
Efficient Computation of Discrete Voronoi Diagram and
Homotopy-Preserving Simplified Medial Axis of a 3D

Polyhedron

by

Avneesh Sud

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Depart-

ment of Computer Science.

Chapel Hill

2006

Approved by:

Dinesh Manocha, Advisor

Ming C. Lin, Reader

Mark Foskey, Reader

Martin Styner, Committee Member

Suresh Krishnan, Committee Member

ii

c© 2006

Avneesh Sud

ALL RIGHTS RESERVED

iii

iv

ABSTRACT

AVNEESH SUD: Efficient Computation of Discrete Voronoi Diagram and

Homotopy-Preserving Simplified Medial Axis of a 3D Polyhedron.

(Under the direction of Dinesh Manocha.)

The Voronoi diagram is a fundamental geometric data structure and has been well studied

in computational geometry and related areas. A Voronoi diagram defined using the Euclidean

distance metric is also closely related to the Blum medial axis, a well known skeletal repre-

sentation. Voronoi diagrams and medial axes have been shown useful for many 3D computa-

tions and operations, including proximity queries, motion planning, mesh generation, finite

element analysis, and shape analysis. However, their application to complex 3D polyhedral

and deformable models has been limited. This is due to the difficulty of computing exact

Voronoi diagrams in an efficient and reliable manner.

In this dissertation, we bridge this gap by presenting efficient algorithms to compute

discrete Voronoi diagrams and simplified medial axes of 3D polyhedral models with geo-

metric and topological guarantees. We apply these algorithms to complex 3D models and

use them to perform interactive proximity queries, motion planning and skeletal computa-

tions. We present three new results. First, we describe an algorithm to compute 3D distance

fields of geometric models by using a linear factorization of Euclidean distance vectors. This

formulation maps directly to the linearly interpolating graphics rasterization hardware and

enables us to compute distance fields of complex 3D models at interactive rates. We also

use clamping and culling algorithms based on properties of Voronoi diagrams to accelerate

this computation. We introduce surface distance maps, which are a compact distance vector

field representation based on a mesh parameterization of triangulated two-manifolds, and use

them to perform proximity computations.

Our second main result is an adaptive sampling algorithm to compute an approximate

v

Voronoi diagram that is homotopy equivalent to the exact Voronoi diagram and preserves

topological features. We use this algorithm to compute a homotopy-preserving simplified

medial axis of complex 3D models.

Our third result is a unified approach to perform different proximity queries among mul-

tiple deformable models using second order discrete Voronoi diagrams. We introduce a new

query called N-body distance query and show that different proximity queries, including

collision detection, separation distance and penetration depth can be performed based on N-

body distance query. We compute the second order discrete Voronoi diagram using graphics

hardware and use distance bounds to overcome the sampling errors and perform conservative

computations. We have applied these queries to various deformable simulations and observed

up to an order of magnitude improvement over prior algorithms.

vi

ACKNOWLEDGMENTS

When I entered the graduate program at University of North Carolina, I was unsure of

my research path. To get a PhD has been a long and educational journey and I am grateful

to many people along the way. I would like to thank my advisor, Prof. Dinesh Manocha, for

his excellent advice and guidance - not only on my research, but on all professional aspects

during my graduate career. Thanks to Prof. Ming Lin for feedback in the proximity queries

project, and to Prof. Mark Foskey for his invaluable advice on problems related to topology.

I would also like to thank the rest of my dissertation committee, Prof. Martin Styner and

Prof. Suresh Krishnan for their suggestions and feedback.

I want to thank other colleagues who have helped me get this far. The research projects

reported in this dissertation involved the efforts of several student collaborators in UNC

GAMMA group. In this regard, I would like to thank Naga Govindaraju, Miguel Otaduy,

Russell Gayle, Ilknur Kabul, Liangjun Zhang, Nitin Jain, Theodore Kim and Jason Sewall.

Prior to the research reported in this thesis, I also had the good fortune of collaborating on

several research projects in UNC Walkthrough group, and thanks Bill Baxter, Sung-Eui Yoon

and Brandon Lloyd for their help. I particular I would like to thank Naga Govindaraju for

his work ethic and sharing his knowledge of graphics hardware, and two colleagues who also

became very close friends - Miguel Otaduy and Russell Gayle. I have enjoyed tremendously

all the research discussions we have shared, at the office, at home, at coffeee shops, during

late nights in the lab or even at diners over breakfast after long nights of work.

I also thank all the faculty and staff of the Department of Computer Science at the Uni-

vii

versity of North Carolina at Chapel Hill, for making Sitterson Hall such a wonderful place

to work at. The technical support staff of the department has been extremely helpful and

responsive. I am thankful to NVIDIA Corporation for providing both software and hardware

support which have been extremely useful in or research projects, especially to Mark Harris

for helping clarify issues related to GPU programming.

The research projects were funded in parts by the U. S. Army Research Office, National

Science Foundation, Office of Naval Research, DARPA RDECOM, and the Intel Corpora-

tion.

Getting this far involved considerable work, and I appreciate the help and support given

by my friends through difficult and fun times. I would like to thank my close buddies Lindsay

Stalker, Miguel Otaduy, Russell Gayle, Adrian Ilie, Ajith Mascarenhas, Udita Patel, John

Chek, Heather Hanna, Matthew Briddell, and Sasa Junuzovic. I am also grateful to Ann and

Stephen Aylward for their trust and having me befried three adorable dogs - Dutch, Mojo and

Ginger.

My deepest thanks to my bhaiya, and my parents for their love, support and care, and in

believing in me and getting me to this stage of my life. Last, but not the least, special thanks

to Swamiji and God, for always being there for me.

