
 

 

Surface Reconstruction From  
AFM and SEM Images 

 
 
 

by 
Adam Seeger 

 
 
 
 
A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 
Department of Computer Science. 
 
 
 
 

Chapel Hill 
2004 

 
 
 Approved by: 
 
 _________________________ 
 Advisor: Russell M. Taylor, II 
 
 _________________________ 
 Reader: Richard Superfine 
 
 _________________________ 
 Reader: Stephen M. Pizer 
 
 _________________________ 
 Reader: Sarang Joshi 
 
 _________________________ 
 Reader: M. Joseph Costello, III 





 

iii 

© 2004 
Adam A. Seeger 

ALL RIGHTS RESERVED 





 

v 

ABSTRACT 
 

Adam Seeger 
Surface Reconstruction From AFM and SEM Images 

(Under the direction of Russell M. Taylor II) 
 

Current methods for surface reconstruction from AFM images do not enable one to 

incorporate constraints from other types of data. Current methods for surface reconstruction 

from SEM images are either unsuitable for nanometer scale shapes or limited to shapes 

described by a small number of parameters. 

I have developed a new approach to surface reconstruction from combination 

AFM/SEM images that overcomes these limitations. A dilation model is used to model 

AFM image formation and a filter bank model is used to model SEM image formation. I 

construct noise models for both AFM and SEM images from real data. The image 

formation models including the noise descriptions are used to construct an objective 

function expressing the probability of observed images given a hypothetical surface 

reconstruction. The surface is modeled as a sum of Gaussian basis functions and I derive a 

formula to estimate the gradient of the objective function in the surface parameter space. 

The conjugate gradient method is used to optimize the surface parameters. 

My thesis is that this algorithm is more general and accurate than existing methods and 

that the gradient-based optimization based on my formula enables one to compute a 

reconstruction is a few hours. This thesis is demonstrated by applying the algorithm to real 

and synthetic examples. 
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1 Introduction 

The atomic force microscope (AFM) and scanning electron microscope (SEM) are 

commonly used to study the structure of specimens at the nanometer scale. The two types 

of images are complementary because the AFM is good at measuring height in some places 

but is poor at measuring sharp edges while the SEM cannot measure height but is very good 

at detecting sharp changes in height or slope of the surface [Russell01]. Typically, very 

little processing is applied to raw AFM and SEM images, and humans must interpret the 

meaning and perform any integration of information from multiple sources. As the scale of 

the specimen decreases, the relation between the raw data and the specimen shape becomes 

increasingly complex and more difficult for a human to interpret accurately. As the scale of 

specimens continues to decrease, new imaging technologies may be developed that can 

resolve smaller structures but there will always be a need to push the small-scale limit at 

which quantitative shape information can be extracted from image data. The purpose of this 

project is to show how physically-based models of image formation can be used to derive 

more accurate quantitative shape information from images. It aims specifically at the case 

where there is more than one type of image available for the same specimen. 

1.1 Assumptions and Approach 

Determining a model of a physical specimen from physical measurements of that 

specimen is termed an “inverse” problem. The associated “direct” problem is to predict 

measurements from the model. An inverse problem is considered well-posed if a solution 

exists, is unique, and is stable (small changes in measurements do not lead to unbounded 

changes in the model) [Sabatier00]. In my problem (determining a specimen surface with 

nearly maximum likelihood given AFM and SEM data) uniqueness is not required but 
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stability is important. I seek one of many reasonably likely surfaces given the available data 

and the reconstruction should be expected to vary from the true surface inasmuch as the 

available data does not constrain the solution. Stability is aided in my method using the 

scale-space reconstruction approach discussed later in this section and described in 

[Jones94]. 

The direct problem of computing the expected AFM image and SEM image given a 

model for a specimen is reasonably well understood although existing methods were not 

fast enough for the purpose of this dissertation. Much less is known about how to solve the 

inverse problem (automatically computing the best-fit model given one or more images) or 

what additional constraints would be required to make the solution unique and stable. I use 

physically-based models for image formation together with optimization to solve this 

inverse problem, computing an accurate specimen model from the combination of a single 

AFM image and a single SEM image. The relation between the two images and the shape 

of the surface is illustrated in simplified form in Figure 1-1. 

electron
beam

AFM
probe
AFM
probe

a b

output 
signal

output 
signal

 
Figure 1-1: Simplified view of imaging mechanisms. (a) The AFM acquires a distorted 
topographical image of the surface. (b) The SEM projects a beam of electrons into the surface and 
measures how many come back out after scattering within the solid material. 

In my approach, the accuracy of a specimen model is judged by an objective function 

based on likelihood (the probability of the observed images given the specimen model). The 

calculation of likelihood takes into consideration estimates of the noise in both images and, 

by estimating the sensitivity of the direct solution to surface shape, automatically 

determines how much influence each image should have in determining the shape of the 

surface at each location. 

The method presented here assumes that both images are taken from directly overhead. 

It also assumes that the specimen surface can be described by a height function, z=H(x,y). 
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This restriction excludes surfaces with undercuts, whose shape cannot be uniquely 

determined by overhead images. It also assumes that the specimen is composed of a single 

known material because it was easiest to implement a fast algorithm for simulating SEM 

images in this case. Particularly in the case of manufactured specimens, it is reasonable to 

assume such knowledge of the material. The model can be extended to the more general 

case of multiple materials at the expense of computation speed. 

The algorithm models the specimen using a linear combination of hierarchical 

Gaussian basis functions of decreasing widths arranged on square grids. It searches for 

optimal coefficients of the basis functions at each width separately from the widest to the 

narrowest. Once the optimal coefficients for one width are found, it proceeds to the next 

smaller width. At each stage, the candidate surface is the sum of all weighted basis 

functions from the current stage and those from the previous stages. This approach, called 

scale-space reconstruction, was described in [Jones94]. The surface parameters (basis 

function coefficients) are adjusted using a deterministic iterative optimization procedure. 

1.2 Thesis Statement and Contributions 

My thesis is that 

 
A more general and accurate method for maximum likelihood scale-space 

reconstruction combining both AFM and SEM images is presented. Unlike existing 
methods, it provides an integrated approach, combining AFM and SEM images into a 
single reconstruction objective function that weights the significance of each image 
through consideration of noise and the ambiguities inherent in each imaging process. 
Completion of a reconstruction within a few hours is enabled by an optimization 
approach described in [Jones94] and calculations of likelihood gradient based on an 
existing model (grayscale dilation) for AFM image formation and a new model (filter 
bank synthesis) for SEM image formation. 

 

I demonstrate this thesis using both synthetic and real microscope images. 

For the test involving real images, I reconstruct the specimen surface using a real SEM 

image and a real AFM image taken with a relatively dull tip. The accuracy of this 

reconstructed surface is then judged by the sum of squared differences in height between 

that surface and a reconstructed surface from an AFM image taken with a much sharper tip. 
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I also reconstruct the surface from the dull-tip AFM image alone and compare this with the 

sharp-tip AFM-based reconstruction. 

For the synthetic data test I simulate AFM and SEM images from a synthetic surface 

and attempt to reconstruct that surface from both images and from the AFM image alone. 

Results based on synthetic data can be compared to a known true sample, which is not 

possible in the case of real specimens. 

One important sub-problem is the initial registration of AFM and SEM images. 

Because the AFM image gives an approximation to the specimen topography, knowledge of 

how the images are related can be incorporated by simulating an SEM image for the 

specimen surface estimated from the AFM image and directly comparing intensities in the 

simulated SEM image with the actual SEM image as described in section 7.2. 

 

In completing this project I have made the following contributions: 

• novel reconstruction objective function combining AFM and SEM image likelihood 
enabling gradient-based optimization of a surface 

• software library for Monte Carlo SEM simulation that includes an optimized 
parallel algorithm that achieves up to 1500x speedup on a 32 processor machine 
over the previous sequential implementations 

• novel automatic registration method for AFM and SEM images  
• filter bank technique for constructing generative image models for surfaces 

represented by height fields 
o application of this technique to the simulation of SEM images 

• software application with numerous features useful for AFM/SEM analysis: 
o blind tip-reconstruction from AFM images and manually-driven tip 

modeling utility 
o spatially-referenced comparison of AFM and SEM images and cross-

sections of those images 
o SEM simulation using Monte Carlo and shape-based methods 
o faster filter-bank SEM simulation 
o graphics-hardware-accelerated discrete grayscale dilation and erosion 

operations useful for reconstruction from AFM and simulation of AFM 
images 

o manual and automatic image registration with overlaid display 
o visualization of surfaces using 3D computer graphics 

 

The specific problem of reconstruction from AFM and SEM images is a particularly 

challenging member of the class of inverse problems with multimodal image data. By 

demonstrating that detailed models of image formation can be used to solve this specific 
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inverse problem I have provided an example that can motivate the application of this 

approach to reconstruction from other types of images.  

Existing methods for surface reconstruction from SEM are based on physically-based 

simulation of SEM images. As I describe in section 2.2.1, because this simulation is very 

slow it is only practical for very small and highly constrained problems. I have shown how 

a phenomenological model for image formation can be fit to the physically-based 

simulation to enable the solution of much larger and less constrained problems. This is a 

general approach that could be used to model other types of images and enable solution of 

other inverse problems. 

1.3 Algorithm Summary 

My approach uses the maximum likelihood method [Hoel71] with new AFM and SEM 

image estimation functions tuned for accuracy and speed. These simulating functions are 

combined into a single likelihood model that estimates the probability that the observed 

AFM and SEM images are noisy versions of simulated images from a hypothetical 

specimen and imaging conditions. The observed images are fixed and parameters 

describing the specimen surface and imaging conditions are varied. In the maximum 

likelihood method, one estimates the true specimen by maximizing this likelihood function. 

Because there is no closed-form solution for the maximum, it is necessary to use an 

iterative optimization algorithm. I use an optimization method that iteratively updates a 

model of the surface based on the gradient of the log-likelihood function (logarithm of the 

likelihood function). Given a hypothetical specimen surface, I estimate the log-likelihood 

and its gradient using models of image formation and noise distributions that will be 

described in the following chapters. 

Imaging conditions, including the shape of the AFM probe, the coordinate 

transformation between the AFM and SEM images, and SEM detector parameters, are 

estimated before optimizing the likelihood. Alternatively, one might include these typically 

unknown parameters with the specimen surface parameters as part of a single optimization. 

To simplify the optimization I chose to find the probe shape and coordinate transformation 

independently. 
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1.4 Introduction to the AFM 

The Atomic Force Microscope (AFM) was invented in 1986 by Binnig, Quate, and 

Gerber at the IBM Zurich Research Laboratory [Binnig86]. Its mechanism is very similar to 

that of the Scanning Tunneling Microscope (STM) invented by Binnig and Rohrer in 1982 

[Binnig82] and earlier stylus profiler devices. An AFM probes a specimen surface with a 

sharp tip mounted on the end of a cantilever (Figure 1-2). The flexible cantilever bends in 

response to force between the tip and specimen. A beam of light from a laser is reflected off 

the cantilever and onto a quadrant photodiode. As the force between the specimen and tip 

changes, the cantilever bends. The bending cantilever changes the position of light hitting 

the photodiode, thereby causing a change in the electrical current produced by the 

photodiode. The photodiode current thus provides a very sensitive measurement of the 

force between the tip and specimen. If the cantilever is lowered (z direction) past the point 

where the tip touches the surface, the cantilever will bend upwards and the photodiode will 

measure the normal force between the tip and surface. If the cantilever is then translated in 

x or y, the cantilever may twist and the resulting force signal includes some component due 

to lateral force between the tip and surface. By taking different combinations of the 4 parts 

of the photodiode one can separate out the lateral and normal force components for a 

particular scan direction.  
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Figure 1-2: Parts of an AFM 

The simplest way to measure a surface with an AFM is to record the variations in force 

between the tip and surface as the tip is scanned in x and y. If the surface is not very flat or 
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level, this can result in large forces that will damage either the tip or specimen. A more 

practical approach is to scan the surface in x and y while maintaining a constant normal 

force. Constant force (or contact mode) imaging uses negative feedback to adjust tip height 

by controlling the voltage on the z-piezo positioning element as the force on the tip deviates 

from a user-determined set point. The voltage applied to the z-piezo is directly related to the 

height of the tip (modulo hysteresis) so it is possible to convert the z-piezo signal into a 

measure of the height of the surface. 

Another method called non-contact mode involves oscillating the cantilever at its 

resonant frequency and measuring the variation in the amplitude of oscillation as the tip is 

scanned over the surface. The feedback control system maintains a constant decrease in the 

amplitude of oscillation relative to the amplitude when the tip is far from the surface. This 

method has the advantage of only intermittently contacting the surface and thereby avoids 

much of the specimen and tip damage that can occur with contact mode imaging. Lateral 

force is much lower in non-contact or tapping mode than in contact mode. True non-contact 

imaging occurs when there is a purely attractive force between the tip and specimen and 

typically requires operating the AFM in ultra-high vacuum. When the tip is oscillated above 

the specimen in air, a water layer on the surface usually causes the tip to jump into 

intermittent contact. At the range of feedback values used in this study (40-50% amplitude 

reduction), the damping is caused by the tip striking the sample at each downstroke during 

its oscillation. 

For the AFM images used in this project I used non-contact mode because it is less 

damaging to the AFM tip and therefore makes more valid the assumption that the tip has a 

constant shape for each image. It also reduces complicated artifacts that might be caused by 

lateral forces. After taking a set of AFM images with a relatively sharp tip I used the AFM 

in contact mode with a large force to intentionally dull the tip. The dulled tip was then used 

to produce the dull tip test images mentioned above for demonstrating my thesis. 

The largest artifacts in AFM images are caused by tip shape and imperfections in the 

feedback control system. The ideal AFM would have an infinitely sharp tip to reach as 

much of the surface as possible and an infinitely sharp impulse response in its feedback 

system to instantly adjust the height of the tip as it is scanned over the surface. In reality, 

the tip has a pyramidal or conical shape with some finite end radius so it is durable enough 
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to withstand the surface interaction forces. Also, a real feedback system requires finite time 

to adjust the height of the cantilever in response to changes in topography. Limitations due 

to imperfect feedback can be eliminated by sufficiently slowing down the speed with which 

the x-y piezos scan the surface – effectively reducing the rate at which the height of the 

surface below the tip changes. However, this may introduce more severe lateral distortions 

of the image as the position of the sample relative to the tip gradually changes over time 

due to thermal expansion or contraction of parts of the microscope or specimen. The effects 

of the tip shape cannot be avoided and these result in characteristic tip-dilation artifacts. A 

more detailed description of models for forces between the tip and specimen is provided in 

Appendix A. Additional background material on mathematical morphology concepts useful 

for understanding tip-specimen interactions is provided in Appendix A.  

1.5 Introduction to the SEM 
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Figure 1-3: Parts of an SEM 

The first Scanning Electron Microscope (SEM) was built by Max Knoll and Ernst 

Ruska in 1931. An SEM bombards a specimen with a sharply focused beam of electrons 

and detects the resulting electrons that scatter out of the specimen. An SEM uses magnetic 

lenses to focus the electron beam. Unlike the lenses in an optical microscope, the magnetic 

lenses serve to demagnify (i.e. make smaller) the image of the electron gun rather than to 
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magnify the image of the specimen. Initially, the electron beam is on the order of tens of 

microns. The beam is focused to a very small spot on the order of several nanometers in 

diameter through a demagnification of about 1/5000 so that it can sample the specimen 

surface as finely as possible. Electromagnetic deflection coils raster this spot over the 

surface to create an image just like the beam in a cathode ray tube (CRT) is scanned over a 

phosphor-coated screen. In a CRT, a flat surface hit by the electrons displays an image; in a 

SEM the response of the surface hit by the electrons is measured and displayed as an image. 

The signal produced by electrons scattered out of the specimen is displayed on a CRT 

screen or acquired by a digital frame grabber that is scanned in synchrony with the scanning 

of the SEM beam over the surface. In this way, the projection for the image is determined 

by the electron beam direction. Typically, the beam will be deflected at some point about a 

centimeter above the specimen. The deflection point is the effective center of projection for 

the image. Because the scanned region on the surface may be several orders of magnitude 

smaller than the distance to the center of projection, the direction of the beam is nearly 

constant as it is scanned and the resulting projection is nearly orthographic. For a typical 

10-micron scan range and 10 mm working distance, the change in angle is only 0.06 

degrees over the entire scan.  

The signal that determines the observed intensity in the SEM comes from the fraction 

of scattered radiation that can be sensed by a detector. One of the most popular types of 

detectors is the Everhart-Thornley (ET) detector because of its low cost and high 

sensitivity. The ET detector consists of a scintillator (material that converts energy from 

electrons to photons) and a photomultiplier tube (device for converting the energy from 

photons back into electrons and amplifying the electrical signal) and is sensitive enough to 

detect individual electrons. Changing the bias voltage on a metal screen in front of the 

detector can control the fraction of electrons that hit the ET detector. When the screen is 

biased to a very negative voltage (relative to the voltage at the specimen surface), it deflects 

slow moving (low energy) electrons but fast moving (high energy) electrons can still get 

through to the detector. When the screen is biased to a very positive voltage (relative to the 

voltage at the specimen surface), it deflects slow moving electrons into the detector, thereby 

collecting nearly all slow moving electrons coming out of the specimen in any direction. To 
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understand what these different signals mean it is necessary to understand what happens 

below the surface to produce the emitted electrons. 

Electrons emitted by the electron gun are accelerated through an electric field and the 

change in voltage as they pass from the gun to the specimen determines the energy of the 

electrons at the point that they start to interact with the specimen. The SEM images used in 

this work were taken with an accelerating voltage ranging from about 1.0kV to 3.0kV. 

When an electron enters the specimen, it can interact in two different ways with the atoms 

in the specimen. If it comes close enough to an electron that is already in the specimen 

(usually as part of one of the atoms in the specimen), then it can transfer some of its energy 

to that electron in what is called an inelastic interaction (as when one billiard ball hits 

another billiard ball). If an electron comes close enough to the relatively massive nucleus of 

an atom in the specimen then it will be deflected with almost no loss in energy in what is 

called an elastic interaction (as when a billiard ball hits a bowling ball). Typically, a high-

energy electron moving through the specimen is gradually slowed down through numerous 

inelastic interactions, very few of which change its direction significantly. Elastic 

interactions occur much less often but are responsible for most of the change in direction. If 

an electron from the electron gun is deflected and comes out of the specimen, it is known as 

a back-scattered electron (BSE). Electrons that are part of the specimen but are kicked out 

through inelastic interactions are known as secondary electrons (SE). Because the origin of 

a particular scattered electron is not directly measured, scattered electrons are most 

commonly classified by their energy, which can be measured. The energy is typically 

expressed in units of electron volts (eV), the kinetic energy acquired an electron as it 

traverses a change in potential of 1 volt. If the electron gun is at a potential of -1000 volts 

relative to ground and the specimen is grounded, each electron in the beam will hit the 

specimen with 1000 electron volts or 1 kilo electron volts (keV). Electrons escaping the 

specimen typically have energy somewhat lower than the energy of the incident electrons 

and a single incident electron may generate multiple secondary electrons at much lower 

energy such that the number of electrons ejected is more than the number that were 

incident. Secondary electrons normally have a very low energy (below 50eV). Because they 

are so low in energy, secondary electrons cannot travel very far before they are stopped by 

atoms in the specimen. Consequently, the only secondary electrons that can be detected are 
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those that are produced within a thin layer several nanometers thick near the surface. The 

most likely energy for SE is about 3-5 eV and the most likely energy for BSE is about 0.8-

0.9 times the incident electron energy [Goldstein92]. By convention, electrons are classified 

as SE if they are below 50 eV and BSE if they are above 50 eV. Such a classification, given 

typical SE and BSE energy distributions, attempts to minimize the probability that an 

electron will be misclassified as SE or BSE.  

There are actually three different types of secondary electrons, categorized according to 

where they are generated along the primary electron trajectory as seen in Figure 1-4. At the 

detector these different secondary electrons are indistinguishable but their origin affects the 

resolution of the measured signal. To a first approximation, the trajectory of an incident 

electron can be divided into two phases, before and after the first large-angle elastic 

scattering event. In the first phase, the only secondary electrons that are detected are those 

generated near the point of entry because others are too deep in the specimen to escape. It is 

unlikely that an incident electron is scattered by a large angle before penetrating too deeply 

in the specimen to produce detectable secondary electrons. In the second phase, the electron 

diffuses in a random walk and possibly escapes the specimen. If it escapes, additional 

detectable secondary electrons are generated at the point of escape. The escaping secondary 

electrons produced in the first phase (SE type I) are highly localized near the entry point of 

the primary beam electrons and therefore provide the highest resolution information. 

Escaping secondary electrons produced in the second phase (SE type II) are emitted over a 

region much larger than the beam diameter and therefore carry only low resolution 

information. When the beam is sharply focused, the resolution of SE type II electrons is 

typically much lower than that of SE type I electrons so the highest spatial frequency 

intensity variations in an image represent variations in the SE type I signal. At sufficiently 

high magnifications, the SE type II signal may not vary significantly across the entire image 

and will mainly contribute only an offset in the intensity. Secondary electrons are also 

produced when escaping electrons from the specimen hit the specimen chamber (SE type 

III). The SE type III signal is mainly due to BSE that do not travel directly to the detector 

but instead are detected indirectly by the secondary electrons they generate. Because of the 

SE type III mechanism, a secondary electron detector, even one that is biased to 
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preferentially detect low energy secondary electrons, may detect the high energy BSE 

indirectly. 
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Figure 1-4: SEM beam-specimen interactions 

Quantitative estimates of the beam-specimen interactions can be obtained by 

simulating many electron interactions in a Monte-Carlo simulation. Such a simulation takes 

the initial beam energy, specimen composition and specimen shape as input and produces 

estimates of the fraction of back-scattered and secondary electrons which would escape 

from the surface of the specimen (Figure 1-5). 
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Figure 1-5: Graph of trajectories computed by Monte 
Carlo simulation of electrons striking a flat silicon 
specimen at the point (x=0,z=0) 

As stated earlier, the projection for an SEM image is determined by the beam direction 

as the beam is scanned over the specimen. The SEM detector determines the observed 

intensity in the image but the location of the detector inside the SEM has no effect on the 

perspective for the image. Despite the strangeness of the SEM image formation mechanism, 

the images can be understood intuitively by analogy with images taken with a light camera 

(Figure 1-6). The proper analogy is that the scanning motion of the beam is like the optics 

of the camera and the detector is like the light source. The paths of the electrons in the SEM 

are like the paths of photons for the light camera except that the electrons travel in the 

opposite direction. 
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Figure 1-6: Analogy between a pinhole camera (A) and an SEM (B) in terms of viewing 
projection and contrast 

Because electrons in the SEM travel below the specimen surface, they tell us 

something about volumetric qualities of the specimen. In the case of a surface covered by a 

thin film, it is possible for the SEM to “see through” the film to observe details of the 

covered surface. Another consequence of the subsurface scattering is that rough surfaces 

appear brighter than smooth surfaces. This change in contrast with roughness can be 

understood intuitively in terms of surface area. As the surface area increases, the volume of 

the thin layer from which secondary electrons can escape increases, providing more 

opportunities for secondary electrons to escape. Even though the topographic variations in 

the surface characterized by roughness may be too small to be resolved in an SEM image, 

they can still affect the overall intensity of the image. A related phenomenon occurs near 

sharp edges or small bumps where electrons scattering within the specimen effectively have 

more opportunities to escape the specimen and reach the detector. The result is 
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characteristic brightening near the edges of raised topographic features (so-called edge 

effects) (shown in Figure 1-7 and Figure 1-8). 
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Figure 1-7: The distribution of material surrounding 
the point at which electrons enter the surface 
determines how easy it is for scattered electrons to 
escape the specimen. Edge effects are one of the 
observable manifestations of this relationship. 

 
Figure 1-8: Example of SEM image showing edge effects 
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1.6 Summary of Later Chapters 

Chapter 2 describes previous work that inspired and motivated this technique including 

methods for AFM-based surface reconstruction using concepts from mathematical 

morphology, methods for SEM-based surface reconstruction using Monte Carlo simulations 

and shape-from-shading. Chapter 3 describes some additional related inverse problems. 

Generative models for AFM and SEM are important tools on which many parts of my 

approach depend so I describe these models next in chapters 4, 5 and 6. I use a traditional 

approach to modeling the AFM image but extend the model to allow it to be more 

efficiently inverted in a maximum likelihood framework. I initially considered using Monte 

Carlo simulation to compute the SEM component of likelihood but determined that this was 

either too slow or too noisy to be practical. Instead I have developed a new deterministic 

model that is significantly more accurate than slope-based models and is also easily 

differentiated to enable calculation of likelihood gradient. Chapter 4 describes the model for 

AFM based on concepts from mathematical morphology. Chapter 5 describes a model for 

SEM based on Monte Carlo simulation of electron trajectories. Chapter 6 describes my new 

model for SEM based on a filter bank of convolution operators. Chapter 7 describes how 

the generative models are used to help with alignment of AFM and SEM images. Chapter 8 

describes the noise models incorporated into my objective function where they determine 

how much each image influences the surface reconstruction. Chapter 9 describes my 

optimization method including specimen surface parameterization, and calculations of log-

likelihood and its derivatives with respect to surface parameters. Chapter 10 presents results 

for surface reconstruction that are critical to demonstrating my thesis statement. Chapter 11 

summarizes contributions, describes limitations of the reconstruction algorithm, and 

discusses areas for future work. 



 

 

2 Previous Work 

In this section I describe previous work on surface reconstruction from SEM and AFM 

images and how it relates to my approach.  

2.1 Application of Morphological Operations to AFM Image 
Analysis 

Earlier approaches to surface reconstruction based only on AFM data attempted to 

directly remove artifacts caused by the tip shape. These approaches require estimation of 

the tip shape either from the same AFM image used for the reconstruction or an 

independent measurement. The tip shape estimated from an AFM image is very sensitive to 

sharp noise spikes in the image but the effect of noise can be reduced by an ad hoc 

approach. Noise also has a less serious but somewhat odd effect on the surface 

reconstruction. The method of surface reconstruction using morphological operations is 

similar to replacing each pixel in an image by the minimum value over the local 

neighborhood. This tends to favor downward noise spikes, while upward noise spikes tend 

to be ignored. In this case the effect of noise is mainly to introduce a global offset of the 

reconstructed surface downward which is no problem because the AFM only measures 

relative height for the surface. There will also be some variation in the offset introduced by 

the noise that I expect to be somewhat reduced in my reconstruction because of the more 

principled approach to dealing with noise. I do not claim any significant practical 

contributions in this area but do contribute a more principled approach to surface 

reconstruction from noisy AFM images that more fairly considers all the data in an AFM 

image. My main contribution is the algorithm that enables use of additional information 

about shape such as that provided by an SEM image. 
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2.1.1 Dilation and Erosion 

An AFM image is the result of scanning a mechanical probe over a specimen surface 

and the image contains features of both the specimen and probe shape. Grayscale dilation is 

a morphological operation that approximates the transformation from specimen surface to 

AFM image [Pingali92]. Dilation of a specimen surface by an AFM tip is illustrated in the 

top part of Figure 2-1. The dilation (dotted line in top figure) is the surface traced by a point 

on the tip as it is scanned horizontally and positioned vertically to where it just touches the 

specimen. To the extent that the AFM tip touches all parts of the specimen surface and the 

AFM image is approximated by a dilation operation (ignoring noise, surface deformation, 

and feedback artifacts), the specimen surface can be reconstructed using a morphological 

operation called grayscale erosion using an estimate of the tip shape. Erosion of an AFM 

image using an estimate of the tip shape is illustrated in the middle part of Figure 2-1. The 

erosion (dotted line in middle figure) is the surface carved out by the tip as it is translated to 

every point on the AFM image. Where the tip has not touched the surface, the eroded AFM 

image only provides an upper bound on the true specimen surface. 
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Figure 2-1: AFM image formation can be modeled as a dilation operation. 
An erosion operation can be used to partially reconstruct the specimen 
surface. 
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2.1.2 Estimating Tip Shape 

One way to estimate the tip shape is to scan the tip over a known structure and erode 

the resulting image with the known shape to reconstruct the tip. This approach is somewhat 

impractical because it requires the time-consuming scan of a calibration structure and 

because parts of the tip can break off, changing its shape within or between scans (this is 

particularly common when the tip first engages the specimen surface). One is not 

guaranteed that the estimated tip shape is a good estimate of the shape of the tip during 

previous or subsequent scans of different specimens. Another approach reconstructs the tip 

from the image of the unknown specimen surface under study using a so-called “blind” tip 

reconstruction algorithm. Such an approach is enabled by constraints in the dilation model 

for the AFM image along with some assumptions about the maximum width of the 

projection on the image plane of the parts of the tip that touched the surface. In this section 

I first describe a version of the blind tip reconstruction algorithm that assumes that the 

AFM image is a pure dilation. Then I describe a modification to the algorithm to enable it 

to work on noisy images. 

2.1.2.1 Blind Tip Reconstruction for Noiseless Images 
A blind reconstruction algorithm for recovering an estimate of tip shape was described 

in [Villarrubia94] and [Williams96]. The advantage of this approach is that it enables 

recovery of the tip shape from an AFM image of an uncharacterized specimen. Informally, 

the basis for the algorithm is that any structure in the AFM image must have been scanned 

by a tip that is at least as sharp as that structure. The algorithm starts with an overly blunt 

tip shape and iteratively cuts away parts of the tip until it is consistent with the image. 

Blind tip reconstruction is based on the fact that the dilation of a surface can opened 

(eroded and then dilated again) without any change if the probe shape for the opening 

operation has the same shape as the probe shape for the original dilation (Equation C-6). 

The blind tip reconstruction algorithm attempts to find the broadest probe that satisfies this 

property. While the idempotency of the opening operation is a necessary condition for the 

tip estimate to match the true tip, it is not sufficient and therefore it is possible for the 

estimate to only be an outer bound on the true tip shape. The estimate will not be sharper 



 

20 

than the true tip shape because the algorithm finds the broadest tip that satisfies this 

property and so the actual tip shape will be preferred over any that are sharper. 

One of the inputs to the algorithm is the size of the image representing the tip. Ideally 

this image should be just large enough to describe all parts of the tip that touched the 

specimen surface. If one were to choose the tip image size to be the same size as the AFM 

image, the final tip estimate would be the same as the AFM image (corresponding to the 

specimen being a sharp spike). The tip image size essentially limits the parts of the tip that 

can touch the surface so reducing the size forces the contact between tip and specimen to be 

more localized and this has an important effect on how the AFM image constrains the 

possible tip shapes. As the tip image size is reduced, the number of points in the AFM 

image affecting a pixel in the tip model will increase and provide a better estimate of the tip 

shape but making the tip image too small will prevent some parts of the tip farthest from the 

apex from being reconstructed.  

2.1.2.2 Blind Tip Reconstruction for Noisy Images 
Unfortunately, noise in the AFM image tends to create sharp spikes and if a pure 

dilation is assumed, these spikes imply that the tip shape must be very sharp to observe 

such features [Villarrubia97]. Some noise may be filtered from AFM images by using line-

by-line flattening algorithms (removing constant offsets between lines) or a median filter 

(replacing each pixel value by the median value in the neighborhood of that pixel) 

[Villarrubia97]. Even after such filtering, noise can cause the tip estimate to be overly 

sharp. To fix this problem, the tip estimation procedure was modified by introducing a 

threshold parameter [Villarrubia97]. This parameter causes the tip to only be updated if the 

change in tip height at a point is greater than the threshold parameter. Furthermore, when 

updated, the change is reduced by the threshold. It is necessary to iterate over the points in 

the AFM image until no points result in an update to the tip. Experiments with synthetic 

noisy AFM images show that if the threshold is chosen to be about 3σ, where σ is the 

standard deviation for the noise, then the reconstruction will most closely match the true tip 

shape and will bound the true shape from the outside. Below this size, the reconstruction 

will be too sharp and above this size the reconstruction will broaden. Also, the transition 

from being too broad to being too sharp occurs very suddenly as the threshold value is 
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reduced [Villarrubia97]. In [Dongmo00] and [Todd01], the threshold value is chosen 

slightly greater than the value at which the derivative of the tip volume with respect to the 

threshold value is maximized.  

Another algorithm for blind tip reconstruction in the presence of noise is described in 

[Williams98]. In this algorithm, a positive and negative offset is added to the AFM image 

to produce two bounding surfaces representing the region of uncertainty for the ideal AFM 

image without noise. The algorithm is similar to the algorithm assuming no noise described 

in [Villarrubia94] and [Williams96] but the lower bounding surface is used to position the 

current AFM tip model at each pixel of the AFM image while the upper bounding surface is 

used to erode the tip model. 

2.1.3 Surface Reconstruction from a Noisy AFM Image 

Once a tip shape is found either by using a special tip characterizer or one of the blind 

reconstruction algorithms, the specimen surface can be reconstructed by grayscale erosion 

of the AFM image with the tip shape. While the erosion operator has an inherent smoothing 

effect on the input image that filters out some of the noise, it introduces artifacts and 

ignores some information in reconstructing the specimen topography (Figure 2-2). 

 
Figure 2-2: Effect of noise on erosion. Upward spikes in the AFM image surface 
(left) are removed or reduced in the eroded surface. Downward spikes (right) 
have a relatively large effect, creating large pits in the eroded surface and 
neighboring pixels may have no effect on the reconstruction. 

Even if the exact tip shape were known, erosion of a noisy AFM image with this tip 

would produce only an approximation to the maximum likelihood reconstruction because of 

how the erosion operation to some extent ignores the value of certain data points (such as 

erosion 

erosion 
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upward noise spikes or points neighboring downward noise spikes). My approach addresses 

this issue by seeking the surface that explicitly maximizes the likelihood of the entire AFM 

image assuming a particular tip shape. Instead of using the erosion operation to reconstruct 

the surface, I seek a surface with a corresponding dilation that deviates in the most likely 

way from the AFM image assuming a model for correlated noise in the AFM image. 

Starting from an initial estimate of the surface (that is optionally computed using the 

erosion operation), I adjust the surface in a way that leads to the greatest increase in 

likelihood of the difference between the dilated surface and the AFM image using the 

gradient of the likelihood with respect to the surface parameters. While previous work used 

ad hoc methods for dealing with noise in AFM images without any consideration of 

correlation of the noise, I construct a model for correlated noise in the AFM image and use 

this model in a principled way to find an optimal surface. 

