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ABSTRACT

SUDIPTA N. SINHA: Silhouettes for Calibration and Reconstion from
Multiple Views.
(Under the direction of Marc Pollefeys)

In this thesis, we study how silhouettes extracted from esamnd video can help with two
fundamental problems of 3D computer vision - namely mukdawvcamera calibration and 3D
surface reconstruction from multiple images.

First, we present an automatic method for calibrating a agtwf cameras that works by
analyzing only the motion of silhouettes in the multiple eddstreams. This is particularly
useful for automatic reconstruction of a dynamic eventgisitamera network in a situation
where pre-calibration of the cameras is impractical or exgyossible. Our key contribution
is a novel RANSAC-based algorithm that simultaneously catepthe epipolar geometry and
synchronization of a pair of cameras, only from the motiositfouettes in video. The ap-
proach proceeds by first independently computing the epigrdometry and synchronization
for pairs of cameras in the network. In the next stage, thereion and synchronization for
the complete network is recovered.

The fundamental matrices from the first stage are used tordigte a projective recon-
struction, which is then upgraded to a metric reconstraaising self-calibration. Finally, a
visual-hull algorithm is used to reconstruct the shape @btiynamic object from its silhouettes
in video. For unsynchronized video streams with sub-fraaneporal offsets, we interpolate
silhouettes between successive frames to get more aceisate hulls.

In the second part of the thesis, we address some short-geroinexisting volumetric

multi-view stereo approaches. First we propose a noveltditation for multi-view stereo that



allows for robust and accurate fusion of the silhouette datks cues. We show that it is
possible to enforce exact silhouette constraints withengtaph-cut optimization step in the
volumetric multi-view stereo algorithm. This guaranteleattthe reconstructed surface will
be exactly consistent with the original silhouettes. Camytito previous work on silhouette
and stereo fusion, the silhouette consistency is guarafgeonstruction through hard con-
straints in the graph-cut problem — the silhouette conststéerms are not part of the energy
minimization problem which aims to find a surface with maxipiaoto-consistency.

Finally, we have also developed an adaptive graph congiruapproach for graph-cut
based multi-view stereo to address the inherent high mearmtycomputational overhead of
the basic algorithm. The approach does not need any iadiadn and is not restricted to a
specific surface topology which is a limitation with exigtimethods that use a base surface
for initialization. Using this method, we have been ableffwiently reconstruct accurate and

detailed 3D models of objects from high-resolution imagesafnumber of different datasets.



This thesis is dedicated to my parents.
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CHAPTER 1
3D modeling from images and video

1.1 Introduction

Recovering 3D models of the real world from images and videamiimportant research area
in computer vision with applications in computer graphiggual reality and robotics. Man-
ually modeling photo-realistic scenes for such applicegtics tedious and requires a lot of
effort. The goal in computer vision is to generate such nodatomatically by processing
visual imagery from the real world captured by cameras infolhen of images and video or
by other specialized sensors and recovering the 3D shapstaradure of the scene. In re-
cent years the explosion of digital photography, rapid imvpments in cameras and growth
in visual surveillance systems coupled with the advancesimputer graphics and increasing
demand for 3D content in various visual applications haateska growing demand for prac-
tical vision-based 3D modeling systems that can reliabptuw@ models from the real world
in various different scenarios.

The first area we explore in this dissertation is reconstrgéh 3D a dynamic scene that
was captured on multiple video streams. The goal is to dmiith 3D a time-varying event
involving either rigid or non rigid moving objects such astan beings, for e.g. a dance
performance that was recorded by video cameras from meilighvpoints. Researchers in
computer vision have been interested in solving this proldla over a decade now. In 1997,
Kanade et. al.gq9] coined the ternvirtualized realityand demonstrated the technology by
reconstructing real life scenes involving humans usinggelaluster of cameras in an indoor

environment (various camera setups that were used is shotigurel.1(a—c)). Since then



(€)

Figure 1.1: Various indoor camera networks at CMU Robotiabd B9, 70] - (a) 3D dome

consisting of 51 cameras, (b,c) 3D room: cameras setup toireapn event from multiple
views. (d) 4 out of a 8 view sequence captured at the CMU 3D r@)n{e) Another multiple
view sequence of a dancer (courtesy PERCEPTION Group, INRiAne-Alpes).



various systems have been developed which can digitize msnngjects performing various
actions RO, 22, 24, 41, 42, 96, 114 — these systems use an indoor room-sized camera setup
that typically consists of 8-15 synchronized cameras dBograt 15-30fps. We will refer
to such an arbitrary configuration of cameras asmera network With the popularity of
digital cameras and growth of video surveillance systermwadays both indoor and outdoor
camera networksre becoming commonplace. However modeling dynamic saaute®ors
is a much more challenging problem and many assumptionseftieathold true in a controlled
indoor setup now need to be relaxed. One of the fundamemfairegnents for reconstructing
3D events observed by camera networks irrespective of tenstruction method itself is
accurate geometric calibration and synchronization aha&llcameras in the network.
Currently in all multi-camera system2Q, 22, 24, 41, 42, 96, 114 calibration and syn-
chronization must be done during an offline calibration phaefore the actual video capture
is done. Someone must be physically present in the sceneavgiptecialized calibration ob-
ject. This process makes the process of camera deploymdrdacauisition fairly tedious.
Multiple calibration sessions are often required as thempoi easy way to maintain the cali-
bration over a longer duration. In this thesis we explorespmisties of making this part of the
whole process more flexible by developing methods that ecal/the necessary information
from the recorded video streams — thus eliminating the needrf explicit offline calibration
phase before the video capture. Figlirkshows some examples of camera networks record-
ing a dynamic scene involving a human subject from multipgswpoints. 3D digitizing such
time varying events would enable the user viewing the eweebetcompletely immersed in a
virtual world allowing him to observe the event from any #&mdiy viewpoint — this is called
viewpoint-free 3D videand has promising applications in 3D tele-immersion, ardigitiz-
ing rare cultural performances, important sports eventisgmerating content for 3D video
based realistic training and demonstrations for surgeegiaomne or other technical fields.

We also look into the problem of capturing a high quality 3Ddaloof a static object such



Figure 1.2: A 3D model of a statue reconstructed from 36 irmadée object was placed on
a turn-table and imaged under fairly controlled conditions

as a statue from ordinary images taken from multiple viewfso+ an example is shown in
Figurel.2 This is also a problem that has been extensively studiedercomputer vision
community and over the last decade, remarkable progresbdesmade in terms of qual-
ity and accuracy of the recovered 3D models and robustnetbe seconstruction approach.
More sophisticated and specialized technologies suchsas tange scanning have also been
succesfully used to scan objects or 3D scei®d [However, those require expensive hard-
ware, active lighting in the scene, and are limited to lowtgeprates and finite depth ranges.
In some cases, both structured and unstructured activitngghave been used with ordinary
cameras for 3D shape acquisitidré[), but performing accurate and robust 3D reconstruction
from ordinary images is still a major research goal in the gotar vision community because
it will make the technology more practical and easily apqdie.

In this dissertation, we improve upon the state of the ahiniepies for the two scenarios
described above, namely - (a) modeling dynamic events inr8® multiple archived video
streams and (b) acquisition of high quality 3d models ofistatjects in the real world.

Our primary goal is to increase the overall flexibility of cara network calibration and

synchronization for 3D event reconstruction. We have dmedl a method for calibrating and



synchronizing a network of cameras observing an event fratiphe viewpoints. Through
this method, we aim to ease the deployment of cameras fonsétwting dynamic scenes as
all the necessary information in our method is recoverednayaing only the silhouettes of
moving objects in video. The silhouettes can then be useddover the 3D shape using a
well know shape-from-silhouettiechnique.

For reconstructing accurate 3D models with detailed gegnieim images, multi-view
stereo approaches have shown promising results in recarg. y&lthough quite sophisticated
stereo algorithms have been proposed, the undertenge correspondence problenmighly
ill-posed. Therefore all robust method must employ some typregularization to enforce
local surface smoothness. On the other hand, silhouettebjetts observed in multiple
views provides a strong constraint on its shape and formbdkes ofshape-from-silhouette
methods. However, silhouette based methods cannot reaayeroncavities on the surface
of the object. Combining stereo and silhouette cues canawepthe accuracy of the 3D
modeling process. The methods to integrate the two cuebalvatbeen proposedy, 57, 66|
do not combine the complementary information provided byosiettes and stereo in the best
possible way. In this thesis, we will investigate this direa further. We will present a new
graph-cut based multi-view stereo formulation in whiclhgiette constraints can be exactly
enforced. While the benefit of the graph-cut approach for3Bereconstruction problem
has been reported B, 85, 148, we show that it is possible to also incorporate the powerfu
silhouette constraint within the graph-cut framework. Dwerall goal of this approach is to
guarantee robust and accurate fusion of multi-view steriéosithouette cues.

Finally, we also address the high memory and computatiovaihead of the volumet-
ric graph-cut based multi-view stereo approach. We proposemulation that involves an
adaptive graph construction. This makes it possible toea€hihe fine voxel resolution that
is required for reconstructing surfaces with high georneadgtail without overshooting the

memory bottleneck during the graph-cut optimization. Tapive construction also avoids



evaluating the photo-consistency measure densely inmegidich are unlikely to contain

any surface elements. This reduces the overall computttinanby an order of magnitude.

1.2 Background

This section provides some background into the state of thenathods used for camera
calibration and multi-view 3D reconstruction, and somelaf timitations and weaknesses

that we plan to address in this dissertation.

1.2.1 Camera Calibration

(d)

Figure 1.3: (a) Camera Calibration using a planar checleethfi62. (b) Calibration using
a single LED [L37]. (c) Synchronization using motion capture market$4. (d) VICON
motion capture system and its own calibration wand.

In traditional camera calibration, images of a calibratiarget (an object whose geome-
try is known) are first acquired. Correspondences betweepd@iits on the target and their
imaged pixels are then recovered (the target is built in a twayake this step easy). After
this, thecamera-resectioningroblem is solved. This involves estimating the intringid &x-

trinsic parameters of the camera (see Apperdik 1 for the specific camera model used) by



minimizing the reprojection error of the 3D points on thelwation object. The Tsai camera
calibration technique was popular in the past, but requaradnplanar calibration object with
known 3D coordinatesl43. The resulting calibration object often had two or thre#hogo-
nal planes. This was difficult to construct and made the d\veracess of camera deployment
and calibration quite cumbersome. Zhang et18] proposed a more flexible planar cali-
bration grid based method in which either the planar gricherdamera can be freely moved.
The calibration object is easily created by pasting a chibdeed pattern on a planar board
that can be waved around in the scene. An implementation®t#hbration method is pro-
vided by [L0], and has become very popular among computer vision rdseac-igurel.3(a)
shows the result of this calibration procedure in the carnecadinate system. Another simi-
lar plane-based camera calibration technique was als@peoiaround this timelB5.

While this method produces fairly accurate calibrationgalistic scenarios, obtaining the
calibration data for large multi-camera systems can stiljbite tedious. Often, with cameras
placed all around a scene, the checkerboard can only be geearball group of cameras at
one time. Hence, only a subset of cameras in the network cealitxeated in one session. By
ensuring that these subsets overlap, it is possible to nieegesults from multiple calibration
sessions and obtain the calibration of the full camera nétwidowever, this requires extra
work and makes the overall procedure quite error prone. eltsea new method for multi-
camera calibration1[37] — one that uses a single-point calibration object in thenfaf a
bright LED that is waved around the scene. The advantagewiges is that the LED can
be simultaneously observed in all images irrespective @f ttonfiguration. In a fairly dark
room, detecting it in the images and establishing corredpoce are easy and reliable. By
moving the LED around, one can calibrate a larger volume thanld be possible with a
checkerboard, and the arbitrary path taken by the LED duhegtalibration session can be
thought of as a flexible virtual calibration object (see Fel.3(b)).

Motion capture systems such as VICOM{f provide their own calibration devices con-



taining retro-reflective sensors (see Figlir&d) or other special markers to establish 2D-3D
correspondence. Although the basic idea is similar to LEd3el calibration, calibrating large
spaces or those in broad daylight is still considered to beadenge as the LED or the mark-
ers become harder to detect when the cameras observe adaggbrighter scene. Such mo-
tion capture sensors are often also used for multi-camerehsgnization (see Figurk3(c)).
Often in controlled scenes, a hardware trigger is used tolspmize all the video cameras
together to ensure higher accuracy. A simple alternatite isse a clap sound to manually
synchronize the videos, but this can be error prone for Waentaining fast-moving subjects
or in outdoor, noisy environments.

Although all these traditional methods can produce aceursults, they require physical
access to the observed space and involves an offline prextadib stage that precludes re-
configuration of cameras during operation (at least, witlaouadditional calibration session).
This is often impractical and costly for surveillance apations and can be impossible for
remote camera networks or sensors deployed in hazardouerements.

On the other hand, significant progress has been made inghddaade, in automatic
feature detection and feature matching across images., Adbost structure from motion
methods, that allow the recovery of 3D structure from uficated image sequences have
been developed. Such structure from motion algorithms \iestedeveloped in the context
of video [10€§], but were also extended to handle large unstructured insatiections [L9,
128. Although in theory, such techniques could be used for hualinera calibration, they
require more overlap between camera pairs than is oftetahl@in camera networks. This
is why automatic point correspondence based methods aftentdvork for camera network

calibration and manual calibration is required.



1.2.2 Multi-view 3D Reconstruction

The techniques for 3D reconstruction from images (ofteled@D photographyinvolves us-
ing cameras (and optionally illumination) to acquire tha@hand appearance of real objects.
Flexible techniques for acquiring the 3D shape and appearaha variety of real objects
under different imaging conditions have been studied. Wdse methods can be divided into
two categories -activeandpassivemethods. Whileactivemethods employ some form of ar-
tifical lighting in the scenepassivanethods recover all the information only from the images
without making any prior assumptions on illumination infation.

Active vision methods such as laser range scanrjy pctive stereo with structured or
unstructured projected lightfQ, active depth from defocugf] typically require expensive
hardware or need to deploy specialized equipment. Althdlugyhhave been shown to produce
good results in controlled scenes, there is less flexibilitysing them in the real world. This
is why there is still a strong interest in the computer viscmmmunity to develop robust
algorithms for accurate 3D reconstruction uspagsivenethods.

In passivemethods, a wide variety of visual cues can be exploited —etlags used to
classify the methods into the following categories (not ahagistive list) — stereo, shape
from shading (photometric stereo), shape from silhougtieape from focus (and defocus),
shape from texture, etc. It has been shown that human visidmparceptual systems rely on
these different cues to perceive 3D shape, and this has aedithese varioushape-from-X
approaches. Amongst these, the stereo and silhouette coesate and these can be applied
in a wide variety of scenes involving various types of olgetn this thesis, we will limit our
discussion to 3D reconstruction methods that use only #resiand silhouette cues.

A single image of an unknown scene does not provide enoughnation to reconstruct
a 3D scene as the associated depth information is lost dumiage formation. Please refer
to AppendixA-1.1 for the mathematics of image formation and the commonly esedera

models. Although researchers have been studying the pnadflanferring the 3D scene struc-



ture from a single image2p, 62, 115, these methods typically require additional information
require the scene to be structured in a certain way, and ped8ID estimates which are coarse
shape and fairly inaccurate.

By extracting dense pixel to pixel correspondences betwadtiple calibrated images of
the same scene, it becomes possible to recover the 3D stwiing geometric techniques
such as multi-view triangulation. This is the basic ideaibéimany binocular stereo (two-
view) or multi-baseline stereo algorithms. However thesgeoorrespondence problem (or
the 3D reconstruction problem in general) is a highly ilspd inverse problem; the presence
of image noise, specularities or other complex illuminatedfects, presence of texture-less
regions on the surface and finally occlusions makes the geBEr reconstruction problem
quite challenging. The estimation problem has multipleisoh and must employ some form
of regularizationthat biases the solution towards smoother shapes. This btidgs down
to solving a computationally expensive optimization pesblinvolving many unknown vari-
ables.

Various mathematical formulations for the optimizationlgem exist in the literature3p,

13, 14] and are based on different criteria. All the methods can toadly classified into
local andglobal methods. While global methods usually ensure higher acguaad utilize

better forms of regularization and shape priors, their catajonal complexity is usually
much higher than the local methods.

Existing multi-view stereo methods can also be classifietherbasis of scene represen-
tation, photo-consistency measure, shape priors usedangtious ways of dealing with the
visibility problem (see 117] for a detailed survey of existing methods). We will reviesnse
of the relevant stereo arghape-from-silhouettenethods in Chapter4 and5 respectively.
Many successful global methods often adopt a variationaidageh to the problem that aims
to recover a weighted minimal surface inside a given boupndotume. One popular strategy

is to cast the reconstruction problem into the level-seh&aork, and represent the surface as
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the zero level set of a time-evolving implicit function. Téeergy functional is solved by us-
ing a partial differential equation which drives the evautof the level set function. The final
surface recovered is often quite smooth, but this strongbedds on the initialization because
the underlying method can only compute a local minima of thergy functional. Another
class of discrete combinatorigtaph-cutmethods have recently been used to minimize sim-
ilar energy functionals with better guarantees on findirgpgl minimas under some special
cases. It was shown that graph-cuts could efficiently comtha weighted minimal surface
by solving a mincut problem on a suitable flow graph (see AdpeB-3 for the preliminaries)

for which polynomial time algorithms are well known. Howevine graph-cut approach for
3D reconstruction has some other weaknesses. These witldbgzad in Chaptes, and we

will explore new methods in this dissertation to addresathe

1.3 Our Contributions

The primary contributions discussed in this disseratienteio-fold. These are summarized

below. See AppendiB-3.1for the list of relevant publications.

Camera Network Calibration and Synchronization

As surveillance camera networks or video cameras becomenoomit will be possible to

record live video of a dynamic scene involving moving obgeciften human subjects from
multiple viewpoints. First, we show that it is possible tda@uatically recover the calibra-
tion and synchronization of such a network of cameras usimyg the input videos. Next,

we show how to obtain the 3D reconstruction of the dynamiaeas well. The proposed
technique can recover all the necessary information byyamag the silhouettes of moving
objects in multiple video streams. This allows us to modeladyic scenes or events in 3D
from archived video, and it precludes the need for an offlaécation phase or physical ac-

cess into the scene for collecting explicit calibrationadahis increases the overall ease for
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camera deployment and acquisition for digitizing 3D evem& demonstrate the benefit of
our approach by remotely calibrating several visual hulhdets that were acquired by other
researchers in their own labs. Differents parts of thisaedehave been published in the
following papers —125 122 123 121].

The specific contributions are:

e We propose a novel algorithm for recovering the epipolangetoy of a camera pair and
the synchronization that recovers the necessary infooméaty analyzing the silhouettes

of moving objects in video.

e We use RANSAC 9] in a new way — to explore a low dimensional parameter space
within the epipolar geometry estimation problem, rathemtlising it only for robust

estimation which is common in the computer vision literatur

e We show how to incrementally construct a fully calibratecheaa network starting from
pairwise epipolar geometry estimates. The technique caappked to other camera

network calibration scenarios.

e Finally, the proposed algorithms have been combined wahiend-to-end system for
calibrating and synchronizing a network of cameras fronhiged video sequences
of a dynamic scene or event. The recovered calibration andhsgnization makes it

possible to subsequently reconstruct the dynamic sceri.in 3

Improvements in Multi-view Stereo

In the second part of the thesis, we improve upon differepeets of existing multi-view
stereo techniques. First, we propose a novel formulatiomidti-view stereo that allows for
robust and accurate fusion of the silhouette and sterea desshow that it is possible to
enforce exact silhouette constraints within the grapheqiimization step in the volumetric

multi-view stereo algorithm. This guarantees that the mstroicted surface will be exactly
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consistent with the original silhouettes. A preliminarysien of this approach was published
in [124). Finally, we have also developed an adaptive graph coctsdruapproach for graph-
cut based multi-view stereo to address the inherent highangeand computational overhead
of the basic algorithm. Using this method, we have been al##itiently reconstruct accurate
and detailed 3D models of objects from high-resolution iesafpr a number of different
datasets. This method was publishedl§.

The specific contributions are:

e We propose a graph-cut formulation for volumetric mulwistereo that strictly en-
forces silhouette constraints. This implies that in additio being photo-consistent,
the final reconstructed surface computed by the graph-eptwsiil be fully consistent
with the original silhouettes. Contrary to previous work gilhouette and stereo fu-
sion, the silhouette consistency in our method is guardnbgeconstruction (through
hard constraints) in the graph-cut problem — the silhousttesistency terms are not
part of the energy minimization problem which aims to find &ate with maximal

photo-consistency.

e We also propose an alternate formulation that addressédsghememory and compu-
tational requirements of the basic volumetric graph-oestesi algorithm. Our proposed
method recovers surfaces with geometric detail by perfiognai graph-cut on the dual
of an adaptive tetrahedral mesh (a CW-complex) created byoptonsistency driven
recursive mesh subdivision. The approach does not needchéiafization and is not
restricted to a specific surface topology, which is a linnatvith existing methods that

use a base surface for initialization.
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1.4 Thesis Outline

This thesis is organized into two parts. Part | deals withptublem of camera network cal-
ibration, synchronization and reconstruction of dynansierees from multiple video streams.
Part Il deals with acquisition of 3D models from multipleibahted images of static objects.
In Chapter 2, we discuss a novel method for recovering thgodgni geometry from silhou-
ettes in video. The method is extended to simulateneousbyez the epipolar geometry and
the temporal offset. In Chapter 3, we describe how the fuli@a network calibration can
be recovered from pairwise epipolar geometries. In Chapteare review exact visual hulls,
shape-from-silhouett@gorithms and present dynamic scene reconstructiontsasularious
datasets. In Chapter 5, we survey the start-of-the-arti+vielv stereo methods and those that
combine stereo and silhouette cues. Chapter 6 containsoegl graph-cut based multi-view
stereo formulation that makes it possible to exactly e@ithouette constraints. In Chap-
ter 7, we present the efficient graph-cut method that ineareadaptive graph construction.
Finally, we present our conclusions in Chapter 8, and paimtdirections for future work.
Miscellaneous topics and relevant background materiadvgewed in the Appendices that

follow.
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Part |

Camera Network Calibration and
Synchronization for Modeling Dynamic

Scenes
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CHAPTER 2
Epipolar Geometry from Silhouettes

2.1 Introduction

The epipolar geometry captures the projective geometkydmat two views of the same scene,
and it depends only on the camera intrinsics and the relptge of the two cameras. Tech-
niques for computing the epipolar geometry from multiple @&nt correspondences in the
two images have been well studied. Estimation of epipolangry and other multi-view
geometric relations from 2D point correspondences forrashtisis for many structure from
motion pipelines. However, when dealing with camera netwabserving an event, such
methods cannot be used to reliably recover the epipolar gggnm several scenarios. This is
because these methods depend on the presence of suffitegestrpoint matches (2D point
correspondences) in the two views. Live video of eventsromb by a camera network of-
ten lacks such point correspondences due to extremely vaisielibes of camera pairs, and a
low overlap of the static background observed in the two giéan example is shown in Fig-
ure2.1). However, since these cameras are setup to observe dyesarnits, the silhouettes
of moving foreground objects is often a prominent feature.

This chapter studies how silhouettes of such moving obfgrdsrved in two video streams
can be used to recover the epipolar geometry of the corrééppicamera pair. In fact, the
method that we develop can be used to simultaneously rebotethe epipolar geometry and

the synchronization of the two cameras, as we show later.



Figure 2.1: A moving person was observed and recorded fram ddferent viewpoints.
Here four corresponding frames are shown along with thegéttes that were automatically
extracted. Note that the silhouettes are noisy and the segaare not synchronized.

2.2 Background

The recovery of camera pose from silhouettes was studie@® ¢ 00, 147, 157, and recently
there has been some renewed interest in the probldmif7, 58. However, most of these
techniques can be applied only in specific settings and heyyg@irements that render them
impractical for general camera networks observing an uwkrstynamic scene. These include
that the observed object be stat8[47], the use of a specific camera configuration (at least
partially circular) b8, 152, the use of an orthographic projection mod&l,[147], and a good
initialization [11, 156.

In our method, we take advantage of the fact that a cameraorietiserving a dynamic
object records many different silhouettes, yielding adangmber of epipolar constraints that
need to be satisfied by every camera pair. At the core of ouoaph is a robust RANSAC-
based algorithmd], that computes the epipolar geometry by analyzing theosgites of a
moving object in a video. In every RANSAC iteration, the epggpositions in the two im-
ages are randomly guessed and a hypothesis for the epipmanegry is formed and effi-
ciently verified using all the silhouettes available fromre thdeo. Random sampling is used

for exploring the 4D space of possible epipole positions el &g for dealing with outliers in
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the silhouette data. This algorithm is based on the comstaaising from the correspondence
of frontier points and epipolar tangents for silhouettesia views. This constraint was also
usedinf7,100 111, 157 but for specific camera motion, or camera models, or in asidn
where a good initialization was available.

Frontier points were used bg11] to refine an existing estimate of the epipolar geometry.
They were used byl00 152 for the specific case of circular motion, where turntable se
guences of static objects were calibrated. Furukawa ef43gldirectly searched for frontier
points on silhouettes in each viewpoint. To recover the @pipgeometry, they require an
orthographic camera model. Their method also requires igtity silhouettes and works
better with small camera baselines. Many common shapesasanvery few frontier point
correspondences in two views and the epipolar geometmypatgicould be unstable or impos-
sible to compute using this method.

Hernandez et. al58] generalized the idea of epipolar tangencies to the corafepthou-
ette coherengavhich numerically measures how well a solid 3D shape cpoeds to a given
set of its silhouettes in multiple views. They performed eaancalibration from silhouettes
by solving an optimization problem wheséhouette coherends maximized. However, they
only dealt with circular turntable sequences, which haveefeunknown parameters, so their
optimization technique does not generalize to an arbittargera network. Boyer et. alL]]
also proposed a criterion back-projected silhouette conest satisfy such that the true object
is enclosed within all of the cones. They use it for refining talibration parameters of a
camera network, but this requires good initial estimatath@®icamera parameters.

In this chapter, we first study the recovery of epipolar getoynien the case where the
two cameras are synchronized. We then show how to extendgbethm to simultaneously
recover the epipolar geometry as well as the temporal dffststeen a pair of unsynchronized
cameras recording at the same frame rate. As our calibragiproach relies on silhouettes, it

requires a robust background segmentation approach (gendxB-1 for the approach used
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for silhouette extraction). Moreover, our RANSA@]{based algorithm is robust to errors in
silhouette extraction. For stable estimates of the epigg@ametry, it is important to sample
the 3D space densely, which requires sufficient motion offtheground object covering a
large part of the 3D volume observed by the cameras. Thistia pooblem, as our method

can efficiently handle long video sequences with thousahdghmuettes.

2.2.1 Geometry of Silhouette Formation

When a scene containing an object (or objects) is observagbihole camera (mathematical
model described in AppendiX-1.1), it produces a silhouett& on the image plane. This is
shown in Figure2.2(a). The boundary curve of the silhouette is calledapparent contour

It divides the image plane into two regions - the interior loé¢ silhouette and its exterior.
The generalized cone iR? formed by the set of all rays passing through the interiomef t
silhouette and the camera centers called theviewing coneor silhouette coneThe viewing
cone is tangent to the object’s surface along a continuoveaalled thecontour generator
or rim. Note that for a non-convex solid shape, the rim curve caludedtself giving rise to
aT-junctionon the silhouette. As shown in Figu2eb), in general points that belong to the
apparent contour in two different views and lie on matchipgpelar lines such as: andm’
are not corresponding points.

The only true point correspondences on the apparent comtowo views occur at special
locations calledrontier points In Figure2.2(c), one pair of frontier points is denoted by
x1 and z,, respectively. Note that the viewing rays that correspand matching pair of
frontier points such as; andx, must intersect at a true surface point in the tangent plane of
the surface. The contour generators or rims must also edeas such a surface point. This
point, along with the camera baseline defines an epipolarepaat must be tangent to the
surface, giving rise to corresponding epipolar lines such andl,, which are tangent to the

silhouettes at the frontier points. Frontier point cormsgence does not extend to more than
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T-junction

Contour Generator (rim)

Silhouette (Apparent contour)

(@) (b)

Figure 2.2: (a) Apparent contour and contour generaton(rfly) In general, any two contour
points on matching epipolar lines do not correspond. (cihfeo points and epipolar tangents
for two views.

two views in general. In a three-view case, the frontier ®in the first two views do not
correspond to those in the last two views.

A convex shape, fully visible in two views, has exactly twarpaf frontier points. For
a nonconvex shape such as a human figure, there can be sexteralgl frontier points, but
many of them could be occluded. If the location of the epipolthe image plane is known,

matching frontier points can be detected by drawing tarsyemthe silhouettes. However,

20



Figure 2.3: If the location of the epipoles in the two imagesravknown, then some cor-
responding frontier points could be extracted. Note thatesof the frontier points corre-
sponding to the elbows, chin of the person are occluded. Buektremal frontier points
corresponding to the head or toe will never be self-occluded

when the epipole location is unknown, it is very difficult eiably detect the frontier points.
In [152 Wong et. al searched for outer-most epipolar tangentsifoular motion. In their
case, the existence of fixed entities in the images, sucledmtizon and the image of the rota-
tion axis, simplified the search for epipoles. We too use tmiyextremalfrontier points and
outermost epipolar tangents because, for fully visibleaikettes, these are never occluded.

An important point to note is that the extremal frontier geimust lie on the convex hull of

the silhouette in the two views.

2.3 Epipolar Geometry from Dynamic Silhouettes

Given nontrivial silhouettes of a human (see Fig@r8), if we can detect matching frontier
points, we can use the 7-point algorithm to estimate theodgigeometry by computing the
fundamental matrix. However, it is difficult to directly firdatching frontier points without

knowing the epipoles. The method proposed by Furukawa. ¢4 @lassumes an orthographic
camera model and small baselines between camera pairs: afigbach requires accurate
silhouettes and wouldn’t work unless there are at leastdooccluded frontier point matches

in general position.
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Given an approximate solution, it is possible to refine thp@pr geometry using an
optimization approachb| 111]. However, since we use only silhouettes, an initial soluis
not available to us. Therefore, we need to explore the fatsmf possible solutions. While
a fundamental matrix has 7 degrees of freedom (dofs), ounadednly randomly samples
in a 4D space because once the position of the epipoles ack fixdential frontier point
matches can be determined, and from them the remainingetegféreedom of the epipolar
geometry can be computed via an epipolar line homographge tte propose a RANSAC-
based approach that in a single step, allows us to efficiexghjore this 4D space as well as

robustly deal with inaccurate silhouettes in the sequence.

2.3.1 Silhouette Representation

Figure 2.4: (a) The Convex Hull of the silhouette in a videanfie. (b) The Tangent Table
representation (c) The space of all tangents to the convépdmameterized by.

For every frame in each sequence, a binary foreground makle abject is computed us-
ing background segmentation techniques (see AppdBdifor details). Instead of explicitly
storing the complete silhouetfe we compute and store only the convex gl and its dual
representation, as shown in Figutel for every video frame. This is a very compact repre-
sentation as it allows us to efficiently compute outer tatgmsilhouettes in long sequences
containing potentially thousands of different silhoustt&he convex hull{s is represented
by an ordered list ok 2D points in the imagey . . . v; in counter-clockwise order (CCW)).

