, however, for 

sharing infrastructures this is a challenge because the set of supported abstractions is 

determined at design time. Therefore, an infrastructure should support the sharing of as many 

abstractions as possible and should be designed in a way that allows the set of abstractions to 

be easily expanded. We refer to the set of abstractions that an infrastructure can 

automatically share as abstraction flexibility.  

Another issue to consider is the question of when to share an object. That is, under what 

condition(s) the exchange of updates from different users will take place. Two obvious 

choices are the synchronous and asynchronous sharing presented in the previous sections. 

However, there is a whole spectrum of alternatives in between that can be quite useful. For 

example, users may want synchronous collaboration but because of network overload, this 

may not be possible. In that case, users may consider periodic updates where exchange takes 

place once per user-specified time interval that can range from seconds to days and could be 

adjusted depending on network traffic. Even if communication delay is not an issue, some 

users may not want to be constantly distracted by being forced to observe every incremental 
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change of their team members but still want to be informed of “important” updates. While 

the notion of importance is somewhat subjective, we can consider proxy criteria for the 

exchange based on some measure of correctness, or completeness of the user actions. For 

example, send the new value of a text field only after the user has indicated he is done editing 

it (by moving to the next item), or after an explicit commit command. 

Finally, each user may want to control the way he is sharing with each individual or 

group of participating users [Colab, Suite]. Thus, user A, for example, may want to share 

synchronously Chapter 1 with user B, while exchanging only hourly updates with C on 

Chapter 2. Furthermore, user preferences for sending and receiving updates may be 

asymmetric. For example, a user might be willing to send out every incremental change he is 

performing but might only want to receive updates from others that are explicitly committed. 

In summary, there is a wide variety of application-sharing scenarios but they can be 

classified based on three major parameters: what is shared, how is it shared, and with whom is 

it shared. For the rest of this thesis, we refer to a particular combination of the values of these 

three parameters as a sharing mode. By exhaustively enumerating all sharing modes 

supported by a particular collaborative application or infrastructure, we can get a measure of 

its sharing flexibility. 

Based on our discussion so far, as well as some basic software engineering principles, we 

can identify the following collaboration infrastructure requirements along with the respective 

criteria to measure the extent to which any given infrastructure satisfies them. For each 

requirement we also provide examples of systems (or classes of systems) that provide 

maximum and minimum support, respectively. 

1.2 Infrastructure Requirements 

1.2.1 Automation 

In general, we can distinguish between two types of software infrastructures—enabling 

and automating. The main purpose of the former is to make possible the development of a 

new class of applications, whereas the latter seeks to automate the development process of an 

existing class of applications. In the case of distributed collaborative applications, we can 

consider TCP/IP sockets to be the basic enabling infrastructure upon which all such 
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applications are built. Therefore, we are interested in comparing infrastructures whose 

primary goal is the automation of collaborative applications.  

Typically, the level of automation provided by an infrastructure is measured by 

comparing the amount and complexity of the code a programmer has to write to build a 

typical application with and without the infrastructure. In the case of a collaborative 

infrastructure, it is a measure the developer's effort required to achieve multi-user behavior 

with respect to the single-user case.  

In this respect, TCP/IP provides the lowest level of automation because it only provides a 

basic point-to-point reliable ordered communication mechanism. The application must deal 

with issues of multicasting to a dynamic group of users, defining a protocol for 

encoding/decoding of updates to the shared object (e.g., insertion of a new section), and 

coordinating concurrent updates submitted by users. On the other end of the spectrum, shared 

window systems, such as XTV [1], provide the most automation because they require no 

development effort to convert regular applications into collaborative ones. 

1.2.2 Flexibility 

The flexibility offered by a sharing infrastructure is defined by its ability to support a 

variety of collaborative applications and scenarios. Conceptually, the requirements of 

automation and flexibility present a fundamental trade-off—the more an infrastructure 

assumes about the supported applications and scenarios, the more automation it can provide. 

Inversely, the less it knows about the application and the usage scenarios, the wider the range 

of applications and scenarios it can accommodate (at a higher relative cost). For example, 

shared window systems (discussed in detail in the next chapter) provide fully automatic 

sharing by assuming one particular sharing mode—WYSIWIS, whereas TCP/IP sockets 

place virtually no restrictions on the sharing while providing low automation. 

Therefore, to enable meaningful comparisons among different infrastructures’ flexibility 

features we must first choose the level of automation at which the infrastructures are 

compared. In this work, we consider infrastructures that provide high level of automation for 

at least one of the scenarios discussed in the previous section.  

We distinguish among three aspects of flexibility to better characterize different systems. 
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• Sharing flexibility. An infrastructure should automatically support as many modes of 

sharing as possible. In other words, a small amount of development effort should be 

required to build an application that supports a variety of sharing modes. To compare two 

infrastructures—A and B—with respect to sharing flexibility, we compare the range of 

sharing modes they support. If A supports all the sharing modes of B and, in addition, 

supports modes that are not supported by B, then A has a higher (degree of) sharing 

flexibility. 

Furthermore, specification of the sharing modes should follow the logical structure of 

the shared object. In other words, it should be possible to specify different sharing 

policies for logically autonomous parts of the object. For example, it should be possible 

to provide separate sharing specifications for the sharing of the title of the outline and the 

sharing of each of the outline’s sections. 

Among existing systems, shared window systems are a good example of an 

infrastructure that provides no sharing flexibility—only WYSIWIS is supported, whereas 

Suite provides the most sharing flexib ility through a parameterized sharing mechanism 

which systematically covers a whole range of useful sharing modes.  

• Abstraction flexibility. As part of the task to lower the development cost, an 

infrastructure must support automatic sharing of as many types of objects as possible. 

Most infrastructures offering high automation provide at least one shared abstraction. 

However, providing only a fixed set of shared abstractions inherently limits the 

applications that the infrastructure can support. Therefore, the infrastructure should 

support programmer-defined shared abstractions that reflect the specific needs of every 

application. Specifically, it should support: 

o Programmer-defined semantic objects. Semantic objects maintain the most abstract 

representation of the object manipulated by the end user and, therefore, the best 

understanding of his intentions. Therefore, sharing of semantic objects offers the most 

flexibility in accommodating concurrent updates from a group of users while 

preserving their intentions. Inherently, semantic objects are application-specific and, 

therefore, the infrastructure should be able to share as many programmer-defined 

semantic objects as possible.  
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o Programmer-defined user interface. For many applications, such as a drawing 

editor, the custom features of the graphical user interface through which the semantic 

object is manipulated are just as important as the semantic object itself. Therefore, the 

infrastructure should support the sharing of programmer-defined UI and the sharing 

of the semantics object should be independent of the implementation of the user 

interface.   

To compare two infrastructures—A and B—with respect to abstraction flexibility, we 

compare the range of sharing abstractions they support. If A supports all the shared 

abstractions of B and, in addition, supports abstractions that are not supported by B, then A 

has a higher (degree of) abstraction flexibility. 

As an example of systems with no abstraction flexibility, consider shared window 

systems—they provide only a single abstraction, a shared window with no means to extend 

its support. At the other end of the spectrum is Colab with its broadcast methods, which can 

be applied to an arbitrary object and, therefore provide maximum abstraction flexibility.  

• Specification flexibility. An infrastructure should also provide a flexible specification 

mechanism that allows users to take full advantage of its the abstraction and sharing 

flexibility features at a reasonable cost. Specifically, it should support:  

o Late specification binding. It should be possible for the sharing modes to be 

specified (bound) at different times in the application’s life cycle. In that respect, we 

distinguish between early binding performed at compile time by the application 

programmer and late binding performed at run time by administrators and/or end-

users. Since late binding provides more flexibility, sharing infrastructures should 

support it unless the associated performance or specification overhead is prohibitively 

high. 

o Ease of specification. It should be easy for programmers/users to specify the exact 

sharing policy they need.  For example, specifying a policy for a whole outline 

document should not require specifying a policy for each individual section. 

Furthermore, it should be easy for novice users to specify simple, standardized 

policies without precluding more complex, customized policies that more experienced 

users may want. In essence, this ease-of-specification requirement allows us to judge 

the level of automation provided with respect to the specification effort.   
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Suite, again, is an example of a system that fulfills both the late specification and ease of 

specification requirement. Since its sharing model is controlled by parameters, they can be 

dynamically adjusted at run time. To minimize specification effort, Suite uses an inheritance 

model, in which parameters can be specified at variable levels of granularity of the shared 

object’s structure. It is virtually impossible to point to a system, which supports neither late 

binding nor easy specification, because early binding implies no specification effort. AMF-C 

[23] is a system, in which the sharing specification can be changed at any time by changing 

the communication links between objects, however, it’s per- instance specification requires 

significant, even for applications of moderate size. 

1.2.3 Code reuse 

Often, the development of multi-user applications starts with a fully implemented single-

user version of it. Therefore, the extent to which existing application functionality is reused 

has a direct impact on the complexity and cost of the application development. We 

distinguish between two types of code reuse: 

• Compiled code reuse. In a perfect solution, the infrastructure should allow the sharing of 

executable single-user code, thereby eliminating development effort. However, there are 

fundamental, as well as practical, limitations on how much sharing flexibility can be 

achieved while offering compiled code reuse. Thus, if more sharing flexibility is needed, 

it is inevitable that the application becomes collaboration-aware. Therefore, a secondary 

requirement is to minimize this awareness and the corresponding development effort. 

• Incremental collaboration awareness. To minimize the effort of making an application 

collaboration-aware, the infrastructure should support varying degrees of collaboration 

awareness.  As a starting point, the infrastructure should support sharing of collaboration-

transparent applications. As the application programmer incrementally modifies the 

application code to make it more collaboration-aware, the infrastructure should also 

incrementally increase the level of sharing services it provides until the application 

reaches the level of service required by the users. This step-wise development process 

ensures that the programmer invests only the minimal effort necessary to achieve the 

desired collaboration behavior. 
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Shared window systems support compiled code reuse but not incremental collaboration 

awareness. GroupKit provides a variety of mechanisms for implementing sharing—shared 

environments, multicast RPC, and events, and therefore, provides support for gradually 

increasing the collaboration awareness of the application.  

1.2.4 Extensibility 

Since applications are developed after the infrastructure on which they are based, it is 

virtually impossible for the infrastructure designer to foresee all possible future needs. 

Therefore, from a software engineering point of view, the infrastructure should be designed 

to facilitate future modifications and extensions of existing functions, as well as the 

integration of new ones. In the context of collaborative infrastructures, we refine this generic 

extensibility requirement into three specific requirements  

• Separation of shared abstractions and sharing implementation. A sharing 

infrastructure should cleanly separate the shared abstraction presented to the application 

from its implementation. In particular, it should be possible to compose the application 

with a completely different sharing implementation without modifying the application 

code.  

• Separation of collaboration functions. Individual sharing functions within the 

infrastructure should be implemented as separate modules to allow their implementations 

to be varied independently. For example, it should be possible to replace a lock-based 

concurrency control module with one based on operational transformations without 

disturbing the rest of the system. Furthermore, explicit dependencies among modules 

should be avoided to enable the transparent introduction of new functions, such as access 

control, without modifying the rest of the infrastructure.   

• Late component binding. The previous two separation requirements imply that the 

infrastructure must also have a binding mechanism to put together a working system. 

Such binding can occur early (at compile time) or late (at run time). Since late binding 

offers more flexibility and allows the system to be reconfigured without recompilation, a 

sharing infrastructure should implement late binding unless the associated overhead is 

prohibitively high. 
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Component-based systems, such as the Java-based JViews [12], are best suited to satisfy 

this requirement because of their emphasis on fine-grained decomposition of application 

functions. In addition, Java, with its late binding and reflection mechanism significantly 

simplify the task of late component binding. In the other hand, Suite, for example was 

designed as a monolithic system, therefore, provides minimal support for extending/ 

modifying its functionality.  

1.3 Thesis 

The main objective of the research work described in this dissertation has been to develop 

new mechanisms that allowed the development of an infrastructure that better satisfies the 

identified generic requirements than existing systems. By better we mean that with respect to 

each requirement our system will perform at least as well as the best of the benchmark 

systems and, with respect to some requirements, it will support features not present in other 

systems.  

We should note that the requirements discussed above are not completely independent of 

each other and some of them present fundamental trade offs. In such cases, our claim is that 

for a fixed level of support of one of the requirements, our infrastructure will be at least as 

good as the benchmarks. To illustrate this, consider the classification of sharing 

infrastructures with respect to abstraction and sharing flexibility shown on Figure 1.4 (a 

detailed motivation of the classification itself is presented in the next chapter). 

In this case, Suite provides the highest relative sharing flexibility among all systems, 

whereas Colab and GroupKit provide the highest (possible) level of abstraction flexibility. 

Our contribution claim here is that, given a Suite-like level of sharing flexibility, our system 

provides a higher level of abstraction flexibility than any other systems (point G1). Similarly, 

given an arbitrary object, we provide more sharing flexibility than Colab or GroupKit (point 

G2). However, we do not claim that we can provide Suite-like sharing flexibility for an 

arbitrary object, which turns out to be infeasible. 
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Figure 1.4 Abstraction vs. Sharing Flexibility 

It is our thesis that we have developed an object-sharing infrastructure that better (as 

defined above) addresses the generic infrastructure requirements identified in this chapter 

than existing infrastructures. In particular, the infrastructure has achieved the following with 

respect to the requirements: 

• Abstraction flexibility: for a given level of sharing flexibility, a level of abstraction 

flexibility at least equal to that of existing systems. Moreover, for application-based 

sharing it supports higher abstraction flexibility than existing infrastructures. 

• Sharing flexibility: for a given level of abstraction flexibility, it supports a level of 

sharing flexibility at least equal to that of existing systems.  

• Specification flexibility: satisfies the specification flexibility requirements at least as 

well as existing systems.  

• Extensibility: it supports a component-based architecture that is more flexible than 

that of existing systems and provides more automation in terms of component 

composition.  

• Code reuse: for given levels of abstraction and sharing flexibility, it supports at least 

the level of code reuse provided by other infrastructures. Moreover, for application-

based sharing, it supports a higher level of both compiled code reuse and incremental 

collaboration awareness. 
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• Automation: it achieves the above goals at an application development cost that is 

comparable, or lower than corresponding solutions in other systems. In other words, 

given a particular sharing scenario in which the above requirements are satisfied to a 

certain degree, the development effort involved using our infrastructure will not 

exceed that of analogous solutions.  

In order to overcome some of the limitations of existing approaches without 

compromising their achievements, we have developed a set of new mechanisms, upon which 

our infrastructure is based.  

Specifically, we formalize the notion of a programming pattern and provide a mechanism 

that allows its incorporation into the application development process. A programming 

pattern is a generalization of the notion of programming interface used in object-oriented 

languages. It is logically equivalent to a family of interfaces, and allows sharing, as well as 

other infrastructure services, to be implemented on a per-pattern basis. A programming 

pattern is defined implicitly by the application developer through the consistent use of 

programming naming conventions. Such patterns are in widespread use nowadays, because 

they are considered a part of good programming practices. Nevertheless, they have remained 

largely informal and unused in the development process. To take advantage of these patterns, 

we define an XML-based specification language that enables programmers to concisely 

describe them. Based on the pattern specifications, the infrastructure can decompose an 

object into a set of logically autonomous subcomponents, or properties, and, 

correspondingly, break down the problem of sharing the entire object into sharing of its 

properties. This process is then recursively applied to the values of the properties, until 

terminal nodes in the object structures are reached. 

This approach allows the infrastructure to provide sharing of all the abstractions provided 

by existing systems at a comparable cost. In addition, it can provide sharing of an extensible 

class of programmer-defined abstractions at no additional cost, whereas a comparable 

solution for existing systems would require effort potentially proportional to the number of 

new programmer-defined abstractions. 

Another contribution is the development of new generic infrastructure services, such as 

object diff- ing and XML object serialization, which improve sharing flexibility. Specifically, 

our pattern-based allows these to be implemented at a very local cost compared to the current 
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alternative of object-specific manual implementations. Thus, while the general idea of diff-

ing, for example, has been employed by a number of systems, we are unaware of any other 

sharing infrastructure that has attempted to provide a generic solution for object diff- ing.    

We also refine and formalize the layer-based application model presented above by 

introducing an XML-based layer specification language. Application layer specifications 

allow the infrastructure to correctly separate sharing of semantic and UI objects without any 

adding or modifying any code and enables the dynamic changes in the sharing architecture in 

a more general setting then currently possible. 

Architecturally, our infrastructure design is based on the idea of property handlers, which 

encapsulate the property-specific code related to the implementation of an infrastructure 

functions. The binding of handlers to properties is given in the pattern specifications and can, 

therefore, be changed easily without modification to the application code, or the rest of the 

infrastructure. At the same, this loose binding is sufficient to make the composition of shared 

objects and sharing functions automatic. 

Our component-based architecture also greatly facilitates satisfying the code reuse 

requirements. With respect to compiled code reuse, the specification-based binding of objects 

and services allows the infrastructure to use Java’s computational reflection capabilities to 

compose compiled application code with the infrastructure. By the same token, infrastructure 

services can be added or modified by adding/modifying the handler implementations and the 

whole process would be transparent to both the application and to other services in the 

infrastructure. Hence, the infrastructure provides a mechanism to incrementally increase the 

application’s collaboration awareness through the incremental addition of handler code. 

Furthermore, since programming patterns are predominantly a function of programming style 

and depend very little on the application, they can readily be reused across applications.  

The primary tool in evaluating our infrastructure design and implementation is a 

comparison with existing infrastructures. For that purpose, we survey in detail a number of 

influential collaborative infrastructures and identify benchmark systems, which provide the 

best solution with respect to one, or more, of the requirements. We then compare the 

benchmarks with our own work using the above outlined criteria. The comparison consists of 

two parts—in the first part, we compare our conceptual design with that of the benchmark 

systems and present a basic argument explaining exactly how some of the shortcomings of 
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the benchmarks are overcome. The second part consists of comparing the implementation of 

a number of test cases using our infrastructure and comparing the results with those of the 

benchmarks.  

1.4 Organization 

The dissertation is organized as follows. In this chapter we already motivated our 

research and presented a comprehensive set of requirements for sharing infrastructures. In 

Chapter 2, we review related work, which includes a number of collaborative infrastructures, 

which we use later as benchmarks for evaluating our own. In Chapter 3 we describe the 

conceptual framework behind our infrastructure—programming patterns, property handlers, 

application layer descriptions—and relate it to that of other systems. In Chapter 4 we lay out 

the details of the implementation with the specific issues and approaches that arise in the 

process. In Chapter 5, we describe our experience both in building new collaborative 

applications using our infrastructure and in converting existing single-user applications into 

multi-user ones. We also share our experience in using some of the developed mechanisms 

for non-collaboration purposes. In Chapter 6 we evaluate our infrastructure with respect to 

the requirements using the criteria presented above and compare them to the benchmark 

systems. In Chapter 7 we draw conclusions from our work and outline directions for future 

applications and extensions of this research.



2. RELATED WORK 

In the previous chapter, we discussed a comprehensive set of requirements for 

collaborative infrastructures. In this chapter, we outline the design and implementation 

choices made in existing infrastructures that have addressed at least some of these 

requirements. Following the basic three- layer decomposition introduced in the introduction—

user interface, core application and repository—we discuss the advantages and drawbacks of 

implementing sharing of each of them, by examining the design of representative system. We 

also use this discussion to show in detail the rationale behind our choice of benchmark 

systems, which we use in our evaluation process in Chapter 6.    

2.1 User Interface Sharing Infrastructures 

Sharing of the UI layer is one of the most popular approaches to building groupware 

systems and has significant advantages to its credit. From a user’s point of view, sharing of 

the UI represents a simple and intuitive solution, which requires virtually no new skills from 

the participants. From a developer’s point of view, UI sharing offers significant automation 

and code reuse, as well as the appeal of cleanly separating the design and implementation 

concerns of the core application functions from those regarding the collaboration. On the 

downside, however, users may find the UI sharing model too restrictive, as it is inherently 

unsuitable for a whole spectrum of collaboration scenarios. 

Based on their choice of a basic shared abstraction, we subdivide UI sharing 

infrastructures into three categories—shared window systems, shared UI toolkits, and shared 

screen system—and describe their most important characteristics with regard to our 

requirements. 

2.1.1 Shared Window Systems  

Shared window systems, such as XTV [1], are based on the notion of a shared window. A 

shared window has multiple replicas—one for each participant—that are synchronously 

shared. That is, all users are presented with the same up-to-date view of the application 
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window and the application can take input from any one of the replicas. Thus, by sharing all 

application windows, the infrastructure achieves the WYSIWIS sharing described in the 

previous chapter (Figure 1.1).  

Conceptually, the implementation of a shared window system relies on intercepting and 

properly distributing the communication streams between the application and the window 

system. In XTV, for example, this is achieved by installing proxies, which mediate the 

communication between the X servers running on each user’s machine and the one (or more) 

X clients where the application (replicas) run. As illustrated by Figure 2.1, XTV has two 

versions—a centralized one where all X servers are connected to a single X client, and a fully 

replicated one where each server is paired with a local replica of the client. 
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Figure 2.1 XTV Architecture 

Regardless of the configuration, XTV (as well as other shared window systems) must 

maintain two properties at all times for the system to work properly: 2 

• All application replicas should receive the same ordered stream of user input events. 

Since applications are deterministic, this in turn ensures that the stream of output 

events generated by application replicas will also be the same 1.  

• All window servers should receive the same ordered stream of application output 

events. Furthermore, since the window servers may handle events asynchronously, 

the infrastructure must ensure that the events are delivered to the servers at the 

                                                 
1 Non-deterministic applications, as well as operations with side effects, such as printing, present special 

cases, which are beyond the scope of this discussion. 
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appropriate rate to avoid, for example, an attempt to change the title of a window that 

is yet to be created [4]. 

Since the outlined interception of the event streams can be implemented transparently to 

both the application and the window system, this approach allows virtually any application 

written for the supported window system to be shared at no additional development cost. In 

terms of our requirements, shared window systems provide a maximum level of automation 

and code reuse and, therefore, a useful benchmark in evaluating our infrastructure. 

 One of the main disadvantages of shared window systems, however, is that the 

automation and reuse features come at the expense of sharing flexibility. Namely, only a 

single mode of sharing—WYSIWIS—is supported. Some researchers have proposed 

approaches that address this issue in a limited context. For example, Chung’s log-based 

approach [4] allows a shared window system to be extended to possibly support some forms 

of relaxed-WYSIWIS sharing. However, it does not address the fundamental limitations of 

shared window systems, which stem from the fact that the sharing of the window-based user 

interface of an object is used as a means of sharing the object itself. Since the two cannot be 

separated, it is not possible to implement any form of semantic sharing. 

By the same token, a shared window system cannot allow concurrent access to the shared 

object because it cannot distinguish concurrent user actions that are in conflict from the ones 

that are not. Suppose two users decide to edit two different text fields—depending on the 

application semantics, this may, or may not be allowable, but the sharing infrastructure has 

no basis to make the right decision. In particular, the structure of the UI presentation is not a 

reliable proxy for the logical structure of the underlying semantic object because structural 

dependencies among UI objects are often dictated by formatting needs. Furthermore, if 

concurrent updates lead to divergent replicas, the infrastructure has no means to restore 

consistency to the underlying semantic object. Thus, shared window systems take a 

conservative approach and limit the number of active users to one. More generally, a decision 

based solely on the observed structure, even if it is that of the semantic object, does not 

guarantee correctness. However, the higher the level of abstraction at which the decision is 

made, the better the chance that it is, in fact, correct. 
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2.1.2 Shared UI Toolkit Systems  

Another approach to sharing the user interface, represented by systems such as JCE [2] 

and Habanero [3], is based on creation of shared UI toolkits. With the recent emergence of 

Java as a mainstream programming language, this approach has gained in popularity because 

Java provides a standard Abstract Window Toolkit (AWT/Swing) library, which can be 

extended to provide sharing. The AWT/Swing toolkit provides a more abstract view of 

window systems and, therefore, a Java application’s user interface is no longer bound to the 

particular implementation of the window system but to the AWT API. Consequently, the 

application can run on any Java platform without modification. Conceptually, this means that 

the toolkit adds a separate layer of abstraction and we can break down our original UI layer 

into window and toolkit layers. Consequently, we can represent shared window and shared 

toolkit systems as providing sharing at the window level and toolkit level, respectively 

(Figure 2.2). 
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Figure 2.2 UI Sharing: Shared window and shared toolkit architectures 

Since UI toolkits seek primarily to provide a common interface for different window 

systems, they provide relatively few abstractions of their own. Hence, the differences 

between sharing at the window and toolkit layers are subtle and, by and large, 

inconsequential to the end user. As an example, consider a collaborative session of our 

shared outline with one of the users is running an application replica under X Windows, 

whereas the other one is running it under MS Windows. The two users see the same window 

content in terms of text fields, button, scrollbars, etc, but may not see the same images pixel-
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for-pixel because of platform-specific differences in default fonts, colors, menu appearances, 

button shapes, etc. 

Nevertheless, the characteristics of the collaboration support provided by sharing the 

window system and by sharing the UI toolkit are very similar: 

• Full automation and reuse for all code based on the toolkit; 

• Support only for synchronous collaboration; 

• No support for concurrent user updates of the shared object. As already discussed in 

the context of shared window systems, the infrastructure cannot make an informed 

judgment call as to what concurrent user updates are permissible and, therefore, has 

little choice but to prevent concurrent access. The argument applies to shared toolkits 

because a toolkit does not create new abstractions but simply hides the native 

implementation details of the UI components. 

2.1.3 Shared Screen Systems  

Another alternative to shared windows system is based on lowering the level of 

abstraction at which the sharing takes place. Infrastructures, such as VNC [19], have chosen 

to implement sharing of the pixel image seen by users by sharing the contents of the frame 

buffer of the user machine. Since at the pixel level, the sharing infrastructure cannot 

distinguish among application windows, the whole screen image must be shared and the 

WYSIWIS model is taken to its extreme by essentially projecting the image of one user’s 

screen onto another’s. 

With respect to our requirements, VNC-like systems have virtually the same 

characteristics as the other UI-based sharing system—full automation and reuse, no sharing 

flexibility, and no concurrent access. The only difference is in the range of supported 

applications—because of its pixel- level of abstraction, these systems can share just about any 

application on any supported platform. However, this low-level of abstraction also makes the 

implementation highly dependent on the graphics hardware.  

2.1.4 Summary 

In summary, we presented three separate approaches in sharing infrastructures that apply 

the same idea of sharing the user interface of an object as a means of sharing the object itself. 
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The only conceptual difference among the three is that their sharing mechanisms are 

designed for sharing different layers of the user interface (Figure 2.3). 
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Figure 2.3 Shared UI Architectures 

We argued that, regardless of the merits of each individual approach, we can treat them 

all as representing a single class of systems that share common characteristics with respect to 

our infrastructure requirements. Namely, UI sharing systems: 

• allow the automatic sharing and reuse of compiled code, 

• limit sharing flexibility by supporting only WYSIWIS collaboration, and 

• limit sharing flexibility by allowing only one user at a time to interact with the 

application. 

Thus, it is sufficient for the purposes of our evaluation to choose one representative 

system, with respect to which we can compare our results. Given that our infrastructure 

implementation is Java-based, we have chosen another Java-based system—JCE—as our 

benchmark system. Although, conceptually, Java is not essential for our evaluation, it allows 

us to provide an apples-to-apples implementation comparison. 

2.2 Application-Based Sharing Infrastructures 

So far, our discussion shows that sharing based on a shared UI abstraction places inherent 

limitations on the sharing flexibility the infrastructure can support. Therefore, to avoid such 

limitations, the infrastructure must provide shared abstractions that allow the developer to 
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implement application-based sharing and, thus, separate the sharing of the (user) view of an 

object from the sharing of its data representation, or model. 

2.2.1 GroupKit 

One of the early and successful systems that provided application sharing was GroupKit 

[20]. One of the design goals of GroupKit was precisely to provide support for collaborative 

extensions of application design models that separate the semantic object from its UI 

appearance, such as the Model-View-Controller (MVC) [15] and Abstraction-Link-View 

(ALV) [14] paradigms.  

To directly support model sharing, GroupKit offers shared environments (dictionary-style 

data structures containing keys and associated values) whose replicas, once instantiated, are 

automatically kept consistent by the system. Furthermore, environments provide a callback 

notification mechanism through which applications can learn of operations performed on the 

shared environment—insertions, deletions, and replacements. Thus, GroupKit's environments 

can be used to implement a shared version of the data representation of the object, and the 

callback mechanism can be used to update the local view of each user. This is illustrated by 

Figure 2.4, where the arrows show the flow of events initiated by user A’s action. First, the 

local controller receives the user action and transforms it into an operation on the local 

model. Next, the model updates the local view and the infrastructure automatically applies 

the update to the model replica user B’s machine. Finally, user B’s model updates its local 

view object. 
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Figure 2.4 Collaborative extension of the MVC architecture using shared environments 
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The main difference of this model, compared to UI sharing, is that the decision of when 

to update the UI is not bound by the infrastructures. For example, if the callback immediately 

updates the local display in response to every remote operation being applied to the local 

replica of the shared environment, this would result in WYSIWIS sharing. At the same time, 

the callback procedure has the flexibility to arbitrarily delay refreshing the UI until some 

other criterion is met, e.g., the user presses a <refresh> button. However, GroupKit’s 

mechanisms were never intended for such use and, in all likelihood, were never actually 

employed in this manner.  

Clearly, the above design offers a very flexible solution in choosing the level of sharing 

for the UI. However, this flexibility comes at the added cost of developing application-

specific callback routines that implement it. Furthermore, the developer must have a good 

understanding of the distributed issues involved to avoid potential problems, such as 

deadlocks, and cyclic event notifications. 

Another point we would like to make is that, while the UI can be shared flexibly, 

GroupKit offers no sharing flexibility with respect to the shared environment—they are 

always shared synchronously. Hence, while users may see different renderings of the shared 

object, the object itself cannot have separate versions for some user-controlled amount of 

time.  

The choice of a single shared abstraction—environments—presents another important 

limitation. To illustrate this, consider the implementation of our example outline object in 

GroupKit. As it turns out, environments are inherently ill-suited for this task because they are 

not designed to deal with sequences and recursive structures—in our case an outline has a 

sequence of sections and each section can have subsections several levels deep. Therefore, 

we would have to implement our own shared structures to support the outline application 

using lower level communication mechanisms, such as multicast RPC. Multicast RPC is 

GroupKit’s version of the idea of simultaneously performing remote procedure calls on 

multiple hosts. The original idea, known as broadcast methods, was conceived and 

implemented in Colab. The main difference is that, in GroupKit, there exists the option of 

asynchronous multicast RPC, which does not block the sending process until delivery is 

complete. This provides more flexibility but also may incur non-trivial programming 

overhead as the application will need to supply a coordination mechanism. 
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2.2.2 Colab 

In Colab, broadcast methods [22] provide a mechanism that automatically and 

synchronously replicates a local method invocation on a set of distributed object replicas. 

The rationale behind broadcast methods is to take a single-user implementation and turn it 

into a multi-user one by identifying and marking all methods modifying the shared object’s 

state as broadcast. In other words, our shared outline would look something like:  
public class Outline { 
  String  getTitle(); 
  broadcast void setTitle(String title); 

  Section getSection(int i); 
  int     getSectionCount(); 
  broadcast void setSection(int i,Section s); 
  broadcast void insertSection(int i,Section s); 
  broadcast void removeSection(int i); 
} 

Assuming that all object replicas start with the same state, broadcast methods would keep 

them consistent by automatically propagating and remotely applying changes made to any 

one of the replicas. This simple mechanism is fairly generic and can potentially support the 

sharing of almost any object2. Therefore, Colab supports the highest level of abstraction 

flexibility of all sharing infrastructures, as well as a very high level of code reuse. 

Unfortunately, the price for this abstraction flexibility is the complete lack of sharing 

flexibility—objects can only be shared synchronously and the decision which objects are 

shared is bound at compile time. This leads us to the conclusion that Colab does not fulfill 

our requirements in terms of specification flexibility and extensibility.    

2.2.3 Suite 

The design of another infrastructure, Suite [8], was focused on providing a high level of 

abstraction, sharing, and specification flexibility at minimal development cost. Conceptually, 

the system is based on the idea that every interactive application can be represented as an 

editor through which the user edits a specific data structure. In Suite’s case, the infrastructure 

supports the automatic sharing of arbitrary programmer-defined data types in C. 

To achieve this, Suite uses the type and variable declarations provided by the programmer 

to extract the structure of the shared data and to generate a corresponding user interface that 

                                                 
2 Some methods cannot be declared broadcast, such as the ones invoking other broadcast methods (directly 

or indirectly).  
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allows the collaborative editing of the shared data. In other words, Suite also adheres to the 

model-view application architecture, with the view layer being automatically generated and 

maintained by dialog managers. Thus, based on the following C declarations of the example 

outline, Suite can automatically provide the user interface and sharing functions needed for 

its collaborative editing.  

typedef char * String; 
typedef struct { 

unsigned num_sections; 
Section *sections; 

} SectionSequence; 
typedef struct { 
  String heading; 
  SectionSequence subsections; 
} Section; 

typedef struct { 
  String heading; 
  SectionSequence *subsections; 
} Section  

Central to Suite’s sharing model are the notions of active variable and interaction 

variable. An active variable is an application variable that is displayed to and can be edited 

by the user through an interaction variable. An interaction variable is a user’s local version of 

an active variable, which is created when the user connects to the object. Thus, to allow users 

to share an active variable, Suite creates a corresponding interaction variable for each user 

and connects them to the shared active variable (Figure 2.5). 
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Figure 2.5 Suite's sharing model 

Users work on their local versions and must explicitly commit their changes in order to 

modify the shared variable. Committed updates are always communicated to all participants. 

In addition, there is a coupling mechanism, which allows users to see each other’s work at 

various stages of its completion. This is controlled by two parameters: a transmission 

parameter, which sets a condition for exchanging updates based on the communication 

operation being performed on the variable, and a correctness parameter which controls the 

exchange based on the level of correctness of the variable value. The basic rule for 

transmitting changes is as follows: the value of an updated interaction variable is transmitted 

upon execution of any communication operation on the variable that is greater than, or equal 

to, the value of its transmission parameter if the correctness of the value is at least as high as 

the one specified by the correctness parameter. 

The values of the transmission parameter reflect the following ordered set of 

communication operations defined by the system: Increment, Complete, TPeriod, TTime, and 

Transmit. By default, every variable update, such as inserting a character, is an Increment 

operation. A Complete operation is executed whenever the user has indicated that he is 

finished editing the value, e.g., by hitting <tab> or <return>. TPeriod and TTime refer to a 
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periodic operation (e.g., every 30 min) and a scheduled time-of-day operation (e.g., at 5pm), 

respectively. The Transmit operation is executed whenever the user explicitly requests it by 

pressing a <transmit> button. 

The possible values for the correctness parameter (in increasing order) are Raw, Parsed, 

Validated, and Committed. By default, any variable value is Raw, unless it has undergone a 

successful syntactic check (e.g., the entered string must be a 5-digit number) after which it is 

elevated to Parsed. If the value has also passed a check for semantic correctness (e.g., the 5-

digit number must be a valid ZIP code), it becomes Validated. As already suggested, 

Committed values are explicitly designated by the user by executing a commit command 

(e.g., pressing a <commit> button). 

The coupling parameters for sending and receiving updates do not have to be identical. 

Thus, user A may decide to make available all of his updates to everyone by setting the 

transmission threshold to <Increment, Raw>, however, user B may decide that this is too 

much of a distraction and may choose to receive only Committed updates. Going a step 

further, Suite allows users to have potentially different coupling parameters with each 

participating user, thereby enabling all possible combinations of user subgroups and sharing 

modes to be supported. 