2.2 Models for SEM Image Intensity and Applications to Surface 
Reconstruction 

When using SEM images for surface reconstruction, one must choose an appropriate 

SEM intensity model, which produces an intensity estimate at each location given a 

description of the specimen. This model is important because it determines the applicable 

optimization methods. Previous work from the computer vision field used a model based on 

surface slope that enables various shape-from-shading approaches as discussed in section 

2.2.4.2. The Monte Carlo model described in chapter 5 is a more accurate approximation 

than models based solely on slope but is not as easily inverted and the direct problem of 

simulating images using the Monte Carlo model can be extremely time-consuming. 

Modeling the SEM signal as a function of slope works in some special cases of 

surfaces that are very smooth at the scale of the electron probe. More precisely, the slope-

based approximation works if the surface can be well approximated by a plane over the 

region of the surface from which electrons escape (for the electron beam focused at a single 

point on the surface). The slope-based approximation breaks down when a significant 

number of electrons contributing to the signal can escape through the surface where the 

slope is significantly different from the slope where the beam enters the surface. The 

electron escape zone ranges from tens of nanometers to several microns across depending 
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on the material and initial electron energy. The size of the escape zone is a complicated 

function of topography so it is more useful to speak in terms of the straight-line distance 

electrons can travel in the material before they run out of energy. This electron range is a 

bound on the radius of the escape zone for a flat specimen. For the material (silicon) and 

energy (1-3 keV) considered in this project, the electron range varies from about 30nm (at 

1keV) to almost 200nm (at 3keV). For surfaces with sufficiently sharp corners, small 

projections, or pits the SEM signal is more accurately predicted by a Monte Carlo 

simulation. 

My SEM model has much of the computational convenience of the slope-based 

models, with a closed form solution that is relatively quick to compute, but is also capable 

of mimicking the Monte Carlo simulation more closely than slope-based models. Here I 

review existing SEM models and methods for surface reconstruction using some of those 

models. 

2.2.1 Accelerated or Precomputed Monte Carlo Simulation 

An example that typifies all previous methods that use the Monte Carlo model to 

compute shape from SEM images is the “inverse scattering” approach 

[Davidson99][Villarrubia04]. Because of the long time required to calculate an SEM image 

using the Monte Carlo method, the approach in [Davidson99] makes use of precomputed 

images and assumes a very simple model for the surface shown in Figure 2-3. 

 
Figure 2-3: A simple model of surface shape (from [Davidson99]) 

height 

top width 

radius radius 

bottom width 
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The problem is to determine the cross section shape (a curve in 2D) of a surface whose 

shape is an extrusion of that cross section described by 4 parameters: top width, bottom 

width, height, and radius of curvature (see Figure 2-3). The 4-dimensional parameter space 

is sampled and corresponding SEM scan profiles are generated offline by Monte-Carlo 

electron scattering simulation to create a library of scan profiles. The offline calculation 

requires several days on a 330MHz Pentium machine. Actual data (line scans extracted 

from real SEM images) is compared to all of the approximately 1000 simulated line scans 

stored in the library to find the best match. To compensate for an unknown and possibly 

spatially varying amplification of the signal from the microscope, a slowly spatially varying 

gain parameter is optimized to minimize the least squares error between the simulated and 

acquired SEM intensity before testing each possible match [Davidson99]. This sort of brute 

force approach is only applicable for highly constrained specimen models with a small 

number of parameters but it does demonstrate the value of the Monte Carlo model for real 

applications at scales where slope-based models do not provide the required accuracy. 

For the less constrained problems that I am targeting it is not practical to do the 

simulation in a preprocess step. Instead, images must be simulated on the fly as they are 

needed by a surface optimization algorithm. At each step of an optimization algorithm, an 

image would be simulated, compared with the real SEM image, and an update to the 

surface generated in accordance with an optimization search strategy, minimizing the 

difference between the simulated and real SEM images. For such an optimization approach, 

it is reasonable to assume that a simulated SEM image would need to be computed at least 

once for each surface parameter. For a surface represented by a 64x64 grid of basis 

functions there are 4096 parameters. Computing a 64x64 pixel SEM image on a single 

processor with 1000 electrons per pixel (the same number of electrons used in 

[Davidson99]) requires about 820 seconds. This figure is based on the Monte Carlo SEM 

simulator being limited to rate of about 5,000 electrons per second per processor when 

secondary electrons are included [Seeger03]. Computing 4096 such images would require 

38 days on a single processor. This is far from practical and the only way it might work 

would be to drastically reduce the number of electrons simulated and take advantage of 

independence of the effects of different parts of the surface on the objective function to 

optimize the surface more efficiently. However, as the number of electrons is reduced the 
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noise in the objective function evaluations would increase and tend to reduce the rate of 

convergence so it is not obvious that this approach would improve the speed of the 

optimization overall. If each basis function was assumed to be independent from those 

outside of a 7x7 neighborhood then the gradient might be estimated by simulating just 50 

images but this would still require almost a whole day on a single processor. At least in the 

near future, any work using this approach would probably be limited to matching a 1D line 

scan as in [Davidson99] rather than a 2D image. 

Even if one could overcome the speed issues, Monte Carlo simulation doesn’t provide 

a quantitative prediction of an SEM image without some additional tweaks. While the 

Monte Carlo model is useful for understanding what happens within the specimen, there are 

many interactions occurring after electrons leave the specimen that are not typically 

simulated. These interactions include the production of secondary electrons from parts of 

the specimen chamber and detector sensitivity characteristics. Even if one could assume 

fixed geometry of the specimen chamber and detector, instrument parameters such as 

amplifier gain and offset are not typically recorded and make it difficult to quantitatively 

analyze SEM images. Unknown factors affecting image contrast (such as contamination 

with vacuum pump oil) may vary from one SEM to the next and from day to day for the 

same SEM. If specimen charging occurs, taking this into account can increase the 

simulation time by several orders of magnitude. In matching a Monte Carlo simulation to 

real data, various calibration factors must either be estimated through trial and error, labor-

intensive measurement of detector characteristics [Drouin99], optimized along with the 

unknown specimen parameters within a numerical optimization, or some combination of 

these approaches [Davidson99]. It would be better to have a model that could be easily 

calibrated to any SEM and operating conditions, perhaps by using a calibration object of 

known shape. 

2.2.2 Diffusion Matrix 

A diffusion matrix [Desai90] [Czyzewski91] represents electron scattering in an 

infinite volume by sampling the electron flux through hypothetical surface patches with 

different orientations at regularly-spaced points in a 2D or 3D voxel grid. The matrix is 

precomputed from a Monte Carlo simulation in an infinite volume of material. To compute 
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the SEM image from a height image, one scans the precomputed matrix over a piecewise 

linear representation of the surface and at each point, sums the contributions from the flux 

through each facet of the surface. This algorithm has only been implemented for surfaces 

defined by 2D cross sections to generate 1D SEM scans. While in theory the diffusion 

matrix could work in 3D it may not be fast enough. Another drawback of this approach is 

that as with Monte Carlo simulation it is limited to modeling the emission of electrons from 

the specimen. Like Monte Carlo simulation, the diffusion matrix would require additional 

fitting parameters to compare its output with real SEM images. 

2.2.3 Stopping Point Distribution Model 

This approach has been described in [Aristov91] and [Firsova91] and is based on the 

distribution of points at which electrons stop within a hypothetical infinite volume of 

material relative to the point at which incident electrons enter the specimen. In [Aristov91], 

the relation between the BSE signal and the topography is approximated by the integral of 

stopping-point density that lies above the surface: 
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where ( )0 0,x yη  is the ratio of BSE to incident electrons when the electron beam hits the 

surface at ( )0 0,x y , f(x,y) is the height of the surface, and F(x,y,z) is the probability that 

(x,y,z) is the stopping point of an electron trajectory. This stopping point distribution is 

approximated by a Gaussian function with center at some depth directly below the beam 

entry point. In [Firsova91], the width and center parameters of the Gaussian distribution 

function were estimated both from experimental data and from a Monte Carlo simulation. 

An iterative algorithm is used to estimate f(x,y) from an experimentally measured BSE 

signal ( )exp ,x yη . Given an experimentally measured BSE signal and the surface estimate 

f(n)(x,y) at iteration n of the algorithm the surface is updated at every point ( )0 0,x y  using 

the recursion 
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where s is a constant factor that determines the rate of convergence. 

One of the weaknesses of this model is that it cannot accurately account for shadowing 

effects caused by electrons escaping and re-entering the surface. Also, this model has only 

been demonstrated for the BSE signal which is not typically used for nanometer-scale 

metrology because of its low resolution and low signal to noise ratio. Another limitation of 

this approach is that it assumes that the variation in height is smaller than the distance that 

backscattered electrons can travel within the specimen (electron range). The electron range 

can be less than 100nm and in many cases surface height variation is larger than this 

distance. 

2.2.4 Function of Incident Angle and Shape-from-Shading 

2.2.4.1 Slope-based Models for Intensity 
In [Ikeuchi81], real secondary electron SEM data was compared with several 

approximations to the image brightness including ( )( )1 coseα θ− , ( )sec kθ , and 

( ) ( )1 secs s θ− + ⋅  where � is the incident angle (equal to 0 when the electron beam is 

perpendicular to the surface). The best fits to experimental data were found with � � 1, k � 

0.8, and s � 0.5. To avoid the non-physical unbounded increase of the third model at angles 

of incidence near 90°, an ad hoc modification was applied above 70° to limit the increase. 

The models described in [Ikeuchi81] are plotted in Figure 2-4 along with the output of 

a Monte Carlo simulation and the simpler formula, sec(�), used in [Jones94]. It may seem 

obvious from this graph that a better fit between the Monte Carlo simulation and those in 

[Ikeuchi81] could be achieved by simply scaling the various approximations. This is the 

first comparison between such slope-based models and Monte Carlo simulation that I am 

aware of and so the thought of such an adjustment was not likely to have occurred to 

anyone in the past. In [Davidson99] and in this work, a scaling factor is applied to the 

output of Monte Carlo simulation to match experimental data (see section 6.7.1 for more 



 

28 

details). Though the Monte Carlo simulation is certainly a more accurate model of the 

underlying process it may not be the most accurate phenomenological model of the 

measured SE yield. Also, there are such large variations in experimental data that it is 

difficult to say which model best matches the data [Joy94]. 
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Figure 2-4: Comparison of previously used reflectance functions with the 
output of a Monte Carlo simulation. The y-axis is brightness relative to the 
brightness for a surface perpendicular to the electron beam 

Approximations to the SE type I signal based on the secant function come from the 

assumptions that secondary electrons can only escape a specimen if they are generated 

within a thin layer near the surface, that secondary electrons are generated at a constant rate 

over the part of the incident electron’s trajectory within this thin layer, and that the chance 

of escape for all secondary electrons generated within the layer is the same. With these 

assumptions, the number of SE type I is proportional to the length of an incident electron 

trajectory that is contained in the near surface layer. This distance is proportional to a secant 

function of the angle between the incident beam and the surface normal as shown in Figure 

2-5. 
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Figure 2-5: Secondary electron yield due to primary beam electrons as 
they first enter the specimen (SE type I) depends strongly on angle of 
incidence for the beam because this determines the distance over which 
the incoming electrons remain near the surface.  

 

Although a shading model (where intensity is assumed to depend only on slope) may 

not accurately model SEM intensity, some of the approaches that assume such a model are 

still relevant because they may be modified to use a more accurate model. 

2.2.4.2 Surface Reconstruction Using Slope-based Models 
The goal of shape from shading is to recover the height field describing a surface from 

a 2D shaded image of the surface. The intensity I at a point (x,y) in the shaded image is 

assumed to be given by the image irradiance equation 

( ) ( )( ), ,I x y R x y= n�  

Equation 2-1 

where R, the reflectance function, is a function only of the surface normal n�  at the point on 

the surface that projects to (x,y) in the shading image. Lighting and viewing parameters are 

considered part of the reflectance function. A common choice for the reflectance function is 

the Lambertian shading model defined as 

( )( ) ( ), ,R x y x yη= ⋅n n l
�� �
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where η is a scalar representing the product of the light intensity and intrinsic reflectance 

(albedo) of the surface and ( , , )x y zl l l=l
�

, the light source vector. Locally, the intensity in 

the shaded image does not fully constrain the surface normal because the normal is only the 

dot product of the normal with the light vector is fixed. The possible normals projected onto 

a plane perpendicular to the light vector form a circle representing a constant angle with the 

light vector. Additional constraints such as surface smoothness, boundary conditions and 

integrability must be introduced to find a unique solution. Computing shape from SEM 

images has been treated as an instance of the shape from shading problem by several 

researchers [Horn70, Jones94]. For shape from shading the SEM intensity is commonly 

assumed to be the SE type I signal with the form ( )φδδ sec0=  where δ0 is the signal from a 

flat surface perpendicular to the incident electron beam and φ is the angle between the 

surface normal and the incident electron beam. In the reflectance function notation the 

function is defined as 

( ) 0R
δ=
⋅

n
n l

�
��  

As in the Lambertian model, the surface normal only appears in a dot product with the light 

vector appears in this reflectance function so the normal is similarly unconstrained. 

Consequently, the model produces an estimate of the magnitude of the height gradient but 

not the direction of the height gradient. For cases where image intensity depends only on 

height gradient magnitude one can use Horn’s method of characteristic strips to integrate 

the height along special curves that follow the intensity gradient in the shading image 

[Horn70]. With this method, small errors due to noise are accumulated by the integration. 

Other approaches to shape from shading attempt to avoid problems with noise by imposing 

smoothness constraints or by using a multi-resolution method. Dupuis and Oliensis 

developed a method based on Horn’s characteristic strips and proved that knowledge of 

local minima and maxima for the surface height function enabled their method to converge 

to an optimal solution [Dupuis94]. It is not obvious how to apply such a method to shape 

from SEM shading when the intensity cannot be assumed to be a function only of slope. 

The work of Leclerc and Bobick [Leclerc91] is representative of methods that 

incorporate an explicit smoothness constraint and multi-resolution representation for the 
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input image. In [Leclerc91], the surface is represented as an array of height values { }ijz=z  

and the objective function for the optimal reconstruction is defined as 

( ) ( )( ) ( )2 2 2

,

1 ,ij ij ij ij ij
i j

E R p q I u vλ λ� �= − − + +
� � ��  

Equation 2-2: Example of an objective function for shape from shading incorporating a smoothing term 
that serves the purpose of sufficiently constraining (or regularizing) the solution (from [Leclerc91]) 

where approximations to first and second derivatives of the height are computed as 

( )1, 1,

1
2ij i j i jp z z+ −= −  (slope in x) 

( ), 1 , 1

1
2ij i j i jq z z+ −= −  (slope in y) 

1, , 1,2ij i j i j i ju z z z+ −= − +  (curvature in x) 

, 1 , , 12ij i j i j i jv z z z+ −= − +  (curvature in y) 
and R(p,q) is the reflectance function in terms of the slope of the surface rather than the 

surface normal as in Equation 2-1. The first term inside the summation is the intensity error 

and the second term is a smoothness constraint. The scalar, λ, controls the relative 

weighting of the smoothing term and the intensity error term. 

The objective function is optimized using a multiresolution approach in which an 

image pyramid is formed by blurring the input shaded image and subsampling by a factor 

of 2 from an initial resolution of 64x64 to 32x32, 16x16, and 8x8. Starting with the 8x8 

image, the corresponding subsampled array of height values is iteratively optimized to 

minimize E and then bilinearly interpolated to the next higher resolution and the 

optimization started again for the new resolution. This process is repeated up to the highest 

resolution. At the lowest resolution, the factor λ is initially set to 1.0 and is decreased by a 

factor of 
1
2

 in a geometric sequence down to 1/16. Thus there are actually two nested 

sequences that incrementally increase the level of detail: one for the resolution of the image 

and one for weighting factor controlling the smoothness (λ). For each resolution and value 

of λ, the partial derivatives of E with respect to each of the components of the light vector 

( , , )x y zl l l=l
�

 and the height array { }ijz=z  are computed and the conjugate gradient 

algorithm is used to minimize the objective function. When a minimum is reached for a 
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given value of λ, the value is decreased to the next smaller value and the conjugate gradient 

algorithm is restarted. Each time the resolution is increased, the minimum and maximum 

values for λ are both divided by 2. Thus, at the lowest resolution, the weight for the 

smoothing term (λ) is stepped in a geometric sequence from 1.0 to 1/16. At the next higher 

resolution, the weight for the smoothing term (λ) is stepped in a geometric sequence from 

1/2 to 1/32 and so on. 

Peleg and Ron [Peleg90] observed that such a reconstruction based on a blurred input 

image can produce a qualitatively incorrect solution if the relationship between the input 

data and the solution is not linear and suggested a way to partially reduce this problem 

using a non-linear blurring operation. A complementary method developed by Jones and 

Taylor [Jones94] called scale-space reconstruction uses a multi-resolution representation of 

the surface but does not require any blurring or subsampling of the input image. 

In [Jones94] the surface height is represented as the sum of Gaussian basis functions 

arranged on a square grid. Because the surface model is composed of smooth functions, an 

explicit smoothness constraint is not needed in the objective function. As in [Leclerc91], 

the conjugate gradient algorithm is used to optimize the coefficients of the Gaussian basis 

functions but where the gradient of the objective function becomes 0 a genetic algorithm is 

used to search a small neighborhood around the current solution to help escape local 

maxima or saddle points. The standard deviation of the Gaussian basis functions is 

gradually reduced from 60 pixels down to 0.39 pixels for a 64x64 shaded image and at each 

scale the surface is optimized starting from the optimal surface at the previous larger scale. 

The resolution of the grid of basis functions (number of functions along one edge of the 

surface) is reduced for larger Gaussian widths according to 

( ) max

max

6 6

6
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M

σ σ
σ

σ
>�
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where Mmax is the largest grid width equal to the number of pixels in the shaded image 

(Mmax = 64 for 64x64 shaded image) and σ is the standard deviation of the Gaussian basis 

functions in units of shaded image pixels. This subsampling of the basis function grid 

significantly reduces the number of parameters in the surface model at large scale. The 

original shaded image is also blurred using Peleg and Ron’s non-linear blurring method and 

subsampled to the same resolution as the grid of basis functions. 
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In both [Jones94] and [Leclerc91], the numbers of parameters are reduced at low 

resolution but at the highest resolution, the number of parameters is equal to the number of 

pixels in the input image and therefore quite large for an optimization problem even for a 

small image with 64x64 pixels. A variation on Jones and Taylor’s approach is described by 

Wei and Hirzinger [Wei97]. They also use Gaussian basis functions but only place 

functions where the intensity error is above a threshold. Initially, all basis functions on a 

grid similar to that used by Jones and Taylor are considered. The average intensity error for 

a receptive field corresponding to each basis function is computed and tested against a 

threshold. If the average error is above the threshold, the corresponding basis function is 

introduced into the surface model. After this initial selection, the surface model is 

optimized with the centers and widths of the basis functions as additional free parameters. 

Also, instead of the conjugate gradient method, the stochastic gradient method is used. The 

stochastic gradient method consists of iterating over all pixels in the image and for each 

pixel, updating the model by considering the error gradient for the single pixel. For the ith 

pixel each model parameter w is updated according to 

( ) ( )1n niE
w w

w
β α −∂∆ = − + ∆

∂
 

where Ei is the error for the pixel and ( )nw∆  is the change in w for the nth pass through all 

the pixels. β is a learning rate and ( )1nwα −∆  is a momentum term. Wei and Hirzinger state 

that values of β=0.3 and α=0.6 work reasonably well in their application. The authors claim 

improvements in performance using the stochastic gradient method over conjugate gradient. 

The number of basis functions used is typically half that used by Jones and Taylor’s 

approach but the total number of free parameters may actually be greater because each basis 

function has 4 adjustable parameters (height, width, x position, y position) instead of just a 

height parameter. I do not use this method because it is not obvious how to efficiently 

maximize a match to both an SEM image and an AFM image. It may be difficult to 

incorporate other constraints (besides those from the SEM image) in the stochastic gradient 

method. 

I adopt the scale-space reconstruction framework described in [Jones94] but do not use 

any blurring of the input AFM and SEM images. I use the same specimen representation, 

coarse-to-fine optimization strategy and conjugate gradient method for optimization at each 
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scale. Unlike [Jones94] I do not use a genetic algorithm to help prevent the conjugate 

gradient method from getting stuck. I extend this method by incorporating constraints from 

the AFM image data along with those from the SEM image data by optimizing combined 

likelihood, using data in each image to resolve ambiguities and reduce errors due to noise 

that would occur using either image alone. Also, the model for SEM intensity that I use, 

described in chapter 6, is significantly more complex than those used by existing shape 

from shading methods. While this model for SEM intensity can be computed nearly as 

quickly as those used by shape from shading algorithms, it captures behavior of the Monte 

Carlo model that is missing from existing shape from shading methods. 



 

 

3 Other Related Inverse Problems

Chapter 2 reviewed previous work directly related to surface reconstruction from AFM 

and SEM. In this chapter I describe some additional inverse problems that are not so 

directly related but that are similar in some important aspects to my problem. For example, 

the non-linear nature of the SEM gives it an effectively variable point spread function over 

an image because the interaction volume has a different shape depending on the shape of 

the topography. Although it has a more subtle effect, the finite depth of focus in SEM also 

contributes to this variability but I do not model this. In reconstruction of a scene from 

synthetic aperture rader (SAR) the point spread function also varies across an image 

although unlike the SEM, the point spread function depends on image location in a known 

way.  

In [Robini97], the simulated annealing algorithm (to be described shortly) was used to 

reconstruct a 2D grayscale image acquired by synthetic aperture radar (SAR). SAR works 

by scanning a wide-bandwidth radio emitter along a straight path. At sample points along 

the path, echoes from objects that scatter the radio signal back are acquired. The 2D image 

encodes this backscattered signal such that one dimension of the image represents the time 

that it took the echo to come back and the other dimension represents distance along the 

emission path. The temporal dimension is also proportional to the distance of the scattering 

object from the radar device. Scatterers that are farther away are effectively measured with 

a larger aperture because of the conical volume from which the receiving antenna collects 

the backscattered signal. As a result, the formation of the SAR image may be accurately 

modeled as a convolution of a 2D scene with a spatially varying blurring operation in which 

the blur kernel depends on distance from the acquisition device. The 2D scene describes the 

density of scatterers as a function of distance from the acquisition path and distance along 
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that path. Robini et al construct an objective function that consists of a smoothing term (as 

in Equation 2-2) and an error term consisting of the sum of squared differences between 

measured data and the data predicted by the scene model and a theoretical point spread 

function. In this case, the model is also a 2D image representing the sampled density of 

scatterers. 

The simulated annealing algorithm iterates over the parameters (pixels) of the model 

and for each pixel considers a new randomly generated grayscale value. If the objective 

function value for the resulting candidate image is less than the old objective function 

value, the new candidate is accepted; otherwise it is accepted with some probability that 

depends on a scalar temperature parameter. The role of the temperature parameter is to 

allow changes that reduce fitness with high probability initially and over the course of the 

optimization the temperature is gradually reduced making acceptance of such changes less 

likely. This approach was inspired by the simulation of a liquid as it cools to form a crystal 

(a type of annealing process). As it cools, the material finds the lowest energy state. In 

[Robini97] the new grayscale values are sampled from a subset of the range of intensities in 

the image based on the intensities in the local neighborhood of that pixel following an 

approach suggested in [Yang93]. This restriction increases efficiency by reducing the 

frequency of rejected candidates. Another method used to speed up the annealing process 

involved a distortion of the objective function that automatically made it more and more 

difficult for the algorithm to escape from minima as the objective function value decreased 

[Robini97]. Even with such acceleration techniques, the number of objective evaluations 

and computing time required for convergence with simulated annealing can be very large 

compared with algorithms that are less general and include restrictions that are specially fit 

to the particular optimization problem. Yang remarks that the computational cost of 

simulating annealing is especially high when the parameters are strongly correlated (e.g. 

when the point spread function in the image reconstruction problem is large)[Yang93]. 

In my specimen representation, the parameters are very strongly correlated in terms of 

their effect on simulated AFM and SEM images, particularly at the nanometer scale. This 

correlation is the result of the wide effective point spread function of both the AFM and the 

SEM relative to the size of the topographic features I wish to reconstruct. 
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Computing exposure patterns for electron beam lithography has some interesting 

parallels to shape reconstruction from SEM images because both cases involve 2D images 

resulting from the same electron scattering process. In the electron beam lithography 

problem, the “measurement” is actually a target surface that one wishes to create through 

the electron beam lithography process. The “model” to be recovered consists of the 

parameters of the manufacturing process: an exposure pattern that describes the dwell time 

for the SEM electron beam at each point in a set of (x,y) scan positions on a regular grid. 

An important difference between this problem and the surface reconstruction problem is 

that for electron beam lithography one wishes to find a 2D image (the exposure pattern 

describing density of incident electrons) given a surface, while in surface reconstruction 

one wishes to find a surface given a 2D image (describing signal from electrons that are 

scattered out of the surface). The direct problem, mapping from exposure pattern to 

predicted surface, may be solved using a Monte Carlo simulation of electron scattering for 

an initial surface (as in surface reconstruction from an SEM image), keeping track of 

energy deposited by the electrons in the volume of material, and by simulating the etching 

process that removes exposed parts of the surface to form the final surface. The target 

surface may not be physically realizable but the goal is to create a surface that is as close to 

the target as possible. Deviation between the target surface and the nearest physically 

realizable surface is analogous to measurement noise in the other reconstruction problems 

described here. The process of electron irradiation and etching is analogous to the process 

of image formation. 

Robin et al used a genetic algorithm and a simplex-downhill method to solve a problem 

in electron beam lithography [Robin03]. In electron beam lithography, the electron beam is 

scanned over a flat surface of resist material. The surface is then etched such that the places 

that were exposed to the beam are removed. Over a fixed amount of time, the speed and 

hence depth to which the resist is etched depends on the amount of exposure to the electron 

beam. By varying the exposure across the surface, 3D structures can be created in the resist. 

Because the electron scattering and subsequent etching processes are non-linear, in general 

it is difficult to determine the appropriate exposure pattern given a desired 3D shape.  

Robin et al determine an exposure for a shape represented by a 2D cross-section. Given 

a string of (x,z) pairs representing the cross-sectional shape of a surface (shape was 
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invariant for translations in y), the problem was to determine what exposure pattern to use 

in creating that shape. They used a pattern composed of 100 dwell points spaced along a 

line at 16 nm intervals. Since the electron beam penetrated significantly deeper in the 

sample than the depth of the target pattern, the density of scattering electrons was assumed 

not to depend on z. This assumption combined with the fact that the initial surface (at the 

time of exposure) is flat simplified the direct problem so a 1D convolution could be used in 

place of a Monte Carlo simulation (electron scattering was modeled as a linear process). 

The convolution kernel was a sum of a narrow Gaussian function (40 nm full-width-half-

maximum (FWHM)) representing the spatial distribution for exposure due to incident 

electrons before their first elastic scattering and a much wider Gaussian function (1780 nm 

FWHM) representing the spatial distribution for exposure from backscattered electrons. 

The etching process was simulated using the “string” model that iteratively steps the points 

in the profile perpendicular to the surface, using empirically-fit models of the rate of 

propagation as a function of developing time. This profile calculation was found to 

dominate the computation time for optimization. The objective function was computed as 

the Euclidean distance between the points in the target profile and the points in the 

computed profile. 

The simplex-downhill method (or Nelder-Mead method) successively transforms a 

simplex (a set of (n+1) points in the n-dimensional search space) to seek the optimal point. 

In [Robin03] the search space has 100 dimensions. Each coordinate direction corresponds 

to the dwell time for one of the 100 dwell points. To initialize the algorithm, Robin et al 

initialized a single vertex (representing a particular exposure pattern consisting of dwell 

times for each of the 100 points) of the simplex randomly and set the other n points to that 

point plus constant offsets in each of 100 coordinate directions (perturbations of a single 

dwell time in the exposure pattern). Depending on the value of the objective function at 

each of the vertices in the simplex, one of four transformations is applied to the simplex so 

that it moves towards a local minimum. All transformations are essentially a scaling about 

either a point or a face (n points in a face) of the simplex and each transformation usually 

requires just a single vertex to be updated. In their experiments, Robin et al found that the 

simplex-downhill method converged after only a few hundred transformations and was 

apparently easily trapped by local minima far from the global minimum. An objective for 
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surface reconstruction from SEM images is likely to have a similar abundance in local 

minima due to the strong correlation between neighboring pixels in the exposure pattern or 

SEM image (from overlapping interaction volumes in the specimen). Robin et al concluded 

that the problem was too difficult for the simplex downhill method and that a global 

optimization method such as a genetic algorithm was required. 

For the genetic algorithm, a population of 100 individuals was used (same as the 

number of model parameters). The first generation was initialized by randomly picking all 

dwell times from a uniform distribution and then forcing random small groups of 

consecutive times within an individual to have the same value. In each iteration, two parent 

individuals were selected from the previous generation, recombined to create two new 

offspring by splicing at 2 randomly selected points the arrays of dwell times for the two 

parents. A mutation operation was then applied to the offspring that randomly perturbed 

one of the dwell times. Then the objective function was computed for the offspring and they 

were reinserted into the population. Three methods of selecting the two parents were 

considered. Roulette-wheel selection sets the probability of an individual being selected 

proportional to its fitness. Rank-based selection sets the probability of selection 

proportional to an individual’s rank in the population. Tournament selection selects each 

individual by randomly selecting a subset of the population and choosing the fittest 

individual from that subset to be added to the next generation. In each case, individuals 

were selected without replacement to avoid duplication. No significant differences were 

found in the performance using these different selection methods. Significant benefit was 

found in using a rejuvenation operator once every 5000 cycles which replaced the 75% 

worst individuals by new randomly generated individuals. The genetic algorithm was found 

to provide a useful solution (transistors were successfully manufactured using the output 

dwell times). 

Both [Robini97] and [Robin03] found it necessary to use global optimization methods: 

simulated annealing and a genetic algorithm. Such methods may be necessary when there 

are multiple locally optimal solutions as is typical for such non-linear inverse problems 

based on complicated physical simulations. The problem of determining shape from 

combination AFM and SEM images is also likely to have multiple locally optimal 

solutions. However, given the large number of objective function evaluations required by 
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global optimization algorithms, I did not consider such strategies to be practical for this 

problem because of the long time required to simulate AFM and SEM images and compute 

the objective function. Instead, I use a scale-space reconstruction framework [Jones94] that 

constrains the solution to one that can be tracked by local optimization from large scale to 

small scale. Though this solution may not be globally optimal, I assume that it is 

significantly closer to the globally optimal solution than solutions provided by existing 

methods. Local optimization is much more efficient and greatly reduces the number of 

objective functions required. Scale-space reconstruction also provides the added benefit of 

an implicit smoothness constraint that helps to find a relatively simple surface that explains 

the observed images when there are many more complicated surfaces that would explain 

the images just as well. 

 



 

 

4 AFM Image Analysis and Modeling 

This chapter describes preprocessing of the AFM image in my technique that is 

independent of the SEM image. The first step is to flatten the AFM image, transforming it 

into a standard coordinate system for registration to the SEM image. Next, the tip shape is 

estimated using Villarrubia’s blind tip reconstruction algorithm. An initial estimate for the 

surface is found using the erosion operation and the reconstructed tip shape. 

Many of the new contributions related to AFM analysis are covered elsewhere: A 

model for correlated noise in AFM images is described in section 8.1. An objective function 

for the surface reconstruction based on a model for the AFM image as a dilation plus 

additive correlated noise is described in section 9.2.1. The derivative of this objective 

function is described in section 9.3.1. Much of the background on mathematical 

morphology including a discussion of the differences between discrete morphological 

operations (on which my method is based) and continuous morphological operations is 

provided in Appendix A. Acceleration of mathematical morphology operations using 

graphics hardware is described in appendix section Appendix E. 

4.1 Flattening 

To bring the AFM data into a common coordinate system (up to a 2D transformation) 

with the SEM image plane that is assumed to be perpendicular to the specimen substrate, I 

apply a flattening procedure that transforms the data by subtracting a plane fit to the AFM 

image. This is equivalent to a applying a shear operation to the data set. Because of the 

small tilt angles involved, this procedure is for practical purposes equivalent to a 3D 

rotation. For the example shown in Figure 4-3 the height of the substrate varied by about 
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80nm over a distance of 7000nm, equivalent to a tilt of about 0.65°. Subtracting a plane fit 

to the substrate compared with rotating the surface to align the substrate with the x-y plane 

results in a scaling by cos(0.65°)=0.999935 for points at the same height relative to the 

substrate. There is also a translation of points that are on raised features relative to the 

substrate. This translation is equal to the height of the raised features times sin(0.65°). The 

tallest features are about 100nm which corresponds to a translation of (100nm)*sin(0.65°) = 

1.13nm of the peaks relative to their base. Such distortion is much smaller than the 

expected error given that the pixels in the AFM image are 23.33nm wide. The scaling is 

also quite insignificant, resulting in an image that is about 0.5nm smaller than the rotated 

surface (7000nm instead of 7000.5nm). These errors are illustrated in Figure 4-1. 
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Figure 4-1: Errors introduced by using a shearing operation for flattening rather 
than a 3D rotation. All distances measured parallel to the plane fit are scaled by 
cos(�). All heights measured perpendicular to the plane fit are scaled by 1/cos(�). 
Points at a height h above a substrate are translated by h*sin(�) relative to the 
substrate. 

I developed a new approach to AFM image flattening that is appropriate for specimens 

where most of the surface is a flat substrate or where a significant fraction of the surface is 

well approximated by the plane to be subtracted as part of the flattening operation. The 

plane fit is found by first using a 3D Hough transform to identify the plane that matches 

within some tolerance the largest number of pixels on the surface.  
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The Hough transform, introduced in 1962 by Paul Hough transforms shapes such as 

lines or circles in image space into points in an accumulator space [Hough62]. The problem 

of identifying salient examples of such shapes in an image is converted to one of finding 

peaks in the accumulator space. One common application is to find straight lines in a 2D 

image [Gerig87][Illingworth88]. For this application, a commonly used accumulator space 

is the space of (r,�) where the equation for a line is ( ) ( )cos sinr x yθ θ= +  as shown in 

Figure 4-2. 
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Figure 4-2: Parameterization of a line typically used for 
the straight line Hough transform 

An input image is converted through edge-detection or other means into a binary image 

where each pixel has value 1 where an edge is detected and 0 otherwise. The algorithm for 

identifying significant lines maps each pixel with value 1 to a curve in the (r,�) accumulator 

space. This curve represents all possible lines passing through that point. The accumulator 

space is discretized to a 2D grid and an accumulator consisting of one counter for each grid 

point is initialized to 0. Then, for each pixel with value 1 and each value along the � axis, 

the radius is computed using ( ) ( )cos sinr x yθ θ= +  where (x,y) is the position of the pixel. 