The 2D lines tangent té{s are parameterized by the angle= 0 .. .27 (in radians) that the
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line subtends with respect to the horizontal direction ia itmage. For each vertax, an
angular intervald;, 67] is computed. This set represents all lines that are tartgég at the
vertexv,. These tangent lines are directed, that is they are condist&iented with respect
to the convex hull. Thus, for a directidh there is always a unique directed tangkntvhich

keeps tangency computations in our algorithm quite simple.

Computing the Convex Hull

The convex hullHs for a silhouetteS, can be computed in linear time using Melkman’s on-
line convex hull algorithm99]. This algorithm requires a simple path traversing all the
input points, which in the general case tak&s: logn) time to compute. In our case, a top-
down scan of the bounding box &fin the image generates two simple paths in linear time —
a left boundaryCs and a right boundarRs. Then in a single pass, Melkman’s algorithm is
used to compute the left hull in CCW order frofig and the right hull in CW order frorR s.

A union of the left and right hulls produces the convex hukioonsistent CCW order.

When the silhouettes are clipped at the frame boundaristgad of ignoring the frame
completely, we try to use the partial silhouettes in our apph. This is because often partially
clipped silhouettes contain 1 or 2 valid extremal frontiemps in the parts of the silhouette
which are unclipped. We store the convex hull as a singlerediést instead of multiple
connected segments. We introduce new vertices where tieusiites are clipped and use a
special bit to indicate the fact that some segments lie deitsie image boundary. Also in the
scenario where multiple foreground objects have been tet@c the image, we compute the
unique convex hull of the whole ensemble.

The computational time for the tangent table is linear indize of the convex hull poly-
gon. Computing the outer tangents to the silhouettes froyneaternal point in the worst
case take®)(log k) time. However, by exploiting high temporal coherence ineaidon an

average this can be done much faster. In all our experimdgr@ssonvex hulls of the silhou-
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ettes typically had 20-40 vertices. A single video framedfae contributes< 500 bytes of
storage and the information from thousands of silhouetiggleo can easily fits into memory
allowing us to efficiently handle long sequences. By hamdbnly outer epipolar tangents,

we keep tangency computations efficient and also do not maedrry about occlusions.

2.3.2 Main ldea

In AppendixA-1.2we discuss the parameterizatiorkgfin terms ofe;;, e;;, the position of the
epipoles in the images ard;;, the epipolar line homography. The basic idea in our apgroac
is the following — to generate a hypothesis for the epipotrgetry, we randomly guess the
position ofe;; ande;; in the two views. This fixes four dofs of the unknown epipolaometry
and the remaining three dofs can be determined by estimHtjfgr the chosen epipole pair.
To compute the homography, we need to obtain three pairsroésgmonding epipolar lines
(epipolar tangents in our case) in the two views. Every hammplgyH;; satisfying the system
of equationgl’],. Hj; I} = 0 where & = 1 ... 3 is a valid solution. Note that these

equations are linear ikl; and allows it to be estimated efficiently. In a RANSAG] [ike

fashion, we then evaluate this hypothesis using all th@sdkies present in the sequences.

, - _
L
(@) (

Figure 2.5: (a) Having randomly picked two correspondirajrfes, two random directions

are sampled in each image. The intersection of the correlspgepipolar tangents generates
the epipole hypothesis. (b) Outermost epipolar tangentseémew silhouette, computed in

another pair of randomly selected corresponding frames.thilee pairs of lines can be used
to estimate the epipolar line homography.

b)
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2.3.3 Hypothesis Generation

At every RANSAC iteration, we randomly choose a pair of cepanding frames from the two
sequences. In each of the two frames, we randomly sample itectidns each and obtain
outer tangents to the silhouettes with these directionsg. fiFbt directiond; is sampled from
the uniform distributionU (0, 27), while the second directiof, is chosen a#, = 6, — z,
wherez is drawn from the normal distributioN (7, 7). For each of these directions, the
convex hull of the silhouette contains a unique directedeéan The two tangent lines in the
first view are denoted by} and1; while those in the second view are denotedlpynd1?
respectively (these are shown in red in Fig@r§a)) . The intersections of the tangent pairs
produces the hypothesized epipodgsande;; in the two views.

An alternative approach for generating the epipoles ire®lsampling both epipole di-
rections randomly on a spherg4], which in the uncalibrated case is equivalent to random
sampling on some ellipsoid and yields comparable resulbsitonethod. We next randomly
select another pair of frames and compute outer tangentstfie epipoleg;; ande;; to the
silhouettes (actually their convex hulls) in both viewsthiére are two pairs of outer tangents,
we randomly select one. This third pair of lines is denoted?bgzndl?, respectively. (these
are shown in blue in Figur2.5b)).

Now, H;;, the epipolar line homography, is computed from the threeesponding lines
2{1} — 1¥} where k = 1 ... 3. The quantitiesd;, e;;, H;;) form the model hypothesis for

every iteration of our algorithm.

2.3.4 Model Verification

Each randomly generated model for the epipolar geometmgisiated using all the data avail-

able. This is done by computing outer tangents from the thgsized epipoles to the whole

Lif silhouettes are clipped in this frame, the second paiangjents could be chosen from another frame.
“There are two ways to pafi}, 17} with {1},12} and we generate a hypothesis for each of the two cases.

177
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Figure 2.6: The model for epipolar geometry is used to complu epipolar transfer error
for all the silhouettes in video. When the model is completeaccurate, an early rejection
scheme 93] is used.

sequence of silhouettes in each of the two views. For unetipplhouettes, we obtain two
tangents per frame, whereas for clipped silhouettes, thesebe one or even zero tangents.
Every epipolar tangent in the first view is transferred tigiol;; to the second view (see
Figure 2.6) and the reprojected epipolar transfer ereois computed based on the shortest

distance from the original point of tangency to the transi@gtine:

e = d(x;,1}) + d(x;, lf) (2.1)

whered(x, 1) represents the shortest distance from a 2D poittt a 2D linel andx; andx;
represent the point of tangencies in the two images whiclmwfaasferred to the other view,
gives rise to epipolar linek andl; respectively.

Figure 2.7 shows the distribution of for a typical pair of sequences. We use an outlier
threshold denoted by, to classify a certain hypothesis as a good or bad. The mettrod f
automatically computing, is described in the next section and varies with image size an
the amount of motion in the sequence, typically to be somewhere in the range of 4-12
pixels (the value 12 pixels was chosen when the image siz@Gasx< 1000 approximately).
The K"*—quantile denoted byk is computed (in all our experiments, K = 0.75, or 75%). If

ek < 7o, then the epipolar geometry model is considered a promisamglidate and it is
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recorded.

Note that the approach will only work as long as we can dedl slightly wrong guesses
for the two epipoles and as long as we sample within the cgewee region or attraction
basin of the correct epipoles. The size of the attractiomb@sds to vary but this can be
estimated from how frequently promising candidates aredaduring the thousands of trials
of the algorithm. This is analyzed later.

The RANSAC-based algorithm looks fag promising candidates after which these can-
didates are ranked based on the inlier count and the bestor@wyst these are further refined
using non-linear optimization. A stricter threshatg which is set to 1 pixel in all our exper-
iments, is used to determine the subset of inliers. Fropbart pairs often remain stationary
in video and give rise to duplicates, therefore these nebe temoved. This is done using a

binning approach while computing the error distribution.

good hypothesis bad hypothesis

frequency
frequency

e (in pixels) 7 €k e (in pixels)

(@) (b)

Figure 2.7: (a) Error distribution for a good hypothesis. t&that theK'"—quantilecy is
much smaller tham,. (b) Error distribution for a bad hypothesis. Note that itiech more

spread out and thK *"—quantileey is greater than,.

While evaluating a hypothesis, we count how many tangenteezk the outlier thresh-
old 7, and reject a hypothesis when a partial outlier count inddhat the total expected
outlier count is likely to be exceeded (i.e. with high proitif). This allows us to abort

early whenever the model hypothesis is completely inateuia similar optimization was

27



suggested by93d]), avoiding the redundancy of computing outer tangentifepipoles to all
the silhouettes for most random hypotheses which are caemplerong.

The best 25% of the promising candidates are then refineg itsirative nonlinear min-
imization (Levenberg Marquardt method) followed by guidedtching. The cost function
minimized here, is the symmetric epipolar distance meaisubeth images. During guided
matching, frontier points are recomputed from scratchgi#ie current epipole estimates. In
each iteration, the number of inliers steadily increasektha approach terminates when the
inlier count stabilizes. Note that as long as the convergagrgion is large, an inaccurate
candidate solution can lead to the true solution as thei@opbints are recomputed as the
solution gets more and more refined.

In practice, many of the promising candidates from the RARS#ep, when iteratively
refined, produce the same solution for the epipolar geomeétrgrefore, we stop when three
promising candidates converge to the same solution. Otkeme refine all the candidates.
The refined solution with the highest inlier count is repdrés the final one. Note that com-
paring the Frobenius norm of the difference of two normaitendamental matrices is not a
suitable measure, and Zhang et.46]] proposes a meaningful measure for deciding whether
two fundamental matrices are similar enough. We use thisoredo compare two estimates
of the epipolar geometry, and decide if they are close enough

Our algorithm uses a few parameters that tend to vary witasaés: the total number of
RANSAC iterationdN, the number of promising candidatag, and the outlier threshold,.
We automatically determine these parameters from the daaking the epipolar geometry

estimation completely automatic and convenient to use.

2.3.5 Automatic Parameter Tuning

The number of RANSAC iteration® depends on the number of promising candidates to

search for denoted bigs. ThusN is chosen asnin (n, Ny), wheren is the number of it-
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erations required to findg candidates aniN; is a large number set to 1 million in all our
experiments. The choice ak is determined by the outlier threshatgl A tighter (i.e. lower)
outlier threshold can be used to select very promising ckates but such occurrences are
rare. If the threshold is set higher, promising candidatesoatained more frequently but at
the cost of finding a few ambiguous ones as well. When thiséagm larger set of promising
candidates must be analyzed. Thwgjs set tomax (27,, 10). The critical parametet, tends

50

Qutlier Threshold
~
(52

—_— = 6.
[ — T Y
(4

| | | |
a 1000 2000 3000 4000 5000 6000 7000
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(@) (b)

Figure 2.8: For three different test runs from various dattgghe value of, is plotted against
the number of RANSAC iterations required.

to vary between datasets. It depends on the image size, armbomotion in the sequence.
Therefore we automatically compute it from the data durmge preliminary RANSAC itera-
tions. During this preliminary stage, the hypothesis andication iterations proceed exactly
as described in the previous sections, but these are oriptasemputer,, and the promising
candidates found at this stage are not used later.

We start with a large value of, (= 50 pixels in our implementation) and iteratively lower
it based on the error distribution as shown in FigRré We compareek, the K*"—quantile
(K = 75) with the current value of,.

If ex < 7o, We simply reset, to the smaller valuek. If 7, < ex < (7, + 1), then we

increment a countet, .
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If ex > (7, + 1), then the value of, is not changed. We res€t,_ to zero whenever the
threshold is lowered.

If either 7, falls belowry;,, Or C., becomes equal tq,;,, We accept the current estimate
of 7, as final.7,,;y is calculated a8.005 x (w + k), wherew x h is the image dimension.

Figure2.8 shows how the value af, converged for three different sequence-pairs, taken

from different datasets.

2.4 Complete Algorithm

The complete method is summarized in Algorithm

Input : Pair of Sequence§S; } and{S;} of silhouettes
Output: Fundamental Matri¥';

{Hs;} «— Conput e Convex Hul |l And Tangent - Tabl es({S;});
{Hs;} < Conput e Convex Hull And Tangent - Tabl es({S;});
To — Conpute Qutlier Threshol d (see Section 2.3.5);
ng < max(27,, 10);

candidates ={ } ;

repeat
(F,model) — Make Hypot hesi s (see Section 2.3.3);
Eval uat e (F) (see Section 2.3.4) ;

if Prom sing Solution;
candidates «— candidates U (F, model) ;
until (|candidates| ==ng || maxi numiterati ons exceeded)
Cr <— Rank And Fi nd Best (k, candidates) using inlier count ;

NonLi near M nim zation And Iterative Refinenent ({Cy});

return Rank And Find Best (1, Cx) using inlier count ;

Algorithm 1: Computing the epipolar geometry from dynamic silhouettes
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2.4.1 Results
Datasets

Table 2.1 summarizes information about the various camera netwotksdes that we have
collected and processed. These multi-view video streams aleacquired indoors by various
researchers in fairly controlled settings, and the traddl off-line camera calibration was
done using the calibration grid, LEDs etc. Most of the sulgi@ere humans as these multi-
camera networks were geared towards capturing virtual lmadexctors using vision-based
markerless motion capturg,[22)].

Silhouettes had been extracted for all these sequencepatate of the art methods (except
for the MIT dataset for which the simple approach describedppendixB-1 was good
enough). Although silhouette extraction in the generakédasa hard problem, fairly robust
and accurate methods are now know for dealing with statikdgracinds. For all the datasets
described in Tabl.1, reasonably good silhouettes could be extracted, and ws=é for
modeling dynamic scenes using a variant of shape from sift@udechniques. Using our
method, these same silhouettes could be used to also rebeveamera calibration.

In this section we will present the results from computingpefar geometry using our
method for these datasets. The recovered information wilided for full network calibra-
tion later on and the complete calibration and reconstaatesults will be presented later in

Chapters3 and4.

MIT Sequence

This dataset was recorded by Sand etH®l4] for their work on capturing deformable 3D
human shapes from silhouettes. He used a co-located maibare system for the calibration
and synchronized the video upto a single frame. The 4-vielosfootage was approximately
4 minutes long and captured at 30 frames per second. The hsulgect is moving around

in the scene; occasionally his silhouette gets clippedenfigld of view, esp. near the feet.
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Name Resolution | Cameras Frames Pairs

MIT (Sand

et. al [114]) 720 x 480 4 7000 5 out of 6 pairs
DANCER

(IN-

RIA[42]) 780 x 582 8 200 20 out of 28 pairs
MAN  (IN-

RIA[42]) 390 x 291 5 1000 | 10out of 10 pairs
KUNG-FU

(MP1[22]) 320 x 240 25 200 | 268out of 300pairs
BALLET

(MPI1[22]) 320 x 240 8 468 24 out of 28 pairs
HAND

(Brostow et.

al [18]) 640 x 480 9 200 25 out of 36 pairs
CMU (Che-

ung [24]) 640 x 480 8 900 22 out of 28 pairs
BOXER

(Ballan[7]) | 1032x 778 4 1000 6 out of 6 pairs
BREAK-

DANCER

(Stark 131]) | 1920x 1080 6 250 11 out of 15 pairs

Table 2.1: These datasets were acquired by various regeslichcomputer vision. We sum-
marize the relevant information about the sequences usad iexperiments. The last column
reports the number of camera pairs for which the epipolangy was accurately recovered.
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Figure 2.9: The estimated epipolar geometry for 2 of the 6spaithe 4-view MIT dataset.

However, this is handled robustly in our implementation.

Using the proposed approach, we computed the epipolar gepfoeall pairs. The results
from two pairs is shown in Figur.9. The epipolar geometry for one of the six pairs was
unstable because in both views, the feet of the person wasstently clipped in most of the
video. Since the person walks around the frontier pointstieehead of the person are almost
planar which is a degenerate configuration for epipolar ggpnestimation. Instead of using
all 7000 frames that were available we chose every 5th framdensrked with about 1400
frames from video. Estimating the epipolar geometry tookvieen about 150 seconds on
an average for the six pairs. On an average, the RANSAC-kagedthm produced a good
solution in about 25000 iterations but for higher reliagjlimultiple solutions were recovered

and checked for consensus.
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Figure 2.10: (a) The estimated epipolar geometry for ond@fpiairs in the 25-view KING-
FU sequence. The extracted frontier points are also shown(bgfEhe estimated epipolar
geometry between the first camera and all other 24 cameras.
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Kung-Fu Sequence

It is rare to find a real dataset involving a large number oévidameras. However, we tested
our method on a 25-view synthetiodKIG-FU dataset which was created by the researchers at
MPI-SaarbruckenZ2]. The results for a particular pair is shown in Fig@d(Qa). The top
row shows the corresponding epipolar lines based on theat&d fundamental matrix while
in the bottom half of the image, all the frontier point matstege displayed. The pairwise
epipolar geometry for all images with respect to the firstwig shown in Figure.1Qb) and
out of the 300 pairs, the epipolar geometry for 268 pairs vetisnated accurately. Note that
our method often fails when the cameras face each othetirgsiun epipoles somewhere close
to the center of the image. As in this case, if the epipoldsriaide the silhouette’s convex
hull in most of the video frames, neither frontier points ioe epipolar tangent constraint
exist. The algorithm either fails to find a solution or findseambiguous one which is detected

and rejected. See Secti8rR.3for the criteria that is used.

CMU 3D Room Sequence

The results from the CMU 3rooM sequence in shown in Figu211l Note that, the
epipoles for some of the pairs coincide with the image of traera in the respective views.
This shows the accuracy of the epipole estimation for thags.pAlso, note that, the cameras
are placed in a way that causes the silhouettes to oftenigped in some of the views.
Finally, more results are shown in Figi2el 1- the 8-view DANCER dataset, from the Percep-
tion Group at INRIA and the 9-view KND dataset captured by Brostow et. dl8] at Georgia
Tech. More results from the®<ER and BREAK-DANCER sequences will be presented in the

subsequent chapters.
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(b)

Figure 2.11: Recovered epipolar geometry for the (a) CMUHBND and (c) DANCER
datasets. Points are clicked in the image with a red bordeepipolar lines are displayed on
the other views.
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Figure 2.12: (a—b) Epipolar geometry recovered for a paldiccamera pair in the 8XER
dataset. (c—d) Checkerboard image pair used for evaluatityn Ground truth epipolar lines
are shown in black. Epipolar lines for our fundamental mxagstimate are shown in red and
yellow. The image resolution i€)00 x 800 pixels. (e—f) For another camera pair, hand clicked
points were used to verify the accuracy of the epipolar gegnestimate. The histogram
shows the epipolar symmetric transfer error distributmrtfiese points.
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Evaluation

The mean residual error given %/Z 5, Wheree is defined in Equatio@.1is reported for all
estimates of the fundamental matrix. The synthetiNis-FU sequence reported a residual
error of 0.12 pixels on average, while estimates for readsk=ts had a residual error of 0.25
pixels on an average with a range of 0.2 — 0.31 pixels.

Our algorithm for epipolar geometry estimation was evaldan two cases. First, one of
the camera pair from the ®ER dataset was tested. Figu2el2 (a—b) shows the estimated
epipolar geometry using about 1000 frames of video. Sulesgty) a checkerboard image
pair (not used in our estimation process) was used for etratughown in Figur®.12(c—d)).
The user manually clicked 50 corresponding points and thenregmmetric residual error for
these points was calculated. Our fundamental matrix egtifmed an rms error of 1.21 pixels,
while the error for the ground truth (derived from the chebkard based calibratiord()])
was 0.78 pixels. The relatively high residuals, in both saseems to be due to the error
introduced by the user while clicking points.

The evaluation was done for another sequence (see Fjupye—f)). This time, the
mean symmetric residual error was 1.38 pixels. A distrioutf the error is shown for the
manually specified points (corresponding corner featundsoth the foreground as well as the
background were used). Further accuracy analysis is pegsenChapter 3 after performing
a full camera network calibration.

Our proposed algorithm applies RANSAg] jn an unconventional way. Rather than us-
ing it only for robust estimation and handling outliers, weelit to explore a low dimensional
bounded parameter space as well i.e. the 4D space of epipiiésallows us to automati-
cally adjust the random sampling budget towards detectinigeos and that for exploring the
parameter space. An alternative strategy would have beperform a deterministic, brute-
force search in the 4D space of epipoles while using RANSAE tmsample the data to only

deal with outliers. However, this would have the followingativantages.
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e Deterministic search for epipoles would require prior kfenge of the size of the attrac-
tion basin (i.e. convergence region), especially whendaech is performed at a coarse
level. This is not needed in our approach. For synthetic unopted data (KING-FU se-
guence), we found a promising candidate in 1 in 6000 trialaroaverage. This seems
to indicate that selecting the first direction in each imagagproximately,/6000 = 77
random directions allows us to sample within the attrachasin of the true solution
at least once. For higher reliability, we recover multiptéusions and then look for
consensus amongst at least three. This approach was uselll ttoe datasets in our

experiments.

¢ If the epipoles were sampled using a deterministic strategy RANSAC was used
only to deal with erroneous silhouettes, then the numbeteodtions required would
be significantly higher as we now show. Suppasds the probability that a random
epipolar tangent is incident to a silhouette at a true sii@upoint unaffected by sil-
houette noise. Note that the fraction of perfectly accusdb®uettes can be much lower
thanw, as an epipolar tangent to a noisy silhouette can still benker ias long as the
noise does not corrupt the silhouette near the point of tangeWe found the range
of w to be approximately 0.4 — 0.8 in our experiments. For a fixadgiaepipoles, let
us find the required number of RANSAC iterations. To computeraect epipolar line
homography, we must randomly pick three pairs of corregd@pr tangents — this has

a probability ofw®. Thus, to ensure witp% confidence that the correct solution will

be computed, we require the number of iteratiérte be li‘;‘zgl_‘jﬁ)) Forp = 0.95 and

w = 0.75 (75% inliers)k = 15. Now suppose epipoles were sampled deterministically
on a sphere (appropriate in the calibrated case). Sampilitngan angular interval of

4° between successive epipolar tangents should be suffidibettotal solid angle of a
sphere islw steradians, which is approximatel9000 square degrees. Since each sam-

ple occupies 16 square degrees, we get 2500 samples on a,sdN=6.25 million
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unique epipole pairs. Thus, the total number of iteratioasld/be approximately equal

to kN =93 million.

2.5 The unsynchronized case

When the video sequences acquired by the camera networlsysicimronized, the epipolar
tangent constraints which form the basis of the pairwisp@pr geometry estimation still
exists up to an unknown parameter — the temporal offset We assume that the cameras
are operating at a constant and known frame-rate. Thisénafte case with popular video
cameras and is a reasonable assumption to make.

In this section we describe how the proposed algorithm caxtended to simultaneously
recover both the temporal offset as well as the epipolar gdymlrhe main idea is to generate
a random hypothesis by sampling an extra dimension — a gesaitige of temporal offsets in
addition to the 4D space of epipoles. This algorithm typgycedquires more hypotheses than
the synchronized case before a stable solution can be ftwumd, multi-resolution approach

for computing the temporal offset speeds it up considerably

2.5.1 Keyframe Selection

Directly finding the true temporal offset within a large sgarange will require many more
hypotheses because the probability of selecting the daeatporal offset is quite low. We
therefore adopt a coarse-to-fine strategy for this searchideo containing human subjects,
the frontier points and epipolar tangents tend to remaiiosiary over a succession of frames.
Although such frames are not suitable for accurate syncration, they could be used for an
initial coarse alignment of the two sequences. We will redehese aslowframes. Similarly,
frames in which the frontier points exhibit strong motiorlwe useful for accurate alignment

and will be referred to afastframes.
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Without knowing the epipolar geometry, it is impossibleétest theslowor fastkeyframes
accurately. Therefore, the list of keyframes are compugdiktically. We consider epipoles
at infinity in four canonical directions (E, NE, N and NW )&t separation to each other in the
image. Based on such hypothetical epipoles, we analyzetieatal motion of frontier points
in each sequence independently. This is used to build upflsbwandfastkeyframes from
the original sequences. As the RANSAC-based algorithm earch for promising epipoles
locations, this information could be used to choose the thgiaal epipoles, and generate
more accurate keyframes but at the cost of an extra priorfstepe algorithm.

The algorithm proceeds in multiple stages. In the first stagdy the slow keyframes
are used. A 5D random hypothesis is generated. The epipmesampled in the manner
described earlier. For the random guess for the temposifh large search range is coarsely
sampled at this stage. The model verification step analymesrtor distribution in the same
way as described in Secti@3.4 It is possible that this stage estimates the epipolar gggme
quite poorly, however, it helps to narrow down the searchtiertemporal offset. For every
40 promising candidates, a 99% confidence interval for thgpgaoffset mean is computed,
and this becomes the new sampling interval for the tempdisgto The process is continued
until the search range becomes smaller than 20 frames.

In the second stage, tliastkeyframes are used and the RANSAC-based algorithm sam-
ples from the smaller search range recovered in the firsestagce 40 promising candidates
have been found, the median of their temporal offsets isetdd.

In the final stage, all the frames are used to estimate thehsymization and epipolar
geometry simultaneously. The offset is now sampled from allsimterval of +/-5 frames
from the estimated offset obtained from the previous stafee distribution of promising
epipoles obtained from the previous stage is used to biasatidom sampling in the 4D
space of epipoles. This allows us to find an accurate solatioch more quickly. Although

this version of the algorithm requires many more RANSACatens, the first two stages
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are much faster as they work with smaller sets of keyframdse Siratified approach also
allows us to sample epipoles from a more accurate distabutvhich helps us find promising

candidates more quickly in the final stage.

2.5.2 Results

We applied our techniques to the 4-view MIT sequence (ceyr&and et.al.]14]) as the
original video streams were synchronized using mocap serfsee Figurel.3(c) in Chap-
ter1). For this dataset, we extracted about 30fvandfastkeyframes from each of the four
sequences. For a particular pair of cameras, we ran the alggidthm (i.e. without using
keyframes) for 5 million iterations and sampled the offsetrf a uniform interval (+/-125
frames) from the true offset. Figu13a) shows the distribution of promising solutions
for the temporal offset. A consistent strong peak is obsknear the true offset. Smaller
peaks in the distribution indicate the presence of somegieity of motion in the sequence.
Figure2.13b) shows a typical distribution of offsets obtained in thstfiwo stages of the
algorithm. The sample median is plotted and the convergehdee search interval is also
shown. We independently synchronized all six pairs, eaqle 8earching in a range of 500
frames, which was equivalent to a duration of 16.6 secontie récovered synchronization
offsets are listed in Tabl2.5.2 These individual measurements were independently etgttma
and can be further refined during joint synchronization btred cameras in the network. This

will be described in Chapte.

2.6 Conclusion

In this chapter a method to estimate the epipolar geometmy fsilhouettes in two video
streams was described. The approach based on RANSA&h{ robustly recover frontier

point correspondence from video. First the case of syndébedrnvideo was presented. Next
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Figure 2.13: Experiment done on chosen pair from the MIT sage. (a) A strong peak is
observed in an interval that contains the real temporaktffgh) Sample solutions for the
temporal offset and the search intervals are shown plotgiathat the number of RANSAC
trials. The median is used to estimate the temporal offset.
the algorithm was extended to simultaneously recover tifotgy geometry and the tempo-

ral synchronization of the camera pair from unsynchronidddo. The pairwise information

recovered here will be useful for calibration and synchzation of a full network which
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Pair| Range | t; gij | True ¢;)
eor | [-13,-3]| -8.7 | 0.80| -8.32
e | [-11,-1]| -8.1 | 1.96| -8.60
cos | [[12,-2]| -7.7 | 1.57] -7.85
e | [5,5] | -0.93| 1.65| -0.28
ei3 | [5,5] | 0.54 ] 0.72 0.47
e3 | [6,4] | 1.20| 1.27 0.75

(@) (b)

Figure 2.14: (a) The pairwise synchronization offsets coteg for the 6 camera pairs in the
MIT sequence are shown here. (b) The table lists the comma@ath interval, and the mean
and variance of the estimate of the temporal offset. Theséaaty close to the ground truth
measurements.

is described in Chapteé3. The method is particularly useful for shape-from-silhbeiesys-
tems RO, 81, 96] as visual-hulls can now be reconstructed directly fromalibcated and

unsynchronized video of an event recorded from multiplevpi@nts.
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CHAPTER 3
Full Calibration and Synchronization from Pairwise

Information

3.1 Introduction

In this chapter, we describe how to recover the full calibraind synchronization of a camera
network from estimates of the epipolar geometry and the teadffset of various pairs of
cameras within the network. We first describe how we recaverftll camera calibration
from the epipolar geometries, and then discuss our methedlte the problem of network

synchronization.

3.2 Camera Network Calibration

We first consider the problem of recovering full camera calion from pairwise epipolar
geometries. Given a sufficient number of links in a graph {sinto the one shown in Fig-
ure 3.1 except that the links now represent estimates of fundarheratices), our goal is to
recover the Euclidean camera matrices for all cameras imé¢h&ork. An overview of our
approach is described in FiguBe2 An important step in this approach is to compute an accu-
rate projective reconstruction of the camera network framp@ar geometries and two view
matches. We start by first recovering a triplet of projecttaeneras from the fundamental
matrices between the three views. Using an incrementabappr we add a new camera to
the calibrated network by resolving a different triplet ahteras each time. Each time a new

camera is added, all the parameters corresponding to theraarand 3D points are refined



G(V.E)

— (Fij . inliers, score)

i
Figure 3.1: The camera network graph is shown. The edgessepr pairwise epipolar
geometry estimates and attributes such as an accuracy maeasili set of two view corre-
spondences (inliers).
usingprojective bundle adjustmeriEinally, when a full projective reconstruction is avaib

standard techniques for self-calibration and Euclideagtiic) bundle adjustment are used to

compute the final metric camera calibration.

3.2.1 Background

Most structure from motion techniques for uncalibrateduiseges start by estimating the fun-
damental matrix or the trifocal tensor from two or three viewrespondences. The trifocal
tensor in the three-view case plays the same role that tltafoantal matrix plays in the two
view case. If the trifocal tensor is known, a triplet of catent projective camera matrices
for the images can be directly computed from the tensor abhdgesjuently a projective recon-
struction of the scene may be linearly computed. This is @isofor the fundamental matrix
in the two view case. Se&%| for details.

Various approaches exist for computing projective reqoicibns of the cameras and the
scene simultaneously. On one hand, there exists direarization-based approaches for
structure from motion that can compute the projective retroction in one step, without
favoring any particular camera34, 141]. However they typically require all the 3D points to
be visible in all the cameras. Thus, most practical appresi¢br large-scale structure from
motion incrementally computes the projective reconstonadf the cameras and the scene and

our method also belongs to this category.
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Pair-wise Epipolar Geometries (View Graph)

e

Projective Bundle
Adjustment

— Self-Calibration
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Solve Triplet |——

Metric Calibration <+——

Figure 3.2: Overview of our incremental camera networkration approach from epipolar
geometries estimates. The fundamental step involves cmggthe projective reconstruction
of a triplet of cameras. Bundle Adjustment for the projegtand metric reconstructions are
performed to globally refine all the parameters.

In the structure from motion pipeline developed WY, first an initial reconstruction
is done from two views. Then, one by one, the projective calibn of the other cameras
is recovered within the initial reconstruction frame and firojective reconstruction of the
entire sequence is incrementally computed. The cameracestind 3D point estimates ob-
tained in this way are used to initializepeojective bundle adjustmenwhich simultaneously
refines all the camera parameters as well as the coordinfaties 8D points, by minimizing
the overall reprojection error. This is a large non-lineamimization problem with potentially
many parameters. However, the existence of sparse aneeffsolvers makes the step com-
putationally feasible. Self-calibratiori(§ is followed by Euclidean bundle adjustmett
determine the optimal camera parameters. The Euclideadidoadjustment is similar to the
projective case, except that in the Euclidean case, thereamee parameterized by the intrin-
sic and extrinsic parameters, while the 3D points are paenzed using non-homogeneous
coordinates.