viii

TABLE OF CONTENTS

LIST OF TABLES xvii

LIST OF FIGURES xix

1 Introduction 1

1.1 Problem Definition . 3

1.1.1 Generalized Voronoi Diagrams . 4

1.1.2 Medial Axis . 5

1.1.3 Proximity Queries . 7

1.2 Previous Work . 8

1.3 Thesis . 14

1.3.1 New Results . 15

1.3.2 Organization . 19

2 Fast 3D Discrete Voronoi Diagram Computation 20

2.1 Previous Work . 22

ix

2.1.1 Distance Fields and Discrete Voronoi Diagrams 22

2.1.2 GPU-Based Non-linear Computations 24

2.2 Notation and Background . 25

2.2.1 Terminology . 25

2.2.2 Distance Field Computation using GPUs 26

2.3 Linear Factorization . 28

2.4 Domain Computation . 31

2.5 Distance Field Computation using GPUs . 34

2.6 Culling Overview . 37

2.6.1 Site Classification . 38

2.7 Site Culling . 40

2.7.1 Conservative Sampling . 42

2.8 Distance Function Clamping . 45

2.8.1 Conservative Clamping . 45

2.8.2 Manifold Surfaces . 48

2.8.3 Complete Algorithm . 48

2.9 Range Based Culling . 49

2.9.1 Set Definitions . 50

2.9.2 2D Culling . 51

x

2.9.3 Culling in 3D and Higher Dimensions 55

2.10 GPU Based Algorithm . 56

2.10.1 2D Culling . 57

2.10.2 3D Culling . 59

2.10.3 Conservative Sampling . 59

2.11 Applications . 60

2.12 Implementation and Results . 62

2.12.1 Implementation . 62

2.12.2 Performance . 64

2.13 Discussion . 68

2.13.1 Analysis . 68

2.13.2 Comparison . 70

2.13.3 Limitations . 72

3 Surface Distance Maps 74

3.1 Related Work . 77

3.1.1 Distance Fields . 77

3.1.2 Surface Mapping and Parameterization 78

3.2 Surface Distance Maps . 79

xi

3.2.1 Notation . 79

3.2.2 Distance Fields: Background . 80

3.2.3 Planar Parameterization . 81

3.2.4 Surface Distance Computation . 82

3.3 Interactive Distance Map Computation . 83

3.3.1 Mapping to GPUs . 83

3.3.2 Clipping . 84

3.3.3 Hierarchical Culling . 86

3.4 Error Analysis . 88

3.5 Implementation and Performance . 91

3.5.1 Implementation . 91

3.5.2 Proximity Queries . 92

3.6 Discussion . 93

3.6.1 Comparison . 93

3.6.2 Limitations . 95

4 Fast Proximity Computation among Deformable Models using Discrete Voronoi

Diagrams 96

4.1 Related Work . 99

4.1.1 N-body algorithms . 99

xii

4.1.2 Bounding volume hierarchies . 100

4.1.3 Deformable model collision detection 100

4.1.4 Distance and penetration queries . 101

4.1.5 Voronoi diagrams . 101

4.2 N-body Distance Query . 102

4.2.1 Notation and Terminology . 102

4.2.2 Collision Detection . 103

4.2.3 Penetration Depth (PD) Computation 105

4.3 Voronoi-based Culling for Proximity Queries 106

4.3.1 2nd Order Voronoi diagrams . 107

4.3.2 PNS Computation Using 2nd Order Voronoi Diagrams 107

4.3.3 Discrete Voronoi Diagram Computation 109

4.3.4 Conservative PNS Computation using Distance Bounds 111

4.4 Proximity Queries using Discrete Voronoi Diagrams 113

4.4.1 Stage I: AABB Culling . 113

4.4.2 Stage II: Voronoi-based Culling . 114

4.4.3 Stage III: Exact Proximity Tests . 117

4.5 Implementation and Performance . 118

4.5.1 Implementation . 118

xiii

4.5.2 Benchmarks Used . 121

4.6 Discussion . 123

4.6.1 Comparison . 123

4.6.2 Analysis . 126

4.6.3 Limitations . 127

5 Homotopy Preserving Simplified Medial Axis 128

5.1 Related Work . 130

5.1.1 Voronoi Diagram and Medial Axis Computation 130

5.1.2 Medial Axis Simplification . 133

5.1.3 Topological and Smoothness Properties 134

5.2 Notation and Background . 134

5.2.1 Basic Terminology . 134

5.2.2 Voronoi Diagram Point Classification 136

5.2.3 Medial Axis Point Classification . 138

5.2.4 Homotopy Equivalence . 139

5.2.5 θ-Simplified Medial Axis . 140

5.3 Homotopy Preserving Voronoi Diagram . 141

5.3.1 Overview . 141

xiv

5.3.2 Homotopy Criterion . 143

5.3.3 Completeness . 147

5.4 Approximate Voronoi Diagram Computation 148

5.4.1 Homotopy Criterion Computation 148

5.4.2 Computing cell governors . 150

5.4.3 Approximate Voronoi Diagram Computation 152

5.5 θ-Homotopy Medial Axis . 153

5.6 θ-Homotopy Medial Axis Computation . 154

5.6.1 Sheet Separation Angle Computation 155

5.6.2 Simplification Algorithm . 158

5.7 Correctness . 162

5.7.1 Separation Angles of Medial Axis Parts 162

5.7.2 Homotopy Preservation . 165

5.8 Implementation and Results . 167

5.8.1 Implementation . 167

5.8.2 Approximate Voronoi Diagram Computation 168

5.8.3 θ-Homotopy Medial Axis Computation 169

5.9 Discussion . 172

5.9.1 Approximate Voronoi Diagram Computation 173

xv

5.9.2 θ-Homotopy Medial Axis Computation 175

5.9.3 Limitations . 177

6 Conclusions 179

6.1 Summary of Results . 180

6.2 Summary of Limitations . 181

6.3 Future Work . 183

BIBLIOGRAPHY 185

xvi

LIST OF TABLES

2.1 Distance Field Computation (Polygonal Models). 66

2.2 Distance Field Computation (Image Models). 66

4.1 Timings for proximity queries on deformable simulation benchmarks. 122

5.1 Notation for Voronoi Diagram and Simplified Medial Axis Computation. . . . 135

5.2 θ-Homotopy Medial Axis computation. 172

xvii

xviii

LIST OF FIGURES

1.1 The distance field, Voronoi diagram and medial axis of a 2D polygon. 2

1.2 k-th order Voronoi diagrams of 5 point sites. 4

1.3 A schematic of the medial axis of a cuboid. 5

1.4 Relation between the medial axis and Voronoi diagram of a polygon. 6

1.5 Different proximity queries between 2 polygons. 7

1.6 Near-degenerate configuration of the Voronoi diagram. 11

1.7 Instability of the medial axis. 12

1.8 Approximate medial axis computation without topological guarantees. 13

2.1 Quadratic distance function from a site to a plane. 27

2.2 Distance vector computation. 28

2.3 Domain of distance field computation on a slice s for non-

manifold sites. 32

2.4 Bounding polytope computation for a hyperbolic point. 34

2.5 Site Classification. 39

2.6 Sampling Error. 43

2.7 Conservative Sampling. 44

xix

2.8 Clamping distance field computation to Voronoi region bounds

on a slice. 46

2.9 Change in distance field for signed distance computation 47

2.10 Ranges in 2D. 49

2.11 Set Definitions. 51

2.12 PIS Computation in 2D. 53

2.13 GPU Based PIS Computation in 2D. 57

2.14 Approximate Medial Axis Transform. 60

2.15 Triceratops Model. 62

2.16 Cassini Model. 62

2.17 Brain Model . 63

2.18 Right Hippocampus in the Brain Model. 63

2.19 Timing Comparison. 65

2.20 Fill Rate. 65

2.21 Different θ-SMA for the Sinus Image Dataset Image. 67

2.22 Planning in an assembly environment. 68

2.23 Voronoi Diagram Accuracy. 69

3.1 Surface distance map of the Hugo model enclosed in a box 76

3.2 Affine map and distance computation. 79

xx

3.3 Surface Distance map computation on deforming letters ”EG” 84

3.4 Distance map computation for a deforming triangle. 88

3.5 Distance beteen adjacent samples in 2D plane. 88

3.6 Relative error in distance map computation for a deformable model. 90

3.7 Surface distance map computation on deformable models. 91

3.8 Timing comparison between surface distance maps and a

GPU-based volumetric distance field algorithm. 95

4.1 Multiple deformable models simulation with dynamic topology. 98

4.2 N-body distance query . 103

4.3 Continuous Collision Detection for two polygons. 104

4.4 Local PD Computation for two polygons. 106

4.5 The 1st and 2ndorder Voronoi diagrams of 9 polygons. 108

4.6 Conservative PNS using discrete Voronoi diagram. 111

4.7 Overall proximity computation algorithm. 114

4.8 Application of our proximity query algorithm to a simulation

with 10 objects. 115

4.9 Computation of 2nd order Discrete Voronoi Diagram (DVD)

on GPU. 117

4.10 Skirt cloth simulation. 118

4.11 Cloth-Sphere simulation. 119

xxi

4.12 Multiple deformable models simulation. 120

4.13 Large scale deformable object simulation. 121

4.14 Graph of the average time spent in the three stages of our

algorithm for the five benchmarks. 122

4.15 Average number of exact triangle-triangle distance queries

performed using an AABB-based algorithm and using Voronoi

diagrams. 123

4.16 Culling efficiency as a function of the Voronoi grid resolution. 124

4.17 Graph highlighting the performance improvement obtained

using our Voronoi-based algorithm over an efficient AABB-

based algorithm. 125

5.1 Medial axis point classification. 139

5.2 θ-Simplified Medial Axis,Mθ. 140

5.3 Homotopy Preserving Approximate Voronoi Diagram. 141

5.4 Proof of homotopy preserving lemma. 145

5.5 Deformation retract of a Voronoi region. 146

5.6 Homotopy criterion computation. 149

5.7 Disconnected θ-Simplified Medial Axis. 153

5.8 Normal Cone to compute ∆θ for a point site 157

5.9 Wedge to determine ∆θ for a line site . 157

xxii

5.10 Classification of sheets for iterative pruning. 159

5.11 Sheet pruning. 160

5.12 Separation angle of a seam. 163

5.13 The homotopy preserving approximate Voronoi diagram for

two simple models with degeneracies . 167

5.14 Homotopy preserving approximate Voronoi diagram of a spoon

model. 168

5.15 Homotopy preserving approximate Voronoi diagram of Chisel

Model. 169

5.16 Simplified medial axis of flange plate model. 170

5.17 Simplified medial axis of brake model. 170

5.18 Primer Anvil Model . 171

5.19 θ-homotopy medial axis of Ridged Rod model 171

5.20 θ-Homotopy medial axis of CAD mount. 171

5.21 Approximate medial axis of Knot model. 172

5.22 Medial surfac of a cube model with a spherical void. 172

5.23 Homotopy preserving simplified medial axis of a Drivewheel

Model with random noise. 173

xxiii

xxiv

Chapter 1

Introduction

The Voronoi diagram is one of the most fundamental geometric data structures. The

concepts behind Voronoi diagrams have been independently developed and applied in vari-

ous fields of sciences, including biology, chemistry, physics, crystallography, geography and

mathematics. The mathematical formulation was provided by mathematicians Voronoi and

Dirichlet over a century ago. The Voronoi diagram was introduced to computational geome-

try by Shamos and Hoey [SH75], and has been applied to solve several problems in geometry

and computer graphics.

Given a set of geometric primitives (also called ‘sites’) and a distance function, the

Voronoi diagram is a subdivision of space into cells, such that all points in a cell have the

same closest site according to the given distance function [VO98]. Informally, the Voronoi

diagram captures the proximity structure of the collection of sites.

The medial axis of a geometric object is defined as the locus of centers of maximal in-

scribed spheres. The medial axis is a fundamental shape operation and was first proposed by

Blum [Blu67] for biological shape measurement. Given a 3D solid, the medial axis is a well

defined skeletal shape representation that provides complete information about the geometry

and topology.

The Voronoi diagram of an object under the Euclidean distance metric is closely related

to its medial axis. For a polyhedron, the medial axis can be easily constructed from the

Voronoi diagram, and vice-versa [Cul00]. Another closely related concept is that of distance

fields. Given a set of geometric primitives (also called ‘sites’) a distance field is a scalar field

defined at each point by the smallest distance from the point to the set of sites. The Voronoi

diagram provides an implicit representation of the distance field. An example of the distance

field, Voronoi diagram and medial axis of a 2D polyhedron is given in figure 1.1.

(a) (b) (c)

Figure 1.1: The distance field, Voronoi diagram and medial axis of a 2D polygon. The

polygon is shown in bold red. (a) The distance field in grayscale, with distance increasing

from black to white (b) Voronoi diagram shown in thin black curves. Each color represents a

different Voronoi region. (c) Medial axis shown in thin black curves.

Voronoi diagrams, medial axes and distance fields have been used for a number of appli-

cations, including collision and proximity queries [LC91a, HZLM01], computer vision [PSS+03],

motion planning and navigation [FGLM01, HCK+00], mesh generation and finite element

analysis [SERB98, Sur03], design and interrogation [PG90, Wol92], shape analysis [BBGS99],

shape simplification [TH03].

In particular, different proximity queries are required to perform collision detection, con-

tact response and dynamic simulation. These queries are in interactive simulation systems

with many applications such as surgical simulation, robotics, computer games, animation,

haptics and bio-informatics. Given a general model, its Voronoi diagram provides an ef-

ficient data structure for proximity computation for any point in space. Thus the Voronoi

diagram is considered as one of the most powerful data structures for proximity queries.

However, the use of Voronoi diagrams and medial axes to applications involving 3D

2

polygonal models has been limited. This is due to the difficulty in design and implementation

of reliable and efficient algorithms for computation and application of the Voronoi diagram

and medial axis of 3D polygonal models.

The difficulty arises due to various reasons. Firstly, the combinatorial complexity of

the Voronoi diagram is high. The upper bound on the combinatorial complexity is between

O(n2) and O(n3 +ǫ) for any positive ǫ, where n is the number of faces, edges and vertices on

the polyhedron [SA95]. Secondly, the faces, edges and vertices of the Voronoi diagram of a

3D polyhedral model have algebraic degree two, four and eight, making robust computation

difficult due to degeneracies and numerical errors. Finally, the medial axis exhibits instability

- it is sensitive to boundary details. Small modifications in the boundary of the solid can result

in large modifications of the medial axis (shown in Figure 1.7). For practical applications a

stable subset of the medial axis should be computed.

1.1 Problem Definition

A geometric primitive or an object in R
d is called a site. Given a distance function, the

distance between a point in R
d and a set of sites is the minimum distance between the point

and its closest site. The distance field is the scalar field given by the distance from each point

to the set of sites. Under the same distance function, the first order Voronoi region of a site k

is the set of points in R
d closest to site k than to any other site. Then the first order Voronoi

diagram is a partition of R
d into Voronoi regions of all sites.

In a standard Voronoi diagram, the sites are points. The standard Voronoi diagram is

closely related to a spatial tessellation of points called the Delaunay Tessellation. The De-

launay tessellation is a simplicial tessellation such that the circumscribing d-sphere of each

d-dimensional simplex is empty (i.e. it does not contain any points in the interior). The

Voronoi diagram and Delaunay tessellation are duals of each other. Two points share a De-

3

launay edge iff their Voronoi regions share a (d− 1) dimensional face.

1.1.1 Generalized Voronoi Diagrams

The standard first order Voronoi diagram can be generalized using non-Eucidlean dis-

tance functions, higher order sites (e.g. line segments, polygons) and non-Euclidean spaces.

Our goal is to compute the generalized Voronoi diagram of a 3D polyhedron. For a 3D poly-

hedron, the set of sites consists of the boundary elements, i.e. vertices, open edges and open

faces on the boundary of the polyhedron.

The Voronoi diagram can also be generalized by computing the distances to a subset of

sites. A k-th order Voronoi region is the set of points in R
d closest to a set of k sites than to

any other site. The k-th order Voronoi diagram is the partition of R
d into k-th order Voronoi

regions. An example of various k-th order Voronoi diagrams (k = 1, . . . , 5) of a set of 5

point sites is given in figure 1.2.

Figure 1.2: k-th order Voronoi diagrams of 5 point sites. Left to right: First, second, third

and fourth order Voronoi diagrams of 5 point sites. (Image courtesy [FG06]).

As mentioned before, robust computation of exact generalized Voronoi diagram is a dif-

ficult problem[ABE04, Cul00]. Hence many approaches, sample a subset of R
d at a finite

set of points, and compute an approximation called the Discrete Voronoi Diagram. The k-th

order discrete Voronoi diagram (DVD) is a partition of the finite set of points into k-th order

discrete Voronoi regions. The k-th order discrete Voronoi region is a finite set of points which

are closest to a set of k sites than to any other site.

4

1.1.2 Medial Axis

For a closed polyhedron in R
d, the medial axis is the locus of centers of maximal inscribed

d-spheres. An inscribed sphere is maximal if no other inscribed sphere contains it. An

alternate definition of the medial axis is the locus of points with at-least 2 closest points on

the boundary of the polyhedron. The closest points on the boundary are called footprints. The

two or more closest boundary elements (sites) are called the governors of a medial axis point.