The radius value is rounded to the nearest discrete radius value in the grid and the counter 

corresponding to the (r,�) point in the curve is incremented. After all pixels have been 

counted, the (r,�) point with the greatest value in the accumulator gives an approximation to 

the most salient line in the original image.  
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As the straight line Hough transform identifies a line from a set of points in 2D, a 3D 

Hough transform can be used to find a plane given a set of points in 3D. A plane is 

represented by the equation ( ) ( ) ( ) ( ) ( )cos cos sin cos sinr x y zθ φ θ φ φ= + +  and the 

accumulator space is over ( ), ,r θ φ . For each data point at position (x,y,z) in the AFM 

image, the algorithm considers each discrete orientation from the grid of ( ),θ φ  values and 

computes the radius for a plane using ( ) ( ) ( ) ( ) ( )cos cos sin cos sinr x y zθ φ θ φ φ= + + . For 

each ( ), ,r θ φ  grid point computed from each (x,y,z) the corresponding accumulator counter 

is incremented. When all points from the image have been processed, the counter with the 

most counted pixels is selected. A least squares plane fit is then computed for the set of 

nearly coplanar pixels that corresponded to that counter. In practice I found that 50 equally 

spaced values for the radius (from the minimum height to the maximum height of the 

surface after subtracting the mean height from the image), 160 equally spaced values for θ  

from 0° to 360°, and 80 equally spaced values for φ  from -90° to 90° produced reasonable 

results. An example of the output of the flattening procedure is shown in Figure 4-3 

 
Figure 4-3: Flattening an AFM image using the 3D Hough transform. The largest set of nearly 
coplanar pixels in an input image (a) is first segmented using the Hough transform method 
(white pixels in image (b)). A plane fit to the selected pixels is subtracted from (a) to produce a 
flattened image (c). 

4.2 Blind Tip Reconstruction 

For estimating tip shape I use Villarrubia’s noise-tolerant blind tip reconstruction 

algorithm introduced in section 2.1.2.2 and described in detail in Appendix A 

[Villarrubia97]. As previously described, this algorithm requires as one of its inputs a 

threshold parameter to control the degree of tolerance to noise. If the threshold is too small, 

noise will influence the reconstruction and result in a tip estimate that is much too sharp. If 
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the threshold is too large, the algorithm will ignore too much structure in the image and the 

tip estimate will be too dull.  

Previous studies have shown a sudden increase in the sharpness of the tip estimate to 

occur just below the threshold value that yields the most accurate tip reconstruction and as 

the threshold is reduced further there is a sudden increase in the sharpness of the tip 

estimate [Dongmo00]. The volume of the tip can be used to detect the threshold value at 

which noise starts to have a significant effect on the tip shape. I use the method described in 

[Dongmo00] and [Todd01] of plotting the tip volume as a function of the noise threshold 

parameter in order to select the best threshold value. In this method, a somewhat arbitrary 

regular grid of threshold values is selected and for each threshold value, the tip is 

reconstructed and the volume of the tip estimate computed.  

[Dongmo00] and [Todd01] suggest that there is typically a single threshold value at 

which the derivative of volume with respect to the threshold is significantly higher than at 

any other values. The threshold value is typically chosen by visual inspection of the volume 

plot, choosing a point slightly above the value at which the fastest change in tip volume 

occurs. Above this threshold value, the error in the tip reconstruction is said not to increase 

very quickly with increasing threshold [Dongmo00]. My experiments with synthetic data 

indicated multiple large jumps in the tip volume as the threshold was varied making it 

difficult to identify a unique single jump much larger than the others. Using synthetic AFM 

data, it was also possible to plot the actual error between the reconstructed tip and the tip 

used to simulate the synthetic data. The error was computed as the sum of squared 

differences between the heights in the reconstructed tip and tip used to simulate the 

synthetic AFM data. The tip volume and tip error for Villarrubia’s algorithm are plotted as 

a function of the threshold value in Figure 4-4. 
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Figure 4-4: Plots of tip volume vs. threshold and tip error vs. threshold using Villarrubia’s 
blind reconstruction algorithm 

Villarrubia’s algorithm iteratively reconstructs the tip shape and for each intermediate 

tip shape, for each point in the AFM image, the algorithm considers translations of the tip 

relative to the AFM image such that points on the tip coincide with the point in the AFM 

image. For each such translation, the algorithm determines whether or not the apex of the 

tip lies below the AFM image. The original algorithm does not account for uncertainty in 

the height of the apex point relative to the height of the AFM image. Neglecting this 

uncertainty may cause problems in the case of tips that have multiple projections or slightly 

flattened ends. Although this is not the usual shape of a tip, it was necessary for me to 

handle this case because the dulled tip I used had such a shape. When there are multiple 

local extrema near the tip apex, noise-induced oversharpening may occur that cannot be 

prevented by increasing the threshold value. An example constructed to demonstrate this 

oversharpening phenomenon is illustrated in Figure 4-5. The tip reconstruction result after 

considering two points labeled (1) and (2) in the AFM image in shown in the lower right of 

Figure 4-5. Noise causes the reconstruction to be essentially the intersection of the two 
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separate peaks on the tip which makes the reconstruction much sharper than the actual tip 

shown in the upper left. 
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Figure 4-5: Problem case for blind tip reconstruction. The problem occurs after 
consideration of just 2 points in the AFM image (labeled 1 and 2). The first 
refinement of the tip using point 1 results in a valid outer bound on the true tip. 
If not for a perturbation of the AFM image due to noise, the tip shape from 
point 1 would be able to touch point 2 while having the tip apex below the AFM 
image surface and the algorithm would not change the tip after considering 
point 2. The perturbation causes the algorithm to erroneously erode the tip 
further at point 2.  

 

To take into account the uncertainty in whether or not the tip apex is below the AFM 

image surface, I made a slight modification that causes the algorithm to be more 

conservative in the way it carves out the shape of the tip. In my modified version of the tip 

reconstruction algorithm, I introduce an apex tolerance parameter that represents the extent 

to which the apex of the tip is allowed to fall outside the surface as the tip scans the surface 

from below. Given a point on the AFM image, the existing algorithm took the union of all 

translations of the AFM surface umbra (volume under the AFM surface) such that the point 

lies on some point on the current tip estimate and the apex (the unique known point on the 

tip surface) lies beneath the AFM surface. This union is then intersected with the current tip 

estimate to refine the estimate. With my modification, this union also includes translations 

of the surface where the apex of the tip sticks above the AFM surface by a distance less 

than the apex tolerance. This has the effect of reducing the amount of refinement at each 
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point but with a sufficiently large apex tolerance, it prevents the problem illustrated in 

Figure 4-5.  

I repeated the procedure used to generate the graphs in Figure 4-4 using the modified 

tip reconstruction algorithm and an apex tolerance of 3nm. The resulting tip volume plot 

showed a single jump in the volume that was much larger than any others as the threshold 

was varied and this corresponded to the optimal threshold parameter where the tip error was 

minimized (Figure 4-6). 

 
Figure 4-6: Plots of tip volume vs. threshold and tip error vs. threshold using Villarrubia’s algorithm 
modified with an apex tolerance parameter to account for uncertainty in whether the apex of the tip lies 
below the AFM image surface. The apex tolerance for these plots was 3 nm. 

 

The synthetic AFM image used for the experiments described above is shown in Figure 

4-7a. Assuming a particular threshold and apex tolerance, the tip estimate is initially 

determined using a subset of the points in the AFM image that are local maxima (see Figure 

4-7b for an example). The set of local maxima is found by first taking all points for which 

all 8 neighbors have a value less than or equal to the central value and at least 2 of the 

neighbors have a strictly lower value. Local maxima near the border are not considered 
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because at those points we don’t have complete information about the surface beneath the 

tip. After the initial estimate is found, it is refined using all points in the image (except near 

the border). Some of the final tip reconstructions along with the synthetic tip shape are 

illustrated in Figure 4-8. 

 
Figure 4-7: (a) synthetic AFM image including synthetic correlated noise designed to match a 
real AFM image (described in section 8.1); (b) set of local maxima (minus those near the 
border) in AFM image used for initial tip estimate 

 
Figure 4-8: Results for final tip estimate using threshold values just above and below the two 
largest jumps in the tip volume plotted in Figure 4-4 and just above and below the largest jump 
in the tip volume plotted in Figure 4-6. Smaller thresholds reduce the tolerance of the 
algorithm to noise and result in oversharpening. (z is scaled by a factor of 2). The raised part of 
the plateau on the right side of the tip which disappears for threshold value 6.62 is critical to 
accurately predicting the appearance of the AFM image given an estimate of the surface. 
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4.3 Computing an Initial Surface Estimate 

My algorithm first produces a flattened AFM image, A, from the original image using 

the method described in 4.1. It produces a tip estimate, T̂ , from A using the modified blind 

reconstruction algorithm described in section 4.2. I compute an initial estimate for the 

specimen surface by eroding the flattened AFM image, A, with the reconstructed tip image 

T̂ . The eroded image is computed using a discretized form of erosion described in 

[Villarrubia97] and defined as 

( ) ( ){ }
,

ˆ( , ) min , ,A
i j

H x y A x i y j T i j′ = + + −  

where x, y, i and j are integers, x and y range over the coordinates in the AFM image and i 

and j range over the coordinates of the tip image with center at (i,j)=(0,0). This estimate is 

used as the initial specimen model for the optimization described in section 9.4. 



 

 

5 Monte Carlo Simulation of SEM Images 

I considered using Monte Carlo simulation for computing the likelihood of a candidate 

surface reconstruction but to be practical for use at the core of an iterative surface 

optimization, the existing simulation code had to be accelerated by many orders of 

magnitude. I have implemented several techniques based on precalculation to accelerate the 

simulation. My main algorithmic innovation involves using a single sample of some 

number of electron trajectories in an infinite volume of material to estimate the signal for 

any arbitrary surface. In this chapter I first give some background on the Monte Carlo 

method as applied to SEM signal modeling and then describe my implementation of the 

Monte Carlo method and the acceleration techniques I developed in the hope of achieving a 

practical level of performance. Although Monte Carlo simulation is the most physically 

accurate model for SEM, and although my implementation is typically about 10 times faster 

than existing implementations, it is still too slow for this use. Details of this Monte Carlo 

simulation work were published in [Seeger03]. In my surface reconstruction method, Monte 

Carlo simulation provides examples of simulated SEM images from synthetic surfaces from 

which the relationship between the SEM signal and the surface topography is automatically 

learned and represented by a much faster simulation algorithm described in chapter 6.  

5.1 Background and Theory 

The Monte Carlo method is a widely used technique for finding an approximate 

solution to some problem by performing many randomized experiments in a computer. In 

many cases, solving a mathematical problem exactly is intractable but an acceptable 

approximation can be easily found by the Monte Carlo method. As applied to estimating an 
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SEM signal, the method consists of simulating many scattering electrons and computing 

various statistics such as how many electrons escape the specimen. For each electron, a 

trajectory is computed. At each step of a trajectory, a distance to the next scattering event 

(as described in section 1.5) and the outcome of that event (scattering angle or secondary 

electron generation) is computed by randomly sampling from a probability distribution 

based on some mixture of theory and experimental measurements. 

 
Figure 5-1: Monte Carlo simulation of electron trajectories 

One common approach for accelerating the scattering simulation embodied in so-called 

plural scattering methods is to compress a sequence of trajectory segments into a single 

segment, considering the net effect of multiple scattering events [Joy95][Ly95]. Although 

there are many such potentially useful approximations, I have chosen to use the relatively 

detailed MONSEL model because it was the only model available to me that had previously 

been quantitatively matched to experimental data [Lowney95] [Lowney96a]. Also, 

MONSEL provides a realistic simulation of secondary electron emission that is not handled 

by many other simulators [Lowney96b]. Single-scattering models as used in MONSEL and 

several other programs attempt to model all elastic collisions and those inelastic scattering 

events most important for SE generation. Because some of the inelastic scattering is not 

taken into account, a continuous energy loss formula is commonly used to estimate the 

energy of an electron as it slows down in the solid. The energy loss formula is usually based 

on a combination of theory and experiment and the one used in MONSEL is notable for its 

reasonable behavior at very low energies [Lowney96b]. More detailed models that avoid 

the use of a continuous energy loss formula do exist but such models require data on the 

specimen material that is not available for most materials [Shimizu76][Ding96][Ding01]. 

Scattering simulations are based on the concept of a scattering cross-section that 

describes the probability that an electron will undergo a particular type of scattering event 

surface 

incident 
electron 
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through interaction with a particular type of particle. For example, the elastic scattering 

cross-section gives the probability that an electron will be scattered by an atomic nucleus. 

The units of cross-section are area and the elastic cross-section represents the effective 

projected area of the nucleus onto the plane perpendicular to the electron’s trajectory. For 

example, given a monolayer of atoms, the elastic cross section multiplied by the atomic 

surface density in atoms/area would give the probability that an electron traveling 

perpendicular to the monolayer would be scattered by an atomic nucleus. The mean free 

path, describing the expected straight-line distance between scattering events, is related to 

the scattering cross-section and the number of scattering particles per unit volume by 

2
3

1 1 1
dist

dist dist
ρ σ

λ
� � � � � �= ⋅ � ��  � � � � �

 

(with the balance of units shown in square brackets) where λ  is the mean free path in units 

of distance, ρ  is the density of scatterers in units of 1/volume and σ  is the cross-section 

per scatterer in units of area. At each step of the simulation one samples from an 

exponential distribution to get the distance to the next scattering event. 

The concept of a cross-section can be broken down further. For example, the elastic 

cross-section as described so far gives the probability that an electron will collide with a 

nucleus and scatter in any direction. If we want to know the probability that an electron will 

scatter in a particular direction we can consider the probability that the scattering angle falls 

within some small solid angle containing that direction. However, as the solid angle shrinks 

about that direction, the probability goes to 0. The differential scattering cross section is the 

derivative of the cross section with respect to solid angle and gives the limit of the cross 

section per solid angle for each scattering angle. The integral of the differential scattering 

cross-section over all scattering angles equals the total cross-section. Dividing the 

differential scattering cross-section by the total cross-section results in a probability density 

for the scattering angle once a collision has taken place. When a scattering event is 

simulated, one randomly samples from this density to determine a new direction for the 

electron.  

In MONSEL, there are three types of scattering events: elastic scattering by atomic 

nuclei, and two different kinds of inelastic scattering that result in the generation of 

secondary electrons. The elastic scattering cross section is computed using the empirical fit 
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by Browning et al. to the Mott cross-section, a model based on quantum mechanical theory 

[Browning94]. One type of inelastic scattering event is the collision between the incident 

electron and a valence electron, the type of electron that is most weakly bound to an atom in 

the specimen. The cross section for the collisions that liberate a valence electron from an 

atom (or ionize the atom) is called the Moller cross section and is described in [Reimer85]. 

Another kind of inelastic scattering event involves plasmons. Plasmons are waves in the 

density of electrons in a conductor. Plasmons can travel in the gas of electrons in a 

conductor similar to the way sound travels in air. Some of the kinetic energy of an incident 

electron goes into producing a plasmon and the plasmon can in turn cause a secondary 

electron to be ejected from the specimen. Secondary electron generation through plasmon 

excitation is handled using the model of Kotera et al. [Kotera90]. When an inelastic 

scattering event is simulated, the energy of the resulting secondary electron is not 

subtracted from the primary electron. Instead, the expected loss is accounted for using a 

continuous energy loss model [Lowney96b]. Including inelastic scattering means that an 

electron trajectory is actually a tree describing the cascade of secondary electrons. My 

optimizations treat the scattering model as a black box and operate on the electron cascade 

as a tree of line segments.  

Next, I describe two optimizations for computing intersections between the electron 

cascade and a specimen surface, followed by a description of the effect of parallelization 

and speed comparisons between my optimized techniques and other existing algorithms. 

5.2 Implementation Details 

5.2.1 Calculation of Ray-Surface Intersections 

I represent the specimen surface by a two-dimensional array of height values. This 

array of points is tessellated with triangles to create a surface. Following an approach 

described in [Musgrave90], I implemented a ray intersection test for this surface that runs in 

O(max(NX,NY)) time where NX and NY are the x and y resolution of the grid. Identifying the 

triangles that must be tested requires a procedure similar to Bresenham’s line drawing 

algorithm [Bresenham65] (Figure 5-2). 
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Figure 5-2: Overhead view of surface and ray to 
be tested for intersection. The calculation only 
requires testing intersections with the grey 
triangles. 

 

5.2.2 Precalculated Electron Trajectories 

I used two optimizations to reduce computation while leaving the accuracy unaffected. 

The first optimization is to precalculate and store electron trajectories in such a way that 

they can be reused later for an arbitrary surface. During simulation of an image, using 

precalculated trajectories lets me avoid complex calculations for determining probabilities 

of various scattering events and allows me to focus more computing resources on 

determining intersections of the electron trajectories with specimen surfaces as described in 

section 5.2.2.1. The second optimization is to precalculate intersections of the precalculated 

trajectories with various representative surfaces. To do this I consider the set of points on 

the surface initially intersected by the electron beam (each point corresponds to a pixel to 

be computed in the simulated SEM image). These initial intersections are clustered 

according to surface slope and for each cluster a representative surface is constructed as 

described in section 5.2.2.2. Stored intersection data for a representative surface are used to 

accelerate the intersection tests for the surfaces in the corresponding cluster. I essentially 

share computation between parts of the specimen that have similar topography. 

 

5.2.2.1 Precalculation and Retracing of Electron Trajectories 
I precalculate trajectories in an infinite volume of material and then retrace those 

trajectories at each point on the surface. The only difference between trajectories that are 

computed in an infinite volume and those computed with a surface is that the ones for the 
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surface have segments of vacuum inserted where the electron has escaped and reentered and 

terminate prematurely if the electron escapes completely from the specimen. An example of 

a precalculated trajectory and its corresponding retraced trajectory for a particular surface is 

shown in Figure 5-3. 
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Figure 5-3: Example of precalculated trajectory (left) in an infinite volume of material (shaded 
gray) and its corresponding retraced trajectory (right) within material (shaded gray) bounded 
by a surface. The simulation in the infinite volume of material enables re-use of the trajectory 
for any surface topography. The incident beam is shown with a solid red arrow. A section of 
the trajectory traversing the vacuum is shown with a dotted red line and the point of escape 
from the specimen is shown with a dotted red arrow. 

 

5.2.2.1.1 Reducing Overall Error in an Image Using a Larger Set of Trajectories 
If one were to retrace the same set of trajectories for every pixel in an image, the 

resulting image would contain sampling bias. For a relatively small increase in 

computational cost one can produce a less biased result by precalculating a larger set of 

trajectories and retracing a random subset of the trajectories for each pixel. For example, I 

precalculated a set of 10000 trajectories and then for each pixel a random subset containing 

1000 of the 10000 precalculated trajectories was retraced to determine the BSE and SE 

yields for that pixel. By using a larger set of precalculated trajectories, the statistical 

correlation of the error between any pair of pixels is closer to being independent (as is the 

case in a real SEM image) because on average one would expect each pixel to share only 

10% of its trajectories with any other pixel.  

5.2.2.2 Precalculation of Intersections with Approximating Surfaces 
I have developed an algorithm for constructing a set of approximating surfaces with 

associated trajectory intersection information and then reusing this information to accelerate 
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the calculation of intersections with an arbitrary surface. In the first step of the algorithm, a 

bounding box is constructed that contains all precalculated trajectories. The width of this 

bounding box is used to define a set of neighborhoods (one neighborhood per pixel in the 

image) containing each beam entry point on the surface. For a given pixel, when a beam 

electron enters the surface it is guaranteed not to escape the surface outside of the 

corresponding neighborhood because no simulated trajectory passed that far from the entry 

point. Next, the surface patches corresponding to the neighborhoods are clustered into a 

relatively small number of clusters according to slope (the clusters are labeled A, B and C 

in Figure 5-4). For each cluster, a plane is defined that has a normal equal to the average 

surface normal for all surface patches in the cluster and with a height such that it bounds all 

neighborhood surfaces in the cluster from below: no portion of a trajectory that lies below 

the plane approximation can escape from any of the surface patches sharing this 

approximation. Next, for every precalculated trajectory and for every plane approximation, 

the points in the trajectory just after the trajectory intersects the plane from above and just 

before the trajectory intersects the plane from below are computed and marked in a separate 

data structure.  
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Figure 5-4: Similar regions on the surface can reuse calculations. In this case, a set of three 
approximating planes (A, B and C) have been matched to the surface patches corresponding to 
pixels in the image. Precalculated intersections with these planes allow us to ignore certain 
parts of the trajectories (indicated in gray/red) that are known not to intersect the surface. 

During retrace of a trajectory for the actual surface the program uses the precalculated 

intersection information to skip over those parts of the trajectory lying under the 

corresponding approximating plane. The program only performs this optimization up until 

the first escape of an electron from the surface (whether it reenters or not) or material 

boundary crossing because the precalculated results are no longer applicable after such an 

event. As a result, the amount of speedup provided by the optimization depends on the 

fraction of trajectory segments occurring before an initial escape. It is least useful when an 

electron hits a very thin or sharp structure from which it can quickly escape. The benefits of 

this optimization also depend on the self-similarity of the specimen surface. Also, because I 

use planes as approximating surfaces, the greatest advantage from this technique is 

achieved when the surface is relatively flat at the scale of the interaction volume. At points 

on the surface where the surface has high curvature the improvement in efficiency is 

reduced. As a consequence, when the interaction volume increases due to increasing 

accelerating voltage, the performance gain from this technique may decrease as larger scale 

A B C B B A A A A A 

A B C 
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undulations of the surface fall inside the interaction volume. Other classes of approximating 

surfaces might be used to overcome this problem. 

The trajectory segments are stored in a linear array format in an order such that every 

branch of the trajectory lies in a contiguous section of the array. Precalculated intersection 

data only describes the subset of trajectory segments that stick above an approximating 

plane rather than an exact calculation of intersection points with the plane. The subset is 

stored as an array of pairs of indices into the precalculated trajectory array. Each pair of 

indices represents an interval that lies above the approximating plane. Because each 

trajectory segment is stored as a vector instead of storing absolute positions of vertices in a 

trajectory, it is also faster to precalculate special vectors that allow the program to step to a 

new starting position when it skips an unneeded part of a trajectory that lies beneath the 

approximating plane. 

5.2.2.3 Orthographic (parallel) Image Projection and Detector 
Characteristics 

My simulator assumes an orthographic projection, which means that the incident 

electron beam comes from the same direction for all pixels in the image. While this is not a 

critical design decision, it does facilitate reuse of scattering results from one part of the 

surface to another. If a perspective projection were used, the precalculated trajectories 

would need to be rotated separately for each point on the surface. For a typical 10-micron 

scan range and 10 mm working distance, the change in angle is only 0.06 degrees over the 

entire scan. Given how close the real projection is to being orthographic this seems like a 

reasonable approximation. 

I do not attempt to model detector characteristics in any detail but follow the approach 

of MONSEL in modeling the trajectory and detection of electrons after they escape from 

the specimen. If an electron escapes with energy greater than 50eV then it is assumed to 

follow a straight path in the vacuum and may reenter the specimen depending on its 

direction. An electron escaping with less than 50eV is assumed to follow a curved 

trajectory in the vacuum such that it is collected by the detector regardless of its direction 

[Lowney95]. If one of the higher energy electrons escapes without reentering the specimen 

it is counted as a BSE and if one of the lower energy electrons escapes it is counted as an 

SE. 



 

60 

 

5.2.3 Parallelization 

To speed up the simulation, both the precalculation of trajectories and the retracing of 

those trajectories were performed in parallel on up to 30 processors. Each processor 

computed a complete image using a subset of the trajectories and the resulting images were 

added together to get the final result. 

 

5.3 Performance Measurements 

Several tests were run to compare the performance of my simulator with that of the 

popular CASINO simulator [Hovington02][Hovington97a][Hovington97b][Drouin97] and 

the original MONSEL Fortran code. 

5.3.1 Comparison with Original MONSEL Fortran Code 

For this test I had both programs compute 10000 1keV electrons hitting a flat Silicon 

surface as in the previous test but with calculations of secondary electrons enabled. This 

test was run on an SGI Reality Monster with 32 processors but the programs were run on a 

single processor (300 MHz IP27 MIPS R12000 CPU with R12010 FPU). The results are 

given in Table 5-1.  

program: MONSEL 
(F77 
Fortran) 

my program my program + 
10000 
precomputed 
trajectories 

my program + 10000 
precomputed 
trajectories and 
precomputed 
intersections with a flat 
plane 

# electrons 10000 10000 10000 10000 
time (seconds) 24.7 23.2 4.21 0.122 
electrons/second 405 431 2375 81970 
memory used -- 3 MB 397 MB 410 MB 
# trajectory 
segments 
traversed 

-- 3872277 3884425 6184 

Table 5-1: comparison with original MONSEL Fortran code showing performance gain with 
precomputed trajectories and the best case performance using precomputed intersections 
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The measurements of my program using precalculated trajectories and intersections 

give a sense of the best-case performance possible when simulating an image of a more 

complex surface. In practice I found that the additional calculations required when a 

backscattered electron escapes and reenters the specimen and the imperfect fit of 

precalculated surfaces to the simulated surface greatly reduced the effectiveness of the 

precalculated intersection technique (see example in section 5.5 simulated at a rate of about 

5000 electrons/sec compared to the maximum of 81970 electrons/sec for a flat surface). An 

improvement that I leave for future work is the extension of the precalculated intersection 

technique or an alternative method to help with the case when a backscattered electron 

reenters the surface. 

 

5.3.2 Comparison with CASINO 

This test compared versions of my simulator with and without trajectory precalculation 

and/or intersection precalculation with the CASINO program. Although CASINO may not 

be the fastest Monte Carlo code available, it is comparable to all other available code for 

Monte Carlo electron scattering simulation. CASINO was also a good choice for 

comparison because it uses a scattering model similar to the one used by MONSEL. 

CASINO was only available for a PC running Microsoft Windows so this test was run on a 

Pentium III 300 MHz PC with Windows 2000. I disabled x-ray calculations and display of 

electron trajectories in CASINO and disabled secondary electron calculations in my 

simulator to make the comparison as fair as possible. I also matched scattering models as 

closely as possible by making CASINO use the Browning fit to the Mott partial and total 

cross sections and making both programs terminate trajectories at a minimum energy of 

0.05 keV. 

The test consisted of computing trajectories for 10000 1 keV electrons striking a flat 

silicon surface. The results are given in Table 5-2. 
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program: CASINO my program my program + 
precomputed 
trajectories 

my program + 
precomputed 
trajectories and 
intersections 

# electrons 10000 10000 1000000 1000000 
time (seconds) 5 4.2 57 3.56 
electrons/second 2000 2380 17543 280900 

Table 5-2: comparison with CASINO computing backscattered electrons from flat silicon surface 

5.3.3 Speedup using Multiple Processors 

These tests were done on an SGI Reality Monster with 32 300 MHz MIPS R12000 

CPUs and 16384 Mbytes of main memory. 

In the first test using multiple processors, images were simulated of a very simple 

model, an infinite plane, to get a sense of the best-case performance. This test was done 

using 10000 precalculated trajectories for 1keV electrons hitting Silicon, precalculated 

intersections, 1000 retraced trajectories per pixel, and 256x256 pixels. A single processor 

took 754.7 seconds (86837 electrons/second) to do this computation while 30 processors 

running in parallel took 27.9 seconds (2,325,000 electrons/second). The speedup for various 

numbers of processors is shown in Figure 5-5. 
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Figure 5-5: Speedup as a function of number of processors computing an image of an infinite 
flat Silicon surface using 10000 precalculated trajectories and precalculated intersections. 

 
A similar test was performed for a more complex polygonal surface model composed 

of 79,202 triangles shown in Figure 5-6a. 
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Figure 5-6: (a)Triangle mesh representing a specimen surface. The surface is 
398nm x 398nm in x and y and the square projection is 200 nm high. (b) Image 
showing height of the surface for each pixel in the simulated images (region is 
192nm x 192 nm). (c) Map of pixels for which precalculated intersections are used 
(grey indicates where they are not used). (d) Backscattered electron image. (e) 
Secondary electron image. 

 
In this case 1000 trajectories were simulated for every pixel using 10000 precalculated 

trajectories and precalculated intersections. While the surface is 398 nm across, the view in 

the simulated images is limited to a square region in the center that is 192 nm across. The 

images generated are shown in Figure 5-6(d,e) and the speedup for various numbers of 

processors is shown in Figure 5-7. A single processor took 1620 seconds (2528 

electrons/sec) while 30 processors running in parallel took about 93 seconds (43600 

electrons/second) to do this simulation. I am not sure why there is a reduction in efficiency 

for larger numbers of processors but it might have to do with a change in patterns of 

memory access and the fact that the whole surface is accessed by each program thread.  
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It would be interesting to see if this problem occurs with the same geometry 

represented more compactly so it wouldn’t be expected to have such a strong effect on 

memory use. In the SGI machine memory is divided into separate modules each shared by 

two processors. With only a single copy of the surface in memory and the fact that it won’t 

fit in the relatively tiny data cache each processor must access the surface data over the 

internal network introducing delays into the intersection calculations. Therefore, one 

possible solution would be to have each processor create its own copy of the surface, 

forcing the surface to be replicated in each memory module.  

This memory access issue does not affect precalculated trajectory data because this 

data is computed and stored locally by each thread of the program each with its own unique 

set of trajectories. If the simulation problem were divided by pixels instead of by 

trajectories, it would require each processor to access the trajectory data over the network. 

It would be much less practical to replicate the trajectories per processor because each 1keV 

trajectory takes about 50kBytes (500MBytes for 10000 such trajectories). Also, at 1keV 

precalculated intersections require a significant amount of additional memory when 

including secondary electrons because of the additional information that must be recorded 

each time a trajectory branches: 1600bytes/trajectory/plane (leaving out secondary electrons 

reduces the memory requirement to 13bytes/trajectory/plane). By contrast, my surface 

representation requires about 375 bytes per triangle or about 30MB for a surface specified 

with a 200x200 grid of points.  
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Figure 5-7: Speedup as a function of number of processors computing an image of a polygonal 
model with 79202 triangles 

5.4 Object-Oriented Design and Extensibility 

Two parts of the system that are worth noting from a software engineering standpoint 

are the basic electron scattering model and the specimen model. Both of these parts were 

designed to be very extensible. This flexibility enables one to easily adapt the simulation to 

use a different model for electron scattering or the specimen. 

The scattering model is constructed in a modular fashion from any number of C++ 

objects describing various events that can occur. For the MONSEL model there are three 

different event objects: elastic scattering model based on Mott cross section, Kotera’s 

inelastic scattering model for plasmon excitation, and Moller’s model for valence electron 

ionization. Each event object is responsible for describing the total and differential 

scattering cross sections for a specific type of event including resulting products such as 

secondary electrons or x-rays. Events may be combined using a composite event object to 

form a single composite event that specifies everything that can happen to an electron in a 

given material. Different component scattering events may be from different models or may 

be the same model for different elements that compose the specimen material. Another part 

of the scattering model is a continuous process that may be used to describe changes in the 

electron energy over distance. The programmer has the option to use the continuous process 
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object for a continuous energy loss approximation or the continuous process can be left out 

entirely if everything is to be handled through the event mechanism. 

The parts of the program responsible for tracing electron trajectories make no 

assumptions about what specimen model or representation is used. The only requirement is 

that the material at every point in space is well defined. Testing the intersection of 

trajectories with boundaries is handled through a function pointer mechanism. The function 

specifying surface and material boundaries must take a ray or ray segment and return 

whether or not that ray intersects a boundary and if so it must also return the location of the 

intersection and what material if any is on the other side of the boundary. This was used by 

Charalampos Fretzagias to simulate images of nanometer-scale structures shown alongside 

real images of similar structures in Figure 5-8. 

 
Figure 5-8: Real and simulated images of paddle oscillator structures.  

5.5 Examples of Image Simulations 

Simulated SEM images were created based on topography measured with an AFM. In 

this case I took measurements of a surface composed only of silicon that had been etched 

with a grid pattern. This specimen was provided by John Dagata at NIST and was made 
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using a dip-pen lithography technique described in [Chien02]. The AFM topography is 

shown as a 3D rendering in Figure 5-9a. 

The 600x600 pixel image backscattered electron image shown in Figure 5-9c was 

generated using 16 processors on the SGI Reality Monster in 18 min 43 seconds at a rate of 

19870 electrons/second/processor. This simulation included the precomputation of 10000 

electron trajectories and retracing a random subset of 992 of these trajectories for each pixel 

in the image. This simulation also made use of precalculated intersection calculations for 

about 70% of the pixels (Figure 5-9b). The secondary electron image in Figure 5-9d took 

approximately four times longer to compute than did the backscattered electron image. 

 

 
Figure 5-9: (a) 3D graphics rendering of surface acquired by an AFM. The surface is 
3000 nm x 3000 nm and 260 nm high and composed of silicon. It is represented as a 
triangle mesh with 79202 triangles. (b) Map of areas with similar topography used to 
accelerate the SEM simulation. Each color corresponds to a set of surfaces that share 
scattering calculations. Black areas indicate parts of the surface that the algorithm 
chose not to optimize because they were not similar to a large enough set of other 
surface regions. (c) simulated backscattered electron image, (d) simulated secondary 
electron image 
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Examples of simulated images of objects defined by general 3D triangle meshes are 

shown in Figure 5-10 and Figure 5-11. A second example for a surface acquired by an 

AFM is shown in Figure 5-12. 

 

Figure 5-10: 3D graphics rendering of dragonfly model (left), simulated secondary electron image 
(middle) and simulated back-scattered electron image (right). These simulations were generated using 

general 3D mesh ray-intersection calculations. 

 
Figure 5-11: Simulated secondary electron images of cube (left), triceratops (middle), and dolphin 

(right). These simulations were generated using general 3D mesh ray-intersection calculations. 