Another important abstraction in the Suite model is the notion of a value group, which 

groups together a set of related interaction variables and stores sharing, as well as other, 

attributes common to these variables. An inheritance relation that follows the ancestral 

relationships within the shared data structures is defined among value groups to allow more 

specific value groups to inherit attributes from more general ones [9]. For example, a 

coupling parameter specified for the outline document provides a default for all sections and 

subsections in the object. However, a parameter specified for section 1, for instance, 

overrides this default for all of its subsections and their dependents. Thus, to find the 

coupling parameters, say, for the heading of section 2.1, Suite would first look for a specific 

value given by the user for that heading. If none is found, the system would lookup the 

parameter for the value group associated with the structural parent of the heading—section 

2.1, and would successively lookup the parameters for section 2, and the root outline object, 

if necessary. 
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An alternative approach to parameter specification in Suite is based on type- instance 

relationships. For example, one could provide a default specification for all instances of type 

Section and might expect to see the heading of all sections (including 2.1) to be shared 

according to this parameter. Thus, both of the approaches have useful applications in actual 

usage scenarios. However, they also create ambiguity as to which hierarchy—the structure-

based or the type-based—should be traversed to find defaults. Therefore, Suite maintains a 

separate attribute, which tips the systems to the desired method of resolving this conflict.   

For each shared entity, such as a section, users can choose between value or view 

coupling. Value coupling specifies sharing of the data representation of the shared entity 

whereas view coupling specifies sharing of its user interface. Furthermore, coupling of other 

UI state—scrollbars, pointers, window sizes/positions—can also be independently specified. 

Thus, if all aspects of the UI presentation are shared, this effectively leads to WYSIWIS 

sharing. However, if only value coupling is chosen, then we get semantic sharing, which 

allows users to have separate views of the object while maintaining semantic consistency. 

To summarize, our review of Suite shows that it is the infrastructure that best satisfies our 

sharing and specification flexibility requirements. In particular, its exhaustive parameterized 

coupling model offers automatically more sharing modes than any other sharing 

infrastructure that we are aware of. We draw a similar conclusion about its comprehensive 

sharing specification model—it satisfies all aspects of our specification flexibility 

requirement better than any comparable system. Therefore, we have chosen Suite as our 

comparison benchmark with respect to sharing and specification flexibility. 

Suite’s primary limitations are with respect to abstraction flexibility, which is constrained 

by two factors. The first one is that the system is designed to share a fixed set of concrete 

data types and, therefore, its approach cannot be directly applied to abstract data types, such 

as Java classes with no public variables. The second one is that the whole coupling 

mechanism is tied to the generated user interface, receiving from it UI-specific change 

notifications and invoking UI-specific operations to update the UI state. Therefore, Suite 

cannot provide collaboration functions for an application with a graphical, or custom-built 

user interface.  



 31

With respect to code use, Suite does not offer compiled code reuse and does not support 

incremental collaboration awareness. From an architectural point of view, Suite is a 

monolithic system and, therefore, does not satisfy our extensibility requirement.  

2.2.4 JViews 

JViews [12] is another infrastructure designed to support the sharing of applications based 

on the editing model. However, unlike Suite, its solution advocates a component-based 

architecture that allows applications with custom-built user interfaces to be shared. Since 

JViews does not generate the user interface, and, hence, does not control the flow of updates, 

it must rely on cooperation from the application. Shared objects must implement a two-phase 

system-defined event protocol—they must preannounce intended changes (and be prepared 

to roll them back), as well as announce implemented changes after the fact by issuing change 

descriptions (events). 

The infrastructure implements application sharing by logging, distributing, and replaying 

the state changes according to the current, user-selected sharing policy. JViews  supports 

asynchronous and synchronous sharing, as well as user-mediated sharing. The latter means 

that changes from remote users are displayed in a list, and the receiver can pick the changes 

he wants to see applied to his local replica.  

Unlike Suite, JViews does not allow policies to be specified on a per object basis and 

does not distinguish between sharing of the object and its view. This is due to the fact that 

changes affecting only the view presentation, such as moving/resizing a window, are mixed 

in with semantic changes that affect the shared artifact, such as text editing, and cannot be 

controlled separately. Therefore, if a user wants semantic sharing, he must preview and 

selectively apply only the semantic changes—a manual process that can lead to mistakes and 

consistency problems. Furthermore, if all changes to both the model and view layer are 

eventually communicated regardless of whether there are needed, then situations in which 

bandwidth is an issue would not be adequately supported.  

With respect to abstraction flexibility, JViews supports the sharing of an extensible set of 

programmer-defined abstractions that implement system-defined interfaces. However, it does 

not directly support the sharing of recursive structures—in order to achieve such sharing, 

each component in the structure must be explicitly connected to the infrastructure.  
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On balance, the best features of JViews stem from its component-based approach, which 

is naturally suited to support extensibility and code reuse by allowing components to be 

added or substituted without affecting the functions of rest of the infrastructure. Also, 

incrementally increasing the application’s collaborative features can readily be 

accommodated. Therefore, we use JViews as our benchmark in extensibility and code reuse 

for application-based sharing. 

2.2.5 DISCIPLE 

DISCIPLE [Wang, 1999 #20] is another Java-based sharing infrastructure, whose design 

approach is based on components. It is designed to share arbitrary JavaBeans objects by 

taking advantage of their standardized property and event model. A (Java) bean is a regular 

object, which follows a prescribed method naming convention and communicates through a 

standardized events. The naming conventions allow an external agent—the Java 

Introspector—to discover different attributes, or properties, of the object. A property is 

defined by a pair of  ‘getter’ and ‘setter’ methods, such as the getTitle/setTitle methods used 

in our outline example: 
public class Outline { 
  String getTitle(); 
  void setTitle(String title); 

  Section getSection(int i); 
  int     getSectionCount(); 
  void setSection(int i,Section s); 
  void insertSection(int i,Section s); 
  void removeSection(int i); 
} 

Thus, based on the JavaBeans conventions, the Outline object above has a property 

called title. In addition, a proper bean object would also allow interested objects to register as 

listeners and be notified whenever a property value changes. 

Based on this model, DISCIPLE is able to provide sharing of any bean object by 

registering the infrastructure as a listener and propagating and applying the changes to 

remote replicas. While this is very similar to what JViews does, the main conceptual 

difference is that DISCIPLE distinguishes between model and view objects and allows those 

to be shared separately. At the same time, it only implements synchronous sharing, thereby 

limiting sharing flexibility. 

From the point of view of abstraction flexibility, bean objects represent an interesting 

class of objects: on the one hand they allow systems, such as DISCIPLE, to automatically 
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support the sharing of an extensible class of programmer-defined types; on the other hand the 

bean model is too restrictive to cover many objects with relatively simple logical structure. 

For example, our outline has only one property—title—and that is clearly insufficient to fully 

describe its structure. Overall, beans represent an interesting class of objects, disjoint from 

what most other object-sharing infrastructures, such as Sync (described in the next section) 

support. Therefore, we use DISCIPLE as one of our benchmarks with respect to abstraction 

flexibility. 

With respect to reuse and extensibility, these are well-supported by the underlying 

JavaBeans framework and, hence, well-supported by DISCIPLE.  

2.2.6 AMF-C 

Another component-based infrastructure, AMF-C [23], has taken on the issue of 

providing sharing flexibility by using both the structure of the shared objects (like Suite) and 

an event-based communication protocol (like JViews). In AMF-C, an object can be shared 

automatically if it publicly advertises its logical structure through the use of facets. A facet is 

responsible for a particular aspect of the object's behavior, such as presentation (to the user), 

abstraction (functional kernel), and (interaction) control, in the PAC model [6]. Facets have 

communication ports through which objects interact by exchanging messages. The event 

flow between objects is specified using a graphical formalism similar to the standard notation 

for circuit design. The language allows the flow to be controlled using administrator 

components (e.g., lock administrator) that can stop event propagation, as well as basic logical 

functions– AND, OR, etc.  

As an illustration, consider the implementation of synchronous sharing for the outline 

example using AMF-C. First, the outline object must define the standard presentation, 

abstraction, and control facets as well as a distant facet—a facet responsible for replaying 

actions received from remote sites. Then, the sharing logic must be specified by connecting 

the relevant communication ports—in the simplest case, just connecting the output 

communication port of the abstraction facet to the remote replay facet achieves a sharing 

mode similar that of broadcast methods. Considering the fact that the graphical language 

allows arbitrary connections to be made between components, AMF-C provides a mechanism 
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to specify and implement a wide variety of sharing modes. However, this comes at a 

relatively high development overhead, which comes from: 

§ Low-level event processing—the programmer must specify the sharing logic using low-

level events. Consequently, the shared object must implement a messaging protocol for 

communicating and applying object updates, as well as methods for manipulating facets 

and ports. 

§ Cumbersome sharing specifications—the specification process itself is tedious because 

sharing specifications are made on a per-object basis. Furthermore, the graphical 

formalism chosen would lead to complicated diagrams even for applications of relatively 

modest complexity. 

Overall, AMF-C presents an interesting approach, which offers the potential for 

significant specification flexibility, however, its emphasis on low-level primitives means that 

the provided level of automation is significantly lower than that of other systems, such 

GroupKit and Suite.  

2.2.7 Summary 

In summary, application-based sharing has the potential to provide the highest level of 

flexibility as it permits any aspect of the application to be shared. Our survey shows that 

infrastructures supporting application-based sharing provide developers with reusable 

mechanisms that fall into two basic categories—group communication services and shared 

programming abstractions.  

Group communication services, such as Colab’s broadcast methods, provide a lower 

level of abstraction that makes them applicable in a general context. Ultimately, however, 

what the programmer actually needs are shared programming abstractions that fit the needs 

of the specific application they are developing. In that sense, group communication is 

necessary but not sufficient to fulfill the needs of the programmer. Also, any limitations in 

the communication service can affect the capabilities of the shared abstractions built on top 

of them. For example, shared objects based on broadcast me thods are inherently limited to 

synchronous sharing. 

Shared programming abstractions, such as GroupKit’s shared environments, generally 

provide high automation because they can be directly used in the application development. 
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The main challenges for the infrastructure are to provide enough abstraction flexibility to 

accommodate the abstractions of a large class of applications, as well as sharing and 

specification flexibility to allow a wide range sharing modes. 

The main goal of our work is to provide higher abstraction flexibility for application-

based sharing than existing systems and provide sharing and specification flexibility at least 

equal to the best infrastructure in this class. 

2.3 Repository-Based Sharing Infrastructures 

2.3.1 Traditional Distributed File Systems 

Traditional distributed file system (DFS), such as AFS and NFS, implement sharing by 

giving users remote access to the same (logical) file over the network. In reality, users may 

be accessing different physical replicas of the file, in which case the system enforces strong 

consistency among the replicas to ensure that the single-copy abstraction is not broken. 

The obvious advantages of DFS are that the sharing mechanism can be composed with 

any application that uses the file system.  Thus, DFS provide a similar level of automation 

and reuse as shared UI systems. Another similarity is that they both serialize user access to 

the shared object and do not permit concurrent updates. This is the result of the fact that in 

both cases the sharing infrastructure has no knowledge of the application and must act 

conservatively in order to guarantee consistency. 

Overall, providing protection boundaries between users is a much higher priority for DFS 

than facilitating collaboration. Therefore, classic distributed file systems do not provide a 

mechanism that allows applications to extend the basic file- level sharing to a finer 

granularity, or to modify the file sharing semantics.   

2.3.2 Coda 

Coda [17] is a distributed file system specifically designed to allow concurrent file 

updates in the presence of disconnected and weakly connected participants. Whenever 

disconnected, users work on a cached local copy of the file and the system keeps track of all 

operations performed on the file. Upon reconnection to a server, Coda reintegrates the 

logged operations with the operations performed on the master file during disconnection. A 

variation of this process, called trickle reintegration, can be performed as a background 
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operation to support weakly connected clients using narrow band channels of 

communication.  

With respect to our requirements, the main feature of Coda is its automatic and 

application-transparent support for file-based sharing. Like traditional DFS, this model works 

reasonably well for applications that organize their data in multiple files, because there is less 

chance of users modifying the same file and having a conflict. However, for applications, 

such as word processors that use one big structured file, the file level granularity is 

inadequate. Therefore, Coda allows applications to supply specialized procedures for 

automatic conflict resolution. These routines understand the underlying structure of the 

stored data and can precisely determine whether two concurrent updates are in conflict or 

they can be reconciled without requiring user intervention.  

From the point of view of abstraction flexibility, applications are given a mechanism 

through which they can extend the list of supported shared abstractions beyond the basic file 

system abstractions. The basic problem, however, is that any flexibility gains come at the 

expense of the application developer who must design and implement the merge procedures. 

From the point of view of extensibility, though, Coda supports the basic idea of offering 

different level of service to applications with different levels of collaboration awareness, 

albeit not in an incremental fashion.  

2.3.3 Lotus Notes 

Unlike the repository systems discussed so far, which use files as the basic unit of 

sharing, Lotus Notes [16] provides sharing based on the notion of document databases. A 

document database is a flat collection of Notes documents, which in turn are records of 

arbitrary objects. Databases may also contain forms, responsible for entering and displaying 

data, and views, which show summaries of database content. Programmers can use formulas 

and macros to access and manipulate objects in the database. A formula is a composition of 

Notes @ functions through which documents are accessed, whereas a macro is a fo rmula that 

performs a procedure on the database. All of the described objects can be shared through a 

process of successive replication and merging. 

Notes does not use the typical notion of sharing, which is based on the idea of eventual 

consistency—if there are no active transactions pending, then all replica must converge to the 
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same values (network conditions permitting). Notes, however, considers replicas to be 

consistent if they have equivalent document versions. In other words, not all replicas will 

necessarily have the same set of documents. 

The sharing process is controlled by the chosen replication topology and four database 

attributes. The possible topology configurations include peer-to-peer, hub-and-spoke, tree, as 

well as several other variants of these. The four attributes include access control lists, read 

access lists, replication settings, and replication formulas. Access control lists determine for 

each replica which database elements may be exchanged with other replicas. Read access 

lists are defined on a per document basis to control who may receive them during the merge 

process. Replication settings give finer control over the replication process, such as the 

ability to exclude deletions of document from being replicated. Replication formulas allow 

developers to specify criteria which select the documents to be shared. 

Notes’ semi-structured databases provide higher level of abstraction and sharing 

flexibility than file systems. Concurrent updates are considered in conflict only if they are 

made to the same document, however, the resolution must be handled manually by the users. 

Also users have a lot of flexibility in controlling which documents should be shared but have 

no control over the sharing semantics except for the manual reconciliation. 

2.3.4 Bayou 

Bayou [24] is another sharing infrastructure that supports disconnected operations. Like 

Notes, it is a database-oriented system, which defines tuples (similar Notes’ documents) as its 

basic unit of sharing. The main difference is that Bayou specifically addresses the need for 

greater sharing flexibility by providing more flexible mechanisms for conflict detection and 

resolution. Specifically, Bayou provides a scripting language that allows each individual 

write to the database to be accompanied by a conflict-detection query and conflict resolution 

procedure. If the actual query result defers from the expected, this is flagged as a conflict and 

an application-specified procedure is invoked to resolve it. 

Thus, Bayou provides more sharing flexibility than Notes, although taking advantage of it 

may requires writing lower- level code, which lowers automation and increases the 

complexity of the sharing specification. Another problem is the relatively low abstraction 

flexibility provided by the system. For example, casting the recursive data structure of our 
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outline document would not be a trivial task and will require an additional application layer 

to be built to support the translation between the application objects and database records. 

2.3.5 TACT 

TACT [25] is another infrastructure, which, like Bayou, implements a database-centered 

sharing model and has similar design features with respect to our requirements. TACT’s 

main advantage over Bayou is that the sharing is controlled through the specification of three 

parameters—numerical error, order error, and staleness. Each of these parameters provides 

some measure of the differences between replicas. Whenever any of the observed values of 

these parameters exceeds an application-specified threshold, an automatic exchange is 

triggered to bring the replicas back in line with the specification. For example, if the 

specification is set to (0,0,0), then no differences are allowed, which effectively means 

synchronous sharing. Conversely, if (∞, ∞, ∞) is given, then asynchronous sharing is 

achieved. 

Thus, TACT’s model requires lower specification effort than Bayou’s. However, the 

problem of mapping object updates to numerical changes of the parameters based on the 

system-defined notion of conits (similar to records) requires additional design effort on part 

of the developer. From the point of view of our requirements, this is an illustration of the low 

abstraction flexibility provided by the system, forcing the programmer to invest additional 

effort to translate between application-defined abstractions and the system-defined ones.  

2.3.6 Sync 

Sync [18] is a repository-based sharing infrastructure that addresses the abstraction 

flexibility concerns raised by database systems by providing (asynchronous) sharing of Java 

objects. Its basic design idea is to provide replicated (shared) versions of several basic object 

types (e.g., ReplicatedString , ReplicatedVector, ReplicatedDictionary) and allow the 

application to automatically share object structures built with these primitives. As the 

following Sync implementation of the shared outline illustrates, programmers can define their 

own replicated classes by extending the ReplicatedRecord class, which indicates to Sync 

that the class contains replicated fields. The replicated fields must be declared public so that 

the system can access and automatically share them through Java’s (computational) 

reflection mechanism [13]. 
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public class ReplicatedOutline extends ReplicatedRecord { 
  public ReplicatedString title; 
  public ReplicatedSequence sections; 
} 

In essence, the programming effort of writing a collaborative application with Sync 

consists of casting the shared application structures into the set of shared primitives supplied 

by the system. The underlying sharing mechanism is based on a table-driven merge 

algorithm, which integrates changes made by different users with a master copy maintained 

by a Sync server. Each replicated type has a default merge table, which may be overridden by 

the programmer, or the end user. The merge procedure runs at the server and compares the 

set of updates sent by a client with the set of operations applied to the master copy from the 

last synchronization session. As an example, consider the default table for the 

ReplicatedDictionary as given in [18]:  

 

Figure 2.6 Sync: Default merge matrix for ReplicatedDictionary 

The rows and columns represent the operations—put, remove, and modify—performed by 

the client (oc) and the server (os), respectively (null refers to no operation). The table 

provides instructions on how to handle different combinations of operations submitted by the 

client and the server using the same key parameter (operations using different parameters are 

deemed not to be in conflict). The notation “S:x, C:y” means that the merge algorithm should 

apply operation “x” to the server copy and instruct the client to perform “y” on its copy. 

Thus, according to the above table, if both the client and the server inserted a new element 

with the same key (a put operation) then the server operation wins: server keeps its copy (∅ 

means no action) and the client must execute the server put. If two concurrent modifications 

to the same entry are submitted then the merge procedure is applied recursively in the hope 

that the two can be reconciled at a finer granularity. 

The original Sync implementation supports only asynchronous sharing although there are 

no conceptual problems to applying this approach for synchronous sharing, as a subsequent 
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extension has demonstrated [21]. Nevertheless, Sync lacks a mechanism that would allow it 

to provide the variety of sharing modes supported by Suite, for example. With respect to 

abstraction flexibility, however, Sync presents a better solution than Suite, because in 

addition to concrete data types, it can share programmer-defined types through inheritance. 

However, this comes at the price of exposing the internal structure of the shared types, and is, 

therefore, in conflict with the data encapsulation principle of object-oriented programming. 

Another flexibility problem is the need to cast application structures into a fixed set of 

primitives with specific implementations. For example, our outline has a sequence of 

sections, however the ReplicatedSequence implementation may not be appropriate because 

we might need to, say, automatically renumber all subsections whenever a new section is 

added. 

Sync does not specifically address extensibility and code reuse. Since the implementation 

relies on class inheritance to implement shared abstractions, adding sharing capabilities to a 

single-user application is equivalent to reengineering (part of) the class hierarchy. Thus, the 

effort involved is proportional to the number of shared classes. Furthermore, the 

modifications to the code are likely to be non-trivial because Java does not support multiple 

inheritance. 

Since Sync supports the widest range of shared abstractions, it is also one of the 

benchmarks in our evaluation. In other words, we will show that our infrastructure can at 

least support Sync’c the range of shared abstraction.  

2.3.7 Summary 

Table 2.1 provides a concise summary of our survey on existing sharing infrastructures 

by mapping their features to our generic infrastructure requirements. A detailed explanation 

and justification of each entry is provided in Chapter 6, where we perform an explicit 

comparative evaluation of all infrastructures, including our own. 
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Automation
Shared 

Abstraction
Sharing Modes Code Reuse

Sharing 
Specification

Shared UI 
Systems High Widget, window, 

frame buffer WYSIWIS only High None

GroupKit 
Shared 
Environmets

High Environment
Model: 

synchronous/
View: flexible

High None/Procedural

GroupKit
Multicast RPC High/Low Arbitrary object Synchronous/

Asynchronous Moderate Procedural

Colab High Arbitrary object Synchronous High Declarative

Suite High
Concrete types, 

sequence, record

Flexible 
synchronous/
asynchronous

Low Parameter-based

JViews Moderate
System-defined 
abstract types

Synchronous, 
asynchronous, 
user-mediated

High Graphical

DISCIPLE High JavaBeans 
(abstract records) Synchronous High Graphical

AMF-C Low AMF Object
Flexibile 

synchronous Low Graphical

DFS High Directory, File Fixed 
asynchronous

High None

Coda High/Low Directory, File Fixed/flexible 
asynchronous High None/procedural

Lotus Notes High Database Flexible 
asynchronous Low Parameter-based

Bayou Moderate Database
Flexible 

asynchronous Moderate Procedural

TACT Moderate Database Spectrum Moderate Parameter-based

Sync High System-defined 
abstract types

Flexibile 
asynchronous Low Parameter-based

 

Table 2.1 Surveyed Infrastructures vs. Requirements 

The basic conclusion we draw from our discussion is that, while for each of the 

requirements there is at least one infrastructure that satisfies it to a high degree, there is no 

single infrastructure that covers all of them. Moreover, very few of the systems cover a 

significant fraction of the requirements. 
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In the following chapter we present a new application model that allowed us to build an 

infrastructure that better satisfies the set of presented infrastructure requirements. The model 

combines some of the successful design approaches of previous systems with a set of new 

mechanisms to achieve this goal.



3. CONCEPTUAL MODEL 

To establish our thesis, we first motivate and present a set of new mechanisms targeted at 

some of the specific limitations we have identified in current collaboration infrastructures. 

The main rationale behind our approach is to relax or eliminate altogether some of the 

assumptions traditionally built into the sharing infrastructure by replacing them with 

developer provided specifications. As our discussion will show, this design philosophy 

eventually leads to an infrastructure that is more adaptable to the needs of individual 

applications and significantly reduces the programming effort in developing collaborative 

applications. The main challenge is to keep the specification mechanisms easy to use and to 

ensure that they do not have a noticeable impact on application performance. In this chapter, 

we present the conceptual model behind our infrastructure implementation. The details of 

implementation are discussed in Chapter 4.  

Our model has four different aspects designed to address different requirements: 

• Shared abstraction model. The primary purpose of our shared abstraction model is to 

address our abstraction flexibility requirement. We introduce a pattern language that 

allows us to describe and share a class of objects that is a proper superset of the 

shared objects in existing systems.   

• Architectural model. The primary purpose of our architectural model is to combine 

the higher level of abstraction flexibility of our pattern-based abstraction model with 

high extensibility. For that purpose, we introduce the notion of a property handler 

and describe a general approach to implementing infrastructure functions based on 

properties. 

• Sharing model. The primary purpose of our sharing model is to address our sharing 

flexibility requirements in providing at least as much flexibility as existing systems 

for the set of shared abstractions defined by our abstraction model. We extend the 

Suite coupling model and introduce application layer specifications to account for the 

more general assumptions that our abstraction model makes about the shared objects. 
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• Sharing specification model. The primary objective of the specification model is to 

address our specification flexibility requirements. We present a model based on the 

Suite inheritance model and we compliment it with layer-based macro commands. 

Implicitly, many of the mechanisms also contribute to the fulfillment of our automation 

requirement and some support code reuse. In particular, by extending the set of programmer-

defined abstractions that can automatically be shared, we reduce the development effort and 

allow existing abstractions used in the single-user implementation to be directly reused. The 

architectural model enables the set of these shareable abstractions, as well as the set of 

sharing functions, to be incrementally extended. Also, by isolating the application-specific 

code related to sharing into property handlers, it promotes the reuse of both application and 

infrastructure code. Finally, the specification model automates the process of dynamically 

specifying the collaboration. For the rest of this chapter, we discuss in detail each of the 

above points. 

3.1 Shared Abstraction Model 

3.1.1 Introduction 

Recall that one of the main goals stated in our thesis is to improve abstraction flexibility. 

The single most important factor determining the level of abstraction flexibility is the choice 

of a basic shared abstraction–the more general the shared abstraction the more flexibility it 

provides. In this respect, a system based on sharing windows, for example, would be less 

flexible than a system based on sharing objects because the former provides sharing only of 

window objects whereas the latter could potentially share arbitrary objects, including window 

objects. 

In general, if an infrastructure provides sharing at the level of the basic programming 

primitives provided by the underlying programming language (e.g., variables in procedural 

languages, objects in object-oriented languages), it does not place any restrictions on the 

implementation and, therefore, provides the highest level of abstraction flexibility. Another 

aspect in evaluating the abstraction flexibility of an infrastructure is whether it supports the 

sharing of concrete or abstract data types—a system that supports the sharing of abstract data 

types can also support the sharing of concrete types but not vice versa.    
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Considering the current prevalence of the object-oriented approach in development 

platforms, we have focused our efforts on providing flexible object sharing facilities as the 

basis for supporting flexible collaboration. Thus, our ideal system should support the sharing 

of arbitrary objects. However, reconciling this goal with object programming principles 

presents some non-trivial problems. 

The main issue we face is the apparent conflict between data encapsulation and object 

sharing–the former mandates that object state be kept private and accessed through 

programmer-defined methods, whereas the latter needs to know the object state in order to 

share it. As it turns out, if we respect data encapsulation and keep the state private, it is 

fundamentally impossible to implement the automatic sharing of arbitrary objects. To 

illustrate this point, consider the original class definition we used in our outline example:  

public class Outline { 
  public String getTitle(); 
  public void   setTitle(String title); 

  public Section getSection(int i); 
  public void    setSection(int i,Section s); 
  public int     getSectionCount(); 
  public void    insertSection(int i,Section s); 
  public void    removeSection(int i); 
} 

Figure 3.1 Example Outline implementation 

Assume that we have the two Outline instances that have diverged (e.g., users have been 

off- line for a while) and we need to bring them back into a consistent state. Clearly, applying 

a generic mechanism, such as broadcast methods, alone would not solve the problem—the 

sharing mechanism would need to have at least some basic understanding of the semantics of 

the public methods in order to accomplish the task. However, deriving such knowledge about 

the object automatically would amount to solving the halting problem, which is 

fundamentally impossible. Consequently, in the general case, it is not possible to provide 

fully automatic flexible object sharing while preserving data encapsulation. Therefore, our 

realistic goal is to support the flexible automatic sharing of a wider range of objects than 

currently possible. Since knowing the logical structure of the shared entity is a precondition 

for implementing fine-grained sharing services, we have focused an important part of our 

efforts on providing a more expressive mechanism for deriving the (logical) structure of 
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shared objects (as opposed to the in-memory physical structure defined by its internal 

variables) 

Existing infrastructures have taken two different approaches in dealing with the problem 

of obtaining the structure of shared objects. The first one, employed by systems such as 

JViews and AMF-C, is to get around it by defining a low-level communication protocol, and 

require the application developer to adapt the shared objects so that they can communicate 

through this system-defined protocol. The obvious advantage here is that the infrastructure 

can accommodate the sharing of any object as long as it adheres to the protocol. In practice, 

however, the additional effort is often non-trivial, and requires modifications that are spread 

all over the single-user code. Moreover, since the infrastructure deals with a single stream of 

events, it cannot, for example, make a distinction between updates affecting the shared object 

and events affecting its appearance. Thus, the infrastructure either does not support different 

levels of sharing (JViews), or the programmer must manually establish different 

communication channels and manage their coordination (AMF-C). Overall, this leads to less 

automation and code reuse than the alternative approach, based on shared programming 

abstractions. 

 Infrastructures, such as XTV, Suite, and Sync, opt to relieve the programmer from the 

potentially expensive task of code adaptation by supporting shared primitives that can be 

directly incorporated into the application. Although these systems share a common approach, 

they provide different levels of support. In XTV, only a single sha red type (shared window) is 

supported, whereas Suite and Sync, in addition to several basic types (integer, string, etc), 

also support complex hierarchies of programmer-defined types, built through records, 

sequences, and tables (Sync only). As already discussed in the previous chapter, DISCIPLE 

supports sharing of JavaBeans—an altogether different set of objects. The common 

advantage among these systems is that they provide a high level of automation because the 

shared programming abstractions are directly employed by the application. Their common 

limitations stem from the fact the application must use the provided shared abstractions to 

achieve sharing. In case those are not suitable, the developer is left with the choice of 

implementing custom-built abstractions, or adapting the application to the supported 

abstractions. The latter process can be especially difficult if the starting point is an already 

implemented single-user version. 
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Our goal, as shown on Figure 3.2, is to have a shared abstraction model that subsumes the 

existing ones and also shares an extensible range of objects not currently supported by other 

systems. To achieve this goal, we have developed a shared abstraction model based on 

programming patterns, which we also refer to as pattern-based object model. 
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Figure 3.2 Sharing infrastructures and their shared abstractions 

3.1.2 Pattern-based Object Model 

One of the consequences of data encapsulation is the fact that objects must provide public 

methods that permit other objects to access and update its internal state. Furthermore, if 

different aspects of the object’s state can be manipulated independently, it is highly desirable 

that they be accessible through separate methods. For example, in the implementation of our 

outline object, we provided separate methods for updating the title and the list of sections 

(setTitle and setSection), instead of one generic method, e.g. set, which handles all 

updates. In essence, this separation of responsibilities among the methods reflects the logical 

structure of the object without revealing its implementation. 

To make this object structure apparent, good programming practices dictate the use of 

sensible method naming convent ions—or programming patterns—that help programmers 

determine the likely purpose of a method without looking into the code itself. In our outline 

example, we named the method responsible for updating the title setTitle to suggest its 
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purpose. Furthermore, a group of methods dealing with a particular aspect of the object's 

state would have certain naming commonality to emphasize that fact. For that reason, we 

named the method that gives the current title of the outline as getTitle. 

Certainly, other reasonable (and more complicated) programming patterns have been in 

use for a while. However, these programming patterns have remained largely informal and, 

until recently, there has been no consistent effort to standardize and take advantage of them 

for the purposes of automated development. Java, through the introduction of the JavaBeans 

platform, has made the first step towards the more general use of these patterns. 

3.1.3 Programming Patterns in JavaBeans  

The main goal of JavaBeans is to define a generic component-based architecture for Java 

programs. The whole approach is based on the use of the Java Reflection API to achieve run-

time discovery, composition, and customization of application components. As a strongly 

typed, interpreted language, Java must retain a lot of the original information provided by the 

programmer, such as method signatures and inheritance relationships, to perform run-time 

checks. Furthermore, all of this information is kept in its original string form because of 

Java's late binding mechanism, which loads class definitions on demand. Thus, the reflection 

API simply provides a standard means of accessing this publicly available information. 

Building on this relatively low-level API, JavaBeans defines a more abstract introspection 

mechanism that automates the handling of application objects, called (Java) beans, which are 

structured according to a set of standard conventions. 

The most important requirement for a bean object is to advertise its structure in the form 

of properties. According to the JavaBeans Specification, 'properties are discrete, named 

attributes of a Java bean that can affect its appearance or its behavior'. This, however, is a 

rather broad and vague definition, which does not explicitly address the issue of how a 

property is defined. Therefore, by summarizing the discussion in the JavaBeans 

specification, we use the following, more formal, definition: 

An object property is a named attribute of an object that adheres to a predefined 

semantics and can be manipulated through a set of dedicated methods.  

One straightforward way of specifying an object property is to define an interface 

containing the property methods and to require objects that have such a property to 
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implement the interface. For example, we could use the following interface to define a title 

property and allow our outline object to advertise the fact that it has such a property by 

implementing the TitleProperty interface as follows: 
public interface TitleProperty { 
  public String getTitle(); 
  public void setTitle(String title); 
} 
public class Outline implements TitleProperty { 
  // class implementation remains unchanged 
  public String getTitle(); 
  public void setTitle(String title); 
  … 
} 

Similarly, we could define interfaces to explicitly advertise other properties that the 

outline might have: date, author, etc. However, to describe the properties of a complex 

object, such as a user interface window, we would need a large number of "small" 

interfaces—interfaces containing only a few methods—that would appear very similar. This 

would clutter the code and may well make the task of understanding it more difficult. More 

importantly, programmer-defined interfaces would not be known to the infrastructure. At the 

same time, an interface only provides a syntactic contract between two objects and does not 

guarantee anything about their behavior.  

Building on this fact, JavaBeans turns to programming patterns to define object 

properties implicitly rather than explicitly through interfaces. JavaBeans recognizes two 

types of properties–simple and indexed. A simple property is defined by a couple of 'get' and 

'set' methods of the following form: 

<PropertyType> get<PropertyName>() 
void set<PropertyName>(<PropertyType> value) 

The 'get' method corresponds to a read operation and returns the current value of the 

property, whereas the 'set' method defines a write operation that assigns a new value to the 

property. Thus, if a matching 'get'/'set' pair is found during the object analysis, then a read-

write property named PropertyName of type PropertyType is discovered. In some cases, one 

of the methods may be absent in which case the property is considered as write-only/read-

only respectively. Returning to our example, the pair of getTitle/setTitle methods 

defines a simple property called title. 

Indexed properties are a straightforward extension of simple properties and approximate 

standard array semantics in procedural languages. Whenever a simple property of an array 
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type is discovered, it is considered to be an indexed property. The object is then searched for 

a second pair of get/set methods that manipulate individual elements by their index. In the 

following class definition, the four shown methods define an indexed property called section 

of type Section. 
public class Outline { 
  public Section[] getSection(); 
  public void setSection(Section[] section); 
  public Section getSection(int i); 
  public void setSection(int i, Section section); 
  … 
} 

In essence, the described JavaBeans programming patterns for simple and indexed 

properties can be interpreted as implicitly defining two families of interfaces, whose names 

and member methods are derived using the get/set naming convention. Thus, the programmer 

gets the benefits of specifying object properties without the overhead of managing a 

multitude of interfaces and the restriction of using only infrastructure-defined interfaces. 

However, despite this added expressive power, JavaBeans’ property specification 

mechanism has its own expressive limitations. To understand the problems, let us first 

consider the impact of hardwiring the syntax of the get/set pattern into Java's introspection 

mechanism. The most important consequence is that legacy code must be rewritten to comply 

with the exact specification. This is a non-trivial issue, given that even current versions of the 

Java APIs are not fully compliant. At the same time, well-written systems tend to follow 

similar naming conventions but may use other keywords. For example, instead of 'get', 

developers may have used other verbs to describe the reading of an attribute–'read', 'check', 

etc. Similarly, write operations may be represented by methods starting with 'write', 'update', 

'reset', etc., instead of 'set'. 

While it is possible to accommodate the above cases by providing additional information 

to the introspection mechanism through 'BeanInfo' specification classes, in practical terms, 

this means that the programmer must write an additional Java class for each class containing 

exceptions to the standard get/set syntactic rules, and explicitly point the system to the 

correct methods. The regular and the specification classes are linked by a naming convention, 

which allows the introspection mechanism to automatically discover the specification. For 

example, the BeanInfo class for the Outline class, would be named OutlineBeanInfo and 

would implement the system-defined BeanInfo interface. During the introspection process, 
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the system always checks for the presence of a specification class, and, if one is found, its 

content supersedes any information derived implicitly by the system. 

However, there are at least two problems with this approach, which severely limit its 

applicability. First, using a procedural mechanism to write specifications is rather clumsy and 

typically results in the writing of many lines of routine code that are not directly relevant to 

the application's functionality. Second, the specification effort is proportional to the number 

of classes affected. In the worst case, the number of specification classes could be 

proportional to the total number of classes comprising the application. 

