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ABSTRACT

ALOK SHRIRAM: Efficient Techniques for End-to-end BandwidEstimation:
Performance Evaluations and Scalable Deployment.
(Under the direction of Jasleen Kaur)

Several applications, services, and protocols are camedtto benefit from the knowledge of the end-to-
end available bandwidth on a given Internet path. Unfortelgadespite the availability of several bandwidth
estimation techniques, there has been only a limited adlopfithese in contemporary applications. We identify
two issues that contribute to this state of affairs. Fitsré is a lack of comprehensive evaluations that can help
application developers in calibrating the relative periance of these tools—this is especially limiting since
the performance of these tools depends on algorithmic,emphtation, as well as temporal aspects of probing
for available bandwidth. Second, most existing bandwidtingation tools impose a large probing overhead on
the paths over which bandwidth is measured. This can be #isant deterrent for deploying these tools in
distributed infrastructures that need to measure bantiveidtseveral paths periodically.

In this dissertation, we address the two issues raised diyoreaking the following contributions:

¢ We conduct thdirst comprehensive black-box evaluation of a large suite of pmemt available bandwidth
estimation tools on a high-speed network. In this evalmatiee also illustrate the impact that technological

and implementation limitations can have on the performafic@ndwidth-estimation tools.

¢ We conduct thdirst comprehensive evaluation of available bandwidth estiomedigorithms, independent
of systemic and implementation biases. In this evaluatismalso illustrate the impact temporal factor

such as measurement timescales have on the observedaelatiermance of bandwidth-estimation tools.

o We demonstrate that temporal properties can significamtpaict the AB estimation process. We redesign
the interfaces of existing bandwidth-estimation tooldkmvatemporal parameters to be explicitly specified

and controlled.

e We design AB inference schemes which can be used to scalalilg@laboratively infer the available

bandwidth for a large set of end-to-end paths. These schaftoeg an operator to select the desired



operating point in the trade-off between accuracy and eaxitof AB estimation. We further demonstrate
thatin order to monitor the bandwidth on all paths of a nekwee do not need access to per-hop bandwidth

estimates and can simply rely on end-to-end bandwidth astien
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CHAPTER 1
Introduction

1.1 Motivation

Why measure end-to-end available bandwidth? The Internet provides a best-effort service model—apptics
that transfer data over the Internet are provided no gueesnbr even apriori knowledge about the end-to-end
performance that their transfers should expect. Such kedgd, if available, can help applications in better
aligning their configuration and data transmission with therent state of network resources. Consequently,
many applications rely on mechanisms or protocols pina@benetwork paths to estimate the level of end-to-end
transfer performance that a given network path can provide.

Over the past two decades, there has been significant inierelesigning mechanisms for specifically
probing for thepacket delayand packet loscharacteristics of Internet paths, and in using these tp geide
data transport by Internet applications [BOP94, AGKT9898F More recently, with the emergence of data-
intensive applications and increasing deployment of boaad access networks, there is a growing need to focus
on yet another characteristic that applications are likelge interested in—that of theansfer ratethat can be
obtained on a given path. Tlead-to-end available bandwidth (AB)wvhich represents the maximum spare ca-
pacity available among all links of a given path—has emegged prime metric of choice for such applications.

Several application domains are conjectured to benefit fr@knowledge of this quantity:

e Congestion-control ProtocolsA key objective of congestion-control protocols is to detare the maxi-
mum rate at which data can be transferred over a given pattoutioverloading the network resources. It
can be clearly seen that such a rate would be the maximum eptire bandwidth available across all links
on the path—consequently, efficient mechanisms for estigé#te end-to-end AB can be quite useful for

guiding such protocols.

¢ Video Streaming Protocols/ideo-streaming applications often adapt the bit-ratehefvideo-stream by

changing encoding parameters—a low-quality, low bit-siteam is sent when a high bit-rate can not be



supported on a given network path [BGMS04, FBBO01]. Efficier@chanisms that continually estimate

the end-to-end AB can help reconfigure the encoding paramatkaptively.

e Audio Streaming: Some applications require only a low, but consistent hig+afor instance, audio
streaming generates data at a nearly constant rate of 5609 and works well only when the path
can support the rate [Mos08]. Even such applications cagaflidrom the knowledge of end-to-end AB in
orderto decide, for instance, if a new client request foragi@stream can be served (given characteristics

of the AB on the Internet path from the server to the client).

e Server SelectionFor content-based services, in which a desired content neagvhilable at several
servers, the knowledge of the end-to-end AB on the paths &aoh server to a given client can help
the client select the best server to download from—thispeeilly useful for clients interested in down-

loading large files or streams.

¢ Overlay RoutingWith the emergence of multi-homing and overlay infrastanes [ABKM01, AMSF03,
RKO03], applications can now choose to transfer data overrate paths different from the default Internet
path to a destination. The selection of an alternate pathbedpetter informed using the knowledge of

end-to-end AB on each candidate path.

Each of the above applications would benefit from efficienhteques that probe for the end-to-end AB on a

given set of path(s).

The dilemma: which probing technique?! Several sophisticated techniques have been developedéntre
literature for measuring end-to-end AB on a given networth$dD02b, Rib03, SKK03a, Nav03, HS03, CC96a,
ipe, KV06]. Unfortunately, there has been only a limited atitun of these techniques in Internet protocols/services.
Indeed, most applications continue to use legacy mechangsmilable prior to the emergence of these tech-
niques. We believe that there are two key reasons for thie sthaffairs. First, there is a lack of compre-
hensive evaluations of these techniques—consequenttynibt clear which techniques (if any) are efficient
and well-suited for a given application. Second, many ofréeently-developed techniques rely on sending
large amounts of probe traffic for accurately estimating-eménd AB. The associated overhead and latency of
probing—especially when used in popular services/prdseacts as a significant deterrent for protocol design-
ers [SMH"05].

In this dissertation, our goal is to help alleviate these isgoies. We precisely formulate our goals next.



Link Capacityl 100 Mbps | 2500 Mbps | 1000 MbpS

i
|

Traffic Load [ 10 Mbps [ 1500 Mbps | [950 Mbps

Available | 90 Mbps

Bandwidth | 1000 Mbps | | 50 Mbps |

Figure 1.1: lllustration of end-to-end AB

1.2 Dissertation Goals

We begin by first formally defining the concept of end-to-ewmdilable bandwidth and identifying the require-

ments from tools used for estimating it.

1.2.1 Requirements from ABETs

End-to-end available bandwidth (AB) represents the marinspare capacity available among all links of a

given path. Formally, thper-hopbandwidth available o#y,, link of a path,AB;, is defined as:

Bi(t1,t2)

ABi 5 = Ui =
i[t1,t2] = C (ts — 1)

(1.1)

whereAB;|t1, t2] is the spare bandwidth available on the linkver the time intervalt;, t5], C; is the transmis-
sion capacity of linki, and B, (t1, t2) is the total traffic transmitted on the link duririg , ¢]. Theend-to-end
available bandwidth of a network path is defined as the minimfithe spare bandwidth available at each of the
constituent links of the path:

i€[1,N

For instance, in Fig 1.1, the end-to-end AB is 50 Mbps.
AB estimation tools, henceforth also referred to as ABETre designed to estimate the end-to-end AB on a
given network path. Some distributed applications—sucbtvaslay routing and server selection—also attempt

to simultaneously employ such tools on multiple paths. 8dkey requirementguide the design of ABETs :

e High Estimation AccuracyEach of the example applications listed before would be tabteake optimal

application-level decisions only if provided with @tcurateknowledge of AB. For instance, underes-



timation of end-to-end AB would prevent video-streaminglagations and congestion-control protocols
from, respectively, maximizing application quality anddbghput—while overestimation of AB would

drive network resources into a persistently overloadeig $ta the duration of the transfers.

e Small Response Tim&B on a given link can vary significantly over time—Fig 1.2, ieh plots the AB
observed on a production Internet link during a 30-secoiehial, illustrates this. Consequently, many
applications—such as video streaming and congestiorralgmtotocols—would need to continuously
estimate up-to-date values of AB and adapt their transomigsghavior accordingly. An ABET withlarge
response time would deliver only stale (and possibly imjalalues of AB to the associated application,

thus impairing application performance.

e Low Probing Overheadln order to prevent interference with transmission of ukefaplication data,
ABETSs should themselves rely on sending few probes into #tevark. Furthermore, a high probing
overhead would be a significant deterrent to the widesprdagtaon of these techniques in popular Inter-

net protocols and services.

1.2.2 (Limitations of the) State of the Art

Lack of Comprehensive Evaluations Several tools (ABETs ) have been proposed in recent litezafor
actively probing for the end-to-end AB on a given networkip@@C96a, HS03, JD02b, Rib03, SKK03a, Jin04,
MBGO0O0, Nav03]. These tools typically operate by injectipgasially-designed streams of probe packets onto
the path, observing the end-to-end delays experiencedebgrtibe packets, and then estimating the end-to-end
AB from the observations—details can be found in Chapterr#fotiunately, it is not clear how well these tools
meet the above requirements. Specifically, existing eti@ogaof ABETs suffer from the following fundamental

limitations.

1. While most ABET designers conduct evaluations and coisgas of their tools against other tools, these
evaluations are neither comprehensive in the tools nor ¢ltngs evaluated. All previous evaluation
studies evaluate only a small (and different) sub-set of A8Elepending on which ones were popular
when the corresponding tool was proposed. Furthermorsethealuations include only simple network
and traffic scenarios. For instance, most do not evaluateeréormance against responsive cross-traffic,

in high-speed networks, or when the tight and narrow linkesdifferent. As a result of these practices, the
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Figure 1.2: AB process observed on an Internet link over #mes30 sec interval at different timescales.



results are often not comprehensive and get inadverterased toward highlighting the salient features

of the proposed tool. This state of affairs leads us to ourdiosi:

It is important to conduct comprehensive evaluations ofrppnent AB estimation tools

under a common set of diverse network and traffic settings.

. In current high-speed networks, variations in end-td-delays may have an order of magnitude in the
sub-millisecond range. Since most ABETSs rely on measurg&igydvariations, high resolution and accu-
racy in time-stamping probe packets is crucial for ensutirgaccuracy of the inferred AB. Current PC
platforms, however, are incapable of guaranteeing higk tiesolution due to multi-tasking and the use of
mechanisms such as interrupt coalescence [JD02b]. Sorienjelementers work around this limitation
by relying on statistical filtering and smoothing technigueut others do not—the use of such techniques

does impact tool performance significantly [AMPRO03, JTO03].

It is important to note that the above implementation teghes are highly technology-specific. As tech-
nology improves [PV02a], the impact of these techniques BER performance is likely to diminish. It
is, therefore, natural to ask the question: what is the éxtewhich currentimplementation technology
limits tool performance? In particulanpw well would tool designs—including the design of theata-
streams and inference logic—perform if technology advarnrce¢he future?This leads us to our second

goal:

It is important to evaluate, in an implementation-agnost@&nner,

the algorithmic aspects of prominent ABETSs .

. Existing ABET designs focus primarily on, and differ maggnificantly in, the construction of probe

streams and in the logic used to estimate AB from the obsededalys. Most tool designs, however,
seem to ignore three central temporal quantities relateddasurement of the AB process—that of the
measurement time-scale, the sampling intensity and gtesteand the probing duration. In particular,
most existing ABETs do not allow the choice of these quaetitind little is known about the impact of

these quantities on the performance characteristics ofB&TA This leads us to our third goal:

It is important to study the impact of probing-related temg@uantities—including the measurement

timescale, sampling intensity and strategy, and probingtion—on the estimation of AB.



In summary, our first set of objectives are concerned withuatang ABETs under diverse settings of network,

traffic, and temporal conditions.

Significant Overhead in Multi-path Application Domains Another fundamental issue with the state-of-the-
art in ABET design is the large overhead when these tools epéogled in services such as overlay routing or
server selection, that need to measure AB simultaneoustydtiple paths. A naive approach for such services
would be to run an instance of the tool on each of Mepaths in anV-node overlay infrastructure. However,

such an approach suffers from two significant limitations:

1. High OverheadEven with a low overhead tool, a single measurement of the AR imect on the order of
several megabytes of traffic into the network. Conducfifigmeasurements, would significantly overload

the network path, especially as the number of nodes in theayvimfrastructure increases.

2. High Response-TimeABETs can interfere with each other if run simultaneouslypaths that share
congested links. Hence, for the set of paths that interfétte @ach other, the measurements need to be
run sequentially. In the worst case runniVg measurements sequentially would fundamentally limit the

frequency with which the AB information for all paths can qedated.
The above limitations lead to our final goal:

It is important to design a scalable AB monitoring schemadistributed infrastructures, in which the number

of measurements that need to be made scale well with thefdize infrastructure.

In this dissertation, we pursue the four goals identifiedvalday: (i) conducting a systematic evaluation of
implementationsf prominent ABETS ; (ii) studying the impact ¢émporal factorson the AB estimation pro-
cess; (iii) conducting an implementation-agnostic eviddueof the AB estimation techniques; and (iv) designing
a scalable AB estimation scheme for simultaneous andlolis&@d monitoring of multiple paths. In what follows,

we briefly summarize the approach and main results for eatitesE—the details follow in subsequent chapters.

1.3 Goal 1. Black-box Evaluation of ABET Implementations

Ouir first goal is to evaluate prominent tools designed foinesting end-to-end AB. For this, we rely on the
publicly-available implementations of these tools andarsthnd the accuracy, overhead, and response-times

of these implementations under diverse network and trafficd@ions. We are especially interested in testing



the network speeds to which these implementations can-s¢hig is because at high speeds, the lack of high-
precision and accurate timers on current PC platforms cioochir the performance of such tools. Our hope is

to identify tool implementations that are suitable for eanporary application domains.

Approach With the above goals in mind, we conduct ABET evaluationsaueach of the following scenarios:

e On a high-speed network test-bed with commercial routedssavitches, with constant bit-rate cross traf-

fic.

e On a high-speed network test-bed with commercial routets switches, with traces of representative

traffic collected from production Internet links and repalyas cross-traffic on the test-bed.

e On an Internet2 gigabit network path between Sunnyvale afahfa against real cross-traffic flowing on

the path—the actual AB was verified using SNMP counters ométerork path.

e On the Internet path between San Diego SupercomputingrcenteOak-Ridge National Laboratories,

where actual AB was unavailable but the relative perforneasfdhe tools was studied.

Summary of Results Some highlights of the findings of our evaluation can be sunred as follows:

1. Tools utilizing packet-pair techniques like Abing and®pe should be aware of delay quantization possi-

bly present in the networks.

2. AB can not be measured reliably in gigabit high-speed agktgvusing 1500 Byte MTUs and with only

microsecond time-stamp resolution.
3. ABETSs should also be able to detect, and perform well ia pfesence of interrupt coalescence.

4. TCP-based bandwidth estimation schemes like Iperf parfeell, but even an approximately 1% packet

loss can severly affect AB estimates.

1.4 Goal 2. Impact of Temporal Factors on AB Estimation

Temporal Factors We identify three important temporal aspects of the prooésampling AB by any band-

width estimation tool:



e Measurement TimescaleA critical parameter in the definition of AB in Equation (1.i)the length,
(t2 — t1), of the time interval over which it is observed—we refer tistquantity as theneasurement
timescalgMT). In Fig 1.2, we plot the time-series of AB, observed aethdifferent timescales dfims,
50ms, and1s, during thesame 30 ®bservation period on an Internet link. We observe that tBgfocess
can appear quite different depending on the timescale athwhis observed. In particular, it is likely that
the MT impacts the accuracy as well as variability of the ABagieed by a given ABET. Consequently,
any application that relies on such a tool would want the toaheasure AB at an MT relevant to the
application domain. For instance, while a large-file-tfanapplication is likely to be interested in only
the average AB obtainable at super-second timescales, misieeaming application is likely to also be

interested in knowing the small-timescale variations in. AB

e Measurement Duration (Run-time): Run-tiifieT) refers to the length of the time interval over which
several samples of the AB process are collected, and usefitgroperties of the AB process. In practical
terms, the run-time is the total time taken by a tool from it&tion to reporting an AB estimate. This
includes the time taken for sending several probe streaath (@f which potentially returns one sample of

AB), and converging on an AB estimate.

The most significantimpact of run-time on AB measuremenmt tetims of its robustness and its variability.
While a shorter run-time is likely to yield samples more dstent with each other, longer run-times are
more likely to yield asufficienthumber of samples for reliably estimating the mean as welbagbility

in the AB process.

e Sampling Intensity and StrategyGiven an observation timescale, tAB processonsists of a series of
back-to-back readings of AB observed within a given timeiwl. ABETSs essentially onlgubsample
this AB process. Existing tools differ in the fraction of tA@ process—henceforth, referred to as the
sampling intensitySl)—that they sample during the tool run-time. Existingl#also differ in theisam-
pling strategy—the manner in which AB samples are collected from withinveegitime interval [CPB93].
The sampling strategy and the fraction of the AB process $zanare likely to impact the accuracy of
estimating the mean AB in a given time interval. For instataeger is the sampling rate, better is likely

to be the AB estimation accuracy; however, greater woulthbenetwork overhead.

In this dissertation, we study how the choice of MT, RT, SH aampling strategy by a tool impacts the accuracy,

variability, and stability of the measured AB. We organize televant issues in the form of three main questions:



(i) How does the choice of sampling strategy, sampling isitgnMT and RT impact th@ccuracyof the esti-
mated AB? (ii) How does the choice of MT and RT affect tlaiability of the measured AB? (iii) Howtable
is AB in the post-measurement periods? Answering thesdigueseveals the impact that the above mentioned

temporal parameters have on the performance charaaterigtthe ABETS .

Evaluation Approach As mentioned before, existing ABETS differ significantlythre design of their probe
streams and inference logic. In order to answer the questiaised above in a manner independent of these
choices, we assume the existence of a perfect tool that tiameds the end-to-end AB perfectly. This assump-
tion lets us study the impact of the above-identified (cuty@mlesign-agnostic quantities—namely, run-time,
measurement timescale, and sampling intensity and sgratedpile isolating the analysis from the impact of
design-dependent factors. It also lets us adgpdssivetrace-analysis based approach for answering the above
guestions. With such an approach, it is possible for us topraentheground truthabout the AB process.

We conduct passive analysis of link-level traces colle&tech several types of production Internet links.

Summary of Results The main findings of our evaluation can be summarized asvistio

1. The choice of the measurement timescale does not impaeictturacy as long as the sampling intensity

is held constant.

2. Sampling more that 30% of the AB process does not yield @fgignt improvement in the accuracy of

the AB estimate.

3. The AB process shows significant variability at timessaitless than 50 ms, which corresponds to send-

ing a large train of packets rather than packet-pairs.

4. Back-to-back measurements of the AB do not change signific which can be exploited for predictive

purposes in applications that need to continuously estirAgt

1.5 Goal 3: Implementation-agnostic Evaluation of ABETs

Approach In order to evaluate the performance of prominent ABET desigp an implementation-agnostic
manner, we adopt a two-pronged approach. First, we rely amalation-based evaluation approach using the

NS-2[NS2] simulator. Adopting such an approach eliminafésources of systemic biases, since the simulated
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environment gives us the ability to creatéeghnologically-perfect networkhere (i) fine-grained clock granu-
larity is achievable on end-systems, (ii) interrupt coedgre effects do not occur, (iii) packet losses do not occur
and, (iv) buffer sizes are unlimited. Second, we design ammomimplementation framework for instantiating
prominent ABETs in NS-2—a common framework helps us avoididas due to differences in implementation
efficiencies. It also allows us to enhance existing intexédfor all ABETs to enable controlling the measurement
timescale and sampling intensity. We extract implementatietails from the publicly available versions of the
tools and the publications that describe them, and impleitiese within our framework. We then evaluate
the ABETs under diverse settings of traffic and network ctiods, including: (i) single-hop topologies with
constant-bit-rate as well as dynamic and representatossetraffic, (i) multi-hop topologies with multiple tight
and/or narrow links, and (iii) on topologies with a repretsgire mix ofresponsiveross-traffic. We study several

performance characteristics (Table 1.1) of the ABETs .

Performance Parameter Description
Accuracy Difference between the actual and measured AB
Overhead Traffic injected by ABET to make single AB measurement
Intrusiveness Rate of traffic injected by ABET to make single AB measuremient
Run-Time Time taken to make a single AB measurement
Perturbation Impact on response times of TCP flows

Table 1.1: Performance characteristics of an ABET

Summary of Results The main findings of our evaluation can be summarized asvistio

1. Increasing the MT improves the accuracy of the estimafesvever, the gains in accuracy are negligible

beyond a timescale of 50 ms.
2. Increasing the Sl haw impact on the accuracy of the AB estimates.
3. Asthe MT increases the run-time of a tool also increases.

4. Pathload has the most overhead, while Pathchirp hasdbke [€his is especially true when assessing the

impact of these tools on responsive TCP cross-traffic.
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Figure 1.3: Internet Architecture

1.6 Goal 4. Scalable AB Inference for Overlays

In order to design a scheme, which can give us compietgath AB without makingV2 measurements we rely

on two key insights about the Internet

1. Sharing of the access hopblost of the Internet architecture is structured as illusiiain Fig 1.3. End-
nodes either lie within enterprise networks or metropalitaea networks belonging to local Internet Ser-
vice Providers (ISPs). These edge networks are then cagtheiet access links to other ISPs that comprise
the core of the Internet—these include major Tier-1 and-Zi¢8Ps. Let theaccess segmenf an end-
node refer to the sequence of edge hops and links that coitiedhe Internet core. The connectivity
structure of the Internet then implies that the paths from o given source nodesy; and .S, to a

common destinatio are likely to share the access segmenbofsee Fig 1.3}.

2. Bottlenecks lie close to edgeRecent Internet-wide measurement studies have reposdéthéhbottleneck
links of most end-to-end network paths lie close to the eodes, and are likely to be the access/peering
links between customers and ISPs [Li05, RRB04]. This egdgnimplies that the bottleneck link of a

path is likely to lie on the access segments of either enés.od

Lif the source nodes are topologically close to each otheir, fraths toD would share a larger number of hops.
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Let AB(i, j) denote the end-to-end AB on the path from nétie;j. We defined B{" to be the minimum of
the AB on all links in the access segment of nadi@ the direction of carrying traffic from the core to the node
i, andAB?"* to be the minimum AB on these links, in the direction of camgytraffic from node to the Internet
core (see Fig 1.3). The two observations made above thegctigély imply that the end-to-end AB on the path

between two given nodeS§; and D1, can be approximated as:
AB(S1,D1) ~ min{ABZ" AB} } (1.3)

The above formulation can be used to infer the AB on the patilvd®n,S; and D; without necessarily directly
measuringd B(S1, D1).

Since we know that access hops are shared, we can reduce #seiner@ents that need to be made by
clustering nodes together which share the same accesssegmehe rest of the nodes in the network. Once we
have created these clustersepresentative nodi& a cluster can measure tthgLi of all the nodes outside the
cluster. The other nodes in the group can meaﬂB@fjt to theirrepresentative nodéVe can then use Equation
1.3toinfer the end-to-end AB between any two nodes. We gefitree variants of this basic approach that offer
a trade-off between estimation accuracy and probing oeerhehe most scalable variant incurs an overhead
only linear in complexity to the size of the overlay.

We evaluate our approaches on the PlanetLab infrastruRiag by relying on the & monitoring ser-
vice [YSBT06]. Our evaluation shows that our approach can estimate AlBan estimation accuracy within

20% for a majority of the estimates—this significantly oufpems the accuracy of existing schemes.

1.7 Thesis Statement

In this dissertation, we demonstrate that:
1. Itis possible to isolate and study the temporal and algmic aspects of AB estimation.

2. Contemporary implementations of system timers and rimpercoalescence can significantly impair the

performance of an otherwise sound AB estimation logic.

3. The timescale at which AB is measured significantly impdozith the accuracy and variability of AB

estimates.
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4. ABETSs based on the probe-rate model are more robust ficteafd path dynamics.

5. Itis possible to design a scalable inference schemehtfps achieve desirable operating points on the
trade-off between accuracy and overhead, for collectiwebyitoring the AB on all paths in a distributed

overlay network.

1.8 Summary of Contributions

The major contributions of this thesis can be summarizedkksAs:

e We conduct thdirst comprehensive black-box evaluation of a large suite of pmemt AB estimation
tools on a high-speed network. In this evaluation, we alsstilate the impact that technological and

implementation limitations can have on the performanceBEAs .

e We conduct théirst comprehensive evaluation of AB estimation algorithmsejmehdent of systemic and
implementation biases. In this evaluation, we also ilatstthe impact temporal factor such as measure-

ment timescales have on the observed relative performdnsBBTS .

e We demonstrate that temporal properties can significamtfaict the AB estimation process. We redesign

the interfaces of existing ABETS to allow temporal paramreete be explicitly specified and controlled.

e We design AB inference schemes which can be used to scalablg@laboratively infer the AB for a
large set of end-to-end paths. These schemes allow an op&ratelect the desired operating point in
the trade-off between accuracy and overhead of AB estimatige further demonstrate that in order to
monitor the AB on all paths of a network we do not need accepgtdop AB estimates and can simply

rely on end-to-end AB estimates.

