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Abstract
Martin Andreas Styner: Medial Shape Description of Variable Biological

Objects.
(Under the direction of Guido Gerig.)

This dissertation describes a novel shape description scheme that incorporates vari-

ability of an object population into the generation of a characteristic 3D shape model.

Knowledge about the biological variability of anatomical objects is essential for statisti-

cal shape analysis and discrimination between healthy and pathological structures. The

proposed shape representation is based on a fine-scale spherical harmonics (SPHARM)

description and a coarse-scale m-rep description. The SPHARM description describes

the object boundary as a weighted series of spherical harmonics. The correspondence

on the boundary is defined by a first-order ellipsoid normalized parameterization. The

medial m-rep description is composed of a net of medial primitives with fixed graph

properties. A m-rep model is computed automatically from the shape space of a train-

ing population of SPHARM objects. Pruned 3D Voronoi skeletons are used to determine

a common medial branching topology in a stable way. An intrinsic coordinate system

and an implicit correspondence between objects are defined on the medial manifold. My

novel representation scheme describes shape and shape changes in a meaningful and in-

tuitive manner. Several experimental studies of shape asymmetry and shape similarity

in biological structures demonstrate the power of the new representation to describe

global and local form. The clinical importance of shape measurements is shown in the

presented applications.

The contributions made in this dissertation include the development of a novel au-

tomatic pruning scheme for 3D Voronoi skeletons. My experiments showed that only a

small number of skeletal sheets are necessary to describe families of even quite complex

objects. This work is also the first to compute a common medial branching topology
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of an object population, which deals with the sensitivity of the branching topology to

small shape variations. The sensitivity of the medial descriptions to small boundary

perturbations, a fundamental problem of any skeletonization technique, is approached

with a new sampling technique.
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Chapter 1

Introduction

In many aspects of modern medicine, medical imaging provides crucial information

for diagnosis, treatment and disease related investigations. Many diseases are studied

using images of Magnetic Resonance Imaging (MRI), Computed Tomography (CT) or

ultrasound imaging. Quantitative studies of anatomical objects are of high importance

to investigators of neurologic diseases. Many quantitative studies rely on the statistical

analysis of volume measurements [48, 57, 31, 2]. The goal therein is to detect volumetric

changes between patients and healthy controls. The idea to extend the analysis to

incorporate shape features has been longstanding, but it was technically not feasible. To

date only a small number of shape analyses have been performed due to the complexity of

this task. A quantitative shape analysis would be of special interest in neurologic diseases

presenting morphological changes in brain structures like schizophrenia, autism, epilepsy

or Alzheimer’s disease. The brain anatomy is thought to change with the progression

of these diseases. The successful detection of brain shape changes could be used for

diagnostic detection, for early intervention and for an improved understanding of the

disease. It is thus important for a shape analysis method not only to demonstrate that

there are shape differences, but also where and how these differences manifest themselves.

Why do we need more than volume measurements? It is clear that the shape in-

formation captures additional information not covered by volume measurements; yet it



is not obvious that this additional information is relevant. In section 5.3, I present an

example in which I was able to detect a ventricular shape difference between populations

of monozygotic and dizygotic twins, whereas these populations fail to show significant

differences in their volume measurements. The results of the shape analysis revealed

that monozygotic twins have more similarly shaped lateral ventricles than do dizygotic

twins or non-related subjects. This result might be of clinical importance, for example

in the analysis of discordant monozygotic twin studies. In discordant twins the studied

disease is manifested in only one of the twins while the other twin is healthy.

While humans have no apparent difficulty describing shape features and capturing

shape differences of 3D objects, researchers in computer vision face the usual problem:

humans can do it, but nobody knows exactly how. The representation and the analysis

of objects has proven to be a challenging problem. No general shape description exists

that solves all shape related tasks. Shape descriptions are thus tailored for specific

tasks. In this dissertation, I will present a shape description scheme that is especially

suitable for shape analysis. A description that is suitable for shape analysis might not

be appropriate for doing object visualization and vice versa.

In my shape description scheme, a shape analysis should be able to capture coarse

and fine scale shape differences. These shape differences should be intuitively captured.

In medial shape descriptions, the object is represented by a skeletal graph that is topo-

logically equivalent to the original object. Medial descriptions have the advantage over

many other shape descriptions that the medial features capture shape properties in a

more intuitive and meaningful manner. However, medial descriptions are sensitive to

small changes on the boundary. This makes them suited to describe shape at a coarse

scale and less well suited at fine scale. Many other researchers proposed to describe

fine scale shape properties using boundary descriptions. In this dissertation, I develop a

scheme that uses the boundary descriptions of a population of objects to compute a sta-

ble coarse-scale medial description by incorporating this population’s shape variability.
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This medial description is an m-rep description expressing shape differences as changes

of intuitive local shape features. To compute a stable m-rep description, a fine-scale

medial description called Voronoi skeletons is used as an intermediate representation.

Voronoi skeletons are sensitive to boundary perturbations like all fine-scale medial de-

scriptions. Thus, a regularization step is needed to remove those parts of the skeleton

that are irrelevant to the object’s shape. This regularization is called pruning. A lot

of research has been done on 3D Voronoi skeletons, but to my knowledge an automatic

pruning scheme has not formerly been developed.

The difficult problem of correspondence has to be solved as a part of a shape analysis

method. Correspondence defines homologous points between different objects, enabling

the computation of shape comparisons. I propose to solve the correspondence problem

on the boundary using a parametrized description, in which the same parameter values

across different objects results in corresponding points. This parametrized boundary

description is called SPHARM. It represents the object as a weighted series of spherical

harmonic basis functions. The correspondence on the boundary can then be propagated

to the medial manifold of the object.

1.1 Dissertation contributions

In this dissertation, I present a novel framework for building models to be used for

shape analysis. The framework is based on a combination of the medial m-rep and the

boundary SPHARM description. A novel method computes a common m-rep model

automatically based on a population of similar objects in a stable fashion. The shape

variability of this population is thereby incorporated into the m-rep model. The shape

analysis of these models yields localized shape changes that can be intuitively under-

stood.

3



1.1.1 Claims of this dissertation

#1: A new shape description scheme based on a combined m-rep and SPHARM de-

scription is developed. It incorporates prior statistical knowledge about the object

variability. The shape description scheme is suitable for shape analysis and thereby

allows new insights and paths of exploration in various fields of morphological re-

search.

#2: A common 3D medial branching topology can be computed for a population of

objects in a stable way. This common medial branching topology is based on

Voronoi skeletons and is necessary to deal with the sensitivity of the branching

topology to small shape variations.

#3: A novel, general scheme is developed that automatically prunes Voronoi skeletons

of 3D objects.

#4: Only a small number of skeletal sheets are necessary to describe the branching

topology of complex anatomical brain objects. The complexity of the common

branching topology is of the same magnitude as the individual branching topolo-

gies.

#5: The sensitivity of medial representations to small boundary perturbations can

be dealt with using a novel medial sampling technique and refinement by m-rep

deformation.

#6: The shape of an anatomical object captures clinical information that is superior

to volume measurements. My new shape description scheme can provide global

and local measurements. Additionally, disease related effects can be measured by

shape analysis that cannot otherwise be measured with volume measurements.

#7: Shape analysis demonstrates that the lateral ventricles of monozygotic twins are

significantly more similarly shaped than those of dizygotic twins. The shape anal-

4



ysis also yields the locations of significant shape difference between the two twin

populations.

1.2 Guide to the chapters

This dissertation is organized in 6 Chapters, followed by an appendix and references.

Chapter 2 is dedicated to a brief review of shape representations, their properties and

other related work. Chapter 3 discusses the novel shape description scheme. The scheme

to compute a common m-rep model for an object population is described in chapter

4. Chapter 5 presents three applications of the combined shape description. Chapter 6

discusses issues of stability and homology of the developed scheme. In this chapter, I also

summarize this work and present some possible future extensions and applications. The

appendix discusses the mathematical properties of the Principal Component Analysis.
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Chapter 2

Shape descriptions: general considerations,

correspondence and analysis

This chapter provides a summary of 3D shape descriptions using either the object bound-

ary or the medial surface. Shape description necessitates facing the issue of correspon-

dence, a subject discussed in section 2.3. Next, an overview of related work in shape

analysis is presented. In order to derive properties that are needed for a shape descrip-

tion suited for shape analysis, selected properties of shape descriptions are investigated

in the following section. This investigation leads to a list of properties that outlines the

requirements for my proposed shape description scheme.

2.1 Shape description via the 3D surface boundary

2.1.1 Parametric surface description

In this dissertation, I focus on objects of spherical topology. For such objects, a para-

metric surface description is a mapping of a two-dimensional (u, v) parameter space of

a 2D manifold to the 3D-Euclidean space. This section describes approaches using this

type of representation.

Superquadrics: One popular approach to parametric surface description is su-



perquadrics, as described by Bajcsy and Solina[8]. Bajcsy and Solina describe implicit

definitions of ellipsoids and toroids. Only the superquadric ellipsoids are of interest here

as toroids are not suited for the representation of most biological objects. Superquadric

ellipsoids are defined by

v(a, a1, a2, a3, ε1, ε2, u, v) = a


a1C

ε1
u C

ε2
v

a2C
ε1
u S

ε2
v

a3S
ε1
u

 −π/2 ≤ u ≤ π/2

−π ≤ v < π
(2.1)

where Sεw = sgn(sinw)| sinw|ε and Cε
w = sgn(cosw)| cosw|ε. Further, a, a1, a2, a3 ≥ 0

are scale parameters also defining the aspect ratios and ε1, ε2 ≥ 0 are “squareness”

parameters. Superquadrics are not able to describe complex objects and are thus rarely

used for shape analysis of biological objects.

Fourier descriptors: Surfaces in 3D can be represented by a series expansion of

parametric coordinate functions in 2D parameter space X = (x(u, v), y(u, v), z(u, v)),

where u and v vary over the surface. Along with spherical harmonics, discussed in

section 3.1, Fourier basis functions are a possible choice for the series expansion. Staib

and Duncan [65, 66] used Fourier representations for surface finding in image volumes.

Each coordinate function v1(θ, φ), v2(θ, φ) and v3(θ, φ) is represented by

v(θ, φ) =
2K∑
m=0

2K∑
l=0

λm,l( am,l · cos 2πmθ · cos 2πlφ+ bm,l · sin 2πmθ · cos 2πlφ

+cm,l · cos 2πmθ · sin 2πlφ+ dm,l · sin 2πmθ · sin 2πlφ) ,

(2.2)

where

λm,l =


1 for m = 0, l = 0

2 for m > 0, l = 0 or m = 0, l > 0

4 for m > 0, l > 0
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and θ, φ ∈ [ 0; 2π). Cutting off the decomposition at different values for K results in

different levels of detail. The Fourier representation is not limited to closed surfaces. It

can also represent open surfaces, tube surfaces and torus surfaces. The drawback of the

representation of closed surfaces is that such surfaces are treated as tubes whose ends

close up to a point. Thus, one of the axes is straight and the axes are treated unequally,

leading to sensitivity to small correspondence errors. This makes this description less

well suited for shape analysis. When dealing with surfaces of complex objects, the surface

parameterization also poses other problems, as discussed in later in section 3.1.3.

Wavelets: Another possible set of basis functions are wavelets [47]. In contrast

to Fourier basis functions, wavelets have compact support in the frequency and in the

spatial domain. The wavelet transform of the input signal is computed using a filter

bank that splits a signal into subsampled low pass and high pass bands. This procedure

is iteratively repeated for the low pass band. Wavelet based descriptions have not been

used for shape analysis since the correspondence problem remains difficult to solve in a

wavelet based description.

Spherical harmonics SPHARM: Spherical harmonics are another basis function

for a parametric surface description. This description, called SPHARM, is described in

section 3.1, as it is part of my shape description scheme.

2.1.2 Non-parametric surface descriptions

A large class of surface descriptions are non-parametric and describe the surface via a

series of primitives located on the boundary. The primitives most often used are points,

triangles, quadrilateral meshes and simplex meshes.

Surface points, Point Distribution Models (PDM): Several researchers have

used boundary points and their distribution (Point Distribution Model = PDM) for

shape description and analysis, e.g. Bookstein in 2D [16, 17], Rangarajan [55] and

Cootes [26] in 3D. These approaches rely on an appropriate sampling of the object
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boundary. The work of Cootes and Taylor has shown that even for a large number of

points a statistical shape analysis can be done. PDM’s have been used in shape analysis

as is discussed in section 2.4.

Triangulation and meshes: The description of surfaces via triangulation or

quadrilateral meshes is the main technique used in computer graphics. These descrip-

tions are rarely used for shape analysis. Delingette [30] introduced simplex meshes,

which are topologically dual to a triangulation, as a possible shape description. The

mesh is adaptive and can change density and topology. The main advantage of the

simplex mesh description is that missing data can be interpolated using smoothness,

density and geometric constraints of the mesh. Approaches for volumetric and shape

measurement of the simplex mesh have been developed. Since the correspondence prob-

lem remains unsolved due to the adaptive nature of the mesh, no shape comparative

analysis has been done so far.

2.2 Shape description via the medial manifold

One of the most extensively studied shape description in 2D is the medial axis transform

(MAT) originally proposed by Blum [11]. Blum claims that medial descriptions are

based on the idea of a biological growth model and a ‘natural geometry for biological

shape.’ The idea is to represent the object by a fully connected skeletal graph. The

medial axis in 2D captures shape intuitively and can be related to human vision (see

Burbeck [22] and Siddiqi [62]). The terms prairie fire transform, medial axis transform,

symmetry axis transform, and skeleton transform have been used in the literature almost

interchangeably and refer to the same basic shape description concept.

The purpose of the medial axis transform is to extract a skeletal figure from the

object. The formation of this skeleton can be explained with the prairie fire analogy. Let

the object be composed of flammable dry grass, and initiate a fire simultaneously over the
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whole boundary of the object. This fire will propagate towards the center of the object.

At some points, called quench points, the fire fronts will meet and extinguish themselves.

The skeleton of the object is defined as the connected collection of these quench points.

If the distance to the original boundary is recorded at every quench point, then the

object can be fully reconstructed from the skeleton and thus no information is lost via

the medial axis transform. Fire front propagations have been computed using distance

transform methods [18, 58], by application of the shrinking/thinning operation [45, 75,

76] or by solving a curve evolution equation system (see below).

The disadvantage of the medial axis transform is its sensitivity to small noise on

the object boundary. Boundary noise of small amplitude might produce a quite large

skeletal change. August investigated these skeletal changes [6, 7]. A common practice

to deal with the boundary noise sensitivity is to smooth the boundary prior to skele-

ton generation. August shows that even smoothing itself can introduce new skeletal

branches. He also showed that the changes in the branching topology are located in

regions of ligature, which is a term introduced by Blum to describe the locations on the

skeleton influenced by concave boundary sections. In general, the branching topology

is unstable. This also means that a graph representation based on skeletal branching

nodes is unstable and less well suited for shape analysis.

Zucker and Kimia [43, 62] proposed smoothing via a diffusion equation. The skeleton

is thereby generated via the solution of a curve evolution equation having two terms of

which one is related to a geometric heat diffusion (parabolic α - term) and the other to

a reaction (hyperbolic β-term):

 Ct = (β − ακ)N

C(s, 0) = C0(s)

Other curve evolution based skeletonization methods were proposed by Siddiqi [63, 61]

using a hyperbolic evolution with a nonlinear Gaussian smoothing term. He designed a
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hierarchical graph description [59], called shock graphs, for shape analysis. These shock

graphs are based on the skeletal branching nodes and local geometric measures at these

nodes. A measure was defined to quantify the similarity between different objects. The

skeletonization was only recently extended to 3D, but the high complexity and the high

degree of ambiguity of the 3D skeletal graph has limited the extension of the graph

formation stage approach.

The representation of the skeleton via its Voronoi graph has been pursued by sev-

eral researchers. The process of smoothing the boundary in front-propagation-based

skeletons is analogous to the pruning process in Voronoi skeletons. In section 4.3.1.1, I

discuss the Voronoi skeleton generation and the pruning mechanisms in detail.

The idea of a fixed branching topology for the medial description of similar objects

was evaluated by Golland [38, 37] and Pizer [53]. Imposing a fixed branching topology

on the medial description solves the problem of boundary noise sensitivity. The question

arises of how well a fixed topology represents individual objects. This subject will be

discussed in more detail later in this document because it is essential to the applicability

of the proposed shape description scheme. Golland fits a 2D skeleton with given, fixed

topology into an object’s distance transform in a snake-like fashion. This approach can-

not be extended straightforwardly to 3D, neither has it been shown to handle branching

skeletons. Pizer takes a multi-scale viewpoint. He proposes the m-rep description, which

fits a medial model via its implied boundary to the object boundary with given aper-

ture. This can be done with a set of apertures to create a more robust multi-scale medial

description. The m-rep description is described in more detail in section 3.2.

2.3 Correspondence

Correspondence, which defines the homology of points between different objects, is ex-

tremely important in order to do comparisons and generate statistics. However, there is
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no agreement on what correspondence exactly should be and how it can be measured.

Correspondence can be established discretely or continuously. In the discrete case

the objects are represented as sets of primitives and the correspondence is defined by

uniquely assigning primitives in different sets to each other. In the continuous case

parameterizations of the surfaces are defined such that same parameter values parame-

terize corresponding locations. The correspondence defined by the SPHARM description

is continuous, while the correspondence on the m-rep is discrete.

The straightforward method to solve the 2D discrete correspondence is the manual

selection of a number of landmarks on each object (see [15], [14]). This method clearly

requires extensive user input. Also, the extension to 3D is difficult because a greater

number of points has to be considered and identifying landmarks in 3D is difficult for

a human. Non-manual methods have been proposed, such as the Softassign Procrustes

matching algorithm [55], which tackles the problem of finding correspondences in two

point sets and identifying outliers. A correspondence match matrix and the associated

Procrustes distance are optimized iteratively until convergence is obtained. Another

approach to solve the 3D discrete correspondence is the iterative closest point (ICP)

algorithm [35]. The ICP algorithm assigns iteratively the closest points of 2 point sets

to match. The definition of the distance between 2 points can be extended to include

such terms as curvature, or local image properties, as shown by Caunce [23]. The method

for establishing discrete correspondence in m-reps is straightforward and is explained in

section 3.2.2.

The most common approach for the approximation of continuous correspondences

in 2D is an arc-length parameterization. The sample curves are parameterized by the

arc-length in a given interval. Points with the same parameter on different curves are

then taken to be corresponding. A different approach is taken by Tagare [73, 74],

who defines the correspondence between closed curves C1 and C2 as a subset of the

product space C1 × C2. Postulating that correspondence Φ must be a bi-morphism, he
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derives that Φ is a regular curve in C1 × C2 such that its projections on C1 and C2

are non-decreasing with respect to arc-length. Taking this as a constraint he obtains

the correspondence by minimizing a shape dissimilarity function based on the difference

of the curve normal derivatives. Kotcheff [44] presents a different algorithm that finds

a correspondence via maximizing the amount of the variability described by the first

few PCA components of the shape vector covariance matrix. The high dimensional

optimization is tackled via a genetic algorithm.