Another, more important, expressive limitation of JavaBeans’ properties is the fact that 

their semantics is hardwired into the introspection mechanism. Given our goal of automated 

sharing of arbitrary structured objects, the existing Java support for properties is not general 

enough for our purposes. Intuitively, it should be possible, for example, to describe our 

section sequence as some kind of JavaBeans property. However, there is no suitable way to 

describe the dynamic nature of this property–its ability to incrementally change its structure 

through the addition/removal of individual elements. 

In summary, the current JavaBeans property model lacks the expressive power to 

describe several useful kinds of structured objects and, therefore, a collaborative 

infrastructure based on this model would lack the abstraction flexibility to share such objects. 

Therefore, we present an extensible framework for describing and using object properties 

that remedies the discussed limitations. 

3.1.4 Generalized Properties and Programmer-defined Patterns  

In an effort to gain expressive power, we separate the problem of specifying a property 

from its actual use. For that purpose, we introduce a declarative specification language, 

which allows programmers to define object properties in terms of corresponding 

programming patterns. We refer to the process of identifying the properties of an object as 

(property) introspection, and to the infrastructure service object that implements it as 

Introspector. Our actual specification language, described in detail in the next chapter, is 

based on XML3. However, for the purposes of this discussion, we use a simplified syntax that 

is more concise and easier to read.  
                                                 

3 http://www.w3.org/XML/ 
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We adopt the de facto standard mixedCase naming convention as the basis for our pattern 

analysis. Specifically, we assume that method names consist of one or more tokens. The 

beginning of each token is marked by a capital letter following a small letter or, in case there 

is more than one consecutive capital letters, by a capital letter followed by a small letter. For 

example, getHTMLGenerator is decomposed into three tokens (get-html-generator). The 

rest of this discussion considers pattern matches at the token granularity. 

The first step in the property specification is to define method (signature) patterns, which 

select the candidate methods to be matched against the constraints of the property definition. 

The method patterns are based on a canonical string representation of method signatures of 

the following form 

pattern_method = <return_type> method_name(arg1_type,…,argN_type). 

Method patterns contain free pattern variables that are assigned string values and, in our 

notation, are separated by a pair of ‘<’, ‘>’ symbols. For example, to define the standard 

JavaBeans 'get'/'set' methods we use the following declarations: 
getter = <GetType> get<PropName>()  
setter = void set<PropName>(<SetType>) 

Pattern variables are assigned upon the completion of a successful match, and contain the 

maximum length match, which may span several tokens. For example, if the above getter 

declaration is matched against the method int getXPos(), the values of the pattern 

variables would be as follows GetType == "int" and PropName == "XPos". 

The second step is to define the conditions, or constraints, under which candidate 

methods are grouped together to define properties. A constraint is a simple test of equality 

between the string values of two assigned pattern variables:  

pattern_method1.pattern_variable1 == pattern_method2.pattern_variable2 

Candidate methods that have satisfied all the constraints of a property definition are 

called pattern methods. In addition to these, each property also has a naming rule based on 

which the introspector can assign a name that distinguishes among all the object properties 

satisfying the same definition: 
name = pattern_method.pattern_variable | literal  

The literal option refers to the ability to specify a fixed name for the property. This is 

necessary to deal with cases in which the pattern variables do not provide suitable 
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information to generate a unique property name. Evidently, this also implies that such a 

property definition should not match more then one property per object.  

To illustrate the whole specification of a property, consider the following complete 

declaration of the standard JavaBeans properties: 
property 
  type = simple 
  methods 

getter = <GetType> get<PropName>()  
setter = void set<PropName>(<SetType>) 

  constraints 
   getter.PropName == setter.PropName 
   getter.GetType == setter.SetType 
  name = getter.PropName 
end 

The specification states that a property of type “simple” is defined whenever two pattern 

methods can be found such that they match the getter/setter patterns, and their respective 

pattern variables satisfy the given constraints. The last line specifies the naming rule for the 

property. Note that, at this point, a property is a purely syntactic construct that can be 

discovered but not yet interpreted by the infrastructure. Thus, the string specified by the type 

clause is merely an identifier that has no bearing to the interpretation of the property.   

Recall that one of the shortcomings of the JavaBeans model was the inability to provide 

alternative patterns for the same type of property. To show how we handle this issue, 

consider describing the special case of properties of boolean type. As an exception to the 

standard JavaBeans naming conventions, it is permissible for the getter method to have the 

following form: 

boolean is<PropertyName>() 

Describing this exception in our model is straightforward–all we need is an alternative 

definition for the getter method and the rest of the definitions will work as before: 
getter = <boolean> is.PropName.()  

Other, programmer-defined patterns can be described in a similar fashion. For example, 

applying the following definition to our example Outline class produces a sequence property 

called Section. 
property 
  type = sequence 
  methods 

insert = void insert<PropName> (int, <InsType>) 
remove = void remove<PropName> (int) 
lookup = <GetType> get<PropName>(int) 
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set    = void set<PropName> (int, <SetType>) 
count  = int get<PropName>Count() 

  constraints 
   insert.PropName == remove.PropName 
   insert.PropName == lookup.PropName 
   insert.PropName == set.PropName 
   insert.PropName == count.PropName 
   insert.InsType == lookup.SetType 
   insert.InsType == lookup.GetType 
  name = insert.PropName 
end 

By default, our prototype implementation comes with three basic property definitions for 

simple, sequence, and table properties that allow us to simulate the abstractions provided by 

our benchmark systems. Furthermore, versions of the sequence and table definitions are 

tailored so that they describe properties in the standard (and widely used) Vector and 

Hashtable classes, respectively. We discuss the role of property specification versions in the 

next chapter in infrastructure implementation.  

In summary, the described pattern description language allows, unlike any of the 

mechanisms in current infrastructures, the description of the structure of our original Outline 

object implementation with no modifications. Also, we showed that JavaBeans properties are 

a special case of the use of patterns that can be succinctly described in one property 

definition. Next, we consider the relationship between patterns and interfaces. 

3.1.5 Patterns vs. Interfaces 

As it turns out, interfaces are another special case of the use of patterns—one in which 

method patterns contain no free variables (consequently, the constraint clause is also empty). 

As an illustration, consider the description of Sync’s ReplicatedSequence class: 
property 
  type = sequence 
  methods 

insert = void insertElementAt(int, Object) 
remove = void removeElementAt(int) 
lookup = Object getElement(int) 
set    = void setElement(int, Object) 
count  = int size() 

  constraints 
  name == ‘Element’ 
end 

The above pattern-based specification is logically equivalent to the following Java 

interface-based specification in the sense that whenever an object implements the Sequence 

interface below (or extends an object that does) it will also have the above sequence property.  
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public interface Sequence { 
  void insertElementAt(int, Object); 
  void removeElementAt(int); 
  Object getElement(int); 
  void setElement(int, Object); 
  int size(); 
} 

To better understand the advantage of using patterns over interfaces, consider the 

implementation of a shared outline and a shared sequence using patterns and interfaces. For 

the purposes of this example, assume that the task at hand is to replay a remote insert 

operation and we want to compare the cost and flexibility of the two approaches. Using 

patterns, the insert can be replayed in two lines of code: 
void replayInsert(Object target, int pos, Object arg) { 
  Method insertMethod = Introspector.getMethod(target,“Element”,“insert”) 
  insertMethod.invoke(target, {pos, arg}) 
} 

 The Introspector refers to the system object, which performs the identification of 

properties and provides an API to access the results from the pattern analysis. Thus, the 

getMethod call asks for a reference to the method matching the “insert” method pattern, of 

property “Element” of object target. The second line is a reflective invocation of the insert 

method on the target object with the given arguments. We should note that even if the set of 

patterns describing sequences extends further, only additional property specifications would 

be needed—the above code would still work. 

In contrast, the interface-based solution requires two interfaces—one including all the 

“section” methods from the Outline class and another including the Sequence ones shown 

above. An interface-based solution would need to separately handle each of the two 

interfaces, which would require more coding. More important, however, is the fact that 

references to the interfaces are hardwired into the code and would need to be modified every 

time a new “similar” interface is introduced due to variations of the programming patterns.  

Thus, in terms of expressive power, our specification language completely subsumes both 

interfaces and JavaBeans properties and automatically supports an extensible set of objects 

not covered by existing mechanisms. Specifically, the logical structure of any object that uses 

a combination of the set of patterns given to the system would automatically be recognized. 

Furthermore, by using a specification mechanism outside the programming language we 

improved code reuse and automation by allowing new object types to be accommodated with 
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little or no extra effort on part of the developer, and in particular without writing any extra 

code. 

3.2 Architectural Model 

3.2.1 Property Handlers  

So far, our object model has addressed the issue of discovering the structure of the 

objects to be shared. However, we also need a mechanism that puts together the object and 

the sharing mechanism such that we satisfy our extensibility requirements. Recall that 

systems based on a common communication protocol exhibit high extensibility at the 

expense of automation, whereas systems based of shared programming abstractions tend to 

offer the reverse combination of features—high automation and low extensibility. 

Consequently, a primary objective of our architectural model is to combine the higher level 

of abstraction flexibility of our pattern-based model with high extensibility without 

increasing the development effort. 

To motivate our approach, let us continue with the analysis of our Outline object. So far, 

based on two property specifications we can discover that the outline consists of a title (a 

string value) and a sequence (of Sections). However, to discover the complete hierarchical 

structure of the shared outline, we need to recursively analyze each of the Section objects 

until we reach leaf nodes of atomic types. For that purpose, the infrastructure needs to know 

how to obtain the current value of each type of property. However, hardwiring such 

information into the infrastructure implementation would largely defeat the benefits of our 

pattern-based object model—the infrastructure would be able to discover new types of 

properties based on new specifications but it would be unable to interpret them, e.g., get their 

current values. 

To resolve this problem, we introduce the notion of a property handler—a method 

(procedure) that implements a system-defined operation, such as reading the current value, 

for a particular property type. Since handlers are defined on a per-property basis, the natural 

place for their specification is the property definitions, where we add a handlers clause as in 

the following example: 

property 
  type = simple 
  //same definition as before 
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  … 
  handlers 
    read = colab.SimplePropertyReader 
    // more handlers may be defined 
end 

The interpretation of the handler declarations is as follows: the left-hand side gives the 

name an abstract operation on the property, whereas the right-hand side points to a Java class 

that implements a specific method known to the infrastructure. In this example, the read 

handler implements the method 

public Object[] getValue(Object target, Property property). 

The two arguments in the getValue methods permit the writing of generic, class-

independent property handlers. The target argument identifies the run-time object on which 

the operation is to be performed, while the property argument makes available to the 

programmer the results of the pattern matching performed by the introspection process. In 

particular, it provides references to all the method matches discovered. As an example, 

consider the following generic implementation of read handler for simple properties: 
public Object[] getValue(Object target, Property property) { 
     Method getMethod = property.getMethod("getter"); 
     Object[] value = new Object[1]; 
     value[0] = getMethod.invoke(target, null); 
     return value; 
} 

The property.getMethod("getter") call returns a reference to the a method matching 

the getter pattern (getter = <GetType> get<PropName>()) from the specification of a 

simple property (and satisfies all applicable constraints). The two arguments of the invoke 

call represent the instance on which the method should be invoked and the list of arguments 

(in this case none), respectively. Once the read operation is defined on all properties, we can 

apply the property analysis in a recursive manner to discover the entire hierarchical structure 

as shown below: 

ObjectWalk(object) 
  if object == null || object in visited list 
    return 
  <add object to visited list> 
  <process object> 
  for each property pi of object do 
    reader = lookup read handler for pi 
    if reader != null 
       values[] = reader.getValue(object,pi) 
       for each v in values  
         ObjectWalk(v) 
       end 
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    fi 
  end 
end 

In essence, the generic ObjectWalk procedure shown above uses the introspection 

analysis to decompose objects into properties and to delegate the problem of interpreting a 

property to a property-specific handler. Thus, property handlers provide a level of abstraction 

that isolates the infrastructure from the actual set of properties used in the application. Since 

the binding of an infrastructure service and the handlers is performed at run time through the 

property specifications, a handler can be reused for multiple objects. For example, the 

sequence read handler would work with both the Outline and the Section objects (the latter 

needs to maintain a sequence of subsections). The binding of the application objects and 

handlers is implicit via programming patterns. 

3.2.2 Property Handlers vs. Requirements 

To conclude our discussion on property handlers, let us examine how property handlers 

map to our stated requirements: 

• Extensibility: The use of handlers completely separates the shared object from the 

sharing functions by isolating collaboration-aware code into a separate object. 

Combined with the declarative binding mechanism, which permits run-time 

composition, we can reasonably claim that handlers support extensibility. 

• Automation:  Depending on the consistent use of programming patterns, property 

handlers are likely to significantly reduce the programming effort involved in sharing 

new abstractions. This is based on the fact that a property handler can be directly 

reused in sharing objects that are unrelated in the class hierarchy. In other words, 

application objects do not have to implement infrastructure-defined interfaces in order 

to be shareable. Consequently, the overall effort to implement sharing of a set of 

abstractions is likely to be smaller compared to an implementation based solely on 

interfaces. In the worst case, when no programming pattern is reused (which also 

implies that all objects are unrelated) the infrastructure must, in essence, provide a 

custom implementation by dealing with each individual abstraction separately. In this 

situation, a property-based implementation provide requires approximately the same 

effort as a standard object-based implementation that uses classes and interfaces.   
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• Code reuse: handlers support both compiled code reuse and incremental collaboration 

awareness. There are three different aspects of our support for reuse: application code 

reuse, infrastructure code reuse, and handler code reuse. 

Using handlers allows single-user application code to be completely reused 

because the functions related to sharing are implemented separately in the handler 

code. Furthermore, if new properties and corresponding handlers are needed, their 

incremental addition will be transparent to the infrastructure (as well the application) 

and will allow the reuse of infrastructure code. Finally, the handler code itself is also 

readily reusable—most patterns are a function of programming style and are 

independent of the application semantics. In other words, most patterns, such as the 

sequence pattern defined in the previous section, are so generic that are likely to be 

used in many applications. Hence, the property handlers written for such patterns 

(such as a read handler for sequence properties) can be reused in any application that 

uses the pattern at virtually no cost. 

3.3 Sharing Model 

The basic units of sharing in our model are object properties. We assume that the sharing 

of each individual property of the shared object structure can be controlled independently of 

the rest of the shared structure. Here, we present a sharing model that addresses our sharing 

flexibility requirements at the finest granularity—properties. In the following section, we 

complement this basic sharing model with a sharing specification model that satisfies our 

sharing specification requirements. We should note that the model we describe here is not 

sufficient to handle infrastructure services such as access control or (pessimistic) 

concurrency control. Such control mechanisms require that the infrastructure receive 

announcements of intended operations before they are performed. While we do not address 

the issue in this work, our event model design is compatible with future planned extension 

and we describe our ideas in this respect in Chapter 7. 

Recall that our benchmark with respect to sharing and specification flexibility is Suite. 

Therefore, our sharing model is based on a generalization of the Suite coupling model that 

was described in the previous chapter. One fundamental difference between our approach 

and Suite’s is that we do not assume full control over the editing of the shared object. 
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Therefore, we need an explicit event model that provides a generic communication protocol 

between the application and the infrastructure. Given that properties are our basic unit of 

sharing, it is natural to consider events that encode property updates as the basis of our 

communication model.   

3.3.1 Property Events 

This approach is similar to the event model adopted by JavaBeans where all property 

changes are communicated through instances of the system-defined PropertyChangedEvent 

class. It encodes the source object of the update, the name of the property affected, as well as 

the old and new values for the property. Since in JavaBeans there is only one operation 

modifying the property values–write–this single class is sufficient to meet all communication 

needs. 

In our case, we need a more general approach and, therefore, our event model assumes 

that property events encode corresponding operations performed on a particular property, i.e., 

an invocation on one the property’s methods. Thus, an update event is a four-tuple, which 

contains: 

• A global identifier of the object on which the operation is performed. 

• The name of the property affected. 

• The name of the pattern method invoked as defined in the property specification (e.g., 

"insert", not a reference to the insertElementAt method) 

• A list of arguments (perhaps empty). 

For example, inserting a new section into the outline would look as follows: 
<”Outline”, “section”, “insert”, {2, section}>. 

Given this information, and our property-based introspection analysis of the object, it is 

relatively straightforward to replicate the encoded operation at a remote site (the details of 

this process are discussed in the next chapter). While this mechanism may resemble the static 

broadcast methods of Colab, it is much more flexible because, depending on the 

collaboration policies in place, the sharing infrastructure may dynamically choose to delay, 

transform, merge, or discard property operations to achieve the desired sharing mode.  

As an added advantage, this mechanism facilitates the adaptation of application-specific 

event models for the purposes of object sharing. Usually, event processing in single-user 
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applications is asymmetric—an object issuing notifications of a particular type is not 

designed to receive and process such notifications from peer objects. For example, a standard 

TextField object issues TextEvent notifications but it is not designed to react to such 

events. Thus, there are two inherently application-specific operations that the infrastructure 

must perform to adapt a single user event model. First, upon acquiring an event, it must 

transform it so that it can be transmitted and replicated remotely, and second, it must 

transform the event into a suitable method invocation at the remote site. By choosing the 

above-described format for property events, we effective merge the two transformations into 

a single one that is performed at the original site by an event adapter. Once transmitted, the 

property event can be applied at the remote replica without knowledge of the adapted event 

model. Hence, the adaptation of an application event model is reduced to writing a single 

adapter that maps application events to property events. 

3.3.2 Sharing Parameters  

In this section, we discuss the rationale and meaning of the sharing parameters, while the 

implementation details of how these are put together in practice are discussed in Chapter 4.  

We should note that the model we describe here is designed to address the issue of flexible 

object sharing by managing the updates notified by multiple object replicas. However, it does 

not address issues related to controlling access to the object, such as (pessimistic) 

concurrency control and access control (possibly preventing updates in the first place). These 

are the subject of our future work and do require an extension of this model that allows the 

infrastructure to control updates before they have occurred.  

We distinguish among three phases in the handling of property events: acquisition, 

processing, and installation (Figure 3.3), and each of these phases is controlled by its own 

parameters. In the acquisition phase, a description of the user update is obtained by the 

infrastructure. In the processing phase, the infrastructure buffers, transforms, and 

communicates the update to the remote parties based on the current sharing policy. Finally, in 

the installation phase, the update is merged with the current state of the remote object to 

which it is delivered. 
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Figure 3.3 Phases of update handling 

We associate with each shared entity four different parameters: Transmission, 

Correctness, Acquisition, and Installation. The first two we inherit from the Suite model and 

control the processing phase. The last two parameters form our extension to the model and 

control the acquisition and installation phases of the event handling, respectively. We refer to 

the combination of sharing parameters regarding a shared entity as a collaboration (or 

sharing) policy. 

Like Suite, the processing parameters have two instances—one placing restrictions on 

outgoing events and one on incoming events specified by the sending and receiving user, 

respectively. Like Suite, we expect these to be different so we also have a Suite-like 

reconciliation mechanism based on conservative matching. By conservative we mean that of 

the two versions of each processing parameter (outgoing and incoming) we pick the one that 

has a higher value and, thus, come up with an effective collaboration policy. Realizing that an 

outgoing policy that is more liberal (sends out more events) than its incoming counterpart 

would lead to the communication of events that will be held at the receiver site for delivery, 

we perform the matching at the sending site to avoid sending such events in the first place. 

Hence, the receiving site does not perform filtering of incoming events but proceeds directly 

to install them. Performing the policy matching at the sender, as Suite does, implies that 

policy changes must be sent to the corresponding user(s) every time a user modifies the 

incoming policy. This, however, is a good trade off because policy updates are much less 

frequent than object updates. 

Let us now describe the values and the meaning of each parameter in our model. 
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• Transmission: This parameter has the same purpose and semantics as Suite’s 

transmission parameter. It cont rols the transmission of updates based on the 

communication operation performed on the shared entity and has four possible values: 

Increment, Complete, Scheduled, and Transmit. As in Suite, each individual update is an 

Increment operation. A Complete operation is executed whenever the user has indicated 

that he is finished editing the value, e.g., by hitting <tab> or <return>. (Note that, unlike 

Suite, we have no control over the user interface. Therefore, for application-specific 

operations such as Complete we rely on the programmer to issue a synchronization event, 

which is discussed in the next section.) The concrete mechanism by which this is 

accomplished is described in Chapter 4. A Scheduled operation is triggered by timer 

expiration and has two parameters—execution time and a period. The semantics here is 

that the operation is first triggered at the specified (wall clock) time and it is then 

triggered periodically. Thus, this is a combination of Suite’s TPeriod and TTime time-

based operations. The Transmit operation is executed whenever the user explicitly 

requests it by pressing a <transmit> button provided by the infrastructure. 

• Correctness: This parameter also has the same purpose and semantics as in Suite. Its 

possible values (in increasing order) are Raw, Parsed, Validated, and Committed. By 

default, any updated value is Raw, unless it has undergone a successful syntactic check 

after which it is elevated to Parsed. If the value has also passed a check for semantic 

correctness, it becomes Validated. As with Complete operations, we rely on the 

application to issue appropriate synchronization events to tag updates as Parsed or 

Validated. As before, Committed values are explicitly designated by the user by 

executing a commit command, i.e., selecting an infrastructure-provided <commit> menu 

item.  

• Acquisition:  This parameter controls the method used to obtain the replica update 

whenever the infrastructure is notified that one is (potentially) available. By update we 

mean any change in the observable state of the replica. The update notification usually 

comes from user actions but it can also be triggered by a timer mechanism. Currently, we 

distinguish among four different acquisition methods: Read, Log, Effective Log, and Diff. 

To illustrate the differences among them let us consider the simple scenario of a user 
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editing the title of our outline through a text field and see how the different combinations 

of Transmit and Acquisition parameters lead to different results. 

Assume that a user has just typed a character and the infrastructure got notified, 

say, by automatically capturing an event from the window. How should the 

infrastructure record the change? In Java, for example, the TextEvent object does not 

provide the details of the operation but merely informs that one has occurred. 

Therefore, one option is to record the end result of the user action by obtaining the 

current value of the field. In other words, whenever it receives a TextEvent 

notification, the infrastructure uses a read handler to obtain the current value of the 

text field and subsequently installs it remotely using a corresponding write handler. 

We specify this option through by setting the acquisition parameter to Read.  

While this approach is attractively simple, it does not work very well when the 

field is concurrently edited by multiple users and we would like to merge their work. 

For instance, one user inserts a character in the beginning while another adds another 

one at the end of the title. In all likelihood, users would like to see their changes 

merged rather than giving preference of one over the other. More generally, knowing 

the exact fine-grained operations performed greatly increases the chances of the 

infrastructure being able to automatically detect (syntactically) non-conflicting 

updates and merge them according to user expectations. Therefore, the programmer 

might develop a text field object that automatically notifies the exact insert/delete 

operation performed by the user. (Alternatively, the insert/delete operation could be 

derived by a listening object that keeps track of previous state.) 

By all means, once an incremental update is available, the logical choice for the 

acquisition parameter is Log- ing. It tells the system to record and later on (depending 

on the current transmission/correctness parameters) replay the event remotely. Thus, 

the main conceptual difference between using Read and Log options is that the former 

specifies the transfer of the entire state of an entity (property, object, application), 

whereas the latter installs only incremental changes. The latecomer accommodation 

problem discussed in Section 3.5.2 below provides an example of the differences at 

the application level.  
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Over time, however, the log of operations can become rather long if, say, one of 

the users is off- line for a prolonged period of time. Therefore, log-based approaches, 

such as Chung’s [4], provide mechanisms for compressing the log by removing 

operations whose effects will be undone by subsequent operations. We refer to this 

method as Effective Log. In the following chapter we describe a generic scheme that 

performs effective logging for property operations. Although it is not as 

comprehensive as Chung’s scheme, it requires only minimal specification effort on 

part of the developer. Our model also allows for an external logging module to be 

plugged in. For that purpose, the developer must specify a log property handler for 

each of the shared object properties. If the current acquisition method is Log and the 

infrastructure finds that a log handler is specified, it simply delivers the event to the 

handler. If the goal is to employ Chung’s logging service, the property specification 

should point to an object that can translate property events into the generic model 

used by Chung and deliver them to remote users as appropriate. In addition to remote 

delivery, the external service logging must also take responsibility of translating back 

into property events so that updates can be applied correctly. 

The log-based approach assumes that it can obtain updates at a fine granularity 

from the application. However, in many cases the application does not provide a 

suitable notification mechanism to tap into. In that situation, using Diff-ing may 

provide a good solution. Diff-ing refers to the process of automatically deriving the 

fine-grained operations from two snapshots of the object’s state. While the idea of 

diff- ing is not new, implementing object-based diff- ing presents a challenge and we 

are unaware of any work that presents a generic solution. However, our pattern-based 

approach has enabled us to come up with a new solution that is generic enough to 

make it a plausible choice. We defer the detailed description of this solution to 

Section 3.3.5.   

• Installation: Once an update is acquired and processed, it needs to be installed on the 

remote object. We distinguish among three different ways in which this can be 

achieved: Replay, Real-time Replay, and Merge. The Replay option is the simplest 

choice—the operation is replayed on the remote object. However, depending on the 

intent of the collaborators, this may not be the best option. Suppose we have a late-
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coming participant who wants to replay the sequence of changes made prior to his 

joining of the collaboration. If the operations are simply replayed one after the other, 

the user will likely have a “fast forward” experience in which minutes of 

collaboration are compressed into seconds. Due to network jitter, similar problems 

can arise on a smaller scale [Kum, Gutwin] and disrupt real- time collaboration, e.g., a 

slow, smooth mouse gesture can be perceived as random jumping of the mouse 

pointer because numerous small movements are delivered in a short burst and, 

consequently, replayed so fast that they are imperceptible by the user. Also, to 

maintain interactivity, end-to-end delay must also be managed to avoid, for example, 

a situation in which a mouse gesture noticeably lags the voice narration and creates 

confusion. We refer to this time-controlled replay process as Real-time Replay.  

The Merge installation option refers to the use of a specialized merge procedure 

that integrates the update with the current version of the object. In other words,  this is 

necessary when the simple replay of the updates (a trivial form of merging) is no 

longer sufficient. This type of installation is commonly used in asynchronous sharing 

when two, or more, replicas have diverged and conflicts only become apparent during 

the installation phase. 

3.3.3 Synchronization Events 

Our sharing model also defines synchronization events, which are meta-events that carry 

sharing information about the property events in the system and support the sharing 

parameters described above. To motivate the need for such events let us consider the 

following sharing scenario: users A and B are editing a together a form, which consists of a 

number of text fields. They want the system to log their changes and communicate them only 

when a change is complete that is, the user has moved from one text field to the next. To 

implement this, the infrastructure must buffer every character insertion and deletion in a 

queue because these are incremental changes. However, it also needs to know when all of 

these changes become a complete change and flush the queue. The end-of-editing event is 

inherently application-specific: in our example, leaving the field would signal an end to 

editing, however, in a drawing editor, the moving of a figure may be considered complete 

when the user stops dragging it. Thus, the infrastructure needs to be informed of such events 
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but also must not be bound to specific application events. To solve this problem we define 

standard synchronization events that allow such information to be passed along to the 

infrastructure. 

A synchronization event redefines the values of the transmission and correctness 

attributes of the property operations that are still in the buffer. Specifically, such an event is a 

four-tuple consisting of:  

• A global identifier of the object on which the operation(s) are performed;  

• The name of the property affected. This parameter could be null, in which case all 

properties of the object are implied;  

• A new value for the transmission parameter (Increment, Complete, Scheduled, or 

Transmit); 

• A new value for the correctness parameter (Raw, Parsed, Validated, or Committed). 

For example,  

<”Outline”, “section”, “Complete”, “Raw”>. 

specifies that all property operations on the section property of the object named 

“Outline” should be relabeled as Complete and Raw unless they have higher values already. 

Once relabeled, all affected events must be reevaluated with respect to the current sharing 

policy and sent out, if necessary. 

Our implementation uses synchronization events to implement the explicit transmit and 

commit commands, that is, whenever the user issues a transmit/commit command, a 

corresponding synchronization event is issued. Similarly, timer-initiated communication is 

also implemented by generating appropriate synchronization events. This scheme also allows 

for system-defined communication operations—transmit/commit—to be triggered 

automatically as a side effect of specific user actions, such as releasing a shape object in a 

drawing editor.   

By default, synchronization events affecting an object are also implicitly applied to all 

dependent objects in the structural hierarchy. Thus, a commit event on a section would 

commit all changes in that section, while a commit event on the root outline object commits 

all changes to the whole outline. 
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3.3.4 N-user Sharing 

So far, we have only considered the simplest case of sharing, which involves sharing of 

two peer objects. In general, however, we expect that more than two users may participate 

and may have different preferences in their collaboration. To accommodate this scenario, we 

extend our model to the N-user case, by representing it as a set of pair wise collaborations. 

Since every user could potentially have a different sharing policy for each of his 

collaborators, logically, we need to maintain separate state information regarding the sharing 

with each remote user. For that purpose, for each user (or group of users), we maintain a 

separate outgoing queue, which is governed by the current effective sharing policy with the 

respective user.  

Figure 3.4 depicts the configuration for three users—at each replica there are two 

outgoing queues, which enables the infrastructure to support different sharing modes between 

each pair of users. For example, user A may share incremental updates with user B but only 

completed updates with user C. Thus, as A edits the outline, its ‘B’outgoing queue stays 

empty because all updates are sent out immediately. At the same time, the ‘C’ outgoing 

queue would buffer incremental updates until it receives a proper synchronization event.  

Outline A Outline B Outline C

B C A C A B

User A User B User C

Outline A Outline B Outline C

B C A C A B

User A User B User C
 

Figure 3.4 N-user Sharing Example 

Thus, each property and synchronization event is (logically) replicated and filed in all 

outgoing queues and each copy is subjected to the rules of the effective sharing policy for 

that queue. Also, if diff- ing is used, as shadow reference copy of the shared object reflecting 

the state of the object at the last diff invocation with respect to each user is maintained. Thus, 

the model allows the sharing parameters for each pair of users to be potentially different.  
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Like Suite, we also provide a mechanism through which users can ensure that they have 

identical policies—e.g., user B wants to have the same policies as user A. To implement this, 

we reuse our policy notification mechanism. Recall that every time a policy changes, a 

corresponding notification must be sent to all affected parties and the policy matching must 

be performed again. Thus, to ensure identical policies, instead of performing a match, we 

replace the policy with that of the reference user. In the above example, every time user B 

receives a policy notification from A, its current policy is directly replaced with the received 

policy. 

3.3.5 Object Diff-ing 

Let us now return to the generic object diff- ing service that can generate events on behalf 

of applications that do not implement a suitable notification mechanism. As a driving 

problem, consider the semantic sharing of the outline object. Since in the single-user case the 

application does not need to issue events in response to changes to its state, there may be no 

suitable notification mechanism that the developer can adapt for the multi-user case. 

However, performing a diff operation on a regular basis would provide most of the benefits 

of fine-grained shared without incurring the cost of modifying the original application. 

The basic idea of object diff- ing is to look at consecutive snapshots of the state of an 

object and to deduce the sequence of operations that have been applied in the interim period. 

We should first acknowledge that this is not a problem that can be solved unambiguously. In 

fact, for every starting and ending state there are an infinite number of possible operations 

that would be consistent with the starting and ending state. However, in most situations, an 

educated guess will be a good enough approximation of the real operations that took place. 

For example, if the starting value of the outline title was ’Tittle’ and the end value was 

‘Title’, it is a safe bet that a ‘t’ has been deleted. Whether the deletion occurred at position 2 

or 3 is, in all likelihood, irrelevant to the users. In most situations, the chance for correct 

deduction increase dramatically as the time between successive diffs decreases. Alternatively, 

we could trigger a diff whenever a change is known or is likely to have occurred (e.g., end of 

mouse dragging in a drawing area). While the latter option is largely application-specific, its 

implementation is trivial because it is reduced to issuing a synchronization event. 
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The basic structure of the diff- ing procedure is very similar to the ObjectWalk procedure 

discussed earlier in the chapter. In this case, however, two object structures are traversed in 

parallel in search of differences. The ObjectDiffer, which is the service interface, uses 

property specifications to decompose objects into properties and then, for each property, it 

looks up and invokes the corresponding property diff handler to obtain the difference. The 

results are aggregated and returned to the caller. As before, the lookup on line 6 refers to a 

lookup in the handlers clause of the relevant property specification. The handler is 

implicitly instantiated, if necessary, and an object reference is returned. 

1 ObjectDiffer( oldObject, newObject) 
2   if oldObject == null 
3     return newObject 
4   result = null 
5   for each property pi of oldObject do 
6     differ = lookup diff handler di for pi 
7     result = result + di(oldObject, newObject, pi) 
8   end 
9   return result 
10 end 

The diff handlers, for their part, follow a similar hierarchical approach, shown below. A 

diff handler takes as arguments two object instances representing the old and the new state of 

the object and a property with respect to which to compare the objects. The property differ 

checks whether values are primitive to the procedure and, if so, directly computes their 

difference. In all other cases, it recursively refers the diff- ing of the retrieved property values 

to the global diff procedure for further processing. This also implies that the global differ 

must keep track of visited objects to avoid cycles in the object structure. 
1 DiffHandler(oldObject, newObject, property) 
2   reader = lookup read handler for property 
3   oldValue = reader.getValue(oldObject, property) 
4   newValue = reader.getValue(newObject, property) 
5   if oldValue and newValue are primitive 
6     result = compute diff from oldValue and newValu 
7     return result 
8   else 
9     return ObjectDiffer(oldValue, newValue) 
10 end 

 
Thus, to extend the set of properties that can be handled by the infrastructure, it is 

sufficient to add property-specific differs and include them in the property specifications. 

More importantly, we can use the same property-based approach to implement other services 

in a modular fashion. In particular, the implementation of two other generic services—
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equality testing and deep cloning—can be based on the exact same approach. The need for 

these services was originally motivated by our work on the object-sharing infrastructure, 

however, our further research has shown these to be very useful in applications not related to 

collaboration, such as our ongoing work on object testing described in Chapters 5 and 7.  

Equality testing refers to the process of determining whether two object structures are 

equivalent and is implicitly used by property handlers in computing the difference (line 6 of 

the DiffHandler code above). In Java, all objects have an equals method whose 

implementation determines object equivalence. However, in practice, this method is rarely 

implemented by programmer-defined classes and the default implementation, which 

compares whether the two object references point to the same physical object is not helpful 

because we need to compare independent copies of the object structure. Furthermore, even if 

the equals method is overridden, the infrastructure cannot determine if the provided 

implementation is useful for diff- ing purposes (object equality may be defined in multiple 

ways depending on application needs). Therefore, it is sensible for the infrastructure to have 

an implementation it can rely on.  

Deep cloning refers to the process of obtaining an independent copy of the entire object 

structure. Deep cloning is needed to create an independent copy of the current state of the 

object after a diff invocation. By independent we mean that changes to one of the copies does 

not affect the other. The copy (initially null) serves as a basis for comparison on the next diff 

invocation. In Java, object cloning is a first-class concept, and eve ry object tagged as 

Cloneable gets a default implementation of the service. However, this implementation is a 

shallow version of the cloning, which does not provide independence copies. For example, 

cloning the standard Vector class produces a copy whose elements are references to the 

same objects as the original one. In short, as in the case of equality testing, the infrastructure 

has no means of determining whether a shared object implements cloning that is useful for 

diff-ing purposes. 