1.9 Roadmap

The remainder of this thesis is organized as follows. In @vap we will discuss related work in the field of
AB estimation. Chapter 3 will describe our black-box evéilnmof ABET tool implementations on a high-speed
network. Chapter 4 will describe our study of the impact ehperal factors on the process of AB estimation.

Chapter 5 describes the algorithmic evaluation of promidBET designs. Chapter 6 describes the design of
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our scalable AB monitoring approach in an overlay networle ¢@nclude with Chapter 7 by outlining future

work and our conclusions.

1.10 Notations

In the rest of this dissertation, we will rely on the followjimotations.

Notation

Expansion

AB

ABET

CT

CDF

MT

Sl

SNMP

RT

RTT

SABI

TCP

IAT

GigE

Mb/s or Mbps
Gb/s or Gbps
0C-48

NIC

Available Bandwidth
Available Bandwidth Estimation Tool
Cross-traffic
Cumulative Distribution Function
Measurement time scale
Sampling Intensity
Simple Network Management Protoc
Run-Time
Round Trip Time
Scalable Available Bandwidth Infereng
Transport Control Protocol

Inter-Arrival Time
Gigabit Ethernet
Megabits per second
Gigabit per second
Optical Carrier (2.5 Gb/s) link
Network Interface Card

Table 1.2: Table of notations

15

e



CHAPTER 2
Design of Bandwidth estimation tools

The area of AB estimation has been an active area of researttefpast few years. In this chapter we summarize
related work that studies several aspects of the AB esiimatioblem. We first examine techniques that were
developed to estimate the bottleneck capacity on an emidgpath. We next discuss tools for estimating end-
to-end AB. Next we examine past evaluations of AB estimatimts as well as formal analysis geared towards
better understanding the performance parameters of ABhatitin tools. Finally we examine methodologies

that have been proposed to efficiently monitor large ovemkstyvorks.

2.1 Background

We start with some definitions and observations that will ded.in this chapter.

End-to-end Bottleneck Capacity The transmission capacity of a link refers to the speed athvbata can
be transmitted on the link. If the transmission capacity tihka is 1 Mbps, then it follows that the maximum
amount of data that can be transmitted on the link in a singtersd is10° bits. Alternatively, the time taken to
transmit a single bit is Ls.

Given an Internet path consisting of several links, the endndbottleneck capacityefers to the minimum
of the transmission capacities of all the constituent liokdhe path. Formally, if the path consistsiofinks and
C; is the transmission capacity of tié link, then the bottleneck capacity of the path is defined as:

min {C;} (2.1)

1<i<n

For example, in Figure 2.1, the bottleneck capacity is 10p84bT he link with the least transmission capacity

(the second link in Figure 2.1) is commonly referred to asrtagow link of the path [JD02a].



Link Capacityl 100 Mbps | 2500 Mbps | 1000 MbpS

i
|

Traffic Load [ 10 Mbps [ 1500 Mbps | [950 Mbps

Available | 90 Mbps

Bandwidth | 1000 Mbps | | 50 Mbps |

Figure 2.1: lllustration of an Internet path

End-to-end Available Bandwidth The end-to-end AB was formally defined in Section 1.2.1. dnmfally, it
represents the minimum of the spare bandwidth availableali/nks of a path. The link with the least amount
of spare bandwidth is commonly referred to astibét link [JD02a].

In Figure 2.1, the end-to-end available bandwidth is 50 Mépd the first link is the narrow link. In this

example, the tight and narrow links are different.

Multi-homing in Access Networks At this point it would be prudent to make some observatiorsualithe
structure of the Internet (Figure 2.2). The Internet is oigad in a hierarchical structure of tiered Internet
Service Providers (ISPs), that cooperate with each ottedan either a customer-subscriber model or a peer-
to-peer model, in order to transfer data between two end siodéer-1 [tie] service providers operate large
networks and provide long haul connectivity over large gapbical areas—contemporary examples include
Verizon, Sprint, and AT&T. Tier-1 service providers typligehave peering relationships with one another which
allows them to exchange data on a no-cost basis with each dflme layer below in the hierarchy are tier-2
service providers, which are predominantly regional ingraphical scope. Such providers may have peering
relationships with other tier-2 service providers, bubdigve customer-provider relationships with tier-1 ISPs
in order to use the latter to send or receive customer dat@llfzitier-3 ISPs interact with other providers almost
exclusively based on the customer-provider model. Sirnee3tinetworks are often used to provide Internet
access to customers, we also refer to theseasss networks

Tier-3 ISPs can be multi-homed, which means that they canexinio more than one tier-2 or tier-1 ISPs. A
recent analysis of Internet paths suggests that multi-hgrision the rise in the Internet [AM®3]. As a result
of multi-homing, there are several potential paths thatlmataken in order to reach a single destination. Thus,
it is becoming increasingly possible for an ISP to make agieciregarding a path that will be best suited for an

application based on the applications requirements—in&bion about end-to-end AB on each candidate path
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Source 2

Destination

Figure 2.2: Internet Architecture

would be useful in making such decisions.

2.2 Capacity estimation tools

A seminal paper in the area of per-link capacity estimati@s Wy Van Jacobson who proposed a tool called
PathchafJac]. Pathchar estimates per-hop capacity by using thatMarPacket Size (VPS) probing methodol-
ogy, that relies on using probe packets of different sizesstonate the capacity of every hop along a path. Let
us consider a path witk( hops, and assume that the capacity ofithdink is C; bits per second (bps)—thus,
the time taken to transmit a packet of size L bits onihdink will be CL seconds. Now, the time taken for a

L-bit packet to travel from the sender to thg hop and back can be expressed as:
L . . . . L
T,(L) = Z(a + Queuing fwa + Propagation pq + Quewing e, + Propagation,e, + 5) (2.2)

k=1 ' i

where Queuing g and Queuing,., are the delays experienced by waiting in the queue ofifhdink on

the forward and reverse paths, respectivétyopagation ., and Propagation.,., is the propagation delay in
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either direction of link i. FinaIIy,C% is the time taken to transmit the packet on the link.

Most per-hop capacity estimation tools rely on a time-t@[TTL) limiting mechanism. Every packet sent
on the Internet has a TTL field that is initialized by the sendéevery router that the packet traverses, this TTL
field is decremented by one. If a router receives a packetentier TTL is zero, it discards the packet—most
routers also send an Internet Control Message Protocol RObAcket, which is typically 64 bytes, back to the
sender. Thus if we limit the TTL of a packet fpthen we can force thg;, router to send back a constant size
ICMP message to the sender—this mechanism can yield theriafon needed to compuig(L). So the above
equation now becomes:

L Limn
T:(L) = Z(E + Quewing fq + Propagation f,q + Quewingye, + Propagation,e, + Tp) (2.3)
k=1 4 2

Now if we send a large number of probe packets to hape would expect that the packet with the low&gtL)
would experience no queuing delay in the forward and therseveath. From this, Equation 2.3 can be simplified
as:

i

L Limn
T;(L) = E (5 + Propagation f,q + Propagation,e, + ZTP) (2.4)
k=1 v v

Now since thePropagation ¢wd, Propagation,.e,, andL;.n,, are constants, Equation 2.4 reduces to:

T(L) = K+ 3 () 25)
k=1 :

whereK = Propagation f,,q+ Propagation e, + % The equation now has the forf(L) = K+ M, x L,
where M, is 22:1 CL andF (L) is T;(L). Now if we were to measur#/; by using packets of different sizes,
thenC; = m

Using the above relation, the capacity of all the hops of b pah be measured. Mah et. al. [Mah00] designed
an improvement for Pathchar, which used linear regressitietter estimate the values bf;. Downey[Dow99]
designed a tool called Clink, which operates on the sameiplaas Pathchar, which is also robust to routing
instability. Prasad et. al. [PDMO02] analyzed the workinghe#f VPS methodology and found that this technique
is prone to under estimating the capacity of links which hiaager-2 store and forward devices as a part of a
link. This error however is localized to the links which hahe layer-2 devices and does not propagate causing

errors in links after the layer-2 link. Dovrolis et. al. [D@4] designed a tool which could measure the end-to-end

capacity of an Internet path. Pathrate uses variable siaekips, which are sent back-to-back from the sender in

19



order to estimate the capacity of the end-to-end path. Tineipte behind this approach is that two packets sent
back-to-back will arrive at receiver with a spacing betw#em which is proportional to the capacity of the path
between them. This spacing between the packets is referras thedispersionof the packet-train. Formally
specified, the dispersion is defined as folldlysg,, = m Pathrate uses a system of creating histogram
and studying the most frequently occurring modes in theobistm in order to estimate the value@f;,, and
then compute the end-to-end capacity.

We next discuss tool that were designed for estimating théable bandwidth (versus bottleneck capacity)

on an Internet path or link.

Tool Probe Stream Inference Metric
Pathload [JD02b]| Equi-Spaced Train| One-way Delay
Pathchirp [Rib03]| Exponential spacing Dispersion

Spruce [SKK034a] Packet-Pair Dispersion
Abing [Nav03] Packet-Pair Dispersion
IGI [HS03] Packet Train Dispersion
Iperf [ipe] TCP-Stream Throughput
Cprobe [CC96a] Packet Train Receiving Rate

Table 2.1: Available Bandwidth Estimation Tools

2.3 AB Estimation Tools

2.3.1 End-to-End AB estimation tools

Table 2.1 lists some prominent AB estimation tools. All ABiestion tools work under the same underlying
principle which involves sending probe packets at well defiand known intervals on an Internet path, such
that they temporarily induce a load on the path. This load edlse the existing cross traffic on the path to
be interspersed by the probe packets. When these probetpaelkeh the other end of the path (receiver),
the receiver studies how the intervals between the probkep@bas changed and compares these intervals to
the known intervals between the probe packets when the grabieets were initially sent. Using empirical or
analytic techniques, the AB of the end-to-end path can tieetomputed. We will discuss the details of some of

the prominent tools next.

o Pathload[JD02b] reports the AB using two thresholds, theper, 4y qe andlower,q,qg. AB, which repre-

sents the range of AB values observed during the tool rurhl®@ad starts by initializing thévwer, qynge
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to be 0 and thepper;.nqe 10 be the capacity of the end-to-end path. It then sends drgans at an initial
guess of the AB. The one-way delay in the stream is analyzstlitty if this stream rate was greater than
or less than the AB. If the AB is exceeded hgper, ., 4. IS Set to the current sending rate of the stream.
If the AB is not exceeded, thlewer,q.n4e IS Set to the current sending rate. The rate of the next stream

is then determined by using the relati&?f’””“ge;lowe““""e . This process continues iteratively, till the

difference between thepper, 4nge and thower,..nq. becomes less than a certain threshold. At this point

the currentupper,qnge andlower,qnge are reported as the AB.

PathChirp[RRB'03] uses an exponentially spaced packet train to estimatdh It uses a parameter
called the spread factor, which defines the exponent of thie@ain. For instance if the spread factor is
2, a 5 packet Chirp would send the first two packet spaced at dsivthe third at 2 Mbps, the fourth at
4 Mbps and the fifth at 8 Mbps. The Chirp is analyzed at the veceind to study at which rates in the
Chirp the sending rate was greater than the receiving rate. pfinciple being that since a Chirp covers
a wide range of rates, the rates after which the AB is exceedlétle characterized by the sending rate
being greater that the receiving rate. Thus we can infer tBeofAan end-to-end path by observing these

points of change. Multiple chirps are used in order to imprthe confidence of the estimates.

IGI/PTR [HSO03] sends a train of back-to-back packets to the receitéch is used to estimate the path
capacity. It then uses the path capacity as its first senditegyto the receiver. The gaps at the source
and the gaps at the destination are compared to infer if themusending rate was greater than the AB
. If so the current sending rate is reduced by a constant dserfactor that can be specified during the
tool run, and this process is continued till the point whére teceiver reports that the source gaps and
the destination gaps are equal. It is at this point that I@& BAR differ. 1Gl estimates the cross-traffic
rate using the difference in the gap values. It then sulstithis estimate of the cross-traffic rate from the
bottleneck link capacity to infer the end-to-end availdi@dwidth. PTR on the other hand compute the

average receiving rate of the stream and infers that as thefAlge path.

Abing[Nav03] and Spruce[SKKO03b]use a packet-pair based technique to estimate the AB. Thikesen
sends two packet spacég = % seconds apart; where S is the packet size and C is the linkitapehe
receiver then observes the spacing between the packetsiivdugives at the receiver and computes the
dispersion in order to compute the AB by using the followistationAB = C x (1 — %) Where

dout IS the spacing in the packet-pair when it reaches the receiMaile Spruce spaces its packet-pairs

21



using a Poisson process, Abing sends packet-pairs peaibdic

e Iperf [ipe] is a standard benchmarking and monitoring tool. It barused to compute the throughput of a
path by actually running a TCP connection on the path. Whikas been shown that the TCP throughput
of an end-to-end path is not the same as the AB [DJ03], Ipatfimoes to be a popular choice among

network operators for measuring the AB.

e Abget[DMA +06] and QuickProbe[KV06] are variants of the Pathload tool. Abget uses a TCP connec-
tion to measure the AB down-stream AB on a path by controlthreyacknowledgments that the client
receives in order to control the rate at which the server selada. This method of controlling the rate of
an incoming packet stream is then used to implement thedzattbgic and the inference is carried out in
the same manner as described above. QuickProbe anothantvafiPathload reduces the time-taken by

Pathload to make an inference by reducing the number of pathat are required to make an inference.

e Cprobe[CC964] first finds the end-to-end capacity of a given pathgianother tool called Bprobe[CC964a].
It then sends a packet train at that rate to the destinatish fAidne rate at which this stream is received at

the other end of the path is inferred to be the AB.

Most ABET designs as observed above focus on the construatithe probe-streams and the logic used to
estimate the AB from the observed delays. However, thedelgsigns ignore two central temporal quantities
related to the measurement of the AB process: the MT and th@®ls it is important to redesign the ABET
interfaces to allow the choice of MT and S, and study the ictpathese on ABET performance.

In this thesis in order to study the impact that the obsepratime-scale and the sampling frequency have
on the accuracy of the tool, we redesign the tool interfaceh shat we can set the observation time-scale and

sampling frequency. We can then evaluate the tools undesatime conditions and compare their performance.

2.3.2 Per-hop AB estimation tools

In the recent past another class of AB estimation tools haea Iproposed which measure the AB on every hop
of a path. Two prominent tools in this domain are PathneckStad.

Stab[RRB04] works on a principle similar to PathChirp. Howeverd every packet in PathChirp is repre-
sented as a two packet combination in Stab which we will refers a Measurement Pair(MP). The first packet

is a TTL limitedload packetwhich has a large size and the second packet is a small pabke 18 considered
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to be ameasurement packeln order to measure the AB up-to tii& hop on a path, the load packets have in
every packet-pair have their TTL setitoThe MP train is sent in exactly the same manner as PathChip.
intuition behind this approach is that the load packets evéiate the excursion patterns at any given hop, which
will also be reflected in the small-sized measurement paskate the measurement packets will always queue
up behind the the load packets. When a MP reache#theop, all the load packets will be dropped (because
they are TTL limited), and the measurement packet whichetttes spacing of the load packets when they were
dropped will carry on to the receiver. The receiver can itifier AB of thei;, hop using the same inference logic
as PathChirp. This procedure is done for every hop, to get-A@gestimate of the AB .

PathnecKLi05] uses a stream construction called a Recursive Palaleéh (RPT). A recursive packet train
consists of two components (i) A Load Train and (ii) A Measneat Train. A single RPT is constructed as
follows the firstk packets are TTL limited measurement packets with smallaiwkare sent back-to-back. The
nextL packets are large load packets, which are sent at a ratdispgday the IGI/PTR algorithm. The fin&
packets are also TTL limited load packets. The first and lasasurement packet have a TTL of 1, the second
and second last measurement packet have a TTL of 2 and so al flee k measurement packets. In the case
of Pathneck is set to 30 and L is set to 70, though these arenpéees and can be varied. The intuition behind
Pathneck working is as follows. As the RPT traverses the,teach successive hop the first and the last
packet of the RPT will be dropped and a TTL expired messageb@isent back to the receiver. By observing
the dispersions of the TTL limited packets, the amount ogttire load packets were queued at a particular hop
can be computed, which using IGI/PTR inference logic cae giwinformation about the AB on a given hop.

In this thesis we show that scalable approaches to monigdtie AB in a network can be done using end-to-
end AB estimation tools. We show that other approaches[H80ish require per-hop AB information are less

accurate than our method and also do not perform as well agtiagi end-to-end AB estimation tools.

2.3.3 Implementation techniques to achieve high time-staping accuracy

In current high-speed networks, variations in end-to-eelhys may have an order of magnitude in the sub-
millisecond range. Since most ABETSs rely on measuring dekayations, high resolution and accuracy in
time-stamping probe packets is crucial for ensuring theugsay of the inferred AB. Current PC platforms,
however, are incapable of guaranteeing high time resaiuige to multi-tasking and the use of mechanisms
such as interrupt coalescence [JD02b]. This issue has amodiudied in [Pax97] where the authors derive that

if a system has a clock granularity 6f. and the system sends packet of sRéytes, then this system will be
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Figure 2.3: Impact of Interrupt Coalescence. (Graph frodD{@4])

unable to make a distinction between packet-pairs sentelﬁaandoo. Most tool implementers work around
this limitation using two techniques [JD02b, Rib03, SKKP3@) they rely on OS support for detecting and
discarding probe streams that appear to not have been tanged accurately; and (i) they collect observations
from several probe streams before converging on a robusiast of AB. While such implementation techniques
do not differ much across current ABETS, these do impact peoformance significantly [AMPRO03, JT03]. It
is important to note that the above techniques are highlyntelogy-specific. As technology improves [PV02a],
the impact of these techniques on ABET performance is lik@lyiminish.

Existing tools differ in the efficiency with which such systie biases are handled. For instance in [PJD04]
the authors propose a technigue which can be used to detectipt coalescence. They propose that the graph
of the one-way delays of a large stream of packets beingtafiday interrupt coalescence would look like an
increasing saw-tooth function when it was received at thatidation machine. Figure 2.3 taken from [PJD04]
illustrates this effect. This is because packets will bddrefl at the card till an interrupt timer expires and all
the buffered packets will be delivered back-to-back to tamkl and then the application. In such a scenario,
only the last packet of every burst should be considereasirt@as the most current timing information and has
suffered from the least buffering at the NIC.

The above technique requires multiple packets to be semntdierd@o reliably detect interrupt coalescence.

However, not all existing ABET tools have been designed Witk consideration in mind and as a result many
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tools suffer from biases introduced by interrupt coaleseerin this thesis, we evaluate some prominent AB
estimation tools in an environment where systemic efféatdriterrupt coalescence could come into play. We
then study how the ABETSs could be impacted by these effatioarlate our findings to other studies which

have focused specifically on these issues.

2.4 Tool Evaluation

Several tool proponents compare the performance of thels tagainst that of others under controlled lab set-
tings as well as in Internet-wide experiments [HS03, RibBRK03a]. Ribeiro et. al. [Rib03] compare the
performance of PathChirp to that of Pathload [JD02b] and FQ®BGO00] in an emulated lab setting. They
find that PathChirp is more accurate than TOPP and less ivértlsan Pathload. Hu et. al. [HS03] compare
the performance of IGI/PTR to that of Pathload and Iperf oririt8rnet paths of capacity within 100 Mbps.
They observe that while the readings of the three tools matckome paths, they fluctuate on other. Since the
actual AB of these paths were not known, tool accuracy wasenfied. Strauss et. al. [SKK03a] compare
the performance of Spruce to that of Pathload and IGIl. TheySMMP data collected at five minute intervals
to evaluate the accuracy of these tools on two 100 Mbps pdthey also compare the sensitivity of the tools
to changes in AB by performing several experiments on the R&itbed. They find that IGI is inaccurate at
high loads, and Spruce is more accurate and less intrusaveRhthload. Coccetti et. al. [CP02] evaluate early
ABETS, including Iperf and Pathload, on a low speed (less th#vibps) 4-5 hop topology with and without
cross-traffic. They conclude that tool results stronglyetepon configuration of the router queues and that a
considerable amount of care would need to be taken whilegregng the results from any ABET, especially if
QoS features were present in the network. In [LRLO4], théargt analyze at large time-scales, the performance
of several bandwidth estimators that can be representenematically. Unfortunately, their evaluation consid-
ers only low-bandwidth paths with a single bottleneck likkirthermore, several iterative estimators cannot be
represented using their formulation.

Unfortunately, such studies are not comprehensive in ettietools or the settings evaluated. All of the
studies described above evaluate only a small (and diffeseb-set of ABETSs, depending on which ones were
popular when the corresponding tool was proposed. Furtbexnthese evaluations include only simple network

and traffic scenarios—for instance, none of the above etatoal performance against responsive cross-traffic,

25



in high-speed networks, or when the tight and narrow links different! As a result of these practices, the
results are often not comprehensive and get inadverteigiell toward highlighting the salient features of the
proposed tool.

As listed in Section 1, there are a wide variety of factorg ttwuld impact the accuracy and performance
parameters of an ABET. Unfortunately there ameevaluation studiethat systematicallgvaluate all the param-
etersthat can influence the performance of a given ABEtirthermore no evaluations take into consideration
the temporal aspect of the process of AB estimation and tpadtrthat it could have on the tools accuracy
To summarize, existing ABET evaluations are either biagekhlitations of current implementation technology
and/or are not comprehensive in evaluating tools agaimstsk network,probing, systemic and temporal condi-
tions. In this thesis we study the factors that can affect the peréorce of an ABET and systematically quantify

the impact that they have on the performance parameters BfTAB

2.5 Formal analysis of AB estimation tools

In order to better understand the performance bounds of AiBiason tools, there have also been several efforts
to quantify the biases and the errors that can be observduebyarious AB tools and techniques.

In [LRLLO4] the authors analyze the performance of AB estioratools on a single-hop path. They assume
a simple FIFO model of queuing and derive the "Response Cufvan input probe that is used to estimate
the AB . The response curve is the function that relates thatigaps to the output gap on a single-hop path
as a function of the cross-traffic intensity and link capattiiat is present on that path. The authors derive an
expression which given an input gap,cross-traffic intgnpitobe packet size and link capacity can define bounds
for the expected gap values. The difference between thalagtiiput gap response curve and the theoretical
lower bound of the response curve is defined as the probirsg Wizich directly relates to the amount by which
the cross-traffic process is being changed because of tamakprobes that we are introducing into the network.
The authors also conclude that using a longer probing packiet or larger packet sizes, would reduce the
probing bias.

In [LRLO5] the authors extend the single-hop model into theengeneral case model of a multi-hop path
and formulate a "Response Curve” for a multi-hop path usifigiid cross-traffic model. They conclude, that

the for a multi-hop path, that the relation between the irgnd output gap (Response Curve) is a continuous

1Thetight link of a path is one with the least amount of available bawmithwiwhile thenarrow link is the one with the least transmission
capacity [JD02b]. The tight link of a path may not be the samtha narrow link if it carries significant amount of trafficad.
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piecewise linear function. The first point of slope changanalytically shown to be the point at which the AB

of the path is obtained. They then extend the fluid-crosfi¢rafodel to a more realistic cross-traffic model and
show that the response curve for the realistic cross-traffidel is lower bounded by the its fluid counterpart.
They also analytically show that as the packet size or thi&gidin length approaches infinity, the bias terms
approaches 0. That is theoretically we can obtain perfeoctdedge of the AB if we can send arbitrarily large

packets or arbitrarily long packet trains.

In [LFVO7b] the authors model an end-to-end path and an ABn@sbr on that path as a min-plus system, in
the context of network calculus. The primary assertion belinis approach is that it is possible to completely
describe a min-plus system by using only its impulse respofis impulse response of a system is the response
of a system when the input to the system is the burst funciiich in the context of AB estimation is a probe
stream which has an instantaneous rate of infinity Mbps. hjmilse response is also defined as the service
curve of the system. Thus the objective of the Min-plus asialis that given an arrival function and a departure
function which can be obtained by observations, can we pltitaiservice curve of the end-to-end path (Min-plus
system). The authors show analytically that it is not pdeditbget the exact service curve, and therefore derive
an expression to find the service curve which maximally lolaernds the actual service curve. The authors then
show how this formulation can be used in passive monitoraig, scanning and Chirps to obtain a lower bound
on the service curve and hence infer the AB on that path.

In [LDS06] the authors analytically study the performané@B estimation tools, specifically the perfor-
mance of the packet-pair techniques. They show that evemeitase where there is a single bottleneck link
and the situation where the narrow link and the tight-link lire same there are situations where the packet-pair
technique will result in an underestimation of the AB. In tase of path-persistent (Refer to Figure 2.5) cross-
traffic the estimator that is used in the packet-pair metladaccurately measure the AB. However in situations
where the cross-traffic is not path-persistent, the papkétestimator will always underestimate the AB when
the sending rate is greater than the AB.