In our silhouette-based calibration method, frontier poorrespondences do not general-
ize to more than two views. In a three-view case, the froqtants in the first two views do
not correspond to those in the last two views. Although tiviess correspondences, called

triple points do exist on the silhouette as reported 8¢,[82], they are hard to extract from
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uncalibrated images. Thus, we are restricted to only tveevwdorrespondences over different
pairs in our camera network. We incrementally compute agdtdjective reconstruction of

a camera network from these two-view correspondences ancbtinesponding fundamental
matrices. Martinec et. al9[L, 92] also addressed this problem but in a different context, and
proposed some solutions in parallel to our work.

Levi and Werman§6] studied the following problem: Given only a subset of alspible
fundamental matrices in a camera network, when is it passibtecover all the missing fun-
damental matrices? They were mainly concerned with thigatetnalysis, and their proposed
algorithm is not suited for the practical implementatiorcofmputing projective reconstruc-
tions from sets of two-view matches in the presence of noise.

We now discuss the fundamental step in our approach, whidivies recovering three
consistent projective cameras, given a triplet of fundamaienatrices corresponding to three

views in general position.

3.2.2 Resolving Camera Triplets

Given any two fundamental matrices between three views rnbt possible to compute three
consistent projective cameras. The two fundamental negtican be used to generate canon-
ical projective camera pair§P,, P,} and {P,, P3}, respectively. However, these do not
correspond to the same projective frani®. must be chosen in the same projective frame as
P,, and the third fundamental matrix is required to enforcs.thi

These independently estimated fundamental matrices a@eatkbyF,, F3, andFy3,
while the unknown projective cameras are denote®byP,, andP3, respectively (see Fig-
ure 3.3). The three fundamental matrices are said to be compatibEnwhey satisfy the
following constraint:

T T _ T _
exkaie; = e; Faey = epFsie, =0 (3.1)

The three fundamental matrices available in our case areampatible because they were
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Figure 3.3: (a) Three nondegenerate views for which all timeldmental matrices have been
estimated independently. (b) Family of solutions for thedtfundamental matrixi(,s), com-
patible with the other twoK,, andF;3). We look for a compatible solution closest to the
measured,;. (c) New camera is incrementally linked to a calibrated network by resotyin
a suitable triplet involving two cameras withis, ;.
independently estimated from two-view correspondences. lbear approach for computing
P,, P,, andP; from three compatible fundamental matrices is describg¢85h However, it
is not suitable when the fundamental matrices are not cabipaas in our case.

We now describe our linear approach to compute a consisiplettof projective cameras.
As described in%5], givenF;, andF3, canonical projective camera; andP, as well as
P; can be chosen as follows:

P, =[10] Py = [lex]«Fiales] (3.2)

P3 = [[e31]xF13]0] + ez v

Here,P3; has been defined up to an unknown 4-veestan Equation3.2 By expressingss
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as a function o, andP3, we obtain the following relation.
Foy = [332]><P3P;_ (3.3)

The expression foF . is linear inv. Hence, all possible solutions fat,; span a 4D
subspace dP® [86]. We solve forv, which produces the solution closest to the meashrgd
in the 4D subspace (in Frobenius norm sen$®)can now be computed by substituting this
value ofv into Equatior3.2 The resultingP, P, andP5 are fully consistent with¥',5, F13,
and the matrix¥,; computed above.

In order to choos&',,, F3, andF,3 for this approach, we rank the three fundamental
matrices based on an accuracy measure; the least accuedteassigned to bE,3, while the
choice of the other two does not matter. This accuracy measutescribed next.

The method described here works only when the camera cdatdle three cameras are
not collinear. This degenerate configuration can be detdnteanalyzing the location of the
six epipoles (when all three camera centers are collirgas: e;;, for various permutations
of the three views). In our method, when a degenerate tigpbittected, we reject it and look
for the next best possibility. For most camera networkstfedl datasets we tried), cameras

were deployed around the subject, and collinearity of carmnenters was never a problem.

3.2.3 Ranking the Fundamental Matrices

In order to build up the projective reconstruction of thewamk from epipolar geometries,
we need an automatic way to use the best fundamental matmeesgst the ones that are
available. To rank the fundamental matrices based on ther@cy of their estimates, their

inlier spread score;; is computed as follows:

Sij = Z ‘U—’U‘Q‘i‘ Z ‘U_IU‘Q

(u,v)€P; (u,v)€P;
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HereP; andP; represent the set of 2D point correspondences in viemsd; that forms the set
of inliers for the corresponding fundamental mafifix. A higher inlier spread score indicates
that F;; is stable and accurate. The score is proportional to therigbunt, but captures
the spatial distribution of 2D points that form the inlieit.sédeally, we should triangulate
and analyze the spatial distribution of the 3D point cloudwéver the epipolar geometry
only allows a projective reconstruction where distances/éen points cannot be computed.
However, the 2D spatial spread of the inliers in the two insaigeoften a good indicator of
how spread out the 3D points would be. Although this rankidigesne is not perfect, it is
good enough for detecting the unstable and inaccurate a&stinof the fundamental matrix

from the first stage.

3.2.4 Incremental Construction

Our incremental approach to projective reconstructionshy greedily choosing a set of three
views for which the fundamental matrices are, relativeig most accurate. As described in
the previous section, this triplet is resolved, resultim@ ipartial projective reconstruction of
three cameras. Next, cameras are added one at a time usiagttach described next. The
process stops when either all cameras have been added, norneh@ore cameras can be
added to the network because of insufficient links (fundaaienatrices).

GivenG)_1, a projectively calibrated camera network with— 1) cameras, we first need
to choose the new camera that will be added next to this eddiirnetwork. For this, we
inspect the links (epipolar geometries) between camegsbglong to,_; and those that
have not been reconstructed yet. The camera chosen forsteection is denoted by, and
the two cameras it _; corresponding to the two links are denoteddmndg, respectively.

Thus for camerag andq in GG;,_; andk, the new view, we now reconstruct a triplet of
consistent projective cameras frdy, F,., andF,, (hereP, plays the role ofP;). The

choice ofp andq is irrelevant, since the fundamental matrix correspondingny pair within
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Gr_1 can be computed, because all projective cameras withireitexaactly known. Finally,
the computed projective cameR, is transformed into the projective frame 6%,_,, and
added to the network. This produces a complete projecta@nsdruction ofz,, the camera
network which includes the added new view.

For a network withNV cameras in general position, this method will work if a sugfnt
number of links are present in the camera network graph. Hneuws solvable cases are
discussed ing6]. In our case, resolving the initial triplet requires thhieés; every subsequent
view that is added requires at least two links. Thus, themuimn number of unique links that
must be present in the graphdis- 2(N — 3) = 2N — 3. When more links are available in the
graph, our ranking procedure chooses the best ones andsthadeurate links may never be

used.

3.2.5 Computing the Metric Reconstruction

Every time a new camera is added, a projective bundle adargtia done to refine the cal-
ibration of all cameras in the partial network. This pregeatror accumulation during the
incremental construction. Camera networks are typicatigls containing 8 to 12 cameras;
therefore, running the projective bundle adjustment rpldtiimes is not an issue. Once a full
projective reconstruction of the camera network has beerpoted, a linear self-calibration
algorithm [LO§ is used to upgrade from a projective to a metric reconstact

Finally, an Euclidean bundle adjustment is done by paraizetg the cameras in terms
of the intrinsic and extrinsic parameters. In all cases, arestrain the camerskewto be zero
but impose no other parameter constraints. Depending cext scenario, other constraints
could be enforced at this step for higher accuracy — for exajgnforcing a fixed aspect
ratio of pixels and enforcing the principal point to be at demter of the image. For higher
accuracy, radial distortion in the images should also beetsadin the Euclidean bundle

adjustment, which typically further reduces the final r¢ggeton error. However, estimation
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of radial distortion was not done in our current work, andns @vay in which the calibration

accuracy can be improved further.

Name Cameras| Frames| Pairs Reprojection
Error (final)

MIT [114 | 4 7000 | 5outof6 pairs | 0.26 pixels
DANCER 20 out of 28

(INRIA) 8 200 pairs 0.25 pixels
MAN 10 out of 10

(INRIA) 5 1000 | pairs 0.22 pixels
KUNG-FU 268 out of 300

[22] 25 200 pairs 0.11 pixels
BALLET 24 out of 28

[22] 8 468 pairs 0.19 pixels
BREAK-

DANCER 11 out of 15

[131] 6 250 pairs 0.23 pixels
BOXER [7] | 4 1000 | 6outof6 pairs | 0.22 pixels

Table 3.1: The camera network calibration was done on thatesets. The second-last col-
umn in the table, shows the number of links that were presetitd camera network graph.
The reprojection error obtained after the Euclidean buadiestment is listed in the final

column.
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3.2.6 Results

The full camera network calibration was performed on eaahafrthe datasets described in
the previous chapter, in Tab®1l In each case, only a few links were missing in the camera
network graph, and there were a sufficient number of acclirdtse (good estimates of the
epipolar geometry), that allowed an accurate projectind, subsequently metric reconstruc-
tion to be computed. These results are summarized in TakleFigure3.4 shows, for two
different datasets, how the epipolar geometry estimatesare accurate after the projective
reconstruction stage. All triplets of fundamental masiagéthis stage are compatible, i.e. they

satisfy the constraints listed in Equati8ri.

Evaluation

We evaluated our method by comparing our calibration wittugd truth data for the synthetic
KUNG-FU sequence. The results are shown in FigdiG Since the metric reconstruction of
the camera network obtained by our method is in an arbitraoydinate system, it first needs
to be scaled and robustly aligned to the ground truth coatdiframe. The final average
reprojection error in all 25 images, after the Euclideandbemdjustment, is 0.11 pixels and
the reconstructed visual hull of the Kungfu character Vigdaoks as accurate as the visual
hull computed from ground truth. The details of how these 3@deis were computed is
provided in Chapted. In Figure3.6(c), the two models have been overlaid upon each other.
Figure3.6(d) shows the camera network along with the reconstructediér points from
the complete sequence. Figud®(e) shows the relative error in the focal length estimates of
the 25 cameras in the network, and Fig@t&(f) shows the deviation of the principal point
from the center of the image (the principal point in the grbtnuth data). Note that, the focal
length estimation could have been more accurate if all theecas in the bundle adjustment
step were parameterized to share the same intrinsic paenétowever, in realistic scenar-

ios, each camera will have a different set of intrinsic pagters, and therefore, we allow the
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Figure 3.4: After the incremental projective reconstrmctof the whole camera network,
some errors in the epipolar geometry of the individual peeninks can be corrected. The
estimates for views with a red border were incorrect but hawe been fixed. The dotted
epipolar lines shown the incorrect epipolar geometry wtkecorrect estimate derived from
the projective calibration is shown with solid lines.

intrinsics to be different from camera to camera during tredueation.

For the BoXER sequence with 4 cameras, the reprojection error after &gt bundle ad-
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Figure 3.5: The final metric reconstruction of the cameravogt and 4953 reconstructed
frontier points from the BXER sequence.
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Figure 3.6: (Best seen in color) For thesKG-FU sequence, ground truth is available. Models
computed using (a) ground truth calibration and (b) thebeation recovered by our method.
(c) The registered 3d models. (d) The camera network regst® the coordinate frame of
the ground truth data.

justment was 0.22 pixels. The 2D feature points and recoctstd frontier points are shown

in Figure3.5along with the metric reconstruction of the camera netwérkisual hull recon-
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struction of the human subject in this dataset was perforamedresults were visually quite
accurate. See Sectidn3for results for the BXER and on other datasets.

The camera network calibration approach was inaccuratehforHAND sequence, al-
though many of the epipolar geometry estimates (see Figur&b)) were fairly accurate.
This was due to the lack of sufficient motion in the sequencéhik video, the hand position
does not change and the motion is mostly limited to the fingEngrefore many of the fron-
tier points end up near the finger-tips. When the frontienfsocorrespond to 3D points on a
plane, the estimated fundamental matrix is inaccurateiasstbne of the degenerate configu-
rations for epipolar geometry estimation. When frontieinpoorrespondences are close to a
degenerate configuration, a technique such as QDEG8g|Cpuld potentially alleviate the
problem.

Although the pairwise epipolar geometry estimates for theevbl sequence had small
residuals, the associated uncertainty of the fundameraalixrestimates were higher, and
thus, an accurate projective reconstruction could not epcwed. The reprojection error
after the projective bundle, in this case, was greater thapi@els, and the camera intrinsics
estimated through self-calibration were not good enouginfbalizing the Euclidean bundle
adjustment. Therefore, the final calibration was inacejrahd the reprojection error was
quite high, showing that the algorithm was stuck in a localima.

It is possible to apply our method to recover the relativeegusrameters of cameras in a
network, when all the intrinsics (especially the focal ldmn)gare approximately known. Ar-
guably, this calibrated case is easier to handle than thedotalibrated case, and it may be
possible to robustly estimate the camera extrinsics eveanvitie pairwise epipolar geome-
try estimates are less accurate. In this case, the essewtiates can be computed from the
fundamental matrices, and the relative camera pose foy @ar can be directly recovered
without an intermediate projective reconstruction. Orgaim, the final metric reconstruction

is obtained after doing a full Euclidean bundle adjustment.
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Figure 3.7: The camera network graph is shown. The edgesseprrpairwise measurements.
When the edges represent sequence alignment offsets,itbeldsum to zero for all cycles
such ag”.

3.3 Camera Network Synchronization

The camera network synchronization problem is an instahtleeogeneral sensor synchro-
nization problem in a network. In our case, every camera @thbught to have an inde-
pendent timer, and the time differences can be measurednrefalignment offsets, since we
assume that all cameras are operating at a constant and Krenwerate. One method for
recovering such offsets was described in Chapter

We represent the sensor network by a directed gi@pii ) as shown in Figure.7.
There areNV sensors, and each node € V, has a timer denoted hy. A directed edge in
this networke;; € E, represents an independent measurement of the time differe — z;,
between the two timers. Each estimatehas an associated uncertainty represented by the
standard deviation;;, that is inversely proportional to the uncertainty.

WhenG represents a tree, that is, it is fully connected andMtas 1 edges, it is possible
to synchronize the whole network. When additional edgesase#iable, each provides a
further constraint, which leads to an overdetermined sysitlinear equations. Each edge
contributes a linear constraint of the forrn— z; = ¢;;. Stacking these equations produces
a|F| x N system of linear equations. Assuming that each measureisi@atrupted by
independent Gaussian noise, the maximum likelihood estiofahe N timers is obtained by

computing the weighted least squares solution of the ligsgstem (each equation is multiplied
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by the factor%,j). The timer estimates (the first camera is fixed at zero) atienap provided
no outliers are present in the edges being considered.

However, it is fairly easy to detect outlier edges in the kv A consistent network
should satisfy the constraif}_, . . e¢) = 0V cyclesC € G. Forevery edge € E, we check
the sum of edges for cycles of length three that also contagmedge:=. An outlier edge will
have a significantly large number of nonzero sums, and caukhBily detected and removed.
This method will produce very robust estimates for compigtgphs becausw linear
constraints are available foyY unknowns. In the minimal case, a fully connected graph with
at leastV — 1 edges is still sufficient to synchronize the whole netwolthiaugh the estimates

in this case, will be less reliable.

3.3.1 Results

Full network synchronization was performed on the MIT semee The sub-frame synchro-
nization offsets from the first to the other three sequenca® \iound to be 8.50, 8.98, and
7.89 frames, respectively, while the corresponding grawmith offsets were 8.32, 8.60, and
7.85 frames, respectively. The results are summarizeddleBa3.1 The temporal offsets;
(and the uncertainties;) for the six pairs were estimated using the silhouette bappdoach

described earlier (see Sectiarb.1for details on how these were obtained).

3.4 Conclusions

In this chapter, a method to recover the full calibration ayigchronization of the camera net-
work was proposed. The input to the algorithm consists afreded epipolar geometry and
temporal synchronization, between many different camarnes in the network. The calibra-
tion approach is a stratified one — first a projective recoistn is computed, which is next

upgraded to a metric one using self-calibration, and a finatlle adjustment is performed to
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Pair tz‘j Oij tz‘j True (tZJ)
er | -8.7 | 0.80| -850 -8.32
ez | -8.1|1.96|-8.98| -8.60
ez | -7.7 | 1.57| -7.89 -7.85
ep | -0.93| 1.65|-0.48| -0.28
e;3 | 0.540.72| 0.61 0.47
eo3 | 1.20 | 1.27| 1.09 0.75
(b

Figure 3.8: (a) The pairwise synchronization offsets cotagdor the 6 camera pairs in the
MIT sequence are shown here. (b) The table lists the inigairetes {;; ando;;). The final
estimates obtained after full network synchronizationdgfigrmed is shown in columri().

These are withir% of a frame i.e.ﬁth of a second within the ground truth offsets.

obtain the optimal camera parameters. The recovered aatihrand synchronization is used
to reconstruct dynamic scenes involving humans. The 3Dnstoaction methodology and

results are presented in Chapder
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CHAPTER 4
Dynamic Scene Reconstruction

4.1 Introduction

Once the camera network is fully calibrated and synchrahizéecomes possible to combine
information from multiple views, for the purpose of 3D restmuction of the observed time-
varying event. Various approaches for this task have beesiigated in the past. One of
the earliest successful systen&®,[ 70 coined the ternvirtualized reality and used dense
stero to reconstruct a dynamic scene from synchronized\stteams. A special dome (see
Figurel.1(a)) comprising about 50 cameras mounted on a 5-meter déargebdesic dome
was used. The cameras recorded at a constant 30 frames ped sew were synchronized
using a hardware trigger. The system captured humans perfgi variety of tasks on video,
in real-time, and the stereo-based 3D reconstruction wasesuently computed offline.

Since then, systems such & 95, 41, 96, 114 have also used silhouettes of the fore-
ground subjects or combined silhouettes and stereo @253, 60, 104, 131] to reconstruct
time-varying events within a small area. One advantageiafjusihouette based approaches
is that a good reconstruction can be obtained with fewer casn@ften 8—12), provided they
are suitably deployed. However, it is quite difficult to autatically extract foreground silhou-
ettes from video in a general, uncontrolled scene due towatiactors, such as image noise,
complex lighting and similar appearance of the foregroumtil@ackground. Nevertheless, in
controlled scenes with simple background models, silheseatan be recovered robustly and
can lead to fairly convincing reconstructions.

Some of these 3D reconstruction systems were designeddbtimee capture, transmis-



sion and reconstruction, while others were built for offlohigitization, and could produce
results of better quality and accuracy. Digitizing humatoechas been of great interest, and
many of these earlier systems had been designed specifmatigconstructing human actors
using camera networks in well controlled environments. Bitcad level, the methods for dig-
itizing events in 3D can be classified into two categoriesedelng on whether they employ
model-based or model-free reconstruction approaches.

Model-based approaches have been particularly populanéateling humans. They of-
ten use a parameterized human body model consisting of atskebppropriate joint struc-
ture and some surface representation like a tesselated. méskel-based methods such
as R2, 60, 13]] utilize a priori knowledge about the observed scene, amchddate the re-
construction problem in terms of fitting a model to the muétipnages using a suitable op-
timization scheme. Computing the optimal model paramdtargvery frame of the video
allows the 3D pose of the foreground subject to be recoveradabust fashion. Model-based
methods are ideal for reconstructing human actors, as teyexploit temporal coherence,
and traditionally, such methods have been preferred faucag motion data for animations.
This is often referred to as the problemmérkerless motion capture

On the other hand, model-free approaches are more genadakeonstruct the 3D scene
without assuming any knowledge about its structure. Théoust applied involve shape-from
silhouette-like approaches, such as image-based visildgl @)y polyhedral visual hulls95,
20] or stereo-based approach&$§][ Shape-from-silhouette approaches are popular because
of the relative simplicity, higher robustness and comparetl efficiency compared to dense
stereo methods. Algorithms for computing exact visual hulere recently proposed],
83]. Another method42], also based on shape from silhouette, recently proposegeting
silhouette consistent shapes which had better geometpepres than the visual hull, such
as local smoothness and curvature. They also allowed hetigpoint free rendering of the

texture mapped 3D models that were captured. Silhouetteebapproaches are also relevant
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for model-based methods, as silhouettes can restrict #ietstor parameters of the 3D human
skeleton such as joint angles, and provide strong constréon performing model fitting.

These model parameters can be estimated by maximizing #réapwetween the projected
human template and the original silhouettes in the muliipkeges, in addition to using other

appearance cues.

4.2 Visual Hulls

Techniques for reconstructing shapes from silhouettedivgaproposed by Baumgarg]in
1974. Most silhouette based methods attempt to computemnxamation of the visual hull,

a term that was coined by8]]. Since then a large number of visual hull algorithms hawnbe
proposed and at a high level they can be classified based amtiezlying geometric repre-
sentations — namely volumetric approaches sucl242b, 13§ that compute a volumetric
representation of the visual hull, and more recently, serfaased approaches that directly
compute tesselated meshes of the visual [l 83, 95]. The surface based approaches are
computationally efficient, more robust, have been shownv@lgigher quality results and can
be used for real-time 3D reconstruction. In this sectionyibriefly review recent work on
exact visual hulls41, 82, 83], and discuss the exact polyhedral visual hull (EPVH) atban
that we build upon in Chapté:.

The visual hull of an object is defined as the maximal shapepiwuces the same set
of silhouettes in multiple calibrated views. The intergatf viewing cones, back-projected
from silhouettes in a finite number of views, produces thaalifiull of the object. The visual
hull can provide a good approximation of the shape of theathyben sufficient viewpoints
are available. Typically 8—12 cameras, widely spaced an,provide a reasonable recon-
struction of a human. The visual hull is guaranteed to contfa¢ true object inside of it.
This is a property that is used by many multi-view recongtaumcapproaches. The visual hull

is a projective topological polyhedron with curved edged tates. When the contours in
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Figure 4.1: (a) The visual hull of a pear-shaped object wasprded from 8 calibrated sil-
houette images shown here. On the right, the visual hullogvahin 3D along with the camera
poses. (b) Anatomy of the Exact Visual Hull mesh. see theaedtd1, 82 for more details.
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the silhouette images are represented using polygonsjgbal\hull becomes a polyhedron.
An algorithm to compute this exact visual hull was proposest fiy [84], and subsequently
by [41], for polygonal silhouettes. The polyhedral visual hulbngputed by 41], exactly
projects onto the silhouette polygons and can be computiddificiently and robustly.

The back-projection of 2D points on the apparent contouegise toviewing rays each
of which may contribute a finite segment to the visual hullisTis called aview edge At least
one point on a viewing ray must touch the surface at a poinhenitn or contour-generator.
All view edges from a particular view-point form a ruled sagé, which is called @aone-
strip. The intersection of silhouette or viewing cones gives tisadditional vertices called
triple pointsandcone intersection edges he cone-intersection edges and the triple points
always lie outside the true surface. The EPVH algoritddj jvhich we use to reconstruct the
dynamic objects in our scenes, proceeds by first recovelingesv edges corresponding to
all the silhouettes. Next, the cone-intersection edgedtaattiple points are estimated using
numerically stable and efficient schemes. The results aet @xnd the overall method is quite
robust and fast. The topological structure of the visudlpallyhedra captures key information
about the unknown rims or contour generators. This will lielisd in detail in Chaptes, in
the context of enforcing silhouette constraints within altruiew stereo approach for 3D

shape reconstruction.

4.2.1 Silhouette Interpolation

Visual hull methods typically treat the temporal offsetvoe¢n multiple video streams as an
integer, and ignore sub-frame synchronization. Given aipérame from one video stream,
the closest frame in other 30 Hz video streams could be adffas % seconds in time. While
this might seem small at first, it can be significant for a fastving person. This problem
will be illustrated in Figure4.5d), where the visual hull was reconstructed from the closes

original frames in the sequence. The gray area in the figyresents what is inside the
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visual hull reconstruction, and the white area correspdodse reprojection error (points
inside the silhouette in one view, carved away from othews)e Sub-frame offsets need to
be considered to perfectly synchronize the motion of thesaand the legs in this case.

To deal with this problem, we propose temporal silhouetterpolation. Given two ad-
jacent frames andi + 1 from a video stream, we compute the signed distance map in
each image, such that the boundary of the silhouette rapsesiee zero level set in each
case. Let us denote these distance mapg,;by) andd;,;(z), respectively. Then, for a
sub-frame temporal offseh € [0, 1], we compute an interpolated distance map denoted
S(x) = (1 — A)di(x) — Ad;41(z). Computing the zero level set 6f(x) produces the in-
terpolated silhouette. This simple scheme, motivated3#, [robustly implements linear
interpolation between two silhouettes without explicitrgeo-point correspondence. How-
ever, it is approximate and does not preserve shape. Thesjuires the inter-frame motion

in the video to be relatively small.

4.3 Results

We now show the results of our camera network calibration\asdal hull reconstruction
on a number of different multi-view video datasets (see d8bl for relevant details about
these datasets). Although most of the experiments invohagb streams of human subjects,
both our calibration and reconstruction approaches areplt=igly general, and can be used
for reconstructing time-varying events involving any daton-rigid shape which can be reli-
ably segmented from the background. We tested our method@symthetic sequence that
contains 25 cameras and 8 real datasets, independentlyextiy various computer vision
researchers in their own laboratories, using differenfigonation of video cameras. We were
able to recover the full calibration of the camera networlalinthese cases, without prior
knowledge of or control over the input data. We thus show ithiat possible to remotely

calibrate a camera network, and reconstruct time-varywegts from archived video footage
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with no prior information about the cameras or the scene.

The reconstruction of the syntheticUKIG-FU dataset is shown in Figuse2 followed by
the 8-view BALLET dataset. The original B LET sequence was reconstructed using a model-
view approach22], but for simplicity, we only compute the visual hull from 8ws, which
gives a reasonable approximation of the human shape. Howetver methods proposed
recently such as7] 42, 131], could also be used for more accurate 3D reconstructioheof t
same event. Figures3and4.4show the reconstructions from theBER, BREAK-DANCER,
DANCER and MAN sequences respectively. Some corresponding frames f@mpht video
are shown along with the visual hull computed for that instartime. The geometry of the
camera network is also shown in 3D along with the visual ladbnstruction. Detailed results
regarding the accuracy of the recovered camera calibradrerpresented in Secti@?2.6

In Figure4.5a), the metric 3D reconstruction for the 4-view MIT sequerscshown. The
calibration and synchronization were recovered using te#hods described in prior chapters
of this thesis. This shows that we are able to reconstruc@Visulls from uncalibrated and
unsynchronized footage. To test the accuracy of the cailidorahat was computed, we pro-
jected the visual hull back into the images (see Figu&b)). In the perfect scenario, the
silhouettes would be completely filled in. Inaccurate aalilton, poor segmentation or lack
of perfect synchronization could give rise to empty regi@miite pixels) in the silhouettes.
Our tests gave consistent results, and the silhouettesm@sty filled, except for fast moving
parts, where the re-projected visual hull is a few pixelslfanan one side of a silhouette (see
the close-up in Figurd.5c)). This arises mostly when sub-frame synchronizatidset$ are
ignored, or due to incorrect segmentation in the case ofanddiur or shadows.

For higher accuracy, we computed visual hulls from intexped silhouettes. The silhou-
ette interpolation was performed using the sub-frame symehation offsets that were com-
puted earlier on for this sequence (see Tabh®1). In Figure4.5d), an example is shown.

Given three consecutive frames, we generated the middteeftgy interpolating between the
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Figure 4.2: Metric 3D reconstruction of theuKiG-FU and BALLET sequence.
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Figure 4.3: Metric 3D reconstructions of theodBER and BREAK-DANCER sequences.
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Figure 4.4: Metric 3D reconstructions of theAaM and the DANCER sequences.
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Figure 4.5: Metric 3D reconstructions of the MIT sequendgd. The visual hull projected
over the original silhouettes. (b) A close-up showing them@ection errors. (c, d) Silhouette
interpolation using the sub-frame synchronization redwsteeh re-projection errors.
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first and the third and compared it to the true second frame. approximate interpolation
approach works quite accurately for small motion, as woel@xpected in video captured at
30 frames per second. In Figudes(e), the visual hull reprojection error is shown, with and
without sub-frame silhouette interpolation. In the twoessghe reprojection error decreased
from 10.5% to 3.4%, and from 2.9% to 1.3% of the pixels insiue silhouettes in the four
views. In the future, more sophisticated shape-presemategpolation schemes such the ones

proposed by1] will be investigated for higher accuracy.

4.4 Conclusions

This chapter concludes the first part of the thesis. We hagsented a complete approach
to determine the time varying 3D visual-hull of a dynamicyérom silhouettes extracted
in multiple videos recorded using an uncalibrated and ucissonized network of cameras.
The key element of our approach, is a robust algorithm tHaiefitly computes the temporal
offset between two video sequences and the correspondipgl&pgeometry. The proposed
method is robust and accurate and allows calibration of cametworks without the need for
acquiring specific calibration data. This can be very useluapplications where sending in
technical personnel with calibration targets for calilmabr re-calibration is either infeasible
or impractical. We have also shown that for visual-hull restouctions from unsynchronized
video streams, sub-frame silhouette interpolation camawgthe quality and accuracy of the

reconstructed 3D shape.
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CHAPTERS
Multi-view Stereo Reconstruction

5.1 Introduction

Recovering the 3D shape of a static object from multiple iesalgas been a classical prob-
lem addressed in the computer vision literature. Given iplalimages of the same scene
from different viewpoints and the calibration of the copesding cameras, the goal is to
reconstruct a 3D model of the scene as accurately as passildpecific case of the 3D re-
construction problem that has been investigated in detale problem of recovering a 3D
model of a closed, compact object. In practice, the objecften placed on a rotating turn-
table and a single camera captures images at roughly unifagervals. This simulates a ring
of cameras surrounding the object. As discussed in Sett@2 it is possible to exploit a
variety of visual cues to design a 3D reconstruction alparitAmongst these, the stereo and
silhouette cues are the most widely applicable and pow&sfuhodeling solid objects. The
class of shape from silhouette methods were reviewed earl®ection4.2 and a robust and
efficient algorithm for computing exact polyhedral visuaillb [41] was described. In this
chapter, multi-view stereo methods will be described as asssome recent techniques that
try to fuse stereo and silhouette information together idr&construction. In this setting, the
motivation and scope of the approach proposed in the secamafpthis thesis will be laid

out.



5.2 Multi-view Stereo

The basic idea in multi-view stereo is to use image appear@rec color or texture) to estab-
lish dense correspondence between pixels in differenbreaéd views. Dense binocular or
multi-baseline stereo involves recovering matching @ixeixels corresponding to the same
3D point) in two or more views. The depth of the 3D scene can beerecovered by triangu-
lating corresponding pixels (i.e. intersecting back-pctg¢d rays) in different views. Often it
is difficult to find accurate and robust correspondenceslfpineels because of ambiguities in
matching for textureless surfaces or the matching failstdueclusions or non-Lambertian
properties of the surface.

Stereo algorithms represent the scene structure or abgwpe using disparity maps (or
depth maps). Every pixel (i, j) in the first image has a particular disparitywith respect
to the matching pixeb.(i + d, j) once the images have been rectified (i.e. they have been
transformed to ensure that corresponding pixels are alwayslentical scanlines). In the
multi-view case, alepth-maps commonly used to represent the correspondence or thie dept
from a particular viewpoint. The problem of robustly compgtan accurate disparity map
can be formulated as a pixel labeling problem. Some of thé sieseo methods solve the
pixel labeling problem by energy minimization which make w$ recently proposed discrete
optimization algorithms such as graph cut§,[14] and loopy belief propagatiorip5. Later
in this chapter, we will review graph-cut based energy mination on which our 3D recon-

struction method is based.