The problem of 3D continuous correspondence is hard to tackle since most of the

continuous methods in 2D and discrete methods proved difficult to extend. One of the

few existing solutions is the straightforward expansion of the arc-length parameterization

correspondence to surfaces described by Brechbühler [21]. This is the correspondence

used in this dissertation between objects described by SPHARM. Section 3.1.4 describes

this method in more detail.

2.4 Shape analysis

This section gives a brief overview of shape analysis techniques. A more detailed

overview was published by Loncaric [46].

As early as the first decade of the last century researchers were starting to investigate

quantitative shape analysis. D’Arcy Thompson [77], an early 20th century morphologist,

pioneered the method of transformation grids. His goal was not to describe shape

qualitatively or quantitatively but rather to formulate a method that could measure

shape change. That is, given two objects, he was primarily interested in comparing

their differences. Thompson’s work was novel for its analysis of complex biological

processes from a mathematical and physical viewpoint. The last chapter in his ground-

breaking book [77], called “On the Theory of Transformations, or the Comparison of

Related Forms”, is probably the best known and has direct bearing on all image warping
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methods.

It was Bookstein [13, 16] who developed methods to analyze shape changes quanti-

tatively based on principal warps. This principal warp analysis is basically a Principal

Component Analysis (PCA) of the thin-plate spline deformation matrix between two

point sets. These point sets are first registered using the Procrustes method. The

main problem with this method is the sensitivity to the choice of landmarks, which

are assumed to be without error. Dryden [32] established ways to deal with this using

S-estimators.

Davatzikos et al [29, 28] proposed morphometry via a spatially normalizing elas-

tic transformation. Inter-subject comparisons were made by comparing the individual

transformations. The method is applied in 2D to a population of corpora callosa. A

similar approach in 3D has been chosen by Joshi [40] and Miller [49, 50] to compare hip-

pocampi. Using the viscous fluid transformation proposed by Miller [24], inter-subject

comparisons were made by analyzing transformation fields. The analysis of transfor-

mation fields in these two methods has to cope with the high dimensionality of the

transformation and the sensitivity to the initial position. Although the number of sub-

jects in the studied populations is low, both show a relatively stable extraction of shape

changes. Csernansky [27] used these methods in his widely recognized article about

hippocampal shape differences in schizophrenia. Toga [52] was using a similar method

in analyzing brain growth processes and brain diseases. Toga also published a good

overview [78] of shape analysis methods that study deformation fields.

Cootes et al [25] proposed the Active Shape Model to generate statistical models of

2D and 3D point sets. A statistical model is built after applying the Procrustes algorithm

to the PDM. The PDM and its associated PCA is then used for segmentation and shape

analysis. One of the main problems in dealing with 3D PDM’s is the identification of

corresponding surface points.

Inspired by the success of Cootes Active Shape Models, Kelemen [42] adapted this
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scheme to be used with the SPHARM description. The statistical description of SPHARM

is used in this dissertation and is described in detail in section 4.2.

The INRIA group developed a feature based concept using crest lines to represent

shape variability and to build statistical atlases (Subsol [70]). The approach results in a

point to point correspondence and uses a space spline transformation to warp 3D image

data.

The use of medial descriptions for shape analysis has been proposed by Golland

[38] and Pizer [53]. Both Pizer and Golland propose a sampled medial model that is

fitted to individual objects. By holding the topology of the model fixed, an implicit

correspondence between objects is given. Yushkevich [79] used 2D m-reps to find local

changes in populations effectively. M-reps and its shape properties are discussed in more

detail in section 3.2.

Kimia and Giblin [36] have proposed a medial hypergraph in 3D. They showed that

the hypergraph completely characterizes the shape of an object. Similar to work in 2D

by Siddiqi et al [60], this hypergraph could be used for object recognition and design. To

our knowledge, no studies have been done towards using the medial graph/hypergraph

directly for shape analysis.

In this dissertation I present a new approach to shape analysis using both boundary

and medial description [68, 69]. The medial description is computed automatically from

a shape space based on a given population.
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2.5 Selected properties of shape descriptions

This section studies a selection of general shape description properties that can be

used to broadly categorize most shape description methods. The objects of interest are

biological objects that were segmented by selecting a ‘region of interest’ from volumetric

medical images resulting in a binary segmentation. Fig. 2.1 displays the properties of

the shape descriptions that are most important in this dissertation. In the following

sections, the effect of the presence of biological variability is emphasized.

Definition: Efficiency of a shape description The efficiency of a shape description

is defined as the ratio of non-redundant information to the size of the description. A

shape description is called efficient if objects are described with a given accuracy by

concise sets of parameters or features. A finely sampled description is thus less efficient

than a coarser sampled description if both describe the same object with the same

accuracy.

Definition: Local/global shape description The terms local and global shape de-

scription are used in this dissertation to express whether a representation captures the

object as a set of primitives with locality or as a set of parameters without locality.

2.5.1 Localization: local versus global

Each global 3D shape descriptions in this chapter is based on a 2D-parameterization

(u, v), like Staib and Duncan’s sinusoids [66] and Brechbühler’s spherical harmonics [21]

(SPHARM). A specific object is described by a set of coefficients weighting a given

set of basis functions. Shape properties like derivatives can be computed analytically

from the functional parameterization. Deformations are not well localized in a global

description but are rather distributed over the whole set of coefficients. Thus, changes

of the coefficients cannot be interpreted intuitively. Moreover, local shape changes can
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lead to changes of the whole set of coefficients.

A B C D

Figure 2.1: Four different shape descriptions of a human left hippocampus: A. spherical
harmonics (SPHARM): global, fine scale, boundary. B. Dense Point Distribution Model
(PDM): Local, Fine Scale, Boundary. C. Dense Voronoi Skeleton: local, fine scale,
medial (color coded thickness). D. m-rep (color/radius coded thickness, atoms = dots,
links = purple, implied boundary = blue) : local, coarse scale, medial.

Local shape descriptions are composed of primitives, such as points, edges or faces.

Changes to the primitives are captured locally and can be visualized and understood

intuitively. Shape properties, such as derivatives or curvatures, are defined by the re-

lationships between these primitives. A dense sampling is required to describe these

relationship and thus also the shape properties accurately.

A finely sampled local shape description is not as efficient as a global description

since it describes the same object by a larger number of parameters. Sparse sampling

can be used to achieve a more efficient local description, if we are not interested in fine

scale shape properties or if we can determine them by additional prior information.

As I deal with biological objects, I aim to pinpoint deformations intuitively as changes

of anatomical landmarks, and this clearly favors a local description. Global descriptions

are favored by the need for an efficient and accurate computation of geometric shape

properties, which are used for registration and establishing correspondence between

homologous points of different objects.
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2.5.2 Scale: fine versus coarse

In medical image analysis studies, 3D objects are most often defined a binary segmenta-

tions of ‘regions of interest’ in volumetric images. In the present routine analysis, such

anatomical objects are segmented based on human expert interaction. These segmenta-

tions are often processed as if free of error. Because fine scale descriptions reconstruct

the object accurately, they are perceived to be anatomically correct. However, the

presence of noise, partial volume effects, intensity inhomogeneities and other artifacts

suggests that the view of an error-free object is misleading. A fine scale description is

not efficient since it reconstructs the objects to an unnecessarily high degree of precision

based on the non-accurate manual segmentation. Statistical shape analysis, detection

and discrimination of shape changes, favors an efficient description. On the other hand,

we would like to be able to precisely pinpoint significant shape changes, requiring a

representation of anatomical details. Thus, the choice of scale can be interpreted as

balancing the tradeoff between the efficiency of description and precise localization.

2.5.3 Boundary versus medial shape description

The 3D shape of an object can be described by its boundary or by the medial manifold.

Main advantages of medial descriptions are the intuitive capturing of shape information

(see Fig. 2.2) and the separate characterization of the local shape properties: location,

orientation and thickness. The local orientation of a medial description captures first

order properties of the medial manifold, which are directly related to those on the

boundary. The main disadvantages of medial descriptions include their inability to

capture non-symmetric information and the sensitivity to small changes on the boundary

(see also section 2.2). Because the non-symmetric part of shape can be regarded as

being less stable, some researchers view this property as an advantage rather than a

disadvantage. Considering the presence of biological variability, the sensitivity to small
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changes cannot be left unsolved. In particular, a statistical analysis of a set of medial

manifolds based on similar biological objects would be very challenging if the branching

topology were not the same for all objects.

I propose that boundary descriptions are well suited for fine scale and medial de-

scriptions are well suited for coarse scale descriptions (see also Pizer [53]). If we can

solve the problem of the branching topology sensitivity, the medial description could

also be well suited for statistical shape analysis.

Twin A Twin B

Figure 2.2: Lateral ventricles of two monozygotic twins. The objects are similar, but
twin A has a larger right ventricle (Volume L/R = 0.75). Twin B shows a reversed
volumetric symmetry (Volume L/R = 1.26). The medial description (bottom, Voronoi
skeletons), with color coded thickness, captures more intuitively the local shape structure
of the object than the boundary representations (top).

2.5.4 Constraints: unconstrained versus constrained

Most shape descriptions can be constrained by incorporating prior knowledge. For ex-

ample model based segmentation techniques generate descriptions that are constrained,

if the segmentation does not allow free-form deformations. The segmentation is guided

by constraints on the object’s geometric and intensity distribution. In general, an uncon-

strained description describes the object as precisely as possible, whereas a constrained

description might deviate from this ‘best-precision’ description. If the constraints are of

statistical nature that incorporate knowledge about the object’s variability, then the gen-

erated description is usually more robust. Constraining shape descriptions can also help

to overcome some of the description’s inherent disadvantages, for example constraining

the branching topology for medial descriptions. Pathological cases, when constraints

disallow an appropriate shape description, are usually detectable.
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2.6 Properties of a description suitable for shape

analysis

As a consequence of the discussion in the previous sections of this chapter, the following

properties are desired in a shape description suitable for shape analysis :

• An efficient description is needed to reduce the dimensionality of the feature space.

• The shape features and their changes should be precisely localized.

• The shape features and their changes should be meaningful and invoke an intuitive

understanding of the local and global form.

• The description should be stable in the presence of shape variability since I deal

with populations of similar objects.

• The description should offer means to establish an appropriate correspondence.

The different properties cannot be achieved simultaneously in a single description.

A medial description for example offers meaningful features, but is quite unstable in the

presence of shape variability. A sampled description is only efficient if the sampling is

low, but the resulting coarse scale description does not guarantee anatomical correctness.

A parametrized description is often efficient even at a fine scale, but the features and

especially their changes are not intuitive. I thus propose to have two descriptions, each

one incorporating some of the desired properties. By combining two descriptions, some

of the inherent disadvantages can be overcome and all requirements can be met in the

combined description. Such a combined description is presented in the next chapter.
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Chapter 3

A combined medial-boundary shape

description

I propose a novel shape description that combines the boundary-based spherical har-

monic description (SPHARM) [20, 21] and the m-rep description of a net of medial

primitives [53]. This combination is especially well suited for doing statistical shape

analysis. It pools the advantages of the individual descriptions and overcomes some of

their inherent disadvantages. Both coarse and fine scale features are captured efficiently.

Correspondence is defined on both descriptions and thus a shape analysis can directly

be applied. Shape changes can be intuitively described using the m-rep description. The

m-rep model can be determined stably by incorporating variability using the SPHARM

description.

In this chapter, I first describe the SPHARM and m-rep descriptions individually.

Then, I describe how they are combined.

3.1 SPHARM

The SPHARM description is a hierarchical, global, multi-scale boundary description

that can only represent objects of spherical topology. The basis functions of the param-

eterized surface are spherical harmonics. Kelemen [42] demonstrated that SPHARM



can be used to express shape deformations. Truncating the spherical harmonic series at

different degrees results in object representations at different levels of detail, as it shown

in Fig. 3.1. SPHARM is a smooth, accurate fine-scale shape representation, given a

sufficiently small approximation error.

In the next sections, I briefly describe the mathematical properties of spherical har-

monic descriptors, the computation scheme for a SPHARM description, and the pa-

rameterization computation. Also, I discuss how to establish correspondence between

different objects described by SPHARM. This correspondence is used to compute the

Mean Squared Distance measures of shape difference and to generate a spherically uni-

form point sampling.

degree 1 degree 3

degree 6 degree 10

Figure 3.1: The SPHARM shape description of a human left hippocampus/amygdala
complex shown at 4 different degrees ( 1, 3, 6, 10 harmonics).

3.1.1 Spherical harmonics descriptors

This section discusses the mathematical properties of the spherical harmonic basis func-

tions. It gives a summary of spherical harmonic descriptors as they are presented in

Brechbühler’s dissertation [20].

Spherical harmonic basis functions Y m
l , −l ≤ m ≤ l of degree l and order m are
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defined on θ ∈ [ 0;π ]× φ ∈ [ 0; 2π) by the following definitions [54]:

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) eimφ (3.1)

Y −ml (θ, φ) = (−1)m Y m
l
∗(θ, φ) , (3.2)

where Y m
l
∗ denotes the complex conjugate of Y m

l and Pm
l the associated Legendre poly-

nomials

Pm
l (w) =

(−1)m

2l l!
(1− w2)

m
2
dm+l

dwm+l
(w2 − 1)l. (3.3)

Table 3.1 lists explicit expressions for the spherical harmonic functions up to degree 3.

The Cartesian notion reveals that the spherical harmonics are polynomials in the 3D

space (u0, u1, u2).

l m = 0 m = 1 m = 2 m = 3

0 1

1 cos θ eiφ sin θ polar

2 −1 + 3 cos2θ eiφ cos θ sin θ e2iφ sin2θ
3 −3 cos θ + 5cos3θ eiφ(1− 5cos2θ) sin θ e2iφ cos θ sin2θ e3iφsin3θ

0 1

1 u2 u0 + i u1 Cartesian

2 −1 + 3u2
2 (u0 + i u1)u2 (u0 + i u1)

2

3 −3u2 + 5u2
3 (u0 + i u1)(1− 5u2

2) (u0 + i u1)
2u2 (u0 + i u1)

3

0 1/
√

4π

1
√

3/4π
√

3/8π

2
√

5/16π
√

15/8π
√

15/32π

3
√

7/16π
√

21/64π
√

105/32π
√

35/64π

Table 3.1: Explicit expressions of the spherical harmonics up to degree 3, in both polar
and Cartesian form due to Brechbühler. The last part of the table gives the common
normalizing constants, e.g. Y 0

1 =
√

3/4πu2.

To express a surface using spherical harmonics, the three coordinate functions are
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decomposed and the surface v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T takes the form

v(θ, φ) =
∞∑
l=0

l∑
m=−l

c m
l Y m

l (θ, φ) , (3.4)

where the coefficients cml are three-dimensional vectors due to the three coordinate

functions. The coefficients cml are obtained by solving a least-squares problem. There-

fore, the values of the basis functions are gathered in the matrix z = (zi,j(l,m)) with

zi,j(l,m) = Y m
l (θi, φi), where j(l,m) is a function assigning an index to every pair (l,m)

and i denotes the indices of the nvert points to be approximated. The coordinates of

these points are arranged in v = (v1,v2, . . . ,vnvert)
T and all coefficients are gathered

in c = (c 0
0 , c

−1
1 , c 0

1 , . . .)
T . The coefficients that best approximate the points in a least-

squares sense are obtained by

c = (zTz)−1zTv . (3.5)

Using spherical harmonic basis functions, we obtain a hierarchical surface description

that includes further details as more coefficients are considered. This is illustrated in

Fig. 3.1.

3.1.2 Computation scheme for SPHARM

The objects of interest are usually manually or semi-automatically segmented by a hu-

man expert, resulting in a voxel representation. The voxel representation has to be

preprocessed to fulfill the precondition of sphere topology, e.g. via a closing operation

or a smoothing filter. As I am only interested in its boundary, the voxel representation

is converted to a polygonal surface mesh that serves as input for the optimization proce-

dure. The optimization computes an appropriate (θi, φi) parameterization, which is used

for the computation of the spherical harmonic coefficients. For shape normalization, the

SPHARM coefficients are then adjusted to the first order ellipsoid regarding translation,

rotation and parameter correspondence. Other normalizations are also possible, e.g. to
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an externally defined frame using anatomical landmarks.

3.1.3 Parameterization of SPHARM by optimization

The appropriate parameterization of the points of a surface description is a key problem.

Every point i of the point cloud that will be approximated by the surface description is

to be assigned a parameter vector (θi, φi). For surfaces of spherical topology, the natural

parameter space is the unit sphere with polar coordinates. A homogeneous distribution

of the parameter space is essential for the decomposition of the surface. This is also

necessary for an appropriate approximation of corresponding points, as described in

the next section 3.1.4. We give here a brief summary of the surface parameterization

procedure of Brechbühler.

A bijective mapping of the surface to the unit sphere is created, i. e., every point on

the surface has to map to exactly one point on the sphere, and vice versa. The main

idea of the procedure is to start with an initial parameterization. This initial parame-

terization is optimized so that every surface patch gets assigned an area in parameter

space that is proportional to its area in object space.

First, an initial mapping from object to parameter space is constructed using discrete

Laplace’s equations to solve the corresponding Dirichlet problem. To obtain a homoge-

neous distribution of the parameter space over the surface, the initial parameterization

is modified in a constrained optimization procedure considering two criteria:

1. Area preservation: Every object region must map to a region of proportional area

in parameter space.

2. Minimal distortion: Every quadrilateral should map to a spherical quadrilateral

in parameter space.

Brechbühler establishes constraints for area preservation, while the distortion of the

mesh serves as the objective function during optimization. The optimization solves the
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resulting system of nonlinear equations by linearizing them and taking Newton steps.

3.1.4 SPHARM correspondence

Figure 3.2: Visualization of the SPHARM correspondence. A first order ellipsoid and six
left lateral ventricles are displayed. The surface net shows the (θi, φi) parameterization
(same parameters = same homologous points). The ridges on the first order ellipsoid
are the equator and {0, π/2, π, 3 · π/2} meridian lines in all objects. The equator and
meridian lines are emphasized in different colors. The poles are at the crossing of the
meridian lines.

The scheme for establishing correspondence between objects described by SPHARM

is a 3D extension of the 2D arc-length shape parameterization (see also Székely[72]).