 

70 

 

Figure 5-12: 3D graphics rendering of surface reconstructed from an AFM image (upper left), real 
SEM image of the surface (upper right), simulated BSE image of the AFM-based reconstruction (lower 
left), and simulated SE image of the AFM-based reconstruction (lower right). These simulations were 
generated using the height-field ray-intersection calculations. 



 

 

6 Simulation of SEM Images Using Surface Slope and 
Curvature 

6.1 Introduction 

The optimization approach used in [Jones94] could in theory be adapted to use Monte 

Carlo simulation but this combination would be impractical because it would require the 

simulation of thousands of SEM images and thousands of hours of computation. In an effort 

to bridge the gap in performance/accuracy between the Monte Carlo model and slope-based 

models of SEM intensity, I developed a generalization of the slope-based approach that 

uses combinations of additional convolution-based filters (besides those computing slope) 

to improve accuracy. This approach provides a more powerful phenomenological model 

that more closely mimics the output of Monte Carlo simulation for nanometer-scale 

topography but is fast enough to be part of an iterative optimization algorithm similar to 

what has been used for shape-from-shading. In this chapter I first explain some of the 

inspiration for my approach by giving an intuitive description of what is measured by an 

SEM and how it relates to surface shape. After this I describe the new simulation method 

and provide performance measurements and simulation examples.  

6.2 SEM Signal Components and Rationale for My Approach 

For each pixel in an SEM image, the electron beam is focused at a corresponding point 

on the specimen surface. Electrons from the beam are scattered within the volume of the 

specimen and some escape to hit a detector where they contribute to the measured signal 

that determines the brightness of the pixel. As described in section 1.5, electrons detected in 
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an SEM can be roughly divided into two groups by energy because there is a distinct 

division in the energy spectrum between high energy backscattered electrons (BSE) and 

low energy secondary electrons (SE). The SE component can be considered as having three 

subcomponents labeled SE-I, SE-II, SE-III [Goldstein92]. Because secondary electrons 

(SE) have much lower energy they can only travel a short distance before being stopped 

and as a result only escape the specimen if they are generated within a few nanometers of 

the surface. BSE on the other hand can travel much farther before escaping. The distance an 

electron travels in the specimen before it escapes determines in some sense the resolution of 

shape information carried by that electron. As described in section 1.5, the SE-I signal 

represents SE escaping very near the point where the electron beam enters the specimen 

surface and is considered to carry the highest resolution information. The BSE signal 

represents high energy back-scattered electrons that have traveled much farther in the 

specimen and escape from a much larger region of the surface. The SE-II signal represents 

low energy secondary electrons produced near the surface by escaping BSE and therefore 

provides a sort of amplifying effect that depends on the topography near the point of escape 

in the same way that the SE-I signal depends on the topography near the point of beam 

entry. The SE-III signal represents secondary electrons produced when BSE strike various 

parts of the SEM other than the specimen. The SE-III signal provides an amplifying effect 

for BSE that depends on the shape and materials of the SEM specimen chamber. 

The models for SEM used in [Ikeuchi81] and [Jones94] were all based on the slope of 

the surface with no notion of the scale for measuring slope. If the SEM signal is modeled as 

a function of slope, then the slope should be measured at a scale (or scales) comparable to 

the electron-specimen interaction volume. This concept is illustrated in Figure 6-1. In 

Figure 6-1 I show constant slope approximations to a surface about a point where electrons 

hit the surface. The approximating surfaces are fit only to an area comparable to the area 

from which electrons escape the specimen. As I have described, the SEM signal consists of 

multiple components, each representing interaction with the specimen at different scales so 

I use estimates of the slope at multiple scales to predict the SEM signal. Although slopes at 

multiple scales would certainly be better than a single slope measurement for estimating the 

SEM signal, slope by itself is insufficient for modeling the appearance of sharp spikes, 

corners and pits on the surface so I also make use of local curvature estimated at multiple 
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scales. I call this SEM model based on slope and curvature the filter bank model because it 

is expressed in terms of the outputs of a set of intermediate filters (the filter bank). Each 

filter computes either a slope or curvature value at a particular scale. 

surfacesurface

small scale 
approximating 
surface

large scale 
approximating 
surface

 

Figure 6-1: Taking into account the scale of the interaction volume when modeling the 
number of escaped electrons as a function of the local slope. When the interaction 
volume is large (left) the slope should represent the surface over a large neighborhood. 
When the interaction volume is small (right) the slope should represent the surface 
over a small neighborhood. 

 

6.3 SEM Modeling Overview 

The filter bank model consists of a set of filters each computing either a slope or 

curvature value and a function that maps the slope and curvature values to SEM intensity. A 

schematic of how the filter bank model computes an SEM image from a height image is 

illustrated in Figure 6-2. The mapping from slope and curvature values to SEM intensity is 

determined automatically by fitting to example Monte Carlo simulated images and real 

SEM images. Synthetic surfaces and corresponding Monte Carlo simulated images were 

used to determine a pair of filter bank models that mimic the BSE and SE outputs of the 
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Monte Carlo model. Using an approach described in section 6.7.2, a real SEM image along 

with AFM-based surface reconstruction was used to determine how to combine the BSE 

and SE images to best match the real SEM image. An outline of the method including the 

fitting procedure is illustrated in Figure 6-3.  

+
+
+
+
+

gradient magnitude

curvature

 
Figure 6-2: Filter bank model applied to simulating the SEM signal. Surface height 
(left) is filtered by each of a set of slope and curvature convolution filters to generate 
corresponding intermediate images that are summed to compute the simulated SEM 
signal (right). Parameters of the model control weighting of the intermediate images in 
the sum. 
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Figure 6-3: SEM model-fitting framework for filter bank model. A surface reconstruction from AFM 
(a) along with Monte Carlo simulated BSE (b) and SE (c) images made from this reconstruction are 
used to determine models that mimic the Monte Carlo simulation (BSE/SE filter bank models). The 
same AFM-based surface (a) and a real SEM image of that surface (g) are used to determine how the 
BSE and SE images (e) and (f) should be combined to best match the real SEM image. Given an input 
surface (d) (in this case a larger area of the same surface used to construct the filter bank model but in 
general a novel surface), the filter bank model computes an output (h) that is comparable to a real SEM 
image of that surface (i). 

6.4 Estimating First and Second Derivatives of Height Using the 
Cubic Facet Model 

I use a facet model to estimate slope and curvature as described by Haralick and 

Watson [Haralick81]. For the facet model, a facet is not just a planar face (as in the 

common definition) but can be any approximating function over a subregion of an image. 

One common choice for the approximating function, and the one that I use, is a two-

dimensional cubic polynomial fit to a local neighborhood at each pixel in the image. Each 

pixel has a different facet represented by the cubic polynomial fit about the pixel. A local 

neighborhood for a pixel (x,y) in an image H is approximated by a two-dimensional cubic 

polynomial 
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neighborhood with center at (0,0). For example, for a 5x5 neighborhood, X = Y = {-2, 1, 0, 

1, 2}. K1, K2, K3... K10 are functions of H (the image being fit) and the pixel location (x,y). 

The first and second derivatives of H are estimated as 

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )

3

2

6

5

4

, ,

, ,

, 2 ,

, , ,

, 2 ,

x

y

xx

xy yx

yy

H x y K x y

H x y K x y

H x y K x y

H x y H x y K x y

H x y K x y

≈

≈

≈

= ≈

≈

 

A detailed description of how I compute the cubic polynomial coefficients (K1, K2, K3... 

K10) is in Appendix D.2. I compute the first and second derivatives for 10 different 

neighborhoods centered about each pixel with sizes (in pixels) 5x5, 7x7, 9x9, 11x11, 

15x15, 21x21, 29x29, 41x41, 59x59, and 83x83. 

6.5 Estimating the SEM Signal from First and Second Derivatives 
of the Height 

After computing the first and second derivatives of the height for all the neighborhood 

sizes, the set of derivative values for each pixel is transformed to two different values: the 

estimated BSE and SE yields (ratio of BSE and SE emitted to the number of incident 

electrons). Given examples of height field images and corresponding BSE and SE yield 

images computed by Monte Carlo simulation, my algorithm optimizes a pair of functions 

that estimate the BSE and SE yields from the derivatives of the height field at each pixel. 

The BSE and SE yields computed by Monte Carlo simulation are (in the limit as the 

number of simulated electrons goes to infinity) circularly symmetric. This means that the 

first derivatives can be first transformed to the gradient magnitude without loss of 

information needed to predict the BSE or SE yield. I also convert the second derivatives 

into a rotationally invariant form: the minimum and maximum principal curvatures (for an 

explanation of principal curvature, see Appendix D.3). For each pixel (x,y) in the height 
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field and each neighborhood size n, I compute gradient magnitude ( ( ),nG x y ) and two 

principal curvatures ( ( ) ( ), ,, , ,n nx y x yκ κ+ − ) as 
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I used 10 neighborhoods (using a Gaussian weighting function as described in 

Appendix D.2) with sizes (in pixels) (5x5, 7x7, 9x9, 11x11, 15x15, 21x21, 29x29, 41x41, 

59x59, 83x83) and standard deviations for the weighting function (in pixels) (0.6, 0.8485, 

1.2, 1.697, 2.4, 3.394, 4.8, 6.788, 9.6, 13.58) so the BSE and SE yields for each pixel were 

each represented by functions of 10x3=30 different values. I chose to use linear functions to 

combine the gradient and curvature values into a BSE yield ( BSEFB ) and SE yield ( SEFB ): 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , , ,
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, , , , ,
1..

, , , ,

, , , ,
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Equation 6-1: Filter bank models for simulating BSE and SE images 

where N is the number of neighborhood sizes, and ( ) ( ) ( ), ,, , , , ,n n nG x y x y x yκ κ+ −  are the 

gradient magnitude, maximum principal curvature and minimum principal curvature for 

neighborhood size n computed from the cubic fit at each pixel in the height field image. 

Using the method described in section 6.6, the parameters dBSE, aBSE,n, bBSE,n, cBSE,n and dSE, 

aSE,n, bSE,n, cSE,n (n=1..N) are determined automatically from training examples generated 

using Monte Carlo SEM simulation. These parameters will vary depending on the physical 

dimension of the pixels, accelerating voltage, and the beam shape. 

6.6 Optimizing the Parameters of a Filter Bank Model 

This section describes the fitting procedure I use to find the parameters of the filter 

bank model from example input/output images computed by Monte Carlo simulation. The 

procedure takes as input a height image (Htrain) and a corresponding Monte Carlo simulated 

image (Itrain). First the Htrain image is filtered by the filter bank to generate a set of filter 
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bank output images {Fi, i=1..Nf}. Next, I do a principal component analysis (PCA) of the 

output images to eliminate redundant dimensions in the filter basis [Jollife86]. The 

principal components are computed as the eigenvectors of the NfxNf correlation matrix of 

filter bank outputs. The eigenvalues of the correlation matrix measure the amount of 

variation in the filter bank outputs explained by the corresponding principal components. It 

is common to ignore those principal components with eigenvalues less than 1.0 but to 

provide sufficient accuracy I had to use components with eigenvalues down to 0.1. The risk 

in including components with small eigenvalues is that the problem of determining the 

optimal combination of these components can become poorly conditioned and accuracy 

may suffer due to numerical errors. The result of the PCA is a smaller set of linear 

transformations of the outputs of the filter bank: 

( ) [ ] ( ),
1..

, , ,  1..
f

PC i i j
j N

F x y PC j F x y i M
=

= ⋅ =�  

where PCi[j] is the jth element of the ith principal component and M is the number of 

principal components with eigenvalues greater than 0.1 (M � Nf).  

The next step is to find parameters D and {Bi, i=1..M} such that 

( ) ( )train ,
1..

, ,i PC i
i M

I x y D B F x y
=

= + �  

To do this I solve the linear least squares problem  
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Finally, I transform the Bi into the Ai as 

1..

[ ]i j j
j M

A PC i B
=

= ⋅�  

The offset D and the filter bank coefficients Ai are then used in Equation 6-1. 

For example, for the BSE filter bank model in Equation 6-1 the training input would be 

a height field and the training output would be the BSE image output from the Monte Carlo 

simulation with that height field. In practice, one must choose a particular order for the 

filter bank outputs ( ) ( ) ( ), ,, , , , ,n n nG x y x y x yκ κ+ −  so I assume the order 
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With this order, the parameters in Equation 6-1 would be given by 

( ) ( ),1 ,1 ,1 ,2 ,2 ,2 , , , 1 2, , , , , , , , , , , ,
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6.7 Calibrating an SEM Model to a Real SEM Image 

As described in section 2.2.1, the Monte Carlo simulation image does not 

quantitatively match experimental data so an additional transformation is applied to the 

simulated signal to make it match the experimental data. I first review the approach used in 

[Davidson99] and then describe my approach for matching Monte Carlo simulation image 

to experimental images. Because the filter bank model is constructed to mimic the Monte 

Carlo simulation, the same calibration procedure is used to match this model to 

experimental images. 

6.7.1 Calibrating Monte Carlo Simulation to Experimental Data 

Differences between Monte Carlo simulation and experimental data are handled in 

[Davidson99] by only comparing the simulation to the experimental data up to a slowly 

varying multiplicative factor: 

( ) ( ) ( ) ( )E x MC x F x xε= ⋅ +  

where E is the experimental data, MC is the Monte Carlo simulation data, ε  represents the 

residual error between the simulation and experimental data, and F is a slowly varying 

function defined by 

( )
( )

( )

x R

x R
x R

x R

E x dx
F x

MC x dx

+

−
+

−

′ ′
=

′ ′
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where R is an arbitrary range parameter. If one wishes to optimize a surface, minimizing ε , 

this approach could easily generate additional local minima that would make local 
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optimization methods fail. For example, a simulated image that matches the experimental 

data up to multiplication by 0.5 would be scored the same as a simulated image that 

matches up to multiplication by 1.0. This approach makes sense for the exhaustive search 

used in [Davidson99] but because it creates multiple local minima it does not make sense 

for local optimization. 

I scale and offset the simulated image to match it to a real image. Using the same 

notation as [Davidson99], I model the experimental image as 

( ) ( ) ( )gain offsetE x MC x xε= ⋅ + +  

where the gain and offset are constants for an image. This makes sense given the fact that 

the real signal undergoes such a transformation that is set when the SEM user adjusts 

brightness and contrast controls. The lack of variation in the gain and offset across the 

image means that this approach cannot take into account non-uniformities (making one part 

of the image look brighter than another part) due to the SEM detector geometry, charging or 

surface contamination but I assume that such non-uniformities are not significant in my 

experimental data. The Monte Carlo simulation that I use actually gives two different 

signals, one for BSE and one for SE and I combine these to approximate the experimental 

signal using two different gain parameters: 

( ) ( ) ( ) ( )BSE BSE SE SEgain gain offsetE x MC x MC x xε= ⋅ + ⋅ + +  

where BSEMC  is the simulated BSE signal and SEMC  is the simulated SE signal. 

I assume that BSEgain , SEgain  and offset  are constants that can be determined for a 

particular SEM and operating conditions including the brightness/contrast setting. One of 

the difficulties in using an SEM for quantitative analysis is that the amplifier gain and offset 

set by brightness/contrast settings are not typically stored or even accessible to the user 

except indirectly by visual inspection of the position of analog knobs. However, given an 

experimental SEM image of a specimen with known shape and materials, one could 

estimate the BSEgain , SEgain  and offset  parameters by simulating BSE and SE images 

( BSEMC  and SEMC ) and minimizing the cost function 
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( ) ( ) ( ) ( ) 2

BSE SE BSE BSE SE SEgain ,gain ,offset gain gain offset
x

f MC x MC x E x= ⋅ + ⋅ + −� �� ��  

Equation 6-2: cost function minimized to find calibration gain and offset parameters 

I use this approach except instead of using a specimen with known shape I estimate the 

shape from an AFM image. Consequently, BSEMC  and SEMC  are only estimates of the 

simulated images for the actual specimen. I minimize Equation 6-2 using the least squares 

solver DGELS in the LAPACK library [Anderson94]. 

Given an AFM and SEM image of a specimen, I estimate the true surface shape by 

reconstructing the AFM tip shape and eroding the AFM image as described in chapter 4. 

Next, I align the eroded AFM image with the SEM image using the method to be described 

in chapter 7 and resample the heights by bilinear interpolation onto the SEM image grid. I 

then simulate SEM images from the resampled eroded AFM image and these simulated 

images become the BSEMC  and SEMC  in Equation 6-2. 

6.7.2 Calibrating the Filter Bank Model to Experimental Data 

To calibrate the filter bank model I followed the same procedure from the end of the 

previous section but replaced BSEMC  with BSEFB  and SEMC  with SEFB . The formula for 

the final simulated image (that quantitatively approximates the experimental SEM image) is 

also just a linear combination of the same filter bank outputs 

( ) ( ) ( ) ( ), ,
1..

, , , ,FB n n n n n n
n N

S x y d a G x y b x y c x yκ κ+ −
=

= + + +�  

Equation 6-3: Calibrated filter bank model 

where 

BSE , SE ,

BSE , SE ,

BSE , SE ,

BSE SE

gain gain

gain gain

gain gain

gain gain offset

n BSE n SE n

n BSE n SE n

n BSE n SE n

BSE SE

a a a

b b b

c c c

d d d

= +
= +
= +
= + +

 

This calibrated filter bank model can be used to estimate the experimental SEM image for 

an arbitrary surface and this is the model that I used to simulate SEM images inside the 

surface reconstruction algorithm described in chapter 9.  
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6.8 Acceleration Methods and Performance Measurements 

6.8.1 Sharing the Filter Bank between SE and BSE 

The same filter bank is used to estimate both the SE and BSE outputs of the Monte 

Carlo simulation. While the SE signal tends to have higher spatial frequencies than the BSE 

signal, there is a significant amount of overlap because the SE-II component is 

approximately half of the total SE signal and the SE-II component is a sort of amplification 

of the BSE signal. Because almost all of the running time for the filter bank model is in the 

convolutions and square roots required to compute the slope and curvature estimates, by 

sharing this computation I can compute both the BSE and SE images in nearly the same 

time as it takes to compute either one, yielding a nearly 2x speedup. 

6.8.2 Separability 

For a 300x300 pixel input image and a variety of filter sizes ranging from 5x5 to 

83x83, separating the coefficient filters into 1D convolutions in x and y gave a speedup of 

12x over an implementation that did not take advantage of separability. The filters for K4, 

K5, and K6 are directly separable and K2 and K3 can be decomposed into two parts (as 

described in Appendix D.2) and each part is then separable.  

6.8.3 Vector Acceleration 

The most time consuming operation is the 1D convolution required to compute the 

separable filter outputs. An additional speedup of 5x was achieved by using SIMD CPU 

instructions (MMX on Intel Pentium M, 1.5 GHz) that help to parallelize 1D convolutions 

and were accessed through the Intel Performance Primitives library. 

6.8.4 Multi-resolution Gaussian-weighted Facet Model 

Cubic fits over large neighborhood sizes require large filter kernels and convolution 

with these kernels becomes the main performance bottleneck. A subsampling scheme was 

developed to help speed up the calculation of cubic fits over large neighborhoods. For 

example, the cubic fit over a large neighborhood with a Gaussian weighting function with 

standard deviation 13.58 pixels may be approximated by subsampling the input height field 
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by a factor of 16, computing the cubic fit with a Gaussian weighting function with a 

standard deviation of 13.58/16=0.84375 and then upsampling the result by a factor of 16. 

Subsampling was implemented efficiently by recursively subsampling by a factor of 2. The 

subsampling version of a cubic fit is in general not the same as the non-subsampling 

version because it is only an approximation based on a subsampled image. These 

differences are somewhat compensated by the optimization procedure described in section 

6.6. I did not use this optimization in practice because among all the optimizations this is 

the only one that significantly affected accuracy and the additional speedup was not critical 

for my purpose. 

6.8.5 Summary of Performance Gains 

Here I compare the performance benefits of the various optimizations. The test input 

image (Figure 6-4) has 300x300 pixels. The output (Figure 6-5) is an SE and a BSE image 

both with 300x300 pixels. The filter bank consists of 3 filters for each neighborhood: 

gradient and the two principal curvatures. These are computed from the 5 linear and 

quadratic coefficients of the cubic polynomial fit for each neighborhood. There are 10 

neighborhood sizes: 5x5, 7x7, 9x9, 11x11, 15x15, 21x21, 29x29, 41x41, 59x59, and 83x83. 

Thus, in total there are 50 2D convolutions for the coefficient filters and the output of these 

convolutions gets converted to 30 slope/curvature basis images. The initial implementation 

with no optimization took 110 seconds to run. After all optimizations were implemented, 

the running time was 0.12 seconds giving a speedup of about 912x. Compared with Monte 

Carlo simulation using 1000 electrons per pixel, this represents a speedup of about 

150,000x. The performance gains and running time after each optimization technique was 

implemented are summarized in Table 6-1 in the order they were added. 
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acceleration technique incremental speedup cumulative speedup running time 
sharing filter bank 
between SE and BSE 
images 

1.9x 1.9 58 seconds 

separability of filters 12x 22.8 4.83 seconds 
SIMD hardware 5x 114 0.97 second 
miscellaneous 
optimization using 
profiler (Intel VTune) 

2x 228 0.48 seconds 

subsampled filtering 4x 912 0.12 seconds 

Table 6-1: Summary of performance gains. The incremental speedup refers to the speedup when 
using an acceleration technique compared with not using that acceleration technique but keeping 
the rest of the implementation the same. 

6.9 Simulation Results 

6.9.1 Comparison with slope function 

Both the filter bank model and a slope function described in Appendix Appendix E 

were used to simulate SEM images from the input height field shown in Figure 6-4. 

 

 
Figure 6-4: Test input height field 

Figure 6-5 shows BSE and SE SEM images predicted by Monte Carlo simulation, the 

piecewise linear function of slope constructed by fitting to the Monte Carlo simulation 

using the two-plane method described in Appendix Appendix E, and filter bank models fit 

to the Monte Carlo simulation.  
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Figure 6-5: Comparison of simulated SEM images output by Monte Carlo model, a function of 
slope (two-plane slope model - see Appendix Appendix E), and the filter bank model. A single 
intensity scale is used for all the BSE images and another intensity scale is used for all the SE 
images. Note especially the darkening in crevices and the bright high-curvature bumps present in 
the filter bank and MC simulations that are missing in the slope model. 

Figure 6-6 shows the difference in error between the slope function and the filter bank 

model. Large errors for the slope function in areas of high curvature are significantly 

reduced for the filter bank model. The differences shown in Figure 6-6 are described more 

quantitatively in Table 6-2. The errors listed in Table 6-2 are relative errors in units of the 

true signal value as estimated by the Monte Carlo simulation. The signal values are SE or 

BSE yield which refers to the ratio between the number of SE or BSE and the number of 

incident electrons. When averaged over the whole image, the relative errors for the filter 

bank model are about half those for the slope function but because the error is concentrated 

in a relatively small area where the surface is highly concave or convex (as can be seen in 

Figure 6-6), the difference must be significantly larger in these parts of the image. 
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Figure 6-6: Estimates of absolute value of relative error 
in intensity from slope function (left) and for the filter 
bank model (right). The intensity scales are identical 
between the two BSE images and between the two SE 
images. The relative error is with respect to the Monte 
Carlo images. 

 mean max median std. dev. 

( )slope MC MCBSE BSE BSE−  0.0986 2.89 0.0731 0.104 

( )FB MC MCBSE BSE BSE−  0.0545 0.480 0.0446 0.0440 

( )slope MC MCSE SE SE−  0.110 2.32 0.0872 0.109 

( )FB MC MCSE SE SE−  0.0714 1.22 0.0589 0.0569 

Table 6-2: Some statistics from the images shown in Figure 6-6. The slope subscript signifies the 
image computed using the function of slope, the FB subscript signifies the image computed using 
the filter bank model, and the MC subscript signifies the image computed by Monte Carlo 
simulation. 

The superior ability of the filter bank model to emulate Monte Carlo simulation 

compared with a function of slope becomes more evident as the structures get smaller. This 

was tested using the example in Appendix Appendix E (shown in Figure E-3 and Figure 

E-4). Before doing this test, the filter bank model had to be trained using images with the 
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same pixel size as the images to which it would be applied. The training images for the two 

pixel sizes are shown in Figure 6-7 and Figure 6-8. The results from applying the filter bank 

models to the test structures are shown along with the slope function and Monte Carlo 

output in Figure 6-9 and Figure 6-10. These results demonstrate that the filter bank captures 

qualitative aspects of the Monte Carlo simulation that the slope function cannot. For 

example, there is no way for the slope function to predict a lower intensity for highly 

concave parts of the surface than for flat parts of the surface as the filter bank model does. 

 
Figure 6-7: Filter bank model training data for 3nm/pixel resolution. Images are 150x150 
pixels. 250 electrons/pixel were used to generate the training output. The input structure is 
20nm high. 

 

 
Figure 6-8: Filter bank model training data for 1nm/pixel resolution. Images are 150x150 pixels. 
500 electrons/pixel were used to generate the training output. The input structure is 20nm high. 
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Figure 6-9: Monte Carlo simulation compared with a function of slope and the filter bank 
model on a 20nm high raised square 45nm wide at the top. Images are 64x64 pixels and 
3nm/pixel. 

 
Figure 6-10: Monte Carlo simulation compared with a function of slope and the filter bank 
model on a 20nm high raised square 15nm wide at the top. Images are 64x64 pixels and 
1nm/pixel. 

 



 

 

7 Registration of AFM and SEM Images 

In order to relate the intensities in an SEM image to those in an AFM image of the 

same specimen one must define a coordinate transformation between the images. 

Registration methods solve for a transformation that maps points in one image to 

corresponding points in another image. In the first part of this chapter I review some of the 

previous work in registration focusing on methods relevant to multi-modal registration and 

registration involving either AFM or SEM data. In the second part I describe the method 

that I used to register AFM and SEM images. 

7.1 Background 

The two main aspects of a registration method are the class of transformations that one 

considers and the cost function that ranks transformations and determines the optimal 

transformation. In addition, some sort of optimization method is needed to actually find the 

optimal or near optimal transformation. 

7.1.1 Registration Cost Functions 

As described in the review in [Maintz98], registration methods relying only on image 

content can be classified into three groups: landmark-based methods, segmentation-based 

methods, and intensity-based methods. These categories are distinguished by the type of 

cost function that determines the optimal transformation. 

7.1.1.1 Landmark-Based Cost Functions 
In landmark-based methods, one identifies a set of pairs of corresponding points, one 

from each image. One simple cost function is the sum of squared distances between 
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corresponding points and this function can be efficiently minimized by solving a linear least 

squares problem (see section 7.2.4). Landmark-based methods are commonly used to 

determine an affine or rigid transform that serves as a starting point for local optimization 

of a more complicated cost function that would get stuck in a suboptimal local minimum 

without a good starting point. An extension by Rohr et al of the basic landmark-based 

approach takes into account orientation attributes and anisotropic errors for each landmark 

[Rohr99]. An example of anisotropic error is when a landmark position can be much more 

accurately determined in the x-direction than it can be determined in the y-direction. One 

would ideally want to weight the x-position information more than the y-position in 

calculating the optimal transformation. 

7.1.1.2 Segmentation-Based Cost Functions 
Segmentation or model-based methods incorporate some kind of geometric model for 

each image. Chamfer matching [Borgefors88] relies on taking a distance transform of a 

binary image describing edge locations. A distance transform assigns to each pixel in an 

image a measure of the distance to the nearest edge pixel. A template curve is matched to 

the distance-transform image by minimizing the root-mean-square distance value for the 

pixels overlapped by the curve. This method relies on having a model (the template curve) 

and a way of segmenting edges in the image. When the template curves are constructed by 

segmenting two images, then the method can be used to register the two images by 

registering their curves. 

Fritsch et al applied chamfer matching to align images taken just before radiation 

treatment with previously acquired images used for planning the treatment [Fritsch95]. The 

alignment in this case served to ensure that radiation was delivered to the appropriate part 

of the body. Instead of identifying edges of objects and aligning with a template using 

existing methods, a core or medial representation of the object of interest was constructed 

which offered the advantage of robustness in the presence of noise and also served to 

emphasize the structures in the image that were most useful for alignment. 

Lorenzen et al convert the images to be registered into a different sort of model before 

registering them [Lorenzen04]. In their work, images of the brain are registered by using a 

model that describes the probabilities that a pixel in an image belongs to a particular class 
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of tissue. Each image, which may consist of multiple channels, is first converted into the 

probability model, which is essentially an image with probabilities of each tissue class at 

each pixel. Next, the images are registered using a cost function that operates on the 

probabilities. 

7.1.1.3 Intensity-Based Cost Functions 
Intensity-based methods use the grayscale values in each image to determine the 

transformation. One approach that is suited to isolated objects considers the moments of the 

intensity in each image. For example, one can identify a common point in each image by 

taking the “center of mass” of the intensity in each image. A more general approach tries to 

use all the image information. Methods that attempt to use the full image content include 

cross-correlation and maximization of mutual information. 

Cross-correlation is well suited to registration of images where the relationship 

between corresponding intensities in the two images is known to be linear. Maximization of 

mutual information is appropriate when the relationship between intensities is not easily 

characterized. Mutual information is a measure of how well intensities in one image can be 

used to predict corresponding intensities in another image. Methods based on mutual 

information do not assume a particular relationship between intensities but do assume that 

there is some systematic relationship (the intensities in one image are in some sense 

predictable from the intensities in the other image). 

In an intensity-based registration method the objective function for a transformation T 

between two images A and B is based on two sets of corresponding intensities {ai} in image 

A and {bi} in image B where if ( ),ia A x y= , then ( )', 'ib B x y=  where ( ) ( )', ' ,x y T x y=  is the 

transformed location from image A to image B. Given two corresponding sets of n pixel 

intensities {ai} in image A and interpolated intensities {bi} in image B one can compute any 

of a number of objective functions which are maximized (or minimized) to determine the 

optimal transformation. Here I describe two examples of objective functions: normalized 

correlation and mutual information. 

The normalized correlation coefficient is a variation on simple correlation that includes 

a division by the number of matched points (n) to avoid biasing the transformation towards 

increased overlap between the two images [Studholme97]. Intuitively, the correlation 
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measures the degree to which the intensity in image B is linearly increasing as the intensity 

in image A increases. If the intensities were proportional with a negative constant of 

proportionality, the correlation would be negative. If the intensities were completely 

independent, the correlation would be 0. The normalized correlation coefficient (the cost 

function) is defined by 

( ) ( )( )
1..

1 1
cor , i A i B

A B i N

A B a b
N

µ µ
σ σ =

= − −�  

where the sample means µ (measuring average intensity in each image) and standard 

deviations σ (measuring spread of intensity in each image) are computed as 
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A mutual-information-based approach can be used as long as there is some systematic 

relationship between intensities at corresponding locations in the two images. Mutual 

information measures the degree of statistical dependence between two random variables 

regardless of the form of the relationship between them. Mutual information is defined in 

terms of the entropy of a random variable. Given a random variable X, with probability 

density p(X), the entropy of X is defined as the expected value of the log of the probability 

density: 

( ) ( ) ( ) ( )log logH X E p X p X t p X t dt
∞

−∞

� �= − = − = =� � �  

where ( ) ( )logp X t p X t= =  is defined as 0 if ( ) 0p X t= = . 
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Figure 7-1: Two examples of probability density functions, one with higher entropy (left) and 
one with lower entropy (right) 

The entropy equation turns out to provide a useful measure of the uncertainty for a random 

variable. Entropy ranges from plus infinity in the case of a random variable with an infinite 

uniform distribution (high uncertainty) to minus infinity in the case of a random variable 

that can only have a finite number of values (low uncertainty). 

Given two random variables X and Y with joint probability density p(X,Y), the joint 

entropy is defined as 

( ) ( ) ( ) ( ), log , , log ,H X Y E p X Y p X s Y t p X s Y t dsdt
∞ ∞

−∞ −∞

� �= − = − = = = =� � � �  

 

The conditional entropy is defined as  

( ) ( ) ( ) ( )log , logH X Y E p X Y p X s Y t p X s Y t dsdt
∞ ∞

−∞ −∞

� �= − = − = = = =� � � �  

The joint entropy and conditional entropy are related by 

( ) ( ) ( ),H X Y H Y H X Y= +  

The mutual information between X and Y is defined as 

( ) ( ) ( ) ( )
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, ,MI X Y H X H Y H X Y
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Informally, the mutual information is the degree to which knowing the value of Y reduces 

the uncertainty in the value of X, or alternatively, knowing the value of X reduces the 

uncertainty in the value of Y. When two images are aligned by maximizing mutual 

information, the intensity in one image will best predict the intensity in the second image. A 

detailed description of numerical methods for computing entropy and mutual information is 

provided in Appendix A. 

7.1.1.4 Choosing an Intensity-Based Objective Function for Aligning 
AFM and SEM Images 

In the case of AFM and SEM images, there is not a clear relationship between 

intensities in the two images. AFM intensity is a measurement of surface height. For small 

structures, as the height increases, the intensity in the SEM can increase but higher intensity 

may also be correlated with steeper slopes. If one changes the height over a large area, the 

SEM intensity well within this region may not change at all. However, one can make use of 

the models for transforming a surface to SEM intensity to estimate an SEM image from the 

AFM data and then this AFM-based SEM image can be compared directly to the real SEM 

image. I use this approach (described in section 7.2.5) along with the normalized correlation 

coefficient as a cost function to align the simulated SEM image to the real SEM image. 

7.1.2 Transformations 

In order to ensure a robust and accurate registration algorithm, one should choose a 

type of transformation capable of representing all possible deformations to the desired 

accuracy with the fewest parameters. The possible deformations may be constrained by the 

physics of the imaging process and the physical properties of the specimen. If there is too 

much uncertainty in the image data, then solving for a very general transformation with 

many parameters may be a poorly-conditioned problem. If the transformation is less 

constrained than it should be given the physical system governing the transformation then 

one will tend to find a solution that overfits to the data (fitting to the noise) and is less 

accurate. In this section I review some of the previous work on AFM-AFM and SEM-SEM 

registration with a focus on the types of transformations that have been used with these 

types of images. 
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Romer et al developed a procedure based on cross correlation to register AFM images 

before a chemical treatment to AFM images after the treatment [Romer00]. They used a 

rigid body transformation (rotation plus translation) and accelerated the calculations by 

restricting the correlation calculation to three small square regions in each image. The 

positions of these squares were translated until the correlation was maximized. In the case 

where the processing changed the surface so much that it became difficult to relate the 

before and after images, three markers that didn’t change over the course of chemical 

treatment were deposited on the surface using an electron beam technique. Regions 

centered on these markers were then used to compute the correlation. 

