
Efficient Techniques for End-to-end Bandwidth Estimation:Performance Evaluations and Scalable Deployment

Alok Shriram

A dissertation submitted to the faculty of the University ofNorth Carolina at Chapel Hill in partial fulfillment of
the requirements for the degree of Doctor of Philosophy in the Department of Computer Science.

Chapel Hill
2009

Approved by:

Jasleen Kaur, Advisor

F. Donelson Smith, Reader

Kevin Jeffay, Reader

Ketan Mayer-Patel, Reader

Constantine Dovrolis, Reader



c© 2009
Alok Shriram

ALL RIGHTS RESERVED

ii



ABSTRACT

ALOK SHRIRAM: Efficient Techniques for End-to-end Bandwidth Estimation:
Performance Evaluations and Scalable Deployment.

(Under the direction of Jasleen Kaur)

Several applications, services, and protocols are conjectured to benefit from the knowledge of the end-to-

end available bandwidth on a given Internet path. Unfortunately, despite the availability of several bandwidth

estimation techniques, there has been only a limited adoption of these in contemporary applications. We identify

two issues that contribute to this state of affairs. First, there is a lack of comprehensive evaluations that can help

application developers in calibrating the relative performance of these tools—this is especially limiting since

the performance of these tools depends on algorithmic, implementation, as well as temporal aspects of probing

for available bandwidth. Second, most existing bandwidth estimation tools impose a large probing overhead on

the paths over which bandwidth is measured. This can be a significant deterrent for deploying these tools in

distributed infrastructures that need to measure bandwidth on several paths periodically.

In this dissertation, we address the two issues raised aboveby making the following contributions:

• We conduct thefirst comprehensive black-box evaluation of a large suite of prominent available bandwidth

estimation tools on a high-speed network. In this evaluation, we also illustrate the impact that technological

and implementation limitations can have on the performanceof bandwidth-estimation tools.

• We conduct thefirst comprehensive evaluation of available bandwidth estimation algorithms, independent

of systemic and implementation biases. In this evaluation,we also illustrate the impact temporal factor

such as measurement timescales have on the observed relative performance of bandwidth-estimation tools.

• We demonstrate that temporal properties can significantly impact the AB estimation process. We redesign

the interfaces of existing bandwidth-estimation tools to allow temporal parameters to be explicitly specified

and controlled.

• We design AB inference schemes which can be used to scalably and collaboratively infer the available

bandwidth for a large set of end-to-end paths. These schemesallow an operator to select the desired

iii



operating point in the trade-off between accuracy and overhead of AB estimation. We further demonstrate

that in order to monitor the bandwidth on all paths of a network we do not need access to per-hop bandwidth

estimates and can simply rely on end-to-end bandwidth estimates.

iv



Table of Contents

LIST OF TABLES ix

LIST OF FIGURES x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1

1.2 Dissertation Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 3

1.2.1 Requirements from ABETs . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 3

1.2.2 (Limitations of the) State of the Art . . . . . . . . . . . . . . .. . . . . . . . . . . . . 4

1.3 Goal 1: Black-box Evaluation of ABET Implementations . .. . . . . . . . . . . . . . . . . . . 7

1.4 Goal 2: Impact of Temporal Factors on AB Estimation . . . . .. . . . . . . . . . . . . . . . . 8

1.5 Goal 3: Implementation-agnostic Evaluation of ABETs . .. . . . . . . . . . . . . . . . . . . 10

1.6 Goal 4: Scalable AB Inference for Overlays . . . . . . . . . . . .. . . . . . . . . . . . . . . . 12

1.7 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 13

1.8 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 14

1.9 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 14

1.10 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 15

2 Design of Bandwidth estimation tools 16

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 16

2.2 Capacity estimation tools . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 18

2.3 AB Estimation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 20

2.3.1 End-to-End AB estimation tools . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 20

2.3.2 Per-hop AB estimation tools . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 22

2.3.3 Implementation techniques to achieve high time-stamping accuracy . . . . . . . . . . . 23

2.4 Tool Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 25

v



2.5 Formal analysis of AB estimation tools . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 26

2.6 Efficient Network Monitoring . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 28

2.7 Network aware application designs . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 29

3 Evaluation of ABET implementations 31

3.1 Background: Interrupt Coalescence and network measurements . . . . . . . . . . . . . . . . . . 32

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 33

3.2.1 The high-speed testbed . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 33

3.2.2 Methods of generating Cross-traffic . . . . . . . . . . . . . . .. . . . . . . . . . . . . 34

3.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 36

3.3.1 Comparison of Tool Operational Characteristics . . . .. . . . . . . . . . . . . . . . . . 41

3.4 Real World Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 42

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 46

4 Impact of Temporal Parameters 47

4.1 Temporal Parameters of Interest . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 47

4.2 Analysis Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 50

4.3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 51

4.4 Putting things into perspective . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 52

4.5 How does the way the AB is sampled affect the accuracy? . . .. . . . . . . . . . . . . . . . . . 53

4.5.1 Does the choice of sampling strategy impact accuracy of the sampled AB? . . . . . . . 53

4.5.2 How does probe-stream duration impact the accuracy ofestimated AB? . . . . . . . . . 54

4.5.3 What is the marginal cost of increasing sampling intensity? . . . . . . . . . . . . . . . . 56

4.5.4 How does RT impact accuracy? . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 57

4.6 How does the MT and RT affect variability? . . . . . . . . . . . . .. . . . . . . . . . . . . . . 58

4.7 How does the RT impact the stability of estimates? . . . . . .. . . . . . . . . . . . . . . . . . 62

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 64

5 Impact of Probe-Stream design and Inference Logic 66

5.1 Setting the MT and SI in AB estimation methodologies . . . .. . . . . . . . . . . . . . . . . . 66

5.1.1 Incorporating MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 66

vi



5.1.2 Incorporating the SI . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 67

5.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 68

5.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 68

5.4 Evaluating the Accuracy of ABETs in Dynamic Traffic Conditions . . . . . . . . . . . . . . . . 70

5.4.1 Single Bottleneck Scenario . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 71

5.4.2 Multiple Bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 73

5.5 Evaluating the Costs of ABETs . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 75

5.5.1 Impact on Responsive Cross-Traffic . . . . . . . . . . . . . . . .. . . . . . . . . . . . 78

5.6 Notes on related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 80

5.6.1 Spruce and packet-pair techniques . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 80

5.6.2 Pathload and rate based techniques . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 81

5.6.3 Pathchirp and rate chirps . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 81

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 82

6 Scalable Monitoring of the AB 83

6.1 Selection of ABET estimation methodology . . . . . . . . . . . .. . . . . . . . . . . . . . . . 83

6.2 Design of the AB Monitoring Scheme . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 84

6.2.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 84

6.2.2 Path-based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 87

6.2.3 Head Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 88

6.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 89

6.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 93

6.4.1 Path Based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 93

6.4.2 Improving the Availability of AB Snapshots . . . . . . . . .. . . . . . . . . . . . . . . 96

6.4.3 Differential Rate Limiting on PlanetLab . . . . . . . . . . .. . . . . . . . . . . . . . . 97

6.5 Sources of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 99

6.6 Comparative Evaluation of SABI algorithms . . . . . . . . . . .. . . . . . . . . . . . . . . . . 100

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 101

7 Concluding Remarks 103

vii



A Minimizing the probe overhead 105

B Sites used in Planet-Lab experiment 106

BIBLIOGRAPHY 107

viii



LIST OF TABLES

1.1 Performance characteristics of an ABET . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 11

1.2 Table of notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 15

2.1 Available Bandwidth Estimation Tools . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 20

3.1 Summary of wide-area bandwidth measurements (“f”= produced no data). . . . . . . . . . . . 45

4.1 Data sets used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 51

4.2 Abilene: AB variability metrics . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 60

4.3 UNC: AB variability metrics . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 60

4.4 Stability in AB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 64

5.1 Traces used for evaluations . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 70

B.1 Sites used in experiment . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 106

ix



LIST OF FIGURES

1.1 Illustration of end-to-end AB . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 3

1.2 AB process observed on an Internet link over the same 30 sec interval at different timescales. . . 5

1.3 Internet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 12

2.1 Illustration of an Internet path . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 17

2.2 Internet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 18

2.3 Impact of Interrupt Coalescence. (Graph from [PJD04]) .. . . . . . . . . . . . . . . . . . . . . 24

2.4 Illustration of Path-Persistent and Non-Path persistent traffic patterns . . . . . . . . . . . . . . . 28

3.1 Bandwidth Estimation Testbed. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 34

3.2 CCDF of packet IAT distribution. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 36

3.3 Comparison of /ab measurements on a 4-hop OC48/GigE withsynthesized cross-traffic . . . . . 37

3.4 Comparison of ABET measurements on a 4-hop OC48/GigE path played back real traffic. . . . 40

3.5 Performance of iperf on a 4-hop OC48/GigE path with played back real traffic. . . . . . . . . . 41

3.6 Tool overhead vs. available bandwidth. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 42

3.7 Real world experiment conducted on the Abilene network .. . . . . . . . . . . . . . . . . . . . 44

3.8 Real world experiment conducted on the Abilene network for spruce. . . . . . . . . . . . . . . . 45

4.1 Factors Affecting the AB process . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 49

4.2 Sampling strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 53

4.3 Sampling Strategy vs. Accuracy (Mbps) . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 54

4.4 CDF of Inaccuracies with different sampling strategies. . . . . . . . . . . . . . . . . . . . . . 55

4.5 Impact of MT on accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 55

4.6 Sampling Accuracy vs. SI . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 56

4.7 RT vs. Inaccuracy (Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 57

4.8 Run-Time vs. Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 58

4.9 AB process observed at link during same 30 s window at different MT . . . . . . . . . . . . . . 59

4.10 Impact of RT on range and standard deviation of AB . . . . . .. . . . . . . . . . . . . . . . . 61

4.11 Impact of MT and RT on variability . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 62

4.12 Stability of AB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 63

x



5.1 Topology with a Single Bottleneck Link . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 69

5.2 Validation of ABET Implementations . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 69

5.3 Tool errors with default parameters . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 71

5.4 Impact of MT, SI, and RTT . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 72

5.5 Different tight and narrow links . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 73

5.6 Performance with multiple bottleneck links (MT=50ms, SI=0.1) . . . . . . . . . . . . . . . . . 74

5.7 Single narrow link; two tight links . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 75

5.8 Costs of ABETs with the Ibiblio trace (numbers in parenthesis indicate the MT in ms) . . . . . . 76

5.9 CDF of response times with default parameters . . . . . . . . .. . . . . . . . . . . . . . . . . 79

6.1 Location of Bottleneck Links . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 89

6.2 Probe Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 94

6.3 Path-based clustering: Actual vs. Inferred AB . . . . . . . .. . . . . . . . . . . . . . . . . . . 95

6.4 Distribution of Inference Errors . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 96

6.5 Impact ofm on Inference Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

6.6 Distribution of Inference Errors with Capacity Substitution . . . . . . . . . . . . . . . . . . . . 97

6.7 Performance of Consistently Rate Limited Paths . . . . . . .. . . . . . . . . . . . . . . . . . . 98

6.8 Using Capacity-inference to Filter Out Ill-formed Tuples . . . . . . . . . . . . . . . . . . . . . 99

6.9 CDF of relative inference error for the SABI algorithms and Broute AB . . . . . . . . . . . . . 101

xi



CHAPTER 1
Introduction

1.1 Motivation

Why measure end-to-end available bandwidth? The Internet provides a best-effort service model—applications

that transfer data over the Internet are provided no guarantees or even apriori knowledge about the end-to-end

performance that their transfers should expect. Such knowledge, if available, can help applications in better

aligning their configuration and data transmission with thecurrent state of network resources. Consequently,

many applications rely on mechanisms or protocols thatprobenetwork paths to estimate the level of end-to-end

transfer performance that a given network path can provide.

Over the past two decades, there has been significant interest in designing mechanisms for specifically

probing for thepacket delayandpacket losscharacteristics of Internet paths, and in using these to help guide

data transport by Internet applications [BOP94, AGKT98, AP99]. More recently, with the emergence of data-

intensive applications and increasing deployment of broadband access networks, there is a growing need to focus

on yet another characteristic that applications are likelyto be interested in—that of thetransfer ratethat can be

obtained on a given path. Theend-to-end available bandwidth (AB)—which represents the maximum spare ca-

pacity available among all links of a given path—has emergedas a prime metric of choice for such applications.

Several application domains are conjectured to benefit fromthe knowledge of this quantity:

• Congestion-control Protocols:A key objective of congestion-control protocols is to determine the maxi-

mum rate at which data can be transferred over a given path without overloading the network resources. It

can be clearly seen that such a rate would be the maximum of thespare bandwidth available across all links

on the path—consequently, efficient mechanisms for estimating the end-to-end AB can be quite useful for

guiding such protocols.

• Video Streaming Protocols:Video-streaming applications often adapt the bit-rate of the video-stream by

changing encoding parameters—a low-quality, low bit-ratestream is sent when a high bit-rate can not be



supported on a given network path [BGMS04, FBB01]. Efficientmechanisms that continually estimate

the end-to-end AB can help reconfigure the encoding parameters adaptively.

• Audio Streaming:Some applications require only a low, but consistent bit-rate—for instance, audio

streaming generates data at a nearly constant rate of 50-100Kbps and works well only when the path

can support the rate [Mos08]. Even such applications can benefit from the knowledge of end-to-end AB in

order to decide, for instance, if a new client request for an audio stream can be served (given characteristics

of the AB on the Internet path from the server to the client).

• Server Selection:For content-based services, in which a desired content may be available at several

servers, the knowledge of the end-to-end AB on the paths fromeach server to a given client can help

the client select the best server to download from—this is especially useful for clients interested in down-

loading large files or streams.

• Overlay Routing:With the emergence of multi-homing and overlay infrastructures [ABKM01, AMS+03,

RK03], applications can now choose to transfer data over alternate paths different from the default Internet

path to a destination. The selection of an alternate path canbe better informed using the knowledge of

end-to-end AB on each candidate path.

Each of the above applications would benefit from efficient techniques that probe for the end-to-end AB on a

given set of path(s).

The dilemma: which probing technique?! Several sophisticated techniques have been developed in recent

literature for measuring end-to-end AB on a given network path [JD02b, Rib03, SKK03a, Nav03, HS03, CC96a,

ipe, KV06]. Unfortunately, there has been only a limited adoption of these techniques in Internet protocols/services.

Indeed, most applications continue to use legacy mechanisms available prior to the emergence of these tech-

niques. We believe that there are two key reasons for this state of affairs. First, there is a lack of compre-

hensive evaluations of these techniques—consequently, itis not clear which techniques (if any) are efficient

and well-suited for a given application. Second, many of therecently-developed techniques rely on sending

large amounts of probe traffic for accurately estimating end-to-end AB. The associated overhead and latency of

probing—especially when used in popular services/protocols—acts as a significant deterrent for protocol design-

ers [SMH+05].

In this dissertation, our goal is to help alleviate these twoissues. We precisely formulate our goals next.

2



Figure 1.1: Illustration of end-to-end AB

1.2 Dissertation Goals

We begin by first formally defining the concept of end-to-end available bandwidth and identifying the require-

ments from tools used for estimating it.

1.2.1 Requirements from ABETs

End-to-end available bandwidth (AB) represents the maximum spare capacity available among all links of a

given path. Formally, theper-hopbandwidth available onith link of a path,ABi, is defined as:

ABi[t1, t2] = Ci −
Bi(t1, t2)

(t2 − t1)
(1.1)

whereABi[t1, t2] is the spare bandwidth available on the linki over the time interval[t1, t2], Ci is the transmis-

sion capacity of linki, andBi(t1, t2) is the total traffic transmitted on the link during[t1, t2]. Theend-to-end

available bandwidth of a network path is defined as the minimum of the spare bandwidth available at each of the

constituent links of the path:

ABe2e = min
i∈[1,N ]

{ABi} (1.2)

For instance, in Fig 1.1, the end-to-end AB is 50 Mbps.

AB estimation tools, henceforth also referred to as ABETs , are designed to estimate the end-to-end AB on a

given network path. Some distributed applications—such asoverlay routing and server selection—also attempt

to simultaneously employ such tools on multiple paths. Several key requirementsguide the design of ABETs :

• High Estimation Accuracy:Each of the example applications listed before would be ableto make optimal

application-level decisions only if provided with anaccurateknowledge of AB. For instance, underes-

3



timation of end-to-end AB would prevent video-streaming applications and congestion-control protocols

from, respectively, maximizing application quality and throughput—while overestimation of AB would

drive network resources into a persistently overloaded state for the duration of the transfers.

• Small Response Time:AB on a given link can vary significantly over time—Fig 1.2, which plots the AB

observed on a production Internet link during a 30-second interval, illustrates this. Consequently, many

applications—such as video streaming and congestion-control protocols—would need to continuously

estimate up-to-date values of AB and adapt their transmission behavior accordingly. An ABET with alarge

response time would deliver only stale (and possibly invalid) values of AB to the associated application,

thus impairing application performance.

• Low Probing Overhead:In order to prevent interference with transmission of useful application data,

ABETs should themselves rely on sending few probes into the network. Furthermore, a high probing

overhead would be a significant deterrent to the widespread adoption of these techniques in popular Inter-

net protocols and services.

1.2.2 (Limitations of the) State of the Art

Lack of Comprehensive Evaluations Several tools (ABETs ) have been proposed in recent literature for

actively probing for the end-to-end AB on a given network path [CC96a, HS03, JD02b, Rib03, SKK03a, Jin04,

MBG00, Nav03]. These tools typically operate by injecting specially-designed streams of probe packets onto

the path, observing the end-to-end delays experienced by the probe packets, and then estimating the end-to-end

AB from the observations—details can be found in Chapter 2. Unfortunately, it is not clear how well these tools

meet the above requirements. Specifically, existing evaluations of ABETs suffer from the following fundamental

limitations.

1. While most ABET designers conduct evaluations and comparisons of their tools against other tools, these

evaluations are neither comprehensive in the tools nor the settings evaluated. All previous evaluation

studies evaluate only a small (and different) sub-set of ABETs, depending on which ones were popular

when the corresponding tool was proposed. Furthermore, these evaluations include only simple network

and traffic scenarios. For instance, most do not evaluate tool performance against responsive cross-traffic,

in high-speed networks, or when the tight and narrow links are different. As a result of these practices, the

4



1700
1900
2100
2300

0 5 10 15 20 25 30

A
B

 (
M

b
p
s
)

(a)                         Time(sec)

Time Scale .01 sec

1700
1900
2100
2300

0 5 10 15 20 25 30

A
B

 (
M

b
p
s
)

(b)                         Time(sec)

Time Scale .05 sec 

1700
1900
2100
2300

0 5 10 15 20 25 30

A
B

 (
M

b
p
s
)

(c)                         Time(sec)

Time Scale 1 sec

Figure 1.2: AB process observed on an Internet link over the same 30 sec interval at different timescales.

5



results are often not comprehensive and get inadvertently biased toward highlighting the salient features

of the proposed tool. This state of affairs leads us to our first goal:

It is important to conduct comprehensive evaluations of prominent AB estimation tools

under a common set of diverse network and traffic settings.

2. In current high-speed networks, variations in end-to-end delays may have an order of magnitude in the

sub-millisecond range. Since most ABETs rely on measuring delay variations, high resolution and accu-

racy in time-stamping probe packets is crucial for ensuringthe accuracy of the inferred AB. Current PC

platforms, however, are incapable of guaranteeing high time resolution due to multi-tasking and the use of

mechanisms such as interrupt coalescence [JD02b]. Some tool implementers work around this limitation

by relying on statistical filtering and smoothing techniques, but others do not—the use of such techniques

does impact tool performance significantly [AMPR03, JT03].

It is important to note that the above implementation techniques are highly technology-specific. As tech-

nology improves [PV02a], the impact of these techniques on ABET performance is likely to diminish. It

is, therefore, natural to ask the question: what is the extent to whichcurrent implementation technology

limits tool performance? In particular,how well would tool designs—including the design of their probe-

streams and inference logic—perform if technology advances in the future?This leads us to our second

goal:

It is important to evaluate, in an implementation-agnosticmanner,

the algorithmic aspects of prominent ABETs .

3. Existing ABET designs focus primarily on, and differ mostsignificantly in, the construction of probe

streams and in the logic used to estimate AB from the observeddelays. Most tool designs, however,

seem to ignore three central temporal quantities related tomeasurement of the AB process—that of the

measurement time-scale, the sampling intensity and strategies, and the probing duration. In particular,

most existing ABETs do not allow the choice of these quantities and little is known about the impact of

these quantities on the performance characteristics of an ABET. This leads us to our third goal:

It is important to study the impact of probing-related temporal quantities—including the measurement

timescale, sampling intensity and strategy, and probing duration—on the estimation of AB.

6



In summary, our first set of objectives are concerned with evaluating ABETs under diverse settings of network,

traffic, and temporal conditions.

Significant Overhead in Multi-path Application Domains Another fundamental issue with the state-of-the-

art in ABET design is the large overhead when these tools are deployed in services such as overlay routing or

server selection, that need to measure AB simultaneously onmultiplepaths. A naive approach for such services

would be to run an instance of the tool on each of theN2 paths in anN -node overlay infrastructure. However,

such an approach suffers from two significant limitations:

1. High Overhead:Even with a low overhead tool, a single measurement of the AB may inject on the order of

several megabytes of traffic into the network. ConductingN2 measurements, would significantly overload

the network path, especially as the number of nodes in the overlay infrastructure increases.

2. High Response-Time:ABETs can interfere with each other if run simultaneously onpaths that share

congested links. Hence, for the set of paths that interfere with each other, the measurements need to be

run sequentially. In the worst case runningN2 measurements sequentially would fundamentally limit the

frequency with which the AB information for all paths can be updated.

The above limitations lead to our final goal:

It is important to design a scalable AB monitoring scheme fordistributed infrastructures, in which the number

of measurements that need to be made scale well with the size of the infrastructure.

In this dissertation, we pursue the four goals identified above by: (i) conducting a systematic evaluation of

implementationsof prominent ABETs ; (ii) studying the impact oftemporal factorson the AB estimation pro-

cess; (iii) conducting an implementation-agnostic evaluation of the AB estimation techniques; and (iv) designing

a scalable AB estimation scheme for simultaneous and distributed monitoring of multiple paths. In what follows,

we briefly summarize the approach and main results for each ofthese—the details follow in subsequent chapters.

1.3 Goal 1: Black-box Evaluation of ABET Implementations

Our first goal is to evaluate prominent tools designed for estimating end-to-end AB. For this, we rely on the

publicly-available implementations of these tools and understand the accuracy, overhead, and response-times

of these implementations under diverse network and traffic conditions. We are especially interested in testing

7



the network speeds to which these implementations can scale—this is because at high speeds, the lack of high-

precision and accurate timers on current PC platforms couldimpair the performance of such tools. Our hope is

to identify tool implementations that are suitable for contemporary application domains.

Approach With the above goals in mind, we conduct ABET evaluations under each of the following scenarios:

• On a high-speed network test-bed with commercial routers and switches, with constant bit-rate cross traf-

fic.

• On a high-speed network test-bed with commercial routers and switches, with traces of representative

traffic collected from production Internet links and replayed as cross-traffic on the test-bed.

• On an Internet2 gigabit network path between Sunnyvale and Atlanta against real cross-traffic flowing on

the path—the actual AB was verified using SNMP counters on thenetwork path.

• On the Internet path between San Diego Supercomputing center and Oak-Ridge National Laboratories,

where actual AB was unavailable but the relative performance of the tools was studied.

Summary of Results Some highlights of the findings of our evaluation can be summarized as follows:

1. Tools utilizing packet-pair techniques like Abing and Spruce should be aware of delay quantization possi-

bly present in the networks.

2. AB can not be measured reliably in gigabit high-speed networks using 1500 Byte MTUs and with only

microsecond time-stamp resolution.

3. ABETs should also be able to detect, and perform well in, the presence of interrupt coalescence.

4. TCP-based bandwidth estimation schemes like Iperf perform well, but even an approximately 1% packet

loss can severly affect AB estimates.

1.4 Goal 2: Impact of Temporal Factors on AB Estimation

Temporal Factors We identify three important temporal aspects of the processof sampling AB by any band-

width estimation tool:

8



• Measurement Timescale:A critical parameter in the definition of AB in Equation (1.1)is the length,

(t2 − t1), of the time interval over which it is observed—we refer to this quantity as themeasurement

timescale(MT). In Fig 1.2, we plot the time-series of AB, observed at three different timescales of10ms,

50ms, and1s, during thesame 30 sobservation period on an Internet link. We observe that the AB process

can appear quite different depending on the timescale at which it is observed. In particular, it is likely that

the MT impacts the accuracy as well as variability of the AB measured by a given ABET. Consequently,

any application that relies on such a tool would want the toolto measure AB at an MT relevant to the

application domain. For instance, while a large-file-transfer application is likely to be interested in only

the average AB obtainable at super-second timescales, a media-streaming application is likely to also be

interested in knowing the small-timescale variations in AB.

• Measurement Duration (Run-time): Run-time(RT) refers to the length of the time interval over which

several samples of the AB process are collected, and used to infer properties of the AB process. In practical

terms, the run-time is the total time taken by a tool from invocation to reporting an AB estimate. This

includes the time taken for sending several probe streams (each of which potentially returns one sample of

AB), and converging on an AB estimate.

The most significant impact of run-time on AB measurement is in terms of its robustness and its variability.

While a shorter run-time is likely to yield samples more consistent with each other, longer run-times are

more likely to yield asufficientnumber of samples for reliably estimating the mean as well asvariability

in the AB process.

• Sampling Intensity and Strategy:Given an observation timescale, theAB processconsists of a series of

back-to-back readings of AB observed within a given time interval. ABETs essentially onlysub-sample

this AB process. Existing tools differ in the fraction of theAB process—henceforth, referred to as the

sampling intensity(SI)—that they sample during the tool run-time. Existing tools also differ in theirsam-

pling strategy—the manner in which AB samples are collected from within a given time interval [CPB93].

The sampling strategy and the fraction of the AB process sampled are likely to impact the accuracy of

estimating the mean AB in a given time interval. For instance, larger is the sampling rate, better is likely

to be the AB estimation accuracy; however, greater would be the network overhead.

In this dissertation, we study how the choice of MT, RT, SI, and sampling strategy by a tool impacts the accuracy,

variability, and stability of the measured AB. We organize the relevant issues in the form of three main questions:

9



(i) How does the choice of sampling strategy, sampling intensity, MT and RT impact theaccuracyof the esti-

mated AB? (ii) How does the choice of MT and RT affect thevariability of the measured AB? (iii) Howstable

is AB in the post-measurement periods? Answering these questions reveals the impact that the above mentioned

temporal parameters have on the performance characteristics of the ABETs .