The first step is a homogeneous distribution of the parameter space over the surface, a

step done in the parameterization optimization (see section 3.1.3). in the second step

the parameterization is rotated in the parameter space for normalization. This rotation

is based on the first order ellipsoid, which is computed from the first three SPHARM

coefficients. The result of the rotation satisfies the following properties:

• The parameter locations of the poles of the first order ellipsoid match with the

poles of the sphere.

• The parameter locations of the 3 main ridges of the first order ellipsoid are moving

along the equator, and the 0 and π meridians of the sphere.

Correspondence is established by taking two points with the same parameter vec-

tor (θi, φi) on different entities of an object to be a corresponding pair.
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3.1.5 Mean Squared Distance (MSD) between SPHARM ob-

jects

The correspondence between objects described by SPHARM allows the computation of

distance measures between two objects. The orthogonality of the spherical harmonic

basis functions allows Parseval’s theorem to be used to compute the root Mean Squared

Distance (
√

MSD) between two objects directly from their coefficients via a difference

calculation. A correction is needed since the squared spherical harmonic basis functions

do not integrate to 1 but to 4π.

MSD =
1

4π
·

inf∑
l=0

l∑
m=−l

||cm1,l − cm2,l||2 (3.6)

If we want to determine error measures other than
√

MSD, we first need to appro-

priately sample the spherical parameterization (θi, φi). Using the (θi, φi) point-to-point

correspondence described in the previous section, error measures like the Mean Absolute

Distance (MAD) or the Hausdorff-distance can be computed straightforwardly.

3.1.6 Point Distribution Model (PDM) from SPHARM

From the SPHARM description we can compute a Point Distribution Model (PDM) of

the surface by sampling the parameterization. Equidistant sampling of each parameter

leads to a dense sampling around the poles (θ = 0, θ = π) and a coarse sampling

around the equator (θ = π/2). This fact can be explained by the poles being mapped

to all points having φ = 0 . . . 2π and θ = 0, or θ = π (see also Fig. 3.2).The object is

thus inhomogeneously sampled, as the parameterization was chosen such that areas in

parameter space are proportional to areas in object space. Using a uniform icosahedron

subdivision shown in Fig. 3.3, however, we gain a good approximation of a homogeneous

sampling of the spherical parameter space and thus also of the object space.

Using the pre-computed parameter locations (θi, φi) from the icosahedron subdivi-
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Figure 3.3: Icosahedron subdivision for different levels of sampling. From left to right:
Base icosahedron, subdivision factors 2, 4 and 6.

sion, we can compute the PDM directly from the coefficients, as the parameter locations

stay constant for all objects at a given subdivision level. The sampling points xi at the

locations (θi, φi) are obtained using equation (3.4):

xi =
K∑
l=0

l∑
m=−l

c m
l Y

m
l (θi, φi) .

Setting x = (x T
1 ,x

T
2 , . . . ,x

T
n )T we write

x = Ac , (3.7)

where the matrix A consists of the spherical harmonic basis function values Y m
l (θi, φi),

one for each dimension.

In this dissertation the sampling of the PDM is high (subdivision level 15-20), and

it has a better localization of shape changes than SPHARM but is a less efficient shape

description. The PDM is used in this dissertation mainly for the creation of the Voronoi

skeleton representation.

3.2 M-rep

A m-rep is a linked set of medial primitives (see Pizer et al [53]) called medial atoms,

m = (x, r, F , θ). The atoms are formed from two equal length vectors and are composed
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of 1) a position x, 2) a width r, 3) a frame F = (n,b,b⊥) implying the tangent plane

to the medial manifold and 4) an object angle θ. The properties of medial atoms are

described in further detail in the next section. The medial atoms are grouped into

figures. A figure is defined as an unbranching medial sheet formed by a planar graph

of medial atoms connected by intra-figural links. Figures are connected via inter-figural

links. The connections of the medial atoms and the figures form a graph with edges

representing either inter- or intra-figural links. In the remainder of this text, I will refer

to that graph by the term ‘medial graph’. In the generic case, the graph of the whole m-

rep is overlapping when displayed in a 2D diagram, i.e. the medial graph is non-planar.

An example of an m-rep is shown in Fig. 3.4.

The m-rep description is a local and medial shape description. In my approach, I

choose a small number of medial atoms, which leads to a coarse scale description.

Figure 3.4: The m-rep shape representation without (left) and with implied boundary
(right) in an example of a human left hippocampus/amygdala complex. Three figures
with differently colored intra-figural links are shown. The medial atoms are red dots
and the implied boundary is represented by blue dots.

I compute the individual m-rep description by deforming an m-rep model into an

SPHARM described boundary while constraining the medial graph to a fixed configu-

ration (see section 4.5). The branching topology and the sampling of the medial atoms

are thereby kept constant. Every object is thus expressed by the same medial graph

varying only the parameters of the individual medial atoms. Therefore, I propose that

a statistically derived common m-rep model is computed for each anatomical structure

separately. These m-rep models incorporate the biological variability of the modeled
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object.

3.2.1 Medial atom properties

This section summarizes the properties of medial atoms following Fletcher and Pizer

[33].

Extending Blum’s point of view to 3D, each point on the medial axis of an object

represents the center of the largest inscribing sphere to that object. Thus, the medial

representation is implied by the boundary. The m-rep point of view is quite different

since the medial representation implies the boundary. A medial atom thereby serves

as a descriptor of the relation between the location of an implied ‘maximal sphere’ and

the position and normal at the two boundary points xR,xL on this sphere. At locations

where the medial manifold ends, the medial atom models the boundary with 3 points

and is called an end atom. The additional third point xE does not have to lie on the

sphere. Fig. 3.5 illustrates the 2 different types of medial atoms.

Figure 3.5: Two types of medial atoms (visualized in 2D for simplicity). Left: internal
atom. Right: end atom. All medial atoms encapsulate a position x on a medial axis, a
width r, a frame F and an bisector angle θ. The implied sphere touches the boundary
at least at 2 points xL,xR. An end atom is a medial atom with a component that defines
an additional boundary point xE. Pictures by P. Yushkevich.

More formally, a medial atom m of the space M = (R3 × SO(3) ×R+ ×R) can be

defined as

m = (x, r, F , θ) (3.8)

where x is a position on the medial axis, r is the radius of the inscribing sphere, θ is
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one half of the angle between the two vectors to the boundary, and F is a 3D frame

located at x and fitted to the geometry of the medial axis. The frame is a rotation of

the standard Euclidean basis and thus an element of SO(3), which is a schematic of the

group of rotations in three dimensions. The frame is composed of three orthonormal

vectors,

F = {b,b⊥,n} (3.9)

These vectors define the local compass for the medial surface at the point x, where

{b,b⊥} span the tangent plane at x, and n is its normal. Moreover, the vector b is

chosen as the bisector of the two vectors pointing to the boundary. This is the direction

of greatest narrowing of the implied sphere, given by the relation

∆r = −b · cos θ (3.10)

Therefore, the vector b⊥ is in the direction of constant r, i.e., no widening or nar-

rowing. The two vectors pointing to the boundary can be defined as

(s,p) = (xL − x,xR − x) = (r(b · cos θ + n · sin θ), r(b · cos θ − n · sin θ)) (3.11)

From Blum’s point of view, the maximal inscribing sphere on the edge of the medial

manifold will no longer touch the boundary of the object at exactly two points but rather

touches at one point of multiplicity 2. At that point of contact, a crest position on the

implied boundary, the corresponding medial atom will have an angle θ equal to zero.

Such an atom is ill suited to image analysis due to the instability of its dependence on a

single image point. To avoid this case, an end atom is defined to imply a crest position

at

xE = x + ηrb (3.12)

with b as surface normal. The parameter η defines the pointiness, i.e, elongation of the
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crest region. This elongation factor is restricted to lie within [1, 1/ cos θ]. When η = 1,

the end atom implies a circular cross-section; η = 1/ cos θ yields a sharp corner.

3.2.2 Correspondence via m-rep

Since the medial graph is fixed when the m-rep model is deformed into individual cases,

an inherent correspondence is given between objects whose m-rep is derived from the

same medial model. We label each medial atom of the m-rep model with an unique

index. Thus, when comparing different m-rep objects, medial atoms with the same

index are considered homologous and corresponding. This homology using my proposed

scheme is discussed in more detail and shown in section 6.3.

3.3 Combining SPHARM and m-rep

The proposed shape description is a combined description consisting of a fine-scale

SPHARM description of the boundary and a coarse-scale m-rep description of the me-

dial manifold. The properties of the two parts of the combined shape description are

described in table 3.2. The two descriptions complement each other. The m-rep descrip-

tion is suitable for doing shape analysis since it has a low number of features. These

features and their changes are intuitive. The SPHARM description is used to stabilize

the unstable branching topology of the m-rep. It does so by defining a smooth shape

space and a spatial correspondence for branching topology comparisons, as described in

the next chapter.

3.3.1 Computing the combined medial-boundary shape descrip-

tion of an individual object

Starting from a voxel-based segmentation of the object, the SPHARM description is

computed as described in section 3.1.2. A previously computed m-rep model is then
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SPHARM m-rep

High number of features. Low number of features
E.g. hippocampus: 507 coefficients 8x3 m-rep: 24 thickness +

72 location + 72 orientation features
Captures fine scale shape changes effi-
ciently.

Captures coarse scale shape changes ef-
ficiently.

Analytical computation of geometric
properties.

Discrete computation of geometric
properties.

No intuitive interpretation of coeffi-
cients and its changes since global fea-
tures.

Features are intuitive. Local changes in
thickness, location and orientation.

Stable in presence of shape variation. Branching topology unstable in pres-
ence of shape variation. An appropri-
ate fixed branching topology is needed

3D correspondence by parameter align-
ment of first ellipsoid poles and ridges.

3D correspondence given if medial
graph (figures + atoms) is constant.

Table 3.2: Summary of properties of SPHARM and m-rep

fit into the boundary described by SPHARM. A good initial estimate of the m-rep

is obtained using the boundary correspondence of the SPHARM associated with the

m-rep model. The fitting process yields the deformed individual m-rep description of

the object. The proposed description is then the combination of the SPHARM and the

deformed m-rep. Fig. 3.6 shows how the combined description of a population of objects

is computed.

The major problem associated with this scheme is the determination of an appro-

priate m-rep model. This m-rep model should incorporate the biological variability of

the object and should be computed automatically and in a stable way. The solution to

this problem, which is described in the next chapter, is the main contribution in this

dissertation.
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Figure 3.6: Computation of the combined description for a study population of objects.
First the SPHARM description is computed and then the m-rep is determined via fitting
a previously computed m-rep model into the SPHARM boundary. The m-rep model
was built from a training population. Shape analysis is applied to a study population
to derive new findings.
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Chapter 4

Computing a common m-rep model of an

object population

4.1 Overview

In the proposed combined shape description, the main problem that remained was the

computation of an m-rep model in the presence of biological shape variability. Given

an object population for an anatomical object, how can we determine a common m-rep

model automatically and in a stable way?

To date the m-rep model building process has been conducted manually by human

interaction. A model was derived from one sample object, representative of a population

of biological objects. Thus, it was assumed that the sample’s topology and geometry

represent a set of similar objects with respect to the population and that a human expert

can reliably define the appropriate topology and geometry. My new scheme presented

here moves towards a more stable statistical description by taking into account a whole

population and by automatically deriving a ‘common’ m-rep model from statistical ob-

servations of the shape properties.

My scheme can be subdivided into 3 steps and is laid out in Fig. 4.1. The input to

the scheme is a representative training population of objects for the anatomical object

to be modeled. First, the scheme computes a smooth SPHARM shape representation



for every individual object in the training population. A Principal Component Analysis

(PCA) computes a shape space from the SPHARM objects, as described later in section

4.2. This shape space incorporates the major part of the shape variability in the training

population. All subsequent computations are performed on this shape space. The second

step of the scheme computes the medial branching topology of the common m-rep model

using Voronoi skeletons. The third step computes the minimal sampling of the common

branching topology with a predefined maximal approximation error in the shape space.

The detailed algorithms of the topology computation are described in section 4.3, and

those of the optimal sampling computation are described in section 4.4. Section 4.5

describes how the m-rep model estimated from the optimal sampling is fitted into a

SPHARM object for an appropriate m-rep representation. Issues of the established

homology and the scheme’s stability are discussed later in chapter 6.

Step 1

Step 2
Step 3

Figure 4.1: Three steps to automatically compute a m-rep model in a stable way. Given
is a training population of objects for an anatomical structure. Step 1. Computation of
a shape space by PCA, section 4.2. Step 2. Extraction of a common medial branching
using pruned Voronoi skeletons, section 4.3. Step 3. Computation of the minimal
sampling, section 4.4.
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4.2 The shape space for an anatomical object

Figure 4.2: The proposed shape space is spanned by the first few eigenmodes of defor-
mation. The first two dimensions of the 6-dimensional shape space from a hippocampus-
amygdala study are visualized.

As a crucial step in my scheme, I define a shape space for all computations. The

shape space for an anatomical object is derived from a training population. The shape

space is used for all subsequent computations of my scheme, instead of applying the

computations directly to the training population. The shape space smoothes the shape

variability in the training population, thus making the computations of my scheme more

stable. I assume that the shape space is an appropriate representation of the object’s

biological variability. The Principal Component Analysis (PCA) is applied to SPHARM

objects of the training population to compute the eigenmodes of deformation (see also

appendix 7). The shape space is then defined by the average object and the major

eigenmodes of deformation.

The shape space computation starts from the smooth SPHARM shape representation

ci for each individual shape, as described in section 3.1. PCA is then applied to the

population of coefficients resulting in a average coefficient vector c̄ and the eigenmodes of

deformation {(λ1,v1) . . . (λn−1,vn−1)}. The first few eigenmodes {(λ1,v1) . . . (λk,vk)}

are selected and the remaining eigenmodes are discarded. The first k eigenmodes are

chosen to cover at least 95% of the population’s variability.

Formally, the PCA eigenmode selection is defined as follows:
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Σ =
1

n− 1

∑
i

(ci − c̄) · (ci − c̄)T (4.1)

0 = (Σ− λi · In) · vi; i = 1 . . . n− 1 (4.2)

0.95 ≤ (
k∑
i=0

λi)/(
n−1∑
i=0

λi) (4.3)

Spaceshape = {c̄± 2 ·
√
λi · vi}; i = 1 . . . k. (4.4)

A discrete description of the shape space is gained by sampling it either uniformly

or probabilistically. These samples form an object set that is a representative sampling

of the shape space. All subsequent computations are then applied to this object set.

The number of objects in this set can be considerably higher than the original number

of objects in the training population. An example of such an object set is presented in

Fig. 4.3.

c̄, +
√
λ1,−

√
λ1,+

√
λ2,−

√
λ2,+

√
λ3,−

√
λ3,+

√
λ4,−

√
λ4,+

√
λ5,−

√
λ5,+

√
λ6,−

√
λ6

Figure 4.3: Subset of the object set from a PCA shape space for a hippocampus-
amygdala population: Average case (left) with deformations along all selected eigen-
modes.

As with any sampling method, information is lost by the discretization of the shape

space. Fig. 4.4 presents 2 examples of non-Gaussian distributions in the PCA shape

space. Regular sampling on these PCA shape space would result in members of the

object set that do not represent objects similar to the original population. For such

shape spaces, a special sampling method would be needed in order to create an object

set that appropriately represents the population. In all my studies with real datasets, the

training populations appear to have a nearly Gaussian distributions in the PCA shape
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space (see Fig. 4.5). Thus, a straightforward sampling method was chosen computing the

object set by uniformly sampling 5 objects along every eigenmode. The appropriateness

of computed object set should be checked for every shape space.
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Figure 4.4: Two examples of the (v1,v2) PCA space from synthetic datasets with non-
Gaussian distributions. Left: bimodal distribution, Right: banana shaped/multimodal
distribution.
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Figure 4.5: Three examples of the (v1,v2) PCA space from real datasets. On the left,
the population of 40 (left and mirrored right) lateral ventricles is displayed (Weinberger
dataset). In the middle, the population of 46 hippocampus-amygdala (left and mirrored
right) and on the right, the population of 172 hippocampi (left and mirrored right) are
displayed.
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4.3 Branching topology for a common medial model

In the first part of this section (the first step in Fig. 4.6), the computation of the

branching topology as a set of medial sheets for an individual object is described. In

the second part (the second step in Fig. 4.6), these medial sheets are compared in the

object set to compute a common branching topology.

Figure 4.6: Extraction of a common branching topology. After computing the branching
topologies as sets of medial sheets, all relevant sheets are combined in a common model
topology. The medial sheets are computed using pruned Voronoi skeletons.

Two topology terms are used in this section. First, the branching topology of the

medial model represents the figures and the intra-figural links of the medial graph.

Second, the topology of the skeleton is related to its genus, which is determined by the

number of distinct parts, holes, cavities and inclusions. As only skeletons from objects

described by SPHARM are generated, the topology of the skeleton is spherical.
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4.3.1 Branching topology for individual objects

The branching topology of an individual object is represented by a set of medial sheets

from the pruned Voronoi skeleton. A general view on Voronoi skeletons is presented first

in section 4.3.1.1. The inner 3D Voronoi skeleton is calculated from a shape described by

SPHARM using the scheme described in section 4.3.1.2. My new pruning scheme for a

Voronoi skeleton is the topic of the remainder of section 4.3. The pruning scheme starts

with grouping the Voronoi skeleton into a set of non-branching, non-self-intersecting

medial sheets (see section 4.3.1.3). A medial sheet is a 2D manifold that comprises a

group of directly connected Voronoi faces. The initially large number of medial sheets is

reduced to a small number via several pruning steps incorporating heuristics about areal

and volumetric contributions (see section 4.3.1.4 - 4.3.1.6). My pruning scheme thereby

only prunes whole medial sheets and no single Voronoi vertices. The pruning scheme is

enhanced by a merging step to further reduce the number of medial sheets (see section

4.3.1.7). The computed set of medial sheets represent the branching topology.

4.3.1.1 General view on Voronoi skeletons

Voronoi skeletons exploit the relation between the Voronoi diagram of a point set and

its skeleton. That Voronoi Diagram is dual to another fundamental structure in com-

putational geometry, the Delaunay Triangulation.

The Voronoi Diagram of a discrete, n-dimensional point set is a partition of the

space into cells such that each cell of the partition contains exactly one member of the

point set and is the locus of all points which are nearer to this member than to any

other. In this way the space is divided into convex cells that are not always finite. In

3D the Voronoi cell is called a Voronoi polyhedron and the member of the point set

that is inside the Voronoi cell is called the generating point. A face that separates two

Voronoi polyhedra is called a Voronoi face. A Voronoi face has equal distance to the

generating points of its two neighboring Voronoi polyhedra. The edges of a Voronoi
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face are called Voronoi edges. They have equal distance to all generating points of the

Voronoi polyhedron they belong to. Finally the vertices of the Voronoi polyhedra are

called Voronoi vertices. Again they are equidistant from all generating points of the

Voronoi polyhedra they belong to.