5.2.1 Photo-consistency

While stereo approaches that compute depth-maps are vitell $ar reconstructing general
scenes, volumetric or surface based methods are more paghéa it comes to reconstructing
objects. Irrespective of the underlying geometric repnesgtéon, all these methods use the

fundamental idea gbhoto-consistencijrst proposed by118 in the context of a volumetric
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approach callegoxel coloring

Photo-consistency is a function that how measures thehlikedl of a 3D point of being on
a opague surface in the scene. This likelihood is computeddan the images in which this
3D point is potentially visible. Suppose a 3D poMt, visible in camerag € Vy; projects
to pixels in these images with colofg, respectively, then the photo-consistencyMdfcan
be estimated by evaluating the color variance of the pixelis,}. An ideal Lambertian
surface point will appear to have the same color in all theg@saand will thus have a color
variance of zero in the absence of noise.

The color variance measure is an over simplificaton and natlagquate measure for real
scenes. Thus instead of a single pixel, the appearance oélrseighbourhood around the
projected point is often considered. Patch-based sinyilareasure such as normalized cross
correlation (NCC), described in Appendh2 can be used to compare the appearance of these
patches. Various ways of computing photo-consistency baea reportedl]7, 64, 127 and
approaches for non-Lambertian surfaces suciis4 have been investigated as well.

Photo-consistency can be measured in image space or ope.dmage space compu-
tations compare image patches centered at the pixels wihe@ point projects. This im-
plicitly assumes that the images are approximately redtdiethe corresponding camera pair
has a small baseline. Object space computations are mogeadiera patch centered at the 3D
point is projected into the images and the appearance ofrthegbed patches (recovered by
bilinear interpolation) are compared. Approximate knalgie of the surface orientation can
be used to choose a suitable orientation for this patch.cPtatsistency cannot be computed
exactly because it requires knowledge about the visilalitgt this in turn requires knowledge
of the 3D shape. Most approaches either approximate thhkilitisi[ 85, 148 or compute
robust versions of the photo-consistency function thatsrecclusions as outlier$49.

Volumetric 3D reconstruction methods that maximize phatosistency roughly fall into

two groups — (@) greedy carving approaches which try to recowaximal photo-consistent
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shapes such as tpboto-hull[ 78] or (b) energy-based global methods that first evaluategphot
consistency within a volume and then search for a surfade té highest overall photocon-
sistency. The greedy carving metho@8,[118 make binary hard decisions locally and cannot
enforce regularization or spatial coherence. The reseltgnd on a critical threshold param-
eter which is used to classify voxels as being photo-comsisir not. This is problematic
because the image data is almost always ambiguous andentdecisions made at individ-

ual voxels cannot be corrected later.

5.2.2 Global methods

Global methods which employs energy minimization imposggilarization or spatial co-
herence as a soft constraint and are better suited for gpthi@ ill-posed 3D reconstruc-
tion problem [L3, 14, 38, 77, 85, 148. These methods formulate scene reconstruction as a
variational problem in which a suitable photo-consistehaged energy functional is opti-
mized. Various ways of solving the variational problem hasrbinvestigated — deformable
meshes31, 57, 66|, level-sets 88| and graph-cutsl3, 77, 14§.

Level-sets 119 are a popular method to minimize functionals such ag(s)ds that
can be represented as a weighted minimal surfaceAn implicit function gb?s,t) is con-
structed such that the time-evolving surfatfe) is represented by the zero level-set 0§, ¢)
i.e.¢(S(t),t) = 0. The surface evolves in a way to minimize the weighted serfanctional.
Using the Euler-Lagrange formula for this variational gevb, a partial differential equation
is constructed which drives the evolutiond(fs, ¢). Although this method minimizes a global
objective function, the PDE is based on local differentjai@tors. This technique was used
by Faugeras et. al3B] to solve the 3D reconstruction problem where tfe) function was
based on patch-based photo-consistency.

While level-sets and deformable meshes can enforce smegghthey are iterative and

only guarantee a local minima and thus they require gooaliziation. On the other hand,
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graph cut optimization is attractive because it can comghéeglobal minima of the energy
functional in many scenarios. However, the reconstruatsnlts from graph-cuts often suffer
from metrication errors due to the underlying discretmatiThis was addressed ihd but in
practice, graph cut results are never completely free ofioaion errors. Although graph-cut
optimization is reasonably fast, they typically requir@lerating the photo-consistency over
the whole volume, due to which the computational and memeguirements of this method

are quite high.

5.2.3 Combining Stereo and Silhouette Cues

While the photo-consistency or stereo cue provides strongtcaints on surface locations for
near fronto-parallel surface patches, shape from silhetgethniques provide constraints for
surface patches that are tangential to the viewing raysceéierethods that combine the two
cues show benefits from combining the complementary infaona

Some of the earliest methods that combined silhouette amdostonstraints were3],
94]. Both started by carving away voxels using silhouette rimfation followed by carving
based on photo-consistency. This is possible becausedhaliull is guaranteed to contain
the real surface within itself. A mesh deformation approaes proposed by6p]. It de-
forms the visual hull towards a photo-consistent solutipmimving mesh vertices via a series
of random searches along epipolar lines. Hernandez e:4liqo created an initial mesh
from the visual hull which was then deformed to satisfy plottsistency constraints under
the effect of gradient flow forced$3. Their mesh deformation approach models silhouette
constraints as well but tends to produce a bias near thel¥islidoundary. A level-set based
approach that fused silhouette and photo-consistencytreams was proposed by 10. Al-
though these approaches show accurate results, they aspsibke to local minima and may
require good initialization in the form of a visual hull thaell approximates the true shape.

Our work is most similar to Carved Visual Hulld5] which also enforces some silhouette
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constraints exactly and this is reviewed later in Seciigh2

5.3 Energy Minimization

A large number of computer vision problems try to assign aefiset of labels to pixels based
on noisy measurements. The labels could be intensity vadligsarities or segmentation la-
bels depending on the target problem. Under an optimalilaipethe assigned labels often
tend to vary smoothly within the image, except at the bouredarvhere discontinuities typ-
ically occur. As a particular pixel label depends on the Ialo¢ its neighbours, the Markov
Random Field (MRF) is a natural representation. In the MR&work, each pixel becomes
a node of the MRF and a regular grid structure is imposed ormitkeds based on either a
4-connected or a 8-connected neighborhood system. In #sepce of uncertainties, finding
the best pixel labeling becomes an optimization problernm aWdRF.

Pixel labeling problems can be posed in terms of energy nination, where the energy
function (or functional) contains two terms: a data ternt fh@nalizes solutions that are in-
consistent with the observed data, and an interaction teatrenhforces spatial coherence over
the whole solution. Thus the data energy is simply= Zp D,(l,) which is a sum of per-
pixel data costs (the penalty associated with assiging Ighie pixel p). The interaction (or
smoothness) energy termis, = >, .\ Vi(ly,1,). Here N denotes the set of all un-
ordered pairs of neighboring pixels amg,(l,,[,) denotes the penalty of assigning labgls
andl, to neighboring pixelg andq respectively. Thus the energy functional that is minimized

is as follows:

E(L) = Z Dy(lp) + Z Voa(lp, lg) (5.1)

{p.a}eN

These energy minimization approaches are well justifiedhag produce the maximum a
posteriori estimate of an appropriate MRE9]. In fact the data energy is proportional to the

log likelihood of the measurement noise whereas the intieraenergy is proportional to the
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log-likelihood of the prior as pointed out b39.

The interaction energy is typically of the fordd, = -, .\ wp V (|}, — lg|) where
V() represents a monotonically increasing function of lab#kdénce. The Potts model is
commonly used as it allows discontinuity preserving smdaiiel assignments but penalizes
any pair of dissimilar labels equally. Hete, = .\ \ wyq.I(|l, # [4]) wherel() is the
indicator function. The choice of the interaction term igical and under some common
choices the energy minimization becomes intractable. iiizcing the Pott energy model or
any other energy with discontinuity preserving smoothtessas under more than two labels
is NP-Hard. However, fast approximation algorithms such-&pansions]6] can compute
a provably good approximate solution by iteratively rurgnmax-flow algorithms over the
range of labels. In this thesis, we will only be concernedhviinary energy functionals
which can be efficiently minimized irrespective of the cleoid the interaction term. Although
many different approaches for energy minimization exishmliterature, we will concentrate
on graph-cuts, as they guarantee finding the global minimgoéoclass of binary energies we

will be concerned with.

5.3.1 Graph-cuts based Energy Minimization

For solving the 3D reconstruction problem, we will be instegl in energy minimization over
a MRF where every vertex in the graph corresponds to a voxalkhounding volume of the
shape. We will be interested in binary energy functional®e-Wwe seek to label each voxel
as interior or exterior. Each partition of the set of voxatsresponds to some surface and
we will be interested in optimizing such a labeling undertao$eonstraints derived from the
silhouette and stereo cues. There is a natural correspoadetween such a particular pixel
labeling and a cut on a flow grajh It can be proved that the minimum cut 6fproduces the
partition or labeling that is the global minimum of the enefgnction. Computing the mini-

mum cut is equivalent to finding the maximum flow on the flow ¢grafich can be computed
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(@) (b)

(d)

Figure 5.1: (a) a X 3image where andq refer to neighboring pixels. (b) Graph construction
showing the n-links, t-links and the two terminalsand ¢ respectively. (c) Every s-t cut
produces a certain labeling and (d) the minimum cost cutyresl the optimal solution to the
pixel labeling problem.

in polynomial time. Thus in the two labels, the global miniofahe energy function can be
obtained in polynomial time directly (see Appendx3 for an overview on max-flow/min-
cut algorithms). We will now describe the construction & graphG for an arbitrary binary
energy function. The graph G will contain two kinds of veescp-verticesthese correspond
to the pixels or voxels which are the nodes in the associate&)Mndl-vertices(these are
the terminal vertices). This is illustrated in FigBel. In the two label case, there will be
two such |-vertices. In Figurg.1(b) these are denoted Byandt respectively £ andt stands
for source and sink respectively). All the edges presenhénrteighborhood syste” of
the MRF become edges (n. These edges are calledinks Edges also exist between the
verticesand the termindtvertices These are calledlinks. t-links are assigned weights based
on the data terms of the energy functional, while n-linksassigned weights based on the
interaction or smoothness term. To be more specific, thehweigthe t-link connecting node
ptosis D,(l, = t) while the weight of the t-link betweemandt gets the weighD,(/, = s)
respectively. All n-links typically get a constant weightvhich decides a trade-off between

the data-penalty and smoothness penalty. The minimum eetssome of the t-links as well
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as some of the n-links. This leaves some of the p-verticesaxird to the source, while the
rest remain connected to the sink. This partition inducedhieyminimum-cut produces the
most optimal binary labeling that has the minimum energy.

Graph-cut based energy minimization was initially done @nrgular grid where the
optimal labeling was often spatially coherent. Howeveeg lgibel boundaries were not ge-
ometrically smooth contours or surfaces. In the contexteginsentation, it was found that
graph-cut techniques produced lampetrication errorsbecause the underlying energy that
was being minimized by graph-cuts did not enforce geomstrioothness of the boundaries
between labels.

Boykov et. al. L3] studied cut metrics associated with graph-cuts. They skidvow that
the minimum cut cost can approximate any non-Euclidianimétr R™) using a specific type
of graph construction. They proposed tpeo-cutalgorithm [L3] to address the problem of
metrication errorsand showed how to use graph cuts to compute geodesic comaDsor
minimal surfaces in 3D metric spaces in the context of olgegmentation in 2D or 3D. The
main advantage of geo-cut (graph-cut method) over othensetation techniques (snakes or
level-sets) lies in their ability to compute globally opairsolutions for energy functionals
defined on N-D grids. Finding geodesics and minimal surfacadevel-set methods is a
common approach that was popular in the past. The geo-catithlign can find globally
optimal solutions which avoids problems with local mininfdnis is an important result as it
shows that graph-cuts are indeed a good choice to solve tideokivariational problems we
are interested in.

Although the 3D multi-view reconstruction problem is siamito 3D segmentation i.e. it
involves labeling the voxels in the grid into interior andexior ones, there are some differ-
ences. In segmentation, typically region-based inforomais used to associate data penalties
with every voxel in the grid. In 3D reconstruction, the datsst is derived from the photo-

consistency function which gives a likelihood of the looatf the surface i.e. the interface
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Figure 5.2: (a) A 2D slice of the volume showing the visuall filodse surface) and the inner
offset surface between which the surface is assumed toljeTHe offset surfaces are con-
nected to the source and the sink respectively and the mmioust cut produces the most
photo-consistent surface.

between the interior and the exterior. In the absence obrebased terms, the t-links do
not have any associated weights, rather the photo-consjst®sts are incorporated into the
weights of the n-links. In order to force the cut to go throwglecific parts of the volumes,
hard constraints can be incorporated by including t-link wery large weights. Having a
t-link with an infinitely large weight ensures that this edg@ever severed by the minimum-
cut. This is equivalent to saying that certain nodes in tlag@lgror MRF have pre-determined

labels i.e. they are connected to either the source or tlke sin

5.4 Closely Related Work

We now review some recent multi-view stereo methatss 148 and analyze them in some

detail as our proposed method is closely related to these.

5.4.1 \Volumetric Graph Cut Stereo

The work of [L48 extends the Riemannian minimal surface ideald for multi-view vol-
umetric stereo. The method uses an approximate base surfdee form of the visual hull

of the scene by assuming that the true surface will be bettfeehase surface and a parallel
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inner boundary surface. In their graph-cut formulatiomr, tlodes of these two base surfaces
are connected to the source and sink respectively usinghighyedge-weights. This is illus-
trated in Figureés.2 For computing the photo-consistency of every voxel thest between the
two base surfaces, each voxel is assumed to have the saliéityisis the nearest point on
the visual hull. The minimum cost cut on this graph that safesrthe source from the sinks
corresponds to the most photo-consistent surface S wiaslo&tween the two base surfaces.

This surface minimizes the energy functiodi#lS) = [, p(x)dS, wherep(x) is defined as

pla) = 1 = eap(~tan(T(c(z) = 1))*/0%)

andc(z) € [—1, 1] is a measure of photo-consistency. Tdie) function is a sigmoid which
maps a photo-consistency score to an individual term inieegy function ¢(x) = 1 means
high photo-consistency produces an energy tefm = 0). Surface smoothness is implicitly
enforced since minimising'(S) corresponds to finding the minimal surface with respect to
a Riemannian metric. Larger values ®fproduces surfaces that are less smooth but which
passes through more photo-consistent points.

While the visual hull is used to generate the base surfagebitomethod, the silhouette
constraints are not enforced during the graph-cut optitimzand thus there is no guarantee
that the final solution will strictly satisfy the silhouettenstraints. In fact, in most cases it
won't. The approach also suffers fromranimal surface biasa common problem with most
global methods. Since these methods attempt to minimizefacguintegral, they implicitly
prefer solutions which have smaller areas. For the 3D rénact®n problem, this amounts
to reconstructed surfaces that have shrunk and occupydéss& than they actually should.
Also sharp protrusions or deep concavities will be missieggnise the imposed regularization
tends to flatten the minimal surface. A ballooning term @edased term) was used 45
in their energy functional to address this problem. Thedwaling term gives a preference for

larger shapes. See Figuse3 for an illustration. The corresponding energy functioreltt
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(b)

Figure 5.3: (a) Volumetric graph cuts suffer from a minimatiface bias. A slice through the
photo-consistency volume is shown. (b) The problem is sblwe using a ballooning term
in the energy functional which is a prior for larger volumé&sis illustration is taken from
\ogiatzis et.al. 148.

is minimized isE(S) = [, p(x)dS — [, \dV whereV is the volume enclosed by the sur-
face. The new energy functional has an additional voluméatso referred to as ballooning)
term which favors larger shapes. However this naive reqalion reduces the overall accu-
racy of the reconstruction because in order to recover ttotrysions, the deep concavities
must be filled out as well. In our approach, silhouette camsts will be used to recover thin
protrusions whereas additional visibility based inforimatwill be used to recover the con-
cavities accurately. While silhouette constraints wesua the deformable mesh as well as
level-sets based approaches, it is not obvious how to emtbem within the graph-cut based

technique. This is the motivation of our work but first, thesgly related work on Carved

Visual Hulls [45] is reviewed next.

5.4.2 Carved Visual Hulls

The algorithm proposed by Furukawa and Poré $tarts by computing the exact visual hull
mesh using the approach &J. First dynamic programming is performed on the cone-strip
of the visual hull to recover segments of the rim curve. Theih whe points along the rim
curves held fixed, the visual hull is carved using graph-¢sitailar to [13, 148) to globally

maximize the photo-consistency of the surface. At thisestagvatertight triangulated mesh
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is reconstructed and this mesh is optimized further usiogllmesh deformation to recover
more finer surface detail.

Excellent results have been reported although in all thasescthe visual hull already
approximates the true shape quite well. One weakness wheciywio address in our work
is the early commitment to rims which are identified in thetfstep after which they are
held fixed while computing the surface during optimizing fghoonsistency. In this method,
when rim points are incorrectly identified, they cannot berexted later during the graph-
cut step and this early commitment can be dangerous in amibggsituations. In contrast
to this multi stage approach, our graph-cut formulatiorhvéikact silhouette constraints is
designed to directly extract the rims as well as the fullacefin one optimization step. Similar
to [45, 57], we too perform a subsequent local refinement of our mestguscombination of
texture, silhouette and smoothness forces to recoveregréagiree of surface detail in our 3D
models.

Both volumetric graph-cut stereo and carved visual hultcsssfully use the graph-cut
optimization technique but both of them require pre-cornmauphoto-consistency on a very
finely divided regular lattice grid. The cost of evaluatirtgopo-consistency at all these nodes
dominates the running time of the graph-cut optimizatiapstin our work, we propose
an adaptive graph construction which addresses this proble propose a way to adap-
tively sample the volume that avoids computing photo-cstesicy where its not needed. The
proposed approach allows us to reconstruct detailed gemmeddels from high resolution
images which would have been impossible with the existinpy@gches because of a memory
bottleneck. This adaptive framework can utilize soft silatie constraints (when approxi-
mate silhouettes are available) but enforces them in a memergl way without enforcing

exactness.
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5.4.3 Surface Growing Approach to Multi-view Stereo

While the two approaches described above perform some férghobal optimization us-
ing a volumetric representation, recently a different apph to multi-view stereo has been
explored by #4, 51, 54]. These methods first generate sparse correspondenceseietine
multiple images. Next, a local region growing or surfacenjny strategy is used to iteratively
build up a dense surface. Surface growing approaches ugehalpagsed representation of the
surface. Patches aurfelsare planar disks that are independently estimated suchihtéiat
projections in the images where they are visible, match wiith another. Instead of optimiz-
ing a global energy functional to enforce smoothness dumagnstruction, the smoothness
prior is used to make a local planarity assumption aboutuhi&e during the surface grow-
ing stage. A dense reconstruction may be obtained by meiitgdations of expandingurfels
in the tangent plane of an existisgrfeland refining the newly created patches.

To produce a compact watertight surface, these approaches be combined with a
surface-fitting approach such a&. Visibility constraints are used by to perform filter-
ing during the iterative surface growing stage. Currerithg the best performer amongst the

various multi-view stereo approaches in the Middleburytimuew stereo benchmark[L7].

5.5 Conclusions

In this chapter, we reviewed the state of the art in multimétereo and background in graph-
cut based energy minimization and how it can help with s@\hre multi-view stereo prob-
lem. We discussed some of the limitations of the existingiods and motivated how silhou-
ettes can be used to address these issues. Chapter 6 wribéesar work on a graph-cut
formulation for multi-view stereo that incorporates siltette constraints exactly while Chap-
ter 7 describes an adaptive graph construction that addréiss memory and computational

bottleneck of the volumetric graph-cut algorithms.
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CHAPTER 6
Multi-view Stereo with Exact Silhouette Constraints

6.1 Introduction

In this chapter, we describe a graph-cut formulation foruwmtric multi-view stereo that
strictly enforces silhouette constraints. This impliestin addition to being photo-consistent,
the final reconstructed surface is constrained to exactjept into the original silhouettes.
Existing techniques that fuse silhouettes and photo-stersty, treat these cues as soft con-
straints within a global optimization framework — these Inoets cannot ensure that the re-
constructed shape be fully consistent with the origindiaikttes. In our formulation, a
special flow graph is constructed such that any cut that aggssource and sink nodes in
the flow graph, corresponds to a surface that exactly satisfibouette constraints. Thus
silhouette consistency is guaranteed by constructionsndtipart of the optimization prob-
lem. Amongst the multiple cut surface candidates, the minmncost cut corresponds to the
optimal solution (the surface with minimum energy) that m#@xes photo-consistency and
smoothness.

Our graph-cut formulation is based on the topology of exatal hulls j1, 83], which
is based on a combinatorial mesh of cone-strips obtainedidoygdne-cone intersections of
back-projected viewing cones from all the silhouettes. VWgppsed a preliminary version of
this approach inJ24], which was based on the concept of the rim mesh proposeie eyl
Lazebnik et. al.82] in the context of exact visual hulls. The rim mesh (similarthe idea
of epipolar netgroposed by31]) captures information about the combinatorial arranggme

of rim curves (i.e. contour generators) on the actual sarfade location of the rim curves



is also recovered by this method. However the proposed apbris complicated and cannot
handle complex geometric shapes. This is because the rilmfioresomplex geometric shapes

is unstable or difficult to compute. The approach descrilpethis chapter is an extension
of our previous work 124, but can handle more complex shapes. The approach prdsente
here does not need the rim mesh, but recovers all the relatedanation directly from the
topological information encoded in the visual hull mesh. Néwe tested it on various real
datasets involving complex shapes.

In this chapter, we start by explaining the main idea usingr@ke 2D example. Our
formulation is based on a 2-coloring property of the visual tvhich is explained next. An
algorithm for 2-coloring the visual hull is then describéthe 2-coloring is the primary mech-
anism for incorporating silhouette constraints within graph cut step in our proposed for-
mulation. The formulation is first presented in a form thatrectly deals with only convex
objects observed by multiple cameras in general positiorally, we show how to deal with

non-convex shapes which requires correctly handling €tjons on silhouettes.

6.2 Main ldea

The basic idea behind our approach is that the visual huhsalron which is formed by a
union of cone strips, captures important information alibatgeometry of the visible parts
of the rim curves on the true surface. The rim curves partitiece surface into patches, each
of which is constrained to lie within the visual hull. Furukaet. al. B9 first recover the
geometry of the rims and then reconstructs the patches Wbltkéng the rims fixed. In con-
trast, the surface and the rims are recovered in a singldarsteyr approach. We construct a
new topological space (a 3-manifold) by taking subsets efvitlume inside the visual hull
and gluing them along certain faces of the visual hull potirae The exact topology of this
3-manifold is derived from the geometry of the visual hullyt@dron. We then construct a

geometric graph embedded within a discretized versionief3fmanifold. Hard silhouette
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Figure 6.1: The main idea of our formulation is illustratesrdn (best seen in color). (a) A
2D visual hull is shown — V denotes its interior. Vertices Irefresent the vertices of the
visual hull. A new topological space (a 2-manifold in the 2i3€) can be created as follows.
Multiple copies of the underlying 2D space are glued togetopologically identified) along
certain edges of the visual hull polygon as shown. The snmaizbntal edges represent the
topological identification. Note that the space wraps-acdoub) A discrete geometric graph
embedding within this space is then constructed. A graplpablem is setup with source
vertices (shown in red) and sinks vertices (shown in bluely #t cut on this graph must cut
through the edges (1-2, 2-3) as shown. Thus, it will map back to a surface in the original
space that is guaranteed to satisfy silhouette constraints

constraints are imposed by connecting specific verticasarlow graph to the source and the
sink on the basis of a 2-coloring scheme that is described I@omputing the minimum cut
on this special flow graph will produce a 2-manifold embedd#Hin the 3-manifold we have
constructed. This minimum cost cut surface uniquely mapk bma surface embedded in the
original space. We show that by construction, this surfaitleewactly satisfy all silhouette

constraints. This idea is illustrated in Figue using an example in 2D (flatland).

In order to describe the graph construction, we will firsteawvrelevant concepts related
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ConeStrip,

Frontier Point

Cone Intersection
Edge

(@) (b)

Figure 6.2: (a) Geometry of silhouettes in two views. (b) Viseial hull obtained by intersec-
tion of two cones. Frontier points, rims, cone-strips andecmtersection curves are shown
(best seen in color).

to the the geometry of exact visual hulls. For more detalsage refer to41, 83].

6.3 Exact Polyhedral Visual Hull

The visual hull is the maximal shape that projects consiistémo a set of silhouettes, and
is obtained by intersecting silhouette cones from the spwading calibrated viewpoints.
Visual rays from a camera which grazes the true surface tdiadjg give rise to a smooth
continuous curve on the true surface calledrieor thecontour generatarlts projection in
the image gives rise to the apparent contour. For non-castvages, depending on the camera
viewpoint, therim can occlude itself. This gives rise to singularities on thpaaent contour.
Thus silhouettes of opaque, hon-convex solid shapes alg tik contain T-junctions.

Rims from different cameras intersect on the surface attpoaled frontier points (these
were discussed earlier, in the context of silhouette-baaetkra calibration, in Sectidh?2.1).
Discretization of the apparent contour or calibration egiges rise to missing frontier points
on the visual hull polyhedra, due to the problemast tangency- i.e. the perfect cone tan-
gency is lost and one cone ends up clipping the other one.ig ligstrated in Figures.3.

The contribution from a single viewing cone to the visuall lnuésh can be parameterized
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Figure 6.3: (a) Close-up of a frontier point and the probleinost-tangency (b) An ideal
cone-strip for perfect data compared to a cone-strip froenetkact polyhedral visual hull in
the presence of silhouette discretization and calibratmse (best seen in color).
as a ruled surface, and is called@ne-strip The geometric shape of the cone-strip provides
an interval constraint on the position of the associatedaumve. Intuitively, the shorter the
view edge in the cone-strip, the closer the visual hull ishi® true surface, locally. While
the rim curve mostly lies on the cone-strip, it detaches ftbecone-strip at a point on the
viewing ray that corresponds to a point on the T-junction siffeouette. The detached portion
of the rim lies inside the visual hull volume, not on its seda This portion of the rim curve
is occluded by the object shape from the particular viewpoin

When points sampled on the apparent contour are back-pedjét 3D, they give rise to
viewing rays, each of which may contribute a view edge segmemultiple segments to the
visual hull polyhedron. At least one point on the view edggnsents generated by a single
viewing ray must lie on the true surface. In fact, this poies lexactly on the rim curve. When
viewing cones intersect, they give risedone intersection curves-or the polyhedral visual
hull [41], the cone-intersection curves are approximated by asef@ne-intersection edges
In fact, there are special vertices on the visual hull mesichvborresponds to the intersection
of three viewing cones — these are caltegle points All points on the cone-intersection
edges lie completely outside the true surface, althoughrtesy get infinitesimally closer to
the true surface. All edges in the visual hull polyhedron @itber viewing edges or cone
intersection edges. Similarly, all the vertices of the aidwill polyhedra must be either triple

points or vertices that form the end-points of viewing edglete that, all vertices of the
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visual hull also lie outside the true surface, even thougly thay get infinitesimally close to

it.

6.4 Silhouette Formation and 2-Coloring

Consider a closed manifold surface which is seehwews. The apparent contour observed
in each of these views corresponds to a continuous rim cuhiehws topologically a closed
loop. In case of shapes with non-zero genus, the apparetwsnmay contain holes in
which case thg® rim curve will have multiple loops. The arrangement of theseld curves
that correspond to thiesets of rim curves on the surface partitions the surfacedotmected
regions. This will be referred to assurface map See Figures.4 for an example. We
now prove an important property of surface maps — a resultwilhbe used in the graph

construction, described later in this chapter.

(k)™ Rim

Figure 6.4: Two-coloring the surface (best seen in cold@ft] The 2-colorable surface map
induced byk-rims. The color of the surface changes everytime you crogsoé the rim
curves. (Right) A new surface map is created after adding/he 1)(th) rim (shown by a
dotted line). The color of patches on one side of the new rive lieeen swapped and patches
on the other side remain untouched. The new surface mapmifaislorable (see proof).

Lemma 6.4.1.A surface map\/;, induced by the rims from k views can always be 2-colored.

Proof: We prove this by induction. The rim curve or curves (when &@ee present in

the silhouette) divides the surface into two parts: frord back with respect to the camera.
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Let us label them with two different colors. Thusl; can be2-colored Assuming)M,. has
been2-colored we must prove that/,, can also be2-colored After adding the(k + 1)
rim to M,, we swap the colors of its front faces in the new maf,.,, but leave the back
faces untouched. This will produce a 2-coloring of the neevgated faces i/, ;, which
is consistent with that of the old faces, unchanged flgim Thus indeed)\/;.,; can also be
2-colored O

The 2-colorable surface map that we described could beféraed to the visual hull
surface by a projection as shown in Fig&.®&. However, when the shape of the surface and
the position of the rims are unknown, the exact mapping cemmdetermined. In spite of this,
it is possible to generate a 2-coloring of only the visual fiattices and the cone intersection
edges, that is consistent with the surface map. This is Isecawiew-edge provides a finite
interval for the rim curve. Therefore, the two vertices ataktremities can be consistently
two colored even when the exact rim point is unknown. In the section, we will propose
an algorithm for 2-coloring only the vertices of the visuallh

Even when the surface (and the rim curves) are unknown, thaegey of the exact visual
hull mesh allows us to recover the topology of the unknowo@@ble surface map. This fact
is key to the proposed approach. Later in the chapter, we Bbowto use the two-coloring of
the visual hull vertices to setup silhouette constrainthéngraph-cut optimization.

In case of a convex object, the rim curves are never occludddia completely on the
visual hull surface (actually on the corresponding comg)stFor non-convex objects, parts
of the rim curve may detach from the visual hull and lie insidevolume. We will refer to
these as thenvisible parts of the rim. Note that, the coloring of the surface mapahkiange
across the invisible portion of the rim curves as well. Hogreas these invisible rims do not
actually touch the visual hull surface, the location on tise@l hull surface where the coloring
switches, can be chosen somewhat arbitrarily. An exterisitime basic approach (for convex

objects) is required and is described later in Seddidgh
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@ (b) ©

Figure 6.5: (a) 2-coloring of the surface S (best seen inrfolthe visual hull is denoted by
V. (b) The 2-coloring can be transferred to the surface of/tbeal hull V. (c) When S (shown
as dotted curve) and the position of the rims are unknowty, i@ vertices of the visual hull
can be colored. The coloring of points on the viewing edgesicbbe determined unless the
position of the rims are known, because the coloring chaagastly at the rim point.

6.5 2-Coloring the Visual Hull

We now describe the algorithm for 2-coloring the verticethefvisual hull. It consists of the

following four sequential steps, which will be describedhis section.

1. ldentify thetrue segments on each cone-strip.

