
Managing the Effect of Delay Jitter
on the Display of Live Continuous Media

Donald L. Stone

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill

1995

Approved by:

______________________________ Advisor

______________________________ Reader

______________________________ Reader

 1995

Donald L. Stone

All Rights Reserved

ii

DONALD L. STONE. Managing the Effect of Delay Jitter on the Display of Live

Continuous Media (under the direction of Kevin Jeffay).

ABSTRACT

This dissertation addresses the problem of displaying live continuous media (e.g., digital

audio and video) with low latency in the presence of delay jitter, where delay jitter is

defined as variation in processing and transmission delay. Display in the presence of delay

jitter requires a tradeoff between two goals: displaying frames with low latency and

displaying every frame. Applications must choose a display latency that balances these

goals.

The driving problem for my work is workstation-based videoconferencing using

conventional data networks. I propose a two-part approach. First, delay jitter at the

source and destination should be controlled, leaving network transmission as the only

uncontrolled source. Second, the remaining delay jitter should be accommodated by

dynamically adjusting display latency in response to observed delay jitter. My thesis is that

this approach is sufficient to support the low-latency display of continuous media

transmitted over building-sized networks.

Delay jitter at the source and destination is controlled by implementing the application as a

real-time system. The key problem addressed is that of showing that frames are processed

with bounded delay. The analysis framework required to demonstrate this property

includes a new formal model of real-time systems and a set of techniques for representing

continuous media applications in the model.

The remaining delay jitter is accommodated using a new policy called queue monitoring

that manages the queue of frames waiting to be displayed. This policy adapts to delay

jitter by increasing display latency in response to long delays and by decreasing display

iii

latency when the length of the display queue remains stable over a long interval. The

policy is evaluated with an empirical study in which the application was executed in a

variety of network environments. The study shows that queue monitoring performs better

than a policy that statically chooses a display latency or an adaptive policy that simply

increases display latency to accommodate the longest observed delay. Overall, the study

shows that my approach results in good quality display of continuous media transmitted

over building-sized networks that do not support communication with bounded delay

jitter.

iv

ACKNOWLEDGMENTS

First, I must thank my advisor, Kevin Jeffay. His guidance, advice, and patience made the

most significant contribution to my success in graduate school. In addition, his friendship

made the experience particularly rewarding.

Thanks as well to F. Don Smith whose help was extremely valuable. In addition to

serving on my committee, he helped to obtain funding and equipment, participated in the

initial design and implementation of the system, and conducted the experiments performed

on the IBM network.

Thanks to all the students, staff, and faculty of the Computer Science Department. In

particular, thanks to the other members of my committee, Don Stanat, Jim Anderson, and

Jan Prins, and to the other members of the DIRT project, past and present. One of my

greatest rewards in graduate school has been the set of wonderful personal and

professional relationships I have developed over the years.

Thanks to the IBM and Intel Corporations for their generous support in fellowships,

money, and equipment. Thanks also to the alumni of the Computer Science Department

whose generous contributions made the Alumni Fellowship possible.

Thanks to Dean Smith and the 1990-1995 Tar Heel basketball teams.

Thanks particularly to my wife Claire whose love and support have been more important

to me than she can know. Of the many wonderful things I did during my time in graduate

school, meeting and marrying her was the most wonderful.

Most of all, thanks to my father. Throughout my life, he has taught and inspired me, not

least by imparting to me his love for Computer Science. Thus, it is altogether fitting that

my dissertation work, like all the important things in my life, be dedicated to him.

v

TABLE OF CONTENTS

Page

Chapter I Introduction...1
1.1 Continuous Media..1

1.2 Delay Jitter...3

1.3 Research Approach and Contributions..5

1.4 Related Work...7

1.5 Dissertation Overview..13

Chapter II System Description...15
2.1 Introduction ... 15

2.2 Overview of the Application...16

2.3 Hardware Interrupts ...17

2.4 YARTOS...18

2.5 Acquisition-Side Processing...25

2.6 Summary and Discussion..47

Chapter III Feasibility Analysis of YARTOS Task Systems.......................49
3.1 Introduction ... 49

3.2 System Model..51

3.3 The Effect of Interrupt Handlers...54

3.4 EDF/DDM Scheduling Discipline... 57

3.5 Feasibility Conditions...60

3.6 Feasibility Test...65

3.7 Summary..70

Chapter IV Feasibility Analysis of the Acquisition-Side.............................71
4.1 Introduction ... 71

4.2 Modeling Hardware Interrupts..72

4.3 Reasoning about Request-Response Interrupts...74

4.4 Determining the Minimum Interarrival Time of Application Tasks................80

4.5 Feasibility of the Application..85

4.6 Summary.. 101

vi

Chapter V Analysis of the Delay Bound..102
5.1 Introduction ... 102

5.2 Overview of Real-Time Logic... 103

5.3 Basic Concepts... 105

5.4 Correctness Conditions... 109

5.5 Basic Axioms and Theorems... 111

5.6 Task Descriptions... 119

5.7 Bounded Delay Theorem.. 128

5.8 A Note on the Lower Bound .. 163

5.9 Discussion.. 164

Chapter VI Policies for Managing Delay Jitter...166
6.1 Introduction ... 166

6.2 Effect of Delay Jitter.. 167

6.3 Queue Monitoring.. 171

6.4 Summary.. 174

Chapter VII Evaluation of Delay Jitter Management Policies...................175
7.1 Introduction ... 175

7.2 Description of the Study... 176

7.3 Evaluating Delay Jitter Management Policies.. 181

7.4 Comparison of Queue Monitoring to the I- and E- Policies......................... 185

7.5 Effect of the Threshold Parameter.. 190

7.6 Discussion and Summary.. 196

Chapter VIII Conclusions and Contributions...198
8.1 Thesis Summary... 198

8.2 Conclusions.. 200

8.3 Contributions... 200

8.4 Future Work... 201

References ..205

vii

LIST OF FIGURES

Page

Figure 1-1: A Pipeline View of Continuous Media Processing...2

Figure 1-2: Hardware Environment...6

Figure 2-1: Table of Hardware Interrupts..18

Figure 2-2: Interrupt Handler Declarations..19

Figure 2-3: Application Task Declarations..19

Figure 2-4: YARTOS System Calls...21

Figure 2-5: Architecture of Example YARTOS Application..22

Figure 2-6: Example YARTOS Application..23

Figure 2-7: Audio and Video Buffers..27

Figure 2-8: Memory Management Calls..27

Figure 2-9: Audio and Video Operations...27

Figure 2-10: Operations on Queues...27

Figure 2-11: Network Transmission Declarations..28

Figure 2-12: Global Variable Declarations...28

Figure 2-13: High-Level Architecture...29

Figure 2-14: High Level View of the Video Process..31

Figure 2-15: Digitization Process..32

Figure 2-16: High Level View of the Audio Process..33

Figure 2-17: High Level View of the Transport Process..34

Figure 2-18: Fragment of the Video Process... 36

Figure 2-19: Video Fragment Divided Into Tasks..36

Figure 2-20: Software Architecture of the Acquisition-Side..38

Figure 2-21: Pseudo Code for VBI Task...41

Figure 2-22: Pseudo Code for VBI1 Task...42

Figure 2-23: Pseudo Code for VBI0 Task...43

Figure 2-24: Pseudo Code for CC Task ..43

Figure 2-25: Pseudo-Code for Audio Task..44

Figure 2-26: Pseudo-Code for Initiate_Send Task...45

Figure 2-27: Pseudo-Code for Transmit_Complete Task...46

Figure 4-1: Successive Executions of the Audio Task...73

Figure 4-2: Interval Between Odd/Even Pairs of Audio Tasks.......................................74

Figure 4-3: Minimum Interarrival Time of Application Task Invocations.......................81

viii

Figure 4-4: An Alternative View of the Acquisition-Side Architecture...........................86

Figure 4-5: Execution Costs..87

Figure 4-6: Summary of Interrupt Handlers...95

Figure 4-7: Summary of Application Tasks...95

Figure 4-8: Formal Definitions of the Interrupt Handlers...96

Figure 4-9: Formal Definitions of the Application Tasks..96

Figure 4-10: Formal Definitions of the Resources..97

Figure 4-11: Graph of Condition 1..98

Figure 4-12: Graph of Condition 2 for Vbi0 Task..99

Figure 4-13: Graph of Condition 2 for Initiate Send Task..99

Figure 4-14: Graph of Condition 2 for Packet Transfer Task...99

Figure 4-15: Graph of Condition 2 for Transmit Complete Task.................................. 100

Figure 4-16: Graph of Condition 2 for User Tick Task.. 100

Figure 4-17: Condition 2 for Keyboard Check Task.. 100

Figure 4-18: Graph of Condition 2 for Screen Output Task... 101

Figure 5-1: Symbolic Constants.. 105

Figure 5-2: Relationships Among Symbolic Constants... 106

Figure 5-3: Task Actions.. 106

Figure 5-4: Subtask Actions.. 106

Figure 5-5: Message Actions... 107

Figure 5-6: Queuing Actions... 107

Figure 5-7: Memory Management Actions.. 107

Figure 5-8: Video Frame Processing Actions.. 108

Figure 5-9: External Events.. 108

Figure 5-10: Correctness Conditions for a Video Frame.. 111

Figure 5-11: Actions Performed in Mutual Exclusion.. 116

Figure 5-12: At-Most-Once Actions... 117

Figure 5-13: Main Theorem.. 129

Figure 5-14: Summary of Axioms and Theorems... 131

Figure 6-1: I-Policy and E-Policy with Persistent Delay Jitter...................................... 168

Figure 6-2: I-Policy and E-Policy with Occasional Delay Jitter.................................... 170

Figure 6-3: Queue Monitoring Procedure.. 173

Figure 7-1: Basic Data (UNC Network).. 178

Figure 7-2: Distribution of End-to-End Delay Jitter (UNC Network).......................... 178

Figure 7-3: Basic Data (IBM-RTP Floor)... 180

ix

Figure 7-4: Distribution of End-to-End Delay Jitter (IBM-RTP Floor)........................ 180

Figure 7-5: Basic Data (IBM-RTP Campus)... 181

Figure 7-6: Distribution of End-to-End Delay Jitter (IBM-RTP Campus).................... 181

Figure 7-7: Comparison of I, E, and QM Policies (UNC Network).............................. 187

Figure 7-8: Comparison of I, E, and QM Policies (IBM-RTP Floor)........................... 188

Figure 7-9: Comparison of I, E, and QM Policies (IBM-RTP Campus)....................... 189

Figure 7-10: QM Policies with Varying Thresholds (UNC Network)........................... 191

Figure 7-11: QM Policies with Varying Thresholds (IBM-RTP Floor)........................ 192

Figure 7-12: QM Policies with Varying Thresholds (IBM-RTP Campus).................... 192

Figure 7-13: QM Policies with Multiple Thresholds (UNC Network).......................... 194

Figure 7-14: QM Policies with Multiple Thresholds (IBM-RTP Floor)........................ 195

Figure 7-15: QM Policies with Multiple Thresholds (IBM-RTP Campus).................... 196

x

LIST OF SYMBOLS

τ A real-time task system.

I i An interrupt handler.

Ti An application task.

Ri A resource.

ei Cost of interrupt handler I i.

ai Minimum interarrival time of interrupt handler I i.

ci Cost of application task Ti.

Ui Set of resources used by application task Ti.

di Relative deadline of application task Ti.

pi Minimum interarrival time of application task Ti.

Di Minimum relative deadline among tasks that share a resource with Ti.

f(l) Upper bound on time spent executing interrupt handlers in an interval of length l.

δi(l) Upper bound on number of invocations of Ti occurring in [t, t+l]
Ψτ Achievable processor utilization of a task set τ.

Bτ Max. value for which condition 1 of the feasibility conditions must be checked.

αi Lower bound on the response time of a request for interrupt I i.

ωi Upper bound on the response time of a request for interrupt I i.

MPI Set of interrupt handlers with priority greater than that of I.

BI Blocking term for I.

EI Upper bound on time required to complete execution of I.

kernel Upper bound on the length of an interval executed with interrupts disabled

overloadI Maximum cost among tasks overloaded with I.

xi

Chapter I
Introduction

1.1 Continuous Media

The wide availability of powerful graphics workstations and low-cost digital audio and

video technology has led to the development of multimedia applications that integrate

audio and video with graphics and traditional data. This integration allows application

developers to create revolutionary new tools. However, applications that include digital

audio and video data require services not usually found in traditional workstation

operating systems. Furthermore, multimedia applications that execute in distributed

environments require services not usually provided by traditional networks.

The need for new operating system and network services to support audio and video

arises from the continuous nature of these media. Consider video. A real-world scene

changes continuously. A digital video camera captures the scene by rapidly acquiring still

images called frames at a constant rate referred to as the frame rate. If frames are

acquired at a sufficiently high rate and at regular intervals, and if these frames are

displayed at the same rate, then a viewer is presented with the illusion of a continuously

changing scene. Digital audio works on a similar principle: sounds are sampled at a very

high rate at regular intervals and the samples are played back at the same rate. Media that

are acquired and displayed at fixed high rates are known as continuous media (CM).

Applications that display CM data must adhere to several timing constraints. First, frames

must be displayed at precise intervals. As an example, consider the display of video

acquired at the rate of 30 frames a second. To give the illusion of smooth motion, each

frame must be displayed for exactly 1/30th of a second. To satisfy this requirement, an

application must be able to execute the operations necessary to display frames so as to

guarantee that new frames are displayed at specific times. Similar timing constraints exist

for the operations that acquire video frames.

A second timing constraint arises when CM applications are used for interactive

communication (e.g., a videoconference between geographically separated users). In such

cases, the CM data is referred to as live continuous media. A key measure of the

performance of applications that support live CM is display latency. The display latency

of live CM data is defined as the elapsed time from acquisition of the data at a source on

one workstation to display of the data at a second workstation. Effective communication

between users is hampered when display latency is high (e.g., consider the effect of delay

in a phone conversation conducted over a satellite link). The timing constraint on CM

applications with distributed users is that the display latency must be small enough that the

round-trip delay in the users’ communication is acceptable.

To meet these timing constraints, a CM application must rely on adequate performance

from the underlying network and operating system. Two of the most important

performance parameters are bounds on end-to-end delay and end-to-end delay jitter. To

motivate these terms, it is useful to view the process of generating and displaying live CM

data as a distributed pipeline. Each frame is generated, undergoes some intermediate

processing (e.g., video frames may be compressed), is transmitted over the network,

undergoes more intermediate processing, and is displayed.

Display

Display
Queue

Transmission

Compression

Digitization

Acquisition Side Display Side

Network
Decompression

Reception

Figure 1-1: A Pipeline View of Continuous Media Processing

Figure 1-1 illustrates this pipeline. Of particular interest is the buffer placed immediately

before the display stage of the pipeline. This buffer is referred to as the display queue and

2

is implemented as a queue of individual buffers each of which can hold a single frame. It is

necessary for two reasons. First, since frames are generated at one workstation and

displayed at another, the processes that generate and display frames are presumably not

synchronized. Thus, buffering must exist somewhere in the pipeline to hold frames

waiting to be synchronized with the display process. More importantly, unless each stage

of the pipeline processes each frame with constant delay, the time required for individual

frames to move through the pipeline will vary. Since the display process displays new

frames at a fixed rate, variation in the arrival of frames at the display process must be

“smoothed out” with buffering. In the idealized pipeline shown in Figure 1-1, the display

queue provides any buffering required for frames to synchronize with the display process.

The end-to-end delay of a CM frame is defined as the elapsed time between the generation

of the frame and its arrival at the display queue. End-to-end delay jitter is a measure of

the variability in end-to-end delay of frames.

1.2 Delay Jitter

An application that displays live continuous media must address several problems that

arise because the end-to-end delays experienced by individual frames can vary. Consider

video frames in the pipeline illustrated in Figure 1-1. Initially, frames enter the pipeline at

regular intervals of approximately 33 ms. If the delay experienced by each frame at the

first stage is constant, then arrivals at the next stage in the pipeline will also occur at

regular intervals. However, when the delay at a stage can vary, frames will arrive at the

next stage irregularly. As a result, several frames may arrive at the next stage in rapid

succession (e.g., several frames arrive at the network interface of the display workstation

in a short interval); this is called a burst. Because resources such as available processor

time and buffer space may be limited, the arrival of a burst can result in loss of frames.

Another problem resulting from delay jitter is that it becomes difficult for an application to

display frames “smoothly”. Ideally, an application should display each continuous media

frame immediately after its predecessor (i.e., frame N+1 should be displayed immediately

after frame N). However, if the end-to-end delays experienced by frames vary, then this is

not always possible. For example, consider a case where a frame incurs a particularly long

end-to-end delay. As a result, the frame may not be available when the display of the

preceding frame is complete and the application will be unable to display the new frame.

3

Such an event is called a gap in the display. In the application illustrated in Figure 1-1, a

gap occurs whenever the display queue is empty when the display of a frame completes.

Delay jitter can also lead to increases in display latency. To understand why, it is

instructive to consider the display queue in Figure 1-1 from the perspective of queuing

theory. Assuming no loss, frames arrive at the display queue at an average rate equal to

the rate at which frames are generated (i.e., the frame rate). However, because delays

experienced by frames in the pipeline can vary, the interarrival time can vary. Thus, the

arrival process at the display queue has a general distribution with a mean equal to the

frame rate. On the other hand, frames are removed from the display queue (to be played)

at periodic intervals defined by the frame rate. Thus the service process for the display

queue is deterministic with a mean equal to the frame rate. Queuing theory tells us that,

unless the arrival process is deterministic, this queue is unstable. That is, if the end-to-end

delays experienced by frames can vary, and if all frames are assumed to arrive, then the

length of the display queue can grow without bound. The implication of this observation

for applications that display continuous media is that if frames are reliably delivered, then

in the presence of unbounded delay jitter the display queue will grow longer over time. As

a result, frames will wait longer in the display queue, and thus display latency will grow

over time.

Overall, the effect of delay jitter on the display of continuous media frames can be broken

into three potential problems:

• Bursts cause loss of frames.

• Large variation in end-to-end delay causes gaps.

• Growth of the display queue causes high display latency.

Furthermore, under the natural assumption that small variations in delay are more common

than large variations in delay, there is a tradeoff between minimizing display latency and

minimizing gap frequency. The tradeoff results from the fact that the shorter the display

queue, and thus the lower the display latency, the higher the probability of encountering an

end-to-end delay sufficient to cause a gap.

4

1.3 Research Approach and Contributions

The goal of my research is an understanding of the fundamental principles governing the

processing and display of continuous media in the presence of delay jitter encountered in

distributed systems. My approach to this research is to address a particular driving

problem: how to support workstation-based videoconferencing applications (i.e.,

applications that acquire, transmit, and display live audio and video data) in an

environment consisting of today’s personal workstations, today’s commercially available

audio/video hardware, and today’s networks (e.g., Ethernets, token rings, etc.). There are

four principal reasons for studying this problem. First, there is commercial demand for

workstation-based videoconferencing systems based on commonly available hardware.

Second, while long-haul network providers may soon support communication services

with low delay and low delay jitter, today’s installed network base will likely continue to

be used to support communication within buildings. Third, solutions to the problems of

supporting live audio and video data can be applied to a larger class of continuous media

data types (e.g., moving images generated for display in virtual reality applications).

Finally, solutions for today’s environment can be used to evaluate the costs and benefits of

specialized services for audio and video that will appear in next generation workstations,

audio/video hardware, and networks.

For the purposes of this dissertation, I have imposed two additional constraints on the

driving problem. First, I will only address solutions based on end-to-end network

transport protocols (i.e., the network is treated as a “black box”). This constraint arises

from the observation that for the foreseeable future, it is desirable that audio and video

capable workstations can operate without requiring changes to existing network

infrastructure (including the software at gateways and bridges). The second constraint is

that I will only address transport protocols that operate without feedback from the

destination to the source. Such protocols are desirable if audio and video data are

broadcast to many destinations from a single source.

To address the driving problem, I have constructed a CM application that acquires video

data from a camera attached to a workstation, transmits it over a network, and displays it

on the monitor of a second workstation. In addition, the application also acquires audio

data from a microphone attached to the first workstation and plays it on speakers attached

to the second workstation. The workstations are 66 MHz IBM PS/2 personal computers

based on the Intel 486 microprocessor. Each workstation is outfitted with IBM-Intel

5

ActionMedia 750 adapters for acquiring, compressing, decompressing, and displaying

audio and video. In addition, each workstation contains an IBM 16/4 Token Ring or an

IBM Ethernet adapter. The workstations are connected through a campus-sized network,

defined as an internetwork consisting of several local-area networks connected by bridges

and routers. The primary hardware environment is illustrated in Figure 1-2.

Because processing and network transmission delays in this environment can vary, a key

question that must be addressed is how can the effect of delay jitter on the display of live

audio and video be minimized? I propose a two part approach to address this question.

IBM PS/2

ActionMedia I
Capture Adapter

Token Ring
Adapter

66 MHz 486

RS6000
Workstation

Wellfleet
Bridge

Token Ring
Adapter

IBM PS/2

ActionMedia I
Display Adapter

66 MHz 486

RS6000
Workstation

EthernetEthernet

T1

Token
Ring

(16 Mb)

Token
Ring

(16 Mb)

Figure 1-2: Hardware Environment

First, I bound delay jitter at the source and destination workstations; thus under my

assumption that the network is a black box, I bound that portion of delay jitter that I can

control. This is achieved by designing, analyzing, and implementing the software as a real-

time system with strict performance requirements. As a result, I can show that end-to-end

delay and end-to-end delay jitter, excepting those delays due to network transmission, are

tightly bounded. The second part of my approach is to use adaptive best-effort techniques

to account for delay jitter in the network. Network delay jitter is accounted for by

6

managing the display queue with a policy called queue monitoring that dynamically adjusts

display latency to accommodate observed delay jitter. Thus, the thesis of this dissertation

is that:

The variation in delays encountered when transmitting continuous media

over a campus-sized network is large enough that it must be explicitly

addressed in the design of distributed live continuous media applications.

A sufficient approach is to combine real-time design, analysis, and

implementation techniques to control delay jitter in end-systems with best-

effort techniques for managing the effect of delay jitter in the network.

This dissertation will make contributions in several areas. In the area of real-time systems,

it will expand the toolkit of scheduling theory and analysis techniques available to the

designers of hard-real-time systems and provide a case-study of the design, analysis, and

implementation of a significant real-time system. In the area of network and operating

system support for continuous media, the dissertation will introduce and evaluate a policy

for ameliorating the effect of delay jitter on the display of continuous media frames,

provide data on the delay jitter that is experienced by continuous media data in campus-

sized networks, and provide a case study of the design of a continuous media application

in an environment consisting of today’s personal workstations, today’s commercially

available audio/video hardware, and today’s networks.

1.4 Related Work

A number of products and research efforts in both industry and academia have addressed

the problem of supporting continuous media applications in the presence of delay jitter.

Approaches to the problem can be broken into two categories: those that reduce or

eliminate delay jitter and those that accommodate delay jitter. Approaches to reducing or

eliminating delay jitter can be further divided into those approaches that reduce delay jitter

on the network, and those that reduce delay jitter at the endpoint workstations. All of

these approaches are complementary; if delay jitter can be bounded or eliminated in any

stage of the processing of continuous media frames, then it becomes easier to

accommodate the remaining delay jitter. In this section, I describe a number of products

and research efforts that have used one or more of these approaches.

7

1.4.1 Approaches that Reduce Delay Jitter in the Network

Ideally, the network used by a distributed continuous media application would provide

transmission with a guarantee of low delay and low delay jitter. Ferrari gives a good

overview of general requirements for real-time communication services including

transmission of continuous media [6,7]. Among these requirements are bounds on delay

and delay jitter. Ferrari describes two useful classes of such bounds: a deterministic

bound is a guarantee that delay (or delay jitter) will be less than the bound, while a

statistical bound is a guarantee that the probability that delay (or delay jitter) will exceed

some threshold is less than the bound. In addition, he proposes a general scheme for

implementing bounds on delay jitter [8]. Such bounds are among those commonly

referred to as Quality of Service (QOS) guarantees. A good survey of networks and

protocols for supporting general QOS guarantees is given in [5]. Here, I will highlight a

few of these networks and protocols that support QOS guarantees on delay and delay

jitter.

A straightforward way of supporting guarantees on delay and delay jitter is to use a

dedicated transmission line (e.g., a T1 connection). This is the approach that has been

used in a number of room-based videoconferencing systems. A similar but less expensive

approach is to use ISDN services that provide low delay and low delay jitter at a lower

bandwidth than dedicated lines. Intel’s ProShare is an example of a commercial

workstation-based videoconferencing product based on ISDN [19].

Next generation high-bandwidth network technologies such as ATM (Asynchronous

Transfer Mode) [35,30] and FDDI (Fiber Distributed Data Interface) [43,29] have been

explicitly designed to support the transmission of high-bandwidth, fixed-rate data such as

continuous media with QOS guarantees alongside traditional data types with bursty

transmission rates. The Pandora system is an example of a system that supports

continuous media using an ATM network [28,16].

Work has also been done on the problem of supporting QOS guarantees using networks

that were not originally designed to support such guarantees. This work has generally

been based on the principle of resource reservation. In this approach, applications that

wish to transmit data over the network specify the traffic they wish to send, and their

desired QOS guarantees, and the network responds by reserving sufficient processor

capacity, buffer space, etc., at each hop in the network to ensure that the application

receives the desired service. A good discussion of principles used in this approach and an

8

example of protocols that embody this approach is given in an overview of the Tenet

project [7].

Another project that has used resource reservation extensively is the DASH project from

Berkeley [1]. The early work on this project included both formal and systems

components. The formal aspect of the project was the definition of the DASH Resource

Model to describe the resources required by applications that support continuous media.

In this model, every device and software component that handles CM is considered a

resource. To manage the network resources, the DASH project developed the Session

Reservation Protocol (SRP). SRP operates by allowing applications to reserve capacity at

each host in an IP internetwork, and then use standard IP protocols to transmit data [2].

Another protocol based on resource reservation for adding QOS guarantees to IP

networks is the ST-II protocol [52]. An implementation of this protocol for Token Ring

networks was developed by researchers at the IBM European Networking Center as the

foundation of the Heidelberg Transport System (HeiTS), an end-to-end communication

system for continuous media data as well as traditional data [13,14,15].

1.4.2 Approaches that Reduce Delay Jitter at the Endpoint Workstations

In traditional workstation operating systems such as Unix, processes can experience a

wide range of delays. If processes are used to generate, process, or display continuous

media frames, then those frames will experience a high level of delay jitter at the endpoint

workstations. Thus, workstation operating systems such as Unix do not provide a good

base for building continuous media applications. For example, in his description of a

virtual reality system that displays images in a head-mounted display, Azuma notes that

the variable delays experienced by processes running under Unix lead to unacceptably

large errors in the correspondence between objects in the virtual world and objects in the

real world [3].

One approach that has been used to address the problems encountered when using

traditional workstation operating systems to support continuous media is to implement

critical continuous media functions with high-priority processes. This is the approach used

by the HeiTS project in which continuous media applications were implemented using

high-priority threads on PS/2 workstations running OS/2 [33].

9

However, in [38], Nieh, et al. show that the addition of a “real-time class” of processes in

Unix SVR4 (i.e., a class of processes that execute with higher priority than any other

processes) is not sufficient to allow continuous media applications to effectively coexist

with other applications. In particular, graphical user interfaces and other applications that

require quick response time do not perform well in the presence of a continuous media

application executing at high priority.

Other approaches have attempted to integrate real-time processes more carefully into

workstation operating systems. In [9], Fisher describes experiences with a set of

modifications to the Unix kernel to support better response times for processes in a real-

time class. The ARTs project has used an extension of the Mach workstation operating

system, Real-Time Mach, as the basis of techniques for ensuring that real-time processes

receive guaranteed service [34,51].

The DASH kernel was designed and implemented as a testbed for experimenting with

operating system mechanisms and policies specially tailored to the requirements of

continuous media. This kernel allows applications to specify their resource requirements

using the DASH resource model. In return, the kernel schedules processes in order to

meet the requested QOS guarantees. Specialized implementations of interprocess

communication and virtual memory supporting the sharing of CM between processes are

also integrated into the DASH kernel [1,10].

An alternate approach that can reduce or eliminate delay jitter at endpoint workstations is

the use of special-purpose devices. This was the approach adopted in the Etherphone

project at Xerox PARC; basic audio acquisition and playout was provided by special-

purpose telephones that digitized, packetized, and transmitted audio data directly onto an

Ethernet [50]. Another example of this approach is provided by the Pandora project in

which a special purpose device attached directly to the network handles audio and video

processing [16,28].

1.4.3 Approaches that Accommodate Delay Jitter

If it is not possible to eliminate delay jitter, or if it is too expensive to eliminate delay jitter,

then applications will need to accommodate delay jitter when displaying continuous media

frames. Applications accommodate delay jitter by choosing a target display latency large

enough that most frames arrive in time to be played, and by attempting to play each frame

at that latency. Three issues must be addressed: how does an application estimate the

10

end-to-end delay experienced by a frame, how does an application choose a target display

latency, and at what points should an application choose a new target display latency?

In order to display frames at a target display latency, an application must be able to

estimate the end-to-end delay experienced by each frame. Montgomery describes several

approaches to this problem [36]. If the clocks at the sender and receiver are synchronized,

then the delay experienced by a frame can be determined through the use of timestamps;

Montgomery calls this absolute delay. If the clocks are not synchronized, then the delay

experienced by a frame can be estimated using one of several approaches that are similar

to clock synchronization protocols. In each of these approaches, the estimate of the end-

to-end delay experienced by a frame is used to determine the time the frame should be held

in the display queue before it is played. For example, assume that the target display

latency is D, and a frame arrives at the receiver at time t with a delay estimated to be d. If

d ≤ D, then the frame is played at time t+D-d. Otherwise, the frame is late and must either

be discarded, or played at a latency higher than the target display latency.

Alternately, a conservative assumption can be used in place of an accurate estimate of end-

to-end delay. In this approach, which Montgomery calls blind delay, the receiver assumes

that the first received frame experienced minimum possible delay and delays the display of

the frame accordingly (e.g., if the minimum possible end-to-end delay is assumed to be d,

the target display latency is D, and the first frame arrives at time t, then the receiver plays

the first frame at time t+D-d). Then, each successive frame is displayed immediately after

its predecessor (i.e., with the same display latency as the first frame).

The Internet Engineering Task Force (the IETF) has used Montgomery’s classification of

delay estimation techniques in their work on practical solutions to the problems of

supporting continuous media in the Internet. In [45], Schulzerinne includes a discussion

of these techniques in his discussion of the requirements for RTP (the Real-Time

Transport Protocol), the IETF’s transport protocol for continuous media [46]. Because it

results in the smallest error in the estimate of delay, Schulzerinne recommends the use of

absolute delay. Nevertheless, in environments in which it is undesirable (or impossible) to

synchronize clocks, blind delay is a useful technique.

The problems of choosing a target display latency and determining when to choose a new

target have been studied primarily in the context of applications that support audio. In

many of these applications, audio is modeled as of a sequence of “talkspurts” (some

period of time in which audio data must be acquired, transmitted and played) separated by

11

“silent periods” (some period of time in which there is no significant audio activity, so

audio need not be acquired or played). In [37], Naylor and Kleinrock proposed that a

display latency be chosen at the beginning of each talkspurt by observing the transmission

delays of the last m audio fragments, discarding the k largest delays, and choosing the

greatest remaining delay. For their particular model of audio quality, they stated a rule of

thumb for choosing m and k (m > 40 and k = .07*m) that usually resulted in good quality

audio. Nevot provides a more recent example of an application that chooses a new

display latency at the beginning of each talkspurt based on observations of recent delay

jitter [44].

In some sense, the start of a talkspurt provides a convenient opportunity to choose a new

target display latency, since display latency can be changed simply by shortening or

extending the length of a silent period. However, such convenient opportunities do not

necessarily exist for continuous media data types other than audio. Furthermore,

talkspurts in audio data other than speech (e.g., music) may be quite long, resulting in few

opportunities to change display latency. In such a case, another mechanism must be used

to determine when the target display latency should be changed. One example is provided

by the clawback buffer mechanism in the Pandora system [28]; display latency is reduced

when the display queue has contained more than a target amount of audio for a sufficiently

long interval (the clawback buffer is discussed in more detail in Chapter 6).

1.4.4 Summary

In the remainder of the dissertation, I will address the problem of reducing delay jitter at

the endpoint workstations, and the problem of accommodating delay jitter. My approach

to reducing delay jitter at the endpoint workstations is to use a combination of a real-time

operating system and formal modeling and analysis techniques to support the

implementation and performance analysis of continuous media applications. By using a

real-time operating system to support continuous media, I am taking a similar approach to

those used by HeiTS and ARTS; however, in this work I emphasize the formal analysis of

the real-time system to determine hard bounds on the delay and delay jitter experienced by

continuous media. In contrast to DASH which uses mechanisms designed to directly

supporting their formal model of continuous media, I am addressing the use of operating

system mechanisms designed for general real-time systems to support continuous media.

My approach to accommodating delay jitter is to use a generalization of the policy used to

manage clawback buffers in Pandora.

12

I will not, however, address the problem of reducing delay jitter in the network. There are

two reasons. First, guaranteed bounds on delay and delay jitter are not provided by the

network hardware or network protocols that I wish to support. Second, since I am only

addressing end-to-end solutions, I am unable to use a resource reservation approach.

Nevertheless, my approach is complementary to these approaches; anything done to

reduce delay jitter in the network will result in less delay jitter to be accommodated at the

display.

1.5 Dissertation Overview

The centerpiece of this dissertation is a prototype system for acquiring, transmitting and

displaying audio and video. Chapter 2 provides a detailed description of this system. It

begins with a discussion of YARTOS, a real-time operating system kernel that runs on the

acquisition and display workstations (see Figure 1-2) and supports a real-time

programming model in which interrupt handlers, operating system services, and

application code execute to completion before well-defined deadlines. Next, the

programming interface to the audio/video hardware is described. This description includes

pseudo-code for the set of YARTOS tasks used to control the acquisition, compression,

decompression, and display processes. Finally, the programming interface to the network

is described along with the tasks that control the transmission and reception processes.

Chapters 3, 4, and 5 present a performance analysis of the application. The objective in

these chapters is to demonstrate that audio and video frames are processed at the

acquisition and display machines with bounded delay. Because the analysis of audio is

similar to that for video, and the analysis for the display-side is similar to that of the

acquisition-side, I concentrate on showing simply that video frames are acquired and

processed on the acquisition-side with bounded delay.

In Chapter 3, I define an abstract model of real-time systems that is implementable using

the programming model of YARTOS; for this model, I develop conditions that are

sufficient to show that application tasks can be guaranteed to execute prior to application-

defined deadlines. In Chapter 4, these conditions are shown to hold when the acquisition-

side of the application is defined in terms of the abstract model. In Chapter 5, the fact that

each task will always execute prior to its deadline is included as an axiom in an axiomatic

specification of the software and hardware on the acquisition machine; then the fact that

delay at the acquisition machine is bounded is derived from this specification.

13

Chapters 6 and 7 discuss and evaluate best-effort policies for accommodating delay jitter

in the network. Chapter 6 describes several policies for managing delay jitter. Chapter 7

evaluates these policies with an empirical study performed using the prototype system.

Finally, Chapter 8 presents a summary of the dissertation and my conclusions. The real-

time implementation of the system, along with the best-effort mechanisms for

accommodating delay jitter in the network are shown to be sufficient to provide

acceptable display of audio and video data transmitted over campus-sized LANs.

14

Chapter II
System Description

2.1 Introduction

The thesis of this dissertation is that the combination of best-effort techniques for

managing delay jitter in the network with real-time design and implementation techniques

to control delay jitter in end-systems is sufficient to support distributed live continuous

media applications in a building-sized network. To evaluate this thesis, I have constructed

a workstation-based videoconferencing application that acquires audio and video at one

workstation, transfers it over a network, and displays it at a second workstation. The

purpose of this chapter is to describe this application. In particular, the description

includes the implementation details needed to develop the performance analysis of the

acquisition-side of the application described in Chapters 3, 4, and 5.

The design and implementation of the application is based on an operational understanding

of several hardware devices and their associated device drivers. Unfortunately, I do not

have access to documentation for either the hardware interfaces or the source code for the

device drivers used by the application. Instead, I have used several other sources of

information to gain an understanding of the low-level behavior of the hardware and device

drivers. These include clues derived from documentation for user-level libraries [17, 18,

20], information provided by authors of proprietary software [49], and empirical study of

executing applications. Thus, while the descriptions of the hardware interfaces in this

chapter are sufficient for understanding the design and implementation of the application,

they may be incomplete in some details.

Section 2.2 provides a high-level description of the application and the mechanics of

acquiring, transmitting, and displaying audio and video frames. Section 2.3 discusses the

handling of hardware interrupts on PS/2 workstations. Section 2.4 describes YARTOS,

the operating system kernel on which the application executes. Section 2.5 describes the

acquisition-side of the application (i.e., that portion of the application that runs on the

workstation that is connected to the camera and microphone); the process of acquiring

and compressing audio and video frames is described along with the interrupt handlers,

application tasks, and resources that perform this process.

2.2 Overview of the Application

The basic function of the experimental application is to acquire audio and video data at a

workstation, transmit it over a network, and display it at a second workstation. Both sides

of the application run on 66 MHz IBM PS/2 workstations based on the Intel 486

microprocessor. The workstations typically communicate through an internetwork of

ethernet and token ring networks running the IP protocols. Each workstation is

connected to this network through an IBM 16/4 Token Ring adapter (or an IBM Ethernet

adapter). In addition, each workstation is outfitted with IBM-Intel ActionMedia 750

adapters for processing digital audio and video. On the acquisition-side, a set of

ActionMedia adapters connect the workstation to a camera and microphone and produce

digitized audio and video data. On the display-side, another ActionMedia adapter is used

to display digital video on the monitor of the workstation and to play digital audio on

attached speakers.

Video frames in the application are full-color still images acquired at a rate of 30 frames

per second with a resolution of 256x240 pixels. Each frame is processed in several stages.

First, it is acquired and digitized by the ActionMedia hardware. Next, the frame is

compressed by the ActionMedia hardware. After compression, the frame is added to the

queue of frames waiting to be transmitted on the network. Once the frame is at the head

of the queue, it is divided into packets. These packets are then transferred over the

network to the display-side. On arrival, the packets are reassembled into a frame, and the

frame is added to a queue of frames waiting to be decompressed and displayed. At regular

intervals of approximately 33 ms., a frame is removed from this queue and decompressed.

Finally, the frame is displayed.

Audio processing in the application differs from video processing in two ways. First,

audio data is not compressed. Rather, the audio subsystem of the ActionMedia hardware

delivers audio directly to the application at a data rate of 120 Kb per second. Second,

there is no fundamental unit of audio data directly analogous to the video frame. Digitized

audio data is continually written into an internal hardware buffer, and an application may

remove data from this buffer at any time. Nevertheless, in the design of the application, I

have chosen to manipulate audio data in atomic units of 1/60th of a second. For

16

convenience, these atomic units will be called audio frames. Thus, in the application,

audio data consists of frames that are acquired and displayed at regular intervals of 1/60th

of a second.

The stages of processing audio are similar to those for video. First, audio data is acquired

and digitized by the ActionMedia hardware. Next, a frame of audio is read from the

internal audio buffer and added to the queue of audio frames waiting to be transmitted

over the network. The frame is then transferred to the display-side and added to the

queue of audio frames waiting to be displayed. At regular intervals of approximately 16.5

ms., an audio frame is removed from this queue and played.

2.3 Hardware Interrupts

On the PS/2, devices communicate with the CPU using a combination of interrupts, I/O

commands, and memory-mapped I/O. In particular, the CPU communicates with the

ActionMedia and network adapters used by the application by passing data to and from

the adapters with memory-mapped I/O; these adapters signal events to the CPU with

interrupts.

The delivery of interrupts to the CPU is controlled by a pair of Intel 8253 programmable

interrupt controllers. Individual devices are assigned to one of 16 interrupt request lines

(IRQs). When an IRQ is raised, the interrupt controller raises an interrupt on the CPU

according to a set of priority rules. For the mode in which the application uses the

interrupt controller, each IRQ has a static priority. An interrupt is raised only if no IRQ

with a higher priority is currently being serviced. Otherwise, it is delayed until all higher

priority interrupts have been serviced.

In addition to the servicing of a higher-priority interrupt, there are two other reasons why

an interrupt may be delayed. First, there is a flag on the CPU that disables all interrupts.

This flag is used by the YARTOS kernel to enforce critical sections. Second, the 8253

allows an application to mask individual interrupts, a feature used on the display-side by

the handler for token ring adapter interrupts.

17

IRQ number Device Interrupt Handler

IRQ 0 PS/2 timer TIMER

IRQ 9 ActionMedia adapter DVI

IRQ 10 ActionMedia adapter DVI2

IRQ 15 Network adapter NETWORK

Figure 2-1: Table of Hardware Interrupts

During execution of the application, four different hardware interrupts will be

encountered. IRQ0 is raised periodically by an Intel 8259 programmable timer at a rate of

18.2 times per second (i.e., every 55 ms.). IRQ9 and IRQ10 are raised by the

ActionMedia adapters to signal the application that one of several events has occurred.

IRQ15 is raised by the network adapter to signal the application that a network event has

occurred. (The events raised by the ActionMedia and network adapters are detailed in

Section 2.5.) Figure 2-1 lists these interrupts in priority order (highest to lowest) along

with the name of the corresponding interrupt handler.

2.4 YARTOS

Operating system support for the application is provided by an operating system kernel I

have developed called YARTOS (Yet Another Real-Time Operating System). This kernel

was originally developed to provide low-level support for the construction of real-time

systems specified according to a programming discipline called the Real-Time

Producer/Consumer (RTP/C) paradigm [23]. Use of the RTP/C paradigm aids a system

designer in specifying throughput constraints and showing that a real-time system adheres

to these constraints. YARTOS supports the construction of more general real-time

systems with both throughput and response time constraints.

In general, YARTOS is designed to support the construction of systems in which software

executes in response to events generated by processes external to the system (e.g.,

interrupts from hardware devices)1. In particular, it is designed to support systems in

which the time required to respond to an event must be predictable. YARTOS achieves

this goal by providing a programming model that is consistent with a formal model of real-

time systems (developed in Chapter 3). This programming model allows an application

1Such systems are often referred to as reactive systems.

18

developer to express a system design in terms of a formal model that supports the use of

formal techniques to analyze the real-time response of the system.

2.4.1 Programming Model

In a YARTOS application, software is divided into a set of interrupt handlers and a set of

application tasks. Interrupt handlers and application tasks are sequential programs that

execute in response to different kinds of events: interrupt handlers execute in response to

hardware interrupts and application tasks execute in response to messages generated by

interrupt handlers, other application tasks, or YARTOS itself. In all cases, it is assumed

that interrupts or messages will be generated repeatedly, with each resulting in one

complete execution of a corresponding interrupt handler or application task.

handler <name>
interrupt <IRQ>
body

<sequential program>
end body

Figure 2-2: Interrupt Handler Declarations

Before an application may be executed under YARTOS, the set of interrupt handlers and

application tasks must be declared2. The syntax of an interrupt handler declaration is

given in Figure 2-2. There are three components in a declaration: a name, the interrupt

the handler responds to, and the sequential program that should be executed each time the

interrupt occurs.

task <name>
period <time>
deadline <relative deadline>
resources <resource list>
body

<sequential program>
end body

Figure 2-3: Application Task Declarations

2The YARTOS programming model presented here uses an abstract syntax. In the actual implementation
of YARTOS, interrupt handler and application task declarations are records with fields corresponding to
each component of the abstract declaration, and the sequential programs are functions written in the C
language.

19

The syntax of an application task declaration is given in Figure 2-3. There are several

components to this declaration: a name, a relative deadline, a list of resources, and the

sequential program that should be executed each time the application task is invoked. In

addition, the declaration may optionally specify a period at which YARTOS should send

messages to the task. These components of the declaration are discussed in turn.

One component of an application task declaration is a relative deadline. YARTOS is

designed to ensure that each invocation of an application task executes to completion

within an interval beginning at the time the task is invoked and ending at a deadline. The

length of this interval is defined as the relative deadline of the task (e.g., each invocation

of a task with a relative deadline of 10 ms. is supposed to complete execution within 10

ms. after the task is invoked).

Another component of an application task declaration is a list of resources. A resource is

an abstraction provided by YARTOS to allow application tasks to share data.

Syntactically, a resource is simply a symbolic name. The list of resources in the task

declaration is the set of resources “used” by the task. YARTOS guarantees that tasks that

use the same resource are granted mutually exclusive access to that resource. Mutual

exclusion is maintained by prohibiting tasks that share a resource from preempting one

another.

An optional component of an application task declaration is a period. Most application

tasks are invoked when they receive a message sent by an interrupt handler or another

application task using the YARTOS send_message system call. However, if an

application task is declared with a period, the YARTOS kernel periodically sends

messages directly to the task (i.e., if a task is declared with a period of 10 ms., YARTOS

will send a message to the task every 10 ms.).

2.4.2 YARTOS System Calls

YARTOS supports three system calls. Declarations of these calls are given in Figure 2-4.

The first call is create_application . This call takes a set of interrupt handler and

application task declarations as an argument. In response, the YARTOS kernel creates

the interrupt handlers and application tasks and binds the interrupt handlers to the

hardware interrupts.

20

procedure create_application(s: set of declarations)
procedure send_message(t: application_task);
function eventcount(t: task) returns integer;

Figure 2-4: YARTOS System Calls

The next system call is send_message . This call is used by either interrupt handlers or

application tasks to invoke a task. Whenever a message is sent to an application task, the

YARTOS kernel creates a new thread of control in which to execute the task. This

thread, called a task invocation, is assigned a deadline and added to a list of ready tasks.

YARTOS schedules ready task invocations using an Earliest Deadline First (EDF)

discipline (defined in Section 3.4).

Tasks may often wish to perform processing that is conditional on a particular event

having already occurred (e.g., transmit a packet only if the previous transmit has

completed). If a task determines if the event has occurred by checking a flag set by the

task that executes in response to the event, then the evaluation of the conditional will

depend on the order in which tasks are scheduled. To allow tasks to reliably determine if

an event has occurred independent of the order in which tasks are scheduled, YARTOS

provides the eventcount system call. This call returns a count of the number of

requests for execution of the task or handler. This allows a task to determine if an event

has occurred, even though the task that responds to the event may not have executed.

2.4.3 Assigning Relative Deadlines

YARTOS allows an application task declaration to specify an arbitrary relative deadline.

However, it is useful to describe some practical guidelines for choosing these deadlines.

One reason for assigning a particular relative deadline to a task is that it performs

processing that is subject to some external timing constraint (e.g., a device must be

serviced within a short interval). I will refer to relative deadlines imposed by such

constraints as required deadlines.

If a task does not have a required deadline, then some other rule must be used to choose

the relative deadline. A good choice is the natural deadline of the task. Assume that the

invocations of a task are always separated by at least p time units; in this case, I will define

the natural deadline of the task as p. The effect of assigning the relative deadline of the

task to be the natural deadline is that each invocation of the task will complete execution

prior to the next invocation. Throughout this work, in the absence of a required deadline

21

or some other constraint on the choice of a deadline, I will choose to declare application

tasks with a relative deadline that approximates the natural deadline.

2.4.4 An Example YARTOS Application

I will now present an example application to illustrate the YARTOS programming model.