Evaluation Approach As mentioned before, existing ABETs differ significantly inthe design of their probe

streams and inference logic. In order to answer the questions raised above in a manner independent of these

choices, we assume the existence of a perfect tool that can estimate the end-to-end AB perfectly. This assump-

tion lets us study the impact of the above-identified (currently) design-agnostic quantities—namely, run-time,

measurement timescale, and sampling intensity and strategy—while isolating the analysis from the impact of

design-dependent factors. It also lets us adopt apassivetrace-analysis based approach for answering the above

questions. With such an approach, it is possible for us to compute theground truthabout the AB process.

We conduct passive analysis of link-level traces collectedfrom several types of production Internet links.

Summary of Results The main findings of our evaluation can be summarized as follows:

1. The choice of the measurement timescale does not impact the accuracy as long as the sampling intensity

is held constant.

2. Sampling more that 30% of the AB process does not yield a significant improvement in the accuracy of

the AB estimate.

3. The AB process shows significant variability at timescales of less than 50 ms, which corresponds to send-

ing a large train of packets rather than packet-pairs.

4. Back-to-back measurements of the AB do not change significantly, which can be exploited for predictive

purposes in applications that need to continuously estimate AB.

1.5 Goal 3: Implementation-agnostic Evaluation of ABETs

Approach In order to evaluate the performance of prominent ABET designs in an implementation-agnostic

manner, we adopt a two-pronged approach. First, we rely on a simulation-based evaluation approach using the

NS-2[NS2] simulator. Adopting such an approach eliminatesall sources of systemic biases, since the simulated

10



environment gives us the ability to create atechnologically-perfect networkwhere (i) fine-grained clock granu-

larity is achievable on end-systems, (ii) interrupt coalescence effects do not occur, (iii) packet losses do not occur

and, (iv) buffer sizes are unlimited. Second, we design a common implementation framework for instantiating

prominent ABETs in NS-2—a common framework helps us avoid any bias due to differences in implementation

efficiencies. It also allows us to enhance existing interfaces for all ABETs to enable controlling the measurement

timescale and sampling intensity. We extract implementation details from the publicly available versions of the

tools and the publications that describe them, and implement these within our framework. We then evaluate

the ABETs under diverse settings of traffic and network conditions, including: (i) single-hop topologies with

constant-bit-rate as well as dynamic and representative cross-traffic, (ii) multi-hop topologies with multiple tight

and/or narrow links, and (iii) on topologies with a representative mix ofresponsivecross-traffic. We study several

performance characteristics (Table 1.1) of the ABETs .

Performance Parameter Description
Accuracy Difference between the actual and measured AB
Overhead Traffic injected by ABET to make single AB measurement

Intrusiveness Rate of traffic injected by ABET to make single AB measurement
Run-Time Time taken to make a single AB measurement

Perturbation Impact on response times of TCP flows

Table 1.1: Performance characteristics of an ABET

Summary of Results The main findings of our evaluation can be summarized as follows:

1. Increasing the MT improves the accuracy of the estimates.However, the gains in accuracy are negligible

beyond a timescale of 50 ms.

2. Increasing the SI hasno impact on the accuracy of the AB estimates.

3. As the MT increases the run-time of a tool also increases.

4. Pathload has the most overhead, while Pathchirp has the least. This is especially true when assessing the

impact of these tools on responsive TCP cross-traffic.

11



Figure 1.3: Internet Architecture

1.6 Goal 4: Scalable AB Inference for Overlays

In order to design a scheme, which can give us completeN2 path AB without makingN2 measurements we rely

on two key insights about the Internet

1. Sharing of the access hops:Most of the Internet architecture is structured as illustrated in Fig 1.3. End-

nodes either lie within enterprise networks or metropolitan-area networks belonging to local Internet Ser-

vice Providers (ISPs). These edge networks are then connected via access links to other ISPs that comprise

the core of the Internet—these include major Tier-1 and Tier-2 ISPs. Let theaccess segmentof an end-

node refer to the sequence of edge hops and links that connectit to the Internet core. The connectivity

structure of the Internet then implies that the paths from any two given source nodes,S1 andS2, to a

common destinationD are likely to share the access segment ofD (see Fig 1.3).1

2. Bottlenecks lie close to edges:Recent Internet-wide measurement studies have reported that the bottleneck

links of most end-to-end network paths lie close to the end-nodes, and are likely to be the access/peering

links between customers and ISPs [Li05, RRB04]. This essentially implies that the bottleneck link of a

path is likely to lie on the access segments of either end-nodes.

1If the source nodes are topologically close to each other, their paths toD would share a larger number of hops.

12



Let AB(i, j) denote the end-to-end AB on the path from nodei to j. We defineABin
i to be the minimum of

the AB on all links in the access segment of nodei, in the direction of carrying traffic from the core to the node

i, andABout
i to be the minimum AB on these links, in the direction of carrying traffic from nodei to the Internet

core (see Fig 1.3). The two observations made above then collectively imply that the end-to-end AB on the path

between two given nodes,S1 andD1, can be approximated as:

AB(S1, D1) ≃ min{ABout
S1

, ABin
D1

} (1.3)

The above formulation can be used to infer the AB on the path betweenS1 andD1 without necessarily directly

measuringAB(S1, D1).

Since we know that access hops are shared, we can reduce the measurements that need to be made by

clustering nodes together which share the same access segments to the rest of the nodes in the network. Once we

have created these clusters, arepresentative nodein a cluster can measure theABin
Di

of all the nodes outside the

cluster. The other nodes in the group can measureABout
Sj

to theirrepresentative node. We can then use Equation

1.3 to infer the end-to-end AB between any two nodes. We propose three variants of this basic approach that offer

a trade-off between estimation accuracy and probing overhead—the most scalable variant incurs an overhead

only linear in complexity to the size of the overlay.

We evaluate our approaches on the PlanetLab infrastructure[Pla] by relying on the S3 monitoring ser-

vice [YSB+06]. Our evaluation shows that our approach can estimate AB with an estimation accuracy within

20% for a majority of the estimates—this significantly outperforms the accuracy of existing schemes.

1.7 Thesis Statement

In this dissertation, we demonstrate that:

1. It is possible to isolate and study the temporal and algorithmic aspects of AB estimation.

2. Contemporary implementations of system timers and interrupt coalescence can significantly impair the

performance of an otherwise sound AB estimation logic.

3. The timescale at which AB is measured significantly impacts both the accuracy and variability of AB

estimates.

13



4. ABETs based on the probe-rate model are more robust to traffic and path dynamics.

5. It is possible to design a scalable inference scheme, thathelps achieve desirable operating points on the

trade-off between accuracy and overhead, for collectivelymonitoring the AB on all paths in a distributed

overlay network.

1.8 Summary of Contributions

The major contributions of this thesis can be summarized as follows:

• We conduct thefirst comprehensive black-box evaluation of a large suite of prominent AB estimation

tools on a high-speed network. In this evaluation, we also illustrate the impact that technological and

implementation limitations can have on the performance of ABETs .

• We conduct thefirst comprehensive evaluation of AB estimation algorithms, independent of systemic and

implementation biases. In this evaluation, we also illustrate the impact temporal factor such as measure-

ment timescales have on the observed relative performance of ABETs .

• We demonstrate that temporal properties can significantly impact the AB estimation process. We redesign

the interfaces of existing ABETs to allow temporal parameters to be explicitly specified and controlled.

• We design AB inference schemes which can be used to scalably and collaboratively infer the AB for a

large set of end-to-end paths. These schemes allow an operator to select the desired operating point in

the trade-off between accuracy and overhead of AB estimation. We further demonstrate that in order to

monitor the AB on all paths of a network we do not need access toper-hop AB estimates and can simply

rely on end-to-end AB estimates.

1.9 Roadmap

The remainder of this thesis is organized as follows. In Chapter 2 we will discuss related work in the field of

AB estimation. Chapter 3 will describe our black-box evaluation of ABET tool implementations on a high-speed

network. Chapter 4 will describe our study of the impact of temporal factors on the process of AB estimation.

Chapter 5 describes the algorithmic evaluation of prominent ABET designs. Chapter 6 describes the design of

14



our scalable AB monitoring approach in an overlay network. We conclude with Chapter 7 by outlining future

work and our conclusions.

1.10 Notations

In the rest of this dissertation, we will rely on the following notations.

Notation Expansion
AB Available Bandwidth
ABET Available Bandwidth Estimation Tool
CT Cross-traffic
CDF Cumulative Distribution Function
MT Measurement time scale
SI Sampling Intensity
SNMP Simple Network Management Protocol
RT Run-Time
RTT Round Trip Time
SABI Scalable Available Bandwidth Inference
TCP Transport Control Protocol
IAT Inter-Arrival Time
GigE Gigabit Ethernet
Mb/s or Mbps Megabits per second
Gb/s or Gbps Gigabit per second
OC-48 Optical Carrier (2.5 Gb/s) link
NIC Network Interface Card

Table 1.2: Table of notations

15



CHAPTER 2
Design of Bandwidth estimation tools

The area of AB estimation has been an active area of research for the past few years. In this chapter we summarize

related work that studies several aspects of the AB estimation problem. We first examine techniques that were

developed to estimate the bottleneck capacity on an end-to-end path. We next discuss tools for estimating end-

to-end AB. Next we examine past evaluations of AB estimationtools as well as formal analysis geared towards

better understanding the performance parameters of AB estimation tools. Finally we examine methodologies

that have been proposed to efficiently monitor large overlaynetworks.

2.1 Background

We start with some definitions and observations that will be used in this chapter.

End-to-end Bottleneck Capacity The transmission capacity of a link refers to the speed at which data can

be transmitted on the link. If the transmission capacity of alink is 1 Mbps, then it follows that the maximum

amount of data that can be transmitted on the link in a single second is106 bits. Alternatively, the time taken to

transmit a single bit is 1µs.

Given an Internet path consisting of several links, the end-to-endbottleneck capacityrefers to the minimum

of the transmission capacities of all the constituent linksof the path. Formally, if the path consists ofn links and

Ci is the transmission capacity of theith link, then the bottleneck capacity of the path is defined as:

min
1≤i≤n

{Ci} (2.1)

For example, in Figure 2.1, the bottleneck capacity is 100Mbps. The link with the least transmission capacity

(the second link in Figure 2.1) is commonly referred to as thenarrow link of the path [JD02a].



Figure 2.1: Illustration of an Internet path

End-to-end Available Bandwidth The end-to-end AB was formally defined in Section 1.2.1. Informally, it

represents the minimum of the spare bandwidth available over all links of a path. The link with the least amount

of spare bandwidth is commonly referred to as thetight link [JD02a].

In Figure 2.1, the end-to-end available bandwidth is 50 Mbpsand the first link is the narrow link. In this

example, the tight and narrow links are different.

Multi-homing in Access Networks At this point it would be prudent to make some observations about the

structure of the Internet (Figure 2.2). The Internet is organized in a hierarchical structure of tiered Internet

Service Providers (ISPs), that cooperate with each other based on either a customer-subscriber model or a peer-

to-peer model, in order to transfer data between two end nodes. Tier-1 [tie] service providers operate large

networks and provide long haul connectivity over large geographical areas—contemporary examples include

Verizon, Sprint, and AT&T. Tier-1 service providers typically have peering relationships with one another which

allows them to exchange data on a no-cost basis with each other. One layer below in the hierarchy are tier-2

service providers, which are predominantly regional in geographical scope. Such providers may have peering

relationships with other tier-2 service providers, but also have customer-provider relationships with tier-1 ISPs

in order to use the latter to send or receive customer data. Finally, tier-3 ISPs interact with other providers almost

exclusively based on the customer-provider model. Since tier-3 networks are often used to provide Internet

access to customers, we also refer to these asaccess networks.

Tier-3 ISPs can be multi-homed, which means that they can connect to more than one tier-2 or tier-1 ISPs. A

recent analysis of Internet paths suggests that multi-homing is on the rise in the Internet [AMS+03]. As a result

of multi-homing, there are several potential paths that canbe taken in order to reach a single destination. Thus,

it is becoming increasingly possible for an ISP to make a decision regarding a path that will be best suited for an

application based on the applications requirements—information about end-to-end AB on each candidate path

17



Figure 2.2: Internet Architecture

would be useful in making such decisions.

2.2 Capacity estimation tools

A seminal paper in the area of per-link capacity estimation was by Van Jacobson who proposed a tool called

Pathchar[Jac]. Pathchar estimates per-hop capacity by using the Variable Packet Size (VPS) probing methodol-

ogy, that relies on using probe packets of different sizes toestimate the capacity of every hop along a path. Let

us consider a path withK hops, and assume that the capacity of theith link is Ci bits per second (bps)—thus,

the time taken to transmit a packet of size L bits on theith link will be L
Ci

seconds. Now, the time taken for a

L-bit packet to travel from the sender to theith hop and back can be expressed as:

Ti(L) =
i

∑

k=1

(
L

Ci

+ Queuingfwd + Propagationfwd + Queuingrev + Propagationrev +
L

Ci

) (2.2)

whereQueuingfwd and Queuingrev are the delays experienced by waiting in the queue of theith link on

the forward and reverse paths, respectively.Propagationfwd andPropagationrev is the propagation delay in

18



either direction of link i. Finally,L
Ci

is the time taken to transmit the packet on the link.

Most per-hop capacity estimation tools rely on a time-to-live (TTL) limiting mechanism. Every packet sent

on the Internet has a TTL field that is initialized by the sender. At every router that the packet traverses, this TTL

field is decremented by one. If a router receives a packet where the TTL is zero, it discards the packet—most

routers also send an Internet Control Message Protocol (ICMP) packet, which is typically 64 bytes, back to the

sender. Thus if we limit the TTL of a packet toi, then we can force theith router to send back a constant size

ICMP message to the sender—this mechanism can yield the information needed to computeTi(L). So the above

equation now becomes:

Ti(L) =

i
∑

k=1

(
L

Ci

+ Queuingfwd + Propagationfwd + Queuingrev + Propagationrev +
Licmp

Ci

) (2.3)

Now if we send a large number of probe packets to hopi, we would expect that the packet with the lowestTi(L)

would experience no queuing delay in the forward and the reverse path. From this, Equation 2.3 can be simplified

as:

Ti(L) =
i

∑

k=1

(
L

Ci

+ Propagationfwd + Propagationrev + i
Licmp

Ci

) (2.4)

Now since thePropagationfwd, Propagationrev, andLicmp are constants, Equation 2.4 reduces to:

Ti(L) = K +

i
∑

k=1

(
L

Ci

) (2.5)

whereK = Propagationfwd+Propagationrev +
Licmp

Ci
. The equation now has the formF (L) = K+Mi ∗L,

whereMi is
∑i

k=1
1

Ci
andF (L) is Ti(L). Now if we were to measureMi by using packets of different sizes,

thenCi = 1
Mi+1−Mi

.

Using the above relation, the capacity of all the hops of a path can be measured. Mah et. al. [Mah00] designed

an improvement for Pathchar, which used linear regression to better estimate the values ofMi. Downey[Dow99]

designed a tool called Clink, which operates on the same principle as Pathchar, which is also robust to routing

instability. Prasad et. al. [PDM02] analyzed the working ofthe VPS methodology and found that this technique

is prone to under estimating the capacity of links which haveLayer-2 store and forward devices as a part of a

link. This error however is localized to the links which havethe layer-2 devices and does not propagate causing

errors in links after the layer-2 link. Dovrolis et. al. [Dov01] designed a tool which could measure the end-to-end

capacity of an Internet path. Pathrate uses variable sized packets, which are sent back-to-back from the sender in

19



order to estimate the capacity of the end-to-end path. The principle behind this approach is that two packets sent

back-to-back will arrive at receiver with a spacing betweenthem which is proportional to the capacity of the path

between them. This spacing between the packets is referred to as thedispersionof the packet-train. Formally

specified, the dispersion is defined as followsTdisp = L
Cend−to−end

. Pathrate uses a system of creating histogram

and studying the most frequently occurring modes in the histogram in order to estimate the value ofTdisp and

then compute the end-to-end capacity.

We next discuss tool that were designed for estimating the available bandwidth (versus bottleneck capacity)

on an Internet path or link.

Tool Probe Stream Inference Metric
Pathload [JD02b] Equi-Spaced Train One-way Delay
Pathchirp [Rib03] Exponential spacing Dispersion
Spruce [SKK03a] Packet-Pair Dispersion
Abing [Nav03] Packet-Pair Dispersion

IGI [HS03] Packet Train Dispersion
Iperf [ipe] TCP-Stream Throughput

Cprobe [CC96a] Packet Train Receiving Rate

Table 2.1: Available Bandwidth Estimation Tools

2.3 AB Estimation Tools

2.3.1 End-to-End AB estimation tools

Table 2.1 lists some prominent AB estimation tools. All AB estimation tools work under the same underlying

principle which involves sending probe packets at well defined and known intervals on an Internet path, such

that they temporarily induce a load on the path. This load will cause the existing cross traffic on the path to

be interspersed by the probe packets. When these probe packets reach the other end of the path (receiver),

the receiver studies how the intervals between the probe packets has changed and compares these intervals to

the known intervals between the probe packets when the probepackets were initially sent. Using empirical or

analytic techniques, the AB of the end-to-end path can then be computed. We will discuss the details of some of

the prominent tools next.

• Pathload[JD02b] reports the AB using two thresholds, theupperrange andlowerrange AB, which repre-

sents the range of AB values observed during the tool run. Pathload starts by initializing thelowerrange

20



to be 0 and theupperrange to be the capacity of the end-to-end path. It then sends out a stream at an initial

guess of the AB. The one-way delay in the stream is analyzed tostudy if this stream rate was greater than

or less than the AB. If the AB is exceeded theupperrange is set to the current sending rate of the stream.

If the AB is not exceeded, thelowerrange is set to the current sending rate. The rate of the next stream

is then determined by using the relationupperrange+lowerrange

2 . This process continues iteratively, till the

difference between theupperrange and thelowerrange becomes less than a certain threshold. At this point

the currentupperrange andlowerrange are reported as the AB.

• PathChirp [RRB+03] uses an exponentially spaced packet train to estimate the AB. It uses a parameter

called the spread factor, which defines the exponent of the Chirp train. For instance if the spread factor is

2, a 5 packet Chirp would send the first two packet spaced at 1 Mbps, the third at 2 Mbps, the fourth at

4 Mbps and the fifth at 8 Mbps. The Chirp is analyzed at the receiver end to study at which rates in the

Chirp the sending rate was greater than the receiving rate. The principle being that since a Chirp covers

a wide range of rates, the rates after which the AB is exceededwill be characterized by the sending rate

being greater that the receiving rate. Thus we can infer the AB of an end-to-end path by observing these

points of change. Multiple chirps are used in order to improve the confidence of the estimates.

• IGI/PTR [HS03] sends a train of back-to-back packets to the receiverwhich is used to estimate the path

capacity. It then uses the path capacity as its first sending rate to the receiver. The gaps at the source

and the gaps at the destination are compared to infer if the current sending rate was greater than the AB

. If so the current sending rate is reduced by a constant decrease factor that can be specified during the

tool run, and this process is continued till the point where the receiver reports that the source gaps and

the destination gaps are equal. It is at this point that IGI and PTR differ. IGI estimates the cross-traffic

rate using the difference in the gap values. It then subtracts this estimate of the cross-traffic rate from the

bottleneck link capacity to infer the end-to-end availablebandwidth. PTR on the other hand compute the

average receiving rate of the stream and infers that as the ABof the path.

• Abing[Nav03] and Spruce[SKK03b] use a packet-pair based technique to estimate the AB. The sender

sends two packet spacedδin = S
C

seconds apart; where S is the packet size and C is the link capacity. The

receiver then observes the spacing between the packets whenit arrives at the receiver and computes the

dispersion in order to compute the AB by using the following relationAB = C × (1 − δout−δin

δin
). Where

δout is the spacing in the packet-pair when it reaches the receiver. While Spruce spaces its packet-pairs

21



using a Poisson process, Abing sends packet-pairs periodically.

• Iperf [ipe] is a standard benchmarking and monitoring tool. It canbe used to compute the throughput of a

path by actually running a TCP connection on the path. While it has been shown that the TCP throughput

of an end-to-end path is not the same as the AB [DJ03], Iperf continues to be a popular choice among

network operators for measuring the AB.

• Abget[DMA +06] and QuickProbe[KV06] are variants of the Pathload tool. Abget uses a TCP connec-

tion to measure the AB down-stream AB on a path by controllingthe acknowledgments that the client

receives in order to control the rate at which the server sends data. This method of controlling the rate of

an incoming packet stream is then used to implement the Pathload logic and the inference is carried out in

the same manner as described above. QuickProbe another variant of Pathload reduces the time-taken by

Pathload to make an inference by reducing the number of packets that are required to make an inference.

• Cprobe[CC96a] first finds the end-to-end capacity of a given path using another tool called Bprobe[CC96a].

It then sends a packet train at that rate to the destination host. The rate at which this stream is received at

the other end of the path is inferred to be the AB.

Most ABET designs as observed above focus on the construction of the probe-streams and the logic used to

estimate the AB from the observed delays. However, these tool designs ignore two central temporal quantities

related to the measurement of the AB process: the MT and the SI. Thus it is important to redesign the ABET

interfaces to allow the choice of MT and SI, and study the impact of these on ABET performance.

In this thesis in order to study the impact that the observation time-scale and the sampling frequency have

on the accuracy of the tool, we redesign the tool interfaces such that we can set the observation time-scale and

sampling frequency. We can then evaluate the tools under thesame conditions and compare their performance.

2.3.2 Per-hop AB estimation tools

In the recent past another class of AB estimation tools have been proposed which measure the AB on every hop

of a path. Two prominent tools in this domain are Pathneck andStab.

Stab[RRB04] works on a principle similar to PathChirp. However here every packet in PathChirp is repre-

sented as a two packet combination in Stab which we will referto as a Measurement Pair(MP). The first packet

is a TTL limited load packetwhich has a large size and the second packet is a small packet which is considered

22



to be ameasurement packet. In order to measure the AB up-to theith hop on a path, the load packets have in

every packet-pair have their TTL set toi. The MP train is sent in exactly the same manner as PathChirp.The

intuition behind this approach is that the load packets willcreate the excursion patterns at any given hop, which

will also be reflected in the small-sized measurement packet, since the measurement packets will always queue

up behind the the load packets. When a MP reaches theith hop, all the load packets will be dropped (because

they are TTL limited), and the measurement packet which reflect the spacing of the load packets when they were

dropped will carry on to the receiver. The receiver can inferthe AB of theith hop using the same inference logic

as PathChirp. This procedure is done for every hop, to get a per-hop estimate of the AB .

Pathneck[Li05] uses a stream construction called a Recursive PacketTrain (RPT). A recursive packet train

consists of two components (i) A Load Train and (ii) A Measurement Train. A single RPT is constructed as

follows the firstk packets are TTL limited measurement packets with small sizeand are sent back-to-back. The

nextL packets are large load packets, which are sent at a rate specified by the IGI/PTR algorithm. The finalk

packets are also TTL limited load packets. The first and last measurement packet have a TTL of 1, the second

and second last measurement packet have a TTL of 2 and so on forall the k measurement packets. In the case

of Pathneck is set to 30 and L is set to 70, though these are parameters and can be varied. The intuition behind

Pathneck working is as follows. As the RPT traverses the path, at each successive hop the first and the last

packet of the RPT will be dropped and a TTL expired message will be sent back to the receiver. By observing

the dispersions of the TTL limited packets, the amount of time the load packets were queued at a particular hop

can be computed, which using IGI/PTR inference logic can give us information about the AB on a given hop.

In this thesis we show that scalable approaches to monitoring the AB in a network can be done using end-to-

end AB estimation tools. We show that other approaches[HS05] which require per-hop AB information are less

accurate than our method and also do not perform as well as existing end-to-end AB estimation tools.

2.3.3 Implementation techniques to achieve high time-stamping accuracy

In current high-speed networks, variations in end-to-end delays may have an order of magnitude in the sub-

millisecond range. Since most ABETs rely on measuring delayvariations, high resolution and accuracy in

time-stamping probe packets is crucial for ensuring the accuracy of the inferred AB. Current PC platforms,

however, are incapable of guaranteeing high time resolution due to multi-tasking and the use of mechanisms

such as interrupt coalescence [JD02b]. This issue has also been studied in [Pax97] where the authors derive that

if a system has a clock granularity ofCr and the system sends packet of sizeB bytes, then this system will be

23



Figure 2.3: Impact of Interrupt Coalescence. (Graph from [PJD04])

unable to make a distinction between packet-pairs sent at rate B
Cr

and∞. Most tool implementers work around

this limitation using two techniques [JD02b, Rib03, SKK03a]: (i) they rely on OS support for detecting and

discarding probe streams that appear to not have been time-stamped accurately; and (ii) they collect observations

from several probe streams before converging on a robust estimate of AB. While such implementation techniques

do not differ much across current ABETs, these do impact toolperformance significantly [AMPR03, JT03]. It

is important to note that the above techniques are highly technology-specific. As technology improves [PV02a],

the impact of these techniques on ABET performance is likelyto diminish.

Existing tools differ in the efficiency with which such systemic biases are handled. For instance in [PJD04]

the authors propose a technique which can be used to detect interrupt coalescence. They propose that the graph

of the one-way delays of a large stream of packets being affected by interrupt coalescence would look like an

increasing saw-tooth function when it was received at the destination machine. Figure 2.3 taken from [PJD04]

illustrates this effect. This is because packets will be buffered at the card till an interrupt timer expires and all

the buffered packets will be delivered back-to-back to the kernel and then the application. In such a scenario,

only the last packet of every burst should be considered since it has the most current timing information and has

suffered from the least buffering at the NIC.

The above technique requires multiple packets to be sent in order to reliably detect interrupt coalescence.

However, not all existing ABET tools have been designed withthis consideration in mind and as a result many

24



tools suffer from biases introduced by interrupt coalescence. In this thesis, we evaluate some prominent AB

estimation tools in an environment where systemic effects like interrupt coalescence could come into play. We

then study how the ABETs could be impacted by these effects and correlate our findings to other studies which

have focused specifically on these issues.

2.4 Tool Evaluation

Several tool proponents compare the performance of their tools against that of others under controlled lab set-

tings as well as in Internet-wide experiments [HS03, Rib03,SKK03a]. Ribeiro et. al. [Rib03] compare the

performance of PathChirp to that of Pathload [JD02b] and TOPP [MBG00] in an emulated lab setting. They

find that PathChirp is more accurate than TOPP and less intrusive than Pathload. Hu et. al. [HS03] compare

the performance of IGI/PTR to that of Pathload and Iperf on 13Internet paths of capacity within 100 Mbps.