The Voronoi skeleton concept can be easily understood by a discrete prairie-fire

analogy, similar to the well-known continuous one. The only difference is that not the

continuous outline of the object but a discrete number of boundary points are set on

fire. If the fire is evolving isotropically, circular fire-fronts are generated at each of

these boundary points. These fire-fronts will quench at the boundaries of the point set’s

Voronoi cells.

Boissonnat and Kofakis [12] showed that the skeleton of an object that is described

by a set of boundary points can be approximated from a subgraph of the point set’s

Voronoi diagram. Brandt and Algazi [19] studied the quality of this approximation in

terms of the sampling density. Using morphological methods in 2D, Schmitt [56] has

shown that if the density of the boundary point set uniformly goes to infinity, then

the corresponding Voronoi diagram converges to the exact skeleton after the bisector

of adjacent generating points are removed. The exact skeleton is defined as the correct

skeleton of the boundary described by the connected point set. Amenta [1] states that

this is not true for the 3D case. The 3D Voronoi diagram based on a uniform infinite

sampling can have Voronoi vertices that are not part of the exact skeleton. Thus, when

generating 3D Voronoi skeletons, the vertices of the skeleton have to be checked as to

whether they are part of the exact skeleton. Since the exact skeleton is not known,

heuristic criteria are used to do the check. The topology of the exact skeleton is usually

known since it is equal to the topology of the original object.

The generation of Voronoi skeletons can be described by the following four major

steps:

1. Approximation of the object’s boundary by a sufficiently dense set of generating
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points. The extraction of the generating points is usually performed from a discrete

image raster and only the subsequent steps are computed with real numbers in

R
3. In contrast, in this dissertation, all steps of the Voronoi skeleton generation

are performed with real numbers (see section 4.3.1.2) since the generating points

are sampled from the continuously defined SPHARM.

2. Generation of the Voronoi diagram of these generating points. It is sufficient to

compute the Voronoi diagram inside the object if we are only interested in the

‘inner’ skeleton. The ‘inner’ Voronoi diagram can be determined in several ways:

• The Voronoi diagram is intersected with the object

• Only Voronoi vertices are chosen that are inside the object, and only edges

connecting two such vertices are included.

• Only Voronoi vertices are chosen that correspond to those Delaunay triangles

that are fully inside the object.

Like other researchers (Naef, Attali), I chose to use the second of these methods

(see section 4.3.1.2).

3. Removal of Voronoi vertices that are not part of the exact skeleton. Since the

exact skeleton is not known, this can only be done in an approximate fashion (see

section 4.3.1.2).

4. Extraction of the skeleton from the inner Voronoi diagram as a subgraph. We will

call this process pruning or regularization. This is a crucial and the most difficult

part of the whole procedure (see section 4.3.1.4).

4.3.1.2 Voronoi skeleton generation from SPHARM

SPHARM is a global shape representation, from which we cannot directly calculate a

Voronoi skeleton. Since Voronoi skeletons are computed from the Voronoi graph of a
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A: B:

Figure 4.7: Icosahedron subdivision of a human hippocampus. The PDM (A) of a human
hippocampus-amygdala is displayed, which was determined via a spherical icosahedron
subdivision (B) of the SPHARM parameterization.

point set, we need to determine a point set from the SPHARM object. Székely [71]

claims that for a correct computation of the Voronoi skeleton the point set should be

uniformly sampled. A fine sampling of the SPHARM object determines a PDM via an

icosahedron subdivision of the SPHARM parameter space (see Fig. 4.7), as described

in section 3.1.6. The PDM can be calculated to an arbitrary precision by changing the

level of the icosahedron subdivision.

The Voronoi diagram is calculated by an implementation of the incremental 4D-

convex-hull approach (see Attali [4]). Then the Voronoi diagram is partitioned into an

inner and an outer part. The inner Voronoi diagram is defined by all Voronoi vertices and

Voronoi elements attached to theses vertices that are inside the object. The Voronoi

diagram is quite stable against noisy boundary perturbations because the SPHARM

is a smooth, continuous description and the PDM is a fine sampling of this smooth

description.

In 2D the Voronoi vertices approximate the medial axis of the curve described by

the given point set. Unfortunately this is not necessarily the case in 3D. The Voronoi

diagram in 3D can have vertices that are not part of the exact skeleton. In my experi-

ments, I encountered several Voronoi skeletons that have a different topology than the

exact skeleton. For these cases, increasing the density of the sampling does not change

the incorrect topology of the skeleton. My pruning scheme described in section 4.3.1.4
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cannot remove such incorrect vertices since the scheme preserves the topology of the

skeleton. Thus, I developed a preprocessing step for the pruning scheme that enables

the removal of such vertices. Additionally, this preprocessing step removes all skeletal

vertices that are not adjacent to Voronoi faces. This removes all single Voronoi vertices

and edges from the skeleton.

A B C

Figure 4.8: Preprocessing of Voronoi skeletons: A: Single Voronoi vertices (arrow) and
single Voronoi edges (white lines). B: Topology violation: Arrow points at skeleton
topology violation, a non-prunable inclusion (bubble). C: After the removal of one
Voronoi vertex (arrow) using the closest-to-surface-heuristic, the topology violation is
no longer present.

The preprocessing step ensures that the skeleton has no cavities or inclusions. This

leads to a correct skeleton topology, if there are no holes present. Since the skeleton

topology of objects described by SPHARM is spherical, a topology preserving pruning

algorithm should theoretically be able to remove all except one Voronoi vertex. If

that is not possible, a topology violation is found so there are vertices that cannot be

pruned. These vertices are not part of the exact skeleton and thus are incorrect. It is

impossible to determine which Voronoi vertices of the skeleton are correct and which

are incorrect. Therefore, I implemented a procedure for the successive removal of non-

prunable Voronoi vertices based on heuristics. Two heuristics were tested as mentioned

below. The heuristic selects a single non-prunable Voronoi vertex, which is removed.

The preprocessing algorithm then checks whether the remaining skeleton can be pruned

to a single vertex via the topology preserving pruning. If this is not the case, then

another non-prunable Voronoi vertex is removed and the check is performed another
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time. This remove-and-check procedure is performed until the resulting skeleton can be

reduced to a single vertex via the topology preserving pruning.

Other researchers proposed a heuristic based on a match between the orientation of

the dual Delaunay-Tetrahedron for each Voronoi vertex with the correct surface normal.

This heuristic produced visually bad results and motivated me to develop a different

heuristic. This new heuristic removes successively the Voronoi vertex that is closest to

the surface. The closest-to-surface-heuristic turned out to be effective. Only a small

number of Voronoi vertices are removed using this heuristic. After using this prepro-

cessing step, all remaining Voronoi vertices theoretically are prunable.

before correction after correction

Figure 4.9: Failed preprocessing of Voronoi skeletons: Correcting a topology violation
via removal of vertices can create a new topology violation. On the left, one can see
that the topology violation was due to an incorrect Voronoi diagram (a non-generic case
that could not be handled by the applied 4D-Complex-Hull-algorithm).

In all my tests I observed one case in which the removal heuristic generated a new

topology violation (see Fig. 4.9). The nature of the newly created violation is different

than the original one. Instead of an inclusion or cavity, there are holes in the medial

manifold. In this specific case, both heuristics lead to holes. Also, the initial topology

violation was probably due to an incorrect computation of the Voronoi diagram, which

might be due to a non-generic case that could not be handled by the applied 4D-Convex-

Hull-algorithm. However, such cases did not occur in the shape space that I propose.
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4.3.1.3 Grouping Voronoi faces to sheets

This step computes the branching topology of the skeleton as a set of non-branching

medial sheet. The algorithm presented in this section groups the initially unordered

Voronoi skeleton into a set of medial sheets. In his dissertation, Naef [51] proposed

such a grouping algorithm for Voronoi skeletons. His grouping algorithm consists of two

steps: A) an initial grouping step, which results in a set of medial groups but with many

of these groups still having branches; B) a refinement step that breaks up the branching

groups into non-branching sub-groups.

My algorithm uses the same idea as Naef for the initial grouping step but with a

very different, computationally more efficient implementation. The scheme then takes

a different approach to solve the refinement step.

Initial grouping step : Initially the grouping algorithm puts all faces into a list

of ungrouped faces. It then selects and removes an arbitrary face f0 from the list of

ungrouped faces as a starting point for a new, current group. This face f0 is put into a

new list of unprocessed faces. The list of unprocessed faces contains all faces that will

be grouped into the current group but they are not yet processed by the algorithm. The

list of ungrouped faces contains all faces of the whole skeleton that are not yet grouped.

From the list of unprocessed faces a face fi is selected. It receives the identification

label of the current group and is removed from the list of ungrouped faces. For all edges

of fi, which bound exactly one other face fadj with fi, the face fadj is added to the

list of unprocessed faces only if fadj is in the list of ungrouped faces. This is repeated

until there are no more faces in the list of unprocessed faces. Then a new face f0 is

selected from the list of ungrouped faces for a new group and the whole procedure is

repeated until the list of ungrouped faces is empty. A typical progression of the grouping

algorithm is displayed in Fig. 4.10.

Some undesired situations can arise as shown in Fig. 4.11. The arrows show a

possible sequence in which the faces could have been processed by the grouping al-
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Figure 4.10: Progression of the initial grouping algorithm (left to right, top to bottom).
In this example, no sheet will contain sheet-internal branches. Pictures by M. Naef.

gorithm. The resulting group no longer represents a non-branching sheet because it

consists of edges where 3 faces of this group meet. In the following, I will call such

edges sheet-internal branches. An additional refinement step is necessary to remove

these sheet-internal branches.

Figure 4.11: Creation of sheet-internal branches in initial grouping algorithm. In this
example, the medial sheet generated by the initial grouping will contain sheet-internal
branches (bold edges). The arrows indicate a possible progression of the grouping algo-
rithm. Pictures by M. Naef.

Refinement step : The refinement step assigns three new groups along the edges of

a sheet-internal branch. The new groups are then propagated inside the original group.

This is repeated until there are no more sheet-internal branches. Naef proposed to use

a graph-breadth-first propagation. My algorithm uses a weighted breadth-first propa-

gation based on a geometric continuity criterion. It disallows propagation to adjacent

faces whose orientation differs by more than a predefined angle. This results in patches

that are impossible to reach. These patches are detected by inspecting whether the
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whole original group has been reassigned to one of the three new groups. If this is not

the case and thus there are unreachable patches, the predefined angle is doubled and the

propagation is continued at the boundary of these patches. The current implementation

of the algorithm starts with an angular difference constraint of 15 degrees, which was

determined empirically. This propagation algorithm ensures that the partitioning of a

branching sheet into sub-sheets satisfies a geometric continuity. This grouping scheme

produces visually good results. Nevertheless, an additional criterion to ensure the con-

tinuity of the radius function along the sub-sheets might further improve the algorithm.

I did not implement such an extension of the propagation algorithm.

The need for a computationally efficient implementation is evident. The rather

simple hippocampus-amygdala object is described by ∼4000 sampling points on the

boundary. The skeleton generation results in ∼30,000 inner Voronoi vertices. The

grouping algorithm computes ∼1000 sheets on the unpruned skeleton. A first, straight-

forward implementation of the grouping algorithm needs a computation time for the

initial grouping step of more than 1 hour on a Sun Sparc Ultra 10 workstation. My new

implementation that uses set of precomputed look-up-tables to store all relationships

between the Voronoi diagram and the groups is much less memory efficient but compu-

tationally performs much better. A computation time of about 5 seconds is needed to

set up the tables, compute the initial grouping, and compute the refinement steps for

the same object on the same machine.

4.3.1.4 Pruning Voronoi sheets

A large number of Voronoi vertices are generated due to noise artifacts or due to the

dense sampling of the surface. These vertices often contribute only an insignificant

amount to the reconstruction of the object. By pruning, which means removing in-

significant vertices, the skeleton properties are significantly less complex. My proposed

pruning does not remove single Voronoi vertices, but rather remove medial sheets that
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comprise a group Voronoi faces. Pruning is also used to create a coarse-scale represen-

tation of the skeleton. A sampling of this coarse-scale skeleton leads to the coarse-scale

m-rep description as the final step of my scheme. The pruning algorithm proposed in

this dissertation is based on a topology preserving pruning, which removes vertices only

if the topology of the skeleton is preserved. The topology preserving pruning method

was proposed by Attali [3] and is not discussed in this document.

Pruning algorithms can be divided into 2 groups: algorithms based on local signifi-

cance criteria and algorithms based on global criteria. A local criterion is only influenced

by its neighborhood, and it is independent of the rest of the skeleton. Local criteria are,

for example, the size of the local thickness or the local bisector angle. A global criterion

is influenced by all parts of the skeleton, for example the areal coverage of a part of the

skeleton in relation to the whole skeleton.

Most research by others has proposed 3D skeleton pruning based on local significance

criteria. Such pruning methods proposed by Naef [51] and Attali [5, 3] were influential to

this dissertation but the reader is referred to the original publications. Local significance

criteria seem to be unsuited for pruning because there is no direct link between the local

significance and the object shape. Thus heuristics are often used to create such a link

in local pruning criteria. To my knowledge, no heuristic has been found that results in

an appropriate pruning. My scheme is purely based on global significance criteria.

The next two sections discuss two different global significance criteria that prune

whole medial sheets of Voronoi faces criterion is based in the areal contribution of the

sheet to the manifold and the other is based on the volumetric contribution of the

reconstruction to the object. For these criteria a preliminary step that groups the

Voronoi faces into sheets is essential. The sheets are being treated as independent of

each other and thus a simple thresholding is applied in order to mark the sheets that

are to be pruned. Only those sheets that can be pruned without changing the topology

of the skeleton are actually pruned. The threshold levels used in this dissertation are
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suitable for the studied objects but other, more complex objects might need a different

set of thresholds.

The pruning of medial sheets usually changes the branching topology of the skeleton.

The pruning can create new sheets or merge existing sheets. Therefore, a complete sheet-

pruning scheme includes an additional grouping step that is performed directly after the

pruning step. Since sheets were possibly created, the skeleton needs to be pruned again

with the same criterion. This possibly changes the branching topology again. Thus, the

sheet-pruning scheme applies a loop consisting of a grouping step followed by pruning

step until no more sheets can be pruned.

Before

After
Full Display Wire frame Display

Figure 4.12: Final pruning step that prunes sheets consisting only of one Voronoi face.
The sheets are labeled with side-wise written Roman numbers I,II and III (in white).
The single-face sheet (III, only visible in Wire frame display), which is present before
the application of this pruning step (top row), is removed afterwards (bottom row).

As a consequence of the discussions below I implemented the following pruning

scheme. The scheme starts with a preprocessing step of the Voronoi skeleton. Then

the scheme applies a conservative threshold for the areal contribution criterion. This

step removes a large number of tiny sheets. The remaining medial sheets are pruned

using the volumetric contribution criterion. After this pruning step a few medial sheets

consisting only of a single Voronoi face are often present. These sheets cannot be pruned

since this would alter the topology of the skeleton. The contribution of these sheets is
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minimal, and therefore they are merged in a final pruning step with one of their neigh-

bors (see Fig. 4.12).

4.3.1.5 Pruning by areal contribution to the medial manifold

Naef proposed a global significance criterion based on the areal contribution of a sheet

to the whole medial manifold. He assumes that the areal contribution of a sheet is

proportional to the number of Voronoi vertices of that sheet. This criterion prunes a

sheet si if it has fewer Voronoi vertices than a predefined threshold:

Carea =
nvertices,si

nvertices,skel

(4.5)

The areal contribution does not sufficiently correlate with the contribution of a sheet

to the object shape. August [6, 7] described several generic situations that generate

large medial sheets with little significant contribution to the object shape. Neverthe-

less, choosing a conservative pruning threshold, this pruning criterion can be used to

remove tiny sheets that are unlikely to have a high significance to the object shape. If

a non-conservative threshold is chosen, the criterion prunes sheets that a human ob-

server considers significant to the object shape. This criterion can be implemented in a

computationally efficient way. As a first pruning step in my pruning scheme tiny sheets

are efficiently removed from the skeleton using the areal contribution criterion with a

threshold of 0.1% of the overall number of skeleton vertices. Since only tiny sheets are

removed, the skeleton still has a large number of sheets (see Fig. 4.14).

This pruning step will not remove medial sheets that are made of incorrect vertices,

if these are large enough. For example, in section 4.3.1.2, the computed Voronoi skeleton

has a topology violation due to an inclusion. This topology violation was generated by

Voronoi vertices that are not part of the exact skeleton. The preprocessing step punches

a hole into the inclusion so that it can be pruned (see Fig. 4.8). This modified bubble
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forms a large sheet that cannot be pruned using the areal contribution criterion.

4.3.1.6 Pruning by volumetric contribution to the whole object

The second sheet-pruning algorithm is based on the volumetric contribution of a sheet.

I define the volumetric contribution of a sheet si as the relative volumetric difference of

the object reconstruction from the skeleton with and without the sheet si:

Cvolume =
Vskel − Vskel−si

Vskel

(4.6)

The volumetric contribution criterion proved to be far superior to the areal contribu-

tion criterion since the volumetric contribution correlates directly with the significance

of a sheet to the object shape.

Parts of the 3D Voronoi skeleton that do not belong to the exact skeleton are removed

by the volumetric contribution criterion because the volumetric contribution of these

parts is close to zero. The areal contribution criterion is not able to remove most of

these parts.

A: Boundary B: After preprocess C: After pruning D: Reconstruction

Figure 4.13: Application of the pruning scheme to a human left hippocampus-amygdala.
A: Boundary representation. B: Voronoi skeleton after preprocessing. C: Voronoi skele-
ton after pruning. D: Reconstructions of B (transp. red) and C (blue). The skeleton is
pruned from ∼ 1200 to 3 sheets.

My pruning scheme first applies a conservative threshold, pruning sheets with a

volumetric contribution smaller than 0.1% (see Fig. 4.14). In a next step, an additional

merging step is applied that tries to merge neighboring sheets (see section 4.3.1.7).

Following the merging step, a less conservative pruning step with a threshold of 1.0% is
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applied. Some results are presented in Figs. 4.13- 4.17.

The computational efficiency of this pruning criterion largely depends on the com-

putation of the volume of the object reconstruction from the skeleton. The approach

in the current implementation computes the volume by counting voxels in a fine-scale

isotropic 3D voxel-based object reconstruction. The reconstruction is based on drawing

a sphere with corresponding radius for every Voronoi vertex. Considering the previously

mentioned example of a hippocampus-amygdala with ∼30,000 Voronoi vertices, it is ev-

ident that such a sphere drawing algorithm needs to be computationally efficient. As I

did not find an existing voxel-drawing algorithm for spheres, I developed a filled-sphere

drawing algorithm based on similar principles as Bresenham’s line drawing algorithm.