The example is a simple application that counts keystrokes and prints a message with the

current count approximately once per second. There are two hardware interrupts used in

this example: IRQ0 is a timer interrupt that occurs approximately 18 times per second,

and IRQ1 is an interrupt that occurs on each keystroke. Overall, the example application

includes three tasks, two interrupt handlers, and one resource.

Typically, a YARTOS application includes an interrupt handler and a corresponding

application task for each hardware interrupt. In an application with this structure, the only

activity performed by the interrupt handler is to send a message to the task; the task

contains the bulk of the code that should execute in response to the interrupt. This task

may then send messages to other tasks. This is the structure used in this example.

Count

Application Task

Resource

Interrupt Handler

Message

Interrupt

Resource Use

Keyboard

Keyboard
Task

IRQ 1

Timer

Timer Task

Output Task

IRQ 0

Figure 2-5: Architecture of Example YARTOS Application

Figure 2-5 illustrates the software architecture of this application. Rectangles denote

hardware interrupt handlers, single ovals denote application tasks, double ovals denote

resources, and arrows from handlers to tasks denote messages sent in response to logical

interrupts. Messages from one task to another are also indicated by arrows. Resource

usage by an application task (i.e., access to a shared variable) is indicated by a dashed

arrow from the task to the resource.

22

Var
ticks : integer := 0; -- count of timer interrupts
count : integer := 0; -- keystroke count

-- Interrupt handler for the timer interrupt
handler timer
interrupt IRQ0
body

send_message(timer_task);
end body

-- Application task that responds to timer interrupts
task timer_task
deadline 55 ms -- the natural deadline
resources none
body

ticks := ticks + 1;
if ticks mod 18 = 0 then

send_message(output_task);
end if;

end body

-- Application task that prints message
task output_task
deadline 1000 ms -- the natural deadline
resources count
body

print count;
end body

-- Interrupt handler for the keyboard interrupt
handler keyboard
interrupt IRQ1
body

send_message(keyboard_task);
end body

-- Application task that counts keystrokes
task keyboard_task
deadline 20 ms -- a lower-bound on the natural deadline
resources count
body

count := count + 1;
end body

Figure 2-6: Example YARTOS Application

Figure 2-6 lists pseudo-code for the application. It begins with declarations for two global

variables, ticks which is used to count timer interrupts, and count which is used to

count keystrokes. Ticks is only accessed by one task, but count is accessed by two

tasks. As a result, in order to ensure that tasks access count in a mutually exclusive

23

manner, each task that uses count must include it on the list of resources in the task’s

declaration.

The next declaration is for the timer interrupt handler. This handler is executed

whenever the IRQ0 interrupt occurs. It simply uses the YARTOS system call

send_message to send a message to the application task timer_task .

Timer_task is an application task that performs all the “real” processing that should be

done in response to a timer interrupt. In this application, there is no required deadline for

this task, so the relative deadline is set to its natural deadline of 55 ms. which is the

expected time between timer interrupts. The body of the task counts the number of times

it has executed; every 18 times (i.e., approximately once per second) it sends a message to

the application task output_task .

Output_task is the application task that prints the current keystroke count. Again, this

task has no required deadline, so its relative deadline is set to its natural deadline of 1000

ms. The body of the task simply prints the current value of count ; since this is a global

variable shared with another application task (i.e., keyboard_task), count is listed a

resource used by output_task .

The next declaration is for the keyboard interrupt handler. This handler is executed

whenever the IRQ1 interrupt occurs. As with the timer handler, it simply sends a

message to the keyboard_task , an application task that will perform all the “real”

processing that should be done in response to a keyboard interrupt.

The final declaration is for the keyboard_task application task. While the other tasks

had an obvious natural deadline, the natural deadline of this task is not obvious because

the minimum time between two keyboard interrupts is not well-defined. Nevertheless, a

reasonable lower bound can be estimated; in this case, the relative deadline of the task is

set to an arbitrary value of 20 ms. (i.e., 50 keystrokes per sec.). In addition, since the

global variable count is used by the task, it is included as a resource in the declaration.

2.4.5 Implementation Details

In order to correctly specify the behavior of YARTOS tasks, etc., in the axiomatic

specification presented in Chapter 5, it is necessary to discuss two additional

implementation details of YARTOS. The first issue is the method by which the deadline

of application task invocations is computed. Specifically, the deadline of a task invocation

24

is defined to be the logical arrival time of the invocation plus the relative deadline of the

task.

The logical arrival time of a task invocation is defined differently for interrupt handlers and

application tasks. The logical arrival time of an interrupt handler is determined by

checking the current time; this is the first activity performed when a hardware interrupt

occurs. Thus, the logical arrival time of a task is somewhat greater than its actual arrival

time. The logical arrival time of an application task invocation is defined to be the logical

arrival time of the interrupt handler or application task that sent it a message; that is, when

a task is invoked by a send_message system call, the logical arrival time of new

invocation is set to the logical arrival time of the sender.

The other implementation detail that must be discussed is the method by which YARTOS

generates messages to application tasks that specified a period as part of the task

declaration. Abstractly, the YARTOS kernel should generate messages to such a task at

regular intervals. However, because application tasks can specify an arbitrary period, an

ideal implementation of this abstraction would require a clock that could interrupt the

processor at arbitrary intervals. In the implementation of YARTOS, I have chosen not to

rely on the presence of such a clock.

Instead, the YARTOS kernel approximates the periodic generation of messages with the

following technique. For each task with a specified period, YARTOS keeps track of the

times at which messages to the task should be generated. Whenever any application task

or interrupt handler completes execution, or when the processor is idle, YARTOS checks

to see if such a time has passed; if so, it sends a message to the appropriate task. In any

case, the logical arrival time of the task invocation is set to the time at which the messages

should have been generated (i.e., if the message should have been generated at time t, it is

assigned a logical arrival time of t, even if YARTOS actually generated the message later).

The effect of this approximation on the problem of ensuring that application tasks meet

their deadline constraints is investigated in Chapter 4.

2.5 Acquisition-Side Processing

This section describes the design and implementation of the portion of the workstation-

based videoconferencing application that runs on the acquisition-side workstation (i.e., the

workstation that is connected to the camera and the microphone). This portion of the

25

application does several things: it acquires and compresses video frames, acquires audio

frames, and transmits the frames over the network.

The implementation consists of a set of interrupt handlers, application tasks, and resources

running on top of the YARTOS kernel. Interrupt handlers execute in response to

hardware interrupts and send messages to application tasks. These application tasks

perform most of the activities involved in acquiring, compressing, and transmitting audio

and video. Application tasks cooperate by communicating data through shared variables;

access to these variables is protected with YARTOS resources.

Most of the processing performed by the application is executed in response to the

hardware interrupts listed in Figure 2-1. Each hardware interrupt can be raised for one of

several reasons. As an example, the IRQ 15 interrupt is raised by the network adapter to

indicate that it is ready to accept a new network packet, or to indicate that a packet has

been successfully transmitted, or to indicate that a packet has been received. Throughout

the remainder of this discussion, I use the term logical interrupt to refer to a hardware

interrupt raised for a particular reason. The application includes an application task

corresponding to each logical interrupt. When a hardware interrupt is raised, the interrupt

handler executes, communicates with the hardware to determine which logical interrupt

has been raised, and sends a message to the appropriate application task.

I begin by describing some data types and global variables used in the application. Next, I

detail the operations the application must perform in order to acquire, compress, and

transmit the audio and video frames. I then present a design that divides these operations

into a set of YARTOS interrupt handlers and tasks that share data using resources.

Finally, I present detailed pseudo-code for the YARTOS tasks.

2.5.1 Basic Declarations

I begin the description of the acquisition-side of the application by defining several data

types and primitive operations that will be used in the code. The primary data types used

are buffers. There are three types of buffers, defined by the type of data they can hold: a

digitize buffer can hold one digitized video frame, a compress buffer can hold one

compressed video frame, and an audio buffer can hold one audio frame. Declarations for

these three types are listed in Figure 2-7.

26

Type
digitize_buffer : array of bytes;
compress_buffer : array of bytes;
audio_buffer : array of bytes;

Figure 2-7: Audio and Video Buffers

Each type of buffer is dynamically allocated from a pool of free buffers of that type;

declarations of the memory management routines are listed in Figure 2-8. Available

and allocate are overloaded functions that take a buffer type name as an argument:

available is a boolean function that returns true if a buffer of the proper type can be

allocated from its pool, while allocate takes a buffer of the proper type from its pool

and returns it. Free returns a buffer to the corresponding pool.

function available(buffer_type: type) returns boolean;
function allocate(buffer_type: type) returns buffer_type;
procedure free(buffer: buffer_type);

Figure 2-8: Memory Management Calls

Figure 2-9 lists declarations for operations used to acquire and compress audio and video

frames. Digitize initiates a request to the ActionMedia hardware to fill db with a new

digitized video frame. Start_compress initiates a request to the ActionMedia

hardware to compress the video frame in db and put the result in cb . Audio_acquire

retrieves a new audio frame from the ActionMedia hardware and puts it in ab .

procedure digitize(db: digitize_buffer);
procedure start_compress(db: digitize_buffer, cb: compress_buffer);
procedure audio_acquire(ab: audio_buffer);

Figure 2-9: Audio and Video Operations

Another data type used in the application is the queue. Each queue will contain items of a

single type (e.g., a queue of digitize_buffer will contain zero or more digitize

buffers). Figure 2-10 lists declarations for the operations defined on queues: length

returns the length of the queue, insert_queue inserts an item of the proper type at the

tail of a queue, and remove_queue removes the buffer at the head of the queue and

returns it. In each declaration, data_type is a generic name for the type of item

contained in q.

function length(q: queue of data_type) returns integer;
procedure insert_queue(q: queue of data_type, d: data_type);
function remove_queue(q: queue of data_type) returns data_type;

Figure 2-10: Operations on Queues

27

Figure 2-11 lists declarations for the data types and routines used to transmit data over the

network. The basic data type is the packet descriptor. This is a record that is used to

specify the data that should be placed in a network packet. Each packet can contain up to

one compressed video frame and up to two audio frames. Cb_count is the number of

video frames that should be put into the packet, ab_count is the number of audio frames

that should be put into the packet, and cb , ab1 , and ab2 are the buffers containing the

data that should be put into the packet. The transmit routine takes a packet descriptor

as an argument and initiates the transmission of the appropriate packet.

Type
packet_descriptor : record

cb_count : integer;
cb : compress_buffer;
ab_count : integer;
ab1 : audio_buffer;
ab2 : audio_buffer;

 end record;

procedure transmit(d: packet_descriptor);

Figure 2-11: Network Transmission Declarations

Constant
max_audio_transport: integer; -- max buffers “in transport”
max_video_transport: integer; -- max buffers “in transport”

Var
vbi_count : integer;

next_digitizing : queue of digitize_buffer;
digitizing : queue of digitize_buffer;

compress_source : queue of digitize_buffer;
compress_sink : queue of compress_buffer;
db_freed : integer;

transmit_video : queue of compress_buffer;
video_transport : integer;

transmit_audio : queue of audio_buffer;
audio_transport : integer;

transmit_queue : queue of packet_descriptor;
transmits_started : integer;

Figure 2-12: Global Variable Declarations

28

Finally, Figure 2-12 lists a number of constant and global variable declarations. The

meaning of the constants and the use of the global variables will be explained below. One

general note is in order though: each data structure that holds a buffer during execution is

declared as a queue, including those that could have been implemented as a simple

variable. This property is reflected in the uniform treatment given the data structures in

the axiomatic specification presented in Chapter 5.

2.5.2 High-Level Architecture

The acquisition-side of the application is designed and implemented as a set of YARTOS

interrupt handlers and tasks that share data using resources. However, to specify the

activities that must be performed, and the timing constraints on those activities, it is useful

to first describe the design in terms of higher-level abstract processes. The acquisition-

side of the application can be thought of as three concurrent processes: a video process

that acquires and compresses video frames, an audio process that acquires audio frames,

and a transport process that transmits frames over the network. Note however that these

abstract processes do not execute at runtime; rather they are presented here in order to

give a high-level view of the processing that must be performed by the application. Later

in the chapter, it will be shown how the processing described in these abstract processes is

realized by a set of YARTOS application tasks.

Audio
Process

Video
Process

Transport
Process

Transmit_Video

Transmit_Audio

Figure 2-13: High-Level Architecture

The architecture of these abstract processes is illustrated in Figure 2-13. Frames acquired

and compressed by the video process are placed in a queue of compress buffers, the

transmit_video queue. Frames acquired by the audio process are placed in a queue

29

of audio buffers, the transmit_audio queue. The transport process removes buffers

from these queues and transmits the data over the network.

There is one complication in this simple architecture. Because of network congestion, it

may not be possible for the transport process to transmit every frame that is generated; if

so, buffers will accumulate in the transmit_video and transmit_audio queues.

Because the total number of audio and video buffers in the application is limited, this

could eventually lead to situations in which buffers are not available to the video process

and the audio process. In order to ensure that buffers will be available, I limit the number

of buffers defined to be “in the transport system”. A buffer is defined to be “in the

transport system” if it has been placed on the appropriate transmit queue at some point in

the past, and has not yet been freed by the transport process. Two global variables,

video_transport and audio_transport , are used to count the number of video

and audio buffers in the transport system; each is incremented when a buffer is placed on

the appropriate transport queue, and each is decremented when a buffer is freed. Two

constants, max_video_transport and max_audio_transport provide bounds

on the number of compress buffers and audio buffers respectively. The video and audio

processes enforce these limits each time they add a new frame to a transmit queue.

2.5.3 The Video Process

Figure 2-14 shows the abstract video process which acquires and compresses each video

frame. At a high level, this process has three steps: a digitize operation to initiate the

acquisition of a digitized video frame, a start_compress operation to initiate the

compression of the frame, and an insert_queue operation to place the frame on the

transmit_video queue. The “WAIT statements” are not executable statements;

rather they are placeholders that indicate that further processing should delayed until a

particular logical interrupt occurs. Thus the WAIT statements can be thought of as

constraints on the timing of these operations. These timing constraints are discussed

below.

In the above description, a digitized video frame is acquired by executing the digitize

operation. In reality, the acquisition of individual digitized video frames is more complex.

The ActionMedia video acquisition hardware continuously acquires, digitizes, and writes

video data; the digitize operation merely informs the hardware to begin writing the

data to a new location. It takes 1/30th of a second to write the digitized data

30

corresponding to a single video frame. Thus, the application acquires individual video

frames by executing the digitize operation at regular intervals of 1/30th of a second.

var
db: digitize_buffer; -- holds the digitized frame
cb: compress_buffer; -- holds the compressed frame

WAIT (VBI1); -- VBI1 signals opportunity to digitize

-- initiate a digitize operation
db := allocate(digitize_buffer);
digitize(db);

WAIT (VBI0); -- VBI0 signals start of digitize

WAIT (VBI0); -- 2nd VBI0 signals end of digitize

-- initiate a compress operation
cb := allocate(compress_buffer);
start_compress(db,cb);

WAIT (CC); -- CC signals end of compress

-- give frame to transport process
insert_queue(transmit_video,cb);
video_transport := video_transport + 1;

-- enforce limit on compress buffers “in transport system”
if video_transport > max_video_transport then

video_transport := video_transport - 1;
cb := remove_queue(transmit_video);
free (cb);

end if

-- free the digitize buffer
free(db);

Figure 2-14: High Level View of the Video Process

Specifically, the application acquires video frames by responding to logical interrupts

known as vertical blanking interrupts (VBI interrupts)3. These interrupts are generated

3The ActionMedia video hardware is designed to be compatible with the NTSC broadcast television
standard. In NTSC, video is scanned in horizontal lines from top to bottom. A complete scan of a video
frame occurs in two vertical passes, one for the odd lines of the frame and one for the even lines of the
frame. The time during which the scanning point resets to the top of the image is known as the vertical
blanking interval. The vertical blanking interrupt is so-named because it occurs at the start of each
vertical blanking interval.

31

periodically by the ActionMedia hardware at a rate of 60 interrupts per second. An

application acquires a video frame by executing a digitize operation in the interval

between two VBI interrupts. At the next VBI interrupt, the hardware will begin writing

digitized video into the specified buffer. The application must then wait for two more VBI

interrupts before a complete frame has been written to the digitize buffer.

1 2 3 4
VBI

interrupts

Digitizing Frame 1

Specify Digitize Buffer
for Frame 2

Specify Digitize Buffer
for Frame 1

Figure 2-15: Digitization Process

Figure 2-15 illustrates the process of acquiring a digitized video frame. Sometime after

VBI interrupt 1 and before VBI interrupt 2, the application must execute a digitize

operation to pass a digitize buffer to the video subsystem. Between VBI 2 and VBI 4, this

buffer is filled with a digitized video frame. After VBI 4, the buffer contains a complete

video frame. However, between VBI 3 and VBI 4, the application must execute another

digitize operation. Otherwise, after VBI 4, the video subsystem will continue to write

digitized data into the first buffer overwriting the acquired frame.

Thus the first timing constraint indicated by a WAIT statement in Figure 2-14 is that

digitize operations should be executed after every second VBI interrupt; for

convenience, I will assume that digitize operations are executed after odd-numbered

VBI interrupts. Odd-numbered VBI interrupts will be referred to as VBI1 interrupts.

The next timing constraint arises from the fact that the digitized frame has not been

completely acquired until the second VBI interrupt after the start of the digitization; the

second and third WAIT statements in Figure 2-14 indicate that the start_compress

operation should not be initiated until then. Thus, start_compress operations are

executed after even-numbered VBI interrupts. These will be referred to as VBI0

interrupts.

The final WAIT statement in Figure 2-14 indicates that the compressed video frame should

not be delivered to the transport process until the frame has been completely compressed.

The start_compress operation initiates the compression; a logical interrupt known as

the compress complete (CC) interrupt is generated by the ActionMedia hardware when the

32

compression is finished. Thus, the fourth WAIT statement indicates that the frame should

not be placed on the transmit_video queue until the CC interrupt occurs.

2.5.4 The Audio Process

Figure 2-16 lists the statements executed by the audio process to acquire each audio

frame. At a high level, this process has two steps: an audio_acquire operation to

retrieve a digitized audio frame and an insert_queue operation to place the frame on

the transmit_audio queue. The WAIT statement indicates a timing constraint

dictated by the fact that audio frames are assumed to correspond to a fixed-length interval.

The audio subsystem of the ActionMedia hardware operates by continuously writing

digitized audio data to a large internal circular buffer. At any time, an application can

copy audio data from this buffer to its own internal memory. The audio subsystem

maintains a pointer to the last copied byte, so each copy will begin where the previous

copy finished. In the application, audio is acquired using the audio_acquire

operation that copies 1/60th of a second of audio data (approximately 264 bytes). To

ensure that each audio frame is acquired, an audio_acquire operation must be

executed every 1/60th of a second. Since VBI interrupts are generated at this rate, it is

convenient to assume that audio_acquire operations should be executed after each

VBI interrupt.

Var
ab: audio_buffer;

WAIT (VBI); -- VBI signals opportunity to acquire next frame

-- Acquire a new audio frame
ab := allocate(audio_buffer);
acquire_audio(ab);

-- give frame to transport process
insert_queue(transmit_audio,ab);
audio_transport := audio_transport + 1;

-- enforce limit on audio buffers “in transport system”
if audio_transport > max_audio_transport then

audio_transport := audio_transport - 1;
ab := remove_queue(transmit_audio);
free(ab);

end if

Figure 2-16: High Level View of the Audio Process

33

2.5.5 The Transport Process

Var
d: packet_descriptor;

-- check to ensure all outstanding transmits are completed
if eventcount(TC) < transmits_started then

return;
end if

-- if available, add video frame to packet
if length(transmit_video) > 0 then

d.cb_count := 1;
d.cb := remove_queue(transmit_video);

else
d.cb_count := 0;

end if

-- if available, add audio frames to packet
if length(transmit_audio) > 1 then

d.ab_count := 2;
d.ab1 := remove_queue(transmit_audio);
d.ab2 := remove_queue(transmit_audio);

else if length(transmit_audio > 0) then
d.ab_count := 1;
d.ab1 := remove_queue(transmit_audio);

else
d.ab_count := 0;

end if

-- initiate transmission, maintain count of transmits initiated
transmits_started := transmits_started + 1;
transmit(d);

WAIT (TC); -- TC signals end of transmission

-- free the compress buffer, maintain count of buffers “in transport”
if d.cb_count > 0 then

video_transport := video_transport - 1;
free(d.cb);

end if;

-- free the audio buffers, maintain count of buffers “in transport”
if d.ab_count > 1 then

audio_transport := audio_transport - 2;
free(d.ab1);
free(d.ab2);

else if d.ab_count > 0 then
audio_transport := audio_transport - 1;
free(d.ab1);

end if

Figure 2-17: High Level View of the Transport Process

34

Figure 2-17 lists the statements executed by the transport process to transmit one packet

on the network. At a high level, there are four steps in the process. First a check is

performed to ensure that all outstanding transmit requests have been completed (described

below). If so, then a packet descriptor containing up to one video frame and up to two

audio frames is constructed; the frames are removed from the appropriate queue and

placed in the packet descriptor. Next, the transmit operation is executed to initiate the

transmission. Finally, the buffers that were transmitted in the packet are freed.

The WAIT statement in Figure 2-17 indicates a timing constraint: the buffers placed in the

packet should not be freed until the packet has been successfully transmitted over the

network. The transmit operation initiates the transmit request; a logical interrupt

known as the transmit complete (TC) interrupt is generated by the network hardware

when the transmission is finished.

The check that ensures all outstanding transmit requests have been completed is based on

a YARTOS eventcount of TC interrupts. Each time a transmit operation is

performed, the transmits_started counter is incremented. Then, it is the case that

all outstanding transmission requests have completed only if the number of TC interrupts

that have occurred is equal to transmits_started .

2.5.6 Breakdown into Application Tasks

The next step in describing the acquisition-side of the application is to divide the

operations listed in the high-level abstract processes described above into a set of interrupt

handlers and application tasks that can execute under YARTOS. Recall that the video

process, the audio process, and the transport process were divided into phases separated

by WAIT statements. These phases defined by WAIT statements are the basis of the

division of the application into tasks.

With the exception of the first phase of the transport process, which will be discussed

separately, each phase begins with a WAIT for a particular logical interrupt. Thus, a

natural architecture is to define application tasks corresponding to each phase, and arrange

for each task to execute in response to the appropriate logical interrupt. For example,

consider the fragment of the video process listed in Figure 2-18. The group of statements

from the first to the second WAIT statements is implemented as one application task.

Since the WAIT statement that starts the group is for a VBI0 logical interrupt (i.e., an

35

even-numbered VBI interrupt), this task should be sent a message whenever a VBI0

interrupt occurs.

WAIT (VBI0);

cb := allocate(compress_buffer);
start_compress(db,cb);

WAIT (CC);

insert_queue(transmit_video,cb);

Figure 2-18: Fragment of the Video Process

A buffer (or other data) that is used in several phases of an abstract process is passed

between the corresponding tasks by putting the buffer on a queue. To ensure that access

to the queue by each task is mutually exclusive, each task declares the queue as a

resource. Again, consider the fragment of the video process listed in Figure 2-18. Figure

2-19 shows this fragment split into two tasks. A queue of compress buffers,

compress_sink , is used to pass the compress buffer between the two tasks. This

queue is included on the resource list of each task.

task one
resources compress_sink
body

cb := allocate(compress_buffer);
start_compress(db,cb);
insert_queue(compress_sink,cb);

end body

task two
resources compress_sink
body

cb := remove_queue(compress_sink);
insert_queue(transmit_video,cb);

end body

Figure 2-19: Video Fragment Divided Into Tasks

Thus, the basic software architecture of the acquisition-side of the application is based on

dividing the abstract processes defined in Figures 2-14, 2-16, and 2-17 into application

tasks and using queues to pass data between the tasks. In addition to these tasks, the

architecture includes an interrupt handler for each of the hardware interrupts listed in

Figure 2-1, and several other miscellaneous tasks discussed below.

36

The overall architecture is illustrated in Figure 2-20. Rectangles denote hardware

interrupt handlers, single ovals denote application tasks, double ovals denote resources,

and arrows from handlers to tasks denote messages sent in response to logical interrupts.

Messages from one task to another are also indicated by arrows. Resource usage by an

application task (i.e., access to a shared variable) is indicated by a dashed arrow from the

task to the resource.

While the rules described above for dividing the abstract processes into application tasks

are sufficient to explain most of the actual implementation, there are several exceptions

that must be addressed. First, in the abstract processes listed above, it was assumed that

calls to allocate always succeeded. In the actual tasks, execution is protected with a

call to available ; if a needed buffer cannot be allocated, the code that allocates and

uses the buffer is not executed. Similarly, before a buffer is removed from a queue, the

length of the queue is checked to ensure that the remove_queue will succeed; if not,

the code that requires the buffer is not executed.

Another exception is the location of the code that returns digitize buffers to the free pool.

A digitize buffer containing a frame can be returned to the free pool as soon as the frame

has been compressed. According to the rules described above, this code should be placed

in the CC task that contains the code that executes after a CC interrupt signals that a

compression is complete. However, because the number of digitize buffers available to

the application is restricted by memory limitations on the ActionMedia adapter, this code

must execute prior to the next time a digitize buffer is allocated by a VBI1 task; if not, the

pool of digitize buffers will be empty when the VBI1 task executes (resulting in a lost

frame).

It will be shown in Chapter 5 that the CC interrupt signaling that a digitize buffer can be

returned to the free pool will always be completed before the buffer must be reused. The

problem arises because it cannot be guaranteed that the CC task will execute prior to the

VBI1 task that will require the buffer. Thus, the code that frees the digitize buffer is

moved from the CC task to the beginning of the VBI1 task and a YARTOS eventcount is

used to determine if the CC interrupt has occurred.

37

Transmit
Queue

Transmit
Video

Next
Digitize

Transmit
Audio

Audio
Free Pool

Compress
Source

Compress
Sink

Compress
Free Pool

Application Task

Resource

Interrupt Handler

Message

Interrupt

Resource Use

Network

Transmit
Complete

Packet
Transfer

IRQ 15

Timer

User Tick

Keyboard
Check

Screen
Output

IRQ 0

DVI2

IRQ 10

DVI

VBI CC

AudioVBI1VBI0

IRQ 9

Initiate Send

YARTOS
Periodic Task

Figure 2-20: Software Architecture of the Acquisition-Side

38

2.5.7 Assigning Relative Deadlines to the Application Tasks

In choosing relative deadlines for the set of application tasks, there are two constraints

that must be addressed. First, each task with a required deadline must be assigned a

relative deadline short enough to ensure that the timing constraint is met. Timing

constraints are generally based on the actual arrival time of a hardware interrupt;

processing must occur within a well-defined interval after the interrupt. But because of

measurement delays, and more significantly because the execution of interrupt handlers

can be delayed while higher-priority interrupt handlers execute, the logical arrival time of

an interrupt handler is somewhat greater than the actual arrival time of the interrupt.

Thus, to ensure that a task invoked by an interrupt handler executes within a required

interval, it must be assigned a relative deadline somewhat smaller than the timing

constraint.

The second constraint that must be addressed when choosing relative deadlines is that it

must be possible to schedule the set of application tasks so that each task invocation

executes to completion prior to its deadline. This property can be checked using the

procedure developed in Chapters 3 and 4.

In addition, for reasons that will be explored further in Chapter 4, any application task that

receives a message from another application task should be assigned a relative deadline

greater than or equal to the relative deadline of the sender.

The rules I have used to choose relative deadlines for the set of application tasks described

here are based on these constraints. On the acquisition-side of the application, there is

only one task with a required deadline, the VBI1 task. Recall that if frames are to be

digitized correctly, digitize operations must be executed after a VBI1 interrupt and

prior to the next VBI0 interrupt. A VBI0 interrupt is expected to occur approximately

16.67 ms. after each VBI1 interrupt. Thus, the VBI1 task has a required deadline of

approximately 16.67 ms. In the declaration of the VBI1 task, I have chosen to use a

conservative estimate of 15 ms. for the relative deadline.

The next task with a constraint on the choice of deadline is the VBI task. Because it

sends a message to the VBI1 task, it should be assigned a relative deadline less than or

equal to the relative deadline of the VBI1 task. Thus, I also assign the VBI task a relative

deadline of 15 ms.

39

For each of the other application tasks, I have more flexibility in choosing a deadline. For

the two other tasks that execute in response to VBI interrupts, VBI0 and audio , I have

simply chosen to use the same relative deadline as the VBI task, 15 ms. For the CC task, I

have chosen a deadline of 8 ms. which is a conservative estimate of its natural deadline.

For all other application tasks except the initiate_send task (discussed below), I

have arbitrarily chosen to use a relative deadline of 33 ms.

2.5.8 The Initiate_Send Task

Most of the application tasks discussed here were defined by a group of statements in an

abstract process starting with a WAIT for a particular logical interrupt. However, because

the activities performed by the transport process need not occur in response to a particular

logical interrupt, the first phase of the transport process did not begin with a WAIT

statement (see Figure 2-17). Rather, I have a great deal of flexibility in determining when

this code should be executed.

Because one video frame and two audio frames are produced approximately every 33 ms.,

the application must, on average, transmit one video and two audio frames every 33 ms.

The code for the abstract transport process was designed to send one video and two audio

frames in a single packet. Thus, this code should be executed at least once every 33 ms.

Therefore, this code is placed in an application task called initiate_send with a

period of 33 ms.4

Next, I must assign a relative deadline to this task. As will be discussed below, the

execution of a transmit operation results in the generation of several logical interrupts

by the network hardware. In order to guarantee that application task invocations will

always execute prior to their deadlines, I must ensure that successive occurrences of each

logical interrupt are separated by a sufficient interval. Thus, I must ensure that

transmit operations are separated by a sufficient interval. This can be done by

ensuring that successive invocations of the initiate_send task are adequately

separated and that can be achieved by setting the relative deadline of the task to a value

4Because this task will be invoked at a period of 33 ms., this task could have executed in response to
messages generated by alternate executions of the VBI task. However, I chose to use periodic messages
generated by YARTOS so that this period could be easily changed.

40

less than the period of the task. As a result, I have chosen to assign the

initiate_send task a relative deadline of 20 ms.

2.5.9 Description of the Interrupt Handlers and Application Tasks

I am now ready to present declarations and pseudo-code for each of the application tasks.

Figure 2-21 shows the declaration for the VBI task. This task executes in response to a

message generated by the DVI interrupt handler whenever a VBI logical interrupt occurs.

The VBI task does not correspond to a phase in one of the abstract processes; rather, it is

used to send messages to each of the tasks that execute in response to VBI interrupts.

task VBI
deadline 15 ms
resources none;
task body

vbi_count := vbi_count + 1;

if vbi_count mod 2 <> 0 then
send_message(vbi1);

else
send_message(vbi0);

end if

send_message(audio);
end task

Figure 2-21: Pseudo Code for VBI Task

Each time the VBI task executes, it sends a message to the audio task and either the

VBI1 or VBI0 task. A count of the number of times the VBI task has executed, stored

in the global variable vbi_count , is used to determine if the VBI interrupt is odd or

even numbered. The VBI task is assigned a deadline of 15 ms. and does not use any

resources (the global variable is not shared with any other task).

The VBI1 task is the application task corresponding to the first phase of the video process

(see Figure 2-14). Figure 2-22 shows the task declaration. The relative deadline is set to

15 ms. The resource list includes two global variables that this task shares with other

tasks: the next_digitize queue and the compress_source queue. The other

two globals used by this task, the pool of free digitize buffers and the db_freed counter,

are not used by any other task, and thus need not be included on the resource list. In

order to pass the digitize buffer to the next phase, the VBI0 task, code is added to place

the buffer on the next_digitize queue.

41

task VBI1
deadline 15 ms
resources next_digitize, compress_source
task body

var db: digitize_buffer;

if length(compress_source) > 0 and eventcount(CC) >= db_freed then
db_freed := db_freed + 1;
db := remove_queue(compress_source);
free(db);

end if

if available(digitize_buffer) then
db := allocate(digitize_buffer);
digitize(db);
insert_queue(next_digitize,db)

end if
end task

Figure 2-22: Pseudo Code for VBI1 Task

In the abstract video process listed in Figure 2-14, there are two WAIT statements for the

VBI0 logical interrupt. The two waits ensure that a compress operation is not started on a

video frame until the digitization is complete. This property must also be ensured in the

actual implementation.

Each time the VBI0 task executes, it does two things. First, it removes a digitize buffer

from the digitizing queue and performs the activities listed in the second phase of the

video process (i.e., initiate a compress operation, etc.). Second, the VBI0 task

removes a digitize buffer from the next_digitize queue and places it on the

digitizing queue. Because each digitize buffer goes through this two-stage process,

the VBI0 task only performs compress operations on buffers that were used in a

digitize operation occurring prior to the previous VBI0 task.

Figure 2-23 shows the task declaration. The relative deadline is set to 15 ms. The

resource list includes four global variables that this task shares with other tasks: the

next_digitize queue, the compress_source queue, the compress_sink

queue, and the pool of free compress buffers. The other global used by this task, the

digitizing queue, is not used by any other task, and thus need not be included on the

resource list. In order to pass the digitize buffer and the compress buffer to the next

phase, the CC task, code is added to place these buffers on the compress_source and

compress_sink queues.

42

task VBI0
deadline 15 ms
resources next_digitize,compress_source,compress_sink,compress_free
task body

var db: digitize_buffer;
var cb: compress_buffer;

if length(digitizing) > 0 and available(compress_buffer) then
db := remove_queue(digitizing);
cb := allocate(compress_buffer);
start_compress(db,cb);
insert_queue(compress_source,db);
insert_queue(compress_sink,cb);

end if

if length(next_digitizing) > 0 then
db := remove_queue(next_digitizing);
insert_queue(digitizing,db);

end if
end task

Figure 2-23: Pseudo Code for VBI0 Task

task CC
deadline 8 ms
resources compress_sink, compress_free,

transmit_video, video_transport
task body

var cb: compress_buffer;

if length(compress_sink) > 0 then
cb := remove_queue(compress_sink);
insert_queue(transmit_video,cb);
video_transport := video_transport + 1;

if video_transport > max_video_transport then
video_transport := video_transport - 1;
cb := remove_queue(transmit_video);
free (cb);

end if
end if

end task

Figure 2-24: Pseudo Code for CC Task

The CC task is the application task corresponding to the last phase of the video process

(see Figure 2-14). Figure 2-24 shows the task declaration. The relative deadline is set to

8 ms. The resource list includes four global variables that this task shares with other

tasks: the pool of free compress buffers, the compress_sink queue, the

video_transmit queue, and the video_transport counter. Note that as

43

discussed previously, the code to return the digitize buffer to the free pool is not included

in this task.

The audio task is the application task corresponding to the single phase of the audio

process (see Figure 2-16). Figure 2-25 shows the task declaration. The relative deadline

is set to 15 ms. The resource list includes three global variables that this task shares with

other tasks: the pool of free audio buffers, the transmit_audio queue and the

audio_transport counter.

task audio
deadline 15 ms
resources transmit_audio, audio_transport, audio_free
task body

var ab: audio_buffer;

if available(audio_buffer) then
ab := allocate(audio_buffer);
audio_acquire(ab);
insert_queue(transmit_audio,ab);
audio_transport := audio_transport + 1;

if audio_transport > max_audio_transport then
audio_transport := audio_transport - 1;
ab := remove_queue(transmit_audio);
free(ab);

end if
end if

end task

Figure 2-25: Pseudo-Code for Audio Task

The initiate_send task is the application task corresponding to the first phase of the

transport process (see Figure 2-17). Figure 2-26 shows the task declaration. The relative

deadline is set to 20 ms. The resource list includes three global variables that this task

shares with other tasks: the transmit_video queue, the transmit_audio queue,

and the transmit_queue . The other global variable used by this task, the

transmits_started counter, is not used by any other task, and thus need not be

included on the resource list. In order to pass the packet descriptor to the next phase,

implemented by the transmit_complete task, code is added to place the descriptor

on the transmit_queue .

44

task initiate_send
deadline 20 ms
resources transmit_video, transmit_audio, transmit_queue
task body

var
d: packet_descriptor;

if eventcount(TC) < transmits_started then
return;

end if

if length(transmit_video) > 0 then
d.cb_count := 1;
d.cb := remove_queue(transmit_video);

else
d.cb_count := 0;

end if

if length(transmit_audio) > 1 then
d.ab_count := 2;
d.ab1 := remove_queue(transmit_audio);
d.ab2 := remove_queue(transmit_audio);

else if length(transmit_audio > 0) then
d.ab_count := 1;
d.ab1 := remove_queue(transmit_audio);

else
d.ab_count := 0;

end if

transmits_started := transmits_started + 1;
transmit(d);

insert_queue(transmit_queue,d);
end body

Figure 2-26: Pseudo-Code for Initiate_Send Task

The transmit_complete task is the application task corresponding to the last phase

of the transport process (see Figure 2-17). Figure 2-27 shows the task declaration. The

relative deadline is set to 33 ms. The resource list includes five global variables that this

task shares with other tasks: the transmit_queue , the video_transport

counter, the audio_transport counter, the pool of free compress buffers and the

pool of free audio buffers.

45

task transmit_complete
deadline 33 ms
resources transmit_queue,

video_transport, compress_free,
audio_transport, audio_free

task body
var d: packet_descriptor;

if length(transmit_queue) > 0 then
d := remove_queue(transmit_queue);

if d.cb_count > 0 then
video_transport := video_transport - 1;
free(d.cb);

end if;

if d.ab_count > 1 then
audio_transport := audio_transport - 2;
free(d.ab1);
free(d.ab2);

else if d.ab_count > 0 then
audio_transport := audio_transport - 1;
free(d.ab1);

end if
end if

end body

Figure 2-27: Pseudo-Code for Transmit_Complete Task

2.5.10 Miscellaneous Tasks and Interrupts

In addition to the interrupt handlers and tasks that form the application, there are several

more interrupt handlers and tasks that execute during a run of the application. The

TIMER interrupt handler runs in response to timer interrupts from the PS/2. The main

function of the handler is to update the internal timekeeping data structures of YARTOS.

In addition, it sends messages to two tasks that control user interactions with the

application. Once every 9 executions (approximately 0.5 sec.), the TIMER handler sends

a message to the keyboard_check task which polls for user input and responds to user

commands. Once every 4 executions (approximately 2.0 sec), the keyboard_check

task sends a message to the screen_output task that displays application status

messages on the workstation monitor.

The ActionMedia adapters generate several other logical interrupts in addition to the VBI

and CC logical interrupts described above. The handlers for these interrupts perform

46

some internal processing for the ActionMedia device driver5. One of these interrupts

occurs at a regular rate once every 33 ms. and is handled by the DVI interrupt handler.

The other interrupt occurs immediately after an audio_acquire operation is executed;

this interrupt is handled by the DVI2 interrupt handler.

The network adapter generates several other logical interrupts in addition to the TC

logical interrupt described above. Whenever the transmission of a new packet is initiated

by a transmit call, the network adapter responds by generating two logical interrupts.

In response to the first interrupt, the NETWORK handler performs limited processing on

the packet. In response to the second interrupt, the NETWORK handler sends a message to

an application task called packet_transfer that then copies the packet contents into

memory on the network adapter. At this point, the network adapter transmits the data,

although there may be some delay if the adapter cannot immediately access the physical

network.

2.6 Summary and Discussion

In this chapter, I have described the workstation-based videoconferencing application that

serves as the centerpiece of the dissertation. In particular, for the acquisition-side of the

application, I have explained the implementation details that are needed for the

performance analysis described in Chapters 3, 4 and 5.

I began with a high level description of the application. I then presented YARTOS, a real-

time operating system kernel that supports a programming model in which interrupt

handlers, operating system services, and application code execute to completion before

well-defined deadlines. Next, I described the mechanics of acquiring, compressing, and

transmitting audio and video frames. Finally, I presented pseudo-code descriptions of the

set of YARTOS interrupt handlers and application tasks that comprise the acquisition-side

of the application.

This chapter has concentrated on the acquisition-side of the application, but the display-

side implementation has much in common with the acquisition-side. For example, the

5These interrupts are a good example of the operational nature of my understanding of the hardware
interface to the ActionMedia adapters. I can determine when these interrupts occur, and I can verify that
the handlers require very little execution time. However, I do not know what processing the handlers
perform.

47

majority of audio and video processing on the display-side occurs in response to VBI

interrupts. Audio frames are played by a task that executes in response to VBI interrupts.

Video frames are decompressed by a task that executes in response to VBI0 interrupts and

displayed by another task that executes in response to VBI1 interrupts.

In general, the implementation of the display-side can be thought of as the “inverse” of the

acquisition-side. As on the acquisition-side, the design and implementation of the display-

side can be described in terms of three high-level abstract processes: a transport process

that receives frames from the network and puts them on queues, a video process that takes

video frames from a transport queue, decompresses, and displays them, and an audio

process that takes audio frames from a transport queue and plays them. As a result, the

set of interrupt handlers and applications tasks on the display-side is similar to the set on

the acquisition-side, except that data flows in the opposite directions. Thus, while the

performance analysis described in Chapters 3, 4 and 5 is for the acquisition-side of the

application, analysis of the display-side of the application would be quite similar.

48

Chapter III
Feasibility Analysis of YARTOS Task Systems

3.1 Introduction

The workstation-based conferencing application described in Chapter 2 is subject to a

number of timing constraints. One constraint arises from properties of the ActionMedia

hardware: to prevent a newly acquired digitized video frame from being overwritten, the

application must provide a new digitize buffer to the ActionMedia video subsystem within

a well-defined interval (see page 32). Another timing constraint arises from the

application requirements: if frames are to be played with acceptable display latency, then

the delay experienced by a frame at the acquisition workstation and at the display

workstation must be bounded. These constraints are typical in hard real-time systems for

which the correctness of a system depends on the system adhering to timing constraints.

One useful tool for designing, implementing, and analyzing hard real-time systems is the

theory of deterministic scheduling and resource allocation as first developed by Liu and

Layland [31]. Liu and Layland defined a formal model of real-time systems in which a

real-time system consists of a set of tasks that must execute to completion prior to a

deadline. A set of tasks is called feasible if there exists a scheduling discipline that always

results in each task in the set executing to completion prior to its deadline. The authors

propose two scheduling disciplines for their model; for each discipline they develop

sufficient conditions for guaranteeing that a set of tasks scheduled under the discipline is

feasible. I refer to these conditions as feasibility conditions and I refer to an algorithm for

testing the conditions as a feasibility test.

Feasibility is an important concept because the knowledge that tasks in a system will

always execute to completion prior to a deadline can be an extremely useful tool for

analyzing a real-time system. However, we may often wish to determine if processing

performed by a collection of tasks adheres to timing constraints that are not easily

expressed in terms of a single deadline. For example, can we show that the time required

to process a video frame is bounded given that processing of a video frame is a

combination of activities performed by several tasks? Simply knowing that each task

completes prior to a deadline is not in general sufficient to determine such properties.

Another approach to the problem of demonstrating that real-time systems adhere to timing

constraints uses a formal logic extended to account for timing behavior. Examples of this

approach include Jahanian and Mok’s Real-Time Logic (RTL) [22] and a method

proposed by Shankar [47]. However, analysis of a large system with such a formal logic is

often complex. One reason for this complexity is the need to reason about all possible

orderings of events and task executions, which in turn are dependent on the particular

scheduling discipline used in the system as well as details such as the time required to

execute operations.

It is possible however to design a system so that its correctness is independent of the

particular scheduling discipline and ordering of events; rather the correctness of a design

will depend only on the fact that tasks will execute to completion prior to a specified

deadline and will access data in accordance with specified mutual exclusion constraints. In

such a case, the complexity of using a formal logic to verify the correctness of a system

can be substantially reduced. In this work, I use a combination of scheduling theory and

Real-Time Logic (RTL) to show that the delay experienced by video frames during

processing on the acquisition-side of the application is bounded at 100 ms.

Bounding delay is the key to reducing or eliminating the delay jitter experienced by

frames. As long as an upper bound on delay is known, delay jitter can be reduced or

eliminated simply by buffering the frames to account for the difference between the actual

delay experienced by the frame and the upper bound. Thus, by showing that the delay

experienced by video frames during processing on the acquisition-side of the application is

bounded, I will demonstrate that it is feasible to reduce or eliminate the delay jitter

experienced by video frames on the acquisition-side.

While in principle an arbitrary bound on delay can be used to reduce or eliminate delay

jitter, in practice such a bound should be reasonably tight. A loose bound would result in

buffering a large amount of data, and more importantly would result in unnecessarily high

display latency. While I do not formally derive lower bound on the delay experienced by

video frames on the acquisition-side, I will argue in Chapter 5 that it must be at least 55

ms., even under assumptions that software operations take no time, and that work is

always performed as soon as possible. Thus, the upper bound on delay of 100 ms. shown

here is reasonably tight.

50

There are three steps in the analysis of the upper bound on delay. First, a feasibility test is

used to demonstrate that each task in the system will execute to completion prior to its

deadline and adhere to its mutual exclusion constraints. Next, an axiomatic specification

of the system is developed (in RTL) in which the fact that tasks execute with these

properties is included as an axiom. Finally, the bounded delay property is shown to be a

theorem derivable from the axiomatic specification.

In this chapter, I define an abstract model of real-time systems that is implementable using

the programming model of YARTOS. For this abstract model, I develop feasibility

conditions that can be used to show that application tasks in a YARTOS application

always execute to completion prior to a deadline and that access to resources by tasks is

mutually exclusive. In Chapter 4, I apply these feasibility conditions to the workstation-

based videoconferencing application. Finally, in Chapter 5, I develop the axiomatic

specification of the application and the proof that the processing delay for video frames is

bounded. In addition, I will argue that similar proofs can be developed to show that the

delays experienced by audio frames on the acquisition-side, and by both audio and video

frames on the display side are bounded.

The remainder of this chapter is organized as follows. Section 3.2 describes the abstract

model of tasks that matches the execution model of YARTOS. Sections 3.3 and 3.4

develop two theorems about this model; Section 3.3 gives an upper bound on the

processor time spent executing interrupt handlers and Section 3.4 shows that the

scheduling discipline used by YARTOS enforces mutual exclusions constraints on task

executions. Section 3.5 uses these results to derive complete feasibility conditions for the

abstract model. Section 3.6 shows how these conditions can be used as the basis of a

practical feasibility test.

3.2 System Model

As described in Section 2.4, the YARTOS programming model provides three primitives

to an application developer: interrupt handlers, application tasks, and resources. Interrupt

handlers are programs that execute in response to hardware interrupts. Application tasks

are programs that execute in response to messages sent from interrupt handlers or other

tasks. Resources are synchronization primitives that provide mutually exclusive access to

tasks that share data. In this section, I define an abstract model of real-time systems that

reflects this programming model.

51

I assume that real-time systems are systems in which software executes in response to the

occurrence of sporadic events. A sporadic event is defined as a stimulus that is generated

repeatedly with a lower bound on the interval between consecutive occurrences (e.g.,

interrupts from a hardware timer). This lower bound is called the minimum interarrival

time of the event. Specifically, if a sporadic event E has a minimum interarrival time of p,

and ti is defined as the time of the i th occurrence of E, then for all i ≥ 1, t t pi i+ ≥ +1 .

In my model, a real-time system is assumed to consist of a set of sequential programs

called tasks that execute in response to sporadic events. Whenever an event occurs, the

corresponding task is said to be invoked. An invocation of a task T is a copy of the

sequential program of T which is created when the task is invoked. Each invocation of a

task executes independently.