The transformation used in [Romer00] cannot model scanner non-linearities common 

in scanning probe microscopes although perhaps they assume such non-linearities had been 

corrected by some other means. It is common for much of the non-linearity in the SPM 

scanner to be removed automatically using stored calibration data or reduced using closed-

loop scanning hardware. For example, the Topometrix Explorer microscope uses linear 

displacement sensing strain gauges connected to the scanner in a closed-loop feedback 

system [Topometrix95]. Hadjiiski et al [Hadjiiski96] compare electron microscope and 

scanning tunneling microscope (STM) images of a regular grid structure to determine non-

linear distortions in the STM image. These non-linearities were assumed to be fixed for a 

given scan range so that once found they could be used to correct distortions in new STM 

images. The authors consider the electron microscope image to provide accurate locations 

for the points in the grid. The decision to use the electron microscope image as the 

reference suggests that scanning non-linearities for an SEM are much less significant than 

those for an AFM. I adopt Hadjiski's use of the SEM image to define the regular space in 

which to perform alignment because the nonlinearities in the SEM image are likely to be 

smaller than those in the AFM image. Hadjiiski et al used three different representations for 

the transformation based on aligning the points in the grid: a layered back-propagation 

neural network with 5 neurons in the hidden layer, a 3rd order polynomial (possibly thin-

plate spline) approximation, and a piecewise linear approximation. The cost function was 

the mean-square error or the average squared distance between corresponding points 

(Procrustes method). 
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Some non-linearities in SPM scanning are caused by thermal expansion and 

contraction. This distortion is not normally reproducible and cannot usually be removed by 

closed-loop scanning hardware or software correction. Thermal drift is expected to decrease 

significantly after about an hour of scanning, as the instrument gets closer to thermal 

equilibrium. I assume that the rate at which the rate of thermal drift changes is slow relative 

to the rate of image acquisition so that the drift is approximately constant for a single 

image. Constant drift will in general cause a shearing distortion that can be modeled by an 

affine transformation. 

7.2 Registration Procedure 

7.2.1 Summary 

The SEM image intensity depends mainly on surface slope and curvature while the 

AFM image is most dependent on surface height. This implies that the intensity of a single 

pixel in the AFM image is not in general a very good predictor of the intensity of a single 

pixel in the SEM image. To enable a comparison of the AFM and SEM images I transform 

the AFM image into a simulated SEM image that serves as a proxy for the AFM image for 

the purpose of registration. I first erode the AFM image with the tip determined by the blind 

tip reconstruction method (as described in section 4.2 and 7.2.3) to estimate the actual 

specimen shape, and then simulate an SEM image from the eroded surface. I then align the 

simulated SEM image with the real SEM image. 

My registration procedure consists of two steps: a manual landmark-based initialization 

and an automatic intensity-based refinement. I assume that the transformation from a point 

in the AFM image (xAFM, yAFM) to a corresponding point in the SEM image (xSEM, ySEM) is 

given by an affine transformation 

AFM
SEM

AFM
SEM 1

x
x a b c

y
y d e f

� �
� � � � � =�  �  � � �� � � � �

 

The manual alignment is found from a set of 3 or more pairs of corresponding 

landmark points in the two images that have been placed by a human. From the 
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corresponding points, the parameters of the affine transformation are found very quickly by 

solving a linear system as described in 7.2.4. 

For automatic alignment based on intensity, I use normalized cross-correlation of the 

real and simulated SEM images. The normalized cross-correlation is maximized by 

automatically adjusting the landmark positions (in just one of the images) that were 

initialized during the manual alignment step. Powell’s method [Press95] is used to optimize 

the landmark positions. 

7.2.2 Justification for Constraining the Transformation to Two 
Dimensions 

I assume that the projection for the SEM is orthographic and that the direction of 

projection for the SEM (beam axis) is parallel to the z-axis of the AFM. The orthographic 

assumption is reasonable because the center of projection for the SEM is on the order of a 

centimeter above the specimen while the field of view at the specimen is about 10 

micrometers (a ratio of 1:1000). The assumption about the SEM view direction being 

parallel to the AFM z-axis is reasonable because of the way the samples are mounted. The 

specimen is a flat piece of silicon on the order of a 1 cm wide. Any variations in its tilt are 

due to differences in glue thickness or variations between sample holders. The AFM is 

usually limited to a specimen that is tilted by no more than about 5 degrees, as the z-piezo 

range is typically about one tenth the x-y piezo range. If the angle between the AFM z-axis 

and SEM beam axis were 5 degrees it would correspond to a lateral shift in the SEM image 

of about 8 nm for features 100 nm high relative to the substrate and a possible 

foreshortening of about 4 nm for features 1000 nm wide. Our SEM is limited to a resolution 

on the order of 10 nm so this change would be hardly noticeable. As a test we intentionally 

tilted one of our specimens by plus and minus 5 degrees inside the SEM to see how this 

would affect the SEM image. The most obvious effect of this tilt was a change in brightness 

at edges. We also observed the following variations in pitch measured in the vertical image 

direction: 514 pixels at 0 deg., 508 pixels at +5 deg, 517 pixels at -5 deg. The images are 

shown in Figure 7-2. The pitch is approximately 1000 nm so the variation in pitch is about 

plus or minus 5 pixels or 10 nm which is about the same order of magnitude as the 4 nm 

variation due to foreshortening that I predict and may include error due to changes in 
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brightness at the edges. I assume that distortion of the image due to such small tilts can be 

represented with sufficient accuracy by a 2D affine transformation. 

 
Figure 7-2: Effect of tilt on SEM image. Tilt is about a horizontal axis. Negative tilt pushes 
the lower part of the image farther away and brings the upper part of the image closer. 
The pitch of the grid is 1 micron. View at -5 degree tilt (left image) shows slight 
brightening of the upper edges. View at +5 degree tilt (right image) shows slight 
brightening of the lower edges. View at 0 tilt (middle image) does not show any obvious 
preferential edge brightening. The poorer focus in the right image was a result of 
accidental changes in the focus settings and not caused by tilt. 

7.2.3 Preprocessing of the AFM Data for Alignment 

One problem with using the raw AFM image for alignment is that there is a 

complicated distortion of the specimen that occurs due to tip dilation (described in section 

2.1 and chapter 0). As the tip scans over the surface, the position on the tip that contacts the 

surface can vary so that while the AFM nominally samples on a regular grid in the (x,y) 

plane, the actual samples of the surface actually lie on an irregular (non-linearly distorted) 

grid of points on the surface in real space. The offset between the contact point and the 

position of a fixed reference on the tip is illustrated in the upper part of Figure 7-3. 



 

99 

position of tip

position of contact

dz/dx

z(x)

integration

AFM image

surface

position of tip

position of contact

dz/dx

z(x)

integration

AFM image

surface

 
Figure 7-3: Relation between tip shape and the irregular sampling of surface points for an 
AFM scan. The slope in the AFM image corresponds to a point on the reflected tip (reflection is 
about a point) (shown at bottom) with the same slope. 

 

I estimate the tip shape using the blind tip reconstruction algorithm and remove the 

non-linear component of the transformation by first eroding the AFM image with the tip 

shape as described in section 2.1 and then compute a simulated SEM image from the eroded 

AFM image.  

The AFM image eroded by the true tip shape is a regular sampling (ignoring distortions 

other than tip dilation) of the lowest known upper bound on the true surface. Although the 

tip estimate is in general only an outer bound on the true tip shape, I assume that the AFM 

image eroded with this tip shape is a better estimate of the minimum upper bounding 

surface than the original AFM image is. 

The SEM simulation is computed using the filter bank model as described in chapter 6. 

The filter bank model constructed as described in section 6.7 operates on height field 

images with the same physical pixel size as the SEM image data. So that the filter bank 
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model can be applied to the eroded AFM image, the eroded AFM image is resampled such 

that it has the same pixel size (in physical distance units) as the SEM image. As described 

in section 6.7, a Monte Carlo SEM simulation is computed on the resampled AFM image to 

generate an SE and BSE image. The eroded AFM and simulated SEM images are then used 

to train the filter bank SEM simulator. Then the filter bank SEM simulator is used to 

generate noiseless SE and BSE images from the resampled eroded AFM image. The 

noiseless SE or BSE image is aligned to the real SEM image as described in sections 7.2.4 

and 7.2.5. One advantage of the filter bank model over the Monte Carlo method to simulate 

the SEM image is that it produces no noise in the simulated image that could make the 

intensity-based alignment less robust. 

 
Figure 7-4: To compare AFM and SEM images, the AFM image is eroded by the tip shape 
estimated by blind tip reconstruction, upsampled to the resolution required by the convolution-
based SEM simulator (simulator is calibrated to pixel size for SEM image), and converted to a 
simulated SEM image. Existing registration methods are then used to compute a 
transformation that aligns the simulated SEM image with the actual SEM image. The same 
transformation aligns the AFM image to the SEM image. 

7.2.4 Landmark-Based Initial Alignment 

I find an initial estimate of the transformation by having the user manually identify a 

set of pairs of corresponding landmark points in the two images (a typical example is 

shown in Figure 7-5). These landmark pairs are used to compute a transformation by 

minimizing the sum of the squared distances between points in one image and their 

corresponding points transformed from the other image. That is, given n points {pi} in the 

SEM image and n corresponding points {qi} in the AFM-based simulated SEM image, the 

desired transformation matrix ( S A→T ) should minimize the objective function defined by 
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( ) ( )( ) ( )( )222

1.. 1..
S A i i S A i i x S A i i yx y

i n i n

f → → →
= =

= ⋅ − = ⋅ − + ⋅ −� �T T p q T p q T p q  

Note that a point p=(px,py,1) refers to a position in the SEM image in units of pixels 

although px and py are not constrained to be integers and similarly for a point q in the 

AFM-based simulated SEM image. 

The transformation matrix has the form 

0 0 1
S A

a b c
d e f→

� �
� = � 
� � �

T  

so multiplying this matrix by a point pi (in homogenous coordinates) gives us 

( )
( )

S A i ix iyx

S A i ix iyy
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⋅ = + +

⋅ = + +

T p p p

T p p p
 

I form two linear systems of equations: 
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Equation 7-1: System of equations to solve for T given a set of corresponding points. 

If there are more than three pairs of points specified, then there will be more than three 

equations and the system will be over constrained. I solve this system using the least 

squares solver DGELS in the LAPACK library [Anderson94]. 
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Figure 7-5: Screenshot of image registration user interface. 
Corresponding points are placed by the user in the upper two 
image panels and the resulting transformation is used to 
display the images blended together in the lower panel. The 
positions of the points placed by the user in the first image 
are the parameters for automatic alignment and the user-
given positions taken as a starting point for optimization of 
the transformation. 

This manual alignment stage finds rough approximation of the globally-optimal 

transformation, and is used to initialize the automatic optimization method. 

7.2.5 Automatic Method for Refining the Alignment 

To automatically refine the alignment I use Powell’s method [Press95] to minimize the 

negative normalized correlation coefficient defined as  

( ) ( ) ( )( )0 1 2
1..

1 1
, , ,..., cor ,k i A i B

A B i N

f A B a b
N

µ µ
σ σ =

= − = − − −�q q q q  

where i indexes over a set of N points that lie inside both the real and simulated SEM 

images given the coordinate transformation determined from the landmark points {pi} in 

the real SEM image and {qi} in the simulated SEM image. The points {pi} are held 

constant while the points {qi} are allowed to vary so the cost function f() is treated as a 

function of the positions of the landmark points {qi} in the simulated SEM image. k is 

typically 3 because this is the fewest number of points required to uniquely determine the 

transformation. The coordinates of these points are a parameterization of the transformation 

because for any coordinate values, a corresponding transformation can be found by the least 
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squares method described in section 7.2.4. The values ai and bi are the intensity values for 

the simulated SEM and real SEM image respectively, taken from the set of pixel locations 

for the AFM image (or equivalently the simulated SEM image) that fall in the intersection 

of the two images so that 

( )
( )( )

,

,
i A i i

i A S i i

a S x y

b S x y→

=

= ⋅T
 

where 1
A S S A

−
→ →=T T . 

Given a set of parameter values (the positions of the points in the simulated SEM 

image), T is computed by solving the system shown in Equation 7-1. Then, for all N  pixel 

locations (x,y) in AS  such that ( ),A S x y→ ⋅T  lies inside S, the image intensities at those 

points are inserted into the arrays a and b. The value inserted in b, ( )( ),A SS x y→ ⋅T , requires 

calculation of an interpolated value in the SEM image and this is done by bilinear 

interpolation of the 4 nearest neighbors. The summations required to compute the mean, 

standard deviation and correlation are performed on sorted arrays of values in order to help 

reduce numerical error. Although not necessarily required, adding numbers in order from 

smallest to largest helps to reduce the possibility of cancellation error in floating point 

calculations. Ideally one would re-sort an array after each partial sum is computed. 

Although I assume that the optimization is manually initialized near the globally 

optimal transformation, the automatic alignment could still get caught in local optima very 

close to the global optimum. To ensure this doesn’t happen, a coarse to fine approach is 

used. The simulated and real SEM images are Gaussian blurred and the intensity values for 

the a and b arrays are taken from the blurred images. Because the simulated and real SEM 

images have the same pixel size in physical units, the standard deviation (�) of the Gaussian 

blur kernel is set to the same value in units of pixels for both images. The alignment is 

optimized at each blur level in order from most to least blurred images using values for � 

from {8, 5, 4, 3, 2, 1, 0} (�=0 indicates no blurring). For �=8, the optimization is started 

from the manually-placed points. At the smaller values of �, the optimization is started from 

the solution found using the previous value. Examples of the blurred images for the 

simulated SEM image and for the actual SEM image before and after warping with T are 
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shown in Figure 7-6. Plots of the objective function along one possible search direction 

(translation in y-direction) using these example images are shown in Figure 7-7. 

 

 
Figure 7-6: Series of blurred images used to compute the cost function for intensity-based 
registration. Tracking the solution from that for the coarsest scale (most blurred) down to that 
for the finest scale (no blurring) helps to ensure a robust alignment algorithm. Except for 
manual initialization at the coarsest scale, the solution for each scale level is found by local 
optimization starting from the solution for the previous coarser scale. 
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Figure 7-7: Plot of cost function at different levels of image blur for intensity-based 
registration. The cost function is plotted as a function of translation of the two images relative 
to each other in the y-direction starting from the near optimal alignment shown in Figure 7-6. 
The optimal translation at each blur level is located within the capture basin for the global 
optimum of the next smaller blur level allowing the global optimum to be tracked from coarse 
to fine scale. 





 

 

8 Noise Models and Log-likelihood Calculation for AFM 
and SEM 

Having an accurate model for noise is critical for accurate calculation of likelihood. In 

combining AFM and SEM images, the noise model for each image helps determines the 

relative weight each image should have in computing the surface reconstruction at each 

surface location. In this chapter I describe my approach to modeling noise in AFM and 

SEM images. 

8.1 Noise in AFM Images 

The noise in AFM images is typically correlated more in the fast scan direction than in 

the slow scan direction. The reason for this is that pixels that are acquired more closely in 

time are more likely to be affected in the same way by mechanical vibrations, thermal 

expansion or contraction, feedback artifacts, acoustic vibrations, and changes to tip 

geometry. This section describes how I model the correlated noise in AFM images. 

8.1.1 An Autoregressive Model 

I treat the noise as a signal that is added to the distortion of the surface due to dilation 

by the tip shape. Assuming an optimal surface reconstruction H, the flattened AFM image 

(A) is modeled as 

ˆ
AFMA H T E= +�  

where T̂�  represents dilation by the estimated tip shape T̂  and AFME  is the noise image. I 

model the noise image with a first order autoregressive model (AR1 model) that represents 
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the noise in each pixel as the sum of some fraction of the noise the previous pixel in time 

and an independent noise component. The noise is assumed to have the form 

( ) ( )AFM AFM 1 1, ,t t t t tE x y E x y vα − −= ⋅ +  

where α  is a constant and vt is normally distributed with mean 0 and constant variance 
2
AFMσ . The subscript t indexes the pixel locations (x,y) in chronological order. 

In order to estimate the optimal parameters for the noise model I first acquire a 

calibration image of a mica surface from which an estimate of the noise image, 

( )AFM ,t tE x y , can be computed. Although the mica surface is atomically flat, the geometry 

of the AFM scanner can introduce tilt and bowing of the image. I compute a quadratic fit to 

the AFM image of the mica surface and subtract this fit from the image. The purpose of 

subtracting the quadratic fit is to ensure that the mean value of each pixel in the resulting 

image as close as possible to 0. Because later calculations to model the noise assume the 

mean value of each pixel is zero, deviations from this assumption would affect the noise 

estimate. I define ( )AFM ,t tE x y  as the result after subtracting the quadratic fit from the AFM 

image of the mica surface. I assume that deviations from the quadratic fit are mainly due to 

errors in measuring the height of the surface because the surface is an atomically flat piece 

of mica. This assumption is valid because the surface is known to be inherently flat. 

I do not subtract a quadratic fit from the AFM image used for surface reconstruction 

because the variation in height due to the quadratic component for the 10 micron wide mica 

scan was less than 2 nm which is less than other sources of error (such as non-linear 

distortions of the AFM image coordinates from a variable rate of drift) in the AFM image. 

The scans used as input to my algorithm are all less than 10 microns wide and use the same 

100 micron scanner used to acquire the image of the mica surface. 

I compute the parameters of the AR1 model (α  and 2
AFMσ ) from ( )AFM ,t tE x y  using the 

Levinson-Durbin method [Jain89] as 

( )
( )

( ) ( )2 2
AFM

ˆ 1
ˆ 0

ˆ1 0

r

r

r

α

σ α

= −

= −
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where ( )r̂ t∆  is an estimate of the autocorrelation function for AFME  for offset t∆ : 

( ) ( ) ( )AFM AFM
1

1ˆ 0 , ,
N

t t t t
t

r E x y E x y
N =

= �  and ( ) ( ) ( )AFM AFM 1 1
2

1ˆ 1 , ,
1

N

t t t t
t

r E x y E x y
N − −

=

=
− � . 

This choice of parameters approximately minimizes 2
AFMσ  [Jain89]. 

From a 200x200 pixel image of the mica surface, I found ( )0 0.628622r = [nm2], 

( )1 0.518537r = [nm2], 0.825α = , and 2 2
AFM 0.201 [nm ]σ = . The flattened AFM image 

( ( )AFM ,t tE x y ), corresponding prediction error ( ( ) ( )AFM AFM 1 1, ,t t t t tv E x y E x yα − −= − ⋅ ) from 

the AR1 model with α  = 0.825, and a simulation of the AFM noise using α  = 0.825 and 
2
AFMσ  = 0.201 are shown in Figure 8-1.  

 
Figure 8-1: (a) Flattened AFM image, (b) whitened flattened AFM image, (c) simulation of 
noise using AR1 model estimated from the flattened AFM image 

The degree to which the AR1 model actually captures the noise characteristics can be 

objectively evaluated by looking at the correlation remaining in the prediction error because 

the intensities in this image would ideally be zero mean, independent and identically 

normally distributed pixel values (based on the assumptions about vt). If the model fits 

perfectly, the prediction error must have auto-covariance that is 0 everywhere except at 0. 

Plots of the auto-covariance function for both the flattened AFM image and the whitened 

flattened AFM image are shown in Figure 8-2. This shows that the whitened image has 

auto-covariance that is nearly 0 everywhere except when the offset in time is 0 indicating 

that noise each pixel can be quite accurately predicted using only the noise value at the 

previous pixel. Also, a plot of the distribution of intensities in the whitened image (Figure 

8-3) shows that a normal distribution is a reasonable approximation. 
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Figure 8-2: Plot of auto-covariance function for the flattened AFM image of the mica surface 
( ( )AFM ,t tE x y ) and whitened image (vt). The auto-covariance function for the AR1 model is 

also shown for comparison with that for ( )AFM ,t tE x y . 
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Figure 8-3: Density for the whitened image vt shows that the normal distribution is a good fit. 
The normal distribution shown here has a mean of -0.01248 and standard deviation of 0.4044. 

8.1.2 Calculating Log-Likelihood of an AFM image Based on the AR(1) 
noise model 

Given a real AFM image with N pixels and an estimate for the true surface I compute a 

simulated AFM image from the surface estimate using gray-scale dilation as described in 

section 4.3. The log-likelihood for the difference between the simulated and real AFM 

image is computed (up to a constant offset) to determine the AFM part of the objective 

function. The log-likelihood tells us the probability that the difference between the 

simulated and real AFM images is due to noise assuming that the noise is described by the 

AR1 model. In this section, I derive the formula used to compute the log-likelihood for the 

AFM image. 
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The distribution of noise predicted by the AR1 model is a special case of a normal 

distribution. For a general normal distribution, the probability density for the error vector 

e=(e0,e1,e2,…eN-1) where ( )AFM ,t t te E x y=  is (by definition of a normal distribution [Lee98]) 

( )
( )

11
2

error
1

2

t

AFMN
p e

π

−−= e R ee
R

 

Equation 8-1: Normal density for errors in fitting to the AFM image 

where R is the NxN covariance matrix for the errors. R={ ( ) ( )cov ,ij i jr r i j e e= − = }. The 

elements of the covariance matrix are ( ) ( )0i j
ijr r i j rα −= − =  which can be shown by 

induction using the recursive relation: 

( )
( )
( ) ( )
( )
( )

1

1
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i i n i n i

i i i n
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r n e e e e

e v e

e e v e

r n

r n

α
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α

− −

− −

− − −

= =
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This means that for the AR1 error model, the covariance matrix is 
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Gauss-Jordan elimination can be used to find the matrix inverse. In Gauss-Jordan 

elimination, we start from the matrix Equation 8-2 

( )

2 3 1

2 2

2

3 2 2

1 2 2

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0
0

1 0 0 0 1 0
0

1 0 0 0 0 1
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α
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Equation 8-2: Starting point for Gauss-Jordan elimination to invert the covariance matrix. 
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and apply a series of row combination operations to get a matrix of the form 

0,0 0,1 0,2 0,3 0, 1

1,0 1,1 1,2 1,3 1, 1

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3 3, 1

2, 1

1,0 1,1 1, 3 1, 2 1, 1

1 0 0 0 0
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0
0 0 0 0 1

N
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N N
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where the matrix 

0,0 0,1 0,2 0,3 0, 1

1,0 1,1 1,2 1,3 1, 1

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3 3, 1

2, 1

1,0 1,1 1, 3 1, 2 1, 1

N

N

N N

N N

N N N N N N
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is the inverse of R. 

Subtracting α  times the second row from the first row and subtracting α  times the 

second to last row from the last row we get 

( )

2 2

2

3 2

2

2

2

0 0 0

1 0 1 0 0

1 0 0 0 0 1

0 0 0 0

0

1 0 0 1 0
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N
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− −
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For each row from the second row to the second to last, we subtract from each row α  times 

the subsequent row in Equation 8-2 to get 

( )

3 2

2 4 3 2

3 5 2 4 3 2

2

2

1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 1
0
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0 0 0 0

1

1 0 0 1

1

1

0

r
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α α α α α α α

α
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� �− −
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� 
� 
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− − −

�

−
−
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Next, subtracting α  times the previous row from each of the middle rows we get 
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Dividing each row by the variance of the noise prediction error 

( ( ) ( )( )2 2var 0 1AFM t rσ ν α= = − ) we get the inverse as 

2

2
1

2

2

1 0

1 0

0 11
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0 1
0 1
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σ α

α α α
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� − +
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R
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The log-likelihood of the error (taking the log of Equation 8-1) is 

( ) ( ) 1
error

1 1
log log 2 log

2 2 2
tN

p π −= − − −e R e R e  

From the form of R-1 the 3rd term can be calculated as 
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This expression can be simplified by changing the expression inside the summation to be a 

perfect square and adding additional terms that balance the change to the summation to get 
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The first and second terms are constants and are not needed because we are only concerned 

with how the objective function changes with changes in the surface: 

( )
( ) ( )22 2

0 1
1.. 1

error 2

1
log constant

2

t t
t N

AFM

e e e
p

α α

σ

−
= −

− + −
= −

�
e  

The part of this expression that depends on the errors (e0..eN-1) is used as the AFM part of 

the AFM-SEM objective function that determines the optimal surface reconstruction. 

In estimating the AR1 model parameters (and later in applying this model to estimate 

image likelihood) I ignore the fact that there is typically a longer time between the last pixel 

on a scanline and the first pixel on the next scanline than there is between pixels on the 

same scanline. A better choice would be to account for the large gap in time between 

scanlines or model the noise in each line independently but I leave this for future work. My 

model will tend to underestimate the likelihood of an image because the pixel at the 

beginning of each line will probably have a larger change in error from the last pixel on the 

previous line than my model predicts. This will cause the reconstructed surface to tend to fit 

to the noise more closely near the left edge of the AFM image. The effect on the rest of the 

reconstruction should be insignificant because in the autoregressive model the correlation 

between the error at any pixel and the error for a pixel at the left edge falls off very quickly 

in a decreasing geometric sequence with distance from the edge.  
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8.2 Noise in SEM Images 

8.2.1 Noise Sources and Distribution Models 

Each pixel in an SEM image is assumed to have independent error due to noise. This is 

because the noise is generated by random processes that occur within the SEM during the 

time of acquisition for a single pixel and no memory of these processes is carried over into 

the time of acquisition for the next pixel. However, this assumption breaks down if there 

are significant noise sources external to the SEM such as mechanical/acoustic noise or 

electromagnetic interference.  

An incident electron typically either escapes with a significant fraction of the incident 

energy and is counted as a backscattered electron or loses all of its energy before escaping. 

The incident electrons strike the surface so sparsely in time for typical beam currents and 

accelerating voltages that it is safe to assume that they scatter independently in the 

specimen. I follow [Cohen00] in modeling the distribution for the number of detected 

backscattered electrons as a Poisson distribution. 

The secondary electrons are produced by a more complicated process. The detected 

secondary electrons depend to a large extent on the trajectories of the backscattered 

electrons because secondary electrons are generated by escaping backscattered electrons. 

Each backscattered electron may be responsible for generating multiple secondary electrons 

and each of these secondary electrons can also generate additional secondary electrons. I 

follow [Cohen00] in modeling the distribution for the number of secondary electrons as a 

log-normal distribution. From the definition of a log-normal distribution this means that the 

log of the number of secondary electron has a normal distribution. 

Experimental evidence that the BSE signal has a Poisson distribution while the SE 

signal has a log-normal distribution is provided by [Cohen00]. Cohen et al used a quantile-

quantile plot test to test the match between the distribution model and experimental data. 

Given a distribution for a variable, a quantile is the expected fraction of samples of that 

variable that fall below a given value. Given two distributions, two corresponding quantiles 

are generated for each of a set of values. These quantiles are plotted on a 2d graph and if the 

two distributions are of the same form, the graph will be linear. Deviations of the quantile-

quantile plot from a line reflect differences in the two distributions. The experimental SE 
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distribution matched much better to a lognormal distribution than it did to a Poisson 

distribution. 

 

8.2.2 Comparison of Theoretical Noise Distributions with Empirical 
Distributions from Monte Carlo Simulation and Real SEM Images 

One way to test the SEM noise model is to compare it to Monte Carlo simulations of 

electron scattering. I performed such a test, simulating electrons hitting a single point on a 

surface derived from AFM data shown in Figure 8-4. 

 
Figure 8-4: Test surface for generating test data on 
the distribution of measured electrons. The surface is 
shown as a grayscale height map. The circled point 
indicated by the arrow is the point at which electrons 
entered the surface. The range of heights is 
approximately 150 nm and the image is 3000 nm 
wide. 

Three different sets of 10000 trials were performed using 1, 20, and 100 electrons per 

trial. All simulations used incident electrons with energy of 1keV and assumed a surface 

composed of silicon. For each trial, the number of secondary electrons and backscattered 

electrons were recorded. The results are plotted in Figure 8-5, Figure 8-6 and Figure 8-7 

along with the best fit Poisson distribution (BSE and SE) and best fit log-normal 

distribution (SE only). These results showed that the simulator produces a BSE distribution 

that is closely fit by a Poisson distribution and a SE distribution that resembles more a log-

normal distribution than a Poisson distribution. Also, as expected, as the number of incident 

electrons increases, the BSE and SE distributions become more like normal distributions. 



 

117 

 
Figure 8-5: Estimated distribution for the number of BSE and the number of SE generated by 
a single incident electron with 1keV in silicon as simulated by the MONSEL simulator. The log-
normal distribution is modified so that negative values are clamped to 0. 

 
Figure 8-6: Estimated distribution for the number of BSE and the number of SE generated by 
20 incident electrons with 1keV in silicon as simulated by the MONSEL simulator. 
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Figure 8-7: Estimated distribution for the number of BSE and the number of SE generated by 
100 incident electrons with 1keV in silicon as simulated by the MONSEL simulator. 

 

The analysis based on Monte Carlo simulations gives some insight into the origins and 

distribution of noise in a real SEM image but a real SEM image is typically a mixture of 

backscattered and secondary electrons and therefore the noise distribution may be some 

combination of Poisson and log-normal. Also, a real SEM image is not the raw electron 

counts from the detector. The raw detector signal is scaled and offset before conversion to a 

digital image. However, the Monte Carlo simulations, particularly for larger numbers of 

incident electrons (Figure 8-7) show that regardless of the mixture of BSE and SE, the 

signal for a particular pixel has an approximately normal distribution. Any scaling and 

offset applied to the signal will result in a signal that still has an approximately normal 

distribution, only changing the mean and standard deviation. I model the noise in real SEM 

images with a normal distribution. If the real distribution were either a Poisson or log-

normal distribution or some combination, the variance of the normal approximation should 

change depending on the mean. For example, for the Poisson distribution, the variance is 

equal to the mean. If a scaling and offset is applied to the data, the variance will no longer 

be equal to the mean but there will still be a linear relationship between them. For this 

reason I use an affine relationship to model the dependence of the variance on the mean. 

To analyze the noise in a real SEM image I first manually identified some regions in 

the image that had approximately constant mean intensity. Examples of such regions are 

shown in Figure 8-8 and Figure 8-10. Next, histograms of the intensity were compiled to 

get an empirical distribution for each region. The empirical distributions were fit by normal 
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distributions (Figure 8-9 and Figure 8-11) and the mean and variance of the normal 

distributions were plotted per image as shown in Figure 8-9 and Figure 8-12. The results 

showed that the relationship between mean and variance values for each image is well-

approximated by a line. This model (variance being a scaling and offset of the mean) was 

later used to estimate the variance in the measured values from an SEM image simulation 

representing the mean intensities. As I will describe in more detail in section 9.2.2, the 

variance was used to estimate the probability that an observed SEM image was a noisy 

version of the simulation and how well a specimen model matched the data. 

 
Figure 8-8: Various regions in an image were selected that had approximately constant mean 
intensity. The distribution of intensity within each region was used to estimate the noise 
distribution for the entire image. 
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Figure 8-9: Gaussian fits to empirical intensity distributions for the three regions identified in 
Figure 8-8. A plot of the mean vs. variance shows a nearly linear relationship that is consistent 
with the linearly-transformed Poisson distribution model for noise. Units of intensity on the 
horizontal axis are in arbitrary digital units determined by unknown signal processing and 
analog to digital conversion in the SEM. The vertical axis is the probability density (fraction of 
pixels per unit intensity value). 

 

 
Figure 8-10: Second example of regions that were manually segmented and assumed to have 
constant mean intensity for the purpose of estimating the noise characteristics. 
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Figure 8-11: Gaussian fits to empirical intensity distributions for the three regions identified in 
Figure 8-10. 
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Figure 8-12: Mean and variance parameters of the Gaussian 
fits shown in Figure 8-11 shown in a scatter plot. I assume 
that the noise variance varies linearly with the mean intensity 
and use the line fit to these points to determine the variance 
from the mean intensity calculated by a simulation. 
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8.2.3 Calculating Log-Likelihood of an SEM Image 

I compute the log-likelihood for a real SEM image, ( ),S x y , assuming it is a noisy 

version of a simulated SEM image, ( )FB ,S x y . ( )FB ,S x y  is computed using the filter bank 

model described in chapter 6 from a given surface estimate H. The distribution for the noise 

at each pixel is assumed to be independent with a normal distribution: 

( ) ( )( )2
SEM FB, N 0, ,E x y x yσ� . The variance, ( )2

FB ,x yσ , is computed assuming that the 

simulated image gives the mean value at each pixel and assuming the affine relationship 

between variance and mean estimated in section 8.2.2 as 

( ) ( )2
FB FB, ,x y aS x y bσ = +  

The log-likelihood is computed as 

( )
( )

( ) ( )( ) ( )( )

( )( ) ( ) ( )( )
( )( )

2 2
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2
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1
log log
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log 2 ,

2 2 ,

NN yx S x y S x y x y

x y
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x y

p S H e
x y

S x y S x y
x y

x y

σ
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πσ
σ

− −

= =

= =

� �
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 �
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9 Surface Optimization

In this chapter I describe an objective function for surface reconstruction that 

incorporates AFM and SEM data. I also describe how the gradient of this objective function 

can be efficiently computed, enabling a general gradient-based optimization method to be 

applied to surface reconstruction from combination AFM/SEM images. 

9.1 Surface Model and Scale Space Reconstruction 

Jones and Taylor introduced an approach called scale-space reconstruction in which a 

surface is represented by Gaussian basis functions and is constructed in a coarse to fine 

sequence. They also computed the SEM objective function gradient using convolution. 

Though the basic framework for my approach closely follows that described in [Jones94], I 

generalize the SEM shading function from one that depends only on slope at a point to one 

that depends on slope and curvature at multiple scales. I further extend the earlier work by 

including multiple images of different modalities (AFM and SEM). Such an optimization 

framework has not, to my knowledge, been used to reconstruct a surface from an AFM 

image by itself or to fuse an AFM image with an SEM image. The description of my 

algorithm closely follows the one in [Jones94] but is modified to incorporate my 

extensions.  