In this thesis we empirically study the issues of bias thatiatroduced by varying network conditions and
cross-traffic interaction models in ABETs and verify manyhef observations made in the theoretical models

proposed above.
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Figure 2.4: lllustration of Path-Persistent and Non-Paiisigtent traffic patterns

2.6 Efficient Network Monitoring

Recent work has addressed the issue of monitoring of alslofka given network in a scalable manner. Most
approachesrely on the observation that many end-to-ehd pat network share several links—this redundancy
can be exploited to drastically reduce the number of enceaaded for probing links as well as the number of
probes sent by these. The reduction problem has been mduehadny as a vertex-cover problem. [BEGL1]
optimizes the number of SNMP probes that need to be sent Bldvetnabled routers to query for the link
utilization and the latency. The authors provide a genegigristic algorithm, which produces a near optimal
set of links that need to be monitored. [KK06] optimizes tihebem of beacon placement in the presence of
dynamic IP routes, such that each link of a give network caddterministically monitored for link failures and
delays, while placing a minimum number of probing beaco@K05] measure the delay and loss efficiently
by using a linear-algebraic approach for selecting a sufssktks, and then inferring the network properties
from this subset. [SQZ06] uses a Bayesian network base@agipto monitor the delay, capacity and loss in an
efficient manner.

Unfortunately, the problem of scalable monitoring of eneehd AB in an overlay has not been well-
addressed. The only existing scheme, Broute [HS05] useisitilion of shared access hops and the fact that

bottlenecks lie close to the edges uses special nodesaéferas landmarks as well as a per-hop AB estimation

28



tool in order to monitor the all-pairs AB in a scalable manfigre algorithm relies on a series of landmark nodes
to which Pathneck[HLNM04]; a tool to locate the bottleneck on an Internet path;iis Rathneck also provides
lower bounds on the per-hop AB. Every node monitors the pgr4B on its ingress and egress links to a series
of landmark nodes. When the AB between any two nodes is redjtire system will take the minimum of the
AB at the sources egress links and the destinations ingrédsand infer the end-to-end AB as the minimum of
those two ABs. Evaluation of this scheme demonstrated HeaAB estimation accuracy is less than 50% for
80% of the casedn this thesis we design a scalable AB monitoring infradiuee, which reduces the number of

measurements and shows better inference accuracy thaiopstyproposed schemes

2.7 Network aware application designs

There are many applications that make network aware dessibor instance the Resilient Overlay Network
(RON) [ABKMO1] monitors the delay and bandwidth on its netland is able to provide delay or loss op-
timized paths as required. Multimedia applications likeNP8] also rely on the delay information in order to
construct their multi-cast routing tree. The knowledgehef tlelay is also useful in web caching [WYO00] where
the latency is used a metric to decide where a some conteunltshe cached. The objective of this system is to
cache data at geographically proximate locations, sudiréigaests can be responded to with minimum delay.
Peer-to-Peer like Bit-torrent [Bit] can also make intedlig choices about peers as studied in [Qur04]. Despite
there being many potential AB aware applications, it is neacwhat the performance gains would be on using
an AB aware application.

There has also been some focus on designing applicatiorchwisie the knowledge of AB. For instance
SOBASI|DPJ04] relies on using the knowledge of the AB in oreadaptively set its socket buffer size, so
as to optimize the performance of a transport protocol. Shleeme works by probing for the AB and setting
the socket buffer to the corresponding size. This schemaiiicplarly useful in high bandwidth networks,
where congestion windows can become very large and exagéuincongestion window could cause a large
number of packet drops. The scheme proposed helps maih&icongestion window to a level where there
are very few packet drops. Dovrolis et al [ZDAO6] also stuldtee performance of a scheme which could
do bandwidth adaptive routing. The authors study the peréorce difference between doing proactive and
reactive routing using the knowledge of the AB. However théhars do not address how they would obtain

complete bandwidth information to implement this scheni@JAKO04] utilizes the information about the AB
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and the capacity to determine what the output rate of thastirey protocol should be. As can be observed there
are several potential applications that could benefit fromknowledge of the AB. However there is no clear
quantification as to what performance improvements couldliiained by using an AB aware applicatiom.

this thesis we design an infrastructure that can monitorAlBeof a network, which would give the above listed

applications access to the AB information aiding them inimg.better network aware decisions.
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CHAPTER 3
Evaluation of ABET implementations

We begin our series of evaluations by first evaluating plylwailable implementations of ABETs—in this first
study, we treat each of these tools as a black-box and eealwadefault design choices along the algorithmic,
implementation-related, and sampling-related tempadnaédsions. A major focus of our analysis in this chapter
is to understand the extent to which systemic issues anceimgahtation efficiencies impact tool performance—
the impact of temporal and algorithmic factors is studiedubsequent chapters.

ABETSs face increasingly difficult measurement challengesirkk speeds increase. Consider the issue of
time precision: on faster links, time-gaps between padietsease, rendering packet probe measurements more
sensitive to timing errors. Available bandwidth measureteen high-speed links stress the limits of clock
precision especially since additional timing errors magedue to the NIC itself, the operating system, or the
Network Time Protocol (designed to synchronize clocks afipaters over a network) [PV02b]. Additionally,
mechanisms such as interrupt coalescence that are usegr/emetwork packet processing efficiency, mislead
end-to-end tools that assume uniform per-packet proogssid timing [PJD04].

On the other hand, ABETSs are being increasingly deployedgh-Bpeed network settings such as the Net-
work Weather Service [Wol98] and the TeraGrid [Ter] infrasture. Since the systemic issues mentioned above
play a greater role in high-speed networks, it is criticaléwelop an understanding of the performance of promi-
nent ABETSs in such environments. Unfortunately, as describ Chapter 2, most past evaluations of ABETs
have been restricted to paths with capacities of 100 Mbpssstfurthermore, these evaluations are often not
comprehensive in the set of tools evaluated.

In this chapter we describe a comprehensive evaluation &Ps8in a high-speed network testbeds—to the
best of our knowledge, this is tHast such evaluation presented in the literature. We show thatparative
performance evaluation of various ABET implementationsasivertently biased against certain tools since their
performance is adversely impacted by interrupt coalessamd buffer size limitations (systemic biases) along
with the inability of certain tool designs to detect thedeek (implementation biases). We also run these tools

on Internet paths and observe that the tools display simegaformance characteristics to what we observed



in the test-bed setting. This implies that the results waiobtere are generalizable to the performance of the
ABETSs in actual deployments. It also presents strong mtitina for designing and testing ABETs in high-speed

testbeds similar to the one that we will describe in this ¢tbelpefore deploying them on live systems.

3.1 Background: Interrupt Coalescence and network measuments

We first discuss how interrupt coalescence can impact n&twmasurement and specifically AB estimation.
Jain et. al. [PJD04] have conducted an in-depth analyshli®fdsue. Recall from Chapter 2 that AB estimation
tools send a series of probe packets with a controlled andi@termined spacing between them on the path of
interest, and the receiver studies changes in the inteegp@aps in order to make an inference about the AB .
Clearly, ensuring high precision time-stamping and adewspacing between the packets is critical for obtaining
an accurate estimate of the AB.

To put this in context, in order to achieve a data rate of 1 Glaps500 byte packet would have to be
transmitted (and received) every 12. On general-purpose machines, packet transmissions aeiptdy
a network interface card (NIC) is handled by means of triggeiterrupts—for instance, when a packet is
received, the current process running on the CPU is intéetyprontext is saved, and the packet is processed
before returning the context to the original process. Thacpssing and the associated context switch can be
fairly costly operations to perform. Modern systems, causatly, reduce the overhead by grouping together
packets that arrive close in time, and use a single intetoufstgger their processing. This process is known as
Interrupt coalescence (IC).

Unfortunately, since IC buffers packets arriving closeetitgr and uses a single interrupt to process all the
packets, any timing information between the packets isH@dt such packets appear to have arrived back-to-
back at the system. This can seriously limit the accuracy®feAtimation tools. There are no universal agreed
upon parameters to setup IC. The network card that we usedriex@eriments had three parameters, which
could be set. First, there is the maximum rate at which iofgs can be generated. Second, we can set the
minimum time between a packet arriving and an interrupt ¢pejenerated, which controls the maximum time
a packet is queued at a device before it is acknowledged bgytem. Finally, we can set the time between a
packet arriving and a new interrupt being generated, whacttrols the minimum time a packet will spend in the
gueue. Using these parameters to control the IC can causd twe effects in a pair of packets. First, if both the

packets arrive between the interrupt intervals the two pecivill be queued and acknowledged back-to-back
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and will appear to have arrived with no spacing between thehis-eould causeompressionn the spacing
between the packets. The second situation is if the pairackeqis arrive with some spacing between them and
the first packet is acknowledged by an interrupt before tloerse packet arrives. This would cause the second
packet to stay in the queue for at least the minimum intergapteration delay, which wilihcreasethe delay
between the two packets. Thus, IC can distort the spacivgdeet packets by increasing or decreasing it.

In [PID04], the authors have proposed a scheme which carebiedaisletect IC and conduct AB estimation
even in the presence of IC. This technique relies on the Fedtd train of packet impacted by IC will show a
saw-tooth like arrival process (as illustrated in Figur&@)2The authors propose a heuristic to identify the spikes
and use only the first observation from each spike to makedti@ates of the AB.

The above discussion highlights the fact that IC can havgrafgiant impact on the process of AB estimation.
A part of our evaluation in this chapter, we illustrate thepawt that IC can have on some AB estimation tools

and discuss why certain techniques are more sensitive teffibets of IC on contemporary computers.

3.2 Methodology

From Table 2.1 we selected the following tools for this studping, pathchirp pathload and Spruce For
comparison we also includdgderf [ipe] which measures achievable TCP throughpperf is widely used for
end-to-end performance measurements and has become éniahstindard [CLO2] in the research networking
community.

We were unable to tesprobe[CC96a] because it only runs on an SGI Irix platform and we dbhave one
in our testbed. We did not includeetest[Jin04] in this study since in our initial tests this tool ornsistently
reported different metrics on different runs and differeoads. We excludegipechar[JYCAOQL] after tests
on 100 Mb/s paths anlfzl [HS03] after tests on 1 Gbps paths since they were unresgotsivariations in

cross-traffic.

3.2.1 The high-speed testbed

In collaboration with the CalNGI Network Performance Refere Lab [San04], CAIDA researchers developed
an isolated high-speed testbed that can be used as a refeemter for testing bandwidth estimation tools. This
resource allows us to test bandwidth estimation tools ag&mown and reproducible cross-traffic scenarios and

to look deeply into internal details of tools operation.
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Figure 3.1: Bandwidth Estimation Testbed.

In the testbed configuration (Figure 3.2.1), all end hostcannected to switches capable of handling jumbo
MTUs (9000 B). Three routers in the testbed end-to-end paleach from a different manufacturer. Routers
were configured with two separate network domains (bothiwihivate RFC1918 space) that route all packets
across a single backbone. An OC48 link connects a Juniperml2@r with a Cisco GSR 12008 router, and a
GIgE link connects the Cisco with a Foundry Biglron 10 rout&fe use jumbo MTUs (9000 B) throughout our
OC48/GigE configuration in order to support traffic flow at fine speed [Jor04].

Bandwidth estimation tools run on two designated end hasth equipped with a 1.8 GHz Xeon processor,
512 MB memory, and an Intel PRO/1000 GigE NIC card installeéi®&4b PCI-X 133 MHz bus. The operating
system is the CAIDA reference FreeBSD version 4.8.

The laboratory setup also includes dedicated hosts thaCaralReef[KMK T01] andNeTraMet[Bro04]
passive monitor software for independent verification of tind cross-traffic levels and characteristics. Endace
DAG 4.3 network monitoring interface cards on these hogislta OC-48 and GigE links under loa@oralReef
can either analyze flow characteristics and packet IATsdhtime or capture header data for subsequent analysis.
The NeTraMetpassive RTFM meter can collect packet size and IAT distidimstin real time, separating tool

traffic from cross-traffic.

3.2.2 Methods of generating Cross-traffic

The algorithms used by bandwidth estimating tools makerapaons about characteristics of the underlying

cross-traffic. When these assumptions do not apply, tosieagoerform correctly. Therefore, test traffic must
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be as realistic as possible with respect to its packet |ATssrel distributions.
In our study we conducted two series of laboratory tool tesiag two different methods of cross-traffic

generation. These methods are described below.

Synthetic Cross-traffic  Spirent Communications SmartBits 6000B [Spi044a] is a hardvgystem for testing,
simulating and troubleshooting network infrastructurd aerformance. It uses the SpireérartFlow{SpiO4b]
application that enables controlled traffic generationlfafL3 and QoS laboratory testing. Using SmartBits
andSmartFlowwe can generate pseudo-random, yet reproducible traffttc adgturately controlled load levels
and packet size distributions. This traffic generator megskudo-random traffic flows where the user sets the
number of flows in the overall load and the number of bytes talde a given port/flow before moving on to
the next one (burst size). The software also allows the osgefine the L2 frame size for each component flow.
The resulting synthetic traffic emulates realistic proldwaders. However, it does not imitate TCP congestion
control and is not congestion-aware. In our experimentsavied traffic load level from 100 to 900 Mb/s which
corresponds to 10-90% of the narrow GIgE link capacity. Attebbad level,SmartFlowgenerated nineteen
different flows. Each flow had a burst size of 1 and consistegitber 64, 576, 1510 or 8192 byte L2 frames.
The first three sizes correspond to the most common L2 frapss sibserved in real network traffic [NLAOA4].
We added the jumbo packet component because high-spesdiingt employ jumbo MTUs in order to push
traffic levels to line saturation. While [NLAO4] data suggestri-modal distribution of small/medium/large
frames in approximately 60/20/20% proportions, we are matra of equivalent published packet-size data for
links where jumbo MTUs are enabled. We mixed the frames of &izes in equal proportions. Packet IATs
(Figure 3.2a) ranged from 4 to more than 4@8 We used passive monitderalReefandNeTraMetto verify

the actual load level of generated traffic and found that itcimed the requirements within 1-2%.

Playing Back Traces of Real Traffic We replayed previously captured and anonymized traffieeam our
laboratory end-to-end path using a taopreplay[TurO4]. This method of cross-traffic generation reprodiice
actual IAT and packet size distributions but is not congestiware. The playback tool operated on two addi-
tional end hosts (separate from the end hosts running baltislestimation tools) and injected the cross-traffic
into the main end-to-end path via GigE switches.

We tested bandwidth estimation tools using two differestds as background cross-traffic:

e a 6-minute trace collected from a 1 Gbps backbone link ofgelamniversity with approximately 300-345
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Mb/s of cross-traffic load;

e a 6-minute trace collected from a 2.5 Gbps backbone link ofpnmSP showing approximately 100-200

Mb/s of cross-traffic load.

Neither trace contained any jumbo frames. Packet sizedbitatiia tri-modal distribution as in [NLAO4].
Packet IATs (Figure 3.2b) ranged from 1 to 68. We used CoralReef to continuously measapeeplaycross-
traffic on the laboratory end-to-end path and recorded tiamegs of packet arrivals and packet sizes. We con-
verted this information into timestamped bandwidth regdiand compared them to concurrent tool estimates.
Both traces exhibited burstiness on microsecond time schid loads were fairly stable when aggregated over

one-second time intervals.

3.3 Evaluation Results

In this section we present tool measurements in laboraestg tusing synthetic, non-congestion-aware cross-
traffic with controlled traffic load $martFlovw and captured traffic traces with realistic workload chégeistics

(tcpreplay. In Section 3.4 we show results of experiments on real lsigged networks.
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Figure 3.3: Comparison of /ab measurements on a 4-hop O@BAMAth synthesized cross-traffic

Experiments with Synthesized Cross-traffic We used the SmartBits 6000B device with BrmartFlowappli-
cation to generate bi-directional traffic loads, varyingnr 10% to 90% of the 1 Gbps end-to-end path capacity
in 10% steps. We tested one tool at a time. In each experintfensynthetic traffic load ran for six minutes.
To avoid any edge effects, we delayed starting the tool feersé seconds after initiating cross-traffic and ran
the tool continuously for five minutes. Figure 3.3 shows therage and standard deviation of all available
bandwidth values obtained during these 5 minute intenaalséch tool at each given load.

Our end-to-end path includes three different routers witfeent settings. To check whether the sequence
of routers in the path affects the tool measurements, weaista with synthesized cross-traffic in both directions.
We observed only minor differences between directions. Vdrétions are within the accuracy range of the
tools and we suspect are due to different router buffer sizes

We found thagbing(Figure 3.3) reports highly inaccurate results when atdél®@andwidth drops below 600
Mb/s (60% on a GIigE link). Note that this tool is currently ¢®ped on the Internet End-to-End Performance
Monitoring (IEPM) measurement infrastructure [SLA04] waé¢he MTU size is 1500 B, while our high-speed
test lab uses a jumbo 9000 B MTU. We attempted to chajeg settings to work with its maximum 8160 B
probe packet size, but this change did not improve its acgura

We looked into further details afbingoperating on an empty GigE path. The tool continuously seadk-
to-back pairs of 1478 byte UDP packets with a 50 ms waitingrirgl between pairabingderives estimates of

available bandwidth from the amount of delay introducedhs/ network” between the paired packeting
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puts a time stamp into each packet, and the returned pacdkigtsca receiver time stamp. Computing the packet
IAT does not require clock synchronization since it is cédoed as a difference between timestamps on the same
host. Since these timestamps havesagranularity, the IAT computed from them is also an integenber of

us. For back-to-back 1500 B packets on an empty 1 Gbps link @igsKransmitted at 1 ns per bit) the IAT is
between 11 and 13s, depending on rounding error. However, we observed thettye®0-30 packets the IAT
becomes 244;s. This jump may be a consequence of interrupt coalescenaedetay in some intermediate
device such as a switch. The average IAT then changes to mane20.s yielding a bit rate of less than 600
Mb/s. This observation explairebing results: on an empty 1 Gbps tight link it reports two discredtues

of available bandwidth, the more frequent one of 890-960dvitsid occasional drops to 490-550 Mb/s. This
oscillating behavior is clearly observed in time serieslbiingmeasurements (Figure 3.4) described below.

Another tool,Spruce(Figure 3.3), uses a similar technique and, unsurprisjriiglyesults are impeded by the
same phenomenorsprucesends 14 back-to-back 1500 B UDP packet pairs with a waititerval randomly
chosen between 160-1400 ms between pairs prob&pricemeasurements, 244 gaps between packet pairs
occur randomly between normal 13 gaps. Since the waiting time between pairs varies withatiem, the
reported available bandwidth also varies without pattariine 300-990 Mb/s range.

Results of our experiments witthingandSpruceon high-speed links caution that tools utilizing packet pai
techniques must be aware of delay quantization possibbepiten the studied network. Also, 1500-byte frames
and microsecond time stamp resolution are simply not seeshough for probing high-speed paths.

In SmartBits tests, estimates of available bandwidttpathchirpare 10-20% higher than the actual value
determined from SmartBits settings (Figure 3.3). This ¢sieat overestimation persists even when there is no
cross-traffic. On an empty 1 Gbps path this tool yields valyet® 1100 Mb/s. The reason for this overestimation
is PathChirp’s exponentially spaced packet trains, whitects the AB only after it exceeds the existing AB on
the path.

We found that results qfathloadwere the most accurate (Figure 3.3). The discrepancy baetikeeeadings
and actual available bandwidth wa4.0% in most cases.

The last tested toolperf, estimates not the available bandwidth, but the achievE®R throughput. We ran
Iperf with the maximum buffer size of 227 KB and found it to be acteiraithin 15% or better (Figure 4e).
Note that a smaller buffer size setting significantly redutteelperf throughput. This observation appears to
contradict the usual rule of thumb that the optimal buffeess the product of bandwidth and delay, which in

our case would be (PM/s) x (104 s) ~ 12.5 KB. Dovroliset. al. discuss this phenomenon in [DPJ04].
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Performance of Packet-pairs Spruce and Abing, both of which operate on the packet-painaumlogy suffer
from the same problem of Interrupt Coalescence. In boths;age observe that most packet-pairs show a queu-
ing delay of 11-13 microseconds regardless of the AB. Thisdgcative of the fact that any spacing between
the packet-pair that was introduced by cross-traffic is ¢péast when the packets are being buffered and ac-
knowledged using IC. At the other end of the spectrum we olesssme packet pairs arriving with a dispersion
of approximately 250 microseconds which is indicative @& thct that some packet pairs are being split across
the boundaries of interrupts. [PJD04] have proposed a rdetbgy which can be used to detect and perform
measurements AB in the presence of IC. However this metloggokquires a long train of packets to be able to
reliably gain estimates around IC, which limits is applidi&fpto packet-pair techniques. The difference in the
performance of abing and spruce are due to the fact thatsmses a randomized algorithm to pick intervals be-
tween sending its packet pairs. Furthermore high-speedonks$ stress the limits of timer resolution and hence
AB measurements techniques that rely on being able to gigaiseasure the delay between two closely spaced

packets are likely to yield inaccurate estimates.

Experiments with Trace Playbacks The second series of laboratory tests used previouslydeddraces of
real traffic. For these experiments we extracted six-misat@ples from longer traces to use agpreplay
source. As in SmartBits experiments, in order to avoid edfpees we delayed the tool start for a few seconds
after startingcpreplayand ran each tool continuously for five minutes.

Figure 3.4 plots a time series of the actual available badthybbtained by computing the throughput of the
trace at a one-second aggregation interval and subtratbtimfrom the link capacity of 1 Gbps. Time is measured
from the start of the trace. We then plot every value obtalmed given tool at the time it was returned.

As described in Section 3.2.2, we performegreplayexperiments with two different traces. We present
tool measurements of the University backbone trace, whiodyced the load of about 300 Mb/s leaving about
700 Mb/s of available bandwidth. The tool behavior when gsire ISP trace with a load of about 100 Mb/s was
similar and is not shown here.

In tests with playback of real tracesbing and Spruceexhibit the same problems that plagued their per-
formance in experiments with synthetic cross-traffic. Feg8.4d shows thabingreturned one of two values,
neither of which was close to the expected available banithwisipruceresults (Figure 3.4c) continued to vary
without pattern. One difference in the performance of Spristhat spruce now on an average tends to underes-

timate rather than overestimate the AB . This points to tloétfzat more spruce packets are being dispersed by
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Figure 3.4: Comparison of ABET measurements on a 4-hop Q&lgB/path played back real traffic.

larger values, which could point to a switch on our networkhpatroducing an additional delay between our
probe packets.

pathchirp measurements (Figure 3.4a) had a startup period of aboutwi@ea the tool returned only a
constant value. The length of this period is related to tld'saneasurement algorithm and depends on the
number of chirps and chirp packet size selected for the divelrun. After the startup phaspathchirgs values
alternate within 15-20% of the actual available bandwidth.

The range reported yyathload(Figure 3.4d) slightly underestimates the available badtivby <16%.

Iperf reports surprisingly low results when run agaittgtreplaytraffic (Figure 3.5e). Two factors are causing
this gross underestimation: packet drops requiring refrassion and a too long retransmission timeout of 1.2 s

(default value). In the experiment shown, the host runtiregf and the host runnintgpreplaywere connected
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Figure 3.5: Performance of iperf on a 4-hop OC48/GigE path piayed back real traffic.

to the main end-to-end path via a switch. We checked the kiwiMIB for discarded packets and discovered a
packet loss of about 1% when the tool and cross-traffic stseaprge. Although the loss appears small, it causes
Iperf to halve its congestion window and triggers a significant banof retransmissions. The default retrans-
mission timeout is so large that it consumes up to 75% ofgike running time. Decreasing the retransmission
timeout to 20 ms and/or connecting tfopreplayhost directly to the path bypassing the switch consideraily
provesiperf’s performance. Note that we were able to reproduce the degdiperf performance in experiments
with synthetic SmartBits traffic when we flooded the path veittarge number of small (64 B) packets. These
experiments confirm that ultimately the TCP performancénfaice of packet loss strongly depends on the OS

retransmission timer.

3.3.1 Comparison of Tool Operational Characteristics

We considered several parameters that may potentiallgtadfaser’s decision regarding which tool to use: mea-
surement time, intrusiveness, and overhead. We measuitbdse characteristics in experiments with SmartBits
synthetic traffic where we can stabilize and control the |0&d define tool measurement time to be the average
measurement time of all runs at a particular load level. Ordenop OC-48/GigE topology, the observed mea-
surement durations were: 1.3 s fing, 11 s forSpruce 5.5 s forpathchirp and 10 s fotperf independent of
load. Thepathloadmeasurement time generally increased when the availablbAidth decreased, and ranged
between 7 and 22 s.