As already stated, property-based implementation of equality testing and deep cloning 

can provide reliable basis for implementing diff-ing. Since the implementations follow the 

exact same template as object diff-ing, we omit its detailed description to avoid repetition. 
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3.3.6 Application Layer Model 

The described property-based sharing model provides for fine-grained sharing services, 

however, it also raises some correctness issues. Suppose that the outline title is edited 

through a text field and both the text field and the outline object provide appropriate 

notifications to the infrastructure. An implementation of the sharing service, which does not 

take into account the dependency between the text field and the outline would produce 

incorrect results. Such a scenario is shown on Figure 3.5: as a result of user A’s action, a new 

character is inserted into the title.  

Event(TextField, insert(‘a’, 2))

Title

Title.insert(‘a’, 2)

Event(TextField, insert(‘a’, 2))TextField

‘a’

Infrastructure

Title
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Event(Title, insert(‘a’, 2))Event(Title, insert(‘a’, 2))

Event(TextField, insert(‘a’, 2))
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Figure 3.5 Example of multiple notification of causally related events 

This results in a method invocation on the local Outline object and a notification event 

received by the infrastructure. If the infrastructure also captures and transmits the notification 

of the Outline object, this would eventually result in the peer Outline object receiving the 

original event twice, which would lead to a duplicate character insertion. 

The above example is symptomatic of a more general problem that we need to address—

multiple notifications of causally related events. For that purpose, we need a conceptual 

model that allows us to identify such events and prevent multiple notifications. Dewan’s 

zipper model [7] provides a generic framework to reason about the issue. It is a 

generalization of the concrete layered model we used in our Related Work chapter.  
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Figure 3.6 Zipper model of multi-user applications 

According to the model, a single-user application consists of a number of layers with 

different levels of abstraction (Figure 3.6a). At the top is the most abstract layer, which 

maintains the abstract state of the application. Each subsequent layer adds more syntactic 

details and brings the representation closer to the one seen by the user. The user interacts 

with the lowest layer and the relevant updates go up through the layers until they reach the 

top layer. In the other direction, changes to the abstract state are communicated from layer to 

layer and are gradually transformed into the representation seen by the user.  

Given this application structure, the zipper model represents collaborative applications as 

two (or more) application instances whose state is shared by sharing the state of peer layers 

(Figure 3.6b). Returning to our multiple notification problem, we notice that causally related 

notifications occur as a result of user actions being translated from a less abstract to a more 

abstract representation, with each successive translation triggering a separate notification.  

The most common solution among existing infrastructures is to provide sharing at one fixed 

layer (e.g., shared window systems provide sharing at the window layer). The shared layer 

processes events received from remote replicas the same way it processes local events and 

propagates the results to upper (more abstract) layers, thereby achieving the sharing of those 

layers as well. This approach automatically eliminates the correctness problem for the 

application at the expense of sharing flexibility. 
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To increase sharing flexibility, Suite provides sharing at two levels (model and view) that 

can be dynamically switched at run-time. This is possible because the system supplies the 

user interface and knows the precise application layering. However, in our model, we do not 

have control over the user interface and, hence, we need an alternative mechanism to derive 

the application layering. Current programming languages do not provide any suitable 

mechanism to specify such architectural features so we introduce an XML-based layer 

description language for that purpose. An application layering definition consists of two 

parts—layer mapping and layer dependencies. Logically, the layer mapping is a set of tuples 

of the following form: 
<class, property, layer> 

The interpretation is straightforward: the specified property of all object instances of the 

given class belong to the given layer. Since giving a definition for each individual property 

would be prohibitively costly, we support two rules for supplying default layer assignments. 

First, the property could be null, in which case all properties in the class are implied. 

Second, if no explicit definition is found for a particular class, we recursively lookup the 

definitions for the superclasses until an appropriate one is found. Following the class-

inheritance hierarchy can be very efficient: for example, all UI widgets (windows, icons, 

menus, etc.) in Java descent from the java.awt.Component class. Thus, with a one- line 

definition—<java.awt.Component,null,”view”> —we   can specify that all widgets 

belong to the view layer. 

Layer dependencies describe is-an-editor-of relationships between any two layers, e.g., 

view à model. To illustrate application- layering descriptions, let us consider the example 

layer decomposition of our outline application shown on Figure 3.7. 
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class Outline {
String getTitle();
void setTitle(String title);

void  insertSection(int i, Section s);
void  removeSection(int i);
Section getSection(int i);
void  setSection(int i, Section s);
int     getSectionCount();

}

Window

View Appearance

Model
class Outline {
String getTitle();
void setTitle(String title);

void  insertSection(int i, Section s);
void  removeSection(int i);
Section getSection(int i);
void  setSection(int i, Section s);
int     getSectionCount();

}

Window

View Appearance

Model

 

Figure 3.7 Layer decomposition for outline application 

At the lowest level is the window layer, which consists of the single application window 

through which all objects are edited. The view layer consists of the window’s menu and a 

JTree object through which the outline object is edited. The appearance layer consists of the 

elements of the application window that do not affect the state of the outline, such as the 

scrollbar. In this example, a user action may trigger one of two sequences of events. If the 

user performs an action that modifies the outline, the process triggers three causally related 

notifications at the window, view, and model layers, respectively. Alternatively, if a user 
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action (e.g., dragging the scrollbar) concerns only the appearance layer, it triggers a 

sequence of two causally related notifications—at the window and at the appearance layers.  

Thus, if window sharing is specified, all notifications from other layers must be 

suppressed. If view sharing is specified, then model and window notifications must be 

suppressed. Similarly, if model sharing is specified, window/view events are suppressed. 

Since the appearance layer is independent of both the model and view layers, its sharing can 

be turned on/off independently of the model and the view. 

In addition to correctness, this generic layer model also gives us a high- level mechanism 

for sharing specification by dynamically changing the shared layer. In other words, it enables 

us to dynamically “open” and “close” the zipper. Opening is in fact a trivial task because we 

move from tighter sharing modes to more relaxed ones and all we really need to do is to 

switch from sharing window events to sharing model/appearance events. However, the 

reverse process is non-trivial in the general case. To illustrate this, consider the following 

scenario: Initially, users are using asynchronous sharing of the model, which means that they 

may have completely different versions of the shared object. If they want to switch to view 

sharing, the infrastructure must first bring the outline model versions into a consistent state. 

To switch to window sharing, both the view and the appearance must be consistent 

beforehand.  

In general, to switch the sharing from a higher (more abstract) layer Lk to a lower layer 

Lm, the infrastructure must ensure that all layers that depend on Lm are brought into 

consistency first. Note that the above transition process must be followed consistently step by 

step starting with layer Lk as described in the above example. We could not, for example, 

take the user interface of replica A of the outline, clone it and attach it to replica B. 

Conceptually, the problem is that the connections between the semantic object and its user 

interface are inherently application-specific and, hence, recreating them cannot be done 

without input from the programmer. In practical terms, cloning user interface objects in Java, 

for example, does not yield any usable results because part of the internal state of the 

standard user interface objects is related to the native implementation of the window system.  

From the above discussion we conclude that, a layer description mechanism, such as 

ours, is necessary in order to implement dynamic switching of the shared layer. 
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3.4 Sharing Specification Model 

Our basic approach of using properties as the fundamental unit of sharing implies that all 

collaboration policy specifications will have to be expressed at the property level. Given that 

the number of properties can easily run into the hundreds even for applications of modest 

size, the specification effort would be too costly to be practical. Therefore, we employ an 

inheritance-based specification model, similar to that of Suite, layer-based macro commands, 

and policy naming to considerably lower the cost of specification. As the following 

discussion shows, the main conceptual difference between our inheritance model and that of 

Suite is in the way we define the inheritance hierarchies and, in particular, the structural 

hierarchy of shared objects. In Suite, it is based on an interpretation of the concrete 

implementation of the shared objects, whereas in ours it is based on the observable logical 

dependencies among these objects. Once the hierarchies are established, however, we follow 

the same rules to find suitable sharing policies as Suite does.  

3.4.1 Inheritance-Based Specification 

Like in Suite, the basic idea behind inheritance model is to employ the existing, 

programmer-defined hierarchies among shared objects to provide default sharing parameters 

at various levels of granularity. The basic idea is that parameters for objects higher in the 

hierarchy provide default values for those that are below. 

In our model, we utilize two kinds of hierarchies: structure-based and type-based. 

Structure-based (or structural) hierarchies arise as a result of Has-A parent-child 

dependencies within application structures. In our case, we use the set of observable object 

properties to determine such relationships. Thus, the outline Has-A title property and Has-A 

section property. In turn, the title Has-A value and the section Has-A set of values and the 

analysis is carried out recursively on the corresponding property values. Thus, the title 

property, having a string value, defines a single child, whereas the section property 

potentially defines multiple children—one for each section. In practical terms, to find a 

default parameter value, we use the inverse, Is-Part-Of relationship, as we need to traverse 

the hierarchy bottom-up. Since objects are dynamically created and destroyed, their 

corresponding Is-Part-Of relationships also change dynamically. Unlike other infrastructures, 

such as JCE and Suite, we do not use object names to store structural hierarchical 
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information (e.g., Section 1.2 may have an identifier such as ‘Outline.Section[1].Section[2]’). 

Instead, we generate object names from a flat namespace and maintain a table of structural 

dependencies using information from property events (implementation details are given in 

Section 4.2.2). This approach was chosen to avoid the need of having to rename (potentially 

large parts) of the shared structures whenever structural changes are introduced and to avoid 

parsing the names to locate a target object. Our experience shows that the associated 

overhead does not present a performance issue. 

Type-based hierarchies arise as a result of IS-A child-parent dependencies among 

application objects. For example, a section instance IS-A Section, which IS-A Object. 

Since such relationships are defined at compile time and remain static, there is no need for 

our infrastructure to maintain any additional information.  

As already pointed out in our discussion on Suite, inheriting parameters along the 

structural and type-based hierarchies is appropriate in different scenarios that, generally, 

compliment each other. However, they also create ambiguity, e.g., if no parameter is given 

for Section 1.1 should we look up to the structural parent (the section property of the outline 

object) or the type-based parent (the Section class) for guidance. We associate an optional 

Suite- like inheritance directive parameter, which points to the desired direction of resolution 

and has the following values:  

• structure-first: traverse up the structural hierarchy; upon failure, traverse the type-

based one; 

• structure-only:  traverse up the structural hierarchy only. 

• type-first: traverse up the type-based hierarchy, upon failure, traverse the type-based 

one; 

• structure-only:  traverse up the type-based hierarchy only. 

By default, we use the structure-first option. The rationale here is that the structural 

hierarchy is closer to the user’s perception of the hierarchical relationships within the shared 

object (we also display it in a separate window). The type-based hierarchy implies some 

knowledge of the implementation classes and is more suitable for specification by a 

programmer/administrator and as a backup to user-specified parameters. 
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3.4.2 Policy Naming 

Our model provides for sharing policies to be given names and stored persistently, which 

allows, for example, a more experienced person to define a number of appropriately named 

policies that can be used by less experienced ones. In other words, this allows users to reuse 

policies they have found useful in previous collaborations. It also facilitates their social 

coordination when using out-of-band communication, such as a live audio connection or a 

chat session, by providing a common name to refer to specific policies. 

Also, the infrastructure uses naming to locate policies of last resort: if the hierarchical 

lookup described above fails, the infrastructure looks up a “default” policy, which comes 

with the infrastructure and must always be present. In all cases, the user has the last say and 

can either select a new named policy or bring up a policy editor and fine-tune the policy to 

his liking. 

3.4.3 Macro Command Specifications  

Another mechanism we provide to simplify the specification process are layer macro 

commands to manipulate the sharing parameters of entire application layers. Unlike the 

inheritance approach, the automation is not based on providing default values but on setting 

concrete values for each object (or property) of an entire application layer. The motivation 

behind macros is simple—if the users are satisfied with the basic layer sharing scenarios, 

e.g., commit-based model sharing, they should be able to directly specify it. Depending on 

the application design, however, this may not be readily achievable under the inheritance 

schemes.  

One problem comes from the fact that application object structures often follow more 

complicated patterns that the clear parent-child relationships we assumed so far. For 

example, a model object and its corresponding view object often keep observable references 

to each other. Thus, depending on the starting point of our structural analysis, we may 

conclude either one of the two objects to be the structural parent of the other. Given that 

object structures change at run time, shifting structural inheritance may lead to user 

confusion, or undesirable results. The type-based approach, in addition to being more 

difficult for end-users, may also be unsuitable. Application objects sometimes mix functions 

typical of different layers by inheriting from a class that belongs to a different layer. Thus, 
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objects belonging to the same layer would not have a suitable common predecessor that 

would allow an easy type-based specification of layer sharing. 

In contrast, layer macros offer a simple mechanism that is easy to understand—the user 

points to a layer in the layer tree and selects a sharing policy. Returning to our problem of 

specifying commit-based sharing for model objects, the user can simply bring up the layer 

tree, point to the model layer and select (or create) a commit-based policy. Based on the layer 

descriptions, the infrastructure automatically adjusts the policy for objects/properties in the 

layer. The macro operation, while potentially expensive for large applications, should be a 

relatively infrequent event and is unlikely to adversely affect the collaboration.  

An alternative approach to implement layer-based specification is, again, through 

inheritance by employing the Is-Part-Of relationship between objects and layers to define the 

hierarchy. However, we have made the conscious choice not to go along this path because we 

believe that the process of figuring out the exact sequence in which the three hierarchies 

(structural, type, and layer-based) would be traversed and what would the outcome be 

introduces too much complexity and confusion for the user. 

3.5 Summary 

In this chapter, we described the conceptual basis upon which our infrastructure 

implementation is built. We introduced a shared abstraction model based on programming 

patterns that enables the infrastructure to automatically derive the logical structure of a larger 

class of abstractions than currently possible. We showed that, as a means of describing 

abstractions, programming interfaces and JavaBeans are special cases of the use of patterns. 

We introduced a new architectural model based on property handlers that separates 

application-specific and collaboration concerns and, thereby, facilitates extensibility, 

automation and code reuse. 

We also presented a new sharing model that permits flexible parameter-controlled object 

sharing based on properties. The set of supported parameters provides control at variable 

levels of granularity starting from the entire shared application artifact down to the individual 

property. Our sharing parameters a proper extension of the original Suite coupling parameters 

and allow a wider spectrum of sharing modes supported by current infrastructures to be 

modeled. Furthermore, we have introduced object diff- ing as generic service that allows fine-
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grained asynchronous object sharing to be performed while reusing in full the single-user 

object implementation. We have defined a generic event protocol consisting of property and 

synchronization events that allows collaboration features to be gradually introduced into the 

application and permits application-specific events to be used as triggers for collaboration-

related operations. Finally, we developed a layer specification mechanism that allows correct 

object sharing to be implemented at different layers of the application while allowing a 

dynamic switch of the shared layer.   

Our specification model adapts the original Suite hierarchical model to allow 

collaboration specification based on structural inheritance and type-based inheritance for 

object-based programs. We have employed object properties as a means of defining and 

dynamically maintaining structural dependencies and have introduced macro commands as 

an easy way to dynamically control sharing based on application layers. 

We conclude our discussion by outlining how our sharing model can handle different 

sharing modes supported by reference infrastructures. 

3.5.1 Window Sharing 

The implementation of window sharing is rather straightforward—we model it as 

synchronous sharing of the window event queue. The queue is modeled as a simplified 

version of a sequence property defined by the postEvent/peekEvent  pair of pattern methods. 

The input events generated by the active user are captured by a specialized adapter object, 

translated into property events, and eventually replicated at all other participants. To achieve 

synchronous sharing, we choose Log for the acquisition parameter, <Raw,Increment> for 

both the outgoing and incoming processing parameters, and Playback for the installation. 

Thus, as soon as a UI event is captured, it is immediately transmitted to, and posted in the 

window event queues of all participants. As a side effect of the posting, the window system 

receives and processes a local representation of the remote event, and triggers normal 

application processing. In this special case, there is no need to define any property handlers 

because the actual processing of events is handled by the UI toolkit. 

3.5.2 Latecomer Accommodation 

In actual collaboration, not all users may participate from the very beginning of the 

session. Hence the need for a mechanism that brings latecomers up to speed. Generally, there 
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are two approaches—log replay and current state transfer—and our framework readily 

accommodates both. To achieve log replay, the users must specify Log for the acquisition 

parameter, playback for the installation parameter and a communication parameter that is 

higher than Raw, e.g., Transmit. Thus, whenever the new user joins, a simple transmit 

command would result in the log being sent to the latecomer. Alternatively, users could use a 

state transfer by specifying Read for the acquisition, instead of Log. Thus, upon a transmit 

command, the infrastructure will read the current state and send it to the newcomer. We also 

offer a third option, which is to use Diff instead of Read as an acquisition parameter. Thus, 

assuming that both the sender and the newcomer started with the same version of the shared 

object, e.g., loaded from a file, the Diff option will generate a history of updates between the 

base and the current version.   

3.5.3 Suite 

Since we used Suite’s sharing model as a basis for our own, we can naturally 

accommodate its different sharing modes by fixing the acquisition and installation 

parameters to Read and Replay, respectively. To simulate its model based on active and 

interaction entities, we use an additional, master copy of the shared object, which is not 

associated with any user and we set its sharing policy to Committed. Thus, the simulated 

active entity receives only committed updates, whereas interaction entities, edited by 

different users, can exchange intermediate results (as in Suite, committed updates are forced 

on all users). 

Window
(not shared by Suite)

Model Format Selection Scrollbar…

Window
(not shared by Suite)

Model Format Selection Scrollbar…

 

Figure 3.8 Suite's Layer Model 

To model Suite’s layering model, we map the model object, as well as the separately 

controllable UI coupling attributes—selection, format, window size/position, etc.—to 

separate layers with no dependencies among them (Figure 3.8). In other words, in Suite’s 
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case there is no issue with correctness because each user action affects exactly one layer of 

the application. While this approach works for the system-defined user interface, it does not 

generalize to the (typical) case of custom-built UI, such as the one in our Outline application. 

We should also note that Suite’s implementation of WYSIWIS sharing is different from 

that of shared UI systems—it relies on sharing all the layers it defines above the window 

layer defined by OS as a means of presenting identical views of the application to all users. 

Again, this is only a limited implementation, which would only work for applications with 

Suite-generated UI. 

Finally, we also support N-user sharing with arbitrary combinations of sharing parameters 

as Suite does. 

3.5.4 Asynchronous Sharing 

Asynchronous sharing, such as the one in Sync, can be modeled by Log- ing all updates 

and transmitting them explicitly. In turn, the response from the Sync server, will be sent back 

as a set of Committed updates, forcing the client to execute the corrective commands. The 

merge handlers will perform the actual merge of updates, which could be parameter-driven 

(e.g., Sync, TACT) or a specialized procedure (Bayou). Our Diff capability gives us the 

additional option of deriving the changes in case the application does not use a notification 

mechanism.



4. INFRASTRUCTURE IMPLEMENTATION 

In the previous chapter, we presented a conceptual model for implementing a flexible 

object-sharing infrastructure that better satisfies our requirements. In this chapter, we 

motivate and explain the specific implementation choices that we have made in mapping this 

conceptual model to a specific implementation based on Java and XML. Later on, we use this 

prototype implementation in our evaluation process.  

We use our outline example to walk through the implementation steps necessary to 

implement a multi-user version of it. In the process, we describe the details of our 

implementation and their relationship to the development effort.  

4.1 XML Pattern Specification Language  

Recall that our driving problem is to implement flexible, fine-grained sharing of the 

example implementation of the Outline object shown on Figure 3.1. For that purpose, we 

first need to specify the programming patterns that would permit the infrastructure to extract 

the object’s logical components—its properties. Our general approach has been to provide an 

extensible framework in which property definitions can be plugged in as needed. At the same 

time, we need to provide a minimal set of ready-to-use patterns that directly support the 

sharing of the most commonly used abstractions. To determine this set, we have used 

previous work as guidance—the basic rationale is to be able to simulate the abstractions of 

existing systems, such as Sync. Therefore, by default, we support three basic types of object 

properties—simple, sequence, and table properties. Simple properties are identical to 

JavaBeans properties, sequence properties have the same semantics to Sync’s 

ReplicatedSequence, whereas table properties correspond to Sync’s ReplicatedDictionary 

abstraction.   

In the Outline case, we need two of the definitions—the ones for simple and sequence 

properties. Figure 4.1 shows the actual XML property specification for simple properties, 

with the sequence (and table) definitions given in the Appendix. Although more verbose, the 

XML specification shown on Figure 4.1 is, in fact, equivalent to the one we described in the 
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previous chapter using a simplified syntax, with the addition of several minor features, whose 

purpose is explained below.  

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE property_spec SYSTEM "PropertySpec.dtd"> 
<property_spec type = "simple" version = "1.1"> 
  <pattern name = "getter" semantics = “accessor”> 
    <return_type> 
      <variable name = "GetType"/> 
    </return_type> 
    <method_name> 
      <literal>get</literal> 
      <variable name = "GetName"/> 
    </method_name> 
  </pattern> 
  <pattern name = "setter" semantics = "modifier"> 
    <return_type> 
      <literal>void</literal> 
    </return_type> 
    <method_name> 
      <literal>set</literal> 
      <variable name = "SetName"/> 
    </method_name> 
    <argument_type> 
      <variable name = "SetType"/> 
    </argument_type> 
  </pattern> 
  <constraint predicate = "equals"> 
    <lhs>  <!-- Left-hand side of the constraint --> 
      <reference variable = "getter"/> 
      <reference variable = "GetType"/> 
    </lhs> 
    <rhs>  <!-- Right-hand side of the constraint --> 
      <reference variable = "setter"/> 
      <reference variable = "SetType"/> 
    </rhs> 
  </constraint> 
  <constraint> 
    <lhs> 
      <reference variable = "getter"/> 
      <reference variable = "GetName"/> 
    </lhs> 
    <rhs> 
      <reference variable = "setter"/> 
      <reference variable = "SetName"/> 
    </rhs> 
  </constraint> 
  <name_rule> 
    <reference variable = "GetName"/> 
  </name_rule> 
  <type_rule> 
    <reference variable = "GetType"/> 
  </type_rule> 
  <handler operation = "read"  class_name = "handlers.SimpleReader"/>    
  <handler operation = "write" class_name = "handlers.SimpleWriter"/>    
  <handler operation = "clone" class_name = "handlers.SimpleCloner"/>    
  <handler operation = "diff"  class_name = "handlers.SimpleDiffer"/>    
</property_spec>   
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Figure 4.1 XML specification for simple (JavaBeans) properties 

4.1.1 Property Versions  

One of the features not inc luded in our conceptual description is the version attribute of 

the property. Its main purpose is to help resolve ambiguities in determining which property 

definition is used in cases where more than one specification define a property with the same 

name. To illustrate, consider the following index-based implementation of a sequence 

property. To avoid repetition, we omit the exact property specification but indicate as 

comments the names of the pattern methods used. 

  public void    insertSection(int i,Section s); // “insert” method 
  public void    removeSection(int i);           // “remove” method 
  public Section getSection(int i);              // “lookup” method 
  public int     getSectionCount();              // “count”  method 
It implements the bare minimum of methods necessary to manipulate the sequence. 

However, a subclass, may implement an extended version featuring additional (convenience) 

methods, such as the ones shown below 

public void setSection(int i,Section s); 
public void removeAllSections(); 

Hence, if the developer presents two versions of the sequence—one matching the 

minimal pattern above and one matching the extended one—the infrastructure would 

discover that they both define a property named Section in the subclass. To resolve the 

ambiguity, the infrastructure picks the property specification with the higher version number.  

 By convention, versions that have the same major version number should only differ in 

their method names. In other words, they should have the same number of methods with the 

same signatures and semantics, which enables them to directly reuse handler code. For 

example, if we used a title/setTitle naming convention for our title property methods, we 

would need an alternative simple property specification, which would have the same major 

version and handler elements but a different minor version and getter method pattern 

specification.  

In contrast, properties with different major version numbers may not be able to directly 

share handler code because they may have incompatible implementations. Consider the 

following alternative implementation of a sequence property based on a Java’s 

Enumeration: 
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public void insertSection(int i,Section s); // “insert” method 
public void removeSection(int i);           // “remove” method 
public Enumeraton getSections();            // “list” method 

The Enumeration allows a single iteration over the elements of a collection of objects in 

the proper order. It has two methods: 

public Object nextElement() 
public boolean hasMoreElements() 

The first one returns the next element in the enumeration (throws an exception if none), 

whereas the second one is a predicate, which tests whether the enumeration has more objects 

that have not been inspected so far.  

While the index-based and enumeration-based sequence implementations are logically 

equivalent in that all the operations of one implementation can be emulated using the other, 

there is no one-to-one correspondence of individual methods and, therefore, handler code 

cannot be directly reused. However, the property implementation differences are transparent 

to the infrastructure services because handlers export the same programming interface by 

defining the same abstract property operations regardless of the underlying property 

implementation.  

To illustrate, let us consider the actual implementation4 of the object registration that is 

invoked by the application’s startup code to register shared objects. Essentially, the 

registration consists of traversing the object tree as described in our basic ObjectWalk 

algorithm from Chapter 3 and registering all Identifiable objects with the 

CentralRegistry. To perform this registration, the infrastructure needs a read handler for 

each discovered property so that it can perform the recursive analysis. In this example, we 

need a read handler for each of the two property versions (index- and enumeration-based). 

 The infrastructure is insulated by the specifics of the read handler implementations by 

requiring them to implement the PropertyReader interface: 

PropertyReader interface: 

import java.io.Serializable; 
import colab.bus.pattern.Property; 
public interface PropertyReader extends Serializable { 
    public Object[] getValue(Object target, Property property); 
}  

                                                 
4 For presentation purposes some details, such as exception handling, have been omitted.  
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The infrastructure code (shown below) uses the introspection mechanism to discover the 

object properties and locate a read handler for each of the properties it discovers. If a new 

property definition is introduced, this would result in (potentially) discovering more 

properties, however, this will require no changes to the infrastructure or application code. 

The only piece of code that needs to be added is a read handler for the new property.   

Object registration code (infrastructure service): 

void dfsRegister( Object node, Object parent, PropertySpec[] specs) { 
  if( node == null)                 // Ignore null objects 
      return; 
  if( isPrimitive( node))           // Ignore primitive types, e.g. int 
      return; 
  if( visitedObjects.containsKey( node)) // Ignore visited objects 
      return; 
  if( node instanceof Identifiable) // Register Identifiable objects 
      CentralRegistry.bind((Identifiable)node); 
  visitedObjects.put( node, "");    // Add object to visited list 
  String className = node.getClass().getName(); 
  Property[] mp = Introspector.getMatchedProperties( className, specs);  
  for( int i=0; mp!=null && i<mp.length; i++) { 
    PropertyReader reader = ((PropertyReader)mp[i].getHandler( “read”); 
    Object[] values = reader.getValue( node, mp[i]); 
    for( int j=0; values != null && j<values.length; j++) 
      dfsRegister( values[j], node, specs); 
  } 
} 

To complete our example, we also present concrete implementations of the read handlers 

of the two version of the sequence property. 

Read handler for the index-based implementation: 

import java.lang.reflect.Method; 
import colab.bus.pattern.Property; 
public class IndexSequencePropertyReader implements PropertyReader { 
  public Object[] getValue(Object target, Property property) { 
    Method countMethod = property.getMethod(“count”); 
    int count = countMethod.invoke(target, null); 
    Method lookupMethod = property.getMethod(“lookup”); 
    Object[] values = new Object[count];  
    for(int i=0; i<count; i++) { 
      Object[] arg = new Object[] {new Integer(i)}; 
      values[i] = lookupMethod.invoke(target, arg}); 
    } 
    return values; 
  } 
} 
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Read handler for enumeration-based implementation: 

import java.lang.reflect.Method; 
import java.util.Enumeration; 
import java.util.Vector; 
import colab.bus.pattern.Property; 
public class EnumSequencePropertyReader implements PropertyReader { 
  public Object[] getValue(Object target, Property property) { 
    Vector seq = new Vector(); 
    Method listMethod = property.getMethod(“list”); 
    Enumeration list = listMethod.invoke(target, null); 
    while(list.hasMoreElements()) 
      seq.addElement(list.nextElement); 
    Object[] values = seq.toArray(); 
    return values; 
  } 
} 

4.1.2 Method Semantics Attribute 

Another important attribute we have not discussed so far is the semantics of a method. It 

provides a basic classification of the method’s functionality, which is necessary to correctly 

implement sharing and to maintain the registration information about the shared objects. We 

distinguish among four types of methods—accessors, constructors, modifiers, and 

destructors. Accessor methods, such as the getter in simple properties, are used to obtain 

information about the state of an object without modifying it. Constructors, such as the insert 

method in sequence properties, structurally change the property by expanding it with 

additional elements. Destructors, such as the remove method in sequence properties, are the 

opposite of constructors—they reduce the property structure by removing elements. 

Modifiers, such as the setter in simple properties, update the property but do not introduce 

structural changes. In Section 4.2.2 we describe how these values are used to dynamically 

maintain the correctness of object registration information. 

4.1.3 Advanced Naming Conventions  

The XML schema also enables the description of more complex, but common, 

programming patterns than the ones discussed so far. Consider the following three methods, 

part of the standard java.awt.Window class, which we would like to represent as a version 

of a sequence property, called components: 

public java.awt.Component add(java.awt.Component comp); 
public void remove(java.awt.Component comp); 
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public java.awt.Component[] getComponents(); 

To accommodate such cases, we provide three additional tags to be used in the 

constraint clauses:  

• short—denotes the abbreviated version of the class name after removing the 

package prefix, e.g., short(java.awt.Component) == Component; 

• plural—denotes the plural form of a noun, e.g., plural(Component) == 

Components; 

• plural_short—denotes the combination of the above two, e.g., 

plural_short(java.awt.Component) == Components. 

Using these tags, it is fairly straightforward to create a version of the sequence property 

specification that accommodates the above case—the exact XML code is given the Appendix. 

4.1.4 Property Exclusions  

In practice, property definitions must allow for exceptions to the basic rules by enabling 

the exclusion of a property that conforms to the syntax but not the assumed semantics of a 

particular property. As an exclusion example, cons ider the following actual piece of the 

implementation of the standard java.awt.Component class (the superclass for all user 

interface objects): 
public class Component { 
  public Rectangle getBounds() { 
   return new Rectangle(x, y, width, height); 
  } 
  public void setBounds(Rectangle r) { …} 
  ... 
} 

Apparently, the pair of getBounds/setBounds methods defines a simple Bounds 

property. Thus, during the property analysis, the getBounds method would be invoked to 

obtain the current value of the property. Following the recursive property analysis, the 

resulting Rectangle would also be analyzed. Unfortunately, the Rectangle also has a 

bounds property, which is implemented in a similar fashion:  

public class Rectangle { 
  public Rectangle getBounds() { 
   return new Rectangle(x, y, width, height); 
  } 
  public void setBounds(Rectangle r) { …} 
  ... 
} 
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Further property analysis of the Rectangle following the ObjectWalk algorithm from 

Section 3.2.1 (essentially, a depth-first traversal) would result in an infinite recursion 

because, as a side effect of the invocation of the getter pattern method, the object structure 

would grow infinitely. Since new objects would be generated at every step of the analysis, 

the standard mechanism of keeping track of visited objects to avoid cycles would be of no 

help to break the infinite recursion (newly generated objects would never be on the visited 

list). 

Generally, it is hard envisage a scheme that would automatically detect and get around 

such problems. Our solution is to add an exclude tag to the property definitions that would 

detect such a property, thereby directing the infrastructure to ignore it: 
<exclude class_name=“java.awt.Rectangle” name=“Bounds” scope=”subclass”/> 

The scope attribute here specifies that, unless otherwise marked, Component subclasses 

would also inherit the exclusion. Note that exclusion is only necessary if it not possible to 

observe the current state of a property (through the read handler) without modifying it. Thus, 

recursive properties (ones in which the read handler returns the same type of object as the 

analyzed object) are perfectly legitimate. For example, if in the following implementation the 

Section class getSubsection and getSubsectionCount methods necessary to obtain the 

current state do not modify the state of the Section object (or create new objects), the 

property analysis can proceed without problems. 
public class Section { 
  public Section getSubsection(int i); 
  public void    setSubsection(int i,Section s); 
  public int     getSubsectionCount(); 
  public void    insertSubsection(int i,Section s); 
  public void    removeSubsection(int i); 
  … 
} 

4.2 Object Naming and Registration 

So far we dealt with the implementation of the logical decomposition of shared objects. 

With that step accomplished, we are ready to look into the implementation of the run-time 

sharing mechanism. The first issue we need to resolve is what is being shared. For two, or 

more, distributed object replicas to be shared, they must have a common, globally unique 

identifier (or name), which allows the sharing mechanism to match the replicas and to 

distinguish them from all other objects. Since the issue of global naming does not arise in the 
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single-user case, we face the choice of implementing an implicit naming mechanism, which 

handles the issue transparently, or an explicit mechanism, which can take naming 

information from the programmer. While the implicit approach implies more automation, it 

also provides less flexibility in the range of sharing modes that can be supported. In 

particular, if two replicas are created concurrently and independently, their system-generated 

global identifiers would be different and the infrastructure would have no means to establish 

that they correspond to each other. As a simple example, suppose that users A and B have 

each started an instance of the Outline application. This would automatically initialize a 

number of shareable objects—the root Outline object and its user interface—each with their 

own unique global identifiers. However, if A and B want to share (some of) these objects, 

then corresponding replicas must have the same global identifier. Since the infrastructure has 

no information to establish the correspondence, and the programmer has no mechanism to 

provide it, the infrastructure must either seek help from the user, or place restrictions on the 

replica instantiation process (e.g., simultaneous instantiation at all sites) to ensure consistent 

naming. Implicitly, restrictions on replica instantiation impose restrictions on the supported 

sharing modes (e.g, simultaneous instantiation precludes asynchronous sharing).  

Therefore, we have made the design decision to take an explicit approach to naming by 

making the global name part of the logical structure of each shareable object. This gives us 

the flexibility of getting help from the programmer in establishing a naming scheme. In 

addition to being more flexible, this also simplifies the translation from a local object 

reference to a global identifier and bypasses a registry lookup. Another benign side effect of 

this design is that it simplifies the management of the registry used to translate between local 

and global names because the global name is serialized along with the rest of the object, 

saving the infrastructure the need to keep track of what registry information needs to be 

disseminated along with every event, or the need to maintain a global registry. 

We should note that, an explicit scheme becomes, for all practical purposes, implicit if 

the burden of assigning names is placed entirely on the infrastructure. Thus, in sharing 

scenarios where this is possible, the infrastructure can take charge and provide the benefits of 

automation typical of implicit schemes. Finally, as the following discussion shows, the 

additional development effort required is trivial and can be largely automated for Java 

programs. 
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4.2.1 Identifiable Objects 

Specifically, to implement our naming scheme, we require that all shareable objects 

implement the following interface: 

public interface Identifiable { 
    public GID getGID(); 
    public void setGID(GID gid); 
} 

where GID is defined as follows: 
public interface GID extends java.io.Serializable {} 

The infrastructure provides default string-based and integer-based implementations of the 

GID interface. In addition, the system supplies a ReplicatedObject class, whose main 

purpose is to provide a default implementation of the Identifiable interface and to be sub-

classed by application objects in lieu of sub-classing java.lang.Object (the root of the 

Java object hierarchy). Ultimately, the transition from sub-classing Object to sub-classing 

ReplicatedObject can be completely automated even for compiled Java code by 

performing it at load time by a specialized class loader using an object- instrumentation tool 

such as JOIE [5]. Currently, this technique is not part of our prototype as it does not bring 

anything conceptually new to our approach. However, we do plan to eventually incorporate it 

as part of our prototype to provide a more complete implementation. 