The scale space representation of a surface, ( ), ;H x y σ , gives the height of the surface 

as a function of a position in the plane (x,y) for x=1..Nx and y=1..Ny and a scale parameter 

σ . The algorithm computes the surface at each of a set of discrete scales in decreasing 

order 1 2 0, ,N Nσ σ σ− − �  from the largest scale to the smallest scale. At any scale kσ  (k<N) 
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the reconstruction is computed as the sum of the reconstruction at the next larger scale and 

an incremental update ( ), ; kh x y σ  such that 

( ) ( )
..

, ; , ;k i
i k N

H x y h x yσ σ
=

= �  

In the following descriptions, I abbreviate ( ), ; kh x y σ  as kh  or ( ),kh x y  and ( ), ; kH x y σ  

as kH  or ( ),kH x y . 

Building the surface up from large scale to small scale ensures that a smooth surface is 

constructed that explains the observed data. Although the solution found by this algorithm 

is not necessarily the smoothest among all surfaces that optimally explains the data, an 

upper bound for a lack-of-smoothness measure given in [Jones94] suggests that the solution 

is nearly as smooth as possible.  

Each function kh  is the convolution of a coefficient image kC  with a Gaussian basis 

function F
kG  and is defined as 

( ) ( )
1 1

, ,
NN yx

F F
k k k k k

i j

h C G C i j G x i y j
= =

= ⊗ = ⋅ − −��  

where ( ) ( )2 2 2( ) 2

2

1
,

2
kx yF

k
k

G x y e
σ

πσ
− +=  

I define ( ),kH x y  in terms of the same (x,y) coordinates as the SEM image. For the 

AFM image, the surface model is sampled at the pixel coordinates for the AFM image to 

create a sampled height image in AFM coordinates ( )AFM AFM,x y  defined as 

( ) ( ) ( ) ( )AFM AFM SEM SEM SEM SEM
1 1

, , , ,
NN yx

F
k k k k

i j

H x y H x y C i j G x i y j
= =

′ = = ⋅ − −��  

where ( ) ( )SEM SEM AFM AFM, ,A Sx y x y→= T  and A S→T  is the transform mapping AFM 

coordinates to SEM coordinates as described in section 7.2.5. 

In [Jones94], the sum of squared differences between the SEM intensity and the 

intensity predicted by the candidate surface reconstruction was used as the objective 

function. Assuming identical and independent Gaussian noise at each pixel in the SEM 

image, the surface that minimizes this objective function is equivalent to the maximum 
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likelihood surface. In my approach, the main difference from that of [Jones94] is in the 

definition of a new objective function that incorporates information from both an SEM 

image and an AFM image. The remaining sections of this chapter describe my objective 

function. 

9.2 Objective Function 

I define the optimal surface as the one that is most likely given the observed AFM and 

SEM data. Applying Bayes’ rule to the conditional probability of the surface reconstruction 

kH  given the AFM image (A) and SEM image (S) we have 

( ) ( ) ( )
( )

 and 
 and 

 and 
k k

k

p A S H p H
p H A S

p A S

⋅
=  

( ) and p A S  is a constant given the available data and I assume that ( )kp H  is uniform (no 

surface is more probable than any other). With this assumption, ( ) and kp H A S  is 

maximized when ( ) and kp A S H  is maximized. Because the AFM and SEM images are 

independent, ( ) ( ) ( )AFM SEM and k k kp A S H p A H p S H= . Taking the log of both sides we 

get ( ) ( ) ( )AFM SEMlog  and log logk k kp A S H p A H p S H= +  and because the log function is 

monotonically increasing, maximizing ( )log  and kp A S H  is equivalent to maximizing 

( ) and kp H A S . I actually minimize ( )log  and kp A S H− . 

For each scale σk the objective function that I minimize is an estimate up to a constant 

of the negative log-likelihood of the AFM and SEM images given the observed data. The 

objective function is defined as 

( ) ( ) ( )AFM SEMlog logk k kf H p A H p S H constant= − − −  

where ( )AFM kp A H  is the probability for the observed AFM image A and ( )SEM kp S H  is 

the probability for the observed SEM image S given that the true surface H equals the 

candidate reconstruction kH . The log-likelihood is estimated up to a constant offset 

( constant−  above) that can be ignored because we are only interested in minimizing the 

function and not computing its actual value. 
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9.2.1 AFM Component 

( )AFM kp A H  is estimated assuming that ˆ
k AFMA H T E′= +�  where T̂  is an estimate of 

the AFM tip shape, �  is discrete dilation, and AFME  is a noise image described by an AR1 

model. Given pixels in A, (xt,yt), where t indexes the pixels in chronological order of 

acquisition then the AR1 noise model is expressed as described in section 8.1.1 by 

( ) ( )AFM AFM 1 1, ,t t t t tE x y E x y vα − −= ⋅ +  
where α  is a constant and vt is normally distributed with mean 0 and constant variance 

2
AFMσ . Given an AFM image A, an estimated surface height image in AFM coordinates, 

kH ′ , and an AFM tip image T̂ , an error image, AFME , is computed by subtracting from the 

AFM image the estimated surface image dilated by the tip image ( AFM
ˆ

kE A H T′= − � ). The 

method for estimating the log-likelihood described in section 8.1.2 is used to calculate the 

AFM part of the objective function as 

( )
( ) ( )

1
22 2

0 1
1

AFM 2

1
log constant

2

AFMN

t t
t

k
AFM

e e e
p A H

α α

σ

−

−
=

− + −
− = +

�
 

where ( )AFM ,t t te E x y=  and t indexes the pixels in the AFM image in chronological order. 

9.2.2 SEM Component 

( )SEM kp S H  is estimated assuming that ( ) ( ) ( )FB SEM, , ,S x y S x y E x y= +  where FBS  is 

a function of Hk and represents the filter-bank-based SEM simulation described in chapter 6 

and ESEM is a noise image where each pixel is independent with a normal distribution: 

( ) ( )( )2
SEM FB, N 0, ,E x y x yσ�  where ( ) ( )2

FB FB, ,x y aS x y bσ = +  is the line relating variance 

to the mean value ( )FB ,S x y  found using the procedure described in section 8.2.2. The SEM 

part of the objective function is calculated as 
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9.3 Objective Function Gradient 

Because I use a gradient-based optimization method, it is necessary to calculate the 

gradient of the objective function in addition to the value of the objective function. The 

gradient of the objective function ( f∇ ) is the direction in parameter space in which the 

objective function increases the most. It is defined as 

( ) ( )
( )

( )
( )

( )
( )

AFM SEM

,

log log

, , ,
k kk

i j
k k k

p A H p S Hf H
f

C i j C i j C i j

∂ ∂∂
∇ = = − −

∂ ∂ ∂
 

where (i,j) i=1..Nx, j=1..Ny index over the components of the gradient vector. Intuitively, 

this tells which Gaussian coefficients should go up, and which should go down (and by how 

much) to most quickly increase the likelihood of the surface estimate. The next two sections 

describe in detail how the gradient is calculated. 

9.3.1 AFM Component of Log-Likelihood Gradient 

Recall from section 9.2.1 that the negative log-likelihood for the AFM image given a 

specimen surface model is approximated by 

( )
( ) ( )

1
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t t
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�
 

Equation 9-1 

where N is the number of pixels in the AFM image, ( ) ( ), ,t t t k t te A x y A x y= − , 

ˆ
k kA H T′= �  (the simulated AFM image computed by dilating kH ′  with the tip model T̂ ) 

and 2
AFMσ  and α  are parameters of the AR1 model. In this section I derive an expression 

for the derivative of this function with respect to each of the surface parameters. The pixels 

in both the AFM image (A) and the simulated AFM image ( ˆ
k kA H T′= � ) are indexed in 

chronological order of acquisition. ( ),t tA x y  represents the pixel in the AFM image at 

timestep t and ( ),k t tA x y  represents the corresponding simulated pixel. For my data, the 

sequence of pixels locations ( ),t tx y , t=0..N-1 is a raster scan of the image starting at (0,0). 
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The derivative of Equation 9-1 with respect to a surface parameter ( ),kC i j  (Gaussian 

basis function coefficient for scale k centered at pixel (i,j) in the surface estimate height 

image) is 
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( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )

1
AFM 2 10

0 12
1

1
2 0 1

0 12
1

log 1
1

, , ,

1
1

, , ,

N
k t t

t t
tk AFM k k

N
t t

t t
tAFM k k k

p A H e ee
e e e

C i j C i j C i j

e e e
e e e

C i j C i j C i j

α
α α

σ

α α α
σ

−
−

−
=

−
−

−
=

∂ � �∂ −∂− = − + −� ∂ ∂ ∂� �

� �� �∂ ∂ ∂= − + − −� � 	∂ ∂ ∂� 
 �� �

�

�

 

Substituting ( ) ( ), ,t t k t tA x y A x y−  for te  and using 
( )
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,

0
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change if we change the reconstructed surface) we get 
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Equation 9-2 

Equation 9-2 tells us how to calculate the gradient in terms of the derivative of the 

dilated surface with respect to the surface parameter. Although the derivative is not 

necessarily continuous because of the nature of the dilation operation, it can be calculated 

using a modified dilation operation that keeps track of the point on the input surface that 

determined the height at each point in the dilated surface. In the discrete dilation operation 

this can be accomplished by associating with each height value in the input surface its (x,y) 

position. ˆ
k kA H T′= �  is computed as 

( ) ( ) ( ){ }
( , )

ˆ, max , ,
x y

k k x y x y
b b

A x y H x b y b T b b′= − − +  
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I define a modified version of discrete dilation that keeps track of locations from the 

surface kH ′  as 

( ) ( )( )
( ) ( ) ( ) ( ) ( ){ }

( , )

, , , ,  such that 

ˆ ˆ, , , max , ,
x y

k k H H

k k H H H H k x y x y
b b

x y A x y x y

A x y H x y T x x y y H x b y b T b b

=

′ ′= + − − = − − +

A
 

This means that the dilated image is augmented by an x and y channel for each pixel. 

Instantaneously we have that 
( ) ( ) ( )( ) ( ) ( )( )ˆ, , , , , , ,k k H H H HA x y H x x y y x y T x x x y y y x y′= + − −  

Equation 9-3

 ( ) ( )( ), , ,H Hx x y y x y  can shift by a distance of multiple pixels with arbitrarily small 

changes in kH ′  and many points on kH ′  may not touch the tip and therefore won’t be in 

( ) ( )( ){ }, , , 0.. 1H t t H t tx x y y x y t N= − . These two qualities may cause problems for local 

optimization methods. Those points on kH ′  that don’t touch the tip will not be considered 

for adjustment although changes to those points could lead to a reduction in the AFM error. 

Such a situation is illustrated in Figure 9-1. 

A gradient-based optimization method may seem a poor choice given the 

discontinuities in the AFM gradient formula and possibility for stagnation of parts of the 

surface that lose contact with the simulated tip scanning but there are two factors that help 

to avoid these problems and enable the gradient-based approach to succeed. One is that the 

SEM part of the objective is better behaved and takes over where the AFM part loses 

influence over parts of the surface that aren't touched by the tip. Another factor is that each 

basis function influences the height over a region of the surface rather than at a single point 

and this helps to ensure that each basis function has some interaction with the tip and that 

jumps in the AFM part of the gradient won't be very large. This effect is most significant 

for optimization at the largest scales. Because the surface is reconstructed in a coarse-to-

fine sequence, by the time the smaller scale structures are adjusted all the parts of the 

surface (relatively flat places) that the AFM tells us about are mostly determined already. 

The parts of the surface that do not contact the tip will be those for which there is no 

information from the AFM (near the bottom of cliff faces). Stagnation of parts of the 
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surface would be a much bigger problem if one tried to just adjust the height at each pixel 

independently from the beginning. 

 
Figure 9-1: Possible problem case for local optimization of 
AFM component of the objective function. The gray region 
represents the current solution for the surface. The dotted 
line represents the observed AFM image, and the solid line 
represents the AFM image simulated by dilation with the tip 
shape shown in red. The parts of the surface indicated by 
arrows need to be raised up to help make the simulated AFM 
image better match the observed AFM image but because 
they do not touch the simulated tip as it is scanned over the 
surface, small changes to these parts of the surface have no 
effect on the simulated AFM image and local optimization 
may fail. For this case, we rely on SEM information to pull 
the valleys up. 

 
Taking the derivative of Equation 9-3 with respect to the basis function coefficient we 

get 

( ) ( ) ( )( ), , ,,
( , ) ( , )

k H t t H t tk t t

k k

H x x y y x yA x y
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′∂∂
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 Recall that the surface estimate at scale kσ  in AFM coordinates is defined as 
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where , ,

NN yx
F

k k k k
i j

A S

H x y H x y C i j G x i y j

x y x y
= =

→

′ = = ⋅ − −

=

��

T

 

so 
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Putting all this together, the gradient of the negative log-likelihood is computed as 
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9.3.2 SEM Component of Log-Likelihood Gradient 

This section describes an efficient method for computing the gradient of the SEM 

component of the objective function. This method relies on the fact that the facet model 

coefficients introduced in section 6.4 can be computed by a convolution as described in 

Appendix D.2 and [Haralick81]. I first give a mathematical derivation of a formula for the 

gradient. After this I describe the algorithm used to compute this formula. Throughout these 

descriptions I use ,
F
m nK  to represent the convolution kernel used to compute a facet model 

coefficient at each pixel and ( ), ,m nK x y  to represent the actual coefficient computed at (x,y) 

by the convolution. F
kG  represents the normalized 2-dimensional Gaussian kernel centered 

at 0 with width the same as that used for the surface basis functions at scale k (the 

superscript F in F
kG  is to avoid confusion with the gradient magnitude image nG  

representing the gradient magnitude estimated for neighborhood size n). 

9.3.2.1 Derivation of SEM Objective Function Gradient 
The derivative of the SEM objective function (see section 9.2.2) with respect to a 

Gaussian basis function coefficient is 
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For clarity I split the log-likelihood into terms and compute the derivative for each term as 

follows 
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Summing all the terms together gives the derivative of the negative log-likelihood in terms 

of the derivative of each pixel in the simulated image with respect to the surface basis 

function coefficient: 
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Equation 9-4 

 

Using ( ) ( ) ( ) ( )
FB

FB , ,
1..

, , , ,n n n n n n
n N

S x y d a G x y b x y c x yκ κ+ −
=

= + + +� , (recall from section 

6.7.2 that d, an, bn, cn (n=1..NFB) are coefficients of the filter bank outputs for the filter bank 

SEM model) the derivative of the simulated SEM image in terms of the derivatives of the 

filter bank outputs is 
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Equation 9-5 

Recall from section 6.5 that the output of the gradient and principal curvature filters are 

defined in terms of the facet model coefficients as 
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Equation 9-6 

Using the chain rule, the derivatives of the filter bank outputs can be written in terms of the 

derivatives of the facet model coefficients as 
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Equation 9-7 

From Equation 9-6, the derivatives of the gradient magnitude and principal curvatures with 

respect to the facet model coefficients are 
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Because the surface is defined (see section 9.1) in terms of a convolution of the basis 

function coefficient image with a Gaussian function at scale k ( kG ) we get the following 

result for each of the required facet model coefficient derivatives (m=2,3,4,5,6) 
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Equation 9-8 
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( ,
F F

k k m nC G K⊗ ⊗  is the convolution of the surface basis function coefficient image with the 

Gaussian kernel followed by convolution with the cubic facet model coefficient kernel for 

term m of the cubic polynomial and neighborhood n.) 

For computing the SEM objective function efficiently using convolution, it will be 

useful to write Equation 9-8 in terms of an image indexed by ( ),i x j y− −  rather than 

( ),x i y j− − . To transform the equation in this way we must use the symmetry in the 

Gaussian basis functions and the facet model coefficient filters ( F
kG  and ,m nK ): 

( ) ( ) ( ), , ,F F F
k k kG x y G x y G x y= − = −  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2, 2, 2,

3, 2, 2,

4, 4, 4,

5, 5, 5,

6, 6, 6,

, , ,

, , ,

, , ,

, , ,

, , ,

n n n

n n n

n n n

n n n

n n n

K x y K x y K x y

K x y K x y K x y

K x y K x y K x y

K x y K x y K x y

K x y K x y K x y

= − = − −

= − = − −

= − = −

= − − = − −

= − = −

 

Using these equations and the definition of convolution we have 
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( ) ( ) ( ) ( ) ( )
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K x y
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C i j

K x y
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∂
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= ⊗ − − = − ⊗ − −

∂

∂
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∂

∂
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∂

∂ ( )
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,
, ,

,
F F F F
k n k n

k
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G K x i y j G K i x j y

C i j
= ⊗ − − = ⊗ − −

∂

 

Equation 9-9 

Using Equation 9-9 to substitute for 
( )
( )

, ,

,
m n

k

K x y

C i j

∂
∂

 in Equation 9-7 we get  
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n n n F F
k n

k
n n n

n

n n n

K x y G K i x j y K x y G K i x j yG x y
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Equation 9-10 

Using Equation 9-10 to substitute for 
( )
( )

,
,

n

k

G x y

C i j

∂
∂

 and 
( )
( )

, ,

,
n

k

x y

C i j

κ±∂
∂

 in Equation 9-5 we get 
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K K
b x y G K i x j y

K K K

K K
c x y G K i x j y

K K K

K
c

K K

=

=

=

� �
� 	 ⊗ − − +� 	
� 	+
 �

� �
−� 	+ ⊗ − − +� 	

� 	− +

 �

� �
−� 	− ⊗ − − +� 	

� 	− +
 �

−

−

�

�

�

( )
( ) ( )( )

( )
( )( )( )

FB

FB

5,2 21..
, 5,

6, 4,
6,2 21..

6, 4, 5,

, ,

1 , ,

F F
k n

n N
n n

n n F F
n k n

n N
n n n

x y G K i x j y
K

K K
c x y G K i x j y

K K K

=

=

� �
� 	 ⊗ − − +� 	
� 	+
 �

� �
−� 	− ⊗ − −� 	

� 	− +
 �

�

�

 

This can be simplified to 
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Equation 9-11 

For convenience I define an image D as 

( )

( )( ) ( )( )( ) ( ) ( )( )
( )( )
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2 2

FB FB

2
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, , 2 , ,

1 ,,
2
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a S x y S x y b S x y S x y

aS x y bD x y
a

aS x y b

� �− + −
� 	
� 	+= � 	
� 	
� 	+� 	+
 �

 

Equation 9-12 

D is defined mainly for the purpose of simplification but intuitively it represents a measure 

of the difference between the simulated and real SEM images, weighting the difference 

more where the noise is expected to be lower. Using Equation 9-11 to substitute for 

( )
( )

FB ,
,

S x y
C i j

∂
∂

 in Equation 9-4 we get 
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Equation 9-13 

Rewriting the summations over (x,y) as convolutions and factoring out the convolution with 
F
kG  shows that the gradient can be computed efficiently using O(NFB) convolutions: 
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Equation 9-14 

 

9.3.2.2 Algorithm for Computing the Gradient 
In summary, the steps for computing the gradient are  

1. convolve the height estimate (itself a convolution between the coefficient image and 

a Gaussian kernel) F
k k kH C G= ⊗  with each of 5NFB facet model coefficient kernels 

to get images ( ) ( ) ( ) ( ) ( )2, 3, 4, 5, 6,, , , , , , , , ,n n n n nK x y K x y K x y K x y K x y  for n=1..NFB 

2. using Equation 9-6, combine the images from step 1 into the simulated SEM image  

( ) ( ) ( ) ( )
FB

FB , ,
1..

, , , ,n n n n n n
n N

S x y d a G x y b x y c x yκ κ+ −
=

= + + +�  

3. compute D(x,y) from the simulated and real SEM images (Equation 9-12) 
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4. compute the 5NFB images (n=1..NFB), (Keep in mind that all arithmetic here is done 

pixelwise. Quantities such as ( )3, ,nK x y  represents a pixel in the image 3,nK  so 

computing ( )( )2

3, ,nK x y  requires squaring each pixel in the image 3,nK ): 
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5. convolve each of these 5NFB with a corresponding convolution kernel and sum the 

resulting images as 

( )2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
1.. FB

F F F F F
n n n n n n n n n n

n N

B C K C K C K C K C K
=

= − ⊗ − ⊗ + ⊗ + ⊗ + ⊗�  

where , ,
F

m n m nC K⊗  represents the convolution of ,m nC  with the same facet model 

coefficient kernel used to compute ( ), ,m nK x y . 

6. compute the gradient with one more convolution of B with the Gaussian basis 

function 

( )
( ) ( ) ( )log

,
,

F
k

k

P
B G x y

C x y
∂ −

= ⊗
∂

 

The evaluation of the gradient typically requires less than 10 times the time required to 

evaluate the simulated SEM image using the filter bank model. 
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9.4 Conjugate Gradient Method 

To minimize ( )( ) ( ) ( )AFM SEM, log logk k kf H x y p A H p S H= − −  I use a program 

called CG+ that implements the non-linear Polak-Ribière conjugate gradient method 

[Liu00][Gilbert92][Shewchuk94]. I converted the code from FORTRAN to C and added a 

more flexible C++ interface to make it more convenient to output images and other 

optimization state during an optimization. There are also options in the code to use the 

Fletcher-Reeves and positive Polak-Ribière variants of the method but I did not observe a 

significant difference in speed between the different methods. 

The conjugate gradient method requires an initial starting point in the parameter space. 

I initialize the surface basis function coefficients at all but the largest scale to 0. For the 

largest scale I initialize the surface from the AFM image eroded by the reconstructed tip 

shape: ˆ
AH A T′ = � . After computing AH ′ , I resample it onto the SEM image grid using 

bilinear interpolation and the transformation matrix S A→T  to get an image AH . Next I 

Gaussian blur this image using the widest Gaussian basis function so that the image used 

for initialization closely matches the level of detail that can be represented by the surface 

model. The coefficients are computed from the blurred resampled eroded image ( ,A blurH ) 

using the Van-Cittert iterative deconvolution algorithm [Katsaggelos89]. The 

deconvolution algorithm sets the first estimate for the coefficient image to the initialization 

image 0
,k A blurC H= . For each iteration of the deconvolution I compute a residual image 

( ),
i

i A blur k kR H C G= − ⊗  and compute the update to the coefficient image as 

1i i
k k iC C g R+ = + ⋅ , where g is a somewhat arbitrary relaxation parameter. Results showed 

that the algorithm was stable and converged in about a minute or less for g=0.1 for an 

image of size 456x172. 

Once a starting point (Ck(i,j) = x0) has been set, the conjugate gradient method 

initializes the first search direction (d0) and residual vector (r0) to the negative gradient 

vector (computed at x0): 
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( )0 0 ,k

f
d r

C i j
∂= = −

∂
 

At the beginning of each iteration of the conjugate gradient method, a line-search 

algorithm is used to find a scalar tα  that minimizes ( )t t tf x dα+ . The iteration is 

completed by computing the new point in the parameter space, a new residual vector, and a 

new search direction as 

( )
( )

1

1

1 1
1

1 1 1

,

t t t t

t
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T
t t t

t T
t t

t t t t

x x d
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r r r

r r

d r d

α

β

β

+

+

+ +
+

+ + +

= +
∂= −

∂

−
=

= +

 

where the gradient ( ),k

f
C i j

∂
∂

 is computed at 1k tC x += . 

The conjugate gradient method is terminated when the magnitude of all components of the 

gradient vector fall below a threshold: ( ) ( )
,

max 1
,i j

k

f
f

C i j
ε∂ < ⋅ + . ε  was set to 1e-6. 

The line search algorithm used in CG+ is Moré’s method [Moré94]. This line search 

method seeks an tα  that satisfies the conditions: 

( ) ( ) ( )

( ) ( )

 at 0  and

 at  at 0

t t
t t t t t

t t t t
t

f x d
f x d f x

f x d f x d

α
α µα α

α

α α
α α η α

α α

∂ +� �
+ ≤ + =� 	∂
 �

� � � �∂ + ∂ +
= ≤ =� 	 � 	� 	 � 	∂ ∂
 � 
 �

 

for some � and � in the interval (0,1). The first condition specifies a sufficient decrease in 

the objective function value but allows for arbitrarily small values of tα  so the method may 

not converge. The second condition ensures that tα  is not too small and that it is near a 

local minimizer of ( )t tf x dα+ . I refer the reader to [Moré94] for details of the line search 

algorithm.  
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In chapter 10 I describe the application of this algorithm to various examples. The time 

required to complete the surface reconstruction for these examples varied from 2-3.5 hours 

as described in the captions for Figure 10-8, Figure 10-13, Figure 10-18 and Figure 10-23.  

 





 

 

10 Validation

10.1 Selection and Preprocessing of Test Inputs 

The reconstruction algorithm was validated using both real and synthetic pairs of AFM 

and SEM images. The real images were acquired of a specimen called NIST0523, provided 

by John Dagata at NIST. This specimen was constructed of silicon by an AFM dip-pen 

lithography technique described in [Chien02]. AFM images were acquired using a 

Veeco/Topometrix ExplorerTM AFM with a 100 micron scanner and a NanosensorsTM FM 

(force modulation) tip. SEM images were acquired using a Hitachi S4700 Field Emission 

SEM. SEM images were acquired first because the SEM, with its larger scan region, is 

much better than the AFM at providing an overview of the specimen which helps to 

identify useful landmarks for revisiting a specific region of the surface (Figure 10-1). From 

the SEM images two sites were selected for testing. The first site, referred to as 

NIST0523_thick, has linear structures that are about 100 nm high, 300 nm wide and 3500-

5500 nm long. The second site, referred to as NIST0523_thin, has linear structures that are 

about 100 nm high and 50-60 nm wide. The locations of these sites are shown in Figure 

10-1. 
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Figure 10-1: Overview SEM image of the NIST0523 specimen showing the NIST0523_thin region (a) 
and the NIST0523_thick region (b). 

At a 1kV accelerating voltage there was noticeable distortion of the image coordinates 

in the SEM image due to stray magnetic fields making straight lines appear wavy. This 

distortion was reduced by scanning at lower magnification but this reduced the signal to 

noise ratio. An image was also taken at 3kV that helped to reduce the effects of interference 

but this image was accidentally taken with the lowest intensities saturated so I decided to 

use the low magnification image for testing. These images are shown in Figure 10-2. 
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Figure 10-2: SEM images of the 50nm wide lines in the NIST0523_thin example: (a) 2560x1920 pixel 
high magnification image at 1kV that showed waviness due to electromagnetic interference, (b) image 
at 3kV showing reduced waviness but also saturation at the low end of the intensity range, (c) 
2560x1920 pixel low magnification image at 1kV, (d) 320x240 pixel crop of low magnification image 
showing reduced interference effects 

For each of the two real data tests, two AFM images and one SEM image were used. 

One AFM image was taken with a relatively new tip. The second AFM image was taken 

with the same tip after it was purposely dulled by scanning in contact mode. All AFM 

images were acquired in non-contact mode.  

The region of the two AFM images and SEM image chosen for the NIST0523_thin test 

is indicated by dashed squares in Figure 9-3. The white particles in other portions of the 

image are debris caused by the tip-dulling procedure and are not normally present in AFM 

images. Unfortunately, during the process of dulling the AFM tip, the tip apparently 

became contaminated with various particles that were later deposited on the specimen 

during imaging. This would have introduced errors in using the sharp tip AFM image as a 

ground truth reference so to avoid this I selected a relatively clean region of the dull tip 

AFM image where the particles would not introduce errors in the validation procedure. The 
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particles persisted even when the specimen was cleaned by a plasma cleaner so they are 

likely to be pieces of silicon that were broken off of the surface during contact mode 

scanning. The relation between the AFM and SEM regions input to the algorithm is shown 

in Figure 10-4. 

 

Figure 10-3: Original images and crop rectangles used for the NIST0523_thin example:(a) sharp tip 
AFM image, (b) dull tip AFM image, (c) SEM image, (d) cropped region of SEM image used for 
reconstruction and representing the region of the surface to be reconstructed. The white arrows 
indicate the location of a particle that is present in all the full size images but the dull tip AFM image 
had many more particles that were probably deposited by the AFM tip during imaging. 
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Figure 10-4: (a) Sharp tip AFM image with SEM image resampled and overlaid (b) Dull tip AFM image 
with SEM image resampled and overlaid. These images show the region for the SEM image (same as 
that for the reconstructed part of the surface) in relation to the AFM images. 

The NIST0523_thick AFM images showed some variation in the drift rate so these 

images were cropped to ensure that the image distortions would best match the assumption 

of an affine transformation while keeping enough features in the image to constrain the 

transformation between the SEM and AFM images. The cropped region for each of the 

original images is shown in Figure 10-5. 

 

Figure 10-5: Original images and crop rectangles used for the NIST0523_thick example: (a) SEM 
image, (b) sharp tip AFM image, (c) dull tip AFM image 

The AFM tip was reconstructed for each of the four AFM images using the blind tip 

reconstruction method described in section 4.2. In the tip volume plot used to determine the 

best threshold there was a single large jump indicating the optimal threshold value for the 

sharp tip AFM images. For the dull tip AFM images the best threshold value was not so 

obvious. About 3-4 of the largest jumps in volume were identified each corresponding to a 

threshold value and tip reconstruction. To determine which of these tips were consistent 



 

152 

with the AFM image I opened (eroded and then redilated) the AFM image using each tip 

and calculated the difference between the opened result and the original AFM image. I 

selected the broadest tip that approximately satisfied the idempotency condition of the 

opening operation (Equation C-6) up to the expected noise in the AFM image. 

For the NIST0523_thin example, the cropped AFM image did not contain sufficient 

information to erode all sides of the tip because the pattern was nearly one-dimensional. 

This poses no problem for the tip reconstruction algorithm but limits the reconstructed tip 

image to a profile of the tip onto a plane perpendicular to the lines on the specimen surface. 

Any tip that has the same profile is equally consistent with the AFM image and the 

reconstructed tip will tend to be a surface of extrusion along the direction of the lines, 

extending as far as possible within the image allocated for storing the tip image (Figure 

10-12). The same tip profile was also used for the synthetic data (Figure 10-22). This 

limitation was not present in the NIST0523_thick specimen, so a full tip reconstruction was 

performed. 

Both the sharp tip AFM images and dull tip AFM images were eroded by their 

associated tip estimates and then resampled at the same locations as the SEM image 

samples for comparison to the reconstructed surfaces. The AFM/SEM-based surface 

reconstruction was compared to the sharp tip AFM-based surface reconstruction by 

comparing heights in the space of the reconstructed surface. The difference in height was 

computed as the sum of squared differences over all pixels. The same measure was used to 

compare the reconstructed surface with the true surface for the synthetic data tests. 

10.2 Construction of Synthetic Test Images 

Two sets of synthetic surfaces similar to the real ones were constructed by thresholding 

either AFM or SEM images. The resulting binary image was then scaled to match the 

height range of the real surface. Gaussian blurring or grayscale dilation was then used to 

modify the edge shape. The synthetic surfaces were not based on analytic functions but 

were constructed of triangles by tessellating regularly sampled height values.  

Because the real AFM images had relatively low resolution compared with the scale of 

structures in the surface topography, special care was required to make similar synthetic 

AFM images and avoid discretization errors. The discretized dilation operation used to 
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construct the synthetic AFM image was performed on a grid with 3 times the target 

resolution to reduce errors in approximating a continuous dilation. This involved 

resampling the synthetic surface into an AFM grid that had been upsampled by a factor of 3 

relative to the target AFM image, dilating the upsampled surface by a tip that was also 

upsampled by a factor of 3, and then downsampling to the resolution of the final synthetic 

AFM image minus noise. While the discretized dilation by itself should not introduce 

errors, the combination of resampling into AFM coordinates and discretized dilation would 

introduce errors because the sample points in AFM coordinates do not align with the 

vertices of the triangular facets. This procedure is illustrated in Figure 10-6. Correlated 

noise was added to the AFM image using an autoregressive model. The parameters for the 

noise were chosen to be the same as those extracted from real AFM images. 

 

Figure 10-6: Procedure for modeling synthetic test surfaces and AFM images. 

Synthetic SEM images were computed using Monte Carlo simulation. The noise in the 

synthetic SEM images was solely the noise inherent in the Monte Carlo simulation. The 

SEM to AFM coordinate transformation and AFM tip used for the reconstruction were 

computed in the same way as for the real data, relying on the registration procedure 

described in chapter 7 and the blind tip reconstruction algorithm. 
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10.3 Real Input Tests 

This section describes the input AFM and SEM images for the real data tests and the 

resulting reconstructed surfaces. The reconstructions using combined dull tip AFM and 

SEM images and dull tip AFM images alone are compared to a reconstruction using a sharp 

tip AFM image alone. The true surface is not known but the sharp tip AFM image is 

assumed to provide a significantly closer approximation to the true surface than the dull tip 

AFM image and is used to estimate the difference from the true surface. 

10.3.1 NIST0523 Thick 

10.3.1.1 Inputs 

 
Figure 10-7: Inputs for the NIST0523_thick specimen. 
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10.3.1.2 Outputs 

 
Figure 10-8: Selection of images from the reconstruction for NIST0523_thick. The numbers on 
the left indicate the total number of conjugate gradient iterations. Excluding the bottom row, 
the columns from left to right are the simulated SEM image, the simulated AFM image, a 3D 
visualization of the simulated AFM image, and a 3D visualization of the reconstructed surface. 
The images in the bottom row from left to right are the input SEM image, input AFM image, 
3D visualization of the input AFM image, and a 3D visualization of the reconstruction from an 
AFM image acquired using a sharper tip than the one used for the combination AFM-SEM 
reconstruction. This reconstruction required about 3.5 hours. 

 

 
Figure 10-9: Comparison of the surface reconstructed by optimization of the likelihood 
computed from the dull tip AFM image  and the SEM image (left), the surface found by 
grayscale erosion of an AFM image acquired using a relatively sharp tip (center), and the 
surface found by grayscale erosion of the dull tip AFM image (right). The similarity of the left 
two images and their difference from the third displays the effectiveness of the combined 
technique. 
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Figure 10-10: Comparison of cross-sections of the reconstructed surfaces shown in Figure 10-9. 