2. Repair each individual cone strip.

3. Generate per-view orientation labels for all visual lelitices.
4. Derive the final 2-coloring for all the visual hull vertge

Identifying the true segments on each cone-strip

Consider the silhouette or viewing cone from a single vieat tontributes a cone-strip
to the visual hull. Each viewing ray in this silhouette conentributes one or more view
edges to the visual hull mesh. When a viewing ray gives rigautiple view edge segments,
only one of them contains the true rim point. This view edggnsent will be referred to as
the true segment, while the remaining ones will be referred tdadse segments. Th&ue
segments can be detected by inspecting photo-consistepoinés sampled on the view edge

segments. The existence of photo-consistent points onnangesdge segment indicates that
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False Segment

multiple Vlew Edge /ﬁi

segments

+—— Viewing Ray

Figure 6.6: Silhouettes of an object seen in two views. Aestitthe visual hull computed
from two views is shown on the right (the slice in the epipglne corresponding to the red
epipolar lines in the images). Notice how the viewing rayegivise to multiple view edges,
only one of which contains the true surface point. Such a @dge is called &ue segment,
while the other view edge generated from the same viewingsreglled afalsesegment.

the corresponding edge is likely to berae segment, wheredalse segments are unlikely
to contain photo-consistent points. Although, the viewesdfpr each viewing ray could be
selected one by one, for greater robustness we globallgattretrue segments for the whole
cone-strip, using a dynamic programming approach. Spalijfieve compute a shortest path
on a graph that we will refer to as thien graph When multiple segments arise from a viewing
ray, this optimization approach will classify exactly orfdleem as arue segment.

Furukawa et. al.47] also used dynamic programming on the cone strip to recdwer t
position of the rim curve. In doing so, they made an early cament to the position of
the rim curve which was held fixed during their subsequenplgi@ut optimization which
computes the final surface. In comparison, our approach sriaite commitment at an early
stage. Amongst the multiple segments, we select the onasthi&ely to contain the rim
point. In fact, this is the only early commitment in our apgch. In a generic situation, this
has almost no impact on the final solution, as we get fewee fs¢gments with more input

silhouettes. This is because the additional silhouette®@avay major parts of the visual hull

that contains the false segments. An early commitment sodwice of tharue segment is
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Rim Graph
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True Segm?{sl RRIILT Shortest Path
allIIIr M
Imllllllmmlmz
(© (d)

Figure 6.7: (a) A Cone Strip illustrated with photo-consigty along the view edge segments
(white indicates surface points with high photo-consisyenhile black indicates low photo-
consistency). (b) The corresponding Rim Graph. (c) Thetskbpath between two virtual
terminals in the rim graph is computed. (d) This correspdndbe set oftrue segments on
the cone-strip.
less dangerous than committing to the location of the rinvelr.e. the position of the rim
point on thetrue segment)47]. Rather, in our approach, the rim points are recoveredeat th
same time as the whole surface, via a single, global grapbptirhization.

The construction of them graphis now described. Each node in thie graphrepresents
a view edge segment. In addition to these nodes, two virualihal nodes are also created
(see Figures.7(a,b)). Each node is assigned a weight(u) equal tol — p(z) wherep(z)
denotes the photo-consistency of the most photo-conssbént = on the corresponding view
edge segment. To compute the photo-consistefiey (—1 < p(z) < 1), we first project a
1 X p patch placed at, whose normal is orthogonal to the viewing ray, into at nioshages
(the normal vector is used to select cameras with small vigwaingles € 60°). Next, the

average pairwise normalized cross correlation (NCC) scofeéhe projected image patches

is computed. In all our experimentg, = 7 andk = 4. Note that the underlying cone-
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strip can be oriented, and this produces a cyclic orderinthefviewing rays. The edges
in the rim graph are created by connecting nodes that correspond to view selg@ents
belonging to successive viewing rays. Each eflge) in the rim graph is then assigned an
edge weightw(u, v) = w(u) + w(v) when the view edge segmentsindv are shared by a
common face in the cone-strip surface. However, wihandv do not have a face in common,
w(u,v) = K (K = 50 in our experiments). The shortest path between the termogs in
therim graphproduces a set dfue segments. Note that a larger valug?oiwill produce a set
of true segments, that correspond to a more continuous rim cunerirhcurve illustrated in
Figure6.7(c,d) has one discontinuity. Such a discontinuity occura aewing ray, obtained
by back-projecting a pixel at a T-junction on the silhouette

Repairing each individual cone strip

Oncetrue segments have been detected on the pieces of a cone-snigextstep involves
re-connecting patches of the cone-strip along a sequercamogtcted edges of the visual hull
mesh to form aepairedcone strip. Figuré.3 and Figures.8(a) illustrates these connecting
curves using dotted lines. The edges lying on these comgectirves will be calledim
edgesand vertices shared by them will be callea vertices Figure6.8(b) shows somem
edgedor four different cone-strips. First, the true segmenisvedges) corresponding to the
extremities of adjacent cone-strip patches are identiadi{ as 1-4 in Figuré.8(a)). Next,
a geodesic path is computed on the visual hull mesh betwesse tierminal edges, for e.g.
between the edges 1-2 and 3-4 respectively in the illustrati

The repaired cone-strip acts as an approximation of thectwae-strip, which when pro-
jected back into the image it was generated from, will predihe exact outline of the original
silhouette. The projection of the repaired cone strip ih®image, will produce the outline
of the silhouette of the visual hull polyhedron (up to disizaion error in the images).

We now describe how the connecting curves are computed ¢brazme strip’’ (obtained

from silhouetteS in imagel), one by one. First, a gragh is instantiated from the visual hull
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Figure 6.8: (a) Repairing a Cone Strip. Connections betwlesronnected cone-strip patches
are computed (these are shown as dotted lines). Theseggtenim edges (b) Four different
examples of repaired cone-strips. Triva edgesare shown in red. (c) The repaired cone-strips
are shown projected into the images — here they are virtiggdhtical to the original silhouette.
mesh. The nodes i& correspond to all the vertices of the visual hull mesh. Thgesdn

(G correspond to all the edges in the visual hull mesh, excemlfohe view edges and cone
intersection edges that belong to the current cone &triphe best way to think of this graph,
is to picture the visual hull mesh itself, with all the facefg¢he current cone-strip removed.
The connecting curves on the surface of the visual hull, thggther would form the repaired

cone-strip, are recovered one by one, by computing theestoseighted path o6 between

extremities of adjacent cone-strip patcheg’in
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An edge(u, v) in G, is assigned a weight(u, v), given by:

1

w(u,v) =Y F(x(t), )+ e, with (6.1)
x(t) = tP(u) + (1 — t)P(v) (6.2)

where the squared distance function of a 2D psiint the image, with respect to the silhouette
boundarys, is denoted by (x, S), andx lies on the line segment joining the 2D points where
u andv project in the image, which are denoted Byu) andP (v) respectively. Note that
never lies outside the silhouette The value ok is set to a small positive constant, to ensure
that all edge weights it/ are non-zero. The edge-weights are made to be proportiotiadt
proximity of the particular edge in the visual hull meshpfra viewing ray from the silhouette
S. Therefore, the shortest weighted path between adjacemtsinip patches yields a non-
intersecting connecting curve on the visual hull mesh, lieatclose to the viewing rays of
the silhouette cone. When the connection curves are relathorter, or when they lie on a
convex patch of the visual hull surface, the approximatotine true rim curve is almost exact
(see Figures.8(c)).

Generating per-view orientation labels

A fully repaired cone-strip partitions the visual hull sagé into a front and back part w.r.t
the corresponding camera. After the cone strips have bgairee, the next step involves as-
sociating two signature bitcodés and.S, with every vertex in the visual hull. Each signature
code contains. bits wheren equals the number of cameras. For a vertethek'" bit of S,
is set to 0 when is back-facing w.r.t thé'" camera and set to 1 if its front-facing w.r.t the
camera. However, if was marked as a rim vertex earlier on for & cone-strip, th&*™
bit of S, is set. The signatures for all vertices of the visual hullassigned by repeating the

following step for each one of the cameras.
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Consider thé&'™ camera and the corresponding cone-strip. First, the twidént vertices
for each of thetrue segments of th&'™ cone-strip are labelefiont or back depending on
which one is closer to the camera center. This is shown infEg9(b). These labels are then
flooded over the complete visual hull mesh, until ¥efield of the signature cods, for all
vertices have been filled in. The flooding stops at a rim veitexa vertex which lie on the
rim edges of th&'" cone-strip. Orientation labels stored in the bitcégdor various cameras
are illustrated in Figuré.9(c—e).

Deriving the final 2-coloring

Once signature codes, and S, have been computed for every single vertex of the visual
hull mesh, the per vertex coloring can be derived from therhis Ts computed by testing
the parity of bits in the bitcod#,. All vertices that have an even number of bits set (front-
label) are assigned to the setretl vertices. The vertices with an odd number of bits set, are
assigned to the set dllue vertices. Vertices for which at least one bit in bitcogleare set,
are assigned to the setgifeenvertices — these correspondrim vertices(see Figures.q(f)).

The significance of theg@n verticeswill be discussed later in Sectidh?.

(@) (b) (©) (d) (€) (f)

Figure 6.9: (a) An individual cone-strip is shown, ttrae segments are colored blue. (b)
The repaired oriented cone-strip. Front-facing vertiaescmlored white while back-facing

ones are colored blue. The location of the rim is unknown (iimepoint shown, is chosen

for the sake of illustration only). (c) The orientation l&bare then flooded to all the vertices
on the visual hull mesh. (d,e) Orientation labels for twoesthiews are shown. (f) The two

coloring obtained from the orientation labels is shown. Wi coloring pertains to the visual

hull vertices only. The rim locations (red/blue transigdrare shown only for the sake of
illustration.
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Figure 6.10: (a) In Flatland, the visual hull of obj&etfrom 2-views is denoted by polygon
ABCD respectively. (b) The inner offset layer is denoted/byrhe space of exact silhouette
consistent solutions comprise of all curves that lie betwgaygonsl” and/ but also touch
the four edges\ B, BC, C'D andD A at least once. The visual hull vertices are 2-colored (red
and blue) and an underlying geometric graph embeddimgicreated (see Secti@b).

6.6 Graph Construction — Formulation |

We will now describe Formulation | and the related graph trmiesion. The various steps are
illustrated in Figures.10using a 2D analogy, but described for the 3D scenario.

Prior to the graph construction, the vertices of the visudllpolyhedra)’ are 2-colored as
described in Sectio6.5. As in our illustrations, we will refer to them asd andbluevertices
respectively. Next an inner offset surface inside the Vibud is computed. The true surface
is assumed to lie between the visual hull and this inner bffsgface. The same assumption
was made in§3, 148. In our approach, this is implemented by first voxelizing thterior of
the visual hull and then computing the signed distance fioamsusing the approach o97].
The maximum distancé,,.., in this distance field is recovered and then the distana iel
thresholded to detect pockets inside the volume (testif1.d,,..) (whereT = 0.4 was used
in most of our experiments). The threshdldcan be set conservatively, depending on how
deep the true surface is expected to be with respect to thahhsill.

The surfaces bounding the pockets will form the inner offsgfaces — these will be

102



G, G,

Figure 6.11: Two identical copies 6f, denoted by, andG, are created. Their inner offset
nodes are labeled differently with the two colors (red angeplas shown. Finallyz; and
(G, are connected (glued together) by joining duplicate copiesirface nodes o&'; andG,
using additional edges. This gluing (topological idenéfion) is depicted using arrows on all
four edges of the polygon.

denoted collectively ag. Points are sampled on the visual hull surfg&eand the inner
offset surfaces. A node is then created for each of these sampled 3D point& tWh
surfaces are then tesselated (i.e. edges are connectegebetine nodes created earlier on)
— the corresponding surface meshes are treated as graplddingsedenoted byz», andGz
respectively. The graph nodes @, and Gz will be referred to asurface nodesndinner
offset nodesespectively.

A 3D regular latticel7, representing the interior of the visual hull (excluding puekets)
is then explicitly instantiated, and the photo-consisyarfosoxels on the lattice grid are eval-
uated (see Sectidh8.1for the details). The graph nodesai, will be referred to amterior
nodes Finally, additional edges must be created to connect ttiedagrid G, to Gz and
G respectively. The connections are created by adding anleztgeen asurface nodand
the closesinterior node(and similarly between amner offset nodevith the closesinterior

nodg. The resulting graph is a union 6f,, Gz, G» and these new connections or edges. The
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Figure 6.12: (a) A graph-cut problem is setup by connectihgd nodes to the source and all
blue nodes to the sink. The resulting s-t cut is a manifolchasva. It must traverse across the
four edges. Part of the cut surface is embedded;iishown in blue) and the rest of it @A,
(shown in red). (b) Together they map back to a surface thaffies silhouette constraints.
The grey arrows indicate the direction of flow from sourcel]1® sink (blue).
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embedding of this graph iR? will be denoted by, .

The graph7; is duplicated, to form an identical cogy,. Next,G; andG, are connected
as follows. Additional edges are created between esarface node, € G, with its du-
plicate nodev, € G5. We will refer to these asilhouette-consistency edgeEhe final flow
graph denoted bg, is a union ofG, G5. Two terminal nodeg$s,t} and the set o$ilhouette-
consistency edgeme added t@;. See Figurés.13for an illustration. We are now ready to

describe how the various edge capacitie€'iare assigned.

/ \
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Interior nodes s
Silhouette Consistency
Inner Offset hodes N Edges

Figure 6.13: The various types of nodes in our graph embegdatia shown -interior nodes
with a 6-connected neighborhoddner offset nodessurface nodesGraph embeddings,
andG, are connected visilhouette consistency edggsown in green.

First, all theinner offset nodem G, are labeleded and theinner offset nodes G5 are
labeledblue Remember that the subsetsfrface nodem GG; andG, which are true vertices
of the visual hull mesh have already been labetstiandblue, respectively. Next, all graph
nodes labeleded are connected to the source terminawhile all nodes labeletlue are
connected to the sink terminalEdge capacities for all edges, () € G, except forsilhouette
consistency edgeme derived from the photo-consistency of the 3D point gpoading to
the mid-point of the two nodes andwv respectively (these nodes have explicit 3D positions).

Now a minimum cut is computed a — let us denote this set of cut edgeg’as-or every
edge {1,v) € C, a corresponding 3D pointis created and an outward-facing normal vector is

associated with it. This is done by computing the unit norinabinting from the 3D location
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of u to v or v to u depending on whether the edge came fiGpor GG,. The exact location of
p on the edge,v) is improved using sub-voxel refinement by computing a Ipeahbolic fit
to the photo-consistency scores. The surface normals areteed by performing a weighted
average over the immediate neighbors on the grid. Finatlyaagulated manifold surface is

fitted to these oriented points using the Poisson surfaa@nstaiction approach of Kazhdan

et. al. [72].

Lemma 6.6.1. Any connected s-t cut aid must correspond to a surface that exactly satisfies

silhouette constraints in all the views.

Proof: Seeking a contradiction, let us suppose that a connectenlitsét, on the flow
graphG, produces a surfacg that does not satisfy silhouette constraints inalliews. By
connected, we mean that the graph defined by the nodes ansl aalysituting the cut’ has
only one connected component. Uétdenote the corresponding visual hull computed from
then silhouettes. Unless all silhouette constraints are satisbne of the following must be
true — (1) part ofS must lie outsidé’ or (2) S is too small and does not tightly fit insidé.

We now show that for both these cases, our assumption leadsdotradiction i.eC' cannot
be a connected s-t cut in the flow gra@h

Vv Inverse |ma‘ge of S

/-\/ 2 " A
~ ¥ - A ~_

Figure 6.14: Unless silhouette constraints are satisfiefl,bis inverse image embedded in
G, will not be a valid cut surface as there will exist in the vole at least one edge through
which more flow can pass from the source to the sink.

Case 1:It follows from the graph construction described above ttwapoint of the cut”
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can ever lie outside the visual hull. This is because alis@stinG map to 3D point either in
the interior or on the surface &f. Thus this case is ruled out by construction.

Case 2:1If S does not touch the visual hull tightly, there must exist asteone viewing
ray for which the corresponding view edgedirdo not touch the surfacg anywhere. This is
shown in Figures.14 S has an inverse imagé which is a manifold embedded withid. C
must then contain a discontinuity somewhere in the vicioftihat viewing ray. Hence, some
flow can pass from the source to the sinkdrthrough the discontinuity or gap as shown in
Figure6.14 Therefore( is not a fully connected, valid s-t cut .

O

' )/ = '1:)7 )
. '

(@) (b)

Figure 6.15: (a) desired solution. (b) degenerate solutiater a minimal surface bias.

Cut surface with multiple connected componentsThe proof considers the case where
the s-t cut is fully connected. However, the cut surface isahways guaranteed to be fully
connected. It can have multiple connected componentsssitiie pockets detected within the
interior of the visual hull are fairly large. When this is ibé case, an undesirable degenerate
solution may be produced. This is illustrated in Fig8r&5b). Instead of the desired solu-
tion shown in Figures.15a), the red cut surface i¥;, denoted byC; collapses around the
interior pocket. The resulting cut, which has multiple caments, does not satisfy silhouette
constraints. This is once again due to the problem of them@hsurface bias which plagued
the earlier volumetric energy minimization approachese 3blution we desire, is of the type

shown in Figures.15a). Such a solution will be obtained as long as the total ab#ie cut
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(C1UCy U Cs) is more than the cost of the cut'(U C; U Cg U C7) as illustrated in the figure.

Input: Color ImagedZ;}, Binary silhouette image§s; }, Camera CalibratiogP; }
Output: Triangulated 3D mesh modah

U — Conmput e EPVH Pol yhedron ({S;},{P:}) (see [41])
2-Col or Visual Hull vertices(U,{P;}) (see Section 6.5)

{G7,Go} — Create O fset Surfaces (i) // inner, outer |ayers
G, < Create Voxel Gid (Gr,Go) /] regular grid in R3
Conput e Edge Costs (G,,{Z}, {P;}) /1 phot o- consi st ency

G, « Connect (G,,G7,Go) Il connect grid with offset |ayers
Gy < Duplicate Gaph (Gy)
G < Connect (G1,G3) (see Section 6.6)

Setup Sources & Sinks (G) (see Section 6.6)
Sy «— Find M nimum Cut (G)

M «— Create Mesh (Sy) // inverse image of cut surface in R?

return M

Algorithm 2: A summary of Formulation | for graph-cut based volumetterso with
exact silhouette constraints.

Note that an earlier version of our approat4] did not suffer from this problem. How-
ever, that graph constructioh24 used the rim mesh, which is instable and difficult to com-
pute in the presence of noise and discrete silhouettes.eTkach individual surface patch
was reconstructed as a cut surface embedded in a subgrapkeeting a fraction of the vi-
sual hull volume. In the approach proposed here, these apbgiare effectively merged into
a single graph. Although this makes the construction simapkerobust, the minimal surface
bias cannot be completely ruled out anymore.

This minimal surface bias occurs when the inner pocketsraedl such that surrounding
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them by a relatively low-area surface such(gsincurs a fairly small penalty. This problem
rarely occurs when the inner pockets are relatively large. déscribe a better approach to
compute the inner pockets in the next chapter which avoigstinimal surface bias problem
described above. Similar ideas based onvik#ility basedballooning term have also been
recently proposed by Hernandez et. &Bj[to address the same problem.

The complete graph construction approach for Formulatias» dummarized in Algo-
rithm 2. Some short-comings of this formulation will be discusseatn We will address

this is Formulation I, which will extend Formulation |I.

6.6.1 The Problem with T-junctions

\ |
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Figure 6.16: Enforcing the 2-coloring across rim-edgest(lseen in color). (a) A close-up
of the 2-colored visual hull. Cone intersection curves &@as in bold (red and blue). Rim
edges are shown in green. Dotted curves indicate possikiggroof rims. (b) T-junctions
give rise to self-occlusions on the rim — the part that detadlom the visual hull surface and
lies within its volume — we show the surface by its intersativith thesheeta swept surface
dropped down from the rim edges into the volume.

Formulation | correctly handles convex objects with cara@ngeneral position. However,

it does not correctly deal with non-convex objects, for whicjunctions may occur on the
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silhouettes. A T-junction arises on the silhouette, whendbrresponding rim curve on the
surface is occluded by the surface itself. The occludedaeof the rim curve, which we will
refer to as thenvisible part of the rim does not lie on the surface of the visual hallher it
lies within its volume. This is illustrated in Figufel6using an imaginargheetsurface patch
within the visual hull volume, which meets the visual hulifage at the set of rim edges. The
sheet surfacean be chosen arbitrarily as long as the true surface imsrges shown by the
dotted curve in the illustration.

Formulation | allows the coloring of the reconstructed acefto switch only at a silhouette
consistency edge — however, that can only happen at a pothearisual hull surface, not in
its interior. This causes silhouette constraints to bereefibat places where they should not
be enforced such as along the rim edges shown in Figl&

Consider the region on the visual hull surface around a seguef rim edges. When
these rim edges are shared by an even number of repairedstrgree-the vertex colors on
either side of the rim edges are identical to each other. Elation | deals with this situation
correctly, because the vertex coloring across a rim edgeesf multiplicity, will be identical.

However, a problem arises when a sequence of rim edges aegidhaan odd number of
repaired cone-strips i.e. they have odd multiplicty. Isttase, the vertex colors on either side
of the rim edges are opposite of each other and silhouettr@nts get enforced. Such a rim
edge is shown in Figuré.16 Since, the coloring of the surface needs to switch hereguhe
surface is locally pushed outwards i.e. theisible part of the rim curve is constrained to lie
on the visual hull surface. This problem is not catastrophichappens only at a few places

and may cause two types of artifacts.

e The reconstructed surface juts out in the form of a thin stssst Figurés.17b)).

e Portions of the cut surface detaches from the reconstrisetddce, which is recovered

in the correct position and is artifact free.

In both cases, the subsequent Poisson surface reconstratgiorithm considerably reduces
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these artifacts. It treats the points on the thin sheets atatbed surfaces as outliers during
the final surface reconstruction step and enables us tosgoochsome complex shapes with

occasional artifacts as described above. We now look imidliveg the problem of thavisible

rim in our formulation.

Formulation | With Discontinuities
(b)

Figure 6.17: (a) Sheet surface patches are first constrérct@cthe rim edges with odd mul-
tiplicity. The lattice edges lying on the rim sheet are reewto create a discontinuity in the
volume. (b) A cross-section is shown here. Without the disioaity, the cut surface may jut
out. With the discontinuity, the cut surface can terminatéh® sheet surface. The cut surface
is now a manifold with a boundary.

One possible approach is to detect the problematic rim eftgesones with odd muilti-
plicity), and construct imaginargheet surfaceffom them, within the volume. The edges
in the graph embedding,, that straddle the sheet surface patches will be removetklil
introducing discontinuities in the interior of the lattigelume (see Figuré.17). As a result,
the minimum cut surface will become a 2-manifold with bouryddts boundaries will lie
along the sheet surfaces, and will not be constrained tonlighe visual hull surface. The
inverse image of this new cut surface, will be a surface wtbroseams (or cracks) on it. The
Poisson surface reconstruction step will typically metgese open seams. However, it will
not be possible to guarantee that the two sides of the subageometrically aligned with

each other along the seam — this could still result in nokileeartifacts on the reconstructed
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surface.

Computing the Sheet Surface PatchesOur approach for generating tebeet surfaces
involves constructing local offset surfaces in the inteafthe visual hull volume and project-
ing the sequence of rim edges on to this offset surface. Tisetfurfaces can be computed
approximately using the 3D signed distance transfér(®) of the visual hull surfac€® and
the gradient of this distance transfoWiD (), respectively. Note that the distance transform
is computed to determine the extent of the graph embed@ljranyway, as described in Sec-
tion 6.6 — hence, this is not an extra computational burden. We dgssehple pointg on
the rim edges, and for each one of them, we take a small stag ®1®(p, O) to generate an
offset curve and repeat the step a few times. The gradiedtViél((O) can however vanish at
points within the volumeT40Q], and therefore we resort to a linear combinatiovdd () and
—VD(Z) whereZ denotes the inner offset surface of the visual hull. The tshadaces are
made to proceed only to a small depth relative to the visubhlSauface. Finally, we recover
the subset of voxels that contain all the points samplesrgttton the sheet surfaces. The
relevant edges in these voxels are deleted, to create tbendisuities described earlier and

this is also illustrated in Figuré.17.

6.7 Graph Construction: Formulation |l

We will now describe a more principled way to handle itn@sible rims but this will require
computing the minimum cut on a graph which is twice as largh@®ne used in Formalation
l. Although the memory footprint of the graph will be larg#rs extension will allow handling
theinvisiblerims in a more elegant fashion, and will thereby allow us torestruct any non-
convex shape.

The main difficulty with Formulation | was that, it allows tkheloring of the reconstructed
surface to switch only at silhouette consistency edgehis can only happen at a point on the

visual hull surface. Thus, silhouette constraint are exgdrat places where they should not
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Figure 6.18: (a) In Formulation II, we duplicafe further creating two copies primary and
secondary where the red/blue labels are reversed. Themgrand secondary graphs are glued
across the sheet surfaces as shown. (b) The cut surface ntmhesvcolor at a point on the
sheet surface (i.e. within the visual hull volume). The fis@lution is a double manifold. By
symmetry the solution in the primary and the secondary masiagle surface iiR?.
be enforced i.e. along viewing rays corresponding to THons on the silhouettes. Our first
solution, was to introduce discontinuities in the graph eddbng in a way that would relax
the silhouette constraint at the problematic rim edges.

In Formulation 11, the grapld is first duplicated to create two identical copies, phienary

and thesecondangraphs. The red/blue vertex labels in the secondary gragptnan reversed.

Next, the volumes corresponding to the primary and secgrafarglued together across the
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sheet surfaces.

invisible rim point cross-connections

/

visible rim point secondary primary double manifold
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Figure 6.19: (a) 2D illustration of the visual hull and the@ering it induces on the surface.
(b) In Formulation II, the graph embedding is duplicatedittte primary and secondary;
the cut-surface is a double manifold partially embeddedhétivo graphs. The primary and
secondary are connected through sheet surfacemside the visual hull. (c) Inverse image
of the double manifold (the two copies coincide by symmetry)

The gluing or topological identification is done by creatthg following edges between
vertices in the primary and secondary graphs respectiwfy.denote the set of edges that
straddle the sheet surfacesGhby S. Let (u;,v;) denote an edge ¥ that belongs to the
primary graph and letu;,v,) denote its copy in the secondary. First, the two edges ;+()
and (u»,v9) are removed from the respective graphs. Next, two new egigeadded —(;,v)
and (u2,v1). Note that these new edges connect vertices in the prinmaphgvith vertices in
the secondary (see Figugel8a)). This effectively glues together volumes in the priynand
secondary along the sheet surfaces in the same wagthetd G, were glued together along
the visual hull surface in Formulation I.

The cut surface on this graph has the structure of what is kraswadouble manifoldn
manifold theory B4] — a manifold obtained by gluing two copies of a 'manifold kviiound-
ary’ along their common boundary. In our case, one copy ottheurface lies embedded in
the primary graph while another copy lies embedded in thers#ary (see Figuré.19. Their
boundaries are glued together along the cross connectioossathe sheet surfaces while re-

specting the surface map of the underlying surface i.e.dlepart of the cut surface in the
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primary connects to the red part in the secondary and vicgavier blue . If the mincut
is unique, then the two copies are geometricaly identicalitiue of the symmetry in the
graph construction described in Formulation Il. Howeuee, surface map coloring in the two
copies is reversed, because the red/blue labels in the nyriamal secondary are opposite of
each other. In general, the cross connections across teesiméaces (which correspond to
the invisible rims) will occur in the interior of the visualilh. Note that, in practice, there may
be multiple mincuts, each of which is a slight perturbatiérowe another and therefore the
primary and the secondary cuts may not be exact copies ofcaeh However, the cut cost
of these two surfaces will be equal.

The inverse image of this double manifold is a surface withtscontinuities unlike in
the extension of Formulation | (with discontinuities). Mayver, the invisible rims now occur
in the interior of the visual hull unlike in Formulation I. Fa convex shape, Formulation Il
will produce a double manifold with two disconnected cométhe surface that are identical

in shape and superimposed on each other in 3D.

6.8 Implementation Details

In this section, we describe the photo-consistency medbatés used in the graph-cut based
energy minimization approach introduced earlier in Chapt&Vhile this chapter focusses on
the graph construction, the actual algorithm to computertimémum cut on the flow graph is

described in AppendiB-3.

6.8.1 Computing Photo-consistency

Given color images$Z; } and the corresponding camera calibration matr{@&g, we now de-
scribe our method to compute the photo-consistency of a 3@ pd. Our photo-consistency

measure is computed in image space and treats occlusiengagk of visibility) as out-
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Figure 6.20: Computing multiple hypotheses for 2-view rhak: These 2-view matches
are triangulated and the generated 3D points are used tonataie votes within a 3D vol-
ume. The photo-consistency measure is derived from thess.vA slice through the photo-
consistency volume (interior of visual hull) is shown. Hétack indicates regions of high
photo-consistency.

liers during the underlying matching process. Instead ofifmating an absolute measure of
photo-consistency by combining scores such as colorivegi@r normalized cross correla-
tion (NCC) (see AppendiA-2), we compute photo-consistency through a depth-map fusion
and subsequent 3D voting approach. One of the key advantdgi#sing this is that the
photo-consistency measure is more sensitive, and showsragst peak near the true sur-
face location. Similar toJ49, our photo-consistency measure is robust to occlusiods an
non-Lambertian effects.

In standard binocular stereo, dense correspondence betweealibrated views is com-
puted by attempting to find the best match for every pixel ithbeews. The search for the
best match is done along the epipolar line in the second \sew Figuré.20. Our approach
for computing photo-consistency in a volume starts off Enhy. However, instead of trying
to find the best match for every pixel, we detect all the locakimas along the epipolar lines

(one of which is most likely to be the true correspondencdje matching is evaluated us-

ing the normalized cross correlation of twox ;. sub-windows f is typically setto 9 or 11
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pixels) centered at the candidate pixels in the two views.if@riance to scale and orienta-
tion, object space patches could have been consideredybowieis was not required in our
experiments which mostly dealt with turntable sequences.

For each of the local maximas (potential matches) we perfarmpixel refinement and
then perform 2-view triangulation to estimate a 3D pointresponding to the hypothesized
match. Each 3D point contributes a vote to the cell it fallsaithin a finely divided lattice of
cubical cells. Figur&.20shows a situation for a pixel in the first view, where therethree
likely matches in the second view. Each of the three 3D paiatdd potentially be a surface
point and contributes a vote.

The photo-consistency computation proceeds as follows.ek&oh imageZ;, we find a
subset oft proximal images and compute hypothesized correspondeiscasscribed above
for k pairs whereZ; is always the first image. This is repeated for every singlagenin
the dataset. Then the photo-consistency measure of a 3IVE@l set toe V™) where
V denotes the votes accumulated within the @dlland \ is a parameter that controls the
trade-off between smoothness and photo-consistency.

When computing dense correspondences over multiple imaige pnultiple votes accu-
mulate in the cells that are near the true surface. Multipkes for the same 3D location,
coming from different image pairs reinforce each other.héltgh this is similar to depth-
map fusion, one key difference exists. In a traditional dapap, only the best match for
every pixel in the other view is stored while all other potehtandidates are ignored. In
our approach we generate a hypothesis for each local maxithhence this is equivalent to
generating a depth-map with multiple depth hypothesesigel. @ hus our photo-consistency
computation essentially involves fusing multiple muljiglothesis depth-maps.