Tasks are divided into two distinct classes: interrupt handlers and application tasks.

These classes differ in the rules governing a correct execution of a real-time system. For

an execution to be considered correct, the scheduling of interrupt handler invocations and

application task invocations must adhere to several constraints.

• An interrupt handler executes whenever one is available.

• Application task invocations complete execution prior to their deadlines.

• Resource usage by application tasks is mutually exclusive.

Formally, a real-time task system τ is defined as a set of m interrupt handlers {I1, I2, ...,

Im}, n application tasks {T1, T2, ..., Tn}, and r resources {R1, R2, ..., Rr}. An interrupt

handler I is a pair (e, a) where e is the cost and a is the minimum interarrival time of the

handler. The cost of an interrupt handler is defined as the maximum amount of processor

time required to execute the handler to completion on a dedicated uniprocessor. The

minimum interarrival time of an interrupt handler is defined as the minimum interarrival

time of the event that invokes the handler. An application task T is a 4-tuple (c, U, d, p)

where c is the cost of T, U is the set of resources used by T, d is the relative deadline of T,

and p is the minimum interarrival time of T. The cost of an application task is defined as

above. Each application task is said to use a subset (possibly empty) of the resources in τ.

The relative deadline of an application task is defined as the length of the interval in which

an invocation of the task must execute; if a task is invoked at time t, the invocation is

assigned a deadline of t d+ . Finally, the minimum interarrival time of an application task

is defined as the minimum interarrival time of the event that invokes the application task.

52

A task system is feasible if, for an arbitrary sequence of interrupt handler and application

task invocations, it is possible to schedule the task system correctly on a single processor.

The formal model is based on several additional assumptions. First, except for application

tasks that share a resource, execution is assumed to be fully preemptive in the sense that a

higher priority task is allowed to preempt a lower priority task at any time. Second, it is

assumed that time is measured in discrete units. That is, interrupts and task invocations

occur at clock ticks and parameters c, d, p, a, and e are expressed as integer multiples of

the interval between successive clock ticks. Finally, it is assumed that application tasks

and interrupt handlers are independent in the sense that the time at which a task is

invoked is unrelated to any invocation of any other task (other than the previous

invocation of the same task).

In the original model proposed by Liu and Layland [31], tasks are defined with respect to

a number of constraints:

• Synchronous. Each task is invoked at time 0.

• Periodic. Each task is invoked periodically, i.e., if a task has a minimum
interarrival time of p, it is invoked every p time units.

• Deadline equal period. The relative deadline of a task is defined to be
equal to the period of the task.

• Fully preemptive. A scheduling algorithm is allowed to preempt the
execution of a task invocation at any time.

• Specific priority assignments. The theory assumes a specific assignment
of priorities to task invocations.

Since Liu and Layland, a number of authors have defined and analyzed models of real-time

tasks that relax one or more of these restrictions. The formal model defined in this chapter

is a generalization of three of these models. In [4], Baruah, Mok, and Rosier developed

feasibility conditions for a model consisting of sporadic tasks with arbitrary deadlines (i.e.,

relaxing the synchronous, periodic, and deadline constraints). In [25], Jeffay derived

feasibility conditions for a model in which sporadic tasks share resources (i.e., relaxing the

fully preemptive constraint). Finally, in [26], Jeffay and Stone derived feasibility

conditions for a model that included both periodic interrupt handlers and periodic

application tasks (i.e., relaxing the algorithm-defined priority constraint). The model I

propose here relaxes all of these constraints. Because this model combines several

53

properties of these three models, a number of the proofs in this chapter have been adapted

from the proofs in these three papers.

3.3 The Effect of Interrupt Handlers

As the first step in deriving the feasibility conditions for real-time task sets, I examine the

effect of interrupt handler execution on the time required to complete invocations of

application tasks. Because interrupt handler invocations execute with priority strictly

greater than application task invocations, the effect of executing interrupt handlers is to

reduce the amount of time available to execute invocations of application tasks. To

quantify the time spent executing interrupt handler invocations, consider a task system τ
that includes m interrupt handlers (e1, a1) … (em, am). Let ƒ(l) be a function from the non-

negative integers to the non-negative integers defined by the following recurrence relation:

f

l f l

f l f l
l

a
e

f l f l
l

a
e

i
i

i

m

i
i

i

m

()

, ()

() ()

() ()

0 0

0

1 1

1 1 1

1

1

=

∀ > =
− − =

L

M
M

O

P
P∑

− + − <
L

M
M

O

P
P∑

R

S

|
|

T

|
|

=

=

,

if

if

As shown in the following theorem, ƒ(l) is an upper bound on the amount of time spent

executing interrupt handler invocations in an arbitrary interval of length l of an execution

of τ. The definition can be interpreted by considering the worst-case execution of τ, in

which every interrupt handler is invoked at time 0 and periodically thereafter. In this case,

at any time l, ƒ(l) is exactly the time that was spent executing interrupt handlers in the

interval [0, l]. The two cases in the definition correspond to whether or not all the

interrupt handlers that were requested in the interval [0, l − 1] completed prior to l − 1; if

so, then f l f l() ()= − +1 1 since an interrupt handler was executed in the interval [l − 1,l].

One additional note about the definition of ƒ(l) is useful. For all l > 0,

f l f l() ()− ≤1 (3.1)

Theorem 3.1: Let τ be a task system with m interrupt handlers (e1, a1) … (em, am). For

all a ≥ 0, b a≥ , let g(a,b) be the amount of processor time consumed by interrupt handler

invocations in the interval [a, b] during an arbitrary execution of τ. For all t and l, t ≥ 0 ,

l ≥ 0, ƒ(l) is an upper bound on g t t l(,)+ (i.e., g t t l f l(,) ()+ ≤).

54

Proof (adapted from a proof given in [26]): By contradiction.

Suppose ƒ(l) is not an upper bound on g t t l, +a f for all t ≥ 0 and l ≥ 0. Then there exists

some x and k such that

f k g x x k() (,)< + (3.2)

Choose the smallest x for which (3.2) holds, and for that x, choose the smallest k. This

choice has several consequences:

1. k > 0. Since the amount of processor time consumed by interrupt handler

invocations in an interval of length 0 is necessarily 0, for all x, g x x(,) = 0.

Since by definition f ()0 0= , g x x f(,) ()≤ 0 .

2. For t x< , g t t l f l(,) ()+ ≤ . Since x is chosen to be the smallest value of t

for which ƒ(l) is not an upper bound on g t t l, +a f, ƒ(l) is an upper bound
for all intervals starting prior to x.

3. For l k< , g x x l f l(,) ()+ ≤ . Since k is chosen to be the smallest value for

which ƒ(l) is not an upper bound on g x x l, +a f, ƒ(l) is an upper bound for
all intervals starting at x with length less than k.

The assumption that f k() is not a bound on the amount of processor time consumed by

interrupt handler invocations in the interval [x, x k+] (i.e., equation 3.2) can be combined

with equation (3.1) and fact 3 for l k= −1 to produce:

g x x k f k

f k

g x x k

(,) ()

()

(,)

+ − ≤ −
≤
< +

1 1

(3.3)

The interpretation of equation (3.3) is that the amount of time spent executing interrupt

handler invocations in the interval [x, x k+ −1] is strictly less than the time spent

executing interrupt handler invocations in the interval [x, x k+]. As a result, the

processor must have executed an invocation of an interrupt handler in the unit interval

[x k+ −1, x k+]. Thus

g x k x k(,)+ − + =1 1 (3.4)

Hence

55

g x x k g x x k g x k x k

g x x k

f k

(,) (,) (,)

(,)

()

+ = + − + + − +
= + − +
≤ − +

1 1

1 1

1 1 (3.5)

It follows from (3.2) and (3.5) that f k f k() ()< − +1 1. Since for all l > 0, f l f l() ()− ≤1 ,

it then follows that f k f k() ()= −1 . Thus by the definition of f(l),

f k k a ei ii

m
() =

=∑ 1
(3.6)

Now, there are two cases that must be considered, depending on the value of x. If x > 0,

then by fact 2 for t x= −1, g x x k f k(,) ()− + − ≤1 1 . Combining this with assumption

(3.2),

g x x k f k

g x x k

(,) ()

(,)

− + − ≤
< +

1 1

Thus

g x x g x x k g x x k g x k x k

g x x g x k x k

(,) (,) (,) (,)

(,) (,)

− + + − < + − + + − +
− < + − +

1 1 1 1

1 1

It follows from this and equation (3.4) that g x x(,)− <1 1, and thus g x x(,)− =1 0.

Therefore, during the unit interval [x −1, x], the processor did not execute an interrupt

handler invocation. Thus, all invocations of interrupt handlers occurring prior to x must

have completed execution before x.

On the other hand, if x = 0, then by definition there were no invocations of interrupt

handlers that occurred prior to x. Thus, independent of the value of x, the only interrupt

handler invocations that executed in the interval [x, x k+] were those invoked at or after

x.

Since an invocation of an interrupt handler can only execute in an interval [a, b] if it is

invoked at or before b−1, the only interrupt handler invocations that executed in the

interval [x, x k+] were those invoked in the interval [x, x k+ −1]. An upper bound on the

number of invocations of an interrupt handler (e, a) in this interval is given by k a and

thus an upper bound on the total processing requirement of interrupt handler invocations

56

occurring in the interval is given by k a ei ii

m

=∑ 1
. Thus, g x x k k a ei ii

m
(,)+ ≤

=∑ 1
. It

then follows from (3.6) that

g x x k k a e f ki ii

m
(,) ()+ ≤ =

=∑ 1
(3.7)

which contradicts the assumption that f k g x x k() (,)< + . ¨

Theorem 3.1 shows that in any interval of length L, at most ƒ(L) units of processor time

are expended executing interrupt handlers. Thus it is the case that in any interval of length

L, at least L f L− () units of processor time are available to execute application tasks.

This fact will be used in Section 3.5 as part of the derivation of feasibility conditions.

3.4 EDF/DDM Scheduling Discipline

Next, I describe the scheduling discipline used in YARTOS to schedule application tasks

and show that the use of this discipline is sufficient to enforce the property that tasks that

share resources access those resources in a mutually exclusive manner. This scheduling

discipline is called Earliest Deadline First with Dynamic Deadline Modification

(EDF/DDM), a (trivial) variant of the scheduling discipline proposed by Jeffay in [25].

The EDF/DDM scheduling discipline operates as follows. At any time there is an

application task eligible for execution, the task invocation with the nearest contending

deadline is executed. The contending deadline is initially defined as the deadline of the

invocation. However, once the invocation has begun executing, its contending deadline is

modified (as explained below). In the case tie contending deadlines, task invocations that

are preempted are given precedence; otherwise the choice is arbitrary.

Consider a task system with m interrupt handlers, n application tasks, and r resources,

defined as above. For task Ti, let Di represent the smallest relative deadline of any

application task with which it shares a resource. That is,

D d j n U Ui j i j= ≤ ≤ ∧ ∩ ≠ ∅min 1o t

Let ti be a time at which Ti is invoked. The deadline of the invocation of Ti occurring at ti

is defined as t di i+ . Thus, the initial value of the contending deadline of this invocation is

also t di i+ . When the invocation begins execution, say at time t ts i≥ , its contending

57

deadline is modified to the earlier of t Ds i+ +1 or the original deadline. That is, once a

task invocation begins execution, its contending deadline is given by

min ,t D t ds i i i+ + +1b g

Because D di j≤ for all tasks Tj with which Ti shares a resource, this contending deadline is

guaranteed to be nearer than the initial deadline of any invocation of Tj that occurs after

the invocation of Ti begins execution. Thus, tasks which share resources and are

scheduled under the EDF/DDM scheduling discipline are guaranteed not to preempt one

another. Thus, they access resources in a mutually exclusive manner. The following

theorem demonstrates this principle.

Theorem 3.2: Invocations of application tasks in a task set τ scheduled with the

EDF/DDM scheduling discipline access resources in a mutually exclusive manner.

Proof (adapted from a proof given in [25]): It suffices to show that under the EDF/DDM

scheduling discipline, an invocation of a task that requires resource Rk cannot begin

execution if an invocation of another task that requires Rk has begun but not yet completed

execution.

Let Ti be a task that requires Rk, let ti be a point in time when Ti is invoked, and let ts be

the point in time at which that invocation of Ti first commences execution. Let Tj be

another task that requests Rk. The proof shows that an invocation of Tj cannot begin

execution if the invocation of Ti has begun but not yet completed execution. This is

shown by contradiction.

Let t ts> be a point in time when the invocation of Ti has begun but not yet completed

execution and assume that an invocation of Tj begins execution at t. Let tj be the time at

which this invocation of Tj occurred.

Because it started executing prior to time t, the invocation Ti has a contending deadline of

min ,t D t ds i i i+ + +1b g at time t. Since Tj has not yet begun execution at time t, it contends

for the processor at time t with its initial deadline of t dj j+ . Because Tj is chosen for

execution, it must be the case that this deadline is nearer than the contending deadline of

task Ti. Thus,

58

t d t D t dj j s i i i+ < + + +min ,1b g (3.8)

Since Ti began execution at ts, either or both of the following facts are true

• The invocation of Tj occurred after the invocation of Ti began execution.

Thus, t t tj s i> ≥ .

• The invocation of Ti had a nearer initial deadline than the invocation of Tj.

Thus, t d t dj j i i+ ≥ + .

If neither of these facts were true, then Tj would have been executed at ts since it would

have been available for execution and would have had a nearer deadline than the

invocation of Ti.

Because tasks Ti and Tj share a resource, it is necessarily the case that D di j≤ . Thus, if

the invocation of Tj occurred after the invocation of Ti began execution, then

t d t D

t D

t D

t D t d

j j j i

s i

s i

s i i i

+ ≥ +

> +
≥ + +

≥ + + +

1

1min ,b g

which contradicts (3.8).

If the invocation of Ti had a nearer initial deadline than the invocation of Tj, then

t d t d

t D t d

j j i i

s i i i

+ ≥ +

≥ + + +min ,1b g

which also contradicts (3.8). ¨

This theorem has shown that any task system scheduled with the EDF/DDM discipline will

enforce mutually exclusive access to resources. This fact will be used in the next section

in the derivation of feasibility conditions for task sets.

59

3.5 Feasibility Conditions

I am now ready to develop feasibility conditions for the model described in Section 3.2.

To begin, it is useful to quantify the maximum time required to complete execution of all

task invocations that occur in an interval. Consider an interval [t, t L+] and a task Ti.

How many invocations of Ti can occur at or after t with a deadline at or before t L+ ? The

maximum number of invocations meeting this criteria will occur when an invocation

occurs at t and subsequent invocations occur periodically (i.e., tasks are invoked at t kpi+

and have deadlines at t kp di i+ + for k ≥ 0). If L di< , then the invocation occurring at t

has a deadline after t L+ , so there are no invocations meeting the criteria. If L di≥ , then

the deadline of the invocation occurring at t is in the interval. Furthermore, the number of

additional invocations with deadlines at or before t L+ is equal to L d pi i−b g . Thus for

each task Ti, an upper bound on the number of invocations occurring at or after t with a

deadline at or before t L+ is

δ i

i

i

i
i

L

L d

L d

p
L d() =

<

+ −M
NM

P
QP

≥

R
S|

T|

0

1

if

if

Therefore, for each task Ti, an upper bound on the number of invocations occurring at or

after t0 with a deadline at or before td is δ i dt t()− 0 . Thus, an upper bound on the

processing requirement of these invocations of Ti is δ i d it t c()− ⋅0 .

For a task set to be feasible, two conditions must hold. First, at any given time, the

amount of time that has been available for executing application tasks up to that point

must be at least as great as the total processing requirement of all application tasks up to

that point. In the interval [0, L], the amount of time available for executing application

tasks is at least L minus the maximum time that could have been spent executing interrupt

handlers, or L f L− (). An upper bound on the processing requirement of application

tasks invocations in the interval [0, L] is the sum of the requirements for each task. Thus,

the first feasibility condition is

∀ ≥L L, ,0

L f L L ci i
i

n

− ≥ ⋅
=
∑() ()δ

1

60

The second condition that must hold for a task set to be feasible addresses the effect of the

preemption constraint introduced by shared resources. For each task, the following

feasibility condition must hold:

∀ < <L D L di i,

L f L c L ci j j
j

n

− ≥ + − ⋅
=

∑() ()δ 1
1

This condition can be interpreted by considering a particular worst-case sequence of task

and interrupt handler invocations. Assume that a task Ti is invoked at some time t0 − 1.

Then, at time t0, every other application task is invoked and each task is invoked

periodically thereafter. The condition shows that at all times in the interval [t Di0 + ,

t di0 +], there is enough time available to meet the processing requirement of all task

invocations with deadlines in the interval. The following theorem shows that these two

conditions are sufficient to show that a task set is feasible.

Theorem 3.3: Let τ be a task system with m interrupt handlers {(e1, a1), ..., (em, am)},

n application tasks {(c1, U1, d1, p1), ..., (cn, Un, dn, pn)} and r resources {R1, R2, ... Rr}. τ
will be feasible if the following two conditions hold.

1) ∀ ≥L L, ,0

L f L L ci i
i

n

− ≥ ⋅
=
∑() ()δ

1

2) ∀ ≤ ≤ ∀ < <i i n L D L di i, , ,1

L f L c L ci j j
j

n

− ≥ + − ⋅
=

∑() ()δ 1
1

Proof: To prove the theorem, it must be shown that when Conditions 1 and 2 hold for a

task set τ, the EDF/DDM scheduling discipline will succeed in scheduling the tasks in τ so

that access to resources is mutually exclusive and so that tasks always execute to

completion prior to their deadline. Theorem 3.2 has already shown that the EDF/DDM

scheduling discipline maintains the mutual exclusion constraints on access to resources,

independent of Conditions 1 and 2. Thus, it remains to show that tasks meet their

deadlines. This is shown by contradiction.

61

Assume that Conditions 1 and 2 hold, and yet a task invocation fails to execute to

completion prior to its deadline when the task set is scheduled under the EDF/DDM

scheduling discipline. Let td be the earliest point in time at which a task invocation misses

its deadline. Let t0 be the latest of:

• 0

• The end of the last period in which the processor was idle prior to td.

• The last time prior to td a task invocation with both a deadline and a
contending deadline after td stopped execution (defined as td if such a task
was still executing at td).

• The last time prior to td a task invocation with a deadline after td and a
contending deadline at or before td started execution.

As a result of this definition of t0, several facts hold:

1. The processor executed continuously in the interval [t0, td]. If this was not
the case, then there would be some time after t0 and prior to td during
which the processor was idle. This is prohibited by the choice of t0.

2. By Theorem 3.1, it is the case that at most f t td()− 0 units of processor
time were spent executing interrupt handlers in [t0, td]. Therefore, because

the processor executed continuously, at least () ()t t f t td d− − −0 0 units of
processor time were spent executing invocations of application tasks in
the interval [t0, td].

3. Every task invocation occurring prior to t0 with a deadline at or before td

completed execution prior to t0. Thus, any task invocation that misses a
deadline at td must have been invoked at or after t0. To show this fact,
four cases must be considered corresponding to the four restrictions on
the choice of t0 defined above. First, if t0 = 0, then by definition there
were no task invocations that occurred prior to t0. Second, if the
processor was idle immediately prior to t0, then there were no task
invocations that occurred prior to t0 that had not already completed
execution by t0. Third, if the processor stopped executing a task with a
contending deadline after td at time t0, then at time t0 − 1 there were no
outstanding task invocations with a deadline prior to td. Finally, if a task
with a deadline after td started executing at time t0, then there were no task
invocations with deadlines at or before td that occurred prior to t0 that had
not already completed execution by t0.

62

4. At most one task invocation with a deadline after td executed in the
interval [t0, td]. Furthermore, this task invocation began execution at t0

and had a contending deadline at or before td. This fact is a consequence
of the fact that t0 was chosen to be greater than or equal to the last time a
task invocation with a deadline after td began execution.

5. The only other task invocations executed by the processor in the interval
[t0, td] were those that were invoked at or after t0 with deadlines at or
before td. This fact results from facts 3 and 4.

Next, I use these facts to derive an upper bound on the total processing required to

complete execution of all task invocations that can execute in the interval [t0, td]. I then

show that Conditions 1 and 2 are sufficient to guarantee that this requirement is met.

Since all task invocations with deadlines at or before td either complete execution prior to

t0 or are eligible to execute at some point in the interval [t0, td], this will show that every

task invocation with a deadline at or before td will complete execution at or before td. This

will contradict the assumption that a task misses a deadline at td.

There are two cases to be considered depending on whether or not there is a task

invocation with a deadline after td which executes in the interval [t0, td].

Case 1: Assume that no task invocation with a deadline after td executes in [t0, td]. Then

by facts 4 and 5, only task invocations that occurred at or after t0 with deadlines at or

before td were executed by the processor in the interval [t0, td]. An upper bound on the

total processing required to complete execution of all task invocations occurring at or

after t0 with deadlines at or before td is

δ i d i
i

n

t t c− ⋅
=
∑ 0

1

b g

By fact 2, at least () ()t t f t td d− − −0 0 units of processor time were spent executing

invocations of application tasks in the interval [t0, td] and by Condition 1, it is the case that

() ()t t f t t t t cd d i d i
i

n

− − − ≥ − ⋅
=
∑0 0 0

1

δ b g

Thus, it is the case that, in the interval [t0, td], the time spent executing invocations of

application tasks invoked at or after t0 with deadlines at or before td was at least as great as

the total processing requirement of these task invocations. Thus, every task invoked at or

after t0 with a deadline at or before td must have completed execution at or before td.

63

Because by fact 1 any task invocation that misses a deadline at td must have been invoked

at or after t0, and because td was chosen to be the earliest time at which a task invocation

misses a deadline, this implies that no task invocation misses a deadline at or before td,

which contradicts the assumption that a task missed a deadline at td.

Case 2: Assume that an invocation of task Ti with a deadline after td executes in [t0, td]

and further assume that this invocation occurred at si. By fact 4, this invocation began

executing at t0, so s ti ≤ 0. Thus, it is the case that

s d t

d t s

d t t

i i d

i d i

i d

+ >
> −
> − 0 (3.9)

In addition, by fact 4, this invocation of task Ti must have a contending deadline at or

before td. Thus, min ,t D s d ti i i d0 1+ + + ≤b g . Because it has been assumed that the

deadline the task invocation is after td, it is the case that s d ti i d+ > . Thus

min ,t D s d t

t D t

D t t

D t t

i i i d

i d

i d

i d

0

0

0

0

1

1

1

+ + + ≤
+ + ≤

≤ − −
< −

b g

(3.10)

Combining (3.9) and (3.10) gives D t t di d i< − <0 .

By fact 4, the invocation of task Ti with a deadline after td that executes in [t0, td] began

executing at t0. Furthermore, because this invocation began executing at t0 with a deadline

after td, no other task could have been invoked at t0 with a deadline at or before td (any

such invocation would have been chosen for execution at t0). Thus, in addition to the

invocation of Ti, only task invocations that occurred at or after t0 1+ with deadlines at or

before td were executed by the processor in the interval [t0, td]. An upper bound on the

total processing required to complete execution of these task invocations is thus

c t t ci j d j
j

n

+ − + ⋅
=

∑δ 0
1

1b gc h

64

By fact 2, at least () ()t t f t td d− − −0 0 units of processor time were spent executing

invocations of application tasks in the interval [t0, td] and because D t t di d i< − <0 ,

Condition 2 implies

() ()t t f t t c t t cd d i j d j
j

n

− − − ≥ + − + ⋅
=

∑0 0 0
1

1δ b gc h

Thus, it is the case that, in the interval [t0, td], the time spent executing either invocations

of application tasks invoked at or after t0 with deadlines at or before td or the invocation of

task Ti that occurred at si was at least as great as the total processing requirement of these

task invocations. Thus, the invocation of Ti that occurred at si and every task invocation

occurring at or after t0 with a deadline at or before td must have completed execution at or

before td. Because by fact 1 any task invocation that misses a deadline at td must have

been invoked at or after t0, and because td was chosen to be the earliest time at which a

task invocation misses a deadline, this implies that no task invocation misses a deadline at

or before td, which contradicts the assumption.

Thus I have shown that in all cases, if Conditions 1 and 2 hold for a task set τ, then the

EDF/DDM scheduling discipline will succeed in scheduling the tasks in τ so that access to

resources is mutually exclusive and so that tasks always execute to completion prior to

their deadlines. ¨

3.6 Feasibility Test

While Theorem 3.3 gives sufficient conditions for the feasibility of a task set, the

requirement that Condition 1 hold for all L ≥ 0 implies that it cannot be used directly as

the basis of a practical feasibility test. However, for most task systems, it is possible to

bound the values of L at which Condition 1 must be evaluated.

The achievable processor utilization (or utilization) of a task system is defined as an

upper bound on the fraction of processor time that is required by the tasks over an

arbitrarily long interval. The achievable process utilization of a task system τ is precisely

expressed as:

Ψτ = +
= =
∑ ∑c

p

e

a
i

ii

n
i

ii

m

1 1

65

Theorem 3.5 shows that for task systems with achievable processor utilization strictly less

than one, the feasibility conditions need only be applied to a bounded set values in order to

guarantee that the task system is feasible. As a result, Theorem 3.5 can be used as the

basis of a practical feasibility test.

Before presenting Theorem 3.5, I first prove a lemma needed for the proof. The intuition

behind this lemma is simple: the function δ i t() only changes at values of t which are

multiples of the minimum interarrival time of some application task.

Lemma 3.4: Let Q kp d k i ni i= + ≥ ∧ ≤ ≤ ∪0 1 0l q k p. Let t and t′ be any two elements

of Q such that t t< ′ and there does not exist an r Q∈ , t r t< < ′ . Let ε be an integer such

that 0≤ < ′ −ε t t . For all i, 1≤ ≤i n, δ δ εi it t() ()= + .

Proof: There are two cases to be considered.

Case 1: Assume that t di< . By the choice of t′, it is the case that ′ ≤t di and therefore

that t di+ <ε . Thus, δ ε δi it t() ()+ = = 0 .

Case 2: Assume that t di≥ . Let k be the largest integer such that t kp di i≥ + . Recall that

δ i t() is defined as

δ i

i

i

i
i

t

t d

t d

p
t d

() =
<

+ −M
NM

P
QP

≥

R
S|

T|

0

1

if

if

Thus

δ i
i

i

t
t d

p
k() = + −M

NM
P
QP

= +1 1

By the choice of t′, it is the case that ′ ≤ + +t k p di i()1 . Thus, by the choice of ε, it is the

case that t k p di i+ < + +ε ()1 . Thus

66

δ ε ε
i

i

i

i

i

i i i

i

t
t d

p

t d

p

kp d d

p

k

()+ = + + −M
NM

P
QP

≥ + −M
NM

P
QP

≥ + + −M
NM

P
QP

≥ +

1

1

1

1

and,

δ ε ε

ε

i
i

i

i

i

i i i

i

t
t d

p

t d

p

k p d d

p

k

()

()

+ = + + −M
NM

P
QP

≤ + + −

< + + + −

< +

1

1

1
1

2

Thus, δ ε δi it t k() ()+ = = +1. In either case, δ ε δi it t() ()+ = . This proves the lemma.̈

I am now ready to prove Theorem 3.5. This theorem is similar to Theorem 3.3, but

restricts the set of points at which the feasibility conditions must be tested. In particular, it

shows that if Condition 1 holds at a set of points defined by the multiples of the minimum

interarrival times of each task and bounded by a value Bτ, then Condition 1 must hold at

all L.

Theorem 3.5: Let τ be a task system with m interrupt handlers {(e1, a1), ..., (em, am)},

n application tasks {(c1, U1, d1, p1), ..., (cn, Un, dn, pn)} and r resources {R1, R2, ... Rr}

defined such that Ψτ < 1. Let

B
e cii

m

ii

n

τ
τ

=
+

−
= =∑ ∑1 1

1 Ψ

and let P kp d kp d B k i ni i i i= + + ≤ ∧ ≥ ∧ ≤ ≤ ∪τ 0 1 0m r k p . τ will be feasible if the

following two conditions hold.

67

1) ∀ ∈L L P,

L f L L ci i
i

n

− ≥ ⋅
=
∑() ()δ

1

2) ∀ ≤ ≤ ∀ < <i i n L D L di i, , ,1

L f L c L ci j j
j

n

− ≥ + − ⋅
=

∑() ()δ 1
1

Proof: To prove the theorem, it is sufficient to show that the two conditions of this

theorem imply the two conditions of Theorem 3.3. Condition 2 is identical to condition 2

in Theorem 3.3. Thus, it remains to show that Condition 1 of this theorem implies

Condition 1 of Theorem 3.3.

Assume Condition 1 holds for a task set τ. That is, ∀ ∈L L P,

L f L L ci i
i

n

− ≥ ⋅
=
∑() ()δ

1

(3.11)

Equation (3.11) is identical to the equation given in Condition 1 of Theorem 3.3. The

difference is in the range of L at which the condition must be checked. I show that

Condition 1 of this theorem implies Condition 1 of Theorem 3.3 by showing that when

equation (3.11) holds for all L P∈ , it must hold for all L greater than or equal to 0.

There are two parts to the proof. First, I show that if (3.11) holds for certain values of L,

then it holds for every value of L. Second, I show that if (3.11) holds for all L B< τ , then

it holds for all L.

Let Q kp d k i ni i= + ≥ ∧ ≤ ≤ ∪0 1 0l q k p. Choose t t Q, ' ∈ , t t< ' such that there does not

exist an r Q∈ , t r t< < ' . Let ε be an integer such that 0≤ < −ε t t' . By Lemma 3.4, it is

the case that for all i, δ δ εi it t() ()= + . Moreover, since at most ε time units can be spent

executing interrupt handlers in the interval [t, t + ε], it is the case that f t f t() ()+ ≤ +ε ε.

If (3.11) is satisfied at for L = t, then

68

t f t t c

t f t t c

t f t t c

t f t t c

i i
i

n

i i
i

n

i i
i

n

i i
i

n

− ≥ ⋅∑

− ≥ + ⋅∑

+ − + ≥ + ⋅∑

+ − + ≥ + ⋅∑

=

=

=

=

() ()

() ()

() ()

() ()

δ

δ ε

ε ε δ ε

ε ε δ ε

1

1

1

1

a f

Therefore, if (3.11) holds for all elements of Q, it holds for all L.

Next, consider the function

g L L c f L Li i
i

n

() () ()= ⋅∑ + −
=

δ
1

Equation (3.11) can be restated as g L() ≤ 0.

Let h L U L e cjj
m

jj
n() = − ⋅ + ∑ + ∑= =τ 1 1 1b g .

Noting that for all L ≥ 0, δ i iL L p() ≤ +1 and f L L a ei i
i

m

() ≤ ∑
=1

, it is the case that

g L
L

p
c

L

a
e L

L

p
c

L

a
e L

c L
c

p
L

e

a
e L

U L e c

h L

j
j

j

n

j
j

j

m

j
j

j

n

j
j

j

m

j
j

n
j

jj

n
j

jj

m

j
j

m

j
j

m

j
j

n

()

()

≤ +
M

N
M
M

P

Q
P
P

F
HG

I
KJ

∑ +
L

M
M
M

O

P
P
P

∑ −

≤ +
F
HG

I
KJ

∑ + +
F
HG

I
KJ

∑ −

≤ ∑ + ∑ + ∑ + ∑ −

≤ − ⋅ + ∑ + ∑

≤

= =

= =

= = = =

= =

1

1 1

1

1 1

1 1

1 1 1 1

1 1
τb g

Thus h(L) bounds g(L) from above. h(L) is a linear function in L with slope U()τ −1 and

an L-intercept at the point

L B
e cii

m

ii

n

= =
+

−
= =∑ ∑

τ
τ

1 1

1 Ψ

69

Since Ψτ < 1, h(L) has negative slope and thus for all L B> τ , g L h L() ()≤ ≤ 0. Hence if

(3.11) holds for all L B≤ τ , then it holds for all L.

The set P is the intersection of the set Q and the set of all L B≤ τ . Thus, if equation (3.11)

holds ∀ ∈L L P, , then it holds for all L greater than or equal to 0. This proves the

theorem. ¨

3.7 Summary

In this chapter, I have defined an abstract model of real-time systems that is implementable

using the programming model of YARTOS. For this abstract model, I have developed a

practical feasibility test that can be used to show that, when scheduled according to a

variant of the Earliest-Deadline First scheduling discipline, application tasks in a YARTOS

application always execute to completion prior to a deadline and that access to resources

by tasks is mutually exclusive. In the next chapter, I will apply these feasibility conditions

to a specification of the workstation-based videoconferencing application.

70

Chapter IV
Feasibility Analysis of the Acquisition-Side

4.1 Introduction

In Chapter 3, I derived a feasibility test for an abstract model of real-time systems that

matched the programming model of YARTOS. In this chapter, I use this feasibility test to

show that the application tasks comprising the acquisition-side of the workstation-based

video conferencing application described in Chapter 2 always execute to completion prior

to their deadlines and that the tasks that share resources adhere to the required mutual

exclusion constraints. In Chapter 5, the properties shown in this chapter will be included

as axioms in an axiomatic specification of the application from which I derive the fact that

the delays experienced by video frames on the acquisition-side are bounded.

As described in Chapter 2, the video conferencing application consists of a set of interrupt

handlers, a set of application tasks, and a set of resources that execute on top of the

YARTOS kernel. To use the feasibility test, I must represent these as a task system τ as

defined in Section 3.2. This requires that I provide values for each of the parameters that

characterize interrupt handlers and tasks in the formal model:

• the maximum execution cost of each interrupt handler and application task.

• the minimum interarrival time for each interrupt handler and application task.

• the relative deadline of each application task.

• the set of resources used by each application task.

In this chapter, emphasis is placed on determining minimum interarrival times for each

interrupt handler and application task. In Section 4.2, I begin with a discussion of the

hardware interrupts generated during execution and the difficulties involved in determining

the minimum separation between occurrences of each interrupt and thus the minimum

interarrival time of the interrupt handlers. In Section 4.3, I develop a formal method that

addresses these difficulties. In Section 4.4, I discuss the techniques used to determine the

minimum interarrival time of application tasks. Finally, in Section 4.5, I put it all together,

present the description of the application in terms of the formal model, and present the

results of the feasibility test.

In the formal model presented in Chapter 3, time is discrete. Thus, an atomic time unit

must be chosen to specify the execution costs, minimum interarrival times, etc., needed to

represent the application in terms of the formal model. Throughout the analysis in this

chapter, time will be measured in ticks. The duration of a tick is defined by the hardware

timer on the PS/2; there are 1,193,180 ticks per second.

4.2 Modeling Hardware Interrupts

Each interrupt handler in the application executes in response to a particular hardware

interrupt. Furthermore, every application task except the initiate_send task

executes in response to messages sent by an interrupt handler or another application task

that executes, directly or indirectly, in response to a hardware interrupt. Thus, an analysis

of the tasks and interrupt handlers in the application must begin with an analysis of the

four hardware interrupts listed in Figure 2-1.

The interrupt handler for the first of these interrupts, IRQ0 (i.e., the PS/2 timer), fits

directly into the formal model. This interrupt is raised periodically at a rate of 18.2 times

per second and is therefore referred to as a periodic interrupt. Because it is periodic,

successive occurrences of the IRQ0 interrupt are separated by a fixed interval of

approximately 55 ms. Thus, the TIMER interrupt handler has a well-defined minimum

interarrival time. In general, interrupt handlers that execute in response to periodic

interrupts can be included in a task system τ as follows: if a handler has an execution cost

of e, and the period of the associated periodic interrupt is a, then an interrupt handler

(e, a) is included in τ.

The other hardware interrupts, IRQ9, IRQ10, (i.e., the two interrupts from the

ActionMedia adapter) and IRQ15 (i.e., the interrupt from the network adapter) do not fit

directly into the formal model. One reason is that each of these interrupts can be raised by

the hardware in response to an operation initiated by an application task. Consider the

IRQ10 interrupt that is raised by the ActionMedia adapter immediately after an

audio_acquire operation is executed by the audio task (see Section 2.5.10).

Because this interrupt is generated in response to an operation executed by an application

task, it is referred to as a request-response interrupt.

72

The reason that request-response interrupts do not fit directly into the formal model is that

the minimum time between successive interrupts can be quite small. Even though the

audio task is invoked periodically, the time at which the audio_acquire operation is

executed by the audio task depends on where in the interval between its invocation and

its deadline the task executes. If two successive invocations of the audio task execute,

the first completing near its deadline, and the second starting immediately after it is

invoked, the length of the minimum interval between the two audio_acquire

operations (and thus between the two IRQ10 interrupts) can be nearly zero. Figure 4-1

illustrates this. In the figure, the audio task is invoked at times s, s+p, s+2p, etc., and

the gray boxes indicate the time at which the invocations execute. The arrows indicate the

times at which the IRQ10 interrupts occur.

s s+p s+2p

Interarrival
Time

s+3p s+4p

Audio
Task

{
Figure 4-1: Successive Executions of the Audio Task

As a result, the DVI2 interrupt handler cannot be included in the formal model using its

true minimum interarrival time. Analysis based on a nearly zero minimum interarrival time

would conclude that the processor could spend nearly all of its time executing the

interrupt handler. Such analysis would be extremely pessimistic in that, over time, the

fraction of processor time spent executing the handler will be equal to the cost of the

handler divided by the period of the audio task.

However, I can make use of a simple observation in order to incorporate interrupt

handlers that execute in response to request-response interrupts into the formal model.

Consider four successive invocations of the audio task. In the worst case, the end of the

first invocation and the start of the third invocation are separated by at least the period of

the audio task. This is illustrated in Figure 4-2. The DVI2 interrupt handler can be

modeled as a pair of interrupt handlers, one representing odd numbered invocations of

DVI2, and the other representing even numbered invocations. In general, if we can

determine a lower bound on the time between the i th and the i+nth request-response

interrupt, then interrupt handlers that execute in response to the interrupt can be included

in a task system τ as follows: if a handler has an execution cost of e, and the lower bound

on the time between the i th and the i+nth interrupt is c (i.e., t t ci n i+ − ≥ for some constant c

73

where ti is the time at which the i th interrupt occurs), then n identical interrupt handlers

(e,c) are included in τ. A method for determining such bounds is given in the next section.

s s+p s+2p

Interarrival
Time

s+3p s+4p

Audio
Task

Figure 4-2: Interval Between Odd/Even Pairs of Audio Tasks

Another reason why some hardware interrupts do not fit directly into the formal model is

illustrated by the IRQ9 and IRQ15 interrupts. These interrupts are each raised for several

reasons. Such interrupts are referred to as overloaded interrupts. Consider the IRQ9

interrupt. This interrupt is raised by the ActionMedia hardware for two reasons: to signal

the start of a vertical blanking interval (i.e., the VBI logical interrupt) and to signal that a

compression operation has completed (i.e., the CC logical interrupt). Because these two

events may occur simultaneously, the length of the minimum interval between successive

occurrences of the IRQ9 interrupt can be nearly zero. Thus, as with request-response

interrupts, an interrupt handler for an overloaded interrupt cannot be included directly in

the formal model using its true minimum interarrival time. Rather, an interrupt handler for

each logical interrupt can be included in the model. In general, interrupt handlers that

execute in response to overloaded interrupts are included in a task system τ as follows: if

the handler has an execution cost of e, and the minimum interarrival times of the logical

interrupts are a1,a2, ..., an, then n interrupt handlers (e, a1), (e, a2), ..., (e, an) are included

in τ.

4.3 Reasoning about Request-Response Interrupts

In the previous section, I described request-response interrupts and illustrated the

difficulty that would arise if such interrupts were included directly in a formal model of an

application. I also described a method based on the determination of a lower bound on the

time between the occurrences of the i th and the i+nth interrupt that could be used to include

such interrupt handlers in a task system. In this section, I develop a technique for

determining this lower bound.

I begin with a formal definition of a request-response interrupt. Let T be a task that makes

requests to a hardware device to perform an operation. The hardware responds to the

74

request by generating an interrupt I when the requested operation is complete. I is

referred to as a request-response interrupt. The task that makes the request is referred to

as making a request for I. The time required for the hardware device to complete the

operation is referred to as the response time of I. Let

p be the minimum interarrival time of T.

d be the relative deadline of T.

α be a lower bound on the response time of I.

ω be an upper bound on the response time of I.

rk be the time at which the kth request for I occurs.

tk be the time at which the kth instance of I occurs.

Since I is raised in response to each request made by T, the kth occurrence of interrupt I

occurs in response to the kth request made by T. If requests are processed sequentially and

in order (i.e., servicing of the k+1st request is delayed until the kth request finishes), then

the earliest the kth interrupt can occur is α time units after the later of: the time the kth

request occurred or the time the k-1st request completes. This property is expressed by

equation (4.1).

t
r k

r t kk
k k

≥
+ =

+ + >
R
S
T −

1

1

1

1

α
α α

if

if max ,b g (4.1)

Similarly, the latest the kth interrupt can occur is ω time units after the later of the time the

kth request occurred or the time the previous request k-1st completes. This property is

expressed by equation (4.2).

t
r k

r t kk
k k

≤
+ =

+ + >
R
S
T −

1

1

1

1

ω
ω ω

if

if max ,b g (4.2)

As shown in the next theorem, equations (4.1) and (4.2) can be used to derive a simple

lower bound on the time between occurrences of the i th and the i+nth request-response

interrupt.

75

Theorem 4.1: Let I be a request-response interrupt that occurs in response to requests

made by invocations of an application task T. Assume that each invocation of T makes at

most one request. Then for all i > 0 and for all n > 0

t t ni n i+ − ≥ α (4.3)

Proof: By induction on n.

Basis: Assume that n = 1. By equation (4.1)

t r t

t
i i i

i

+ +≥ + +
≥ +

1 1max ,α α
α

b g

so t ti i+ − ≥1 α . Thus, equation (4.3) holds for n = 1.

Induction step: Assume equation (4.3) holds for n k= . By equation (4.1) and the

inductive hypothesis

t t r t t

t t

k

k

i k i i k i k i

i k i

+ + + + +

+

− ≥ + + −
≥ − +
≥ +
≥ +

1 1

1

max ,α α
α

α α
α

b g

a f

Thus, equation (4.3) holds for n k= +1. This proves the theorem. ¨

In practice, the bound given by Theorem 4.1 is not always useful because α is quite small

for many request-response interrupts. However, there is a difficulty in obtaining a larger

bound. If the maximum response time of I is greater than the maximum rate at which

requests are made (i.e., if ω > p), then it is possible for an unbounded number of requests

to be queued awaiting service. In this case, the lower bound determined in Theorem 4.1 is

a true lower bound. If the lower bound given by Theorem 4.1 is to be improved, one of

two constraints must be imposed: either the maximum response time must be less than the

period of the task that makes the requests (i.e., ω ≤ p), or the number of outstanding

requests must be bounded. These will be referred to as bounded-time interrupts and

bounded-request interrupts respectively.

The next theorem improves the bound given in Theorem 4.1 for bounded-time interrupts.

Before proving the theorem however, I prove two lemmas. Lemma 4.2 shows that

76

bounded-time request-response interrupts always occur within d + ω ticks of the request.

Lemma 4.3 uses Lemma 4.2 to derive a lower bound on the interval between request-

response interrupts. Finally, Theorem 4.4 combines the bound given in Theorem 4.1 with

the bound given in Lemma 4.3.

Lemma 4.2: Let I be a bounded-time interrupt that occurs in response to requests made

by invocations of an application task T. Assume that each invocation of T makes at most

one request. Let si be the time at which the invocation of T that makes the i th request for I

occurs. Then for all i > 0

t s di i≤ + + ω (4.4)

Proof: By induction on i.

Basis: Assume i = 1. The first request is made at time r1 by an invocation of T that

occurred at time s1. Since the request must occur before the deadline of the task

invocation, r s d1 1≤ + . By equation (4.2), t r1 1≤ + ω . Thus, t s d1 1≤ + + ω . Thus,

equation (4.4) holds for i = 1.

Induction step: Assume equation (4.4) holds for i k= . The k+1st request for I is made by

an invocation of T that occurred at time sk+1 so r s dk k+ +≤ +1 1 . Because each invocation of

T makes at most one request, the kth request for I must have been made by an invocation

of T occurring prior to sk+1. Because T is sporadic, this invocation must have occurred at

or before s pk+ −1 . Thus, s s pk k≤ −+1 . Because I is a bounded-time interrupt, ω ≤ p. By

the inductive hypothesis

t s d

s p d

s p d p

s d

k k

k

k

k

≤ + +

≤ − + +
≤ − + +
≤ +

+

+

+

ω

ω1

1

1

b g

and thus by equation (4.2),

t r t

s d s d

s d

k k k

k k

k

+ +

+ +

+

≤ + +

≤ + + + +
≤ + +

1 1

1 1

1

max ,

max ,

ω ω

ω ω
ω

b g
b g

Thus, equation (4.4) holds for i k= +1. This proves the theorem. ¨

77

The next lemma uses Lemma 4.2 to derive a lower bound on the interval between request-

response interrupts.

Lemma 4.3: Let I be a bounded-time interrupt that occurs in response to requests made

by invocations of an application task T. Assume that each invocation of T makes at most

one request. Then for all i > 0 and for all n > 0

t t np di n i+ − ≥ − − −ω αa f

Proof: Assume that the i th request for I is made by an invocation of T that occurs at si.

By Lemma 4.2, t s di i≤ + + δmax. Because T is sporadic, for all n > 0, s s npi n i+ ≥ + .

Thus, by equation (4.1),

t r t

r

s

s np

i n i n i n

i n

i n

i

+ + + −

+

+

≥ + +
≥ +
≥ +
≥ + +

max ,α α
α
α

α

1b g

Thus,

t t s np s d

np d

i n i i i+ − ≥ + + − + +

≥ − − −

α ω

ω α

b g b g
a f

This proves the lemma. ¨

Theorem 4.4 combines the bound given in Theorem 4.1 with the bound given in Lemma

4.3.

Theorem 4.4: Let I be a bounded-time interrupt that occurs in response to requests made

by invocations of an application task T. Assume that each invocation of T makes at most

one request. Then for all i > 0 and for all n > 0

t t np d ni n i+ − ≥ − − −max ,ω α αa fb g

Proof: The proof is a combination of Theorem 4.1 and Lemma 4.3. By Theorem 4.1,

t t ni n i+ − ≥ α

By Lemma 4.3,

78

t t np di n i+ − ≥ − − −ω αa f

Thus t t np d ni n i+ − ≥ − − −max ,ω α αa fb g. ¨

The next theorem improves the bound given in Theorem 4.1 for bounded-request

interrupts. Let b be an upper bound on the number of outstanding requests for an

interrupt I where at any given time, the number of outstanding requests is defined as the

difference between the number of requests that have been made and the number of

interrupts that have been generated. If the number of outstanding requests for I is

bounded by b, then for all i, r ti b i+ ≥ .

Before proving the theorem, I prove a lemma. This lemma shows that the interval

between bounded-request interrupts is bounded. Theorem 4.6 combines the lower bound

given in Theorem 4.1 with the lower bound given in Lemma 4.5.

Lemma 4.5: Let I be a bounded-request interrupt that occurs in response to requests

made by invocations of an application task T. Let b be the upper bound on the number of

outstanding requests for I. Assume that each invocation of T makes at most one request.

Then for all i > 0 and for all m > 0

t t mp di b m i+ + − ≥ − + α

Proof: Let k i b m= + + and assume that the kth request for I is made by an invocation of

T that occurred at time sk. Because T is sporadic, for all m> 0, s s m pi b m i b+ + + +≥ + −1 1a f .