4.2.2 Object Registration 

The translation from global to a local reference requires that the infrastructure maintain a 

table, or registry, which maps global to local references. We refer to the process of 

establishing such mapping as (object) registration, and we store all such information in a 

CentralRegistry object. Another aspect of the registration is also the discovery of parent-

child structural dependencies, which we store in a DependencyRegistry object 

Object registration is triggered in one of three ways: exp licitly, as a result of the 

application’s request to bind an object to a specific GID; implicitly, as a result of recursive 

registration, or as a side effect of a property operation. Explicit registration is typically 

necessary for the root object of a shared object structure, such as the Outline object where 

the application must specify a ‘well-known’ name. However, in a situation where the 

infrastructure controls the instantiation (and, therefore the naming) of shared objects, this 

process can also be automated. For example, in our shared window implementation, the 
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infrastructure automatically ensures that all window replicas and their components have 

matching names. This is achieved by listening for WINDOW_OPEN events and automatically 

renaming the newly created Window object so that all replicas have the same name. The 

naming scheme is based on a counter that is consistently advanced across all application 

instances.   

The registration of shared object structures typically follows a recursive fashion. This has 

two advantages: first, it frees the developer from the need to invent a naming scheme for all 

shared objects; second, it allows the discovery of parent-child relationships that define the 

structural hierarchy of the shared objects. As already discussed, our infrastructure maintains 

the inverse, Is-Part-Of, relationship. 

Once discovered, structural dependencies must be maintained up-to-date with the run-

time changes to the structure as a result of property operations. For example, if a subsection 

1.2 is moved to section 2 as subsection 2.5, obviously, the structural dependencies would 

have to be updated. Thus, as a side effect of a property method, we may also need to update 

the dependency registry. For that purpose, we employ the semantics attribute of the invoked 

method as follows: 

• If the executed method is an accessor, no update is necessary. 

• Otherwise, if the list of parameters contains a single Identifiable object (e.g., a 

Section), we assume that the property operation manipulates the association between the 

parameter object and the target object whose property is being modified (e.g., Outline). 

Thus, we interpret the operations as follows: 

o If the executed method is a constructor, then a new association between the argument 

and the target is established.  

o If the executed method is a destructor, then we remove the association between the 

argument and the target. 

o If the executed method is a modifier, then we replace the current association for the 

argument. 

• If the list of parameters contains more than one Identifiable object, it is unclear what 

association is being manipulated. Therefore, we take a conservative approach and 

recursively rebuild the property dependencies starting with the affected property. 
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4.3 Event Flow 

After resolving the object naming issue, we can follow step-by-step the processing of 

user updates from one replica to another. Our discussion is illustrated by Figure 4.2, which 

gives a graphic presentation of the event flows generated by our conceptual model and 

summarizes possible ways in which individual updates can be shared between two, or more, 

replicas.    
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Figure 4.2 Event flow model of the infrastructure 

As a starting point, we assume that the pattern analysis of the shared object (as suggested 

by the tree structure in the “Application” box) has been performed. Likewise, we assume that 

initial object naming and registration have also been completed and as a result of user 

actions, the local copy of the shared object is modified and a corresponding modification of 

the peer replicas must eventually be performed. 

As a first step, we need an update notification to be issued by the application. This can 

happen either directly, or indirectly. By directly we mean that the application creates an 

instance of the infrastructure-defined PropertyOperation object and passes it to the 
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infrastructure. This approach is typical of collaborative applications that are built from 

scratch. 

Indirect notification is typical for applications with fully developed single-user 

functionality and a custom event mechanism. Usually, tapping into custom event mechanism 

and providing an event adapter, which translates the application-specific events into 

PropertyOperations is the most economical way of interfacing the application with the 

infrastructure. Currently, our implementation provides two reusable event adapters—

AWTEventAdapter and BeanEventAdapter. The former translates the standard UI events 

issued by the AWT/Swing library, whereas the latter translates the standard 

PropertyChangeEvents issued by JavaBeans objects into PropertyOperations. 

An alternative, “pull-based”, means of obtaining property events is to perform a Diff, or 

Read operation on (part of) the shared structure. Such an operation is invoked by the Coupler 

in response to a synchronization event whenever the current acquisition policy parameter is 

set to Diff/Read. This is useful when the application has not been coded to “push” events to 

the environment. 

 Synchronization events are issued as result of user action (e.g., commit), timer 

expirations, or application trigger activations. An application trigger is an object that listens 

for application-specific events (e.g., mouse release in a drawing area) and issues 

corresponding synchronization events (e.g., edit complete). 

In all cases, events are delivered through a static, ‘well-known’ object, thereby bypassing 

the need for explicit composition between the application objects generating the event and 

the Coupler object that eventually receives them. Once the Coupler receives an event, its 

first job is to update the registry information (for that reason the diagram shows the event 

going through the Registry first). There are two registries that may need to be updated—the 

CentralRegistry and the DependencyTable. The update is based on an analysis of the 

semantics attribute of the operation and its accessor/ constructor/ destructor/ modifier 

classification. The DependencyTable is refreshed based on the rules already described in 

Section 4.2.2. The  CentralRegistry is refreshed in a similar fashion—any Identifiable 

arguments of a constructor/modifier operations are added to the registry, whereas any GID 

arguments of a destructor are removed.  
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Next, the event is filed with each of the outgoing queues associated with individual users 

(or groups of users) and is then evaluated with respect to the each of the corresponding 

policies based on the associated user and the target object of the property operation. Events 

that meet the minimum requirements set by the policy are immediately sent to their 

respective recipients using the event multicast service described below in Section 4.5. 

After the remote site receives the incoming event, it is processed along the same lines as 

outgoing events. First, the local registry and dependency tables are updated, then the local 

Coupler looks up the installation policy, selects the installation method, and applies the 

updates to the application object. 

4.4 User Interface 

To control the sharing of application objects, the users need an appropriate interface that 

allows them to control the mapping of shared objects to sharing policies, fine-tune the 

policies themselves, as well as execute Transmit/Commit operations. Such an interface must 

be generic and flexible enough to accommodate arbitrary applications and avoid the cost of 

building of specific interfaces for each application. Moreover, from a user’s point of view, 

having a unified interface also allows the transfer of collaboration experience from one 

application to another. 

4.4.1 Object Browser 

The user interface of our infrastructure is built around the idea of an object browser. The 

ObjectBrowser shows, in a dedicated window, a tree representation of the structural 

hierarchy of the shared objects registered with the infrastructure (Figure 4.3).  
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Figure 4.3 Object Browser with Policy Selection Pop-up Menu 

The browser provides a generic interface that allows users to navigate the tree and 

execute operations on the selected objects. The operations are, in fact, callback methods 

registered with the browser during startup. Usually, they are infrastructure-provided, such as 

setting policies and committing updates. As Figure 4.4 shows, one of the operations 

registered is the “explore” command implemented by the browser itself. It creates an 

independent view (in a separate window) of the selected object and its children. The 

application can also take advantage of the browser and register its own operations that 

require a custom implementation (e.g., save, print, etc.) 

The operations are triggered by the user through buttons, menu items, and context-

sensitive pop-up menus. The user-selected object becomes an implicit argument in callback 

invocations. Furthermore, callbacks can register lists of possible values for a second 

argument, which are presented to the user as submenus. For example, in setting a sharing 

policy, the policy manager needs two arguments—the object to which the policy applies and 

the policy itself. As shown on the figure above, specification of these parameters can be 

accomplished by the user in a couple of mouse clicks: a right-click on the object and a 

selection of the policy from the list of named policies in the submenu. 



 99

To connect the ObjectBrowser with the application user interface, the application 

invokes (in the startup code) a registration call, which automatically adds a “Collaboration” 

menu to the specified application window: 
 ColabJMenu.addColabMenu(mainWindow); 

The collaboration menu allows the user to show/hide the browser, as well as to execute 

general commands that do not require target selection, such as committing/transmitting all 

changes (Figure 4.4). 

 

Figure 4.4 Collaboration Menu Attached to an Application 

One practical issue that arises for most applications that the sheer number of properties 

discovered by the analysis leads to a large object tree, which may be difficult to navigate. To 

reduce the clutter, we offer users the option of filtering out properties based on their type or 

layer (Figure 4.5). In our experience, filtering out simple properties, for example, is typically 

sufficient to reduce the tree to a manageable size. We should note that the filtering is only for 

visualization purposes and does not affect the behavior of the system. Users may open 

several browser windows and have different filters for each one of them.  
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Figure 4.5 Type- and Layer-based Property Filtering 

Another practical issue is related to user orientation in the application structures. In 

particular, how does the user map the selected node in the browser window to the actual 

object in the application window? Short of integrating the application and infrastructure 

interfaces in a custom-built interface, the best solution is to highlight in the application the 

object selected in the browser window. We can automatically perform this (on a limited 

basis) for the standard UI components, such as text fields, buttons, and panels (the 

infrastructure simply checks if the selected object is a subclass of java.awt.Component and, 

if so, swaps the foreground and background colors). However we cannot automatically solve 

the problem for non-UI objects without help from the programmer.  

Currently, there are two ways for the programmer to pass on such information—by 

naming convention and through a “highlight” callback routine. In the first case, the developer 

must explicitly name the user interface component that renders the non-UI object by adding a 

“.view” suffix to its global identifier. In other words, if the global name of the non-UI object 

is “xyz”, then its rendering object must be named “xyz.view”. When the object named xyz 

is selected in the object browser, the infrastructure automatically looks for a registered 

xyz.view object and, if it finds it, swaps the values of its foreground and background 

properties (if present). Note that the developer does not have to generate the GID for the non-

UI object. 

The second, more flexible but less automated solution, is for the developer to register a 

“highlight” callback routine that changes the rendering of the selected object in the 

application window whenever the underlying object is selected/deselected in the browser. 
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Once registered, the routine is automatically invoked whenever the selection changes and the 

new selection is passed on as an argument. (Our name-based scheme actually uses this 

mechanism by registering an appropriate callback during initialization.) 

4.4.2 Policy Specification 

As suggested by Figure 4.3, one of the main purposes of the browser to provide a point-

and-click interface for specifying both persistent and dynamic, or custom, sharing policies. 

Persistent policies are maintained in the form of XML files and are automatically loaded at 

startup from a default directory and shown to the user as a submenu. Thus, the list of 

available policies can be controlled by adding/removing the corresponding XML files and the 

policies can be tailored using generic XML editing tools. An example policy, called 

Increment-Increment, which allows all (incremental) changes to be sent and received without 

restriction, is specified below.  
<?xml version="1.0" encoding="UTF-8" ?>  
  <object javaClass="colab.bus.coupling.CouplingPolicy"> 
    <name value="Increment-Increment" />  
    <transmitEvent value="0" />  
    <transmitCorrectness value="0" />  
    <transmitPeriod value="0" />  
    <transmitTime value="0" />  
    <transmitMethod value="0" />  
    <listenEvent value="0" />  
    <listenCorrectness value="0" />  
    <listenPeriod value="0" />  
    <listenTime value="0" />  
    <installMethod value="0" />  
  </object> 

The main conceptual difference between custom and persistent policies is that the former 

are referred to by value, whereas the latter are referred to by name. Thus, naming provides a 

level of indirection, which simplifies the policy management and lessens the need for novice 

users to understand the full capabilities of the sharing model before using it. On the other 

hand, the option of specifying custom policies gives users complete control of the sharing 

process at the finest granularity 

To specify a custom policy, the user performs a right-click on the target object (in the 

object browser) and selects “Policy” à “Edit” option shown on Figure 4.3. This brings up 

the coupling policy editor shown on Figure 4.6.  
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Figure 4.6 Coupling Policy Editor 

If the target object/property already has a specified policy, it will be displayed as a 

starting point of the editing process. After editing is complete, the user has the choice of 

Apply-ing it to the target object/property, or Save-ing it as a persistent policy . 

4.4.3 Layer Specification 

Specifying the application layers is very similar to the policy specification above in that 

all specifications are kept in XML format and can also be edited through an infrastructure-

provided editor. XML files are linked to the classes by a simple naming convention—the 

specification file has the same name as the class with an ‘.xml’ extension. For example, 

assuming that our Outline class is part of the outline package, the corresponding layer 

definition would look as follows: 

outline.Outline.xml: 
<?xml version="1.0" encoding="UTF-8"?>  
<object class = "outline.Outline"> 
  <layer name="model"> 
    <Title />  
    <Section />  
  </layer> 
</object>  

Since, in this case, all object properties belong to the same layer, we could have also used 

a shorthand <ALL> tag to indicate that fact: 
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<?xml version="1.0" encoding="UTF-8"?>  
<object class = "outline.Outline"> 
  <layer name="model"> 
    <ALL />  
  </layer> 
</object>  

Recall that a layer definition for a class also provides default layer assignments for 

properties of its subclasses. Hence, whenever a new class is encountered, the infrastructure 

may have to traverse several levels in the class hierarchy to find an appropriate definition. To 

speed up this process, we load all available layer definitions at startup time to make them 

available for quick table lookup. 

As with sharing policies, we also provide an editor that frees the users from the low-level 

details of the XML definitions: 

 

Figure 4.7 Layer Editor 

Finally, we need a way of specifying the layer dependencies that are essential for the 

correctness of our sharing model. This is implemented via a LayerDependencies.xml file, 

which defines layer relationships specific for a particular application. For example, the layer 

dependencies for our Outline application are succinctly defined as follows: 
<?xml version="1.0" encoding="UTF-8" ?>  
<layer_dependencies> 
  <window> 
    <view> 
      <model/> 
    </view> 
    <appearance/> 
  </window> 
</layer_dependencies> 
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We should note that layer dependencies do not have to be a strict tree structure. For 

example, if we attached a chat tool to the outline editor the layer dependency structure could 

look as a forest with the editing and chat parts having separate dependency trees (assuming 

they run in separate windows): 
<?xml version="1.0" encoding="UTF-8" ?>  
<layer_dependencies> 
  <outline_window> 
    <outline_view> 
      <outline_model/> 
    </view> 
    <outline_appearance/> 
  </outline_window> 
  <chat_window> 
    <chat_view> 
      <chat_model/> 
    </view> 
    <chat_appearance/> 
  </chat_window> 
</layer_dependencies> 

4.5 Remote Communication 

As a matter of design choice, we have not bound the implementation of our sharing 

mechanisms to a particular remote communication mechanism. Instead, we assume a fairly 

basic event multicast service and do not rely on the lower- level communication infrastructure 

to provide sophisticated ordering and delivery options. We define a simple, high- level 

interface, which allows the underlying multicast implementation to be replaced transparently 

by the infrastructure.   

The concrete service implementation we have developed in our prototype uses a 

centralized event multicast server, based on Java’s RMI mechanism, as the basic means of 

remote event delivery (Figure 4.8). Whenever the Coupler decides that an event must be 

transmitted, it passes it on to its local multicast client. The client makes a request for delivery 

by invoking the appropriate version of the server’s notify method, with the event object to 

be delivered and the recipient(s), which can be a particular user or a whole group. Figure 4.8 

shows an example, in which the coupler at site A must deliver an event to the rest of the 

group. In this case, as suggested by the single outgoing queue, the coupling policy is identical 

for all participants. Thus, the client invokes the notifyOthers method of the server, which 

places a copy of the event in the corresponding server delivery queues for B and C. If we had 
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separate coupling queues for B and C at the sender, then events would be unicast one at a 

time using the notifyMember server method. 

 To avoid deadlocks, as well as improve local response time, it is essential to make the 

notification mechanism asynchronous. For that purpose, the server maintains a separate 

queue and delivery thread (TA, TB, and TC) for each connected client.  

TA TB TC

Client A

Client B

Client C

Server

Coupler A

notifyOthers

Coupler B

Coupler B
{B, C}

TA TB TC

Client A

Client B

Client C

Server

Coupler A

notifyOthers

Coupler B

Coupler B
{B, C}

 

Figure 4.8 RMI-based Multicast Architecture 

The sole function of a delivery thread is to contact its client and immediately deliver all 

events currently waiting in its queue. As soon as that is accomplished, the thread goes into a 

sleep state. Thus, whenever an event multicast request is received from a client, the notify 

method places a copy of the event into the queues of its intended recipients and immediately 

returns control to the caller. Before returning, the notify method wakes up all delivery 

threads with non-empty buffers so that they get a chance to run afterwards and deliver the 

contents of their buffers to their respective clients. 

4.6 Session Management 

A collaborative session refers to the virtual computer-mediated meeting of a group of 

users that allows them to work together on a shared object. Session management refers to the 

infrastructure function that allows users to create, join and leave a collaborative session. 

Thus, by definition, session management is an indispensable part of any multi-user 
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application. However, unlike other systems, such as JCE, we do not consider session 

management to be a separate concept from object sharing. Instead, like GroupKit, we have 

chosen to model it as a shared structure and apply the described sharing mechanisms to it.  

Specifically, a session is a string name with an associated dynamic list of users 

maintained by a SessionServer object, which runs at a well-known location. 

SessionClients (representing different users) join/leave the session by contacting the 

server, which in turn expands/reduces the list of users and sends corresponding notifications 

to the rest of the users on the list. Such notifications can be used as triggers for collaborative 

functions such the transfer of the current state of a shared object to a newcomer.   

4.7 Initialization 

To complete our implementation description, we show the initialization steps that an 

application developer has to perform in order to use the infrastructure. Our discussion is 

based on an actual piece of code written for the GEF (Graph Editing Framework) sharing 

example, the details of which are described in the following chapter. For now, we will merely 

state that GEF is a non-trivial piece of software and its initialization code shown below is 

typical of the effort required to compose the single-user application with the sharing services 

of our infrastructure. 
public class GraphDraw { 
 public static void main( String argv[]) throws Exception { 
 SystemBoot.init( argv);  // Command line processing 
 SystemBoot.specsInit();  // Property specs loading 
 SystemBoot.clientInit(); // Sharing services initialization 
 
 // Original single-user startup code 

String frameTitle = "GraphDraw: " + System.getProperty("argv.u"); 
 JGraphFrame jgf = new JGraphFrame( frameTitle); 
 jgf.setToolBar( new SamplePalette()); 
 jgf.setBounds( 0, 0, 400, 300); 
 jgf.setVisible( true); 
 

      // Root object registration 
 DefaultGraphModel model = (DefaultGraphModel)jgf.getGraphModel(); 
 PropertyRegistrar.registerPersistent( model, "Graph"); 
 Layer figs = jgf.getGraph().getEditor().getLayerManager().getActiveLayer(); 
 PropertyRegistrar.registerPersistent( figs, "Figures"); 

 
// Event adapter installation 

 new GraphModelAdapter( model); 
 new EditorModeAdapter( jgf.getGraph()); 
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// Object browser initialization 
 CouplingObjectBrowser.addRootObject( model); 
 CouplingObjectBrowser.addRootObject( layer); 
 CouplingObjectBrowser.setVisible( true); 

 
// Collaboration menu attachment 

 ColabJMenu.addColabMenu( jgf); 
  } 
} 

The first three lines of the startup code—the SystemBoot invocations—provide general 

infrastructure initialization that does not depend on the particular application. The first two 

steps—command line argument processing and the loading of property specifications—are 

optional in that the application may elect to implement them differently. However, by using 

the set of infrastructure-defined command line parameters, such as the location of the 

property specifications, the application can pass onto the infrastructure the handling of such 

details that are largely irrelevant to the application’s functions 

 Next, the general application initialization (which is independent of the sharing) is 

performed, followed by the registration of the root objects through the registerPersistent 

calls on the infrastructure. (Note that the creation the model and figs object happens as a 

result of instantiating the JGraphFrame earlier. Here, we merely obtain references to these 

already initialized objects. The Layer object refers to GEF’s own visual layers and is not 

related to our notion of application layers, which are given only as XML specification and 

never show up in the application code.) We have also developed two adapter objects that 

translate application-specific events into property and synchronization events and these 

adapters are installed next. Finally, the startup is completed by initializing the object browser 

and attaching a ‘Collaboration’ menu to the application’s standard user interface.  

4.8 Performance Considerations 

Since our design relies on adding (multiple) levels of indirection at various points on the 

critical path of event processing, we need to evaluate the impact of this performance 

overhead on the end-user experience. Ideally, we would like to measure end-to-end delay 

experienced by the user and break it down into its components. In practical terms, however, 

this turns out to be a difficult task because there are multiple threads participating in the 

event processing and the scheduling decisions are beyond our control. Furthermore, our 
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analysis shows, in almost all cases, the added overhead cannot be adequately measured 

because it falls well below the granularity of the Java time routine. 

Thus, we take a bottom-up approach, in which we measure the basic cost of the overhead 

added at each point of the event processing and produce a conservative quantitative estimate 

of the accumulated overhead.     

4.8.1 Run-time Overhead 

Our extensibility requirement has lead us to an implementation, which commonly 

replaces a direct method invocation with a table lookup, followed by a reflection-based 

method invocation (e.g., looking up and invoking a property handler). Therefore, measuring 

the cost of these operations is our first step in estimating our overhead. For that purpose, we 

used test programs that allowed us to obtain long-term averages over a large number of 

operations (106-108). All tests were performed on a system with a 1.6GHz Pentium 4 

processor running MS Windows XP and version 1.4.0 of the Java Runtime Environment from 

Sun Microsystems. 

4.8.1.1 Table Lookup 

Throughout our implementation we have consistently used the standard 

java.util.Hashtable for storing table information. Thus, we are interested in the 

performance of the basic get and put operations. As it turns out, both of these are quite 

affordable. On average,  

• A get takes between 1.2x10-3ms and 1.4x10-3ms as the size of the table varies 

between 100 and 500,000 entries; 

• A put takes between 1.3x10-3ms and 1.9x10-3ms as the size of the table varies 

between 100 and 500,000 entries. 

4.8.1.2 Reflection-based Method Invocation 

To measure the cost of reflection-based invocation, we compare the time it takes to 

invoke an empty method with three arguments using direct invocation and reflection-based 

invocation (the exact number of arguments only marginally affects execution time).  

On average, 

• A direct method invocation takes approximately 1.1x10-5ms; 
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• A reflection-based method invocation takes approximately 1.7x10-4ms. 

The above numbers, show that, in relative terms, a reflection-based invocation is quite 

costly compared to a direct one. However, in absolute terms, it is clear that reflection is quite 

affordable, even after multiplying the above numbers by a factor of 6 to account for the fact 

that the test program fits in the CPU cache entirely. We obtain the factor as the ratio of CPU 

cache speed (1.6GHz) and main memory speed (266MHz).  

4.8.1.3 Policy Lookup 

Given the hierarchical approach to specifying policy lookups, a coarse-grain specification 

(e.g., a single policy for the root object) can make the policy lookup expensive for large 

application structures. For example, suppose that there is a single policy specification given 

for the AWT Component class, that provides a default for UI objects. Now consider a policy 

lookup for a property of a JCheckBox of the standard Swing library (this could be triggered 

by a user clicking on the checkbox). Using the default structure-first traversal policy, it 

would take at least 10 lookups to find a policy: The structural hierarchy must be at least 3 

levels deep (immediate container, root container, and bounding frame), whereas the 

JCheckbox class is 5 level below Component in the class hierarchy. In addition, a lookup for 

the affected property and the JCheckBox itself would also be performed. Hence, it is 

desirable to avoid paying such costs repeatedly. 

 Therefore, we use a policy cache, which retains the results of recent policy lookups. 

Furthermore, by taking into account that policies are typically specified at the object- level 

granularity (rather than property-level granularity), we can further improve the efficiency of 

the caching. For that purpose, whenever we lookup a property- level policy and the parent 

object does not have a specified policy, we cache the result both at the property and the 

object level. This effectively pre-fetches the policy for other properties of the same object. 

For example, if the user modifies the position of a shape object in a drawing, followed by a 

change of the size, the policy lookup for the size property would take a maximum of two 

steps.  

4.8.1.4 Remote Communication 

The overhead of communicating property events across the network consists of two 

major parts: object serialization and transmission. The former represents the cost of 
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converting a Java object into a suitable byte representation that can be transmitted over a 

TCP/IP socket connection. The latter is the actual time required for the transmission itself. 

Since the transmission cost is dominated by network characteristics and will have to be paid 

by any infrastructure, we focus our attention on the serialization cost as it is a function of the 

specific approach we have taken.  

We performed a series of tests to quantify the cost of serializing a PropertyOperation 

object, which carries the property updates across the network. The time it takes to 

serialize/deserialize such an object, carrying three operation arguments was approximately 

0.03ms in our experimental setup. Given that our centralized multicast service 

implementation requires an extra serialization/deserialization cycle at the server, we estimate 

that the overall serialization overhead we incur on the critical path of a property event is 

about 0.12ms. Thus, serialization has a marginal impact on user experienced end-to-end 

delay.     

4.8.2 Pattern Analysis 

Another component of the processing overhead is the initial pattern analysis of shared 

objects, which based in the programmer-provided specifications, discovers the properties of 

an object. To estimate the cost of this analysis, we measured the amount of time it takes to 

perform it under different circumstances. The complexity of the current (un-optimized) 

version of the analysis algorithm is approximately proportional to the product of the number 

of methods of the analyzed object and the number of property specifications. Therefore, we 

performed a number of tests on actual classes from the JDK with the actual property 

definitions we have used in various applications.  

In the table below we present, what we consider, extreme cases to illustrate the range of 

observed executions times. We have chosen two commonly used classes—one with few 

methods and properties (java.util.Vector) and one with numerous methods and 

properties (javax.swing.JFrame)—and measured the actual time it took to perform the 

analysis using 1 and 12 property definitions (the maximum number we have used in our 

application implementations).  
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Class Number of 
Methods

Number of 
Specifications

Number of 
Properties

Execution
Time (ms)

java.util.Vector 50 1 1 60
java.util.Vector 50 12 1 100
javax.swing.JFrame 286 1 27 180
javax.swing.JFrame 286 12 33 320  

Table 4.1 Pattern Analysis Execution Times 

As the numbers in Table 4.1 suggest, pattern analysis is expensive but practical given the 

fact that it is a one-time effort for a given class. However, if a relatively large number of 

classes must be analyzed at once (e.g., at startup), this can cause a user perceived ‘pause’ in 

the execution. Therefore, once the ana lysis is performed, we cache the results persistently to 

make them readily available for the next execution. This technique can be taken a step further 

by performing the property analysis entirely off- line as a post-compilation step, thereby 

minimizing the computational overhead associated with pattern analysis.  

4.8.3 Summary 

In summary, the measurements of the intrinsic steady-state costs (those incurred after the 

initial pattern analysis) incurred by the implementation show that the impact on user 

experience is negligible, even by our most conservative estimates. For example, if the 

infrastructure performs 100 put operations and 100 lookups on the critical event path—a 

highly unlikely case—at the cost of 2x10-3ms and 1.5x10-3ms, respectively, the overall effect 

on end-to-end delay would still be no more than 0.3ms. Combined with an estimated 

serialization cost of about 0.12ms, we obtain as a conservative estimate of the infrastructure-

incurred computational overhead of less than 0.5ms. Thus, on a fast local area network with 

round-trip times in the order of 0.25ms (under good conditions) we can reasonably expect the 

estimated end-to-end delay to be below 1ms. Clearly, on a wide area network, end-to-end 

delay will be dominated by the network delay, with typical round-trip times between 20ms 

(for the local metro area) and 100ms (coast-to-coast) 5. 

We also showed that pattern analysis is an affordable operation that can also be 

performed off- line to further minimize its impact on performance. Finally, we should note 

                                                 
5 Measurements taken with traceroute 
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that in our qualitative experience, the largest impact on user-perceived delay (on a fast local 

network) is the refreshing of the user interface performed by the Java Virtual Machine in 

response to user actions. Unfortunately, we were unable to obtain a direct measurement 

because of the asynchronous nature of such updates.
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5. EXPERIENCE 

In this chapter, we present our experience in building collaborative applications using our 

prototype infrastructure implementation, as well as the use of pattern-based approaches to 

problems not related to collaboration. In the collaboration side, we start with the outline 

example and work through the details of implementing various sharing scenarios. The outline 

application was chosen as an example of a structured text editor that is comparable to the 

editors supported by our benchmark system for sharing flexibility—Suite. Next, we describe 

our shared user interface toolkit implementation, which is an example of UI sharing for 

applications based on Java’s Swing library and is directly comparable to another benchmark 

system—JCE. Next, we use describe our experience with the GraphDraw and Shapes 

applications. The two are structured graphical editors that have been developed by third 

parties and we use them demonstrate the effort in converting an existing third-party single-

user application into a collaborative one. In all cases, our primary interest is to measure the 

extent and complexity of the development effort involved, as well as the respective flexibility 

benefits. 

Next, we use three examples of generic non-collaboration infrastructure services that we 

have developed based on our abstraction and architectural models. These include XML-based 

serialization of Java objects, UPnP system interface generation, and UPnP user interface 

generation. In all cases, our pattern-based approach yields significant automation gains and 

provides more general solutions than currently possible.   

5.1 Outline Application 

Our discussion of the Outline application follows the implementation of different sharing 

scenarios. We begin with the most basic sharing scenario, which requires the least amount of 

development effort and has the least amount of flexibility, and we gradually increase the 

sophistication of the application’s sharing capabilities and present the respective 

development effort. 
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Our starting point is a relatively straightforward single-user implementation of the 

Outline application. It is based on two objects—model and view—with the former being a 

concrete implementation of the skeleton code shown throughout our presentation and the 

latter using a JTree component from the standard Java AWT/Swing user- interface toolkit to 

render and edit the model. In other words, the Outline object represents the model layer of 

the application, whereas the JTree represents the view layer, as shown below: 

Public class Outline {
String getTitle();
void setTitle(String title);

void  insertSection(int i, Section s);
void  removeSection(int i);
Section getSection(int i);
void  setSection(int i, Section s);
int     getSectionCount();

}

ViewModel
Public class Outline {
String getTitle();
void setTitle(String title);

void  insertSection(int i, Section s);
void  removeSection(int i);
Section getSection(int i);
void  setSection(int i, Section s);
int     getSectionCount();

}

ViewModel

 

Figure 5.1 Model-View decomposition of the Outline application 

The Outline object also implements a number of methods from the standard 

MutableTreeNode interface, which facilitate its interaction with the JTree object. Since 

these methods are routine and irrelevant to our discussion, we have opted to leave them out. 

Similarly, we skip many other details, such as the precise mechanisms used by the 

application to handle insertions/deletions of sections, that have no bearing on our sharing 

problem.  

5.1.1 Asynchronous Sharing 

Our first group of scenarios represents the model- level sharing of the Outline object 

without assuming update notification. The rationale here is that the baseline (single-user) 

implementation does not require the Outline object to issue update notifications so we 

should explore the possibilities under this condition first. 

5.1.1.1 Scenario 1: Read/Write Peer-to-Peer Sharing 

The lack of a notification mechanism implies that we are restricted to asynchronous 

sharing, in which the infrastructure must poll the shared object to obtain updates. In its 

simplest form, such polling is reduced to obtaining the current state of the replica. In our 



 115

model, this is specified through the use of a sharing policy that has a read value for its 

acquisition parameter. For example, we can specify a <Read, Increment, Raw, Replay> 

policy for the Outline object, which indicates that updates are acquired by read- ing the 

object, then are transmitted with no constraints with respect to the communication operation 

(Increment) or level of correctness (Raw), and the values are directly installed on peer 

replicas (Replay). (Throughout this chapter, when we give policies, we always consider the 

effective policies resulting from the combination of the outgoing policy of the sender and the 

incoming policy of the receiver.) 

 As already discussed in Section 4.3, the triggering mechanism for obtaining and 

communicating the update mechanism can be an explicit Transmit/Commit operation, timer 

expiration, or an application trigger (Figure 4.2). In the case of explicit initiation, one option 

for the user is to select the ‘Transmit All’/’Commit All’ item from the ‘Collaboration’ menu, 

which generates a synchronization event for each of the objects registered as root with the 

infrastructure; in this case the Outline. As a result, the coupler consecutively reads the 

current values of each of the object’s properties and transmits them as (over)write property 

operations. The operations are tagged according to the transmit parameter of the triggering 

synchronization event—Transmit or Commit; the transmit parameter is set to Scheduled 

whenever the event is triggered by a timer. 

Upon delivery at the remote site, the coupler looks up the respective write handlers for 

each property and uses them to overwrite the current values. In effect, this scheme is very 

similar to the classic file-based sharing and requires that users take turns at editing the outline 

to avoid overriding each other’s changes. However, since the infrastructure is aware of the 

logical structure of the outline, we can do better than file-based sharing by transmitting parts 

of the shared structure. For that purpose, users can open the object browser, select the object 

they want to transmit/commit, and issue the respective command, as shown on Figure 5.2. 
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Figure 5.2 Selective Transmit/Commit 

Thus, if user A works on section 1, while user B works on section 2, the two can 

exchange updates without overriding each other’s changes by selectively sending the values 

of section 1 and 2, respectively. 

To conclude our discussion on this scenario, let us summarize the development steps 

involved in achieving this type of sharing: 

• Modify the Outline class to either implement the Identifiable interface, or 

subclass ReplicatedObject. 

• Define two XML property specifications for simple and sequence properties, such as 

the ones discussed in the previous chapter. Since the infrastructure fully supports 

simple, sequence, and table properties, it provides default such specifications that can 

either be reused directly, or with minor revisions. 

• Implement four property handlers: a read and a write handler for each of the two 

property types (simple and sequence). The infrastructure provides default 

implementations and those can be reused directly, or with minimal revisions, such as 

the reordering of arguments. The implementations themselves are rather 

straightforward and require between 10 and 20 lines of code each. 

• Modify the startup code to include initialization of sharing functions. For this 

application, this translates into 4-5 additional lines of code, as shown below (in bold): 
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 public static void main( String[] argv) throws Exception { 
  SystemBoot.initAll( argv); 
 // Single-user initialization 
 Outline outline = initOutline(); 
 JFrame outlineView = initOutlineView( outline); 
 outlineView.setVisible( true); 
 // ------------------------ 
 ColabJMenu.addColabMenu( outlineView); 
 PropertyRegistrar.registerPersistent( outline, "Outline"); 
 CouplingObjectBrowser.addRootObject( outline); 
 CouplingObjectBrowser.setVisible( true); // optional 
 } 

5.1.1.2 Scenario 2: Diff-Based Peer-to-Peer Sharing 

Although we can leverage the knowledge of the outline’s logical structure to implement 

fine-grain sharing, the read/write model may be too inflexible to accommodate user needs, 

even if they are satisfied with the general idea of asynchronous sharing. For example, 

consider the insertion of a new top- level section into the outline—it requires that the state of 

the whole outline be transferred for the insertion to be shared. Moreover, it also implies that 

receiving users must stop working while the insertion is performed and communicated to 

avoid their changes being overwritten. More generally, users must carefully coordinate their 

actions and must keep track of the changes they make to avoid rolling back other users’ 

actions.  

To avoid such problems, a developer may use the infrastructure-provided object diff- ing 

service. From a user’s point of view, the only difference is the policy specification of the 

acquisition parameter—instead of Read it is set to Diff. From a developer’s point of view, the 

effort is very similar to that of the previous case. The only difference is that instead of write 

handlers, the developer must provide diff handlers. Arguably, these require a somewhat 

greater effort—the default implementations supplied by the infrastructure are between 50 and 

100 lines of code. However, since diff- ing discovers user updates at a finer granularity, it also 

allows the infrastructure to make better decision in interleaving them so that user intentions 

are preserved. Moreover, we expect the default diff handlers to be used in most applications. 

Recall that, to achieve this finer granularity, the diff- ing is performed in a recursive 

manner. Hence, it would be necessary, in addition to the Outline, to analyze also the 

Section object. Fortunately, depending on the concrete implementation chosen, this requires 

little or no extra effort in our infrastructure. To illustrate the point, let us consider two options 

for the implementation of Section and their respective costs to the developer 
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The first one is to establish an Is-A class inheritance relationship between the Section 

and the Outline. Indeed, since they have similar logical structure and are related, it is 

reasonable to move the implementation of the basic functionality (the seven methods shown 

on Figure 3.1) into the Section and for the Outline to inherit it. In other words, the design 

establishes that the Outline Is-A Section. Like other infrastructures (e.g., Sync) ours 

requires no additional effort to share a subclass, if the superclass is already shared. Thus, if 

everything is in place for the Section, the Outline will automatically be shared. 