Sub-pixel refinement during the pairwise matching processportant as this increases
the sharpness or accuracy of the photo-consistency bartde wolume. Without sub-pixel

refinement, the photo-consistency bands are blurred améshéing reconstruction from the
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graph-cut step is less accurate. The sub-pixel match igifehby fitting a parabola to the

matched pixel (a local maxima) and its two neighboring fsxel

6.9 Results

We first describe some experiments on synthetic datasetthebaEARand theBEAN datasets.
The PEAR dataset had 8 silhouettes and 31 color images — these dilbsiad very few T-
junctions even though the object shape is non-convex.BE@ dataset comprised of 4 sil-
houettes and 28 color images, and contains T-junctions ormfuts silhouettes. Screen-shots
from various stages of our reconstruction approach are slWwigure6.21and Figures.22
respectively. The results shown in these two figures werailndd using an implementation
of Formulation | (with discontinuities at sheet surfac&)me artifacts are seen on the recon-

structed bean (Figur@.22h)), where the surface juts out abruptly near the saddletpoi
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Figure 6.21: RAR dataset reconstructed using Formulation I: (a) The twortag of the
visual hull [Top] and the reconstructed surface [Bottonmjtfee pear shape. (b) [Top row] The
reconstructed mesh of the pear obtained using our methauttof® row] The ground truth

3D shape.

119



(9) (h) ()

Figure 6.22: BEAN dataset reconstructed using Formulation I: (a),(b) 4 sities and 28
color images (not shown). (c) The corresponding visualfinoith four views. (d) Two-colored
visual hull vertices. (e) A candidate surface map projeotethe visual hull. (f) Recontructed
surface displayed within the visual hull. (g) The two-c@drsurface map induced by the
reconstruction. (h) The reconstructed surface mesh (i)gfbend truth surface.
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Figure 6.23: Comparison between Formulations | and Il:: e colored surface map and
the final reconstructed surface mesh is shown for (a) Fommouala(with discontinuities), and
(b) Formulation Il (double manifold). The artifact whichggars near the saddle point on the
surface, disappears in Formulation Il and the invisible {imghlighted in green) lies in the
interior of the visual hull. Otherwise, the two reconstrants are almost similar. Note that
only the embedding in the primary graph of the double madif®khown here.

Figure 6.24: (a) one of 36 input photographs of tha1®E1 dataset and the reconstructed 3D
model. (b),(c) The reconstructed model rendered from tWferéint viewpoints shown along
with the induced two coloring of the surface (surface map).
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Figure6.23 shows a comparison between Formulation | (with disconties), and For-
mulation I, which reconstructs @ouble manifolccut surface. The only visible difference in
the two reconstructions, is near the invisible rim, closéhi saddle point which is artifact
free in the second formulation. The invisible rim is showmgieen forms a smooth curve and
lies within the visual hull. Although it is not shown heregthut surface embedded in the
primary and secondary graphs are virtually identical.

We have reconstructed various real multi-view datasettatiigs that were captured using
a turntable with the purpose of digitizing their 3D shapetd3ats SATUEL, STATUEZ2 and
STATUE3 contains 33—-36 high resolution images each. The imagesesetdatasets were
typically 3-4 MPixels each. The process of recovering theaa calibration and foreground
silhouettes from the images for these datasets, is dedciibgp7]. The silhouette extrac-
tion for the DNOSAUR dataset 3] was done using techniques described in Apperiiik
Figures6.24 and6.25 show the reconstructed 3D models for theaBJE1 andDINOSAUR
datasets along with the two-coloring induced by the surfaap. More experimental results
are shown in Figure6.26 6.27and6.28

The running time in our implementations is dominated by thetp-consistency compu-
tation and computing the minimum cut on the graph, each otlwtakes approximately 60 -
80 minutes. While the basic shape of our reconstructed tshje@ccurate, these 3D models
lack geometric detail. The resolution of the underlyingwoeétric grid influences the amount
of detail that can be recovered. Our volumetric grids tylpya@quire between 2 to 15 million
voxels (the voxel dimension is derived from the image resmh) and total running time are
typically 2-3 hours for the turntable datasets. All the mstouctions were done on a 3 GHz
processor with 2 GB RAM. The memory footprint of the graph amrRulation 1l was often too
large to fit into RAM and hence most of the experiments werépered using Formulation |

(with discontinuities).
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(b)

Figure 6.25: (a) one of 30 input photographs of the/®@sAUR dataset and the reconstructed
3D model. (b),(c) The reconstructed model rendered fronffardint viewpoints shown along
with the induced two coloring of the surface (surface map).

Figure 6.26: (a) Two of the 36 input photographs of thei®Ee2 dataset. (b),(c) The recon-
structed 3D model shown from two novel viewpoints.
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Figure 6.27: (a) Two of the 36 input photographs of thei®Ee3 dataset. (b),(c) The recon-
structed 3D model shown from two novel viewpoints.

@ (b)

Figure 6.28: (a) Two of the 36 input photographs of tlerEa (b),(c) The reconstructed 3D
model shown from two novel viewpoints.
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6.10 Conclusions

We have presented a multi-view reconstruction method tised the stereo cue with silhou-
ette constraints while reconstructing static objects fiorage sequences. The main novelty
in our approach lies in reconstructing the surface usingmetric graph cuts while enforc-
ing exact silhouette constraints during the optimizatidhe special graph construction we
propose, takes advantage of a two coloring property of thigabihull. As a result, the final re-
constructed surface is always consistent with all the isphbuettes. We have demonstrated
the approach on real and synthetic datasets using two fations. The first formulation is
only guaranteed to handle convex objects correctly butactpre is able to reconstruct non-
convex shapes as well. The second formulation solves a gmatpproblem which is twice
as large, but is able to correctly handle the case of T-junston silhouettes by computing a
double manifold cut surface.

One of the weaknesses in our current approach is the metmambfioputing the sheet
surfaces within the visual hull volume, which are requirgdboth the formulations. The
current approach for computing the sheet surface is bas#ueatiscretization of the signed
3D distance function on a uniform volumetric grid. The apqmmations involved in this step
cause a problem in computing the sheet surfaces for rim extgdwarp or thin protrusions on
the visual hull surface. A better implementation of thigpsigll be explored in the future.

The next chapter will focus on the high computational and wrgnoverhead of the un-
derlying volumetric graph-cut algorithm. Unfortunatehetfirst formulation creates a graph
twice as large as the graph in the original domain while ticeseé formulation creates a graph
that is four times as large. However, the second formulatmnains two identical subgraphs,
only one of which needs to be solved by virtue of the symmetie construction. The dy-
namic graph-cut algorithm from Kohli et. alf4] could be used to compute the final solution

once the partial solutions are available. This will be exgdin the future.
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CHAPTER 7
Adaptive Volumetric Graph-cut Stereo

7.1 Introduction

In this chapter, we propose an alternate formulation fortiimigw 3D shape reconstruction.
Here the 3D reconstruction problem is formulated as comgui minimum cut on the dual
graph of a semi-regular, multi-resolution, tetrahedrasimeThis method addresses the high
memory and computational requirements of the volumetraphcut stereo approach. The
key idea is to sample the photo-consistency volume addpirel avoid evaluating it in re-
gions unlikely to contain any surface elements.

Contrary to the approach presented earlier, this method doeassume that the surface
lies within a finite band around the visual hull or any othesdaurface. Instead, it uses
photo-consistency to guide the adaptive subdivision of &xs® mesh of the bounding vol-
ume. This generates a multi-resolution volumetric meshithdensely tesselated in the parts
likely to contain the unknown surface. The graph-cut on thal dyraph of this tetrahedral
mesh produces a minimum cut corresponding to a triangusatddce that minimizes a global
surface cost functional. Our method makes no assumptianst abypology and can recover
deep concavities when enough cameras observe them. Owrl&tiom also allows silhouette
constraints to be enforced during the graph-cut step (whey are available), to counter its
inherent bias for producing minimal surfaces. Local shaimement via surface deforma-
tion is used to recover details in the reconstructed surfdeeonstructions of the Multi-View
Stereo Evaluation benchmark datasets and other real tats®v the effectiveness of our

method.
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Figure 7.1: 6TATUEL dataset) (a) One of 36 input images. (b) A slice through teptve
tetrahedral mesh showing the photo-consistent regiondridark). (c) Quasi-dense patches
produced during mesh refinement. (d) The 3D model obtairad fyraph-cut optimization.
(e) The final refined 3D mesh.

7.2 Graph-cut on CW-complex

Let us assume that we are given a volumetric mesbf the bounding volume with its set of
cells and faces denoted byand F' respectively and that some of its cells have been labeled as
interior and exterior to the unknown surface. The surfacemstruction problem can then be
formulated as finding the most photo-consistent surfaceseliohdd within)\/, which separates
the set of interior cellg’;,, from the exterior ones denoted BY,,;. This can be achieved by
minimizing a surface cost functiongl, ¢(s) ds, whereg(s) represents the image discrepancy
of an infinitesimal areds of the unknown surface. In the discrete case, the energyitunad
becomes _ ¢(s) wheresS is a set of polygonal faces constituting a candidate surface

The discrete optimization can be formulated as a binarylgap problem 85 on the
dual graph of\/ denoted byG(V, E). See Figur&.2for a 2D illustration. The vertices il

are dual to the cells a¥/ while the directed edges ifi are dual to the oriented cell boundaries
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Figure 7.2: 2D illustration of the graph-cut formulation the dual grapiz of a volumetric
meshM (C;, andC,,; are interior and exterior cells respectively). The valua otit onG is
equal to the cost of a surfaceéembedded withinl/.
(faces) ofM. The capacity of an edge ifi can be derived from the photo-consistency cost of
its dual polygonal face. The main difference from the apphhgaresented in Chaptéris that
in this method, the photo-consistency is evaluated directltiny surface elements (cell faces)
which are embedded within the volumetric mesh. The veriités representing cells i0;,
and C,,, are connected to the source and sink vertices in the flow guaply edges with
infinite capacities. The minimum cut @i can be computed in low-order polynomial time
and corresponds to a surface which gives a global minimurneo$tirface cost functional.
We choosel! to be a tetrahedral mesh, motivated by their popularity enrtilesh gen-
eration literature 103 and the fact that a minimum cut on its dual graph directlydoces
a triangulated surface. The rest of the chapter first desiitow to build a suitable adap-
tive, tetrahedral mesh/ using recursive subdivision. Later, we describe how adidi cues

such as visibility of photo-consistent patches and siltieusonstraints (when available) can
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be incorporated into the optimization framework leadingrtore efficient and accurate 3D

reconstruction.

7.2.1 Limitations

Graph cuts on CW-complexes (duals of volumetric meshesg West used by 3] for opti-
mizing surface functionals. Later such methods for volurostereo were proposed$, 85
with the advantage ovet 1§ that these did not require initialization via the visuallhtiow-
ever, to achieve a high quality reconstruction, this metmagt uniformly tessellate the vol-
ume into millions of tiny tetrahedra. Hence the computatland memory requirements of
this algorithm is extremely high and it is not practical feconstructing detailed 3D models
which becomes possible when high-resolution images ardabl& The use of a uniform
CW-complex creates this prohibitive memory bottleneckisttimiting them to complexes
with coarser resolutions.

Hornung and Kobbelid3] proposed a multi-resolution approach also based on comple
(dual graph embedding of a uniform voxel grid). Althoughytipgopose a multi-resolution
approach to address the memory bottleneck, their methegsreh a good visual hull for
initialization. A limitation of their coarse to fine apprdads that it can result in sub-optimal
solutions and thus the main advantage of the graph-cut leasrdy minimization framework
is lost. Running the graph-cut at multiple resolutions inoarse to fine manner involves
making an early commitment at each of those stages. If thaignlof the coarse graph-cut
problem misses any fine structures on the surface, it may pegsible to recover them in
subsequent iterations.

Both these formulations suffer from the inherent minimafate bias which in the past
has been addressed by introducing a naive ballooning tetheienergy function. However,
this introduces its own problems (see Sectoh 1). These method do not try to use additional

information that could be used — namely multi-view visityiinformation and silhouette cues.
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These limitations will be addressed in our work.

7.3 Key ldeas

Existing graph-cut based reconstruction methd@ts 148 first densely sample voxels on
uniform grids to build a graph embedding and then evaluatggabonsistency at all these
voxels. The photo-consistency evaluation step is much expensive than solving the actual
graph-cut optimization, particularly when using robudicpabased similarity measures such
as NCC. The key idea in our approach is that we adaptively kstin@ photo-consistency vol-
ume and construct a CW-complex whose resolution adaptsdingdo the photo-consistency
—thus the cells are finer at places where surfaces are metg iikexist (as indicated by high
photo-consistency) and coarser elsewhere.

To construct such an adaptive CW-complex, we start with asepauniform tetrahedral
mesh. A novel photo-consistency driven mesh refinementeglyas then used to decide
which elements of the coarse mesh need refinement. Thegstrateids subdividing and
evaluating photo-consistency in those parts of the voluimere/surface elements are unlikely
to exist. The mesh refinement is done using a recursive sighmivscheme on a coarse,
regular, tetrahedral mesh and adaptively refining the miestgaconsistent regions until the
desired level of tessellation is reached in the photo-sbest parts.

For textured surfaces, this provides huge memory savinggaiads of photo-consistency
in the volume are usually extremely thin. Textureless swfehowever, tend to create wider
bands of photo-consistency; such regions need to be fineipled in our mesh and the sav-
ings are somewhat reduced there. High resolution is critizaaccurate 3D reconstruction
and our method aims at maximizing sampling density whereeeded. Along the lines of
[63, 85], the presence of 12 different oriented faces in the mesbgpsesed to 6 in a uniform
grid) reduces the discretization or metrication error mcht surface. This photo-consistency

driven mesh refinement strategy is now described.
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7.3.1 Photo-consistency driven tetrahedral mesh refinemén

Our base mesh denoted By, is a body-centered cubic (BCC) lattice which comprises the
nodes of a 3D grid along with the centers of all the cubic c@ée Fig.7.3(@)). It can be
thought of as two interlaced cubic lattices. Edges are ath@dadeen every node in the first

grid and its eight diagonal neighbors in the second grid.

(a) (b) & A

Figure 7.3: (a) Tetrahedral cell in a BCC lattice (two indedd grids with diagonal edges
added). (b) (Top-left) Red-Refinement (1:8) subdivisidRegt) Green Refinement (1:2, 1:4)
subdivision).

We choose a simple red-green mesh refinement stratidf} {o obtain a semi-regular
mesh fromM,. The mesh obtained aftérsubdivision steps will be denoted by; and its
tetrahedral cells and triangular faces®@yand F; respectively. A subset of cells iti; which
lie in the photo-consistent region, referred to as &leéive region will be denoted b;.
The refined mesid/; , is obtained by applying red-refinement to the cellsdinand green-
refinement to the cells i@; — A;.

A tetrahedron is red-refined into eight tetrahedra as showkigure7.3(b) by bisecting
its six edges. The shortest of the three possible diagorgdseohternal to the tetrahedron
must be chosen to make the eight new tetrahedra geomaetrstadilar to the original cell.
Green tetrahedra which share faces with red tetrahedrareeletween one to five edge-

splits. Similar to L03, we reduce the various cases of green refinement to theshmen in
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Figure7.3(b). Green tetrahedra are not geometrically similar to thgirmal BCC tetrahedra
and are never subdivided any further.

A photo-consistency measugéX) : R?* — R which computes the likelihood of the 3D
point X of being a true surface point is used to find #wtiveset A;,; C C;,1, excluding
cells created by green refinement. When the unknown surfasgeep through a tetrahedral
cell, some of its four faces must contain points with a higlasuge of photo-consistency. We
refer to these asrossingfaces.

If none of the faces of a cell contain any photo-consisteittppthat cell cannot contain a
piece of the surface. We assume that the surface is largethibamallest tetrahedral cell and
thus cannot be fully contained within any of the cells. We dobnefine such cells any further
and avoid sampling in their interior.

Assuming that the unknown object is large enough not to bepbetely contained inside a
single tetrahedron, a cell must have at least@nssingface in order to be labeleattive To
determineA;  ;, we evaluatgy(X) on the faces of cells created by red-refinementipnd
determine the subset ofossingfaces. Then eacbrossingface labels its two neighboring

tetrahedral cells asctive This is illustrated in Figur@.4.

(@) (b) (©) (d)

Figure 7.4: A 2D illustration of the tetrahedral refinemeabheame. (a) Unknown surface

embedded within coarse tetrahedral grid (each trianglesemts a tetrahedral cell). (b) Check
for photo-consistency on the cell faces. (c) Crossing faceshown in blue, rest are in red.
(d) The set of active cells are shown in blue — these will belsidbed in the next iteration.
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7.3.2 Computing Photo-consistency

To determine whether a fagéis acrossingface, we sample a triangular lattice on it as shown
in Figure7.3(c). The spacing between samples in the lattice is seleot@devent aliasing
by ensuring that no pixels are skipped when the lattice ifepted onto the images. At each
lattice positionX, we use the normalized cross correlation (NCC) of the imagggptions

of patches placed aX to measure its likelihood of being on the surface. Since tlesim

is initially coarse, its faces may not be parallel to truefates. In this case, it would be
undesirable to compute NCC on the faces themselves. Toawerthis, we place multiple
patches with different orientations at each poiht The patches and the set of images used
for the computation are determined as follows.

At X, we place patches at multiple orientations, each denotedhhywectorny. For all
points,nx is chosen from 14 canonical orientations sampled along dhaecs and faces of
a unit cube. For a given orientatiory, we choose the beét cameras such that the angle
betweem x and the direction vector frolY towards the camera is at ma@sr. Let us denote
this subset of cameras by(X). If X is a true surface point andy is a fair approximation
of the surface normal on the unknown surface, then the grojeof that patch should have a
high matching score for the subset of visible cameraB(.X).

Since we are only interested in determining whether a paialccpotentially belong on a
surface or not, we use a simple computation for the photaistency to reduce computational
complexity. We simply place a 1D x p grid along the intersection line of the patch and the
underlying facef (see Figure.5). This direction is given by.x x n;, wheren; is the normal
of the face. Thisl D grid is now projected into each of the cameras’ifX') and pairwise
NCC scores are computed for all such pairs.

The photo-consistency score for each camerB&(iX ) is computed by averaging the best
k' NCC scores with the othek{l) cameras/’ = max{k/2,3}) allowing for matching to

succeed despite some occlusion. The score of the bestlosaradra is retained as the score
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Figure 7.5: (a) Testing if face ABC with face norma/ is a crossingface; Test patch aP
with unit normaln x for photo-consistency. (b) Computation performed on agudar lattice
(photo-consistent points are blue (dark)) with the resstlised in a quad-tree associated with
face ABC. Nodes correspondingctmssingfaces are black in the quad-tree.

for the patch atX’ with orientationn . Points with score larger than a global thresHbldre
labeled photo-consistent. Finally, if a face contains a$t20% photo-consistent points, or at
least20 points if20% corresponds to a number bel@®, we declare it to be arossingface.

This computation could be repeated for every face at evésgtigision level during mesh
refinement. However, this would be highly redundant sinagndgueach subdivision level, a
large facef splits into four new faceg;, f-, f3 andf, whose photoconsistency measures have
already been computed to decide whethevas acrossingface.

The solution then is to perform the computation recursietyface f only once and store
the results in a quad-tree associated wi{see Figur&.3(b)). Concretely, the root node of the
quad-tree corresponds fowhile the four children correspond to the fadeg; | 1 < i < 4}
obtained by bisecting the three edgesfand connecting the mid-points. At each tree node
we store: (1) the number of photo-consistent samples (twdkanatching score- T') on the
triangle lattice, (2) the total sample-count and (3) thd besnted point forf along-with the

set of cameras it correlated on.
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All such oriented points form gquasi-denseeconstruction of the scene (see Figaric))
and is next used to detect interior and exterior cells. Whé&nsplit during subdivision, the
four new faces inherit the children g¢fs quad tree and can be immediately tested for being

crossingfaces.

7.3.3 Computing Cell Costs

Multiple iterations of mesh refinement produces a set of Igitgsselatedactive cells. We
will now try to classify some of the remaining cells into sétg andC,,;. Since the visual
hull contains the true shape, any cell which falls outsigewisual hull can be automatically
labeled as exterior. However, green tetrahedra containguivihe visual hull i.e. the ones
which were not fully subdivided could potentially belongremions either interior or exterior
to the surface (eg. a deep concavity).

The set of quasi-dense oriented surface points recoveredgdiine photo-consistency
driven mesh refinement (Secti@rB.]) allows us to determine which green tetrahedra are part
of the true interior. An oriented poiptthat was photo-consistent il views must have been
visible from each of those cameras. Hence we path-tracefragsp to all of the camera
centers and vote for each cell that the ray intersects aloagvay. This can be done ef-
ficiently by walking along the ray within the tetrahedral memnd performing ray-triangle
intersections. Finally amongst all the green tetrahedrdateed within the visual hull, the
ones which received votes lower than t¥" percentile are labeled interior, while the ones
with votes above th&5" percentile are labeled exterior. Since labeling cells gerior and
exterior imposes hard constraints in the reconstructi@egpply the labels conservatively and

leave ambiguous cells undecided ie. we re-label thetive
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7.4 Approach

Our complete approach summarized in AlgoritBroegins with tetrahedral mesh generation
described in Sectiofi.3, followed by the first graph-cut on its dual. This is followby a
second graph cut after interior and exterior sets are auggdday enforcing silhouette con-
straints and a final local refinement. The graph constru@happroach for incorporating
silhouette constraints are described next. Finally thehotefor local shape refinement is

briefly described.

Input: images{/}, cameraq P}, bounding-box53
Output: polygonal mesh model

M, < Bui | dBCCMesh(B);
Q=A{}h
for i «— 0to m-1do

patches <« Conput eMat chi ngCost (F;);

A; — FindAct i veCel | s(M;, F});

M, — MeshRef i ne(M;);

@ — QQ U patches ;
end
Cin, Cour — Markl nteri or Exteri or (M,,,Q);
G «— Set upG aphCut (M,,, Cin, Cout) ;
(S, CL CL ]« FindM nCut (G) ;
foreach cameraj in { P} do

K; «— Render Si | houettes(S5;, P;}) ;
end
Czqn = Czln’ gut = Cout;
foreach cameraj in { P} do

cg,Ce ., — EnforceSi| houettes(;, K;);

end

G’ « Set upG aphCut (M,,,C%, Cou) ;
Sy «— Fi ndM nCut (G);

H — Refi neShape (5);

Algorithm 3: The Complete Algorithm.

136



7.4.1 Graph Construction

Having generated a tetrahedral méghand sets of voxels};,, andC,,; we then construct

G, the dual graph of\/. Vertices inG dual to cells inC;,, andC,,; are connected to the
sourceandsinkrespectively for the graph-cut. Edge capacitie&iare derived from the dual
oriented faces id/. Unlike in Section7.3.1where 1D patches were used for speed, the goal
here is to minimize a true surface cost functional. To thid,en2Dy x u grid, placed on
each facef, is projected into the images and their pairwise NCC scorexambined. We
pick the best: cameras at an angle of at mést from the surface normal of. Each of these

is chosen as a reference view (as in S&8.1) and correlated with the othér1 views; the
bestk’ (k' = max{g, 3}) scores out of these truncated to [0,1] are averaged. Thabesge
score is assigned as the final scoteof f. Eq7.1shows howv,; maps to the edge weight

o(f) whereay is the area of facg.

o(f) = (1 — exp ( — tan (g(wf — 1))2/02)) dagl + Aay) (7.2)

As explained in 148, minimizing the surface functional” ; ¢(s) over surfaces embed-
ded in the volume is equivalent to finding the minimal surfadth respect to a Riemannian
metric [13] where higher values aof and lower values ok produce a more photo-consistent

but less smooth surface and vice-versa.

7.4.2 Enforcing Silhouette Constraints

Variational surface reconstruction approaches have ddiasnaller shapes, as surfaces with
a lower total cost are preferred over a more accurate sunfad has lower cost per unit area
but higher total cost. The energy can be regularized by dwstuaballooningterm [85, 148

which acts as a prior for larger shapes. While this can regonagrusions, it also pushes the

concave parts outwards thereby significantly reducing ticeracy of the final result. While
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[58] proposes visibility-basemhtelligentballooning to address this issue, it only reduces the
graph cut bias and preserves concavities better but doeguacintee consistency with the
silhouettes. We address this in a different way by enforbiagl constraints in the graph-cut

derived from both visibility as well as silhouettes constrs.

photo- ._/\\ » front face
consistency | &= i mmee—t—e =g ° Dackiac

ray

Figure 7.6: Top: the original silhouetfeand re-projected silhouette (O is the camera cen-
ter). 1 andz, indicate re-projection errors (see text for details). Buwtt for z;, we inspect
photo-consistency costs on front and back-faces for alhgfies inM/ which are intersected
by the ray back-projected from.

Figure.7.6 showssS, the re-projected silhouette overlaid on the original sikibeS. The
re-projection errors are in pixels suchaswhich fall insideS but outsideS, andz, which
fall inside S, but outsideS. Consider the rays, andr, backprojected from; andz, and the
cells they intersect. The ray should not meet surface becausés outside the silhouett§,
therefore all cells intersected by can be safely labeled addeddg,;. On the other hand;

must intersect the surface at least twice. Thus at least biie @ells that-; passes through
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must be an interior cell. For such rays in every view, we idtenmark at least one such cell
as interior and add it to our set of interior voxels.

We adopt a two-step approach. First, by computing the mimmaut onG as described
above, we obtain (a) a triangulated surface (b) a partitiballotetrahedral cells inta”},
(interior cells) and”! , (exterior cells). The triangulated surface is then re<gutgd into all
the images and the sets of erroneous pixels (such asdzx,) are determined. Pixels such
asx, add cells to the set',,;. Pixels such as; are processed to mark some additional cells
in M as interior; these are added@,, the augmented set of interior cells. The candidate
cell is chosen as follows. We first find the sequence of tethaieells inM that rayr; cuts
through and sort them by distance from the reference can@siés in this sequence that fall
outside the visual hull are excluded, leaving groups of igmaius tetrahedral cells each of
which we will refer to as aegment For eachsegmentwe orient the triangles (faces of the
cells) consistently with respect to the ray.

Let us first consider the simpler case wherintersects the surface twice (see Figo).
This ray must meet a triang}g whosefront-faceis photo-consistent before it meets a triangle
f» whoseback-faces photo-consistent. A few tetrahedral cells within suchepttd-interval
can be chosen as interior. More specifically, we look for trexima of front-face photo-
consistency and find the next significant peak in back-fa@gbonsistency (within 0.8 of
the global maximum) for faces alomgin the sameegmento determine a conservative depth
interval for the interior. We then pick the center-most aelthis depth interval and add it to
C¢ . This step is highly redundant and we pick candidates (a tandtraint) only when we
are sure about a cell being interior. We skip pixels with iplétsegmert per ray and let a
more favorable view enforce silhouette constraints thereur experiments processing only
a few pixels was sufficient to recover all the protrusionsis Ibetter to enforce a minimal
number of additional hard constraints for silhouette cstesicy since performing this step

exhaustively increases the likelihood of including ineatrconstraints.
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A second minimum-cut is now computed on the same gi@diut with the augmented
interior setC, assourceand augmented exterior s€f,,, assink This new triangulated sur-
face satisfies silhouette constraints upto a few pixels §ttaal value depends on the cell
resolution ofM and is typically in the range of 1-5 pixels in the images. Aalagy can be
drawn between our approach and the graph-cut based Grdbiditsegmentation method,
where iterative graph-cut optimization is performed wtile user interactively provides ad-
ditional hard constraints. In a similar fashion, we useaiksites for generating reliable hard
constraints (automatically in our case) as described abadeperform a second graph-cut

iteration to correct the shortcomings of the first one.

7.4.3 Local Surface Refinement

Finally, local optimization is used to refine the shape Iyc remove discretization errors
introduced by the graph cut reconstruction. The triangalahinimum-cut surface mesh is
iteratively deformed and remeshed during local refineméhis is similar to the approaches

of Furukawa et. al.47] and Hernandez et. al5}]. Vertices of the mesh are displaced by

a combination of smoothness, silhouette and texture for¢ée smoothness force is com-
puted by the approach o1$( which prevents the surface from shrinking while silhoaett
forces are computed as described4i][ To compute the texture force, we use the normal
vector at a vertex to determine a setiafameras and compute a photo-consistency score (see
Section7.4.]) at multiple offsets from the current vertex location alatsysurface normal.

A red-green 2D mesh subdivision schem@3 is used to remesh the model after bisecting

edges which project to more than 2 pixels in the best refergiaw.

140



Figure 7.7: (Top)STATUE3 dataset: Three of the input images. The reconstructedcurf
from the graph-cut step is shown on the top row while the fitah3del after refinement is
displayed in the middle row. (BottonskuLL dataset: Two views of the final model.
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(b)

Figure 7.8: (a) Middlebury Multi-view Stereo Evaluationnodmarks: (left)DINORING,
(right) TEMPLERING. (b) HEAD dataset reconstructed from a set of 21 images lacking gerfec
color calibration.

Figure 7.9:STATUE2 dataset: (a) One of the input images (note that in our exyaaris we
leave this image out). (b) Visual Hull from all 36 images. @r result using all 36 images.
(d) Visual Hull from 26 images (10 out of 14 views which see gfap between arm and body
are left out) has genus 3. (e) Our model using these 26 imagetha correct topology (genus
1). (f) Zoomed-in rear view of (top) visual hull (bottom) owsult using these 26 views.

7.5 Results

We have reconstructed several real multi-view datasetsgyugir approach as shown in Fig-
ures7.l, 7.7—7.9. DatasetSTATUEL, STATUE2 andSTATUE3 contain 36 images (6 Mpixels)
each, captured using a turntable. TH®AD dataset contains 240 x 480 images without
good color calibration while thekuLL dataset contains 2000 x 2000 images.

We have evaluated our approach using the Multi-View Stenaduation (the reconstruc-
tions are shown i7.8(a)). This evaluation provides metrics on the accuracy anateteness
of the reconstruction. The accuracy metric is the distarsmech thab0% of the reconstructed

is within d from the ground truth surface. Completeness is defined agdieentage of the
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Middlebury | TEMPLE RING (47 views)| DINORING (48 views)
Evaluation Accuracy (mm) | Completeness (%)| Accuracy (mm)| Completeness (%
Furukawa £5] 0.58 98.5 0.42 98.8
Furukawa2 44 0.55 99.1 0.33 99.6
Gargallo @8 0.88 84.3 0.60 92.9
Goesele 50| 0.61 86.2 0.46 57.8
Goesele2 31] 0.42 98.2 0.46 96.7
Habbecke %4] 0.66 98.0 0.43 99.7
Hornung B3] 0.58 98.7 0.79 95.1
Kolev [76] 0.79 96.0 0.53 96.9
Kolmogorov [77] 1.86 90.4 2.81 86.0
Merrell [10]] 0.83 88.0 0.84 83.1
Merrell2 [10] 0.76 85.2 0.73 73.1
Pons 10 0.60 99.5 0.55 99.0
Sinha [108 0.79 94.9 0.69 97.2
Sormann 130 0.69 97.2 0.81 95.2
Strecha 133 0.86 97.6 1.21 92.4
Tran [140] 1.12 92.3 1.12 92.0
\ogiatzis [L4§ 0.76 96.2 0.49 96.7
Zach [15§ 0.58 99.0 0.67 98.0

Table 7.1: Table lists the accuracy and completeness sabvasous multi-view stereo meth-
ods on the Middlebury benchmark. The accuracy and comm@egewere computed using
thresholds of 95% and 1.25mm, respectively. See text faildet

Figure 7.10: (a) Middlebury Multi-view stereo evaluatioenchmarks: (leftDINORING,
(right) TEMPLERING. The 3D models obtained by our method in comparison to grauutkl.
calibration.

ground truth surface within.25mm of the model. The accuracy and completeness of our
reconstruction for the 47-vietempleRinglataset wer8.79mm and94.9% respectively. The

same metrics for the 48-viemNORING dataset wer6.69mm and97.2%. See Tabl& .1 for
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a comparison with other methods.