Thus by equation (4.1)

t r t

r

s

s m p

i b m i b m i b m

i b m

i b m

i b

+ + + + + + −

+ +

+ +

+ +

≥ + +
≥ +
≥ +
≥ + − +

max ,α α
α
α

α

1

1 1

b g

a f (4.5)

Also, because T is sporadic, s s pi b i b+ + +≤ −1 . Since by the definition of a bounded-request

interrupt r ti b i+ ≥

t r

s d

s p d

i i b

i b

i b

≤
≤ +
≤ − +

+

+

+ +1 (4.6)

79

Combining equations (4.5) and (4.6)

t t s m p s p d

mp d
i b m i i b i b+ + + + + +− ≥ + − + − − +

≥ − +
1 11a fb g b gα

α

This proves the lemma. ¨

Theorem 4.6: Let I be a bounded-request interrupt that occurs in response to requests

made by invocations of an application task T. Let b be the upper bound on the number of

outstanding requests for I. Assume that each invocation of T makes at most one request.

Then for all i > 0 and for all n b>

t t n b p d ni n i+ − ≥ − − +max ,a fb gα α

Proof: By Theorem 4.1,

t t ni n i+ − ≥ α

Substituting n b− for m in Lemma 4.5,

t t n b p di n i+ − ≥ − − +a f α

Thus t t n b p d ni n i+ − ≥ − − +max ,a fb gα α . ¨

4.4 Determining the Minimum Interarrival Time of Application Tasks

Previously in this chapter, I have discussed the problem of determining the minimum

interarrival time of each interrupt handler in the application. In this section, I discuss the

problem of determining the minimum interarrival time of each of the application tasks.

There are three classes of application tasks: those invoked by interrupt handlers, those

invoked by other application tasks, and those invoked by the YARTOS periodic

invocation mechanism. The problem of determining minimum interarrival times for each

of these classes is discussed below.

4.4.1 Application Tasks Invoked by Interrupt Handlers

Consider an application task that is invoked by a message sent from a logical interrupt

handler. As described in Chapter 2, the first activity performed by an interrupt handler is

80

to determine the current time; this time defines the logical time at which messages are sent

from that interrupt handler. Thus, the minimum interarrival time of the application task is

determined by the minimum interval between the time measurements by successive

executions of the logical interrupt handler. Figure 4-3 illustrates the situation that defines

the minimum interarrival time of the application task. In this figure, the dark gray boxes

represent the execution of the interrupt handler, the light gray box represents an interrupt

handler that is delayed (e.g., by executions of higher priority interrupts), and the arrows

indicate the logical arrival time of a message sent to the task. Thus, the two logical

interrupts are separated by the minimum interarrival time of the interrupt, execution of the

first interrupt handler is delayed (e.g., by executions of higher priority interrupts), and

execution of the second interrupt handler occurs immediately.

Minimum Interarrival Time
of the Interrupt

Minimum Interarrival Time
of Application Task Invocations

Delay

Figure 4-3: Minimum Interarrival Time of Application Task Invocations

Thus, to determine the minimum interarrival time of an application task that is invoked by

a message from a logical interrupt handler, it is necessary to know the maximum time for

which an interrupt handler can be delayed before it completes execution. For an interrupt

handler I, this time will be denoted EI. Thus, if I is an interrupt handler with a minimum

interarrival time of a that sends a message to an application task, that task will have a

minimum interarrival time of a EI− .

The problem of determining the maximum time for which an interrupt handler can be

delayed before it completes execution is similar to that of determining an upper bound on

the completion time of task invocations in a set of sporadic tasks that execute with

arbitrary fixed priorities. In [12], Harbour, Klein, and Lehoczky discuss the problem of

determining this bound for sets of periodic tasks with arbitrary fixed priorities6.

6The authors actually discuss a more general problem, in which a task consists of phases, each of which
can have a different fixed priority and an individual deadline. For my purposes here, I only require tasks
with a single phase. Thus, I am simplifying the results presented by the authors by considering only this
special case.

81

Fortunately, their analysis of the completion time of task invocations does not depend on

the periodicity of tasks. Thus, we can apply their analysis framework in our problem.

To use this framework, we must determine several values for each interrupt handler. For

an interrupt handler I, let

MPI be the set of interrupt handlers with priority greater than that of I.

BI be the “blocking term”

The MP term is used to determine the amount of time the execution of an interrupt

handler can be delayed by the execution of higher-priority interrupt handlers. These delays

include both the delay added by the interrupt controller that delays delivery of an interrupt

until all higher-priority interrupts have been serviced, and delays added when execution of

the interrupt handler is preempted by a higher-priority interrupt handler.

The blocking term is a value that captures the maximum time that the start of an interrupt

handler can be delayed for reasons other than the execution of higher priority interrupt

handlers. As described in Chapter 2, several things other than higher-priority handlers can

delay the start of an interrupt handler. First, the YARTOS kernel uses a CPU flag to

disable all interrupts. A logical interrupt handler can be delayed for another reason: it

cannot begin executing until any outstanding logical interrupts overloaded on the same

interrupt are serviced7.

The maximum delay incurred by an interrupt handler due to disabled interrupts occurs

when interrupts are disabled one time unit before the interrupt occurs and remain disabled

for the maximum possible time. The maximum delay incurred due to the execution of an

overloaded interrupt handler occurs when the overloaded handler begins execution one

time unit before the interrupt and executes for a time equal to its maximum execution cost.

However, an interrupt handler can be delayed either because the interrupt occurs while

interrupts are disabled, or because the interrupt occurs while another overloaded interrupt

is being serviced. It cannot be delayed by both. Thus, if the following terms represent

these values:

7There is an additional reason an interrupt handler may be delayed, namely that an application can use
the interrupt controller to mask individual interrupts. However, this mechanism is not used on the
acquisition-side, so I do not consider it here.

82

kernel the maximum time interrupts are continuously disabled

overloadI the maximum cost of interrupt handlers overloaded on the same interrupt

then the blocking term is given by

B overloadI I= − −max , ,kernel 1 1 0b g

With the blocking term defined, I can determine the upper bound on the time required to

complete execution of the interrupt handler using the Harbour, et al., results. For an

interrupt handler I with execution cost e, this is given by

E t B t a e e tI I j j
j MPI

= > + ∑ +F
HG

I
KJ =

F
HG

I
KJ∈

min 0
(4.7)

The upper bound on delay given by equation (4.7) can now be used to determine the

minimum interarrival time of an application task that is invoked by a message from a

logical interrupt handler. If I is an interrupt handler with a minimum interarrival time of a

that sends a message to an application task, then that task can be included in a task system

τ with a minimum interarrival time of a EI− .

4.4.2 Application Tasks Invoked by Other Tasks

Next, I address the problem of determining the minimum interarrival time of a task that is

invoked by a message sent from another application task. An observation made by Jeffay

in [23] is helpful in simplifying this problem. Consider a task invocation, called the

receiver, that is invoked by a message sent to it from another task invocation, called the

sender. If it is not possible for the receiver to preempt the sender, then the logical arrival

time of the receiver can be set to the logical arrival time of the sender. This is the rule

used to determine logical arrival times (and thus deadlines) in YARTOS.

Thus, in the analysis performed in this chapter, the minimum interarrival time of a

receiving task (i.e., a lower bound on the length of the interval between successive logical

arrival times of the task) is defined by the minimum interarrival time of the sending task.

Assume the sending task has a minimum interarrival time of p. If the sending task sends a

message to the receiving task each time it executes, then the receiving task can be included

in a task system τ with a minimum interarrival time of p. More generally, if the sending

83

task sends a message every nth time it executes, then the receiving task can be included in a

task system τ with a minimum interarrival time of np.

4.4.3 YARTOS Periodic Invocations

Next, I address the problem of determining the minimum interarrival time of a task that is

invoked by messages sent directly from YARTOS. As described in Chapter 2, an

application task declaration can specify that YARTOS should periodically send messages

directly to the task (e.g., the initiate_send task described in Section 2.5.8).

Abstractly, these messages are generated periodically. In practice however, the messages

are only approximately periodic.

Consider an application task T that is to be periodically invoked by YARTOS with period

p. Assume that the first message generated by YARTOS is sent to T at time t. In this

case, the YARTOS will attempt to generate a message to T as soon as possible after times

t kp+ for k ≥ 1. If the processor is idle (i.e., there are no tasks or interrupt handlers ready

for execution), the YARTOS kernel continuously checks to see if a new message should

be generated; if so a message is sent to T. Otherwise, each time an interrupt handler or

application task completes execution, the YARTOS kernel checks to see if a new message

should be generated.

Thus, the minimum interval between successive invocations of T will be somewhat smaller

than the period p, depending on the maximum time that can elapse between the time

YARTOS should have generated a message and the time it actually does generate a

message. However, if each invocation of T is assigned a logical arrival time equal to the

time at which it should have received the message, then the interval between the logical

arrival times of successive invocations of T will be exactly equal to p.

Assume that YARTOS should have sent a message to a task T at time t, but is unable to

send the message until time t′ due to the fact that processor was not idle and no

application task or interrupt handler completed execution in the interval [t, t′]. If it is

assumed that the scheduling discipline would not have chosen to execute the task

invocation anywhere in the interval [t, t′], then the delay in actually sending the message

will have no effect on the execution of the system. Thus, if this assumption can be

enforced, then the task invocation can be assigned a logical arrival time of t without

affecting the feasibility of the task system. One method for enforcing this assumption is to

ensure that the application task shares an individual resource with each task in the task

84

system. As a result, under the YARTOS scheduling discipline, it can never preempt

another application task, thus ensuring that it would not have executed in [t, t′].

Thus, if an application task that receives messages periodically from YARTOS at a period

p shares a resource with each task in a task system τ , then the application task can be

included in τ with a minimum interarrival time of p. This is the approach that will be used

to include the initiate_send task in the analysis performed in the remainder of the

chapter.

4.5 Feasibility of the Application

In Chapter 2, Figure 2-20 illustrated the software architecture of the video conferencing

application, showing the various hardware interrupts, interrupt handlers, application tasks,

and resources as well as the resource usage of each task and the message passing channels

between interrupt handlers and tasks (or between tasks and tasks). Figure 4-4 illustrates

an alternative view of the architecture of the application. It shows logical interrupts and

message channels, as well as device requests that indicate that a task or handler executes

an operation that leads to a request-response interrupt. Logical interrupts are labeled by

either a period, indicating that the logical interrupt is generated periodically, or by a

response time, indicating that the logical interrupt is a request-response interrupt with the

indicated constraints on its response time (e.g., the CC logical interrupt is a request-

response interrupt with a lower bound on response time of 22 ms., and an upper bound on

response time of 28 ms.). Some message passing channels are labeled with a rate,

indicating that messages are sent along that channel 1 out of every N times the sender is

executed; a channel without an indicated rate is assumed to have a rate of 1/1.

In the remainder of this section, I use the principles laid out earlier in the chapter to

determine execution costs and minimum interarrival times for each of the interrupt

handlers and application tasks in the system. From these values, I construct a task system

τ as defined in Section 3.2. I then illustrate the results of applying the feasibility test given

by Theorem 3.5 to the resulting task system.

85

DVI
(VBI)

DVI2

VBI

CC

VBI1 Audio

Audio
Hardware

Video
Hardware

Periodic: 60 per sec.

Response: < 1.0 ms.

DVI
(CC)

VBI0

Compression
Hardware

Response: 22 - 28 ms.

Network
(transfer)

Network
(TC)

Network
(misc)

Initiate Send

Packet
Transfer

Transmit
Complete

Network
Hardware

Network
Hardware

Network
Hardware

YARTOS
Periodic Task

Periodic: 30 per sec.

Response: < 1.0 ms.

Response: > 1.0 ms

Response: < 1.0 ms.

Timer

User Tick

Keyboard
Check

Screen
Output

PS/2 Timer

Periodic: 18.2 per sec.

Rate: 1/9

Rate: 1/2 Rate: 1/2

Rate: 1/4

Hardware Device

Application Task

Interrupt Handler

Message

Interrupt

Device Request

Figure 4-4: An Alternative View of the Acquisition-Side Architecture

86

4.5.1 Estimating Execution Costs

I begin by estimating an upper bound on execution time for each interrupt handler and

application task in the system. In general, obtaining a reasonable upper bound on these

costs is a very difficult problem. One approach used by Park and Shaw [39] used a

modified compiler to instrument tasks in order to provide data for an analytic approach

defined by Shaw in [48]. Such efforts are beyond the scope of the dissertation. However,

the set of tasks and interrupt handlers in the video conferencing application are quite

simple. When the application is executing normally (i.e., successfully acquiring and

transmitting every frame), most tasks execute a fixed sequence of instructions (i.e., to

move buffers between shared queues and to control hardware operations). Furthermore,

this sequence of instructions is the longest path through the task.

Task or Handler Type Execution Cost (ticks) Average Cost

(ticks)

DVI Handler 398 278

DVI2 Handler 218 177

TIMER Handler 303 235

NETWORK Handler 464 296

VBI Task 472 364

VBI0 Task 1213 720

VBI1 Task 904 820

Audio Task 1102 1010

CC Task 603 464

Transmit Complete Task 279 210

Packet Transfer Task 10262 9614

Initiate Send Task 1004 918

User Tick Task 212 126

Keyboard Check Task 800 634

Screen Output Task 206 189

Figure 4-5: Execution Costs (1193 ticks per ms.)

Thus, for each of the application tasks and interrupt handlers in the application, it is

reasonable to use empirical measurements of the performance of the application under

normal conditions to obtain an estimate of an upper bound on execution time. To support

measurement of execution costs, the YARTOS kernel has been instrumented to record

87

execution time statistics. For each task and interrupt handler, YARTOS records a

histogram of execution times along with the minimum, maximum, and average execution

times. To obtain the upper bounds on execution cost used here, I ran the conferencing

application for 10 minutes (i.e., processing 36000 audio frames and 18000 video frames)

and chose the maximum recorded execution time for each task and interrupt handler. The

resulting estimates of execution cost are presented in Figure 4-5. For comparison, I also

provide the average execution cost for each task and interrupt handler; in most cases the

average and the maximum cost are quite similar.

In the execution of the conferencing application, I also determined two other values.

First, I determined an upper bound on the length of an interval in which the processor can

execute continuously with interrupts disabled; during the run, the longest interval during

which the processor executed continuously with interrupts disabled was 160 ticks (i.e., the

value of kernel used in calculating block terms will be 160). I also determined the actual

processor utilization of the system, defined as the fraction of the time during which

interrupt handlers and application tasks were executed; the resulting utilization

measurement was approximately 47%.

4.5.2 Estimating Minimum Interarrival Times

The next step in the development of the formal model is to use the principles laid out

earlier in the chapter to determine minimum interarrival times for each of the logical

interrupt handlers and application tasks in the system. Because the minimum interarrival

times of tasks and handlers often depend on those assigned to other tasks or handlers, I

proceed by traversing the graph given in Figure 4-4 in topological order beginning with

the high-priority periodic interrupts (see Section 2.3). For each hardware interrupt, I

determine the maximum time required to complete execution of the interrupt handler. For

each task and logical interrupt handler in the graph, I determine its minimum interarrival

time. For each request-response interrupt in the graph, I determine the number of copies

of the interrupt handler that must be included in the formal model. Note that throughout

this discussion, time will be measured in ticks (recall that there are 1,193,180 ticks per

second).

• TIMER . IRQ0 is a periodic interrupt raised every 65,536 ticks. Thus,
the minimum interarrival time of the TIMER interrupt handler is

aTIMER = 65 536,

88

IRQ0 is the highest priority interrupt and is not overloaded. Thus

B

MP
TIMER

TIMER

= − =
= ∅

kernel 1 159

Therefore, the maximum time required to complete execution of the
interrupt hander is given by equation (4.7)

E t B e t

t t

TIMER TIMER TIMER= > + =

= > + =
=

min

min

0

0159 303

462

c h

b g

• user_tick. This task is invoked by messages from the TIMER interrupt
handler. Thus, its minimum interarrival time is

p a Euser_ tick TIMER TIMER= − = 65 074,

• keyboard_check. This task is invoked every 9th execution of the
user_tick task. Thus, its minimum interarrival time is

p pkeyboard _check user_ tick= =9 585 666,

• screen_output. This task is invoked every 4th execution of the
keyboard_check task. Thus, its minimum interarrival time is

p pscreen _output keyboard _check= =4 2 342 664, ,

• DVI/VBI . The VBI logical interrupt is a periodic interrupt raised by the
ActionMedia hardware every 19,886 time units (60 times per sec.). Thus,
the minimum interarrival time of the logical interrupt handler is

aDVI/VBI = 19 886,

The VBI logical interrupt corresponds to the IRQ9 hardware interrupt,
which is an overloaded hardware interrupt raised in response to both VBI
logical interrupts and CC logical interrupts. IRQ9 is lower priority than
IRQ0. Thus

overload e

B overload

MP

DVI/VBI DVI

DVI/VBI DVI/VBI

DVI/VBI TIMER

= =

= − − =

=

398

1 1 397max ,kernelc h

k p

89

Therefore, the maximum time required to complete execution of the
interrupt hander is given by equation (4.7)

E t B
t

a
e e t

t
t

t

DVI/VBI DVI/VBI
TIMER

TIMER DVI= > +
L

M
M

O

P
P + =

F

H
G

I

K
J

= > + L
MM

O
PP

+ =
F

HG
I

KJ

=

min

min
,

,

0

0 397
65 536

303 398

1 098

• VBI . This task is invoked by messages from the DVI/VBI logical
interrupt handler. Thus, its minimum interarrival time is

p a EVBI DVI/VBI DVI/VBI= − = 18 788,

• VBI0 . This task is invoked every 2nd execution of the VBI task. Thus, its
minimum interarrival time is

p pvbi0 vbi= =2 37 576,

• DVI/CC . The CC logical interrupt is a bounded-time request-response
interrupt requested by the VBI0 task. Lower and upper bounds on the
response time of requests for CC interrupts were given in Figure 4-4.
Converted to ticks, these bounds are:

α
ω

CC

CC

=
=

26 250

33 408

,

,

Theorem 4.4 can now be used to determine the minimum interarrival time.
For all n ≥ 1, this theorem defines a lower bound on the length of the
interval between the i th and i+nth occurrences of the interrupt. Choosing n
to be the smallest possible value for which the resulting minimum
interarrival time is reasonable, in this case n = 1, the minimum interarrival
time of the interrupt handler is

a p dDVI/CC VBI0 VBI0 CC CC= − − − =ω αb g 12 520,

By definition, each overloaded interrupt handler has the same completion
time, so

E EDVI/CC DVI/VBI= = 1 098,

90

• CC. This task is invoked by messages from the DVI/CC interrupt
handler. Thus, its minimum interarrival time is

p a ECC DVI/CC DVI/CC= − = 11 422,

• VBI1 . This task is invoked every 2nd execution of the VBI task. Thus, its
minimum interarrival time is

p pVBI1 VBI= =2 37 576,

• audio. This task is invoked by the VBI task every time it executes. Thus,
its minimum interarrival time is given by

p paudio VBI= = 18 788,

• DVI2 . The DVI2 interrupt is a bounded-time request-response interrupt
requested by the audio task. Lower and upper bounds on the response
time of requests for DVI2 interrupts were given in Figure 4-4:

α
ω

DVI2

DVI2

=
=

0

1 193,

Again, choosing the n in Theorem 4.4 to be the smallest possible value for
which the resulting minimum interarrival time is reasonable, in this case
n = 2, the minimum interarrival time of the interrupt handler is

a p dDVI2 audio audio DVI2 DVI2= − − − =2 18 485ω αb g ,

Because this minimum interarrival time is based on the choice of n = 2,
two copies of the DVI2 interrupt handler are included in the formal
model. As a result, DVI2 is an overloaded interrupt (i.e., each of the two
copies is overloaded with the other). Because this interrupt handler
executes in response to the IRQ10 hardware interrupt, it has lower
priority than TIMER, DVI/VBI and DVI/CC. Thus

overload e

B overload

MP

DVI2 DVI2

DVI2 DVI2

DVI2 Timer, DVI / VBI, DVI / CC

= =

= − − =

=

218

1 1 217max ,kernelb g

k p

Therefore, the completion time is given by

91

E t B
t

a
e

t

a
e

t

a
e e t

t
t t t

t

DVI2 DVI2
TIMER

TIMER
DVI/VBI

DVI
DVI/CC

DVI DVI2= > +
L

M
M

O

P
P +

L

M
M

O

P
P +

L

M
M

O

P
P + =

F

H
G

I

K
J

= > + L
MM

O
PP

+ L
MM

O
PP

+ L
MM

O
PP

+ =
F
HG

I
KJ

=

min

min
, , ,

,

0

0 217
65 536

303
19 886

398
12 520

398 218

1 534

• initiate_send. This task is invoked periodically by YARTOS with a
period of 39,773 ticks. This task shares a resource with each application
task, so its minimum interarrival time is simply

pinitiate _send= 39 773,

• NETWORK/MISC . This logical interrupt is a bounded-time request-
response interrupt requested by the initiate_send task. Lower and
upper bounds on the response time of requests for this interrupt were
given in Figure 4-4:

α
ω

MISC

MISC

=
=

0

1 193,

Again, choosing the n in Theorem 4.4 to be the smallest possible value for
which the resulting minimum interarrival time is reasonable, in this case
n = 2, the minimum interarrival time of the interrupt handler is

a p dNETWORK /MISC initiate _send initiate_send MISC MISC= − − − =2 54 489ω αb g ,

Because this minimum interarrival time is based on the choice of n = 2,
two copies of the NETWORK/MISC interrupt handler are included in the
formal model. As a result, NETWORK/MISC is an overloaded interrupt.
Because this interrupt handler executes in response to the IRQ15
hardware interrupt, it has lower priority than TIMER, DVI/VBI, DVI/CC,
and DVI2. Thus

overload e

B overload

MP

NETWORK /MISC NETWORK

NETWORK /MISC NETWORK /MISC

NETWORK /MISC Timer, DVI / VBI, DVI / CC,DVI2

= =

= − − =

=

464

1 1 463max ,kernelc h

k p

Therefore, the completion time is given by

92

E t

B
t

a
e

t

a
e

t

a
e

t

a
e e t

t

t t

t t
t

NETWORK/MISC

NETWORK/MISC
TIMER

TIMER
DVI /VBI

DVI

DVI /CC
DVI

DVI2
DVI2 NETWORK

= >

+
L

M
M

O

P
P +

L

M
M

O

P
P +

L

M
M

O

P
P +

L

M
M

O

P
P + =

F

H

G
G
G
G
G

I

K

J
J
J
J
J

= >
+ L

MM
O

PP
+ L

MM
O

PP
+

L

MM
O

PP
+ L

MM
O

PP
+ =

F

H

G
G
G
G

I

K

J
J
J
J

=

min

min
, ,

, ,

,

0

2

0

463
65 536

303
19 886

398

12 520
398 2

18 485
218 464

2 462

• NETWORK/XFER . This logical interrupt is a bounded-time request-
response interrupt requested by the NETWORK/MISC interrupt handler.
I have not yet addressed the question of determining the minimum
interarrival time of such an interrupt. However, because an upper bound
on the completion time of the NETWORK/MISC handler is known, the
minimum interarrival time of the NETWORK/XFER interrupt handler can
be determined using a technique similar to that used to determine the
minimum interarrival time of a task invoked by an interrupt handler in
Section 4.4.1.

The minimum interval between successive NETWORK/XFER interrupts
occurs when two NETWORK/MISC interrupts are separated by their
minimum interarrival time, the first makes the request immediately before
it completes execution, and the second makes the request immediately.
Lower and upper bounds on the response time of requests for the
NETWORK/XFER interrupt were given in Figure 4-4:

α
ω

XFER

XFER

=
=

0

1 193,

Again, choosing the n in Theorem 4.4 to be the smallest possible value for
which the resulting minimum interarrival time is reasonable, in this case
n = 1, the minimum interarrival time of the interrupt handler is

a a ENETWORK /XFER NETWORK /MISC NETWORK /MISC XFER XFER= − − − =ω αb g 50 834,

Also, since two copies of the NETWORK/MISC interrupt handler are
included in the formal model, two copies of the NETWORK/XFER
interrupt handler must also be included in the formal model.

By definition, each overloaded interrupt handler has the same completion
time, so

93

E ENETWORK /XFER NETWORK /MISC= = 2 462,

• packet_transfer. This task is invoked by messages from the
NETWORK/XFER interrupt handler. Thus, its minimum interarrival time
is

p a Epacket _ transfer NETWORK /XFER NETWORK /XFER= − = 48 372,

Also, since two copies of the NETWORK/XFER interrupt handler are
included in the formal model, two copies of the packet_transfer
task must also be included in the formal model.

• NETWORK/TC . This logical interrupt is a bounded-request request-
response interrupt that is indirectly requested by the initiate_send
task. Because the initiate_send does not initiate a new network
transmission until the previous transmission completes, the task enforces a
bound of one outstanding transmit request. A lower bound on the
response time of requests for this interrupt was given in Figure 4-4. Thus,

b =
=

1

1 193αTC ,

Because this is a bounded-request interrupt, Theorem 4.6 can now be
used to determine the minimum interarrival time. Choosing the n in the
theorem to be the smallest possible value for which the resulting minimum
interarrival time is reasonable, in this case n = 3, the minimum interarrival
time of the interrupt handler is

a b p dNETWORK /TC initiate_send initiate_send TC= − − + =3 56 875a f α ,

Because this minimum interarrival time is based on the choice of n = 3,
three copies of the NETWORK/TC interrupt handler are included in the
formal model.

By definition, each overloaded interrupt handler has the same completion
time, so

E ENETWORK /TC NETWORK /MISC= = 2 462,

• transmit_complete. This task is invoked by messages from the
NETWORK/TC interrupt handler. Thus, its minimum interarrival time is

p a Etransmit _complete NETWORK /TC NETWORK /TC= − = 54 413,

94

Also, since three copies of the NETWORK/TC interrupt handler are
included in the formal model, three copies of the
transmit_complete task must also be included in the formal model.

4.5.3 Using the Feasibility Test

Figure 4-6 summarizes the costs and minimum interarrival times for each logical interrupt

handler in the system, as well as the number of copies that should be included in the

model, and the upper bound on completion time determined above.

Name Cost Interarrival
Time

Copies Completion
Time

TIMER 303 65,536 1 462
DVI/VBI 398 19,886 1 1,098
DVI/CC 398 12,520 1 1,098
DVI2 218 18,485 2 1,534

NETWORK/MISC 464 54,489 2 2,462
NETWORK/XFER 464 50,834 2 2,462

NETWORK/TC 464 56,875 3 2,462

Figure 4-6: Summary of Interrupt Handlers (time in ticks)

Figure 4-7 summarizes the costs and minimum interarrival times for each application task

in the system, as well as the number of copies that should be included in the model, the

relative deadline of the task, and the minimum deadline among all the tasks that share a

resource with the task (labeled “minimum deadline”).

Name Cost Interarrival
Time

Relative
Deadline

Minimum
Deadline

Copies

user tick 212 65,074 39,773 23,864 1
keyboard 800 585,666 39,773 23,864 1

screen output 206 2,342,664 39,773 23,864 1
VBI 472 18,788 17,898 17,898 1
VBI0 1,213 37,576 17,898 9,545 1
CC 603 11,422 9,545 9,545 1

VBI1 904 37,576 17,898 17,898 1
audio 1,102 18,788 17,898 17,898 1

initiate send 1,004 39,773 23,864 9,545 1
packet transfer 10,262 48,372 39,773 23,864 2

TC 279 54,413 39,773 9,545 3

Figure 4-7: Summary of Application Tasks (time in ticks)

95

The information given in Figures 4-6 and 4-7 can now be used to define the formal model

of the application. Let τ be a task system with 12 interrupt handlers I I1 12,...,l q, 14

application tasks T T1 14,...,l q, and 21 resources R R1 21,...,l q. Figures 4-8, 4-9, and 4-10

define each of the interrupt handlers, application tasks, and resources.

Name e a Notes
I1 303 65,536 TIMER
I2 398 19,886 DVI/VBI
I3 398 12,520 DVI/CC
I4 218 18,485 DVI2 (2 copies)
I5 218 18,485
I6 464 54,489 NETWORK/MISC (2 copies)
I7 464 54,489
I8 464 50,834 NETWORK/XFER (2 copies)
I9 464 50,834
I10 464 56,875 NETWORK/TC (3 copies)
I11 464 56,875
I12 464 56,875

Figure 4-8: Formal Definitions of the Interrupt Handlers

Name c U d p Notes
T1 212 {R1} 39,773 65,074 user tick
T2 800 {R2} 39,773 585,666 keyboard check
T3 206 {R3} 39,773 2,342,664 screen output
T4 472 {R4} 17,898 18,788 VBI
T5 1,213 {R5,R15,R16,R17,R18} 17,898 37,576 VBI0
T6 603 {R6,R17,R18,R21,} 9,545 11,422 CC
T7 904 {R7,R15,R16} 17,898 37,576 VBI1
T8 1,102 {R8,R19,R20} 17,898 18,778 audio
T9 1,004 {R1,R2,R3,R4,

R5,R6,R7,R8,
R9,R10,R11,R12,
R13,R14,R20,R21}

23,864 39,773 initiate send

T10 10,262 {R9} 39,773 48,372 packet transfer (2 copies)
T11 10,262 {R10} 39,773 48,372
T12 279 {R11,R14,R17,R19} 39,773 54,413 TC (3 copies)
T13 279 {R11,R14,R17,R19} 39,773 54,413
T14 279 {R11,R14,R17,R19} 39,773 54,413

Figure 4-9: Formal Definitions of the Application Tasks

96

Name Notes
R1 - R13 Implicit resources for initiate_send

R14
transmit_queue

R15 next_digitize queue
R16 compress_source queue
R17 pool of free compress buffers
R18 compress_sink queue
R19 pool of free audio buffers
R20 transmit_audio queue
R21 transmit_video queue

Figure 4-10: Formal Definitions of the Resources

Recall Theorem 3.5. The achievable processor utilization is defined as

Ψτ = +
= =
∑ ∑c

p

e

a
i

ii

n
i

ii

m

1 1

Let

B
e cii

m

ii

n

τ
τ

=
+

−
= =∑ ∑1 1

1 Ψ

and let P kp d kp d B k i ni i i i= + + ≤ ∧ ≥ ∧ ≤ ≤ ∪τ 0 1 0m r k p . Then, if Ψτ < 1, τ will be

feasible if the following two conditions hold.

1) ∀ ∈L L P,

L f L L ci i
i

n

− ≥ ⋅
=
∑() ()δ

1

2) ∀ ≤ ≤ ∀ < <i i n L D L di i, , ,1

L f L c L ci j j
j

n

− ≥ + − ⋅
=

∑() ()δ 1
1

For this task system, the achievable processor utilization is:

Ψτ = 0 8023.

and the upper bound for which Condition 1 of the feasibility test must be checked is

Bτ = 165 213,

97

The result of checking the first condition is shown in Figure 4-11. This graphs the

function

C L L f L L ci i
i

n

1
1

a f = − − ⋅∑
=

() ()δ

for all 0 ≤ ≤L Bτ . It is the case that Condition 1 holds only if C L1a f is at least 0

throughout this interval (although it is sufficient to test the condition only at multiples of

the minimum interarrival times of tasks).

C L1a f

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

L

Figure 4-11: Graph of Condition 1 (0 165 213≤ ≤L ,)

Condition 2 must be tested for each application task in the system. However, for a

number of tasks, the relative deadline of the task is equal to the minimum deadline of the

set of tasks it shares resources with (i.e., d Di i=). As a result, for these tasks, the range

of L in Condition 2 is void, and thus the condition holds trivially. This is the case for the

VBI , CC, VBI1 , and audio tasks. For the remaining tasks, Figures 4-12 through 4-18

graph the function

C i L L f L c L ci j j
j

n

2
1

1, () ()a f = − − − − ⋅∑
=

δ

for all D L di i< < . It is the case that Condition 2 holds only if C i L2(,) is always greater

than or equal to 0 in this interval.

98

C i L2 ,a f

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000 30000 35000 40000

L

Figure 4-12: Graph of Condition 2 for Vbi0 Task (9 545 17 898, ,< <L)

C i L2 ,a f

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000 30000 35000 40000

L

Figure 4-13: Graph of Condition 2 for Initiate Send Task (9 545 23 864, ,< <L)

C i L2 ,a f

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000 30000 35000 40000

L

Figure 4-14: Graph of Condition 2 for Packet Transfer Task (23 864 39 773, ,< <L)

99

C i L2 ,a f

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000 30000 35000 40000

L

Figure 4-15: Graph of Condition 2 for Transmit Complete Task (9 545 39 773, ,< <L)

C i L2 ,a f

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000 30000 35000 40000

L

Figure 4-16: Graph of Condition 2 for User Tick Task (23 864 39 773, ,< <L)

C i L2 ,a f

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000 30000 35000 40000

L

Figure 4-17: Graph of Condition 2 for Keyboard Check Task (23 864 39 773, ,< <L)

100

C i L2 ,a f

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000 30000 35000 40000

L

Figure 4-18: Graph of Condition 2 for Screen Output Task (23 864 39 773, ,< <L)

Thus, Conditions 1 and 2 hold for the task system τ and thus the task system is feasible.

From this, I conclude that invocations of the application tasks comprising the acquisition-

side of the application always execute to completion prior to their deadlines and that the

tasks that share resources adhere to the required mutual exclusion constraints.

4.6 Summary

In this chapter, I have developed a formal model of acquisition-side of the workstation-

based videoconferencing application. The key problem that was addressed in developing

this formal model was that of determining the minimum interarrival time of each interrupt

handler and application task. To solve this problem, I developed a set of techniques for

determining the minimum interarrival time of interrupts and a set of rules for determining

the minimum interarrival time of application tasks that are invoked by messages sent from

interrupt handlers. Finally, I applied the feasibility test developed in Chapter 3 to the

formal model in order to demonstrate that the application tasks comprising the acquisition-

side of the application always execute to completion prior to their deadlines and that the

tasks that share resources adhere to the required mutual exclusion constraints.

101

Chapter V
Analysis of the Delay Bound

5.1 Introduction

In Chapter 3 I developed a feasibility test for an abstract model of real-time systems that

matched the programming model of YARTOS. In Chapter 4, I used this test to show that

the application tasks comprising the workstation-based video conferencing application

described in Chapter 2 always execute to completion prior to their deadlines and that the

tasks that share resources adhere to the required mutual exclusion constraints. In this

chapter, I present an axiomatic specification of the application in which these properties

are included as axioms. From this specification, I derive a theorem showing that every

video frame generated by the ActionMedia hardware is acquired and compressed, and that

the delay experienced by video frames during processing on the acquisition-side is

bounded.

The acquisition-side delay experienced by a video frame is precisely defined as the

interval between two events: the VBI logical interrupt that occurs at the start of

digitization of the frame and the time the frame is placed on the transmit_video

queue (see Section 2.5.3). In this chapter, I will demonstrate that 100 ms. (i.e., 6 times

the period of the VBI logical interrupt) is an upper bound on the acquisition-side side

delay experienced by each video frame.

Throughout the axiomatic specification of the application presented in this chapter, I take

advantage of the deadline and mutual exclusion properties that were shown in Chapter 4.

These properties are used both explicitly and implicitly. Explicitly, the fact that each task

invocation completes execution prior to a deadline is used to show that each task

invocation executes within a well-defined interval. In addition, the mutual exclusion

property is used to show that several pairs of operations execute in mutual exclusion.

These assumptions are also used implicitly. The fact that tasks that share resources

execute in mutual exclusion ensures that the effect of a task invocation can be modeled in

isolation, without interference from other tasks. In addition, the model contains few

assumptions about the order in which task invocations execute: the only assumptions are

that task invocations complete prior to their deadline and that tasks that share resources

execute in mutual exclusion.

It should be noted that the model presented in this chapter is not complete, in the sense

that the axioms presented do not represent all aspects of the behavior of the system.

Rather, only the axioms that are necessary to show the desired properties are presented.

As an example, it will be shown that, in most cases, the state conditions used in

conditional statements will always hold when the conditional statement executes. Thus,

for most conditional statements, axioms will be included in the model that represent the

effect of executing the body of the conditional statement, while axioms representing the

effect of not executing the body of the statement are omitted.

The axiomatic specification of the application presented in this chapter uses a formal

language developed by Jahanian and Mok called RTL (Real-Time Logic) [22]. In Section

5.2, I describe the RTL notation. In Section 5.3, I define the basic concepts that will be

used to develop an RTL model of the application. In Section 5.4, I describe the properties

of the application that I would like to show, frame these properties as a correctness

condition, and present the RTL expression representing this condition. In Section 5.5, I

present RTL axioms that represent a number of basic properties of the application. In

Section 5.6, I present the axioms that formalize the descriptions of the application tasks

given in Section 2.5.9. Finally, in Section 5.7, I develop the proof of the correctness

condition from the axiomatic specification presented earlier in the chapter.

5.2 Overview of Real-Time Logic

RTL is a formal language used to reason about occurrences of events. In this section, I

present a subset of RTL sufficient to reason about the events that occur during execution

of the workstation-based video conferencing application and to specify the properties of

the application I wish to demonstrate.

RTL is a first-order logic. As such, formulas of RTL are formed from constants,

variables, functions, predicates, universal and existential quantifiers and first-order logical

connectives. There are three types of constants in RTL: integers, actions, and events.

Variables range over integer, action and event constants. Functions include standard

integer arithmetic functions (i.e., addition, subtraction, etc.), and the occurrence function

103

(explained below). Predicates include standard integer comparison predicates (i.e.,

equality, less than, etc.).

Action constants in an RTL specification of a system represent operations, or groups of

operations, that are performed during execution of the system. For example, an action

constant might represent the execution of a particular assignment statement or the

execution of a subroutine. Actions can also be composite, in the sense that one action

may be performed as part of another action. In the specification of the application given

later in the chapter, the set of action constants includes constants representing both the

execution of primitive operations (e.g., the execution of a digitize operation) and the

execution of entire application tasks (e.g., the execution of the VBI task).

Event constants in RTL can be divided into three types: external events, start events, and

stop events. External events model events generated by processes external to the system

being specified (i.e., an interrupt). An external event constant is denoted ΩE where E is

the name of the external event. Start and stop events model the events corresponding to

the initiation and completion of actions. A start event for an action A is denoted ↑A and a

stop event for the action is denoted ↓A.

Time is included in RTL by means of the occurrence function. Time is represented by

positive integers (throughout the specification in this chapter, time will be represented in

ticks as defined in Chapter 4). The occurrence function is a mapping from an event and a

positive integer i to a positive integer representing the time of the i th occurrence of the

event. The occurrence function is denoted @(E,i).

As an example of an RTL specification, consider a system that includes a timer interrupt

generated every 10 ticks, and a task that executes in response to the timer interrupt.

Assume the task is guaranteed to complete within 6 ticks. Let ΩTIMER be the event

corresponding to the timer interrupt, and let TASK be the action corresponding to the

execution of the task. Thus, ↑TASK and ↓TASK are the start and stop events

corresponding to the start and completion of the task. The timer interrupt can be modeled

with the axiom

@(ΩTIMER,i) = 10i

That is, the i th timer interrupt occurs at time 10i. The execution of the task can be

modeled with the axiom

104

 @(↑TASK,i) ≥ @(ΩTIMER,i)
∧ @(↓TASK,i) ≤ @(ΩTIMER,i) + 6

That is, the i th invocation of TASK starts execution sometime at or after the i th timer

interrupt and completes execution within 6 ticks after the i th timer interrupt.

The above description of the RTL subset that will be used in the remainder of the chapter

has left out several concepts present in the original definition of RTL given by Jahanian

and Mok in [22]. In full RTL, a fourth kind of event constant and another kind of

predicate are included. Transition events and state predicates are used to model

assertions about the state of a system during an interval. For my purposes, these concepts

are not necessary and thus have been omitted.

5.3 Basic Concepts

5.3.1 Symbolic Constants

I begin the specification with a discussion of several symbolic constants that will be used

throughout the remainder of the chapter. These symbolic constants are listed in Figure 5-

1 and represent several values, such as task minimum interarrival times and task deadlines,

that were specified in the task declarations given in Section 2.5.9 or determined in Section

4.5.2.

Name Value Explanation
dvi_delay 1,098 Max. completion time of DVI handler
vbi_period 19,886 Period of VBI logical interrupt

vbi_deadline 17,898 Relative deadline of VBI task
vbi0_deadline 17,898 Relative deadline of VBI0 task
vbi1_deadline 17,898 Relative deadline of VBI1 task
cc_deadline 9,545 Relative deadline of CC task

compress_request 33,409 Max. time to complete compression operation
digitize_buffers 3 Max. buffers to hold digitized video frames

compress_buffers 10 Max. buffers to hold compressed frames
max_transport 8 Max. buffers in transport system

Figure 5-1: Symbolic Constants

I choose to represent these values symbolically both to clarify the presentation and to

decouple the analysis presented here from the specific deadlines, etc., chosen in earlier

chapters. However, what will be required here is that certain relationships between the

values of the symbolic constants hold. These are listed in Figure 5-2.

105

digitize_buffers ≥ 3
compress_buffers ≥ max_transport + 2

compress_request ≤ 2⋅vbi_period
dvi_delay + vbi_deadline ≤ vbi_period
dvi_delay + vbi0_deadline ≤ vbi_period
dvi_delay + vbi1_deadline ≤ vbi_period
dvi_delay + cc_deadline ≤ vbi_period

Figure 5-2: Relationships Among Symbolic Constants

5.3.2 Action Constants

There are six groups of action constants in the RTL model of the application: task

actions, subtask actions, message actions, queuing actions, memory management actions,

and video frame processing actions. The task actions represent the execution of

application tasks. The first four represent the tasks that are involved in the acquisition and

compression of video frames: VBI , VBI0 , VBI1 , and CC (see Section 2.5). The action

names used to represent these tasks are listed in Figure 5-3.

Task Action
VBI vbi_task
VBI0 vbi0_task
VBI1 vbi1_task
CC cc_task

transmit_complete tc_task

Figure 5-3: Task Actions

Subtask actions represent the execution of a group of statements within an application

task. In the RTL model of the application, only the VBI1 task is assumed to contain

subtasks. This task has two subtasks defined by the two “if” statements (see Figure 2-22).

The action names used to represent these subtasks are listed in Figure 5-3.

Task Subtask 1 Subtask 2
vbi1_task vbi1_part1 vbi1_part2

Figure 5-3: Subtask Actions

The message actions represent the execution of send_message system calls (see

Section 2.4.2). Recall that each time an application task receives a message, an invocation

of the task is created and assigned a logical arrival time (see Section 2.4.5). In the model,

both the actual arrival time and the logical arrival time of each message must be

106

represented. Thus, for each send_message call in the application, two actions are

included in the model: a send action, and a logical send action. The send action

represents the actual execution of the send_message call. The logical send action is

artificial; it is assumed to have occurred at the logical arrival time of the message. Figure

5-5 lists the message actions.

Receiving Task Send Action Logical Send Action
vbi_task send_vbi logical_send_vbi
vbi0_task send_vbi0 logical_send_vbi0
vbi1_task send_vbi1 logical_send_vbi1
cc_task send_cc logical_send_cc

Figure 5-5: Message Actions

The queuing actions represent the execution of insert_queue and remove_queue

operations (see Section 2.5.1). For each queue in the application that holds digitize

buffers or compress buffers (i.e., a video frame), two actions are included in the model:

one that represents inserting a buffer on the queue, and one that represents removing a

buffer from the queue. The queuing actions are listed in Figure 5-6.

Queue Insert Queue Action Remove Queue Action
next_digitize put_next_digitize get_next_digitize

digitizing put_digitizing get_digitizing
compress_source put_compress_source get_compress_source
compress_sink put_compress_sink get_compress_sink
video_transmit put_transmit get_transmit

Figure 5-6: Queuing Actions

The memory management actions represent the execution of allocate and free

operations for buffers used to hold video frames (see Section 2.5.1). For both digitize

buffers and compress buffers, two actions are included in the model: one representing an

allocate operation for that kind of buffer, and one representing a free operation for

that kind of buffer. These actions are listed in Figure 5-7.

Data Type Allocate Action Free Action
digitize buffers alloc_digitize free_digitize

compress buffers alloc_compress free_compress

Figure 5-7: Memory Management Actions

107

Video frame processing actions represent the execution of digitize and

start_compress operations (see Section 2.5.1). These operations initiate the

digitization and compression of video frames by the ActionMedia hardware. These

actions are listed in Figure 5-8.

Operation Video Frame Processing Action
digitize digitize

start_compress compress

Figure 5-8: Video Frame Processing Actions

5.3.3 Event Constants

The RTL model of the application includes a number of event constants. First, the model

includes a start event and a stop event for each of the actions listed above. In addition, the

model includes two external events corresponding to the VBI logical interrupt and the CC

logical interrupt. These external events are listed in Figure 5-9.

Logical Interrupt External Event
VBI ΩVBI
CC ΩCC

Figure 5-9: External Events

5.3.4 Frame Numbers

As discussed in Chapter 2, a video frame is acquired and digitized by the ActionMedia

hardware over an interval of approximately 33 ms. In particular, a new frame is acquired

and digitized over an interval between two even-numbered VBI logical interrupts.

Throughout the remainder of the chapter, I will refer to individual video frames using a

frame number that is defined based on the index of the VBI interrupt corresponding to the

start of the interval in which the frame was acquired. Specifically, frame number i refers

to the video frame acquired between times @(ΩVBI,2i) and @(ΩVBI,2i+2).

With the occurrence function, I am able to reason about the time at which operations

execute; for example I can compare the time of the i th digitize operation to the time of

the j th compress_start operation. However, I will often wish to reason about the

relationship between several operations performed on a particular frame. In order to

capture the correspondence between frame numbers and the operations performed on

those frames, I define a pair of mappings:

108

frame : (action, i) → frame number

index : (action, frame number) → i

For each queuing action and video frame processing action, frame maps the action and a

positive integer i to the frame number of the frame operated on by the i th occurrence of the

action. It is often used in expressions of the following form:

 frame (action1, i) = n
⇒
 frame (action2 , i) = n

That is, if the i th occurrence of action1 operated on frame n, then the i th occurrence of

action2 also operated on frame n.

Index is the inverse mapping of frame. For each queuing action and video frame

processing action, it maps the action and a frame number j to i if and only if the i th

occurrence of the action was performed on the frame with frame number j. This mapping

is often used in expressions of the following form:

@(↓action,index(action,n)) < t

That is, the time at which action was completed on the frame with frame number n was

less than t.

5.4 Correctness Conditions

In this section, I give an RTL specification of the conditions that must hold for a video

frame to be correctly acquired, compressed, and readied for transmission over the network

(see Section 2.5.3). Most of these conditions are constraints on the timing and ordering of

operations (e.g., the compression of a frame cannot begin until digitization is complete).

If these conditions do not hold, then frames will be discarded or corrupted. In addition, I

add one more correctness constraint: the processing delay incurred by the video frame

must be bounded.

As described in Section 2.5.3, the ActionMedia hardware continuously acquires and

digitizes video frames, and writes the digitized data into a digitize buffer specified by the

application. The application specifies a new buffer by executing a digitize operation

in response to an odd-numbered VBI interrupt. At the next VBI interrupt, the hardware

begins writing into the specified buffer. For the video frame to be acquired correctly, the

109

ActionMedia hardware must continue to write data to the buffer until the next even-

numbered VBI interrupt. For frame i, this is the interval between @(ΩVBI,2i) and @(Ω
VBI,2i+2).