However, a second line of reasoning is to conclude that, while the Outline Has-A 

number of Sections, it is not a special case of a Section because, eventually, its logical 

structure may differ significantly in that it may have to maintain a lot of other information, 

such a list of authors, a set of keywords, etc. Thus, we may end up with two unrelated (in 

terms of inheritance) classes, which partially share logical structure but may have deifferent 

implementations. For example, the Section class may look as follows:    
public class Section extends ReplicatedObject {    
  public String getHeading();  
  public void   setHeading( String heading); 
  public Section[] getSubsections(); 
  public void      insertSubsection( int i, Section s); 
  public void      removeSubsection( int i); 
} 

Thus, we will need a second version for the sequence property specification, as well as a 

(trivial) new property read handler. However, we would be able to directly reuse the most 

expensive part of the implementation—the diff handler—by appropriately structuring its 

implementation. To illustrate, consider the following template for the sequence diff handler:  
SequenceDiffer(Object obj1, Object obj2, Property property) { 
  PropertyReader reader = (PropertyReader)property.getHandler(“read”); 
  Object[] value1 = reader.getValue(obj1,null); 
  Object[] value2 = reader.getValue(obj2, null); 
  // Compute diff of value1 and value2 … 
  … 
} 

By using the read handler to abstract away the details of the read operation, we were able 

to fully reuse the differ across multiple sequence property implementations, thereby 

minimizing deve loper’s effort. 
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5.1.1.3 Scenario 3: Centralized Commit-Based Sharing 

Another extension to our first scenario is to supplement the peer object replicas with a 

centralized master copy, which keeps only the committed state of the shared object (Figure 

5.3). This approach is analogous to the Suite’s sharing model, although the implementation is 

achieved differently. Conceptually, the master copy, which corresponds to Suite’s active 

object, is just another replica of the shared object. Its main characteristic is that it accepts 

only those incoming changes that are marked as committed. Specifically, it has the following 

fixed sharing policy: <Read, Increment, Commit, Replay>.  
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Figure 5.3 Centralized Commit-Based Sharing 

Since the master copy does not interact with the user directly, it runs a modified version 

of the application code that does not include the user interface part. Thus, the master copy 

also never initiates updates, which could become a problem if a user working on his local 

(non-committed) version decides to revert to the committed one. To support this case we give 

the user the option to request the current state of an object by selecting it on the object 

browser and issuing a request command. The request, which resembles Suite install 

command, may be directed at any of the participating users or the master copy. From an 

implementation point of view, the request is simply a synchronization event that is triggered 

by the actions of a remote user rather than the local one. When the request is received by the 

master copy, it uses the current acquisition method—read in this case—to obtain the current 

state of the object and send it back to the requesting user. If the acquisition were set to Log, 
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the corresponding outgoing queue of events would be flushed, which is the semantics 

implemented by Suite’s install. 

From the discussion so far, it should be clear that the decision to use a peer-to-peer or a 

centralized architecture for the shared object is independent of the mechanisms used to obtain 

the updates. Therefore, the described master copy approach can be used for asynchronous 

sharing both with read-based and diff-based policies. 

To summarize the developer’s effort—it is the same as in the corresponding peer-to-peer 

case (Scenarios 1 and 2) with the additional need to set up and run a master copy. In the 

Outline example, the master copy version is implemented by simply omitting the UI 

initialization in the application startup code, which reduces it to the following: 

public static void main( String[] argv) throws Exception { 
  SystemBoot.initAll( argv); 
 // Single-user initialization 
 Outline outline = initOutline(); 
 // ------------------------ 
 PropertyRegistrar.registerPersistent( outline, "Outline"); 
} 

5.1.2 Flexible Event -Based Sharing 

So far we discussed scenarios in which the multi-user application code is practically the 

same as the single-user version except for the implementation of the Identifiable interface 

by shared objects and the inclusion of collaboration services in the startup code. Let us now 

consider the case where the application programmer provides specific collaboration support 

in the form of a notification mechanism, which may, in fact, be provided even in a non -

collaborative application to componentize it. 

5.1.2.1 Scenario 4: Peer-to-Peer Sharing 

The basic precondition for implementing event-based sharing is that the application 

should issue an appropriate property event whenever a change to the state of a replica is 

introduced. In our application, this translates into issuing a PropertyOperation event after 

the invocation of each of the four methods that modify the Outline object—setTitle, 

insertSection, removeSection, and setSection. In practical terms, this can be 

implemented in five lines of code as follows. The first step is, as part of the object 

initialization, to obtain from the registry a reference to the coupler, where all events are to be 

delivered: 
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public class Outline extends ReplicatedObject { 
  ColabEventListener coupler = (ColabEventListener) 
        CentralRegistry.lookup(“service.CentralEventDispatcher”); 
   … 

} 

Next, for each of the four modifier methods, add a statement issuing a notification before 

completing the method invocation. For instance: 
public void setTitle(String title) { 
  … 
coupler.dispatch(new PropertyOperation(this.getGID(), “title”, 
                                       “setter”,new Object[] {title})); 

} 

Once the coupler receives the notification, the rest of the sharing is handled automatically 

based on the current policies in place. Thus, the basic investment into a notification 

mechanism on part of the developer is fairly modest. Yet it provides additional flexibility to 

the user. 

First, it allows asynchronous sharing, similar to Scena rios 1-3, to be implemented 

through event logging/replay: by default, all property events are Increment and Raw; if the 

effective policy specifies that only Transmit/Commit events should be communicated, then 

exchange takes place only upon the explicit user command. Similarly, Scheduled events are 

transmitted at user-defined times. 

Second, it allows for synchronous semantic sharing of the outline, which can be achieved 

by setting a sharing policy that allows all incremental updates to pass through without 

placing restrictions on their correctness. 

To take full advantage of the sharing options presented by our model, the application 

must also provide additional information about the level of correctness of the updates and the 

communication operation executed. Generally, the model- level object (i.e., the Outline) 

must be aware of the level of correctness of each change, as it is its job to ensure it. Hence, it 

only needs to pass along this information by tagging the updates as Parsed, or Validated. In 

terms of implementation, this corresponds to one more line of code for each modifier 

method: 

... 
PropertyOperation po = new PropertyOperation( outline,“sections”,   
                                              “insert”, newSection); 
po.setCorrectness(2); // extra line: set correctness to Validated   
coupler.dispatch( po); 
... 
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 Indicating a Complete editing operation (the only value of the transmission parameter 

not covered by asynchronous sharing) is slightly more complicated, as it involves the user 

interface. One of the inexpensive ways to realize this in our example is to replace the default 

editor for the JTree nodes—a text field editor—with a custom one that, in addition to 

performing the editing operations, also issues synchronization events whenever the editing is 

completed. By subclassing the standard Swing DefaultTreeCellEditor, the actual 

implementation takes about 15 lines of additional code.  

In summary, depending on the desired level of support, we need 20-35 lines of 

application code to incorporate event-based sharing, in addition to the two property 

specifications and two read handlers, which are identical to the previous cases. 

5.1.2.2 Scenario 5: Centralized Sharing 

This scenario extends the previous one in the same way as Scenario 3 extends Scenario 2 

in the asynchronous case, by adding a master copy, which holds the committed state of the 

shared object. The cost is identical to the one discussed in Section 5.1.1.3 and includes the 

creation and setup of a version of the code that has no user interface (the exact same one used 

in Scenario 3). 

5.1.2.3 Scenario 6: Model/View Sharing 

So far we have only considered the sharing of the semantic Outline object and not its 

user interface presentation. While semantic sharing is likely to cover a significant fraction of 

actual usage scenarios, it is not always sufficient. For example, in our implementation, the 

setTitle/setHeading methods of the Outline/Section objects are not invoked until the 

user has finished editing the corresponding field. However, it may be desirable for users see 

and discuss incremental changes, such as inserting a character, as they happen. Furthermore, 

observing changes also provides implicit awareness of other user’s actions, even if the 

individual changes are not that important. For example, user A may observe that some other 

user is editing section 2 and decide to work on a different section. 
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Figure 5.4 (Centralized) Model/View Sharing 

Let us now consider the scenario depicted on Figure 5.4, which extends previous ones by 

incorporating the sharing of the view layer. The dotted rectangle in the picture represents the 

fact that we consider both the peer-to-peer and centralized versions of this sharing scenario. 

The effort to create and manage the master copy is identical to the previous centralized 

scenarios. However, there are some minor differences in the event handling in the two cases, 

which we will point out in due course. 

Recall that we use XML definitions to describe the application layers as well as their 

inter-dependencies. In our simple example, the application consists of three classes—

Outline, Section, and JTree—with the first two comprising the model layer and the last 

one the view. Since the model (i.e., the JTree) is the editing interface through which all 

changes to the model are introduced, we consider the model to be dependent on the view. 

Following the XML definitions described in Chapter 4, we specify this application layering as 

follows: 
<?xml version="1.0" encoding="UTF-8" ?>  
<object class = "outline.Outline"> 
  <layer name="model"> 
    <ALL />  
  </layer> 
</object>  
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<?xml version="1.0" encoding="UTF-8" ?>  
<object class = "outline.Section"> 
  <layer name="model"> 
    <ALL />  
  </layer> 
</object>  

<?xml version="1.0" encoding="UTF-8" ?>  
<object class = "javax.swing.JTree"> 
  <layer name="view"> 
    <ALL />  
  </layer> 
</object> 

<?xml version="1.0" encoding="UTF-8" ?>  
<layer_dependencies> 
  <view> 
    <model/> 
  </view> 
</layer_dependencies> 

Recall that the basic problem we address though layering description is to avoid multiple 

notification of causally related events. Such events occur as a result of the transformation of 

user actions from one layer of abstraction to the next. Thus, given the layer dependencies and 

a specified shared layer, the infrastructure must ensure that events from the specified shared 

layer get through, while filtering out events received that are dependents of or editors of the 

given layer are filtered out. Translated into our example, this means that whenever model 

sharing is chosen, no view updates should be communicated. Conversely, if view sharing is 

chosen, then no model updates should go through.  

The latter rule, however, has an important exception when the application has a master 

copy. In this case, model updates (identified by the fact they belong to a layer with no 

dependents6) are specifically communicated to the master copy but not other replicas (by 

conventions, the master copy is one with the special name of “*MasterCopy*”). More 

generally, the master copy must always receive committed model updates regardless of the 

sharing policy. The reasoning here is fairly straightforward—because the master copy 

belongs to one layer, there is no chance of multiple notifications. Furthermore if model 

updates are not delivered even when the model layer of not shared, the master copy will be of 

no use.  

                                                 
6 This may lead to the communication of some non-model events, which are ignored if they refer to an 

object that does not exist at the master (e.g., window).  A planned extension of the layer specification 

mechanism will solve this by specifically tagging the layers that are present at the master copy.  
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The user view of the shared layer specification is very simple—the user pulls up the 

“Collaboration” menu and selects the “Shared Layer” item, which brings up the tree 

representation of the layer dependencies shown on Figure 5.5 (prefix “[Increment]” marks a 

currently shared layer). A right-click on the layer name pops up the list of available policies 

and, upon selection, the sharing for dependent layers is automatically reset. 

 

Figure 5.5 Layer Sharing Specification User Interface 

The next step is to connect the view and the coupler so that the view can deliver 

notifications. As before, this can be achieved by looking up the coupler, which is registered 

under a well-known name from the registry. However, this would require the programmer to 

implement the translation of JTree events into property events. To automate this process, the 

infrastructure provides an AWTEventAdapter object, which is a static object, and 

automatically translates all AWT/Swing events it receives into property operations and 

delivers them to the coupler. Thus, the connection is reduced to making the 

AWTEventAdapter a listener of all relevant JTree events: 
AWTEventAdapter.translate(jtree); 

The AWT event adapter is initialized at startup time and installs itself as a listener of the 

system event queue, through which all events pass. It also maintains a table of objects for 

which the translation must be performed. Whenever an event is received, the source is looked 

up in the table and, if present, the event is translated. Thus, the above translate invocation 

simply adds the jtree object to the table. The adapter also has methods for translating all 

events and for removing specific, or all, objects from the table. 
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Finally, we need to register the JTree object with the registry to establish its global name 

mapping. This achieved by adding the following line to the startup code: 

PropertyRegistrar.registerPersistent(outlineView, "View"); 

To summarize, the effort to add view sharing option to the model sharing of previous 

scenarios consists primarily of providing appropriate layer definitions and registering the 

view objects. The translation of the standard UI events to property events is largely 

automated by the provided adapter. 

5.2 User Interface Toolkit Sharing 

Conceptua lly, our UI toolkit sharing has the same goals and has similar mechanisms to 

that of our benchmark system—JCE—however the actual implementation is somewhat 

simpler7. Most notably, unlike JCE, we do not replace the standard implementations of the 

AWT/Swing components so that we can intercept their event stream. Instead, we use a 

specialized version of the standard GlassPane8 container, called SharedGlassPane, which 

we place on top of every shared frame, as illustrated by Figure 5.6.  

 

Figure 5.6 Java's GlassPane container 

The main purpose of this graphically transparent object is to gain complete control over 

the capture and replay of all user actions. Whenever the SharedGlassPane’s transparent 

property is set to true, the UI toolkit delivers all mouse/keyboard events to it, and allows the 

infrastructure to decide how the event is processed. In particular, the events initiated by the 

active user are allowed to proceed as usual and are also replicated at all other sites. At the 

same time, local events of inactive users are blocked, which guarantees the exclusivity of 

                                                 
7 Some of the Java features we use were not available at the time when JCE was first developed. 
8 http://java.sun.com/docs/books/tutorial/uiswing/components/rootpane.html 
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user access required to ensure the correctness of UI sharing. Thus, we effectively share the 

queue of UI events generated by the active user’s actions. 

A secondary purpose of the SharedGlassPane is to support the use of telepointers, such 

as the ones provided by GroupKit. A telepointer is simply a local presentation of a remote 

user’s pointer/cursor (usually with a different shape or color to help distinguish it). The only 

notable difference in our implementation is that it is provided (and managed) as part of a 

shared UI system, whereas in GroupKit it is provided as a widget that must be explicitly 

managed by the application. 

In our implementation, the only change required to the standard UI library is to make all 

UI components Identifiable so that peer objects can be identified and events are delivered 

properly. Since all such components are subclasses of java.awt.Component, it is the only 

one we have modified and replaced in the standard library.  

Like JCE, the naming of UI components is handled automatically by the infrastructure in 

cases where window sharing is used throughout an entire collaborative session. However, if 

dynamic multi- layer sharing is to be supported, the application programmer may need to 

provide some minimal support. In particular, if the application creates more than one 

application window, the developer must explicitly provide names for all root windows.  

Otherwise, the infrastructure may be unable to conclusively match application window 

replicas after a period of non-window sharing.  

In summary, given the scenario of continuous window sharing, our infrastructure 

provides the same features and development effort as JCE. In addition, we support a 

transition scheme that allows the application to switch from non-window to window sharing. 

In this case, the programmer may need to provide minimal additional support in the form of 

naming. We should also note that such a transition may not always be possible—if one user 

has two application windows opened while another only one, it is not possible to reconcile 

the two versions regardless of who initiates the exchange. (Simply recreating the missing 

window would not solve the problem because the UI components would not be connected to 

the respective application objects being rendered and we would end up with a “mockup” 

window.) 
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5.3 GraphDraw Application 

5.3.1 Overview 

The GraphDraw application is a sample application provided as part of the GEF (Graph 

Editing Framework) developed at the University of California at Irvine by J.Robbins. The 

basic goal of GEF is to provide a UI toolkit for the development of various applications 

requiring graph editing, such as circuit design, or a Petri net editor. All of our experiments 

were performed with version 0.6 of the implementation. A more recent version of GEF9 

serves as the UI platform for the open source ArgoUML editor10.  

The GraphDraw application (Figure 5.1), consisting of 9 Java classes, is fairly simple in 

that it defines two types of graph nodes and two types of graph edges and registers them with 

the framework, which handles everything else. Thus, the essential task we performed and 

measured was the transformation of GEF from a single-user toolkit into a multi-user one. 

The main reason we chose GEF was that it made extensive and consistent use of 

programming patterns and, therefore, made a good test case for our assertion that we can 

provide a low-cost high-flexibility sharing solution based on patterns for existing code.  

 

Figure 5.7 GraphDraw Application 

Overall, GEF consist of 171 Java classes totaling over 26,000 lines of code. A GEF 

graph diagram consists three basic layers—a graph layer, a graph view layer, and a figures 

                                                 
9 http://gef.tigris.org/ 
10 http://argouml.tigris.org/ 
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layer. The graph layer represents the abstract graph (nodes and edge) being edited. 

Applications can add specific semantics to the nodes and edges (e.g., implement a Petri net) 

by reacting notifications whenever new nodes/edge are created, connected, disconnected, and 

destroyed. The graph view provides the specific graphic representation through which users 

can manipulate the nodes and edges of graphs. The figures layer consists of a number of 

standard shapes, such as ovals, rectangles, and text boxes that can be used to annotate the 

graph. In general, the graph and the figures layers are separate and may exist independently 

of each other—a graph may not have annotations and an annotations-only diagram is simply 

a drawing like the ones produced by any standard drawing editor. In addition, we define a 

window and an appearance layer much like we did for the Outline application. The window 

layer encompasses all objects within the application window, whereas the appearance layer 

consists of the window components/attributes that do not affect the editing of the graph—

window size/position, scrollbar position, etc. The resulting decomposition is shown on Figure 

5.8. 

Graph

Graph ViewFigures Appearance

Window

Graph

Graph ViewFigures Appearance

Window
 

Figure 5.8 Layer Dependencies for GraphDraw Application 

Although we have implement the peer-to-peer versions of all of the scenarios mention 

above, to avoid repetition, we focus the following discussion on two scenarios that we have 

not discussed so far—dynamic multi- layer sharing and window sharing.  

5.3.2 Dynamic Multi-layer Sharing 

Multi- layer sharing is the natural generalization of the model/view sharing discussed in 

the previous section. In the model/view case the sharing of one layer automatically precludes 

the sharing of the other. In multi- layer sharing, any combination of layers that are not 

dependent on each other may be shared at the same time. For example, any combination of 

shared graph, figures, and appearance layers is admissible and the judgment call about the 

usefulness any particular combination is left to the users (or applications). Consequently, it is 
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also crucial to allow users to explore sharing modes and dynamically switch on and off the 

sharing of each individual layer. Let us briefly consider some of the possibilities presented by 

different combinations: 

1. Share graph layer only (Figure 5.9). In this mode, the topology of the graph would be 

shared but its visual appearance and annotations may differ. Note that, as a side effect 

of replicating the insertion of a graph node/edge into the graph, a corresponding view 

object will also be inserted. Initially, the insert position of the view object would be 

the same as the original; however, subsequent updates would not be reflected  

 

Figure 5.9 GraphDraw application: graph layer sharing 

2. Share graph view layer only (Figure 5.10). This leads to the sharing of both the 

topology and the graphic presentation of the graph. Annotations, however, may be 

different. This is useful when different users work on different aspect of the graph 

and their annotations of the graph are largely private. 

 

Figure 5.10 GraphDraw application: graph view layer sharing 
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3. Share graph view and figures layers (Figure 5.11). Essentially, the graphic 

representation of the graph with all its annotations will be shared in its entirety, 

however, users retain the freedom to navigate autonomously and edit the graph 

concurrently. 

 

Figure 5.11 GraphDraw application: graph view and figures layers sharing 

4. Share the window layer (Figure 5.12). This is a form of the UI-based sharing we 

discussed in Section 2.1—all users have identical views of the application and only 

one user at a time can be active. The details of this implementation are given in the 

next section.  

 

Figure 5.12 GraphDraw application: window layer sharing 

Experience shows that the above sharing modes are the most likely to be used in actual 

collaboration and that the ability to switch from one mode to another is highly desirable [10, 

11]. Therefore, let us now consider how the actual transition would be achieved. From a 

user’s point view, the effort consists of clicking on the respective layer and selecting a 

sharing policy.  
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From the point of view of the infrastructure, the transition from a higher-numbered (in 

the above list) sharing mode to a lower one is trivial—the infrastructure simply stops sharing 

the updates of the non-shared layers and the different replicas eventually diverge. The reverse 

transition requires more work and, in the general case, is not possible without application-

specific information. In our case, we employ the layering information and the property 

specifications and handlers to achieve this transition.  

Suppose that we want to switch form graph sharing to window sharing. Initially, users 

may have completely different views of the shared graph, however, before we switch to 

window sharing, they must become identical. To accomplish this, we walk the tree of layer 

dependencies (Figure 5.8) in a depth-first manner starting with the new shared layer and, at 

each step, synchronize the state of the respective layer. For the GraphDraw application, one 

possible layer walk is figures, graph, graph view, appearance. The layer synchronization 

involves finding all registered shared objects that belong to the layer, finding their 

corresponding properties with their read handlers, reading the current state, and sending it as 

a set of committed overwrite operations to remote users. We use the state of the user 

requesting the sharing mode switch as the master copy with respect to which all other 

replicas are made consistent. Once dependent layers become consistent, the infrastructure is 

ready to start window sharing. 

5.3.3 Development Costs 

The development costs related to adding collaborative functions to the GraphDraw 

application fall into two categories—XML declarations and Java code. Let us first examine 

the XML specification effort, which consists primarily of property specifications. 

As it turns out, GEF employs only three basic patterns in the object structures we want to 

share—standard simple (JavaBeans) properties, as well as two versions of set properties to 

maintain a variety of list structures. A set property resembles a sequence, however, it has no 

explicit methods to control the ordering of its elements as illustrated by the following piece 

of code: 
public void add(Fig fig); 
public void remove(Fig fig); 
public Vector getFigs();  
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The actual specifications are simplified versions of the sequence property definitions and 

are given in the Appendix. The corresponding property handlers are also reused with nominal 

changes. The layer specifications are also quite simple, owing to the fact that all objects 

belonging to the figures layer and the graph layers are subclasses of the Fig and 

NetPrimitive classes defined by GEF. Hence, a single definition for these classes covers all 

the different objects that can belong to them. 

Table 5.1 summarizes the Java coding effort to achieve the described collaboration 

behavior for all peer-to-peer sharing scenarios for the GraphDraw application. To build a 

centralized version, additional effort would be required to decouple the abstract graph 

representation from its user interface. While in GEF these are separated in different classes, 

the architecture is not designed for dynamic composition. Therefore, untangling the graph 

objects and their user interface requires redesign effort, which we consider beyond the scope 

of our work. One simple way around this problem is to run an extra copy of the existing 

application version (with the user interface) that is not used by any user with the appropriate 

commit-based sharing policy.   

GraphDraw

Action Modified Modified Added

Total Lines of Code 26 76 102 204

Affected Classes 5 13 4 22

Code Complexity

import statements 11 15 12 38

if statements 0 3 1 4

for statements 0 5 1 6

GEF
Total

 

Table 5.1 Code Statistics for GraphDraw Application 

Let us now consider in more detail the breakdown of the numbers in Table 5.1. We have 

broken all statis tics into two basic categories related to the GEF infrastructure, which would 

be reusable with any GEF-based application, and changes to the example GraphDraw 

application. As the numbers suggest, the bulk of the effort is concentrated on adapting and 

extending GEF. The first line gives the sum total of the lines of code that have been 

added/modified (all changes were tagged at the time of introduction to enable the collection 

of this data). The affected classes row gives the number of classes in which at least one 
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change related to collaboration has been made (we exclude bug fixes to the original 

implementation). In the last three lines of the table we provide some basic measures of the 

complexity of changes introduced. Approximately 20% of all changes are import statements, 

which exist solely for convenience reasons and do not represent a computation. The rest of 

the effort is fairly straightforward linear code—mostly variable declarations and invocations 

of infrastructure services—with the exception of four if and six for statements.   

The added infrastructure code consists primarily of three event adapters that translate 

GEF-defined events into property and synchronization events. Although this code nominally 

represents more than 50% of the changes to GEF, its implementation is largely routine, as 

illustrated by the following typical method: 

   public void edgeAdded( GraphEvent e) { 
 PropertyOperation po = new PropertyOperation( modelGID, "Edges",  
                                                    "add", e.getArg()); 
 coupler.dispatch( po); 
   } 

Thus, the overall coding effort in terms of lines of code represents less than 1% of the 

original GEF code, which supports the automation and reuse claims of our thesis. In our 

experience, a much greater effort was expended on reverse engineering the design of GEF 

and fixing some of its bugs (the code was a work- in-progress version) rather than adapting it 

to collaboration. 

5.4 Shapes Application 

In this section we briefly describe an earlier experience with creating a collaborative 

version of the Shapes application, which was developed for teaching purposes at UNC. As 

Figure 5.13 shows, the application is a drawing editor featuring the customary commands of 

such applications. It is a simpler application than the GraphDraw, however, not a trivial 

one—it consists of 76 classes and almost 5000 lines of code.  

Our primary goal was the validation of our object diff- ing technique and, therefore, we 

applied diff-based sharing to the main object structure of the application, which consists of a 

Hashtable of Shape objects. The original results, featuring a work- in-progress version of our 

infrastructure, were reported in [21]. Since much of the infrastructure has changed, we 

provide an updated accounting of the development effort. 
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For this application, we used an application trigger, which listened for any user command 

and in response triggered a diff on the Hashtable by issuing a synchronization event. The 

coding of this application trigger took about 15 lines of code. In addition, we needed an 

additional 8 lines in the startup code (very similar to the ones already described for the other 

applications), 4 additional lines to make the shape table and all Shape objects Identifiable 

(by extending ReplicatedObject), and 5 additional lines of code to provide global names to 

all shared application objects. Since the shared table used the standard table pattern we did 

not have to add any property specifications or handler code. Thus, our overall effort was 

capped at 25 lines of additional code. 

 

Figure 5.13 Shapes application 

So far, the driving problem behind our effort has been the implementation of flexible 

object sharing. In the following sections we look at the utility of the mechanisms that we 

have developed by applying these mechanism to a set of problem that are unrelated to 

collaboration. 

5.5 XML-Based Object Serialization 

Our first problem was originally motivated by the needs of our infrastructure to store 

various objects, such as sharing policies, persistently. In that respect, Java seems to provide 

an excellent solution through its generic Java Serialization mechanism. The programmer’s 

effort is reduced to tagging the object as Serializable (that is, the object implements an 
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empty interface called java.io.Serializable) and executing the writeObject method of 

the ObjectOutputStream, which represents the persistent store. In addition to the object 

itself, the serialization will also store copies of any dependent objects to which the serialized 

object holds references and will recursively apply the serialization algorithm to the dependent 

objects until an entire self-contained object structure is serialized. 

While the outlined mechanism is very convenient, it also suffers from at least two major 

problems that limit its applicability. The first one we call the fragile serialization problem. 

Since the serialization stores the internal physical structure of the object, any changes to it, 

such as adding a local variable, would change the physical layout of the local variables, 

which, in turn, would render the serialized state of the old version unusable. In some 

situations, the serialization can break even without recompiling code if in the serialization 

process some execution environment state is also stored: upon deserialization in a different 

environment, some of the resources that the object refers to may not exist, thereby rendering 

the whole serialized object useless. 

The second problem is that Java stores its objects in a proprietary format. Hence, the data 

is bound to its Java object presentation and cannot be used autonomously. Thus, if the 

serialization breaks, the stored data would be irrecoverable, which largely contradicts the 

idea of reliable persistent storage. 

With the emergence of XML as a universal standard for storing structured data, the 

obvious choice for resolving the proprietary format issue is to replace it with XML. However, 

as demonstrated by KOML11, simply changing the encoding while still relying on the 

physical object layout does nothing to solve the fragility problem.  

Currently, there are two basic approaches to solving the fragility problem. The first one 

(most widely used) is to shift the burden back on the shoulders of the developers by, 

essentially, requiring them to implement the XML serialization manually. This approach is 

most prominently illustrated by the standardization effort12 currently under way, called Java 

data binding, that seeks to define a standard API for mapping Java objects to XML. While 

this standardization would be helpful, it would still leave the implementation in the hands of 

                                                 
11 http://koala.ilog.fr/koml 
12 http://java.sun.com/aboutJava/communityprocess/jsr 
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the application developer. Thus, we have a mechanism with maximum flexibility but, unlike 

the original Java object serialization, virtually no automation. 

The second approach, exemplified by KBML13, is to extract the logical structure of the 

object based on JavaBeans properties. This allows the serialization to be completed 

automatically and to store the data in XML format that is independent of the serialized object, 

which solves the fragility problem. The main issue here is that the JavaBeans model is very 

limited in its ability to describe programmer-defined abstractions (this issues was already 

discussed in the context of object sharing). 

Our solution is can be viewed as extending the KBML approach by utilizing our pattern-

based abstraction model to provide automatic XML serialization to a wider range of 

abstractions than currently possible. We also rely on our architectural model to obtain an 

extensible solution that promotes code reuse (the implementation of the serialized object 

remains untouched). 

The actual service, called XMLSerializer, follows the same generic ObjectWalk 

algorithm we first presented in Chapter 3. The only minor difference is that, at each step, the 

processing (i.e., XML encoding) of an object is split into three parts—generation of opening 

XML tag, recursive serialization of properties, and generation of closing XML tag—instead of 

two shown in the generic version: 
XMLSerializer(object) 
  if object == null || object in visited list 
    return 
  <add object to visited list> 
  <start XML encoding of object> 
  for each property pi of object do 
    reader = lookup read handler for pi 
    if reader != null 
       values[] = reader.getValue(object,pi) 
       for each v in values  
         ObjectWalk(v) 
       end 
    fi 
  end 
  <complete XML encoding of object> // extra processing 
end 

Note that, in this case, we need only the standard read handlers to complete the task 

because the only operation we need from the property is to obtain its current state. Thus, any 

                                                 
13 http://koala.ilog.fr/kbml/ 
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object property defined through our specification mechanism is automatically XML 

serializable.  

To illustrate the work of our service consider the serialization of the example object 

structure shown graphically on Figure 5.14. On the diagram, rectangles represent objects, 

whereas rounded rectangles represent object properties. The generated XML representation is 

shown on Figure 5.15. It is worth noting that the end result is an XML document that is 

completely independent of the original Java object. The only reference to it is the javaClass 

attribute, which is the minimum information we need to enable the reverse deserialization 

process.  
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Figure 5.14 Example Outline object for XML  serialization 
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<?xml version="1.0" encoding="UTF-8" ?>  
<outline javaClass = “outline.Outline”> 
  <title>Title</title> 
  <sections> 
    <section javaClass = “outline.Section”> 
       <heading>Section 1</heading> 
       <subsections> 
         <section javaClass = “outline.Section”> 
           <heading>Section 1.1</heading> 
           <subsections/> 
         </section> 
       </subsections> 
    </section> 
    ... 
    <section javaClass = “outline.Section”> 
      <heading>Section 5</heading> 
      <subsections/> 
    </section> 
  </sections> 
</outline> 

Figure 5.15 XML serialization of example object 

In summary, our outlined XML serialization implementation has the following properties:  

Automation. Once the set of properties and respective handlers is defined, the conversion 

is done automatically and requires no further intervention. As already discussed, application 

programmers tend to use a relatively small number of patterns relative to the number of 

classes in an application. By defining the serialization on a per-pattern basis, rather than per-

class basis, the developer could realize significant savings, as well as simplify the 

management of any changes to the conversion scheme. Also, patterns are likely to change 

little from application to application, opening the possibility for complete reuse of the 

serialization handlers. 

Generality. The conversion scheme can be applies to an extensible set of objects through 

the addition of property specifications. In particular, unlike other data binding, it is 

independent of any particular API. Furthermore, it can cover a wider range of abstractions 

than JavaBeans-based schemes. 

Stability. Our approach solves the fragile serialization problem in a more general case 

than existing systems 

Reversibility. Using an analogous recursive procedure, the reverse XML-to-object 

conversion can also be executed, thereby providing support for the complete 

serialization/deserializatrion cycle. 
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5.6 UPnP Device Interoperation 

Let us now consider a problem that arises in the context of device interoperation. To 

enable such interoperation, a number of (sometimes competing) protocols, such as UPnP14 

(Universal Plug-and-Play), Jini15 (for Java objects), and WSDL16(Web Services Description 

Language). From the point of view of a device developer, this presents the problem of having 

to maintain a number of external interfaces that are not directly relevant to the device’s 

functions and, therefore, present development overhead. For example, a weather station 

device can be exported as a UPnP device, a Jini device (if its implemented in Java), or it 

could be treated as a web service and be exported using WSDL (Figure 5.16).  

UPnP Device

Jini Device

Web Service (WSDL)

UPnP Device

Jini Device

Web Service (WSDL)

 

Figure 5.16  Possible standardized interfaces for a weather device 

Ideally, it should be possible for the developer to focus entirely on developing and 

improving the device and have the external descriptions automatically generated. 

Unfortunately, to the best of our knowledge, no such tools currently exist. In fact, the tools 

that are in use take the exact opposite approach—they start with the respective device 

specification and generate a skeleton programming language implementation, which the 

developer must fill in. While it is usually straightforward to implement such an approach, it 

carries at least two non-trivial limitations.  

The first one is that each specialized tool takes care of specific protocol and it is unlikely 

that two separate tools will generate compatible skeleton implementations. The second one is 

that, over the lifecycle of a device, its description is likely to change as new versions are 

                                                 
14 http://upnp.org 
15 http://jini.org 
16 http://www.w3.org/TR/wsdl 



 141

developed. Existing approaches poorly support this process because they force the developer 

to come up with a new device description, generate a new skeleton, and again fill in the code. 

Clearly, both of the above problems stem from the fact that (skeleton) device code is 

generated based on the external description, whereas what is truly needed is support for the 

reverse process—generation of an external description based on the native device 

implementation. This would allow the developer to focus on the device and use protocol-

specific tools to automatically deal with the external protocol representation. 

In this section, we present our experience in generating external descriptions of Java-

based devices using the UPnP protocol. UPnP uses XML-encoded device descriptions and 

commands communicated via HTTP to facilitate device interoperation. The main obligations 

of a UPnP can be summarized as follows: 

• Export XML descriptions of services and actions. Generally, it is expected for UPnP 

services to be rather simple. To illustrate, consider the simulated StereoDevice shown 

below (Figure 5.17). In this case, the device might define four services: power 

management, input selection, track navigation, and volume (control). The actions, for 

the power service, for example, could be getPower (obtain the current power status) 

and setPower (change the power setting, turning the device on/off). For the track 

navigation, possible actions include getTrack/ setTrack, but also nextTrack/ 

previousTrack. 

 

Figure 5.17 Simulated StereoDevice 

• Provide HTML-based user interface. Each device is expected to provide an HTML 

interface to observe and control its status. 

• Generate events. A device may generate events announcing changes in its state that 

other devices can subscribe to receive. 

Taken together, the above UPnP requirements can incur significant development 

overhead, especially for a device undergoing active development with frequent changes. 
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Therefore, the goal of our work has been to automate the process by providing automatic 

support for all of the above requirements. In this section, we present our experience in 

addressing the first two requirements and sketch ideas on how to extend support to the third 

one. 

The basic design is based on the idea of providing a UPnP proxy service, which 

automatically fulfills the UPnP obligations on behalf of native devices (Figure 5.18) and in 

the following sections we successively describe our pattern-based approach to providing such 

a proxy service for Java objects.   

Native Devices

UPnP Proxy…

UPnP

Native Devices

UPnP Proxy…

UPnP

 

Figure 5.18 Exporting devices through a UPnP proxy 

5.6.1 System Interface Generation 

The essential idea of our design is to use properties to define (UPnP) services and pattern 

methods to define actions. Our actual implementation relies on the Java UPnP Stack17 

implementation from Siemens to handle the low-level details of the protocol. The UPnP 

Stack provides a high- level object API and handles, for example, the actual cumbersome 

XML generation of device/service description. However, the programmer is still responsible 

for defining the device, services, and actions in using the system-provided Device, Service, 

and Action classes, respectively.   