We define tool intrusiveness as the ratio of the average taffic rate to the available bandwidth, and tool

overhead as the ratio of tool traffic rate to cross-traffie (&igure 3.3.1)pathchirg abing andSprucehave low
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Figure 3.6: Tool overhead vs. available bandwidth.

overhead, each consuming less than 0.2% of the availabtkbdi on the GigE link and introducing practically

no additional traffic into the network as they measy&thloadintrusiveness is between 3 and 7%. Its overhead
slightly increases with the available bandwidth (that isiew the cross-traffic actually decreases) and reaches
30% for the 10% load. As expectdgerf is the most expensive tool both in terms of its intrusiver{&ds79%)

and overhead costs. Since it attempts to occupy all availadshdwidth, its traffic can easily exceed the existing

cross-traffic.

3.4 Real World Validation

Comparisons of bandwidth estimation tools have been @étitfor their lack of validation in the real world.
Many factors impede if not prohibit comprehensive testifigomls on production networks. First, network
conditions and traffic levels are variable and usually bejtbe experimenters’ control. This uncertainty prevents
unambiguous interpretation of experimental results andees measurements unreproducible. Second, a danger
that tests may perturb or even disrupt the normal coursetafork operations makes network operators reluctant
to participate in any experiments. Only close cooperatietwbken experimenters and operators can overcome

both obstacles.
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We were able to complement our laboratory tests with twoesesf experiments in the real world. In both

setups, the paths we measured traversed exclusively aggaesgearch and government networks.

Experiments on the Abilene Network We carried out the available bandwidth measurements on @ @hd-
to-end path from Sunnyvale to Atlanta on the Abilene Netw®#&th end machines had a 1 Gbps connection to
the network and sourced no traffic except from running oulstodhe rest of links in the path had either 2.5 or
10 Gbps capacities. We r@athload pathchirp abing andiperf for 5 min each, in that order, back-to-back. We
concurrently polled the SNMP 64-bit InOctect counters fbr@uters along the path every 10 s and hence knew
the per-link utilization with 10 s resolution. We calculdtthe per-link available bandwidth as the difference
between link capacity and utilization. The end-to-end latdé¢ bandwidth is the minimum of per-link available
bandwidths. During our experiments, the Abilene netwoik nibt have enough traffic on the backbone links
to bring their available bandwidth below 1 Gbps. Thereféhhe, end machines’ 1Gbps connections were both
narrow and tight links in our topology. Due to some logidticanstraints we could not run Spruce during the
same experiment. We therefore present the results of thec€pun separately in Figure 3t4

Figure 3.4 shows our tool measurements and SNMP-deriveitablea bandwidth. Measurements with
pathload pathchirp andlperf are reasonably accurate, whiéing and sprucereadings wildly fluctuate in
the whole range between 0 and 1000 Mb/s.

The discrepancy betwedperf measurements and SNMP-derived values reflects tool delgrf: gener-
ates large overhead-(70%) because it intentionally attempts to fill the tight litdonsequent readings of SNMP
counters indicate how many bytes traversed an interfacerotfi@r during that time interval. They report total
number of bytes without distinguishing tool traffic from seetraffic. If a tool's overhead is high, then available
bandwidth derived from SNMP data during this tool run is Iéwthe same time, since tools attempt to measure
available bandwidth ignoring their own traffic, a high-ovead tool will report more available bandwidth than
SNMP. Thereforelperf shows a correct value of achievable TCP throughput®50 Mb/s while concurrent
SNMP counters account fdperf’s own generated traffic, and thus yield less than 200 Mb/s/afi@le band-
width. A smaller discrepancy betwegathloadand SNMP results reflectsmathloads overhead {-10% per our

lab tests).

Experiments on the SDSC-ORNL Path In the second series of real-world experiments we testgidg,

pathchirp pathload andSprucebetween our host at SDSC (running CAIDA reference FreeBSBioe 4.8)

1we also teste@prucein the other series of real network experiments, see subseah SDSC-ORNL paths below
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Figure 3.7: Real world experiment conducted on the Abilezigmnrk

and a host at Oak Ridge National Lab (running Red Hat Linugast 9 with a 2.4.23 kernel and Web100
patch [Mat03]). These experiments are of limited valuesiwe did not have concurrent SNMP data for com-
parison with our results. However, we had complete inforame&bout link capacities along the paths which at
least allows us to distinguish plausible results from ingilde ones. We include these experiments since they
present first insights into the interplay between the prglpiacket size and the path MTU.

The two paths we measured are highly asymmetric. The SDSREQRth crosses CENIC and ESNet, has a
narrow link capacity of 622 Mb/s (OC12) and MTU of 1500 bytéhe ORNL-SDSC path crosses Abilene and
CENIC, has a narrow link capacity of 1 Gbps and supports 99a8-packets end-to-end. Both paths remained
stable over the course of our experiments and included OGIgE, 10 GigE, and OC192 links. Under most
traffic scenarios, it seems highly unlikely for the 10 Gbpks to have less than 1 Gbps of available bandwidth.
Lacking true values of available bandwidth from SNMP cowntier absolute calibration of tool results, we
assume that the narrow link is also the tight link in both oatths.

We ran each tool using either 1500 or 9000 byte pacledtig, pathchirp andpathloadsupport large probe

packet size as an optiérSpruceuses a hard-coded packet size of 1500 bytes; we had to lyimaldify the code

2Theabingreflector has a hard-coded packet size of 1478 bytes.
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Figure 3.8: Real world experiment conducted on the Abilestanork for spruce.

Table 3.1: Summary of wide-area bandwidth measuremerits gtfoduced no data).

Direction Path Capacity, Probe Packet Tool readings (Mb/s)
MTU Size abing® | pathchirp | pathload | Spruce
SDSCto| 622 Mb/s (OC12), 1500 17817241 543 >324 296
ORNL 1500 9000 f/664 f | 409-424 0
ORNL to | 1000 Mb/s (GigE), 1500 7271286 807 >600 516
SDSC 9000 9000 f/1778 816 846 807

aSender at SDSC for 1st value and at ORNL for 2nd value.

to increase the packet size to 9000 B. Table 3.1 summarizegsuits while a detailed description is available
in [Hyu04].

abing has a sender module on one host and a reflector module on teehaibt and measures available
bandwidth in both directions at once. We found that its belrashanged when we switched the locations of
sender and reflectoabingwith 9000 B packets did not return results from SDSC to ORNL iff Table 3.1).
We could see that the ORNL host was receiving fragmentedgischut theabing reflector was not echoing
packets. In the opposite direction, from ORNL to SD&Bingwith 9000 B packets overestimates the available
bandwidth for the OC12 path (reports 664 Mb/s on 622 Mb/s citya Note that almost the factor of 3 difference
in GigE path measurements with 1500 B packets (727 and 288)Miay be due to different network conditions

since these tests occurred on different days.
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pathchirpproduced results on both paths when run with 1500 B packe&t®arhe GigE path with 9000 B
packets, but failed on the OC12 path with large packets. &tees not appear to be any significant advantage
to using large packets over small ones. Variations betweasarjuent measurements with the same packet size
are sometimes greater than the difference between usige éard small packets.

In tests with 1500 B packets, on both pagihloadreports that results are limited by the maximum host
sending rate. With 9000 B packets, this tool yielded avégldiandwidth estimates for both paths, but issued a
warning “actual probing rate [does not equal] desired prghate” for the OC12 path.

Spruceperformed poorly in experiments with small packets from 808 ORNL, reporting wildly fluctuat-
ing values of available bandwidth. Tests with 9000 B pacietisis direction always produced 0 Mb/s. However,
in the ORNL to SDSC direction, its readings were more coasisand on par with other tools.

We suspect that fragmentation is responsible for most optbblems when probing packet size and path
MTU mismatch. While using large packets to measure higledgiaks is beneficial, more work is necessary to

consistently support large packets and to reduce failurdsreaccuracies stemming from fragmentation.

3.5 Conclusion

We find from the results of our experiments withingandSprucehat tools utilizing packet pair techniques must
be aware of delay quantization possibly present in the studetwork. Also, 1500 byte frames and microsecond
time stamp resolution are not sensitive enough for probighg-speed path$athloadandPathchirpperform the
best since they do have the facility to use greater than 1&6Ket size and both the tools can also detect interrupt
coalescencelperf performs well on high-speed links if run with its maximum farfwindow size. However
even small £1%) but persistent amounts of packet loss seriously degimpgerformance. Conservative settings
of the OS retransmission timer further exacerbate this lprab Thus we observe that performance of several
ABETSs are affected by systemic and implementation biase@rder to better understand the performance of
the various ABETS, we need to isolate the impact that thesgesyc and implementation biases have on the

performance of ABETs and re-evaluate the ABETSs.
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CHAPTER 4
Impact of Temporal Parameters

This dissertation argues that the performance of ABETstisnly influenced by algorithmic and implementation-
related design choices, but also by the sampling-relategdeal parameters that they operate with. Unfortu-
nately, these has been only a limited study of the latter. his thapter, we attempt to study the impact of
temporal aspects of sampling on the AB estimation proceas.a@proach is especially designed to isolate and
ignore the impact of algorithmic and implementation-rethaspects of ABET design. We begin by identifying

the parameters of interest to us.

4.1 Temporal Parameters of Interest

AB is a time-varying process and any bandwidth-estimatimh inust necessarily sub-sample the process. We

focus on the following fundamental dimensions of samplimgAB process:

Measurement Timescale:A critical parameter in the definition of AB in Equation (1i&)the length(ts —t1),
of the time interval over which it is observed—we refer tostigjuantity as theneasurement timescale
(MT). In Fig 1.2, we plot the time-series of AB, observed aethdifferent timescales di0ms, 50ms,
andls, during thesame 30 ®bservation period on an Internet link. We observe that tBepfocess can
appear quite different depending on the timescale at whicghdbserved. In particular, it is likely that
the MT impacts the accuracy as well as variability of the ABasieed by a given ABET. Consequently,
any application that relies on such a tool would want the toaheasure AB at an MT relevant to the
application domain. For instance, while a large-file-tfanapplication is likely to be interested in only
the average AB obtainable at super-second timescales, misieeaming application is likely to also be

interested in knowing the small-timescale variations in AB

1The importance of considering measurement timescales @adiahs has also been mentioned in [JD04]. However, thadtgf these
parameters on AB measurement has not been quantified.



Unfortunately, most existing ABETs do not explicitly seiéar report) the MT used in AB estimation. Fur-
thermore, the implicit choices of MT made by these tools a@g be roughly estimated, and are a function
of the path transmission capacity and tool configuratiompesters. Tools such as Spruce [SKK03a] and
Abing [Nav03], that rely on using a packet-pair as a probesstr, have a MT on the order ©2us, on a
1Gbps path—this corresponds to the separation between two lmabladk1 500 3 packets’: Tools such as
Cprobe [CC96b], PathChirp [Rib03], and Pathload [JD02idt thstead rely on using longer packet trains
as probe streams, have a much larger MT—ranging ftOms to several hundreds ofis on alGbps
path. The exact value of the MT for a probe stream dependsegitle of the packet train and the rate
at which it is sent—both of these factors are adaptive inIBathand PathChirp. Iperf [ipe], which is a
tool used primarily for diagnostic purposes, measures themum throughputthat a TCP connection can

attairf—the MT is the same as the total tool run-time.

In this chapter, we study how the choice of MT by a tool imp&eésaccuracy, variability, and stability of
the measured AB. We use four different values of MT, repregam of existing tools, that differ by more

than an order of magnitudé0Oms, 50ms, 100ms, and500ms.

Measurement Duration (Run-time): Run-timgRT) refers to the length of the time interval over which save
samples of the AB process are collected, and used to infeepties of the AB process. In practical terms,
the run-time is the total time taken by a tool from invocationreporting an AB estimate. This includes
the time taken to send several probe streams (each of whiemtpaly returns one sample of AB), and

converge on an AB estimate.

The most significant impact of run-time on AB measuremenhigerms of its variability. For a given
MT and SlI, the longer is the tool run-time, the more variablke l&kely to be the different AB samples
collected. On the other hand, longer run-times are mordilceyield asufficientnumber of samples for

reliably estimating the mean as well as variability in the p®cess.

RT (as well as MT) is also likely to affect the stability of tineeasured AB in the post-measurement
periods. A longer run-time is likely to yield more reliabldBfestimates, that are not subject to short-term

traffic-load fluctuations, and are indicative of the AB thahde expected for some time.

2Tools that rely on packet-pairs have been shown to be inatsuespecially on high-speed paths [SMBE]. This is conjectured to be
so primarily because of the small MT—at such timescalesAB@rocess appears quite bursty. As a result, it is difficnlgét reliable and
stable AB estimates. We exclude such timescales from oulysisan this study.

3t has been shown in [DJ03] that TCP throughput is not an ateumeasure of AB.
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Figure 4.1: Factors Affecting the AB process

Existing AB tools vary widely in their typical run-times—aacent evaluation study of AB tools reports
the typical run-times of Abing, Spruce, Pathchirp, Iperfd&athload to bet, 2, 5, 10, and20 seconds,
respectively [SMH 05]. We use these values to study the impact of tool run-timene variability as well

as stability of the AB process during measurement and pestsnrement periods, respectively.

Sampling Strategy and Intensity: Given an observation timescale, tAB procesgonsists of a series of back-
to-back readings of AB observed within a given time intervABETs essentially onlgubsample this
AB process—the sampling strategy and the fraction of the AB@ss sampled are likely to impact the
accuracy of estimating the mean AB in a given time intervair iRstance, larger is the sampling rate,

better is likely to be the AB estimation accuracy; howevezager would be the network overhead.

Existing tools differ in the fraction of the AB process—heiffarth, referred to as theampling intensity
(SI)—that they sample during the tool run-time. In our asalywe vary this fraction frond.1 to 0.9

(10 — 90% of the AB process gets sampled). We vary S| by simultaneaumiyrolling the MT and the
sampling rate (number of AB samples collected per secontis §ven by the product of MT and the

sampling rate divided by the RT .

Given a sampling rate, existing tools also differ in the@timpling strategy-the manner in which AB
samples are selected from within a given time interval. We the framework described in [CPB93] to
study three kinds of sampling strategies (see Fig 4.1)Siiple samplingin which AB samples are
selected randomly from within the given time interval; @ratified samplingin which the time interval

is divide into equi-sized units, and one sample is seledadamly from each unit; and (iipystematic

49



samplingin which the time interval is divided into equi-sized uratgd the first AB reading from each unit
is used as a sample. Spruce uses simple sampling; whilelgtheathload, and Abing use systematic

sampling.

We organize the issues raised above in the form of three magstipns: (i) How does the choice of sampling
strategy, sampling intensity, MT and RT impact @hecuracyof the estimated AB? (ii) How does the choice
of MT and RT affect thevariability of the measured AB? (iii) Hovstableis AB in the post-measurement
periods? Answering these questions reveals the impacthbatbove mentioned temporal parameters have on
the performance characteristics of the ABETS .

Our work represents, to the best of our knowledge,fiftst investigation of AB measurement along these

dimensions.

4.2 Analysis Methodology

As mentioned before, existing ABETSs differ significantlytime algorithmic design of their probe streams and
inference logic, as well as in their implementation efficies. In order to answer the questions raised above
in a tool-independent manner, hence, we assume the exastérec perfect probing stream—referred to as an
Istream—and a corresponding perfect inference logic, that carr ihie sampled AB perfectly by analyzing the
performance of atstream This assumption lets us study the impact of (currentlyjgfeagnostic quantities—
namely, run-time, measurement timescale, and sampliegsity and strategies—while isolating the analysis
from the impact of design-dependent algorithmic and im@etation factors. Formally, we assume that when
run over a link: of transmission capacity;, the Istream-based AB estimate would be precisely equdieo t
guantity formalized in Equation 1.1.

Unfortunately, a perfect tool does not exist in practicegaibed for our study. Instead, the assumption about
the tool simply lets us adoptEassiverace-analysis based approach for answering the abovéausgsn which
it is possible for us to compute thground truth As illustrated in the discussion before, the availabibfya
link-level packet trace gives us the ability sample the hmikh 100% sampling intensity and lets us compute
perfectly the AB process on the corresponding link at défeitimescales. We rely on the Coralreef [KMB1]
package for doing this. A perfect trace of the AB process dsmlae sub-sampled according to a given sampling
intensity, sampling strategy, timescale, as well as raretin order to answer the questions raised above.

It is important to note that the use of link-level packet éagives us access to the AB process of only a
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single link and not theend-to-endAB process of a network path. Computing the latter passiwelyld require
access to the link-level packet tracesdifthe constituent links of a path—given the limited numberwibiicly-
available packet traces, that is currently infeasible.e\Nbbwever, that in practice, analyzing just the link-level
AB process may not be a significant limitation. This is beeam®st end-to-end paths are expected to have at
most a single bottleneck link [JD02b, JD04, SKK03b, NavOBOR], and the AB process on such a bottleneck

governs the end-to-end AB process [SNMB5].

4.3 Data Sets

In order to perform our analysis we use link-level packetésacollected from 8 different locations (15 different
bidirectional links). Table 4.1 lists these traces. As carobserved all links have Gigabit or higher capacities.
Our traces are diverse in the link-locations, traffic loaats] user-communities represented. The UNC and Leip
traces were collected, respectively, at the edges of thedisity of North Carolina and the University of Leipzig.

The Abilene, MFN, Cesca, Paix, and San Diego traces werénaotérom CAIDA and NLANR.

Average Load (Mbps)
Trace Link Capacity | Forward Direction| Reverse Direction
UNC 1 Gbps 328.8 88.2
Leip 1 Gbhps 13.1 35.8
Cesca 1 Gbps 228.2 245.9
SanDiego 1 Gbhps 68.0 39.3
Abilene IC 2.5 Gbps 421.6 518.4
Abilene IK 2.5 Gbps 320.7 585.8
MFN 2.5 Gbps 349.1 608.1
Paix 2.5 Gbps 107.2 n/a

Table 4.1: Data sets used

Our results therefore should be applicable to high-speédarks on which ABETs are expected to be
increasingly deployed. One caveat to extrapolating theselts is that all the traces that we have are for links
that are heavily multiplexed (large number of connectipsgine of these conclusions could potentially change
if the bottleneck link on the path were the first or last linkgass links) or links with only a few connections on

them.
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4.4 Putting things into perspective

The analysis of temporal properties of Internet traffic hasrban area of intense research. One of the seminal
works in this area was by Leland et. al. [LTWW293], which unemd the self similar nature of Internet traffic.
This work suggested that Internet traffic observed at dffietimescales can be characterized by similar distribu-
tions. This was a fairly significant result since it challedghe popularly held notion that the aggregated traffic
on Internet links could be modeled as a Poisson processagustas done for telephone networks. This work
illustrated that Internet traffic patterns are significgmtiore complicated and can lead to large queue build-up
in routers, even when the average traffic load is moderates Hds some serious implications for router manu-
facturers, since this implies that router buffers now neeldd much larger than what was earlier thought using
conventional Poisson modeling.

A counter view point presented by Cleveland et. al. [CCLS@43erts that with increasing multiplexing
and load the long range dependence property that was oldsierteternet traffic tends toward an independent
process. The arguments on either side are fairly exhaustivdeyond the scope of this discussion. A good
discussion and further resources in the area of traffic nioglebn be found in [KMFO04].

Another area of work has focused on understanding the cémidesig-range dependence in Internet traffic—
heavy-tailed distributions of object sizes has been ifiedtas a leading cause [PKC96]. Some also argue that the
TCP protocol mechanisms also contribute to this behavi@B0]. However, as observed in [JD05b], the time-
scales of this long range dependence is limited to largpeisRTT timescales. Hao et. al. [JD05b] investigate
the role of TCP in causing burstiness at sub-RTT time-scaldwy illustrate that most of the variability at
these time-scales can be explained by TCP self-clockinigardominant flows whose delay-bandwidth product
significantly exceeds its window size—the resultant boests extends up to the typical RTT of the dominant
TCP flows. Given that we are interested in understanding Bg@rcess at timescales that are typically in the
sub-RTT time-scale, the above result could be useful irinutur observations into context.

We relate our observations to those made in the literatuoaighout this chapter. This is especially important
because our analysis of temporal aspects of bandwidth &sbimis limited to only a finite number of Internet
traces. Thus, even though our observations are consisteogsaall traces that we analyze, we present them in

the light of other evidence that exists in the area of traffadleding.
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Figure 4.2: Sampling strategies.

4.5 How does the way the AB is sampled affect the accuracy?

AB estimation tools necessarisulsample the AB process during their run-time. In what fobkpwe evaluate
the impact of sampling strategies, intensity, timescahel d@uration on the accuracy of the sampled AB. It is
worth noting that a recent experimental study has shownthi@aaccuracy of existing ABETS is no better than
10% on high-speed paths [SMHD5]. In this section, consequently, we consider any inaagusmaller than this

value as insignificant.

4.5.1 Does the choice of sampling strategy impact accuracythe sampled AB?

We consider the three kinds of sampling strategies—sinspiatified, and systematic—as described in Chapter 1
(refer Figure 4.2). For a given choice of MT, SI, and RT, welgra each packet-trace as follows: (i) we
translate the trace into a corresponding AB process obdevine timescale MT; (ii) we divide the AB process
into segments of time-length RT each (see Fig 4.2); (iii)dach segment, we compute the averagB,.,q,

of the AB process observed within that segment; (iv) withacke segment, we sub-sample the AB process
according to the three sampling strategies, and computavieges of the samples a4B;;,,, ABstrq, and
AB,ys, respectively, for simple, stratified, and systematic samg(see Fig 4.2); (v) we compute tlsampling
inaccuraciedor each segment a$d B,y — ABgim|, |ABavg — ABstra|, and|ABg,g — ABgys|, respectively;

(vi) we compute the cumulative distribution (CDF) of thebeek inaccuracy metrics, over all segments in the
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trace.

Strategy UNC-0 Abilene-IC1 Abilene-IK1
5% [ 50% | 95% | 5% | 50% | 95% | 5% | 50% | 95 %
Simple | 0.04| 0.38 | 1.10 | 0.12| 1.3 | 3.91 | 0.13| 145 | 4.64
Systematic| 0.08 | 0.9 | 3.14 | 0.62| 6.21 | 19.0 | 0.64 | 6.84 | 29.38
Stratified | 0.79| 3.12 | 557 | 0.59| 6.74 | 19.23| 0.72| 7.49 | 29.78

Figure 4.3: Sampling Strategy vs. Accuracy (Mbps)

Fig 4.3 lists the 5%, 50%, and 95% of the inaccuracies for lineet sampling strategies, observed within
the UNC-0, Abilene-IC1, and Abilene-IK1 traces, with MT = ffs, SI = 0.7, and RT = 10s. We observe
that the median inaccuracy in measuring AB is smaller withpde sampling (within 1.5 Mbps and 0.4 Mbps
for the Abilene and UNC traces, respectively) than with eysttic or stratified sampling (7 Mbps and 3 Mbps
for the Abilene and UNC traces, respectively). A similamiglds visible for thed5% values of the computed
inaccuracies. However, fall traces analyzed, we find that even the 95% values of the inadies lie within
10% of the link AB—this is close to the resolution accuracy ofsixig ABETs as shown in Figure 4.4. Thus, it
may be fair to conclude thalthough simple strategy is likely to yield better samphwguracy, the inaccuracies
of systematic and stratified sampling are not significantdiamrent tools Since most existing ABETS rely on
systematic sampling, we use it in all of our subsequent aisaly

Note: Claffy et. al. [CPB93] conducted a study on the impact of iragysampling strategies on sampling
network traffic in order to get a representative sample dfficdlowing on a link. This study found that there was
a significantimprovement in performance when the samplagevent-based rather than time-based. However
for the process of AB estimation since we have no direct adoesvents like increase in the load on the network
(except in the extreme cases of congestion), we are boudtpls the AB using a timer-driven approach. Here
Claffy et. al. found that the relative difference betweeaogthg different sampling strategies was not significant,

as is illustrated in our results as well.

4.5.2 How does probe-stream duration impact the accuracy @stimated AB?

The duration of individual probe streams transmitted wittiie run-time of a tool determine its MT—indeed,
each probe stream samples the AB process for this amoumef th order to assess the impact of this MT on a
tool’'s accuracy, we analyze each trace as follows. Usintgayatic sampling, for a given RT, SI, and MT , (i) we

compute the AB process at MT, and divide it into segmentswétiength RT each, as described in Section 4.5.1;
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40

(i) for each segment, we then computés,,,, andAB,,; (iii) we compute the CDF of the sampling inaccuracy

|ABy,g — ABsys| observed over all seg

ments within the trace.

We use an RT of 10s and compute the above CDFs for MT of 10 ms@hdhg, and Sl 0.1, 0.5, and0.9.

Figs 4.5(a) and 4.5(b), plot these CDFs for the Abilene-1@d ENC-0 traces, respectively. We observe that for

a given MT, and as expected, increasing the Sl improves theracy of the sampled AB. We also observe that

for a given S, MTs that differ by even an order of magnitudeeha negligible impact on the sampling accuracy.

Thus, while Sl impacts the measurement accuracy significaiT does not.