They observe that while the readings of the three tools matchon some paths, they fluctuate on other. Since the

actual AB of these paths were not known, tool accuracy was notverified. Strauss et. al. [SKK03a] compare

the performance of Spruce to that of Pathload and IGI. They use SNMP data collected at five minute intervals

to evaluate the accuracy of these tools on two 100 Mbps paths.They also compare the sensitivity of the tools

to changes in AB by performing several experiments on the RONtestbed. They find that IGI is inaccurate at

high loads, and Spruce is more accurate and less intrusive than Pathload. Coccetti et. al. [CP02] evaluate early

ABETs, including Iperf and Pathload, on a low speed (less than 4 Mbps) 4-5 hop topology with and without

cross-traffic. They conclude that tool results strongly depend on configuration of the router queues and that a

considerable amount of care would need to be taken while interpreting the results from any ABET, especially if

QoS features were present in the network. In [LRL04], the authors analyze at large time-scales, the performance

of several bandwidth estimators that can be represented mathematically. Unfortunately, their evaluation consid-

ers only low-bandwidth paths with a single bottleneck link.Furthermore, several iterative estimators cannot be

represented using their formulation.

Unfortunately, such studies are not comprehensive in either the tools or the settings evaluated. All of the

studies described above evaluate only a small (and different) sub-set of ABETs, depending on which ones were

popular when the corresponding tool was proposed. Furthermore, these evaluations include only simple network

and traffic scenarios—for instance, none of the above evaluate tool performance against responsive cross-traffic,

25



in high-speed networks, or when the tight and narrow links are different.1 As a result of these practices, the

results are often not comprehensive and get inadvertently biased toward highlighting the salient features of the

proposed tool.

As listed in Section 1, there are a wide variety of factors that could impact the accuracy and performance

parameters of an ABET. Unfortunately there areno evaluation studiesthat systematicallyevaluate all the param-

etersthat can influence the performance of a given ABET.Furthermore no evaluations take into consideration

the temporal aspect of the process of AB estimation and the impact that it could have on the tools accuracy.

To summarize, existing ABET evaluations are either biased by limitations of current implementation technology

and/or are not comprehensive in evaluating tools against diverse network,probing, systemic and temporal condi-

tions. In this thesis we study the factors that can affect the performance of an ABET and systematically quantify

the impact that they have on the performance parameters of ABETs.

2.5 Formal analysis of AB estimation tools

In order to better understand the performance bounds of AB estimation tools, there have also been several efforts

to quantify the biases and the errors that can be observed by the various AB tools and techniques.

In [LRLL04] the authors analyze the performance of AB estimation tools on a single-hop path. They assume

a simple FIFO model of queuing and derive the ”Response Curve” of an input probe that is used to estimate

the AB . The response curve is the function that relates the input gaps to the output gap on a single-hop path

as a function of the cross-traffic intensity and link capacity that is present on that path. The authors derive an

expression which given an input gap,cross-traffic intensity, probe packet size and link capacity can define bounds

for the expected gap values. The difference between the actual output gap response curve and the theoretical

lower bound of the response curve is defined as the probing bias, which directly relates to the amount by which

the cross-traffic process is being changed because of the external probes that we are introducing into the network.

The authors also conclude that using a longer probing packettrain or larger packet sizes, would reduce the

probing bias.

In [LRL05] the authors extend the single-hop model into the more general case model of a multi-hop path

and formulate a ”Response Curve” for a multi-hop path using afluid cross-traffic model. They conclude, that

the for a multi-hop path, that the relation between the inputand output gap (Response Curve) is a continuous

1Thetight link of a path is one with the least amount of available bandwidth, while thenarrow link is the one with the least transmission
capacity [JD02b]. The tight link of a path may not be the same as the narrow link if it carries significant amount of traffic load.

26



piecewise linear function. The first point of slope change isanalytically shown to be the point at which the AB

of the path is obtained. They then extend the fluid-cross traffic model to a more realistic cross-traffic model and

show that the response curve for the realistic cross-trafficmodel is lower bounded by the its fluid counterpart.

They also analytically show that as the packet size or the packet train length approaches infinity, the bias terms

approaches 0. That is theoretically we can obtain perfect knowledge of the AB if we can send arbitrarily large

packets or arbitrarily long packet trains.

In [LFV07b] the authors model an end-to-end path and an AB estimator on that path as a min-plus system, in

the context of network calculus. The primary assertion behind this approach is that it is possible to completely

describe a min-plus system by using only its impulse response. An impulse response of a system is the response

of a system when the input to the system is the burst function,which in the context of AB estimation is a probe

stream which has an instantaneous rate of infinity Mbps. Thisimpulse response is also defined as the service

curve of the system. Thus the objective of the Min-plus analysis is that given an arrival function and a departure

function which can be obtained by observations, can we obtain the service curve of the end-to-end path (Min-plus

system). The authors show analytically that it is not possible to get the exact service curve, and therefore derive

an expression to find the service curve which maximally lowerbounds the actual service curve. The authors then

show how this formulation can be used in passive monitoring,rate scanning and Chirps to obtain a lower bound

on the service curve and hence infer the AB on that path.

In [LDS06] the authors analytically study the performance of AB estimation tools, specifically the perfor-

mance of the packet-pair techniques. They show that even in the case where there is a single bottleneck link

and the situation where the narrow link and the tight-link are the same there are situations where the packet-pair

technique will result in an underestimation of the AB. In thecase of path-persistent (Refer to Figure 2.5) cross-

traffic the estimator that is used in the packet-pair method can accurately measure the AB. However in situations

where the cross-traffic is not path-persistent, the packet-pair estimator will always underestimate the AB when

the sending rate is greater than the AB.

In this thesis we empirically study the issues of bias that are introduced by varying network conditions and

cross-traffic interaction models in ABETs and verify many ofthe observations made in the theoretical models

proposed above.

27



Figure 2.4: Illustration of Path-Persistent and Non-Path persistent traffic patterns

2.6 Efficient Network Monitoring

Recent work has addressed the issue of monitoring of all links of a given network in a scalable manner. Most

approaches rely on the observation that many end-to-end paths in a network share several links—this redundancy

can be exploited to drastically reduce the number of end-nodes used for probing links as well as the number of

probes sent by these. The reduction problem has been modeledby many as a vertex-cover problem. [BCG+01]

optimizes the number of SNMP probes that need to be sent to NetFlow-enabled routers to query for the link

utilization and the latency. The authors provide a generic heuristic algorithm, which produces a near optimal

set of links that need to be monitored. [KK06] optimizes the problem of beacon placement in the presence of

dynamic IP routes, such that each link of a give network can bedeterministically monitored for link failures and

delays, while placing a minimum number of probing beacons. [CKC05] measure the delay and loss efficiently

by using a linear-algebraic approach for selecting a subsetof links, and then inferring the network properties

from this subset. [SQZ06] uses a Bayesian network based approach to monitor the delay, capacity and loss in an

efficient manner.

Unfortunately, the problem of scalable monitoring of end-to-end AB in an overlay has not been well-

addressed. The only existing scheme, Broute [HS05] uses theintuition of shared access hops and the fact that

bottlenecks lie close to the edges uses special nodes referred to as landmarks as well as a per-hop AB estimation

28



tool in order to monitor the all-pairs AB in a scalable manner. The algorithm relies on a series of landmark nodes

to which Pathneck[HLM+04]; a tool to locate the bottleneck on an Internet path; is run. Pathneck also provides

lower bounds on the per-hop AB. Every node monitors the per-hop AB on its ingress and egress links to a series

of landmark nodes. When the AB between any two nodes is required the system will take the minimum of the

AB at the sources egress links and the destinations ingress link and infer the end-to-end AB as the minimum of

those two ABs. Evaluation of this scheme demonstrated that the AB estimation accuracy is less than 50% for

80% of the cases.In this thesis we design a scalable AB monitoring infrastructure, which reduces the number of

measurements and shows better inference accuracy than previously proposed schemes.

2.7 Network aware application designs

There are many applications that make network aware decisions. For instance the Resilient Overlay Network

(RON) [ABKM01] monitors the delay and bandwidth on its networks and is able to provide delay or loss op-

timized paths as required. Multimedia applications like [NN98] also rely on the delay information in order to

construct their multi-cast routing tree. The knowledge of the delay is also useful in web caching [WY00] where

the latency is used a metric to decide where a some content should be cached. The objective of this system is to

cache data at geographically proximate locations, such that requests can be responded to with minimum delay.

Peer-to-Peer like Bit-torrent [Bit] can also make intelligent choices about peers as studied in [Qur04]. Despite

there being many potential AB aware applications, it is not clear what the performance gains would be on using

an AB aware application.

There has also been some focus on designing applications which use the knowledge of AB. For instance

SOBAS[DPJ04] relies on using the knowledge of the AB in orderto adaptively set its socket buffer size, so

as to optimize the performance of a transport protocol. Thisscheme works by probing for the AB and setting

the socket buffer to the corresponding size. This scheme is particularly useful in high bandwidth networks,

where congestion windows can become very large and exceeding the congestion window could cause a large

number of packet drops. The scheme proposed helps maintain the congestion window to a level where there

are very few packet drops. Dovrolis et al [ZDA06] also studied the performance of a scheme which could

do bandwidth adaptive routing. The authors study the performance difference between doing proactive and

reactive routing using the knowledge of the AB. However the authors do not address how they would obtain

complete bandwidth information to implement this scheme. [TUAK04] utilizes the information about the AB

29



and the capacity to determine what the output rate of the streaming protocol should be. As can be observed there

are several potential applications that could benefit from the knowledge of the AB. However there is no clear

quantification as to what performance improvements could beobtained by using an AB aware application.In

this thesis we design an infrastructure that can monitor theAB of a network, which would give the above listed

applications access to the AB information aiding them in making better network aware decisions.

30



CHAPTER 3
Evaluation of ABET implementations

We begin our series of evaluations by first evaluating publicly-available implementations of ABETs—in this first

study, we treat each of these tools as a black-box and evaluate the default design choices along the algorithmic,

implementation-related, and sampling-related temporal dimensions. A major focus of our analysis in this chapter

is to understand the extent to which systemic issues and implementation efficiencies impact tool performance—

the impact of temporal and algorithmic factors is studied insubsequent chapters.

ABETs face increasingly difficult measurement challenges as link speeds increase. Consider the issue of

time precision: on faster links, time-gaps between packetsdecrease, rendering packet probe measurements more

sensitive to timing errors. Available bandwidth measurements on high-speed links stress the limits of clock

precision especially since additional timing errors may arise due to the NIC itself, the operating system, or the

Network Time Protocol (designed to synchronize clocks of computers over a network) [PV02b]. Additionally,

mechanisms such as interrupt coalescence that are used to improve network packet processing efficiency, mislead

end-to-end tools that assume uniform per-packet processing and timing [PJD04].

On the other hand, ABETs are being increasingly deployed in high-speed network settings such as the Net-

work Weather Service [Wol98] and the TeraGrid [Ter] infrastructure. Since the systemic issues mentioned above

play a greater role in high-speed networks, it is critical todevelop an understanding of the performance of promi-

nent ABETs in such environments. Unfortunately, as described in Chapter 2, most past evaluations of ABETs

have been restricted to paths with capacities of 100 Mbps or less—furthermore, these evaluations are often not

comprehensive in the set of tools evaluated.

In this chapter we describe a comprehensive evaluation of ABETs in a high-speed network testbeds—to the

best of our knowledge, this is thefirst such evaluation presented in the literature. We show that a comparative

performance evaluation of various ABET implementations isinadvertently biased against certain tools since their

performance is adversely impacted by interrupt coalescence and buffer size limitations (systemic biases) along

with the inability of certain tool designs to detect these effects (implementation biases). We also run these tools

on Internet paths and observe that the tools display similarperformance characteristics to what we observed



in the test-bed setting. This implies that the results we obtain here are generalizable to the performance of the

ABETs in actual deployments. It also presents strong motivations for designing and testing ABETs in high-speed

testbeds similar to the one that we will describe in this chapter before deploying them on live systems.

3.1 Background: Interrupt Coalescence and network measurements

We first discuss how interrupt coalescence can impact network measurement and specifically AB estimation.

Jain et. al. [PJD04] have conducted an in-depth analysis of this issue. Recall from Chapter 2 that AB estimation

tools send a series of probe packets with a controlled and pre-determined spacing between them on the path of

interest, and the receiver studies changes in the inter-packet gaps in order to make an inference about the AB .

Clearly, ensuring high precision time-stamping and accurate spacing between the packets is critical for obtaining

an accurate estimate of the AB.

To put this in context, in order to achieve a data rate of 1 Gbps, a 1500 byte packet would have to be

transmitted (and received) every 12µs. On general-purpose machines, packet transmissions and receipt by

a network interface card (NIC) is handled by means of triggering interrupts—for instance, when a packet is

received, the current process running on the CPU is interrupted, context is saved, and the packet is processed

before returning the context to the original process. This processing and the associated context switch can be

fairly costly operations to perform. Modern systems, consequently, reduce the overhead by grouping together

packets that arrive close in time, and use a single interruptto trigger their processing. This process is known as

Interrupt coalescence (IC).

Unfortunately, since IC buffers packets arriving close together and uses a single interrupt to process all the

packets, any timing information between the packets is lost—all such packets appear to have arrived back-to-

back at the system. This can seriously limit the accuracy of AB estimation tools. There are no universal agreed

upon parameters to setup IC. The network card that we used in our experiments had three parameters, which

could be set. First, there is the maximum rate at which interrupts can be generated. Second, we can set the

minimum time between a packet arriving and an interrupt being generated, which controls the maximum time

a packet is queued at a device before it is acknowledged by thesystem. Finally, we can set the time between a

packet arriving and a new interrupt being generated, which controls the minimum time a packet will spend in the

queue. Using these parameters to control the IC can cause oneof two effects in a pair of packets. First, if both the

packets arrive between the interrupt intervals the two packets will be queued and acknowledged back-to-back

32



and will appear to have arrived with no spacing between them—this could causecompressionin the spacing

between the packets. The second situation is if the pairs of packets arrive with some spacing between them and

the first packet is acknowledged by an interrupt before the second packet arrives. This would cause the second

packet to stay in the queue for at least the minimum interruptgeneration delay, which willincreasethe delay

between the two packets. Thus, IC can distort the spacing between packets by increasing or decreasing it.

In [PJD04], the authors have proposed a scheme which can be used to detect IC and conduct AB estimation

even in the presence of IC. This technique relies on the fact that a train of packet impacted by IC will show a

saw-tooth like arrival process (as illustrated in Figure 2.3). The authors propose a heuristic to identify the spikes

and use only the first observation from each spike to make the estimates of the AB.

The above discussion highlights the fact that IC can have a significant impact on the process of AB estimation.

A part of our evaluation in this chapter, we illustrate the impact that IC can have on some AB estimation tools

and discuss why certain techniques are more sensitive to theeffects of IC on contemporary computers.

3.2 Methodology

From Table 2.1 we selected the following tools for this study: abing, pathchirp, pathload, andSpruce. For

comparison we also includedIperf [ipe] which measures achievable TCP throughput.Iperf is widely used for

end-to-end performance measurements and has become an unofficial standard [CL02] in the research networking

community.

We were unable to testcprobe[CC96a] because it only runs on an SGI Irix platform and we do not have one

in our testbed. We did not includenetest[Jin04] in this study since in our initial tests this tool inconsistently

reported different metrics on different runs and differentloads. We excludedpipechar[JYCA01] after tests

on 100 Mb/s paths andIGI [HS03] after tests on 1 Gbps paths since they were unresponsive to variations in

cross-traffic.

3.2.1 The high-speed testbed

In collaboration with the CalNGI Network Performance Reference Lab [San04], CAIDA researchers developed

an isolated high-speed testbed that can be used as a reference center for testing bandwidth estimation tools. This

resource allows us to test bandwidth estimation tools against known and reproducible cross-traffic scenarios and

to look deeply into internal details of tools operation.

33



Juniper 
Foundry 
   Big Iron

SmartFlow 

Application

end host

Spirent Communication 

Smartbits 6000B for 

cross-traffic generation

Cisco 12008

NetOptics Tap

end host

OC 48 POS

1Gb Ethernet

SmartBits cross-traffic 

tool traffic generation

tcpreplay cross-traffic

end host
end host

gigE switch

NeTraMet &
CoralReef

gigE switch

passive monitor

Figure 3.1: Bandwidth Estimation Testbed.

In the testbed configuration (Figure 3.2.1), all end hosts are connected to switches capable of handling jumbo

MTUs (9000 B). Three routers in the testbed end-to-end path are each from a different manufacturer. Routers

were configured with two separate network domains (both within private RFC1918 space) that route all packets

across a single backbone. An OC48 link connects a Juniper M20router with a Cisco GSR 12008 router, and a

GigE link connects the Cisco with a Foundry BigIron 10 router. We use jumbo MTUs (9000 B) throughout our

OC48/GigE configuration in order to support traffic flow at full line speed [Jor04].

Bandwidth estimation tools run on two designated end hosts each equipped with a 1.8 GHz Xeon processor,

512 MB memory, and an Intel PRO/1000 GigE NIC card installed on a 64b PCI-X 133 MHz bus. The operating

system is the CAIDA reference FreeBSD version 4.8.

The laboratory setup also includes dedicated hosts that runCoralReef[KMK +01] andNeTraMet[Bro04]

passive monitor software for independent verification of tool and cross-traffic levels and characteristics. Endace

DAG 4.3 network monitoring interface cards on these hosts tap the OC-48 and GigE links under load.CoralReef

can either analyze flow characteristics and packet IATs in real time or capture header data for subsequent analysis.

TheNeTraMetpassive RTFM meter can collect packet size and IAT distributions in real time, separating tool

traffic from cross-traffic.

3.2.2 Methods of generating Cross-traffic

The algorithms used by bandwidth estimating tools make assumptions about characteristics of the underlying

cross-traffic. When these assumptions do not apply, tools cannot perform correctly. Therefore, test traffic must

34



be as realistic as possible with respect to its packet IAT andsize distributions.

In our study we conducted two series of laboratory tool testsusing two different methods of cross-traffic

generation. These methods are described below.

Synthetic Cross-traffic Spirent Communications SmartBits 6000B [Spi04a] is a hardware system for testing,

simulating and troubleshooting network infrastructure and performance. It uses the SpirentSmartFlow[Spi04b]

application that enables controlled traffic generation forL2/L3 and QoS laboratory testing. Using SmartBits

andSmartFlowwe can generate pseudo-random, yet reproducible traffic with accurately controlled load levels

and packet size distributions. This traffic generator models pseudo-random traffic flows where the user sets the

number of flows in the overall load and the number of bytes to send to a given port/flow before moving on to

the next one (burst size). The software also allows the user to define the L2 frame size for each component flow.

The resulting synthetic traffic emulates realistic protocol headers. However, it does not imitate TCP congestion

control and is not congestion-aware. In our experiments we varied traffic load level from 100 to 900 Mb/s which

corresponds to 10-90% of the narrow GigE link capacity. At each load level,SmartFlowgenerated nineteen

different flows. Each flow had a burst size of 1 and consisted ofeither 64, 576, 1510 or 8192 byte L2 frames.

The first three sizes correspond to the most common L2 frame sizes observed in real network traffic [NLA04].

We added the jumbo packet component because high-speed links must employ jumbo MTUs in order to push

traffic levels to line saturation. While [NLA04] data suggest a tri-modal distribution of small/medium/large

frames in approximately 60/20/20% proportions, we are not aware of equivalent published packet-size data for

links where jumbo MTUs are enabled. We mixed the frames of four sizes in equal proportions. Packet IATs

(Figure 3.2a) ranged from 4 to more than 400µs. We used passive monitorsCoralReefandNeTraMetto verify

the actual load level of generated traffic and found that it matched the requirements within 1-2%.

Playing Back Traces of Real Traffic We replayed previously captured and anonymized traffic traces on our

laboratory end-to-end path using a tooltcpreplay[Tur04]. This method of cross-traffic generation reproduces

actual IAT and packet size distributions but is not congestion-aware. The playback tool operated on two addi-

tional end hosts (separate from the end hosts running bandwidth estimation tools) and injected the cross-traffic

into the main end-to-end path via GigE switches.

We tested bandwidth estimation tools using two different traces as background cross-traffic:

• a 6-minute trace collected from a 1 Gbps backbone link of a large university with approximately 300-345

35



0.1 1 10 100 1000
tcpreplay Cross-traffic Packet Inter-arrival Times 

0

0.2

0.4

0.6

0.8

1

C
C

D
F

6 minute trace from a University backbone

(a) Smartbits IAT distribution (b) Trace-replay IAT distribution

Figure 3.2: CCDF of packet IAT distribution.

Mb/s of cross-traffic load;

• a 6-minute trace collected from a 2.5 Gbps backbone link of a major ISP showing approximately 100-200

Mb/s of cross-traffic load.

Neither trace contained any jumbo frames. Packet sizes exhibited a tri-modal distribution as in [NLA04].

Packet IATs (Figure 3.2b) ranged from 1 to 60µs. We used CoralReef to continuously measuretcpreplaycross-

traffic on the laboratory end-to-end path and recorded timestamps of packet arrivals and packet sizes. We con-

verted this information into timestamped bandwidth readings and compared them to concurrent tool estimates.

Both traces exhibited burstiness on microsecond time scales, but loads were fairly stable when aggregated over

one-second time intervals.

3.3 Evaluation Results

In this section we present tool measurements in laboratory tests using synthetic, non-congestion-aware cross-

traffic with controlled traffic load (SmartFlow) and captured traffic traces with realistic workload characteristics

(tcpreplay). In Section 3.4 we show results of experiments on real high-speed networks.

36



 0

 200

 400

 600

 800

 1000

 0  200  400  600  800  1000

M
ea

su
re

d 
A

B

Actual AB

Ideal
Abing
Iperf

Pathchirp
Pathload

Spruce

Figure 3.3: Comparison of /ab measurements on a 4-hop OC48/GigE with synthesized cross-traffic

Experiments with Synthesized Cross-traffic We used the SmartBits 6000B device with theSmartFlowappli-

cation to generate bi-directional traffic loads, varying from 10% to 90% of the 1 Gbps end-to-end path capacity

in 10% steps. We tested one tool at a time. In each experiment,the synthetic traffic load ran for six minutes.

To avoid any edge effects, we delayed starting the tool for several seconds after initiating cross-traffic and ran

the tool continuously for five minutes. Figure 3.3 shows the average and standard deviation of all available

bandwidth values obtained during these 5 minute intervals for each tool at each given load.

Our end-to-end path includes three different routers with different settings. To check whether the sequence

of routers in the path affects the tool measurements, we ran tests with synthesized cross-traffic in both directions.

We observed only minor differences between directions. Thevariations are within the accuracy range of the

tools and we suspect are due to different router buffer sizes.

We found thatabing(Figure 3.3) reports highly inaccurate results when available bandwidth drops below 600

Mb/s (60% on a GigE link). Note that this tool is currently deployed on the Internet End-to-End Performance

Monitoring (IEPM) measurement infrastructure [SLA04] where the MTU size is 1500 B, while our high-speed

test lab uses a jumbo 9000 B MTU. We attempted to changeabingsettings to work with its maximum 8160 B

probe packet size, but this change did not improve its accuracy.

We looked into further details ofabingoperating on an empty GigE path. The tool continuously sendsback-

to-back pairs of 1478 byte UDP packets with a 50 ms waiting interval between pairs.abingderives estimates of

available bandwidth from the amount of delay introduced by the ”network” between the paired packets.abing

37



puts a time stamp into each packet, and the returned packet carries a receiver time stamp. Computing the packet

IAT does not require clock synchronization since it is calculated as a difference between timestamps on the same

host. Since these timestamps have aµs granularity, the IAT computed from them is also an integer number of

µs. For back-to-back 1500 B packets on an empty 1 Gbps link (12 Kbits transmitted at 1 ns per bit) the IAT is

between 11 and 13µs, depending on rounding error. However, we observed that every 20-30 packets the IAT

becomes 244µs. This jump may be a consequence of interrupt coalescence ora delay in some intermediate

device such as a switch. The average IAT then changes to more than 20µs yielding a bit rate of less than 600

Mb/s. This observation explainsabing results: on an empty 1 Gbps tight link it reports two discretevalues

of available bandwidth, the more frequent one of 890-960 Mb/s and occasional drops to 490-550 Mb/s. This

oscillating behavior is clearly observed in time series ofabingmeasurements (Figure 3.4) described below.

Another tool,Spruce(Figure 3.3), uses a similar technique and, unsurprisingly, its results are impeded by the

same phenomenon.Sprucesends 14 back-to-back 1500 B UDP packet pairs with a waiting interval randomly

chosen between 160-1400 ms between pairs probes. InSprucemeasurements, 244µs gaps between packet pairs

occur randomly between normal 12µs gaps. Since the waiting time between pairs varies without pattern, the

reported available bandwidth also varies without pattern in the 300-990 Mb/s range.

Results of our experiments withabingandSpruceon high-speed links caution that tools utilizing packet pair

techniques must be aware of delay quantization possibly present in the studied network. Also, 1500-byte frames

and microsecond time stamp resolution are simply not sensitive enough for probing high-speed paths.

In SmartBits tests, estimates of available bandwidth bypathchirpare 10-20% higher than the actual value

determined from SmartBits settings (Figure 3.3). This consistent overestimation persists even when there is no

cross-traffic. On an empty 1 Gbps path this tool yields valuesup to 1100 Mb/s. The reason for this overestimation

is PathChirp’s exponentially spaced packet trains, which detects the AB only after it exceeds the existing AB on

the path.

We found that results ofpathloadwere the most accurate (Figure 3.3). The discrepancy between its readings

and actual available bandwidth was<10% in most cases.

The last tested tool,Iperf, estimates not the available bandwidth, but the achievableTCP throughput. We ran

Iperf with the maximum buffer size of 227 KB and found it to be accurate within 15% or better (Figure 4e).

Note that a smaller buffer size setting significantly reduces theIperf throughput. This observation appears to

contradict the usual rule of thumb that the optimal buffer size is the product of bandwidth and delay, which in

our case would be (109 b/s) x (10−4 s)∼ 12.5 KB. Dovroliset. al.discuss this phenomenon in [DPJ04].

38



Performance of Packet-pairs Spruce and Abing, both of which operate on the packet-pair methodology suffer

from the same problem of Interrupt Coalescence. In both cases, we observe that most packet-pairs show a queu-

ing delay of 11-13 microseconds regardless of the AB. This isindicative of the fact that any spacing between

the packet-pair that was introduced by cross-traffic is being lost when the packets are being buffered and ac-

knowledged using IC. At the other end of the spectrum we observe some packet pairs arriving with a dispersion

of approximately 250 microseconds which is indicative of the fact that some packet pairs are being split across

the boundaries of interrupts. [PJD04] have proposed a methodology which can be used to detect and perform

measurements AB in the presence of IC. However this methodology requires a long train of packets to be able to

reliably gain estimates around IC, which limits is applicability to packet-pair techniques. The difference in the

performance of abing and spruce are due to the fact that spruce uses a randomized algorithm to pick intervals be-

tween sending its packet pairs. Furthermore high-speed networks stress the limits of timer resolution and hence

AB measurements techniques that rely on being able to precisely measure the delay between two closely spaced

packets are likely to yield inaccurate estimates.

Experiments with Trace Playbacks The second series of laboratory tests used previously recorded traces of

real traffic. For these experiments we extracted six-minutesamples from longer traces to use as atcpreplay

source. As in SmartBits experiments, in order to avoid edge effects we delayed the tool start for a few seconds

after startingtcpreplayand ran each tool continuously for five minutes.