Thus, in order to ensure that frame i is acquired correctly, the application must execute

two digitize operations. The first must be executed in the interval between @(Ω
VBI,2i-1) and @(ΩVBI,2i) and must specify the digitize buffer into which frame i is to be

written. If the digitize operation is executed earlier, then data that is not part of

frame i will be written to the buffer; if it is executed later, then some of the data for frame

i will be written to a different buffer (i.e., the buffer that was passed to the ActionMedia

hardware by the previous digitize operation). Expressed in RTL, this condition is

 @(↑digitize, index (digitize,i)) > @(ΩVBI,2i-1)
∧ @(↓digitize, index (digitize,i)) ≤ @(ΩVBI,2i)

The second digitize operation that must be executed in order to ensure that frame i is

correctly acquired must occur in the interval between @(ΩVBI,2i+1) and @(ΩVBI,2i+2)

and must specify a new buffer to hold frame i+1. If this digitize operation is executed

any earlier, then some of the data for frame i will be written to the new buffer; if it

executes any later, then some of the data for frame i will be overwritten by data from

frame i+1. Expressed in RTL, this condition is

∃j [@(↑digitize,j) > @(ΩVBI,2i+1)
 ∧ @(↓digitize,j) ≤ @(ΩVBI,2i+2)]

Finally, the application may not execute any other digitize operations in the interval

between @(ΩVBI,2i-1) and @(ΩVBI,2i+1). If it did, then some of the data for frame i

would be written to the newly specified buffer. Expressed in RTL, this condition is

~∃j [j ≠index (digitize,i)
 ∧ @(↑digitize,j) > @(ΩVBI,2i-1)
 ∧ @(↓digitize,j) ≤ @(ΩVBI,2i+1)
]

For a frame to be compressed correctly, we need to ensure that the start_compress

operation does not occur until the digitization is complete. For frame i, this condition is

expressed in RTL as

@(↑compress, index (compress,i)) ≥ @(ΩVBI,2i+2)

110

Next, a frame should not be placed on the transmit_video queue until compression

has finished. For frame i, this condition is expressed in RTL as

@(↑put_transmit, index (put_transmit,i)) ≥ @(ΩCC,index (compress,i))

Finally, the acquisition-side delay of a video frame should be bounded. Recall that the

acquisition-side delay is defined as the length of the interval between two events: the VBI

logical interrupt that occurs at the start of digitization of the frame and the time the frame

is placed on the transmit queue. In the remainder of the chapter, I will show that this

condition can be shown for a bound of 6⋅vbi_period. For frame i, this condition is

expressed in RTL as

@(↓put_transmit, index (put_transmit,i)) - @(ΩVBI,2i) ≤ 6 ⋅vbi_period

Altogether, an RTL specification of the conditions that must hold for video frame i to be

correctly acquired, compressed, and readied for transmission, with bounded delay, is the

conjunction of the above conditions. The full correctness condition is listed in Figure 5-

10.

 @(↑digitize, index (digitize,i)) > @(ΩVBI,2i-1)
∧ @(↓digitize, index (digitize,i)) ≤ @(ΩVBI,2i)
∧ ∃j [@(↑digitize,j) > @(ΩVBI,2i+1)
 ∧ @(↓digitize,j) ≤ @(ΩVBI,2i+2)]
∧ ~ ∃j [j ≠index (digitize,i)
 ∧ @(↑digitize,j) > @(ΩVBI,2i-1)
 ∧ @(↓digitize,j) ≤ @(ΩVBI,2i+1)
]
∧ @(↑compress, index (compress,i)) ≥ @(ΩVBI,2i+2)
∧ @(↑put_transmit, index (put_transmit,i)) ≥ @(ΩCC,index (compress,i))
∧ @(↓put_transmit, index (put_transmit,i)) - @(ΩVBI,2i) ≤ 6 ⋅vbi_period

Figure 5-10: Correctness Condition for a Video Frame

5.5 Basic Axioms and Theorems

In this section, I begin presenting the axioms that model the behavior of the application.

In a number of cases, the model of the application includes a set of axioms that have the

same form, but are defined for different actions. For example, corresponding to each

action in the model, there is an axiom that represents the fact that the action starts before

it completes. For the digitize action, this axiom is

@(↑digitize,i) < @(↓digitize,i)

111

To simply the presentation, I will present the set of axioms of this form as a single

“generic” axiom. That is, in the description below, I present the following axiom and

specify that it is defined for each of the actions in Figures 5-3 through 5-8:

@(↑action ,i) < @(↓action ,i)

The interpretation of this is that a set of axioms should be included in the model, with the

bold-faced name action instantiated by each specified action.

In addition to the axioms presented in this section, I derive several theorems that will be

used throughout the remainder of the chapter. These theorems are also presented as

“generic theorems” that are instantiated for a number of actions.

5.5.1 Actions

The first two generic axioms in the RTL model of the application represent two simple

constraints on the execution of each action. Axiom 5.1 represents the fact that an action

starts before it completes. Axiom 5.2 represents the fact that the i+1st occurrence of an

action cannot start until the i th occurrence of the action completes. Thus for each of the

actions in Figures 5-3 through 5-8, axioms of the following form are included in the

model:

Axiom 5.1
@(↑action ,i) < @(↓action ,i)

Axiom 5.2
@(↓action ,i) ≤ @(↑action ,i+1)

From these axioms, I now derive a simple theorem that applies to all actions. Theorem

5.3 shows that for an action A and all i less than or equal to j, the i th instance of A begins

execution at or before the j th instance of A begins execution, and completes execution at or

before the j th instance of A completes execution.

112

Theorem 5.3
For each action in Figures 5-3 through 5-8, and for all i ≤ j

 @(↑action ,i) ≤ @(↑action ,j)
∧ @(↓action ,i) ≤ @(↓action ,j)

Proof: By induction on j.

Base case: Assume j = i. The theorem holds trivially.

Inductive case: Assume that the theorem holds for j ≤ k. By the inductive assumption,

Axiom 5.1, and Axiom 5.2

@(↑action ,i) ≤ @(↑action ,k)
 ≤ @(↓action ,k)
 ≤ @(↑action ,k+1) (5.1)

Similarly, by the inductive assumption, Axiom 5.2, and Axiom 5.1

@(↓action ,i) ≤ @(↓action ,k)
 ≤ @(↑action ,k+1)
 ≤ @(↓action ,k+1) (5.2)

Combining (5.1) and (5.2)

 @(↑action ,i) ≤ @(↑action ,k+1)
∧ @(↓action ,i) ≤ @(↓action ,k+1)

This proves the theorem. ¨

5.5.2 Frame Numbers

The next group of axioms deal with frame numbers and the rules used to associate frame

numbers with operations. The first axiom establishes a correspondence between

digitize operations, frame numbers, and VBI logical interrupts. Recall that a frame is

acquired by executing a digitize operation in response to an odd-numbered VBI

interrupt, and that the ActionMedia hardware begins writing a digitized frame to the

specified starting at the next VBI interrupt. Frame i is defined as the frame that is written

starting at time @(ΩVBI,2i). Thus, if the j th digitize completed in the interval @(Ω
VBI,2i-1) to @(ΩVBI,2i), then the frame acquired in response to the j th digitize

operation must be frame i. This is the rule represented by Axiom 5.4.

113

Axiom 5.4
[@(↓digitize,j) > @(ΩVBI,2i-1)
 ∧ @(↓digitize,j) ≤ @(ΩVBI,2i)]
⇒
 frame (digitize,j) = i

The next axiom establishes the FIFO property of the queues used in the application. Since

queues are FIFO, the i th remove_queue operation on a queue retrieves the data put into

the queue by the i th insert_queue operation. For each pair of queuing actions listed in

Figure 5-6, this property is included in the model with an axiom of the following form:

Axiom 5.5
frame (put_queue ,i) = frame (get_queue ,i)

Finally, recall that the index mapping is the inverse mapping of frame. To represent this

property, an axiom of the following form is included in the model for each queuing action

in Figure 5-6 and video frame processing action in Figure 5-8:

Axiom 5.6
frame (action ,i) = j ⇔ index (action ,j) = i

5.5.3 Hardware Interrupts

The next group of axioms models the behavior of the hardware interrupts and interrupt

handlers involved in the acquisition and compression of video frames. These interrupts are

the VBI logical interrupt and the CC logical interrupt, which are represented in the model

by the external events ΩVBI and ΩCC. The VBI logical interrupt is periodic; I will

assume that the first interrupt occurs at time 0, and successive interrupts occur

periodically every vbi_period time units. Thus, the behavior of the VBI interrupt is

captured by the axiom:

Axiom 5.7
@(ΩVBI,i) = (i-1) ⋅vbi_period

The CC logical interrupt occurs when the compression of a video frame is finished. The

compression of a frame is initiated by the compress action and is assumed to finish

within an interval defined by the symbolic constant compress_request (see Figure 5-1).

Thus, the behavior of the CC logical interrupt is captured by the axiom:

Axiom 5.8
 @(ΩCC,i) ≥ @(↓compress,i)
∧ @(ΩCC,i) ≤ @(↓compress,i) + compress_request

114

Both the VBI and CC logical interrupts are handled by the DVI interrupt handler. This

handler determines which logical interrupt has occurred and then sends a message to the

appropriate task (either the VBI or the CC task). As shown by the analysis performed in

Chapter 4, the DVI interrupt handler completes executes within an interval defined by the

symbolic constant dvi_delay (see Figure 5-1). Thus, if the DVI interrupt handler sends a

message, it will be sent within dvi_delay ticks after the interrupt. Furthermore, the logical

arrival time assigned to the receiving task will also be within dvi_delay ticks after the

interrupt (see Section 2.4.5).

Axiom 5.9 represents the execution of the DVI interrupt handler in response to a VBI

logical interrupt. The interpretation of this axiom is that two operations, a send action and

a logical send action, occur in the interval between the interrupt and the upper bound on

the time it must complete, [@(ΩVBI,i), @(ΩVBI,i) + dvi_delay].

Axiom 5.9
 @(↑send_vbi,i) ≥ @(ΩVBI,i)
∧ @(↓send_vbi,i) ≤ @(ΩVBI,i) + dvi_delay
∧ @(↑logical_send_vbi,i) ≥ @(ΩVBI,i)
∧ @(↓logical_send_vbi,i) ≤ @(ΩVBI,i) + dvi_delay

Axiom 5.10 represents the execution of the DVI interrupt handler in response to a CC

logical interrupt. Again, the interpretation of this axiom is that two operations, a send

action and a logical send action, occur in the interval between the interrupt and the upper

bound on the time it must complete, [@(ΩCC,i), @(ΩCC,i) + dvi_delay].

Axiom 5.10
 @(↑send_cc,i) ≥ @(ΩCC,i)
∧ @(↓send_cc,i) ≤ @(ΩCC,i) + dvi_delay
∧ @(↑logical_send_cc,i) ≥ @(ΩCC,i)
∧ @(↓logical_send_cc,i) ≤ @(ΩCC,i) + dvi_delay

5.5.4 Task Scheduling and Execution

The next group of axioms represent constraints on the execution of task invocations.

Recall that each task invocation executes in response to a message. Furthermore, as a

result of the analysis performed in Chapter 4, we know that each task invocation will

complete execution prior to its deadline. Thus, each time a task receives a message, the

task invocation will begin execution after it receives a message, and complete execution

prior to its logical arrival time plus its relative deadline. This property is represented by

Axiom 5.11. An instance of this axiom is defined for each triplet of receiving task, send

115

action, and logical send action listed in Figure 5-5. The bold-faced symbol task_deadline

should be instantiated with the relative deadline of the receiving task defined in Figure 5-1.

Axiom 5.11
 @(↑receiving_task ,i) ≥ @(↓send_action ,i)
∧ @(↓receiving_task ,i) < @(↓logical_send_action ,i) + task_deadline

5.5.5 Subtask Execution

The next axiom represents constraints on the execution of the subtasks of the VBI1 task.

Recall that the VBI1 task has two subtasks defined by the two “if” statements in its body

(see Figure 2-22). Each time an invocation of the VBI1 task executes, the two subtasks

execute in order. This property is represented by the following axiom:

Axiom 5.12
 @(↑vbi1_task,i) < @(↑vbi1_part1,i)
∧ @(↓vbi1_part1,i) < @(↑vbi1_part2,i)
∧ @(↓vbi1_part2,i) < @(↓vbi1_task,i)

5.5.6 Mutual Exclusion

When two tasks share a resource, those tasks are guaranteed not to preempt one another.

Thus, invocations of one task do not overlap with invocations of another task with which

it shares a resource. Thus, if task1 and task2 are tasks that share a resource, then the

following property can be asserted about the relationship between invocations of the tasks:

if the i th instance of task1 started execution before the j th instance of task2 started

execution, then it must also have completed execution before the j th instance of task2

started execution. This property can be included in the model with an axiom of the

following form:

Axiom 5.13
 @(↑task1 ,i) < @(↑task2 ,j)
⇒
 @(↓task1 ,i) < @(↑task2 ,j)

Figure 5-11 lists pairs of tasks for which Axiom 5.13 is defined.

vbi0_task cc_task
tc_task cc_task

Figure 5-11: Actions Performed in Mutual Exclusion

116

5.5.7 At-Most-Once Actions

The next group of axioms establishes some particularly useful properties of a set of actions

referred to as at-most-once actions. An at-most-once action is an action that is performed

in only one task (or subtask), and is executed at most once during a single invocation of

that task. Figure 5-12 lists each at-most-once action along with the task (or subtask) that

executes that action.

AMO Action Task AMO Action Task
send_vbi0 vbi_task get_compress_source vbi1_part1

logical_send_vbi0 vbi_task put_compress_sink vbi0_task
send_vbi1 vbi_task get_compress_sink cc_task

logical_send_vbi1 vbi_task put_transmit cc_task
put_next_digitize vbi1_part2 alloc_digitize vbi1_part2
get_next_digitize vbi0_task free_digitize vbi1_part1

put_digitizing vbi0_task alloc_compress vbi0_task
get_digitizing vbi0_task digitize vbi1_part2

put_compress_source vbi0_task compress vbi0_task

Figure 5-12: At-Most-Once Actions

This property can be included in the RTL model with three generic axioms defined for

each pair of AMO actions and tasks in Figure 5-12. Axiom 5.14 represents the fact that

the i th at-most-once action performed by a task cannot begin until the start of the i th

invocation of the task.

Axiom 5.14
@(↑amo_action ,i) > @(↑task ,i)

Axiom 5.15 represents the fact that if the i th at-most-once action performed by a task starts

after the j th invocation of the task completes, then it must actually start after the j+1st

invocation of the task begins execution.

Axiom 5.15
 @(↑amo_action ,i) ≥ @(↓task ,j)
⇒
 @(↑amo_action ,i) > @(↑task ,j+1)

Finally, Axiom 5.16 represents the fact that if the i th at-most-once action starts after the j th

invocation of the task, then the i+kth action cannot be performed until at least the start of

the j+kth invocation of the task.

117

Axiom 5.16
 @(↑amo_action ,i) > @(↑task ,j)
⇒
 @(↑amo_action ,i+k) > @(↑task ,j+k)

I now present a pair of simple and useful theorems for at-most-once actions. Theorem

5.17 shows that if the first at-most-once action A executed by a task T begins execution

after the j th invocation of T begins execution, and there is some k such that the kth instance

of A is performed by the j th invocation of T, then k must be one. Theorem 5.18 is similar;

if the i-1st instance of A is performed by the j-1st invocation of T, and if there is some k

such that the kth instance of A is performed by the j th invocation of T, then k must be i.

Theorem 5.17

For each pair of AMO actions and tasks in Figure 5-12,

 @(↑amo_action ,1) > @(↑task ,j)
 ∧ @(↑amo_action ,k) > @(↑task ,j)
 ∧ @(↓amo_action ,k) < @(↓task ,j)
⇒
 k = 1

Proof: Assume the l.h.s. of the implication. Since the second argument of the occurrence

function is defined to be a positive integer, it is the case that k ≥ 1. I now show that k = 1

by contradiction. Assume k ≥ 2. By Theorem 5.3

@(↑amo_action ,k) ≥ @(↑amo_action ,2)

By the l.h.s. of the theorem and Axiom 5.16, for all n

@(↑amo_action ,1+n) > @(↑task ,j+n)

Combining these facts yields equation (5.3).

@(↑amo_action ,k) ≥ @(↑amo_action ,2)
 > @(↑task ,j+1) (5.3)

However by Axiom 5.1, the l.h.s. of the theorem, and Axiom 5.2

@(↑amo_action ,k) < @(↓amo_action ,k)
 < @(↓task ,j)
 < @(↑task ,j+1)

which contradicts (5.3). Thus, k < 2. This proves the theorem. ¨

118

Theorem 5.18

For each pair of AMO actions and tasks in Figure 5-12, and for i > 1

 @(↑amo_action ,i-1) > @(↑task ,j)
 ∧ @(↓amo_action ,i-1) < @(↓task ,j)
 ∧ @(↑amo_action ,k) > @(↑task ,j+1)
 ∧ @(↓amo_action ,k) < @(↓task ,j+1)
⇒
 k = i

Proof: Assume the l.h.s. of the implication. By this assumption, and Axioms 5.2 and 5.1

@(↑amo_action ,k) > @(↑task ,j+1)
 > @(↓task ,j)
 > @(↓amo_action ,i-1)
 > @(↑amo_action ,i-1)

Thus, by the contrapositive of Theorem 5.3, k i> −1 and thus k ≥ i.

I now show that k = i by contradiction. Assume k i≥ +1. Then by Theorem 5.3

@(↑amo_action ,k) ≥ @(↑amo_action ,i+1)

By the l.h.s. of the theorem and Axiom 5.16, for all n

@(↑amo_action ,i-1+n) > @(↑task ,j+n)

Combining these facts yields equation (5.4)

@(↑amo_action ,k) ≥ @(↑amo_action ,i+1)
 > @(↑task ,j+2) (5.4)

However, by Axiom 5.1, the l.h.s. of the theorem, and Axiom 5.2

@(↑amo_action ,k)< @(↓amo_action ,k) < @(↓task ,j+1) < @(↑task ,j+2)

which contradicts (5.4). Thus, k i< +1. This proves the theorem. ¨

5.6 Task Descriptions

5.6.1 Representing Conditional Statements in RTL

In this section, I present the axioms the represent the effect of executing application tasks.

I begin with a discussion of the technique used to create an RTL representation of the

119

conditional statements used in the application tasks. Consider a conditional statement

executed by the i th invocation of a task.

if (condition) then
action

end if

If the condition is constrained such that its value cannot change between the start of the

task and the execution of the test, then this statement can be represented in RTL with the

following assertion (assuming condition is an RTL representation of an assertion that the

condition holds at the start of the task execution):

 condition
⇒
 ∃j [@(↑action ,j) > @(↑task ,i)
 ∧ @(↓action ,j) < @(↓task ,i)]

That is, a conditional statement is represented as an implication; the left-hand side is an

RTL representation of the condition and the right-hand side is an expression representing

the execution of the action by the task. Specifically, the expression on the right-hand side

can be interpreted as an assertion that for some j, the j th instance of action started

execution after the i th invocation of task started execution and completed before the i th

invocation of task finished execution.

Conditional statements within subtasks can be represented using the same technique. That

is, if the condition in a conditional statement is constrained such that its value cannot

change between the start of the subtask and the execution of the test, then the statement

can be represented using an assertion of the form given above, with subtask in place of

task.

The tasks and subtasks specified in this chapter use a number of conditional statements

that are based on state conditions. One common state condition is that the length of a

queue is greater than zero. If the queue is declared as a resource by each task that

accesses it, and any changes to the queue by the task (or subtask) in question occur after

the test of the state condition, then the value of the state condition will not change

between the time an invocation of the task starts execution and the time it executes the

conditional statement. An RTL expression that represents queue having non-zero length

when the i th invocation of task begins execution is:

∃j [@(↓put_queue ,j) ≤ @(↑task ,i)
 ∧ @(↑get_queue ,j) > @(↑task ,i)]

120

That is, the length of the queue is greater than zero at the time the i th invocation of task

begins execution if there is some j for which the j th insert_queue operation on the

queue has already occurred, and the j th remove_queue on the queue has not yet

occurred.

A state condition similar to the non-zero length of a queue is the non-empty state of a pool

of free buffers (as tested by the available operation). Again, if the pool of free buffers

is a resource, and the task (or subtask) in question does not allocate or free buffers before

the test of the state condition, then the value of the state condition will not change

between the time an invocation of the task starts execution and the time it executes the

conditional statement. If it is assumed that buffers is total number of buffers of type in

the system, then an RTL expression that represents a free buffer of type being available

when the i th invocation of task begins execution is:

 @(↑alloc_type , buffers) > @(↑task ,i)
 ∨
 ∃m [@(↑alloc_type ,m+buffers) > @(↑task ,i)
 ∧ @(↓free_type ,m) ≤ @(↑task ,i)]

That is, a buffer is available to be allocated under one of two conditions: the number of

buffers allocated prior to the start of the task is less than buffers, or the difference

between the number of buffers that have been allocated prior to the start of the task and

the number of buffers that have been free prior to the start of the task is less than buffers.

5.6.2 RTL Specification of the VBI Task

As shown in Figure 2-21, the VBI task alternates sending messages to the VBI1 and the

VBI0 tasks. On odd-numbered executions, it sends a message to the VBI1 task; thus, the

i th message to the VBI1 task is generated by the 2i-1st invocation of the VBI task. On

even-numbered executions it sends a message to the VBI0 task; thus the i th message to the

VBI0 task is generated by the 2i th invocation of the VBI task. One other issue must be

addressed in the specification of the VBI task: when a task invocation sends a message to

another task, the resulting task invocation is assigned a logical arrival time equal to the

logical arrival time of the sender (see Section 2.4.5). These properties of the VBI task are

represented in the model by a pair of Axioms, 5.19 and 5.20.

121

Axiom 5.19
 @(↑send_vbi1,i) > @(↑vbi_task,2i-1)
∧ @(↓send_vbi1,i) < @(↓vbi_task,2i-1)
∧ @(↓logical_send_vbi1,i) = @(↓logical_send_vbi,2i-1)

Axiom 5.20
 @(↑send_vbi0,i) > @(↑vbi_task,2i)
∧ @(↓send_vbi0,i) < @(↓vbi_task,2i)
∧ @(↓logical_send_vbi0,i) = @(↓logical_send_vbi,2i)

5.6.3 RTL Specification of the VBI0 Task

As shown in Figure 2-23, the VBI0 task consists of two conditional statements. In the

first conditional, several actions are taken if: 1) the digitizing queue is not empty,

and 2) a free compress buffer can be allocated. If these conditions hold, then a buffer is

removed from the digitizing queue and placed on the compress_source queue,

a new compress buffer is allocated and placed on the compress_sink queue, and a

start_compress operation is executed on the digitize buffer and the compress buffer.

Axiom 5.21 represents this conditional statement for the i th invocation of the VBI0 task.

The left-hand-side of the implication is the conjunction of the expressions described above

for representing the state conditions on the digitizing queue and the pool of free

compress buffers. The right-hand-side of the implication represents the fact that the set of

operations performed in the conditional occur during the execution of the i th invocation of

the VBI0 task. In addition, the right-hand-side of the implication equates the frames

numbers associated with each of the operations.

122

Axiom 5.21
 ∃j [@(↓put_digitizing,j) ≤ @(↑vbi0_task,i)
 ∧ @(↑get_digitizing,j) > @(↑vbi0_task,i)]
 ∧
 [@(↑alloc_compress, compress_buffers) > @(↑vbi0_task,i)
 ∨
 ∃m [@(↑alloc_compress,m+ compress_buffers) > @(↑vbi0_task,i)
 ∧ @(↓free_compress,m) ≤ @(↑vbi0_task,i)]
]
⇒
∃k∃f [@(↑get_digitizing,k) > @(↑vbi0_task,i)
 ∧ @(↓get_digitizing,k) < @(↓vbi0_task,i)
 ∧ frame (get_digitizing,k) = f
 ∧ @(↑put_compress_source,k) > @(↑vbi0_task,i)
 ∧ @(↓put_compress_source,k) < @(↓vbi0_task,i)
 ∧ frame (put_compress_source,k) = f
 ∧ @(↑alloc_compress,k) > @(↑vbi0_task,i)
 ∧ @(↓alloc_compress,k) < @(↓vbi0_task,i)
 ∧ @(↑put_compress_sink,k) > @(↑vbi0_task,i)
 ∧ @(↓put_compress_sink,k) < @(↓vbi0_task,i)
 ∧ frame (put_compress_sink,k) = f
 ∧ @(↑compress,k) > @(↑vbi0_task,i)
 ∧ @(↓compress,k) < @(↓vbi0_task,i)
 ∧ frame (compress,k) = f]

In addition, it will be necessary to consider the case where the digitizing queue is

empty when the VBI0 task begins execution. In this case, the get_digitizing

action and the alloc_compress action (among others) are not executed during the i th

invocation of the VBI0 task; in other words, all instances of these actions either complete

prior to the start of the i th invocation of the VBI0 task or begin after the completion of the

i th invocation of the VBI0 task. This fact is represented by the following axiom:

Axiom 5.22
 ~ ∃j [@(↓put_digitizing,j) ≤ @(↑vbi0_task,i)
 ∧ @(↑get_digitizing,j) > @(↑vbi0_task,i)]
⇒
 ∀k [@(↓get_digitizing,k) < @(↑vbi0_task,i)
 ∨ @(↑get_digitizing,k) > @(↓vbi0_task,i)]
 ∧
 [@(↓alloc_compress,k) < @(↑vbi0_task,i)
 ∨ @(↑alloc_compress,k) > @(↓vbi0_task,i)]

In the second part of the VBI0 task, a buffer is removed from the next_digitizing

queue and inserted on the digitizing queue if the next_digitizing queue is not

empty. Axiom 5.23 represents this conditional statement for the i th invocation of the

123

VBI0 task. The left-hand-side of the implication is an expression representing the state

condition on the next_digitizing queue. The right-hand-side of the implication

represents the fact that the set of operations performed in the conditional occur during the

execution of the i th invocation of the VBI0 task. In addition, the right-hand-side of the

implication associates the frame number of the frame removed from the

next_digitizing queue with the put_digitizing action.

Axiom 5.23
 ∃j [@(↓put_next_digitizing,j) ≤ @(↑vbi0_task,i)
 ∧ @(↑get_next_digitizing,j) > @(↑vbi0_task,i)]
⇒
 ∃k∃f [@(↑get_next_digitizing,k) > @(↑vbi0_task,i)
 ∧ @(↓get_next_digitizing,k) < @(↓vbi0_task,i)
 ∧ frame (get_next_digitizing,k) = f
 ∧ @(↑put_digitizing,k) > @(↑vbi0_task,i)
 ∧ @(↓put_digitizing,k) < @(↓vbi0_task,i)
 ∧ frame (put_digitizing,k) = f]

5.6.4 RTL Specification of the VBI1 Task

As shown in Figure 2-22, the VBI1 task consists of two conditional statements. Since the

test of the second conditional statement may depend on the execution of the first

conditional statement, the VBI1 task is divided into the two subtasks listed in Figure 5-3.

In the first subtask, a digitize buffer is removed from the compress_source queue and

freed if: 1) the compress_source queue is not empty, and 2) the compression of the

first frame on the queue has completed. In the pseudo-code shown in Figure 2-22, the

second test is performed by comparing the YARTOS eventcount of CC logical interrupts

to db_freed , a variable that counts the number of digitize buffers removed from the

compress_source queue and freed. This test will succeed if the number of

get_compress_source actions occurring prior to the start of the subtask is less than

the number of CC interrupts occurring prior to the start of the subtask, or equivalently, if

there is some j such that the j th CC interrupt occurred prior to the start of the subtask and

the j th get_compress_source occurs after the start of the subtask. This test can be

represented in RTL by the following expression:

∃j [@(↑get_compress_source,j) > @(↑vbi1_part1,i)
 ∧ @(ΩCC,j) ≤ @(↑vbi1_part1,i)]

124

Axiom 5.24 represents the effect of executing the first subtask during the i th invocation of

the VBI1 task. The left-hand-side of the implication is the conjunction of the two

conditions (combined into one) and the right-hand-side of the implication represents the

fact that the set of operations performed in the conditional occur during the execution of

the i th invocation of the subtask.

Axiom 5.24
∃j [@(↓put_compress_source,j) ≤ @(↑vbi1_part1,i)
 ∧ @(↑get_compress_source,j) > @(↑vbi1_part1,i)
 ∧ @(ΩCC,j) ≤ @(↑vbi1_part1,i)]
⇒
∃k [@(↑get_compress_source,k) > @(↑vbi1_part1,i)
 ∧ @(↓get_compress_source,k) < @(↓vbi1_part1,i)
 ∧ @(↑free_digitize,k) > @(↑vbi1_part1,i)
 ∧ @(↓free_digitize,k) < @(↓vbi1_part1,i)]

Axiom 5.25 represents the relationship between get_compress_source actions and

free_digitize actions. The get_compress_source action occurs during the

execution of the i th invocation of the VBI1 task if and only if the free_digitize

action occurs. Thus, if the j th free_digitize occurs after the start of the i th VBI1

task, then the j th get_compress_source also occurs after the start of the i th VBI1

task.

Axiom 5.25
 @(↑free_digitize,j) > @(↑vbi1_task,i)
⇒
 @(↑get_compress_source,j) > @(↑vbi1_task,i)

In the second subtask of the VBI1 task, several actions are taken if a new digitize buffer

can be allocated. If so, then a buffer is allocated and placed on the next_digitizing

queue and a digitize operation is executed on the digitize buffer.

Axiom 5.26 represents the effect of executing the second subtask during the i th invocation

of the VBI1 task. The left-hand-side of the implication is the expression described above

for representing the state condition on the pool of free digitize buffers and the right-hand-

side of the implication represents the fact that the set of operations performed in the

conditional occur during the execution of the i th invocation of the subtask. In addition, the

right-hand-side of the implication equates the frame numbers associated with each of the

operations.

125

Axiom 5.26
 @(↑alloc_digitize, digitize_buffers) > @(↑vbi1_part2,i)
 ∨
 ∃m [@(↑alloc_digitize,m+ digitize_buffers) > @(↑vbi1_part2,i)
 ∧ @(↓free_digitize,m) ≤ @(↑vbi1_part2,i)]
⇒
 ∃k∃f [@(↑alloc_digitize,k) > @(↑vbi1_part2,i)
 ∧ @(↓alloc_digitize,k) < @(↓vbi1_part2,i)
 ∧ @(↑digitize,k) > @(↑vbi1_part2,i)
 ∧ @(↓digitize,k) < @(↓vbi1_part2,i)
 ∧ frame (digitize,k) = f
 ∧ @(↑put_next_digitizing,k) > @(↑vbi1_part2,i)
 ∧ @(↓put_next_digitizing,k) < @(↓vbi1_part2,i)
 ∧ frame (put_next_digitizing,k) = f]

5.6.5 RTL Specification of the CC Task

As shown in Figure 2-24, the body of the CC task is a single conditional statement; several

actions are taken if the compress_sink queue is not empty. First, a buffer is removed

from the compress_sink queue and placed on the transmit_video queue. Then,

a nested conditional statement is executed: if the number of buffers “in the transport

system” exceeds max_video_transport , then a buffer is removed from the

transmit_video queue and returned to the pool of free compress buffers (see Section

2.5.2 for the discussion of buffers “in the transport system”).

I will use two axioms to describe the behavior of the CC task. The first describes the

execution of the conditional statement, excluding the effect of executing the nested

conditional. This axiom is represented in RTL as an implication using the techniques

described previously. The axiom representing the execution of the nested conditional will

also be an implication: the left-hand-side will be the conjunction of the conditions of the

outer and inner conditional statements, while the right-hand-side will represent the

execution of the body of the nested conditional.

Axiom 5.27 represents the execution of the conditional statement for the i th invocation of

the CC task, excluding the effect of executing the nested conditional. The right-hand-side

of the implication represents the fact that the set of operations performed in the

conditional occur during the execution of the i th invocation of the CC task. In addition, the

right-hand-side of the implication equates the frames numbers associated with each of the

operations.

126

Axiom 5.27
 ∃j [@(↓put_compress_sink,j) ≤ @(↑cc_task,i)
 ∧ @(↑get_compress_sink,j) > @(↑cc_task,i)]
⇒
 ∃k∃f [@(↑get_compress_sink,k) > @(↑cc_task,i)
 ∧ @(↓get_compress_sink,k) < @(↓cc_task,i)
 ∧ frame (get_compress_sink,k) = f
 ∧ @(↑put_transmit,k) > @(↑cc_task,i)
 ∧ @(↓put_transmit,k) < @(↓cc_task,i)
 ∧ frame (put_transmit,k) = f]

The condition given in the nested conditional statement is that the number of buffers in the

transport system is greater than or equal to max_video_transport at the time the

nested conditional statement is executed. However, because the nested conditional

statement is only executed if a compress buffer has been added to the

transmit_video queue since the start of the task invocation, this test is equivalent to

a test that the number of buffers in the transport system is greater than or equal to

max_video_transport -1 when the task invocation begins execution. Thus, during

an invocation of the CC task, the body of the nested conditional will be executed if two

conditions hold when the task invocation begins execution: 1) the compress_sink

queue is not empty, and 2) the number of buffers in the transport system is greater than or

equal to max_video_transport -1.

In the pseudo-code descriptions of the CC and transmit_complete tasks shown in

Figures 2-24 and 2-27, the variable video_transport is used to count the number of

compress buffers in the transport system. This variable is incremented each time a

compress buffer is added to the transmit_video queue and decremented each time a

buffer is removed from the transmit_video queue and returned to the free pool.

Thus, at any given time, the number of compress buffers in the transport system is equal to

the difference between the number of put_transmit actions and the number of

free_compress actions that have occurred up to that time. An RTL expression

representing the fact that this is greater than or equal to max_video_transport -1 at

the time the i th invocation of the CC task begins execution is given by the following

expression:

∃j [@(↓put_transmit,j+ max_transport -1) ≤ @(↑cc_task,i)
 ∧ @(↑free_compress,j) > @(↑cc_task,i)]

Axiom 5.28 represents the execution of the nested conditional statement for the i th

invocation of the CC task. The left-hand-side of the implication is the conjunction of the

127

expressions described above for representing the state condition of the compress_sink

queue and the state condition for the number of compress buffers in the transport system.

The right-hand-side of the implication represents the fact that the set of operations

performed in the conditional occur during the execution of the i th invocation of the CC

task.

Axiom 5.28
 ∃j [@(↓put_compress_sink,j) ≤ @(↑cc_task,i)
 ∧ @(↑get_compress_sink,j) > @(↑cc_task,i)]
 ∧
 ∃j [@(↓put_transmit,j+ max_transport -1) ≤ @(↑cc_task,i)
 ∧ @(↑free_compress,j) > @(↑cc_task,i)]
⇒
 ∃k [@(↑free_compress,k) > @(↑cc_task,i)
 ∧ @(↓free_compress,k) < @(↓cc_task,i)]

5.7 Bounded Delay Theorem

In the previous sections, I have presented an axiomatic specification of the application.

From this specification, I now develop a proof of the correctness condition given in Figure

5-10. This proof is developed in several stages. The heart of the proof is Theorem 5.40

which will be referred to as the “main theorem” of the chapter. This theorem shows that

the equation in Figure 5-13 holds for all i.

Recall that the VBI1 , VBI0 , and CC tasks each consisted of two conditional statements

(in the CC task, the second was nested within the first). The equation in Figure 5-13 is

divided into six groups of conjuncts corresponding to these six conditional statements.

Three of these groups can be interpreted as an assertion that the body of the conditional is

executed each time an invocation of the task executes (i.e., the condition holds at the start

of each task invocation). The first group corresponds to the second conditional statement

of the VBI1 task, the second group corresponds to the second conditional statement of

the VBI0 task, and the fourth group corresponds to the main conditional statement of the

CC task (excluding the nested conditional statement).

The interpretation of the third group is similar to that for the first, second, and fourth. In

this case however, the group of conjuncts can be interpreted as an assertion that the body

of the first conditional statement in the VBI0 task is executed during each invocation of

the VBI0 task except the first.

128

 @(↑alloc_digitize,i) > @(↑vbi1_part2,i)
∧ @(↓alloc_digitize,i) < @(↓vbi1_part2,i)
∧ @(↑digitize,i) > @(↑vbi1_part2,i)
∧ @(↓digitize,i) < @(↓vbi1_part2,i)
∧ @(↑put_next_digitizing,i) > @(↑vbi1_part2,i)
∧ @(↓put_next_digitizing,i) < @(↓vbi1_part2,i)
∧ frame (put_next_digitizing,i) = frame (digitize,i)

∧ @(↑get_next_digitizing,i) > @(↑vbi0_task,i)
∧ @(↓get_next_digitizing,i) < @(↓vbi0_task,i)
∧ @(↑put_digitizing,i) > @(↑vbi0_task,i)
∧ @(↓put_digitizing,i) < @(↓vbi0_task,i)
∧ frame (put_digitizing,i) = frame (get_next_digitizing,i)

∧ @(↑get_digitizing,i) > @(↑vbi0_task,i+1)
∧ @(↓get_digitizing,i) < @(↓vbi0_task,i+1)
∧ @(↑put_compress_source,i) > @(↑vbi0_task,i+1)
∧ @(↓put_compress_source,i) < @(↓vbi0_task,i+1)
∧ frame (put_compress_source,i) = frame (get_digitizing,i)
∧ @(↑alloc_compress,i) > @(↑vbi0_task,i+1)
∧ @(↓alloc_compress,i) < @(↓vbi0_task,i+1)
∧ @(↑put_compress_sink,i) > @(↑vbi0_task,i+1)
∧ @(↓put_compress_sink,i) < @(↓vbi0_task,i+1)
∧ frame (put_compress_sink,i) = frame (get_digitizing,i)
∧ @(↑compress,i) > @(↑vbi0_task,i+1)
∧ @(↓compress,i) < @(↓vbi0_task,i+1)
∧ frame (compress,i) = frame (get_digitizing,i)

∧ @(↑get_compress_sink,i) > @(↑cc_task,i)
∧ @(↓get_compress_sink,i) < @(↓cc_task,i)
∧ @(↑put_transmit,i) > @(↑cc_task,i)
∧ @(↓put_transmit,i) < @(↓cc_task,i)
∧ frame (put_transmit,i) = frame (get_compress_sink,i)

∧ [i ≤ digitize_buffers
 ∨ @(↓free_digitize,i- digitize_buffers) ≤ @(↑vbi1_part2,i)]

∧ [i ≤ max_transport
 ∨ @(↓free_compress,i- max_transport) ≤ @(↓cc_task,i)]

Figure 5-13: Main Theorem

The interpretation of the fifth and sixth groups of conjuncts is slightly different. The fifth

group corresponds to the first subtask of the VBI1 task. Instead of asserting that each

invocation of the subtask executes the body of the conditional, this group of conjuncts can

be interpreted as asserting a slightly weaker property: that by the time the i th invocation of

129

the subtask completes execution, at least i-digitize_buffers free_digitize actions

will have occurred.

The sixth group of conjuncts corresponds to the nested conditional statement in the CC

task. However, unlike the operations in the other groups, the operations performed in the

body of this conditional statement may also be performed by other tasks , (i.e., removing a

compress buffer from the transmit_video queue and returning it to the free pool may

be performed by the initiate_send task and the transmit_complete task).

Thus, it is not possible to assert that certain invocations of the CC task execute the body

of the nested conditional. Instead, this group of conjuncts can be interpreted as an

assertion that by the time the i th invocation of the CC task completes execution, at least i-

max_transport free_compress actions will have occurred.

The proof of Theorem 5.40 is an induction. To support this proof, I begin by presenting

several theorems for each task. One defines the time interval in which each invocation of

the task is executed. The remainder specialize the general axioms about the task under

certain assumptions about the events that occur prior to the execution of the task. In

effect, each theorem serves as a step in the induction proof of the main theorem. The

assumptions about previous events are the assumptions required from either the induction

hypothesis or the previous steps of the induction proof to ensure that the task “executes

correctly”.

To aid the reader in following the proofs presented here, Figure 5-14 lists the page on

which each axiom and theorem is defined. In addition, it gives a short intuitive description

for each axiom and theorem in the chapter.

130

Name Page Intuitive Description
Axm 5.1 112 Actions start before they end
Axm 5.2 112 The ith action precedes the i+1st action
Thm 5.3 113 If i ≤ j, then the ith action precedes the jth action
Axm 5.4 114 Associates frame number i with digitize operation j
Axm 5.5 114 Queues are FIFO
Axm 5.6 114 Index is the inverse mapping of frame
Axm 5.7 114 Period of the VBI logical interrupt
Axm 5.8 114 Relationship between start_compress and CC interrupts
Axm 5.9 115 Messages from DVI handler to VBI task
Axm 5.10 115 Messages from DVI handler to CC task
Axm 5.11 116 Tasks execute prior to their deadline
Axm 5.12 116 Subtasks of VBI1 task execute in order
Axm 5.13 116 Mutual exclusion
Axm 5.14 117 The ith AMO action starts after the ith task invocation
Axm 5.15 117 AMO actions do not occur between task invocations
Axm 5.16 118 At most one AMO action per task invocation
Thm 5.17 118 Which task invocation executes first AMO action?
Thm 5.18 119 If i-1st AMO action occurs in one invocation, ith occurs in next
Axm 5.19 122 Odd-numbered invocations of the VBI task send to VBI1 task
Axm 5.20 122 Even-numbered invocations of the VBI task send to VBI0 task
Axm 5.21 123 First conditional statement in the VBI0 task (if executed)
Axm 5.22 123 First conditional statement in the VBI0 task (if not executed)
Axm 5.23 124 Second conditional statement in the VBI0 task
Axm 5.24 125 First conditional statement in the VBI1 task
Axm 5.25 125 free_digitize implies get_compress_source
Axm 5.26 126 Second conditional statement in the VBI1 task
Axm 5.27 127 Main conditional statement in the CC task
Axm 5.28 128 Nested conditional statement in the CC task
Thm 5.29 132 The VBI task executes in a specific interval
Thm 5.30 132 The VBI0 task executes in a specific interval
Thm 5.31 133 Second conditional statement in the VBI0 task (induction step)
Lem 5.32 135 First get_digitizing executed in second VBI0 task
Thm 5.33 137 First conditional statement in the VBI0 task (induction step)
Thm 5.34 140 The VBI1 task executes in a specific interval
Thm 5.35 141 First conditional statement in the VBI1 task (induction step)
Thm 5.36 143 Second conditional statement in the VBI1 task (induction step)
Thm 5.37 145 The CC task executes in a specific interval
Thm 5.38 146 Main conditional statement in the CC task (induction step)
Thm 5.39 147 Nested conditional statement in the CC task (induction step)
Thm 5.40 149 Main theorem
Thm 5.43 160 Bounded delay and correctness condition

Figure 5-14: Summary of Axioms and Theorems

5.7.1 Theorems for the VBI Task

First, I develop a theorem that uses the axioms that represent the behavior of the VBI

logical interrupt along with those that represent the scheduling and execution of tasks to

131

define two properties of the VBI task: the interval within which each invocation of the

task executes, and an upper bound on its logical arrival time.

Theorem 5.29
 @(↑vbi_task,i) > (i-1) ⋅vbi_period
∧ @(↓vbi_task,i) < i ⋅vbi_period
∧ @(↓logical_send_vbi,i) ≤ (i-1) ⋅vbi_period + dvi_delay

Proof: First, by Axioms 5.11, 5.1, 5.9, and 5.7

@(↑vbi_task,i) ≥ @(↓send_vbi,i)
 > @(↑send_vbi,i)
 > @(ΩVBI,i)
 > (i-1) ⋅vbi_period (5.5)

Next, by Axioms 5.11, 5.9, 5.7, and the bound on vbi_period given in Figure 5-2

@(↓vbi_task,i) < @(↓logical_send_vbi,i) + vbi_deadline
 < @(ΩVBI,i) + dvi_delay + vbi_deadline
 < (i-1) ⋅vbi_period + dvi_delay + vbi_deadline
 < (i-1) ⋅vbi_period + vbi_period
 < i ⋅vbi_period (5.6)

Finally, by Axioms 5.9 and 5.7

@(↓logical_send_vbi,i) ≤ @(ΩVBI,i) + dvi_delay
 ≤ (i-1) ⋅vbi_period + dvi_delay (5.7)

Together, (5.5), (5.6), and (5.7) prove the theorem. ¨

5.7.2 Theorems for the VBI0 Task

The next theorem defines the interval within which each invocation of the VBI0 task

executes.

Theorem 5.30
 @(↑vbi0_task,i) > (2i-1) ⋅vbi_period
∧ @(↓vbi0_task,i) < 2i ⋅vbi_period

Proof: By Axioms 5.11, 5.1, and 5.20, and Theorem 5.29

@(↑vbi0_task,i) ≥ @(↓send_vbi0,i)
 > @(↑send_vbi0,i)
 > @(↑vbi_task,2i)
 > (2i-1) ⋅vbi_period (5.8)

132

By Axioms 5.11, 5.20, 5.9, and 5.7, and the bound on vbi_period given in Figure 5-2

@(↓vbi0_task,i) < @(↓logical_send_vbi0,i) + vbi_deadline
 < @(↓logical_send_vbi,2i) + vbi_deadline
 < @(ΩVBI,2i) + dvi_delay + vbi_deadline
 < (2i-1) ⋅vbi_period + dvi_delay + vbi_deadline
 < 2i ⋅vbi_period (5.9)

Together (5.8) and (5.9) prove the theorem. ¨

The next two theorems address the effect of executing an invocation of the VBI0 task

under several assumptions about the events that preceded the start of the invocation.

Each theorem addresses the effect of one of the conditional statements.

The second conditional statement in the VBI0 task is represented by Axiom 5.23.

Theorem 5.31 specializes this axiom for an assumption that two events have occurred

prior to the start of the i th invocation of the task:

1. the i th put_next_digitizing preceded the start of the i th invocation
of the VBI0 task.

2. unless this is the first invocation of the VBI0 task, the i-1st

get_next_digitizing was performed by the i-1st invocation of the
VBI0 task.

The theorem shows that if these events occur prior to the start of the invocation, then the

i th instance of each of the operations in the body of the conditional is executed during the

invocation.

Theorem 5.31
 @(↓put_next_digitizing,i) ≤ @(↑vbi0_task,i)
 ∧ [i = 1
 ∨ [@(↑get_next_digitizing,i-1) > @(↑vbi0_task,i-1)
 ∧ @(↓get_next_digitizing,i-1) < @(↓vbi0_task,i-1)]]
⇒
 @(↑get_next_digitizing,i) > @(↑vbi0_task,i)
 ∧ @(↓get_next_digitizing,i) < @(↓vbi0_task,i)
 ∧ @(↑put_digitizing,i) > @(↑vbi0_task,i)
 ∧ @(↓put_digitizing,i) < @(↓vbi0_task,i)
 ∧ frame (put_digitizing,i) = frame (get_next_digitizing,i)

133

Proof: Assume the l.h.s. of the implication. By this assumption and Axiom 5.14

 @(↓put_next_digitizing,i) ≤ @(↑vbi0_task,i)
∧ @(↑get_next_digitizing,i) > @(↑vbi0_task,i)

Thus, by Axiom 5.23 there exist k and f such that equation (5.10) holds. Choose k and f.