A generic medial axis point lies on the bisector of its two governors. In 3-D, the bisectors

are quadrics. These medial axis elements are called sheets. The sheets meet along curves

called seams, which in turn intersect at junction points. The sheets, seams and junctions for

a simple polyhedron are shown in figure 1.3.

Sheet

Seam

Junction

Figure 1.3: A schematic of the medial axis of a cuboid. The sheets are in blue. Three seams

are shown in orange, and the common junction is in green.

The medial axis transform (MAT) is defined by associating to each axis point the radius

of the maximal inscribed sphere. The original shape can be reconstructed by taking the union

of all spheres. Thus the MAT is a complete shape representation, describing the shape by a

lower-dimensional skeleton together with a local thickness.

For a polyhedron, the medial axis is a subset of its Voronoi diagram [ER02]. A point

which lies on the Voronoi diagram but not on the medial axis lies on the bisector surface

between two adjacent sites (e.g., a face and an incident edge, or an edge and incident ver-

tex). The number of such extra surfaces is at most O(m), m = number of boundary sites

on the polyhedron. A 2D illustration is provided in Figure 1.4. Hence, the medial axis and

5

Figure 1.4: Relation between the medial axis and Voronoi diagram of a polygon. The differ-

ence is in the Voronoi boundaries touching the reflex vertices. The center of the circle has 3
nearest sites, however the circle has only 1 unique point of tangency on the boundary. Hence

this point belongs to the generalized Voronoi diagram, but not to the medial axis.

Voronoi diagram can be computed from each other in linear time in the number of boudary

sites [Cul00, ER02].

Homotopy equivalence: The notion of homotopy equivalence between topological sets

enforces a one-to-one correspondence between connected components, holes, tunnels or cav-

ities and also the way in which they are related. It has been shown by Lieutier [Lie03] that

any bounded open subset of R
d is homotopy equivalent to its medial axis. Intuitively this

implies that the medial axis and the shape are connected in the same way. Thus the medial

axis of a polyhedron captures the topological information of the polyhedron.

Formally, two maps f : X → Y and g : X → Y are homotopic if there exists a continuous

family of maps h : [0, 1] × X → Y , such that h(0,x) = f and h(1,x) = g for any x ∈ X .

Thus, a homotopy is a deformation of one map to another. Two spacesX andY are homotopy

equivalent if there exist continuous maps f : X → Y and g : Y → X such that g ◦f and f ◦g

are homotopic to the identity maps on their respective spaces. As an example, f could be the

inclusion of a circle into an annulus, and g could be radial projection of the annulus onto the

circle. In situations such as this one, where f is an inclusion and f ◦ g is actually equal to the

identity map, the homotopy equivalence is called a deformation retraction [Spa89].

6

1.1.3 Proximity Queries

The set of proximity queries required for dynamic simulation includes collision detection,

separation distance and penetration depth computation. These queries are performed among

different objects (i.e. inter-object queries) or among primitives lying on the same object (i.e.

intra-object queries).

The Collision detection query checks whether two objects intersect and returns all pairs

of overlapping primitives (faces, edges and vertices). We consider two kinds of collision

queries: discrete and continuous. The discrete collision query is performed at a specific

or discrete instance of the simulation. In continuous collision detection (CCD), the motion

between primitives from two successive instances of the simulation is interpolated. The CCD

query computes the first time of contact between any two primitives within the time interval.

The Separation Distance query computes the pair of closest points (and containing primi-

tives) between two objects. In addition, the distance between the two objects is also returned.

(a) (b)

Figure 1.5: Different proximity queries between 2 polygons. (a) The two polygons overlap.

The colliding features are shown in bold lines. The penetration depth and direction is given

by the blue arrow. (b) The two polygons do not overlap. The separation distance is given by

the black arrow.

The Penetration Depth (PD) query measures the extent of overlap between two inter-

secting objects. The two objects are assumed to be orientable 2-manifolds in the region of

penetration. This guarantees that we have a well defined ‘interior’ each penetrating object.

7

The translational penetration depth is defined as the minimum translational distance needed

to make the two overlapping objects disjoint [DHKS93]. In this thesis, we shall restrict dis-

cussion to translational penetration depth. More recently work has been done in handling

rotational penetation depth. Examples of discrete collision, penetration depth and separation

distance queries among 2D polygonal objects is provided in figure 1.5.

1.2 Previous Work

There has been extensive study on Voronoi diagrams and medial axis computation in

various areas of computer science. This section describes some of the previous work and

challenges in computation of the Voronoi diagram of 3D polygonal models. Algorithms for

computation of the Voronoi diagram of a general 3D polyhedron are broadly classified into

discrete and continuous algorithms.

The discrete algorithms compute an approximation of the Voronoi diagram using a dis-

crete sampling of the space. One class of these algorithms approximates the polyhedron by a

finite set of point samples on the boundary. There are several efficient and robust algorithms

for computing the Delaunay triangulation and Voronoi diagram of a set of points in 3D (see

for e.g. [AK00]). However the Voronoi diagram of a set of points in 3D does not converge to

the medial axis of the polyhedron. Given a sufficiently dense point sampling of the boundary

of a smooth 3D object, practical algorithms have been proposed to compute a subset of the

Voronoi diagram of points which converges to its medial axis [ACK01a, DZ02a]. However

these approaches can guarantee convergence only for smooth objects - polyhedral models

with sharp edges require infinite sampling.

Another class of discrete algorithms sample a subset of R
3 at a finite set of points and

compute distances to the higher order sites at this set of points. Thus, these algorithms com-

pute a discrete Voronoi diagram of the 3D polyhedral model. The point samples may lie on

8

uniform grids [HCK+99b, FLM03], adaptive grids [VO98, ER02, BCMS05] or unstructured

spatial subdivisions [TT97, YBM04, SS06]. Both classes of discrete algorithms compute the

Voronoi diagram only to a certain resolution. The exact Voronoi diagram is computed as the

underlying sampling approaches infinity. In practice, these algorithms stop at a finite resolu-

tion and return an approximate Voronoi diagram. A common deficiency of these methods is

that there are no guarantees on the topology of the approximate Voronoi diagram.

Algorithms for accelerating the discrete Voronoi diagram computation on a uniform grid

using graphics hardware have been presented [WND97, HCK+99b, Den03b]. The graphics

processing unit (GPU) is a programmable parallel vector processors designed for rapid raster-

ization of geometric primitives. These approaches present distance field and Voronoi diagram

computation as a rasterization problem which can be efficiently performed in parallel on a

uniform 2D grid. However the existing algorithms may not be interactive for computations

on complex deformable 3D models.

A continuous Voronoi diagram algorithm is independent of the sampling resolution pa-

rameter. The continuous approaches for computing the exact Euclidean Voronoi diagram are

based on tracing algorithms [Mil93, SPB96, Cul00]. The tracing algorithm operates on the

graph formed by Voronoi edges (seam curves) and Voronoi vertices (junction points) of the

3D Voronoi diagram. The main idea is to construct this graph using breadth-first or depth-first

search. The algorithm requires exact computation of intersection points between (non-linear)

algebraic curves and ordering of points along an algebraic curve. Thus, the required precision

varies as a function of root isolation algorithms and bounds. As a result, continuous methods

based on floating-point arithmetic are sensitive to round-off error, while methods based on

exact arithmetic are not efficient.

The challenges in computation and application of the Voronoi diagram and medial axis

of 3D polyhedral models are as follows:

Combinatorial complexity: The combinatorial complexity of the 3D polyhedral Voronoi

9

diagram is defined as the total number of Voronoi faces (sheets), edges (seams) and vertices

(Junctions). Tight bounds on the worst-case complexity of the medial axis are not known. It

is currently known to be Ω(n2) and O(n3+ǫ), where n is the total number of faces, edges and

vertices on the boundary of the polyhedron. Examples of the Ω(n2) bound are provided by

Culver [Cul00]. The upper bound follows from Sharir and Agarwal [SA95].

In the same work, Sharir and Agarwal present a randomized algorithm for computing

the Voronoi diagram in O(n3+ǫ) time. However, they assume that certain operations, such

as junction location, take constant time, and this approach may not be suitable for practical

implementation. The tracing algorithms have a cost of O(nm), where m is the complexity

of the Voronoi diagram. The cost of the discrete methods depends on the desired resolution

and input complexity. For a dense point sampling of a polyhedral surface, the complexity of

the Delaunay triangulation is linear in number of points [AB02].

Robust Computation: The accuracy of continuous geometric algorithms depends on

the reliable computation of underlying primitives. The two common reliability problems in

implementations of geometric algorithms are: failure due to round-off error, and the inabil-

ity to handle degenerate configurations. These problems are collectively called robustness

problems.

Round-off error is introduced due to finite precision of computer arithmetic. Geometric

algorithms are quite sensitive to roundoff error. A small numerical error can lead to incorrect

evaluation of a geometric predicate possibly resulting in invalid output.

In addition, often a geometric algorithm assumes, for simplicity, that its input is in gen-

eral position. This means that certain rare configurations are disallowed, and an infinitesimal

perturbation of the input usually breaks the configuration. Such a configuration is called a

degenerate configuration. This problem is exaggerated by finite-precision arithmetic. In a

floating-point implementation, non-degenerate data may become degenerate. Also, degen-

eracies may be hard to detect and resolve. Moreover, real world data is typically not in

10

general position. In particular, models of synthetic objects (for e.g. CAD parts) often exhibit

symmetry which may lead to degeneracies for geometric algorithms.

One approach for handling robustness problems is to design algorithms which are stable

in the presence of round-off error, and insensitive to presence of degeneracies. However,

such an approach is rather limited. Many approaches require either a systematic detection

of degenerate cases or a systematic way of applying a small perturbation. Such approaches

require some form of exact computation.

(a) (b)

Figure 1.6: Near-degenerate configuration of the Voronoi diagram. An almost regular

hexagon. The right-most vertex has been perturbed by an infinitesimal amount. (a) The

Voronoi diagram of the hexagon (b) Magnified view of the center showing two junctions.

Arbitrarily large precision may be required to distinguish the junctions.

Specifically for the continuous algorithms for Voronoi diagram computation, one needs

reliable computation of locations of junction points and their ordering on seam curves. This

involves solving a system of non-linear tri-variate equations, which reduces to solving equa-

tions up-to degree eight. The degenerate cases for Voronoi diagrams of polyhedral models

are listed by Culver [Cul00], and some of these cases can be common in solid modeling and

processing. An example of a near-degenerate junction is shown in figure 1.6. To detect and

correctly handle these degeneracies, Culver uses exact computation, which may not scale

efficiently to complex models composed of tens of thousands of polygons.

Instability: The Voronoi diagram and medial axis of a polyhedral model are unstable.

11

This means that small modifications to the boundary of a polyhedron can induce large modi-

fications in its Voronoi diagram. A 2D example is shown in figure 1.7. The problem is exag-

gerated by the combinatorial complexity of the Voronoi diagram. Noise on the boundary also

leads to higher combinatorial complexity. Thus a practical application requires extraction of

a stable approximation of the Voronoi diagram or medial axis.

(a) (b)

Figure 1.7: Instability of the medial axis. (a) The medial axis (orange) of a simple polygon.

(b) Small perturbation in boundary causes large change in the medial axis.

The stability of the medial axis under small perturbations has been recently studied, and it

has been shown that for small perturbation in the boundary of a shape, the original medial axis

is contained inside a tight parallel body of the noisy medial axis [ABE04, CS02]. This result

provides promise for extraction of a simplified medial axis corresponding to its stable part.

The most common approach for medial axis simplification removes parts of the medial axis

using a threshold on an importance measure (see [ABE04] for a survey). Typical importance

measures used are distance to boundary and the angle subtended by the vectors from a point

on the medial axis to its footprints.