The above observations have the following implicationsABET design: (i)The same sampling accuracy
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may be attained by a tool by either using a few long probeasti or several short probe-streams (as long as
both result in the same SIJhe latter may be useful for applications that benefit froun timely-availability of

an initial AB estimate, even if its only roughly accurate.€Tlirst few probe streams are likely to yield such a
rough estimate quickly, while the later probes make thereste robust. This flexibility may not be available

if longer, fewer probe streams are used. ARy application-specific MT may be used for sampling, withou

impacting the measurement accuracy significantly, as langrainversely proportional number of samples are

collected at that timescalghus, maintaining the same SI).

4.5.3 What is the marginal cost of increasing sampling intesity?

2 3 UNC O ——

UNC 1 === pVa—
Abilene ICO il -
Abilene IC1 v
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Abilene K1 ==@m-

95% Error (Mbps)

0 1 L 1 L 1 L 1
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Figure 4.6: Sampling Accuracy vs. Sl

The observations made above indicate that the samplingdityehas a significant impact on the accuracy
of the sampled AB; we next examine this impact quantitagivEbr this, for each trace, we compute the CDF
of the sampling inaccuracyAB,,;, — ABsy,| for a given choice of MT, SI, and RT, exactly as described in
Section 4.5.2. Fig 4.6 plots the 95% of sampling inaccurdiseoved with different values of SI, with an MT
of 10 ms and an RT of 10 s, for several traces. As expected, etliiat increasing the S| decreases the
sampling inaccuracy—however, the marginal improvemesgimpling accuracy decreases with increasing Sl.
In particular,an ABET is unlikely to improve its sampling accuracy sigaiiity beyond a sampling intensity of

30%—maintaining a low Sl can help the ABET reduce the networkrogad of AB estimation.
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4.5.4 How does RT impact accuracy?

Finally, we evaluate the impact of the tool run-time on itmpéing accuracy. For each trace, we compute CDFs
of the sampling inaccuradyl B,,; — ABs, | as described before. For MT =10 ms and Sl = 0.5, Fig 4.8 plets th
95% value from the CDFs, as a function of RT. We find that as Rieiases, the sampling inaccuracy decreases.
This is to be expected, as a larger RT yields a larger numb&Bafamples for a given SI—we find, however, that
the marginal improvement in sampling accuracy reduces invitteasing RT. In particulagn ABET is unlikely

to improve its sampling accuracy significantly beyond an RF @

RT | SI 5% 50%|95% 5% 50%|95% 5% |50%|95%
(s) UNC-0 Abilene-IC1 Cesca-0

1 /05| 0154 | 1.660| 4.7 | 0.321| 3.4 | 10.29| 0.159| 1.725| 5.06
2 |04 0.1457| 1.579| 4.62 | 0.291| 3.16 | 9.50 | 0.144| 1.57 | 4.613
10 | 0.2 0.155 | 1.66 | 491 | 0.25 | 2.714| 9.215| 0.133| 1.467| 4.18
20 | 0.1| 0.186 | 1.895| 8.2 | 0.291| 3.12 | 9.97 | 0.148| 1.64 | 4.7

Figure 4.7: RT vs. Inaccuracy (Mbps)

Observe that increasing RT or Sl has a positive impact onahgping accuracy. However, increasing either
of these also results in a proportional increase in the ftabe traffic introduced into the network. We next ask:
does any one of these two parameters represent a betterdiffdgetween the sampling accuracy and network
overhead®ig 4.7 lists thes%, 50%, and95% values of the inaccuracy CDFs, computed with an MT of 10 ms,
for several combinations of (RT, Sl): (20s, 0.1), (10s, (23, 0.4), and (1s, 0.5). We find that for a given trace,
the sampling inaccuracies are similar for the combinatmingls, 0.5) and (20s, 0.1), as well as for: (2s, 0.4)
and (10s, 0.2). This observation has two implications. tFitsmplies that an ABET can achieve similar AB
estimation accuracy by sampling more intensely within atgnoun-time. In particular, this contradicts a claim
made in [JD04] that a tool with a longer run-time is likely tl more accurate AB estimates—our analysis
indicates that this is only true if the sampling intensith&ld constant. In realityt is thus possible to design
a faster tool without sacrificing estimation accuracy, bmply increasing the sampling intensity of the tool
Second, note that in order to maintain the same accuracyethtive increase in Sl is larger than the relative
reduction in run-time. Thus single invocation of a faster tool that achieves similac@@cy, is likely to insert
more probe-traffic into the network

In the next two sections, we evaluate the impact of MT and RThenvariability and stability of the AB

process. For the analysis in the rest of this chapter, wenassusampling intensity of 1 (the AB process is

57



Abilene ICO —+—

18+ H Abilene IC1 - 1
Abilene IKO -
L X !
16 Abilene IK1 =]
14 | UNCO -—-m-- |
UNC1 -0~

pvei

95% Sampling Inaccuracy (Mbps)

0O 2 4 6 8 10 12 14 16 18 20
RT (sec)

Figure 4.8: Run-Time vs. Accuracy

observed completely by an ABET).

4.6 How does the MT and RT affect variability?

Recall from Fig 4.9 that the AB process can exhibit low-tgihwariability, depending on the timescale at which
it is observed. Furthermore, the longer is the tool run-tithe greater is the opportunity to witness variability
in the corresponding AB process. To quantify these effeetsnext evaluate the impact of MT and RT on AB
variability. Our objective is to find the set of timescaleglaurations that characterize an AB process with low
variability.

The importance of reporting the variability in AB, in additi to its average, has been recognized recently [JD05a].
In fact, a variant of a popular AB estimation tool called Raalal reports variability in the form of the maximum
and minimum AB observed during the tool’s run [JD05a]. Irsteection, we first address the issuendfat
metric is appropriate for characterizing AB variability asfunction of MT and RT™ particular, we inves-
tigate whether for a given value of MT and RT, tendard-deviatior-which is likely to be more robust to

outliers—is a more predictable metric than ta@gemetric described above.

What is a predictable measure of variability? We analyze each trace as follows: (i) we compute the AB
process at MT, and divide it into segments of time-length B&he as described in Section 4.5.1; (ii) for each
segment, we compute the rang®3,.. 4., as the difference between the maximum and minimum AB oleserv

in that segment; we also compute the standard deviatiéh,;, of the AB values observed in that segment; (iii)
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Figure 4.9: AB process observed at link during same 30 s wiratadifferent MT .
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RT MT ABrange (MbpS) ABstd (MbpS)
(s) | (ms)| 5% | 50% | 95% | 5% | 50% | 95 %
10 | 215.01| 288.7| 390.1| 446 | 56.9 | 73.8
1 50 544 | 81.3 | 126.6| 14.4| 20.7 | 31.3
100 | 316 | 56.7 | 96.8 | 9.5 | 16.9 | 28.8
10 293.5 | 367.2| 479.4| 47.7| 58.7 | 73.1
5 50 88.5 | 117.6| 176.8| 17.1| 22 32.6
100 | 69.7 | 103.5| 154.3| 13.7| 21.2 | 33.3
10 | 355.5 | 436.7| 571.4| 51.1| 604 | 73
20 | 50 1175 | 153.4| 238.8| 19.1| 23.6 | 37.4
100 107 | 1445 212.9| 17.8| 25.2 | 36.7
Table 4.2: Abilene: AB variability metrics
RT MT ABrange (MbpS) ABstd (MbpS)
(s)| (ms)| 5% [ 50% | 95% | 5% | 50% | 95%
10 | 118.6| 150.9| 193.3| 22.3| 26.5| 31.1
1 50 | 345 | 50.7 | 71.3 | 9.1 | 12.7 | 17.1
100 | 176 | 29.2 | 456 | 54 | 88 | 13.1
10 | 160.3| 188.1| 231.7| 23.9| 26.9 | 30.0
5 50 | 576 | 71.3 | 93.2 | 11.1| 134 | 16.4
100 | 346 | 457 | 645 | 75| 9.7 | 12.8
10 | 190.5| 218.8| 267.3| 24.8| 27.1 | 29.5
20| 50 | 74.2 | 87.6 | 113.9| 12.3| 13.8 | 16.3
100 | 48.4 59 848 | 87 | 10.2| 13
Table 4.3: UNC: AB variability metrics
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Figure 4.10: Impact of RT on range and standard deviation®f A

we compute the CDFs of théB,.,,,4. andAB,:q, as observed over all segments within the trace.

Tables 4.2 and 4.3 list the 5%, 50%, and 95% values oftBg,,,,. andAB,;; CDFs, for the Abilene-IC1
and UNC-0 traces, respectively. We observe that for anygi& and RT, the difference between the 95% and
5% values ofA B, 4,4 is much larger than that ol B,.4. This implies that for a given combination of MT and
RT, the latter is a more predictable metric of variabilitycasnpared to the former.

Furthermore, we find that the predictability 413, improves with increase in RT, whereas the predictability
of AB,.qng4e does not. This is illustrated in Figs 4.10 (a) and 4.10 (kg pot the difference between the 95%
and 5% values of these two metrics respectively, as a fumcidRT and when MT = 10ms. We observe that
the difference decreases with RT for tAd3,,; metric, but exhibits no such trend for tb&B,.,.,,4. metric. This
implies that thestandard-deviation is a better choice to use for charaziag AB variability Furthermoretools

with longer run-times are likely to report more robust vability estimates.

How does RT impact AB variability? From Tables 4.2 and 4.3, we also observe that for a given Miheas
RT increases, the median value (as well as other percéntile$B,,, also increases. The relative increase in
the variability, however, is small. This suggests ttoatls with longer run-times are likely to report only slight

higher values of AB variability

How does MT impact AB variability? For any given RT, Tables 4.2 and 4.3 indicate that as MT irs@ga

ABgq reduces. The reduction in variability is most significansialler timescales. For instance, at an MT of
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Figure 4.11: Impact of MT and RT on variability

10ms, ABgq can be as high aBl0M bps (maximum observed value) for the Abilene-IC1 trace. At an MT
50ms or higher,ABg.4 lies within 40 M bps for all traces (including Abilene-IC1). This latter valuercesponds
to less thar2% of the link capacity, which is within the resolution accwaif all existing ABETs [SMH 05].
This implies thatn order to sample an AB process that does not exhibit sigmifigariability, ABETs should
sample it at timescales &fms or higher. In particular,the results of ABETSs that rely on usipgcket-pairs
instead of longepacket-traingare likely to be significantly impacted by AB variabilitifigure 4.11 illustrates
the impact that MT and RT have on the variability of the AB @ss.

Note: Itis observed in [JD05Db] that the range of timescales at whHitternet traffic exhibits high variability
depends on traffic specific characteristics such as the Rfi@oflominant flows. We expect that in the traces
we analyze (all collected from links well within the North éaoa continent), such flows have a typical RTTof
around 50 ms. We also expect that if we repeat our analysisames$ collected off of trans-continental links,
the timescales beyond which variability in the sampled ABvis would be larger. A detailed analysis of these

traffic characteristics is beyond the scope of this diss&nta

4.7 How does the RT impact the stability of estimates?

Applications that rely on using the knowledge of the AB cansdoonly after the measurement is made. The
implicit assumption here is that the AB does not change frioentime it was being measured to the time after

the measurement was made. In order to study the validityisfagsumption we study the study the stability of
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the AB in post-run periods. For a given RT and N (the numbematsssive tool runs examined) we analyze

each trace as follows: (i) we compute the AB process with Mliabtp RT, and divide it into segments of time-

length RT each, as described previously; we denote the Afingaf thei*" segment by43fwg; (ii) for the "
segment, we compute tip@st-run deviationnetric as:PRDy = max;cq1 n+1){|AB,, — ABLH|}; (iii) we

compute the CDF of th& RDy observed over all segments within the trace.

Figure 4.12 plots the 95% of the UNC-0 trace against diffevatues of N. Each line represents, a different
value of RT and the two horizontal lines represent 5 and 10 thefink AB .

As expected, we observe that as the value on N incre#58$)y increases. However an interesting data
point at N=1, shows that in back-to-back tool runs the AB does not cadngmore than a factor of 4%. |If
we know the error range of a to), we can use that knowledge in conjunction with the fact theck-to-back
AB measurements do not change significantly to reduce théeuof measurements we makeor instance if
we knew that the accuracy of an ABET was at most 5%, then ondhkis of Figure 4.12, we could make one
estimate in an RT and that estimate would be valid for at I8&ST after the measurement.

Fig 4.4 lists the 5%, 50%, and 95% of the obsen®®D, for RT ={1s, 5s, 20sand N ={1, 5, 3@, for
the Abilene-IC1 and UNC-O traces.

Here again we find that in any pair of neighboring tool-ruhe,AB does not change by more thied\/ bps or
40M bps for the UNC-0 and Abilene-IC1 traces, respectively. In faet find that forall of the traces analyzed,

the AB measured in a pair of back-to-back tool runs does rfardly more than 4%, most of the time.
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RT | N Abilene (Mbps) UNC (Mbps)
(s) 5% | 50% ]| 95% | 5% | 50% | 95 %
1 13| 131 | 41.2 | 0.3 3.7 11.9
1 |5)|154| 366 | 754 | 3.9 | 9.2 | 193
30| 37.4| 63.3 | 128.6| 9.8 | 16.1 | 33.7
1] 08] 11 | 395 | 0.3 3 10.2
5|5 ]108| 306 | 951 | 35 8 18.9
30| 37.4| 81 162.1| 89 | 145 | 47.3
1| 10| 116 | 59.1 | 0.2 | 2.6 | 11.9
20| 5 | 16.1| 43.4| 120.8| 23 | 7.7 | 22.6
30| 56.2| 111 | 204.4| 11.1| 19.2 55

Table 4.4: Stability in AB

The above observation is relevant for the design of ABETsfplications that need to continuously monitor
the AB on a path by running an ABET repeatedly. In particutansider the case when such applications use
Pathload-like ABETS, that spent a considerable portionhefrtrun-time in arriving at acoarseestimate of
AB , and then work on fine-tuning that estimate. Such ABETdaeuploit the fact thaAB does not change
significantly between neighboring tool ryremnd use the result of tHast tool-run as thecoarseestimate of the
current AB —this should result in the next tool-run compigtimuch faster, while also introducing much less

probe traffic into the network path.

4.8 Conclusion

From the above study we have gain insights into the impadttémaporal parameters have on the AB process

and their impact on ABET designs. We summarize our findindsvize

e Accuracy Related: (i) A higher sampling intensity results in better samplingc@aracy, although the
gains are insignificant beyond a Sl of 30%. (ii) The choice df Bbes not impact sampling accuracy
significantly, as long as Sl is maintained. In particulag #ame sampling accuracy may be attained by a

tool by either using a few long probe-streams, or severatgitobe-streams (both with the same Sl).

e Variability Related: (i) The AB process exhibits significant variability at MTs alter than 50 ms. This
corresponds to sending several packets within each proganst(unlike ABETSs that use packet-pairs).

(i) As RT increase the variability also increases.
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o Stability Related (i) The average AB does not change significantly across heighg back-to-back tool
runs. This observations can be exploited for applicatiblas heed to continuously monitor the AB on a

path by running an ABET repeatedly.
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CHAPTER 5
Impact of Probe-Stream design and Inference Logic

We next study the impact of replacing a perfect probe-straagrinference logic, with realistic probe-stream and
inference logic combinations. We select several promiAB#Ts from Table 2.1 —namely, Pathload [JD02b],
PathChirp [Rib03], Spruce [SKK034a], IGI [HS03], Fast-1GI$03], and Cprobe [CC96c]—that represent exist-
ing diversity in the algorithmic techniques used for infiegrend-to-end AB. We implement each of these tools
in the NS-2 [NS2] network simulation environment. We relypublished literature as well as publicly-available

implementations (whenever available) to extract detdilsach tool.

5.1 Setting the MT and Sl in AB estimation methodologies

Besides studying the impact of the probe-stream designrdatence logic on the performance parameters, we
are also interested studying the impact of the MT and Sl. Wafately even though most ABET techniques

have many algorithm specific parameters that could be set ofthe tools allow these two parameters to be set.
In order to be able to set the MT and the RT we redesign our taetfaces to accommodate this change. We

will briefly describe the changes below.

5.1.1 Incorporating MT

As mentioned in Section 1 the MT is the length of the probeasir that is injected into the network. We control

the length of the probe stream in different ways in each o AB&ET methodologies.

e Cprobe/lGl/Fast-IGI All three of these tools send severabp streams, each at a uniform rate, in order
to estimate the AB—while Cprobe sends all streams at a higrate, IGl/Fast-IGl iteratively change the
bit-rate of each stream in order to converge on the AB. Thebrmof packets sent within each probe
stream is typically fixed. In order to incorporate MT, we mdke number of packets\)) a configurable
value that is set such that when the stream is sent at theeddstrrate ) and default packet sizé?) (of

1500 Bytes), the stream duration is equal to MT= [R x MT/P].



e Pathload Like IGI, Pathload also iteratively sends severabe streams at different bit-rates. However,
the Pathload AB inference logic requires that the numbergkpts sent in each probe stream be a perfect
square. In order to incorporate MT, we first compute a roughmese of N using the relation:N =
[R x MT/P]. If this is not a perfect square, we decre@sby the least amount required to ensure that it

ist

e Spruce Spruce relies on a packet-pair based AB inferentmitpee, which sends two packets back-to-
back in each probe stream. Unfortunately, this fixes the M& smnall value. However, due to the small
probes and open-loop nature of Spruce, its run-time isyfaimall; often smaller than the values of MT
that may be of interest to us. We exploit this property to sigie Spruce’s interface—given a desired MT,
we aggregate and compute the average of all AB estimatiowke mwéthin a duration of MT, in order to

estimate the AB at that MT.

e PathChirp In PathChirp, each probe-stream—also refeorad schirp—is an exponentially-spaced stream
of N packets. The inter-packet spacing akidcare determined using three parameters: the lower fate,
the upper ratel/, and the spread-facto$, Specifically, the spacing between packandi: + 1 is given

by: P/(L x Si~'), andN is computed using the relatiob? = L x S™. In order to incorporate MT, we

first compute the length of a chirp as the following sum of argetsic seriesP/L x (1 — &=)/(1 — £).

Given L andU, we then select the pais( N) such that the above chirp length is close to the desired MT.

5.1.2 Incorporating the SI

The Sl is the fraction of time that is occupied by a tool in pngjfor the AB during its total RT . If= is the gap

between successive probe-streams, Sl is give L This relation can be used to control Sl in open-loo
b} if EXE

1-S1
SI

tools such as Cprobe, Spruce,and PathChirp—specificalsn@n Sl, the gap is sett6: = MT' x
In closed-loopools such as Pathload/IGl/Fast-1GI, however, the consbm of a probe-stream is determined

by the delays experienced by the previous probe-streansettumls, therefore, can not send more than one

probe-stream per RTT. Thus, the Sl can not be set to a valleehtganM T /MT + RTT, which is a fairly

low value for typical Internet paths. Thus, for all practigairposes, Sl can not be controlled in closed-loop

tools. It is interesting to note, however, that the path R Tikiely to impact the feedback-loop and, hence, the

performance (especially the run-time) of such tools.

1This convoluted way of controlling the MT in Pathload (andPathChirp, as described later) highlights the limitatidexisting ABET
designs.
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5.2 Performance Metrics

We characterize the performance of each ABET using two tgpesetrics:

e Accuracy-related: Each run of an ABET should yield a good estimate of the endrn-AB. In order to
guantify the accuracy of an ABET estimate, we comput@Bsestimation erroas the difference between
the estimated AB and the actual AB. The actual AB of a link isipated as the ratio of the number of bits

that traverse the link during the tool run, to the tool rumi

e Cost-related: We quantify the cost of using an ABET with several metricseTim-timeis defined as
the time taken by a tool to return an estimate. The faster latog, the better and valid its AB estimates
are. Since we are relying on a simulation environment, thig is primarily governed by the number and
sizes of probe-streams and the convergence logic usednwedstAB. For closed-loop tools, the run-time
is also affected by the path RTT. Tlpeobing overheads defined as the total amount of network probe
traffic sent by the tool in order to arrive at a single estin@fté\B. For large-scale deployment and use
of ABETS, it is important that they use low amount of probdfica The intrusivenesss defined as the
average bit-rate of a tool—this is given by the ratio of themwead to the run-time. Since the run-times
of ABETSs can differ by orders of magnitude, it is importanttampare the rate at which they inject probe

traffic.

In addition, we study the impact of probe traffic on the reggotime of ongoing TCP connections.

We conduct several types of experiments in order to studphtioee metrics—we describe these next.

5.3 Validation

The accuracy of most ABETSs is typically established by tipedponents by running them on links shared by
cross-traffic with aconstant bit-ratg CBR). We validate our NS-2 implementations of the sele&B&Ts by
using the network topology depicted in Figure 5.We run CBR cross-traffic between nodes N2 and N3, and
instances of ABETs between nodes NO and N1. We vary the traffi: load from 100 Mbps to 900 Mbps and

for each load, we record the AB estimates from several badbatk runs of each tool. It is important to note

2Unless stated otherwise, all link capacities and link delayall of our topologies are set 1&3bps and10ms, respectively, and sufficient
buffers are provisioned to avoid packet losses.
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Figure 5.1: Topology with a Single Bottleneck Link

that all of our evaluations are conducted in high-speedtgigetworks—most ABET designs have not been

evaluated in such a setting previously.
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Figure 5.2: Validation of ABET Implementations

Figure 5.2 plots the average of the estimated AB againstdtumbAB. We find that Pathload and Spruce are
quite accurate in reporting the AB. PathChirp estimatesadewslightly at higher values of AB—we run the same
set of experiments using a publicly-available NS-2 implatagon of PathChirp and find that the AB estimates
are quite similar to our implementation. CProbe, I1GI, andtH&I do a poor job of estimating the AB in the
high-speed setting simulated. Cprobe works on the simglie lof sending a stream of packets at a fairly high

rate (given by the bottleneck capacity)—the rate at whiehptobe-stream arrives at the receiver is taken as the
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estimate of the end-to-end AB. It has been shown in [JDO4]tti&receiving rate in such cases is not a good
estimate of AB. Due to its inaccuracy, we do not use Cprobetfimisubsequent evaluations.

We next investigated the reasons for the poor performant@lofNote that IGI always over-estimates the
AB. On careful examination of the I1GI design and implemdntgtwe discovered a key design factor that was
leading to over-estimation on high-speed network paths:

The equation used for estimating the cross-traffic load éfiqn 3 in [HS03]) uses the link capacity as the
multiplier—in our understanding, it should be using thereat sending rate as the multiplier.

We change our IGI implementation accordingly to create a wersion, henceforth referred to as R-IGI.
Figure 5.2 also plots the results of R-1GI validation—we fthdt R-1GI performs quite well. In our subsequent
experiments, we use R-IGI.

Our implementation of Fast-IGI (validated in Fig 5.2) alsoarporates the above-mentioned changes. How-
ever, it still leads to high estimation errors when the taalifiad is higher than 500 Mbps. Since most of our

subsequent evaluations are not conducted at such high lwadsclude Fast-1Gl in our subsequent evaluations.

5.4 Evaluating the Accuracy of ABETs in Dynamic Traffic Conditions

The validation experiments presented in Section 5.3 alsiroo the high accuracy of several prominent ABETs
when the network traffic load does not change. In realitys thiseldom the case with loaded Internet links. In
order to reproduce in our simulations, the dynamic traffindions that characterize real Internet links, we rely
onreplayingpacket-level traces collected from several Internet lirfsecifically, we collect five 1-hour packet

traces (from four different Internet links) which are suminad in Table 5.1—the traffic load of these traces
ranges froml60M bps to 530M bps. We then use theeplay tracemodule in NS-2 for creating an exact replica
of the link-level packet-arrival process (and consequetitie AB process) for each trace. In this section, we

evaluate ABET accuracy against this type of cross-traffic

Trace Traffic Type Average Load
Ibiblio Web server access link 160 Mbps
UNCO05 University access link| 230 Mbps
UNC28 University access link| 358 Mbps
IPLS-CLEV | Internet2 backbone link 410 Mbps
IPLS-KSCY | Internet2 backbone link 530 Mbps

Table 5.1: Traces used for evaluations
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5.4.1 Single Bottleneck Scenario

We first evaluate the tools using the topology of Fig 5.1, bitlh the traces replayed (instead of CBR traffic) as
cross-traffic between nodes N2 and N3. This topology reptegeths on which an ABET is likely to encounter
only a single congested link. We use this setup to study tlpaatof traffic load, MT, SI, and RTT on the AB

estimation accuracy of different tools.
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Figure 5.3: Tool errors with default parameters

Default Tool Configuration

We first run each ABET against all five traces, using the défaarifiguration of tool parameters, which dictate
the implicit choices of MT and Sl—the default MT for Pathle&hthChirp, R-1GI, Fast-1Gl, and Spruce are
roughly: 10 ms, 10 ms, 1 ms, 1 ms, 0.5 ms, respectively, andefault S| for both Spruce and PathChirpis 0.1.
Each tool is run back-to-back for 300 seconds and the AB asitom error of each run is computed. Fig 5.3 plots
the average, and the 5- and 95-percentiles (as error bdrliscestimation error for each tool and trace used.