The results presented here show that a considerable reduction of the number of

medial sheets is possible with sacrificing only little accuracy of the reconstruction. In

fact, so far, the pruned skeletons of all objects had a volumetric overlap with the original

object of more than 98%.

4.3.1.7 Merging Voronoi sheets

The grouping algorithm described in section 4.3.1.3 handles a sheet-internal branch by

partitioning the sheet into 3 parts along the branch. It is always possible to merge

2 of these 3 parts without creating new branches on the merged sheet. Thus, the

partition into 3 parts unnecessarily fragments the medial sheets. In order to avoid this

fragmentation, neighboring sheets should be merged. The result of the merge strongly

depends on the choice of the merging order, which ranks all possible merges of the

skeleton. My scheme first establishes an appropriate merging order. It then merges

pairs of neighboring sheets according to that order if no new sheet-internal branches are

created on the merged sheet.

My scheme computes the order of merging using a heuristic. The first developed

heuristic aims to create maximally largest sheets. This heuristic orders neighboring
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A B

A: Original skeleton (1226
sheets)
B: Skeleton after prepro-
cessing (1211 sheets)

C D

C: Areal contribution prun-
ing (61 sheets)
D: Reconstructions of B
(transp. red) and C (blue)

E F

E: Conservative volumetric
contribution pruning (12
sheets)
F: Reconstructions of B
(transp. red) and E (blue)

G H

G: Non-conservative volu-
metric contribution pruning
(6 sheets)
H: Reconstructions of B
(transp. red) and G (blue)

I J

I: Final pruning and final
merging (3 sheets)
J: Reconstructions of B
(transp. red) and I (blue)

Figure 4.14: Steps of my pruning scheme. The resulting skeleton of a human
hippocampus-amygdala is shown after each step of my scheme. The skeleton is pruned
from 1226 to 3 sheets. The refconstrcutions of the preprocessed skeleton (in transparent
red) and the pruned skeleton in blue) is shown at each step. Since the pruned skeleton
is a subset of the preprocessed skeleton, no blue can be seen, but rather only violet
(=blue+red) parts where both agree and tiny red parts that are only represented in the
preprocessed skeleton.
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Left

Right
A. Boundary B. After preprocess C. After pruning D. Reco comparison

Figure 4.15: Pruning scheme applied to the average hippocampus-amygdala objects
of the left and right brain hemisphere (side views). A: Boundary. B: Skeleton after
preprocessing. C: Skeleton after pruning. D: Reconstruction of B (transp. red) and C
(blue). Skeletons are pruned from ∼ 1200 to 2 sheets (both left and right).

Left

Right
A. Boundary B. After preprocess C. After pruning D. Reco comparison

Figure 4.16: Pruning scheme applied to a lateral ventricle pair (side views). A: Bound-
ary. B: Skeleton after preprocessing. C: Skeleton after pruning. D: Reconstruction of B
(transp. red) and C (blue). Skeletons are pruned from ∼ 1600 to 3 sheets (both).
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sheets according to the number of Voronoi vertices per sheet. The results are visually not

satisfying because sheets are merged that clearly do not belong to each other. Inspecting

these cases, I observed a break in the geometric or the radial consistency of the merged

sheets. This means that a discontinuity of the orientation and/or of the radius next to

the merged edges was created by the merge. The second developed heuristic handles

this problem. This heuristic orders pairs of neighboring sheets (si, sj) according to a

combined radial and orientational continuity criterion at the common border:

Ccontinuity(si, sj) =
∑

x ∈ border(si,sj)

Crad(x, si, sj)
2 + Cori(x, si, sj)

2

2
(4.7)

Crad(x, si, sj) =
|r(x, si)− r(x, sj)|

maxsi,sj
(r)−minsi,sj

(r)

Cori(x, si, sj) =
∠(N(x, si),N(x, sj))

π

The ordering of the merging is determined by the ranking pairs by the continuity value

Ccontinuity. Pairs that exceed a certain threshold for the continuity criterion are not

merged at all. This means that at the end of the merging process, there are still sheets

that could be but are not merged. I observed only very few cases in my studies where I

would merge such non-merged sheets, since a clear discontinuity of the orientation or the

radius is otherwise created. The second heuristic produced considerably better results.

In my pruning scheme, a merging step precedes every non-conservative pruning step.

Thus, the non-conservative pruning is less likely to prune parts that are below the

threshold but are significant to the object shape. Nevertheless, both the conservative

and the non-conservative pruning might remove parts of the skeleton that a human

observer would judge significant. According to my experience, the probability of such

an event is lower if a merging step is applied.
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A B C

Figure 4.17: Application of the pruning scheme to various brain structures. A: Pallidate
globe, B: Thalamus. C: Putamen. For each structure the initial sampled boundary (top)
and the computed pruned Voronoi skeleton (bottom) is shown. Skeletons are pruned
from ∼ 1500-2000 to 2 sheets.
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Figure 4.18: The pruning scheme applied to the object set of a left hippocampus-
amygdala population. First row: Average hippocampus-amygdala. Other rows: Objects
at shape space positions −2,−1,+1,+2 along axes of eigenmodes λ1 . . . λ6.
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4.3.2 Common branching topology via common spatial frame

In the preceding sections, my scheme to compute a set of medial sheets from a Voronoi

skeleton was described. This set of medial sheets is then used in a description of the

branching topology of that single object. In this section, the branching topologies of a

group of sample objects are combined into a common branching topology that unifies the

whole set of branching topologies described in the object set. The object set comprises

quite a large number of objects (e.g. 25 objects in Fig. 4.18). The details and properties

of the object set were described in the previous section 4.2. The common branching

topology is computed via spatially matching medial sheets of the Voronoi skeletons

between different objects using the correspondence on the boundary. In Fig. 4.19, the

branching topology of selected members of an example object set are displayed next to

the computed common branching topology.

A D

E F

Figure 4.19: Topology matching scheme applied to the object set (see also Fig. 4.18).
A,B,C: Objects from the object set that contribute to the common branching topology.
F: Final branching topology with sheets as clouds of Voronoi vertices.

The problem of comparing branching topologies has been adressed in 2D by Siddiqi

[60] and others mainly via matching medial graph structures. To my knowledge, there

has been no work reported in 3D to date. In 2D, The results of August [6] and others

have shown that the medial branching topology is quite unstable. In 3D, the medial

branching topology is even more unstable and ambiguous than in 2D. The best matching
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algorithms developed for 2D all use optimization methods to solve the NP-hard problem

of matching trees in an acceptable time. These algorithms would be computationally

less efficient in 3D. Also, they cannot be extended straightforwardly to 3D since in the

graph of the 3D branching topology of an object of spherical topology is no longer a

tree as in 2D but a general graph. Thus, I developed a matching algorithm that is

not based on graph matching but on spatial correspondence. The branching topology

is thereby not represented as an abstract graph but rather via its spatial distributions.

These spatial distributions are defined by the Voronoi vertices of the medial sheets.

After defining a common spatial frame (see section 4.3.2.1), a spatial correspondence

can be computed using a distance measure between the sheets (see section 4.3.2.2). The

common branching topology is then computed in iterative procedure that matches the

branching topologies in the object set with the current common branching topology

(see section 4.3.2.3). All non-matching medial sheets are thereby incorporated into the

common branching topology so that the common branching topology incorporates all

medial sheets necessary to describe the shape space.

4.3.2.1 Common frame for spatial correspondence between medial sheets

Spatial comparisons between medial sheets of objects in the shape space can be done

after the objects have been mapped into one template object in a common spatial frame.

The mapping is applied to both the boundary and the Voronoi skeleton of the objects.

The common spatial frame is chosen as the boundary of the average object according to

the SPHARM shape space, in order to minimize the mapping distortions. Every member

of the object set is mapped into the common frame based on the correspondence of the

individual boundaries with the common frame boundary, which is the average case

boundary. The objects are already in rigid registration according to the first order

ellipsoid of the SPHARM description. Since shape variability in the object set suggests

that a warped registration technique is necessary, I chose to warp all objects into the
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common frame. The SPHARM description is used to create correspondences (see section

3.1.4) on the PDM’s of the boundary between each object and the template object in

the common frame. The PDM boundary correspondence is interpolated in the whole

3D space via thin plate splines (TPS) [13, 64]. Thus, the PDM’s perfectly overlay for

all objects in the common frame.

In summary, all branching topologies are mapped into the common frame by a TPS

warp of the Voronoi skeletons into the average object, where their PDM, which are the

Voronoi skeleton’s generating points, perfectly overlay. A schematic overview of this

scheme is displayed in Fig. 4.20.

Figure 4.20: Schematic overview of matching procedure

4.3.2.2 Identifying corresponding sheets in a common spatial frame

Given that all medial sheets of the object set are mapped into a common spatial frame,

a matching criterion can be defined to assess how well two different sheets spatially

correspond. Visually, a high degree of overlap between matching sheets in the common

frame can be observed. The centers of the medial sheets match better than the edges,
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which are quite sensitive to boundary noise. I defined a quite robust matching criterion

that takes into account the non-isotropic spatial distribution of the Voronoi vertices of

the medial sheets. Specifically, for every sheet si the covariance matrix of its Voronoi

vertices and the average Voronoi vertices’ locations µi (= sheet center) is computed.

This covariance matrix Σi can be seen as an ellipsoid approximating the medial sheet si.

The matching criterion is then computed as the paired Mahalanobis distance between

the sheet centers (4.8).

dMaha(si, x) = dMaha(µi,Σi, x) = (x− µi)′ · Σ−1
i · (x− µi) (4.8)

critMaha((µi,Σi), (µj,Σj)) =
dMaha(µi,Σi, µj) + dMaha(µj,Σj, µi)

2

if critMaha((µi,Σi), (µj,Σj)) > threshold = 2 ⇒ no match (4.9)

if critMaha((µi,Σi), (µj,Σj)) ≤ threshold = 2 ⇒ siand sjmatch

I performed several tests to determine an empirical match-threshold. The determined

threshold represents the rejection of a match if the sheet centers are further away than

twice the paired Mahalanobis distance. This empirical threshold is a parameter of the

matching procedure and produced good results with the datasets studied so far. For

objects of different complexity a different threshold might be more appropriate.

4.3.2.3 Computation of the common branching topology

The common branching topology is computed iteratively. First, the topology of the

average object is chosen as the initial guess for the common branching topology. For

each object set member, the algorithm compares its branching topology with the current

common branching topology until the object set is fully processed. The comparison is

performed by computing the paired Mahalanobis distance between the medial sheets

to identify corresponding sheets. Those sheets that do not correspond to any sheet in
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the current common branching topology are added to it. This means that every sheet

of the whole object set is matched by at least one of the sheets of the final common

branching topology. The common topology is a set of medial sheets originating from

various members of the object set mapped into the common spatial frame.

The algorithm of the common topology computation is shown in Fig. 4.3.2.3 as

pseudocode. The algorithm allows comparing medial sheets in an one-to-many fashion.

This is desired since due to skeletal instabilities a single medial sheet in one object

can have two or more corresponding sheets in another object. The matching procedure

Match(sheet, commonTopo) computes the minimum of matching criterion (eq. 4.8)

between this sheet and each of the sheets in the common branching topology.

For this algorithm, the object set processing order in the shape space is chosen as

follows: The next object to be matched is the unprocessed object set member whose

shape space location is the closest to the center of the shape space. If the shape space

location of multiple members are equally close, the shape space location of the lowest

eigenmode is taken.

In our experiments presented in chapter 5, the computed common branching topolo-

gies comprised only a few medial sheets. The common branching topology of the

hippocampus-amygdala structure comprises 4 medial sheets. For the lateral ventricle

and hippocampus structure, the common branching topologies are each a single medial

sheet.
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ComputeCommonBranchTopo(shapeSet)

{

// Warp all shapes into common frame

commonFrame = averageObject(shapeSet)

warpShapeSet = warp(shapeSet, commonFrame)

// Initialize common branching topology

commonTopo = Empty

foreach sheet in commonFrame

Add(sheet,commonTopo)

do until (warpShapeSet == Empty)

object = getClosestToCenter(warpShapeSet)

Remove(object,warpShapeSet)

foreach sheet in object

if ( NOT( Match(sheet, commonTopo))

Add(sheet,commonTopo)

end

end

return commonTopo

}

Figure 4.21: Schematic algorithm for computing the common branching topology.
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4.4 Computation of the grid sampling for a common

medial model

Figure 4.22: Computation of common m-rep model with minimal grid dimensions: The
common m-rep model is computed as the common branching topology sampled by the
minimal grid given a maximal approximation error in the shape space.

In the previous section, the scheme to compute a common branching topology from a

population was presented. This section describes how the medial sheets of this common

branching topology are sampled to create the common m-rep model with the minimal

sampling.

M-reps sample the medial manifold of a sheet by a grid of medial atoms. The set of

medial sheets and a set of grid parameters determine an m-rep model. I propose a grid

sampling algorithm that is based on the medial axis of a medial sheet. This sampling

algorithm is described in section 4.4.1. The computation of the m-rep model associated

with the grid sampling is described in section 4.4.2. The computed m-rep is a good

initial estimate to the m-rep description. An additional step is needed in order to get

the appropriate m-rep description: the medial atoms are deformed to optimally fit the

object boundary. This deformation is described in the section 4.5.

The grid dimensions are optimized to be minimal while the corresponding m-rep has

a predefined maximal approximation error in the shape space. The approximation error

is defined as the Mean Absolute Distance (MAD) of the m-rep implied boundary and

the original boundary. The MAD error is normalized to make it independent of the

object size (4.10). The normalization of the error can be done either relative to the

individual object or relative to the population. Ei is the error relative to the individual

object using the average radius ravg of the object’s skeleton. Epop is the error relative to
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the population using the average radius over all skeletons of the population ravg,pop.

Ei = MADnorm =
MAD

ravg

(4.10)

Epop =
MAD

ravg,pop

Section 4.4.3 describes the algorithm to compute the minimal grid sampling of the

medial sheets of a single object. This algorithm is used to compute the m-rep model

of the common branching topology in the common frame. This m-rep model is then

checked whether it describes sufficiently the shape space. If this is not the case, the

sampling is subsequently adjusted, as described in section 4.4.4.

4.4.1 Grid sampling of a single medial sheet

The grid sampling algorithm solves following problem: Given a medial sheet from the

Voronoi skeleton and a set of m-rep grid dimensions n, m, how can we determine the

grid samples for a most uniform grid on the medial sheet? The algorithm that I pro-

pose computes this sampling on the volumetric reconstruction from the medial manifold

rather than on the Voronoi skeleton since efficient and well-tested algorithms exist for

a wide range of image operations on volumetric representations. In this dissertation I

chose to compute a most uniform grid in Euclidean space, whereas in the general m-rep

theory m-rep atoms are sampled proportional to the local thickness.

A B

C D

Figure 4.23: Computing the sampled medial sheet axis. A: Rendering of the sheet. B:
Overlay of the sheet boundary (purple) with the smoothed sheet (blue). C: Overlay of
the sheet and the 1D skeleton of the smoothed sheet. D: Overlay of the sheet and the
sampled sheet axis extracted from the skeleton.
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In overview, the algorithm first smoothes the voxel sampling of the medial sheet at

its boundary to form the sheet image. Then, the medial axis of the sheet is computed

from the sheet image, and this axis is uniformly sampled. Next, the m-rep grid samples

on the grid-edge are computed using the sampled axis and the curve forming the voxel

sampling of the sheet boundary (the sheet-boundary image). Finally, the remaining grid

samples are interpolated. These steps of the algorithm are visualized in the Figs. 4.23

and 4.24. The rest of this section describes these steps in more detail.

The first step of the sampling algorithm is a smoothing step that erodes the the

initial sheet image with a spherical structuring element only at the locations of the

sheet boundary. Erosion is not discussed here, and the reader is referred to [39] for

details. The radius of the structuring element is proportional to the second largest

axis of the covariance matrix of the sheet’s Voronoi vertices (see section 4.3.2.2). This

generates appropriate results for flat sheets. If a sheet isn’t flat but shaped like a screw,

for example, the radius has been chosen too large and important parts of the skeleton

are removed. Such a case can be detected by visual inspection of the medial sheets and

demands an adaptation of the radius of the structuring element.

From the smoothed sheet, I compute the 1D skeleton using an isotropic thinning

procedure. The thinning algorithm is an extended version of the original parallel thin-

ning algorithm described by Fu and Tsao [34]. After the parallel thinning step, the

algorithm continues sequentially while keeping the line-ends. The thinning-skeleton is

translated into a graph via a straightforward graph-compilation. The longest path is

then computed from this graph. This longest path is divided uniformly into n samples

and forms the sampled medial axis of the sheet.

The sampling algorithm determines the samples at the m-rep grid-edge using the

sampled medial axis and the sheet-boundary image as follows. For every medial axis

sample, the algorithm computes the 3D direction that is normal to the axis and that lies

in the plane tangential to the medial surface. This direction is scaled by the distance
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of the axis sample to the sheet-boundary to compute the estimated locations of the

grid-edge. The distance of the axis samples to the sheet-boundary is obtained from a

distance map that is computed from the sheet-boundary image. The estimated locations

of the grid-edge do not lie on the sheet-boundary. Thus, the algorithm projects the

estimated grid-edge locations to the sheet-boundary using the sheet-boundary distance

map another time. In summary, the grid-edge samples are computed as the closest

sheet-boundary points of estimated locations on the directions normal to the medial

axis.

The sampling algorithm is finished at this stage if the second grid dimension m ≤ 3.

Otherwise, intermediate samples need to be calculated. These samples are linearly

interpolated along the lines connecting medial axis samples and grid-edge samples. The

interpolated samples lie on the medial sheet only if it is fully flat. Thus, the interpolated

samples are projected to the closest sheet locations using a distance map from the sheet

image. The samples that lie on the grid-edge are projected to the sheet-boundary. As a

final step, the medial sheet axis is discarded if m is even. The medial sheet axis is kept

as part of the grid if m is odd.

Figure 4.24: Visualization of the sampling method. Starting from the sampled axis (top
left, boundary in black, eroded boundary in purple, axis in red), the grid-edge (top right,
blue) is estimated. The grid-edge is projected to the sheet-boundary (bottom right) and
the remaining samples (violet) are interpolated.

The algorithm presented in this section computes the grid sampling from the voxel

sampling of the medial sheet. Thus, the medial samples do not lie at the locations

of the Voronoi vertices. These medial samples by themselves are inadequate for an

m-rep description since they only posses the location property of an m-rep atom. No

information about the radius, the frame or the angulation is known for these medial

samples. The next section describes how all the m-rep atom properties can be computed
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for the grid samples via the closest Voronoi vertices and its generating points.