 @(↑get_next_digitizing,k) > @(↑vbi0_task,i)
∧ @(↓get_next_digitizing,k) < @(↓vbi0_task,i)
∧ frame (get_next_digitizing,k) = f
∧ @(↑put_digitizing,k) > @(↑vbi0_task,i)
∧ @(↓put_digitizing,k) < @(↓vbi0_task,i)
∧ frame (put_digitizing,k) = f (5.10)

I now show that k = i. There are two cases, depending on i.

Case 1: Assume i = 1. By Axiom 5.14 and equation (5.10)

 @(↑get_next_digitizing,1) > @(↑vbi0_task,1)
∧ @(↑get_next_digitizing,k) > @(↑vbi0_task,1)
∧ @(↓get_next_digitizing,k) < @(↓vbi0_task,1)

and thus by Theorem 5.17, k = i.

Case 2: Assume i > 1. By the l.h.s. of the theorem and equation (5.10)

 @(↑get_next_digitizing,i-1) > @(↑vbi0_task,i-1)
∧ @(↓get_next_digitizing,i-1) < @(↓vbi0_task,i-1)
∧ @(↑get_next_digitizing,k) > @(↑vbi0_task,i)
∧ @(↓get_next_digitizing,k) < @(↓vbi0_task,i)

and thus by Theorem 5.18, k = i.

Thus, in either case, k = i. Substituting i for k in equation (5.10)

 @(↑get_next_digitizing,i) > @(↑vbi0_task,i)
∧ @(↓get_next_digitizing,i) < @(↓vbi0_task,i)
∧ @(↑put_digitizing,i) > @(↑vbi0_task,i)
∧ @(↓put_digitizing,i) < @(↓vbi0_task,i) (5.11)

Also, in equation (5.10)

frame (put_digitizing,k) = f = frame (get_next_digitizing,k) (5.12)

Together, (5.11) and (5.12) form the r.h.s. of the implication, proving the theorem.̈

134

The first conditional statement in the VBI0 task is represented by Axiom 5.21. Theorem

5.33 specializes this axiom for an assumption that several events have occurred prior to

the start of the i+1st invocation of the task:

1. the i th put_digitizing action was performed by the i th invocation of
the VBI0 task.

2. unless this is the second invocation of the VBI0 task, the i-1st

get_digitizing action was performed by the i th invocation of the
VBI0 task.

3. if the VBI0 task has already been executed at least compress_buffers
times, then at least i-compress_buffers compress buffers have already been
returned to the free pool.

4. unless this is the second invocation of the VBI0 task, the i-1st

alloc_compress action was performed by the i th invocation of the
VBI0 task.

The theorem shows that if these events occur prior to the start of the invocation, then the

i th instance of each of the operations in the body of the conditional is executed during the

i+1st invocation of the VBI0 task.

Before proving Theorem 5.33, I prove a lemma. This lemma shows that the first instance

of the get_digitizing action and the first instance of the alloc_compress action

do not occur until at least the second invocation of the VBI0 task.

Lemma 5.32
 @(↑get_digitizing,1) > @(↑vbi0_task,2)
∧ @(↑alloc_compress,1) > @(↑vbi0_task,2)

Proof: By Theorem 5.3, and Axioms 5.1 and 5.14

@(↓put_digitizing,j) ≥ @(↓put_digitizing,1)
 > @(↑put_digitizing,1)
 > @(↑vbi0_task,1)

This can be combined with an arbitrary clause in a disjunction and generalized to form

∀j [@(↓put_digitizing,j) > @(↑vbi0_task,1)
 ∨ @(↑get_digitizing,j) ≤ @(↑vbi0_task,1)]

which is equivalent to

135

~∃j [@(↓put_digitizing,j) ≤ @(↑vbi0_task,1)
 ∧ @(↑get_digitizing,j) > @(↑vbi0_task,1)]

By Axiom 5.22

∀k [@(↓get_digitizing,k) < @(↑vbi0_task,1)
 ∨ @(↑get_digitizing,k) > @(↓vbi0_task,1)] (5.13)

and

∀k [@(↓alloc_compress,k) < @(↑vbi0_task,1)
 ∨ @(↑alloc_compress,k) > @(↓vbi0_task,1)] (5.14)

By Axioms 5.1 and 5.14

@(↓get_digitizing,1) > @(↑get_digitizing,1)
 > @(↑vbi0_task,1)

and thus for k = 1 the first disjunct in (5.13) does not hold. Thus, the second disjunct

holds.

@(↑get_digitizing,1) > @(↓vbi0_task,1)

and by Axiom 5.15

@(↑get_digitizing,1) > @(↑vbi0_task,2) (5.15)

Similarly by Axioms 5.1 and 5.14, equation (5.14) and Axiom 5.15

@(↑alloc_compress,1) > @(↑vbi0_task,2) (5.16)

Together, (5.15) and (5.16) show the lemma. ¨

136

Theorem 5.33
 @(↑put_digitizing,i) > @(↑vbi0_task,i)
 ∧ @(↓put_digitizing,i) < @(↓vbi0_task,i)
 ∧ [i = 1
 ∨ [@(↑get_digitizing,i-1) > @(↑vbi0_task,i)
 ∧ @(↓get_digitizing,i-1) < @(↓vbi0_task,i)]]
 ∧ [i ≤ compress_buffers
 ∨ @(↓free_compress,i- compress_buffers) ≤ @(↑vbi0_task,i+1)]
 ∧ [i = 1
 ∨ [@(↑alloc_compress,i-1) > @(↑vbi0_task,i)
 ∧ @(↓alloc_compress,i-1) < @(↓vbi0_task,i)]]
⇒
 @(↑get_digitizing,i) > @(↑vbi0_task,i+1)
 ∧ @(↓get_digitizing,i) < @(↓vbi0_task,i+1)
 ∧ @(↑put_compress_source,i) > @(↑vbi0_task,i+1)
 ∧ @(↓put_compress_source,i) < @(↓vbi0_task,i+1)
 ∧ frame (put_compress_source,i) = frame (get_digitizing,i)
 ∧ @(↑alloc_compress,i) > @(↑vbi0_task,i+1)
 ∧ @(↓alloc_compress,i) < @(↓vbi0_task,i+1)
 ∧ @(↑put_compress_sink,i) > @(↑vbi0_task,i+1)
 ∧ @(↓put_compress_sink,i) < @(↓vbi0_task,i+1)
 ∧ frame (put_compress_sink,i) = frame (get_digitizing,i)
 ∧ @(↑compress,i) > @(↑vbi0_task,i+1)
 ∧ @(↓compress,i) < @(↓vbi0_task,i+1)
 ∧ frame (compress,i) = frame (get_digitizing,i)

Proof: Assume the l.h.s. of the implication. The proof consists of three steps. In steps 1

and 2, I show that equations (5.17) and (5.18) can be derived from the l.h.s. of the

theorem. In step 3, I use Axiom 5.21 to show that the right-hand-side of the theorem

holds.

Step 1: I begin by showing that equation (5.17) holds.

 ∃j [@(↓put_digitizing,j) ≤ @(↑vbi0_task,i+1)
 ∧ @(↑get_digitizing,j) > @(↑vbi0_task,i+1)] (5.17)

By the l.h.s. of the theorem and Axiom 5.2

@(↓put_digitizing,i) < @(↓vbi0_task,i)
 < @(↑vbi0_task,i+1)
 ≤ @(↑vbi0_task,i+1)

Next, there are two cases, depending on i.

137

Case 1: Assume i = 1. By Lemma 5.32

@(↑get_digitizing,1) > @(↑vbi0_task,2)

Case 2: Assume i > 1. By the l.h.s. of the theorem

@(↑get_digitizing,i-1) > @(↑vbi0_task,i)

and thus by Axiom 5.16

@(↑get_digitizing,i) > @(↑vbi0_task,i+1)

Thus in either case equation (5.17) holds.

Step 2: Next, I show that equation (5.18) holds.

 @(↑alloc_compress, compress_buffers) > @(↑vbi0_task,i+1)
∨
 ∃m [@(↑alloc_compress,m+ compress_buffers) > @(↑vbi0_task,i+1)
 ∧ @(↓free_compress,m) ≤ @(↑vbi0_task,i+1)] (5.18)

There are three cases, depending on i.

Case 1: Assume i = 1. By Lemma 5.32

@(↑alloc_compress,1) > @(↑vbi0_task,2)

Then by Axiom 5.16, the bound on compress_buffers given in Figure 5-2, and Theorem

5.3

@(↑alloc_compress, compress_buffers) > @(↑vbi0_task, compress_buffers +1)
 > @(↑vbi0_task,2)

Case 2: Assume 1 < i ≤ compress_buffers. By the l.h.s. of the theorem

@(↑alloc_compress,i-1) > @(↑vbi0_task,i)

Thus, by Axiom 5.16

@(↑alloc_compress, compress_buffers) > @(↑vbi0_task, compress_buffers +1)
 > @(↑vbi0_task,i+1)

Case 3: Assume i > compress_buffers. By the l.h.s. of the theorem

 @(↑alloc_compress,i-1) > @(↑vbi0_task,i)
∧ @(↓free_compress,i- compress_buffers) ≤ @(↑vbi0_task,i+1)

138

Let m = i - compress_buffers. By Axiom 5.16

 @(↑alloc_compress,m+ compress_buffers) > @(↑vbi0_task,i+1)
∧ @(↓free_compress,m) ≤ @(↑vbi0_task,i+1)

Thus in each case equation (5.18) holds.

Step 3: Together, equations (5.17) and (5.18) are the l.h.s. of Axiom 5.21. Thus, there

exist k and f such that equation (5.19) holds. Choose k and f.

 @(↑get_digitizing,k) > @(↑vbi0_task,i+1)
∧ @(↓get_digitizing,k) < @(↓vbi0_task,i+1)
∧ frame (get_digitizing,k) = f
∧ @(↑put_compress_source,k) > @(↑vbi0_task,i+1)
∧ @(↓put_compress_source,k) < @(↓vbi0_task,i+1)
∧ frame (put_compress_source,k) = f
∧ @(↑alloc_compress,k) > @(↑vbi0_task,i+1)
∧ @(↓alloc_compress,k) < @(↓vbi0_task,i+1)
∧ @(↑put_compress_sink,k) > @(↑vbi0_task,i+1)
∧ @(↓put_compress_sink,k) < @(↓vbi0_task,i+1)
∧ frame (put_compress_sink,k) = f
∧ @(↑compress,k) > @(↑vbi0_task,i+1)
∧ @(↓compress,k) < @(↓vbi0_task,i+1)
∧ frame (compress,k) = f (5.19)

There are two cases, depending on i.

Case 1: Assume i = 1. By Lemma 5.32 and equation (5.19)

 @(↑get_digitizing,1) > @(↑vbi0_task,i+1)
∧ @(↑get_digitizing,k) > @(↑vbi0_task,i+1)
∧ @(↓get_digitizing,k) < @(↓vbi0_task,i+1)

and thus by Theorem 5.17, k = i.

Case 2: Assume i > 1. By the l.h.s. of the theorem and equation (5.19)

 @(↑get_digitizing,i-1) > @(↑vbi0_task,i)
∧ @(↓get_digitizing,i-1) < @(↓vbi0_task,i)
∧ @(↑get_digitizing,k) > @(↑vbi0_task,i+1)
∧ @(↓get_digitizing,k) < @(↓vbi0_task,i+1)

and thus by Theorem 5.18, k = i. Thus in either case k = i.

Furthermore, in equation (5.19)

139

frame (get_digitizing,k) = frame (put_compress_sink,k)
 = frame (compress,k)
 = frame (put_compress_source,k)
 = f

Substituting i for k and frame (get_digitizing,k) for f in equation (5.19) yields

the right-hand-side of the theorem. This proves the theorem. ¨

5.7.3 Theorems for the VBI1 Task

The next theorem defines the interval within which each invocation of the VBI1 task

executes.

Theorem 5.34
 @(↑vbi1_task,i) > (2i-2) ⋅vbi_period
∧ @(↓vbi1_task,i) < (2i-1) ⋅vbi_period

Proof: By Axioms 5.11, 5.1 and 5.19, and Theorem 5.29

@(↑vbi1_task,i) ≥ @(↓send_vbi1,i)
 > @(↑send_vbi1,i)
 > @(↑vbi_task,2i-1)
 > (2i-2) ⋅vbi_period (5.20)

By Axioms 5.11, 5.19, 5.9, and 5.7, and the bound on vbi_period given in Figure 5-2

@(↓vbi1_task,i) < @(↓logical_send_vbi1,i) + vbi_deadline
 < @(↓logical_send_vbi,2i-1) + vbi_deadline
 < @(ΩVBI,2i-1) + dvi_delay + vbi_deadline
 < (2i-2) ⋅vbi_period + dvi_delay + vbi_deadline
 < (2i-1) ⋅vbi_period (5.21)

Together (5.20) and (5.21) prove the theorem. ¨

The next two theorems address the effect of executing an invocation of the VBI1 task

under several assumptions about the events that preceded the start of the invocation.

Each theorem address the effect of executing one of the two subtasks of the VBI1 task.

The effect of executing the first subtask of the VBI1 task is represented by Axiom 5.24.

Theorem 5.35 specializes this axiom for an assumption that several events have occurred

prior to the start of the kth invocation of the subtask, where k i= + digitize_ buffers:

1. the i th put_compress_source preceded the start of the first subtask
of the kth invocation of the VBI1 task.

140

2. the i th CC interrupt preceded the start of the first subtask of the kth

invocation of the VBI1 task.

3. if the VBI1 task has already executed at least digitize_buffers-1 times
prior to the start of the first subtask of the kth invocation of the VBI1 task,
then at least i-1 digitize buffers had been returned to the free pool prior to
the end of the first subtask of the k-1st invocation of the VBI1 task.

The theorem shows that if these events occur prior to the start of the kth subtask, then the

i th free_digitize action occurs prior to the end of the kth subtask.

Theorem 5.35
 @(↓put_compress_source,i) ≤ @(↑vbi1_part1,i+ digitize_buffers)
 ∧ @(ΩCC,i) ≤ @(↑vbi1_part1,i+ digitize_buffers)
 ∧ [i = 1
 ∨ @(↓free_digitize,i-1) < @(↓vbi1_part1,i+ digitize_buffers -1)]
⇒
 @(↓free_digitize,i) < @(↓vbi1_part1,i+ digitize_buffers)

Proof: Assume the l.h.s. of the implication. There are two cases depending on whether

or not the i th free_digitize action started prior to the start of the task.

Case 1: Assume

@(↑free_digitize,i) ≤ @(↑vbi1_task,i+ digitize_buffers)

By Axiom 5.12

@(↑free_digitize,i) ≤ @(↑vbi1_task,i+ digitize_buffers)
 < @(↑vbi1_part1,i+ digitize_buffers)

and thus by the contrapositive of Axiom 5.15 and Theorem 5.3

@(↓free_digitize,i) < @(↓vbi1_part1,i+ digitize_buffers -1)
 < @(↓vbi1_part1,i+ digitize_buffers)

Case 2: Assume

@(↑free_digitize,i) > @(↑vbi1_task,i+ digitize_buffers)

Thus by Axioms 5.25 and 5.12

@(↑get_compress_source,i) > @(↑vbi1_task,i+ digitize_buffers)
 > @(↑vbi1_part1,i+ digitize_buffers)

Combining this with the l.h.s. of the theorem yields

141

 @(↓put_compress_source,i) ≤ @(↑vbi1_part1,i+ digitize_buffers)
∧ @(↑get_compress_source,i) > @(↑vbi1_part1,i+ digitize_buffers)
∧ @(ΩCC,i) ≤ @(↑vbi1_part1,i+ digitize_buffers)

which is the l.h.s. of Axiom 5.24. Thus, by Axiom 5.24, there exist k and f such that

equation (5.22) holds. Choose k and f.

 @(↑free_digitize,k) > @(↑vbi1_part1,i+ digitize_buffers)
∧ @(↓free_digitize,k) < @(↓vbi1_part1,i+ digitize_buffers) (5.22)

I now show that k ≥ i. There are two cases, depending on i.

Case 2a: Assume i = 1. Then k ≥ i.

Case 2b: Assume i > 1.

By equation (5.22), Axiom 5.2, the l.h.s. of the theorem, and Axiom 5.1

@(↑free_digitize,k) > @(↑vbi1_part1,i+ digitize_buffers)
 > @(↓vbi1_part1,i+ digitize_buffers -1)
 > @(↓free_digitize,i-1)
 > @(↑free_digitize,i-1)

Thus, by the contrapositive of Theorem 5.3, k i> −1.

Thus in both case 2a and 2b, k i≥ . By Theorem 5.3 and equation (5.22)

@(↓free_digitize,i) ≤ @(↓free_digitize,k)
 ≤ @(↓vbi1_part1,i+ digitize_buffers)

This proves the theorem. ¨

The effect of executing the second subtask of the VBI1 task is represented by Axiom

5.26. Theorem 5.36 specializes this axiom for an assumption that several events have

occurred prior to the start of the i th invocation of the subtask:

1. if the second subtask of the i th invocation of the VBI1 task has already
executed at least digitize_buffers times, then at least i-digitize_buffers
digitize buffers have already been returned to the free pool.

2. unless this is the second subtask of the first invocation of the VBI1 task,
the i-1st alloc_digitize was performed by the second subtask of the
i-1st invocation of the VBI1 task.

142

The theorem shows that if these events occur prior to the start of the subtask, then the i th

instance of each of the operations in the body of the conditional is executed during the i th

subtask.

Theorem 5.36
 [i ≤ digitize_buffers
 ∨ @(↓free_digitize,i- digitize_buffers) ≤ @(↑vbi1_part2,i)]
 ∧ [i = 1
 ∨ [@(↑alloc_digitize,i-1) > @(↑vbi1_part2,i-1)
 ∧ @(↓alloc_digitize,i-1) < @(↓vbi1_part2,i-1)]]
⇒
 @(↑alloc_digitize,i) > @(↑vbi1_part2,i)
 ∧ @(↓alloc_digitize,i) < @(↓vbi1_part2,i)
 ∧ @(↑digitize,i) > @(↑vbi1_part2,i)
 ∧ @(↓digitize,i) < @(↓vbi1_part2,i)
 ∧ @(↑put_next_digitizing,i) > @(↑vbi1_part2,i)
 ∧ @(↓put_next_digitizing,i) < @(↓vbi1_part2,i)
 ∧ frame (put_next_digitizing,i) = frame (digitize,i)

Proof: Assume the l.h.s. of the implication. The proof consists of two steps. In the first

step, I show that equation (5.23) can be derived from the l.h.s. of the theorem. In the

second step, I use Axiom 5.26 to show that the right-hand-side of the theorem holds.

Step 1: I begin by showing that equation (5.23) holds.

 @(↑alloc_digitize, digitize_buffers) > @(↑vbi1_part2,i)
∨
 ∃m [@(↑alloc_digitize,m+ digitize_buffers) > @(↑vbi1_part2,i)
 ∧ @(↓free_digitize,m) ≤ @(↑vbi1_part2,i)] (5.23)

There are two cases depending on i.

Case 1: Assume i ≤ digitize_buffers. By Axiom 5.14

(↑alloc_digitize,i) > @(↑vbi1_part2,i)

and thus by Axiom 5.16 and Theorem 5.3

@(↑alloc_digitize, digitize_buffers) > @(↑vbi1_part2, digitize_buffers)
 > @(↑vbi1_part2,i)

Case 2: Assume i > digitize_buffers. Let m = i - digitize_buffers. By Axiom 5.14 and

the l.h.s. of the theorem

143

 @(↑alloc_digitize,i) > @(↑vbi1_part2,i)
∧ @(↓free_compress,i- digitize_buffers) ≤ @(↑vbi1_part2,i)

which expressed in terms of m is

 @(↑alloc_digitize,m+ digitize_buffers) > @(↑vbi1_part2,i)
∧ @(↓free_compress,m) ≤ @(↑vbi1_part2,i)

Thus in each case (5.23) holds.

Step 2: Equation (5.23) is the l.h.s. of Axiom 5.26. Thus, there exist k and f such that

equation (5.24) holds. Choose k and f.

 @(↑alloc_digitize,k) > @(↑vbi1_part2,i)
∧ @(↓alloc_digitize,k) < @(↓vbi1_part2,i)
∧ @(↑digitize,k) > @(↑vbi1_part2,i)
∧ @(↓digitize,k) < @(↓vbi1_part2,i)
∧ frame (digitize,k) = f
∧ @(↑put_next_digitizing,k) > @(↑vbi1_part2,i)
∧ @(↓put_next_digitizing,k) < @(↓vbi1_part2,i)
∧ frame (put_next_digitizing,k) = f (5.24)

There are two cases, depending on i.

Case 1: Assume i = 1. By Axiom 5.14 and equation (5.24)

 @(↑alloc_digitize,1) > @(↑vbi1_part2,1)
∧ @(↑alloc_digitize,k) > @(↑vbi1_part2,1)
∧ @(↓alloc_digitize,k) < @(↓vbi1_part2,1)

and thus by Theorem 5.17, k = i.

Case 2: Assume i > 1. By the l.h.s. of the theorem and equation (5.24)

 @(↑alloc_digitize,i-1) > @(↑vbi1_part2,i-1)
∧ @(↓alloc_digitize,i-1) < @(↓vbi1_part2,i-1)
∧ @(↑alloc_digitize,k) > @(↑vbi1_part2,i)
∧ @(↓alloc_digitize,k) < @(↓vbi1_part2,i)

and thus by Theorem 5.18, k = i. Thus in either case k = i.

Furthermore, in equation (5.24)

frame (put_next_digitizing,k) = frame (digitize,k) = f

144

Substituting i for k and frame (digitize,k) for f in equation (5.24) yields the right-

hand-side of the theorem. This proves the theorem. ¨

5.7.4 Theorems for the CC Task

The next theorem defines the interval within which each invocation of the CC task

executes.

Theorem 5.37
 @(↑cc_task,i) > @(↓compress,i)
∧ @(↓cc_task,i) < @(↓compress,i) + 3 ⋅vbi_period

Proof: By Axioms 5.11, 5.1, 5.10, and 5.8

@(↑cc_task,i) ≥ @(↓send_cc,i)
 > @(↑send_cc,i)
 > @(ΩCC,i)
 > @(↓compress,i) (5.25)

By Axioms 5.11, 5.10 and 5.8, and the bound on compress_request given in Figure 5-2

@(↓cc_task,i) < @(↓logical_send_cc,i) + cc_deadline
 < @(ΩCC,i) + dvi_delay + cc_deadline
 < @(↓compress,i) + compress_request + vbi_period
 < @(↓compress,i) + 3 ⋅vbi_period (5.26)

Together (5.25) and (5.26) prove the theorem. ¨

The next two theorems address the effect of executing an invocation of the CC task under

several assumptions about the events that preceded the start of the invocation. Each

theorem addresses the effect of one of the conditional statements.

The main conditional statement in the CC task (excluding the nested conditional) is

represented by Axiom 5.27. Theorem 5.38 specializes this axiom for an assumption that

several events have occurred prior to the start of the i th invocation of the task:

1. the i th put_compress_sink preceded the start of the i th invocation of
the CC task.

2. unless this is the first invocation of the CC task, the i-1st

get_compress_sink was performed by the i-1st invocation of the
VBI0 task.

145

The theorem shows that if these events occur prior to the start of the invocation, then the

i th instance of each of the operations in the body of the conditional is executed during the

invocation.

Theorem 5.38
 @(↓put_compress_sink,i) ≤ @(↑cc_task,i)
 ∧ [i = 1
 ∨ [@(↑get_compress_sink,i-1) > @(↑cc_task,i-1)
 ∧ @(↓get_compress_sink,i-1) < @(↓cc_task,i-1)]]
⇒
 @(↑get_compress_sink,i) > @(↑cc_task,i)
 ∧ @(↓get_compress_sink,i) < @(↓cc_task,i)
 ∧ @(↑put_transmit,i) > @(↑cc_task,i)
 ∧ @(↓put_transmit,i) < @(↓cc_task,i)
 ∧ frame (put_transmit,i) = frame (get_compress_sink,i)

Proof: Assume the l.h.s. of the implication. By this assumption and Axiom 5.14

 @(↓put_compress_sink,i) ≤ @(↑cc_task,i)
∧ @(↑get_compress_sink,i) > @(↑cc_task,i)

Thus, by Axiom 5.27 there exist k and f such that equation (5.27) holds. Choose k and f.

 @(↑get_compress_sink,k) > @(↑cc_task,i)
∧ @(↓get_compress_sink,k) < @(↓cc_task,i)
∧ frame (get_compress_sink,k) = f
∧ @(↑put_transmit,k) > @(↑cc_task,i)
∧ @(↓put_transmit,k) < @(↓cc_task,i)
∧ frame (put_transmit,k) = f (5.27)

I now show that k = i. There are two cases, depending on i.

Case 1: Assume i = 1. By Axiom 5.14 and equation (5.27)

 @(↑get_compress_sink,1) > @(↑cc_task,i)
∧ @(↑get_compress_sink,k) > @(↑cc_task,i)
∧ @(↓get_compress_sink,k) < @(↓cc_task,i)

and by Theorem 5.17, k = i.

Case 2: Assume i > 1. By the l.h.s. of the theorem and equation (5.27)

 @(↑get_compress_sink,i-1) > @(↑cc_task,i-1)
∧ @(↓get_compress_sink,i-1) < @(↓cc_task,i-1)
∧ @(↑get_compress_sink,k) > @(↑cc_task,i)
∧ @(↓get_compress_sink,k) < @(↓cc_task,i)

146

and thus by Theorem 5.18, k = i. Thus in either case k = i.

Furthermore, in equation (5.27)

frame (put_transmit,k) = frame (get_compress_sink,k) = f

Substituting i for k and frame (get_compress_sink,k) for f in equation (5.27)

yields the right-hand-side of the theorem. This proves the theorem. ¨

The nested conditional statement in the CC task is represented by Axiom 5.28. Theorem

5.39 specializes this axiom for an assumption that several events have occurred prior to

the start of the kth invocation of the task, where k i ax transport= + m _ :

1. the kth put_compress_sink preceded the start of the kth invocation of
the CC task.

2. the kth get_compress_sink occurred after the start of the kth

invocation of the CC task.

3. the k-1st put_transmit preceded the start of the kth invocation of the
CC task.

4. if the CC task has already executed at least max_transport times prior to
the start of the kth invocation of the CC task, then at least i-1 compress
buffers had been returned to the free pool prior to the end of the k-1st

invocation of the CC task.

The theorem shows that if these events occur prior to the start of the kth subtask, then the

i th free_compress action occurs prior to the end of the kth subtask.

Theorem 5.39
 @(↓put_compress_sink,i+ max_transport) ≤ @(↑cc_task,i+ max_transport)
 ∧ @(↑get_compress_sink,i+ max_transport) > @(↑cc_task,i+ max_transport)
 ∧ @(↓put_transmit,i+ max_transport -1) ≤ @(↑cc_task,i+ max_transport)
 ∧ [i = 1
 ∨ @(↓free_compress,i-1) ≤ @(↓cc_task,i+ max_transport -1)]
⇒
 @(↓free_compress,i) ≤ @(↓cc_task,i+ max_transport)

Proof: Assume the l.h.s. of the implication. There are two cases depending on whether

or not the i th free_compress action started prior to the start of the task.

147

Case 1: Assume

@(↑free_compress,i) ≤ @(↑cc_task,i+ max_transport)

There are two subcases depending on whether the i th free_compress action was

executed by an invocation of the cc_task or the tc_task .

Case 1a: Assume there exists a j such that

 @(↑free_compress,i) > @(↑cc_task,j)
∧ @(↓free_compress,i) < @(↓cc_task,j)

In this case, j < i+max_transport. Thus by Theorem 5.3

@(↓free_compress,i) < @(↓cc_task,j)
 < @(↓cc_task,i+ max_transport)

Case 1b: Assume there exists a j such that

 @(↑free_compress,i) > @(↑tc_task,j)
∧ @(↓free_compress,i) < @(↓tc_task,j)

In this case,

@(↑tc_task,j) < @(↑free_compress,i)
 < @(↑cc_task,i+ max_transport)

and thus by Axioms 5.13

@(↓tc_task,j) < @(↑cc_task,i+ max_transport)

Combining these expressions and applying Axiom 5.1 yields

@(↓free_compress,i) < @(↓tc_task,j)
 < @(↑cc_task,i+ max_transport)
 < @(↓cc_task,i+ max_transport)

Case 2: Assume

@(↑free_compress,i) > @(↑cc_task,i+ max_transport)

Combining this with the l.h.s. of the theorem yields

 @(↓put_compress_sink,i+ max_transport) ≤ @(↑cc_task,i+ max_transport)
∧ @(↑get_compress_sink,i+ max_transport) > @(↑cc_task,i+ max_transport)
∧ @(↓put_transmit,i+ max_transport -1) ≤ @(↑cc_task,i+ max_transport)
∧ @(↑free_compress,i) > @(↑cc_task,i+ max_transport)

148

which is the l.h.s. of Axiom 5.28. Thus, by Axiom 5.28 there exists a k such that equation

(5.28) holds.

 @(↑free_compress,k) > @(↑cc_task,i+ max_transport)
∧ @(↓free_compress,k) < @(↓cc_task,i+ max_transport) (5.28)

I now show that k ≥ i. There are two cases, depending on i.

Case 2a: Assume i = 1. Then k ≥ i.

Case 2b: Assume i > 1.

By equation (5.28), Axiom 5.2, and the l.h.s. of the theorem, and Axiom 5.1

@(↑free_compress,k) > @(↑cc_task,i+ max_transport)
 > @(↓cc_task,i+ max_transport -1)
 > @(↓free_compress,i-1)
 > @(↑free_compress,i-1)

Thus, by the contrapositive of Theorem 5.3, k i> −1.

Thus in both case 2a and 2b, k i≥ . By Theorem 5.3 and equation (5.28)

@(↓free_compress,i) ≤ @(↓free_compress,k)
 ≤ @(↓cc_task,i+ max_transport)

This proves the theorem. ¨

5.7.5 The Main Theorem

I am now ready to develop the proof of the main theorem of the chapter. As described

previously, the proof is an induction that uses the six theorems developed above as the

central steps in showing that the six groups of conjuncts in the theorem hold.

Theorem 5.40
 @(↑alloc_digitize,i) > @(↑vbi1_part2,i)
∧ @(↓alloc_digitize,i) < @(↓vbi1_part2,i)
∧ @(↑digitize,i) > @(↑vbi1_part2,i)
∧ @(↓digitize,i) < @(↓vbi1_part2,i)
∧ @(↑put_next_digitizing,i) > @(↑vbi1_part2,i)
∧ @(↓put_next_digitizing,i) < @(↓vbi1_part2,i)
∧ frame (put_next_digitizing,i) = frame (digitize,i)

149

∧ @(↑get_next_digitizing,i) > @(↑vbi0_task,i)
∧ @(↓get_next_digitizing,i) < @(↓vbi0_task,i)
∧ @(↑put_digitizing,i) > @(↑vbi0_task,i)
∧ @(↓put_digitizing,i) < @(↓vbi0_task,i)
∧ frame (put_digitizing,i) = frame (get_next_digitizing,i)

∧ @(↑get_digitizing,i) > @(↑vbi0_task,i+1)
∧ @(↓get_digitizing,i) < @(↓vbi0_task,i+1)
∧ @(↑put_compress_source,i) > @(↑vbi0_task,i+1)
∧ @(↓put_compress_source,i) < @(↓vbi0_task,i+1)
∧ frame (put_compress_source,i) = frame (get_digitizing,i)
∧ @(↑alloc_compress,i) > @(↑vbi0_task,i+1)
∧ @(↓alloc_compress,i) < @(↓vbi0_task,i+1)
∧ @(↑put_compress_sink,i) > @(↑vbi0_task,i+1)
∧ @(↓put_compress_sink,i) < @(↓vbi0_task,i+1)
∧ frame (put_compress_sink,i) = frame (get_digitizing,i)
∧ @(↑compress,i) > @(↑vbi0_task,i+1)
∧ @(↓compress,i) < @(↓vbi0_task,i+1)
∧ frame (compress,i) = frame (get_digitizing,i)

∧ @(↑get_compress_sink,i) > @(↑cc_task,i)
∧ @(↓get_compress_sink,i) < @(↓cc_task,i)
∧ @(↑put_transmit,i) > @(↑cc_task,i)
∧ @(↓put_transmit,i) < @(↓cc_task,i)
∧ frame (put_transmit,i) = frame (get_compress_sink,i)

∧ [i ≤ digitize_buffers
 ∨ @(↓free_digitize,i- digitize_buffers) ≤ @(↑vbi1_part2,i)]

∧ [i ≤ max_transport
 ∨ @(↓free_compress,i- max_transport) ≤ @(↓cc_task,i)]

Proof: By induction. Assume that the proposition holds ∀ <i N . I will show that it holds

for N. There are six steps in the proof. In the six steps, I will show that the six equations

(5.29), (5.34), (5.36), (5.39), (5.43), and (5.46) can be derived either from the induction

hypothesis or from previous steps in the proof.

Step 1: I begin by showing that equation (5.29) holds.

 N ≤ digitize_buffers
∨ @(↓free_digitize,N- digitize_buffers) ≤ @(↑vbi1_part2,N) (5.29)

There are two cases to be considered, depending on N.

Case 1: Assume N ≤ digitize_buffers. Equation (5.29) holds trivially.

150

Case 2: Assume N > digitize_buffers. Let m = N-digitize_buffers. Thus, equation (5.29)

will hold only if equation (5.30) holds.

@(↓free_digitize,m) ≤ @(↑vbi1_part2,N) (5.30)

There are four substeps required to show that equation (5.30) holds. In steps 1a-1c, I

show that equations (5.31), (5.32), and (5.33) hold. In step 1d, I use Theorem 5.35 to

show that equation (5.30) holds.

Step 1a: I begin by showing that equation (5.31) holds.

@(↓put_compress_source,m) ≤ @(↑vbi1_part1,N)
(5.31)

By the induction hypothesis, Theorem 5.30, the bound on digitize_buffers given in Figure

5-2, Theorem 5.34, and Axiom 5.12

@(↓put_compress_source,m) ≤ @(↓vbi0_task,m+1)
 ≤ 2(m+1) ⋅vbi_period
 ≤ 2(N- digitize_buffers +1) ⋅vbi_period
 ≤ 2(N-2) ⋅vbi_period
 ≤ (2N-2) ⋅vbi_period
 ≤ @(↑vbi1_task,N)
 ≤ @(↑vbi1_part1,N)

Thus equation (5.31) holds.

Step 1b: Next I show that equation (5.32) holds.

@(ΩCC,m) ≤ @(↑vbi1_part1,N) (5.32)

By Axiom 5.8, the induction hypothesis, Theorem 5.30, the bound on compress_request

given in Figure 5-2, the bound on digitize_buffers given in Figure 5-2, Theorem 5.34, and

Axiom 5.12

@(ΩCC,m) ≤ @(↓compress,m) + compress_request
 ≤ @(↓vbi0_task,m+1) + compress_request
 ≤ 2(m+1) ⋅vbi_period + compress_request
 ≤ 2(m+1) ⋅vbi_period + 2 ⋅vbi_period
 ≤ (2m+4) ⋅vbi_period
 ≤ (2(N- digitize_buffers)+4) ⋅vbi_period
 ≤ (2(N-3)+4) ⋅vbi_period
 ≤ (2N-2) ⋅vbi_period
 ≤ @(↑vbi1_task,N)
 ≤ @(↑vbi1_part1,N)

151

Thus equation (5.32) holds.

Step 1c: Next I show that equation (5.33) holds.

 m = 1
∨ @(↓free_digitize,m-1) < @(↓vbi1_part1,N-1)

(5.33)

If m = 1, then equation (5.33) holds trivially. If m > 1, then equation (5.33) holds by the

induction hypothesis. In either case, equation (5.33) holds.

Step 1d: Together, equations (5.31), (5.32), and (5.33) are the l.h.s. of Theorem 5.35.

Applying the theorem for i = m

@(↓free_digitize,m) ≤ @(↓vbi1_part1,N)

and thus by Axiom 5.12

@(↓free_digitize,m) ≤ @(↑vbi1_part2,N)

Thus equation (5.30) holds.

End of Step 1: In both cases, equation (5.29) holds.

Step 2: Next, I show that equation (5.34) holds.

 @(↑alloc_digitize,N) > @(↑vbi1_part2,N)
∧ @(↓alloc_digitize,N) < @(↓vbi1_part2,N)
∧ @(↑digitize,N) > @(↑vbi1_part2,N)
∧ @(↓digitize,N) < @(↓vbi1_part2,N)
∧ @(↑put_next_digitizing,N) > @(↑vbi1_part2,N)
∧ @(↓put_next_digitizing,N) < @(↓vbi1_part2,N)
∧ frame (put_next_digitizing,N) = frame (digitize,N) (5.34)

There are two substeps required to show that equation (5.34) holds. In step 2a, I show

that equation (5.35) holds. In step 2b, I use Theorem 5.36 to show that equation (5.34)

holds.

Step 2a: I begin by showing that equation (5.35) holds.

 N = 1
∨ [@(↑alloc_digitize,N-1) > @(↑vbi1_part2,N-1)
 ∧ @(↓alloc_digitize,N-1) < @(↓vbi1_part2,N-1)] (5.35)

152

If N = 1, then equation (5.35) holds trivially. If N > 1, then equation (5.35) holds by the

induction hypothesis. In either case, equation (5.35) holds.

Step 2b: Together with equation (5.29), equation (5.35) forms the l.h.s. of Theorem

5.36. Applying the theorem for i = N gives equation (5.34).

End of Step 2: Thus equation (5.34) holds.

Step 3: Next, I show that equation (5.36) holds.

 @(↑get_next_digitizing,N) > @(↑vbi0_task,N)
∧ @(↓get_next_digitizing,N) < @(↓vbi0_task,N)
∧ @(↑put_digitizing,N) > @(↑vbi0_task,N)
∧ @(↓put_digitizing,N) < @(↓vbi0_task,N)
∧ frame (put_digitizing,N) = frame (get_next_digitizing,N) (5.36)

There are three substeps required to show that equation (5.36) holds. In steps 3a and 3b,

I show that equations (5.37) and (5.38) hold. In step 3c, I use Theorem 5.31 to show that

equation (5.36) holds.

Step 3a: I begin by showing that equation (5.37) holds.

@(↓put_next_digitizing,N) ≤ @(↑vbi0_task,N) (5.37)

By equation (5.34), Axiom 5.12, and Theorems 5.34 and 5.30

@(↓put_next_digitizing,N) < @(↓vbi1_part2,N)
 < @(↓vbi1_task,N)
 < (2N-1) ⋅vbi_period
 < @(↑vbi0_task,N)

Thus equation (5.37) holds.

Step 3b: Next I show that equation (5.38) holds.

 N = 1
∨ [@(↑get_next_digitizing,N-1) > @(↑vbi0_task,N-1)
 ∧ @(↓get_next_digitizing,N-1) < @(↓vbi0_task,N-1)]] (5.38)

If N = 1, then equation (5.38) holds trivially. If N > 1, then equation (5.38) holds by the

induction hypothesis. In either case, equation (5.38) holds.

Step 3c: Together, equations (5.37) and (5.38) are the l.h.s. of Theorem 5.31. Applying

the theorem for i = N gives equation (5.36).

153

End of Step 3: Thus equation (5.36) holds.

Step 4: Next, I show that equation (5.39) holds.

 @(↑get_digitizing,N) > @(↑vbi0_task,N+1)
∧ @(↓get_digitizing,N) < @(↓vbi0_task,N+1)
∧ @(↑put_compress_source,N) > @(↑vbi0_task,N+1)
∧ @(↓put_compress_source,N) < @(↓vbi0_task,N+1)
∧ frame (put_compress_source,N) = frame (get_digitizing,N)
∧ @(↑alloc_compress,N) > @(↑vbi0_task,N+1)
∧ @(↓alloc_compress,N) < @(↓vbi0_task,N+1)
∧ @(↑put_compress_sink,N) > @(↑vbi0_task,N+1)
∧ @(↓put_compress_sink,N) < @(↓vbi0_task,N+1)
∧ frame (put_compress_sink,N) = frame (get_digitizing,N)
∧ @(↑compress,N) > @(↑vbi0_task,N+1)
∧ @(↓compress,N) < @(↓vbi0_task,N+1)
∧ frame (compress,N) = frame (get_digitizing,N) (5.39)

There are four substeps required to show that equation (5.39) holds. In steps 4a-4c, I

show that equations (5.40), (5.41) and (5.42) hold. In step 4d, I use Theorem 5.33 to

show that equation (5.39) holds.

Step 4a: I begin by showing that equation (5.40) holds.

 N = 1
∨ [@(↑get_digitizing,N-1) > @(↑vbi0_task,N)
 ∧ @(↓get_digitizing,N-1) < @(↓vbi0_task,N)] (5.40)

If N = 1, then equation (5.40) holds trivially. If N > 1, then equation (5.40) holds by the

induction hypothesis. In either case, equation (5.40) holds.

Step 4b: Next, I show that equation (5.41) holds.

 N ≤ compress_buffers
∨ @(↓free_compress,N- compress_buffers) ≤ @(↑vbi0_task,N+1) (5.41)

There are two cases, depending on N.

Case 1: Assume N ≤ compress_buffers. Then equation (5.41) holds trivially.

Case 2: Assume N > compress_buffers. Let m = N-compress_buffers.

By the bound on compress_buffers given in Figure 5-2, the induction hypothesis, Theorem

5.37, the induction hypothesis, and two uses of Theorem 5.30

154

@(↓free_compress,m) ≤ @(↓free_compress,N- compress_buffers)
 ≤ @(↓free_compress,N- max_transport -2)
 ≤ @(↓cc_task,N-2)
 ≤ @(↓compress,N-2) + 3 ⋅vbi_period
 ≤ @(↓vbi0_task,N-1) + 3 ⋅vbi_period
 ≤ 2(N-1) ⋅vbi_period + 3 ⋅vbi_period
 ≤ (2N+1) ⋅vbi_period
 ≤ (2(N+1)-1) ⋅vbi_period
 ≤ @(↑vbi0_task,N+1)

Thus in either case equation (5.41) holds.

Step 4c: Next, I show that equation (5.42) holds.

 N = 1
∨ [@(↑alloc_compress,N-1) > @(↑vbi0_task,N)
 ∧ @(↓alloc_compress,N-1) < @(↓vbi0_task,N)] (5.42)

If N = 1, then equation (5.42) holds trivially. If N > 1, then equation (5.42) holds by the

induction hypothesis. In either case, equation (5.42) holds.

Step 4d: Along with equation (5.36), equations (5.40), (5.41) and (5.42) form the l.h.s.

of Theorem 5.33. Applying the theorem for i = N gives equation (5.39).

End of Step 4: Thus equation (5.39) holds.

Step 5: Next, I show that equation (5.43) holds.

 @(↑get_compress_sink,N) > @(↑cc_task,N)
∧ @(↓get_compress_sink,N) < @(↓cc_task,N)
∧ @(↑put_transmit,N) > @(↑cc_task,N)
∧ @(↓put_transmit,N) < @(↓cc_task,N)
∧ frame (put_transmit,N) = frame (get_compress_sink,N) (5.43)

There are three substeps required to show that equation (5.43) holds. In steps 5a and 5b,

I show that equations (5.44) and (5.45) hold. In step 5c, I use Theorem 5.38 to show that

equation (5.43) holds.

Step 5a: I begin by showing that equation (5.44) holds.

@(↓put_compress_sink,N) ≤ @(↑cc_task,N) (5.44)

By Theorem 5.37, Axiom 5.1 and equation (5.39)

155

@(↑cc_task,N) ≥ @(↓compress,N)
 > @(↑compress,N)
 > @(↑vbi0_task,N+1)

and thus by Axiom 5.13

@(↑cc_task,N) > @(↓vbi0_task,N+1)

Combining this with equation (5.39) yields

@(↓put_compress_sink,N) < @(↓vbi0_task,N+1)
 ≤ @(↑cc_task,N)

Thus equation (5.44) holds.

Step 5b: Next I shown that equation (5.45) holds.

 N = 1
∨ [@(↑get_compress_sink,N-1) > @(↑cc_task,N-1)
 ∧ @(↓get_compress_sink,N-1) < @(↓cc_task,N-1)] (5.45)

If N = 1, then equation (5.45) holds trivially. If N > 1, then equation (5.45) holds by the

induction hypothesis. In either case, equation (5.45) holds.

Step 5c: Together, equations (5.44) and (5.45) form the l.h.s. of Theorem 5.38.

Applying the theorem for i = N gives equation (5.43).

End of Step 5: Thus equation (5.43) holds.

Step 6: Next, I show that equation (5.46) holds.

 N ≤ max_transport
∨ @(↓free_compress,N- max_transport) ≤ @(↓cc_task,N) (5.46)

There are two cases to be considered, depending on N.

Case 1: Assume N ≤ max_transport. Equation (5.46) holds trivially.

Case 2: Assume N > max_transport. Let m = N-max_transport. Thus, equation (5.46)

will hold only if equation (5.47) holds.

@(↓free_compress,m) ≤ @(↓cc_task,N) (5.47)

156

There are three substeps required to show that equation (5.47) holds. In steps 6a and 6b,

I show that equations (5.48) and (5.49) hold. In step 6c, I use Theorem 5.39 to show that

equation (5.47) holds.

Step 6a: I begin by showing that equation (5.48) holds.

@(↓put_transmit,m+ max_transport -1) ≤ @(↑cc_task,m+ max_transport)
(5.48)

By the induction hypothesis, Axiom 5.2, and the definition of m

@(↓put_transmit,m+ max_transport -1) ≤ @(↓cc_task,N-1)
 ≤ @(↑cc_task,N)
 ≤ @(↑cc_task,m+ max_transport)

Thus equation (5.48) holds.

Step 6b: Next I show that equation (5.49) holds.

 m = 1
∨ @(↓free_compress,m-1) ≤ @(↓cc_task,m+ max_transport -1) (5.49)

If m = 1, then equation (5.49) holds trivially. If m > 1, then by the induction hypothesis,

Axiom 5.1, and the definition of m

@(↓free_compress,m-1) ≤ @(↓cc_task,N-1)
 ≤ @(↑cc_task,N-1)
 ≤ @(↑cc_task,m+ max_transport -1)

Thus equation (5.49) holds.

Step 6c: Together with equation (5.43), equations (5.48) and (5.49) form the l.h.s. of

Theorem 5.39. Applying the theorem for i = m gives equation (5.47). Thus equation

(5.46) holds.

End of Step 6: Thus in either case equation (5.46) holds.

Together (5.29), (5.34), (5.36), (5.39), (5.43), and (5.46) prove the theorem. ¨

5.7.6 Proof of the Correctness Condition

I am now ready to develop the proof of the correctness condition given in Figure 5-10.

Before proving the theorem, I prove two lemmas: the first gives the interval within which

157

the i th digitize action occurs in terms of VBI interrupts and the second shows that for

several actions, the i th instance of the action processes the frame with frame number i.