Figure 3.4 plots a time series of the actual available bandwidth, obtained by computing the throughput of the

trace at a one-second aggregation interval and subtractingthat from the link capacity of 1 Gbps. Time is measured

from the start of the trace. We then plot every value obtainedby a given tool at the time it was returned.

As described in Section 3.2.2, we performedtcpreplayexperiments with two different traces. We present

tool measurements of the University backbone trace, which produced the load of about 300 Mb/s leaving about

700 Mb/s of available bandwidth. The tool behavior when using the ISP trace with a load of about 100 Mb/s was

similar and is not shown here.

In tests with playback of real traces,abing andSpruceexhibit the same problems that plagued their per-

formance in experiments with synthetic cross-traffic. Figure 3.4d shows thatabing returned one of two values,

neither of which was close to the expected available bandwidth. Spruceresults (Figure 3.4c) continued to vary

without pattern. One difference in the performance of Spruce, is that spruce now on an average tends to underes-

timate rather than overestimate the AB . This points to the fact that more spruce packets are being dispersed by

39



(a) Pathchirp (b) Pathload

(c) Spruce (d) Abing

Figure 3.4: Comparison of ABET measurements on a 4-hop OC48/GigE path played back real traffic.

larger values, which could point to a switch on our network path, introducing an additional delay between our

probe packets.

pathchirpmeasurements (Figure 3.4a) had a startup period of about 70 swhen the tool returned only a

constant value. The length of this period is related to the tool’s measurement algorithm and depends on the

number of chirps and chirp packet size selected for the giventool run. After the startup phase,pathchirp’s values

alternate within 15-20% of the actual available bandwidth.

The range reported bypathload(Figure 3.4d) slightly underestimates the available bandwidth by<16%.

Iperf reports surprisingly low results when run againsttcpreplaytraffic (Figure 3.5e). Two factors are causing

this gross underestimation: packet drops requiring retransmission and a too long retransmission timeout of 1.2 s

(default value). In the experiment shown, the host runningIperf and the host runningtcpreplaywere connected

40



Figure 3.5: Performance of iperf on a 4-hop OC48/GigE path with played back real traffic.

to the main end-to-end path via a switch. We checked the switch’s MIB for discarded packets and discovered a

packet loss of about 1% when the tool and cross-traffic streams merge. Although the loss appears small, it causes

Iperf to halve its congestion window and triggers a significant number of retransmissions. The default retrans-

mission timeout is so large that it consumes up to 75% of theIperf running time. Decreasing the retransmission

timeout to 20 ms and/or connecting thetcpreplayhost directly to the path bypassing the switch considerablyim-

provesIperf ’s performance. Note that we were able to reproduce the degradedIperf performance in experiments

with synthetic SmartBits traffic when we flooded the path witha large number of small (64 B) packets. These

experiments confirm that ultimately the TCP performance in the face of packet loss strongly depends on the OS

retransmission timer.

3.3.1 Comparison of Tool Operational Characteristics

We considered several parameters that may potentially affect a user’s decision regarding which tool to use: mea-

surement time, intrusiveness, and overhead. We measured all these characteristics in experiments with SmartBits

synthetic traffic where we can stabilize and control the load. We define tool measurement time to be the average

measurement time of all runs at a particular load level. On our 4-hop OC-48/GigE topology, the observed mea-

surement durations were: 1.3 s forabing, 11 s forSpruce, 5.5 s forpathchirp, and 10 s forIperf independent of

load. Thepathloadmeasurement time generally increased when the available bandwidth decreased, and ranged

between 7 and 22 s.

We define tool intrusiveness as the ratio of the average tool traffic rate to the available bandwidth, and tool

overhead as the ratio of tool traffic rate to cross-traffic rate (Figure 3.3.1).pathchirp, abing, andSprucehave low

41



200 400 600 800
Actual Bandwidth (Mb/s)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

R
at

io
 o

f T
oo

l T
ra

ffi
c 

to
 C

ro
ss

-T
ra

ffi
c

Iperf
pathload
pathchirp
abing
Spruce

Figure 3.6: Tool overhead vs. available bandwidth.

overhead, each consuming less than 0.2% of the available bandwidth on the GigE link and introducing practically

no additional traffic into the network as they measure.pathloadintrusiveness is between 3 and 7%. Its overhead

slightly increases with the available bandwidth (that is, when the cross-traffic actually decreases) and reaches

30% for the 10% load. As expected,Iperf is the most expensive tool both in terms of its intrusiveness(74-79%)

and overhead costs. Since it attempts to occupy all available bandwidth, its traffic can easily exceed the existing

cross-traffic.

3.4 Real World Validation

Comparisons of bandwidth estimation tools have been criticized for their lack of validation in the real world.

Many factors impede if not prohibit comprehensive testing of tools on production networks. First, network

conditions and traffic levels are variable and usually beyond the experimenters’ control. This uncertainty prevents

unambiguous interpretation of experimental results and renders measurements unreproducible. Second, a danger

that tests may perturb or even disrupt the normal course of network operations makes network operators reluctant

to participate in any experiments. Only close cooperation between experimenters and operators can overcome

both obstacles.

42



We were able to complement our laboratory tests with two series of experiments in the real world. In both

setups, the paths we measured traversed exclusively academic, research and government networks.

Experiments on the Abilene Network We carried out the available bandwidth measurements on a 6 hop end-

to-end path from Sunnyvale to Atlanta on the Abilene Network. Both end machines had a 1 Gbps connection to

the network and sourced no traffic except from running our tools. The rest of links in the path had either 2.5 or

10 Gbps capacities. We ranpathload, pathchirp, abing, andIperf for 5 min each, in that order, back-to-back. We

concurrently polled the SNMP 64-bit InOctect counters for all routers along the path every 10 s and hence knew

the per-link utilization with 10 s resolution. We calculated the per-link available bandwidth as the difference

between link capacity and utilization. The end-to-end available bandwidth is the minimum of per-link available

bandwidths. During our experiments, the Abilene network did not have enough traffic on the backbone links

to bring their available bandwidth below 1 Gbps. Therefore,the end machines’ 1Gbps connections were both

narrow and tight links in our topology. Due to some logistical constraints we could not run Spruce during the

same experiment. We therefore present the results of the Spruce run separately in Figure 3.41.

Figure 3.4 shows our tool measurements and SNMP-derived available bandwidth. Measurements with

pathload, pathchirp, and Iperf are reasonably accurate, whileabing and sprucereadings wildly fluctuate in

the whole range between 0 and 1000 Mb/s.

The discrepancy betweenIperf measurements and SNMP-derived values reflects tool design:Iperf gener-

ates large overhead (>70%) because it intentionally attempts to fill the tight link. Consequent readings of SNMP

counters indicate how many bytes traversed an interface of arouter during that time interval. They report total

number of bytes without distinguishing tool traffic from cross-traffic. If a tool’s overhead is high, then available

bandwidth derived from SNMP data during this tool run is low.At the same time, since tools attempt to measure

available bandwidth ignoring their own traffic, a high-overhead tool will report more available bandwidth than

SNMP. Therefore,Iperf shows a correct value of achievable TCP throughput of∼950 Mb/s while concurrent

SNMP counters account forIperf ’s own generated traffic, and thus yield less than 200 Mb/s of available band-

width. A smaller discrepancy betweenpathloadand SNMP results reflectspathload’s overhead (∼10% per our

lab tests).

Experiments on the SDSC-ORNL Path In the second series of real-world experiments we testedabing,

pathchirp, pathload, andSprucebetween our host at SDSC (running CAIDA reference FreeBSD version 4.8)

1We also testedSprucein the other series of real network experiments, see subsection on SDSC-ORNL paths below

43



0 500 1000 1500 2000
Normalized Time (s)

0

200

400

600

800

1000

A
va

ila
bl

e 
B

an
dw

id
th

 (
M

b/
s)

abing
Iperf
pathchirp
pathload
Actual (from SNMP)

Abilene2 Tool Test
Sunnyvale -> Atlanta (6-hop path)

Figure 3.7: Real world experiment conducted on the Abilene network
.

and a host at Oak Ridge National Lab (running Red Hat Linux release 9 with a 2.4.23 kernel and Web100

patch [Mat03]). These experiments are of limited value since we did not have concurrent SNMP data for com-

parison with our results. However, we had complete information about link capacities along the paths which at

least allows us to distinguish plausible results from impossible ones. We include these experiments since they

present first insights into the interplay between the probing packet size and the path MTU.

The two paths we measured are highly asymmetric. The SDSC-ORNL path crosses CENIC and ESNet, has a

narrow link capacity of 622 Mb/s (OC12) and MTU of 1500 bytes.The ORNL-SDSC path crosses Abilene and

CENIC, has a narrow link capacity of 1 Gbps and supports 9000-byte packets end-to-end. Both paths remained

stable over the course of our experiments and included OC12,GigE, 10 GigE, and OC192 links. Under most

traffic scenarios, it seems highly unlikely for the 10 Gbps links to have less than 1 Gbps of available bandwidth.

Lacking true values of available bandwidth from SNMP counters for absolute calibration of tool results, we

assume that the narrow link is also the tight link in both our paths.

We ran each tool using either 1500 or 9000 byte packets.abing, pathchirp, andpathloadsupport large probe

packet size as an option2. Spruceuses a hard-coded packet size of 1500 bytes; we had to trivially modify the code

2Theabingreflector has a hard-coded packet size of 1478 bytes.

44



 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300

A
va

ila
bl

e 
B

an
dw

id
th

Normalized Time (s)

Abilene2 Tool Test Sunnvale->Atlanta (6-hop path)

Actual (from SNMP)
spruce

Figure 3.8: Real world experiment conducted on the Abilene network for spruce.

Table 3.1: Summary of wide-area bandwidth measurements (“f”= produced no data).
Direction Path Capacity, Probe Packet Tool readings (Mb/s)

MTU Size abinga pathchirp pathload Spruce
SDSC to 622 Mb/s (OC12), 1500 178 / 241 543 >324 296

ORNL 1500 9000 f / 664 f 409 – 424 0
ORNL to 1000 Mb/s (GigE), 1500 727 / 286 807 >600 516

SDSC 9000 9000 f / 778 816 846 807

aSender at SDSC for 1st value and at ORNL for 2nd value.

to increase the packet size to 9000 B. Table 3.1 summarizes our results while a detailed description is available

in [Hyu04].

abing has a sender module on one host and a reflector module on the other host and measures available

bandwidth in both directions at once. We found that its behavior changed when we switched the locations of

sender and reflector.abingwith 9000 B packets did not return results from SDSC to ORNL (“f” in Table 3.1).

We could see that the ORNL host was receiving fragmented packets, but theabing reflector was not echoing

packets. In the opposite direction, from ORNL to SDSC,abingwith 9000 B packets overestimates the available

bandwidth for the OC12 path (reports 664 Mb/s on 622 Mb/s capacity). Note that almost the factor of 3 difference

in GigE path measurements with 1500 B packets (727 and 286 Mb/s) may be due to different network conditions

since these tests occurred on different days.

45



pathchirpproduced results on both paths when run with 1500 B packets and on the GigE path with 9000 B

packets, but failed on the OC12 path with large packets. There does not appear to be any significant advantage

to using large packets over small ones. Variations between consequent measurements with the same packet size

are sometimes greater than the difference between using large and small packets.

In tests with 1500 B packets, on both pathspathloadreports that results are limited by the maximum host

sending rate. With 9000 B packets, this tool yielded available bandwidth estimates for both paths, but issued a

warning “actual probing rate [does not equal] desired probing rate” for the OC12 path.

Spruceperformed poorly in experiments with small packets from SDSC to ORNL, reporting wildly fluctuat-

ing values of available bandwidth. Tests with 9000 B packetsin this direction always produced 0 Mb/s. However,

in the ORNL to SDSC direction, its readings were more consistent and on par with other tools.

We suspect that fragmentation is responsible for most of theproblems when probing packet size and path

MTU mismatch. While using large packets to measure high-speed links is beneficial, more work is necessary to

consistently support large packets and to reduce failures and inaccuracies stemming from fragmentation.

3.5 Conclusion

We find from the results of our experiments withabingandSprucethat tools utilizing packet pair techniques must

be aware of delay quantization possibly present in the studied network. Also, 1500 byte frames and microsecond

time stamp resolution are not sensitive enough for probing high-speed paths.PathloadandPathchirpperform the

best since they do have the facility to use greater than 1500 packet size and both the tools can also detect interrupt

coalescence.Iperf performs well on high-speed links if run with its maximum buffer window size. However

even small (∼1%) but persistent amounts of packet loss seriously degradeits performance. Conservative settings

of the OS retransmission timer further exacerbate this problem. Thus we observe that performance of several

ABETs are affected by systemic and implementation biases. In order to better understand the performance of

the various ABETs, we need to isolate the impact that these systemic and implementation biases have on the

performance of ABETs and re-evaluate the ABETs.

46



CHAPTER 4
Impact of Temporal Parameters

This dissertation argues that the performance of ABETs is not only influenced by algorithmic and implementation-

related design choices, but also by the sampling-related temporal parameters that they operate with. Unfortu-

nately, these has been only a limited study of the latter. In this chapter, we attempt to study the impact of

temporal aspects of sampling on the AB estimation process. Our approach is especially designed to isolate and

ignore the impact of algorithmic and implementation-related aspects of ABET design. We begin by identifying

the parameters of interest to us.

4.1 Temporal Parameters of Interest

AB is a time-varying process and any bandwidth-estimation tool must necessarily sub-sample the process. We

focus on the following fundamental dimensions of sampling the AB process:1.

Measurement Timescale:A critical parameter in the definition of AB in Equation (1.1)is the length,(t2 − t1),

of the time interval over which it is observed—we refer to this quantity as themeasurement timescale

(MT). In Fig 1.2, we plot the time-series of AB, observed at three different timescales of10ms, 50ms,

and1s, during thesame 30 sobservation period on an Internet link. We observe that the AB process can

appear quite different depending on the timescale at which it is observed. In particular, it is likely that

the MT impacts the accuracy as well as variability of the AB measured by a given ABET. Consequently,

any application that relies on such a tool would want the toolto measure AB at an MT relevant to the

application domain. For instance, while a large-file-transfer application is likely to be interested in only

the average AB obtainable at super-second timescales, a media-streaming application is likely to also be

interested in knowing the small-timescale variations in AB.

1The importance of considering measurement timescales and durations has also been mentioned in [JD04]. However, the impact of these
parameters on AB measurement has not been quantified.



Unfortunately, most existing ABETs do not explicitly select (or report) the MT used in AB estimation. Fur-

thermore, the implicit choices of MT made by these tools can only be roughly estimated, and are a function

of the path transmission capacity and tool configuration parameters. Tools such as Spruce [SKK03a] and

Abing [Nav03], that rely on using a packet-pair as a probe stream, have a MT on the order of12µs, on a

1Gbps path—this corresponds to the separation between two back-to-back1500B packets.2 Tools such as

Cprobe [CC96b], PathChirp [Rib03], and Pathload [JD02b], that instead rely on using longer packet trains

as probe streams, have a much larger MT—ranging from10ms to several hundreds ofms on a1Gbps

path. The exact value of the MT for a probe stream depends on the size of the packet train and the rate

at which it is sent—both of these factors are adaptive in Pathload and PathChirp. Iperf [ipe], which is a

tool used primarily for diagnostic purposes, measures the maximum throughput that a TCP connection can

attain3—the MT is the same as the total tool run-time.

In this chapter, we study how the choice of MT by a tool impactsthe accuracy, variability, and stability of

the measured AB. We use four different values of MT, representative of existing tools, that differ by more

than an order of magnitude:10ms, 50ms, 100ms, and500ms.

Measurement Duration (Run-time): Run-time(RT) refers to the length of the time interval over which several

samples of the AB process are collected, and used to infer properties of the AB process. In practical terms,

the run-time is the total time taken by a tool from invocationto reporting an AB estimate. This includes

the time taken to send several probe streams (each of which potentially returns one sample of AB), and

converge on an AB estimate.

The most significant impact of run-time on AB measurement is in terms of its variability. For a given

MT and SI, the longer is the tool run-time, the more variable are likely to be the different AB samples

collected. On the other hand, longer run-times are more likely to yield asufficientnumber of samples for

reliably estimating the mean as well as variability in the ABprocess.

RT (as well as MT) is also likely to affect the stability of themeasured AB in the post-measurement

periods. A longer run-time is likely to yield more reliable AB estimates, that are not subject to short-term

traffic-load fluctuations, and are indicative of the AB that can be expected for some time.

2Tools that rely on packet-pairs have been shown to be inaccurate, especially on high-speed paths [SMH+05]. This is conjectured to be
so primarily because of the small MT—at such timescales, theAB process appears quite bursty. As a result, it is difficult to get reliable and
stable AB estimates. We exclude such timescales from our analysis in this study.

3It has been shown in [DJ03] that TCP throughput is not an accurate measure of AB.

48



Time

Simple Sampling

Stratified Sampling

Systematic Sampling

A
B

 o
bs

er
ve

d 
at

 c
er

ta
in

 M
T

Tool Run Time

MT

Figure 4.1: Factors Affecting the AB process

Existing AB tools vary widely in their typical run-times—anrecent evaluation study of AB tools reports

the typical run-times of Abing, Spruce, Pathchirp, Iperf, and Pathload to be:1, 2, 5, 10, and20 seconds,

respectively [SMH+05]. We use these values to study the impact of tool run-time on the variability as well

as stability of the AB process during measurement and post-measurement periods, respectively.

Sampling Strategy and Intensity: Given an observation timescale, theAB processconsists of a series of back-

to-back readings of AB observed within a given time interval. ABETs essentially onlysub-sample this

AB process—the sampling strategy and the fraction of the AB process sampled are likely to impact the

accuracy of estimating the mean AB in a given time interval. For instance, larger is the sampling rate,

better is likely to be the AB estimation accuracy; however, greater would be the network overhead.

Existing tools differ in the fraction of the AB process—henceforth, referred to as thesampling intensity

(SI)—that they sample during the tool run-time. In our analysis, we vary this fraction from0.1 to 0.9

(10 − 90% of the AB process gets sampled). We vary SI by simultaneouslycontrolling the MT and the

sampling rate (number of AB samples collected per second). SI is given by the product of MT and the

sampling rate divided by the RT .

Given a sampling rate, existing tools also differ in theirsampling strategy—the manner in which AB

samples are selected from within a given time interval. We use the framework described in [CPB93] to

study three kinds of sampling strategies (see Fig 4.1): (i)Simple sampling, in which AB samples are

selected randomly from within the given time interval; (ii)Stratified sampling, in which the time interval

is divide into equi-sized units, and one sample is selected randomly from each unit; and (iii)Systematic

49



sampling, in which the time interval is divided into equi-sized unitsand the first AB reading from each unit

is used as a sample. Spruce uses simple sampling; while Pathchirp, Pathload, and Abing use systematic

sampling.

We organize the issues raised above in the form of three main questions: (i) How does the choice of sampling

strategy, sampling intensity, MT and RT impact theaccuracyof the estimated AB? (ii) How does the choice

of MT and RT affect thevariability of the measured AB? (iii) Howstable is AB in the post-measurement

periods? Answering these questions reveals the impact thatthe above mentioned temporal parameters have on

the performance characteristics of the ABETs .

Our work represents, to the best of our knowledge, thefirst investigation of AB measurement along these

dimensions.

4.2 Analysis Methodology

As mentioned before, existing ABETs differ significantly inthe algorithmic design of their probe streams and

inference logic, as well as in their implementation efficiencies. In order to answer the questions raised above

in a tool-independent manner, hence, we assume the existence of a perfect probing stream—referred to as an

Istream—and a corresponding perfect inference logic, that can infer the sampled AB perfectly by analyzing the

performance of anIstream. This assumption lets us study the impact of (currently) design-agnostic quantities—

namely, run-time, measurement timescale, and sampling intensity and strategies—while isolating the analysis

from the impact of design-dependent algorithmic and implementation factors. Formally, we assume that when

run over a linki of transmission capacityCi, the Istream-based AB estimate would be precisely equal to the

quantity formalized in Equation 1.1.

Unfortunately, a perfect tool does not exist in practice to be used for our study. Instead, the assumption about

the tool simply lets us adopt apassivetrace-analysis based approach for answering the above questions, in which

it is possible for us to compute theground truth. As illustrated in the discussion before, the availabilityof a

link-level packet trace gives us the ability sample the linkwith 100% sampling intensity and lets us compute

perfectly the AB process on the corresponding link at different timescales. We rely on the Coralreef [KMK+01]

package for doing this. A perfect trace of the AB process can also be sub-sampled according to a given sampling

intensity, sampling strategy, timescale, as well as run-time in order to answer the questions raised above.

It is important to note that the use of link-level packet traces gives us access to the AB process of only a

50



single link, and not theend-to-endAB process of a network path. Computing the latter passivelywould require

access to the link-level packet traces ofall the constituent links of a path—given the limited number of publicly-

available packet traces, that is currently infeasible. Note, however, that in practice, analyzing just the link-level

AB process may not be a significant limitation. This is because most end-to-end paths are expected to have at

most a single bottleneck link [JD02b, JD04, SKK03b, Nav03, Rib03], and the AB process on such a bottleneck

governs the end-to-end AB process [SMH+05].

4.3 Data Sets

In order to perform our analysis we use link-level packet traces collected from 8 different locations (15 different

bidirectional links). Table 4.1 lists these traces. As can be observed all links have Gigabit or higher capacities.

Our traces are diverse in the link-locations, traffic loads,and user-communities represented. The UNC and Leip

traces were collected, respectively, at the edges of the University of North Carolina and the University of Leipzig.

The Abilene, MFN, Cesca, Paix, and San Diego traces were obtained from CAIDA and NLANR.

Average Load (Mbps)
Trace Link Capacity Forward Direction Reverse Direction

UNC 1 Gbps 328.8 88.2
Leip 1 Gbps 13.1 35.8
Cesca 1 Gbps 228.2 245.9

SanDiego 1 Gbps 68.0 39.3
Abilene IC 2.5 Gbps 421.6 518.4
Abilene IK 2.5 Gbps 320.7 585.8

MFN 2.5 Gbps 349.1 608.1
Paix 2.5 Gbps 107.2 n/a

Table 4.1: Data sets used

Our results therefore should be applicable to high-speed networks on which ABETs are expected to be

increasingly deployed. One caveat to extrapolating these results is that all the traces that we have are for links

that are heavily multiplexed (large number of connections), some of these conclusions could potentially change

if the bottleneck link on the path were the first or last link (access links) or links with only a few connections on

them.

51



4.4 Putting things into perspective

The analysis of temporal properties of Internet traffic has been an area of intense research. One of the seminal

works in this area was by Leland et. al. [LTWW93], which uncovered the self similar nature of Internet traffic.

This work suggested that Internet traffic observed at different timescales can be characterized by similar distribu-

tions. This was a fairly significant result since it challenged the popularly held notion that the aggregated traffic

on Internet links could be modeled as a Poisson process, justas was done for telephone networks. This work

illustrated that Internet traffic patterns are significantly more complicated and can lead to large queue build-up

in routers, even when the average traffic load is moderate. This has some serious implications for router manu-

facturers, since this implies that router buffers now need to be much larger than what was earlier thought using

conventional Poisson modeling.

A counter view point presented by Cleveland et. al. [CCLS01]asserts that with increasing multiplexing

and load the long range dependence property that was observed in Internet traffic tends toward an independent

process. The arguments on either side are fairly exhaustivebut beyond the scope of this discussion. A good

discussion and further resources in the area of traffic modeling can be found in [KMF04].

Another area of work has focused on understanding the causesfor long-range dependence in Internet traffic—

heavy-tailed distributions of object sizes has been identified as a leading cause [PKC96]. Some also argue that the

TCP protocol mechanisms also contribute to this behavior [GCM00]. However, as observed in [JD05b], the time-

scales of this long range dependence is limited to larger, super-RTT timescales. Hao et. al. [JD05b] investigate

the role of TCP in causing burstiness at sub-RTT time-scales. They illustrate that most of the variability at

these time-scales can be explained by TCP self-clocking in the dominant flows whose delay-bandwidth product

significantly exceeds its window size—the resultant burstiness extends up to the typical RTT of the dominant

TCP flows. Given that we are interested in understanding the AB process at timescales that are typically in the

sub-RTT time-scale, the above result could be useful in putting our observations into context.

We relate our observations to those made in the literature throughout this chapter. This is especially important

because our analysis of temporal aspects of bandwidth estimation is limited to only a finite number of Internet

traces. Thus, even though our observations are consistent across all traces that we analyze, we present them in

the light of other evidence that exists in the area of traffic modeling.

52



Time

Simple Sampling

Stratified Sampling

Systematic Sampling

A
B

 o
bs

er
ve

d 
at

 c
er

ta
in

 M
T

Tool Run Time

MT

Figure 4.2: Sampling strategies.

4.5 How does the way the AB is sampled affect the accuracy?

AB estimation tools necessarilysub-sample the AB process during their run-time. In what follows, we evaluate

the impact of sampling strategies, intensity, timescale, and duration on the accuracy of the sampled AB. It is

worth noting that a recent experimental study has shown thatthe accuracy of existing ABETs is no better than

10% on high-speed paths [SMH+05]. In this section, consequently, we consider any inaccuracy smaller than this

value as insignificant.

4.5.1 Does the choice of sampling strategy impact accuracy of the sampled AB?

We consider the three kinds of sampling strategies—simple,stratified, and systematic—as described in Chapter 1

(refer Figure 4.2). For a given choice of MT, SI, and RT, we analyze each packet-trace as follows: (i) we

translate the trace into a corresponding AB process observed at the timescale MT; (ii) we divide the AB process

into segments of time-length RT each (see Fig 4.2); (iii) foreach segment, we compute the average,ABavg,

of the AB process observed within that segment; (iv) within each segment, we sub-sample the AB process

according to the three sampling strategies, and compute theaverages of the samples as:ABsim, ABstra, and

ABsys, respectively, for simple, stratified, and systematic sampling (see Fig 4.2); (v) we compute thesampling

inaccuraciesfor each segment as:|ABavg − ABsim|, |ABavg − ABstra|, and|ABavg − ABsys|, respectively;

(vi) we compute the cumulative distribution (CDF) of these three inaccuracy metrics, over all segments in the

53



trace.