In addition, several application require preservation of the homotopy type of the medial

axis. However, existing medial axis simplification approaches are limited to discrete inputs,

and cannot provide guarantees on the topological correctness of the output. For example, the

medial axis is used to compute a high quality volumetric mesh for FEM analysis [DMB+96].

An approach for computing a simplified approximate medial axis using point samples on the

boundary may lead to introduction of artificial holes or miss certain topological features, as

shown in figure 1.8.

12

(a) (b) (c)

Figure 1.8: Approximate medial axis computation without topological guarantees. (a) A thin

CAD model. (b) Approximate medial axis computed using Voronoi diagram of points. (c)

Zoomed view of the computed medial axis highlighting regions where homotopy type is not

preserved. (Images courtesy GMSWorks, C-Solutions Inc.)

Application to Proximity Queries: The problem of fast and reliable geometric prox-

imity queries has been extensively studied. Despite the vast literature, real-time proximity

queries remain one of the major bottlenecks for interactive deformable simulation [TKH+05,

MHTG05]. Many existing methods are based on hierarchical representations and work well

for rigid models. Several efficient collision detection algorithms have been proposed for

deformable models, but they do not compute separation or penetration distances.

The upper bound on complexity of collision detection and separation distance compu-

tation is O(m2) where m is the number of primitives. In practice, only a small subset

of primitive pairs needs to be tested for exact proximity computations. Most prior algo-

rithms for proximity queries perform culling tests based on bounding volume hierarchies

such as spheres or axis-aligned bounding boxes (AABBs). Tighter bounding volume hierar-

chies achieve higher culling at a cost of increased computation time. Thus these algorithms

may not work well for dynamic environments involving close proximity scenarios or for

intra-object queries. In addition, exact computation of PD between two polyhedral models

is a global problem and cannot be solved using any ‘divide-and-conquer’ or localized ap-

proach [KOLM02]. Its worst complexity can be as high as O(n3
1n

3
2), where n1, n2 are the

number of boundary primitives on each polyhedral model.

13

External Voronoi regions of convex polytopes have been used to perform collision and

distance queries between rigid objects that can be represented as union of convex poly-

topes [LC91b, Mir98]. These algorithms have been implemented within different proximity

query packages such as I-COLLIDE, V-CLIP and SWIFT++ [Eri04]. However, it is hard to

extend these algorithms to general non-convex deformable models. This is due to lack of

robust algorithms for computing Voronoi diagrams of polygonal models at interactive rates.

Thus, robust and efficient computation of the Voronoi diagram and medial axis of 3D

polyhedral models remains a challenging problem, limits their application.

1.3 Thesis

Our thesis is

The discrete Voronoi diagram and simplified medial axis of 3D polyhedral models can

be computed efficiently with geometric and topological guarantees, and can be used for fast

proximity queries among multiple deformable models.

In this thesis we present efficient algorithms for computing discrete Voronoi diagram and

approximate medial axis of complex 3D polyhedral models. We describe an algorithm to

compute 3D distance fields of geometric models by using a linear factorization of Euclidean

distance vectors. This formulation maps directly to the linearly interpolating graphics ras-

terization hardware and enables us to compute distance fields of complex 3D models at in-

teractive rates. We also use clamping and culling algorithms based on properties of Voronoi

diagrams to accelerate this computation. We provide geometric guarantees on the result using

Hausdorff distance bounds.

We present a unified approach for performing different proximity queries among multiple

14

deformable models using second order discrete Voronoi diagrams. We show the reduction of

different proximity queries to specializations of N-body distance queries. We also present an

algorithm to reliably and efficiently compute N-body distance queries using the second order

discrete Voronoi diagram.

We also present an adaptive sampling algorithm to provide topological guarantees on

the approximate Voronoi diagram. Our algorithm uses subdivision criteria to compute an

approximate Voronoi diagram which is homotopy equivalent to the exact Euclidean Voronoi

diagram, and can handle degenerate configurations in the input polyhedron. The subdivision

criteria is based on computing the arrangement of 2D conic sections, which can be performed

accurately and efficiently [Be05, KCMh99]. Finally, we present an algorithm for efficiently

computing the homotopy-preserving simplified medial axis from the approximate Voronoi

diagram.

1.3.1 New Results

This dissertation presents contributions to interactive computation of discrete Voronoi di-

agrams, fast proximity computation among multiple deformable models and efficient compu-

tation of a homotopy-preserving Voronoi diagram and simplified medial axis for polyhedral

models. The main results are described below.

Interactive computation of Discrete Voronoi Diagrams

• Linear factorization of distance vectors. We present an elegant geometric formulation

to represent the Euclidean norm distance vector from a point on a plane to a site as

a bilinear interpolation of the distance vectors along the principal axes. This enables

efficient computation of distance functions using linearly interpolating graphics hard-

ware.

15

• Computation of Voronoi region bounds. We present a multi-pass algorithm that exploits

geometric properties of Voronoi diagrams to compute Voronoi region bounds in 2D and

3D. The underlying approach also extends to higher dimensions.

• Culling techniques for distance computations. We present culling techniques for 3D

distance field and discrete Voronoi diagram computation using Voronoi region bounds

and coherence of distance fields. The domain is divided into ranges, and sites which

do not contribute to the Voronoi diagram within a range are culled away.

• Surface Distance Maps:. We present a new algorithm for computing the distance map

and discrete Voronoi diagram on a triangulated mesh. We use simple texture represen-

tation to store a piecewise planar parametrization of the mesh. The parameterization

defines an affine transformation for each primitive of the mesh. The affine transfor-

mation of the geometric primitive is applied to compute the distance functions of 3D

primitives using the texture mapping hardware. This representation, called surface

distance map, is used to perform efficient and accurate proximity queries.

Fast proximity computation among multiple deformable models

• N-body distance query: We introduce a unified approach to perform different proxim-

ity queries using N-body distance computation: given a set P of primitives, for each

primitive pi we compute the closest primitive in P \ {pi}. We also present efficient

algorithms for continuous collision detection and local penetration depth computation

based on the N-body distance query.

• Voronoi-based culling: We use properties of Voronoi diagrams to perform the N-body

distance query efficiently. The closest primitive to any primitive (pi) is one of the

Voronoi neighbors of pi. Therefore, the Voronoi diagram of primitives is an efficient

data structure to perform N-body distance culling. We use the 2ndorder Voronoi di-

16

agram because it provides information about two closest primitives at each point in

space and results in a higher culling efficiency.

• Fast and conservative computations using discrete Voronoi diagrams: The exact com-

putation of continuous 3D Voronoi diagrams for general triangulated models is a hard

problem. Instead, we compute discrete Voronoi diagrams on a uniform grid using

graphics hardware. We exploit properties of the 2ndorder Voronoi diagram to derive

distance error bounds that take into account discretization and sampling errors in dis-

crete Voronoi diagrams. We use the distance bounds to efficiently compute the closest

primitive at object-space precision i.e. IEEE 64-bit floating point accuracy.

Computation of homotopy-preserving simplified medial axis

• Topological properties: We present an algorithm to compute an approximate Voronoi

diagram that is homotopy equivalent to the exact Voronoi diagram. To provide this

guarantee we exploit topological properties of the Voronoi diagram of a polyhedral

model, and use a subdivision scheme based on accurate 2D tests.

• Computing arrangement of 2D conic sections: The topological tests used in the sub-

division scheme reduce to computing an arrangement of 2D conic sections on a plane,

instead of computing an arrangement of 3D quadric surfaces. The arrangement of 2D

conics has been well studied and good implementations are available. As a result, this

algorithm is relatively simple to implement as compared to exact 3D Voronoi diagram

computation algorithms and does not require arbitarily high precision to compute the

junctions.

• Homotopy-preserving medial axis simplification: We present an efficient algorithm to

compute a medial axis approximation which is homotopy equivalent to the given poly-

hedron. The algorithm uses iterative pruning of medial axis parts based on a stability

measure and efficient local tests.

17

• Computing stability of medial axis parts: We present a relationship between the stabil-

ity of medial axis junctions and seams to stability of incident sheets using separation

angles. We also present an algorithm to compute a bounded approximation of this

stability measure using discrete sampling.

As compared to prior approaches, the algorithms presented in this thesis have several

advantages:

• Generality: The distance field and discrete Voronoi diagram computation algorithms

make no assumptions with regards to the input models. The objects can have complex

topologies, may be non-orientable or non-manifold surfaces, or may be represented

using voxel data.

• Non-rigid Motion: The algorithms involve no precomputation and are directly appli-

cable to dynamic models undergoing non-rigid motion, and changing topologies.

• Efficiency: Discrete Voronoi diagram and proximity computation are up-to an order

of magnitude faster than prior approaches, with improved culling efficiency and tighter

bounds. As a result, we achieve interactive performance for complex models consisting

of thousands of primitives.

• Accuracy: Discrete Voronoi diagram computation on the GPU is performed at 32-

bit floating point precision. In addition, tight geometric bounds are provided on the

accuracy of the discrete Voronoi diagram. In addition, the algorithms are designed to

account for under-sampling errors due to limited frame buffer precision on the GPU.

• Topological Guarantees: Homotopy equivalence is guaranteed even in presence of

near-degenerate configurations of the Voronoi diagram.

18

1.3.2 Organization

The rest of the dissertation is organized as follows. Chapter 2 presents algorithms for

interactive 3D distance field and discrete Voronoi diagram computation using graphics hard-

ware. Chapter 3 introduces surface distance maps. Chapter 4 demonstrates the application of

discrete Voronoi diagrams and surface distance maps to fast proximity computation among

multiple deformable models. Chapter 5 presents the algorithms for computing homotopy-

preserving approximate Voronoi diagram and simplified medial axis. Finally, chapter ??

summarizes the main conclusions and discusses future research directions.

19

20

Chapter 2

Fast 3D Discrete Voronoi Diagram

Computation

Many algorithms have been proposed to compute discretized Voronoi diagrams and dis-

tance fields along uniform grids using graphics rasterization hardware [WND97, HCK+99b,

SPG03]. Graphics processing units (GPUs) are programmable vector processors designed

for rapid rasterization of geometric primitives. Moreover, GPUs have been growing at a rate

faster than the Moore’s Law over the last decade, making them attractive for certain general

purpose parallel computations.

These existing algorithms rasterize the distance functions of the geometric primitives

and use the depth buffer hardware to compute an approximation of the lower envelope of

the distance functions. The algorithms for general polygonal primitives approximate the

non-linear distance functions using a distance mesh. This can be expensive for complex

models and the accuracy of the overall approach is governed by the tessellation error. As a

result, previous techniques are unable to compute 3D distance fields of complex models at

interactive rates.

In this chapter we present algorithms for interactive computation of 3D distance fields and

discrete Voronoi diagrams using graphics hardware. we present the terminology, and provide

a brief overview of general purpose computation capabilities of current graphics hardware.

We then present linear factorization of Euclidean distance vectors. This formulation maps di-

rectly to the linearly interpolating graphics rasterization hardware and enables us to compute

distance fields of complex 3D models at interactive rates. We also use clamping and culling

algorithms based on properties of Voronoi diagrams to accelerate this computation.

2.1 Previous Work

In this section we give a brief overview of previous work on computing discrete Voronoi

diagrams and distance fields. We also mention some GPU-based algorithms to evaluate non-

linear functions.

2.1.1 Distance Fields and Discrete Voronoi Diagrams

The algorithms for distance field and discrete Voronoi diagram computation can be broadly

categorized based on different model representations such as images, volumes or polygonal

representations.