4.4.2 M-rep computation from a sampled medial sheet

The previous section described how the grid sampling of a medial sheet is computed, and

this section determines the m-rep description from this sampling. First, the grid samples

are bijectively projected to the closest Voronoi vertices of the medial sheet. Since the

medial manifold is densely sampled with Voronoi vertices, this projection affects the

sample locations only slightly. At the Voronoi vertice xskel, the additional information

from the generating points (pgen1
,pgen2

) and the Voronoi neighborhood (xv1 . . .xv4) can

be used to estimate the m-rep atom properties (see eq. 4.11): position xatom, radius ratom,

frame F atom and angulation θatom. The frame and angulation properties are checked

for consistency along both grid dimensions and are adjusted via linear interpolation if

needed.

The properties of the m-rep atom mi,j with grid index i, j are computed as follows:

xatom = xskel = x i,j
skel; (4.11)

ratom =
||xskel − pgen1||+ ||xskel − pgen2||

2

F atom = {batom,b
⊥

atom,natom} , where

batom =
(x i,j

skel − x i+1,j
skel ) + (x i−1,j

skel − x i,j
skel)

2
(

natom =
1

4

4∑
k

(xskel − xvk
)× (xskel − xv(k+1) mod 4

)

b⊥atom = natom × batom

θatom =
1

2

2∑
k

arccos
||batom||

||xskel − pgenk
||

The equations in 4.11 are valid for all internal atoms. Medial atoms at the grid-

edge are computed differently since the generating points of these Voronoi vertices are

generally ill-behaved. This usually results in a small angulation θatom and an unstable
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orientation batom. These properties are adjusted as follows: batom is directed outward

orthogonal to the grid-edge in the tangential plane of the medial sheet; θatom is minimally

2π
3

.

4.4.3 Minimal grid sampling for a single object

I propose an extended version of a nonlinear-optimization algorithm that uses Evolu-

tionary Schemes (ES) to find the optimal sampling for a set of medial sheets of a single

object. The implemented (1+1)-ES algorithm handles the discrete nature of the opti-

mization space and keeps a history of computed parameters since revisiting parameters

is frequently done in a discrete optimization space. Further details of the (1+1)-ES

algorithm are discussed in [67].

The sheets are treated by the optimization as being independent of each other, and

the grid samplings of the sheets are optimized simultaneously. The value of the goal-

function for a set of grid dimensions incorporates the total number of medial samples

natoms and the degree of approximation to the original boundary. The goal-function first

computes the m-rep description as described in the previous sections. This m-rep is

only an initial description. It is deformed to fit optimally to the object boundary (see

section 4.5). The approximation error Ei of the deformed m-rep is the MADnorm error

(4.10). If this error is larger than a predefined maximal approximation error Emax then

the goal-function value fopt is penalized. Formally, fopt is computed as follows:

if Ei ≤ Emax → fopt = natoms + MADnorm (4.12)

otherwise → fopt = (nfigures + MADnorm) ∗ Cpen

The penalty constant Cpen was chosen to be 100, which is an appropriate value for

all objects with a minimal grid sampling of less than 10x10.

The output of the optimization procedure is the minimal grid sampling whose associ-
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Grid Initial position Final position
Reconstruction MAD Evol Reconstruction MAD Evol

2x6 0.156 69% 0.068 89%
2x7 0.134 73% 0.054 91%
3x6 0.113 78% 0.043 94%
3x7 0.100 83% 0.045 94%
4x7 0.082 85% 0.039 95%
3x12 0.070 88% 0.040 96%
4x12 0.050 91% 0.033 97%

Figure 4.25: M-rep approximation errors of a hippocampus in the initial position (left)
and in the final position after deformation (right). The reconstruction shows the m-rep
(red lines), points of the implied boundary (dark blue dots) and the original boundary
(light blue transparent). The Mean Absolute Distance MADnorm and the volumetric
overlap error are shown for both. Average radius ravg is 2.6 mm. The approximation
errors are low even for m-rep’s with coarse grid samplings.

ated m-rep fits the object at least with the approximation error Emax. Any grid sampling

with a smaller number of samples fits the object less well than Emax. Empirical values

for Emax were determined in the range of 5% to 10% of the average radius through tests.

For every object population, an adjustment of this value is recommended. The three

examples presented in chapter 5 have slightly different Emax values.

4.4.4 Minimal grid sampling for an object population

The final m-rep must generate a minimally sampled m-rep model that fits every object

in the object set at least with a maximal approximation error Emax. This is achieved in

two steps. First, the m-rep model of the minimal sampling for the average object savg

is computed as described in the previous section. Second, this m-rep model is checked

whether it appropriately fits into all objects from the object set. If an object oi of the

object set has a larger Ei than Emax, the current m-rep model is not appropriate for

the whole shape space and has to be adjusted. In this case, the algorithm computes a

new m-rep model with a minimal sampling for the object oi. This m-rep model becomes

the current m-rep model, which has to be checked to appropriately fit the whole object
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set. After all members of the object set have been handled by the algorithm, then the

current m-rep model is the common m-rep model sought.
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4.5 Fitting an m-rep into a SPHARM object

In the previous sections I described how to compute a common m-rep model. Once such

a common m-rep model is computed, I want to fit it to individual objects. This fit is

done in two steps. First a good initial estimate is obtained, which is then refined in an

optimization step to fit to the boundary. The initial estimate is computed by warping

the m-rep model from the common frame into the frame of the individual object oi using

the SPHARM correspondence on the boundary. This is the inverse process of mapping

oi into the common frame, which is done when the common topology is computed (see

section 4.3.2.1). The mapping is defined via a TPS warp of the boundary points. The

warped m-rep model is located quite close to the final position, which allows a well-

behaved optimization.

Starting from the initial position, an optimization procedure changes the features of

the m-rep atoms to improve the fit to the boundary. Local similarity transformations

and rotations of the local angulation are applied to the medial atoms. The optimization

is constrained by an additional prior on neighboring atoms. This prior guarantees the

smoothness of the medial manifold. The weight of the prior is a parameter of the

optimization and is empirically determined. The optimization procedure is reinitialized

every time it slows down.

With the exception of a few contributions of mine, the optimization was designed

and developed by other members of the MIDAG group under the guidance of Stephen

Pizer. My main contributions were in the development of a calling scheme with au-

tomatic re-initialization and adjustment of the prior strength. The scheme uses the

approximation error to the original boundary Ei to detect a slowing down due to an

excessive contribution of the prior. Convergence is detected if, despite re-initialization,

Ei stays constant. Also, the change in the approximation error ∆Ei is constrained to

be maximally ∆Emax
i , which is chosen empirically at about 20%Emax. In the evolution-

ary optimization described in detail below, this results in a moderate upper limit for
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accepting an optimization step with worse Ei. For the case that ∆Ei > ∆Emax
i , the

optimization is reinitialized at the previous step with an increased penalty weight. This

calling scheme is not applicable in the general case of fitting an m-rep because it is based

upon an exact description of the boundary to compute Ei.

The following paragraphs describe the details of the optimization procedure after

Joshi [41]:

The optimization applies to the medial atoms mi,j = {x, r, F , θ} local similarity

transformations as well as rotations of the local angulation, Si,j = (α,O, t, β)i,j ∈ [(R+×

SO(3))×R3]× [−π
2
, π

2
]. The transformed medial atom is computed as follows,

m′i,j = Si,j ◦mi,j = (αi,jOi,jxi,j + ti,j, αi,jri,j, Oi,j ◦ F i,j, θi,j + βi,j) (4.13)

A prior on the local atom transformations Si,j is induced based on the displacement

of the implied boundary with an additional neighborhood dependent prior on the trans-

lations, guaranteeing the smoothness of the medial manifold. In keeping with the level

of locality let B be the portion of the implied boundary affected by the atom mi,j. The

prior energy on the local transformation Si,j of the atom mi,j depends on corresponding

points on the figural boundary y and on the deformed boundary y′. The prior energy

becomes

logP (S) =

[
−

∫
Bi,j

||y − y′||2

(σr(y))2
dy −

∑
i,j

n,m=1∑
n,m=−1

||ti,j − ti+n,j+m||2

||xi,j − xi+n,j+m||

]
,

where ti,j is the translation component of the local transformation Si,j. Association

between points on the boundary y and the deformed boundary y′ is made using the

figural coordinate system (u, v, t) described below. The point y′ is the point on the

deformed model having the same coordinates as that of the original point y. The integral

in the above prior is implemented as a discrete sum over a set of boundary points

by defining a sampling of the (u, v, t) coordinate space and calculating the associated
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Figure 4.26: Different stages of the m-rep fit for an individual object oi. Two examples
from the object set of a lateral ventricle population. On the left, the object is smaller
and on the right it is larger than the common m-rep model. A: Common m-rep model
in common frame. B: Common m-rep model in frame oi. C: Warped m-rep model in
frame oi. D: Fitted m-rep model in frame oi.

implied boundary before and after an atom deformation.

The continuous medial manifold of a figure, defined via a spline interpolation, is

parameterized by (u, v), with u and v taking the atom index numbers at the discrete

mesh positions. A parameter t ∈ {−1, 1} designates the side of the medial manifold

on which an implied boundary point lies. t varies continuously between -1 and 1 as

the implied boundary point moves around the crest of the object from one side of the

medial axis to another. For single figures, boundary correspondences are defined via

the common parameterization (u, v, t). Positions in the neighborhood of the implied

boundary are indexed by (u, v, t, d̂), where (u, v, t) is the parameterization of the closest

point on the medially implied boundary and d̂ is the signed distance (interior = negative,

exterior = positive) from the boundary in multiples of the local radius r of the medial

point at (u, v).
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Chapter 5

Clinical applications

5.1 Example 1: Hippocampus structures from a schizophre-

nia study

This section presents two cases of hippocampal shape that illustrate the intuitive rep-

resentation of shape changes inherent in the m-rep description. In medial descriptions

the local shape properties of location, orientation and thickness are separated. In this

section, I primarily investigate the thickness property. Two different cases exploring

shape asymmetry between the hippocampi of the left and the right brain hemisphere

are presented. The hippocampus is a sub-cortical structure in the limbic system of

the human brain. It is involved in the laying down and retrieval of long-term mem-

ory via interconnections with cortical regions of the brain. Asymmetry is defined via

the interhemispheric plane. Volume measurements and medial axis length measure-

ments demonstrate interhemispheric hippocampal asymmetry. These measurements do

not provide localization of the detected asymmetry. A localized asymmetry analysis,

however, can be computed using the m-rep description.

For the asymmetry analysis, the following steps were taken on a set of hippocampi.

The right side hippocampi were mirrored at the interhemispheric plane. The SPHARM

coefficients were determined and normalized for rotation and translation using the



first order ellipsoid. Scaling normalization was not applied. I determined the aver-

age SPHARM object for each case. Since the number of objects was 2 for both cases,

the object set comprises the average structure and the two individual objects, a left

side and a mirrored right side object. All objects have a medial branching topology

of a single medial sheet with a volumetric overlap error of more than 98%. Thus, the

common topology is a single sheet. The computed minimal grid sampling has an Ei of

less than 5% for all objects after the fitting procedure.

As will be demonstrated in the results, these hippocampal studies provide evidence

that the observed asymmetry can be better understood via the medial description than

by morphologic measurements like the volume or the medial axis length. A coarse scale

description does not lessen the power of the analysis, and the asymmetry can be reliably

detected and localized.

5.1.1 First hippocampus case

In Fig. 5.1, the objects of the first hippocampus case are displayed and asymmetry

is clearly visible. Volume and medial axis length measurements indicate that the

right hippocampus is larger than the left: volright = 2184mm3, volleft = 2023mm3;

axisright = 65.7mm, axisleft = 64.5mm. These measurements, however, do not provide a

localization of the detected asymmetry. Locality of asymmetry can be determined and

visualized using the m-rep description.

I first present the medial axis of the medial sheet, which is a single column of m-rep

atoms from the full m-rep model presented later. The right hippocampus is thicker over

the full length of the axis, and the difference is pronounced in the middle part of the

axis as one can see in Fig. 5.2. In order to relate this thickness information with the

appropriate location, I chose to visualize it on the m-rep itself. Each medial atom is

displayed by a sphere of size and color that is proportional to its thickness information.

This kind of display can also be used to display the difference in thickness between
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Figure 5.1: Visualization of the first hippocampus case. From left to right: Boundary,
pruned Voronoi Skeleton with thickness coloring (same range for all objects), m-rep
description as single axis and grid. Top to bottom: Average object, right (mirrored)
and left hippocampus.
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corresponding locations of the right and left hippocampus. The radius of the sphere

is proportional to the absolute thickness difference and the color to the real thickness

difference: rdiff ∼ |R− L|; coldiff ∼ (R− L).
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Figure 5.2: Visualization of thickness asymmetry along the medial axis (tail to head)
for the first case: A: Thickness plot {rright, rleft}. B: Plot of difference between right
and left: rright− rleft. C: M-rep with thickness information displayed as spheres. Radius
and color are proportional to the corresponding thickness. D: Difference between right
and left thickness (R − L) at medial atoms. Radius and color are proportional to the
difference.

As a next step, I take into account the full grid of medial atoms and perform the

same analysis as for the axis (see Figs. 5.4 and 5.3). One can clearly see that the right

hippocampus is bigger over most parts of the object but the difference is pronounced in

the middle part.
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Figure 5.3: Visualization of thickness asymmetry in the first case: Plot of Difference
between right and left thickness (R − L) at medial atoms. Thickness plotted along the
3 rows of the longitudinal grid direction (tail to head).
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Figure 5.4: Visualization of thickness asymmetry in the first case: A,B: Thickness values
displayed as spheres in the m-rep grid (A: right, B: left). Radius and color are propor-
tional to the corresponding thickness. C: Difference between right and left thickness
(R− L) at medial atoms. Radius and color are proportional to the difference.
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5.1.2 Second hippocampus case

In Fig. 5.5, the hippocampi of the second case are displayed. It is very hard to see an

asymmetry between the left and right side. Inspecting the volume measurement, we see

that there is an asymmetry: volright = 3318mm3, volleft = 3214mm3.
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Figure 5.5: Visualization of second hippocampus case. From left to right: SPHARM
boundary, pruned Voronoi Skeleton with thickness coloring (same range for all objects),
m-rep description. Top to bottom: Average object, right (mirrored) and left hippocam-
pus.

I performed the same thickness analysis on the second case as I have done for the

first case. Looking at the ‘asymmetry’ m-rep in Fig. 5.6, we realize that the right

hippocampus is thicker in the upper head and in the medial part. The left hippocampus

is slightly thicker in the lower head and the tail. Further, we observe that the magnitude

of the thickness asymmetry is about the same as in the first case. The length of the
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medial axis also indicates a slight asymmetry: axisright = 72.8mm, axisleft = 72.2mm.
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Figure 5.6: Visualization of thickness asymmetry in the second case: A,B: Radius values
displayed as spheres in the m-rep grid(A: right, B: left). C: Difference between right
and left thickness (R − L) at medial atoms. Radius and color are proportional to the
difference.

The two cases presented in this section show a similar locality of left/right thickness

difference in the middle part. The second case also represents differences in the tail

region. Due to the small number of studied cases, we can’t draw any conclusions from

these observations. A full study with a much larger number of cases would be needed to

explore the statistical significance of these findings. However, the two cases serve well

as an example of the methodology of my scheme and of the shape analysis.
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5.2 Example 2: Hippocampus-amygdala complex from

a schizophrenia study

This section presents my shape description scheme applied to hippocampus-amygdala

objects from a pooled control-schizophrenia population (30 subjects). There is a left and

a right hippocampus-amygdala for each subject (60 datasets). The data was segmented

manually via outlining. The original MR and segmented data were provided by Ron

Kikinis and Martha Shenton, Brigham and Women’s Hospital, Harvard Medical School,

Boston. The data was used to detect if the brain morphometry of schizophrenic patients

is different from the morphometry of healthy subjects. In this dissertation, no shape

analysis was performed on this dataset. It was purely used to test the capabilities of

the scheme to deal with branching topologies comprising multiple medial sheets.

I decided to build the m-rep model on the left hippocampus-amygdala population.

The training population and the study population are the same for the left hippocampus-

amygdala. Then the m-rep model’s validity to represent the right hippocampus-amygdala

was tested. Also, the m-rep model with the right hippocampus-amygdala as training

population was computed and compared with the model from the left hippocampus-

amygdala.

The SPHARM coefficients were normalized regarding rotation and translation by the

first order ellipsoid. The size of the objects was normalized with the individual volume.

The first 6 eigenmodes λi of the PCA shape space contain 97% of the variability in

the left population, so the shape space was defined as {c̄ ± 2 ·
√
λi;i = 1 . . . 6} . The

object set was computed by uniformly sampling 5 objects along each eigenmode axis

(see Fig. 4.3).

The 3D Voronoi skeletons were computed from the PDM’s and pruned. No member

of the shape space object set had a branching topology comprising more than 5 medial

sheets. In Fig. 4.19, the individual medial branching topology of several members of the
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object set are displayed together with the common medial branching topology, which

consists of only four sheets. Every member of the object set had more than 98% volu-

metric overlap between its reconstruction and the original object. The minimal sampling

was computed with a maximal Ei = MADnorm ≤ 0.09 in the shape space.

The m-rep description of all individual cases of the left population have an Ei error

lower than 0.19. Despite the fact that only a small error was visually present, the

MADnorm error was high (> 0.15) when the structure was very thin. The population

approximation error Epop is the range between 0.11 and 0.035 for all individual cases.

Fig. 5.7 displays the m-rep description of some sample objects with the Ei and Epop

errors. Also, the pruned Voronoi skeleton is shown for a visual comparison of the fine

scale skeleton and the coarse scale m-rep.

The m-rep representation of the right hippocampus-amygdala objects was computed

using the model computed from the left population. In order to do so, I first mirrored the

right objects at the interhemispheric plane. The approximation error Ei is maximally

0.143 for the right population, and Epop is maximally 0.10. The fit of the left m-rep

model is slightly better for the individual right population than for the left population.

This suggests that the ‘left’ m-rep model appropriately describes the left objects and

the right objects.

I also computed the m-rep model from the right hippocampus-amygdala population

with Ei ≤ 0.09. As expected, the model is not the same but it is indeed similar (see

Fig. 5.8). The following properties are different :

• Branching topology: The right model consists of 3 medial sheets, one sheet less

than the left model. The 3 sheets of the right model each have a matching sheet

in the left model. The right model is a subset of the left model in regard to the

branching topology.

• Grid sampling dimensions: The sampling dimensions are equal for some of the

sheets that are common to both the left and the right model. For all sheets the
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c̄ c̄ + 2 · λ2 case 02

Bound.