 

 
Figure 10-11: Absolute value of the height error judged by the difference from the height 
estimated by eroding the AFM image acquired with a sharp tip. The error for the 
reconstruction using only the dull tip AFM image is shown on the left (sum of squares = 
1.52x107) and the error for the reconstruction using both the dull tip AFM image and SEM 
image is on the right (sum of squares = 3.19x106). The grayscale mapping to intensity values is 
identical for both images. 
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10.3.2 NIST0523 Thin 

10.3.2.1 Inputs 

 
Figure 10-12: Inputs for the NIST0523_thin specimen. 
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10.3.2.2 Outputs 

 
Figure 10-13: Selection of images from the reconstruction for NIST0523_thin. The numbers on 
the left indicate the total number of conjugate gradient iterations. Excluding the bottom row, 
the columns from left to right are the simulated SEM image, the simulated AFM image, a 3D 
visualization of the simulated AFM image, and a 3D visualization of the reconstructed surface. 
The images in the bottom row from left to right are the input SEM image, input AFM image, 
3D visualization of the input AFM image, and a 3D visualization of the reconstruction from an 
AFM image acquired using a sharper tip than the one used for the combination AFM-SEM 
reconstruction. The simulated AFM is missing the ridge on the left side of the dull tip AFM 
surface because this is due to a part of the specimen surface outside the region covered by the 
surface reconstruction. This reconstruction required 2 hours. 
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Figure 10-14: Comparison of the surface reconstructed by optimization of the likelihood 
computed from the AFM image (acquired with a broken tip) and the SEM image (left), the 
surface found by grayscale erosion of the AFM image acquired using a relatively sharp tip 
(center), and the surface found by grayscale erosion of the AFM image acquired using a broken 
tip (right). Although the dull tip is much wider at the apex, the sides of the dull tip have the 
same slope as the sides of the sharp tip and this makes the reconstruction from the dull tip near 
the tops of the ridges very close to the reconstruction from the sharp tip. The sharp tip 
reconstruction does not provide a significantly better reference for the true surface than the 
dull tip reconstruction so the performance of the reconstruction algorithm is inconclusive in 
this case. 
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Figure 10-15: Comparison of cross-sections of the surfaces shown in Figure 10-14. The profile from the 
original dull AFM image is also shown. 
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Figure 10-16: Absolute value of the height error judged by the difference from 
the height estimated by eroding the AFM image acquired with a sharp tip. 
The error for the reconstruction using only the dull tip AFM image is shown 
on the left (sum of squares = 2.27x107)and the error for the reconstruction 
using both the dull tip AFM image and SEM image is on the right (sum of 
squares = 3.95x107). The grayscale mapping to intensity values is identical for 
both images. 

 

10.4 Synthetic Input Tests 

This section describes the input AFM and SEM images for the synthetic data tests and 

the resulting reconstructed surfaces. The reconstructions using combined AFM and SEM 

images and AFM images alone are compared the ground truth. 
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10.4.1 Mimic of the NIST0523 Thick Example 

10.4.1.1 Inputs 

 
Figure 10-17: Inputs for the NIST0523_thick-based synthetic data test. The AFM tip was 
estimated by blind tip reconstruction from the AFM image. 
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10.4.1.2 Outputs 

 
Figure 10-18: Selection of images from the reconstruction for NIST0523_thick-based synthetic 
example. The numbers on the left indicate the total number of conjugate gradient iterations. 
Excluding the bottom row, the columns from left to right are the simulated SEM image, the 
simulated AFM image, a 3D visualization of the simulated AFM image, and a 3D visualization 
of the reconstructed surface. The images in the bottom row from left to right are the input 
SEM image, input AFM image, 3D visualization of the input AFM image, and a 3D 
visualization of the “true” synthetic surface. This reconstruction required about 2.5 hours. 

 

 
Figure 10-19: Comparison of the surface reconstructed by optimization of the likelihood 
computed from the AFM image and the SEM image (left), the true surface (center), and the 
surface found by grayscale erosion of the AFM image(right). 
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Figure 10-20: Comparison of cross-sections for the surfaces shown in Figure 10-19. 

 
Figure 10-21: Absolute value of the difference in height between reconstructed surfaces and the 
ground truth surface. The error for the reconstruction using only the AFM image is shown on 
the left (sum of squares = 1.68x107) and the error for the reconstruction using both the AFM 
image and SEM image is on the right (sum of squares = 1.924x106). Each error image is shown 
as a grayscale image (using a common mapping from error value to grayscale value). 

 

10.4.2 Mimic of the NIST0523 Thin Example 

10.4.2.1 Inputs 

 
Figure 10-22: Inputs for the NIST0523_thin-based synthetic example. The AFM tip shape is the 
same as that found from the AFM image for the NIST052_thin example. 
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10.4.2.2 Outputs 

 
Figure 10-23: Selection of images from the reconstruction for NIST0523_thin-based 
synthetic. The numbers on the left indicate the total number of conjugate gradient 
iterations. Excluding the bottom row, the columns from left to right are the simulated 
SEM image, the simulated AFM image, a 3D visualization of the simulated AFM 
image, and a 3D visualization of the reconstructed surface. The images in the bottom 
row from left to right are the input SEM image, input AFM image, 3D visualization of 
the input AFM image, and a 3D visualization of the true surface. This reconstruction 
required about 3.5 hours. 
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Figure 10-24: Comparison of the surface reconstructed by optimization of the likelihood 
computed from the AFM image and the SEM image (left), the true surface (center), and the 
surface found by grayscale erosion of the AFM image (right). 
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Figure 10-25: Comparison of cross-sections for the surfaces shown in Figure 10-24. 

 

AFM reconstruction 



 

166 

 
Figure 10-26: Absolute value of the difference in height between reconstructed surfaces and the 
ground truth surface. The error for the reconstruction using only the AFM image is shown on 
the left (sum of squares = 9.07x107) and the error for the reconstruction using both the AFM 
image and SEM image is on the right (sum of squares = 3.6x107). Each error image is shown as 
a grayscale image (using a common mapping from error value to grayscale value) and as a 3D 
visualization. 

10.4.3 Synthetic Data Test 3 

 
Figure 10-27: Inputs for synthetic test 3. The AFM tip was estimated by blind tip reconstruction from 
the AFM image. 
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Figure 10-28: Selection of images from the reconstruction for synthetic test 3. The numbers on the left 
indicate the total number of conjugate gradient iterations. Excluding the bottom row, the columns from 
left to right are the simulated SEM image, the simulated AFM image, a 3D visualization of the 
simulated AFM image, and a 3D visualization of the reconstructed surface. The images in the bottom 
row from left to right are the input SEM image, input AFM image, 3D visualization of the input AFM 
image, and a 3D visualization of the “true” synthetic surface. 

 

 
Figure 10-29: Comparison of the surface reconstructed by optimization of the likelihood computed 
from the AFM image and the SEM image (left), the true surface (center), and the surface found by 
grayscale erosion of the AFM image(right). 
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Figure 10-30: Comparison of cross-sections for the surfaces shown in Figure 10-29. 

 

 
Figure 10-31: Absolute value of the difference in height between reconstructed surfaces and the ground 
truth surface. The error for the reconstruction using only the AFM image is shown on the left and the 
error for the reconstruction using both the AFM image and SEM image is on the right. Each error 
image is shown as a grayscale image (using a common mapping from error value to grayscale value) 
and as a 3D visualization. 
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10.4.4 Synthetic Data Test 4 

 
Figure 10-32: Inputs for synthetic test 4. The AFM tip was estimated by blind tip reconstruction from 
the AFM image. 
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Figure 10-33: Selection of images from the reconstruction for synthetic test 4. The numbers on the left 
indicate the total number of conjugate gradient iterations. Excluding the bottom row, the columns from 
left to right are the simulated SEM image, the simulated AFM image, a 3D visualization of the 
simulated AFM image, and a 3D visualization of the reconstructed surface. The images in the bottom 
row from left to right are the input SEM image, input AFM image, 3D visualization of the input AFM 
image, and a 3D visualization of the “true” synthetic surface. 
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Figure 10-34: Comparison of the surface reconstructed by optimization of the likelihood computed 
from the AFM image and the SEM image (left), the true surface (center), and the surface found by 
grayscale erosion of the AFM image(right). 
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Figure 10-35: Comparison of cross-sections for the surfaces shown in Figure 10-34. 
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Figure 10-36: Absolute value of the difference in height between reconstructed surfaces and the ground 
truth surface. The error for the reconstruction using only the AFM image is shown on the left and the 
error for the reconstruction using both the AFM image and SEM image is on the right. Each error 
image is shown as a grayscale image (using a common mapping from error value to grayscale value) 
and as a 3D visualization. 
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10.4.5 Synthetic Data Test 5 

 
Figure 10-37: Inputs for synthetic test 5. The AFM tip was estimated by blind tip reconstruction from 
the AFM image. The surface used to generate these inputs is based on terrain data of the Grand 
Canyon from the U.S. Geological Survey (USGS) processed by Chad McCabe and available from 
http://www.cc.gatech.edu/projects/large_models/gcanyon.html. 
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Figure 10-38: Selection of images from the reconstruction for synthetic test 5. The numbers on the left 
indicate the total number of conjugate gradient iterations. Excluding the bottom row, the columns from 
left to right are the simulated SEM image, the simulated AFM image, a 3D visualization of the 
simulated AFM image, and a 3D visualization of the reconstructed surface. The images in the bottom 
row from left to right are the input SEM image, input AFM image, 3D visualization of the input AFM 
image, and a 3D visualization of the “true” synthetic surface. 

 

 
Figure 10-39: Comparison of the surface reconstructed by optimization of the likelihood computed 
from the AFM image and the SEM image (left), the true surface (center), and the surface found by 
grayscale erosion of the AFM image(right). 
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Figure 10-40: Comparison of cross-sections for the surfaces shown in Figure 10-39. 

 

 
Figure 10-41: Absolute value of the difference in height between reconstructed surfaces and the ground 
truth surface. The error for the reconstruction using only the AFM image is shown on the left and the 
error for the reconstruction using both the AFM image and SEM image is on the right. Each error 
image is shown as a grayscale image (using a common mapping from error value to grayscale value) 
and as a 3D visualization. 
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10.5 Summary of Results 

The estimated and actual errors for the reconstructions along with the time required for 

the AFM/SEM-based reconstruction on an 1.3GHz Intel Pentium M processor are listed in 

Table 10-1.  

test data set AFM 

reconstruction 

error 

AFM/SEM 

reconstruction 

error  

AFM/SEM run 

time  

real data test 1 15.7e6 3.19e6 3.5 hours 

real data test 2 22.7e6 39.5e6 2 hours 

synthetic data test 1 16.8e6 1.92e6 4 hours 

synthetic data test 2 90. 7e6 36.0e6 6 hours 

synthetic data test 3 22.5e6 9.32e6 6 hours 

synthetic data test 4 13.8e6 1.83e6 4 hours 

synthetic data test 5 0.536e6 0.0261e6 3.5 hours 

Table 10-1: Comparison of estimated and actual errors. For the two real data tests the error value is the 
sum of squared differences between the reconstruction and the AFM-based reconstruction using a 
sharper AFM tip. For the synthetic data tests the error is the sum of squared differences between the 
reconstruction and the true surface. 

10.6 Discussion of Results 

All five of the tests with synthetic data (where ground truth is known) indicated that the 

SEM/AFM reconstruction had less than 50% of the error of the AFM-only reconstruction. 

The real-world NIST0523_thick data set using my SEM/AFM method had 20% of the error 

of an AFM-only reconstruction. None of these surfaces were amenable to SEM-only 

reconstruction using existing techniques. 

The second NIST0523_thin data set indicated more error in the SEM/AFM 

reconstruction than the AFM-only reconstruction. I believe that this represents a failure of 

the test procedure rather than an indication of the algorithm's performance. The major 

problem here is that inaccuracy in the sharp tip AFM-based reconstruction makes the 

estimate of the difference between the reconstruction and the true surface innacurate. If the 
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sharp tip and dull tip AFM images are too close, as the reconstruction gets closer to the true 

surface, the estimated error will increase instead of decreasing as it should. 

Another problem with the NIST0523_thin data is that the SEM image shows some 

asymmetry in the shading that is interpreted under the assumption of a circularly 

symmetrical shading model as an asymmetry in the line shapes. This assymmetry might be 

caused by surface charging and I am assuming such charging doesn’t occur. As the SEM 

scans over the lines they will tend to charge positively (Monte Carlo simulations predict 

more electrons are ejected from such topography than are injected by the beam). In this 

scenario, initially a line would look very bright but as charge is removed making the line 

positively charged it would become more difficult for electrons to escape making the 

second edge darker than the first. After passing over a line there will be a strong attraction 

of escaping electrons towards the positively charged line and the surface will appear 

somewhat darker than usual. By the time the beam has reached the next line the previous 

line will have become less charged as secondary electrons from other parts of the surface 

were pulled into it and the next line will initially look bright again. Another possibility is 

that there is assymmetry in the detector, specimen chamber, or electric fields in the chamber 

and this makes it easier for electrons escaping towards the top of the image to be detected 

than electrons escaping towards the bottom. A vertical line of the SEM image is plotted in 

Figure 10-42. Diagrams for the two possible explanations are provided in Figure 10-43. 

Additional experiments would be necessary to determine the source of this anomaly. If the 

effect were due to charging then it might be eliminated by using a lower accelerating 

voltage or faster scan rate. 
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Figure 10-42: Plot of vertical line from Figure 10-3d showing that edges towards the top of the image 
(scanline 0) appear brighter than those towards the bottom (scanline 240). 

 

 

Figure 10-43: Two possible explanations for asymmetry in the shading of the NIST0523_thin SEM 
image. (left) Positive charging of each raised feature causes secondary electrons to be pulled back 
towards the surface reducing the number of electrons that are detected. (right) Offcenter position of the 
detector or greater sensitivity to electrons escaping to the left side of the surface in conjunction with 
blocking of electrons traveling to the left by the raised features causes more electrons to be detected 
escaping near the left side of the raised feature than the number detected escaping near the right side. 
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11 Results and Future Work

11.1 Results 

This document describes several new contributions to multi-modality image analysis 

applied to SEM and AFM including an objective function that defines an optimal surface 

reconstruction given AFM and SEM images of the same area on the surface. This objective 

function is based on models for image formation (chapters 4, 5, and 6) with both correlated 

and independent noise (chapter 8). I have demonstrated that highly detailed physically-

based models for image formation can be used to relate two very different image 

modalities. Though this idea is not entirely new, the physical models used are significantly 

more complex than those previously used.  

Chapter 6 showed that in the case of specimens described by a height field and 

composed of a single material, filter bank synthesis is a much more efficient way to 

simulate SEM images than Monte Carlo simulation. Monte Carlo SEM simulation as 

described in chapter 4 is many orders of magnitude too slow for an iterative optimization 

method. Besides being much faster, filter bank synthesis also has the advantage over Monte 

Carlo simulation of having an analytic derivative and not being noisy. Though the existing 

models may be based on simulations that take too long to be practical (e.g. Monte Carlo 

simulation), this thesis shows that in the case of SEM images the forward model can be 

approximated by a simpler model that is fast and accurate enough to be part of an iterative 

optimization that computes a reconstruction in a few hours.  

Chapter 9 described an objective function for fusing AFM and SEM data based on a 

filter bank model for SEM and the existing morphological dilation model for AFM. Using a 

surface model introduced in [Jones94] the gradient of this objective function can be 
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computed with respect to the surface parameters. Examples in chapter 10 show how the 

objective function can be optimized using the conjugate gradient method to reconstruct a 

specimen surface. This method could be applied to either AFM or SEM images in isolation 

as well as to combination AFM-SEM images. 

Chapter 7 showed that knowledge of the distortions present in each image modality can 

also be used to improve the registration of two different image types. Using erosion to 

reduce the AFM artifact produces a model of the underlying specimen. Applying the 

forward SEM simulation to this model produces an image that is of a form that can be 

directly aligned with the real SEM image using correlation-based methods. The inverse 

AFM transform and forward SEM transform quantitatively apply the relevant distortions. 

The results described in chapter 10 support the thesis that my method for surface 

reconstruction using combination AFM/SEM images is more accurate than existing 

methods for reconstruction using only AFM images. The increase in accuracy gained by 

using the SEM data depends on the sharpness of the AFM tip and the specimen topography. 

The more sharp jumps in height or steep sidewalls on the surface and the more dull the 

AFM tip, the more room there will be for improvement so it is not possible to provide a 

single estimate of the increase in accuracy. For the tests I performed using data believed to 

be representative of real AFM and SEM images, my error metric (sum of squared 

differences in height) was typically reduced by at least a factor of 2. The time required for a 

reconstruction (about 2-5 hours for the test examples) is many orders of magnitude less than 

what would be required if the Monte Carlo SEM model were used in place of the filter bank 

model. 

 

11.2 Limitations and Future Work 

The filter bank model used to model SEM image formation is limited to images that 

can be expressed as a linear combination of filters measuring slope and curvature. Some 

modalities that can probably be handled in the same way as SEM are scanning ion 

microscope (SIM) images and laser scanner backscatter intensity images for material with 

subsurface scattering (such as marble). Filter bank synthesis is a more general approach to 

modeling image formation and could be useful for other modalities assuming one selects an 
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appropriate set of basis filters and function for combining the outputs of those filters. The 

idea of using detailed physical models for specimen reconstruction from images could also 

be generalized to other modalities such as images formed by visible light, magnetic 

resonance imaging (MRI), x-rays and computed tomography (CT), ultrasound, radar, 

positron emission tomography (PET), and laser scanners. 

The true surface must be representable as a height field and this means that in general, 

surfaces with undercuts cannot be reconstructed. The SEM can sample below the surface of 

a specimen because electrons penetrate some distance before escaping and being detected. 

Also, electrons escaping from one surface may interact with other surfaces that are hidden 

from the incident electron beam. Thus there may be some information in an SEM image 

that is representative of such hidden surfaces. Allowing hidden surfaces is likely to make 

the reconstruction problem severely under-constrained. However, if it is known that hidden 

parts of the surface are constrained such that they are predictable from the visible surface, 

then the actual surface might be deduced from the reconstructed visible surface. For 

example, the profile of undercut edges might be the same everywhere, a reasonable 

assumption for surfaces generated by some etching processes. 

A related limitation is that the SEM image is an overhead view so the AFM and SEM 

image planes are approximately parallel. This is not a serious limitation because if there 

were a more general 3D rotation between the AFM and SEM coordinate systems, given the 

previous limitation, the only change that would be required in the algorithm would be a 

change in the way the surface is resampled into the AFM coordinate system before 

computing the simulated AFM image. A fully three-dimensional representation would be 

useful, particularly if images with different viewing directions were available.  

The algorithm as implemented for this project is limited to specimens composed of a 

single material. This limitation simplifies the problem of modeling the SEM images 

because different materials will in general appear differently in the SEM and one would 

need to either be given or determine as part of the reconstruction the distribution of the 

different materials in the specimen. This algorithm could be extended to handle specimens 

composed of multiple materials by extending the filter bank model to include filters that 

respond differently to different material types. A material map could be provided by an x-

ray detector or considered as a free parameter of the specimen model. For manufactured 
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samples consisting of multiple materials it is common for the different materials to be 

arranged in layers where each layer is contained in a unique range of heights. In 

reconstructing such a sample, one could use the height as a stand-in for knowing the 

material. The height of the surface model would automatically translate into a different 

material and this would essentially switch the behavior of the SEM model. Accurate 

simulation of the SEM image at material boundaries could still be a challenge but this may 

not be critical or there may be a simple interpolation scheme that would work. 

For applications involving manufactured surfaces, there is usually some prior 

knowledge (such as CAD data) that could be incorporated into the algorithm to improve 

accuracy. CAD data could also be used in place of AFM images. A simulation of the 

manufacturing process, including etching and deposition processes, might be used to 

simulate a set of surfaces that sample the space of process parameters. From the set of 

simulated surfaces, one could generate a library of simulated images similar to that used in 

[Davidson99]. Then a real image could be matched to images in the library to determine the 

parameters and estimate the shape of a real surface. 

I assume no charging effects in the SEM images but specimen charging typically 

occurs for specimens composed of an insulating material. Some SEMs reduce charging 

effects by introducing a gas into the specimen chamber or by placing a conducting grid just 

above the specimen but these are not commonly available. The charging results in electric 

fields that modify the trajectories of electrons and can create complicated variations in 

intensity. In order to overcome this limitation, it would be necessary to model the charging 

in an efficient way. Some subtle variations in intensity due to charging can be compensated 

for by the calibration procedure (determining the best fit combination of simulated SE and 

BSE images to match the real SEM image) and [Davidson99] describes a more flexible 

calibration method that might be used to reduce sensitivity to charging effects but this 

method is also restricted to subtle charging effects. Existing methods for simulating 

charging effects require an impractical amount of time so, unless a fast approximation can 

be developed, it is difficult to see how my reconstruction approach could work in the case 

of severe charging. 

The AFM image is assumed to not have significant feedback artifacts and the rate of 

drift between the scanner and surface coordinates is assumed to be constant. Feedback 
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artifacts might be handled by taking into account the feedback signal indicating the amount 

of deflection of the AFM cantilever. The feedback signal would be converted into a 

displacement correction and added to the topography image. This scheme would also 

enable faster scanning which would reduce the effect of drift. The shearing transformation 

caused by a constant rate of drift is accurately modeled by an affine transformation but if 

the rate of drift varies significantly, a more general transformation will be needed. It is 

reasonable to assume some temporal coherence in the drift velocity vector. I would 

represent the drift velocity vector as a smoothly varying function of time that would 

transform each pixel using the integrated velocity vector according to the time at which it 

was acquired. 

The specimen is assumed to not change in between acquiring the AFM and SEM 

images. In some cases, imaging with the AFM or SEM may modify a specimen, causing 

parts to break or depositing a contamination layer. Also, a specimen may be damaged or 

contaminated in storage between images taken with different tools. My algorithm assumes 

such things do not happen. It may be possible to detect and flag inconsistencies between the 

two images due to such modification but my algorithm does not try to do this. Such a 

feature might also be useful for defect analysis in manufacturing applications, comparing a 

design specification or control image with an SEM or AFM image of the surface being 

analyzed. 

The SEM shading is assumed to be rotation invariant. This is not a strict requirement of 

the method but in the described implementation, the SEM intensity is assumed to be a 

function of rotation invariant shape characteristics: gradient magnitude and the two 

principal curvatures estimated over a number of local neighborhood sizes. The assumption 

of rotation invariance is reasonable given the lack of any information about the specific 

detector geometry in the SEM. A secondary electron detector approximately measures SE 

escaping directly from the surface in all directions and BSE escaping in all directions that 

have generated additional SE through interactions with the walls of the specimen chamber. 

The detector may be more sensitive to electrons escaping in a particular direction due to 

asymmetry in the detector geometry, specimen chamber or electric field geometry but this 

information was not readily available. If a specimen with a known shape were available, it 

could be used to characterize the asymmetry in the SEM shading. Instead of training the 
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filter bank model from a Monte Carlo simulation, the model could be trained from an actual 

SEM image of the known shape. 

Determining the height of the surface from an SEM image alone is expected to be an 

under-constrained problem. Even in the simpler case of shape-from-shading it has been 

proven that the height of certain critical points (local minima and maxima) on the surface 

must be known in order to sufficiently constrain the problem. In my case, the AFM must 

provide the sufficient height constraints, touching the surface at certain critical points that 

properly constrain the reconstruction. I have not determined what would be a sufficient set 

of constraints but it is reasonable to expect similar requirements to those for shape-from-

shading. The AFM tip will usually touch most local maxima of the surface but can often be 

prevented from touching local minima if there is a hole that is too narrow for the tip to 

touch the bottom before it hits the sides. While the resulting reconstruction will be better 

than either the SEM or AFM-based reconstruction alone, if the AFM tip doesn’t touch the 

surface near the bottom of a pit or groove, there is likely to be significant error in the height 

in the corresponding part of the reconstruction. 

Errors in registering the AFM and SEM images, in estimating the tip shape or in 

estimating SEM brightness/contrast settings will introduce errors in the surface 

reconstruction. Sarang Joshi has suggested that the transformation between AFM and SEM 

images and the surface reconstruction be optimized in a more integrated fashion to increase 

the accuracy. Because the AFM tip shape model has an effect on the optimal 

transformation, the accuracy might be increased by reconstructing the AFM tip shape in 

parallel with determining the transformation. 

In my opinion, the most important obstacle to making this approach practical is that 

SEMs are not designed to make quantitative measurements. This is reflected in the fact that 

while the SEM detector amplifier settings may be manually set to adjust brightness and 

contrast, the actual values are not output by the control software making it very difficult to 

convert images from an SEM into meaningful physical units for later analysis. Images taken 

at different times typically will usually have different amplifier settings but without 

knowing these parameters it is difficult to compare them. Also, characterization of the 

detector sensitivity to electrons escaping in different directions with different energies is not 

typically available making it difficult to relate the output of a Monte Carlo simulation to a 



 

185 

real image. This is only a technical problem and one could probably solve it by modifying 

an SEM to read out the amplifier settings and by doing many careful measurements of 

calibration specimens to characterize the detector. It would be nice to develop a calibration 

procedure that would work on multiple SEMs enabling quantitative analysis of image 

contrast and comparison of images across different tools. 
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Appendix A AFM tip-specimen interactions 

The interaction potential for a pair of atoms is approximated by the Lennard-Jones 

potential ([Sarid94], p 189): 
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where r is the distance between the atoms and w0 and σ are chosen to fit the physical 

properties of the material. The 12

1
r

 term represents a repulsive force which dominates at 

short distances due to overlapping electron orbits and the Pauli exclusion principle. The 6

1
r

 

term comes from attractive Van der Waals forces in which the charge distribution of one 

atom creates a dipole moment in another atom. The minimum energy is 0w−  which occurs 

at a distance of approximately 1.12σ. A graph of the potential is shown in Figure A-1. 
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Figure A-1: Lennard-Jones potential 
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The actual potential describing the tip-specimen interaction can be estimated by 

summing the Lennard-Jones potential over all atom-atom pairs. For a spherical tip, a flat 

plane as shown in Figure A-2, and an intermolecular potential modeled as nrC  the 

integration results in a total potential of the form (Sarid, p 192): 
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Equation A-1 

 

where ρ1 and ρ2 are the densities of the tip and plane, R is the radius of the tip, and z is the 

tip-plane separation distance.  
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Figure A-2: Interaction between sphere and 
plane can be computed by integrating the 
Lennard-Jones potential over all atom-atom 
pairs 

We can separate the Lennard-Jones potential into two terms with the form nrC : 
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Integrating these two terms using Equation A-1 we get a total potential of the form 
([Sarid94], p 211): 
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When imaging with the AFM in contact mode, the interaction between the tip and 

surface is in the repulsive regime ( 0w z∂ ∂ <  or 6 30z σ< ) where the potential increases 

very rapidly with decreasing distance. In true non-contact mode, the interaction would 
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ideally stay in the attractive regime ( 0w z∂ ∂ > ). However, in tapping mode or when using 

non-contact mode in air, the tip will typically jump between the attractive and repulsive 

regimes as it oscillates and most of the reduction in oscillation amplitude as the tip is 

lowered towards the surface is due to repulsive forces. A water layer wets the surface when 

it is exposed to air and the surface tension of the water helps to pull the tip into contact with 

the surface. Even when the AFM is operated in non-contact mode in ultra high vacuum to 

avoid the interference of a water layer on the surface, it is considered likely that when the 

tip is nearest to the surface there is some interaction in the repulsive regime ([Magonov96] 

p. 39). Numerical simulations done by Sokolov et al support the hypothesis that repulsive 

force interaction is necessary to achieve the atomic resolution observed with non-contact 

mode [Sokolov97].  
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Appendix B Defining a Surface at the Atomic Scale 

In this section I describe how the surfaces implied by my models of AFM and SEM 

image formation are related to actual surface structure at the atomic scale. In modeling 

AFM and SEM image formation, I assume that the specimen is described by a single 

surface with a homogenous material on one side and vacuum on the other side. This 

approximation should not be confused with the jellium approximation used in physics to 

model surfaces [Brack93] [Zangwill88]. In the jellium model, positive (nuclear) charge is 

uniformly distributed within a volume but electron density is allowed to vary continuously. 

In the MONSEL model (the one I use) and all other SEM simulation codes that I am aware 

of, both the atomic nuclei and electrons in the specimen are assumed to be uniformly 

distributed within the same bounding surface. 

The parameters of this model are adjusted to maximize the likelihood that scans of this 

surface would produce the observed AFM and SEM data. However, when an actual 

material is scanned, there is an underlying true surface that is more accurately described by 

a variable electron density and a set of positions for discrete atomic nuclei. Furthermore, the 

computed surface corresponding to the AFM data may be different from that corresponding 

to the SEM data. I show that this difference is much smaller than the expected error in the 

reconstruction due to measurement errors. To do this, I will consider a very simple example 

of an atomically flat specimen surface and use the height, measured in the z dimension, of 

the centers of the uppermost layer of atomic nuclei as a reference point with z=0. It doesn’t 

really matter which part of the atomic nuclei we use as a reference because a nucleus is for 

practical purposes a point with a diameter about 4e-6 nm (about 10-5 times the interatomic 

distance). The computed surface is assumed to be of the form z=z0 (z0 is a constant). 

The forward model for SEM is solved using a Monte Carlo model of electron 

scattering. In general, the sensitivity of an incident or escaping electron to the position of 

the surface is a function of the mean free path of the electron in the material and the angle 

of incidence or escape relative to the surface normal. Here I consider only the case of 
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incident electrons entering the specimen parallel to the surface normal and focus on the 

effect of assuming a constant mean free path for the material. The mean free path is 

inversely proportional to the material density, if all other material parameters and incident 

electron energy are constant. The distribution for the distance traversed by the electron 

between consecutive scattering events is given by an exponential distribution, 

1
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p x
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where µ is the mean free path. For example, in silicon the mean free path of an electron 

with energy 1keV is approximately 0.6 nm and decreases gradually to a minimum of about 

0.1 nm as energy is lost. Calculations assuming the jellium model predict a thin layer near 

the material surface with thickness approximately equal to the bond length in the material 

over which the electron density transitions from its maximum in the material to a small 

fraction of the maximum (on the vacuum side) [Brack93][Zangwill88]. This layer is about 

0.235 nm thick for silicon. Calculations for graphite show that the lower boundary of the 

transition layer is well within the bond length of the top layer of atomic nuclei [Ciraci90]. 

Thus, the position of the optimal computed surface given a hypothetical noiseless SEM 

image of an actual surface is somewhere between z=0 and z=δ where δ is the interatomic 

distance. The offset is in the z direction in this case because the surface is flat and 

perpendicular to the electron beam that is parallel to the z-axis. In general the offset is in a 

direction normal to the surface. For a surface that is not flat, an offset normal to the surface 

would effectively dilate or contract topographic features in the SEM image. Actually, the 

situation is a bit more complicated. Consider an electron traveling very close and parallel to 

the surface. The farther it travels, the more likely it is to interact with the surface. The effect 

would be to make the surface appear to dilate more the farther it is from the source of 

electrons. In any case, the apparent position of the surface for the SEM assuming the 

homogenous material model should not deviate much more than the bond length from the 

surface passing through the nuclei of the outermost atoms. It is difficult to be more precise 

without having a more detailed model of electron scattering that takes into account discrete 

atoms and varying electron density. Some work has been done in this area [Garcia-

Lekue03] but I have not found any research on computing the final signal measured by the 
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SEM using such a detailed model of the surface. For surfaces that are not flat, I conclude 

that a surface reconstructed from SEM data would be a slightly dilated version of a surface 

passing through the outermost layer of atomic nuclei in the specimen but that the difference 

would be of the same order of magnitude as the bond length for the specimen material, 

which is 0.235nm for the silicon surfaces being studied. 

When using the AFM to acquire images with atomic resolution, it is safe to assume that 

the AFM is being operated in a vacuum to avoid any surface water layer that would distort 

the surface and obscure the atomic structure. For the AFM, I assume that the computed 

surface is traced by the point on the tip that is closest to the specimen surface when the 

probe is in contact with the specimen and the force between the probe and specimen is 

constant with a value of 0. In fact, the AFM images I use are taken in a mode in which the 

AFM tip is oscillating at the resonance frequency of the cantilever and using feedback to 

control the fraction of free-space oscillation that the cantilever travels when it is “at the 

surface” but I assume this will mainly introduce an offset in z and not any significant 

geometric distortion (beyond that caused by the tip shape itself). Ciraci et al. have estimated 

the force on an AFM probe as a function of distance from a graphite surface taking into 

account the forces from discrete atoms [Ciraci90]. In their calculations, a single aluminum 

atom was used in place of the AFM probe and just the top layer of carbon atoms in the 

specimen surface was considered. The calculations showed that the force between the 

aluminum atom and the surface was 0 at about 0.2-0.25 nm above the nuclei of the carbon 

atoms depending on the lateral position of the aluminum atom relative to the graphite lattice 

(see Figure B-1). The distance between atoms in the graphite lattice is about 0.14 nm so as 

was the case for the SEM, the height of the computed surface (relative to the top layer of 

atomic nuclei) for AFM is about the same order of magnitude as the interatomic distance 

(see Figure B-2). 

In this dissertation the goal is use SEM data to correct errors in the AFM-based surface 

reconstruction that are on the order of tens to hundreds of nanometers. I ignore the fact that 

there may be a difference of ~0.3 nm between the surfaces implied by the AFM and SEM 

data because this difference is much smaller than the maximum difference I would expect 

between the true surface and any surface reconstructed using the data and algorithm I use or 

any other previously developed algorithm. Other limiting factors such as noise, feedback 
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artifacts, image resolution, and unknown distortions in the scanner due to drift or 

electromagnetic interference are expected to introduce errors much greater than 0.3 nm, at 

least with the instruments I am using. 

 
Figure B-1: Potential energy for the interaction between an 
aluminum tip and a graphite monolayer as a function of distance 
between the tip and graphite atomic nuclei. (Reprinted figure 
with permission from Ciraci, Baratoff and Batra, Physical 
Review B, vol 41, pg 2766, 1990. Copyright 1990 by the American 
Physical Society) [Ciraci90] 
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Figure B-2: Contours of constant charge 
density for an aluminum atom 
positioned about 0.3 nanometers above 
a graphite monolayer. The dashed line 
indicates the approximate effective 
position of the surface for the 
homogenous charge model assumed for 
the SEM. (Reprinted figure with 
permission from Ciraci, Baratoff and 
Batra, Physical Review B, vol 41, pg 
2770, 1990. Copyright 1990 by the 
American Physical Society) [Ciraci90] 
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Appendix C Mathematical Morphology and Analysis of 
AFM Images 

One of the most important tools for understanding the relationship between the shape 

of a surface and its AFM image is a branch of mathematics known as mathematical 

morphology. In this section I describe the basic theory of mathematical morphology using 

notation and definitions from [Haralick87] and then its application to interpreting AFM 

images.  