 To make our discussion more concrete, let us use the simulated StereoDevice presented 

above to illustrate our discussion. In particular, we use the following device implementation 

for that purpose: 

public class StereoDevice { 
    public static final String[] POWER_VALUES = {"Off","PwrSave","On"}; 
    public static final String[] INPUT_VALUES = {"CD","FM"}; 
    public static final int[] VOLUME_RANGE = {0, 10}; 

                                                 
17 http://www.plug-n-play-technologies.com 
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    public String getPower(); 
    public void setPower( String input); 
    public String getInput(); 
    public void setInput( String input); 
    public int  getTrack(); 
    public void setTrack( int track); 
    public void nextTrack(); 
    public void prevTrack(); 
    public int  getTrackMin(); 
    public int  getTrackMax(); 
    public int  getVolume(); 
    public void setVolume( int volume); 
    public void volumeUp(); 
    public void volumeDown(); 
}  

The first task of every device is to announce its presence and advertise its services. As 

already mentioned, we use properties as a guide to define services and we map each object 

property to a device service. The entire process is illustrated by Figure 5.19, where each 

numbered arrow represents a step in the process and is explained below in detail. 
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Figure 5.19 Announcing a UPnP  device through a proxy 

1. Our starting point is an instance of the device object (StereoDevice), which is 

created by the proxy. 



 144

2. Since the proxy has no knowledge of any particular device, it hands the device object 

to the Introspector for property analysis, which is based on a set of provided 

specifications. In the example, we define two types of properties: switch and 

navigation (referred to in diagrams as nav). These are both versions of the simple 

properties we used before. The difference is that a switch property is of String type 

and can take one of a fixed set of values (the name refers to the fact that is used to 

model switches that users manipulate). Navigation properties are distinct from the 

simple ones in that they are of integer type and define additional increment and 

decrement methods. 

3. Based on these definitions (the actual XML definitions are almost identical to the 

simple property definitions), the Introspector decomposes the object into a set of 

properties. 

4. Given a set of properties, the proxy defines a service for each discovered property. 

There are two switch properties (power and input) and two navigation properties 

(track and volume) in our StereoDevice object for which services are defined. 

5. Next, the proxy must map (that is, encode in XML) the actions of service, which 

correspond to our pattern methods. Such encoding is inherently property method-

specific and, therefore, is not embedded into the proxy. Instead, an action_mapper 

property handler is defined for each property that performs this task. The proxy uses 

the specification to lookup and invoke the respective handler for each of the switch 

properties. 

6. Similarly, the proxy uses the specification to lookup and invoke the respective 

handler for each of the navigation properties. 

7. Once the object encoding of the device is completed, it is handed off the UPnP stack 

with an announcement request. 

8. The UPnP stack announces the device to the world using the UPnP protocol (it will 

also remember this announcement and present it to any future inquiries it might 

receive). 
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5.6.2 User Interface Generation 

As part of the announcement, the device must include a URL at which an HTML user 

interface for interacting with the device must be specified. Again, this is a task that, from the 

point of view of the device developer, is pure overhead and should also be automated. To the 

best of our knowledge, current UPnP toolkits provide little in the way of automating this 

task, largely because they have no means of interpreting the device services/actions in a 

generic way. In contrast, we employ property-specific handlers to enable the automatic 

generation of the HTML interface. We use the following diagram to explain our solution step 

by step. Note that, at this point, the property analysis has been completed and the device has 

been announced. 
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Figure 5.20 Servicing an HTTP request 

1. The UPnP stack receives a regular HTTP GET request from a client. 

2. The URL of the request is passed on to the proxies, which has registered at startup as the 

handler for such requests. 
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3. The proxy parses the URL and executes any commands that might have been encoded 

(this is syntactic process and can be applied to any object). 

4. The proxy looks up the (cached) list of properties for the device object. 

5.– 8. Based on the specifications, it consecutively looks up and invokes the corresponding 

html_generator property handler for each of the four properties. Since we have two types 

of properties, there are two actual handlers defined.  

9. Combining the HTML produced by the handlers with some wrapping code for the whole 

device, the proxy returns the HTML page to the stack. 

10. The UPnP stack responds to the client request. 

5.6.3 UPnP Summary  

Above, we presented the implementation of a UPnP proxy service, which uses the 

developed pattern-based mechanisms to automate the process of exporting a native device as 

a UPnP device. Our solution has several notable properties: 

Device-centric. To the best of our knowledge, no other existing tool provides support for 

automatically exporting a device. As already discussed, this better supports the development 

cycle and leaves open the possibility to generate multiple (independent) external system 

interfaces, through which the device is accessible. 

Generic. The proxy can work for any device object, as long as it has defined properties. 

Note that, at no point does our solution require changes to the original device implementation 

and the addition of new devices does not require changes to the proxy. 

Extensible and customizable. The set of recognizable properties and, hence, device 

services can be extended by adding more property definitions and respective handlers 

without recompiling device or proxy code. Moreover, by swapping property handlers the 

system can be incrementally customized, e.g., change the HTML interface, or provide 

multiple versions of it. 

Code reuse. In addition to fully reusing device and proxy code, our infrastructure allows 

handler code to be readily reused across devices (e.g., multiple devices are likely to have 

switch/navigation properties and they can share the HTML interface). 

Finally, we would like to point out that our diff- ing service could be used to deduce and 

announce changes on behalf of a device that does not, by default, issue events. 
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5.7 Summary 

In this chapter we shared part of our experience in developing multi-user application 

using our prototype implementation, as well as presented our experience with non-

collaboration problems. Through this effort we sought to demonstrate that the design 

rationale of our conceptual model is supported in practice. Our primary focus has been on 

measuring the implementation effort in order to quantify the infrastructure’s achievements 

with respect to automation and code reuse. 

 Our results show that we were able to achieve a level of sharing flexibility that is as high 

as that of our benchmark systems—Suite—at the cost of less than 1% of the original single-

user code for a non-trivial piece of software, such as GEF. Furthermore, for the special case 

of WYSIWIS sharing we require no specific collaboration support from the application just 

like our benchmark system JCE. 

With respect to code reuse, we should point out that virtually all modifications to the 

original code were simple additions and did not require changes the logic of the single-user 

code. Furthermore, our mechanisms are designed to be complimentary to the basic reuse 

mechanism in object-oriented programming—class inheritance. That is, in addition to sharing 

code with their superclasses, by default, subclasses also share the XML-based specifications 

and respective property handler code. This feature is a direct result of the fact that patterns, as 

a mechanism to describe the object’s logical structures, completely subsumes inheritance. 



6. EVALUATION 

The goal of this research has been the design and implementation of a collaborative 

infrastructure that better satisfies the generic infrastructure requirements of automation, 

flexibility, extensibility, and code reuse, as defined in Chapter 1. Recall that by better we 

mean that for a given a level support for three of the requirements, our infrastructure will 

exceed, or at least match, the achievements of the benchmark systems with respect to the 

fourth requirement (in some cases, existing solutions are optimal so matching them is the 

best we can hope for). The results of our evaluation are summarized in a evaluation tables, 

which rank each surveyed system with respect to each of the infrastructures requirements.  

6.1 Method of Evaluation 

We have used two primary methods of evaluating the sharing infrastructures discussed in 

this dissertation with respect to the requirements—inspection and simulation. Inspection 

refers to the use of objective observations of the design and implementation of each system 

to establish the degree to which a certain requirement is met. For example, by examining the 

design and usage of an infrastructure, we can answer the question of whether or not the 

system supports compiled code reuse.  

To establish comparative results between a target infrastructure and our own we use 

simulation as our primary tool. That is, we compare the original implementation of a 

reference application using a particular infrastructure, with an analogous implementation that 

uses our infrastructure and simulates the features of the given infrastructure. As already 

discussed in Chapter 1, the basic criterion upon which we draw conclusions is the following: 

if our infrastructure can simulate the main (conceptual) features of another infrastructure with 

respect to a particular requirement with a comparable amount of effort, we consider our 

infrastructure to be at least as good as the other. If, in addition, we support features not 

present in the other infrastructure, we consider ours to be better with respect to the 

requirement.  
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In practical terms, providing complete implementation simulations for all of the surveyed 

systems is not feasible for at least two reasons. First, the different infrastructures are based on 

different software platforms that may exhibit features that are simply not available to our 

Java implementation. Second, the sheer implementation effort puts such a study beyond the 

scope of this dissertation. Therefore, our approach is to simulate several of the systems, an 

effort already described in the previous chapter, and provide an implementation sketch for 

the rest of the systems.      

Let us now describe the scoring scale for each of the requirements, as well as the criteria 

used to assign the specific scores. A more detailed explanation of individual scores is given 

after the tables. 

• Automation: Low/Moderate/High/Complete. We rate the automation of a system as Low 

if the effort to implement collaboration using the infrastructure becomes comparable to 

that of implementing it without the infrastructure. This may be due either to the low level 

of shared abstraction, which would require the developer to build higher- level 

abstractions, or the assumption of a very specific programming model that would 

essentially require the redesign of most applications.  

A Moderate designation means that the implementation effort requires some non-

trivial mapping between the application’s shared structures and the shared abstractions 

provided by the infrastructure. After this mapping is established, however, the 

infrastructure takes care of all the implementation details from that point on.  

 By High automation, we mean that the needs of a wide range of applications can be 

directly accommodated by the shared abstractions provided by the infrastructure and, as a 

result, the implementation effort for the multi-user application version is comparable to 

that of the single-user version. The programmer is required to provide some basic 

information and, perhaps, run some specialized initialization code but, by and large, no 

serious changes are required to implement collaboration. 

Complete is the highest rating and means that the single- and multi-user versions of 

the application code are identical. As the following tables suggest, this can only be 

achieved in a limited number of scenarios. 
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• Sharing flexibility: 

o Concurrent updates: Yes/No. With respect to this requirement, we ask whether the 

infrastructure permits concurrent updates to a shared object by multiple users. 

o Semantic sharing: Yes/No. We ask whether the infrastructure supports the 

independent sharing of a semantic object. 

o User interface sharing: Yes/No. We ask whether the infrastructure supports the 

sharing of the user interface of the application. 

o Sharing modes: Sync/Async/Flexible. The score with respect to this category 

describes (at a very high level) the types of sharing modes supported by the 

infrastructure. The Sync and Async values correspond to (pure) synchronous and 

asynchronous sharing, while an entry of Flexible indicates that the infrastructure also 

support some intermediate forms either based on parameters (e.g., Suite, TACT), or 

fixed points (e.g., JViews). 

• Abstraction flexibility: 

o Programmer-defined semantic objects: Any/No/<Object description>. With respect 

to this requirement, we have no fixed-point scale to differentiate among the 

infrastructures. By Any we mean that potentially any object can be turned into a 

shared object (at a nominal effort), if the sharing mode is fixed. By No we mean that 

it is not possible for the application programmer to define objects that are directly 

shared by the infrastructure. If neither Any nor No applies, we briefly describe the 

range of shareable objects and provide a detailed explanation in the respective 

narrative section explaining the score.  

o Programmer-defined user interface: Yes/No. To evaluate with respect to this 

requirement, we ask the question: Is it possible for the developer to write a custom 

user interface and still get sharing from the infrastructure for sharing both the 

semantics and the user- interface? This category applies only to infrastructures that 

support UI sharing; those that do not are marked with N/A. 

• Specification flexibility: 

o Late specification binding: Yes/No. With respect to this requirement, we pose the 

question: Is it possible for the user to specify the sharing mode without recompiling 

the application? 
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o Ease of specification: Low/Moderate/High. By Low we mean that the infrastructure 

requires a procedural specification of the sharing mode (i.e., writing code), which 

effectively precludes the user from routinely adjusting it at run time. A Moderate 

designation refers to a system that is parameter-based but its parameters values do not 

directly relate to the application objects manipulated by the user. Rather, they apply 

to an abstract model defined by the infrastructure. Therefore, the developer would 

have to map application abstractions to the model and build a specialized user 

interface to make these parameters available to the end user in an intuitive form. By 

High we mean that the specification mechanism closely follows the logical structure 

of the objects seen by the user and the infrastructure provides a generic user interface 

through which the user can manipulate the sharing parameters. Finally, we should 

note that we link this category to the previous one in that we only evaluate 

infrastructures that have a late specification binding mechanism. For those that do 

not, the requirement is trivially satisfied and, therefore, is marked with N/A. 

• Code reuse: 

o Compiled code reuse: Yes/No/Complete. With respect to this requirement, we ask 

whether it is possible to directly reuse compiled code from the single-user version of 

the application to build the collaborative one. Apart from the obvious Yes/No 

answers, we also designate with Complete all infrastructures in which this kind of 

reuse is taken to the extreme by reusing the entire application code without 

recompiling. 

o Incremental collaboration awareness: Yes/No. Recall that, by incremental 

collaboration awareness, we mean the ability of an infrastructure to accommodate the 

gradual transformation of a regular application into a collaborative one. An 

infrastructure supporting such incremental approach provides multiple levels of 

service, depending on the collaboration awareness of the application. Thus, the table 

entry reflects whether or not this is the case. 

• Extensibility: 

o Separation of shared abstractions and their implementation: Yes/No. The evaluation 

of this requirement is based on answering the question: Is it possible to compose the 

application with a completely different sharing implementation without modifying the 
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application code? Specifically, does the infrastructure design envision and facilitate 

such a transition. 

o Sharing functions separation: Yes/No. The evaluation of this requirement is based on 

answering the question: Is it possible to vary the implementation of one infrastructure 

function without modifying, or even knowing of, other infrastructure functions?  

o Late component binding: Yes/No. Here, we pose the question: Is it possible to 

compose the application and infrastructure services, as well as the different 

infrastructure services, at run time? Evident ly, this question is only valid for 

infrastructures satisfying at least one of the two preceding requirements; those that do 

not are marked with N/A. 
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6.2 Evaluation Tables 

REQUIREMENTS  \  INFRASTRUCTURES OUR JCE GroupKit Colab Suite JViews DISCIPLE

AUTOMATION Complete/
High

Complete High/High High High High High

FLEXIBILITY

   Sharing flexibility

      Concurrent updates Yes No Yes/Yes Yes Yes Yes Yes

      Semantic sharing Yes No Yes/Yes Yes Yes Yes Yes

      UI sharing Yes Yes No/No No Yes Yes Yes

      Sharing modes Flexible Sync Sync/Sync Sync Flexible Flexible Sync

   Abstraction Flexibility

      Programmer-defined semantic objects
Any/

Pattern-based Any No/Any Any
Concrete

types
JViews 
objects JavaBeans

      Programmer-defined user interface Yes Yes N/A N/A No Yes Yes

   Specification flexibility

      Late specification binding Yes No No No Yes Yes Yes

      Ease of specification High N/A N/A N/A High High Low

CODE REUSE

   Compiled code reuse
Complete/

Yes
Complete No/No No No Yes Yes

   Incremental collaboration awareness Yes No Yes/Yes Yes No No No

EXTENSIBILITY

   Shared abstraction/implementation separation Yes No No/No No No Yes Yes

   Sharing functions separation Yes No No/No No No No Yes

   Late component binding Yes N/A N/A N/A N/A Yes Yes

Simulatable N/A Yes Yes/Yes Yes* Yes* Yes* Yes
 

Table 6.1 Evaluation: Infrastructures vs Requirements (Part 1) 
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REQUIREMENTS  \  INFRASTRUCTURES OUR AMF-C DFS Coda Notes Bayou TACT Sync

AUTOMATION Complete/
High

Low Complete
Complete/

Low
High Low Moderate High

FLEXIBILITY

   Sharing flexibility

      Concurrent updates Yes Yes No Yes Yes Yes Yes Yes

      Semantic sharing Yes Yes Yes Yes Yes Yes Yes Yes

      UI sharing Yes Yes No No No No No No

      Sharing modes Flexible Flexible Async Async Async Async Flexible
Async,
Sync

   Abstraction Flexibility

      Programmer-defined semantic objects Any/
Pattern-based

AMF
objects

Any Any
Notes

Objects
Database
Records

Database
Records

Replicated
Objects

      Programmer-defined user interface Yes Yes N/A N/A N/A N/A N/A N/A

   Specification flexibility

      Late specification binding Yes Yes No
No/
Yes

Yes Yes Yes Yes

      Ease of specification High Low N/A
N/A/
Low

High Low Moderate High

CODE REUSE

   Compiled code reuse Complete/
Yes

No Complete Complete No No No No

   Incremental collaboration awareness Yes No No Yes No Yes Yes Yes

EXTENSIBILITY

   Shared abstraction/implementation separation Yes Yes No Yes No Yes No No

   Sharing functions separation Yes No No No No No No No

   Late component binding Yes Yes N/A Yes N/A Yes N/A N/A

Simulatable N/A No Yes Yes Yes* Yes No* Yes  

Table 6.2 Evaluation: Infrastructures vs Requirements (Part 2) 
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6.3 Comparative and Absolute Evaluation of Each System 

In the following sections, we evaluate each of the systems in the survey, as well as our 

own, and explain the specific tables entries that we have given for each system. Generally, 

the narration for each of the systems follows the order of the requirements in the above 

evaluation tables. We also perform a comparative evaluation of our work relative to the 

benchmarks to show that we have met our original design goals.  

6.3.1 JCE 

Recall that JCE is one of our benchmark systems with respect to automation and code 

reuse. Like other user interface-based systems described in Section 2.1, it uses the sharing of 

the user interface representation of an object to share the object itself. 

Based on this model, it provides fully automatic WYSIWIS sharing of arbitrary Java 

applications and, therefore, Complete automation. Since JCE has no notion of the underlying 

shared semantic object defined by the application, it disallows concurrent updates and cannot 

support separate sharing of the semantic object. At the same time, the WYSIWIS model 

implies synchronous (only) sharing of the user interface. 

With respect to abstraction flexibility, JCE’s model places no restrictions on the user 

interface implementation or the underlying semantic object. With respect to specification 

flexibility, none is supported in that there is a single sharing mode, which in turn implies no 

(need for) late binding mechanism. 

As already discussed, the compiled code reuse requirement is completely satisfied, 

however, incremental awareness is not in that the application cannot help improve the 

sharing support it gets provided by the infrastructure. Moreover, the infrastructure itself was 

not designed to be extensible in any way so that its sharing support can be improved upon.  

As our discussion on Section 5.2 showed, we were able to simulate JCE’s model for Java 

Swing-based applications by sharing the input/output event queues of the application. The 

Swing library is a second-generation implementation of the standard Java user interface 

toolkit designed to replace the first generation AWT. We did not implement sharing of Java 

AWT-based user interfaces and the reason for this is purely technical—the AWT 

implementation is closely tied to the underlying window system and sharing it required 

numerous modifications to the standard AWT library to gain complete control of the event 
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streams. Since such modification would be irrelevant to our primary goals, and would be 

largely repeating the solutions employed by JCE, we have opted not to include them as part 

of our infrastructure.  

6.3.2 GroupKit 

In the case of GroupKit, we have an infrastructure that provides two distinct sharing 

mechanisms—shared environments and multicast RPC—and our evaluation accounts for that 

by giving two corresponding scores. With respect to multicast RPC, we consider only the 

synchronous version because it can be directly used to implement object sharing. The 

asynchronous version we consider a general-purpose multicast mechanism that requires non-

trivial additional design and programming effort to build a shared abstraction. 

Since the programmer can directly employ both of GroupKit’s basic mechanisms, 

overall, the system provides a High level of automation. The system supports concurrent 

updates and it appears that, absent an application-defined coordination mechanism, the exact 

results depends on how the communication mechanism serializes the sequence of operations. 

Both shared environments and multicast RPC were designed with the idea of semantic object 

sharing and it was assumed that achieving the desired level of UI consistency is the 

responsibility of the developer. Hence, despite the fact that GroupKit provides collaborative 

widgets, such as telepointers and multi-user scrollbars, it does not provide an automatic 

mechanism for sharing the application’s UI. 

With respect to abstraction flexibility, there is no mechanism that would permit the 

definition of programmer-defined abstractions, other than the use of multicast RPC, which 

can potentially be applied to Any object. Because of its exclusive focus on synchronous 

sharing, GroupKit provides No sharing flexibility. 

Compiled code reuse was not a design consideration for GroupKit and, hence, no specific 

support is provided. In contrast, it is possible to take an application and to gradually add 

collaborative features to it adding multicast RPC invocations on select objects. Finally, there 

are no specific design features that allow the infrastructure services to be easily extended or 

replaced by the developer.   

Environment sharing is a special case of the sharing provided by our infrastructure and 

can be readily simulated. For example, one way to implement a shared environment is to 
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subclass Java’s standard Hashtable class and add a notification mechanism to enable 

synchronous sharing as sketched below:  
public class SharedEnvironment extends Hashtable implements Identifiable { 
  Coupler coupler = CentralRegistry.lookup( <couplerName>); 
  // Identifiable implementation 
  public GID getGID() {…} 
  public void setGID(GID gid) {…} 
  // Override modifier methods 
  public Object put(Object key, Object value) { 
    super.put(key,value); 
    coupler.dispatch( new PropertyOperation(…)); 
  } 
  public Object remove(Object key) {…} 
  … 
} 

By default, our infrastructure supports the sharing of table properties and has a property 

specification that matches the pattern used in the Hashtable class. Hence, with the exception 

of a registration call upon object instantiation, the above few lines of code are everything 

needed to implement shared environments. Furthermore, our implementation would get 

support for other sharing modes at no additional effort. A simulation of the multicast RPC 

mechanism is provided for object-oriented context in the following section.  

6.3.3 Colab 

Colab is another one of our benchmark systems. In essence, it provides synchronous 

sharing for arbitrary objects (subject to some nominal restrictions) by automatically 

performing invocations of broadcast methods on all replicas. Hence, the emphasis is on 

automation with virtually no flexibility. The specific table entries here are identical to those 

for GroupKit’s multicast RPC (the values after the slash) which reflects the fact that two 

mechanisms are analogous and the same reasoning applies in justifying the table entries.  

With respect to simulating Colab’s broadcast methods, our infrastructure provides a 

RemoteMethodCall object, which encapsulates a method invocation that can be replicated on 

a remote host. The difference between our mechanism and Colab’s is that the latter is a 

compile-time mechanism, whereas ours is not. Consequently, the application object must 

explicitly construct and send the RemoteMethodCall object (1-2 lines of code per method). 

Certainly, this requires a bit more effort, however, compiler-support options do not appear 

very appealing. Two points are relevant here.  
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First, since we cannot legally add a new keyword in Java, compiler support would 

essentially mean a precompiler, which replaces either a new keyword (e.g., broadcast) or 

special comments (a.k.a coding between the lines) with generated code. In both cases, the 

resulting code violates the basic principle (if not the technical definition) of Java as a 

standardized language. Second, tagging broadcast methods alone is not sufficient when 

implementing flexible sharing because the semantics of each method and its relationships 

with other methods remain unknown.  

We should also point out that our infrastructure allows broadcast methods to be defined 

in multiple layers of the application. In Colab, broadcast methods must be restricted to one 

layer because otherwise replicas may get multiple executions (in [22] the authors describe an 

informal methodology for selecting broadcast methods, which roughly translates into 

identifying modifier methods of shared semantic objects). However, by treating broadcast 

calls like property operations and using the application layering information, we can suppress 

causally related multiple notifications and maintain correctness.  

6.3.4 Suite 

Suite is our most important benchmark system with respect to automation, sharing 

flexibility, and specification flexibility. Among the surveyed systems, it is the only one that 

satisfies all aspects of these requirements. In short, Suite has the most comprehensive sharing 

model and automatically supports the widest range of sharing scenarios through its 

parameterized coupling model. It coordinates the simultaneous input of multiple users and 

addresses the need for flexibility in both semantic and UI object sharing. The hierarchical 

specification model provides flexible, run-time specifications at various levels of granularity 

that can easily be specified by the user. 

. Since our sharing and specification models, described in Chapter 3, have been built as 

proper extensions of those of Suite, the simulation of the latter is trivial. The only major 

difference is that we have extended its essential approach from sharing of concrete data types 

to an extensible set of programmer-defined abstract data types. Let us briefly consider the 

mapping of Suite’s shared entities to our own. 

Variables. We map these to JavaBeans simple properties with the essential read and write 

operations performed by the getter/setter methods, respectively. 
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Records. By decomposing an object into a static set of properties, we can view it as 

record. In other words, wherever Suite uses a record, we can map that to an object with the 

same set of recognizable properties. Reading/writing the values of each property is 

performed through read/write handlers.  

Sequences. Our infrastructure explicitly supports sequence properties as one of the basic 

property types. Hence, wherever Suite’s uses a sequence, we replace that with an object that 

has a recognizable sequence property. The essential insert/delete operations are performed 

through appropriate insert/delete handlers. 

Thus, we were able to map Suite’s shared structures to our own and were able to 

implement their sharing without assuming a specialized user interface. Consequently, we 

claim to have implemented a logically equivalent version of the Suite model rather than an 

exact replica. (Notably, we provide none of the user interface generation facilities upon 

which Suite relies.) The supporting argument was already provided in Chapters 3 and 5, in 

which discussed the conceptual and implementation issues involved in simulating the Suite 

model. 

6.3.5 JViews 

JViews shares many of its design objectives with our own. Specifically, it provides shared 

(JViews) objects that support High automation, as well as most aspects of sharing 

flexibility—concurrent updates, separate model/view sharing and two modes of sharing: 

synchronous and asynchronous (we classify the manual application of updates as 

asynchronous because it has to be explicitly triggered by the user). I 

In terms of abstraction flexibility, JViews supports only a fixed set of system-defined 

abstractions for the semantic objects and does not deal with hierarchical shared structures. 

However, the basic sharing mechanism, which focused on low-level event flow routing as a 

means of achieving sharing, is readily applicable to UI objects. The specification model is 

static providing several fixed sharing policies (one synchronous and several user-mediated 

versions of asynchronous) that are common to all objects. Hence, late binding of the sharing 

specification is not supported. 

JView takes advantage of Java’s late binding mechanisms and supports compiled code 

reuse of JViews and JavaBeans objects. However, the low-level event model does not 
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provide a good basis for gradually introducing collaboration awareness—the developer must 

understand the whole communication/coordination mechanism before making changes to the 

original code. Other consequences of this implementation model include shared objects/ 

sharing mechanisms separation (a shared object issues events that are processed by the 

infrastructure) and direct dependencies among infrastructure objects implementing different 

aspects of the event processing. This, in turn, makes separation of function a difficult task.  

With respect to the simulation, our infrastructure is capable of sharing any fixed number 

of system-defined abstractions and, in this sense, capable of implementing JViews’ sharing 

model. The approach would be very similar to the effort involved in converting the 

GraphDraw application described in Section 5.3. The main programming effort would be the 

conversion of the application event model to property operations. 

As a matter of design choice, we do not support user-mediated application of remote 

updates, although it would trivial to do so by simply visualizing the queue of pending 

property operations. The main reason for this choice is that our goal is to provide some 

predictable sharing behavior. Once control is relinquished to the user, the system can no 

longer guarantee the correctness of sharing. This is especially true when switching between 

the sharing of different application layers.  

6.3.6 DISCIPLE 

DISCIPLE was primarily designed for synchronous sharing of JavaBeans objects and 

shares many of its characteristics with JViews. Thus, instead of repeating the same 

arguments, we focus on highlighting the differences. The first notable difference is the 

exclusive support for synchronous sharing, which appears to be a matter of design choice, 

rather than an inherent limitation. The abstraction model is a subset of that of JView’s  

because, by design, a JavaBean is a special case of a JView object.. It is possible in 

DISCIPLE to compose and run the all the application and infrastructure components at run 

time using a standard visual bean composition tool (called BeanBox), which, in principle 

supports late binding. However, this visual interface was not designed for run-time 

adjustments to the sharing process. Rather, its intended purpose was to create an application 

configuration and save it for later use. Therefore, to bend its use for run-time adjustments 

would require a lot of work on part of the user (hence, the Low ease of specification). 
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The code reuse and extensibility arguments are, essentially, the same as that of JViews. 

The only notable difference is that DISCIPLE features a component-based architecture where 

different phases of event processing are well-defined, thereby allowing for clean separation 

of infrastructure functions.  

As already discussed, our infrastructure can directly share JavaBeans objects. The only 

effort required on part of the developer is to ensure that shared objects implement the 

Identifiable interface and to attach as a listener the provided BeanEventAdapter class 

that converts bean events into property operation events. 

6.3.7 AMF-C 

Being a collaborative extension of the single-user AMF infrastructure, AMF-C was 

designed to flexibly share objects originally implemented according to the AMF architecture. 

Hence, to a large extent, the system satisfies our sharing and abstraction flexibility. The main 

problem here is that very few applications are actually developed using AMF and, therefore, 

flexibility comes almost entirely at the expense of additional programming effort. That is, we 

can expect a non-trivial redesign and re- implementation effort to fit an arbitrary application 

to the AMF-C model. Hence, the Low scores for automation and code reuse. Furthermore, 

because of the low-level event flow specification used to define sharing, the specification 

effort is considerable, which makes it impractical for manipulation by end users. 

With respect extensibility, AMF-C’s features are similar to those of JViews because both 

systems employ low-level event processing mechanism to implement sharing. Therefore, 

while the sharing mechanism is separate from the shared objects, it is difficult to separate 

different infrastructure service because they directly refer to each other. 

We believe that our abstraction model can accommodate AMF objects, each of which 

defines facets that, generally, map to properties on our model. However, our sharing model 

works at a higher level of abstraction (programmer-defined objects) than AMF-C counterpart 

(application-defined events that are opaque to the infrastructure). Hence, while it is possible 

to simulate lower- level abstractions with higher- level ones, we do not believe that in this case 

the solution would be contrived. 

In conclusion, we should note that AMF-C is not one of our benchmarks because it does 

not provide a high level of automation Recall that our basic requirement is automation and, 
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therefore, we compare flexibility features of infrastructures that provide high automation, 

such as ours. 

6.3.8 Traditional Distributed File Systems (DFS) 

Traditional DFS, provide an interesting counterpoint to shared UI systems (e.g., JCE)—

they provide the same Complete automation and compiled code reuse of Any programmer-

defined semantic object. However, they use the repository rather the UI as a shared medium. 

Hence, for performance reasons, the sharing is effectively limited to asynchronous mode, and 

no sharing of UI objects is feasible. Furthermore, having only access to the persistent state of 

the application, DFS has no idea of the user interface.  

In Chapter 5, we showed how we can simulate the basic DFS asynchronous sharing 

model, which is based on users taking turns at updating a shared object. To turn this into a 

true file system simulation, we can define a generic File object as a sequence of bytes and the 

directories as sequences of Files. Thus, files would appear as nodes a tree structure and 

updates to different files would be detected as non-conflicting (as in a regular DFS).  

6.3.9 Coda 

In the evaluation of Coda, we represent two separate evaluation points, which correspond 

to the two ways in which the infrastructure can be used. The first one is its basic operation, 

which is practically identical to traditional DFS. The main difference here is the option of 

trickle integration, which is primarily a performance consideration and has virtually no 

bearing on the sharing semantics. The second option for using Coda is to take advantage of 

the opportunity to provide procedures for automatic conflict resolution. This considerably 

improves the sharing flexibility of the application but comes at a high development cost. 

Since conflict resolutions procedures are not needed until an actual conflict is flagged, the 

infrastructure can support late binding of these routines, which serve as procedural 

specification of the sharing mode. As already noted, there is little in the way of automation in 

this process and using procedural sharing specifications (in the fo rm of conflict resolution 

routines) make user- level specification difficult. The last difference is the separation of the 

shared object (file) and its sharing implementation—the conflict-resolution procedure.  

The simulation of Coda is similar to that of traditional DFS. The type-specific procedures 

supplied by the programmer can be implemented as merge handlers in our infrastructure. 
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That is, we can take the conflict resolution procedure and place it as a property handler in the 

property specification. At run time, the infrastructure will lookup and invoke the handler to 

update a replica. 

6.3.10 Lotus Notes 

Notes presents a challenge in terms of evaluation because of its peculiar sharing model. 

Unlike the rest of the surveyed systems, the notions of replication and replica consistency are 

entirely decoupled. The replication of a document is controlled by a set of replication 

attributes that determine with whom a Notes document is shared. However, the system makes 

no attempt to reconcile concurrent updates to a document—it merely flags the conflict, 

creates a new version of the document and leaves the users to sort it out. In other words, 

conflict detection is coarse-grained and automatic, whereas conflict resolution is manual. 

Thus, in terms of our requirements, Notes’ evaluation is similar to that of DFS, with the 

exception of abstraction and specification flexibility. Unlike DFS, where the shared object is 

opaque to the system, Notes’ sharing model is based on a database of document records. 

Thus, the system is able to provide a variety of user-controlled replication and access control 

parameters, which in terms of out requirements means late specification binding and High 

ease of specification. 

To simulate Notes sharing model, we define represent its documents is as objects with a 

sequence of document versions—one primary and a number of response ones. For example, 
public class NotesDocument implements Identifiable { 
  public GID getGID(); 
  public void setGID(GID gid); 
  public void addVersion(NotesVersion version); 
  public void removeVersion(NotesVersion version); 
  … 
} 

Whenever a local replica receives a remote document with the same identifier, it does not 

attempt to merge but rather adds it to the list of version. In this case, the GID property 

provides a convenient unique identifier, which can be used as a key into a Notes database. 

The database itself can readily be represented by a table, and concurrent updates can be 

detected using the document’s GID. Since conflicts are detected late and “handled” in a 

predefined manner, we need a simple merge handler for the database table, which adds a new 

version should it detect a conflict with the local database. 
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Simulating the replication model requires some more work, but can still be achieved 

within the framework of our model. Recall that we can specify the sharing for any subgroup 

of users and, in particular specify whether the entity should be shared at all. Hence, what is 

needed is to store persistently those parameters so that whenever changes are committed they 

would be communicated to the respective remote users. 

One aspect we cannot accommodate is the replication architecture (e.g., peer-to-peer, 

hub-and-spoke, tree) because these are parameters of the communication layer that we do not 

control. Another aspect is access control, which is an issue we have not so far addressed and 

is one of the first problems we plan to address in the future. 

6.3.11 Bayou 

The main feature of Bayou in terms of fulfilling our requirements is its use of conflict-

detection queries and procedures. This allows its mechanisms to be composed with any 

application because the translation between shared application structures and Bayou’s tuples 

is entirely the responsibility of the developer. This results in increased flexibility, satisfying 

our semantic object sharing and late specification requirements, but also implies reduced 

automation reflected on our Low scores on automation and ease of specification. 

Furthermore, as with all asynchronous sharing system, the UI cannot be shared directly.  

Code reuse was never on Bayou’s agenda so programmers must modify the single-user 

application to use the system’s mechanisms. Support for extensibility is a byproduct of the 

fact that developers must write an intermediate layer of adaptation code that allows the 

application to use infrastructure services. Hence, if the intermediate code is structured 

properly, the application and the infrastructure implementation can be varied independently. 

Like other database-oriented infrastructures, Bayou’s tuples can be represented as objects 

consisting of simple properties that are being inserted into and removed from a table. User 

can write specialized merge handlers for the tables that can perform queries and 

automatically resolve conflicts. In fact, the query and conflict resolution parts can be 

separated into different handlers with the latter being invoked only when a conflict arises. 

 The one feature we do not directly support is the query language. However, it could be 

developed as a separate infrastructure service with potentially more sophisticated features. In 

particular our knowledge of the structural dependencies within the shared objects would 
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allow us to detect conflicts at a finer granularity by using a version of the object diff- ing 

routine. In this case, we would not keep a shadow copy of the objects but would compare two 

objects being inserted under the same key to find out if this is a true conflict by examining 

their differences at a finer granularity using property-based decomposition. 