We observe that:

e The average estimation errors of ABETs are higher with dyicamoss-traffic than with CBR cross-traffic
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Figure 5.4: Impact of MT, SI, and RTT

(Section 5.3), and range from 20 - 120 Mbps. Pathload, PathCénd Fast-IGI have similar average

estimation errors, while R-IGI has lower and Spruce hasérigirors.

e The estimation errors vary widely around the average. Thiabdity is least for Pathload and quite high

for Spruce and PathChirp—estimation errors sometimeseek860 Mbps.

e For each tool, the AB estimation errors are similar acrossfive traces, even though the traffic load
in these traces are quite different. However, it is impdrtarremember that the highest link utilization

represented by these traces is only 53%—it is not clear lidrid¢pads would impact estimation errors.

Impact of MT, SI, and RTT

The default choices of MT and Sl vary widely across existiBEA's [SK06]. In order to compare tool perfor-
mance in an unbiased manner, we next systematically cdlifpSl, and RTT, and study the impact on the AB
estimation error of each ABET. Specifically, we select MTnfré1, 10, 50, 100 ms), Sl from (0.1, 0.3, 0.5) for
open-loop tools, and RTT from 60-300 ms for closed-loopdedthese values are representative of the diversity
found in existing ABETs and Internet paths [SK06, AKSJO03].

Fig 5.4 plots the average and 5- and 95- percentiles of thegiBation error with the IPLS-CLEV trace—

the trends are quite similar for the other traces. We obsibate

e Increasing the MT improves the accuracy of all ABETs. Thiwibe expected—Ilarger MTs imply that a

larger number of probe packets interact with the crosditrahd are able to better sample the AB process.
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However, the gain in accuracy is most significant at fine tsoales. The gains are negligible beyond an
MT of 50 ms.
The impact of MT on PathChirp is lower than on the other todtss is due to the exponential inter-packet

spacing in the probe streams—the number of probes sent dbéscnease proportionally with MT.

e More importantly, by keeping the MT the same across diffeteols, the relative performance difference
between the tools changes! Most significantly, Spruce notiésmost accurate, while it was the least

accurate with the default settings of MT.

¢ Sl has a negligible impact on the AB estimation accuracy efdpen-loop tools, Spruce and PathChirp.
This result may seem contrary to the observations made i9¢Fkhat high values of Sl lead to better
sampling accuracy—it is important to note, however, thatAlB estimation accuracy is also limited by
the accuracy of the inference logic used by the respectis.t®ur observations indicate that increasing

the rate of probing the AB process is not likely to help imptlre accuracy of current tools.

e Similar to SI, RTT has no impact on the AB estimation accuraicthe closed-loop tools, Pathload and

R-1GI.

5.4.2 Multiple Bottlenecks

Bottleneck Location—Different Tight and Narrow Links

e}
()

= = Tool Traffic
=w=u TCP-Replay Cross Traffic

Figure 5.5: Different tight and narrow links

The inference logic of several ABETs—including IGl and Spd-is based on the premise that on the path

for which AB is to be estimated, the tight as well as narrovk lame the same. In practice, this may not be the

73



300

Fast-IG| —+—
R-IGI wrrxore
250  : Pathload -
Pathchirp &
Spruce ---Ek--
—~ 200 | P g
23
Qo -
S 150} 2 ;
g Wi 1
W00 [ Dok Y
| IR A PoX
[ L i
50 i } . %
X :
0 L i i L i 1
IPLS-CLEV IPLS-KSCY Two Tight Links

Traces

IPLS-CLEV and IPLS-KSCY Error ranges

Figure 5.6: Performance with multiple bottleneck links (¥50ms, S1=0.1)

case with many Internet paths—indeed, an ISP access lihlstblaared among a large user population may have
a lower AB than the last-mile narrow link for many broadbarseérs. In order to study ABET performance on
such paths, we simulate the topology of Fig 5.5. The 666 Miojdletween the routers R2 and R3 is the narrow
link (all other links have a 1 Gbps capacity). The ABETs rutwezn the nodes NO and N1. We replay traces
between nodes N2 and N3 in order to ensure that link R1-R2eigigit link for the tool traffic—for this, we
use two traces: IPLS-CLEV (410 Mbps) and IPLS-KSCY (530 Mbp8e compute the actual end-to-end AB
in any given time interval as thminimumof the AB on links R1-R2 and R2-R3. We use this to compute the AB
estimation error for each tool run. Fig 5.6 plots the averaige the 5- and 95-percentiles of the AB estimation
errors observed from several back-to-back tool runs, withdfi50 ms, and Sl of 0.1. We observe that the error
of PathChirp and Spruce increases by a factor of 2-3, cordpgarine scenario of Fig 5.1, while the performance
of other ABETSs is not impacted much. With this change, thatiet rankings of Spruce and PathChirp changes

and these now have the highest estimation errors.

Multiple Bottleneck—Two Potential Tight Links

Most ABET designers implicitly (and often, explicitly) asse the existence of only gingle congested (bot-

tleneck) link on the concerned path. It is conjectured thimtent ABETs might underestimate end-to-end AB
in the presence of multiple bottleneck links [JD02a]. Inertb study this scenario, we simulate the topology
of Fig 5.7. We replay the IPLS-CLEV trace between N2 and N3 tire IPLS-KSCY trace between nodes
N4 and N5. The ABETSs are run between nodes NO and N1. With #tigs the tools encounter one narrow

link (R2-R3), and two potential tight links (R1-R2 and R3)R4bn an average, the latter is the “tighter” link;
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Figure 5.7: Single narrow link; two tight links

however, the tool traffic experiences queuing at both links.

We compute the actual end-to-end AB as thi@imumof the AB on links R1-R2 and R3-R4. We run each
ABET several times with MT of 50 ms and Sl of 0.1. Fig 5.6 pldte aiverage and the 5- and 95-percentiles
of the AB estimation errors of different tools. On comparigo the other plots on the same figure, we observe
that the accuracy of Pathload, R-1GI, and Fast-IGl is natificantly impacted by the presence of multiple tight

links. However, the accuracy of PathChirp and Spruce furdlegrades and these are the most inaccurate.

5.5 Evaluating the Costs of ABETs

Overhead Fig 5.8 (a), (b) plot the average and the 5- and 95-percentifehe overhead for each tool at
different SI and with MT of 1 and 50 ms. We observe that:

e For any given MT, PathChirp, R-IGI, and Fast-IGI have thesteaverhead. The overhead of each run of

Pathload is larger by more than an order of magnitude and eas lhigh as a giga-byte.

¢ Tool overhead increases with MT. While the increase is lif@amost tools, it is not for PathChirp. This is
because PathChirp uses an exponentially-spaced paa@tstrincreasing the stream duration, therefore,
increases the number of packets only sub-linearly. Coresgty) while the overhead of Pathload increases
from 50 MB to 2.5 GB as the MT increases from 1 to 50 ms, the aadhof PathChirp increases from 0.5
MB to only 0.75 MB.

e Sl and RTT have no impact on the overhead of most tools. Thehead is dictated by the size and
number of probe streams sent—the same number of probearstiea® needed to arrive at an AB estimate,

irrespective of these quantities. For Spruce, howevemteehead increases with SI—this is an artifact of
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Figure 5.8: Costs of ABETs with the Ibiblio trace (numberparenthesis indicate the MT in ms)
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the fact that we are using a large number of tool runs in omlérdorporate Sl into its AB estimates.

Run-time Fig 5.8 (c), (d) plot the average and the 5- and 95-percartilthe run-time for each tool at different
Sl and with MT of 1 and 50 ms. We observe that:

e Spruce is the fastest tool; this is true in spite of the faat the aggregate several tool-runs in order to get

an estimate at the desired MT.

Pathload is the slowest tool, taking 10-100 seconds tonmetnrAB estimate. R-IGl takes 1-10 seconds
and PathChirp takes a few seconds (with its typically com8dWMT). Fast-IGl is roughly 5 times faster
than R-1GI.

¢ Increasing the MT results in a proportional increase in tiretime of all tools. For Spruce, however, this

is an artifact of the way we are incorporating MT into the ABimesites yielded by it.

e The run-time of closed-loop tools is proportional to thelpRT T, which characterizes the feedback delay

of these tools.

e As Slincreases, the run-time for PathChirp decreases.i3lhiscause open-loop tools such as PathChirp
rely on sending and observing a fixed number of probe streadansgier is the Sl, faster would these streams

be sent.
Sl has no impact on the run-time for Spruce—this is, howeaemrtifact of the way we incorporate MT

into the Spruce estimates.

e The run-times of most tools are predictable—they do not géggificantly around the average.

Intrusiveness Fig 5.8 (e), (f) plot the average and the 5- and 95-percentif¢he intrusiveness for each tool
at different SI and with MT of 1 and 50 ms. Recall that intresiess is given by the ratio of the overhead to

run-time of a tool. We observe that:
o All closed-loop tools are quite intrusive and can tempdyazongested high-speed links. The run-times
suggest that tools like Pathload can induce such congédsti@everal seconds.

Spruce is also quite intrusive—it sends back-to-back piudekets at the line rate. However, since its
run-time is small, it is unlikely to induce congestion fonfpdurations (unless it is run several times).

PathChirp is the most non-intrusive tool.
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e The closed-loop tools—Pathload, R-IGI, and Fast-IGl—ha#y similar intrusiveness. This may seem
surprising given that both the run-times and overheadsexfdhools vary by nearly two orders of magni-
tude. However, it is important to note that all of these taelg on a feedback loop and iteratively search
for the AB—consequently, these operate at time-units treaRA T long. Both R-IGI and Pathload use the
concept of self-loading streams and, consequently, tlegtRT T overhead (which is the intrusiveness) is

similar.

e As MT increases, the intrusiveness of closed-loop toolseimges proportionally. This is to be expected;
the per-RTT overhead of these tools is given by the size df paabe-stream, which is proportional to the

MT.

Increasing MT decreases the intrusiveness of PathChirpm#stioned before, while the run-time of
PathChirp increases linearly with MT , its overhead incesasnly sub-linearly due to the exponential

nature of the probe stream. The intrusiveness, consegudatreases.

MT has no impact on Spruce—however, this is also an artifbttieway we incorporate MT into its AB

estimates.

e Increasing Sl increases the intrusiveness of open-lodp.tddis is to be expected, as a larger number of

probe streams are sent per unit time as a result of incre&ing

e Intrusiveness of closed-loop tools increases as the RTfedses. This is to be expected as the per-RTT

overhead remains the same.

We conclude that in terms of the cost metrics, the tool thédikedy to run quickly, while not perturbing

ongoing traffic much seems to be PathChirp; the cost of PathR-1Gl, and Fast-IGl seems to be the highest.

5.5.1 Impact on Responsive Cross-Traffic

TCP is the dominant transport protocol used by most Inteapptications [ea07]. TCP uses congestion-control
mechanisms to reduce the data sending rate on detectingnketwngestion. A key issue in the wide-scale
deployment of ABETSs is that of how adversely do these toolsaiat the performance of applications that rely
on suchresponsivaransport protocols. In this section, we study this issue.

Unfortunately, the trace replay methodology used in Sest®.4 and 5.5 is not suitable for studying this

issue—it recreates only the link-level packet-arrivalggss and does not incorporate TCP behavior. In particular,
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it does not model the impact of queuing delays and losseseauhsequent packet transmission behavior of a
TCP connection. Recent efforts have focused on developaifictgeneration tools that also incorporate the
responsive behavior of TCP—Tmix [HCSJ04] is one such tadiakes as input a link-level packet trace (such
as those summarized in Table 5.1), and for each TCP connedtiat appears in the trace, it derives the RTT
and the application-level data generation behavior (iicly user think times). Recently, an NS-2 version of
Tmix has been developed [WAH®6], which takes this derived connection descriptor as tigma emulates
per-connection application bots with similar RTTs and eiggaeration behaviors.

We use this version of Tmix in the topology of Fig 5.1, in whitte nodes N2 and N3 now each emulate
a cloud of servers and clients that instantiate connecti@tseen these two nodes. Different per-connection
RTTs are simulated using the delay-box environment [deN$f2 and the router buffer sizes are limited to 100
MSS-sized packets to help emulate packet losses (evenwvithe ABETS). The connections to be simulated

are derived from a real Internet access link and have an geéraffic load of 300 Mbps.

1 T T T T
09
0.8 + D
0.7 t .
0.6
G 05/ -
0.4 | ]
No Tools +
03¢ Fast-IGI X ]
02 L Pathload ¥ i
' pathChirp [
0.1t Spruce N .
0 1 1 1 R-IGll O
0 1 2 3 4 5

Response Time (sec)

Figure 5.9: CDF of response times with default parameters

Tmix measures and reports the per-connection response-tilrestime taken for the connection to transfer

all data between the two end-points. In order to assess thadnof ABETs on the simulated TCP connections,
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we run the tools continuously between nodes NO and N1 andabe impact on the distribution of connection
response times. Each tool has an Sl of 0.1, an MT of 50ms, aRd &rof 240 ms. Fig 5.9 plots this distribution

for experiments conducted with each tool and without anystd&e find that:

e PathChirp has no noticeable impact on connection respanss.t As seen in Section 5.5, PathChirp has

a fairly low intrusiveness—it does not cause much queualhul on the bottleneck link.

¢ All of the other tools can significantly impact the resporisges of TCP connections. Of these, Spruce
and R-1Gl increase the connection response times for longections by a factor of 2-3. For instance,
the 75-percentile response time without any tool is a libtker 1 s, while with Spruce and R-1GI , the

75-percentile response times are 1.7 s and 2.5 s, respgctive

Note that while Spruce had one of the highest measures ofimgness, it does not fare among the worst
in impacting connection response times. Its packet steaeteasmall (two packets) to sustain congestion

long enough to inflict packet losses.

e Pathload and Fast-1GI can significantly impact the resptinses of all connections. While 75% of con-
nections have a response time less than 1 s in the absencgetobdmearly 65% and 80% of connections

have a response time larger than 1 s in the presence of PagnhabFast-1Gl, respectively.

We conclude that if an application needs to run an ABET reggligton a given Internet path, it should use
PathChirp. Such an application should never use PathlokesifIGl as these are likely to significantly impact

connection response times.

5.6 Notes on related work

5.6.1 Spruce and packet-pair techniques

Dovrolis et. al. [LDS06] show that Spruce has the tendenaynberestimate end-to-end AB when the traffic is
non-path persistent. However, when the traffic is persistae bias or error in Spruce is negligible. A similar
analytical result has also been established in the paper biuXLRLO5], which concludes that the bias inherent
in packet-pair methods tends to under-estimate the erahdicAB in multi-hop scenarios with one-hop persistent
cross-traffic. They find that the overall under estimation ba quantified as the sum of two bias terms. The

first bias term tends to zero as the number of packets in thieepdiain used by spruce grows very large. The
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second bias term however never reduces to zero—this sugdpdtSpruce will always underestimate the AB
on a multi-hop path with non path-persistent traffic. Fronn evaluations, we also find that Spruce performs
well when the traffic is path persistent (as in the singlelboéck scenario). In the multiple bottleneck scenario,
however, the traffic we instrument is one-hop persistentvemdbserve that the performance of spruce degrades
quite significantly. Thus our evaluation corroborates pastits that have been obtained on the performance of

Spruce.

5.6.2 Pathload and rate based techniques

Liebeherr et. al. [LFV07a] model the network as a min-plueedr system and use this model to study the
performance characteristics of rate-based technique$ldthload and IGI. They observe that the rate limit that
is used in rate-scanning based techniques significantlpétsghe accuracy of the tools. They suggest that the
rate limit should be at least greater than the current AB. tvlte-based AB estimation tools—including Pathload

and IGl—already adopt this suggestion by estimating theterehd link capacity and using the capacity measure
as the rate limit.

Liu et. al. [LRLO5] find that rate based techniques also tendriderestimate the AB. Furthermore, they
find that in cases where there are multiple tight links on th#hprate-based techniques also underestimate the
AB. They also find that using longer packet trains will redtlis bias. From our evaluations, we find that using
a larger MT (which is equivalent to increasing the lengthha packet-train) does improve the performance of
Pathload. We also find that the performance of Pathload degras we go from the simple single-bottleneck
scenario into more complex ones. The tradeoff is that theotiBEnger packet-trains comes at the expense of an

increasing tool overhead, which will limit the length to whiwe can increase the length of the packet-train.

5.6.3 Pathchirp and rate chirps

Liebeherr et. al. [LFVO7a] using their min-plus model for ABtimation also found that decreasing the spread
factor—for instance, by sending more packets over a lorigez-tcould help improve accuracy. In our experi-

ments we varied the MT by controlling the spread factor amdiimber of packets per-chirp, and hence it is not
possible to extrapolate the results directly. However, awenfl that there is a slight improvement in the average
performance of Pathchirp when the MT is increased—that lemmore packets are sent over a longer interval

of time.
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5.7 Conclusion

After evaluating the different AB estimation methodolagyee make the following observations.

e Regarding Accuracy: (i) We observe that different CBR loads does not cause thgracg of the different
ABET technique to change. Only Fast-1GI shows a decreaseciaracy at loads greater than 600 Mbps.
(i) The accuracy of different AB methodologies acrosslad traces is comparable, even though the traces
represents different average loads. (ii) The errors arbdrigvith the trace-traffic than with CBR traffic.
(iv)Increasing the MT improves the accuracy of all the ABET®) Beyond a MT of 50 ms the gains in
accuracy are negligible. (vi) Increasing the SI howeversdu® have an impact on the accuracy. This is
because of the inherent error that is present in every saof#& inference. (vii) Similar to Sl the RTT

has no impact on the accuracy of an ABET.

e Regarding Overhead: (i) Pathchirp, Fast-1GI and IGI have the least overhead aitl®ad has the most
overhead (ii) As the MT increases the overhead increasespéxar Pathchirp where the overhead does
not increase as a linear function of the MT. (iii) As the MTrieases, the run time increases. (iv) As the
Sl increases or the RTT decreases, the run-time decreageBathload takes between 30-100 seconds
to run at MT of 50 ms. (vi) Spruce is the fastest tool since itldgproduce an AB estimate with every
packet-pair it sends out. (vii) Increasing the MT increabesntrusiveness, except for Pathchirp in which
case the intrusiveness reduces with larger MT. (vii) Insiegithe Sl also increases the intrusiveness. (ix)
Pathchirp shows the lowest intrusiveness. (x) Spruce aret otosed loop tools show similar intrusiveness

characteristics.

82



CHAPTER 6
Scalable Monitoring of the AB

With an understanding of the issues that impact the perfoamaf the various AB techniques and tools, we now
visit the problem of designing a scalable AB inference saléon multi-path monitoring applications. We first

use the knowledge of the performance characteristics of PBfitEom the previous studies to pick and calibrate
our AB estimation methodology. We then describe the desfgouo scalable AB estimation scheme, along
with the assumptions it is based on. Finally we present atibd results of our scheme, that we obtained by

evaluating our scheme on PlanetLab [Pla].

6.1 Selection of ABET estimation methodology

As argued in Chapter 1, large-scale multi-path AB monitpriequires that the per-path ABET used should: (i)
impose low overhead on the path, (ii) have a fast response @imd (iii) should yield accurate estimates.

Some of these goals conflict with each other; for instancééncurrent spectrum of design choices, tools
that are accurate are either overly intrusive (IGI, Figuig®) or have long RT (Pathload, Figure 5.8(d)). In
order to pick a tool and configure its parameters we utilizeitisights that we have obtained from our previous
evaluation studies (Chapters 3, 4 and 5). Three tools that the requirements of being able to report the AB
fast and accurately are Fast-IGl, Spruce and Pathchirge3@®l and Pathload rely on a convergence logic and
thus have a non-deterministic run-time they would not béable for this application (Figure 5.8(d)). Though
Fast-IGI would be a much better choice in terms of accurdcgxiibits high intrusiveness (Figure 5.8(f)).
Furthermore, as was observed in Figure 5.8, at high loadsIGadends to overestimate the AB. Between
Spruce and Pathchirp, Pathchirp has a lower intrusivertégarg 5.8(e)) and also has a short run-time, which
makes it a good candidate for a large-scale monitoring eatdin.

Next, we use insights from previous studies to set the Pathplarameters so that we can maximize the
accuracy, while minimizing the intrusiveness and time fmorta measurement. From Figure 4.6, we expect that

a Sl of at least 30% would give us good accuracy. Due to therexm@al design of its probe-streams, Pathchirp



already adopts a high sampling intensity (due to the lowwBiteness of its probe-streams, it can afford to send
successive probe-streams within a short gap). Another wagprove the accuracy would be to increase the MT
(Figure 5.4(a)) to 50 ms. Since increasing the MT incredse&{T of the tool (Figure 5.8(c)) we can offset this
increase in RT by increasing the Sl (Figure 5.8). While iasieg the accuracy, increasing the MT also reduces
the intrusiveness of Pathchirp (Figure 5.8(e)) and redtieesgariability of the AB estimates made (Figure 4.11).
Finally, we configure Pathchirp to run with 8192 byte packet¢ swhich would reduce requirements on timer

granularity and reduce the potential for interrupt coadewe effects (Figure 3.4).

6.2 Design of the AB Monitoring Scheme

Recently a network monitoring architecture—referred t@Basute—has been proposed in [HS05] that focuses
instead on explicitly measurinngll“t andABgll, and uses Equation (1.3) to infdi3 (51, D, ). Unfortunately,
while several tools have been designed and evaluated faratety measuringnd-to-endAB [JD02b, Rib03,
SKKO03a, SK07, SMFi05], currently available tools for measuriag3°“t or AB* are fairly inaccurate. Indeed,
in this chapter we show that use of the Broute approach cahtteAB inferences that are inaccurate by more
than 50%.

We next address the questiddow can a monitoring service estimate in a scalable manherAB on the

N? paths of an overlay of siz&¥ using only an end-to-end ABET?

6.2.1 Approach

In this chapter, we eliminate the dependency on per-hop Aithation tools and instead design a scalable AB
monitoring architecture that relies only on tools that measnd-to-end AB. We refer to our architecture as
SABI (Scalable Available Bandwidth Inferenc&ABI exploits the existence of end nodes (or overlay nodes)
that are connected by well-provisioned access segmentsh@sn below, such nodes can be used for inferring
AB between other node pairs in a scalable manner. We prelserd tifferent approaches—that differ in their

accuracy and overhead—for doing so.

SABI Algo 1: Consider the additional nods in Fig 2.2. Our previous observations on access-segmepty im

that:

AB(S»,D1) ~ min{ABZ" ABJY }
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AB(Sl,SQ) ~ mln{ABg?taABg;}
Furthermore,

Imn{AB(Sl, 52), AAB(SQ7 Dl)}

R

min{ABZ", ABY!, AB$"" | AB}} }
= min{ABg", AB}}. },

if ABY', ABZ"" > AB3", AB}},

R

AB(S:,Dy) (6.1)

Thus, if the access segment$f consists of well-provisioned high-capacity links, thé®(S;, D) can

be inferred as the minimum ofB(S1, S2) andAB(Sz2, D).

Our first approach for scalable AB inference, thereforeigaissa well-provisionedhead-nodegsuch as

Ss) to each potential source node (suchSayin the overlay. Head-nodes measure the AB on paths to all
potential destination nodes (such&s). Source nodes only measure the AB on the path to their head-
node. The end-to-end AB between any given source and déstinia then inferred as the minimum of
these two quantities. Thus, in an overlay of si¢gif K head-nodes are assigned, the total number of AB

measurements that need to be made in order to infé¥ AlAB values is given byO(K * N).

SABI Algo 2: In order to further reduce the number of AB measurementssiden the nodeD, in Fig 2.2.

Then,
AB(Dy, D) =~ min{ABg, AB},}
AB(S2,Dy) = min{ABZ', ABg,}
Furthermore,

min{AB(Sl, SQ), AB(SQ, Dg), AB(DQ, Dl)}

R

min{ABZ", ABY, AB&" AB}} , AB3 | ABS }

= min{AB", AB}} },
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if ABS, ABZ"", AB} . AB3Y > AB3", AB}!

~ AB(Sl,Dl) (62)

Thus, if the access segments of bath and Dy consist of well-provisioned high-capacity links, then

AB(S1, D1) can be inferred as the minimum dfB(S;, S2), AB(S2, D2), andAB(D2, D).

Our second approach for scalable AB inference, therefasigas a well-provisionedead-nodegsuch
asS, and Ds) to each potential node (such 8sand D) in the overlay. All head-nodes measure the AB
on the paths to each other. Additionally, each node meatheesB on the path to/from its corresponding
head-node. The end-to-end AB between any given source atidat®n is then inferred as the minimum
of the three quantities mentioned above. Thus, in an ovefigize N, if K head-nodes are assigned, the
total number of AB measurements that need to be made in asdefar all N2 AB values is given by:

O(N + K?).