Skel. 6mm 0mm 6mm 0mm 6mm 0mm
Eoverl. 98.64% 98.35% 98.02%

Warped
Ei 0.088 0.124 0.163
Epop 0.072 0.096 0.181

Final
Ei 0.041 0.063 0.083
Epop 0.034 0.049 0.092

Figure 5.7: M-rep description of left hippocampus-amygdala population: The common
m-rep model applied to the average object (left), a member of the shape space object
set (middle) and an individual case from the training population (right). The pruned
Voronoi skeletons and the volumetric overlap between original and reconstructed object
is shown. In the middle row, the warped m-rep and its Ei, Epop errors are displayed
(ravg,pop = 3.6mm). In the bottom row, the final m-rep and corresponding Ei, Epop

errors are displayed.
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grid sampling is similar as expected. The grid dimensions are (left vs right): sheet

1: 9x3 vs. 7x3; sheet2: 4x3 vs. 4x3; sheet3: 3x2 vs. 4x2; sheet 4: 3x3 vs.

unmatched.

• M-rep atom properties: The m-rep atom properties are similar for the matching

sheets. The properties are more similar for m-rep atoms in the center than for

those at the grid edge.

Grid = 9x3, 4x3, 3x2, 3x2 Grid = 7x3, 4x3, 4x2
left right

Figure 5.8: Application of the scheme to the populations of the left and right
hippocampus-amygdala. In the top row, the two different common branching topologies
are visualized. In the bottom row, the resulting common m-rep models are displayed.
The models are shown in the frame of each side’s average object.

The m-rep description of all individuals from the left and right population using the

right m-rep model was computed next. The approximation errors were compared with

those of the previously computed left model. Table 5.1 shows the range of the approxi-

mation errors for each model and population. These error ranges and the differences in

the m-rep models suggest that the two populations are not the same. A more detailed

analysis of the two populations is necessary to confirm this. This analysis has not been

done in this dissertation.
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Ei range Epop range
left model on left pop. 0.042 - 0.190 0.035 - 0.112
left model on right pop. 0.044 - 0.143 0.038 - 0.100
right model on left pop. 0.043 - 0.202 0.043 - 0.158
right model on right pop. 0.048 - 0.104 0.046 - 0.073

Table 5.1: Error ranges for Ei and Epop for the models of the left and right hippocampus-
amygdala population.

The results in this section show that my proposed scheme can handle populations of

objects with multi-sheet branching topology. The scheme computed for the right and

left hippocampi structures similar m-rep models, but the few differences between the

models suggest that the right and left hippocampi are not part of the same population.
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5.3 Example 3: Lateral ventricles from a mono/dizygotic

twin study

This section presents my scheme applied to a population of lateral ventricles, a fluid filled

structure in the center of the human brain. The image data is part of a mono/dizygotic

twin study and consists of 20 twin subjects (10 pairs, 5 monozygotic and 5 dizygotic

pairs). The original brain images were provided by Daniel Weinberger, NIMH Neuro-

science in Bethesda, Maryland. The segmentation of the ventricles was performed at

the Neuro Image Analysis Lab, University of North Carolina. The segmenting method

used a single gradient-echo channel with manual seeding for Parzen-window based non-

parametric statistical classification. The segmented structures were preprocessed using

a closing operation with a spherical structuring element of radius of two voxels. Some

objects needed further manual preprocessing with the IRIS software to fill up holes in

the structure in order to establish simply-connected objects with spherical topology.

Figure 5.9: Three-dimensional rendering of the skin surface (transparent) and the lateral
ventricles.

I mirrored the left objects at the interhemispheric plane to perform analysis of shape

asymmetry and shape similarity. The SPHARM coefficients were determined and nor-

malized with respect to rotation and translation using the first order ellipsoid. Fig. 5.10
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displays the lateral ventricles of all twin pairs. The first 8 eigenmodes λi of the shape

space hold 96% of the variability in the population and thus the shape space is defined

as {c̄ ± 2 ·
√
λi;i = 1 . . . 8}. The medial branching topologies in the object set varied

between one to three medial sheets with an volumetric overlap of more than 98% for

each object. The single medial sheet topology of the average object matched all sheets

in the common frame since the matching algorithm allows one-to-many matches. Thus,

the common medial topology was computed to be a single sheet.

The minimal sampling of the medial topology was computed with a maximal Ei ≤

0.22 and Epop ≤ 0.10 in the shape space. The average radius in the population ravg,pop

is 2.26. The deformation in the first two principal components thinned the structure

non-uniformly, which leads to a very small average radius for the corresponding object

set members (see Fig. 5.11).

Finally, the application of the medial model to all individual cases of the population

did not produce an Ei larger than 0.35 and an Epop larger than 0.15, which is about

0.35mm. Most objects had a smaller approximation error, and only for the extremely

‘shrunken’ ventricles was such an error present. This is a very small error for a coarse

scale description considering that the lateral ventricle is a thin, long structure and its

medial axis length is about 115mm. Further, the original images used for segmentation

of the individual structures have a voxel-size of 0.9375× 0.9375× 1.5 mm. This means

that, in regard to the original sampling, the individual m-reps are computed with sub-

voxel accuracy.

One twin pair is presented in more detail in the next section, and a difference in

asymmetry between the twins of this pair is shown. Further, I present a group analysis

comparing monozygotic (MZ) twins and dizygotic (DZ) twins.
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Figure 5.10: Visualization of the lateral ventricles of all twin pairs (same color for pairs)
scaled with the individual volume (correct relative size). Top row: Left side. Bottom
row: Right side. Top row: MZ twins. Bottom Row: DZ twins.
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Figure 5.11: Approximation error for the object set members along the first two eigen-
modes. Ei is high for some objects despite a good visual approximation. Epop (with
ravg,pop = 2.26) seems to be a better estimate of the approximation error.

Case 1 (T046) Case 2 (T183)

M-rep
Ei/Epop 0.349 / 0.15 0.041 / 0.062

Figure 5.12: Two examples of fitting the common m-rep model to the study population.
Left: Case with worst approximation error in population. Right: Case with low approx-
imation error. The implied m-rep boundary (dark blue) is overlayed with the original
boundary (light blue).

93



5.3.1 Asymmetry and similarity analysis of a monozygotic twin

pair

I examined a monozygotic twin pair more closely for an asymmetry and similarity anal-

ysis. The objects in this analysis were not normalized with respect to size. Fig. 5.13

clearly shows asymmetry, which is also confirmed by the volume measurements: twin 1

L/R = 9365/12442mm3; twin 2 L/R = 8724/6929mm3. An analysis of the thickness is

shown in Fig. 5.14. It is clear that the asymmetry in the twin 1 is larger than in twin

2. Moreover, the similarity between the two twins is much higher on the left than on

the right side. The location where the structures differ and how strong they do so is

clearly visible from the visualization of the m-rep descriptions: the location of strongest

difference is located in the atrium of the lateral ventricle. As for the hippocampus cases

presented in chapter 5.1, we can’t draw any conclusions from these results due to the

extremely low number of studied cases. However, the analysis serves well as an example

for the asymmetry and similarity analysis.

T1 L R

4.5mm

0.6mm

T2 L R

4.5mm

0.6mm

Figure 5.13: Visualization of the lateral ventricles of two MZ twins and its corresponding
m-reps. Radius and color is proportional to the thickness. A clear asymmetry of the
boundary display is shown in both cases.
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1.5mm

-0.3mm

a: R1 − L1 b: R2 − L2

1.5mm

-0.3mm

c: R1 −R2 d: L1 − L1

Figure 5.14: Asymmetry (top) and similarity (bottom) analysis of the thickness: differ-
ence of thickness at medial atoms. Radius and color is proportional to the difference
(same range for all objects). Maximal absolute differences: a) 1.5mm, b) 0.28mm, c)
1.7mm, d) 0.42mm. The first twin has a higher degree of asymmetry. The similarity of
the left ventricles is considerably higher than the right ones.
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5.3.2 Monozygotic (MZ) vs. dizygotic (DZ) twin pairs

This section describes a statistical group difference analysis to distinguish monozygotic

(MZ) twins from dizygotic (DZ) twins. In this study, there are 5 pairs for each popula-

tion. The population size is very small, so the observed effect must be quite large for the

analysis to yield a significant result. Another study was performed by Bartley et al [10]

on the same datasets with the goal of distinguishing the populations. They compared

cortical gyral patterns and the total brain volumes. Both measures show significant

differences between the MZ and DZ populations. In this section, I will show that my

ventricular volume analysis did not yield any significant findings. However, using my

new shape description scheme, I get significant difference of ventricle shape between MZ

and DZ twins.

5.3.2.1 Volume analysis

Monozygotic Dizygotic

0.02

0.04

0.06

0.08

0.1

L+R Twin Log Volume Diff in mm^3

Figure 5.15: Volume difference between lateral ventricles of twin pairs (sum of left and
right volume) show a strong overlap, p-value = 0.15.

The lateral ventricles are fluid filled connected structures that allow fluid to flow

from one side to the other. Thus, I studied in this experiment the sum of the log nor-

malized volumes, assuming that the sum is an important descriptor: voli = log volrighti +
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log vollefti . In order to study the twin pairs, the absolute volume difference is computed

and analyzed: ∆volT1,2 = |volT1 − volT2|.

As shown in Fig. 5.15, there is hardly any difference or trend visible between the two

populations since the volume measurements are overlapping. This confirms what Bartley

measured on the same original images though she was using a different segmentation

technique. The p-value for discriminating the two population is at 0.15 suggesting a

trend that the two populations are different, but this finding is non-significant at 5%

significance level.

5.3.2.2 Shape analysis via SPHARM

In the earlier section 3.1.5, I described the calculation of the Mean Squared Distance

(MSD) between SPHARM objects. I assumed that similar objects that are aligned and

volume-scaled have a lower MSD than dissimilar objects since their surfaces are much

closer.

As a prerequisite for any shape similarity calculation, shapes have to be normalized

with respect to a reference coordinate frame. Since I am interested in measuring shape

differences, a normalization is needed to eliminate differences that are due to rotation,

translation and magnification. Normalization of translation and rotation is accomplished

by aligning the SPHARM objects via the first order ellipsoid. In order to normalize for

magnification, an appropriate scaling method has to be defined. The choice of the scaling

method depends on the task and the type of objects. The three possibilities considered

were the following:

A No scaling correction: The computation of shape differences without any scale

normalization reveals differences between small and large objects even though

they might have the same shape properties. Thus, the differences will reflect

mixed values of both the shape differences and the size differences.

B Longest ellipsoid axis: The longest axis of the first order ellipsoid is appropriate
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for objects that have their main size difference along a dominant axis. Normalizing

the elongation of such objects removes differences along that axis and emphasizes

differences that are orthogonal to it.

C Object volume: The object volume is a measure that captures the whole object.

In this example we found that there are volume differences but that they were

not significant. Thus, creating a shape difference measure that is orthogonal in its

nature to the volume measure has the potential to reveal information additional

to size. The volume measurements can be incorporated later into a multivariate

statistical analysis as an additional orthogonal feature.

I computed the
√

MSD difference between twins for each of the different scaling

normalizations methods mentioned above. As in the volume analysis, the values of the

left and right ventricles were combined by adding the MSD’s. A t-test analysis was

applied to test whether the two populations differ significantly. This means that the

hypothesis was tested whether the populations have the same mean.

If the objects are not normalized for scaling, my analysis yields no significant dif-

ference between the two populations as shown in Fig. 5.16. A significant difference is

observed if the objects are scaling normalized. The best p-value can be obtained if the

objects are normalized with their individual volumes. The p-value is at 0.012, which

suggests significance. This result demonstrates that the lateral ventricle of MZ twins

are more similarly shaped than those of DZ twins.

The SPHARM analysis revealed that the two populations differ in their shape sim-

ilarity despite their volume similarity. This result might be of clinical importance. For

example, it might be of interest in the analysis of discordant MZ twin studies. A twin

pair is said to be discordant for a disease, if one of the twins is sick while the other twin is

healthy. If the discordant twins have less similarly shaped ventricles, this might indicate

that the studied disease manifests itself also in brain shape changes. This hypothesis

can’t easily be tested in a non-related population as the biological variability would hide
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p-value:

No scaling: 0.122
Elli axis scale: 0.050
Volume scale: 0.0120

Figure 5.16: Statistics for
√

MSD shape similarity between lateral ventricles of twin
pairs (sum of left and right differences): The two populations show a better separation
than in the volume analysis. Top left: No scaling. Top right: Scaling with longest axis
of first order ellipsoid. Bottom left: Scaling with the individual volume. Bottom right:
p-values for group differences using the 3 scaling methods.
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the expected subtle differences and only reveal large group effects.

The SPHARM analysis does not yield the locations where the object populations

differ. The m-rep shape analysis has the potential to provide locality as described in

the next section.

5.3.2.3 Shape analysis via m-rep

Based on the encouraging results of the SPHARM analysis, the m-rep descriptions

were computed on objects scaled with the individual volume. Additionally, I computed

the statistics on the unscaled objects for comparison. The goal of the m-rep shape

analysis is to pinpoint the location of maximal difference between the populations. These

differences can manifest in different ways, each of them potentially at different locations:

thickness changes as the result of local uniform growth; location changes as the result

of bending, twisting and local non-uniform growth; combined thickness and location

changes as an overall measure of change.

In order to compute a p-value for the case of the combined thickness and loca-

tion measure, the Fisher linear discriminant axis was determined and the values were

projected onto this axis. The Fisher axis is the most discriminating line of the two

populations, assuming Gaussian distributions. The computed p-value will no longer be

unbiased since the Fisher axis is computed and applied on the same data. This is called

data snooping and creates a bias on the resulting statistics. An unbiased Fisher axis

cannot be computed due to the small sample size for each population. Unbiased multi-

variate statistics would be more representative and stable, but this has not been done

in this dissertation.

All three measures detect a higher level of similarity between MZ twins than between

DZ twins at a significant p-value. The similarity is most pronounced in the combined

thickness and location measure with a p-value of 0.0233. Using the joint MZ and DZ

population, I also extracted an age and gender matched population of 10 non-related
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pairs. The shape analysis shows that the similarity in MZ twins significantly differs from

the similarity of non-related pairs. This is not the case for DZ twins and non-related

pairs. The statistics are visualized in Figs. 5.17 and 5.18 with the corresponding p-values

in table 5.2. The individual volume scaling procedure is necessary for a significant result,

which is evident from the p-values and statistical plots of the unscaled objects shown in

table 5.3 and Figs. 5.19 and 5.20.

Volume scaled objects MZ/DZ MZ/Other DZ/Other

Pure thickness 0.0282 0.0510 0.8980
Pure location 0.0270 0.0175 0.9089
Fisher axis on thickness / location 0.0233 0.0144 0.9659

Table 5.2: Class statistics of the m-rep properties and its associated p-values. The
objects were individually scaled to their volume.

Unscaled objects MZ/DZ MZ/Other DZ/Other

Pure thickness 0.5279 0.2088 0.3474
Pure location 0.2046 0.0394 0.3875
Fisher axis on thickness / location 0.1968 0.0377 0.5342

Table 5.3: Class statistics of the m-rep properties and its associated p-values. No scaling
was performed.

The statistics and p-values shown in the tables and plots above are computed in

a global analysis using cumulative values. These values were computed by integrating

the individual local differences over the whole object. A local statistical analysis is also

possible in order to compute the locations, where the two populations differ the most.

For these statistics, the atoms are assumed to be independent of each other. Thus the

local analysis is performed for each medial atom individually. This viewpoint is not

fully correct but reasonable in a preliminary analysis. A more thorough analysis should

be done by computing the statistics using a regional kernel instead of doing it atom

by atom. The local analysis was applied individually for the thickness and location

difference measure. Additionally, the Fisher linear discriminant axis on the combined
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Scaling by individual volume
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Figure 5.17: Class statistics of the pure m-rep properties for objects individually scaled
to their volume. The statistical plot is shown on the left and the corresponding estimated
Gaussian distribution on the right (MZ = red, DZ = blue, non-related = black). Top row:
statistics for changes in local thickness. Bottom row: statistics for changes in location.
The difference between the MZ twins and the DZ twins or the non-related subjects is
significant. There is no significant difference between DZ twins and non-related subjects
(see corresponding table).
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Scaling by individual volume

Combined thickness and location
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Figure 5.18: Class statistics of the combined m-rep properties for objects individually
scaled to their volume. The combined location and thickness measures are displayed
in a 2D feature space (top row) with quartile ellipsoids (MZ = red, DZ = blue, non-
related = black). The Fisher linear discriminant axis is displayed on the right side
as a purple line. The 1D feature space (bottom row) from the projection to the Fisher
linear discriminant axis is shown on the bottom row. The statistical plot is shown on the
left and the corresponding estimated Gaussian distributions on the right. The difference
between the MZ twins and the DZ twins or the non-related subjects is significant. There
is no significant difference between DZ twins and non-related subjects (see corresponding
table).
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Pure thickness

Non-related Monozygotic Dizygotic

0.5

1

1.5

2

2.5

L+R Twin Thickness Diff in mm - vol scale

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

3.5

Pure location

Non-related Monozygotic Dizygotic

2

4

6

8

10

L+R Twin Location Diff in mm - vol scale

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

Figure 5.19: Class statistics of the pure m-rep properties for unscaled objects. The
statistical plot is shown on the left and the corresponding estimated Gaussian distribu-
tion on the right (MZ = red, DZ = blue, non-related = black). Top row: statistics for
changes in local thickness. Bottom row: statistics for changes in location. The difference
between the MZ twins and the non-related subjects is significant. There is no significant
difference between MZ and DZ twins or between DZ twins and non-related subjects (see
corresponding table).
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Figure 5.20: Class statistics of the combined m-rep properties for unscaled objects. The
combined location and thickness measures are displayed in a 2D feature space (top row)
with quartile ellipsoids (MZ = red, DZ = blue, non-related = black). The Fisher linear
discriminant axis is displayed on the right side as a purple line. The 1D feature space
(bottom row) from the projection to the Fisher linear discriminant axis is shown on the
bottom row. The statistical plot is shown on the left and the corresponding estimated
Gaussian distributions on the right. The difference between the MZ twins and the non-
related subjects is significant. There is no significant difference between MZ and DZ
twins or between DZ twins and non-related subjects (see corresponding table).
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measure was computed for each atom and the values were projected onto the Fisher

axes.

The local analysis is visualized in Fig. 5.21. The locations of significant shape dif-

ference are not the same for the thickness and location feature. I also observe that

the combined feature doesn’t capture additional significant locations that are not cap-

tured by the two pure features. The view of quasi-orthogonal features for thickness and

location is thus justified in this example.