6.3.12 TACT 

TACT presents an interesting point of evaluation because its goals and implementation 

are, to a large extent, complimentary to our own. It exclusively focuses on the problem of 

implementing a flexible consistency model that is independent of the application’s shared 

object structures. Rather, it is up to the application programmer to perform the non-trivial 

task of mapping those structures to the infrastructure-defined abstraction of a conit (similar to 

a database record). Once the mapping is completed, the infrastructure automatically provides 

the sharing of the structures. Hence, overall, this scheme provides a Moderate level of 

automation.  

One major problem with TACT’s read/write database model is that it is too restrictive and 

does not perform well for dynamic structures that grow/shrink as a result of user actions. As 

already discussed in the context of JavaBeans’ model, the main issues are the detection of 

false conflicts and the inability to reconcile concurrent user updates. Thus, overall, we 

evaluate the sharing flexibility as Moderate. 

Since the developer is tasked with translating shared objects into conits, there are few 

limitations on abstraction flexibility (albeit at the expense of automation). The sharing 

specification is based on parameters so it supports late binding. A parameter-based 

mechanism is generally easy to specify, however, in this case the specification metrics are 

somewhat unusual and it is not always obvious how they map to changes in the sharing 

behavior,. Therefore, we consider it a system with Moderate ease of specification. 

TACT implicitly requires that the application define conits and explicitly manage their 

dependencies. Thus, it is not possible to directly reuse compiled code but it conceivable to 

make the application gradually collaboration-aware step by step. The system is not designed 

for extensibility, which is not surprising given that it attempts to subsume most consistency 

models currently in use. 
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Overall, our infrastructure can simulate TACT by defining read/write handlers that 

implement its model and by assuming (as it is done in the original implementation) that 

applications only preannounce the updates and these are carried out by the infrastructure at 

the appropriate time. However, this approach would be tantamount to re- implementing TACT 

and, therefore, we are interested in interfacing our infrastructure with TACT so that we can 

get the benefits of its generic consistency model at a low specification cost. In particular, we 

believe that properties are good a basis for defining conits and structural dependencies can 

automate the process of identifying dependencies between read and write operations.  

6.3.13 Sync 

Due to its predefined shared abstractions, which can be directly employed by the 

application developer, Sync provides a High level of automation. Once the shared structures 

are built from the shared primitives, the infrastructure handles the sharing process 

automatically. The system allows programmers/users to specify a wide range of sharing 

(conflict resolution) policies. Originally, the system was limited to synchronous sharing, 

however, follow up work has demonstrates its use for synchronous sharing. Supporting 

intermediate, Suite- like, sharing modes cannot be currently accommodated. 

 Sync provides sharing of semantic objects that either directly use the shared classes, or 

inherit from them. Hence, the sharing is independent from the user interface aspect of the 

application—in fact, Sync assumes that the semantic object and its UI is implemented in 

separate classes and the UI classes are ignored for the sharing purposes, thus the UI cannot 

be shared 

Sync was designed to provide flexible table-driven merging, which implies late, run-time 

binding of policy and mechanism. Furthermore, it provides multiple ways of specifying 

default policies, which considerable lowers the specification effort on part of the user. 

Code reuse was not a primary goal directly addressed by Sync. As our discussion in 

Chapter 2 showed, converting a single-user application into a multi-user one requires re-

engineering of its class hierarchy, which implies that compiled code reuse is not supported. 

However, the infrastructure does support a gradual introduction of collaboration awareness in 

that the programmer may start with some default policies, then move on to custom policies 
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specified by merge tables, and eventually define additional replicated classes should the 

standard ones prove inadequate. 

Finally, Sync’s design does not address our extensibility requirements the way other 

Java-based infrastructures—such as DISCIPLE and JViews—do. Although by virtue of 

implicitly using Java’s dynamic class loading, it is technically possible to replace the 

implementation of the replicated classes without modifying the application, we do not 

consider Sync to fulfill our requirement of separating the shared abstraction and sharing 

mechanism because of the use of inheritance, which binds the abstraction and mechanism 

together. Along the same lines, the infrastructure was not designed to accommodate new 

functions by simple composition. 

A simulation of Sync’s merge model fits well in our infrastructure model. The 

hierarchical top-down approach is analogous to what we used in our basic design for 

infrastructure services, such as diff- ing. Sync’s ReplicatedRecords correspond to an object 

being decomposed into a set of properties. Sync’s replicated basic types—int, string, etc—

map to simple read/write properties in our model, whereas its complex types—

ReplicatedSequence and ReplicatedDictionary—correspond to objects with a single 

sequence/table property, respectively, and would be covered by the standard property 

specifications that are part of our infrastructure. Hence, only suitable merge handlers that 

deal with merging of individual properties (based on merge tables) must be defined to 

complete the simulation of a SyncClient.  

To simulate the SyncServer part of the system, we need a master copy version of our 

architecture like ones we used in the examples in Section 5.1. Accordingly, a server version 

of the merge procedure must also be developed. The main difference here is that the server 

merge procedure may have to respond back with a list of property operations that a client 

must execute to achieve consistency. Naturally, a commit-based sharing policy would be 

used to control the sharing on both ends. 

6.3.14 Our Infrastructure  

Column ‘Our’ of Table 6.1 (repeated in Table 6.2) summarizes the evaluation of our 

infrastructure with respect to the original requirements. The assessment is made based on the 
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detailed discussion in Chapters 3, 4, and 5, and the following points provide a recapitulation 

of the essential arguments behind our claims with respect to each requirement.  

• Automation. Our support for automation falls into three separate cases, following our 

basic classification of sharing scenarios in Chapter 1. For user interface-based sharing, 

we provide WYSIWIS sharing equivalent to that of other systems at no development 

cost. For application-based sharing, we provide a functionally equivalent mechanism to 

Colab’s broadcast method although without the compiler support. We provide direct 

automatic sharing of the abstractions supported by GroupKit, Suite, and Sync. For 

repository-based infrastructures, such support can be added at the nominal cost of 

providing property specifications and appropriate handlers for each property type. For 

infrastructures that rely on conflict resolution, such as Coda and Bayou, this translates 

into providing merge handlers, in addition to the required read handler. 

• Sharing Flexibility.  

o Concurrent updates. Our infrastructure, like most of the rest, supports concurrent 

updates from multiple users. The only exception is UI-based sharing where 

simultaneous access must be blocked to ensure correctness. 

o Semantic sharing. As our discussion in Chapter 5 showed, our work can support the 

flexible sharing of semantic objects independent of their user interface 

o User interface sharing. Similarly, we demonstrated sharing that can be applied to the 

user interface of any semant ic object and, thereby, implement UI-based sharing of the 

abstraction.  

o Sharing modes. Our sharing model supports the sharing provided by Suite, which is 

the infrastructure with the highest sharing flexibility for application-based sharing. 

Also, by explicitly separating the event processing into three distinct phases and 

adding parameters to control each phase, our extension of the model allows a finer 

grain control of the sharing process and can integrate as special cases a wider variety 

of sharing mechanisms in use today. By introducing a description mechanism for 

application layers, we enabled higher-level control of the application sharing that in 

addition to accommodating the layer-based sharing of existing systems, allows multi-

layer sharing to be implemented under more general assumptions than currently 

possible. 
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• Abstraction Flexibility 

o Programmer-defined semantic objects. Again, we have two cases. The first one is the 

use of Colab- like broadcast methods, which can be correctly applied to (almost) any 

object under the assumption of synchronous sharing. The second one the sharing of 

programming pattern-based objects. As already discussed, all of the abstractions 

shared by other infrastructures can be modeled as special cases of the use of patterns. 

At the same time, the class of pattern-based objects that can automatically be shared 

is a proper superset of the ones supported by any of the other systems.   

o Programmer-defined user interface. As with most other sharing infrastructures, our 

sharing mechanisms are independent of the user interface implementation. 

Furthermore, the described experience in developing applications shows that they can 

be applied to any application layer. Notably, by using the programmer-specified 

dependencies, we can enable the simultaneous sharing of multiple layers that do not 

depend on each other, as well as prevent the simultaneous sharing of dependent layer 

to ensure correctness. 

• Specification flexibility. 

o Late specification binding. Our parameter-based specifications have their own 

external representation based on XML. Therefore, they are completely independent of 

the sharing mechanisms that implement them and the two are composed at run time. 

Moreover, even the binding of procedural specifications, such as a conflict detection 

routine, is performed at run time through a property specification. 

o Ease of specification. Our specification model builds on that of Suite’s and, therefore, 

our infrastructure provides a level of support that is at least as high as that of Suite. 

Our main task has been to adapt Suite’s inheritance-based specification approach so 

that it can be applied to object-based programming. Going a step further, we have 

provided the policy specifications with a standardized external representation. This 

permits an administrator to assume the responsibility of defining a set of standard 

policies, which end-users can employ without knowing the details of the sharing 

model.  
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• Code reuse 

o Compiled code reuse. Code reuse has been a major objective of our work and we 

claim that we have satisfied this goal better than existing infrastructures. Specifically, 

for UI- and repository-based sharing, our infrastructure can provide complete 

automation, such as the one exhibited by other infrastructures. However, we also 

address reuse in the context of application-based sharing, which, as our evaluation 

table shows, has been achieved by very few systems. In particular, out of the 

surveyed systems, only JViews and DISCIPLE have such mechanisms and we showed 

that both can be handled as special cases of our pattern-based approach. Recall that 

the set of object properties and the corresponding property handlers can be extended 

without modifying the shared objects. Hence, we can potentially add support for 

arbitrary new types of shared objects without recompiling existing code, which is not 

possible with any of the other systems. 

Another aspect of our support for reuse is the ability to reuse handler code across 

objects that belong to unrelated branches of the class hierarchy. In our model 

description we showed that patterns are a more general concept than interfaces and, 

therefore, an implementation based on patterns is more general and can be directly 

reused with a wider range of objects. 

o Incremental collaboration awareness. As we showed in Chapter 5, our system 

facilitates a development approach in which collaboration features are incrementally 

introduced into the application. At each step, a new set of default capabilities become 

available, enabling the programmer to minimize the development effort. For example, 

if users need only asynchronous sharing, there is no need for the application to 

implement a notification mechanism. Furthermore, if certain services are not directly 

needed, the programmer need not provide them. For example, if diff-ing is not 

needed, the application does not need to specify any diff handlers. 

• Extensibility. Our work supports all three aspects of this requirement—separation of 

shared abstraction and implementation, separation of infrastructure functions, and late 

component binding. The main mechanism implementing this support is, again, the 

property specification language, which allows the composition of shared abstractions and 
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sharing functions to be performed late. Similarly, different infrastructure functions may 

interact indirectly, using the specification as a means of discovering each other. 



7. CONCLUSIONS AND FUTURE WORK 

A common approach employed by sharing infrastructures is to present the programmer 

with shared programming abstractions as a basis for implementing multi-user applications. 

We have identified a set of generic automation, reuse and flexibility requirements that such 

sharing infrastructures should satisfy. However, our survey of a number of influential 

systems lead us to the conclusion that, while individual requirements have been met, none of 

the existing infrastructures fulfills a substantial subset of the requirements as a whole. 

Therefore, we have developed a new model and a corresponding prototype implementation 

of an infrastructure for sharing of distributed objects that fulfills the set of requirements 

better than current systems. Below we present our conclusions, as well as ideas on extending 

this research in the future.  

7.1 Conclusions 

Based on the presented results of our work, we draw the following main conclusions: 

• For each of the generic infrastructure requirements identified in Chapter 1—

automation, flexibility, code reuse, and extensibility—there exists at least one system 

that satisfies it to high degree. However, no single system fulfills all of the 

requirements, or even a substantial subset of them. 

• Our new object-sharing infrastructure better satisfies the infrastructure requirements 

than current systems. That is, for any given sharing scenario, it satisfies the 

requirements at least as well as existing systems and, for a large number of scenarios, 

it satisfies a subset of the requirements to a higher degree than existing systems. The 

developed conceptual model and prototype implementation make several research 

contributions: 

o The introduced property specification language formalizes the notion of a 

programming pattern and extends the abstraction flexibility of the sharing 

infrastructure. We showed that the shared abstractions supported by other systems 

can be modeled as special cases of the use of patterns. 
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o The developed component architecture, based on property handlers, provides a 

means to completely separate the core application code from the infrastructure 

services by providing a means to flexibly compose them based on specifications. 

o The introduced application layer specification enables the generic description of 

application layers and their dependencies, thereby enabling the dynamic switching 

of the shared layer at run time, while maintain correct sharing semantics.   

o The introduced sharing model, based on the original Suite coupling model, 

provides a more general framework for controlling the sharing semantics than 

existing approaches. This includes the incorporation of new services, such as 

object diff- ing, and the integration of a number of additional sharing options that 

allow the system to support the sharing models of other infrastructures.  

• The developed formal pattern specification language and the associated component 

architecture based on property handlers are generic software engineering tools. We 

have demonstrated their use outside the immediate scope of collaboration and we 

have concrete ideas to apply them to a number of other areas, which we discuss below 

as part of our future work.   

• Our infrastructure model does not explicitly incorporate a number of collaboration 

functions, such as access control and multi-user undo/redo, and support for others, 

such as concurrency control and session management is limited to the minimum 

required to demonstrate a working sharing implementation. While our design was 

developed with such extensions in mind, clearly, further work is needed to achieve a 

comprehensive sharing infrastructure model. In the following section we discuss our 

ideas in that respect. 

7.2 Future Work 

Our ideas on extending this work can be grouped into three distinct categories that are 

discussed as follows. First, we consider the extension of the current infrastructure model and 

implementation to (ultimately) provide a comprehensive collaboration model that covers all 

aspects of the design space for collaborative applications. Such an extension is to be 

accomplished in two ways: adding new collaboration services and integrating our work with 

existing systems that are complementary. Next, we present our thoughts on improving our 
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pattern-based mechanisms to make them more general and easier to use. Finally, we give our 

ideas on applying pattern-based approaches to non-collaborative applications. 

7.2.1 Collaborative Infrastructure Extensions  

7.2.1.1 Service Extensions 

Recall that we have only explicitly addressed concurrency control only in the limited case 

of UI-based sharing (Section 5.2) for purposes of correctness. By concurrency control we 

mean a mechanism that allows a group of collaborators to explicitly coordinate their actions 

to ensure the desired level of consistency of the shared artifact. There is a wide range of 

useful concurrency control schemes employed by existing systems. On the one end, we have 

the most liberal option of no application-mediated control (implicitly assumed by most of our 

current work), which relies on users coordinating their actions through social protocol. On 

the other end, we have the most conservative scheme, which only allows one user at a time to 

modify the shared object (as in UI-based or file-based sharing). In between, there are 

numerous other options that can broadly be classified into optimistic and pessimistic. The 

former seek to maximize concurrency by assuming that conflicts are rare and, therefore, in 

most cases it is advantageous to allow concurrent user actions to proceed and to defer 

conflict detection/resolution to a later time. The latter places an emphasis on providing firm 

consistency guarantees, often at the price of lower concurrency, by using enforcement 

mechanisms that prevent inconsistencies altogether A pessimistic approach inherently 

implies that the infrastructure must have complete control over updates of the shared object. 

Hence, we would need a mechanism by which the application (pre-)announces intended 

changes and the infrastructure has the power to prevent them from taking place. Accordingly, 

we would need to extend our event model to accommodate a two-phase announce/notify 

protocol. 

Our ultimate goal with respect to concurrency control would be to develop a model that 

accommodates as many of the currently existing options as possible under one roof, and to 

allow users to dynamically select the scheme that fits their collaboration best. Furthermore, 

we would like to provide multiple levels of support based on the notification mechanism 

implemented by the application. In particular, since most applications do not employ two-

phase notification, the open issue we seek to explore is: how much support can we provide 
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under these circumstances? Is it possible to automatically generate a pre-announcement on 

behalf of the application or compensate for the lack of pre-announcement through an undo 

mechanism? Another interesting research topic is to explore the opportunities for inter-

operation among different concurrency control schemes that fit the developed model. 

Access control determines which users have access to various operations on a protected 

object. By definition, access control requires a preventive enforcement mechanism that has 

the power to effectively deny access to the object’s operation by an unauthorized user. Our 

goal would be to develop an access control model that can be composed with the rest of our 

infrastructure. 

Our infrastructure would also benefit from the presence of a generic multi-user undo/redo 

mechanism similar to that of Suite. In addition to resolving the immediate issues of the 

semantics of the undo command, it could also help in implementing some of the concurrency 

control options outlined above. In particular, an interesting issue is, given a generic 

undo/redo mechanism, which requires only update notification (and not pre-announcement), 

is it possible to effectively simulate pessimistic concurrency control without requiring pre-

announcement. That is, implement a scheme under which it may be possible for an object 

replica to temporarily become inconsistent (due to an unauthorized local operation being 

applied first notified later) but be automatically brought back into consistency through a 

corresponding undo operation.  

7.2.1.2 Integration with Other Infrastructures 

To a certain degree, the concrete implementation of our infrastructure has been 

influenced by the idea of integrating certain functions already implemented by other systems 

with our own. A prime example in that respect is session management. As our description in 

Chapter 4 shows, we have implemented the bare minimum necessary to test our 

infrastructure. Our rationale has always been to eventually utilize the comprehensive session 

management mechanism offered by JCE. Such an integration would also strengthen our 

argument that we have developed an extensible infrastructure. 

Another complimentary mechanism we would like integrate with is Sync’s table-driven 

merge mechanism. Recall that our model allows for custom merge property handlers to be 

defined, thereby enabling the simulation of Sync’c merging model. However, we have chosen 
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not to replicate Sync’s full implementation effort largely because we believe that our work 

can be composed with Sync’s merging mechanism with a reasonable effort. Furthermore, we 

would like to explore the integration with our object diff- ing mechanism, which is a natural 

complement to merging. 

Another direction for our integration work would be an effort to compose our work with 

Chung’s generic logging mechanism, which provides for replication flexibility—the ability to 

dynamically change the physical replication architecture of the application to adapt to 

network conditions and user preferences. In particular, we believe that we can leverage 

knowledge of the object and application structures (through properties and layers, 

respectively), as well as the semantics of property events, to automate the process of mapping 

application-specific communication protocols to the generic I/O protocol upon which 

Chung’s work is based.  

7.2.2 Pattern Specification Mechanism Improvements 

One of the practical issues we have encountered in our work with property specification 

has been the need to verify that the XML-based specifications do indeed find the properties 

they are designed to find. A wrong specification may lead to some properties not being 

recognized, which may be difficult problem to spot in a larger software project. Therefore we 

would like to develop more user-friendly tools that facilitate the specification process. As a 

first step, we would like to develop a specification-by-example tool that would allow users to 

bring up the list of methods for a particular classes and provide examples of specific patterns, 

based on which our infrastructure would deduce the exact pattern specification. A more 

challenging issue is to develop a tool that automatically examines the code of an application 

and generates a list of candidate property definitions to the developer. 

7.2.3 Pattern-based Approaches to Non-Collaborative Applications  

7.2.3.1 Automated Object Testing 

As an ongoing project, we are currently developing a framework for automated object 

testing based on patterns. The fundamental idea behind it is to use the object property 

analysis to break down the problem of testing the whole object into a problem of testing a set 

of object properties. Each individual property comes with its own autonomous semantics that 
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could, in many cases, be tested separately. The testing of an individual property is based on 

the use of Guttag-style algebraic specifications. We use the semantics attribute classification 

of pattern methods (constructor, destructor, modifier, and accessor) to automatically 

generate test cases. The basic idea is to generate a large set of test cases by performing all 

possible combinations of constructor method invocations using the test points as arguments. 

For example, if an object has a property with constructor method called addElement, and a 

set of three test points—“1”, “2”, and “3”—the test cases would be generated as follows: 
object.addElement(“1”) 
object.addElement(“1”). addElement(“1”) 
object.addElement(“1”). addElement(“1”). addElement(“1”) 
object.addElement(“1”). addElement(“1”). addElement(“2”) 
object.addElement(“1”). addElement(“1”). addElement(“3”) 
object.addElement(“1”). addElement(“2”). addElement(“1”) 
… 
object.addElement(“2”) 
object.addElement(“2”). addElement(“1”) 
… 
object.addElement(“3”) 
… 

object.addElement(“3”).addElement(“3”).addElement(“3”) 
 

For each generated test case, the infrastructure invokes each of the other methods and 

compares the result with the expected one by invoking a corresponding programmer-defined 

predicate. For example, for a removeElement destructor method, the developer must specify 

the following predicate: 
boolean removeElementTest( oldState, newState, arguments) 

The predicate invocation can be interpreted as asking folloing question:  

Given the oldState of the object, the fact that the removeElement method has been 

invoked with the given arguments, does the observed newState agree with the desirable 

results? 

Ideally, the above question should be answerable based on formal axiomatic 

specifications, however, even using this procedural form, which is compatible with the de 

facto standard JUnit 18 testing tool we expect to see considerable benefits. Namely, with a 

comparable effort development effort, our infrastructure will perform automatic exhaustive 

                                                 
18 http://www.junit.org 
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testing of all test point combinations as opposed to the manual ad-hoc testing practices that 

are prevalent today. 

To address the fact that properties may have dependencies, we apply a similar exhaustive 

testing idea to test combinations of properties. While this results in a combinatorial that may 

become too computationally expensive, it is quite possible to control it by seeking 

information from the developer on which properties are, in fact, independent and exclude 

them from the test case generation. Conversely, the testing can help in certifying that the 

properties are indeed independent as expected by the developer. 

Finally, we would like to take the pattern a step further to allow automated testing based 

on design patterns. At the very minimum, we currently have the basic mechanisms to 

automatically match objects that implement recognized design patterns by examining their 

programming patterns. For example, one could define observer and observable programming 

patterns and recognize that an object implementing the former and an object implementing 

the latter may, together, be implementing a design pattern. 

7.2.3.2 Structured Code Generation 

Following a set of programming patterns is especially desirable in any software 

engineering team because members interact with each other’s code. In our work we have 

primarily used property specifications to identify patterns in already existing code. However, 

it is quite possible to perform the reverse process, in which case the users can provide values 

for the free variables in the pattern specifications, and allow the infrastructure to 

automatically generate the application code, which would be guaranteed to follow the given 

patterns.
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8. APPENDIX 

8.1 XML Property Specification Schema 

<?xml encoding="UTF-8"?> 
<!ENTITY % EXPR "reference | plural | short | plural_short"> 
<!ENTITY % PATTERN_REF "reference"> 
 
<!ENTITY VOID   "<literal>void</literal>"> 
<!ENTITY INT    "<literal>int</literal>"> 
<!ENTITY BOOL   "<literal>boolean</literal>"> 
<!ENTITY STRING "<literal>java.lang.String</literal>"> 
<!ENTITY ENUM   "<literal>java.util.Enumeration</literal>"> 
<!ENTITY ARRAY  "<literal>[]</literal>"> 
<!ENTITY VECTOR "<literal>java.util.Vector</literal>"> 
 
<!ELEMENT property_spec (pattern+, constraint*, name_rule, type_rule, 
                         exclude*, handler+)> 
<!ATTLIST property_spec  
          type CDATA #REQUIRED 
          version CDATA #REQUIRED> 
<!ELEMENT pattern (return_type, method_name, argument_type*)>  
<!ATTLIST pattern name ID #REQUIRED> 
<!ATTLIST pattern semantics (unknown | accessor | constructor |  
                             modifier | destructor) "unknown"> 
<!ELEMENT return_type (literal | variable | (variable,literal) |IGNORE)> 
<!ELEMENT argument_type (literal | variable | IGNORE)> 
<!ELEMENT method_name (literal | (literal?, variable, literal?)) > 
 
<!ELEMENT literal (#PCDATA)> 
<!ELEMENT variable EMPTY> 
<!ATTLIST variable name ID #REQUIRED> 
<!ELEMENT IGNORE EMPTY> 
 
<!ELEMENT constraint (lhs, rhs)> 
<!ATTLIST constraint predicate (equals | subclassof) "equals"> 
<!ELEMENT lhs ((%PATTERN_REF;), (%EXPR;))> 
<!ELEMENT rhs ((%PATTERN_REF;), (%EXPR;))> 
 
<!ELEMENT reference EMPTY> 
<!ATTLIST reference variable IDREF #REQUIRED> 
 
<!ELEMENT short EMPTY> 
<!ATTLIST short variable IDREF #REQUIRED> 
 
<!ELEMENT plural EMPTY> 
<!ATTLIST plural variable IDREF #REQUIRED> 
 
<!ELEMENT plural_short EMPTY> 
<!ATTLIST plural_short variable IDREF #REQUIRED> 
 
<!ELEMENT name_rule (literal | (%EXPR;))> 
<!ELEMENT type_rule (literal | reference)> 
 
<!ELEMENT exclude EMPTY> 
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<!ATTLIST exclude 
          class_name CDATA #REQUIRED 
          name CDATA #REQUIRED 
          scope (subclass | self} "subclass"> 

<!ELEMENT handler EMPTY> 
<!ATTLIST handler  
          operation CDATA #REQUIRED 
          class_name CDATA #REQUIRED> 

8.2 Generic TABLE Property Specification 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE property_spec SYSTEM "PropertySpec.dtd"> 
 
<!-- "table" property version 1.1 
  Example (from java.util.Hashtable):  
  public Object put(Object obj, Object value) 
  public Object remove(Object obj) 
  public Object get(Object key) 
  public Enumeration keys() 
 
  name: Element 
  type: Object 
--> 
 
<property_spec type = "table" version = "1.1"> 
  <!-- "bind" pattern --> 
  <pattern name = "bind"> 
    <return_type><IGNORE/></return_type> 
    <method_name> 
      <literal>put</literal> 
    </method_name> 
    <argument_type> 
      <variable name = "BindKeyType"/> 
    </argument_type> 
    <argument_type> 
      <variable name = "BindValueType"/> 
    </argument_type> 
  </pattern> 
  <!-- "unbind" pattern --> 
  <pattern name = "unbind"> 
    <return_type><IGNORE/></return_type> 
    <method_name> 
      <literal>remove</literal> 
    </method_name> 
    <argument_type> 
      <variable name = "UnbindKeyType"/> 
    </argument_type> 
  </pattern> 
  <!-- "lookup" pattern --> 
  <pattern name = "lookup"> 
    <return_type> 
      <variable name = "LookupValueType"/> 
    </return_type> 
    <method_name> 
      <literal>get</literal> 
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    </method_name> 
    <argument_type> 
      <variable name = "LookupKeyType"/> 
    </argument_type> 
  </pattern> 
  <!-- "get_keys" pattern --> 
  <pattern name = "get_keys"> 
    <return_type> 
      &ENUM; 
    </return_type> 
    <method_name> 
      <literal>keys</literal> 
    </method_name> 
  </pattern> 
  <!-- BindKeyType == UnbindKeyType --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "bind"/> 
      <reference variable = "BindKeyType"/> 
    </lhs> 
    <rhs> 
      <reference variable = "unbind"/> 
      <reference variable = "UnbindKeyType"/> 
    </rhs> 
  </constraint> 
  <!-- BindKeyType == LookupKeyType --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "bind"/> 
      <reference variable = "BindKeyType"/> 
    </lhs> 
    <rhs> 
      <reference variable = "lookup"/> 
      <reference variable = "LookupKeyType"/> 
    </rhs> 
  </constraint> 
  <!-- BindValueType == LookupValueType --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "bind"/> 
      <reference variable = "BindValueType"/> 
    </lhs> 
    <rhs> 
      <reference variable = "lookup"/> 
      <reference variable = "LookupValueType"/> 
    </rhs> 
  </constraint> 
  <name_rule> 
    <literal>Table</literal> 
  </name_rule> 
  <!-- typing rule --> 
  <type_rule> 
    &VOID; 
  </type_rule> 
  <!-- handlers --> 
</property_spec> 
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8.3 Generic SEQUENCE Property Specification 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE property_spec SYSTEM "PropertySpec.dtd"> 
 

<!-- "sequence" property version 1.1  
Example (from java.util.Vector):  
  public void insertElementAt(Object obj, int index) 
  public void removeElementAt(int index) 
  public void setElementAt(Object obj, int index) 
  public Object elementAt(int index) 
  public int size() 
 
  name: Element 
  type: Object 
--> 
<property_spec type = "sequence" version = "1.1"> 
  <!-- "insert" pattern --> 
  <pattern name = "insert"> 
    <return_type><IGNORE/></return_type> 
    <method_name> 
      <literal>insert</literal> 
      <variable name = "InsertName"/> 
      <literal>at</literal> 
    </method_name> 
    <argument_type> 
      <variable name = "InsertType"/> 
    </argument_type> 
    <argument_type>&INT;</argument_type> 
  </pattern> 
  <!-- "remove" pattern --> 
  <pattern name = "remove"> 
    <return_type><IGNORE/></return_type> 
    <method_name> 
      <literal>remove</literal> 
      <variable name = "RemoveName"/> 
      <literal>at</literal> 
    </method_name> 
    <argument_type>&INT;</argument_type> 
  </pattern> 
  <!-- "set" pattern --> 
  <pattern name = "set"> 
    <return_type><IGNORE/></return_type> 
    <method_name> 
      <literal>set</literal> 
      <variable name = "SetName"/> 
      <literal>at</literal> 
    </method_name> 
    <argument_type> 
      <variable name = "SetType"/> 
    </argument_type> 
    <argument_type>&INT;</argument_type> 
  </pattern> 
  <!-- "count" pattern --> 
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  <pattern name = "count"> 
    <return_type>&INT;</return_type> 
    <method_name> 
      <literal>size</literal> 
    </method_name> 
  </pattern> 
  <!-- "lookup" pattern --> 
  <pattern name = "lookup"> 
    <return_type> 
      <variable name = "LookupType"/> 
    </return_type> 
    <method_name> 
      <variable name = "LookupName"/> 
      <literal>at</literal> 
    </method_name> 
    <argument_type>&INT;</argument_type> 
  </pattern> 
  <!-- InsertType == SetType --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "insert"/> 
      <reference variable = "InsertType"/> 
    </lhs> 
    <rhs> 
      <reference variable = "set"/> 
      <reference variable = "SetType"/> 
    </rhs> 
  </constraint> 
  <!-- SetType == LookupType --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "set"/> 
      <reference variable = "SetType"/> 
    </lhs> 
    <rhs> 
      <reference variable = "lookup"/> 
      <reference variable = "LookupType"/> 
    </rhs> 
  </constraint> 
  <!-- InsertName == RemoveName --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "insert"/> 
      <reference variable = "InsertName"/> 
    </lhs> 
    <rhs> 
      <reference variable = "remove"/> 
      <reference variable = "RemoveName"/> 
    </rhs> 
  </constraint> 
  <!-- RemoveName == SetName --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "remove"/> 
      <reference variable = "RemoveName"/> 
    </lhs> 
    <rhs> 
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      <reference variable = "set"/> 
      <reference variable = "SetName"/> 
    </rhs> 
  </constraint> 
  <!-- SetName == LookupName --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "set"/> 
      <reference variable = "SetName"/> 
    </lhs> 
    <rhs> 
      <reference variable = "lookup"/> 
      <reference variable = "LookupName"/> 
    </rhs> 
  </constraint> 
  <!-- naming rule --> 
  <name_rule> 
    <reference variable = "InsertName"/> 
  </name_rule> 
  <!-- typing rule --> 
  <type_rule> 
    <reference variable = "InsertType"/> 
  </type_rule> 
  <!-- handlers --> 
</property_spec> 
 

8.4 SEQUENCE Property Specification for java.awt.Component 

<property_spec type = "sequence" version = "2.1"> 
<!-- Example: java.awt.Component 
add:    public java.awt.Component add(java.awt.Component comp); 
remove: public void remove(java.awt.Component comp); 
list:   public java.awt.Component[] getComponents(); 

--> 

  <!-- "add" pattern --> 
  <pattern name = "add"> 
    <return_type> 
      <IGNORE/> 
    </return_type> 
    <method_name> 
      <literal>add</literal> 
    </method_name> 
    <argument_type> 
      <variable name = "AddType"/> 
    </argument_type> 
  </pattern> 

  <!-- "remove" pattern --> 
  <pattern name = "remove"> 
    <return_type> 
      <IGNORE/> 
    </return_type> 
    <method_name> 
      <literal>remove</literal> 
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    </method_name> 
    <argument_type> 
      <variable name = "RemoveType"/> 
    </argument_type> 
  </pattern> 

  <!-- "list" pattern --> 
  <pattern name = "list"> 
    <return_type> 
      <variable name = "ListType"> 
      &ARRAY; 
    </return_type> 
    <method_name> 
      <literal>get</literal> 
      <variable name = "ListName"/> 
    </method_name> 
  </pattern> 

  <!-- AddType == RemoveType --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "add"/> 
      <reference variable = "AddType"/> 
    </lhs> 
    <rhs> 
      <reference variable = "remove"/> 
      <reference variable = "RemoveType"/> 
    </rhs> 
  </constraint> 

  <!-- AddType == ListType --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "add"/> 
      <reference variable = "AddType"/> 
    </lhs> 
    <rhs> 
      <reference variable = "remove"/> 
      <reference variable = "ListType"/> 
    </rhs> 
  </constraint> 
 
  <!-- plural(short(AddType)) == ListName --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "add"/> 
      <plural_short variable = "AddType"/> 
    </lhs> 
    <rhs> 
      <reference variable = "list"/> 
      <reference variable = "ListName"/> 
    </rhs> 
  </constraint> 
 
  <name_rule> 
    <reference variable = "ListName"/> 
  </name_rule> 
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  <!-- typing rule --> 
  <type_rule> 
    <reference variable = "AddType"/> 
  </type_rule> 
 
  <!-- handlers --> 
  <handler operation = "read" class_name =   
                       "colab.bus.property.handlers.SequenceReader"/>    
  <handler operation = "write" class_name =   
                       "colab.bus.property.handlers.ArrayWriter"/>    
</property_spec> 
 

8.5 SET Property Specification for GraphDraw 

<property_spec type = "set" version = "1.1"> 
  <!-- "list" pattern --> 
  <pattern name = "list"> 
    <return_type> 
      &VECTOR; 
    </return_type> 
    <method_name> 
      <literal>get</literal> 
      <variable name = "ListName"/> 
    </method_name> 
  </pattern> 
 
  <!-- "add" pattern --> 
  <pattern name = "add"> 
    <return_type> 
      <IGNORE/> 
    </return_type> 
    <method_name> 
      <literal>add</literal> 
    </method_name> 
    <argument_type> 
      <variable name = "AddType"/> 
    </argument_type> 
  </pattern> 
 
  <!-- "remove" pattern --> 
  <pattern name = "remove"> 
    <return_type> 
      <IGNORE/> 
    </return_type> 
    <method_name> 
      <literal>remove</literal> 
    </method_name> 
    <argument_type> 
      <variable name = "RemoveType"/> 
    </argument_type> 
  </pattern> 
 
  <!-- AddType == RemoveType --> 
  <constraint predicate = "equals"> 
    <lhs> 
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      <reference variable = "add"/> 
      <reference variable = "AddType"/> 
    </lhs> 
    <rhs> 
      <reference variable = "remove"/> 
      <reference variable = "RemoveType"/> 
    </rhs> 
  </constraint> 
 
  <!-- plural( short( AddType)) == ListName --> 
  <constraint predicate = "equals"> 
    <lhs> 
      <reference variable = "add"/> 
      <plural_short variable = "AddType"/> 
    </lhs> 
    <rhs> 
      <reference variable = "list"/> 
      <reference variable = "ListName"/> 
    </rhs> 
  </constraint> 
 
  <name_rule> 
    <reference variable = "ListName"/> 
  </name_rule> 
 
  <!-- typing rule --> 
  <type_rule> 
    <reference variable = "AddType"/> 
  </type_rule> 
 
  <!-- handlers --> 
  <handler operation = "read" class_name =   
                       "colab.bus.property.handlers.VectorReader"/>    
  <handler operation = "write" class_name =   
                       "colab.bus.property.handlers.VectorWriter"/>    
</property_spec> 
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