SABI Algo 3: Observe that if botht, and D, have well-provisioned access segments, then it is likedy th
AB(S2, D2) will be larger thanAB(S1, S2) andAB(D2, Dy). Thus, Equation (6.2) can be re-written as:

min{AB(Sl,SQ)7AB(D2,D1)} >~ AB(Sl,Dl), (63)

if ABY, AB3", AB} , AB3 > ABg"', AB}}. . Thus,AB(S, D1) can be inferred as the minimum of
AB(Sl, SQ) andAB(DQ, Dl)

Based on this idea, our third approach for scalable AB imfeeg just like the second approach above,
assigns a well-provisiondtead-nodd€such asS, and D-) to each potential node (such dsand D) in

the overlay.

Also, like the second approach, each node measures the ABequath to/from its corresponding head-
node. The difference is that none of the head-nodes medsABt on paths to each other. The end-to-end
AB between any given source and destination is then infexsdtie simply minimum of the two quantities
mentioned above. Thus, in an overlay of si¥eif K head-nodes are assigned, the total number of AB

measurements that need to be made in order to infé¥ B values is given byO(N).

Note that this third approach is similar in spirit to that afoBte [HS05]—the difference is that Broute

relies on tools that explicitly measure the AB on access segsnofS; and D;, whereas our approach
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implicitly measures it by measuring the end-to-end AB bemvihese nodes and their corresponding head-

nodes. Tools for measuring end-to-end AB are significantiyenaccurate.

Need for Path Similarity Note that each of the above three algorithms rely on the gssomthat the access
segments are shared among the paths involved—for instdrecpaths fron; to D; and fromS; to D, should
share the same incoming access segmem?;of This assumption may not hold if any of the nodas S, or

D; (or their local ISPs) are multi-homéd Since multi-homing is on the rise in the Internet [AMG3], the
SABI inferences can be applied in practice only if the rodtes overlay nodes and their head-nodes to most
destinations indeed share their last few hops. In order soirenthis, we adopt the following general approach

for monitoring the all-pairs AB of an overlay in a scalablemmar:
1. form groups of nodes that share similar underlying IP p&tlother nodes in the overlay;

2. within each group, select the node with the highest-dgpaccess segment as the “head” node of the

group;
3. measure AB from all nodes within a group to the head-node;
4. for Algo 2, additionally measure AB between all head-reidethe overlay;
5. for Algo 3, additionally measure the AB from each headentmdall nodes outside the group; and

6. infer AB between any two nodésandj, using one of Equations (6.1), (6.2), and (6.3).

6.2.2 Path-based Clustering

In order to group together nodes with similar routes to otlestinations, we first definegamth differencé P D)
metric for any pair of overlay nodes. Lét"; be an ordered vector representing the IP addresses of the: las

IP hops that appear on the path from néde nodek. Then,

e 1 m prm
PD™(i,5) = N_2 Z D( ik> j,k:)
keS—{i,j}

whereS is the set of all overlay nodes, and the functidmeturns the number of positions at which the values of

the specified vectors differ—for instance Xf= [1.2.3.4,5.6.7.8,9.10.11.12],andY” = [13.14.15.16, 1.2.3.4,9.10.11.12],

1A node or network is said to be multi-homed if there are moemthne ISPs or access links connecting it to the rest of tiegniet.
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thenD(X,Y) = 2. Intuitively, the smaller the value of thBD™ (i, j) metric, the more similar are the paths
from nodesi andj to the other nodes in the overlay. We use this metric as thetddce” between nodes
and j—note that botlD and P D satisfy the triangular inequality. A standard clusterifgpaithm (such as the
K-means [kme]) can then be used to group the overlay node<liasters of “similar” nodes, as needed in step
1 of our approach.

Note that measuring the paths fo? Mode-pairs constitutes lower overhead than the correspgmB
measurements. Further, these measurements could be donelatarger intervals to form the node groupings,

as routes are not expected to vary as rapidly as AB measutemen

6.2.3 Head Selection

Let C; x be the end-to-end capacity from noi® k. DefineC; ; = maxyes—(;3 Cj - For each cluster formed
above, we select as the head-node the ridtat has the highest value af:** = max;{C; ;}.2 This would
ensure that the node with the highest access-capacity gletsexd as the head node. Further, this also ensures
that the head node is well-provisioned to be able to perfoBrmAonitoring to all other nodes, on behalf of its
cluster-members.

In Appendix A, we show that if/N uniformly-sized clusters are used for an overlay of siéethen the
SABI Algorithm 1 reduces the number of AB measurements oflepars monitoring service by a factor of
Vv/N. Non-uniform clusters, however, achieve less reducticovierhead. It is also easy to see that with uniform
clustering, SABI Algorithms 2 and 3 reduce the number of ABasi@ements of an all-pairs monitoring service
by a factor of V.

Both the overhead and accuracy of our approaches is imphgtaglo parameters: the number of clusters,
K, and the number of hopsy, considered for path-based clustering. We next empisicgtlidy this impact
and evaluate our approach through wide-area Internet empets. We next present a large scale performance
evaluation of the SABI Algo 1. We also present a smaller seabduation of all three SABI algorithms and

compare them to the Broute algorithm in the same scenario.

2Note that our definitions also imply that™® = C; ;.
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6.3 Experimental Methodology

In this section, we evaluate our approach in an Interneeweixiperimental setting. Below, we describe our

evaluation methodology.

The Experimental Environment

We rely on nodes from the PlanetLab testbed [Pla] for our erpental evaluation. This testbed gives us access
to a large and diverse set of geographically distributedesdtiat can be used to form an experimental overlay.
Use of the PlanetLab testbed, however, poses additionfiénlgas. First, the PlanetLab operating environment
poses software rate limits on the amount of traffic sent byagplication—this is likely to adversely impact the
accuracy of some capacity and AB estimation tools like Patth[abt]. For our evaluation, we instead rely on
PathChirp [Rib03], an available bandwidth estimation thalt does not send large probe streams at high rates

and, consequently, does not get impacted by the Planetteimaiting.

0.6 I ' T T T T T
PlanetLab ——
Non-PlanetLab ---- o—
0.5 |
>
5 04 |
©
o)
o
o 0.3 |
(O]
(@)]
©
) 0.2 |
>
<
0.1 — . SR
X
Hmmmmmenn X e Hee ‘/,‘
0 1 1 1 \ L. e , \\x"

Distance from end

Figure 6.1: Location of Bottleneck Links

The rate-limiting may also imply that the bandwidth bot8ek is the first hop on each PlanetLab path, which
may not be true in the general Internet. In order to assessrpact of the PlanetLab operating environment

on the location of the bottleneck link, we select 50 Plankbthades and estimate the location of the bottleneck
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link on all paths between these nodes usstgb[RRBO04]. For each link on a path, Stab returns a probability

that the link is a bottleneck link—we run Stab several timegach path and for each link, compute the average
probability of it being a bottleneck link. Fig 6.1 plots thaserage probability as a function of the distance of

the link from the closest end-point of the path—for instgriamh the first and last hop appear at a distance of 1
from the end-point. We observe that the bottleneck is likelife within 1-2 hops from either end of a path.

For comparison, we also run Stab on all paths between seveRlametLab nodes located across 4 univer-
sities and the commercial Internet. Fig 6.1 also plots thehp@ bottleneck probability for these paths—we
find that the bottleneck locations are fairly similar to tHarketLab environment. This suggests that the use of
PlanetLab does not unrealistically bias our experimemakrenment.

Recall that our approach needs several types of measurefnemteach overlay path: the end-to-end avail-
able bandwidth measurements, per-hop IP route informétiociustering, and end-to-end capacity information
for choosing cluster heads. In order to obtain these messweleverage the Scalable Sensing Service infras-
tructure ($) [YSB*06]. The S infrastructure collects measurements of the end-to-epdaty, AB, loss rates,
and traceroute data between all pairs of nodes in the Plabd#stbed network (http://www.planet-lab.org) and

presents snapshots of the data at the following website:/fm&tworking.hpl.hyperplane.com/s-cube.

Selecting the Overlay Nodes

At the time of our evaluation, PlanetLab had grown to 711 sosfgead across 338 sites. Unfortunately, in an
uncontrolled environment such as PlanetLab, it is diffitaltonsistently obtain all-pairs data on the end-to-
end capacity and IP routes. In particular, due to severakssuch as nodes being down, high-CPU loads on
certain nodes, bandwidth limits, and tool errors, we do rvehcomplete information for all pairs of PlanetLab
end-nodes. Since our objective is to evaluate the SABI &ctire, it is important for us to know the ground-
truth about the overlay network on which we evaluate it. Oust thallenge, consequently, is to find the largest
PlanetLab overlay for which®does provide all of the required evaluation measures forade-pairs.

Note that both capacity and route information are relayiwtatic quantities. We first systematically search
the $ measurement logs to extract all capacity estimates madetliwgast two months. We then model our
overlay-selection problem by constructing a gragtwith 711 vertices, one corresponding to each PlanetLab
node. We add an edge between a node pai¥ ihwe find a successful capacity estimate in tiel&®ys for the
path between the corresponding PlanetLab nodes. Our mhaieday-selection problem is then analogous to

finding the largest clique in this graph. Using a heuristgogithm, we find a large clique that consists of 144
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nodes® After eliminating nodes belonging to the same PlanetLab bersite, we were left with a set of 95
distinct sites.

For all paths between each pair of these 95 nodes, we then elseeguests to%Sto run traceroute and
obtain the current IP route information. Paths involvingof Zhese nodes did not return route information either
because the nodes were down or the system was unable tomeHertraceroute operation. For evaluating
SABI, consequently, we rely only on the remaining 83 nodegpéndix B lists the corresponding PlanetLab

sites

Clustering

We use the IP route information to compute the similaritynieg® D™ for each node-pairin our selected overlay.
We then populate a matrix of distances between all nodespaing the similarity metric. This matrix is then
fed to the K-means clustering implementation in Matlab §2ic We experiment with different values &f, the
number of clusters generated. Within each cluster, the-hede is selected as the node with the largest value of
cmer,

As mentioned earlier, our AB inference approach resulta@rhaximal reduction in probing overhead when
the node-clusters are uniform in size; each of Baelusters would have a size 8f/ K in this case. In practice,
though, the geographical distribution of the overlay nadey be skewed—in this case, the sizes of the resultant
clusters are also likely to be skewed. To reduce the probusgh®ad, we randomly partition clusters of size
larger thanN/ K into two or more sub-clusters, such that none of the resustaln-clusters is larger thal/ K.
Each sub-cluster behaves as an independent cluster actss@wn head-node. This approach not only helps

reduce the probing overhead, but also distributes the pgaibiad uniformly across different head-nodes.

Measurements and metrics

Let H; denote the head node of the cluster to which ndsongs. We use our overlay testbed aRddevaluate
our approach using the following algorithm:
For each nodethat is not a head-node

For each nodg that lies outside the cluster containihg

MeasureAB(i, H;).

3The fact that a regular monitoring service such as&uld provide a capacity-clique for only around 25% of tharfetLab nodes further
highlights the challenge of wide-area experimentation meoatrolled environments such as PlanetLab.
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MeasureAB(H;, j).
MeasureAB(H;, H;).
MeasureAB(Hj, j).
MeasureAB(i, j).
(SABI Algo 1) Estimate:
AB™L(i, §) = min{AB(i, H;), AB(H;, j)}.
(SABI Algo 2) Estimate:
AB™I2(i, §) = min{AB(i, H;), AB(H;, H;), AB(H;, j)}.
(SABI Algo 3) Estimate:
AB™3(i, j) = min{AB(i, H;), AB(Hj, j)}.
This procedure helps us obtain nearly-simultaneously #hees ofAB (i, j), the actual AB between nodés
andj, as well asAB™/f (i, j), the AB inferred using SABI’s algorithms. We then use thédwing two metrics
to characterize the performance of our approach:

e Accuracy:We compute the accuracy of our inferences using two quasitii) the absolute inference error:

Ae(i, j) = |AB™ (i, j) — AB(i, )|, and (ii) the relative inference erraRe(i, j) = |45 iBJ()? J?B( )|,

It is important to mention that experimental evaluationsxiéting ABETs have shown that most of these
tools, including PathChirp, have typical AB estimationcgmf around 10% of the actual AB [SMFD5].
Thus, inferences errors of within 10 Mbps would lie withir tfresolution of existing ABETs—such errors

would be present even in an all-pairs AB monitoring infrasture.

e Overhead:We compute the probing overhead as the total number of adBiaheasurements that would
need to be made in order to obtain a snapshot of AB for the cetmpmlverlay. GiverS. is the set of
clusters, andh, is the number of nodes in clustgy the probing overhead for different SABI algorithms
will be:

SABIAIgo 1: 37, cs. (ng * (ng — 1) + (N —ny))

SABIAIGo 2: 3", s, m * (ni — 1) + (N — [Sc|)

SABIAIGo 3: 3, .5,k * (ni — 1)

The first term corresponds to the all-pairs measurementsnpeed within a cluster, while the second term

corresponds to the measurements made in order to infer thimABdes outside the cluster, which is not

needed in the case of the third algorithm.
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Parameters

Two main parameters can affect the performance of our ABrémfee approach:

K, the number of clusters: As formulated above, the number and size of clusters impa&agbtobing overhead
of our approachK also impact the AB inference accuracy—the larger is the remobclusters, the more
likely is it that all nodes in a cluster are actually similartheir PD metric. We study both the accuracy
and probing overhead of our approach using cluster-siz&s@f10, and 12. Note that witN of 83,V N
is around 9, which is optimal for reducing the probing ovexthen SABI Algo 1 (as shown in Appendix A).

Our choices forK evaluate values both less than and greater than this value.

m, the path matching parameter: In addition to K, path-based clustering is characterizedibythe number
of hops on the path to a destination that are compared to ifpaoide similarity—we refer to this as
thepath matching parameteRecent Internet measurements [Li05] suggest that mo#ebetk links lie
within 4-5 hops from the end-nodes. On the other hand, lattgeevalue ofm, the less likely is it that
even “similar” nodes would share al hops to a destination. We study the sensitivity of our resoitt

the parametem by usingm = 3,5, 7.

6.4 Evaluation Results

Our detailed evaluation mainly focuses on the SABI Algarith. At the end of this section, we also provide a
preliminary smaller scale comparative evaluation of akehSABI algorithms and also compare it to the Broute

algorithm [HS05].

6.4.1 Path Based Clustering

We run K-means to generaté = 7,9, 10, 12 clusters. We also evaluate three different settings.of 3,5, 7.
S? could return all three measurements needed in the evatualgrithm for only up to 44% of the node-pairs

involved, despite repeated measurement attempts.

Overhead Fig 6.2 plots as a function df’, the probe overhead—the number of probes that would benexdjui

for obtaining a single snapshot of all-pairs AB—for the ¢thrs formed using thé D metric withm = 5. For
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Figure 6.2: Probe Overhead

comparison, we also plot the best-case probe overhead fBt 8yorithm 1 if all clusters are of the same size.
Note that in this case, a naive approach of all-pair AB measent would need 6806 probes with= 83.

We find that our approach can reduce the all-pairs measutsrbgra factor of up to 4. Also, as expected,
we find that a cluster size close tON (9, in this case) is likely to yield the least probe overhe@itle probe

overhead with 9 clusters closely matches the ideal best{éasuniform clusters).

Accuracy Figure 6.3 plots the values efB""/1(i, j) as a function ofd B(4, 5), for all pairs of nodes andj,

for which AB is inferred usingk’ = 12, m = 5. We find that:
1. Most actual values of AB are clustered around three polrttsvibps, 40 Mbps, and 80 Mbps.
2. The inferred value of AB matches closely the actual AB farstpoints.
3. The inference error is higher for larger values of actul A

In order to quantify the inference errors, we use= 5 and plotin Figures 6.4(a) and 6.4(b) for all node-pairs,

the distribution of the absolute inference error and thatiet inference error, respectively. We find that:
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Inferred (Mbps)

Impact of Path Matching Parameter We next study the impact of varying the path matching parameter
on the accuracy of inferring AB. We regenerate clustersaquiimee different similarity metrics corresponding
to M = 3,5,7 and evaluate their AB inference accuracy. Figure 6.5 ploégscumulative distribution of the
relative inferences errors for different valuesraf We observe that a path matching parameter of 5 works the

best. Whilem = 3 does not perform much worse, selectingrarof 7 noticeably degrades the performance of
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Figure 6.3: Path-based clustering: Actual vs. Inferred AB

With 12 clusters, the median AB inference error is less tPa%, while 80% of the inferences lie within

40% of the actual.

. 80% of the inferred AB lie within 20 Mbps of the actual AB. Alsscussed before, this lies within the

estimation accuracy of existing ABETS.

The larger is the number of clusters, the better is theémige accuracy.

path-based clustering.

There are two reasons for preferring a smaller valuenofFirst, it is difficult to obtain route information
corresponding to a longer access segment (such as 7)—ioabés we would require 7 routers on each path to

respond to traceroute queries. Second, it is unlikely tioates would share a larger suffix of their routes to a
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Figure 6.4: Distribution of Inference Errors

given destination. Thus, even “similar” source nodes wdddharacterized by a small value of the similarity

metric, PD™. Clustering, consequently, may not be able to form good mhasers.

6.4.2 Improving the Availability of AB Snapshots

Note that we were able to evaluate our clustering approachdanore than 25-40% of the node-pairs involved.
As mentioned before, several factors related to the unobtedk environment in PlanetLab—including node
failure, tool failure, high loads, and rate limits—contite to our inability to generate more data points. It is
important to understand that such issues are likely to cqmie most overlay infrastructures that wish to deploy
an overlay monitoring service. We next consider an apprdaadmproving the availability of AB estimates.
Specifically, we assume that if an infrastructure is unableneasure the AB between two overly nodes, it
would use the end-to-end capacity between the nodes as evxapption of the AB. Note that the capacity is a
relatively static quantity and is already measured to itatéd node-clustering and head-selection.

In order to evaluate the impact of the above approximatiotheninference accuracy of our approach, we
re-consider our evaluation Algorithm, and for all cases hnich the actual AB could be measured between nodes
1 andj, but one of the other two measurements was missing, we tutegtie missing values with the capacities
between the corresponding nodes. Doing so, helps us ged%0eb the total data points. Figure 6.6 plots the
cumulative distribution of the relative error. We find thhistapproximation does not adversely impact the AB

inference accuracy of our approach—most of the new datagpaitded follow a similar distribution of inference
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error as the previous data. In fact, the overall distributié estimation errors improve by observing these extra

data points.

We conclude that to improve the availability of AB informati it is reasonable to use the capacity values

when AB measures are missing.

6.4.3 Differential Rate Limiting on PlanetLab

PlanetLab implements a differential rate-limiting polipgt]—traffic flowing on Internet-2 is allowed higher

rate limits than traffic flowing in the general Internet. Thiiferential treatment could cause inference errors
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when an overlay node and its head-node do not belong to the sgua of network. For instance, assume that
the rate-limits for Internet-2 traffic is 100 Mbps, and fohet traffic is 10 Mbps. In this case, if a source node
belongs to Internet-2 and its head-node does not, then fhaéd AB to a destination in Internet-2 may be
much lower than the actual AB. Such inference errors coutdipehen overlay nodes are multi-homed—in this
case, the paths to the head-node and a destination node mstyame the access segment and, consequently, the
bottleneck links.

Note that the differential rate-limiting would adversetypact the inference of only those node pairs in which
exactly two nodes out of the three involved (source, desitingand head) belong to Internet-2. In order to assess
the impact of this PlanetLab feature on our inference eymesremove from our data all inferences that involve
such node pair$.Surprisingly, roughly 50% of our data points were of thiseyp

Figure 6.7 plots the distribution of the relative inferersreor when such node-pairs are removed from our
data-set usingd = 7 andm = 5. We find that the inference accuracy improves significan®p% of the

inferences have an error of 35% or less.

4In order to identify Internet-2 nodes, we first look for thedu” suffix in their IP names. Note that not all such nodesrglo Internet-
2. We then examine the end-to-end capacity measurementdtiese nodes to other nodes in the system to identify inssaoicdifferential
rate-limiting.
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While this result is encouraging, it also suggests that @ar@ach would need to select clusters carefully

when overly nodes are multi-homed. We discuss one way ofgdaimenxt.

Identifying lll-formed Clusters

In the presence of multi-homing or differential traffic mgeaent as in PlanetLab, we would need extra mech-
anisms to identify and modify ill-formed clusters. We rely the observation that if a cluster is ill-formed for
bandwidth-inference, it is likely to be ill-formed for eveapacity-inference. In particular, for every 3-tuple of

C”Lfch j 3 s
%l whereCiY = min{Ci ., Crr, ;). If the

J
Cij

{i, H;, j}, we compute the capacity inference error
estimation error is greater than 50%, we assume that thpl8-iill-formed. After removing such 3-tuples from
our data set, Figure 6.8 plots the AB inference errors of #meaining data points witkd = 7 andm = 5. We
observe that such filtering improves the inference accurBog inference error is now less than 35% for 80% of

the inferences.
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Figure 6.8: Using Capacity-inference to Filter Out lllHfioed Tuples

6.5 Sources of Error

Our approach has been able to achieve inference errors ©thas 30-40% for 80% of the inferences, and
median inference errors of less than 20%—we believe thesgbats are promising due to several possible
sources of errors. First, AB estimation tools themselve®lzan accuracy of about 20%—this is likely to impact

any AB monitoring infrastructure. Furthermore, AB is a dymia quantity that could change between successive
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measurements between a source and a head, and the head sstthatide. Second, most ABETSs require
high time-stamping accuracy [PJD04] and are sensitive &¥)W/€PU load conditions—unfortunately, this is a
frequent occurrence in PlanetLab. Finally, as we have sh®&®kanetLab itself can introduce inference errors
because of its differential rate-limiting policy. In liglf these factors, and the fact that the only other AB
monitoring approach reports an average error of 50%[HS8&¢ (Section 2), we believe that our approach is

quite promising.

6.6 Comparative Evaluation of SABI algorithms

In this section, we provide a preliminary comparative eatibn of the three SABI algorithms and the Broute
algorithm proposed in previous literature. This preliminamall scale evaluation on PlanetLab is promising and
demonstrates the trade-offs between measurement oveahdadference accuracy. The methodology is similar
to that described earlier with a few additional facets. A ptination was that this evaluation coincided with the
recent PlanetLab upgrade, which caused several nodes toabailable for several weeks. Starting with a new
cligue of 139 nodes, we computed 10 SABI clusters. Using Qol#d] data we identified 20 nodes that were
lightly loaded and were able to return measurement dataistensly. For these 20 nodes, which were spread
across 8 clusters, we ran the measurements as describedrirethodology.

To compare with Broute, we implement the peer-to-peer waid Broute and use IP source and sink trees
as opposed to AS trees. We consider the first four and lastfops in the trees to determine common segments.
We consider IP source and sink trees primarily to keep thbipgooverheads to be of the same order as the SABI
algorithms.

The overheads that would be incurred for the set of 139 noatethé various schemes are given below. As
a baseline, the all-pair measurements would have been 294i8dwidth probes. We need 4,027 (20.99%),
550 (2.87%) and 278 (1.45%) probes respectively for theetl8&BI algorithms with 10 clusters. For the
corresponding Broute implementation, we would requiré32,8.8%) measurements.

After running these measurements, we had sufficient dataatuate a common set of 48 paths for each
of the 4 algorithms. Figure 6.9 plots the cumulative disttibn function of the relative inference error for the
three SABI algorithms and the Broute (peer-to-peer IP tisgdementation described above). Though this is
a small scale study, the results are very promising. Esadntthe three SABI algorithms perform well and

approximately the same while Broute has poorer accuracgn BABI Algo 3, which uses less than 2% probes
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has a median error of about 15%. We ran this study for two @iffesnapshots with similar results.

It is interesting to recall that SABI Algo 3 is similar in cost to the Broute approach—both rely on using
the AB on the access segments of either end-points to inéeetid-to-end AB. The main difference is that
Broute relies on a per-hop AB estimation tool such as PathftécM +04], which can be inaccurate; whereas
SABI drafts well-provisioned head-nodes and uses toolsfioto-end AB, which have shown to be reasonably

accurate [SK07, SMHO05].
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Figure 6.9: CDF of relative inference error for the SABI aligfoms and Broute AB

6.7 Conclusion

In this chapter we describe SABI, a scalable method for erelrd available bandwidth inference for large
networked systems. SABI groups nodes into clusters suchttbanodes in each cluster havsieilar view of
the nodes outside the cluster regarding the available bigitldmetric. Using the key insight that most bandwidth
bottlenecks are close to the edges of the network, we prappath similarity metric for measuring the similarity
of a pair of nodes. Nodes are then grouped together accaotalihgs similarity metric, and a head representative

node is chosen for each cluster that has highest capacigsadimk than others in the cluster. We propose
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three differentinference algorithms with decreasing meament overheads that define which measurements are
performed within a cluster and which are performed acrasstets. Extensive experimentation on the PlanetLab
testbed have demonstrated that the SABI algorithms redhegerbbing overhead significantly while maintaining
the mean estimation error around 20%.