Image datasets: Given discrete binary image data, many exact and approximate algo-

rithms for distance field and discrete Voronoi diagram computation have been proposed. A

good overview of these algorithms has been given in [Cui99]. The approximate methods

compute the distance field in a local neighborhood of each voxel. Danielsson [Dan80] uses

a scanning approach in 2D based on the assumption that the nearest object pixels are similar.

The Fast Marching Method (FMM) [Set99] propagates a contour to compute the distance

transformation from the neighbors. This provides an approximate finite difference solution

to the Eikonal Equation |∇u| = 1/f . Repeated application of the local masks of the ap-

proximate algorithms till a stable solution is reached provides exact distance transforms. A

parallel algorithm for this is proposed in [Yam84]. Efficient implementations of this store a

22

propagation front in dynamic lists [Egg98, Rag92]. Propagation methods can be augmented

by storing additional information like direction vectors to nearest voxel [Mul92] and closest

features [HLC+01]. Propagating additional information along with the FMM, leads to an

exact distance transform algorithm [BMW00]. A linear time algorithm for computing ex-

act Euclidean distance transform of a 2-D binary image is presented in [BGKW95]. This is

extended to k-D images and other distance metrics [MQR03].

Geometric Models. There is extensive work in computing the exact Voronoi diagram of

a set of points as the dual of the Delaunay triangulation of the points. A good survey of these

algorithms is given in [Aur91].

For geometric models represented using polygonal or higher order surfaces in 3D, many

algorithms compute an approximation to the Voronoi diagram by computing distance fields

on a uniform grid or an adaptive grid. A key issue in generating discrete distance samples

is the underlying sampling rate used for adaptive subdivision. Adaptive refinement strate-

gies for distance field computation use trilinear interpolation or curvature information to

generate an octree spatial decomposition [SFYC96, FPRJ00, PF01]. Although, these al-

gorithms optimize the sparsity of the octree representation, the approximation using a tri-

linear interpolation may not work well for curved primitives or when the final surface has

a lot of sharp features. Adaptive refinement approaches for Voronoi diagram computation

use a Voronoi region based labeling of the sample points to generate an spatial decomposi-

tion [VO98, TT97, ER02].

Computation of a discrete Voronoi diagram on a uniform grid can be performed efficiently

using parallel algorithms implemented on graphics hardware. Hoff et al. [HCK+99a] render

a polygonal approximation of the distance function on depth-buffered graphics hardware and

compute the generalized Voronoi Diagrams in two and three dimensions. This approach

works on any geometric model that can be polygonized and is applicable to any distance

function that can be rasterized. An efficient extension of the 2-D algorithm for point sites

23

is proposed in [Den03a]. It uses precomputed depth textures, and a quadtree to estimate

Voronoi region bounds. However, the extension of this approach to higher dimensions or

higher order primitives is not presented. A class of exact distance transform algorithms is

based on computing partial Voronoi diagrams [Lin93]. A scan-conversion method to compute

the 3-D Euclidean distance field in a narrow band around manifold triangle meshes is the

Characteristics/Scan-Conversion (CSC) algorithm [Mau03]. The CSC algorithm uses the

connectivity of the mesh to compute polyhedral bounding volumes for the Voronoi cells. The

distance function for each site is evaluated only for the voxels lying inside this polyhedral

bounding volume. An efficient GPU based implementation of the CSC algorithm is presented

in [SPG03]. The number of polygons sent to the graphics pipeline is reduced and the non-

linear distance functions are evaluated using fragment programs.

2.1.2 GPU-Based Non-linear Computations

Many algorithms have been proposed to exploit the programmability features of GPUs

to evaluate and render higher order functions or surfaces. Shieu etal. [SJP05] used fragment

programs to evaluate the Catmull-Clark subdivision surfaces. Their approach represented

the control points in texture memory and used a fragment program to compute bicubic B-

spline surfaces. Purcell et al. [PDC+03] presented ray-tracing algorithms by using fragment

programs to evaluate ray-primitive intersections. Kanai and Yashui [KY04] presented an im-

proved algorithm to compute per-pixel normals on subdivision surfaces. Elegant algorithms

to directly render curves and algebraic and parametric surfaces such as NURBS and T-spline

surfaces have also been proposed [GBK05, LB05, LB06]. In contrast with these approaches,

our algorithm explicitly decomposes the distance functions into linear factors and uses bilin-

ear interpolation capabilities of the texture mapping hardware to evaluate these functions on

a planar domain.

24

2.2 Notation and Background

In this section we provide notation used in the chapter and brief overview of graphics

processing units (GPUs) with specific details on features useful for interactive distance field

computation. We also summarize the existing work on distance field computation using

GPUs.

2.2.1 Terminology

Let q = (q1, q2, . . . , qn) denote a point in n dimensions. For points in 3-dimensions, we

use the standard Cartesian coordinates, q = (qx, qy, qz). A geometric primitive or an object

is called a site. In this work, a site is a vertex, an open edge or an open triangle. The pivot

point of a site is any point lying on the site, and is represented κ(pi). In practice, we use the

centroid of a site as its pivot point.

Given a site pi, the scalar distance function d (q, pi) denotes the distance from the point

q ∈ R
n to the closest point on pi. Let P = {p1, p2, . . . , pm} denote a set of m sites. The

minimum distance of q to P is represented as d (q,P) = minpi∈P(d (q, pi)). The distance

field DD(P), for a domainD ⊂ R
3, is the scalar field given by the minimum distance function

d (q,P) for all points q ∈ D. For ease of notation, let DD = DD(P). Given a subset,X ⊂ P ,

d (q,X) ≥ d (q,P)∀q ∈ D.

Distance fields are closely related to Voronoi diagrams. The Voronoi region for pi is

defined as:

V (i) = {q | d (q, pi) ≤ d (q, pj)∀pj ∈ P,q ∈ D}

The Voronoi diagram is a partition of D into m Voronoi regions:

VD(P ,D) =
⋃

pi,pj∈P,i6=j

V (pi) ∩ V (pj).

25

The Voronoi diagram can be represented as the projection of the distance field to the do-

main D [ES86].

Our goal is to compute a discrete Voronoi diagram within a bounded domain D. Given a

finite set of point samples D̃ in domain D, and a set of sites P , the discrete Voronoi diagram

(DVD) is a partition of the point samples onto discrete Voronoi regions, and is denoted as

ṼD(P). The discrete Voronoi region is a finite set of points which are closer to one site

than to any other site, and is denoted Ṽ (pi). We require that the domain D is a superset

of the bounding box of all sites. This assumption is used to guarantee correctness of the

culling algorithm. The finite set of point samples D̃ lie along a uniform grid. Without loss

of generality, we can scale the domain D to be the half-open unit interval in n-dimensions

(0, 1]n, i.e a unit square in 2D and the unit cube in 3D. To apply our culling algorithm in n-

dimensions, we introduce n-D ranges. We shall refer to an n-dimensional hypercube as an n-

D range (a rectangular tile in 2D, a cube in 3D). The n-D range (a0, b0]×(a1, b1]×. . .×(an, bn]

is represented as T(a0,b0](a1,b1]...(an,bn]. We define each range to be a half-open set such that the

intersection between two ranges is empty, and any point in D belongs to exactly one range.

For ease of notation, let VD(P ,D) = VD(P). In this chapter, we shall denote the Voronoi

diagram computed on a range T as VDT(P). LetX c, ∂X and Int(X) denote the complement,

boundary and interior of a set X , respectively. For any domain N ⊆ D, N c = D \ N . For

3D grids, the set of cells with a constant z-value represents a uniform 2D grid and is called a

slice. A slice sk is defined as sk = {(x, y, z)|(x, y, z) ∈ D, z = zk}.

2.2.2 Distance Field Computation using GPUs

A brute-force algorithm to compute ṼD(P) would evaluate d (q)pi for all sites pi ∈ P

and store the minimum at each grid point q ∈ D̃. If there are m sites, and the grid has M

cells, the time complexity of this algorithm is O(mM). This brute force algorithm can be

easily parallelized using depth-buffered graphics rasterization hardware [HCK+99a]. Graph-

26

ics hardware is well suited for performing parallel computations on a 2D grid. Computation

of the lower envelope is posed as a visibility problem along a view direction that is orthogo-

nal to the 2D grid. The visibility test is efficiently performed using the depth test on graphics

hardware. The discrete Voronoi diagram is computed along with the distance field. In 2D, the

resolution of the grid is governed by the image-space resolution of the graphics processors

(e.g. 1000× 1000).

(a) (b) (c)

Figure 2.1: Quadratic distance function from a site to a plane: The graph representing the

Euclidean distance from a site to a point on a plane is a quadric surface. (a) A paraboloid

for a point site (b) An elliptical cone for a line site (c) A pair of planes for a planar polygon.

The 3D distance field is computed by sweeping along the Z axis. For each slice, the

distance field is computed using the distance from the sites to the plane [HCK+99b, SPG03].

The underlying distance function is a degree two function (i.e. a quadric surface in 3D).

For example, the Euclidean distance function of a point site to a plane is one sheet of the

hyperboloid, and of a line to a plane is an elliptical cone, shown in figure 2.1.

Given a complex model with tens of thousands of sites, evaluating the non-linear distance

function for each site can be expensive. Hoff et al. [HCK+99b] computed a piece-wise

linear approximation of the distance function using a polygonal distance mesh. However, the

linear approximation introduces tessellation error. Moreover, the overhead of computing the

polygonal approximation can be high for interactive applications. Sigg et al. [SPG03] used

the programmable capabilities of GPUs to evaluate the non-linear distance function at each

27

point (or pixel) on the plane. They briefly mention use of bilinear interpolation, and present

an approach which uses several instructions per fragment to compute the distance function.

However, their approach does not compute the exact discrete Voronoi diagram.

2.3 Linear Factorization

In contrast to earlier approaches, we compute the distance function for each site by eval-

uating the distance vector field on the GPU. A distance vector field consists of vectors from

the 3D points to the closest point on the site. The magnitude of the distance vector provides

the value of the distance function of the site at a grid point. We first present a formulation

to compute the distance vector at any point on a planar polygon by using the distance vec-

tors of the polygon vertices to the site. Next, we present techniques to compute these planar

polygons which bound a site’s Voronoi region on a slice. Finally, we map the problem of

distance vector computation to texture mapping hardware on the GPU. Linear factorization

Figure 2.2: Distance vector computation: This figure illustrates the distance vector computa-

tion at any point on a plane. The distance vector at an interior point is a bilinear interpolant

of the distance vectors at the vertices.

28

of distance vectors is used to evaluate the distance functions. Formally speaking, the linear

factorization expresses the distance vector at each point inside the polygon in terms of bilin-

ear interpolation of the distance vectors of the polygon vertices. Given a convex polygon P

with vertices (v1, . . . , vk), the linear factorization expresses the distance vector at any interior

point p of the polygon as

~d(p, pi) =
k∑

i=1

αi
~d(vi, pi),

where

p =
k∑

i=

αivi, 0 ≤ αi ≤ 1 and

k∑

i=1

αi = 1.

We present three key properties of distance vector computation at a point on a plane to point

sites, line segment sites, and triangular sites. These properties are used to evaluate the dis-

tance functions efficiently. We first highlight the property to perform linear factorization of

the distance vector of a point on a line to a point site.

Property 2.1. Given two points a and b on a plane and a point site p. Let ~da and ~db denote

the distance vectors of a and b to p respectively. Then, the distance vector ~dx of any point

x = αa + (1 − α)b,0 ≤ α ≤ 1 is the linear combination of distance vectors of a and b,

and ~dx = α ~da + (1− α) ~db.