C.1 Mathematical Morphology 

The basic operations for mathematical morphology were first defined by Hermann 

Minkowski in 1903. He defined set-addition and set-subtraction operations for sets of 

points. These operations illustrated in Figure C-1, are known as the Minkowski sum (or 

dilation) and the Minkowski difference (or erosion). Given two sets of points A ⊆ �3 and B 

⊆ �3, the dilation (symbolized by� ) is defined by 

{ }
b B b B

A B A b a b a A
∈ ∈

= + = + ∈� ��  

and Minkowski subtraction or erosion (symbolized by the operator � ) is defined by 

{ }
b B b B

A B A b a b a A
∈ ∈

= − = − ∈	 	�  
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Figure C-1: Example of erosion and dilation between two sets A and B. 

 

“Grayscale mathematical morphology” involves the Minkowski addition and 

subtraction operations applied to point sets defined in terms of the umbra (“shadow”) of a 

surface. The umbra of a function f(x,y) is defined by 

[ ] { }),(),,( yxfzzyxfU ≤=  (see also Figure C-2) 
The reverse of the operation for taking the umbra is the surface or top of a set A defined by 

[ ]( ) { }AzyxzyxAT ∈= ),,(max,  

Equation C-1 

We can represent the surfaces of the sample and probe by the functions s(x,y) and 

p(x,y). The AFM image of the sample taken with the probe is approximated by the gray-

scale dilation of s(x,y) by p(x,y). The gray-scale dilation of s(x,y) by p(x,y) is the Minkowski 

addition of the umbra of s(x,y) to the umbra of p(x,y) and is defined by 

( ) [ ]( , ) [ ] ( , )s p x y T U s U p x y� �= � �� �  
The gray-scale erosion of a surface f(x,y) by p(x,y) involves the Minkowski subtraction of 

the umbra of p(x,y) from the umbra of f(x,y) and is defined by 

( ) [ ]( , ) [ ] ( , )f p x y T U f U p x y= � �� �� �  
When we take the top of a translation of A the relation to the top of the original A is 
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Equation C-2 

When we take the top of the union of two sets A and B the relation to the tops of A and 
B is 

[ ] { }
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{ }),]([),,]([max
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Equation C-3 

When we take the top of the intersection of two sets A and B the relation to the tops of A 
and B is 
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Equation C-4 

Given two surfaces f(x,y) and p(x,y), the gray-scale dilation of f by p is essentially a 

union of translated versions of U[f] where the translations are the points in U[p]. Using 

Equation C-1, Equation C-2, and Equation C-3 we can derive an expression for the 

resulting surface h(x,y) in terms of the surfaces f(x,y) and p(x,y). 
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Similarly, the erosion of f by p is an intersection of translated versions of U[f] where the 

translations are reflected position vectors from U[p]. Using Equation C-1, Equation C-2, 

and Equation C-4 we can derive the following expression for the eroded surface h(x,y) in 

terms of f(x,y) and p(x,y). 
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Examples of the grayscale erosion and dilation operations are illustrated in Figure C-2. 

 
Figure C-2: Example of grayscale erosion and dilation operations applied to the surfaces defined by 
f(x) and p(x). The erosion is the top of the set which is the intersection of translations of the set of 
points in the umbra of f(x) by reflected position vectors from the umbra of p(x). The dilation is the 
top of the set which is the union of translations of the set of points in the umbra of f(x) by position 
vectors from the umbra of p(x). 

C.2 Application of Mathematical Morphology to AFM Image 
Analysis 

 
The application of mathematical morphology to image analysis has a long history 

[Haralick87] but the special relevance to analysis of AFM images has become widely 

recognized relatively recently. Ignoring noise and imperfections in the feedback system, 
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[Pingali92] showed that an AFM image, h(x,y), acquired in contact mode is a dilation of the 

specimen surface (s) by the reflected probe surface (p^). 

( ) [ ]( ), ^ ,h x y s p x y= �  
Also, in their model for non-contact mode AFM where there is assumed to be a fixed 

distance, d, between the tip and surface, the acquired image (hn(x,y)) is equal to a two stage 

dilation of the specimen surface (s) first by a hemisphere (g) of radius d, and second by the 

reflected probe surface (p^) [Pingali92].  

( ) [ ]( ), ^ ,nh x y s g p x y= � �  
A reconstruction, r(x,y), of the specimen surface can be computed from a contact mode 

AFM image, h(x,y), by eroding it with the probe p(x,y) [Pingali92]. 

( ) [ ]( ), ,r x y h p x y= �  

C.2.1 Finding Points on the Surface 

Not all points in r will match the true specimen surface s if the probe does not contact 

all parts of the surface. Even if the probe does touch all parts of the surface, in general there 

is only a subset of the reconstructed surface that one can know for certain matched the true 

surface. Pingali and Jain developed a certainty map algorithm that computes a set of points 

where r is certain to match s. The points in r that are not flagged as certain by this algorithm 

could match s but this is something the AFM image cannot tell us. For r(x,y) to be certain, 

there must be some point (x1,y1) in the image h such that the point (x,y) on the surface 

reconstruction is alone in contacting the probe surface p translated to (x1,y1). Formally, the 

condition for a point (x,y) to be certain (i.e. r(x,y) = s(x,y)) is  

( ) ( )
( )

1 1 1 1 1 1

2 2 1 1 2 2 1 2 1 2

( , ) ( , ) if

 (x ,y ) such that ( , ) , ,

and  (x ,y ) (x,y) we have ( , ) r(x ,y ) ,

r x y s x y

h x y r x y p x x y y

h x y p x x y y

=
∃ = + − −

∀ ≠ ≠ + − −

 

A similar condition was described for the certainty of a point in a non-contact AFM image 

[Pingali92]. 

 

C.2.2 Estimating Probe Shape 

The algorithms described by Pingali and Jain require the shape of the probe p(x,y). 

Probe shape can either be measured using a special tip characterizer sample with a known 
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shape or estimated using a blind tip reconstruction procedure. A characterizer usually has 

sharp spikes or mushroom-shaped projections on its surface. By scanning the tip 

characterizer and eroding the resulting image with the known shape of the characterizer, the 

tip is reconstructed.  

One of the difficulties in using a special tip characterizer surface for tip measurement is 

that the shape of the tip will change from one image to the next or even while acquiring an 

image (particularly when imaging in contact mode) [Schneir96]. Using an arbitrary image 

to estimate the tip has the potential to find a more accurate model of the tip shape for the 

time that the image was acquired. The blind tip reconstruction method was discovered 

independently by Villarrubia [Villarrubia94] and Williams [Williams96]. The basic idea in 

blind tip reconstruction is that sharp spikes or corners on the specimen surface produce 

features in the AFM image that allow one to bound the shape of the AFM tip. 

Blind tip reconstruction starts with an initial estimate for the tip shape, which is an 

upper bound, or blunt approximation of the actual shape of the tip. The estimate is 

iteratively refined based on features in the AFM image. The goal is to determine an upper 

bound on the tip surface that is consistent with the AFM image. One way to measure 

consistency is by eroding and then dilating the image with an estimate of the tip shape. This 

operation, called opening, is denoted by the operator � and is defined as 

( )A B A B B= � ��  
A related operation called closing, is denoted by the operator • and is defined as 

( )A B A B B= �� �  

Equation C-5: closing operation 

An important property for the analysis of AFM images is 

( )  A B B A B=� ��  

Equation C-6: idempotency of opening operation when applied to a dilation 

This property tells us that if an image was formed by a dilation of some surface by a probe 

surface, then when we open the image with the same probe surface we should get the same 

image. 

Another way to look at the opening operation is that it computes the space swept out by 

the probe as it is scanned over the underside of the AFM image. The condition in Equation 



 

203 

C-6 is equivalent to saying that the probe surface must touch every point in the surface 

without sticking above the surface (as illustrated in Figure C-3).  

!
(a)

(b)

(c)

!!
(a)

(b)

(c)

 
Figure C-3: A probe that is consistent with a given dilation must be able to touch every part of the 
surface when scanned from below. (a) shows a probe that is consistent but is not the upper bound 
on consistent probes. (b) shows the optimal probe that would be found by the blind tip 
reconstruction method. Its surface bounds that of all consistent probes. (c) shows how an 
inconsistent probe cannot touch all parts of the dilated surface. 

For blind tip estimation, in principle one can consider every point in the AFM image 

(although some points may tell us much more about the tip shape than others). After 

choosing an initial estimate for the tip shape, P0, one must pick a point, x, in the AFM 

image to use for refining the tip estimate. The next step, illustrated in Figure C-4, is to take 

the union of the umbrae of all translated versions of the image surface such that x lies on the 

tip surface and the origin of the tip lies under the image surface. The subset of points in P0 

that satisfy this criterion when used as translation vectors for the surface is referred to as 

P0’. Local maxima in the image are special because in that case only the origin of the tip is 

in P0’. As a result, local maxima usually provide the most information about tip shape. 

Because of the special property of local maxima, they can actually be used to easily pick an 

initial tip estimate as 

	
Mx

xIP
∈

−= )(0  

where M is the set of local maxima in the image and I is the umbra of the AFM image. 

Villarrubia claims that the initial estimate calculated in this way is often a good estimate of 
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the actual tip shape and is less sensitive to noise than the estimate after multiple iterations 

[Villarrubia97]. 

 

 

 
Figure C-4: Intermediate results for blind reconstruction from three points in an AFM image. 
p0 is our initial upper bound on the (reflected) tip shape with apex assumed to be at the origin. 
The bound is refined by taking the intersection with bounding surfaces generated for each 
point in the image. Here the construction of the bounding surfaces is shown for three example 
points (x0, x1, x2). For each point xi, we take the union of all translations (-xi+d) of the surface 
such that the point that was at xi lies on the tip surface and the origin (tip apex) lies below the 
translated surface. In the case of x0 there are multiple translations allowed but for x1 and x2 the 
only translation allowed is the one where either x1 or x2 is at the origin. For each point, the 
resulting bounding surface shown would be intersected with the current tip estimate to 
compute a new tip estimate. 

 

C.2.3 Finding Points on the Surface from Real AFM Images 

Using tips estimated using a tip characterizer or by blind tip reconstruction, several 

authors have attempted to apply Pingali and Jain’s certainty map algorithm to determine 

what parts of an eroded AFM image match a real surface. Because a real AFM image does 

not represent a pure dilation but contains artifacts due to noise, surface/tip deformation, and 

imperfect feedback, their certainty map algorithm tends to underestimate the number of 

certain points and misclassify some points that are not on the surface as certain. The 

p0 

tip origin 

x0 

x1 x2 x1 

x0 
x2 
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problem is that downward spikes in the AFM image due to these artifacts incorrectly erode 

tip-shaped depressions in the reconstructed surface. When the tip is scanned over the 

reconstructed surface, it cannot contact any points inside these depressions except when it is 

contacting all of the points so there is no point that is certain inside the depression. This 

problem is illustrated in Figure C-5. 

uncertain reconstruction certain reconstruction

(a)

(b)
uncertain reconstruction certain reconstruction

(a)

(b)

 
Figure C-5: Points in the certainty map are 
mislabeled when Pingali and Jain’s algorithm is 
applied to a noisy dilation 

C.2.4 Dealing with Noise 

One approach to dealing with the noise is to try to filter it out before applying the 

erosion operation [Castle98]. This method attempts to first reconstruct the ideal dilated 

surface from a noisy dilated surface by using a closing operation (see Equation C-5) to 

prefilter the dilated image before eroding using the tip shape. The kernel for the closing 

operation is essentially a small flat-tipped probe with width slightly less than or equal to the 

estimated radius of the real probe. The closing filter was shown to be better at eliminating 

downward noise spikes than a median filter of the same size. Also, a flat function was 

found to be the optimum choice for a closing filter because it reduces downward spikes 

while minimizing distortion to other parts of the surface. However, the closing filter can 

remove significant detail that is not due to noise [Castle98]. In fact, very sharp indentations 

in a surface dilated with a spherical tip may be due solely to surface features as shown in 

Figure C-6. 
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Figure C-6: Example of sharp features in a 
dilated surface that would be removed by a 
flat closing filter as proposed by Castle et al. 

Noise, feedback artifacts or deformation of the tip or specimen during scanning 

typically cause problems for the basic blind tip reconstruction algorithm that assumes the 

AFM image is a pure dilation. Villarrubia estimates that the error due to deformation is 

typically on the order of 0.1 nm for materials used in integrated circuits. In practice there is 

no tip shape that will be completely consistent with Equation C-6. In [Villarrubia94] this 

problem is solved by ignoring differences between the opened and original images that 

were smaller than a threshold. In tests on synthetic AFM data with independently 

distributed Gaussian noise for each pixel, it was shown that to get a reasonable result, a 

threshold of at least 3σ was needed where σ is the standard deviation for measurements of a 

pixel in the image. In practice, the noise is usually correlated between nearby pixels. An ad 

hoc approach consisting of line-wise flattening followed by median filtering (replacing each 

pixel value with the median value from a small neighborhood surrounding that pixel) was 

recommended in order to filter out such errors inconsistent with the independent Gaussian 

error model. An alternative approach described in [Todd01] is to use two different threshold 

values to allow for greater variation between neighboring pixels in the x and y directions. 

For real data, the ideal choice for σ, may be estimated by trying different values and 

comparing the resulting tip reconstructions. Experiments with synthetic data suggested that 

a sharp change in the tip reconstruction will occur (tip becomes drastically sharper) when 

the estimate of σ becomes too small [Villarrubia97]. Experiments by Dongmo et al showed 

that this transition also occurs with real AFM images and that the resulting reconstruction 

compares reasonably well with tip profiles observed in an SEM [Dongmo00]. 
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[Williams98] describes an alternative method to that in [Villarrubia97] for deriving a 

tip shape from a noisy AFM image. In [Williams98], an ellipsoid representing noise and 

instrumental errors is placed at each point on the noisy dilated surface. The union of the 

ellipsoids is considered as the volume in which the true image lies. The top and bottom 

surfaces for this volume are computed and during the tip reconstruction procedure, the tip is 

scanned over the lower surface while the upper surface is used to refine the tip model. This 

approach produced noticeable improvement in the tip reconstruction but only when used in 

conjunction with a threshold median filter. This filter works by comparing each value with 

the median value of its neighbors and if it exceeds that median value by a defined limit then 

its value is replaced by the median value. The authors suggest a reasonable threshold for the 

median filter is the rms value for the noise distribution. 

I have not been able to locate any previous research that takes a more principled 

approach to the noise problem. However, some previous analysis of the statistical properties 

of morphological operations may be relevant. Several authors have analyzed the effect of 

morphological operations such as erosion, opening and closing on the expectation and 

variance of 1-D and 2-D signals with independently distributed noise [Morales93], 

[Wang95], [Mohamed95]. While this work might give some insight into what happens 

when we apply an erosion operation to a noisy image it doesn’t address the loss of 

information when a morphological filter is applied to an image. Ideally, the reconstruction 

of a surface from a noisy image should take into account all measurements and not just 

those that are propagated by the erosion operator. Also, it would be preferable to 

incorporate a more complete noise model into a reconstruction procedure. Such a noise 

model would properly account for correlation between measurements that is currently 

handled by the ad hoc line-wise flattening method. 

C.3 Continuous vs. Discrete Grayscale Morphological Operations 

Existing methods for reconstructing surfaces from AFM images and simulating AFM 

images typically assume that discrete forms of morphological operations provide a 

reasonable approximation of the more realistic continuous forms of morphological 

operations [Villarrubia97][Villarrubia94] [Williams98][Williams96][Todd01]. In this 

approximation, the process of acquiring an AFM image is modeled using a discrete 
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approximation to the dilation operation. A more correct assumption is that the AFM image 

is the sampled output of a continuous dilation. The discretized operations are more 

commonly used because it is easier to calculate the grayscale morphological operations for 

arbitrary discretely sampled inputs than for arbitrary continuous inputs. By choosing a 

sufficiently high sampling resolution, the errors in the discrete calculations can be made 

insignificant. In this section I explore the differences between dilation and erosion 

operations as they are defined on discrete grids and corresponding continuous grayscale 

morphological operations. 

A continuous grayscale dilation of a surface f(x,y) by a surface p(x,y) is defined as 

( ) ( ){ }
( , )

( , ) max , ,
x y

x y x y
b b

h x y f x b y b p b b= − − +  

where x, y, bx, and by are real numbers. 

A discrete grayscale dilation of a discrete sampling of a surface fd(x,y) by a discrete 

sampling of a surface pd(x,y) is defined as 

( ) ( ){ }
,

( , ) max , ,d d d
i j

h x y f x i y j p i j= − − +  

Equation C-7: discretized grey-level dilation 

and discrete erosion is defined as  

( ) ( ){ }
( ) ( ){ }

,

,

( , ) min , ,

max , ,

d d d
i j

d d
i j

h x y f x i y j p i j

f x i y j p i j

= + + −

= − − + + +
 

where x, y, i and j are integers. 

For an arbitrary surface, sampling an image at regular intervals does not in general 

commute with dilation (or erosion). For surfaces that are piecewise linear with vertices only 

at the sample points, the operations do commute. For example, if one linearly interpolates 

fd(x,y) and pd(x,y) to create piecewise linear surfaces f(x,y) and p(x,y) and takes the 

continuous dilation of f(x,y) and p(x,y) then the result h(x,y) will match the discrete dilation 

of fd(x,y) and pd(x,y), hd(x,y), at integer coordinates. However, this is true neither for 

cascaded dilations nor erosions between or at integer coordinates. For example, if one first 

dilates and then erodes a surface using the continuous operations, the sampled resulting 

surface will not be exactly the same as the result using the discrete operations (Figure C-7). 
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A good discussion of the differences between discrete and continuous morphological 

operations can be found in [Hendriks03]. 

 
Figure C-7: Sampling cascaded continuous morphological operations on a regular grid does not 
produce the same result as the corresponding discrete morphological operations on inputs that have 
been sampled on that grid (even when applied to a piecewise linear surface with vertices at the grid 
points. In the discrete domain, the results are the same for a single dilation or erosion operation. 

An AFM image is better described as a continuous grayscale dilation sampled on a 

regular grid than as a discrete dilation but by calculating the discrete dilation on a 

sufficiently high resolution grid, the differences can be made insignificant. I represent the 

specimen surface with a continuous height function that may be sampled at a resolution that 

is as high as is necessary to capture important details. The tip image is calculated at the 

same resolution as the original AFM data using Villarrubia’s method (section 2.1) but is 

linearly interpolated to match the resolution required for the specimen surface. The discrete 

dilation will be a sufficient approximation as long as every patch of the continuous surface 

corresponding to the triangular facets of the tessellated sampled surface is sufficiently 

planar. Figure C-8 illustrates how an error in the approximation of the continuous dilation 

by the discrete dilation is related to the error in piecewise linear approximations to the tip 

and specimen surfaces. The magnitude of these errors for the specimens I am targeting 

cannot be determined without independent measurements of the tip and specimen surfaces 

continuous closing 

discrete dilation 

continuous dilation 

discrete closing 

probe 

specimen 
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at a significantly higher resolution than the acquired AFM images. However, if the 

resolution of the discrete grid used for simulation is too low, errors can result in an inability 

to reproduce a good approximation to the observed AFM image. In the case of the thin line 

example described in section 10.3.2 I found it necessary to triple the resolution of the AFM 

image by interpolation and use that same tripled resolution for the tip model and sampled 

height of the specimen model. 

 
Figure C-8: Approximation of continuous dilation by applying discrete dilation to a 
regular sampling of the two input surfaces. The linear interpolation of the result of the 
discrete dilation is equivalent to the continuous dilation of the piecewise linear 
approximations plin(x) and flin(x) to the two surfaces. 
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Appendix D Uniformly-weighted and Gaussian-weighted 
Facet Models 

D.1 Uniformly-weighted Facet Model 

In this section I explain how the convolution kernels are computed which when 

convolved with an image give the facet model representation of that image [Haralick81]. In 

[Kleyman98] it is shown that by minimizing  

( )( )22 2 2 3 2 2 3
1 2 3 4 5 6 7 8 9 10 ,

r R c C

e K K r K c K r K rc K c K r K r c K rc K c f r c
∈ ∈
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one can determine a general solution for the K coefficients. Following the notation in 

[Kleyman98] but with the correction of a typographical error I define 
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Equation D-1: Intermediate variables useful for computing polynomial fit 

In terms of these definitions, the solution is 
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Each of the K coefficients corresponds to a 2D image where each pixel represents the 

fit to a neighborhood centered on the corresponding pixel in an input image. The image for 

a K coefficient can be efficiently computed by a convolution with a convolution kernel the 

size of the neighborhood. 

D.2 Gaussian-weighted Facet Model 

The facet model in [Haralick81] is limited to neighborhood sizes that are odd integers 

and fits a cubic polynomial to the height field using a uniform weighting of all pixels in the 

neighborhood. I found that the uniform weighting causes the fit to vary discontinuously as 

the neighborhood is shifted which creates some undesirable artifacts in simulated images. 

To overcome this problem and the limitation on neighborhood sizes I replaced the uniform 

weighting function with a Gaussian weighting function. The support neighborhood size is 

still an odd integer but an additional width parameter for the Gaussian function provides 

continuous control over the effective neighborhood size. The Gaussian weighting function 

has the advantage of preserving separability and is defined as 
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where ( ) ( ) ( )( )2 2exp 2r cw u w u k u σ= = ⋅ −  and k is a normalizing factor such that 

( ), 1
r c

w r c =� � . The polynomials K1, K2, K3... K10 are found in a similar way to those 

for Haralick’s original facet model except that they minimize 
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For computing the K coefficients using the Gaussian-weighted facet model, the 

variables G, A, B, Q, T, U, V, W, and Z from Equation D-1 are computed by the same 

formulae except using variables Rn and Cn defined as 
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Then the coefficients are computed as 
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For efficiency in convolving an image with the coefficient filters, I take advantage of 

the separability of the filters into a 1D convolution in the x-direction followed by a 1D 

convolution in the y-direction. All of the filters except for those for K2 and K3 are directly 

separable. The filters for K2 and K3 can each be decomposed into the sum of two separable 

filters as follows  
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D.3 Estimating Gradient Magnitude and Principal Curvatures 

The gradient magnitude of a surface f(x,y) is 2 2
x yG f f= + . Using the facet model, 

the gradient magnitude is estimated as 2 2
3 2G K K= + . 

The curvature of a surface f(x,y) is characterized by the Hessian matrix, defined in 

terms of the second derivatives as 

xx xy

yx yy

f f

f f
� �

= � 	

 �

H  

The normal curvature is the second derivative of the height of the surface measured in a 

particular direction. For a direction v=(vx,vy), the normal curvature is defined as 
2 2T
x xx x y xy y x yx y yyv f v v f v v f v f= + + +v Hv  

The directions in which the normal curvature is minimum or maximum are called the 

principal directions and the corresponding normal curvatures are the principal curvatures. 
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The principal directions and curvatures are the eigenvectors and eigenvalues of the Hessian. 

By definition, if v is an eigenvector of a matrix H then λ=Hv v  where λ ∈
  is called the 

eigenvalue. Subtracting λv  from both sides of the equation we get ( ) 0Iλ− =H v  where 

1 0
0 1

I
� �= � 	

 �

. This equation only has a solution 0≠v  if ( )det 0Iλ− =H . By solving the 

quadratic equation ( ) ( ) 2det 0xx xy
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 for λ  we get two 

solutions which are the maximum and minimum principal curvatures κ+  and κ− : 
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Using the facet model, the principal curvatures are estimated as 
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D.4 Examples 

Examples of the convolution kernels used to compute cubic coefficients for a 

neighborhood size of 31x31 are shown in Figure D-1. The gradient magnitude and two 

principal curvatures were computed for various neighborhood sizes for the input image in 

Figure D-2 using both the uniformly-weighted and Gaussian-weighted cubic fit. 

Comparison of the results in Figure D-3, Figure D-4, and Figure D-5 shows a significant 

reduction in the Gaussian-weighted filter output of the discontinuity effect observed as a 

ringing phenomenon in the gradient images computed using the uniformly-weighted cubic 

fit in Figure D-3. 
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Figure D-1: 31x31 K-coefficient masks for uniformly-weighted least squares fit (left) and for 
Gaussian-weighted least squares fit (right) 

 
 

 
Figure D-2: Input image for 
comparison of outputs from filters 
based on uniformly-weighted and 
Gaussian-weighted cubic fit 
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Figure D-3: Gradient magnitude. The ringing phenomenon especially visible 
in the upper rightmost image is reduced in the corresponding lower image. 
Filter neighborhood sizes and Gaussian standard deviation (�) are specified 
adjacent to the corresponding filter output. 

 
Figure D-4: Larger principal curvature. Filter neighborhood sizes and 
Gaussian standard deviation (�) are specified adjacent to the corresponding 
filter output. 
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Figure D-5: Smaller principal curvature. Filter neighborhood sizes and 
Gaussian standard deviation (�) are specified adjacent to the corresponding 
filter output. 
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Appendix E Related Projects 

E.1 Comparison of Monte Carlo and Slope-based SEM Simulation 

Given the deviation of the Monte Carlo simulation from previously used reflectance 

functions, I decided to create a new reflectance function fit to the Monte Carlo simulation. 

The function of slope was constructed as a piecewise linear function directly from Monte 

Carlo simulation output from simulations on calibration surfaces with different slopes. A 

simple model consisting of only a single tilted plane allows no escaping electron to reenter 

the specimen even for large tilt angles. This situation is unrealistic because on a real 

specimen, curvature of the surface enables some of the escaping electrons to reenter the 

specimen where they generate additional backscattered and secondary electrons. A more 

realistic model is a surface consisting of a tilted plane intersecting a horizontal plane. The 

combination of a tilted plane with a horizontal plane approximates the situation where some 

of the escaping electrons are recaptured by the surface and can generate additional escaping 

electrons (see Figure E-1). A more approximate approach to take this effect into account is 

described in [Firsova91]. 

For each of 18 calibration surfaces with tilt angles spaced at 5 degree intervals between 

0 and 85 degrees, 31,000 electrons were simulated to compute the yield for secondary and 

backscattered electrons. The output from these simulations is shown in Figure E-2. 
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Figure E-1: Two different ways of estimating the output of the Monte 
Carlo simulation on a surface with a given slope. In the single plane 
model, escaping electrons travel directly to the detector. In the more 
realistic two plane model, some escaping electrons are recaptured by the 
surface and can generate additional secondary electrons. The two plane 
model better approximates what happens for a real specimen. 

 
Figure E-2: Output of Monte Carlo simulation used 
to construct piecewise linear function of slope 

The piecewise linear function of slope computed using the two plane calibration 

method was used to generate the images shown in Figure E-3 and Figure E-4. These images 
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clearly show a discrepancy between the Monte Carlo simulation and the slope function that 

was fit to the same Monte Carlo model for a square object that is 45nm wide. The 

difference becomes greater as the width of the object shrinks to 15nm. A function only of 

slope is insufficient to model the topographic contrast at these scales. 

 
Figure E-3: Monte Carlo simulation compared with a function of 
slope on a 20nm high raised square 45 nm wide at the top 

 
Figure E-4: Monte Carlo simulation compared with a function of 
slope on a 20nm high raised square 15nm wide at the top 
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E.2 Hardware Acceleration of Discrete Grayscale Morphological 
Operations 

Varadhan et al [Varadhan02] demonstrated how the z-buffer hardware commonly used 

in computer graphics can be used to speed up the grayscale dilation operation. In this 

section I describe a variation on this implementation to compute discrete approximations to 

morphological operations.  

Discrete dilation, erosion and other operations that involve taking a maximum over a 

set of surfaces can be accelerated using z-buffer hardware. I accessed this hardware through 

the OpenGL API. While this API provides both maximum and minimum operations, testing 

revealed that the implementation for maximum was faster than that for minimum so both 

dilation and erosion operations were implemented using the maximum operation. The 

sampled height values for the probe surface were rendered as points on a grid 

corresponding to the centers of display pixels. This probe display was repeated for each 

height sample from the specimen surface. Finally, the result was read back from the depth 

buffer. The z-buffer implementation of dilation is illustrated in Figure E-5 and the 

implementation of erosion is illustrated in Figure E-6. 

In practice, I have found that the implementation using graphics hardware is not always 

faster and in some cases is actually slower than a software implementation depending on 

the particular CPU and graphics hardware. On a desktop PC with a Pentium III running at 

500 MHz and a 3D Labs Wildcat graphics card of about the same vintage as the CPU, the 

graphics hardware implementation was about 5 times faster than the software 

implementation. On a laptop with a 1.3 GHz Pentium M with an ATI Mobility Radeon 

9000 GPU, the graphics hardware implementation was about 3 times slower. For example, 

with a 300x300 pixel AFM image and a 41x41 tip image, the graphics implementation of 

the dilation operation took about 3 seconds while the software implementation took about 1 

second. The performance for erosion was the same. 

Although the graphics hardware provided acceleration on some machines, for this 

project, I only used CPU-based implementations because they happened to be faster than 

the graphics hardware implementation on my computer and it was also somewhat 
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inconvenient to create graphics hardware implementations to perform the gradient 

calculations described in Section 9.3.1. 

 

 
Figure E-5: Dilation as implemented using the z-buffer. Vertical lines represent pixel 
boundaries. 
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Figure E-6: Erosion as implemented using the z-buffer. 
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Appendix F Entropy and Mutual Information for Image 
Registration 

In the following description, the word sample refers to a set of measurements of a 

random variable. Given a sample A={xa} with size NA for a random variable X there are two 

common methods of estimating the entropy H(x). One method is to count the values in a 

histogram that discretizes the space of values taken on by X. The fraction of measurements 

that fall into a bin in the histogram is an estimate of the probability density for values of X 

represented by the bin. The integral in the expression for entropy is replaced by a sum over 

all the bins of the fraction of measurements in that bin times the log of that fraction. The 

estimate for the entropy of X would be defined as 

( )
1

ˆ log
m

k k

A Ak

n n
H X

N N=

� �
= ⋅ � 	


 �
�  

where m is the number of histogram bins, k is an index over the bins and nk is the number of 

measurements xa falling into bin k. A similar procedure using a two-dimensional histogram 

is used to estimate the joint entropy. This method is used in [Collignon95]. 

The histogram approach implicitly models the probability distribution by placing a 

spike at each point represented by a histogram bin before computing the entropy of that 

distribution. An alternative approach is to model the distribution with a continuous function 

before computing entropy [Viola95]. A standard technique for creating such a continuous 

function from the set of measurements is Parzen Windowing. The Parzen Window density 

estimate is constructed by summing a set of translated versions of a function called the 

window function where the translations come from the sample values. Given a window 

function fw(x), the Parzen Window density estimate from the set of measurements A is 

defined as 

( ) ( )1ˆ
a

A w a
A x A

p x f x x
N ∈

= −�  

A normalized Gaussian (it must be normalized so that the density integrates to 1) is 

commonly used as a window function because it simplifies mathematical analysis of the 
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distribution [Viola95]. For example, given a sample of size 5 for X as A={0,0,1,3,8}, NA=5, 

and a window function ( ) 2 21
2

x
wf x e

π
−=  then the Parzen Window density estimate would 

look like Figure F-1. 
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Figure F-1: Example of Parzen  Window density estimate 

The average value of some function over a set of measurements of a random variable 

gives an unbiased estimate of the mean value of that function of the random variable. Based 

on this idea, the entropy of the estimated probability density ( )ˆ Ap x  can be estimated by 

using the entropy function and considering a second sample of NB values B={xb}. The 

entropy is estimated by the mean value of ( )( )ˆlog A bp x−  for the sample B: 

( ) ( )( )1ˆ ˆlog
b

A b
B x B

H X p x
N ∈

= − �  

For registration using mutual information, the pixel values in an image are treated in 

the same way as the independent measurements of a random variable in the above 

description for calculating entropies and mutual information. In place of a sample for X, one 

constructs a sample of intensities from one image and in place of a sample for Y one 

constructs a sample of intensities from the other image. A sample from the joint distribution 

for (X, Y) is constructed by repeatedly picking a pixel in one image and computing the 

interpolated intensity at a corresponding location in the other image (as defined by a 

candidate transformation that registers the two images). Ideally one would use all pixels 

lying in the intersection of the two images for computing the mutual information but to 

accelerate the calculation a random subset may be used [Viola95]. Once the pixels are 
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selected or interpolated, as described above, one can estimate the entropy by either binning 

the intensities in a histogram and estimating the probabilities for each bin [Collignon95] or 

by estimating an integral by sampling from a Parzen Window density estimate [Viola95].  

In the histogram-based method for estimating entropy it is important to have the 

variation in entropy with changes in the transformation be as smooth as possible to avoid 

getting stuck in local maxima when optimizing the mutual information. To help smooth out 

the mutual information cost function, particularly near the global maximum, Maes et al. 

used a method called partial volume interpolation [Maes97]. The transformed point in the 

floating image typically does not lie on a pixel but one can interpolate its value from the 4 

nearest neighbor pixels (in 2D) and update the bin corresponding to the interpolated value. 

Instead, in partial volume interpolation, one updates the histogram by adding a fractional 

value to the bin for each neighboring pixel value based on the distance between the 

transformed point and the neighboring pixel. This modification allows the histogram values 

to vary smoothly with changes in the transformation and thereby smoothes out the 

calculated mutual information.  

Jenkinson and Smith point out that the width of histogram bin that gives the most 

efficient, unbiased estimation of the probability distribution function is  
1 33.49W Nσ −=  

where σ is the standard deviation of the distribution and N is the sample size [Jenkinson00]. 

However, in practice, an estimate of the standard deviation needs to be used instead of the 

actual standard deviation, making the method less robust. They note that in practice 

choosing the bin size as 

( ) 1 32W IQR N −=  

where (IQR) is the interquartile range (75th percentile minus the 25th percentile) tends to 

produce better results. For the joint histogram, the number of bins is the product of the 

number for one image and the number for the other image while the sample size is only the 

sum. Therefore, the number of values per bin for the joint histogram is greatly reduced 

compared with the number for the single image histogram. One might try adjusting the bin 

size to keep the same number of values per bin as in the 1D histogram but this is not 

recommended because it results in a bin size that is too large [Jenkinson00]. 
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