Strategy UNC-0 Abilene-IC1 Abilene-IK1
5 % 50 % 95 % 5 % 50 % 95 % 5 % 50 % 95 %

Simple 0.04 0.38 1.10 0.12 1.3 3.91 0.13 1.45 4.64
Systematic 0.08 0.9 3.14 0.62 6.21 19.0 0.64 6.84 29.38
Stratified 0.79 3.12 5.57 0.59 6.74 19.23 0.72 7.49 29.78

Figure 4.3: Sampling Strategy vs. Accuracy (Mbps)

Fig 4.3 lists the 5%, 50%, and 95% of the inaccuracies for the three sampling strategies, observed within

the UNC-0, Abilene-IC1, and Abilene-IK1 traces, with MT = 10ms, SI = 0.7, and RT = 10s. We observe

that the median inaccuracy in measuring AB is smaller with simple sampling (within 1.5 Mbps and 0.4 Mbps

for the Abilene and UNC traces, respectively) than with systematic or stratified sampling (7 Mbps and 3 Mbps

for the Abilene and UNC traces, respectively). A similar trend is visible for the95% values of the computed

inaccuracies. However, forall traces analyzed, we find that even the 95% values of the inaccuracies lie within

10% of the link AB—this is close to the resolution accuracy of existing ABETs as shown in Figure 4.4. Thus, it

may be fair to conclude thatalthough simple strategy is likely to yield better samplingaccuracy, the inaccuracies

of systematic and stratified sampling are not significant forcurrent tools. Since most existing ABETs rely on

systematic sampling, we use it in all of our subsequent analysis.

Note: Claffy et. al. [CPB93] conducted a study on the impact of varying sampling strategies on sampling

network traffic in order to get a representative sample of traffic flowing on a link. This study found that there was

a significant improvement in performance when the sampling was event-based rather than time-based. However

for the process of AB estimation since we have no direct access to events like increase in the load on the network

(except in the extreme cases of congestion), we are bound to sample the AB using a timer-driven approach. Here

Claffy et. al. found that the relative difference between adopting different sampling strategies was not significant,

as is illustrated in our results as well.

4.5.2 How does probe-stream duration impact the accuracy ofestimated AB?

The duration of individual probe streams transmitted within the run-time of a tool determine its MT—indeed,

each probe stream samples the AB process for this amount of time. In order to assess the impact of this MT on a

tool’s accuracy, we analyze each trace as follows. Using systematic sampling, for a given RT, SI, and MT , (i) we

compute the AB process at MT, and divide it into segments of time-length RT each, as described in Section 4.5.1;

54



Figure 4.4: CDF of Inaccuracies with different sampling strategies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

C
D

F
 

Sampling Inaccuracy (Mbps)

MT 10 ms SI 0.1 
MT 10 ms SI 0.5 
MT 10 ms SI 0.9 
MT 100 ms SI 0.1

MT 100 ms SI 0.5 
MT 100 ms SI 0.9 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

C
D

F
 

Sampling Inaccuracy(Mbps)

MT 10 ms SI 0.1
MT 10 ms SI 0.5
MT 10 ms SI 0.9

MT 100 ms SI 0.1
MT 100 ms SI 0.5
MT 100 ms SI 0.9

(a) UNC 0 (b) Abilene IC1

Figure 4.5: Impact of MT on accuracy

(ii) for each segment, we then computeABavg andABsys; (iii) we compute the CDF of the sampling inaccuracy

|ABavg − ABsys| observed over all segments within the trace.

We use an RT of 10s and compute the above CDFs for MT of 10 ms and 100 ms, and SI of0.1, 0.5, and0.9.

Figs 4.5(a) and 4.5(b), plot these CDFs for the Abilene-IC1 and UNC-0 traces, respectively. We observe that for

a given MT, and as expected, increasing the SI improves the accuracy of the sampled AB. We also observe that

for a given SI, MTs that differ by even an order of magnitude have a negligible impact on the sampling accuracy.

Thus, while SI impacts the measurement accuracy significantly, MT does not.

The above observations have the following implications forABET design: (i)The same sampling accuracy

55



may be attained by a tool by either using a few long probe-streams, or several short probe-streams (as long as

both result in the same SI). The latter may be useful for applications that benefit from the timely-availability of

an initial AB estimate, even if its only roughly accurate. The first few probe streams are likely to yield such a

rough estimate quickly, while the later probes make the estimate robust. This flexibility may not be available

if longer, fewer probe streams are used. (ii)Any application-specific MT may be used for sampling, without

impacting the measurement accuracy significantly, as long as an inversely proportional number of samples are

collected at that timescale(thus, maintaining the same SI).

4.5.3 What is the marginal cost of increasing sampling intensity?

Figure 4.6: Sampling Accuracy vs. SI

The observations made above indicate that the sampling intensity has a significant impact on the accuracy

of the sampled AB; we next examine this impact quantitatively. For this, for each trace, we compute the CDF

of the sampling inaccuracy,|ABavg − ABsys| for a given choice of MT, SI, and RT, exactly as described in

Section 4.5.2. Fig 4.6 plots the 95% of sampling inaccuracy observed with different values of SI, with an MT

of 10 ms and an RT of 10 s, for several traces. As expected, we find that increasing the SI decreases the

sampling inaccuracy—however, the marginal improvement insampling accuracy decreases with increasing SI.

In particular,an ABET is unlikely to improve its sampling accuracy significantly beyond a sampling intensity of

30%—maintaining a low SI can help the ABET reduce the network overhead of AB estimation.

56



4.5.4 How does RT impact accuracy?

Finally, we evaluate the impact of the tool run-time on its sampling accuracy. For each trace, we compute CDFs

of the sampling inaccuracy|ABavg−ABsys| as described before. For MT = 10 ms and SI = 0.5, Fig 4.8 plots the

95% value from the CDFs, as a function of RT. We find that as RT increases, the sampling inaccuracy decreases.

This is to be expected, as a larger RT yields a larger number ofAB samples for a given SI—we find, however, that

the marginal improvement in sampling accuracy reduces withincreasing RT. In particular,an ABET is unlikely

to improve its sampling accuracy significantly beyond an RT of 5 s.

RT SI 5 % 50 % 95 % 5 % 50 % 95 % 5 % 50 % 95 %
(s) UNC-0 Abilene-IC1 Cesca-0
1 0.5 0.154 1.660 4.7 0.321 3.4 10.29 0.159 1.725 5.06
2 0.4 0.1457 1.579 4.62 0.291 3.16 9.50 0.144 1.57 4.613
10 0.2 0.155 1.66 4.91 0.25 2.714 9.215 0.133 1.467 4.18
20 0.1 0.186 1.895 8.2 0.291 3.12 9.97 0.148 1.64 4.7

Figure 4.7: RT vs. Inaccuracy (Mbps)

Observe that increasing RT or SI has a positive impact on the sampling accuracy. However, increasing either

of these also results in a proportional increase in the totalprobe traffic introduced into the network. We next ask:

does any one of these two parameters represent a better tradeoff between the sampling accuracy and network

overhead?Fig 4.7 lists the5%, 50%, and95% values of the inaccuracy CDFs, computed with an MT of 10 ms,

for several combinations of (RT, SI): (20s, 0.1), (10s, 0.2), (2s, 0.4), and (1s, 0.5). We find that for a given trace,

the sampling inaccuracies are similar for the combinationsof: (1s, 0.5) and (20s, 0.1), as well as for: (2s, 0.4)

and (10s, 0.2). This observation has two implications. First, it implies that an ABET can achieve similar AB

estimation accuracy by sampling more intensely within a shorter run-time. In particular, this contradicts a claim

made in [JD04] that a tool with a longer run-time is likely to yield more accurate AB estimates—our analysis

indicates that this is only true if the sampling intensity isheld constant. In reality,it is thus possible to design

a faster tool without sacrificing estimation accuracy, by simply increasing the sampling intensity of the tool.

Second, note that in order to maintain the same accuracy, therelative increase in SI is larger than the relative

reduction in run-time. Thus,a single invocation of a faster tool that achieves similar accuracy, is likely to insert

more probe-traffic into the network.

In the next two sections, we evaluate the impact of MT and RT onthe variability and stability of the AB

process. For the analysis in the rest of this chapter, we assume a sampling intensity of 1 (the AB process is

57



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  2  4  6  8  10  12  14  16  18  20

95
%

 S
am

pl
in

g 
In

ac
cu

ra
cy

 (
M

bp
s)

RT (sec)

Abilene IC0
Abilene IC1
Abilene IK0
Abilene IK1

UNC 0
UNC 1

Figure 4.8: Run-Time vs. Accuracy

observed completely by an ABET).

4.6 How does the MT and RT affect variability?

Recall from Fig 4.9 that the AB process can exhibit low-to-high variability, depending on the timescale at which

it is observed. Furthermore, the longer is the tool run-time, the greater is the opportunity to witness variability

in the corresponding AB process. To quantify these effects,we next evaluate the impact of MT and RT on AB

variability. Our objective is to find the set of timescales and durations that characterize an AB process with low

variability.

The importance of reporting the variability in AB, in addition to its average, has been recognized recently [JD05a].

In fact, a variant of a popular AB estimation tool called Pathload reports variability in the form of the maximum

and minimum AB observed during the tool’s run [JD05a]. In this section, we first address the issue ofwhat

metric is appropriate for characterizing AB variability asa function of MT and RT?In particular, we inves-

tigate whether for a given value of MT and RT, thestandard-deviation—which is likely to be more robust to

outliers—is a more predictable metric than therangemetric described above.

What is a predictable measure of variability? We analyze each trace as follows: (i) we compute the AB

process at MT, and divide it into segments of time-length RT each, as described in Section 4.5.1; (ii) for each

segment, we compute the range,ABrange, as the difference between the maximum and minimum AB observed

in that segment; we also compute the standard deviation,ABstd, of the AB values observed in that segment; (iii)

58



1700
1900
2100
2300

0 5 10 15 20 25 30

A
B

 (
M

b
p
s
)

(a)                         Time(sec)

Time Scale .01 sec

1700
1900
2100
2300

0 5 10 15 20 25 30

A
B

 (
M

b
p
s
)

(b)                         Time(sec)

Time Scale .05 sec 

1700
1900
2100
2300

0 5 10 15 20 25 30

A
B

 (
M

b
p
s
)

(c)                         Time(sec)

Time Scale 1 sec

Figure 4.9: AB process observed at link during same 30 s window at different MT .

59



RT MT ABrange (Mbps) ABstd (Mbps)
(s) (ms) 5 % 50 % 95 % 5 % 50 % 95 %

10 215.01 288.7 390.1 44.6 56.9 73.8
1 50 54.4 81.3 126.6 14.4 20.7 31.3

100 31.6 56.7 96.8 9.5 16.9 28.8
10 293.5 367.2 479.4 47.7 58.7 73.1

5 50 88.5 117.6 176.8 17.1 22 32.6
100 69.7 103.5 154.3 13.7 21.2 33.3
10 355.5 436.7 571.4 51.1 60.4 73

20 50 117.5 153.4 238.8 19.1 23.6 37.4
100 107 144.5 212.9 17.8 25.2 36.7

Table 4.2: Abilene: AB variability metrics

RT MT ABrange (Mbps) ABstd (Mbps)
(s) (ms) 5 % 50 % 95 % 5 % 50 % 95 %

10 118.6 150.9 193.3 22.3 26.5 31.1
1 50 34.5 50.7 71.3 9.1 12.7 17.1

100 17.6 29.2 45.6 5.4 8.8 13.1
10 160.3 188.1 231.7 23.9 26.9 30.0

5 50 57.6 71.3 93.2 11.1 13.4 16.4
100 34.6 45.7 64.5 7.5 9.7 12.8
10 190.5 218.8 267.3 24.8 27.1 29.5

20 50 74.2 87.6 113.9 12.3 13.8 16.3
100 48.4 59 84.8 8.7 10.2 13

Table 4.3: UNC: AB variability metrics

60



 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65

 0  2  4  6  8  10  12  14  16  18  2095
%

-5
%

 o
f S

ta
nd

ar
dD

ev
ia

tio
n(

M
bp

s)

Run Length(sec)

Abilene IC0
Abilene IC1
Abilene IK0
Abilene IK1

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14  16  18  20

95
%

-5
%

 B
an

dw
id

th
 R

an
ge

 (
M

bp
s)

Run Length(sec)

Abilene IC0
Abilene IC1
Abilene IK0
Abilene IK1

(a)ABstd predictability vs. RT (b)ABrange predictability vs. RT

Figure 4.10: Impact of RT on range and standard deviation of AB

we compute the CDFs of theABrange andABstd, as observed over all segments within the trace.

Tables 4.2 and 4.3 list the 5%, 50%, and 95% values of theABrange andABstd CDFs, for the Abilene-IC1

and UNC-0 traces, respectively. We observe that for any given MT and RT, the difference between the 95% and

5% values ofABrange is much larger than that ofABstd. This implies that for a given combination of MT and

RT, the latter is a more predictable metric of variability ascompared to the former.

Furthermore, we find that the predictability ofABstd improves with increase in RT, whereas the predictability

of ABrange does not. This is illustrated in Figs 4.10 (a) and 4.10 (b), that plot the difference between the 95%

and 5% values of these two metrics respectively, as a function of RT and when MT = 10ms. We observe that

the difference decreases with RT for theABstd metric, but exhibits no such trend for theABrange metric. This

implies that thestandard-deviation is a better choice to use for characterizing AB variability. Furthermore,tools

with longer run-times are likely to report more robust variability estimates.

How does RT impact AB variability? From Tables 4.2 and 4.3, we also observe that for a given MT, asthe

RT increases, the median value (as well as other percentiles) of ABstd also increases. The relative increase in

the variability, however, is small. This suggests thattools with longer run-times are likely to report only slightly

higher values of AB variability.

How does MT impact AB variability? For any given RT, Tables 4.2 and 4.3 indicate that as MT increases,

ABstd reduces. The reduction in variability is most significant atsmaller timescales. For instance, at an MT of

61



 10

 20

 30

 40

 50

 60

 70

 80

 0  2  4  6  8  10  12  14  16  18  20

95
%

 o
f S

td
 D

ev
(M

bp
s)

RT (sec)

Abilene

10 msec
50 msec

100 msec
500 msec

 10

 20

 30

 40

 50

 60

 70

 80

 0  2  4  6  8  10  12  14  16  18  20

95
%

 o
f S

td
 D

ev
(M

bp
s)

RT (sec)

Abilene

10 msec
50 msec

100 msec
500 msec

Figure 4.11: Impact of MT and RT on variability

10ms, ABstd can be as high as100Mbps (maximum observed value) for the Abilene-IC1 trace. At an MTof

50ms or higher,ABstd lies within40Mbps for all traces (including Abilene-IC1). This latter value corresponds

to less than2% of the link capacity, which is within the resolution accuracy of all existing ABETs [SMH+05].

This implies thatin order to sample an AB process that does not exhibit significant variability, ABETs should

sample it at timescales of50ms or higher. In particular,the results of ABETs that rely on usingpacket-pairs

instead of longerpacket-trainsare likely to be significantly impacted by AB variability. Figure 4.11 illustrates

the impact that MT and RT have on the variability of the AB process.

Note: It is observed in [JD05b] that the range of timescales at which Internet traffic exhibits high variability

depends on traffic specific characteristics such as the RTTofthe dominant flows. We expect that in the traces

we analyze (all collected from links well within the North America continent), such flows have a typical RTTof

around 50 ms. We also expect that if we repeat our analysis on traces collected off of trans-continental links,

the timescales beyond which variability in the sampled AB islow, would be larger. A detailed analysis of these

traffic characteristics is beyond the scope of this dissertation.

4.7 How does the RT impact the stability of estimates?

Applications that rely on using the knowledge of the AB can doso only after the measurement is made. The

implicit assumption here is that the AB does not change from the time it was being measured to the time after

the measurement was made. In order to study the validity of this assumption we study the study the stability of

62



 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30  35

M
ax

. C
ha

ng
e 

in
 A

B
(M

bp
s)

Number of successive tool runs considered

UNC

5% Link AB
10% Link AB

Run Length 1 sec
Run Length 2 sec
Run Length 5 sec

Run Length 10 sec
Run Length 20 sec

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30  35

M
ax

. C
ha

ng
e 

in
 A

B
(M

bp
s)

Number of successive tool runs considered

UNC

5% Link AB
10% Link AB

Run Length 1 sec
Run Length 2 sec
Run Length 5 sec

Run Length 10 sec
Run Length 20 sec

Figure 4.12: Stability of AB

the AB in post-run periods. For a given RT and N (the number of successive tool runs examined) we analyze

each trace as follows: (i) we compute the AB process with MT equal to RT, and divide it into segments of time-

length RT each, as described previously; we denote the AB reading of theith segment byABi
avg; (ii) for the ith

segment, we compute thepost-run deviationmetric as:PRDN = maxj∈[1,N+1]{|ABi
avg − ABi+j

avg |}; (iii) we

compute the CDF of thePRDN observed over all segments within the trace.

Figure 4.12 plots the 95% of the UNC-0 trace against different values of N. Each line represents, a different

value of RT and the two horizontal lines represent 5 and 10 % ofthe link AB .

As expected, we observe that as the value on N increases,PRDN increases. However an interesting data

point atN=1, shows that in back-to-back tool runs the AB does not change by more than a factor of 4%. If

we know the error range of a tool,(i) we can use that knowledge in conjunction with the fact that back-to-back

AB measurements do not change significantly to reduce the number of measurements we make. For instance if

we knew that the accuracy of an ABET was at most 5%, then on the basis of Figure 4.12, we could make one

estimate in an RT and that estimate would be valid for at least5 RT after the measurement.

Fig 4.4 lists the 5%, 50%, and 95% of the observedPRDN , for RT = {1s, 5s, 20s} and N ={1, 5, 30}, for

the Abilene-IC1 and UNC-0 traces.

Here again we find that in any pair of neighboring tool-runs, the AB does not change by more than12Mbps or

40Mbps for the UNC-0 and Abilene-IC1 traces, respectively. In fact, we find that forall of the traces analyzed,

the AB measured in a pair of back-to-back tool runs does not differ by more than 4%, most of the time.

63



RT N Abilene (Mbps) UNC (Mbps)
(s) 5 % 50 % 95 % 5 % 50 % 95 %

1 1.3 13.1 41.2 0.3 3.7 11.9
1 5 15.4 36.6 75.4 3.9 9.2 19.3

30 37.4 63.3 128.6 9.8 16.1 33.7
1 0.8 11 39.5 0.3 3 10.2

5 5 10.8 30.6 95.1 3.5 8 18.9
30 37.4 81 162.1 8.9 14.5 47.3
1 1.0 11.6 59.1 0.2 2.6 11.9

20 5 16.1 43.4 120.8 2.3 7.7 22.6
30 56.2 111 204.4 11.1 19.2 55

Table 4.4: Stability in AB

The above observation is relevant for the design of ABETs forapplications that need to continuously monitor

the AB on a path by running an ABET repeatedly. In particular,consider the case when such applications use

Pathload-like ABETs, that spent a considerable portion of their run-time in arriving at acoarseestimate of

AB , and then work on fine-tuning that estimate. Such ABETs could exploit the fact thatAB does not change

significantly between neighboring tool runs, and use the result of thelast tool-run as thecoarseestimate of the

current AB —this should result in the next tool-run completing much faster, while also introducing much less

probe traffic into the network path.

4.8 Conclusion

From the above study we have gain insights into the impact that temporal parameters have on the AB process

and their impact on ABET designs. We summarize our findings below:

• Accuracy Related: (i) A higher sampling intensity results in better sampling accuracy, although the

gains are insignificant beyond a SI of 30%. (ii) The choice of MT does not impact sampling accuracy

significantly, as long as SI is maintained. In particular, the same sampling accuracy may be attained by a

tool by either using a few long probe-streams, or several short probe-streams (both with the same SI).

• Variability Related: (i) The AB process exhibits significant variability at MTs smaller than 50 ms. This

corresponds to sending several packets within each probe stream (unlike ABETs that use packet-pairs).

(ii) As RT increase the variability also increases.

64



• Stability Related (i)The average AB does not change significantly across neighboring back-to-back tool

runs. This observations can be exploited for applications that need to continuously monitor the AB on a

path by running an ABET repeatedly.

65



CHAPTER 5
Impact of Probe-Stream design and Inference Logic

We next study the impact of replacing a perfect probe-streamand inference logic, with realistic probe-stream and

inference logic combinations. We select several prominentABETs from Table 2.1 —namely, Pathload [JD02b],

PathChirp [Rib03], Spruce [SKK03a], IGI [HS03], Fast-IGI [HS03], and Cprobe [CC96c]—that represent exist-

ing diversity in the algorithmic techniques used for inferring end-to-end AB. We implement each of these tools

in the NS-2 [NS2] network simulation environment. We rely onpublished literature as well as publicly-available

implementations (whenever available) to extract details of each tool.

5.1 Setting the MT and SI in AB estimation methodologies

Besides studying the impact of the probe-stream design and inference logic on the performance parameters, we

are also interested studying the impact of the MT and SI. Unfortunately even though most ABET techniques

have many algorithm specific parameters that could be set none of the tools allow these two parameters to be set.

In order to be able to set the MT and the RT we redesign our tool interfaces to accommodate this change. We

will briefly describe the changes below.

5.1.1 Incorporating MT

As mentioned in Section 1 the MT is the length of the probe-stream that is injected into the network. We control

the length of the probe stream in different ways in each of theABET methodologies.

• Cprobe/IGI/Fast-IGI All three of these tools send several probe streams, each at a uniform rate, in order

to estimate the AB—while Cprobe sends all streams at a high bit-rate, IGI/Fast-IGI iteratively change the

bit-rate of each stream in order to converge on the AB. The number of packets sent within each probe

stream is typically fixed. In order to incorporate MT, we makethe number of packets (N ) a configurable

value that is set such that when the stream is sent at the desired bit-rate (R) and default packet size (P ) (of

1500 Bytes), the stream duration is equal to MT:N = ⌈R × MT/P ⌉.



• Pathload Like IGI, Pathload also iteratively sends severalprobe streams at different bit-rates. However,

the Pathload AB inference logic requires that the number of packets sent in each probe stream be a perfect

square. In order to incorporate MT, we first compute a rough estimate ofN using the relation:N =

⌈R×MT/P ⌉. If this is not a perfect square, we decreaseP by the least amount required to ensure that it

is.1

• Spruce Spruce relies on a packet-pair based AB inference technique, which sends two packets back-to-

back in each probe stream. Unfortunately, this fixes the MT toa small value. However, due to the small

probes and open-loop nature of Spruce, its run-time is fairly small; often smaller than the values of MT

that may be of interest to us. We exploit this property to redesign Spruce’s interface—given a desired MT,

we aggregate and compute the average of all AB estimations made within a duration of MT, in order to

estimate the AB at that MT.

• PathChirp In PathChirp, each probe-stream—also referred to as achirp—is an exponentially-spacedstream

of N packets. The inter-packet spacing andN are determined using three parameters: the lower rate,L,

the upper rate,U , and the spread-factor,S. Specifically, the spacing between packeti andi + 1 is given

by: P/(L × Si−1), andN is computed using the relation:U = L × SN . In order to incorporate MT, we

first compute the length of a chirp as the following sum of a geometric series:P/L × (1 − 1
Sn )/(1 − 1

S
).

GivenL andU , we then select the pair (S, N ) such that the above chirp length is close to the desired MT.

5.1.2 Incorporating the SI

The SI is the fraction of time that is occupied by a tool in probing for the AB during its total RT . IfG is the gap

between successive probe-streams, SI is given by:MT
MT+G

. This relation can be used to control SI in open-loop

tools such as Cprobe, Spruce,and PathChirp—specifically, given an SI, the gap is set to:G = MT × 1−SI
SI

.

In closed-looptools such as Pathload/IGI/Fast-IGI, however, the construction of a probe-stream is determined

by the delays experienced by the previous probe-stream—these tools, therefore, can not send more than one

probe-stream per RTT. Thus, the SI can not be set to a value higher thanMT/MT + RTT , which is a fairly

low value for typical Internet paths. Thus, for all practical purposes, SI can not be controlled in closed-loop

tools. It is interesting to note, however, that the path RTT is likely to impact the feedback-loop and, hence, the

performance (especially the run-time) of such tools.

1This convoluted way of controlling the MT in Pathload (and inPathChirp, as described later) highlights the limitation of existing ABET
designs.

67



5.2 Performance Metrics

We characterize the performance of each ABET using two typesof metrics:

• Accuracy-related: Each run of an ABET should yield a good estimate of the end-to-end AB. In order to

quantify the accuracy of an ABET estimate, we compute itsAB estimation erroras the difference between

the estimated AB and the actual AB. The actual AB of a link is computed as the ratio of the number of bits

that traverse the link during the tool run, to the tool run-time.

• Cost-related: We quantify the cost of using an ABET with several metrics. The run-timeis defined as

the time taken by a tool to return an estimate. The faster a tool runs, the better and valid its AB estimates

are. Since we are relying on a simulation environment, this time is primarily governed by the number and

sizes of probe-streams and the convergence logic used to estimate AB. For closed-loop tools, the run-time

is also affected by the path RTT. Theprobing overheadis defined as the total amount of network probe

traffic sent by the tool in order to arrive at a single estimateof AB. For large-scale deployment and use

of ABETs, it is important that they use low amount of probe traffic. The intrusivenessis defined as the

average bit-rate of a tool—this is given by the ratio of the overhead to the run-time. Since the run-times

of ABETs can differ by orders of magnitude, it is important tocompare the rate at which they inject probe

traffic.

In addition, we study the impact of probe traffic on the response time of ongoing TCP connections.

We conduct several types of experiments in order to study theabove metrics—we describe these next.

5.3 Validation

The accuracy of most ABETs is typically established by theirproponents by running them on links shared by

cross-traffic with aconstant bit-rate(CBR). We validate our NS-2 implementations of the selectedABETs by

using the network topology depicted in Figure 5.1.2 We run CBR cross-traffic between nodes N2 and N3, and

instances of ABETs between nodes N0 and N1. We vary the cross-traffic load from 100 Mbps to 900 Mbps and

for each load, we record the AB estimates from several back-to-back runs of each tool. It is important to note

2Unless stated otherwise, all link capacities and link delays in all of our topologies are set to1Gbps and10ms, respectively, and sufficient
buffers are provisioned to avoid packet losses.

68



N2

N1
N0

N3

Tool Traffic 
Cross Traffic

Figure 5.1: Topology with a Single Bottleneck Link

that all of our evaluations are conducted in high-speed gigabit networks—most ABET designs have not been

evaluated in such a setting previously.

 0

 200

 400

 600

 800

 1000

 0  200  400  600  800  1000

M
ea

su
re

d 
A

B
 (

M
bp

s)

Actual AB (Mbps)

Fast-IGI
Cprobe

IGI
R-IGI

Pathload
Pathchirp

Spruce

Figure 5.2: Validation of ABET Implementations

Figure 5.2 plots the average of the estimated AB against the actual AB. We find that Pathload and Spruce are

quite accurate in reporting the AB. PathChirp estimates deviate slightly at higher values of AB—we run the same

set of experiments using a publicly-available NS-2 implementation of PathChirp and find that the AB estimates

are quite similar to our implementation. CProbe, IGI, and Fast-IGI do a poor job of estimating the AB in the

high-speed setting simulated. Cprobe works on the simple logic of sending a stream of packets at a fairly high

rate (given by the bottleneck capacity)—the rate at which the probe-stream arrives at the receiver is taken as the

69



estimate of the end-to-end AB. It has been shown in [JD04] that the receiving rate in such cases is not a good

estimate of AB. Due to its inaccuracy, we do not use Cprobe forour subsequent evaluations.