Property 2.1 indicates that given the distance vectors of the vertices of any planar primitive

to a point site, the distance vector of any interior point can be computed using a bilinear

interpolation of the distance vectors of vertices.

The distance vector of a point x that projects orthogonally to the interior of a line seg-

ment is a vector perpendicular to the line. We use the following property to perform linear

factorization of the distance vector of a point that projects onto a line segment.

Property 2.2. Given two points a and b on a plane and a line segment l with end points e

and f . Let ~da = e − a and ~db = f − b denote the distance vectors of a and b to the site l

29

respectively. Then, the distance vector ~dx of any point x = αa+ (1−α)b,0 ≤ α ≤ 1 is the

linear combination of distance vectors of a and b, and ~dx = α ~da + (1− α) ~db.

We use property 2.2 to compute the distance vector of any point that projects onto l. This

property indicates that given the vertices of a convex polygon whose projection lies within l,

the distance vector of any interior point in the convex polygon is the bilinear interpolation of

the distance vectors of the convex polygon vertices to l.

We extend Property 2.1 and Property 2.2 to compute the distance vector of a point x that

projects interior to a triangular site. It can be seen that the distance vector of x is the normal

to the triangle.

Property 2.3. Given three points a, b and c on a plane and a triangular site t with vertices

e, f and g. Let ~da = e − a, ~db = f − b and ~dc = g − c denote the distance vectors

of a, b and c to the site t respectively. Then, the distance vector ~dx of any point x =

α1a + α2b + (1− α1 − α2)b,0 ≤ α1, α2 ≤ 1 is the linear combination of distance vectors

of a,b, and c and ~dx = α1
~da + α2

~db + (1− α1 − α2) ~dc.

Property 2.3 indicates that given the vertices of a convex polygon projecting onto t, the

distance vector of any interior point is the bilinear interpolation of the distance vectors of the

polygon vertices. Furthermore, the distance vectors of the polygon vertices are normal to the

triangular site.

Lemma 2.1. There exists a linear factorization to compute the distance vector of any point

to a planar site.

Proof. Trivial. Based on properties 2.1, 2.2, and 2.3.

30

2.4 Domain Computation

In the previous section we showed that the distance vector from a point in the interior of

a convex polygon to a site can be expressed as a bilinear interpolant of the distance vectors

at the polygon vertices. In this section, we define the convex domain on a slice for which the

distance function of a site is computed. We also present an approach to compute conservative

bounds on the domain.

The region where the distance function of a site contributes to the distance field is exactly

its Voronoi region. However, it is non-trivial to compute the exact Voronoi regions for higher

order sites (i.e. lines, polygons) [CKM98]. Moreover, the Voronoi regions are not necessarily

convex. Instead of computing the exact Voronoi region, we compute a convex polygonal

domain Qi,k on the slice sk, which bounds the intersection of the Voronoi region of site pi

with slice sk.

We present separate algorithms for manifold and non-manifold sites. We first present an

algorithm to compute the Qi,k for non-manifold sites. Later, we present an improved algo-

rithm for manifold sites that exploits the connectivity to compute tighter convex polygonal

domain.

Non-Manifold Sites we present the algorithm for a triangle and it can be easily extended

to a convex polygon. For a triangle tj with vertices p1, p2, p3 and unit normal nt, consider

the three (open) half-spaces given by planes through the three edges and perpendicular to the

plane of the triangle. The half-spaces are given as Hi = (x−pi) ·ni ≥ 0, i ∈ {1, 2, 3}, where

ni satisfies (pi−pi+1) ·ni = 0,nt ·ni = 0. Any point in the intersection of these halfspaces

is closer to the interior of the triangle, and any point not contained in the intersection H1 ∩

H2 ∩H3 is closer to one of the sites on the boundary of the triangle. The convex polygonal

domain Qj,k is the intersection of the three half-spaces with slice sk.

Given a line segment ej with end points p1 and p2, consider the two (open) halfspaces

defined by planes perpendicular to the line through the end points, H1 = (p2−p1)·(x−p1) >

31

p

s

e

H1

H2

t

s s

(c)(b)(a)

Figure 2.3: Domain of distance field computation on a slice s for non-manifold sites: The

domain of computation is shaded in grey. (a) For a point site p, the domain is the entire

slice (b) For a line segment e, the domain is bounded by two parallel half-planes H1 and H2,

perpendicular to e. (c) For a triangle t, the domain is bounded by triangular prism defined

by intersection of three half planes perpendicular to triangle edges.

0 and H2 = (p1 − p2) · (x− p2) > 0. Any point x in the intersection of the two half spaces

is closer to the interior of the line segment e, and a point not in the intersection will be closer

to one of the end points. Thus, the convex polygonal domain Qj,k is the intersection of the

two half spaces H1, H2 with the slice sk.

Finally, given a point pj, the domain Qj,k is the entire slice sk.

Manifold Sites For a manifold site, we exploit the neighborhood information to compute

a convex polytope Gi which bounds the Voronoi region of a site pi [Cul00, Mau03, SPG03].

For a particular slice sk, the domain of computation of a site pi is given by the intersection

of the polytope with the slice, Qi,k = Gi ∩ sk. For a triangle site, the bounding polytope is

given by a triangular prism defined by intersection of three half spaces (as described above).

For an edge e incident on two triangles with normals n1, n2, the convex polytope is a

wedge obtained by the intersection of four half-spaces. Two of the half-spaces are defined

by parallel planes through the end vertices of the edge as shown above. The other two half-

spaces are defined by planes containing the edge e and have normals n1 and n2.

For a point site p, with n incident edges e1, . . . , en, the polytope Gp is given by inter-

section of half-spaces corresponding to planes through the point q and orthogonal to each

incident edge ei, i.e. Gp =
⋂

1≤i≤n Hi, Hi = (x− p) · ei ≥ 0. Instead of exactly computing

32

the half-space intersection, with time complexity O(n log n), we present a simple algorithm

to compute a conservative approximation of the bounding polytope Gp for a point site p in

O(n) time.

A point site is defined as convex iff all edges incident on the point have an internal dihe-

dral angle less than π. Let p be a convex point, with incident edges ei, 1 ≤ i ≤ n in order.

Then edges of the convex polytope Gp are given by p + λni, where ni = ei × ei+1 (modulo

n) and ni is the normal of the triangle ti containing edges ei and ei+1.

This construction does not work for hyperbolic points[PS05]. Previous approaches ex-

pand the bounding polytopes of adjacent triangles to handle hyperbolic points, however this

results in a complex fragment program to compute the distance functions [SPG03]. We

present an efficient algorithm to compute a bounding polytope Gp for a hyperbolic point p

(see figure 2.4(a)). Let na be the average of the normals of all incident triangles. Let nj

be the normal which maximizes θ(i) = na×ni

|na×ni| , i = 1, . . . , n. We consider the case when

θ(i) < π/2. Let C be a right circular cone with axis na and opening angle 2θ(j). We now

prove that the bounding polytope Gp is a subset of cone C.

Theorem 2.1. Let p be a manifold point, and C be a cone constructed as above. Then the

convex polytope Gp bounding the Voronoi region of p is a subset of C.

Proof. If Gp = ∅, then the result trivially holds. It is sufficient to show that Gp∩πk ⊆ C∩πk

for any plane πk. Consider a plane π orthogonal to na, and let Q be the convex polygon

obtained by intersection of Gp with π, Q = Gp∩π. Let xi be the intersection of the ray from

p along direction ni. Gp∩π is the convex region given by the intersection of 2D half spaces,

each half space is given by the line through xi and xi+1 (modulo n) (see figure 2.4(b)). For

any point y ∈ π, let r = maxi=1,...,n d (xi)y. By construction, a circle c with center y and

radius r will contain Q. Taking y = xa, we get c = C ∩ π and Gp ⊆ C.

Theorem 2.1 implies that any convex polytope containing the cone C will bound the

33

Figure 2.4: Bounding polytope computation for a hyperbolic point: p is hyperbolic point

with 5 incident edges ei, i = 1, . . . , 5. (a) The polytope Gp bounds the Voronoi region of p.

Gp is bounded by a cone C. (b) Intersection of Gp with plane π, showing construction of C.

bounding polytope Gp of a hyperbolic point p. We use a square pyramid to approximate the

bounding polytope as shown in figure. If θ(i) ≥ π/2, then we treat the hyperbolic point as

non-manifold.

2.5 Distance Field Computation using GPUs

In this section, we present our algorithm for distance computation on the GPU using

linear factorization. Given a site and a slice, the convex domain is computed as described in

Section 2.4. The distance vector to the site is computed at each vertex of the convex polygon.

The distance vector is encoded as a 3D texture coordinate, and the polygon is rasterized on

the GPU.

Graphics processors (GPUs) have many specialized hardware units to perform bilinear

interpolation on the attributes of vertices of polygons. These vertex attributes consist of

the color, position, normal, or texture co-ordinates of the vertices. These attributes are 4-D

34

vectors of the form (vx, vy, vz, vw) and transformations are applied to the attributes in the ver-

tex processing unit. The transformed vertices are bilinearly interpolated by the rasterization

hardware and the interpolated vectors at each fragment are used for lighting computations

using Gouraud or Phong shading, or environment mapping applications. In order to achieve

higher performance, the rasterization hardware consists of multiple vector units to compute

the interpolated vectors.

We use the fast bilinear interpolation capabilities of GPUs for distance vector computa-

tion. Based on the linear factorization formulation, we map the distance vector computation

to the GPUs using vertex attributes of the polygons. We use orthographic transformations and

perform a one-to-one mapping between the points on the plane and the pixels on the screen.

The bilinear interpolation of the vertex attributes is used for distance vector computation at

each point on the plane.

The interpolation units in current GPUs can perform computations on different vector

representations. For example, the vectors can be represented using 8-bit, 16-bit or 32-bit

floating point values and the vector components may be signed or unsigned. Since the com-

ponents of the distance vectors are signed and represented in 32-bit floating point precision,

we use the 3D texture co-ordinates of the vertices to represent the distance vectors of ver-

tices. The interpolated texture co-ordinates are used in a single instruction fragment program

to compute the magnitude of the distance vector. The distance field is updated to compute the

minimum either using the MIN instruction in the fragment program or by using the depth

test functionality.

We now present the expressions for computing the distance vectors from a convex poly-

gon vertex to a point, an edge and a triangle. These are:

• Point: Given a point site p and a vertex v, the distance vector from v to p is ~d(p,v) =

p− v.

• Edge: For an edge e with end points p1 and p2, the distance vector from a vertex v to

35

e is ~d(e,v) = (p1 − v) + λ (p2−p1)
|p2−p1| , where λ = (v−p1)·(p2−p1)

|p2−p1| .

• Triangle: Given a triangle t with a unit normal n̂, the distance vector from a vertex v

to t is given as ~d(t,v) = [(pi − v) · n̂] n̂, where pi is one of the three vertices of the t.

The pseudocode for computing the distance field for a slice sk is presented in Algorithm 1.

The function ComputePolygon(pi,sk) computes the convex polygonal domain bounding the

Voronoi region of site pi on slice sk.