Fig. 7.9illustrates the results of an experiment performed to destrate that our method
is not limited by the topology of the base surface. While trsual hull built from all 36
images has the correct topology, the visual hull built afi@itting 10 images (the separation
between the arm and body is observed in these) has genus @ueenethod still recovers a
model with the correct topology (see Fig9(e,f)). The critical parameters of our algorithm
are as follows. The patch sizas typically 11 pixels while the photo-consistency thresh@ld
is chosen in the range of 0.4-0.7 (a fraction between 0 andl [Dwer 7" is more conservative
and retains more cells ative The surface functional parameterscofs set to 0.1 in all
our experiments and is varied between 1 to 10. The stopping criterion for remgrsnesh
refinement is based on the size of the finest cells in the imagesypically stop when this
is in the range of 1 to 3 pixels. Our method requires a smatbetibn of graph vertices
compared to approaches which construct uniform grid graptiee interior of the visual hull.
Our mesh typically has between 2-10 million cells and tatalhing time are typically 1 to 2

hours for each reconstruction.

7.6 Conclusions

We have presented a multi-view reconstruction method thatesses the high memory and
computational requirements of volumetric graph-cut stebg performing a graph-cut on the
dual of an adaptive volumetric mesh (a CW-complex) creaygohoto-consistency driven re-
cursive mesh subdivision. It does not need any initialmgtand is not restricted to a specific
surface topology which is a limitation with methods that adease surface for initialization.
Our graph-cut formulation also incorporates visibilitydasilhouette constraints to counter the

bias for minimal surfaces, and recovers highly detailed 3idleh
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CHAPTER 8
Conclusion

8.1 Summary

In this dissertation, | have studied how silhouettes extxhérom images and video can help
with two fundamental problems of computer vision - namelyltmview camera calibration
and 3D surface reconstruction from multiple images.

First, | presented an automatic method for calibrating avagt of cameras that works
by analyzing only the motion of silhouettes in the multipidao streams. This is partic-
ularly useful for automatic reconstruction of a dynamicrévesing a camera network in a
situation where pre-calibration of the cameras is impcattor even impossible. Our key
contribution is a novel RANSAC-based algorithm that siranéously computes the epipolar
geometry and synchronization of a camera pair from only tlhesettes of moving objects.
The approach starts by independently computing the epigel@ametry and synchronization
for various camera pairs in the network. In the next stage ctilibration and synchroniza-
tion of the complete network is recovered. We remotely catdxd about ten different camera
networks that researchers have setup in their own labs tpridieg models of human actors
and other applications in computer vision and graphics. Wetds only from the archived
multi-view video streams that were previously capturedh®se camera networks. No addi-
tional data capture was required in order to run our calinedapproach. This demonstrates
the effectiveness of the proposed method.

In the second part of the dissertation, | addressed som&shangs of existing volumet-

ric multi-view stereo approaches. First, | proposed an owed multi-view stereo formulation



that allows for robust and accurate fusion of the silhouaftte stereo cues. | showed that it
is possible to enforce exact silhouette constraints withengraph-cut optimization step of
the volumetric graph-cut stereo algorithm. Hence the rettanted surface can be guaranteed
to be consistent with the original silhouettes. | also degcr an alternate multi-view stereo
formulation involving an adaptive graph construction, ethaddresses the high memory and
computational overhead of the underlying approach. Thpgeed method does not need any
initialization and is not restricted to a specific surfacediogy. Using the method, accurate

and detailed 3D models have been reconstructed from hggiutton images.

8.2 Directions for Future Work

| conclude this dissertation with some discussions on tiaes for future research.

8.2.1 Camera Network Calibration

The approach that was developed in the first part of this detsen made it possible to re-
construct dynamic scenes and events from uncalibrated @syhahronized archived video.
All the necessary information was recovered from the siéttms of moving objects. In our
work, both camera intrinsics as well as extrinsics wereragslto be unknown. However, in
some scenarios it is reasonable to assume that the inriasecknown ahead of time. Then
instead of estimating the epipolar geometry, one couldtyrestimate the relative pose. The
approach to recover relative pose using only silhouettesldibe further investigated, as this
scenario may frequently occur in the context of camera nétwalibration.
We used a visual hull approach to reconstruct the dynamieesitem the archived video

streams. However, much work remains to be done in the aregnaingic scene reconstruc-
tion. Some progress in this direction has already been madBalan et. al. ¥], Furukawa

et.al. 46|, Stark et. al. 13]] etc. Although we show the benefit of accurately synchroniz-
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ing the video streams up to sub-frame accuracy, our silt@ugerpolation scheme is simple
and introduces errors when the inter-frame motion is quitgd. In such scenarios, shape
preserving silhouette interpolation such akghould be used.

Arguably silhouette extraction (i.e. background segmteona is a difficult problem to
solve in a general setting. Although our method is robusttbers in silhouette extraction, it
still requires a reasonably high percentage of accurdteisdittes which is harder to guarantee
in realistic outdoor scenes. Future work should addressatbakness, to make the technique
less reliant on high quality silhouettes. To deal with reatlé scenarios, the technique needs
to be extended to deal with silhouettes that are occludedhmsr gtatic objects in the scene.

An interesting direction to pursue for camera network ¢alilon in the outdoor world
is to establish correspondence between high level objadtsel images instead of trying to
recover accurate point correspondences between them. érardje of object detectors for
specific object classes such as faces, pedestrians, canae¢cbeen recently developed. This
gives rise to the question — can the correspondences beimege regions (without exact
pixel to pixel correspondence) generated by running tchitetectors on multi-view sequences
produce enough constraints to recover the calibrationeot#mera network ? Given sufficient
data, to what degree of accuracy can the calibration be ctadu

A related strategy for camera network calibration that widug interesting to investigate
is whether model-based methods can be used. Both monocwlanalti-view model-based
techniques for motion capture and pose estimation of a ofadgects (most research has been
focussed on humans) have gradually improved over the lasidge The multi-view methods,
such as7, 22] require pre-calibrated cameras. An interesting questiahcomes up here is
— can the camera network calibration and the pose of the hismagcovered simultaneously
? This would be a significant step towards making such maltiera systems easy to deploy

and use in the real world.
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8.2.2 Multi-view reconstruction

Although we have proposed two alternate formulations ofthvigw stereo that address dif-
ferent issues in existing approaches, ideally they shoeiicbionbined together. As our formu-
lation that enforced exact silhouette constraints douthlesize of the graph problem, it can
benefit from our alternate formulation that creates a spapsph embedding. Although we
only show how to enforce silhouette constraints within thegtp-cut based energy minimiza-
tion framework, it should also be possible to enforce theesaithouette constraints during
mesh refinement, which is used for local shape refinemeneifirthl stage of the reconstruc-
tion pipeline.

One of the important limitations of our work on multi-viewesto is that only closed
objects are handled. However, there is also immense int@rése vision community in ac-
quiring detailed models of open scenes. The proposed mettwdot directly extend to such
scenarios, and this is an important direction for futurekv@ome techniques for addressing
this problem have been explored in recent work by Furukawale{46]. As segmentation
techniques get better, it may be worth investigating whesliBouette constraints can be ex-
ploited for reconstructing surfaces in open scenes as Wed.key difference there is that the
surface cannot be assumed to be a closed one that parthier3t volume into an interior
and exterior region.

Although volumetric energy minimization based approaclsesh as the ones we pro-
posed give high quality results, they do not scale well tgdascenes. Combining sparse
3D reconstruction and structure from motion techniqueb Wie advantages of energy mini-
mization is an interesting direction of future work. Somemrsing results have been shown
by [79]. Techniques similar to our adaptive graph constructi@mulad possibly be used for

energy minimization based depth map fusion.
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Appendix A: Camera Models and Multi-view Geometry

This appendix briefly covers the theory of camera modelstiraigw geometry, and image

similarity metrics.

A-1 Camera Models and Multi-view Geometry

A-1.1 Pinhole Camera Model

The pin-hole or perspective camera model (shown in Fi§ubeis commonly used to explain

the geometry of image formation. Given a fixed center of mtope C' (the pin-hole or the

X

image plane

_

principal point

camera center C' f I / optical wci.s= >

~

Figure 8.1:

camera centérand an image plane, every 3D poit (X ,Y,7) other than theamera center
itself, maps to a 2D poini (x,y) on the image plane, which is assumed to be at a distAnce

from C. They are related as follows:

X Y
r=lz v=ly
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Using homogeneous coordinates for 2D and 3D points, thideamritten in matrix form.

X
T f 000
Y
yl =10 f 00 (A-1)
Z
1 0010
1

The line throughC, perpendicular to the image plane is caltgatical axisand it meets the
image plane at therincipal point Often, 3D points are represented in a different world
coordinate system. The coordinates of the 3D point in theecamoordinate systeivl,, can

be obtained from the world coordinatk§,,, as follows:

M. =RMy +t

HereR represents & x 3 rotation matrix and represents a translation vector for 3D points.
This can be written in matrix form.

R t
M, = M,  ie.  M.=Ty M, (A-2)

In images, the image coordinate system is typically notexeqt at the principal point and
the scaling along each image axes can vary. So the coordioftiee 2D image point under-
goes a similarity transformation, representedIlyy Substituting these into the perspective

projection equation, we obtain:

X
T f 000
Y
yl =Tc|0 f 0 0| Tw (A-3)
Z
1 0010
1
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or simply,

m=PM

whereP is a3 x 4 non-singular matrix called theamera projection matrixThis matrixP can
be decomposed as shown in g4, whereK is called thecamera intrinsics matrixwhile R

andt together represents tlmamera extrinsicée. the relative pose of the camera in the 3D

world.
Jo S Do
P=K[R|t] where K= 1|0 f p, (A-4)
0O 0 1

The intrinsicsK is often parameterized bf, f,, s, p, andp, (Eq.A-4), wheref, andf, are
the focal lengthf measured in pixels in the andy directions respectively; is the skew and
(pz:py) is the principal point in the image.

Thus, in the general case, an Euclidean perspective caraermodeled in matrix form
with five intrinsic and six extrinsic parameters (three foe totation and three for the trans-
lation) which defines the transformation from the world cboate system, to the coordinate
system in the image. Real cameras deviate from the pin-hoteehdue to various optical ef-
fects, amongst which, the most pronounced is the effectdékdistortion. Radial distortion
is often corrected by warping the image with a non-lineangfarmation. Thus, the undis-
torted image coordinates /) can be obtained from the distorted image coordinategg s

follows:

T = x.+ (v —z.)L(r) (A-5)
U o= yet (Y —y)L(r) (A-6)
L(r) = (14 kr+ror’+...) (A-7)

Herex, ko etc. are the coefficients of radial distortion,,.) is the center of radial distortion
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in the image and is the radial distance from the center of distortion.

A-1.2 Epipolar Geometry

C’

Figure 8.2: For every pixein, the corresponding pixel in the second imagé must lie
somewhere along a liné This property is referred to as tlepipolar constraint See text for
details.

The epipolar geometry captures the geometric relation émtviwo images of the same
scene. When a 3D poii¥l projects to pixelan andm’ in the two imagesm andm’ are
said to be in correspondence. For every point in the first @an#ite corresponding point in
the second image is constrained to lie along a specific lilecctéhe epipolar line Every
plane such ag that contains théaselinei.e. the line joining the two camera centers, must
intersect the two image planes in corresponding epipatas|isuch akandl’, respectively.

All epipolar lines within an image, intersect at a speciahpoalled theepipole Algebraically,

m'TFm = 0 (A-8)

whereF is called thefundamental matrixand has rank two. Poiniss andm’ can be trans-

ferred to the corresponding epipolar lines in the other imaging the following relations.

1=F'm’ ' = Fm
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The epipoles are also the left and right null-vector of thedfamental matrix:

Fe=0 Fle' =0 (A-9)

SinceF is a3 x 3 matrix unique up to scale, it can be linearly computed fromaB pf
corresponding points in the two views using Equa#e8, which is often called thepipolar
constraint This is known as thé&-point algorithm However, when the rank constraint is
enforced,F' can be computed from 7 pairs of correspondences using thdimear 7-point
algorithm Refer to p5] for the details.

Any pair of cameras denoted by camera matriees)dP’, results in a unique fundamental
matrix. Given a fundamental matrl, the camera pairs are determined up to a projective am-
biguity (a projective transformationf of 3 space). ThuseniF, there exists a four parameter

family of canonical camera pairs correspondin@torhese are given by:

P=[I|0] P = [[€]<F +ev'|\e] (A-10)

Epipolar Line Homography

Figure 8.3: The pencil of epipolar lines forms a 1D projeetpace.

There exists a 1D homography that relates the pencil of &ifioes in one view (a 1D
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projective space) with the pencil of epipolar lines in theeastview (see Figur&.3. This
homography has three degrees of freedom. Two degrees dbfre@or each of the epipoles
account for the total seven degrees of freedom of the fundeahmatrix. The epipolar line

homography can be used to transfer epipolar lines as follows

' = Fle].l I =FT[]0

A-1.3 Projective Reconstruction and Self-Calibration

Without special knowledge about the contents of the scérns,iimpossible to recover the
position, orientation, and scale of a 3D scene reconstlufoten images. When the camera
intrinsics are unknown, there is a higher degree of ambjignithe reconstruction — it can
only be determined up to a projective transformation of IepaBy recovering the whole
projective structure starting from only point correspamekss in multiple views, one is able
to compute grojective reconstructiof the cameras and the scene. Note that this can be
done without any knowledge of the camera intrinsics, andan#kpossible to reconstruct 3D
scenes from uncalibrated sequences.

This projective cameras and scene differs from the actuakcas and scene (often re-
ferred to as a Euclidean onetric reconstructiopby a projective transformation —4ax 4
homography. There exists classical techniques to tramséoprojective reconstruction to a
metric one by computing this unknown homography — this ikedauto-calibrationor self-

calibration. Please refer togp, 106 for more details.

A-2 Similarity Measures

The correspondence problem computer vision involves finding, for every pixel in one-im

age, the corresponding pixel in the other image. As indiziqhixel values are not distinctive
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I 1,

Figure 8.4: Many computer vision algorithms require a samiy metric between image
patches that evaluate the similarity of their appearancedevibtes an image patch & &
pixels) in the two images at locations;(y;) and (5,y2) respectively.

enough, similarity is often computed using a patch (typycak x k£ square window) around a
pixel. Different patch-based similarity functions basectifference and correlation measures
are used for this task. Depending on the degree of invariestgpgred, level of image noise

and computational requirements, one of the following sanity measures are typically used.

The Sum of Absolute Differences (SAD) is given by the expass

D L@ +u g+ v) = To(ws +u, 9o + )| (A-11)
(u,v)eEW
The Sum of Squared Differences (SSD) is given by the expessi
Z (I (@1 +u,y1 +v) — o224 u, y2 + v))? (A-12)

(u,v)eW

The Normalized Cross Correlation (NCC) is given by the eggpian:

E(u,v)EW Iy ('rl +u, Y+ U)'12<'r2 +u, Y2 + U)

(A-13)
\/Z(uﬂ))ew I% (xl + u? yl + ,U)' Z(U,U)EW I%(xQ + u? y2 + ,U)

The Zero-mean Normalized Cross Correlation (ZNCC) is glvgthe expression:

P wew (i@ +u,y1 +v) — L).(Iy(zg +u,y2 +v) — )
\/Z(u,v)ewal(% +u g +v) — )% > tuyew 2 (22 + u, y2 +v) — I5)2

(A-14)
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SAD and SSD produce a value of zero for identical patchesataihot normalized as the
scores depend on the patch size and the appearance in thesinN@C and ZNCC produces
values in the range [-1,+1] with +1 for identical patches.nCary to SAD, SSD and NCC,
ZNCC is invariant to intensity offsets and should be usedmlirgghtness change is expected
in the images, although it is the most expensive to compubée tthat in the presence of noise,
similartexturelespatches will have high similarity under SAD and SSD, while@Blwill in
general produce a low similarity score as it factors out therage and tries to correlate two
random signals. For more details, and other non-paransinitarity measures discussed in

the context of stereo matching, please refe6tj.[
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Appendix B: Miscellaneous Topics

This appendix provides a brief introduction to multiple eliated topics that are relevant to
this thesis. First, the problem of silhouette extractioimiages and video is covered. Next,
a brief description ofparse bundle adjustmeistincluded. Finally, network flow algorithms

are introduced, as they form the basis of the graph cut opditioin technique used throughout

this thesis.

B-1 Silhouette Extraction

The methods developed in this thesis assume that silhsusttebjects can be automatically
extracted from images and video. This is called fitregroundor background segmentation
problem. It is quite a challenging problem in the generdirsgtand continues to be an area
of ongoing research3p, 56, 65, 112 137. First, we briefly describe our method for auto-
matically extracting silhouettes of dynamic foregroungects from video. These silhouettes
are used for both camera calibration and modeling the dymaco@ne. Next, we briefly cover
methods for recovering high quality silhouettes of stalifeots in multiple calibrated images.
Such silhouettes are then used for enforcing silhouettstaaints for reconstructing more

accurate 3D models.

B-1.1 Silhouette Extraction in Video

The simplest and fasteBaickground segmentationethods assume that a background image
from the viewpoint of a static camera is available. When &fgemund image is not explicitly

available, it can be generated by computing a median im&genedian from the sequence

157



of intensity values at each pixel is computed). When thewislequence is sufficiently long
and foreground objects move constantly, the generatedameatiage contains little trace of
the foreground.

Each pixel in the target image is then classified as foregtautackground based on the
intensity difference with the corresponding pixel in theekground image. Simple thresh-
olding does not work well because the background image éosektatic. The intensities of
background pixels vary due to image noise, presence of sfsachst by the foreground object
and time varying illumination. More over, the appearance emlor of the foreground may
be similar to the background resulting in mis-classifiqatiBlowever, in controlled scenes (a
blue-screeris sometimes used), such a simple background subtractjgmo@aghes can pro-
duce silhouettes of acceptable quality. Some post-prowessrequired to clean up the noisy
silhouettes. This is done via local morphological operation the image such ddation and
erosion[67], and connected component analysis of foreground blobdsaiségmented image.

A more flexible approach involves using a per-pixel intgnslistribution to model the
appearance of the dynamic background. The per-pixel bligion is modeled as a mixture of
Gaussians, whose parameters must be estimated using &rginomg sequence, where only
the background is observed. Statistical modeling for addptive background segmentation
techniques are described in detail 56] 137. Methods such asoh, 151] explicitly model
intensity variation in the background due to cast shadovasaam thereby compute more
accurate silhouettes.

Per-pixel classification methods are fast but fail to gusaspatially coherent foreground
segments. Image morphology only addresses this partiahe-silhouette boundaries can
get considerably eroded by successéresionand dilation operations. A more powerful
technique for solving the background segmentation prohises a global approach based on
energy minimization in a Markov Random Field (MRF) framelwoiThe MRF framework

was introduced in Chapté&r3, and has been widely used for low level pixel labeling protde
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such as stereo, segmentation and image restoration. Trhevirark encourages smoothness
(spatial coherence) in the labeling. In our case, the bitaygls represent foreground and
background respectively. Such binary energies can beeaftlgiminimized using graph cuts.
The per pixel data term in the energy is derived from its Ik@bd of being foreground (or
background), whereas the commonly used Pott model is us¢hdemoothness energy.

To summarize, the silhouettes used in our experiments Weeened by a variety of tech-
niques. For recovering silhouettes from video in contbkeenes, we used simple back-
ground subtraction with morphological operations. For s@ata sets, graph-cut based back-
ground segmentation was used. Note that the data sets usederperiments were captured
by other researchers in fairly controlled interior scends welatively simple backgrounds.
The simple background segmentation approaches descrdseduMere sufficient for our pur-
pose. As more powerful automatic segmentation technigueedevelopedd6, 74, 117, it
will become possible to use the techniques proposed inliksgt on more complex outdoor

scenes with dynamic backgrounds.

B-1.2 Silhouette Extraction in Images

The multi-view stereo method proposed in this thesis assuirad calibrated images of an
object captured from multiple viewpoints were availableng with their silhouettes. The
data sets used in our experiments were acquired in a spearalen The object was placed
on a turn-table and a static camera was used to capture iraagles turntable was rotated. In
some cases, the silhouettes were extracted mand&ly \Vhile this is a tedious step, many
semi-interactive techniques for silhouette extractionlgécts exist in the literature. Many of
the earlier techniques, based on snald$ fequired good initialization and were susceptible
to the problem of local minima. Recently, some practicaleriactive image segmentation
methods 80, 117 have been developed. These techniques are in generat tasise and

provides more control to the user, as compared to snakelipasthods.
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In the system developed byT7], a simple background (screen) of relatively constanticolo
was used during the turntable acquisition process. Theisgttes were then automatically ex-
tracted using a variety of segmentation techniques — a)aa bidtogram approach which per-
forms a binary classification of pixels based on appearasigglér to the techniques described
in the previous section), b) a level set algorithm using thebrd Shah model3d3, 145 and
c) the JSEG algorithnBg]. The details of each of these techniques are describésjnAn
interesting approach that combines silhouette extraaitiibh volumetric 3d reconstruction

was proposed by2[].

B-2 Sparse Bundle Adjustment

An indispensable part of any structure from motion pipeigisundle adjustment a method
to refine the complete scene structure (3D point set) andregpaeameters simultaneously, by
minimizing the reprojection error of the structure in akktimages, given a set of correspon-
dences in multiple views. It involves solving a large globptimization problem, where all
camera parameters and structure parameters are refinelasienwsly. This is typically the
final step of a 3D reconstruction pipeline and involves noedr minimization of an objective

function of the following form:
Z d(P'X;,x})?

Hered(m, m’) is the reprojection error between the 2D homogeneous poirgdedm’ in the
image, P denotes theé'" projection matrix in the sequenck, denotes thg" 3D homoge-
neous point that is observed in tié image at pixelx;ﬁ Although thousands of parameters
need to be simultaneously optimized in a typical problentaimse, the Jacobian has a sparse
structure, since the parameters of different cameras dmtavact with each other. A similar
form of bundle adjustmenst used to refine the Euclidean (metric) structure and Gatiidom

and this is sometimes referred toEsclidean bundle adjustment
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In practice,bundle adjustmentequires good initialization and assumes that the measure-
ments are free of outliers. The minimization of the nonlinagjective function is done using
the iterative Levenberg-Marquardt meth@®]. In fact, a sparse version of the Levenberg
Marquardt method is used in bundle adjustment. It explbisdparse structure of the Jaco-
bian and every iteration of the algorithm involves solvingparse linear system. A detailed
description of the algorithm is provided iB5], and forms the basis of the implementation

used in this thesis.

B-3 The Min-cut/Max-flow problem

A flow networkG(V, E), is defined as a fully connected directed graph where eadh(edg)
e F has a positive capacitfu, v) > 0. Two special vertices in a flow network are designated
thesources, and thesinkt, respectively. Alowin G is a real-valued functiofi : V xV — R

that satisfies the following properties:
e Capacity Constraint: ¥V u,v eV, f(u,v) < c(u,v).
e Skew Symmetry: VuweV, flu,v) =—f(v,u).
e Flow Conservation: Vue (V-{s,t}),> . f(u,v) =0.

The value of a flow is defined dg| = > _,.,, f(s,v) ie. the total flow out of the source (.
The max-flow problem is to find the flow of maximum value@n

A s-t cutor simplycutof G, is a partition of// into S and7 = V — S, such thats ¢ S
andt e T. For a given flowf, the net flowacross the cutS,T') is defined asf(S,7) =
> wes 2yer f(z,y). Using a similar notation, the capacity of a duf,7’) is defined as
(S, T) = > 1es 2oyer c(x,y). A minimum cutof a flow network is a cut whose capacity
is the least over all the s-t cuts of the network. An exampla @ibw network is shown in

Figure8.5.
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Figure 8.5: (a) The figure (taken from Cormen et. 28 [shows a flow networl: (V, E) with
a valid flow f. The values on the edges aféu, v)/c(u,v). The current flow has value 19.
Note that this is not a maximum flow.

Theorem 1. The max-flow min-cut theorem : ffis a flow in a flow networky = (V, F) with
sources and sinkt then the value of the maximum flow is equal to the capacity ahamam

cut. Refer to Cormen et. al2§] for the proof.

The intuition behind the proof is as follows. The maximum flowst saturate edges in
the flow network such that no further flow can be pushed. Thaseated edges must lie on
one of the min-cuts. This result allows one to compute themim cut of a flow network by
first solving for the max-flow, for which polynomial time algthms exist.

The single-source single-sink max-flow problem descrildsala is a specific case of the
more general multiway cut problem, where there areerminals and a multiway cut is a
minimum set of edges which separates each terminal fronhalbthers. It has been shown
that if £ > 3, the problem is NP-Hard. However, in this thesis, we willyohe concerned
with the caseX = 2), which can be exactly solved in polynomial time. A brief degtion of

these algorithms is now presented.

B-3.1 Algorithms for Computing Max-flow

The polynomial algorithms for the single-source singleksnax-flow problem can be divided
into two classes, algorithms based on the Ford Fulkersohadd89] and those based on the
push-relabemethod p2]. The two contrasting approaches are described below.

The intuitive idea behind the Ford-Fulkerson method is #tatting with zero flow ie.
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f(u,v) = 0forallu,v eV, the flow can be gradually increased by finding a path feamt,
along which more flow can be sent. Such a path is calleaugmenting pathand once it has
been found, the flow can be augmented along this path. Thegsdorepeated, must end after

a finite number of iterations, after which maagmenting pathbetweens andt exist anymore.

A typical algorithm of this type maintains for a given flofy theresidual graphof G, called

G s whose topology is identical t6' but whose edge capacities stores the residual capacity of
all the edges, given that there is already some flow in thene SEarch for amugmenting
pathat the;'" iteration is done on the currergsidual graphG ;,. Once araugmenting patfs
found, the maximum amount of flow that can be sent dowyi,jt, must saturate at least one

of the edges of this path. The new flow at the end of the itanatiitl be f; + f;.c,.

The running time complexity of different algorithms will general vary depending on
how theaugmenting patiis chosen. Dinic algorithni7] that uses breadth-first search to find
the shortest paths fromto ¢ on theresidual graph has an overall worst case running time of
O(n*m), n being the number of nodes and m being the number of edges.

In contrast to the Ford-Fulkerson method where augmentiefjéw operates on the com-
pleteresidual graphthepush-relabehlgorithms operate locally on a vertex at a time, inspect-
ing only its neighbours. Unlike the Ford-Fulkerson methbd,flow conservation property is
not satisfied during the algorithm’s execution. The int@tidea here is to associate a notion
of height along with all the nodes in the network. The heidithe source and sink are fixed
at|V] and0 respectively, and at the beginning, all other vertices height0. The algorithm
starts by sending flow down from the source and the amount wf $knt, saturates all the
outgoing edges. All intermediate nodes have a buffer orerves that can store excess flow.
Nodes with positive excess flow are said to be overflowing so@verflowing nodes try to
push the excess flow downhill. However, when an overflowindenfinds the edges to its
neighbours at the same height as itself saturated, it iremésnts own height, a process which

is called “relabeling”. This allows it to get rid of the exsebow. The algorithm terminates
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when none of the nodes in are overflowing. Often, excess flow accumulated in the ioteri
nodes is sent back to the source by relabeling these nodes&ight beyondV/|.

The generiqush-relabel algorithmghus have two basic operationgashflow andre-
label an overflowing node, and Cormen et. &8] proves that a generipush-relabelstyle
algorithm has a(n?*m) worst case running time, and there are certain?®) algorithms in
this class. Refer to3D, 52 for the details of the algorithms, relevant data strudused
practical trade-offs in implementations.

The max-flow implementation used in various parts of thisiheses a variant of the
augmenting patibased method that was experimentally shown to be efficiemgrfd graphs
that are common in computer visiob4]. Grid graphs are sparse, have uniform connectivity
at all vertices and a large number of connections to the soanc sink nodes. The main
difference in [L4], lies in the method for computing treugmenting pathsGenerally, these
paths are recomputed on tlesidual graphfrom scratch, but this is a costly operation on large
grid graphs as the breadth first search visits all verticdse fain improvement proposed
by [14], was to reuse search trees in a way, such that subsegqugnienting pathsould
be computed efficiently. This algorithm has a worst case twm@plexity of O(n?m|C|)
where|C| is the maximum capacity, but has been shown to be fastemhsinrelabebased

implementations, on a variety of problem instances.
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Appendix C: Publications

The work presented in this dissertation was also publishéad following papers:

e S.N. Sinha, P. Mordohai and M. Pollefeydulti-View Stereo via Graph Cuts on the
Dual of an Adaptive Tetrahedral Mesimtl. Conf. on Computer Vision, (ICCV) Rio de
Janiero, Oct 2007.

e S.N. Sinha and M. Pollefey$/ulti-view Reconstruction using Photo-consistency and
Exact Silhouette Constraints: A Maximum-Flow Formulatibtl. Conf. on Computer

Vision, (ICCV) Beijing, China, October 2005.

¢ S.N. Sinha and M. Pollefey¥jsual-Hull Reconstruction from Uncalibrated and Unsyn-
chronized Video Stream&nd Intl. Symposium on 3D Data Processing, Visualization

and Transmission (3DPVT), Greece, September, 2004.

e S.N. Sinha and M. Pollefey§alibrating a network of cameras from live or archived

videq In Proc. of Advanced Concepts for Intelligent Systems 200

e S.N. Sinha and M. Pollefeyssynchronization and Calibration of Camera Networks
from Silhouettesin Proc. of Intl. Conf. on Pattern Recognition, (ICPR) Caitde,
UK, Aug 2004.

e S.N. Sinha, M. Pollefeys and L. McMillaGamera Network Calibration from Dynamic
SilhouettesIn Proc. of IEEE Conf. on Computer Vision and Pattern Redogn
(CVPR), Washington D.C., June 2004.

165



BIBLIOGRAPHY

[1] Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigiag-possible shape interpo-
lation. In SIGGRAPH '00: Proceedings of the 27th annual conference @amliter
graphics and interactive techniqugsages 157-164, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[2] J. Allard, E. Boyer, J-S Franco, C. Mnier, and B. Raffin. rkkx-less real time 3d
modeling for virtual reality. InProceedings of IPT'04 Symposiudmes, USA, May
2004.

[3] Geoff Cross Andrew W. Fitzgibbon and Andrew Zissermamitdknatic 3d model con-
struction for turn-table sequences. In R. Koch and L. VariGeditors, Proceedings
of SMILE Workshop on Structure from Multiple Images in Lagpale Environments
volume 1506 ofLecture Notes in Computer Scienpages 154-170. Springer Verlag,
June 1998.

[4] Ben Appleton and Hugues Talbot. Globally minimal sugady continuous maximal
flows. IEEE Transactions on Pattern Analysis and Machine Intelige 28(1):106—
118, 2006.

[5] Kalle Astrom, Roberto Cipolla, and Peter Giblin. Gersed epipolar constraintsnt.
J. Comput. Vision33(1):51-72, 1999.