Lemma 5.41
 @(↑digitize,i) > @(ΩVBI,2i-1)
∧ @(↓digitize,i) < @(ΩVBI,2i)

Proof: By Theorem 5.40, Axiom 5.12, Theorem 5.34, and Axiom 5.7

@(↑digitize,i) > @(↑vbi1_part2,i)
 > @(↑vbi1_task,i)
 > (2i-2) ⋅vbi_period
 > @(ΩVBI,2i-1)

Similarly, by Theorem 5.40, Axiom 5.12, Theorem 5.34, and Axiom 5.7

@(↓digitize,i) < @(↓vbi1_part2,i)
 < @(↓vbi1_task,i)
 < (2i-1) ⋅vbi_period
 < @(ΩVBI,2i)

Together, these prove the lemma. ¨

Lemma 5.42
 index (digitize,i) = i
∧ index (compress,i) = i
∧ index (put_transmit,i) = i

Proof: By Lemma 5.41

 @(↑digitize,i) > @(ΩVBI,2i-1)
∧ @(↓digitize,i) < @(ΩVBI,2i)

and by Axiom 5.1

@(↓digitize,i) > @(↑digitize,i)

so it is the case that

 @(↓digitize,i) > @(ΩVBI,2i-1)
∧ @(↓digitize,i) < @(ΩVBI,2i)

and thus by Axiom 5.4

frame (digitize,i) = i (5.50)

158

By Theorem 5.40

 frame (put_next_digitizing,i) = frame (digitize,i)
∧ frame (put_digitizing,i) = frame (get_next_digitizing,i)
∧ frame (compress,i) = frame (get_digitizing,i)
∧ frame (put_compress_sink,i) = frame (get_digitizing,i)
∧ frame (put_transmit,i) = frame (get_compress_sink,i) (5.51)

and by Axiom 5.5

 frame (get_next_digitizing,i) = frame (put_next_digitizing,i)
∧ frame (get_digitizing,i) = frame (put_digitizing,i)
∧ frame (get_compress_sink,i) = frame (put_compress_sink,i) (5.52)

Combining equations (5.50), (5.51), and (5.52) yields

frame (digitize,i) = frame (put_next_digitizing,i)
 = frame (get_next_digitizing,i)
 = frame (put_digitizing,i)
 = frame (get_digitizing,i)
 = frame (compress,i)
 = frame (put_compress_sink,i)
 = frame (get_compress_sink,i)
 = frame (put_transmit,i)
 = i

Thus

 frame (digitize,i) = i
∧ frame (compress,i) = i
∧ frame (put_transmit,i) = i

and by Axiom 5.6

 index (digitize,i) = i
∧ index (compress,i) = i
∧ index (put_transmit,i) = i

This proves the lemma. ¨

159

Theorem 5.43
 @(↑digitize, index (digitize,i)) > @(ΩVBI,2i-1)
∧ @(↓digitize, index (digitize,i)) ≤ @(ΩVBI,2i)
∧ ∃j [@(↑digitize,j) > @(ΩVBI,2i+1)
 ∧ @(↓digitize,j) ≤ @(ΩVBI,2i+2)]
∧ ~ ∃j [j ≠index (digitize,i)
 ∧ @(↑digitize,j) > @(ΩVBI,2i-1)
 ∧ @(↓digitize,j) ≤ @(ΩVBI,2i+1)
]
∧ @(↑compress, index (compress,i)) ≥ @(ΩVBI,2i+2)
∧ @(↑put_transmit, index (put_transmit,i)) ≥ @(ΩCC,index (compress,i))
∧ @(↓put_transmit, index (put_transmit,i)) - @(ΩVBI,2i) ≤ 6 ⋅vbi_period

Proof:

Step 1: I begin by showing that equation (5.53) holds.

 @(↑digitize, index (digitize,i)) > @(ΩVBI,2i-1)
∧ @(↓digitize, index (digitize,i)) ≤ @(ΩVBI,2i) (5.53)

By Lemma 5.41

 @(↑digitize,i) > @(ΩVBI,2i-1)
∧ @(↓digitize,i) < @(ΩVBI,2i) (5.54)

By Lemma 5.42

index (digitize,i) = i

Substituting index (digitize,i) for i in equation (5.54) yields equation (5.53).

Step 2: Next I show that equation (5.55) holds.

∃j [@(↑digitize,j) > @(ΩVBI,2i+1)
 ∧ @(↓digitize,j) ≤ @(ΩVBI,2i+2)] (5.55)

By Lemma 5.41

 @(↑digitize,i+1) > @(ΩVBI,2i+1)
∧ @(↓digitize,i+1) < @(ΩVBI,2i+2)

Thus equation (5.55) holds.

160

Step 3: Next I show that equation (5.56) holds.

~∃j [j ≠index (digitize,i)
 ∧ @(↑digitize,j) > @(ΩVBI,2i-1)
 ∧ @(↓digitize,j) ≤ @(ΩVBI,2i+1)
] (5.56)

This is equivalent to equation (5.57), so equation (5.56) holds if equation (5.57) holds.

∀j [j = index (digitize,i)
 ∨ @(↑digitize,j) ≤ @(ΩVBI,2i-1)
 ∨ @(↓digitize,j) > @(ΩVBI,2i+1)
] (5.57)

To show that equation (5.57) holds, there are three cases depending on j.

Case 1: Assume j < i.

By Axiom 5.1, Lemma 5.41, Axiom 5.7, the assumption about j, and Axiom 5.7

@(↑digitize,j) ≤ @(↓digitize,j)
 ≤ @(ΩVBI,2j)
 ≤ (2j-1) ⋅vbi_period
 ≤ (2(i-1)-1) ⋅vbi_period
 ≤ (2i-2) ⋅vbi_period
 ≤ @(ΩVBI,2i-1)

Thus equation (5.57) holds.

Case 2: Assume j > i.

By Axiom 5.1, Lemma 5.41, Axiom 5.7, the assumption about j, and Axiom 5.7

@(↓digitize,j) > @(↑digitize,j)
 > @(ΩVBI,2j-1)
 > (2j-2) ⋅vbi_period
 > (2(i+1)-2) ⋅vbi_period
 > (2i) ⋅vbi_period
 > @(ΩVBI,2i+1)

Thus equation (5.57) holds.

Case 3: Assume j = i. By Lemma 5.42

j = index(digitize,i)

161

Thus equation (5.57) holds.

In all cases, equation (5.57) holds, so equation (5.56) holds.

Step 4: Next I show that equation (5.58) holds.

@(↑compress, index (compress,i)) > @(ΩVBI,2i+2) (5.58)

By Theorems 5.40 and 5.30, and Axiom 5.7

@(↑compress,i) > @(↑vbi0_task,i+1)
 > (2i+1) ⋅vbi_period
 > @(ΩVBI,2i+2) (5.59)

By Lemma 5.42

index (compress,i) = i

Substituting index (compress,i) for i in equation (5.59) yields equation (5.58).

Step 5: Next I show that equation (5.60) holds.

@(↑put_transmit, index (put_transmit,i)) > @(ΩCC,index (compress,i))
(5.60)

By Theorem 5.40 and Axioms 5.11, 5.1, and 5.10

@(↑put_transmit,i) > @(↑cc_task,i)
 > @(↓send_cc,i)
 > @(↑send_cc,i)
 > @(ΩCC,i) (5.61)

and by Lemma 5.42

index (put_transmit,i) = i

Substituting index (put_transmit,i) for i in equation (5.61) yields equation (5.60)

Step 6: Finally, I show that equation (5.62) holds.

@(↓put_transmit, index (put_transmit,i)) - @(ΩVBI,2i) ≤ 6⋅vbi_period
(5.62)

By Theorems 5.40, 5.37, 5.40, and 5.30

162

@(↓put_transmit,i) < @(↓cc_task,i)
 < @(↓compress,i) + 3 ⋅vbi_period
 < @(↓vbi0_task,i+1) + 3 ⋅vbi_period
 < 2(i+1) ⋅vbi_period + 3 ⋅vbi_period
 < (2i+5) ⋅vbi_period

and thus by Axiom 5.7

@(↓put_transmit,i) - @(ΩVBI,2i) < (2i+5) ⋅vbi_period - (2i-1) ⋅vbi_period
 < 6⋅vbi_period

Thus equation (5.62) holds.

Together (5.53), (5.55), (5.56), (5.58), (5.60), and (5.62) show the theorem. ¨

5.8 A Note on the Lower Bound

Previously in this chapter, I have argued that 100 ms. is an upper bound on the time

required for a video frame to be correctly acquired, compressed, and delivered to the

network. Recall that delay jitter can be reduced or eliminated simply by buffering the

frames to account for the difference between the actual delay experienced by each frame

and this upper bound. However, unless the upper bound is reasonably tight, such a

strategy would lead to artificially high delay. Thus, it is useful to briefly consider the

lower bound.

Recall that the delay experienced by a video frame on the acquisition-side is defined as the

elapsed time between the VBI logical interrupt that occurs at the start of the digitization

of the frame and the time the frame is placed on the transmit queue. Between these

two events, the frame is digitized and compressed. Digitization by the ActionMedia

hardware always takes 33 ms. Compression by the ActionMedia hardware takes between

22 and 28 ms. Thus, the frame experiences acquisition-side delay of at least 55 ms. simply

due to hardware processing. As a result, 55 ms. is an extremely conservative estimate of

the lower bound on acquisition-side delay. Effectively, this lower bound holds even under

assumptions that software operations take no time, and that work is always performed as

soon as possible. Under more realistic assumptions a tighter lower bound could be

determined. However, given the delay jitter experienced by frames when transmitted over

the networks used in this work, even this conservative lower bound is sufficient to show

that the delay jitter experienced can be reduced or eliminated without markedly increasing

the end-to-end delay jitter.

163

5.9 Discussion

In this chapter, I have presented an axiomatic specification of that portion of the

acquisition-side of the application that is responsible for acquiring, digitizing, and

compressing video frames. I then used this specification to reason formally about

properties of the acquisition-side. In particular, I showed that each frame that is generated

by the ActionMedia hardware is correctly acquired, compressed, and delivered to the

network, and that the time required to do so is at most 100 ms. By proving that the

acquisition-side side delay experienced by video frames is bounded, I have demonstrated

that it is feasible to reduce or eliminate the delay jitter experienced by video frames on the

acquisition-side. Furthermore, since 55 ms. is a conservative estimate of the lower bound

on delay, I have demonstrated that the delay jitter experienced by video frames on the

acquisition-side can be reduced or eliminated without introducing artificially high delays.

By taking advantage of the deadline and mutual exclusion properties that were shown in

Chapter 4, I have simplified the analysis presented here by eliminating the need to reason

about detailed interactions between tasks under all possible orderings of events; the effect

of executing a task invocation depended only on the state of the system at the time the

task invocation started execution. Thus, the effect of executing a single task could be

modeled without reference to other tasks.

More importantly, I have enforced a separation of concerns. The only assumption

included in the axiomatic specification about the times at which task invocations execute is

that tasks execute after they are invoked and prior to their deadline. Thus, the argument

that delay is bounded and that every frame is acquired and displayed correctly is free of

detailed assumptions about how long tasks and actions require to execute, assumptions

about scheduling, and assumptions about the existence of other tasks in the application.

As a result, code can be added to tasks (i.e., changing the cost) and other tasks can be

added to the application without affecting the logical argument presented here.

Having shown that the delay experienced by video frames on the acquisition-side is

bounded, it is straightforward to extend the analysis to show that the delay experienced by

audio frames on the acquisition-side is also bounded. All that is necessary is to extend the

axiomatic specification of the acquisition-side to include axioms representing the behavior

of the tasks that process audio; the proof that audio frames are delivered to the network in

bounded time is analogous to that for video frames.

164

I can also extend the analysis to show that the delays experienced by audio and video

frames on the display-side are bounded. In general, the same approach can be used:

represent the display-side in terms of the formal model, use the feasibility test to show that

tasks execute prior to the application-defined deadlines, develop an axiomatic

specification, and derive the bounded delay property. However, there is one additional

difficulty that must be addressed: how can the task that executes whenever a new packet

arrives (i.e. the “receive_complete ” task) be represented in the abstract model?

There are two problems. First, since packets may be sent to the display workstation from

many sources, an arbitrary number of packets could potentially arrive in any given interval.

Furthermore, even if we consider only packets sent by the acquisition-side of the

application, since the delays experienced by packets in the network are variable, it is still

possible for an arbitrary number of packets to arrive in any given interval. One solution to

this problem is to change the implementation; rather than execute a task to process a new

packet whenever it arrives, execute a task periodically to process any packets that have

arrived in the most recent period (i.e., a polling implementation instead an interrupt-driven

implementation).

Overall, in these three chapters, I have argued that through the use of real-time systems

design, analysis, and implementation techniques, that it is possible to control the delay

jitter experienced by continuous media frames due to causes other than transmission over

the network. In the next two chapters, I will address the question of ameliorating the

effect of the delay jitter than cannot be controlled.

165

Chapter VI
Policies for Managing Delay Jitter

6.1 Introduction

In the previous chapters, I have demonstrated that through the use of real-time systems

design, analysis, and implementation techniques, it is possible to bound the delay jitter

experienced by continuous media frames due to causes other than transmission over the

network. In this and the following chapter, I address the question of displaying CM

frames in the presence of the potentially unbounded delay jitter incurred when transmitting

over the network.

In Chapter 1, I discussed the fact that, in the presence of delay jitter, there is a

fundamental tradeoff between display latency and gap frequency; the lower the display

latency, the higher the probability of encountering an end-to-end delay sufficient to cause a

gap. An application that displays continuous media frames must manage this tradeoff to

produce a balance between display latency and gaps that results in good quality playout.

It is useful to consider the tradeoff between display latency and gap frequency in the

context of the idealized application for acquiring, processing and displaying frames of live

continuous media that was illustrated in Figure 1-1. The design of this application is a

distributed pipeline that includes a set of buffers placed immediately before the display

stage called the display queue. The tradeoff between display latency and gap frequency

can be viewed as a tradeoff between a long display queue and a short display queue. If the

display queue contains many frames, then a gap will occur only if a frame incurs a very

long end-to-end delay; however the long display queue implies that frames are played with

high display latency. If the display queue contains few frames, then a much shorter end-

to-end delay may cause a gap, but frames are played with lower display latency.

A policy for managing the display queue can be defined as a policy for choosing whether

or not newly arrived frames are inserted into the queue, when frames may be removed

from the queue to be played, and if and when frames are discarded from the queue without

being played. In effect, a policy for managing the display queue can be viewed as a policy

for managing the tradeoff between display latency and gap frequency. I will refer to such

policies as delay jitter management policies.

In this chapter, I describe three delay jitter management policies. Two policies, the I-

policy and the E-policy are taken from the literature; the third, queue monitoring, is a new

policy that I have developed. In Chapter 7, I evaluate the performance of these policies in

an empirical study using the workstation-based videoconferencing application described in

Chapter 2.

Section 6.2 describes the effect of delay jitter on the display of continuous media,

illustrates the basic principles of managing the tradeoff between display latency and gap

frequency, and defines the I- and E-policies. Section 6.3 presents the queue monitoring

policy.

6.2 Effect of Delay Jitter

In order to sustain continuous playout without any gaps, an application must play every

frame with a fixed display latency that is greater than the worst-case end-to-end delay that

will be encountered during a conference. There are two difficulties with this approach.

First, when frames are transmitted over the networks considered in this work, the worst-

case delay may not be known. Second, it is not clear that the primary goal should be

playout with no gaps. Display latency and gaps are only some of the important factors in

determining the perceived quality of the playout [21]. It is likely that in many applications,

as long as gaps occur infrequently, playout with low latency and some gaps will be

preferable to playout with high latency and no gaps. Therefore, if an application always

plays frames with a display latency greater than the worst-case delay and if the worst-case

delay is rarely observed in practice, then most frames will be displayed with latency higher

than necessary to support good quality playout.

If the worst-case delay is not known, or if an application chooses to play frames with a

display latency less than the worst-case end-to-end delay, then gaps in the playout may

occur. If so, then the application must address two issues. First, gaps occur when there is

no new frame available to be played; what should the application play instead? The

workstation-based video conferencing application described in Chapter 2 uses a simple

strategy: gaps in the video stream are covered by replaying the previous frame and gaps in

the audio stream are covered by playing silence.

167

The second issue that must be addressed when gaps are possible is the question of what

should be done with a frame whose late arrival resulted in a gap? There are two choices:

either the late frame can be discarded or it can be displayed. These choices define two

delay jitter management policies that Naylor and Kleinrock call the I-Policy and the E-

Policy [37]. Under the I-policy, all frames are displayed at a fixed display latency; each

frame that arrives with an end-to-end delay greater than this latency is discarded. The

particular display latency is a parameter of the policy. Under the E-policy, the late frame

is displayed.

1 2 3 4 5 6 7 8 9 10

a b c d e f g h i j

Display Initiation Time

Acquisition Time

(a) Delay Jitter

3

2

1

0
2 3 4 5 6 7 8 9 10

Display Initiation Time

Queue
Length

Display Queue Length
3

2

1

0
2 3 4 5 6 7 8 9 10

Display Initiation Time

Queue
Length

Display Queue Length

3

2

1

0
2 3 4 5 6 7 8 9 10

Display Initiation Time

Time
(in frames)

Display Latency

a c e g h

3

2

1

0
2 3 4 5 6 7 8 9 10

Display Initiation Time

Time
(in frames)

Display Latency

a

cb d e f g

(b) I-Policy (2 frame times) (c) E-Policy

Figure 6-1: I-Policy and E-Policy with Persistent Delay Jitter

Figure 6-1 illustrates the behavior of the I- and E-policies in response to late frames.

Figure 6-1a shows the acquisition and display times for eight frames. Tick marks on the

upper timeline indicate acquisition times, the times at which new frames are acquired.

168

Tick marks on the lower timeline indicate display initiation times, the times at which the

new frames are displayed. (In the application described in Chapter 2, the acquisition time

of a video frame is defined as the time at which the Vbi0 logical interrupt that defines the

start of the frame occurs on the acquisition-side of the application; display initiation times

are defined by the times at which the Vbi0 interrupts that result in the display of new video

frames occur on the display-side.) Each diagonal arrow represents the end-to-end delay of

an individual frame, extending from the time at which it was acquired to the time it is

placed in the display queue. Throughout these examples, the acquisition time of a frame

(i.e., points a, b, c, etc.) is used to refer to individual frames.

Figure 6-1b shows the effect of executing the I-Policy on a sequence of frames arriving at

the display queue with the end-to-end delays shown in Figure 6-1a. In this example, the

display latency parameter of the I-Policy is two frame times. (For simplicity in the

examples, time is represented as multiples of the time to acquire or display a frame). Each

frame that arrives with an end-to-end delay less than two frame times is held in the display

queue until it is played with a display latency of two frame times. Each frame that arrives

with an end-to-end delay greater than two frame times is discarded.

The top graph in Figure 6-1b shows the display queue length at each display initiation

time. The bottom graph shows the display latency of the frame being displayed at each

display initiation time. In addition, each latency bar is labeled with the acquisition time of

the frame that is displayed at that display initiation time. In this example, frames b, d, and

f arrive with end-to-end delays longer than two frame times and are discarded. Thus, use

of the I-policy results in three gaps occurring in the playout at display initiation times 4,6,

and 8.

Figure 6-1c shows the effect of executing the E-policy. Where the I-policy held frames in

the queue until they could be played with a particular display latency, the E-policy plays a

new frame at each display initiation time as long as the display queue is not empty.

Furthermore, frames are never discarded; each frame that arrives is put into the display

queue. Thus, frame a is played at the first display initiation time after it arrives (i.e.,

display initiation time 3). A gap occurs at display initiation time 4 because frame b has not

yet arrived. When frame b does arrive, it is placed in the display queue and is eventually

played at display initiation time 5. As a result, it is played with a display latency of 3

frame times. Furthermore, each succeeding frame is also played with a display latency of

169

3 frame times. As long as frames continue to arrive with an end-to-end delay less than 3

frame times, there will be no gaps.

The example shown in Figure 6-1 illustrates an advantage of the E-policy. The E-policy

starts playing frames with the lowest possible initial display latency and then adjusts

display latency upward in response to delay jitter. The overall effect of the E-policy is to

find a display latency that is sufficient to play frames without gaps by dynamically

adjusting the latency to be higher than any end-to-end delay yet observed.

1 2 3 4 5 6 7 8 9 10

a b c d e f g h i j

Display Initiation Time

Acquisition Time

(a) Delay Jitter

3

2

1

0
2 3 4 5 6 7 8 9 10

Display Initiation Time

Queue
Length

Display Queue Length
3

2

1

0
2 3 4 5 6 7 8 9 10

Display Initiation Time

Queue
Length

Display Queue Length

3

2

1

0
2 3 4 5 6 7 8 9 10

Display Initiation Time

Time
(in frames)

Display Latency

a b e f g h i

3

2

1

0
2 3 4 5 6 7 8 9 10

Display Initiation Time

Time
(in frames)

Display Latency

a b

c d e f g

(b) I-Policy (1 frame time) (c) E-Policy

Figure 6-2: I-Policy and E-Policy with Occasional Delay Jitter

Figure 6-2 illustrates a situation in which the I-policy performs better than the E-policy.

In this example, the display latency parameter of the I-policy is one frame time. All frames

except frames c and d arrive with an end-to-end delay of less than one frame time and

170

experience negligible delay jitter. Frames c and d arrive late because of some temporary

increase in network activity. Each policy results in gaps at display initiation times 4 and 5.

However, the I-policy plays frames after the gap with low latency while the E-policy plays

frames after the gap with higher latency. Under the E-policy, a single “burst” of activity

on the network that causes a few frames to arrive late results in a permanent increase in

display latency.

Overall then, the effect of both the I-policy and the E-policy is to choose a display latency

at which to play frames, either explicitly in the case of the I-policy, or implicitly in the case

of the E-policy. A good choice for display latency will depend on many factors. First, the

acceptable rate of gaps and the acceptable display latency may vary depending on the

application (e.g., the transmission of speech may have different gap and latency

requirements than the transmission of music) and the current requirements of the user

(e.g., a surgeon viewing an operation will have different requirements than viewers of a

televised lecture). Second, the display latency required to maintain an acceptable gap-rate

will depend on the expected level of delay jitter, which will vary as a result of congestion

in the network. The dynamic nature of these factors motivates the design of a delay jitter

management policy that dynamically changes display latency to adapt to new requirements

and conditions.

6.3 Queue Monitoring

Consider an oracle that has perfect knowledge of the end-to-end delays of future frames

and hence can choose the best display latency at which to play each frame. Such an oracle

can adjust display latency in response to changes in delay jitter (perhaps due to changes in

network congestion) in order to achieve the best possible balance between display latency

and gaps. Display latency can be adjusted upward by artificially introducing a gap (i.e.,

delaying the playout of the next frame) and can be adjusted downward by discarding

frames.

If it is assumed that the delay jitter in the near future can be predicted by observing the

delay jitter in the recent past, it is possible to construct delay jitter management policies

that are approximations of the oracle. (This is analogous to the working set concept of

page replacement in virtual memory management.) The Naylor and Kleinrock policy for

choosing a display latency that is described in Chapter 1 is one example of such a policy.

171

This policy, however, is difficult to implement because accurately measuring end-to-end

delays at runtime requires synchronized clocks.

Instead of measuring end-to-end delays, it is possible to directly measure the impact of

delay jitter at a receiver by observing the length of the display queue over time. Once

every frame time, a frame is removed from the display queue to be played (e.g., for video

frames displayed at 30 frames per second, a frame is removed every 33 ms.). Since frames

are also acquired and transmitted once per frame time, on average one frame will arrive

and be placed in the display queue and one frame will be removed from the display queue

during each frame time. If end-to-end delays are constant, the queue length measured at

each display initiation time should be constant (as it was between display initiation times 6

and 10 in the example shown in Figure 6-2c). If delay jitter results in a frame arriving with

a longer end-to-end delay, then it is possible that no new frames will arrive between

successive display initiation times. In that case, the length of the display queue will

decrease by one frame (e.g., display initiation time 6 in Figure 6-1c). If delay jitter results

in a frame arriving with a shorter end-to-end delay, then more than one frame may arrive

between successive display initiation times, and the length of the display queue will

increase (e.g., display initiation time 6 in Figure 6-2c).

Over time, the length of the display queue will vary depending on the range of end-to-end

delays encountered by frames. If the level of delay jitter in the near future will be the same

as the level in the recent past, then while end-to-end delays may vary, they will not vary

outside the range that has been observed recently. This implies that in the near future, the

length of the display queue will remain at least as long as the minimum length that has

been observed in the recent past.

The assumption that delay jitter in the near future will be about the same as that in the

recent past can be used to determine if a frame can be discarded from the display queue in

order to reduce display latency without causing more gaps. As long as the display queue

contains at least one frame at each display initiation time, there will be no more gaps in the

playout. If the minimum display queue length observed recently was at least two frames,

then it can be assumed that after discarding a frame, the minimum queue length observed

in the near future will be at least one. Thus, a frame can be discarded without causing

additional gaps.

A policy for decreasing display latency based on observing queue lengths has been used to

govern the behavior of the audio display queue in the Pandora system [28]. Whenever

172

frames are added to the display queue (called the clawback buffer), the length of the queue

is checked against a target value. In the Pandora system, the target is 2 frames (in

Pandora, each audio frame corresponds to 2 ms. of audio data). If the length of the

display queue is greater than this target for a sufficiently long interval (8 seconds),

incoming audio frames are discarded. Because this has the effect of shortening the display

queue, audio data that arrives after this time will be played with a lower display latency.

var
threshold : array of integer;
above : array of integer;

for i := max_queue_length downto 2 do
if length(display_queue) > i then

above[i] := above[i] + 1
else

above[i] := 0
end if;

if above[i] >= threshold[i] then
buffer := remove_queue(display_queue);
free(buffer);
for j := 2 to max_queue_length do

above[i] := 0
end for;
exit loop

 end if
end for

Figure 6-3: Queue Monitoring Procedure

I propose a display queue management policy called queue monitoring that is a variation

of the policy used in Pandora. In this policy, a threshold value is defined for each possible

display queue length. The threshold value for queue length n specifies a duration

(measured in frame times) after which, if the display queue has continuously contained

more than n frames, it will be concluded that display latency can be reduced without

increasing the frequency of gaps. Since I am making the natural assumption that large

variations in end-to-end delay are expected to occur infrequently, and small variations are

expected to occur much more frequently, threshold values for long queue lengths specify

short durations while those for short queue lengths specify long durations (this assumption

is validated by the histograms of delay jitter given in Figures 7-2, 7-4, and 7-6).

In the implementation of queue monitoring, an array of counters and threshold values is

associated with the display queue. Each display initiation time, the queue monitoring

procedure illustrated in Figure 6-3 is performed. First, when the display queue has length

173

m, counters 2 through m–1 are incremented and all other counters are reset. Then, if any

counter exceeds its associated threshold value, all the counters are reset and the oldest

frame is discarded from the display queue. Once the queue monitoring procedure has

been performed, the oldest remaining frame is removed from the display queue and played.

An important principle in this implementation is that the thresholding operation will never

discard frames unless the display queue contains more than two frames. The last frame in

the display queue should never be discarded because there must be a frame available for

display after the thresholding operation completes. Similarly, if the second-to-last frame in

the display queue were discarded, then even minute delay jitter could potentially cause a

gap. For example, this can occur in a situation where a frame arrives immediately before

the thresholding operation and results in a display queue with length 2. If one of those

frames is discarded and the other is displayed, then the queue would be empty. Then, if

the next frame has a slightly larger end-to-end delay, it might not arrive in time to be

displayed. Therefore, I only consider queue monitoring policies with thresholds defined

for queue lengths greater than two.

6.4 Summary

In this chapter, I have described several policies for managing the tradeoff between the

display of continuous media with low display latency and the display of continuous media

with few gaps. I began by asserting that policies for managing this tradeoff could be

implemented as policies for managing the display queue. I then described two queue

management policies from the literature, the I-policy and the E-policy, and illustrated the

effect of these policies with several examples. Finally, I defined a queue management

policy called queue monitoring that was designed to combine the advantages of the I- and

the E-policies. In the next chapter, I evaluate the relative performance of these three

policies.

174

Chapter VII
Evaluation of Delay Jitter Management Policies

7.1 Introduction

This chapter presents an empirical study of the set of policies described in Chapter 6 for

managing the display queue in the presence of delay jitter. In the study, the workstation-

based video conferencing application described in Chapter 2 was run a number of times in

several different network environments. During execution, traces of the end-to-end delays

experienced by frames were recorded. These traces were then used as input to a simulator

which determined the effect that applying each policy would have had on the quality of the

conference.

The goal of the study was to gauge the effectiveness of the set of delay jitter management

policies in campus-sized internetworks. In principle, the effectiveness of each policy

should be independent of the particular type of continuous media data on which it

operates. In practice however, differences in continuous media data types affect the

behavior of the policies. The most important difference is frame rate; data displayed at a

high frame rate is more sensitive to delay jitter than data displayed at a low frame rate.

For example, under any policy, a 200 ms. variation in the end-to-end delays experienced

by frames will have little effect when frames are displayed at a rate of one per second.

However, when frames are displayed at a rate of 60 frames per second, then a 200 ms.

variation in delay has a much greater effect; under the queue monitoring policy, such a

variation in delay could cause the length of the display queue to decrease by 13 frames. In

the workstation-based video conferencing application, audio is displayed at a higher frame

rate than video; thus audio is more sensitive to delay jitter. As a result, I have chosen to

study the effect of the I-policy, the E-policy, and the queue monitoring policy on the

display of audio frames.

To evaluate the performance of the policies over a range of networks, I performed a test

suite in three different network environments. The first was the internetwork consisting of

16Mb Token Rings and 10Mb Ethernets that serves as the main network supporting the

Computer Science department at the University of North Carolina. The other two

network environments were located on the campus of IBM in Research Triangle Park,

North Carolina. First, the test suite was performed on a 4 Mb Token Ring serving a single

floor of a building. Next, the test suite was repeated using two 4 Mb floor rings

connected by a 16 Mb Token Ring serving as the backbone network for all the buildings

on the IBM-RTP campus.

In Section 7.2, I begin by describing the study in detail. In Section 7.3, I discuss the

metrics I propose for evaluating the performance of the delay jitter management policies

and the problems inherent in formulating such metrics. In Section 7.4, I compare the

performance of queue monitoring to that of the I- and E- policies. In Section 7.5, I

explore the effect of the threshold parameter of the queue monitoring policy.

7.2 Description of the Study

In this section, I present a detailed description of the data collected in the study, as well as

a description of the network environments in which the study was conducted. In each

network environment, I executed the workstation-based videoconferencing application

several times; each complete execution is referred to as a run. During each run, the

application acquired, transmitted, and displayed 60 frames per second audio and 30 frames

per second video and recorded a trace of the acquisition time and the arrival time of each

audio frame as well as the time of each VBI logical interrupt at the display (i.e., the times

at which new audio frames were displayed). Audio frames were transmitted in individual

packets and video frames were broken into fragments which would fit into a single packet

on an ethernet (i.e., 1350 bytes of video data per fragment).

After each run, the resulting trace was adjusted to account for the lack of clock

synchronization. The adjustment was based on two values. First, before each run I

executed a simple protocol to measure the difference between the time at the acquisition

machine and the time at the display machine. Second, I measured the ratio between the

clock rates at the acquisition and display machines in a separate experiment. For each pair

of machines, this ratio was found to be nearly fixed (e.g., the ratio of the clock rates for

the pair of machines used in the UNC experiments was 0.999987). Thus, the frame

generation times, which were measured using the clock on the acquisition-side, were

converted to display-side times by multiplying by the ratio of the clock rates and adding

the initial difference in clock times.

176

Each trace was also adjusted to account for packets lost in the network. Any audio frame

that never arrived was assumed to have been generated 1/60th of a second after the

preceding audio frame and to have arrived at the display at the same time as the next audio

frame that arrived (i.e., if frame N was lost, then it was assumed to have been generated

one frame time after frame N-1 and to have arrived at the display at the same time as

frame N+1). This adjustment was used in order to examine the delay jitter encountered in

real-world networks in isolation from the loss encountered in real-world networks; the

choice that a lost frame is assumed to arrive with the next frame reflects an assumption

that a forward error correction scheme would be used to correct errors.

Finally, the adjusted traces were used as input to a trace-driven simulation of the display-

side of a conference. For a given display queue management policy and the sequence of

arrivals and display initiation times in the trace, the simulator determined which frame

would have been displayed at which display initiation time. The output of the simulator

was the average display latency and average gap rate that would have resulted from

applying the policy during the run.

7.2.1 Description of the UNC Network Environment

The first set of runs was performed using the main network supporting the Computer

Science department at the University of North Carolina. This network consists of several

10 Mb Ethernets and 16 Mb token rings interconnected by bridges and routers. It

supports approximately 400 UNIX workstations and Macintosh personal computers. The

workstations share a common filesystem using a mix of NFS and AFS and run an overall

application mix that should be typical of most academic computer science departments. In

this set of runs, each packet was routed across a lightly-loaded token ring to a gateway,

through a segment of the departmental ethernet to a bridge, through a second segment of

the departmental ethernet to another gateway, and back across the same token ring to the

display machine.

Twenty-four runs, each lasting 10 minutes, were performed over the course of a typical

day (between 6am and 5pm) covering lightly and heavily loaded periods. Four additional

runs were performed during nightly backups (between midnight and 1am). Figure 7-1

gives some basic data on the variability in end-to-end delays encountered by audio frames

during the 28 runs. “Time of Day” is the time the run was initiated. Average and

maximum delays are calculated from the end-to-end delays experienced by audio frames

(recall that end-to-end delay is defined as the elapsed time between acquisition of the

177

frame and its arrival at the display queue). Lost and duplicate frames are counts of lost

and duplicated packets which contained an audio frame. No out of order packets were

observed.

Run Time of
Day

Avg. Delay
ms.

Max. Delay
ms.

Lost
Frames

Duplicate
Frames

1 06:03 38 76 1 0
2 06:25 38 88 3 0
3 06:36 37 171 5 0
4 06:47 37 105 1 0
5 08:03 38 115 1 0
6 08:14 37 73 2 0
7 08:25 38 184 7 0
8 08:36 39 157 1 0
9 10:02 41 186 23 0
10 10:16 40 124 4 0
11 10:31 41 213 7 0
12 10:49 40 140 6 0
13 11:57 39 110 5 0
14 12:08 41 138 5 0
15 12:19 41 133 3 0
16 12:34 40 187 11 0
17 14:02 41 189 11 0
18 14:13 42 141 3 0
19 14:42 39 107 4 0
20 14:54 40 131 12 0
21 16:01 39 171 9 0
22 16:21 39 128 2 0
23 16:33 39 86 2 1
24 16:55 42 242 14 1
25 00:05 38 80 4 0
26 00:16 38 128 0 0
27 00:27 38 134 8 0
28 00:38 38 83 2 0

Figure 7-1: Basic Data (UNC Network)

Variation in end-to-end delay (ms.)

N
um

be
r

of
 F

ra
m

es

0

1

10

100

1000

10000

100000

1000000

0 50 100 150 200 250 300 350 400

Figure 7-2: Distribution of End-to-End Delay Jitter (UNC Network)

178

Figure 7-2 provides a more detailed look at the 28 runs. This figure illustrates the

distribution of end-to-end delay jitter experienced by audio frames. For each run, the

delay jitter of an audio frame is defined by subtracting the minimum end-to-end delay

observed during the run from the end-to-end delay of the frame. The y-axis shows a count

plotted on a log scale of the number of frames with delay jitter within each 5 ms. interval

(e.g., a count of frames with end-to-end delay jitter of 0 ms. - 5 ms., 5 ms. - 10 ms., 10

ms. -15 ms., etc.).

7.2.2 Description of the IBM-RTP Floor Network

The next set of runs was performed using the network that supports a floor of an office

building on the IBM campus in Research Triangle Park, North Carolina. This network is a

single 4 Mb Token Ring, connected to the rest of the campus network by a bridge. It

supports approximately 50 PS/2 workstations. In this set of runs, each packet was simply

sent from the acquisition machine to the display machine across this one ring. Fifteen

runs, each lasting 5 minutes, were performed on this network. These runs were performed

between 9am and 5pm over several days. Figure 7-3 gives some basic data for each run

and Figure 7-4 illustrates the distribution of end-to-end delay jitter experienced by audio

frames during each run.

7.2.3 Description of the IBM-RTP Campus Network

The third set of runs was performed using the campus internetwork at IBM-RTP. This

network consists of a 16 Mb Token Ring which serves as the backbone and is connected

by bridges to 4 Mb Token Rings supporting single floors of each campus building. In this

set of runs, each packet was routed across a floor ring to a bridge, through the backbone

to another bridge, and through a second floor ring to the display machine. Nineteen runs,

each lasting 5 minutes, were performed on this network. These runs were performed

between 9am and 5pm over several days. Figure 7-5 gives some basic data on each run

and Figure 7-6 illustrates the distribution of end-to-end delay jitter experienced by audio

frames during each run.

7.2.4 Summary of the Three Network Environments

The three network environments used here exhibit somewhat different characteristics. On

the UNC departmental network, most frames arrive with very little delay jitter, but

variation in delay of as much as 220 ms. was encountered. On the IBM floor network,

179

more frames experienced delay jitter in the 30 to 60 ms. range, but the largest variation

encountered was only in the range of 110 ms. Finally, on the IBM campus network, the

largest variation in delay encountered was in the range of 410 ms. Furthermore, while

little data was lost in the UNC departmental network, and none was lost in the IBM floor

network, data loss in the IBM campus network was significant.

Run Time of
Day

Avg. Delay
ms.

Max. Delay
ms.

Lost
Frames

Duplicate
Frames

1 11:57 38 116 0 0
2 14:23 36 110 0 0
3 15:23 38 101 0 0
4 16:04 41 99 0 0
5 09:48 40 93 0 0
6 15:05 43 104 0 0
7 17:16 52 100 0 0
8 11:22 44 101 0 0
9 10:22 45 111 0 0
10 09:58 48 135 0 0
11 15:46 46 112 0 0
12 10:07 38 92 0 0
13 12:49 50 103 0 0
14 13:23 58 120 0 0
15 14:46 56 105 0 0

Figure 7-3: Basic Data (IBM-RTP Floor)

Variation in end-to-end delay (ms.)

N
um

be
r

of
 F

ra
m

es

0

1

10

100

1000

10000

100000

1000000

0 50 100 150 200 250 300 350 400

Figure 7-4: Distribution of End-to-End Delay Jitter (IBM-RTP Floor)

180

Run Time of
Day

Avg. Delay
ms.

Max. Delay
ms.

Lost
Frames

Duplicate
Frames

1 13:31 39 367 113 0
2 14:15 46 179 0 0
3 15:22 44 368 107 0
4 13:47 42 87 0 0
5 14:26 48 334 105 0
6 15:25 46 175 8 0
7 10:08 69 429 765 0
8 10:50 45 131 0 0
9 12:31 44 181 12 0
10 14:42 62 367 204 0
11 16:07 71 364 333 0
12 10:23 45 160 3 0
13 10:58 69 255 2 0
14 12:47 42 161 0 0
15 13:49 51 314 94 0
16 14:44 38 200 21 0
17 15:41 48 245 19 0
18 10:12 67 350 43 0
19 12:25 42 130 0 0

Figure 7-5: Basic Data (IBM-RTP Campus)

Variation in end-to-end delay (ms.)

N
um

be
r

of
 F

ra
m

es

0

1

10

100

1000

10000

100000

1000000

0 50 100 150 200 250 300 350 400

Figure 7-6: Distribution of End-to-End Delay Jitter (IBM-RTP Campus)

7.3 Evaluating Delay Jitter Management Policies

In the remainder of this chapter, I evaluate the effectiveness of the I-, E-, and queue

monitoring policies at managing the effect of delay jitter on the quality of audio in a

workstation-based videoconference. For each policy and each run, I use simulation based

on the traces described in Section 7.2 to determine which frames would have been

discarded and the display latency at which each remaining frame would have been played

assuming the policy had been applied during that run. From this, I determine the average

181

display latency and gap rate for each policy on each run. Before these results can be used

to compare the relative performance of the three policies, two issues must be addressed:

what is the precise definition of a gap, and what metric should be used to determine if one

policy has performed better than another?

7.3.5 Gaps

In Chapter 1, a gap was defined as the event that occurs when an application is unable to

play the next frame when the display of the preceding frame is complete. Such an event

can occur for several reasons. In [11], Gruber and Strawczynski divide gaps in the

playout of audio into two types: open and closed. An open gap occurs when frame N is

played, followed by a frame time of silence, followed by frame N+2. Thus, the gaps

encountered when using the I-policy are open gaps. A closed gap occurs when frame N is

played immediately followed by frame N+2. Thus, the gaps encountered when the queue

monitoring policy reduces latency by discarding frames are closed gaps. A third type of

gap, which I will refer to as a delay gap, is encountered when using the E-policy and the

queue monitoring policy. A delay gap occurs when frame N is played, followed by a

frame time of silence, followed by frame N+1.

Through informal observation, I have concluded that both open gaps and delay gaps cause

a reduction in the perceived quality of audio. For open gaps, a study by Gruber and

Strawczynski confirms this conclusion8. In my study, both open gaps and delay gaps are

counted as gaps.

In contrast, I do not count closed gaps. While Gruber and Strawczynski’s study does not

address the effect of closed gaps on quality at a frame rate of 60 frames per second, it

does provide data on closed gaps at 15 frames per second; a gap rate of 3.6 gaps per

minute does not result in a noticeable decrease in quality. From this result, and supported

by informal observations, I have concluded that for the rate at which queue monitoring

reduces latency in my experiments (at most 6 frames per minute in the QM-600 policy

defined below), the closed gaps introduced by queue monitoring should be undetectable.

8Participants in the study were asked to rate the quality of audio playout on a scale of 1 to 5. For a frame
rate of 60 frames a second, playout without gaps resulted in a quality rating of 4.1, while a gap rate of
14.1 gaps per minute resulted in a rating of 3.5, a decrease in perceived quality of 15%.

182

7.3.6 Comparison Rule

To evaluate the effectiveness of a delay jitter management policy, it would be useful to

have a metric that determined the display quality of a conference performed using that

policy. Clearly, if policy A results in lower display latency and less gaps than policy B, it is

performing better. However, if policy A results in a lower display latency and a higher gap

rate as compared with policy B, which has performed better?

In their study of the I-policy and the E-policy [37], Naylor and Kleinrock answer this

question using a straightforward comparison rule. They propose a quality metric in which

display quality is the normalized Euclidean distance from the origin in the DG plane,

where D is the display latency, G is the gap rate, and D and G are normalized by two

constants, d and g. These two normalization constants are intended to be threshold values

of display latency and gap rate, above which quality degrades rapidly.

Unfortunately, this comparison rule does not address many of the factors that affect the

quality of audio and video display. These factors include not only the display latency and

the gap rate, but also the resolution of the display, the user’s particular requirements for

audio and video, the distribution of gaps throughout the measurement interval, the number

of display latency changes, and the distribution of periods of high and low display latency

throughout the interval. A better standard for comparing policies would take each of

these factors into account.

More importantly, the Naylor and Kleinrock comparison rule is based on an assumption

that there is a direct tradeoff between gap rate and display latency. Any conclusions about

the relative effect of two policies derived using this comparison rule would be extremely

sensitive to the validity of this assumption and to the particular choice of the normalization

constants. Since these assumptions are not necessarily justified, conclusions drawn using

this comparison rule are potentially misleading. Nevertheless, in order to provide some

insight into the data, it is useful to adopt some standard of comparison. Therefore, I have

adopted a simple, conservative and arbitrary comparison rule for the analysis in this

chapter.

My comparison rule is based on two measurements: average display latency and average

gap rate. I assume that differences in display latency of less than 16.5 ms. (i.e., a single

audio frame time) and differences in gap rate of less than one every 15 seconds (i.e., 4

gaps per minute) are not significant. My comparison rule declares policy A to have done

183

better than policy B if it is better in one dimension and the same or better in the other

dimension. Two policies are declared to have done equally well if they are the same in

both dimensions and are declared to be incomparable if each has done better in one

dimension.

Given this comparison rule, I can evaluate and compare the effectiveness of policies for a

particular run. However, it is still difficult to compare results of multiple runs. One

fundamental difficulty arises because the video hardware that acquires frames at the sender

is not synchronized with the display at the receiver. To illustrate the effect this has on

display latency, assume there is no end-to-end delay (i.e., acquisition and arrival of frames

are simultaneous). Despite this fact, an application must wait until the next display

initiation time (i.e., the next VBI logical interrupt) to display each new frame. Depending

on the synchronization difference between the video hardware acquiring the frames and

the display, each frame may have to wait up to one frame time before being displayed.

This synchronization time is a random variable and varies between runs. Therefore, when

comparing results of multiple runs, differences in latency of as much as a frame time are

not significant.

The second difficulty in comparing multiple runs arises from my working definition of the

I-policy. As described in Chapter 6, the I-policy should play frames at a constant display

latency. However this would require that the clocks at the acquisition and display

workstations be synchronized. In my work, I only assume synchronized clocks for

measurement purposes (i.e., I do not use synchronized clocks to guide the execution of

the system). Therefore, I cannot implement the I-policy. Instead, I implement a variant of

the I-policy which buffers the first frame for a fixed number of frame times before

displaying it and then displays all subsequent frames with the same display latency. The

effect of this definition is to make the display latency enforced by a particular I-policy

during a run a function of the end-to-end delay of the first frame that is received (i.e., a

random variable).

The goal of the study presented in this chapter is to determine which of several policies

results in the best quality playout over a range of network conditions. Because of the

difficulties involved in comparing the results of multiple runs, and because my comparison

rule determines relative, rather than absolute performance, I restrict direct comparisons to

determining the relative performance of two policies on a single run. This allows me to

conclude only that one policy outperforms another on a particular run. To show that one

184

policy outperforms another in general, I must show that it performs better on some runs

and as well or better on all runs. This method of pairwise comparison is the basis of the

performance evaluations presented in the remainder of the chapter.

7.4 Comparison of Queue Monitoring to the I- and E- Policies

In this section, I compare the performance of the queue monitoring policy with the

performance of the I- and E-policies. The E-policy used here is exactly as it was described

in Chapter 6. The I-policy and the queue monitoring policy used here require further

elaboration.

As described in Chapter 6, the I-policy is parameterizable; it plays all frames at a specified

display latency. However, as mentioned above, because the implementation does not rely

on synchronized clocks, the application can only approximate the I-policy. Thus I use a

variant of the I-policy in which the display latency parameter specifies a number of frame

times for which the first frame is buffered after it arrives at the display; all subsequent

frames are played with the same display latency.

For each network environment, I have arbitrarily chosen the parameter of the I-policy to

reflect a desired average gap rate of less than 4 gaps per minute9. To set this parameter

for a particular environment, I determined the value of delay jitter for which, over all the

measurements of end-to-end delay jitter taken in that environment, less than 4 out of every

3600 frames arrived with greater delay jitter (note that this means that on some runs,

significantly more than 4 gaps per minute will be encountered using this value). This value

was 60 ms. for the UNC departmental network, 75 ms. for the IBM-RTP floor network,

and 305 ms. for the IBM-RTP campus network. Thus to achieve an average gap rate of

less than 4 gaps per minute in these network environments, the I-policy should have a

parameter of 4, 5, and 19 frame times respectively (i.e., 60 16 5 4. = , 75 16 5 5. = ,

305 16 5 19. =). These are the values used for the analysis in this section.

9This is a conservative choice for a desired gap rate. Nevertheless, the resulting display latency is
relatively small for both the UNC departmental network and the IBM-RTP floor network. However, this
desired gap rate leads to a very large display latency for the IBM-RTP campus network. This shows that
there is too much delay jitter in the IBM-RTP campus network to support display at a fixed latency with
few gaps.