We next investigated the reasons for the poor performance ofIGI. Note that IGI always over-estimates the

AB. On careful examination of the IGI design and implementation, we discovered a key design factor that was

leading to over-estimation on high-speed network paths:

The equation used for estimating the cross-traffic load (Equation 3 in [HS03]) uses the link capacity as the

multiplier—in our understanding, it should be using the current sending rate as the multiplier.

We change our IGI implementation accordingly to create a newversion, henceforth referred to as R-IGI.

Figure 5.2 also plots the results of R-IGI validation—we findthat R-IGI performs quite well. In our subsequent

experiments, we use R-IGI.

Our implementation of Fast-IGI (validated in Fig 5.2) also incorporates the above-mentioned changes. How-

ever, it still leads to high estimation errors when the traffic load is higher than 500 Mbps. Since most of our

subsequent evaluations are not conducted at such high loads, we include Fast-IGI in our subsequent evaluations.

5.4 Evaluating the Accuracy of ABETs in Dynamic Traffic Conditions

The validation experiments presented in Section 5.3 also confirm the high accuracy of several prominent ABETs

when the network traffic load does not change. In reality, this is seldom the case with loaded Internet links. In

order to reproduce in our simulations, the dynamic traffic conditions that characterize real Internet links, we rely

on replayingpacket-level traces collected from several Internet links. Specifically, we collect five 1-hour packet

traces (from four different Internet links) which are summarized in Table 5.1—the traffic load of these traces

ranges from160Mbps to 530Mbps. We then use thereplay tracemodule in NS-2 for creating an exact replica

of the link-level packet-arrival process (and consequently, the AB process) for each trace. In this section, we

evaluate ABET accuracy against this type of cross-traffic

Trace Traffic Type Average Load
Ibiblio Web server access link 160 Mbps
UNC05 University access link 230 Mbps
UNC28 University access link 358 Mbps

IPLS-CLEV Internet2 backbone link 410 Mbps
IPLS-KSCY Internet2 backbone link 530 Mbps

Table 5.1: Traces used for evaluations

70



5.4.1 Single Bottleneck Scenario

We first evaluate the tools using the topology of Fig 5.1, but with the traces replayed (instead of CBR traffic) as

cross-traffic between nodes N2 and N3. This topology represents paths on which an ABET is likely to encounter

only a single congested link. We use this setup to study the impact of traffic load, MT, SI, and RTT on the AB

estimation accuracy of different tools.

 0

 50

 100

 150

 200

 250

 300

 350

Ibiblio UNC05 UNC28 IP-CLEV IP-KSCY

E
rr

or
 (

M
bp

s)

Traces

Fast-IGI
R-IGI

Pathload
Spruce

pathChirp

Figure 5.3: Tool errors with default parameters

Default Tool Configuration

We first run each ABET against all five traces, using the default configuration of tool parameters, which dictate

the implicit choices of MT and SI—the default MT for Pathload, PathChirp, R-IGI, Fast-IGI, and Spruce are

roughly: 10 ms, 10 ms, 1 ms, 1 ms, 0.5 ms, respectively, and thedefault SI for both Spruce and PathChirp is 0.1.

Each tool is run back-to-back for 300 seconds and the AB estimation error of each run is computed. Fig 5.3 plots

the average, and the 5- and 95-percentiles (as error bars), of this estimation error for each tool and trace used.

We observe that:

• The average estimation errors of ABETs are higher with dynamic cross-traffic than with CBR cross-traffic

71



 0

 50

 100

 150

 200

 250

 300

1 10 50 100

E
rr

or
 (

M
bp

s)

Measurement Time Scale (msec)

Fast-IGI
R-IGI

pathChirp
Spruce

Pathload

 0

 50

 100

 150

 200

 250

 300

0.1 0.3 0.5 60 msec

E
rr

or
 (

M
bp

s)

      Sampling Intensity                              Round Trip Time

Fast-IGI
R-IGI

pathChirp
Spruce

Pathload

(a)IPLS-CLEV: Impact of MT (SI=0.1, RTT=60 ms) (b)IPLS-CLEV: Impact of SI (MT=10 ms)

Figure 5.4: Impact of MT, SI, and RTT

(Section 5.3), and range from 20 - 120 Mbps. Pathload, PathChirp, and Fast-IGI have similar average

estimation errors, while R-IGI has lower and Spruce has higher errors.

• The estimation errors vary widely around the average. The variability is least for Pathload and quite high

for Spruce and PathChirp—estimation errors sometimes exceed 300 Mbps.

• For each tool, the AB estimation errors are similar across the five traces, even though the traffic load

in these traces are quite different. However, it is important to remember that the highest link utilization

represented by these traces is only 53%—it is not clear if higher loads would impact estimation errors.

Impact of MT, SI, and RTT

The default choices of MT and SI vary widely across existing ABETs [SK06]. In order to compare tool perfor-

mance in an unbiased manner, we next systematically controlMT, SI, and RTT, and study the impact on the AB

estimation error of each ABET. Specifically, we select MT from (1, 10, 50, 100 ms), SI from (0.1, 0.3, 0.5) for

open-loop tools, and RTT from 60-300 ms for closed-loop tools—these values are representative of the diversity

found in existing ABETs and Internet paths [SK06, AKSJ03].

Fig 5.4 plots the average and 5- and 95- percentiles of the AB estimation error with the IPLS-CLEV trace—

the trends are quite similar for the other traces. We observethat:

• Increasing the MT improves the accuracy of all ABETs. This isto be expected—larger MTs imply that a

larger number of probe packets interact with the cross-traffic and are able to better sample the AB process.

72



However, the gain in accuracy is most significant at fine time-scales. The gains are negligible beyond an

MT of 50 ms.

The impact of MT on PathChirp is lower than on the other tools.This is due to the exponential inter-packet

spacing in the probe streams—the number of probes sent does not increase proportionally with MT.

• More importantly, by keeping the MT the same across different tools, the relative performance difference

between the tools changes! Most significantly, Spruce now isthe most accurate, while it was the least

accurate with the default settings of MT.

• SI has a negligible impact on the AB estimation accuracy of the open-loop tools, Spruce and PathChirp.

This result may seem contrary to the observations made in [SK06] that high values of SI lead to better

sampling accuracy—it is important to note, however, that the AB estimation accuracy is also limited by

the accuracy of the inference logic used by the respective tools. Our observations indicate that increasing

the rate of probing the AB process is not likely to help improve the accuracy of current tools.

• Similar to SI, RTT has no impact on the AB estimation accuracyof the closed-loop tools, Pathload and

R-IGI.

5.4.2 Multiple Bottlenecks

Bottleneck Location—Different Tight and Narrow Links

N2

N1
N0

N3

666 Mbps

Tool Traffic 

TCP−Replay Cross Traffic 

R1 R3R2

Figure 5.5: Different tight and narrow links

The inference logic of several ABETs—including IGI and Spruce—is based on the premise that on the path

for which AB is to be estimated, the tight as well as narrow link are the same. In practice, this may not be the

73



 0

 50

 100

 150

 200

 250

 300

IPLS-CLEV IPLS-KSCY Two Tight Links

E
rr

or
 (

M
bp

s)
Traces

Fast-IGI
R-IGI

Pathload
Pathchirp

Spruce

IPLS-CLEV and IPLS-KSCY Error ranges

Figure 5.6: Performance with multiple bottleneck links (MT=50ms, SI=0.1)

case with many Internet paths—indeed, an ISP access link that is shared among a large user population may have

a lower AB than the last-mile narrow link for many broadband users. In order to study ABET performance on

such paths, we simulate the topology of Fig 5.5. The 666 Mbps link between the routers R2 and R3 is the narrow

link (all other links have a 1 Gbps capacity). The ABETs run between the nodes N0 and N1. We replay traces

between nodes N2 and N3 in order to ensure that link R1-R2 is the tight link for the tool traffic—for this, we

use two traces: IPLS-CLEV (410 Mbps) and IPLS-KSCY (530 Mbps). We compute the actual end-to-end AB

in any given time interval as theminimumof the AB on links R1-R2 and R2-R3. We use this to compute the AB

estimation error for each tool run. Fig 5.6 plots the averageand the 5- and 95-percentiles of the AB estimation

errors observed from several back-to-back tool runs, with MT of 50 ms, and SI of 0.1. We observe that the error

of PathChirp and Spruce increases by a factor of 2-3, compared to the scenario of Fig 5.1, while the performance

of other ABETs is not impacted much. With this change, the relative rankings of Spruce and PathChirp changes

and these now have the highest estimation errors.

Multiple Bottleneck—Two Potential Tight Links

Most ABET designers implicitly (and often, explicitly) assume the existence of only asinglecongested (bot-

tleneck) link on the concerned path. It is conjectured that current ABETs might underestimate end-to-end AB

in the presence of multiple bottleneck links [JD02a]. In order to study this scenario, we simulate the topology

of Fig 5.7. We replay the IPLS-CLEV trace between N2 and N3, and the IPLS-KSCY trace between nodes

N4 and N5. The ABETs are run between nodes N0 and N1. With this setup, the tools encounter one narrow

link (R2-R3), and two potential tight links (R1-R2 and R3-R4)—on an average, the latter is the “tighter” link;

74



N2

N0

N3

Tool Traffic 

TCP−Replay Cross Traffic 

N5

N1

666 Mbps

N4

R1 R3 R4R2

Figure 5.7: Single narrow link; two tight links

however, the tool traffic experiences queuing at both links.

We compute the actual end-to-end AB as theminimumof the AB on links R1-R2 and R3-R4. We run each

ABET several times with MT of 50 ms and SI of 0.1. Fig 5.6 plots the average and the 5- and 95-percentiles

of the AB estimation errors of different tools. On comparison to the other plots on the same figure, we observe

that the accuracy of Pathload, R-IGI, and Fast-IGI is not significantly impacted by the presence of multiple tight

links. However, the accuracy of PathChirp and Spruce further degrades and these are the most inaccurate.

5.5 Evaluating the Costs of ABETs

Overhead Fig 5.8 (a), (b) plot the average and the 5- and 95-percentiles of the overhead for each tool at

different SI and with MT of 1 and 50 ms. We observe that:

• For any given MT, PathChirp, R-IGI, and Fast-IGI have the least overhead. The overhead of each run of

Pathload is larger by more than an order of magnitude and can be as high as a giga-byte.

• Tool overhead increases with MT. While the increase is linear for most tools, it is not for PathChirp. This is

because PathChirp uses an exponentially-spaced packet stream—increasing the stream duration, therefore,

increases the number of packets only sub-linearly. Consequently, while the overhead of Pathload increases

from 50 MB to 2.5 GB as the MT increases from 1 to 50 ms, the overhead of PathChirp increases from 0.5

MB to only 0.75 MB.

• SI and RTT have no impact on the overhead of most tools. The overhead is dictated by the size and

number of probe streams sent—the same number of probe-streams are needed to arrive at an AB estimate,

irrespective of these quantities. For Spruce, however, theoverhead increases with SI—this is an artifact of

75



 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

0.1 0.3 0.5

O
ve

rh
ea

d 
(B

yt
es

)

Sampling Intensity

pathChirp(1)
pathChirp(50)

Spruce(1)
Spruce(50)

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

240 120 60

O
ve

rh
ea

d 
(B

yt
es

)

Round Trip Time (msec)

R-IGI(1)
R-IGI(50)

Fast-IGI(1)
Fast-IGI(50)
Pathload(1)

Pathload(50)

(a) Overhead of open-loop tools (b) Overhead of closed-looptools

 0.001

 0.01

 0.1

 1

 10

 100

 1000

0.1 0.3 0.5

T
im

e 
(s

ec
)

Sampling Intensity

pathChirp(1)
pathChirp(50)

Spruce(1)
Spruce(50)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

240 120 60

T
im

e 
(s

ec
)

Round Trip Time (msec)

R-IGI(1)
R-IGI(50)

Fast-IGI(1)
Fast-IGI(50)
Pathload(1)

Pathload(50)

(c) Run-time of open-loop tools (d) Run-time of closed-looptools

 0.1

 1

 10

 100

 1000

0.1 0.3 0.5

In
tr

us
iv

en
es

s 
(M

bp
s)

Sampling Intensity

pathChirp(1)
pathChirp(50)

Spruce(1)
Spruce(50)

 10

 100

 1000

240 120 60

In
tr

us
iv

en
es

s 
(M

bp
s)

Round Trip Time (msec)

R-IGI(1)
R-IGI(50)

Fast-IGI(1)
Fast-IGI(50)
Pathload(1)

Pathload(50)

(e) Intrusiveness of open-loop tools (f) Intrusiveness of closed-loop tools

Figure 5.8: Costs of ABETs with the Ibiblio trace (numbers inparenthesis indicate the MT in ms)

76



the fact that we are using a large number of tool runs in order to incorporate SI into its AB estimates.

Run-time Fig 5.8 (c), (d) plot the average and the 5- and 95-percentiles of the run-time for each tool at different

SI and with MT of 1 and 50 ms. We observe that:

• Spruce is the fastest tool; this is true in spite of the fact that we aggregate several tool-runs in order to get

an estimate at the desired MT.

Pathload is the slowest tool, taking 10-100 seconds to return an AB estimate. R-IGI takes 1-10 seconds

and PathChirp takes a few seconds (with its typically configured MT). Fast-IGI is roughly 5 times faster

than R-IGI.

• Increasing the MT results in a proportional increase in the run-time of all tools. For Spruce, however, this

is an artifact of the way we are incorporating MT into the AB estimates yielded by it.

• The run-time of closed-loop tools is proportional to the path RTT, which characterizes the feedback delay

of these tools.

• As SI increases, the run-time for PathChirp decreases. Thisis because open-loop tools such as PathChirp

rely on sending and observing a fixed number of probe streams—larger is the SI, faster would these streams

be sent.

SI has no impact on the run-time for Spruce—this is, however,an artifact of the way we incorporate MT

into the Spruce estimates.

• The run-times of most tools are predictable—they do not varysignificantly around the average.

Intrusiveness Fig 5.8 (e), (f) plot the average and the 5- and 95-percentiles of the intrusiveness for each tool

at different SI and with MT of 1 and 50 ms. Recall that intrusiveness is given by the ratio of the overhead to

run-time of a tool. We observe that:

• All closed-loop tools are quite intrusive and can temporarily congested high-speed links. The run-times

suggest that tools like Pathload can induce such congestionfor several seconds.

Spruce is also quite intrusive—it sends back-to-back probepackets at the line rate. However, since its

run-time is small, it is unlikely to induce congestion for long durations (unless it is run several times).

PathChirp is the most non-intrusive tool.

77



• The closed-loop tools—Pathload, R-IGI, and Fast-IGI—havevery similar intrusiveness. This may seem

surprising given that both the run-times and overheads of these tools vary by nearly two orders of magni-

tude. However, it is important to note that all of these toolsrely on a feedback loop and iteratively search

for the AB—consequently, these operate at time-units that are RTT long. Both R-IGI and Pathload use the

concept of self-loading streams and, consequently, their per-RTT overhead (which is the intrusiveness) is

similar.

• As MT increases, the intrusiveness of closed-loop tools increases proportionally. This is to be expected;

the per-RTT overhead of these tools is given by the size of each probe-stream, which is proportional to the

MT.

Increasing MT decreases the intrusiveness of PathChirp. Asmentioned before, while the run-time of

PathChirp increases linearly with MT , its overhead increases only sub-linearly due to the exponential

nature of the probe stream. The intrusiveness, consequently, decreases.

MT has no impact on Spruce—however, this is also an artifact of the way we incorporate MT into its AB

estimates.

• Increasing SI increases the intrusiveness of open-loop tools. This is to be expected, as a larger number of

probe streams are sent per unit time as a result of increasingSI.

• Intrusiveness of closed-loop tools increases as the RTT decreases. This is to be expected as the per-RTT

overhead remains the same.

We conclude that in terms of the cost metrics, the tool that islikely to run quickly, while not perturbing

ongoing traffic much seems to be PathChirp; the cost of Pathload, R-IGI, and Fast-IGI seems to be the highest.

5.5.1 Impact on Responsive Cross-Traffic

TCP is the dominant transport protocol used by most Internetapplications [ea07]. TCP uses congestion-control

mechanisms to reduce the data sending rate on detecting network congestion. A key issue in the wide-scale

deployment of ABETs is that of how adversely do these tools impact the performance of applications that rely

on suchresponsivetransport protocols. In this section, we study this issue.

Unfortunately, the trace replay methodology used in Sections 5.4 and 5.5 is not suitable for studying this

issue—it recreates only the link-level packet-arrival process and does not incorporate TCP behavior. In particular,

78



it does not model the impact of queuing delays and losses on the subsequent packet transmission behavior of a

TCP connection. Recent efforts have focused on developing traffic-generation tools that also incorporate the

responsive behavior of TCP—Tmix [HCSJ04] is one such tool. It takes as input a link-level packet trace (such

as those summarized in Table 5.1), and for each TCP connections that appears in the trace, it derives the RTT

and the application-level data generation behavior (including user think times). Recently, an NS-2 version of

Tmix has been developed [WAHC+06], which takes this derived connection descriptor as input and emulates

per-connection application bots with similar RTTs and data-generation behaviors.

We use this version of Tmix in the topology of Fig 5.1, in whichthe nodes N2 and N3 now each emulate

a cloud of servers and clients that instantiate connectionsbetween these two nodes. Different per-connection

RTTs are simulated using the delay-box environment [del] ofNS-2 and the router buffer sizes are limited to 100

MSS-sized packets to help emulate packet losses (even without the ABETs). The connections to be simulated

are derived from a real Internet access link and have an average traffic load of 300 Mbps.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5

C
D

F

Response Time (sec)

No Tools
Fast-IGI

Pathload
pathChirp

Spruce
R-IGI

Figure 5.9: CDF of response times with default parameters

Tmix measures and reports the per-connection response time—the time taken for the connection to transfer

all data between the two end-points. In order to assess the impact of ABETs on the simulated TCP connections,

79



we run the tools continuously between nodes N0 and N1 and observe the impact on the distribution of connection

response times. Each tool has an SI of 0.1, an MT of 50ms, and anRTT of 240 ms. Fig 5.9 plots this distribution

for experiments conducted with each tool and without any tools. We find that:

• PathChirp has no noticeable impact on connection response times. As seen in Section 5.5, PathChirp has

a fairly low intrusiveness—it does not cause much queue build-up on the bottleneck link.

• All of the other tools can significantly impact the response times of TCP connections. Of these, Spruce

and R-IGI increase the connection response times for long connections by a factor of 2-3. For instance,

the 75-percentile response time without any tool is a littleover 1 s, while with Spruce and R-IGI , the

75-percentile response times are 1.7 s and 2.5 s, respectively.

Note that while Spruce had one of the highest measures of intrusiveness, it does not fare among the worst

in impacting connection response times. Its packet steams are too small (two packets) to sustain congestion

long enough to inflict packet losses.

• Pathload and Fast-IGI can significantly impact the responsetimes of all connections. While 75% of con-

nections have a response time less than 1 s in the absence of any tool, nearly 65% and 80% of connections

have a response time larger than 1 s in the presence of Pathload and Fast-IGI, respectively.

We conclude that if an application needs to run an ABET repeatedly on a given Internet path, it should use

PathChirp. Such an application should never use Pathload orFast-IGI as these are likely to significantly impact

connection response times.

5.6 Notes on related work

5.6.1 Spruce and packet-pair techniques

Dovrolis et. al. [LDS06] show that Spruce has the tendency tounderestimate end-to-end AB when the traffic is

non-path persistent. However, when the traffic is persistent, the bias or error in Spruce is negligible. A similar

analytical result has also been established in the paper by X. Liu [LRL05], which concludes that the bias inherent

in packet-pair methods tends to under-estimate the end-to-end AB in multi-hop scenarios with one-hop persistent

cross-traffic. They find that the overall under estimation can be quantified as the sum of two bias terms. The

first bias term tends to zero as the number of packets in the packet-train used by spruce grows very large. The

80



second bias term however never reduces to zero—this suggests that Spruce will always underestimate the AB

on a multi-hop path with non path-persistent traffic. From our evaluations, we also find that Spruce performs

well when the traffic is path persistent (as in the single bottleneck scenario). In the multiple bottleneck scenario,

however, the traffic we instrument is one-hop persistent andwe observe that the performance of spruce degrades

quite significantly. Thus our evaluation corroborates pastresults that have been obtained on the performance of

Spruce.

5.6.2 Pathload and rate based techniques

Liebeherr et. al. [LFV07a] model the network as a min-plus linear system and use this model to study the

performance characteristics of rate-based techniques like Pathload and IGI. They observe that the rate limit that

is used in rate-scanning based techniques significantly impacts the accuracy of the tools. They suggest that the

rate limit should be at least greater than the current AB. Most rate-based AB estimation tools—including Pathload

and IGI—already adopt this suggestion by estimating the end-to-end link capacity and using the capacity measure

as the rate limit.

Liu et. al. [LRL05] find that rate based techniques also tend to underestimate the AB. Furthermore, they

find that in cases where there are multiple tight links on the path, rate-based techniques also underestimate the

AB. They also find that using longer packet trains will reducethis bias. From our evaluations, we find that using

a larger MT (which is equivalent to increasing the length of the packet-train) does improve the performance of

Pathload. We also find that the performance of Pathload degrades as we go from the simple single-bottleneck

scenario into more complex ones. The tradeoff is that the useof longer packet-trains comes at the expense of an

increasing tool overhead, which will limit the length to which we can increase the length of the packet-train.

5.6.3 Pathchirp and rate chirps

Liebeherr et. al. [LFV07a] using their min-plus model for ABestimation also found that decreasing the spread

factor—for instance, by sending more packets over a longer time—could help improve accuracy. In our experi-

ments we varied the MT by controlling the spread factor and the number of packets per-chirp, and hence it is not

possible to extrapolate the results directly. However, we found that there is a slight improvement in the average

performance of Pathchirp when the MT is increased—that is, when more packets are sent over a longer interval

of time.

81



5.7 Conclusion

After evaluating the different AB estimation methodologies we make the following observations.

• Regarding Accuracy: (i) We observe that different CBR loads does not cause the accuracy of the different

ABET technique to change. Only Fast-IGI shows a decrease in accuracy at loads greater than 600 Mbps.

(ii) The accuracy of different AB methodologies across all the traces is comparable, even though the traces

represents different average loads. (ii) The errors are higher with the trace-traffic than with CBR traffic.

(iv)Increasing the MT improves the accuracy of all the ABETs. (v) Beyond a MT of 50 ms the gains in

accuracy are negligible. (vi) Increasing the SI however does not have an impact on the accuracy. This is

because of the inherent error that is present in every sampleof AB inference. (vii) Similar to SI the RTT

has no impact on the accuracy of an ABET.

• Regarding Overhead:(i) Pathchirp, Fast-IGI and IGI have the least overhead and Pathload has the most

overhead (ii) As the MT increases the overhead increases except for Pathchirp where the overhead does

not increase as a linear function of the MT. (iii) As the MT increases, the run time increases. (iv) As the

SI increases or the RTT decreases, the run-time decreases. (v) Pathload takes between 30-100 seconds

to run at MT of 50 ms. (vi) Spruce is the fastest tool since it could produce an AB estimate with every

packet-pair it sends out. (vii) Increasing the MT increasesthe intrusiveness, except for Pathchirp in which

case the intrusiveness reduces with larger MT. (vii) Increasing the SI also increases the intrusiveness. (ix)

Pathchirp shows the lowest intrusiveness. (x) Spruce and other closed loop tools show similar intrusiveness

characteristics.

82



CHAPTER 6
Scalable Monitoring of the AB

With an understanding of the issues that impact the performance of the various AB techniques and tools, we now

visit the problem of designing a scalable AB inference scheme for multi-path monitoring applications. We first

use the knowledge of the performance characteristics of ABETs from the previous studies to pick and calibrate

our AB estimation methodology. We then describe the design of our scalable AB estimation scheme, along

with the assumptions it is based on. Finally we present validation results of our scheme, that we obtained by

evaluating our scheme on PlanetLab [Pla].

6.1 Selection of ABET estimation methodology

As argued in Chapter 1, large-scale multi-path AB monitoring requires that the per-path ABET used should: (i)

impose low overhead on the path, (ii) have a fast response time, and (iii) should yield accurate estimates.

Some of these goals conflict with each other; for instance in the current spectrum of design choices, tools

that are accurate are either overly intrusive (IGI, Figure 5.8(f)) or have long RT (Pathload, Figure 5.8(d)). In

order to pick a tool and configure its parameters we utilize the insights that we have obtained from our previous

evaluation studies (Chapters 3, 4 and 5). Three tools that meet the requirements of being able to report the AB

fast and accurately are Fast-IGI, Spruce and Pathchirp. Since IGI and Pathload rely on a convergence logic and

thus have a non-deterministic run-time they would not be suitable for this application (Figure 5.8(d)). Though

Fast-IGI would be a much better choice in terms of accuracy, it exhibits high intrusiveness (Figure 5.8(f)).

Furthermore, as was observed in Figure 5.8, at high loads Fast-IGI tends to overestimate the AB. Between

Spruce and Pathchirp, Pathchirp has a lower intrusiveness (Figure 5.8(e)) and also has a short run-time, which

makes it a good candidate for a large-scale monitoring application.

Next, we use insights from previous studies to set the Pathchirp parameters so that we can maximize the

accuracy, while minimizing the intrusiveness and time to report a measurement. From Figure 4.6, we expect that

a SI of at least 30% would give us good accuracy. Due to the exponential design of its probe-streams, Pathchirp



already adopts a high sampling intensity (due to the low-intrusiveness of its probe-streams, it can afford to send

successive probe-streams within a short gap). Another way to improve the accuracy would be to increase the MT

(Figure 5.4(a)) to 50 ms. Since increasing the MT increases the RT of the tool (Figure 5.8(c)) we can offset this

increase in RT by increasing the SI (Figure 5.8). While increasing the accuracy, increasing the MT also reduces

the intrusiveness of Pathchirp (Figure 5.8(e)) and reducesthe variability of the AB estimates made (Figure 4.11).

Finally, we configure Pathchirp to run with 8192 byte packet size, which would reduce requirements on timer

granularity and reduce the potential for interrupt coalescence effects (Figure 3.4).

6.2 Design of the AB Monitoring Scheme

Recently a network monitoring architecture—referred to asBroute—has been proposed in [HS05] that focuses

instead on explicitly measuringABout
S1

andABin
D1

, and uses Equation (1.3) to inferAB(S1, D1). Unfortunately,

while several tools have been designed and evaluated for accurately measuringend-to-endAB [JD02b, Rib03,

SKK03a, SK07, SMH+05], currently available tools for measuringABout orABin are fairly inaccurate. Indeed,

in this chapter we show that use of the Broute approach can lead to AB inferences that are inaccurate by more

than 50%.