Input: slice sk, site set P
Output: distance field Dsk

(P)

foreach site pi ∈ P do1

Qi,k ← ComputePolygon(pi, sk)2

foreach vertex v ∈ Qi,k do3

Compute distance vector ~d(pi,v)4

Assign texture coordinates of v, (r, s, t)← ~d(pi,v)5

end6

Draw textured polygon Qi,k at depth z = 07

end8

Algorithm 1: ComputeSlice(sk, P): This algorithm computes the distance field for

sk for a set of primitives P

The algorithm for computing the distance field in the entire domain D is presented in Al-

gorithm 2. The function SetOrthoProjection(D) sets up the projection matrix to be the bounds

of the (axis-aligned) domain of computation D. NormProgram() is a single instruction frag-

ment program that computes the Euclidean norm of the 3D texture coordinate at a pixel and

writes it out the value to the depth buffer. The functions StartSlice(sk) and EndSlice(sk)

setup the rendering state at the beginning and end of computation of a given slice sk. The

state setup involves enabling a floating point rendering buffer, clearing the buffer and reading

it back to the CPU after computation.

36

Input: site set P , domain D, number of slices m
Output: distance field DD(P)

Enable depth test1

Set depth test function to less than2

SetOrthoProjection (D)3

Enable fragment program NormProgram4

foreach slice sk, k = 1, . . . ,m do5

StartSlice (sk)6

ComputeSlice (sk,P)7

EndSlice (sk)8

end9

Disable fragment program NormProgram10

Algorithm 2: Compute3D(P ,D, m): Computes the 3D discretized distance field on

a uniform grid D with m slices.

2.6 Culling Overview

The complexity of the algorithm presented in Section 2.5 is linear in m for each slice and

the running time can be slow when m is large. In this section I will provide an overview of

culling and clamping techniques we use to accelerate this computation.

We speed up the 3D distance field computation by reducing the number of distance func-

tions that are rasterized for each slice. We exploit the following properties of Voronoi regions

and distance fields to accelerate the computation:

1. Connectivity: We consider distance metrics that are symmetric, positive definite and

satisfy the triangle inequality. Thus, Voronoi regions defined by that distance metric

are connected. This is true for all Lp norms, including Euclidean distance and max-

norm [CD85]. Note that for higher order sites, like line segments and polygons, each

Voronoi region may consist of non-linear boundaries and may not be convex. But each

Voronoi region is connected.

2. Spatial Coherence: The distance fields of adjacent slices, sk and sk+1, can have high

spatial coherence. The distance values associated with two points in adjacent voxels on

37

a 3D grid will be very close to each other. We use this coherence to compute bounds

on the maximum change in the distance field between adjacent slices.

3. Monotonicity: Given a slice, the distance function of a site is a monotonic function.

It has a minimum value in the interior of the slice and is maximum on the boundary of

the slice.

Our goal is to cull away sites that do not contribute to the final distance field for a particu-

lar slice. Furthermore, the distance field for each site should be computed in the region of the

slice where it contributes to the final distance field (see Figure 2.5). Our algorithm utilizes

the above mentioned properties and computes conservative bounds on the Voronoi regions.

We use these bounds in two steps: to cull the set of sites for each slice (described in Sec-

tion 2.7) and clamp the region of computation for each site in the non-culled set (described

in Section 2.8).

2.6.1 Site Classification

We introduce a classification of the sites used by our algorithm to cull away sites that

do not contribute to the distance field for a slice. For simplicity, first we shall introduce

the notation for culling along Z-axis only. In section 2.9, we generalize the notation for

culling along each axis in 2D and 3D. Let us assume that the sweep direction is along the +Z

direction. For a slice sk at z = zk, we partition the set of sites P into three subsets depending

on the Voronoi region bounds of each site along the Z axis (shown in Figure 2.5):

Intersecting, I+ (k) = {pi | V (i).zmin ≤ zk ≤ V (i).zmax}. Only the distance functions of

these sites contributes to the final distance field of slice sk.

Approaching, A+ (k) = {pi | V (i).zmin > zk}. The Voronoi region of an approaching

site does not intersect with current slice, but could potentially intersect with a slice sl,

where zl > zk.

38

Receding, R+ (k) = {pi | V (i).zmax < zk}. Due to the connectivity property of Voronoi

regions, a receding site can never become intersecting, hence it can be discarded for

any slice sl, where zl > zk.

For efficient computation, the algorithm presented in Section 2.7 performs two passes

along +Z and −Z directions and considers only the sites swept up-to the current slice. We

also partition P based on the spatial bounds of each site along Z axis. Let pi.zmax denote

the maximum Z value of a site pi. Then the set P is partitioned as (shown in Figure 2.5):

Swept, S+ (k) = {pi | pi.zmax ≤ zk}

Unswept, U+ (k) = {pi | pi.zmax > zk}

The intersecting set I+ (k) can be further partitioned into an intersecting swept set IS+ (k) =

(I+ (k) ∩ S+ (k)) and an intersecting unswept set IU+ (+, k) = (I+ (k) ∩ U+ (k)).

I+ (k) = IS+ (k) ∪ IU+ (+, k) (2.1)

The set of sites, P , is also partitioned into subsets along the −Z sweep direction. The

Figure 2.5: Site Classification: Shaded areas represent the connected Voronoi regions for

a subset of sites {p1, . . . , p5}. Sweep direction is along +Z. For slice sk, the site sets are:

Intersecting I+ (k) = {p2, p3, p4}, Approaching A+ (k) = {p5}, Receding R+ (k) = {p1}
and Swept S+ (k) = {p1, p2, p3}, Unswept U+ (k) = {p4, p5}. Distance functions have to

be drawn for set I+ (k) only. For site p3, the distance function has be drawn only in the

region Q3,k = V (3) ∩ sk. For the next slice sk+1, p4 is moved to S+ (k + 1), p5 is moved to

I+ (k + 1) and p3 is moved toR+ (k + 1).

39

intersecting, swept and unswept subsets are represented as I− (k), S− (k), U− (k), and are

defined as

I− (k) = {pi | V (i).zmin ≤ zk ≤ V (i).zmax}

S− (k) = {pi | pi.zmax > zk}

U− (k) = {pi | pi.zmax ≤ zk}

Consequently,

U+ (k) = S− (k) , I+ (k) = I− (k) = I (k)

and Eq. (2.1) reduces to

I (k) = IS+ (k) ∪ IS− (k) (2.2)

The key idea for speedup is that for a large number of sites m and any given slice sk, the

size of I (k) is typically much smaller than m. By computing a conservative estimate of

I (k) one can cull away a large number of sites and considerably speed up the distance field

computation.

2.7 Site Culling

In this section, we present our culling algorithm that reduces the number of distance

functions that are rasterized for each slice. Our goal is to compute the distance field Dk for

each slice sk. Since only the set I (k) contributes to Dk, we have Dk = Dk(I (k)). Using

Eq. (2.2), Dk can be expressed as:

Dk(I (k)) = Dk(IS+ (k) ∪ IS− (k)) = min
(
Dk(IS+ (k)), Dk(IS− (k))

)

40

Therefore, the problem is reduced to computing two distance fields Dk(IS+ (k)) and Dk(IS− (k))

for each slice sk. We present an algorithm to compute Dk(IS+ (k)) for sk with a sweep di-

rection along +Z. The same algorithm is used to compute Dk(IS− (k)) by using a sweep

direction along −Z. In the rest of the paper, we will present our algorithm for +Z sweep

direction and drop the + sign to simplify the notation.

We utilize the spatial coherence between successive slices and compute the intersecting

swept set IS (k + 1) by performing incremental computations on IS (k) (see Figure 2.5).

We use the following formulation:

(IS (k + 1)) = (IS (k) ∪ (S (k + 1) \ S (k))) \ (R (k + 1) \ R (k)) (2.3)

where \ represents the set-difference operation. The exact computation of IS (k) and IS (k + 1)

is equivalent to exact Voronoi computation. Instead, we conservatively compute a set of po-

tentially intersecting swept sites ÎS (k) using Equation (2.3), where ÎS (k) ⊇ IS (k).

Given the sets ÎS (k) and R (k), the algorithm for computing Dk+1, ÎS (k + 1) and

R (k + 1) proceeds as follows:

1. Initialize ÎS (k + 1) = ÎS (k) , Dk+1 =∞.

2. Update ÎS (k + 1) = ÎS (k + 1)∪(S (k + 1)\S (k)). Add the additional sites swept

by slice sk+1 to ÎS (k + 1) .

3. Compute Dk+1. For each site p̂i ∈ ÎS (k + 1), compute Dk+1(p̂i) in order of increas-

ing i. Each Dk(p̂i) is tested for visibility with respect to Dk+1(Xi−1), which is the

distance field of set Xi−1 = {p̂1, p̂2, . . . , ˆpi−1}. If Dk+1(p̂i) is not visible along the

direction orthogonal to sk+1, then it does not contribute to Dk+1.

4. Compute (R (k + 1) \ R (k)). All sites p̂i for which Dk+1(p̂i) is not visible can be

moved from ÎS (k + 1) toR (k + 1).

41

5. Update ÎS (k + 1) = ÎS (k + 1) \ (R (k + 1) \ R (k))

Initially we set k = 0,R (k) = ∅, ÎS (k) = {pi|pi.zmax = 0}. We proceed along the Z-axis

and compute the distance field for each slice as described above. Each site pi is bucketed into

a list according to pi.zmax. This allows the addition of swept sites in Step (2) to be performed

in constant time. The distance fields are rasterized approximately in order of increasing

distance to the current slice. This results in better culling of the receding sites in Steps (3)

and (4) of the algorithm. The complexity of this algorithm for slice sk+1 is a linear function

of the size | ÎS (k + 1) |.

The visibility computations are performed using occlusion queries (e.g. GL NV occlusion query)

available on current graphics systems. As the distance meshes are scan converted, these

queries check for updates to the depth buffer and return the number of pixels that are visible.

2.7.1 Conservative Sampling

The occlusion queries sample the visibility at fixed locations in each pixel and can result

in sampling errors. In particular, the algorithm presented above classifies a swept site pi as

receding if its Voronoi region V (i) does not cover any grid cells, i.e. the occlusion query

returns zero visible pixels for the distance field Dk(pi) in Step (3). This may introduce errors

when V (i) intersects slice sk but its intersection with sk is not sampled by the rasteriza-

tion hardware. An incorrect classification of pi as receding can introduce errors in Dl for a

subsequent slice sl, l > k. One such case is shown in Figure 2.6(a), for i = 2.

We modify the algorithm for distance field computation to account for these sampling

errors. The approach is based on a lemma that states the condition for a Voronoi region to be

sampled.

Lemma 2.2. Let V (pi) be a voronoi region for a slice sk that is undersampled, and the closest

cell q is at a distance ǫ from V (i). If we reduce d (q, pi) by ǫ without changing d (q,P\{pi}),

we ensure that q ∈ V (pi).

42

Figure 2.6: Sampling Error: (a) The Voronoi region V (p2) of a swept site p2 does not lie on

any cell (represented by crosses) on slice sk, but lies on a cell for slice sk+1. (b) The XY
intersection of the Voronoi regions with slice sk. The closest cell q to V (p2) is at a distance

ǫ.

Proof. Let q belong to the voronoi region V (pj) of site pj , and the point in V (pi) closest to

q be r (see Figure 2.6, with i = 2, j = 4, d (q)r = ǫ). We shall first prove the result for the

case when V (i) shares a boundary with V (j). Then using the fact r ∈ V (pi) and r ∈ V (pj),

and the triangle inequality, we have

d (r, pj) = d (r, pi)

d (q, pi) ≤ d (q, r) + d (r, pi)

d (r, pj) ≤ d (r,q) + d (q, pj)

⇒ d (q, pi)− ǫ ≤ d (r, pj) < d (q, pj)

Thus, by reducing d (q, pi) by ǫ and keeping d (q, pj) the same, q will lie in Voronoi region

V (pi). This directly extends to the case when V (pi) and V (pj) do not share a boundary,

by using a sequence of triangle inequalities across Voronoi boundaries between V (pi) and

V (pj).