Thickness Location Thickness + Location

0.1 - not significant significant - 0.05

Figure 5.21: Locations of significant difference between MZ and DZ twins. The dif-
ferences are shown in the frame of the common m-rep model. The radius and color is
inversely proportional to the p-value of the shape difference between the two population:
r, col ∼ 1/p. Top row: top view. Bottom row: side view.
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Chapter 6

Discussion and conclusions

In this chapter, I first discuss the computational efficiency of the different steps of the

model building implementation. Next, I discuss the stability of these steps. Then, I

discuss the homology of the computed m-rep model. The conclusion of this dissertation

are summarized next, followed by a list of items for future work.

6.1 Computation time

The computation time for the different algorithms were computed in several experiments

with different populations of anatomical objects: single figure model for a lateral ven-

tricle population; single figure model for a hippocampus population; four figure model

for a hippocampus-amygdala complex population. The computation time depends on

the processor type and the amount of available memory. The later is quite important

in our computations since the methods are implemented to be computationally efficient

by sacrificing memory efficiency. The values presented in Table 6.1 are computed on a

processor of type SUN Ultra-Sparc II and enough memory to fit the whole process at all

time. A memory size of 750 MB on a Sparc Ultra 10 station satisfies these conditions.

The tools ‘IRIS’ and ‘AVS’ were used for the preprocessing the data. The ‘param’

tool developed by C. Brechbühler is used for the parameter optimization. The remain-

ing steps of the SPHARM computation are performed using Mathematica. All other



computations are performed with the ‘VSkelTool’ program that I have developed in this

dissertation. For the m-rep fitting process ‘VSkelTool’ calls library procedures in the

‘pablo’ tool, which is being developed within the MIDAG group at UNC.

Step Tool Auto. Approx. costs

A Preprocessing of segmented object IRIS, AVS No 30 min/object
B Parameter optimization param Yes 30 min/object
C SPHARM description Mathematica Yes 10 min/object

D A+B+C for population of 30 ob-
jects

- - 35 hrs/pop

E Shape space and object set Mathematica Yes 30 min/pop
F PDM description Mathematica Yes 5 min/object
G Inner Voronoi skeleton VSkelTool Yes 5 min/object
H Pruned/grouped Voronoi skeleton VSkelTool Yes 40 min/object
I Warping object set VSkelTool Yes 5 min/pop
J Common topology extraction VSkelTool Yes 5 min/pop

K E+F+G+H+I+J for 25 object set
members

- - 21 hrs/pop

L M-rep sampling of single sheet VSkelTool Yes 1 min/object
M Fit of a single figure M-rep VSkelTool Yes 2 hrs/object
N Optimal sampling for a single ob-

ject
VSkelTool Yes 90 hrs/pop

O Optimal sampling of object set VSkelTool Yes 300 hrs/pop

P D+K+O Total estimated time cost - - 350 hrs/pop

Table 6.1: Estimated computation time for all stages in the m-rep model computation
scheme, measured per object or per population (pop). The costs are computed for a
single figure m-rep model. The computation time is independent of the number of figures
with the exceptions of steps L, M, N and O, which are scaled linearly with the number
of figures. The computation platform is a SUN Sparc Ultra 10 workstation with 750
MB of memory (i.e., large enough to fit the process)

The high cost of computing the minimal m-rep sampling can be approached by using

multiple workstations. The algorithms involved in computing the sampling continuously

store intermediate values to the disk. This allows the computation to be continued at the

point of the last stored intermediate value if the algorithm or the computer crashes. This

can happen in case of electricity failure or memory problems. Since these intermediate

values can also be accessed by other ‘VSkelTool’ processes through network transparent
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file systems, the computation time of the optimal m-rep sampling can be reduced linearly

with the number of ‘VSkelTool’ processes running on different machines.

6.2 Stability

Shape space - All computations of the common m-rep model are based on the shape

space determined via PCA. In my experiments PCA has shown to be a quite stable

procedure that produces good results in leave-one-out experiments (see also section

7). The PCA shape space stabilizes the computation of the common m-rep model by

removing shape variations due to noise. A leave-one-out analysis should be performed

on the PCA with following computation of the m-rep model, which would take several

weeks of computations. This has not been performed in this dissertation.

Common medial branching topology - In all my tests, the stability of the com-

mon medial branching topology was very good. The tested anatomical brain structures

were the following ones: hippocampus-amygdala, hippocampus, lateral ventricles, puta-

men, globus pallidus and thalamus. The common branching topology depends strongly

on the boundary correspondence. Although I have not experienced problems with the

quality of the boundary correspondence, it is evident that for objects with a high degree

of rotational symmetry the first order ellipsoid correspondence is not appropriate. In

this case, the common branching topology couldn’t be extracted reliably.

In my tests, the procedure has shown to be robust to the ordering of the object set.

Changing the ordering results in the same graph properties of the branching topology.

The originating objects of the medial sheets might change but the sheets and their

spatial distributions remain similar. Suggested by my experiments, an ordering is likely

to generate the same number of sheets and similar spatial distributions as other, different

orderings (see also Fig. 6.1).

Minimal sampling computation - The borders of the Voronoi skeleton are sensi-
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Voronoi vertices

Origin. objects {c̄, c̄, c̄+
√
λ5, c̄− 2

√
λ6} {c̄, c̄, c̄+ 2

√
λ6, c̄− 2

√
λ6}

Figure 6.1: Computed common branching topology for two different orderings of the
matching procedure. Top row: Display of the Voronoi vertices (sheets are color coded).
Bottom row: List of objects in the shape space from which the medial sheets are orig-
inating. Left: Branching topology from the implemented ordering. Right: Branching
topology from a (different) random ordering. The graph properties are the same in both
cases. The spatial distributions of the sheets are similar.

tive to small perturbations on the boundary, unlike the center part of the skeleton, which

is quite stable. Thus the properties of the sampled m-rep atoms are quite stable in the

grid center but not as stable at the grid edges. The computation the grid dimensions

for a single population is stable. My experiments suggest that the grid dimensions for

a similar population are unlikely to be the same, but they are likely to be close. Thus

the grid dimension computation can be considered to be at least not unstable.

M-rep fit procedure - The m-rep fit procedure starts from an position that is

close to the final position because the boundary correspondence is used to compute the

initial position. The change of the m-rep properties during the fit procedure is strongly

constrained by a prior on neighboring atoms. This prevents the m-rep atoms to move

freely on the medial sheet if the radial function is constant along all directions. The fit

procedure is non-deterministic but due to the strong prior, the stability and reliability

can be considered good.

Conclusion - A quantitative analysis on the stability has not yet been performed. If

the common medial model for 2 similar populations (e.g., 2 different studies of the same

structure regarding the same disease) is computed, I expect to compute very similar

medial branching topologies, similar grid parameters, very similar m-rep properties in
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Figure 6.2: Schematic 2D visualization of the homology for the medial description (red)
and its implied boundary (blue) in two cases (I + II). The common model (left) gets
warped into every individual case (middle) and then deformed into the fine scale bound-
ary (green). The skeleton implied by the boundary is shown in cyan. The final positions
of the m-rep atoms do not have to be on the skeleton since the m-rep is a coarse scale
description and the skeleton is a fine scale description. The homology strongly depends
on the boundary correspondence.

the center and less similar m-rep properties at the edge of the grid. The model is

constructed for a population only once, and its extraction is mainly deterministic and

repeatable. Thus, in contrast to the stability of the extraction of a medial model from a

single object with noise, I consider the stability of a medial model for a single population

as stable.

6.3 Homology

The main influencing factors of establishing homologous properties for the m-rep atoms

are schematically visualized in Fig. 6.2. First, the common model is highly influenced

by the Voronoi skeletons and the common frame, which is based on the boundary corre-

spondence. The warp of the common m-rep model into every individual case is purely

based on the boundary correspondence. Thus, the properties of the m-rep atoms prior

to the fit procedure is mainly determined by the ‘warp’-influence of the boundary corre-

spondence transferred to the Voronoi skeletons. In the m-rep fit procedure, the m-rep is

adjusted to maximize a boundary match at its implied boundary while it is constrained

by the initial position. A strong neighborhood dependent prior prevents the medial

atoms from moving freely on the medial sheet. In summary, the established m-rep

homology strongly depends on the boundary homology.
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6.4 Conclusions

In this dissertation I presented a new approach to the description and analysis of shape

in the presence of shape variability. The proposed description is based on the boundary

SPHARM and the medial m-rep description. The generation of the m-rep description

takes into account the shape variability of a set of training objects, which is a novel

concept and a step towards a shape representation for natural objects. Using the m-

rep description, locally computed shape features can quantitate and visually illustrate

asymmetry or similarity. Since a correspondence is given on both the boundary and the

medial manifold, a statistical analysis can directly be applied.

The SPHARM description and thus also the derived m-rep is constrained to objects of

sphere topology. Also, the SPHARM boundary correspondence has shown to be a good

approach in the general case, but it has inherent problems in special cases presenting

rotational symmetry.

The choice of a fixed topology for the m-rep description has the advantages of en-

abling an implicit correspondence for statistical analysis. However, a fixed topology

m-rep cannot precisely capture the topology of an individual object. The determined

individual m-rep is therefore always an approximation, which emphasizes my decision

to provide a coarse scale m-rep description.

The medial representation is constrained by the assumption that the shape variability

can be captured based on the shape space spanned by the principal component analysis

of SPHARM. It is thus not guaranteed that I am able to describe pathological objects

not represented in the shape space. However, such pathological objects can be detected

by inspecting the approximation error. Also, the m-rep model computation is designed

for objects whose major deformation eigenmodes of the fine-scale boundary incorporate

the coarse scale deformations. The computed m-rep model will not be appropriate if the

deformation eigenmodes comprise a significant component of fine-scale deformation.

The results on the hippocampus-amygdala population in chapter 5.2 show that the

112



choice of the training population is important. The subjects of the training population

have to incorporate most of the shape variability in the desired population. If that is not

the case, then the computed m-rep model will not appropriately describe the popula-

tion. In the presented applications, I showed that the m-rep model computation is able

to incorporate a large shape variability. Thus, an m-rep model can be computed for a

population that in fact is a collection of sub-populations. For example, an m-rep model

can be computed that incorporates the patient and control population instead of com-

puting two separate m-rep models. The disadvantage of such a super-population is the

increased dimensionality of the shape space because the super-population’s variability

is likely to increase the number of principle modes to capture 95% variability.

All parts of the presented scheme have been implemented, applied and tested. The

scheme has been applied to populations of several structures of neurological interest:

hippocampus-amygdala(60 cases), hippocampus(20), thalamus(56), globus pallidus(56),

putamen(56) and lateral ventricles(40). However, I expect that highly complex objects

like the cortex of a human brain would be hard to handle without further adaptation of

the algorithms.

6.4.1 Scientific contributions of this dissertation

This section briefly summarizes the new developments and findings that this dissertation

contributes to different fields of this multi-disciplinary research project.

1. I have developed new shape description scheme that incorporates prior statistical

knowledge about the shape variability. The scheme is presented in chapter 3, and

the methods are described in chapter 4. The shape description scheme is suitable

for shape analysis as demonstrated in the presented applications in chapter 5.

2. This work is the first to compute a common medial branching topology for a

population of objects. This common medial branching is necessary to deal with one
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of the major disadvantages of medial descriptions: the sensitivity of the branching

topology to even small shape variations. In section section 4.3 the methods for

the branching topology computation are presented, and the complexity of the

common branching topology is shown to be of the same magnitude as the individual

branching topology. The computation of the common branching topology is shown

in section 6.2 to be stable.

3. In regard to computational geometry issues of Voronoi skeletons, this dissertation

presents in sections 4.3.1.3 - 4.3.1.7 a novel scheme that automatically prunes

3D skeletons with results superior to those published elsewhere. My experiments

showed that a small number of skeletal sheets are necessary to describe even quite

complex objects, a surprising and encouraging finding.

4. Medial representations are known to be sensitive to small boundary perturbations.

This work presents in section 4.4 a medial sampling technique that together with

the m-rep fit procedure allows dealing with this sensitivity as discussed in section

6.2.

5. I presented a new shape description scheme for shape analysis via incorporating

prior knowledge about the shape variability. This description scheme allows new

insights and paths of exploration in various fields of morphological research as

demonstrated by the applications in chapter 5. The shape features thereby are

meaningful and allow to answer questions that could not be answered before.

6. I have shown an example in which shape information carries information that is

superior to volume measurements. This example, which is presented in section

5.3, showed that the lateral ventricles of monozygotic twins are significantly more

similarly shaped than those of dizygotic twins. I was able to describe and measure

the shape similarity. Further, I was even able to describe locality and type of the

shape differences, features not accessible previously.
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6.5 Future work

Although the scheme has been tested on a large set of images, more validation of the

scheme needs to be done. A possible validation would have to include synthetic data of

two or more populations that can be separated with respect to a local effect of variable

size. Also, real datasets can further be used for validation. For example, the left and

right hippocampus-amygdala populations, presented in section 5.2, can be used to build

one joint population and compare the m-rep model of the joint model to the individual

models.

The first application presented in section 5.1 can be extended to include not only two

single subjects but rather the whole set of hippocampi in this schizophrenia study. The

full dataset includes 82 datasets of which 26 are controls, 28 are treatment responsive

patients and 28 are treatment non-responsive patients. The m-rep model should be build

on the joint population of all 82 subjects. The computed individual m-rep descriptions

can be used for shape analysis to investigate the differences in the three populations.

In the second application chapter 5.2 further analysis can be done on the hippocampus-

amygdala objects. An earlier analysis showed a significant difference between schizophre-

nia patients and controls in regard to the asymmetry index |L − R|/(L + R). This

difference was detected in both the volume measurements and the SPHARM
√

MSD

measure. Using the individual m-rep descriptions, we could investigate the locations of

most significant differences.

It is evident that the statistical analysis that was presented in the application chap-

ters can be considerably improved. Instead of using the raw m-rep properties, a set of

new features can be computed that separate uniform/non-uniform growth from twist-

ing and bending. This has been proposed by Yushkevich [79] on 2D m-reps. He also

introduces methods of doing a local PCA do detect locations that mostly discriminate

2 populations. The extension of these methods to 3D m-reps is probably the most

important future work.
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The computed m-rep models incorporates shape variability in the common branch-

ing topology and the medial grid dimensions. This is not the case for the medial atom

properties, which are determined from the average object. The m-rep description of the

individual objects could be improved if the atom properties would additionally incor-

porate shape variability. This would lead to a fully statistical m-rep model. Since the

m-rep model has been fitted to all object set members in the shape space, a distribution

for the medial atom properties is directly accessible.
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Chapter 7

APPENDIX 1: Properties of the Principal

Component Analysis (PCA)

Principal component analysis (PCA) is a computation of an efficient basis for a dis-

tribution that is described by a set of multivariate samples. The computation of the

basis is such that the variability is concentrated in a small subset of the basis. This has

2 main effects. First, the basis directions are decorrelated given that the samples are

from a single Gaussian population. Secondly, the distribution basis can be reduced by

removing directions of small variability contribution.

- --

6

q2

q1

-

6

q2

q1

H
HHH

HHH
HHHj

�
�
�
�
�
�
�
�
���

q′2

q′1

-

6

q′2

q′1

Figure 7.1: Principal component analysis as basis rotation. q1, q2 is the original basis,
and q′1, q

′
2 the rotated basis after decorrelation with PCA. Clearly a decorrelation is

visible as well as an ordering of the basis directions by variability contribution.

Fig. 7.1 shows the PCA principle for a two-dimensional example of a Gaussian distri-

bution. Obviously the axes q1 and q2 are correlated. PCA computes the new decorrelated



axes q′1 and q′2, which are orthogonal linear combinations of q1 and q2. As much vari-

ability as possible is thereby represented in q′1. The data could be approximated by only

regarding the q′1 axis and thus reducing the dimensionality.

The principal components are computed from the empirical covariance matrix S of

the training set, which is defined as

S =
1

N − 1

N∑
i=1

dxidx
T
i , (7.1)

where dxi = xi− x̄ is the deviation of the L-dimensional sample xi from the arithmetic

mean x̄ =
∑N

i=1 xi.

The modes of variation vk, k = 1 . . .min(L,N) are the unit eigenvectors of the

matrix S and defined by

S vk = λk vk (7.2)

and

v T
k vk = 1, (7.3)

where the λk are the eigenvalues of the matrix S ordered so that λk ≥ λk+1. Rewriting

equation (7.2) to

(S − λkI) vk = 0 , (7.4)

where I is the identity matrix, makes clear that a set of linear equations has to be

solved. Note that the number of eigenmodes (λk,vk) of a matrix is equal to its rank.

Accordingly, S has min(L,N) eigenmodes. The variance described by an eigenvector vk

is equal to the corresponding eigenvalue λk. So the eigenvectors belonging to the largest

eigenvalues describe the most significant modes of variability.

In shape analysis applications, the number of samples N is often smaller than the

number of parameters L gathered in the parameter vectors xi. The eigenmodes of the

empirical covariance matrix S = 1
N−1

∑N
i=1 dxidx

T
i = ∆X∆XT can be obtained by
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solving for the eigenmodes of a reduced covariance matrix. As the mean was subtracted

from the xi, the matrix S has at most rank N − 1 and a maximum of N − 1 non-zero

eigenvectors results from the PCA.

As a first step, one of the vectors in ∆X is dropped so that the remaining are

linearly independent. Then, an orthonormal basis M of ∆X is obtained by applying

a Gram-Schmidt procedure that takes an arbitrary basis and generates an orthonormal

one.

A reduced covariance matrix s is then given by

s =
1

N − 1
MT∆X ∆XTM =

1

N − 1
MTS M . (7.5)

Solving the reduced eigensystem for each eigenvector vsi,

s vsi = λpsi, (7.6)

the (N − 1)-dimensional vsi yield the L-dimensional eigenvectors through

vi = Mvsi, (7.7)

which are gathered in the eigenvector matrix V = (v1,v2, . . . ,vN−1).

Most of the variation can usually be explained by a relatively small number of eigen-

modes t. When the number of training samples N is smaller than the number of param-

eters, then all variation in the training set can be described by t = N − 1 eigenmodes.

Considering a smaller number t of eigenmodes, they describe a proportion λt of the total

variance of all variables

λt =
t∑

k=1

λk . (7.8)

The number t of selected eigenmodes is thereby chosen considering the overall propor-

tion of variance reflected in the selected eigenmodes or by selecting eigenmodes with

119



eigenvalues above a given minimum. Having chosen t, any object in the training set can

be approximated by a weighted sum of the first t eigenmodes and the mean object x̄.

x = x̄ + V tbt , (7.9)

where bt = (b1, b2, . . . , bt−1, bt)
T is the weight vector, and V t = (v1 . . .vt) is the eigen-

vector matrix.
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