We next address the question:How can a monitoring service estimate in a scalable manner, the AB on the

N2 paths of an overlay of sizeN using only an end-to-end ABET?

6.2.1 Approach

In this chapter, we eliminate the dependency on per-hop AB estimation tools and instead design a scalable AB

monitoring architecture that relies only on tools that measure end-to-end AB. We refer to our architecture as

SABI (Scalable Available Bandwidth Inference). SABI exploits the existence of end nodes (or overlay nodes)

that are connected by well-provisioned access segments. Asshown below, such nodes can be used for inferring

AB between other node pairs in a scalable manner. We present three different approaches—that differ in their

accuracy and overhead—for doing so.

SABI Algo 1: Consider the additional nodeS2 in Fig 2.2. Our previous observations on access-segments imply

that:

AB(S2, D1) ≃ min{ABout
S2

, ABin
D1

}

84



AB(S1, S2) ≃ min{ABout
S1

, ABin
S2
}

Furthermore,

min{AB(S1, S2), AB(S2, D1)}

≃ min{ABout
S1

, ABin
S2

, ABout
S2

, ABin
D1

}

= min{ABout
S1

, ABin
D1

},

if ABin
S2

, ABout
S2

≥ ABout
S1

, ABin
D1

≃ AB(S1, D1) (6.1)

Thus, if the access segment ofS2 consists of well-provisioned high-capacity links, thenAB(S1, D1) can

be inferred as the minimum ofAB(S1, S2) andAB(S2, D1).

Our first approach for scalable AB inference, therefore, assigns a well-provisionedhead-node(such as

S2) to each potential source node (such asS1) in the overlay. Head-nodes measure the AB on paths to all

potential destination nodes (such asD1). Source nodes only measure the AB on the path to their head-

node. The end-to-end AB between any given source and destination is then inferred as the minimum of

these two quantities. Thus, in an overlay of sizeN , if K head-nodes are assigned, the total number of AB

measurements that need to be made in order to infer allN2 AB values is given by:O(K ∗ N).

SABI Algo 2: In order to further reduce the number of AB measurements, consider the nodeD2 in Fig 2.2.

Then,

AB(D2, D1) ≃ min{ABout
D2

, ABin
D1

}

AB(S2, D2) ≃ min{ABout
S2

, ABin
D2

}

Furthermore,

min{AB(S1, S2), AB(S2, D2), AB(D2, D1)}

≃ min{ABout
S1

, ABin
S2

, ABout
S2

, ABin
D2

, ABout
D2

, ABin
D1

}

= min{ABout
S1

, ABin
D1

},

85



if ABin
S2

, ABout
S2

, ABin
D2

, ABout
D2

≥ ABout
S1

, ABin
D1

≃ AB(S1, D1) (6.2)

Thus, if the access segments of bothS2 andD2 consist of well-provisioned high-capacity links, then

AB(S1, D1) can be inferred as the minimum ofAB(S1, S2), AB(S2, D2), andAB(D2, D1).

Our second approach for scalable AB inference, therefore, assigns a well-provisionedhead-nodes(such

asS2 andD2) to each potential node (such asS1 andD1) in the overlay. All head-nodes measure the AB

on the paths to each other. Additionally, each node measuresthe AB on the path to/from its corresponding

head-node. The end-to-end AB between any given source and destination is then inferred as the minimum

of the three quantities mentioned above. Thus, in an overlayof sizeN , if K head-nodes are assigned, the

total number of AB measurements that need to be made in order to infer all N2 AB values is given by:

O(N + K2).

SABI Algo 3: Observe that if bothS2 andD2 have well-provisioned access segments, then it is likely that

AB(S2, D2) will be larger thanAB(S1, S2) andAB(D2, D1). Thus, Equation (6.2) can be re-written as:

min{AB(S1, S2), AB(D2, D1)} ≃ AB(S1, D1), (6.3)

if ABin
S2

, ABout
S2

, ABin
D2

, ABout
D2

≥ ABout
S1

, ABin
D1

. Thus,AB(S1, D1) can be inferred as the minimum of

AB(S1, S2) andAB(D2, D1).

Based on this idea, our third approach for scalable AB inference, just like the second approach above,

assigns a well-provisionedhead-node(such asS2 andD2) to each potential node (such asS1 andD1) in

the overlay.

Also, like the second approach, each node measures the AB on the path to/from its corresponding head-

node. The difference is that none of the head-nodes measure the AB on paths to each other. The end-to-end

AB between any given source and destination is then inferredas the simply minimum of the two quantities

mentioned above. Thus, in an overlay of sizeN , if K head-nodes are assigned, the total number of AB

measurements that need to be made in order to infer allN2 AB values is given by:O(N).

Note that this third approach is similar in spirit to that of Broute [HS05]—the difference is that Broute

relies on tools that explicitly measure the AB on access segments ofS1 andD1, whereas our approach

86



implicitly measures it by measuring the end-to-end AB between these nodes and their corresponding head-

nodes. Tools for measuring end-to-end AB are significantly more accurate.

Need for Path Similarity Note that each of the above three algorithms rely on the assumption that the access

segments are shared among the paths involved—for instance,the paths fromS1 to D1 and fromS2 to D1 should

share the same incoming access segment ofD1. This assumption may not hold if any of the nodesS1, S2, or

D1 (or their local ISPs) are multi-homed.1 Since multi-homing is on the rise in the Internet [AMS+03], the

SABI inferences can be applied in practice only if the routesfrom overlay nodes and their head-nodes to most

destinations indeed share their last few hops. In order to ensure this, we adopt the following general approach

for monitoring the all-pairs AB of an overlay in a scalable manner:

1. form groups of nodes that share similar underlying IP paths to other nodes in the overlay;

2. within each group, select the node with the highest-capacity access segment as the “head” node of the

group;

3. measure AB from all nodes within a group to the head-node;

4. for Algo 2, additionally measure AB between all head-nodes in the overlay;

5. for Algo 3, additionally measure the AB from each head-node to all nodes outside the group; and

6. infer AB between any two nodesi andj, using one of Equations (6.1), (6.2), and (6.3).

6.2.2 Path-based Clustering

In order to group together nodes with similar routes to otherdestinations, we first define apath difference(PD)

metric for any pair of overlay nodes. LetHm
i,k be an ordered vector representing the IP addresses of the last m

IP hops that appear on the path from nodei to nodek. Then,

PDm(i, j) =
1

N − 2

∑

k∈S−{i,j}

D(Hm
i,k, Hm

j,k)

whereS is the set of all overlay nodes, and the functionD returns the number of positions at which the values of

the specified vectors differ—for instance, ifX = [1.2.3.4, 5.6.7.8, 9.10.11.12],andY = [13.14.15.16, 1.2.3.4, 9.10.11.12],

1A node or network is said to be multi-homed if there are more than one ISPs or access links connecting it to the rest of the Internet.

87



thenD(X, Y ) = 2. Intuitively, the smaller the value of thePDm(i, j) metric, the more similar are the paths

from nodesi andj to the other nodes in the overlay. We use this metric as the “distance” between nodesi

andj—note that bothD andPD satisfy the triangular inequality. A standard clustering algorithm (such as the

K-means [kme]) can then be used to group the overlay nodes into clusters of “similar” nodes, as needed in step

1 of our approach.

Note that measuring the paths for N2 node-pairs constitutes lower overhead than the corresponding AB

measurements. Further, these measurements could be done atmuch larger intervals to form the node groupings,

as routes are not expected to vary as rapidly as AB measurements.

6.2.3 Head Selection

Let Ci,k be the end-to-end capacity from nodei to k. DefineCj,j = maxk∈S−{j} Cj,k. For each cluster formed

above, we select as the head-node the nodei that has the highest value of:Cmax
i = maxj{Ci,j}.2 This would

ensure that the node with the highest access-capacity gets selected as the head node. Further, this also ensures

that the head node is well-provisioned to be able to perform AB monitoring to all other nodes, on behalf of its

cluster-members.

In Appendix A, we show that if
√

N uniformly-sized clusters are used for an overlay of sizeN , then the

SABI Algorithm 1 reduces the number of AB measurements of an all-pairs monitoring service by a factor of
√

N . Non-uniform clusters, however, achieve less reduction inoverhead. It is also easy to see that with uniform

clustering, SABI Algorithms 2 and 3 reduce the number of AB measurements of an all-pairs monitoring service

by a factor ofN .

Both the overhead and accuracy of our approaches is impactedby two parameters: the number of clusters,

K, and the number of hops,m, considered for path-based clustering. We next empirically study this impact

and evaluate our approach through wide-area Internet experiments. We next present a large scale performance

evaluation of the SABI Algo 1. We also present a smaller scaleevaluation of all three SABI algorithms and

compare them to the Broute algorithm in the same scenario.

2Note that our definitions also imply thatCmax
i

= Ci,i.

88



6.3 Experimental Methodology

In this section, we evaluate our approach in an Internet-wide experimental setting. Below, we describe our

evaluation methodology.

The Experimental Environment

We rely on nodes from the PlanetLab testbed [Pla] for our experimental evaluation. This testbed gives us access

to a large and diverse set of geographically distributed nodes that can be used to form an experimental overlay.

Use of the PlanetLab testbed, however, poses additional challenges. First, the PlanetLab operating environment

poses software rate limits on the amount of traffic sent by anyapplication—this is likely to adversely impact the

accuracy of some capacity and AB estimation tools like Pathload [abt]. For our evaluation, we instead rely on

PathChirp [Rib03], an available bandwidth estimation toolthat does not send large probe streams at high rates

and, consequently, does not get impacted by the PlanetLab rate-limiting.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  2  3  4  5  6  7  8  9  10

A
ve

ra
ge

 P
ro

ba
bi

lit
y

Distance from end

PlanetLab
Non-PlanetLab

Figure 6.1: Location of Bottleneck Links

The rate-limiting may also imply that the bandwidth bottleneck is the first hop on each PlanetLab path, which

may not be true in the general Internet. In order to assess theimpact of the PlanetLab operating environment

on the location of the bottleneck link, we select 50 PlanetLab nodes and estimate the location of the bottleneck

89



link on all paths between these nodes usingStab[RRB04]. For each link on a path, Stab returns a probability

that the link is a bottleneck link—we run Stab several times on each path and for each link, compute the average

probability of it being a bottleneck link. Fig 6.1 plots thisaverage probability as a function of the distance of

the link from the closest end-point of the path—for instance, both the first and last hop appear at a distance of 1

from the end-point. We observe that the bottleneck is likelyto lie within 1-2 hops from either end of a path.

For comparison, we also run Stab on all paths between seven non-PlanetLab nodes located across 4 univer-

sities and the commercial Internet. Fig 6.1 also plots the per-hop bottleneck probability for these paths—we

find that the bottleneck locations are fairly similar to the PlanetLab environment. This suggests that the use of

PlanetLab does not unrealistically bias our experimental environment.

Recall that our approach needs several types of measurements from each overlay path: the end-to-end avail-

able bandwidth measurements, per-hop IP route informationfor clustering, and end-to-end capacity information

for choosing cluster heads. In order to obtain these measures, we leverage the Scalable Sensing Service infras-

tructure (S3) [YSB+06]. The S3 infrastructure collects measurements of the end-to-end capacity, AB, loss rates,

and traceroute data between all pairs of nodes in the PlanetLab testbed network (http://www.planet-lab.org) and

presents snapshots of the data at the following website: http://networking.hpl.hyperplane.com/s-cube.

Selecting the Overlay Nodes

At the time of our evaluation, PlanetLab had grown to 711 nodes spread across 338 sites. Unfortunately, in an

uncontrolled environment such as PlanetLab, it is difficultto consistently obtain all-pairs data on the end-to-

end capacity and IP routes. In particular, due to several issues such as nodes being down, high-CPU loads on

certain nodes, bandwidth limits, and tool errors, we do not have complete information for all pairs of PlanetLab

end-nodes. Since our objective is to evaluate the SABI architecture, it is important for us to know the ground-

truth about the overlay network on which we evaluate it. Our first challenge, consequently, is to find the largest

PlanetLab overlay for which S3 does provide all of the required evaluation measures for allnode-pairs.

Note that both capacity and route information are relatively static quantities. We first systematically search

the S3 measurement logs to extract all capacity estimates made over the past two months. We then model our

overlay-selection problem by constructing a graphG with 711 vertices, one corresponding to each PlanetLab

node. We add an edge between a node pair inG if we find a successful capacity estimate in the S3 logs for the

path between the corresponding PlanetLab nodes. Our maximal-overlay-selection problem is then analogous to

finding the largest clique in this graph. Using a heuristic algorithm, we find a large clique that consists of 144

90



nodes.3 After eliminating nodes belonging to the same PlanetLab member-site, we were left with a set of 95

distinct sites.

For all paths between each pair of these 95 nodes, we then use web requests to S3 to run traceroute and

obtain the current IP route information. Paths involving 12of these nodes did not return route information either

because the nodes were down or the system was unable to perform the traceroute operation. For evaluating

SABI, consequently, we rely only on the remaining 83 nodes—Appendix B lists the corresponding PlanetLab

sites

Clustering

We use the IP route information to compute the similarity metric PDm for each node-pair in our selected overlay.

We then populate a matrix of distances between all node-pairs using the similarity metric. This matrix is then

fed to the K-means clustering implementation in Matlab [Inc92]. We experiment with different values ofK, the

number of clusters generated. Within each cluster, the head-node is selected as the node with the largest value of

Cmax
i .

As mentioned earlier, our AB inference approach results in the maximal reduction in probing overhead when

the node-clusters are uniform in size; each of theK clusters would have a size ofN/K in this case. In practice,

though, the geographical distribution of the overlay nodesmay be skewed—in this case, the sizes of the resultant

clusters are also likely to be skewed. To reduce the probing overhead, we randomly partition clusters of size

larger thanN/K into two or more sub-clusters, such that none of the resultant sub-clusters is larger thanN/K.

Each sub-cluster behaves as an independent cluster and selects its own head-node. This approach not only helps

reduce the probing overhead, but also distributes the probing load uniformly across different head-nodes.

Measurements and metrics

LetHi denote the head node of the cluster to which nodei belongs. We use our overlay testbed and S3 to evaluate

our approach using the following algorithm:

For each nodei that is not a head-node

For each nodej that lies outside the cluster containingi

MeasureAB(i, Hi).

3The fact that a regular monitoring service such as S3 could provide a capacity-clique for only around 25% of the PlanetLab nodes further
highlights the challenge of wide-area experimentation on uncontrolled environments such as PlanetLab.

91



MeasureAB(Hi, j).

MeasureAB(Hi, Hj).

MeasureAB(Hj , j).

MeasureAB(i, j).

(SABI Algo 1) Estimate:

ABinf1(i, j) = min{AB(i, Hi), AB(Hi, j)}.

(SABI Algo 2) Estimate:

ABinf2(i, j) = min{AB(i, Hi), AB(Hi, Hj), AB(Hj , j)}.

(SABI Algo 3) Estimate:

ABinf3(i, j) = min{AB(i, Hi), AB(Hj , j)}.

This procedure helps us obtain nearly-simultaneously the values ofAB(i, j), the actual AB between nodesi

andj, as well asABinf (i, j), the AB inferred using SABI’s algorithms. We then use the following two metrics

to characterize the performance of our approach:

• Accuracy:We compute the accuracy of our inferences using two quantities: (i) the absolute inference error:

Ae(i, j) =
∣

∣ABinf (i, j) − AB(i, j)
∣

∣, and (ii) the relative inference error:Re(i, j) =
|ABinf (i,j)−AB(i,j)|

AB(i,j) .

It is important to mention that experimental evaluations ofexisting ABETs have shown that most of these

tools, including PathChirp, have typical AB estimation error of around 10% of the actual AB [SMH+05].

Thus, inferences errors of within 10 Mbps would lie within the resolution of existing ABETs—such errors

would be present even in an all-pairs AB monitoring infrastructure.

• Overhead:We compute the probing overhead as the total number of actualAB measurements that would

need to be made in order to obtain a snapshot of AB for the complete overlay. GivenSC is the set of

clusters, andnk is the number of nodes in clusterk, the probing overhead for different SABI algorithms

will be:

SABI Algo 1 :
∑

k∈SC
(nk ∗ (nk − 1) + (N − nk))

SABI Algo 2 :
∑

k∈SC
nk ∗ (nk − 1) + (N − |SC |)

SABI Algo 3 :
∑

k∈SC
nk ∗ (nk − 1)

The first term corresponds to the all-pairs measurements performed within a cluster, while the second term

corresponds to the measurements made in order to infer the ABto nodes outside the cluster, which is not

needed in the case of the third algorithm.

92



Parameters

Two main parameters can affect the performance of our AB inference approach:

K, the number of clusters: As formulated above, the number and size of clusters impact the probing overhead

of our approach.K also impact the AB inference accuracy—the larger is the number of clusters, the more

likely is it that all nodes in a cluster are actually similar in theirPD metric. We study both the accuracy

and probing overhead of our approach using cluster-sizes of7, 9, 10, and 12. Note that withN of 83,
√

N

is around 9, which is optimal for reducing the probing overhead in SABI Algo 1 (as shown in Appendix A).

Our choices forK evaluate values both less than and greater than this value.

m, the path matching parameter: In addition toK, path-based clustering is characterized bym, the number

of hops on the path to a destination that are compared to quantify node similarity—we refer to this as

thepath matching parameter. Recent Internet measurements [Li05] suggest that most bottleneck links lie

within 4-5 hops from the end-nodes. On the other hand, largerthe value ofm, the less likely is it that

even “similar” nodes would share allm hops to a destination. We study the sensitivity of our results on

the parameterm by usingm = 3, 5, 7.

6.4 Evaluation Results

Our detailed evaluation mainly focuses on the SABI Algorithm 1. At the end of this section, we also provide a

preliminary smaller scale comparative evaluation of all three SABI algorithms and also compare it to the Broute

algorithm [HS05].

6.4.1 Path Based Clustering

We run K-means to generateK = 7, 9, 10, 12 clusters. We also evaluate three different settings ofm = 3, 5, 7.

S3 could return all three measurements needed in the evaluation algorithm for only up to 44% of the node-pairs

involved, despite repeated measurement attempts.

Overhead Fig 6.2 plots as a function ofK, the probe overhead—the number of probes that would be required

for obtaining a single snapshot of all-pairs AB—for the clusters formed using thePD metric withm = 5. For

93



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2  4  6  8  10  12  14  16  18  20

N
um

be
r 

of
 P

ro
be

s

Number of Clusters

Path Clusters
Ideal with N=83

Figure 6.2: Probe Overhead

comparison, we also plot the best-case probe overhead for SABI Algorithm 1 if all clusters are of the same size.

Note that in this case, a naive approach of all-pair AB measurement would need 6806 probes withN = 83.

We find that our approach can reduce the all-pairs measurements by a factor of up to 4. Also, as expected,

we find that a cluster size close to
√

N (9, in this case) is likely to yield the least probe overhead.The probe

overhead with 9 clusters closely matches the ideal best-case (for uniform clusters).

Accuracy Figure 6.3 plots the values ofABinf1(i, j) as a function ofAB(i, j), for all pairs of nodesi andj,

for which AB is inferred usingK = 12, m = 5. We find that:

1. Most actual values of AB are clustered around three points: 10 Mbps, 40 Mbps, and 80 Mbps.

2. The inferred value of AB matches closely the actual AB for most points.

3. The inference error is higher for larger values of actual AB.

In order to quantify the inference errors, we usem = 5 and plot in Figures 6.4(a) and 6.4(b) for all node-pairs,

the distribution of the absolute inference error and the relative inference error, respectively. We find that:

94



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

In
fe

rr
ed

 (
M

bp
s)

Actual (Mbps)

Figure 6.3: Path-based clustering: Actual vs. Inferred AB

1. With 12 clusters, the median AB inference error is less than 20%, while 80% of the inferences lie within

40% of the actual.

2. 80% of the inferred AB lie within 20 Mbps of the actual AB. Asdiscussed before, this lies within the

estimation accuracy of existing ABETs.

3. The larger is the number of clusters, the better is the inference accuracy.

Impact of Path Matching Parameter We next study the impact of varyingm the path matching parameter

on the accuracy of inferring AB. We regenerate clusters using three different similarity metrics corresponding

to M = 3, 5, 7 and evaluate their AB inference accuracy. Figure 6.5 plots the cumulative distribution of the

relative inferences errors for different values ofm. We observe that a path matching parameter of 5 works the

best. Whilem = 3 does not perform much worse, selecting anm of 7 noticeably degrades the performance of

path-based clustering.

There are two reasons for preferring a smaller value ofm. First, it is difficult to obtain route information

corresponding to a longer access segment (such as 7)—in thiscase, we would require 7 routers on each path to

respond to traceroute queries. Second, it is unlikely that nodes would share a larger suffix of their routes to a

95



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

C
D

F

Absolute Error (Mbps)

7 Clusters
12 Clusters

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Relative Error

7 Clusters
12 Clusters

(a) Absolute Inference Error (b) Relative Inference Error

Figure 6.4: Distribution of Inference Errors

given destination. Thus, even “similar” source nodes wouldbe characterized by a small value of the similarity

metric,PDm. Clustering, consequently, may not be able to form good nodeclusters.

6.4.2 Improving the Availability of AB Snapshots

Note that we were able to evaluate our clustering approach for no more than 25-40% of the node-pairs involved.

As mentioned before, several factors related to the uncontrolled environment in PlanetLab—including node

failure, tool failure, high loads, and rate limits—contribute to our inability to generate more data points. It is

important to understand that such issues are likely to come up in most overlay infrastructures that wish to deploy

an overlay monitoring service. We next consider an approachto improving the availability of AB estimates.

Specifically, we assume that if an infrastructure is unable to measure the AB between two overly nodes, it

would use the end-to-end capacity between the nodes as an approximation of the AB. Note that the capacity is a

relatively static quantity and is already measured to facilitate node-clustering and head-selection.

In order to evaluate the impact of the above approximation onthe inference accuracy of our approach, we

re-consider our evaluation Algorithm, and for all cases in which the actual AB could be measured between nodes

i andj, but one of the other two measurements was missing, we substitute the missing values with the capacities

between the corresponding nodes. Doing so, helps us get 50-60% of the total data points. Figure 6.6 plots the

cumulative distribution of the relative error. We find that this approximation does not adversely impact the AB

inference accuracy of our approach—most of the new data points added follow a similar distribution of inference

96



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Relative Error

PMP 3
PMP 5
PMP 7

Figure 6.5: Impact ofm on Inference Accuracy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Relative Error

Only AB inference
Capacity Substitution

Figure 6.6: Distribution of Inference Errors with CapacitySubstitution

error as the previous data. In fact, the overall distribution of estimation errors improve by observing these extra

data points.

We conclude that to improve the availability of AB information, it is reasonable to use the capacity values

when AB measures are missing.

6.4.3 Differential Rate Limiting on PlanetLab

PlanetLab implements a differential rate-limiting policy[rat]—traffic flowing on Internet-2 is allowed higher

rate limits than traffic flowing in the general Internet. Thisdifferential treatment could cause inference errors

97



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Relative Error

All Inferences
Consistent Rate Limiting

Figure 6.7: Performance of Consistently Rate Limited Paths

when an overlay node and its head-node do not belong to the same type of network. For instance, assume that

the rate-limits for Internet-2 traffic is 100 Mbps, and for other traffic is 10 Mbps. In this case, if a source node

belongs to Internet-2 and its head-node does not, then the inferred AB to a destination in Internet-2 may be

much lower than the actual AB. Such inference errors could occur when overlay nodes are multi-homed—in this

case, the paths to the head-node and a destination node may not share the access segment and, consequently, the

bottleneck links.

Note that the differential rate-limiting would adversely impact the inference of only those node pairs in which

exactly two nodes out of the three involved (source, destination, and head) belong to Internet-2. In order to assess

the impact of this PlanetLab feature on our inference errors, we remove from our data all inferences that involve

such node pairs.4 Surprisingly, roughly 50% of our data points were of this type.

Figure 6.7 plots the distribution of the relative inferenceerror when such node-pairs are removed from our

data-set usingK = 7 andm = 5. We find that the inference accuracy improves significantly—80% of the

inferences have an error of 35% or less.
4In order to identify Internet-2 nodes, we first look for the “.edu” suffix in their IP names. Note that not all such nodes belong to Internet-

2. We then examine the end-to-end capacity measurements from these nodes to other nodes in the system to identify instances of differential
rate-limiting.

98



While this result is encouraging, it also suggests that our approach would need to select clusters carefully

when overly nodes are multi-homed. We discuss one way of doing so next.

Identifying Ill-formed Clusters

In the presence of multi-homing or differential traffic management as in PlanetLab, we would need extra mech-

anisms to identify and modify ill-formed clusters. We rely on the observation that if a cluster is ill-formed for

bandwidth-inference, it is likely to be ill-formed for evencapacity-inference. In particular, for every 3-tuple of

{i, Hi, j}, we compute the capacity inference error as:
|Cinf

i,j
−Ci,j |

Ci,j
, whereCinf

i,j = min{Ci,Hi
, CHi,j}. If the

estimation error is greater than 50%, we assume that the 3-tuple is ill-formed. After removing such 3-tuples from

our data set, Figure 6.8 plots the AB inference errors of the remaining data points withK = 7 andm = 5. We

observe that such filtering improves the inference accuracy. The inference error is now less than 35% for 80% of

the inferences.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Relative Error

All Inference
Capacity Inference Filtering

Figure 6.8: Using Capacity-inference to Filter Out Ill-formed Tuples

6.5 Sources of Error

Our approach has been able to achieve inference errors of less than 30-40% for 80% of the inferences, and

median inference errors of less than 20%—we believe these numbers are promising due to several possible

sources of errors. First, AB estimation tools themselves have an accuracy of about 20%—this is likely to impact

any AB monitoring infrastructure. Furthermore, AB is a dynamic quantity that could change between successive

99



measurements between a source and a head, and the head and a destination. Second, most ABETs require

high time-stamping accuracy [PJD04] and are sensitive to heavy CPU load conditions—unfortunately, this is a

frequent occurrence in PlanetLab. Finally, as we have shown, PlanetLab itself can introduce inference errors

because of its differential rate-limiting policy. In lightof these factors, and the fact that the only other AB

monitoring approach reports an average error of 50%[HS05] (see Section 2), we believe that our approach is

quite promising.

6.6 Comparative Evaluation of SABI algorithms

In this section, we provide a preliminary comparative evaluation of the three SABI algorithms and the Broute

algorithm proposed in previous literature. This preliminary small scale evaluation on PlanetLab is promising and

demonstrates the trade-offs between measurement overheadand inference accuracy. The methodology is similar

to that described earlier with a few additional facets. A complication was that this evaluation coincided with the

recent PlanetLab upgrade, which caused several nodes to be unavailable for several weeks. Starting with a new

clique of 139 nodes, we computed 10 SABI clusters. Using CoMon [PP] data we identified 20 nodes that were

lightly loaded and were able to return measurement data consistently. For these 20 nodes, which were spread

across 8 clusters, we ran the measurements as described in the methodology.