[6] Patrick T. Baker and Yiannis Aloimonos. Calibration ofraulticamera networkcvpr,
07:72, 2003.

[7] Luca Ballan and Guido Maria Cortelazzo. Multimodal 3capk recovery from tex-
ture, silhouette and shadow information. 3DPVT '06: Proceedings of the Third
International Symposium on 3D Data Processing, Visualimtand Transmission
(3DPVT’06) pages 924-930, Washington, DC, USA, 2006. IEEE Computee§o

[8] Bruce Guenther BaumgartGeometric modeling for computer visionrPhD thesis,
Stanford University, 1974.

[9] R. C. Bolles and M. A. Fischler. A ransac-based approacmodel fitting and its
application to finding cylinders in range data. Pnoc. of the 7th IJCAlpages 637—
643, Vancouver, Canada, 1981.

[10] J. Bouguet. Matlab camera calibration toolbox, 2000.

[11] Edmond Boyer. On using silhouettes for camera calibnattn ACCV (1) pages 1-10,
2006.

[12] Edmond Boyer and Marie-Odile Berger. 3d surface retranton using occluding
contours.Int. J. Comput. Vision22(3):219-233, 1997.

166



[13] Yuri Boykov and Vladimir Kolmogorov. Computing geodes and minimal surfaces
via graph cuts. INCCV '03: Proceedings of the Ninth IEEE International Caefece
on Computer Visiojpage 26, Washington, DC, USA, 2003. IEEE Computer Society.

[14] Yuri Boykov and Vladimir Kolmogorov. An experimentabmparison of min-cut/max-
flow algorithms for energy minimization in visionEEE Trans. Pattern Anal. Mach.
Intell., 26(9):1124-1137, 2004.

[15] Yuri Boykov and Victor Lempitsky. From photohulls to ptoflux optimizationBMVC,
3:1149-1158, 2006.

[16] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast appnoate energy minimization
via graph cutslEEE Trans. Pattern Anal. Mach. Intel23(11):1222-1239, 2001.

[17] Adrian Broadhurst, Tom Drummond, and Roberto CipoAgprobabilistic framework
for space carving. IhCCV, pages 388-393, 2001.

[18] Gabriel J. Brostow, Irfan Essa, Drew Steedly, and Vikekatra. Novel skeletal repre-
sentation for articulated creatures.HE€CV04 pages Vol lll: 66—78, 2004.

[19] M. Brown and D. G. Lowe. Unsupervised 3d object recdgnitind reconstruction in
unordered datasets. 8DIM '05: Proceedings of the Fifth International Conferenan
3-D Digital Imaging and Modelingpages 56—63, Washington, DC, USA, 2005. IEEE
Computer Society.

[20] Chris Buehler, Steven J. Gortler, Michael F. Cohen, badnard McMillan. Minimal
surfaces for stereo. IBCCV (3) pages 885—-899, 2002.

[21] Neill Campbell, George Vogiatzis, Carlos Hernndez] &oberto Cipolla. Automatic
3d object segmentation in multiple views using volumettiag-cuts. Inin British
Machine Vision Conferen¢c2007.

[22] Joel Carranza, Christian Theobalt, Marcus A. Magnod Blans-Peter Seidel. Free-
viewpoint video of human actors. BIGGRAPH '03: ACM SIGGRAPH 2003 Papers
pages 569-577, New York, NY, USA, 2003. ACM.

[23] Yaron Caspi, Denis Simakov, and Michal Irani. Feathased sequence-to-sequence
matching.Int. J. Comput. Vision68(1):53—-64, 2006.

[24] G.K.M. Cheung, S. Baker, and T. Kanade. Shape-fromesiétte of articulated objects
and its use for human body kinematics estimation and moaptuce. INCVPR pages
I: 77-84, 2003.

[25] Kong Man Cheung, Simon Baker, and Takeo Kanade. Shape-§ilhouette across
time part i: Theory and algorithms.International Journal of Computer Vision
62(3):221 — 247, May 2005.

167



[26] R. Cipolla, K. E. Astrom, and P. J. Giblin. Motion fromelirontier of curved surfaces.
In ICCV '95: Proceedings of the Fifth International Conferenan Computer Visign
page 269, Washington, DC, USA, 1995. IEEE Computer Society.

[27] Roberto Cipolla and Peter Giblirvisual Motion of Curves and Surface€ambridge
University Press, 2000.

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rjwesl Clifford Stein.Intro-
duction to Algorithms, Second Editiolmhe MIT Press, September 2001.

[29] Antonio Criminisi, lan D. Reid, and Andrew Zissermann@e view metrologylnter-
national Journal of Computer Visiod0(2):123-148, 2000.

[30] Antonio Criminisi, Toby Sharp, and Andrew Blake. Ge@seodesic image segmenta-
tion. INECCV (1) pages 99-112, 2008.

[31] Geoffrey Cross and Andrew Zisserman. Surface recaoastm from multiple views
using apparent contours and surface texture.Cémfluence of computer vision and
computer graphicspages 25-47, Norwell, MA, USA, 2000. Kluwer Academic Pub-
lishers.

[32] Brian Curless and Marc Levoy. A volumetric method foil@ing complex models
from range images. IBIGGRAPH '96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniqupages 303—-312, New York, NY, USA,
1996. ACM.

[33] Mumford D. and Shah J. Optimal approximations by piesevemooth functions and
associated variational problem€ommunications on Pure and Applied Mathematics
42(5):577-685, 1989.

[34] R.J. Daverman and R.B. SheHandbook of Geometric TopologyNorth-Holland,
December 2001.

[35] Andrew Delong and Yuri Boykov. A scalable graph-cuta@ithm for n-d grids. In
CVPR 2008.

[36] Yining Deng and B.S. Manjunath. Unsupervised segntemtaf color-texture regions
inimages and videdEEE Transactions on Pattern Analysis and Machine Inteltige
23(8):800-810, 2001.

[37] E.A. Dinic. Algorithm for solution of a problem of maxiom flow in networks with
power estimationSoviet Math. Dok].11:1277-1280, 1970.

[38] Olivier D. Faugeras and Renaud Keriven. Complete dstexeovision using level set
methods. INECCV ’98: Proceedings of the 5th European Conference on Qoenp
Vision-Volume | pages 379-393, London, UK, 1998. Springer-Verlag.

[39] L. Ford and D. Fulkerson. Flows in network8rinceton Univ. Press1962.

168



[40] Jan-Michael Frahm and Marc Pollefeys. Ransac for (gltkegyenerate data (qdegsac).
In CVPR '06: Proceedings of the 2006 IEEE Computer Society €&ente on Com-
puter Vision and Pattern Recognitippages 453-460, Washington, DC, USA, 2006.
IEEE Computer Society.

[41] Jean-Sébastien Franco and Edmond Boyer. Exact pdigtheisual hulls. InProceed-
ings of the Fourteenth British Machine Vision Confereruages 329-338, September
2003. Norwich, UK.

[42] Jean-Sébastien Franco, Marc Lapierre, and Edmon@mBayisual shapes of silhou-
ette sets. IfProceedings of the 3rd International Symposium on 3D DatacBssing,
Visualization and Transmission, Chapel Hill (USAD06.

[43] Henry Fuchs, Gary Bishop, Ruzena Bajcsy, Sang Wook Heay Farid, and Takeo
Kanade. Virtual space teleconferencing using a sea of @sneinProc. First In-
ternational Conference on Medical Robotics and Computesistad Surgerypages
161-167, 1994.

[44] Y. Furukawa and J. Ponce. Accurate, dense, and robustwiaw stereopsis. IlCom-
puter Vision and Pattern Recognition, 2007. CVPR '07. IEEEhférence onpages
1-8, 2007.

[45] Yasutaka Furukawa and Jean Ponce. Carved visual fuullsnage-based modeling.
ECCV, 2006.

[46] Yasutaka Furukawa and Jean Ponce. Dense 3d motiorredpim synchronized video
streams. ICVPR 2008.

[47] Yasutaka Furukawa, Amit Sethi, Jean Ponce, and Davidgkman. Robust structure
and motion from outlines of smooth curved surfaceaMl, 28(2):302—-315, February
2006.

[48] P. Gargallo, E. Prados, and P.F. Sturm. Minimizing tlerojection error in surface
reconstruction from images. IC€CV, pages 1-8, 2007.

[49] Ovidiu Ghita, Paul F. Whelan, and John Mallon. Compiotal approach for depth
from defocus.Journal of Electronic Imagingl4(2), 2005.

[50] Michael Goesele, Brian Curless, and Steven M. SeitzltiNiew stereo revisited. In
CVPR (2) pages 2402-2409, 2006.

[51] Michael Goesele, Noah Snavely, Brian Curless, Huguagpd, and Steven M. Seitz.
Multi-view stereo for community photo collections. IBCV, pages 1-8, 2007.

[52] AV Goldberg and R E Tarjan. A new approach to the maximuw fhroblem. INSTOC
'86: Proceedings of the eighteenth annual ACM symposiumth@ofly of computing
pages 136—-146, New York, NY, USA, 1986. ACM.

169



[53] Markus Gross, Stephan Wirmlin, Martin Naef, Edouaadniboray, Christian Spagno,
Andreas Kunz, Esther Koller-Meier, Tomas Svoboda, Luc VaolGSilke Lang, Kai
Strehlke, Andrew Vande Moere, and Oliver Staadt. blue-gaially immersive dis-
play and 3d video portal for telepresenéeCM Trans. Graph.22(3):819-827, 2003.

[54] M. Habbecke and L. Kobbelt. A surface-growing appro&zmulti-view stereo re-
construction. InComputer Vision and Pattern Recognition, 2007. CVPR 'OEHE
Conference oypages 1-8, 2007.

[55] Richard Hartley and Andrew Zissermaultiple View Geometry in Computer Vision
volume 23. Cambridge University Press, New York, NY, USAQ20

[56] Eric Hayman and Jan-Olof Eklundh. Statistical backopw subtraction for a mobile
observerComputer Vision, IEEE International Conference @r67, 2003.

[57] Carlos Hernandez Stereo and Silhouette Fusion for 3D Object Modeling from Un-
calibrated Images Under Circular MotiorPhD thesis, Ecole Nationale Supfieure des
Télecommunications, May 2004.

[58] Carlos Hernandez, Francis Schmitt, and Roberto GipoEilhouette coherence for
camera calibration under circular motidPAMI, 29(2):343—-349, February 2007.

[59] Carlos Hernandez, George Vogiatzis, and Roberto IGip&robabilistic visibility for
multi-view stereo. ICVPR pages xx—xx, 2007.

[60] Adrian Hilton and Jonathan Starck. Multiple view restmuction of people. I8BDPVT
'04: Proceedings of the 3D Data Processing, Visualizatemd Transmission, 2nd In-
ternational Symposiunpages 357—364, Washington, DC, USA, 2004. IEEE Computer
Society.

[61] Heiko Hirschmuller and Daniel Scharstein. Evaluatafncost functions for stereo
matching. INCVPR IEEE Computer Society, 2007.

[62] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Autatit photo pop-up. IIMCM
SIGGRAPHAugust 2005.

[63] Alexander Hornung and Leif Kobbelt. Hierarchical volatric multi-view stereo re-
construction of manifold surfaces based on dual graph edibgdin CVPR (1) pages
503-510, 2006.

[64] Alexander Hornung and Leif Kobbelt. Robust and effitiphoto-consistency estima-
tion for volumetric 3d reconstruction. BCCV (2) pages 179-190, 2006.

[65] Thanarat Horprasert, David Harwood, and Larry S. DaWsstatistical approach for
real-time robust background subtraction and shadow detedn ICCV, 1999.

[66] J.Isidoro and S. Sclaroff. Stochastic refinement olisaal hull to satisfy photometric
and silhouette consistency constraintsl@€V, pages 1335-1342, 2003.

170



[67] Anil K. Jain. Fundamentals of Digital Image Processing (Prentice Hafbohmation
and System Sciences SeriéR)entice Hall, September 1988.

[68] Tanuja Joshi, Narendra Ahuja, and Jean Ponce. Steuatugt motion estimation from
dynamic silhouettes under perspective projectionCi@V, pages 290-295, 1995.

[69] Takeo Kanade, Peter Rander, and P. J. Narayanan. Ndgdaeality: Constructing
virtual worlds from real scene$EEE MultiMedig 4(1):34-47, — 1997.

[70] Takeo Kanade, Hideo Saito, and Sundar Vedula. The 3uhrd@ugitizing time-varying
3d events by synchronized multiple video streams. TechRieport CMU-RI-TR-98-
34, Robotics Institute, Carnegie Mellon University, Ritiggh, PA, December 1998.

[71] Michael Kass, Andrew Witkin, and Demetri TerzopouloSnakes: Active contour
models.International Journal of Computer Visioi:321-331, 1988.

[72] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppeis8an surface reconstruc-
tion. In Fourth Eurographics Symposium on Geometry Processiages 6170, June
2006.

[73] D. Kirsanov and S.J. Gortler. A discrete global miniatinn algorithm for continuous
variational problems. Technical report, Harvard Univigrguly 2004.

[74] Pushmeet Kohli and Philip H. S. Torr. Effciently solgiynamic markov random
fields using graph cuts. IKCCV ’'05: Proceedings of the Tenth IEEE International
Conference on Computer Visiopages 922-929, Washington, DC, USA, 2005. IEEE
Computer Society.

[75] Pushmeet Kohli and Philip H. S. Torr. Dynamic graph datsefficient inference in
markov random fields.IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29(12):2079-2088, 2007.

[76] Kalin Kolev, Maria Klodt, Thomas Brox, Selim Esedoghnd Daniel Cremers. Con-
tinuous global optimization in multiview 3d reconstruction EMMCVPR pages 441—
452, 2007.

[77] Vladimir Kolmogorov and Ramin Zabih. Multi-camera seereconstruction via graph
cuts. INECCV 2002: Proceedings of the 7th European Conference orpGtanVision-
Part Ill, pages 82—-96, London, UK, 2002. Springer-Verlag.

[78] K. Kutulakos and S. Seitz. A theory of shape by spaceingrinternational Journal
of Computer Vision38(3):199-218, 2000.

[79] P. Labatut, J.P. Pons, and R. Keriven. Efficient mulkévreconstruction of large-scale
scenes using interest points, delaunay triangulation aapghgcuts. InICCV, pages
1-8, 2007.

171



[80] Patrick Labatut, Renaud Keriven, and Jean-PhilippesPdrast level set multi-view
stereo on graphics hardware. 3DPVT, pages 774-781. IEEE Computer Society,
2006.

[81] A. Laurentini. The visual hull concept for silhouetbesed image understandifRAMI,
16(2):150-162, February 1994.

[82] Svetlana Lazebnik, Edmund Boyer, and Jean Ponce. Ompuatimg exact visual hulls
of solids bounded by smooth surfaces OWPR pages 1:156-161, 2001.

[83] Svetlana Lazebnik, Yasutaka Furukawa, and Jean P&mogective visual hullsint. J.
Comput. Vision74(2):137-165, 2007.

[84] Svetlana Lazebnik, Amit Sethi, Cordelia Schmid, DaviKriegman, Jean Ponce, and
Martial Hebert. On pencils of tangent planes and the re¢mynof smooth 3d shapes
from silhouettes. IEECCV (3) pages 651-665, 2002.

[85] Victor Lempitsky, Yuri Boykov, and Denis Ivanov. Oritd visibility for multiview
reconstruction. IiEECCV, pages 226—238, 2006.

[86] Noam Levi and Michael Werman. The viewing graf@VPR 01:518-522, 2003.

[87] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiez, David Koller, Lucas
Pereira, Matt Ginzton, Sean Anderson, James Davis, Jerémsp&g, Jonathan Shade,
and Duane Fulk. The digital michelangelo project: 3D scagrmif large statues. In
Proceedings of ACM SIGGRAPH 2QQiages 131-144, July 2000.

[88] M. Lhuillier and L. Quan. A quasi-dense approach to acef reconstruction from
uncalibrated imagesEEE Trans. Pattern Anal. Mach. IntelR7(3):418—-433, 2005.

[89] M.LLA. Lourakis and A.A. Argyros. The design and implentation of a generic
sparse bundle adjustment software package based on thebégemarquardt algo-
rithm. Technical Report 340, Institute of Computer Scienf€é®RTH, Heraklion, Crete,
Greece, August 2004.

[90] Donald W. Marquardt. An algorithm for least-squaresneation of nonlinear parame-
ters. SIAM Journal on Applied Mathematick1(2):431-441, 1963.

[91] D. Martinec and T. Pajdla. Consistent multi-view restiaction from epipolar geome-
tries with outliers. INSCIA pages 493-500, 2003.

[92] D. Martinec and T. Pajdla. 3d reconstruction by gluirgrgwise euclidean reconstruc-
tions, or 'how to achieve a good reconstruction from bad iesagIn 3DPVT, pages
25-32, 2006.

[93] Jiri Matas and Ondrej Chum. Randomized ransac withiest. Image Vision Comput.
22(10):837-842, 2004.

172



[94] Y. Matsumoto, K. Fujimura, and T. Kitamura. Shape-frgithouette/stereo and its
application to 3-d digitizer. IDCGI '99: Proceedings of the 8th International Confer-
ence on Discrete Geometry for Computer Imagpages 177-190, London, UK, 1999.
Springer-Verlag.

[95] W. Matusik, C. Buehler, and L. Mcmillan. Polyhedral wa hulls for real-time render-
ing. Proceedings of Eurographics Workshop on Rendefipages 115-126, 2001.

[96] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Ste¥eGortler, and Leonard
McMillan. Image-based visual hulls. In Kurt Akeley, edit@&@iggraph 2000, Com-
puter Graphics Proceedingpages 369-374. ACM Press / ACM SIGGRAPH / Addi-
son Wesley Longman, 2000.

[97] Sean MauchEfficient Algorithms for Solving Static Hamilton-Jacobilagions PhD
thesis, California Institute of Technology, 2003.

[98] Sean MauchEfficient Algorithms for Solving Static Hamilton-Jacobildgions PhD
thesis, California Institute of Technology, Pasadena, Z093.

[99] A. Melkman. On-line construction of the convex hull ofimple polygoninformation
Proc. Letters25(11), 1987.

[100] Paulo R. S. Mendonga, Kwan-Yee K. Wong, and Roberfmolla. Epipolar geom-
etry from profiles under circular motionlEEE Trans. Pattern Anal. Mach. Intell.
23(6):604-616, 2001.

[101] Paul Merrell, Amir Akbarzadeh, Liang Wang, Philippdsordohai, Jan-Michael
Frahm, Ruigang Yang, David Nistér, and Marc Pollefeys. [Rieze visibility-based
fusion of depth maps. I'CCV, pages 1-8, 2007.

[102] MeshLab. Mesh editing software.

[103] Neil Molino, Robert Bridson, Joseph Teran, and Rorfadkiw. A crystalline, red
green strategy for meshing highly deformable objects vatrahedra. Iri2th Interna-
tional Meshing Roundtab)@ages 103-114, 2003.

[104] Jan Neumann and Yiannis Aloimonos. Spatio-tempdeks using multi-resolution
subdivision surfacednt. J. Comput. Visiopd7(1-3):181-193, 2002.

[105] Sylvain Paris, Francois X. Sillion, and Long Quan. éface reconstruction method
using global graph cut optimizatiomt. J. Comput. Vision66(2):141-161, 2006.

[106] Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, krslarbiest, Kurt Cornelis, Jan
Tops, and Reinhard Koch. Visual modeling with a hand-heldera. Int. J. Comput.
Vision, 59(3):207-232, 2004.

173



[107] Marc Pollefeys, Frank Verbiest, and Luc J. Van Gool.r&ing dominant planes in
uncalibrated structure and motion recovery. HECV '02: Proceedings of the 7th
European Conference on Computer Vision-Parpages 837-851, London, UK, 2002.
Springer-Verlag.

[108] Sudipta N. Sinha:Philippos Mordohai:Marc PollefeyBlulti-view stereo via graph
cuts on the dual of an adaptive tetrahedral mé€iCV 2007, IEEE 11th International
Conference on Computer Visigpages 1-8, October 2007.

[109] Jean-Philippe Pons, Renaud Keriven, and Olivier Esag) Multi-view stereo recon-
struction and scene flow estimation with a global image-tbasatching scorelnt. J.
Comput. Vision72(2):179-193, 2007.

[110] Jean-Philippe Pons, Renaud Keriven, and Olivier Dugeaas. Modelling dynamic
scenes by registering multi-view image sequence€VRR (2) pages 822827, 2005.

[111] John Porrill and Stephen Pollard. Curve matching @ecks calibrationlmage Vision
Comput, 9(1):45-50, 1991.

[112] C. Rother, V. Kolmogorov, and A. Blake. "grabcut”: @mactive foreground extraction
using iterated graph cut&CM Trans. Graph.23(3):309-314, 2004.

[113] Sébastien Roy and Ingemar J. Cox. A maximum-flow fdation of the n-camera
stereo correspondence problem.IGCV '98: Proceedings of the Sixth International
Conference on Computer Visigpmage 492, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[114] Peter Sand, Leonard McMillan, and Jovan Popovic. tldaous capture of skin de-
formation. INSIGGRAPH ’'03: ACM SIGGRAPH 2003 Papepaiges 578-586, New
York, NY, USA, 2003. ACM Press.

[115] Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng. 3pthdeconstruction from a
single still image.International Journal Computer Visioi6(1):53—-69, January 2008.

[116] Daniel Scharstein and Richard Szeliski. A taxonomyevaluation of dense two-frame
stereo correspondence algorithrig. J. Comput. Visiopd7(1-3):7-42, 2002.

[117] Steven M. Seitz, Brian Curless, James Diebel, Dargkb&stein, and Richard Szeliski.
A comparison and evaluation of multi-view stereo recorgtom algorithms. ICVPR
'06: Proceedings of the 2006 IEEE Computer Society Conterem Computer Vision
and Pattern Recognitigrpages 519-528, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[118] Steven M. Seitz and Charles R. Dyer. Photorealistenscreconstruction by voxel
coloring. In CVPR '97: Proceedings of the 1997 Conference on ComputeéorVis
and Pattern Recognition (CVPR '97f)age 1067, Washington, DC, USA, 1997. IEEE
Computer Society.

174



[119] J. A. SethianLevel Set Methods and Fast Marching Methods: Evolving fatas in
Computational Geometry, Fluid Mechanics, Computer Visand Materials Science
Cambridge University Press, June 1999.

[120] Sudipta Sinha, Jan-Michael Frahm, Marc Pollefeyd, ¥akup Genc. Feature tracking
and matching in video using programmable graphics hardwil@&chine Vision and
Applications 2006.

[121] Sudipta N. Sinha and Marc Pollefeys. Calibrating avoek of cameras from live or
archived video. Inn Proc. of Advanced Concepts for Intelligent Systevatume 0,
Los Alamitos, CA, USA, 2004.

[122] Sudipta N. Sinha and Marc Pollefeys. Synchronizatiod calibration of camera net-
works from silhouettes. IRCPR ’'04: Proceedings of the Pattern Recognition, 17th
International Conference on (ICPR’04) Volumegdages 116-119, Washington, DC,
USA, 2004. IEEE Computer Society.

[123] Sudipta N. Sinha and Marc Pollefeys. Visual-hull restouction from uncalibrated and
unsynchronized video streandpvt 0:349-356, 2004.

[124] Sudipta N. Sinha and Marc Pollefeys. Multi-view restraction using photo-
consistency and exact silhouette constraints: A maximom-formulation. InProc.
of ICCV, pages 349-356, Beijing, China, October 2005.

[125] Sudipta N. Sinha, Marc Pollefeys, and Leonard McMill&amera network calibration
from dynamic silhouettevpr, 01:195-202, 2004.

[126] Sudipta N. Sinha, Drew Steedly, Richard Szeliski, Ekesh Agrawala, and Marc Polle-
feys. Interactive 3d architectural modeling from unordepéoto collections. 1151G-
GRAPH Asia '08: ACM SIGGRAPH Asia 2008 papgrages 1-10, New York, NY,
USA, 2008. ACM.

[127] Gregory G. Slabaugh, W. Bruce Culbertson, Thomas Maider, Mark R. Stevens,
and Ronald W. Schafer. Methods for volumetric reconstoumctif visual scenednt. J.
Comput. Vision57(3):179-199, 2004.

[128] Noah Snavely, Steven M. Seitz, and Richard Szeliskot® tourism: Exploring photo
collections in 3d. INSIGGRAPH Conference Proceedingages 835-846, New York,
NY, USA, 2006. ACM Press.

[129] D. Snow, P. Viola, and R. Zabih. Exact voxel occupanathwraph cuts. INCVPR
pages 345-353, 2000.

[130] Mario Sormann, Christopher Zach, Joachim Bauer, KdnF. Karner, and Horst
Bischof. Watertight multi-view reconstruction based oruwoetric graph-cuts. In
SCIA volume 4522 ofLecture Notes in Computer Sciengages 393-402. Springer,
2007.

175



[131] Jonathan Starck and Adrian Hilton. Surface capturgp@&formance-based animation.
IEEE Computer Graphics and Applicatigrs/(3):21-31, 2007.

[132] Chris Stauffer and W.E.L. Grimson. Adaptive backgrdunixture models for real-time
tracking. Computer Vision and Pattern Recognition, IEEE Computeiedpconfer-
ence on2:2246, 1999.

[133] Christoph Strecha, Rik Fransens, and Luc J. Van Goami@ned depth and outlier
estimation in multi-view stereo. IBVPR (2) pages 2394-2401, 2006.

[134] P. Sturm and B. Triggs. A factorization based algontfor multi-image projec-
tive structure and motion. IECCV, pages 709-20, Cambridge, England, apr 1996.
Springer-Verlag.

[135] P.F. Sturm and S.J. Maybank. On plane-based camebaatain: A general algorithm,
singularities, applications. IBVPR pages |: 432-437, 1999.

[136] Steve Sullivan and Jean Ponce. Automatic model coctsbn and pose estimation
from photographs using triangular splinedksEE Trans. Pattern Anal. Mach. Intell.
20(10):1091-1097, 1998.

[137] Tomas Svoboda, Daniel Martinec, and Tomas Pajéllaonvenient multi-camera self-
calibration for virtual environment?RESENCE: Teleoperators and Virtual Environ-
ments 14(4):407-422, August 2005.

[138] Richard Szeliski. Rapid octree construction from geasequencesCVGIP: Image
Underst, 58(1):23—-32, 1993.

[139] Richard Szeliski, Ramin Zabih, Daniel Scharsteing@®MNeksler, Vladimir Kol-
mogorov, Aseem Agarwala, Marshall F. Tappen, and CarsteheRoA comparative
study of energy minimization methods for markov random fieloh ECCV (2) pages
16-29, 2006.

[140] S. Tran and L. Davis. 3d surface reconstruction usiraply cuts with surface con-
straints. INECCV, pages 219-231, 2006.

[141] B. Triggs. Factorization methods for projective sture and motion. I'lCVPR San
Francisco, June 1996.

[142] Bill Triggs, Philip McLauchlan, Richard Hartley, ardhdrew Fitzgibbon. Bundle
adjustment — A modern synthesis. In W. Triggs, A. Zissernzem R. Szeliski, edi-
tors,Vision Algorithms: Theory and PracticeNCS, pages 298-375. Springer Verlag,
2000.

[143] Roger Y. Tsai. A versatile camera calibration tecleidor high-accuracy 3d machine
vision metrology using off-the-shelf tv cameras and lend®adiometry pages 221—
244, 1992.

176



[144] Sundar Vedula, Simon Baker, Robert Collins, Takeodt# and Peter Rander. Three-
dimensional scene flow. ICCV '99: Proceedings of the International Conference on
Computer Vision-Volume, page 722, Washington, DC, USA, 1999. IEEE Computer
Society.

[145] Luminita A. Vese and Tony F. Chan. A multiphase level fs@mework for image
segmentation using the mumford and shah motigkernational Journal of Computer
Vision, 50(3):271-293, 2002.

[146] VICON. Motion capture software.

[147] B. Vijayakumar, D. J. Kriegman, and J. Ponce. Struetand motion of curved 3d
objects from monocular silhouettes.@YPR '96: Proceedings of the 1996 Conference
on Computer Vision and Pattern Recognition (CVPR ;$)ge 327, Washington, DC,
USA, 1996. IEEE Computer Society.

[148] G. Vogiatzis, P. H. S. Torr, and R. Cipolla. Multi-viestereo via volumetric graph-cuts.
In CVPR '05: Proceedings of the 2005 IEEE Computer Society €&ente on Com-
puter Vision and Pattern Recognition (CVPR’05) - Volumpdages 391-398, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[149] George Vogiatzis, Carlos Hernandez Esteban, PHili§. Torr, and Roberto Cipolla.
Multiview stereo via volumetric graph-cuts and occlusiabust photo-consistency.
IEEE Trans. Pattern Anal. Mach. IntelR9(12):2241-2246, 2007.

[150] J. Vollmer, R. Mencl, , and H. Moller. Improved laplan smoothing of noisy surface
meshes. IlComputer Graphics Forunpvolume 18(3), pages 131-138, 1999.

[151] Y. Wang, K.F. Loe, and J.K. Wu. A dynamic conditionahd@m field model for fore-
ground and shadow segmentati®AMI, 28(2):279-289, February 2006.

[152] K.Y.K. Wong and R. Cipolla. Structure and motion froitheuettes. INCCV, pages
[I: 217-222, 2001.

[153] C. Xu and J. Prince. Gradient vector flow: A new extefioate for snakes. IiPro-
ceedings of Computer Vision and Pattern Recognition (C\AHR pages 66—71. IEEE,
June 1997.

[154] Ruigang Yang, Marc Pollefeys, and Greg Welch. Dealwith textureless regions
and specular highlights-a progressive space carving sshesimng a novel photo-
consistency measure. I6CV '03: Proceedings of the Ninth IEEE International Con-
ference on Computer Visippage 576, Washington, DC, USA, 2003. IEEE Computer
Society.

[155] Jonathan S. Yedidia, William T. Freeman, and Yair WeiSeneralized belief propaga-
tion. INnNIPS pages 689-695, 2000.

177



[156] Anthony J. Yezzi and Stefano Soatto. Structure fromiomofor scenes without fea-
tures. INCVPR (1) pages 525-532, 2003.

[157] Tianli Yu, Narendra Ahuja, and Wei-Chao Chen. Sdg @d:reconstruction of non-
lambertian objects using graph cuts on surface distandelgrCVPR (2) pages 2269—
2276, 2006.

[158] Christopher Zach, Thomas Pock, and Horst Bischof. dbglly optimal algorithm for
robust tv-11 range image integration. IGCV, pages 1-8, 2007.

[159] Gang Zeng, Sylvain Paris, Long Quan, and Franoisdailli Accurate and scalable
surface representation and reconstruction from imati&ISE Transactions on Pattern
Analysis and Machine Intelligenc29(1):141-158, 2007.

[160] Li Zhang, Brian Curless, and Steven M. Seitz. Spacetitereo: Shape recovery for
dynamic scenesvpr, 02:367, 2003.

[161] Zhengyou Zhang. Determining the epipolar geometny iés uncertainty: A review.
International Journal of Computer Visigp27(2):161-195, March 1998.

[162] Zhengyou Zhang. A flexible new technique for camer#cation.|[EEE Trans. Pattern
Anal. Mach. Intell, 22(11):1330-1334, 2000.

178