We plan to provide this bandwidth estimation as a service lané®Lab for other researchers to use and

experiment with.
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CHAPTER 7
Concluding Remarks

In this dissertation, we systematically study the impaetasth of the four factors (algorithmic, temporal,network

and systemic) on ABET performance and find that:

o With regards to temporal factomse find that the (i) MT does not impact the inaccuracy as lontpasSi
is kept constant. (ii) As the Sl increases the accuracy asgehowever beyond a Sl of 30% the gain in
accuracy is not significant. Thus we can control the overtieatis introduced by a tool by limiting the
Sl to not greater than 0.5. (iii) We also found that the valigtof the AB reduces at MT of greater than
50 ms. (iv) Longer the RT the higher the measure of variahilft) Back-to-back measurements of the

AB do not vary by more than 4%.

e With regards to algorithmic factors and network fact@ysVe find that Pathload, and Spruce are the most
accurate at high MT. (ii) By increasing the Sl we cannot inygrthe accuracy of the AB techniques, since
there is an inherent error associated with the inferencielddi) Pathchirp has the lowest overhead, and
intrusiveness characteristics. (iv) When we move away ftbensingle bottleneck scenario, we observe
that the accuracy of Spruce and Pathchirp reduces.(v)IEstGl and Pathload are not affected by

changing topologies.

o With regards to systemic factofi$ We find that tools using packet pair techniques must beawbdelay
guantization. (ii) Furthermore a packet size of 1500 bysesdt sensitive enough for probing on high-
speed paths. (iii) The accuracy of Pathload increases frbat was observed in the NS-2 simulations.
(iv) We find that Pathload and Pathchirp are the most accofdtee ABETs and have a performance of
about 15% and 20% respectively.(v) Iperf is the most aceutadwever a loss rate of even around 1% and

conservative RTO values, could cause huge under-estimatiors.

From all of the above studies, we obtained insights into thpact that the different factors have on the

performance of the ABET tools. We then show how these insigah be used to choose and calibrate an ABET



for an AB monitoring infrastructure. We then use an end#d-ABET to design three algorithms to scalably
estimate the AB on a large network. We show that we can obtdiorrnation about the AB ofi? paths of a
network by making only O(n) measurements of the AB . Thesesoregnents are also accurate to about 30%,
which is a significant improvement over previous schemesalli we compare the performance of our scheme
to another scheme Broute, which requires per-hop AB infeitnaand show that our schemes consistently
outperform Broute.

In this thesis we demonstrated the viability of building &tsyn to monitor the AB on a large network.
From a purely monitoring stand point this scheme would béuli$er network operators to study the location of
potential hot-spots in their network, without imposing @reficant load. From the perspective of an application
we have currently deployed a scaled down version of our ABitbdng scheme on PlanetLab and we hope to
be able to scale this up to a full scale deployment in the neard.

We started off by observing that the adoption of AB estimatiechniques in contemporary applications is
fairly limited. We then identified and addressed two isshesseemed like hurdles for adoptiamhich technique
to use andhow to make AB estimation scalable in multi-path servitémwvever, there is at least one additional
guestion that application/service designers are likelyagdnterested inwhat performance improvement can an
application achieve by relying on the knowledge of endrtd-&B, versus metrics such as delay and loss rates,
that represent a simpler characterization of pathA® part of future work, we hope to investigate this issue
by instrumenting protocols and services with AB estimatechniques and evaluating the performance benefits

from doing so.
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Appendix A
Minimizing the probe overhead

Let us consider atv node system in which we creaf€ clusters. Let us furthur assume that all the clusters are
of the same size. This implies that: = % whereC' is the number of nodes per cluster.
Our AB inference approach implies that the head node of derlugll measure the AB to all the other nodes

not in the cluster. Thus the number of probes sent from orsedwut to the other clusters is:
Probeyyy = N —C (A1)

Each node within a cluster measures the AB to all the othees@dthin the cluster. Thus the number of probes

within a cluster is:
Probe;, = Cx(C—-1) (A.2)
Summing (A.1) and (A.2), we get that the total number of peodent out by a cluster is:
Probecus =C x (C—1)+ (N -0C) (A.3)
And total number of probes across all clusters is:
Probeioy = K x (C x (C'— 1)+ (N — C))egn.iv) (A.4)
The number of probes as a functionfis represented as:
2

F(K) = Nf +NxK (A.5)

DifferentiatingF'(K) w.r.t K, we getthe minima ak’ = V/N. Note that this does not include the probe overhead

that is incurred to form the clusters, since this proceskheilcarried out infrequently.
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Appendix B

Sites used in Planet-Lab experiment

.ece.uprm.edu .upc.es .iralab.uni-karlsruhe.de
.cs.uga.edu .umkc.edu .ittc.ku.edu
.epfl.ch .cs.brown.edu .planetlab.uprr.pr
.mcgillplanetlab.org .planetlab.cs.umd.edu .pl.utsa.edu
.cs.utk.edu .hip.fi .ucs.indiana.edu
.unm.edu .eece.ksu.edu .uni-klu.ac.at
.berkeley.intel-research.ne .colbud.hu .ottawa.canet4.nodes.planet-lab.o

r9

.scs.cs.nyu.edu

.att.nodes.planet-lab.org

learninglab.uni-hannover.de

.prakinf.tu-iimenau.de .cc.gt.atl.ga.us .bu.edu
.cnds.unibe.ch .cs.tcd.ie .ethz.ch
.cs.stir.ac.uk .cs.princeton.edu .arizona-gigapop.net

.cesnet.cz .csail.mit.edu .cs.cornell.edu
.cs.dartmouth.edu .cse.msu.edu .csg.unizh.ch
.cs.purdue.edu .csres.utexas.edu .cs.uchicago.edu
.cs.umass.edu .cs.unc.edu .dcs.st-and.ac.uk
.diku.dk .eecs.umich.edu hiitfi
.informatik.uni-erlangen.de| .informatik.uni-goettingen.de| .info.ucl.ac.be
.iscte.pt .isi.jhu.edu .it.uu.se
.itwm.fhg.de Is.fiupm.es .netlab.uky.edu
.net-research.org.uk .nrl.dcs.qmul.ac.uk .pc.cis.udel.edu
.ssvl.kth.se .uta.edu .utep.edu
.win.trlabs.ca .cs.columbia.edu .csee.usf.edu
.cs.vu.nl .cs.wayne.edu .cs.wisc.edu
.elet.polimi.it .engr.uconn.edu flux.utah.edu
.mini.pw.edu.pl .poly.edu .sics.se
.cs.duke.edu .cs.uiuc.edu .ece.iastate.edu
.ite.gmu.edu .hpl.hp.com .cs.rice.edu

.eecs.harvard.edu

vnl.cs.wustl.edu

Table B.1: Sites used in experiment

106



BIBLIOGRAPHY

[ABKMO1] David G. Andersen, Hari Balakrishnan, M. Frans Ishaek, and Robert Morris. Resilient overlay
networks. InSymposium on Operating Systems Principteges 131-145, 2001.

[abt] Planet-lab email list. http://lists.planet-lalgfpipermail/users/2006-February/001782.html.

[AGKT98] George Apostolopoulos, Roch Guérin, Sanjay Kgraad Satish K. Tripathi. Quality of service
based routing: a performance perspectB&COMM Comput. Commun. Rex8(4):17-28, 1998.

[AKSJO03] J. Aikat, J. Kaur, D. Smith, and K. Jeffay. Varialyiin TCP round-trip times. IfProceedings of the
ACM SIGCOMM Internet Measurement Conferer@etober 2003.

[AMPRO3] J.L. Alberi, A. Mcintosh, M. Pucci, and T. RaleigBvercoming precision limitations in adaptive
bandwidth measurements. 3nd New York Metro Area Networking Workshop (NYMAS&ptember
2003.

[AMST03] Aditya Akella, Bruce Maggs, Srinivasan Seshan, AneeaskBhand Ramesh Sitaraman. A
measurement-based analysis of multihomingSIBCOMM ’'03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protsdol computer communicatiofsages 353—-364,
New York, NY, USA, 2003. ACM Press.

[AP99] Mark Allman and Vern Paxson. On estimating end-to-eatwork path properties. IRIGCOMM ’99:
Proceedings of the conference on Applications, technefgirchitectures, and protocols for computer
communicationpages 263-274, New York, NY, USA, 1999. ACM.

[BCG*01] Yuri Breitbart, Chee Yong Chan, Minos N. Garofalakisjéta Rastogi, and Abraham Silberschatz.
Efficiently monitoring bandwidth and latency in IP networks INFOCOM, pages 933-942, 2001.

[BGMS04] A. Balk, M. Gerla, D. Maggiorini, and M. Sanadididaptive video streaming: pre-encoded
mpeg-4 with bandwidth scalingComput. Netw.44(4):415-439, 2004.

[Bit] BitTorrent.

[BOP94] Lawrence S. Brakmo, Sean W. O’Malley, and Larry LtefPgon. Tcp vegas: new techniques for
congestion detection and avoidan&GCOMM Comput. Commun. Re24(4):24-35, October 1994.

[BroO4] N. Brownlee. NeTraMet 5.0b3, 2004. http://wwwdaiorg/tools/measurement/netramet/.

[CC96a] R. Carter and M. Crovella. Measuring Bottleneckid 8peed in Packet-Switched Networks.
Technical Report 96-006, Boston University, 1996.

[CC96b] Robert Carter and Mark Crovella. Measuring BotlelkLink Speed in Packet-Switched Networks.
Technical Report BUCS-TR-1996-006, Computer Science Beyaamt, Boston University, March 15
1996.

[CC96c] Robert Carter and Mark Crovella. Measuring bottignlink speed in packet-switched networks.
(1996-006), 15, 1996.

[CCLS01] J. Cao, W. Cleveland, D. Lin, and D. Sun. The efféatatistical multiplexing on internet packet
traffic: theory and empirical studell-Labs Technical Repqr2001.

[CKCO05] David Chua, Eric D. Kolaczyk, and Mark Crovella. Aasstical framework for efficient monitoring
of end-to-end network propertieSIGMETRICS Perform. Eval. Re83(1):390-391, 2005.

[CLO2] Les Cottrell and Connie Logg. Overview of IEPM-BW Bamidth Testing of Bulk Data Transfer. In
Sc2002: High Performance Networking and ComputR@p2.

107



[CP02] F. Coccetti and R. Percacci. Bandwidth measurenagrttsouter queues. Technical Report
INFN/Code-20 settembre 2002, Instituto Nazionale Di Eid\uicleare, Trieste, Italy, 2002.
http://ipm.mib.infn.it/bandwidth-measurements-andier-queues.pdf.

[CPB93] Kimberly C. Claffy, George C. Polyzos, and Hans-kéeBraun. Application of sampling
methodologies to network traffic characterization SiCOMM '93: Conference proceedings on
Communications architectures, protocols and applicajgages 194—-203. ACM Press, 1993.

[del] Per-flow delay and loss in ns-2 with delaybox. httprt/ds.unc.edu/delaybox/.

[DJO3] C. Dovrolis and M. Jain. End-to-End Available Bandthi: Measurement Methodology, Dynamics,
and Relation with TCP ThroughpuEEE/ACM Transactions in Networkingugust 2003.

[DMA T06] D.Antoniades, M.Athanatos, A.Papadogiannakis, Eadisitos, and C. Dovrolis. Available
bandwidth measurement as simple as running wgelPrdeeedings of Passive and Active Measurement
Workshop (PAM)March 2006.

[Dov01] C. Dovrolis. Pathrate : A measurement tool for thpawity of network paths. IACM SIGCOMM
2001. http://www.pathrate.org.

[Dow99] A. Downey. clink: a tool for estimating internet krcharacteristics, 1999.

[DPJO4] C. Dovrolis, R. Prasad, and M. Jain. Socket BuffetoARizing for High-Performance Data Transfers.
Journal of Grid Computingl(4), 2004.

[ea07] K. Thompson et. al. Wide-area internet traffic pagexnd characteristiclEEEE Networks
November/December, 2007.

[FBBO1] N. Feamster, D. Bansal, and H. Balakrishnan. theradtions between layered quality adaptation and
congestion control for streaming video, 2001.

[GCMO0O0] Liang Guo, Mark Crovella, and Ibrahim Matta. Tcp gastion control and heavy tails. Technical
report, Boston, MA, USA, 2000.

[HCSJ04] F. Hernandez-Campos, F. D. Smith, and K. Jeffape@sing realistic tcp workload®roceedings
of CMG, pages 273-284, 2004.

[HLM T04] Ningning Hu, Li (Erran) Li, Zhuoging Morley Mao, Petereginkiste, and Jia Wang. Locating
internet bottlenecks: algorithms, measurements, anddatns. INSIGCOMM '04: Proceedings of the
2004 conference on Applications, technologies, architest and protocols for computer
communicationgages 41-54, New York, NY, USA, 2004. ACM Press.

[HS03] N. Hu and P. Steenkiste. Evaluation and Charactéizaf Available Bandwidth Probing Techniques.
IEEE JSAC Internet and WWW Measurement, Mapping, and Magl@003.

[HSO5] N. Hu and P. Steenkiste. Exploiting internet routarsiy for large scale available bandwidth
estimation. Innternet Measurements Conference(IM2)05.

[Hyu04] Y. Hyun. Running Bandwidth Estimation Tools on Wideea Internet Paths, 2004.
http://www.caida.org/projects/bwest/reports/toolrgmarison-supplement.xml.

[Inc92] The Math Works InNcMATLAB, High-performance Numeric Computation and Visasion Software.
User's Guide 1992.

[ipe] Iperf. http://dast.nlanr.net/Projects/Iperf/.

108



[Jac] V. Jacobson. pathchar. ftp://ftp.ee.lbl.gov/phtrt.
[JD02a] M. Jain and C. Dovrolis. Pathload: A measuremeritftoend-to-end available bandwidth, 2002.
[JD02b] M. Jain and C. Dovrolis. Pathload: an available lédth estimation tool. IFPAM, 2002.

[JD04] M. Jain and C. Dovrolis. Ten fallacies and pitfallsemd-to-end available bandwidth estimation. In
Proceedings of the 4th ACM SIGCOMM conference on InternasorementOctober 2004.

[JD05a] Manish Jain and Constantinos Dovrolis. End-to-estiaination of the available bandwidth variation
range. InProceedings of ACM Sigmetrics ,Qiune 2005.

[JDO5b] Hao Jiang and Constantinos Dovrolis. Why is therirgetraffic bursty in short time scales?
SIGMETRICS Perform. Eval. Re83(1):241-252, 2005.

[Jin04] Guojun Jin. netest-2, 2004. http://www-didc gfav/NCS/netest.html.

[Jor04] L. Jorgenson. Size Matters: Network Performancéuwnbo Packets. ldoint Techs Workshop
Columbus, OHKJuly 2004.

[JTO3] G.Jin and B.L. Tierney. System capability effectsatgorithms for network bandwidth measurement.
In Proceedings of the ACM SIGCOMM Internet Measurement CenéerOctober 2003.

[JYCAO1] G.Jin, G. Yang, B. R. Crowley, and D. A. Agarwal. Metrk Characterization Service (NCS).
Technical report, LBNL, 2001.

[KKO6] R. Kumar and J. Kaur. Practical beacon placementifdeinonitoring using network tomography.
IEEE Journal on Selected Areas in Communicat2006.

[kme] Kmeans. http://people.revoledu.com/kardi/tiaBkiMean/matlabkMeans.htm.

[KMFO04] Thomas Karagiannis, Mart Molle, and Michalis Falsas. Long-range dependence: Ten years of
internet traffic modelinglEEE Internet ComputingB(5):57-64, 2004.

[KMK T01] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and kf@lafhe architecture of CoralReef:
an Internet traffic monitoring software suite. Bassive and Active Network Measurement (PAM)
Workshop, Amsterdam, Netherlandsril 2001.

[KV06] George Kola and Mary K. Vernon. Quickprobe: availeblandwidth estimation in two roundtrips.
SIGMETRICS Perform. Eval. Re84(1):359-360, 2006.

[LDSO06] LilLao, Constantine Dovrolis, and M. Y. Sanadidi.elprobe gap model can underestimate the
available bandwidth of multihop pathSIGCOMM Comput. Commun. Re36(5):29-34, 2006.

[LFVO7a] J. Liebeherr, M. Fidler, and S. Valaee. A min-plystem of bandwidth estimatiohEEE Infocom
2007, pages 29-34, 2007.

[LFVO7b] Jorg Liebeherr, Markus Fidler, and Shahrokh \édaA min-plus system interpretation of bandwidth
estimation. InProceedings of IEEE INFOCOM/ay 2007.

[LiO5] Ningning Hu Li. A measurement study of internet betiecks. IrProceedings of IEEE INFCOMO0OS5.

[LRLO4] X. Liu, K. Ravindran, and D. Loguinov. Evaluatingefpotential of bandwidth estimators. 4th New
York Metro Area Networking Workshop (NYMASgptember 2004.

109



[LRLO5] Xiliang Liu, Kaliappa Ravindran, and Dmitri Loguav. Multi-hop probing asymptotics in available
bandwidth estimation: Stochastic analysisIMC '05: Proceedings of the 5th ACM SIGCOMM
conference on Internet measuremeyew York, NY, USA, 2005. ACM Press.

[LRLLO4] Xiliang Liu, Kaliappa Ravindran, Benyuan Liu, af@mitri Loguinov. Single-hop probing
asymptotics in available bandwidth estimation: samplir-paalysis. IHMC '04: Proceedings of the
4th ACM SIGCOMM conference on Internet measurengages 300-313, New York, NY, USA, 2004.
ACM Press.

[LTWW93] Will E. Leland, Murad S. Taqqu, Walter Willingerna Daniel V. Wilson. On the self-similar
nature of ethernet trafficSIGCOMM Comput. Commun. Re23(4):183-193, 1993.

[Mah0Q] B. Mah. pchar: A tool for measuring internet path retederistics. InSMA 2000.
http://www.employees.orbfmah/Software/pchar/.

[Mat03] M. Mathis. The Web100 Project, 2003. http://wwwhi®0.org.

[MBGOO] B. Melander, M. Bjorkman, and P. Gunningberg. A naewd€o-end probing and analysis method for
estimating bandwidth bottlenecks. Giobal Internet Symposiumlovember 2000.

[Mos08] Kostas Moschos. Digitisation of audio music filagvey on existing software solutions, 2008.
[Nav03] J. Navratil. ABWE: A Practical Approach to AvailabBandwidth. InrPAM, 2003.
[NLAO4] NLANR. Passive Measurement Analysis Datacube, #at2004. http://pma.nlanr.net/Datacube/.

[NN98] Jim M. Ng and Peoy Khee Ng. Cost-delay path selectimtfion for real-time multicast routing. In
MASCOQOTS '98: Proceedings of the 6th International Symposio Modeling, Analysis and Simulation
of Computer and Telecommunication Systgmage 56, Washington, DC, USA, 1998. IEEE Computer
Society.

[NS2] Network simulator-2 ns2 (http://www.isi.edu/nsniausy).

[Pax97] Vern Paxson. End-to-end Internet packet dynanhicBroceedings of the ACM SIGCOMM 97
conference on Applications, Technologies, Architectiaad Protocols for Computer Communicatjon
volume 27,4 ofComputer Communication Revigpages 139-154, Cannes, France, September 1997.
ACM Press.

[PDMO02] R. Prasad, C. Dovrolis, and B. Mah. The effect of lage&tore-and-forward devices on per hop
capacity estimation. 1MW, 2002.

[PJD04] R. Prasad, M. Jain, and C. Dovrolis. Effects of Intpt Coalescence on Network Measurements. In
PAM, 2004.

[PKC96] Kihong Park, Gitae Kim, and Mark Crovella. On theat@nship between file sizes, transport
protocols, and self-similar network traffic. IENP '96: Proceedings of the 1996 International
Conference on Network Protocols (ICNP '96nge 171, Washington, DC, USA, 1996. IEEE Computer
Society.

[Pla] Planetlab. http://www.planet-lab.org/.

[PP] KyoungSoo Park and Vivek Pai. Comon: A monitoring isfracture for planetlab.
http://comon.cs.princeton.edu/.

[PV02a] A. Pasztor and D. Veitch. Precision based preciginimg without gps. InProceedings of ACM
SIGMETRICSJune 2002.

110



[PVO2b] Attila Pasztor and Darryl Veitch. On the Scope of Eoeend Probing Method€Communications
Letters, IEEE6(11), November 2002.

[Qur04] A Qureshi. Exploring proximity based peer selestio bittorrent-like protocolMIT 6.824 student
project 2004.

[rat] Planetlab:bandwidth limits. http://www.planetlarg/doc/BandwidthLimits.php.
[Rib03] V. Ribeiro. pathChirp: Efficient Available BandwitdEstimation for Network Path. IRAM, 2003.

[RKO3] S. Rewaskar and J. Kaur. Testing the scalabilitytérof overlay routing infrastructure3echnical
Report, Department of Computer Science, University of iNGerolina at Chapel Hil] May 2003.

[RRB*03] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. @etl. pathChirp: Efficient available
bandwidth estimation for network paths. Passive and Active Measurement Workshapril 2003.

[RRBO4] V. Ribeiro, R. Riedi, and R. Baraniuk. Spatio-Termgl@vailable Bandwidth Estimation with STAB.
In ACM Sigmetrics/Performancilew York, NY, June 2004.

[San04] San Diego Supercomputer Center . CalINGI NetworkoReance Reference Lab (NPRL), 2004.
http://www.calngi.org/about/index.html.

[SKO06] A. Shriram and J. Kaur. Empirical study of the impatsampling timescales and strategies on
measurement of available bandwidth.Aroceedings of Passive and Active Measurement Workshop
(PAM), March 2006.

[SKO7] Alok Shriram and Jasleen Kaur. Empirical evaluatidtechniques to measure available bandwidth. In
INFOCOM IEEE Communications Society, 2007.

[SKKO03a] Jacob Strauss, Dina Katabi, and Frans Kaashoeked@shtement Study of Available Bandwidth
Estimation Tools. IfProceedings of the ACM SIGCOMM Internet Measurement Cenéer’03 Miami,
Florida, October 2003.

[SKKO03b] Jacob Strauss, Dina Katabi, and Frans Kaashoeke@sarement study of available bandwidth
estimation tools. IiMW, 2003.

[SLAO4] SLAC. Internet End-to-end Performance Monitoringandwidth to the World (IEPM-BW) Project,
August 2004. http://www-iepm.slac.stanford.edu/bw/.

[SMHT05] Alok Shriram, Margaret Murray, Young Hyun, Nevil Brovad, Andre Broido, Marina Fomenkov,
and Kimberly C. Claffy. Comparison of public end-to-end 8andth estimation tools on high-speed
links. InPAM, pages 306—-320, 2005.

[Spi04a] Spirent Corp. Smartbits 6000B, 2004. http:/picom.com/analysis/view.cfm?P=141.
[Spi04b] Spirent Corp. Smartflow, 2004. http://spirentcoom/analysis/view.cfm?P=119.

[SQZ06] Han Hee Song, Lili Qiu, and Yin Zhang. Netquest: aiiexframework for large-scale network
measurementSIGMETRICS Perform. Eval. Re84(1):121-132, 2006.

[Ter] TeraGrid. Teragrid. http://www.teragrid.org/.
[tie] Tier-1 service provider article on wikipedia. httfeh.wikipedia.org/wiki/Tierlcarrier.

[TUAKO4] Turhan Tunalimath, Nukhet Uzbek, Koray Anar, angliA Kantarc. Bandwidth-aware scaling for
internet video streamind.NCS Computer and Information Sciences - ISCIS 26280, 2004.

111



[Tur04] A. Turner. tcpreplay 2.2.2 - a tool to replay savepdamp files at arbitrary speed, July 2004.
http://tcpreplay.sourceforge.net/.

[WAHCT06] M.C. Weigle, P. Adurthi, F. Hernandez-Campos, K. Jeffad F.D. Smith. Tmix: A tool for
generating realistic application workloads in nsACM SIGCOMM Computer Communication Reyview
26(3):67—76, 2006.

[Wol98] Richard Wolski. Dynamically forecasting networkgiormance using the network weather service.
Cluster Computing1(1):119-132, 1998.

[WY00] Kun-Lung Wu and Philip S. Yu. Latency-sensitive hasghfor collaborative web caching. In
Proceedings of the 9th international World Wide Web comfesson Computer networks : the
international journal of computer and telecommunicatioesowrking pages 633—644, Amsterdam, The
Netherlands, The Netherlands, 2000. North-Holland Phirigs Co.

[YSBT06] P.Yalagandula, P. Sharma, S. Banerjee, S.-J.Lee, d®asf. S3: A scalable sensing service for
monitoring large networked systems. Ilternet Network Management (INMB0O6.

[ZDAO06] Yong Zhu, Constantinos Dovrolis, and Mostafa Ammiaynamic overlay routing based on available
bandwidth estimation: a simulation studyomput. Network$0(6):742—-762, 2006.

112