To compare with Broute, we implement the peer-to-peer variant of Broute and use IP source and sink trees

as opposed to AS trees. We consider the first four and last fourhops in the trees to determine common segments.

We consider IP source and sink trees primarily to keep the probing overheads to be of the same order as the SABI

algorithms.

The overheads that would be incurred for the set of 139 nodes for the various schemes are given below. As

a baseline, the all-pair measurements would have been 19,182 bandwidth probes. We need 4,027 (20.99%),

550 (2.87%) and 278 (1.45%) probes respectively for the three SABI algorithms with 10 clusters. For the

corresponding Broute implementation, we would require 1,882 (9.8%) measurements.

After running these measurements, we had sufficient data to evaluate a common set of 48 paths for each

of the 4 algorithms. Figure 6.9 plots the cumulative distribution function of the relative inference error for the

three SABI algorithms and the Broute (peer-to-peer IP treesimplementation described above). Though this is

a small scale study, the results are very promising. Essentially, the three SABI algorithms perform well and

approximately the same while Broute has poorer accuracy. Even SABI Algo 3, which uses less than 2% probes

100



has a median error of about 15%. We ran this study for two different snapshots with similar results.

It is interesting to recall that SABI Algo 3 is similar in concept to the Broute approach—both rely on using

the AB on the access segments of either end-points to infer the end-to-end AB. The main difference is that

Broute relies on a per-hop AB estimation tool such as Pathneck [HLM +04], which can be inaccurate; whereas

SABI drafts well-provisioned head-nodes and uses tools forend-to-end AB, which have shown to be reasonably

accurate [SK07, SMH+05].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Relative Error

SABI Algo 1
SABI Algo 2
SABI Algo 3

Broute

Figure 6.9: CDF of relative inference error for the SABI algorithms and Broute AB

6.7 Conclusion

In this chapter we describe SABI, a scalable method for end-to-end available bandwidth inference for large

networked systems. SABI groups nodes into clusters such that the nodes in each cluster have asimilar view of

the nodes outside the cluster regarding the available bandwidth metric. Using the key insight that most bandwidth

bottlenecks are close to the edges of the network, we proposea path similarity metric for measuring the similarity

of a pair of nodes. Nodes are then grouped together accordingto this similarity metric, and a head representative

node is chosen for each cluster that has highest capacity access link than others in the cluster. We propose

101



three different inference algorithms with decreasing measurement overheads that define which measurements are

performed within a cluster and which are performed across clusters. Extensive experimentation on the PlanetLab

testbed have demonstrated that the SABI algorithms reduce the probing overhead significantly while maintaining

the mean estimation error around 20%.

We plan to provide this bandwidth estimation as a service on PlanetLab for other researchers to use and

experiment with.

102



CHAPTER 7
Concluding Remarks

In this dissertation, we systematically study the impact ofeach of the four factors (algorithmic, temporal,network

and systemic) on ABET performance and find that:

• With regards to temporal factorswe find that the (i) MT does not impact the inaccuracy as long asthe SI

is kept constant. (ii) As the SI increases the accuracy increase, however beyond a SI of 30% the gain in

accuracy is not significant. Thus we can control the overheadthat is introduced by a tool by limiting the

SI to not greater than 0.5. (iii) We also found that the variability of the AB reduces at MT of greater than

50 ms. (iv) Longer the RT the higher the measure of variability. (v) Back-to-back measurements of the

AB do not vary by more than 4%.

• With regards to algorithmic factors and network factors(i) We find that Pathload, and Spruce are the most

accurate at high MT. (ii) By increasing the SI we cannot improve the accuracy of the AB techniques, since

there is an inherent error associated with the inference logic. (iii) Pathchirp has the lowest overhead, and

intrusiveness characteristics. (iv) When we move away fromthe single bottleneck scenario, we observe

that the accuracy of Spruce and Pathchirp reduces.(v) Fast-IGI, IGI and Pathload are not affected by

changing topologies.

• With regards to systemic factors(i) We find that tools using packet pair techniques must be aware of delay

quantization. (ii) Furthermore a packet size of 1500 bytes is not sensitive enough for probing on high-

speed paths. (iii) The accuracy of Pathload increases from what was observed in the NS-2 simulations.

(iv) We find that Pathload and Pathchirp are the most accurateof the ABETs and have a performance of

about 15% and 20% respectively.(v) Iperf is the most accurate, however a loss rate of even around 1% and

conservative RTO values, could cause huge under-estimation errors.

From all of the above studies, we obtained insights into the impact that the different factors have on the

performance of the ABET tools. We then show how these insights can be used to choose and calibrate an ABET



for an AB monitoring infrastructure. We then use an end-to-end ABET to design three algorithms to scalably

estimate the AB on a large network. We show that we can obtain information about the AB ofn2 paths of a

network by making only O(n) measurements of the AB . These measurements are also accurate to about 30%,

which is a significant improvement over previous schemes. Finally we compare the performance of our scheme

to another scheme Broute, which requires per-hop AB information and show that our schemes consistently

outperform Broute.

In this thesis we demonstrated the viability of building a system to monitor the AB on a large network.

From a purely monitoring stand point this scheme would be useful for network operators to study the location of

potential hot-spots in their network, without imposing a significant load. From the perspective of an application

we have currently deployed a scaled down version of our AB monitoring scheme on PlanetLab and we hope to

be able to scale this up to a full scale deployment in the near future.

We started off by observing that the adoption of AB estimation techniques in contemporary applications is

fairly limited. We then identified and addressed two issues the seemed like hurdles for adoption:which technique

to use, andhow to make AB estimation scalable in multi-path services. However, there is at least one additional

question that application/service designers are likely tobe interested in:what performance improvement can an

application achieve by relying on the knowledge of end-to-end AB, versus metrics such as delay and loss rates,

that represent a simpler characterization of paths?As part of future work, we hope to investigate this issue

by instrumenting protocols and services with AB estimationtechniques and evaluating the performance benefits

from doing so.

104



Appendix A
Minimizing the probe overhead

Let us consider anN node system in which we createK clusters. Let us furthur assume that all the clusters are

of the same size. This implies that:C = N
K

, whereC is the number of nodes per cluster.

Our AB inference approach implies that the head node of a cluster will measure the AB to all the other nodes

not in the cluster. Thus the number of probes sent from one cluster out to the other clusters is:

Probeout = N − C (A.1)

Each node within a cluster measures the AB to all the other nodes within the cluster. Thus the number of probes

within a cluster is:

Probein = C × (C − 1) (A.2)

Summing (A.1) and (A.2), we get that the total number of probes sent out by a cluster is:

Probeclus = C × (C − 1) + (N − C) (A.3)

And total number of probes across all clusters is:

Probetot = K × (C × (C − 1) + (N − C))eqn.iv) (A.4)

The number of probes as a function ofK is represented as:

F (K) =
N2

K
+ N × K (A.5)

DifferentiatingF (K) w.r.tK, we get the minima atK =
√

N . Note that this does not include the probe overhead

that is incurred to form the clusters, since this process will be carried out infrequently.

105



Appendix B
Sites used in Planet-Lab experiment

.ece.uprm.edu .upc.es .iralab.uni-karlsruhe.de
.cs.uga.edu .umkc.edu .ittc.ku.edu

.epfl.ch .cs.brown.edu .planetlab.uprr.pr
.mcgillplanetlab.org .planetlab.cs.umd.edu .pl.utsa.edu

.cs.utk.edu .hip.fi .ucs.indiana.edu
.unm.edu .eece.ksu.edu .uni-klu.ac.at

.berkeley.intel-research.net .colbud.hu .ottawa.canet4.nodes.planet-lab.org
.scs.cs.nyu.edu .att.nodes.planet-lab.org .learninglab.uni-hannover.de

.prakinf.tu-ilmenau.de .cc.gt.atl.ga.us .bu.edu
.cnds.unibe.ch .cs.tcd.ie .ethz.ch
.cs.stir.ac.uk .cs.princeton.edu .arizona-gigapop.net
.cesnet.cz .csail.mit.edu .cs.cornell.edu

.cs.dartmouth.edu .cse.msu.edu .csg.unizh.ch
.cs.purdue.edu .csres.utexas.edu .cs.uchicago.edu
.cs.umass.edu .cs.unc.edu .dcs.st-and.ac.uk

.diku.dk .eecs.umich.edu .hiit.fi
.informatik.uni-erlangen.de .informatik.uni-goettingen.de .info.ucl.ac.be

.iscte.pt .isi.jhu.edu .it.uu.se
.itwm.fhg.de .ls.fi.upm.es .netlab.uky.edu

.net-research.org.uk .nrl.dcs.qmul.ac.uk .pc.cis.udel.edu
.ssvl.kth.se .uta.edu .utep.edu

.win.trlabs.ca .cs.columbia.edu .csee.usf.edu
.cs.vu.nl .cs.wayne.edu .cs.wisc.edu

.elet.polimi.it .engr.uconn.edu .flux.utah.edu
.mini.pw.edu.pl .poly.edu .sics.se

.cs.duke.edu .cs.uiuc.edu .ece.iastate.edu

.ite.gmu.edu .hpl.hp.com .cs.rice.edu
.eecs.harvard.edu vn1.cs.wustl.edu

Table B.1: Sites used in experiment

106



BIBLIOGRAPHY
[ABKM01] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Resilient overlay

networks. InSymposium on Operating Systems Principles, pages 131–145, 2001.

[abt] Planet-lab email list. http://lists.planet-lab.org/pipermail/users/2006-February/001782.html.

[AGKT98] George Apostolopoulos, Roch Guérin, Sanjay Kamat, and Satish K. Tripathi. Quality of service
based routing: a performance perspective.SIGCOMM Comput. Commun. Rev., 28(4):17–28, 1998.

[AKSJ03] J. Aikat, J. Kaur, D. Smith, and K. Jeffay. Variability in TCP round-trip times. InProceedings of the
ACM SIGCOMM Internet Measurement Conference, October 2003.

[AMPR03] J.L. Alberi, A. McIntosh, M. Pucci, and T. Raleigh.Overcoming precision limitations in adaptive
bandwidth measurements. In3rd New York Metro Area Networking Workshop (NYMAN), September
2003.

[AMS+03] Aditya Akella, Bruce Maggs, Srinivasan Seshan, Anees Shaikh, and Ramesh Sitaraman. A
measurement-based analysis of multihoming. InSIGCOMM ’03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communications, pages 353–364,
New York, NY, USA, 2003. ACM Press.

[AP99] Mark Allman and Vern Paxson. On estimating end-to-end network path properties. InSIGCOMM ’99:
Proceedings of the conference on Applications, technologies, architectures, and protocols for computer
communication, pages 263–274, New York, NY, USA, 1999. ACM.

[BCG+01] Yuri Breitbart, Chee Yong Chan, Minos N. Garofalakis, Rajeev Rastogi, and Abraham Silberschatz.
Efficiently monitoring bandwidth and latency in IP networks. In INFOCOM, pages 933–942, 2001.

[BGMS04] A. Balk, M. Gerla, D. Maggiorini, and M. Sanadidi. Adaptive video streaming: pre-encoded
mpeg-4 with bandwidth scaling.Comput. Netw., 44(4):415–439, 2004.

[Bit] BitTorrent.

[BOP94] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp vegas: new techniques for
congestion detection and avoidance.SIGCOMM Comput. Commun. Rev., 24(4):24–35, October 1994.

[Bro04] N. Brownlee. NeTraMet 5.0b3, 2004. http://www.caida.org/tools/measurement/netramet/.

[CC96a] R. Carter and M. Crovella. Measuring Bottleneck Link Speed in Packet-Switched Networks.
Technical Report 96-006, Boston University, 1996.

[CC96b] Robert Carter and Mark Crovella. Measuring Bottleneck Link Speed in Packet-Switched Networks.
Technical Report BUCS-TR-1996-006, Computer Science Department, Boston University, March 15
1996.

[CC96c] Robert Carter and Mark Crovella. Measuring bottleneck link speed in packet-switched networks.
(1996-006), 15, 1996.

[CCLS01] J. Cao, W. Cleveland, D. Lin, and D. Sun. The effect of statistical multiplexing on internet packet
traffic: theory and empirical study.Bell-Labs Technical Report, 2001.

[CKC05] David Chua, Eric D. Kolaczyk, and Mark Crovella. A statistical framework for efficient monitoring
of end-to-end network properties.SIGMETRICS Perform. Eval. Rev., 33(1):390–391, 2005.

[CL02] Les Cottrell and Connie Logg. Overview of IEPM-BW Bandwidth Testing of Bulk Data Transfer. In
Sc2002: High Performance Networking and Computing, 2002.

107



[CP02] F. Coccetti and R. Percacci. Bandwidth measurementsand router queues. Technical Report
INFN/Code-20 settembre 2002, Instituto Nazionale Di Fisica Nucleare, Trieste, Italy, 2002.
http://ipm.mib.infn.it/bandwidth-measurements-and-router-queues.pdf.

[CPB93] Kimberly C. Claffy, George C. Polyzos, and Hans-Werner Braun. Application of sampling
methodologies to network traffic characterization. InSIGCOMM ’93: Conference proceedings on
Communications architectures, protocols and applications, pages 194–203. ACM Press, 1993.

[del] Per-flow delay and loss in ns-2 with delaybox. http://dirt.cs.unc.edu/delaybox/.

[DJ03] C. Dovrolis and M. Jain. End-to-End Available Bandwidth: Measurement Methodology, Dynamics,
and Relation with TCP Throughput.IEEE/ACM Transactions in Networking, August 2003.

[DMA +06] D.Antoniades, M.Athanatos, A.Papadogiannakis, E.P.Markatos, and C. Dovrolis. Available
bandwidth measurement as simple as running wget. InProceedings of Passive and Active Measurement
Workshop (PAM), March 2006.

[Dov01] C. Dovrolis. Pathrate : A measurement tool for the capacity of network paths. InACM SIGCOMM,
2001. http://www.pathrate.org.

[Dow99] A. Downey. clink: a tool for estimating internet link characteristics, 1999.

[DPJ04] C. Dovrolis, R. Prasad, and M. Jain. Socket Buffer Auto-Sizing for High-Performance Data Transfers.
Journal of Grid Computing, 1(4), 2004.

[ea07] K. Thompson et. al. Wide-area internet traffic patterns and characteristics.IEEE Networks,
November/December, 2007.

[FBB01] N. Feamster, D. Bansal, and H. Balakrishnan. the interactions between layered quality adaptation and
congestion control for streaming video, 2001.

[GCM00] Liang Guo, Mark Crovella, and Ibrahim Matta. Tcp congestion control and heavy tails. Technical
report, Boston, MA, USA, 2000.

[HCSJ04] F. Hernandez-Campos, F. D. Smith, and K. Jeffay. Generating realistic tcp workloads.Proceedings
of CMG, pages 273–284, 2004.

[HLM +04] Ningning Hu, Li (Erran) Li, Zhuoqing Morley Mao, Peter Steenkiste, and Jia Wang. Locating
internet bottlenecks: algorithms, measurements, and implications. InSIGCOMM ’04: Proceedings of the
2004 conference on Applications, technologies, architectures, and protocols for computer
communications, pages 41–54, New York, NY, USA, 2004. ACM Press.

[HS03] N. Hu and P. Steenkiste. Evaluation and Characterization of Available Bandwidth Probing Techniques.
IEEE JSAC Internet and WWW Measurement, Mapping, and Modeling, 2003.

[HS05] N. Hu and P. Steenkiste. Exploiting internet route sharing for large scale available bandwidth
estimation. InInternet Measurements Conference(IMC), 2005.

[Hyu04] Y. Hyun. Running Bandwidth Estimation Tools on Wide-Area Internet Paths, 2004.
http://www.caida.org/projects/bwest/reports/tool-comparison-supplement.xml.

[Inc92] The Math Works Inc.MATLAB, High-performance Numeric Computation and Visualization Software.
User’s Guide. 1992.

[ipe] Iperf. http://dast.nlanr.net/Projects/Iperf/.

108



[Jac] V. Jacobson. pathchar. ftp://ftp.ee.lbl.gov/pathchar/.

[JD02a] M. Jain and C. Dovrolis. Pathload: A measurement tool for end-to-end available bandwidth, 2002.

[JD02b] M. Jain and C. Dovrolis. Pathload: an available bandwidth estimation tool. InPAM, 2002.

[JD04] M. Jain and C. Dovrolis. Ten fallacies and pitfalls onend-to-end available bandwidth estimation. In
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, October 2004.

[JD05a] Manish Jain and Constantinos Dovrolis. End-to-endestimation of the available bandwidth variation
range. InProceedings of ACM Sigmetrics 05, June 2005.

[JD05b] Hao Jiang and Constantinos Dovrolis. Why is the internet traffic bursty in short time scales?
SIGMETRICS Perform. Eval. Rev., 33(1):241–252, 2005.

[Jin04] Guojun Jin. netest-2, 2004. http://www-didc.lbl.gov/NCS/netest.html.

[Jor04] L. Jorgenson. Size Matters: Network Performance onJumbo Packets. InJoint Techs Workshop
Columbus, OH, July 2004.

[JT03] G. Jin and B.L. Tierney. System capability effects onalgorithms for network bandwidth measurement.
In Proceedings of the ACM SIGCOMM Internet Measurement Conference, October 2003.

[JYCA01] G. Jin, G. Yang, B. R. Crowley, and D. A. Agarwal. Network Characterization Service (NCS).
Technical report, LBNL, 2001.

[KK06] R. Kumar and J. Kaur. Practical beacon placement for link monitoring using network tomography.
IEEE Journal on Selected Areas in Communication, 2006.

[kme] Kmeans. http://people.revoledu.com/kardi/tutorial/kMean/matlabkMeans.htm.

[KMF04] Thomas Karagiannis, Mart Molle, and Michalis Faloutsos. Long-range dependence: Ten years of
internet traffic modeling.IEEE Internet Computing, 8(5):57–64, 2004.

[KMK +01] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and k Claffy. The architecture of CoralReef:
an Internet traffic monitoring software suite. InPassive and Active Network Measurement (PAM)
Workshop, Amsterdam, Netherlands, April 2001.

[KV06] George Kola and Mary K. Vernon. Quickprobe: available bandwidth estimation in two roundtrips.
SIGMETRICS Perform. Eval. Rev., 34(1):359–360, 2006.

[LDS06] Li Lao, Constantine Dovrolis, and M. Y. Sanadidi. The probe gap model can underestimate the
available bandwidth of multihop paths.SIGCOMM Comput. Commun. Rev., 36(5):29–34, 2006.

[LFV07a] J. Liebeherr, M. Fidler, and S. Valaee. A min-plus system of bandwidth estimation.IEEE Infocom
2007, pages 29–34, 2007.

[LFV07b] Jörg Liebeherr, Markus Fidler, and Shahrokh Valaee. A min-plus system interpretation of bandwidth
estimation. InProceedings of IEEE INFOCOM, May 2007.

[Li05] Ningning Hu Li. A measurement study of internet bottlenecks. InProceedings of IEEE INFCOM, 2005.

[LRL04] X. Liu, K. Ravindran, and D. Loguinov. Evaluating the potential of bandwidth estimators. In4th New
York Metro Area Networking Workshop (NYMAN), September 2004.

109



[LRL05] Xiliang Liu, Kaliappa Ravindran, and Dmitri Loguinov. Multi-hop probing asymptotics in available
bandwidth estimation: Stochastic analysis. InIMC ’05: Proceedings of the 5th ACM SIGCOMM
conference on Internet measurement, New York, NY, USA, 2005. ACM Press.

[LRLL04] Xiliang Liu, Kaliappa Ravindran, Benyuan Liu, andDmitri Loguinov. Single-hop probing
asymptotics in available bandwidth estimation: sample-path analysis. InIMC ’04: Proceedings of the
4th ACM SIGCOMM conference on Internet measurement, pages 300–313, New York, NY, USA, 2004.
ACM Press.

[LTWW93] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the self-similar
nature of ethernet traffic.SIGCOMM Comput. Commun. Rev., 23(4):183–193, 1993.

[Mah00] B. Mah. pchar: A tool for measuring internet path characteristics. InISMA, 2000.
http://www.employees.org/b̃mah/Software/pchar/.

[Mat03] M. Mathis. The Web100 Project, 2003. http://www.web100.org.

[MBG00] B. Melander, M. Bjorkman, and P. Gunningberg. A new end-to-end probing and analysis method for
estimating bandwidth bottlenecks. InGlobal Internet Symposium, November 2000.

[Mos08] Kostas Moschos. Digitisation of audio music files, survey on existing software solutions, 2008.

[Nav03] J. Navratil. ABwE: A Practical Approach to Available Bandwidth. InPAM, 2003.

[NLA04] NLANR. Passive Measurement Analysis Datacube, August 2004. http://pma.nlanr.net/Datacube/.

[NN98] Jim M. Ng and Peoy Khee Ng. Cost-delay path selection function for real-time multicast routing. In
MASCOTS ’98: Proceedings of the 6th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, page 56, Washington, DC, USA, 1998. IEEE Computer
Society.

[NS2] Network simulator-2 ns2 (http://www.isi.edu/nsnam/ns/).

[Pax97] Vern Paxson. End-to-end Internet packet dynamics.In Proceedings of the ACM SIGCOMM ’97
conference on Applications, Technologies, Architectures, and Protocols for Computer Communication,
volume 27,4 ofComputer Communication Review, pages 139–154, Cannes, France, September 1997.
ACM Press.

[PDM02] R. Prasad, C. Dovrolis, and B. Mah. The effect of layer-2 store-and-forward devices on per hop
capacity estimation. InIMW, 2002.

[PJD04] R. Prasad, M. Jain, and C. Dovrolis. Effects of Interrupt Coalescence on Network Measurements. In
PAM, 2004.

[PKC96] Kihong Park, Gitae Kim, and Mark Crovella. On the relationship between file sizes, transport
protocols, and self-similar network traffic. InICNP ’96: Proceedings of the 1996 International
Conference on Network Protocols (ICNP ’96), page 171, Washington, DC, USA, 1996. IEEE Computer
Society.

[Pla] Planetlab. http://www.planet-lab.org/.

[PP] KyoungSoo Park and Vivek Pai. Comon: A monitoring infrastructure for planetlab.
http://comon.cs.princeton.edu/.

[PV02a] A. Pasztor and D. Veitch. Precision based precisiontiming without gps. InProceedings of ACM
SIGMETRICS, June 2002.

110



[PV02b] Attila Pasztor and Darryl Veitch. On the Scope of End-to-end Probing Methods.Communications
Letters, IEEE, 6(11), November 2002.

[Qur04] A Qureshi. Exploring proximity based peer selection in bittorrent-like protocol.MIT 6.824 student
project, 2004.

[rat] Planetlab:bandwidth limits. http://www.planet-lab.org/doc/BandwidthLimits.php.

[Rib03] V. Ribeiro. pathChirp: Efficient Available Bandwidth Estimation for Network Path. InPAM, 2003.

[RK03] S. Rewaskar and J. Kaur. Testing the scalability limits of overlay routing infrastructures.Technical
Report, Department of Computer Science, University of North Carolina at Chapel Hill, May 2003.

[RRB+03] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. pathChirp: Efficient available
bandwidth estimation for network paths. InPassive and Active Measurement Workshop, April 2003.

[RRB04] V. Ribeiro, R. Riedi, and R. Baraniuk. Spatio-Temporal Available Bandwidth Estimation with STAB.
In ACM Sigmetrics/Performance, New York, NY, June 2004.

[San04] San Diego Supercomputer Center . CalNGI Network Performance Reference Lab (NPRL), 2004.
http://www.calngi.org/about/index.html.

[SK06] A. Shriram and J. Kaur. Empirical study of the impact of sampling timescales and strategies on
measurement of available bandwidth. InProceedings of Passive and Active Measurement Workshop
(PAM), March 2006.

[SK07] Alok Shriram and Jasleen Kaur. Empirical evaluationof techniques to measure available bandwidth. In
INFOCOM. IEEE Communications Society, 2007.

[SKK03a] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A Measurement Study of Available Bandwidth
Estimation Tools. InProceedings of the ACM SIGCOMM Internet Measurement Conference ’03, Miami,
Florida, October 2003.

[SKK03b] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A measurement study of available bandwidth
estimation tools. InIMW, 2003.

[SLA04] SLAC. Internet End-to-end Performance Monitoring- Bandwidth to the World (IEPM-BW) Project,
August 2004. http://www-iepm.slac.stanford.edu/bw/.

[SMH+05] Alok Shriram, Margaret Murray, Young Hyun, Nevil Brownlee, Andre Broido, Marina Fomenkov,
and Kimberly C. Claffy. Comparison of public end-to-end bandwidth estimation tools on high-speed
links. In PAM, pages 306–320, 2005.

[Spi04a] Spirent Corp. Smartbits 6000B, 2004. http://spirentcom.com/analysis/view.cfm?P=141.

[Spi04b] Spirent Corp. Smartflow, 2004. http://spirentcom.com/analysis/view.cfm?P=119.

[SQZ06] Han Hee Song, Lili Qiu, and Yin Zhang. Netquest: a flexible framework for large-scale network
measurement.SIGMETRICS Perform. Eval. Rev., 34(1):121–132, 2006.

[Ter] TeraGrid. Teragrid. http://www.teragrid.org/.

[tie] Tier-1 service provider article on wikipedia. http://en.wikipedia.org/wiki/Tier1carrier.

[TUAK04] Turhan Tunalimath, Nukhet Uzbek, Koray Anar, and Aylin Kantarc. Bandwidth-aware scaling for
internet video streaming.LNCS Computer and Information Sciences - ISCIS 2004, 3280, 2004.

111



[Tur04] A. Turner. tcpreplay 2.2.2 - a tool to replay saved tcpdump files at arbitrary speed, July 2004.
http://tcpreplay.sourceforge.net/.

[WAHC+06] M.C. Weigle, P. Adurthi, F. Hernandez-Campos, K. Jeffay, and F.D. Smith. Tmix: A tool for
generating realistic application workloads in ns-2.ACM SIGCOMM Computer Communication Review,
26(3):67–76, 2006.

[Wol98] Richard Wolski. Dynamically forecasting network performance using the network weather service.
Cluster Computing, 1(1):119–132, 1998.

[WY00] Kun-Lung Wu and Philip S. Yu. Latency-sensitive hashing for collaborative web caching. In
Proceedings of the 9th international World Wide Web conference on Computer networks : the
international journal of computer and telecommunicationsnetowrking, pages 633–644, Amsterdam, The
Netherlands, The Netherlands, 2000. North-Holland Publishing Co.

[YSB+06] P. Yalagandula, P. Sharma, S. Banerjee, S.-J.Lee, and S.Basu. S3: A scalable sensing service for
monitoring large networked systems. InInternet Network Management (INM), 2006.

[ZDA06] Yong Zhu, Constantinos Dovrolis, and Mostafa Ammar. Dynamic overlay routing based on available
bandwidth estimation: a simulation study.Comput. Networks, 50(6):742–762, 2006.

112