185

The queue monitoring policy is also parameterizable; threshold times must be specified for

each queue length. In this section, I compare a simple queue monitoring policy to the I-

and E- policies. Each queue length greater than two is assigned a threshold of 10 seconds

(600 frame times). The effect of these threshold settings is to reduce display latency by

one audio frame time (16.5 ms.) whenever the display queue contains more than 2 audio

frames for 600 continuous frame times (10 seconds).

Figure 7-7 shows the simulation results for each of the 28 runs on the UNC departmental

network. In the table, the I policy is labeled I-4, the E-policy is labeled E and the queue

monitoring policy is labeled QM-600. For each policy, the table shows the resulting

average display latency (in ms.) and the average gap rate (in gaps/minute). For each run,

the rightmost columns show the comparison between the queue monitoring policy and the

other policies (using the comparison rule defined in Section 7.3). A ‘+’ indicates that

queue monitoring did better, a ‘0’ means the two were equivalent, a ‘-’ means that queue

monitoring did worse, and an ‘x’ means the two policies were incomparable. The total

number of runs for which QM was better, equivalent, worse, or incomparable is

summarized at the bottom of the table.

The results in Figure 7-7 show that, with respect to my comparison rule, the QM-600

policy performs as well or better than both the I-policy and the E-policy on every run. On

several runs, the difference is striking. For instance, on run 3, queue monitoring resulted

in a display latency 100 ms. less than that produced by the E-policy while producing the

same gap rate. From this I surmise that run 3 is probably an example of the poor behavior

of the E-policy that was abstractly illustrated in Figure 6-2. On run 24, queue monitoring

resulted in a display latency comparable to that produced by the I-policy, but with a gap

rate 4 times smaller. From this, I surmise that a portion of run 24 exhibited the poor

behavior of the I-policy illustrated in Figure 6-1.

From the results in Figure 7-7, I conclude that over the range of network conditions

observed in the UNC departmental network, the use of queue monitoring as the delay

jitter management policy was more effective than either the I-policy or the E-policy.

Figure 7-8 shows that queue monitoring also performed better than the I-policy and the E-

policy over the range of network conditions observed on the IBM-RTP floor network.

186

Run I-Policy (I-4) E-Policy QM-600 QM QM
Latency

ms.
Gaps
/min.

Latency
ms.

Gaps
/min.

Latency
ms.

Gaps
/min.

vs.
I-4

vs.
E

1 114 0.0 80 0.2 73 0.2 + 0
2 108 0.0 80 0.3 70 0.4 + 0
3 102 1.5 178 0.9 76 0.9 + +
4 99 0.1 104 0.5 69 0.5 + +
5 104 0.1 97 0.5 73 0.5 + +
6 103 0.0 83 0.3 70 0.3 + 0
7 107 0.8 134 0.9 83 1.4 + +
8 96 1.5 106 0.8 83 0.9 0 +
9 114 5.8 192 0.9 111 3.4 0 +
10 104 1.0 130 0.6 90 1.3 0 +
11 99 3.4 150 1.1 102 2.9 0 +
12 104 1.3 137 0.7 87 1.6 + +
13 101 0.4 102 0.5 85 1.0 0 +
14 105 1.1 110 0.6 94 1.5 0 0
15 109 0.7 120 0.6 89 1.4 + +
16 101 4.5 145 1.0 104 2.5 0 +
17 110 6.6 177 0.9 109 3.1 0 +
18 110 1.6 139 0.6 103 2.2 0 +
19 99 0.1 92 0.5 85 0.7 0 0
20 106 0.8 129 0.6 91 1.3 0 +
21 104 3.0 177 0.9 89 1.7 0 +
22 112 0.1 103 0.5 81 0.7 + +
23 108 0.0 87 0.3 74 0.4 + 0
24 110 7.7 132 1.2 102 1.9 + +
25 98 0.0 81 0.3 77 0.4 + 0
26 98 0.3 122 0.6 79 0.9 + +
27 104 1.5 125 0.6 84 2.4 + +
28 109 0.0 88 0.3 74 0.3 + 0

QM Better 16 20
QM Equivalent 12 8

QM Worse 0 0
Incomparable 0 0

Figure 7-7: Comparison of I, E, and QM Policies (UNC Network)

Figure 7-9 shows the results for the IBM-RTP campus network. On this network, queue

monitoring never performed worse, and usually performed as well or better than the I-

policy. On several runs however, my comparison rule judged the queue monitoring policy

to be incomparable with the I-policy. Thus, I cannot conclude that, with respect to my

comparison rule, queue monitoring performed better than the I-policy over the range of

observed network conditions. However, looking deeper at the incomparable runs, it is

clear that on most, queue monitoring produced a much lower display latency and a

somewhat higher gap rate. On four of the five incomparable runs, the difference in gap

rate produced by queue monitoring and by the I-policy was less than 7.8 gaps per minute,

while the difference in display latency was as much as 219 ms. On the fifth incomparable

187

run, queue monitoring produced a slightly higher display latency, but 89 fewer gaps per

minute. Thus, even on the incomparable runs, queue monitoring resulted in reasonable

behavior that, intuitively, is probably better than and almost certainly not worse than that

produced by the I-policy.

With respect to the E-policy, queue monitoring performed as well or better in the results

for the IBM-RTP campus network on all but run 1; on that run, queue monitoring resulted

in a display latency 46 ms. less than that produced by the E-policy, but also resulted in 4.2

more gaps per minute. So again, even on the incomparable run, queue monitoring resulted

in reasonable behavior that is probably better than, and almost certainly no worse than that

produced by the E-policy.

Run I-Policy (I-5) E-Policy QM-600 QM QM
Latency

ms.
Gaps
/min.

Latency
ms.

Gaps
/min.

Latency
ms.

Gaps
/min.

vs.
I-5

vs.
E

1 106 4.2 120 1.2 116 2.0 0 0
2 108 0.0 96 1.0 72 1.0 + +
3 104 0.0 103 1.0 75 1.0 + +
4 115 0.0 93 0.8 72 0.8 + +
5 113 0.0 90 0.8 82 2.2 + 0
6 103 0.4 97 1.2 85 2.0 + 0
7 108 0.0 104 1.0 95 1.6 0 0
8 107 0.0 98 1.0 88 1.6 + 0
9 114 0.0 104 1.0 88 2.0 + 0
10 106 5.8 139 1.4 109 2.6 0 +
11 108 0.2 120 1.2 100 2.6 0 +
12 108 0.0 93 1.0 80 2.2 + 0
13 107 0.0 85 1.0 82 1.2 + 0
14 116 0.2 132 1.2 104 1.6 0 +
15 102 0.2 104 1.2 102 1.4 0 0

QM Better 9 6
QM Equivalent 6 9

QM Worse 0 0
Incomparable 0 0

Figure 7-8: Comparison of I, E, and QM Policies (IBM-RTP Floor)

188

Run I-Policy (I-19) E-Policy QM-600 QM QM
Latency

ms.
Gaps
/min.

Latency
ms.

Gaps
/min.

Latency
ms.

Gaps
/min.

vs.
I-19

vs.
E

1 343 4.8 283 5.0 237 9.2 x x
2 350 0.0 136 1.8 114 3.4 + +
3 339 7.4 188 4.6 162 5.6 + +
4 352 0.0 94 0.8 89 1.0 + 0
5 340 2.0 157 4.4 144 5.0 + 0
6 346 0.0 231 2.6 128 3.4 + +
7 336 95.6 447 5.2 359 6.4 x +
8 343 0.0 126 1.4 105 3.0 + +
9 347 0.0 152 2.2 128 4.2 x +
10 337 2.4 349 4.2 302 7.6 x +
11 346 6.8 430 5.0 352 9.0 0 +
12 349 0.0 144 1.6 120 2.8 + +
13 344 0.0 234 2.8 180 4.0 + +
14 344 0.0 144 1.6 89 2.4 + +
15 339 0.4 264 4.2 209 8.2 x +
16 327 0.0 127 2.6 108 4.0 + +
17 340 0.0 203 2.8 147 4.0 + +
18 338 2.6 174 4.8 148 5.8 + +
19 348 0.0 112 1.4 100 2.4 + 0

QM Better 13 15
QM Equivalent 1 3

QM Worse 0 0
Incomparable 5 1

Figure 7-9: Comparison of I, E, and QM Policies (IBM-RTP Campus)

Overall then, I conclude that the queue monitoring policy performed better than either the

I- or the E- policies over the wide range of network conditions observed in the three

environments. In particular, queue monitoring always resulted in lower display latency

than that produced by the E-policy, and only rarely resulted in display latencies higher than

that produced by the I-policy. Quite often, queue monitoring resulted in much lower

display latencies than either or both of the other policies. And yet, the gap rate produced

by queue monitoring was less than 3.1 gaps per minute on the UNC departmental

network, and less than 9.2 gaps per minute on the IBM-RTP campus network; presumably

an acceptable gap rate. Thus, queue monitoring appears to have successfully adapted to

the delay jitter encountered in a wide range of network conditions to produce low display

latency and an acceptable gap rate10.

10Note however that for the IBM-RTP campus network, these results depend heavily on the assumption
that there was no data loss in the network; with the loss that was encountered in that network, the true gap
rate would be much greater.

189

7.5 Effect of the Threshold Parameter

In this section, I investigate the effect of the threshold parameter on the effectiveness of

the queue monitoring policy. In the previous section, I looked at one queue monitoring

policy with a single threshold (i.e., 10 seconds) defined for all queue lengths greater than

two. The effect of using a single threshold is to reduce display latency by one audio frame

time whenever the display queue contains more than two audio frames continuously for

the specified number of frame times. In this section, I begin by looking at several queue

monitoring policies which define a single threshold for all queue lengths.

7.5.7 Results for QM Policies With a Single Threshold

For each run in the three network environments, I simulated the queue monitoring policy

with three thresholds: 120 frame times (1/2 second), 600 frame times (10 seconds), and

3600 frame times (60 seconds). Figures 7-10, 7-11, and 7-12 summarize the results. As

would be expected, on each run the use of a range of threshold parameters resulted in a

range of results; since it discarded frames fastest, a threshold of 120 frame times produced

the lowest display latency and highest gap rate, while a threshold of 3600 frame times

produced the highest display latency and the lowest gap rate. Thus, thresholds seem to be

a useful tunable parameter for an application to select a balance between display latency

and gaps that reflects its requirements.

Looking at the three queue monitoring policies in the context of each network

environment, it is clear that a single threshold value is not necessarily optimal across all

network environments. In general, QM-600 performed somewhat better than QM-3600,

although in the IBM-RTP floor network, performance was equivalent on most runs.

However, the performance of QM-600 relative to QM-120 varied over the network

environments. On the UNC departmental network, QM-120 performed as well or better

than QM-600 on every run. On the IBM-RTP floor network, QM-120 produced

equivalent results to QM-600 on most runs, slightly better on one run, and was

incomparable on one run. On the IBM-RTP campus network, QM-120 performed better

on several runs, worse on one run, and was incomparable on most runs. However, on

most of the incomparable runs in both IBM-RTP networks, QM-120 resulted in very high

gap rates.

190

Run QM-120 QM-600 QM-3600 QM-600 QM-600
Latency

ms.
Gaps
/min.

Latency
ms.

Gaps
/min.

Latency
ms.

Gaps
/min.

vs.
QM-120

vs.
QM-3600

1 66 0.2 73 0.2 80 0.2 0 0
2 69 0.4 70 0.4 74 0.3 0 0
3 69 0.9 76 0.9 115 0.9 0 +
4 66 0.5 69 0.5 83 0.5 0 0
5 71 0.5 73 0.5 83 0.5 0 0
6 70 0.3 70 0.3 81 0.3 0 0
7 74 1.4 83 1.4 119 1.1 0 +
8 75 1.2 83 0.9 97 0.9 0 0
9 90 5.8 111 3.4 161 1.1 - +
10 79 3.6 90 1.3 110 0.6 0 +
11 84 4.4 102 2.9 140 1.1 - +
12 77 2.3 87 1.6 113 0.8 0 +
13 73 1.7 85 1.0 96 0.7 0 0
14 80 3.4 94 1.5 104 0.7 0 0
15 79 2.6 89 1.4 106 0.9 0 +
16 82 5.9 104 2.5 130 1.2 - +
17 89 6.7 109 3.1 148 1.4 - +
18 86 4.7 103 2.2 126 0.8 - +
19 74 1.6 85 0.7 91 0.5 0 0
20 77 2.7 91 1.3 105 0.8 0 0
21 76 2.7 89 1.7 130 1.0 0 +
22 79 1.0 81 0.7 92 0.6 0 0
23 74 0.4 74 0.4 81 0.3 0 0
24 88 4.2 102 1.9 128 1.2 0 +
25 66 0.4 77 0.4 81 0.3 0 0
26 69 1.5 79 0.9 94 0.6 0 0
27 74 3.0 84 2.4 108 0.9 0 +
28 74 0.3 74 0.3 75 0.3 0 0

QM-600 Better 0 13
QM-600 Equivalent 23 15

QM-600 Worse 5 0
Incomparable 0 0

Figure 7-10: QM Policies with Varying Thresholds (UNC Network)

Therefore, it appears that, while no one threshold setting performs best for all network

environments, it is possible that an optimal threshold exists for each environment.

Furthermore, QM-600 produces reasonable results in each environment. Thus, an overall

delay jitter management policy could begin by using queue monitoring with a threshold

setting that always produces reasonable behavior. Then over time the threshold setting

could be adjusted to reflect long-term observations of network conditions. Furthermore,

such a policy could be used to adapt to long-term changes in network conditions (e.g.

changes due to network reconfiguration).

191

Run QM-120 QM-600 QM-3600 QM-600 QM-600
Latency

ms.
Gaps
/min.

Latency
ms.

Gaps
/min.

Latency
ms.

Gaps
/min.

vs.
QM-120

vs.
QM-3600

1 94 21.4 116 2.0 120 1.2 x 0
2 71 1.0 72 1.0 82 1.0 0 0
3 73 1.0 75 1.0 85 1.0 0 0
4 71 1.2 72 0.8 85 0.8 0 0
5 73 4.4 82 2.2 90 0.8 0 0
6 78 3.2 85 2.0 97 1.2 0 0
7 88 3.6 95 1.6 104 1.0 0 0
8 80 4.6 88 1.6 97 1.0 0 0
9 81 2.8 88 2.0 101 1.2 0 0
10 91 6.4 109 2.6 130 1.4 - +
11 87 6.4 100 2.6 120 1.2 0 +
12 75 2.4 80 2.2 91 1.2 0 0
13 80 1.6 82 1.2 85 1.0 0 0
14 94 4.8 104 1.6 119 1.2 0 0
15 93 2.4 102 1.4 104 1.2 0 0

QM-600 Better 0 2
QM-600 Equivalent 13 13

QM-600 Worse 1 0
Incomparable 1 0

Figure 7-11: QM Policies with Varying Thresholds (IBM-RTP Floor)

Run QM-120 QM-600 QM-3600 QM-600 QM-600
Latency

ms.
Gaps
/min.

Latency
ms.

Gaps
/min.

Latency
ms.

Gaps
/min.

vs.
QM-120

vs.
QM-3600

1 136 14.8 237 9.2 280 5.4 x +
2 95 5.8 114 3.4 134 2.0 - +
3 112 7.8 162 5.6 186 4.8 - +
4 85 1.0 89 1.0 94 0.8 0 0
5 118 8.0 144 5.0 154 4.6 - 0
6 93 8.0 128 3.4 207 2.6 x +
7 256 18.2 359 6.4 427 5.2 x +
8 87 6.8 105 3.0 123 1.4 - +
9 105 11.6 128 4.2 148 2.4 x +
10 225 26.2 302 7.6 342 4.4 x +
11 285 28.6 352 9.0 410 5.2 x +
12 102 10.8 120 2.8 140 1.8 x +
13 143 14.2 180 4.0 228 2.8 x +
14 80 2.8 89 2.4 126 1.8 0 +
15 133 17.0 209 8.2 253 4.8 x +
16 88 6.2 108 4.0 126 2.8 - +
17 116 11.6 147 4.0 196 2.8 x +
18 133 7.8 148 5.8 165 5.2 0 +
19 88 6.8 100 2.4 112 1.4 + 0

QM-600 Better 1 16
QM-600 Equivalent 3 3

QM-600 Worse 5 0
Incomparable 10 0

Figure 7-12: QM Policies with Varying Thresholds (IBM-RTP Campus)

192

7.5.8 Results for QM Policies With Varying Thresholds

In the queue monitoring policies investigated so far, display latency was decreased if the

length of the display queue was continuously greater than two for a specified time;

otherwise the behavior of these policies was not dependent on the queue length.

However, the general queue monitoring policy described in Section 6.3 was designed to

reduce latency quickly when the display queue was long. In Section 7.2 it was shown that

in the network environments used in this study frames do incur significant delay jitter; thus

long display queues can be encountered.

For example, consider the histogram of delay jitter given in Figure 7-6; some frames arrive

with an end-to-end delay 410 ms. greater than the minimum end-to-end delay encountered

during the same run. If the queue monitoring policy (or the E-policy) were used during a

run with that level of delay jitter, then at some point during a run the length of the display

queue would be at least 25 frames. More interesting is the observation that in each of the

histograms of delay jitter (Figures 7-2, 7-4, and 7-6) the number of frames incurring a

particular level of delay jitter decreases rapidly as delay jitter increases (up to

approximately 150 ms.). This observation motivates the use of a queue monitoring policy

in which decreasing thresholds are defined for increasing queue lengths.

Thus, in this section I examine the performance of the general queue monitoring policy in

which individual thresholds are defined for each queue length. These thresholds can be

arbitrary, but for purposes of this study, I have defined a particular rule for setting the

threshold values. This rule has two parameters: a threshold value for a queue of length 3

measured in frame times, referred to as the base threshold, and a decay factor which

specifies a rate at which the thresholds decrease with increasing queue length. For

example, a queue monitoring policy with a base threshold of 3600 and a decay factor of 2

would have the threshold values: 3600 for queues of length 3, 1800 for queues of length

4, 900 for queues of length 5, etc. (i.e., the threshold for length 5 means that a display

latency is decreased if the display queue contains 5 frames for at least 15 seconds).

Figures 7-13, 7-14 and 7-15 summarize the results.

193

Run QM-3600 QM-3600,2 QM-3600,3 QM-3600 QM-3600
Latency

ms.
Gaps
/min.

Latency
ms.

Gaps
/min.

Latency
ms.

Gaps
/min.

vs.
QM-3600,2

vs.
QM-3600,3

1 80 0.2 80 0.2 80 0.2 0 0
2 74 0.3 74 0.3 74 0.3 0 0
3 115 0.9 80 0.9 75 0.9 - -
4 83 0.5 82 0.5 81 0.5 0 0
5 83 0.5 76 0.5 75 0.5 0 0
6 81 0.3 81 0.3 81 0.3 0 0
7 119 1.1 93 1.2 89 1.2 - -
8 97 0.9 89 0.9 86 0.9 0 0
9 161 1.1 127 1.8 118 2.1 - -
10 110 0.6 108 0.6 97 0.8 0 0
11 140 1.1 114 1.7 106 1.8 - -
12 113 0.8 101 0.9 95 1.0 0 -
13 96 0.7 96 0.7 96 0.7 0 0
14 104 0.7 104 0.7 101 0.9 0 0
15 106 0.9 101 1.0 97 1.0 0 0
16 130 1.2 114 1.8 105 2.2 0 -
17 148 1.4 122 2.2 111 3.2 - -
18 126 0.8 122 0.9 117 1.2 0 0
19 91 0.5 88 0.5 88 0.5 0 0
20 105 0.8 100 0.8 99 0.9 0 0
21 130 1.0 102 1.1 98 1.1 - -
22 92 0.6 88 0.7 87 0.7 0 0
23 81 0.3 81 0.3 81 0.3 0 0
24 128 1.2 110 1.2 102 2.0 - -
25 81 0.3 81 0.3 81 0.3 0 0
26 94 0.6 89 0.6 89 0.6 0 0
27 108 0.9 98 1.2 94 1.2 0 0
28 75 0.3 75 0.3 75 0.3 0 0

QM-3600 Better 0 0
QM-3600 Equivalent 21 19

QM-3600 Worse 7 9
Incomparable 0 0

Figure 7-13: QM Policies with Multiple Thresholds (UNC Network)

194

Run QM-3600 QM-3600,2 QM-3600,3 QM-3600 QM-3600
Latency

ms.
Gaps
/min.

Latency
ms.

Gaps
/min.

Latency
ms.

Gaps
/min.

vs.
QM-3600,2

vs.
QM-3600,3

1 120 1.2 119 1.4 118 1.6 0 0
2 82 1.0 77 1.0 76 1.0 0 0
3 85 1.0 85 1.0 84 1.0 0 0
4 85 0.8 84 0.8 83 0.8 0 0
5 90 0.8 90 0.8 90 0.8 0 0
6 97 1.2 97 1.2 94 1.2 0 0
7 104 1.0 104 1.0 104 1.0 0 0
8 97 1.0 95 1.0 95 1.0 0 0
9 101 1.2 98 1.4 96 1.6 0 0
10 130 1.4 127 1.6 120 1.6 0 0
11 120 1.2 117 1.2 107 1.2 0 0
12 91 1.2 89 1.4 89 1.4 0 0
13 85 1.0 85 1.0 85 1.0 0 0
14 119 1.2 119 1.2 119 1.2 0 0
15 104 1.2 104 1.2 104 1.2 0 0

QM-3600 Better 0 0
QM-3600 Equivalent 15 15

QM-3600 Worse 0 0
Incomparable 0 0

Figure 7-14: QM Policies with Multiple Thresholds (IBM-RTP Floor)

For each run in the three network environments, I simulated the queue monitoring policy

with a base threshold of 3600 frame times and with decay factors of one, two and three.

Again, on each run using a range of parameters resulted in a range of results; a decay

factor of 1 produced the highest display latency and lowest gap rate, and a decay factor of

3 produced the lowest display latency and the highest gap rate. Thus, the use of smaller

thresholds for longer queue lengths seems to be a useful tunable parameter for an

application to select a balance between display latency and gaps that reflects its

requirements.

Again, looking at the three queue monitoring policies in the context of each network

environment, it is clear that a single decay factor is not necessarily optimal across all

network environments. In general, QM-(3600,2) and QM-(3600,3) performed somewhat

better than QM-3600, although in the IBM-RTP floor network, performance was

equivalent on every run. However, on the IBM-RTP campus network, QM-(3600,3)

resulted in high gap rates. Thus it appears that no decay factor is optimal for all network

environments. However, as is the case with the base threshold, it appears that an overall

delay jitter management policy could adjust the decay factor to reflect long-term

observations of network conditions.

195

Run QM-3600 QM-3600,2 QM-3600,3 QM-3600 QM-3600
Latency

ms.
Gaps
/min.

Latency
ms.

Gaps
/min.

Latency
ms.

Gaps
/min.

vs.
QM-3600,2

vs.
QM-3600,3

1 280 5.4 229 9.2 162 11.6 - x
2 134 2.0 123 2.6 117 2.6 0 -
3 186 4.8 165 5.4 134 6.2 - -
4 94 0.8 94 0.8 94 0.8 0 0
5 154 4.6 148 4.8 135 6.2 0 -
6 207 2.6 137 2.8 122 3.2 - -
7 427 5.2 353 6.8 272 14.4 - x
8 123 1.4 119 1.4 115 1.8 0 0
9 148 2.4 139 3.0 122 5.6 0 -
10 342 4.4 299 8.6 236 20.8 x x
11 410 5.2 348 8.6 294 23.6 - x
12 140 1.8 127 2.2 120 3.6 0 -
13 228 2.8 190 3.2 166 4.8 - -
14 126 1.8 106 2.0 101 2.0 - -
15 253 4.8 199 9.2 158 12.4 x x
16 126 2.8 119 3.2 110 3.6 0 0
17 196 2.8 162 3.4 140 5.6 - -
18 165 5.2 161 5.4 153 5.6 0 0
19 112 1.4 112 1.4 110 1.4 0 0

QM-3600 Better 0 0
QM-3600 Equivalent 9 5

QM-3600 Worse 8 9
Incomparable 2 5

Figure 7-15: QM Policies with Multiple Thresholds (IBM-RTP Campus)

7.6 Discussion and Summary

In this chapter, I have presented the results of an empirical study of the delay jitter

management policies presented in Chapter 6. Overall, the study showed that queue

monitoring performed better than either the I-policy or the E-policy over the range of

observed network conditions. Furthermore, the study showed that the queue monitoring

policy was flexible and tunable; a range of threshold parameters produced a range of

results.

While the study of queue monitoring and the other policies was performed only for audio,

these policies apply equally to video and other types of continuous media. In addition,

while these policies have been presented as operating on the display queue, they are not

restricted to the display queue. In particular, they can be applied to any queue from which

frames are removed periodically. Thus in the workstation-based videoconferencing

application, queue monitoring is applied to the queue of video frames which have arrived

at the display workstation and are waiting to be decompressed.

196

However, there are two reasons why it should not be assumed that good settings for the

parameters of the queue monitoring policy for video can be based on good settings for

audio. First, because the size of audio and video frames differs, they will experience

different levels of delay jitter. Second, because the frame rate at which video frames are

displayed differs from the frame rate at which audio frames are displayed, it requires

greater delay jitter to cause a change in queue length.

197

Chapter VIII
Conclusions and Contributions

8.1 Thesis Summary

Distributed applications that acquire and display live continuous media data (e.g., audio

and video) are subject to several timing constraints: operations on continuous media

frames must often be executed within a narrow window of time, and the elapsed time

between acquisition and display of frames must be reasonably short. Delay jitter (i.e.,

variation in the time required to acquire, process, and transmit frames) causes difficulties

in adhering to these constraints. There are two complementary approaches to addressing

these difficulties. First, an application may reduce or eliminate delay jitter by carefully

managing the process of acquiring, processing, transmitting, and displaying frames;

however, this may require services from the operating system and network transport

system that are not usually provided in general-purpose computing environments. Second,

an application may adapt to the remaining delay jitter by playing frames at a sufficiently

high display latency; however, high display latency may detract from the quality of the

resulting playout.

The thesis of this dissertation is that a combination of these approaches is an effective

solution to the problem of displaying continuous media in the presence of delay jitter. In

the dissertation, I first demonstrated that it is possible to reduce delay jitter by designing,

analyzing, and implementing the software at workstations that acquire or display

continuous media as a real-time system with strict performance requirements. I then

proposed and evaluated a policy called queue monitoring that dynamically adjusts display

latency to accommodate the remaining delay jitter. In this dissertation, I have evaluated

this combined approach using a workstation-based videoconferencing application that

acquires audio and video at one workstation, transfers it over a network, and displays it at

a second workstation.

The first part of the dissertation addressed the reduction of delay jitter through the use of

hard-real-time design, analysis, and implementation techniques. Specifically, it was shown

that on the acquisition-side of the workstation-based videoconferencing application, each

video frame is acquired, digitized, compressed, and delivered to the network transport

system in bounded time. This was shown in four steps. First, I described an operating

system kernel for the IBM PS/2 called YARTOS; the application executes on top of this

kernel. Next, I defined an abstract model of real-time systems that was implementable

using the programming model of YARTOS; for this abstract model, I developed a

feasibility test to determine if the tasks that comprise a real-time system always execute

prior to application-defined deadlines and within application defined mutual exclusion

constraints. In the third step, I developed techniques for representing the application in

terms of the abstract model; this allowed me to use the feasibility test to show that the

deadline and mutual exclusion properties hold. Finally, I developed an axiomatic

specification of that portion of the acquisition-side of the application that is responsible for

acquiring, digitizing, and compressing video frames; from this specification, I derived the

fact that each video frame is delivered to the network in bounded time. In addition, I

argued that this analysis could be extended to show bounded-delay properties for audio

frames on the acquisition-side and audio and video frames on the display-side.

The second part of the dissertation addressed the problem of accommodating delay jitter

through the use of policies that manage the display queue (i.e., the queue of frames

waiting to be displayed). Three policies were considered, two from the literature and a

new policy called queue monitoring. The queue monitoring policy operates by observing

the length of the display queue over time; changes in queue length are a measure of delay

jitter that is used to choose the display latency at which each frame is played. The

performance of these policies was compared in an empirical study that used the

workstation-based videoconferencing application to record the end-to-end delays

experienced by audio frames transmitted via IP protocols over ethernets and token rings.

The resulting traces were used as input to a simulator that determined the effect that

applying each policy would have had on the quality of the audio playout. Overall, it was

shown that queue monitoring could successfully adapt to the delay jitter incurred by audio

frames in a wide range of network conditions. Furthermore, it was shown that the

parameters of the queue monitoring policy provide a flexible method of tuning the

performance of the policy to account for long-term changes in network conditions.

199

8.2 Conclusions

From this research, I conclude that techniques developed for designing, analyzing, and

implementing hard-real-time systems can be successfully applied to applications that

support continuous media. This allows the designers of distributed applications that

support continuous media to assume that the only unbounded source of delay jitter is

transmission over the network. Furthermore, I conclude that queue monitoring is an

effective policy for ameliorating the effect of the delay jitter encountered in campus-sized

networks on the display of continuous media. In particular, over the range of network

conditions encountered in my study, the use of queue monitoring resulted in the lowest

latency and fewest gaps of any of the policies studied.

8.3 Contributions

This dissertation makes contributions in several areas. First, I have expanded the toolkit

of analysis techniques available to the designers of hard-real-time systems by developing a

new formal model of real-time systems that addresses limitations found in traditional

formal models. In previous models it was difficult to represent the behavior of hardware

and software designed to be used in general-purpose environments. In particular, my

model can represent interrupts, interrupt controllers, interrupt handlers, and

synchronization primitives, as well as the sporadic (and/or periodic) tasks traditionally

used to model real-time systems. Furthermore, my model allows designers to assign

arbitrary deadlines to tasks. These properties are necessary if a formal model of real-time

systems is to be useful in the design, analysis, and implementation of applications that

support continuous media, which must often use hardware and software that was designed

to be used in general-purpose environments.

Second, this dissertation provides a case-study of the design, analysis, and implementation

of a significant real-time system. The design and implementation of the application show

that it is possible to create significant real-time systems whose correctness can be shown

through analysis. The separation of concerns enforced by the division of the analysis into

the analysis of timing behavior and the analysis of logical correctness decouples reasoning

about the architecture of a real-time system from assumptions about low-level details

about how long tasks and actions require to execute, assumptions about scheduling, and

assumptions about the existence of other tasks in the application. This property of the

analysis shows that a similar analysis could be performed in a practical setting in which

200

those low-level details are subject to change over the course of the development of the

system. Thus, the case-study presented here can contribute to the wider acceptance of

formal techniques for designing and analyzing hard-real-time systems.

Third, the dissertation introduces queue monitoring, a policy for ameliorating the effect of

delay jitter on the display of continuous media frames. Queue monitoring is flexible and

general policy that can be applied in applications that support a variety of continuous

media data types in the presence of delay jitter.

Fourth, the dissertation provides real-world data on the delay jitter that is experienced by

continuous media data in campus-sized networks. In particular, since the software that

acquired, transmitted, and received the data was implemented as a real-time system, the

data on delay jitter was recorded without interference from arbitrary behavior of network

and operating system software.

Finally, the dissertation provides a case study of the design of a continuous media

application in an environment consisting of today’s personal workstations, today’s

commercially available audio/video hardware, and today’s networks (e.g., ethernets, token

rings, etc.). This design relies on few assumptions about the speed of processing or

transmitting frames, or about the ordering of events. Thus, it can be applied to a variety

of continuous media data types in a variety of environments.

In particular, this research will remain relevant in environments with faster machines,

faster video compression technologies, and higher-speed data networks. Although faster

hardware may be sufficient to support a single stream of video data in today’s

applications, tomorrow’s applications will include more streams per application (e.g.,

hundreds of participants in a video teleconference), much higher resolution pictures (e.g.,

HDTV), and faster frame rates (e.g., 60 frames per sec.). In addition, while high-speed

networks are becoming widely used as backbones, today’s installed network base will

continue to be used to support communication within buildings and campuses. Thus for

the foreseeable future, continuous media applications will need to be supported in the

presence of delay jitter.

8.4 Future Work

The research presented in this dissertation suggests several issues that should be addressed

in the future. These include issues in the areas of real-time systems, delay jitter

201

management policies, and overall network and operating system support for continuous

media.

8.4.1 Real-time Systems

In this work, I used a real-time operating system support a continuous media application

that was designed to process frames with bounded delay. Equally powerful real-time

services will be necessary to support continuous media applications in general-purpose

computing environments; ideally, such services could be integrated into existing operating

systems. In general, the problem that must be addressed is that of ensuring that non-real-

time workloads (i.e., work that does not specify its performance requirements and does

not receive performance guarantees) receive the best performance possible consistent with

the real-time workload receiving guaranteed performance.

Another issue that has been highlighted in this research is that neither the periodic nor the

sporadic model of real-time workloads capture the properties of the real-time workloads

generated in an application that supports continuous media. Fundamentally, the average

rate at which work must be performed is based on the frame rate (e.g., frames arrive at the

display workstation at an average rate equal to the frame rate). However, over short

intervals, tasks are often invoked at a higher rate (e.g., because of congestion, several

frames arrive at the display workstation in a burst). Thus, the workload is not periodic.

Furthermore, an assumption that such a workload is sporadic is extremely conservative. A

new model of real-time workload is necessary.

8.4.2 Evaluation of Delay Jitter Management Policies

The most important outstanding issue in the development of delay jitter management

policies is that of quality measures. In this work, I have compared policies using average

display latency and average gap rate and a simple comparison rule. However, there are

many other factors that can influence perceived quality including the distribution of gaps

throughout a conference, the number of display latency changes, and the distribution of

periods of high and low display latency throughout a conference. Policies that adapt to

current conditions cannot be developed or tuned without quality measures that allow fine-

grained distinctions of perceived quality.

As an example, consider the problem of choosing good threshold values for the queue

monitoring policy. Simulation using a variety of threshold values indicates that large

202

changes in threshold values may only produce small changes in average display latency and

average gap rate. As such, work on choosing threshold values will involve making

tradeoffs that result in small changes to display latency and gap rate. While a simple

measure of quality may be sufficient to evaluate the gross performance characteristics of

threshold setting, it will not be sufficient to properly evaluate these small changes.

Another issue that should be addressed is the extent to which the queue monitoring

technique scales. The study presented in this work used audio and video data transmitted

over a campus-sized network. Future work should repeat the study of queue monitoring

and delay jitter for a succession of larger networks. Such a study will help to identify the

types of networks in which delay jitter is low enough that continuous media applications

can be supported without resorting to network services with specialized support for real-

time communications.

8.4.3 Network and Operating System Support for Continuous Media

The emphasis in this work has been on managing the effect of delay jitter on the display of

continuous media. A related issue is that of preventing or minimizing data loss. This must

be addressed in both the operating system and the network transport system. On the

operating system side, this dissertation has already shown that it is possible to prevent loss

through the use of real-time systems design, analysis and implementation techniques. On

the network side, possibilities include traditional techniques such as timeouts with

retransmission and forward error correction (FEC). However, the fact that recovering lost

frames requires time implies that frames will experience greater delay jitter (presumably

FEC will result in less delay jitter than the use of timeouts). As a result, the effect of error

correction mechanisms on queue monitoring and other delay jitter management policies

must be investigated.

Another issue that should be addressed is flow control. Throughout this work, it has been

assumed that applications support continuous media that is acquired and displayed at a

fixed frame rate and at a fixed resolution. Under this assumption, continuous media

applications require a certain commitment of resources such as network bandwidth and

processor time. Flow control mechanisms could be used to change the frame rate or the

resolution in response to changes in available resources. Such mechanisms would help an

application to dynamically adapt to changes in its environment. Furthermore, such

mechanisms would help to alleviate transient overload conditions such as network

congestion.

203

Overall, the fundamental question that must be addressed if continuous media is to be

supported in general-purpose computing environments is: what are the service

abstractions that should be provided by general-purpose operating systems and network

transport systems that will effectively support both traditional data and continuous media?

I believe that this dissertation has made a substantial contribution towards answering this

question.

204

References

[1] Anderson, D.P., Tzou, S.-Y., Wahbe, R., Govindan, R., Andrews, M., 1990.

Support for Continuous Media in the DASH System, Proc. Tenth Intl. Conf. on

Distributed Computing Systems, Paris, France, (May), pp. 54-61.

[2] Anderson, D.P., Herrtwich, R.G., Schaefer, C., 1990. SRP: A Resource

Reservation Protocol for Guaranteed Performance Communication in the Internet,

University of California Berkeley, Dept. of Electrical Eng. and Computer Science

Technical Report, TR-90-006, (February).

[3] Azuma, R., Bishop, G., 1994. Improving Static and Dynamic Registration in an

Optical See-through HMD. Proceedings of SIGGRAPH ‘94, Orlando, FL, July 24-

29, 1994, pp. 197-204.

[4] Baruah, S., Mok, A., Rosier, L., 1990. Preemptively Scheduling Hard-Real-Time

Sporadic Tasks with One Processor, Proceedings of the Real-Time Systems

Symposium, IEEE, (December), pp. 182-190.

[5] Dupuy, S., Tawbi, W., Horlait, E. 1992. Protocols for High-Speed Multimedia

Communication Networks, Computer Communications, Vol. 15, No. 6,

(July/August), pp. 349-358.

[6] Ferrari, D., 1990. Client Requirements for Real-Time Communication Services,

IEEE Communications, (November), pp. 65-72.

[7] Ferrari, D., Banerjea, A., Zhang, H., 1992. Network Support for Multimedia, A

Discussion of the Tenet Approach, University of California at Berkeley, TR-92-072.

[8] Ferrari, D., 1992. Delay Jitter Control Scheme For Packet-Switching

Internetworks, Computer Communications, Vol. 15, No. 6, (Jul/Aug), pp. 367-373.

[9] Fisher, T., 1992. Real-Time Scheduling Support in Ultrix-4.2 for Multimedia

Communication. Proc. of the Third International Workshop on Network and

Operating System Support for Digital Audio and Video, San Diego, CA, November

1992, V. Rangan (ed.), Lecture Notes in Computer Science, Springer-Verlag, Vol.

712, pp. 321-327.

[10] Govindan, R., Anderson, D.P., 1991. Scheduling and IPC Mechanisms for

Continuous Media, Proc. ACM Symp. on Operating Systems Principles, ACM

Operating Systems Review, Vol. 25, No. 5, (October), pp. 68-80.

[11] Gruber, J. G., Strawczynski, L., 1985. Subjective Effects of Variable Delay and

Speech Clipping in Dynamically Managed Voice Systems. IEEE Transactions on

Communications, Vol. COM-33, (August), pp. 801-808.

[12] Harbour, M., Klein, M., Lehoczky, J., 1991. Fixed Priority Scheduling of Periodic

Tasks with Varying Execution Priority, 12th IEEE Real-Time Systems Symp., San

Antonio, TX, December 1991, pp. 116-128.

[13] Hehmann, D., Herrtwich, R.G., Shulz, W., Shütt, T., Steinmetz, R., 1992.

Implementing HeiTS: Architecture and Implementation Strategy of the Heidelberg

High-Speed Transport System, Proc. of the Second International Workshop on

Network and Operating System Support for Digital Audio and Video, Heidelberg,

Germany, November 1991, R. Herrtwich (Ed.), Lecture Notes in Computer Science,

Springer-Verlag, Vol. 614, pp. 33-44.

[14] Herrtwich, R.G., Nagarajan, R., Vogt, C., 1991. Guaranteed Performance

Multimedia Communication Using ST-II Over Token Ring. Technical Report, IBM

European Networking Center.

[15] Herrtwich, R.G., Delgrossi, L., 1992. Beyond ST-II: Fulfilling the Requirements

of Multimedia Communication, Proc. of the Third International Workshop on

Network and Operating System Support for Digital Audio and Video, San Diego,

CA, November 1992, V. Rangan (Ed.), Lecture Notes in Computer Science,

Springer-Verlag, Vol. 712, pp. 25-31.

[16] Hopper, A., 1990. Pandora: An Experimental System for Multimedia Applications.

ACM Operating Systems Review, vol. 24, no. 2, (April), pp. 19-34.

[17] Intel, 1990. ActionMedia 750 Software Library Overview, Intel Corporation.

[18] Intel, 1990. ActionMedia 750 Software Library Reference, Intel Corporation.

[19] Intel, 1993. Intel ProShare Personal Conferencing Video System 200. Intel

Corporation.

[20] IBM, 1990. Local Area Network Technical Reference, IBM Corporation, 4th Ed.

[21] Issacs, E., Tang, J.C., 1993. What Video Can and Can’t Do for Collaboration: A

Case Study, Proc. of ACM Multimedia, pp. 199-205.

[22] Jahanian, F., Mok, A., 1986. Safety Analysis of Timing Properties in Real-Time

Systems, IEEE Transactions on Software Engineering, Vol. SE-12, No. 9,

(September), pp. 890-904.

[23] Jeffay, K., 1989. The Real-Time Producer/Consumer Paradigm: Towards

Verifiable Real-Time Computations, Ph.D. Thesis, University of Washington,

Department of Computer Science, Technical Report #89-09-15.

[24] Jeffay, K., Stone, D.L., Smith, F.D., 1992. Kernel Support for Live Digital Audio

and Video, Computer Communications, Vol. 15, No. 6, (Jul/Aug), pp. 388-395.

206

[25] Jeffay, K., 1992. Scheduling Sporadic Tasks with Shared Resources in Hard-Real-

Time Systems, Proc. 13th IEEE Real-Time Systems Symp., Phoenix, AZ, December

1992, pp. 89-99.

[26] Jeffay, K., Stone, D.L., 1993. Accounting for Interrupt Handling Costs in Dynamic

Priority Task Systems, Proc. 14th IEEE Real-Time Systems Symp., Raleigh-Durham,

NC, December 1993, pp. 212-221.

[27] Jeffay, K., Stone, D.L., Smith, F.D., 1994. Transport and Display Mechanisms for

Multimedia Conferencing Across Packet-Switched Networks, Computer Networks

and ISDN Systems, Vol. 26, No. 10 (July), pp. 1281-1304.

[28] Jones, A., Hopper, A., 1993. Handling Audio and Video Streams in a Distributed

Environment, Proc. ACM Symp. on Operating Systems Principles, Asheville, NC,

December 1993, Operating Systems Review, Vol. 27, No. 5, pp. 231-243.

[29] Kessler, G., 1991. Inside FDDI-II, LAN Magazine, (March), pp. 117-125.

[30] Le Boudec, Jean-Yves, 1991. The Asynchronous Transfer Mode: A Tutorial, IBM

Research Report RZ 2133, (May).

[31] Liu, C.L., Layland, J.W., 1973. Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment, Journal of the ACM, Vol. 20, No. 1, (January), pp.

46-61.

[32] Luther, A.C., 1991. Digital Video in the PC Environment, McGraw-Hill, Second

Ed.

[33] Mauthe, A., Schulz, W., Steinmetz, R., 1992. Inside the Heidelberg Multimedia

Operating System Support: Real-Time Processing of Continuous Media in OS/2,

IBM ENC Technical Report No. 43.9214, (September).

[34] Mercer, C., Savage, S., Tokuda, H., 1994. Processor Capacity Reserves:

Operating System Support for Multimedia Applications. Proc. of the International

Conference on Multimedia Computing and Systems, Boston, MA, May 14-19, 1994,

IEEE Computer Society Press, pp. 90-99.

[35] Minzer, S., 1989. Broadband ISDN and Asynchronous Transfer Mode (ATM),

IEEE Communications, (September), pp. 17-24.

[36] Montgomery, W.A., 1983. Techniques for Packet-Voice Syncronization, IEEE

Journal on Selected Areas in Comm., Vol. SAC-1, No. 6, (December), pp. 1022-

1028.

[37] Naylor, W.E., Kleinrock, L., 1982. Stream Traffic Communication in Packet-

Switched Networks: Destination Buffering Considerations, IEEE Trans. on

Communications, Vol. COM-30, No. 12, (December), pp. 2527-2534.

207

[38] Nieh, J., Hanko, J., Northcutt, D, Wall, G., 1993. SVR4 UNIX Scheduler

Unacceptable for Multimedia Applications. Proc. of the Fourth International

Workshop on Network and Operating System Support for Digital Audio and Video,

Lancaster, U.K., December 1993, D. Shepherd et al. (Eds.), Lecture Notes in

Computer Science, Springer-Verlag, Vol. 846, pp. 41-53.

[39] Park, C.Y., Shaw, A.C., 1990. Experiments with a Program Timing Tool Based on

Source-Level Timing Schema, Proc. of the Eleventh IEEE Real-Time Systems

Symposium, Lake Buena Vista, FL, December 1990, pp. 72-81.

[40] Ramanathan, S., Rangan, P.V., 1992. Continuous Media Synchronization in

Distributed Multimedia Systems, Proc. of the Third International Workshop on

Network and Operating System Support for Digital Audio and Video, San Diego,

CA, November 1992, V. Rangan (Ed.), Lecture Notes in Computer Science,

Springer-Verlag, Vol. 712, pp. 328-335.

[41] Rangan, P.V., Vin, H.M., 1991. Designing File Systems for Digital Video and

Audio, Proc. ACM Symp. on Operating Systems Principles, ACM Operating

Systems Review, Vol. 25, No. 5, (October), pp. 81-94.

[42] Reed, D.P., Kanodia, R.K., 1979. Synchronization with Eventcounts and

Sequencers, Comm. of the ACM, Vol. 22, No. 2, (February), pp. 115-123.

[43] Ross, F., 1989. An Overview of FDDI: The Fiber Distributed Data Interface,

IEEE Trans. on Selected Areas in Comm., Vol. 7, No. 7, (September), pp. 1043-

1051.

[44] Schulzrinne, H., 1992. Voice Communication Across the Internet: A Network

Voice Terminal, Technical Report, Univ. of Massachusetts.

[45] Schulzrinne, H., 1993. Issues in Designing a Transport Protocol for Audio and

Video Conferences and other Multiparticipant Real-Time Applications , Internet

Engineering Task Force, Internet Draft, (October).

[46] Schulzrinne, H., Casner, S., 1993. RTP: A Transport Protocol for Real-Time

Applications , Internet Engineering Task Force, Internet Draft, (October).

[47] Shankar, A.U., 1993. Reasoning Assertionally about Real-Time Systems, CS-TR-

3047, University of Maryland.

[48] Shaw, A.C., 1989. Reasoning About Time in Higher-Level Language Software,

IEEE Trans. on Soft. Eng., Vol. SE-15, No. 7, (July), pp. 875-889.

[49] Smith, F.D., 1991. Personal communication.

[50] Terry, D.B., Swinehart, D.C., 1988. Managing Stored Voice in the Etherphone

System, ACM Trans. on Computer Systems, Vol. 6, No. 1, (February), pp. 3-27.

208

[51] Tokuda, H., Kitayama, T., 1993. Dynamic QOS Control Based on Real-Time

Threads. Proc. of the Fourth International Workshop on Network and Operating

System Support for Digital Audio and Video, Lancaster, U.K., December 1993, D.

Shepherd et al. (Eds.), Lecture Notes in Computer Science, Springer-Verlag, Vol.

846, pp. 114-123.

[52] Topolocic, C., 1990. Experimental Internet Stream Protocol, Version 2 (ST-II).

Internet Network Working Group, RFC 1190, (October).

[53] Turner, Charles J., Peterson, Larry L., 1992. Image Transfer: An End-to-End

Design, Comp. Comm. Review, Vol. 22, No. 4, (October), pp. 258-268.

209