43

Figure 2.7: Conservative Sampling: (a) Distance field Dk(p2) of site p2 is occluded at all

pixels on sk. (b) Translating Dk(p2) by δxy ensures it is visible at at least one pixel.

We apply the result of Lemma 2.2 in the following manner. In practice, we do not know the

point q or ǫ but use the fact that ǫ is bounded by pixel size, ǫ ≤ δxy =

√
δ2
x+δ2

y

2
. Therefore,

we move pi closer to all the points in slice sk, by subtracting δxy from each value of the

distance field Dk(pi). This is equivalent to translating Dk(pi) along −Z by δxy and is shown

in Figure 2.7.

Given a slice sk+1, we redraw the translated distance field of each site pi marked as

receding in Step (4) of the algorithm given above (i.e. pi ∈ R (k + 1) \R (k)). The redrawn

distance field is tested for visibility with respect to Dk+1. This redrawing is performed to

ensure conservative sampling for site-culling. During this step, updates to the final distance

field in the depth buffer are disabled. Moreover, the translated field is clamped to 0 for

negative values. For line and triangle sites, the size of the Voronoi region is also limited by

the spatial size of the line segment or the triangle. To ensure that the Voronoi region covers

at least one of the four neighboring cells, we increase the size of these sites by δxy in addition

to translating the distance field.

44

2.8 Distance Function Clamping

In Section 2.7, we presented an algorithm to cull away the sites that do not contribute

to the distance field Dk of slice sk. In this section, we present a clamping algorithm to

reduce the rasterization cost of the distance function of each potentially intersecting swept

site. Given a slice sk and each site pi ∈ ÎS (k), we compute the distance function d (q, pi)

only for the set of points on sk that lie in the Voronoi region of pi. In other words, our goal

is to evaluate the distance function for the set Qi,k = {q|q ∈ V (i) ∩ sk}. We first present

an approach to compute a conservative estimate Q̂i,k of Qi,k for any arbitrary set of sites. We

further improve the performance of the clamping algorithm for manifold surfaces by using

domain bounds from Section 2.4.

2.8.1 Conservative Clamping

The connectivity of the Voronoi regions implies that Qi,k is a connected set. We exploit

the monotonicity property and compute a superset Q̂i,k. Initially, we assume that we are

given the maximum value max(Dk(pi)) of the distance field Dk(pi) of site pi on slice sk. We

compute a set of extreme points on sk where the value of the distance field Dk(pi) is equal

to the maximum value. By the monotonicity property of distance functions, the set of points

whose distance function is less than or equal to max(Dk(pi)) belong to Q̂i,k. An example is

shown in Figure 2.8.

The problem of distance function clamping reduces to computing max(Dk(pi)) for each

site pi in ÎS (k) for a slice sk. We use the following lemma to compute an upper bound on

max(Dk(pi)).

Lemma 2.3. Let max(Dk(S (k))) denote the maximum value of the distance fields Dk(S (k))

of set S (k) on a slice sk and max(Dk+1(S (k + 1))) be defined similarly. Let the distance

45

Figure 2.8: Clamping distance field computation to Voronoi region bounds on a slice. Q2,k =

V (i) ∪ sk. Q̂2,k ⊇ Q2,k and is computed from max(Dk(p2)).

between sk+1 and sk be |zk+1 − zk| = δz. Then

max(Dk+1(S (k + 1))) ≤ max(Dk(S (k))) + δz (2.4)

Proof. Given two points qk(x, y, zk) ∈ sk and qk+1(x, y, zk+1) ∈ sk+1 that lie in the Voronoi

regions of some two sites. Then

|d (qk+1,P)− d (qk,P)| ≤ δz. (2.5)

This follows directly from the triangle inequality, and the definition of the distance function

d (q,P). Moreover, max(Dk(X)) = maxq∈sk
(d (q,X)). This implies that

max(Dk+1(X)) ≤ max(Dk(X)) + δz (2.6)

Moreover, for a slice sk and any two sets of sites X∞ and X∈, X∞ ⊆ X∈ ⇒ Dk(X∈) ≤

Dk(X∞). We know S (k) ⊆ S (k + 1). This combined with Eq. (2.6), whereX = S (k + 1),

leads to the result in Eq. (2.4).

Given the maximum value max(Dk(S (k))) of the distance field for slice sk, we use

46

Eq. (2.4) to compute the maximum value max(Dk+1(S (k + 1))) of the distance field for

slice sk+1. This also gives a conservative bound on maximum value of the distance function

for each site pi on slice sk+1, max(Dk+1(S (k + 1))) ≥ max(Dk+1(pi)) ∀ pi ∈ S (k + 1).

We use it to compute a conservative bound on the set of points Qi,k+1 on slice sk+1 and use

this bound for clamping.

Note that the maximum distance value, max(Dk(S (k))), may be infinity, if one is com-

puting the distance field in a narrow band at a distance dmax [Mau03], or if one is computing

the signed distance field for a closed manifold. For the first case we define max(Dk(S (k)))

to be the maximum finite value of the distance field, and set the update rule to be

max(Dk+1(S (k + 1))) = min(dmax, max(Dk(S (k))) + δz)

For the second case, if qk does not lie in region where the signed distance field is com-

puted, and qk+1 does, then the manifold surface lies between qk and qk+1 and

max(d (qk+1,S (k + 1))) ≤ δz

. This is shown in Figure 2.9.

Figure 2.9: Change in distance field for signed distance computation.

47

2.8.2 Manifold Surfaces

In many cases, the primitives lie on manifold surfaces and we have the connectivity in-

formation In these cases, we also use the domain bounds presented in Section 2.4 to further

refine Q̂i,k+1 for signed Euclidean distance fields. For each site in the interior of a manifold

surface, we compute a polyhedron bounding its Voronoi region. This polyhedron is inter-

sected with sk+1 to compute a convex polygon Gi,k+1. In this case, Gi,k+1 ∩ Q̂i,k+1 results in

a tighter approximation of Qi,k+1. Sites on the boundary of a manifold surface are handled

similar to non-manifold sites.

2.8.3 Complete Algorithm

Given ÎS (k) , R (k) and Dk, the algorithm for computing Dk+1 as presented in Sec-

tion 2.7 is refined to perform clamping as follows:

1. Compute max(Dk) by using multiple occlusion queries as described in [GLW+04].

Compute max(Dk+1) = min(dmax, max(Dk) + δ).

2. Initialize ÎS (k + 1) = ÎS (k) , Dk+1 =∞.

3. Update ÎS (k + 1) = ÎS (k + 1) ∪ (S (k + 1) \ S (k)).

4.1. Compute Q̂i,k+1. For each site pi ∈ ÎS (k + 1), compute Q̂i,k+1 from max(Dk+1)

4.2. Refine Q̂i,k+1. For each CSC-valid site pi ∈ ÎS (k + 1), compute the convex polygon

Gi,k+1. Refine Q̂i,k+1 = Q̂i,k+1 ∩Gi,k+1.

4.3. Compute Dk+1. For each site pi ∈ ÎS (k + 1), compute D bQi,k+1
(pi) and test for

visibility as before.

4.4. Perform Conservative Sampling Disable distance field updates. For each site pi ∈

ÎS (k + 1) which is marked as occluded, expand the site and compute D bQi,k+1
(pi) −

48

δxy. Test for visibility against the computed distance field Dk+1 as before. Enable

distance field updates.

5. Compute (R (k + 1) \ R (k)) from the results of the visibility tests of Step 4.4.

6. Update ÎS (k + 1) = ÎS (k + 1) \ (R (k + 1) \ R (k)).

Given a 3D grid with k + 1 slices and a Z range [zmin, zmax], we make 2 passes. In the

first pass, we increment k from 0 to k. Initially,R+ (0) = ∅, ÎS+
(0) = {pi|pi.zmax = zmin}.

In the second pass, k is decremented from k down to 0. Initially, R− (k) = ∅, ÎS−
(k) =

{pi|pi.zmax = zmax}. The final distance field for each slice is the lower envelope of both

passes.

2.9 Range Based Culling

The algorithm presented in section 2.8 performs culling along a single spatial dimension

only. In addition, the bound computed using clamping is a global bound per slice, and may

be too conservative. In this section we extend our algorithm to perform better culling within

an n-dimensional range.

Figure 2.10: Ranges in 2D: The range Tij is shown using a filled red rectangle. The range

Ti+j+ is shown using thick blue borders.

49

Our culling algorithm performs two sweeps in each dimension to obtain conservative

bounds, along each dimension, of the Voronoi region of a site. The conservative bounds are

used to reduce the set of points in the domain at which the distance function of a given site

needs to be evaluated. We use the connectivity property and range-based sweeps to compute

bounds of a Voronoi region (see figure 2.12). We first modify the definition of Intersection,

Receding and Swept sets. We shall our range-based culling algorithm in 2D and later extend

it to higher dimensions.

2.9.1 Set Definitions

We introduce the classification of sites used by our algorithm to cull away sites that do

not contribute to the distance field of a given range (see figure 2.11). Using the pivot point of

the sites, the swept set for a range T is defined as

S (T) = {pi | κ(pi) ∈ T, pi ∈ P}.

Using bounds on the Voronoi regions of a site pi, the intersecting set of a range T is defined

as

I (T) = {pi | V (pi) ∩ T 6= ∅, pi ∈ P}.

Thus for each point inside a range T, we have to compute the distance values to all sites in

the intersecting set I (T). The intersecting swept set for two ranges T1, T2 is defined as

IS (T1, T2) = I (T1) ∩ S (T2)

The intersecting swept set represents the set of sites, which are swept by the second range

and their Voronoi regions intersect the first range. Note that the definition is not symmetric.

The receding set for a range T is the set of sites with Voronoi regions contained entirely inside

50

Figure 2.11: Set Definitions: (a) Voronoi diagram of 10 points and 3 lines and two ranges

T1 and T2. (b) Swept set S (T2) (c) Intersecting Set I (T1) (d) Intersecting Swept set

IS (T1, T2) = I (T1) ∩ S (T2) (e) Receding setR (T2 \ T1) = S (T2) \ I (T1)

T, and is defined as

R (T) = {pi | V (pi) ⊂ Int(T), pi ∈ P}.

For two ranges Ti and Tj , if Ti ⊆ Tj thenR (Ti) ⊆ R (Tj). By computing a receding set for

a given range T, we can cull away the sites belonging to the receding set while computing the

Voronoi diagram of its complement T c. Our range based culling algorithm partitions D into

a set of ranges, and computes the Voronoi diagram constrained to each range by computing

a superset of the intersecting set for each range. The computation of a subset of the receding

set is used to compute conservative estimate for each intersecting set.

2.9.2 2D Culling

In 2D, D = (0, 1] × (0, 1] and we have point, line and polygonal sites. The domain

is partitioned into a set of rectangular ranges, called tiles. Our culling algorithm performs

two sweeps along each dimension and incrementally culls away a subset of sites that do not

belong to the intersecting swept set of the current tile. Next, we define the tiles, decompose of

the Voronoi diagram computation into four sweeps as each tile decomposes the domain into

4 quadrants. Finally we present the update rule for incrementally computing the intersecting

swept set in one sweep.

Given a set of l + k + 2 real numbers x0, x1, . . . , xl, y0, y1, . . . , yk s.t. x0 = y0 = 0, xl =

51

yk = 1, xi ∈ (0, 1], yj ∈ (0, 1], xi ≥ xi−1, yj ≥ yj−1, 1 ≤ i ≤ l, 1 ≤ j ≤ k. These l + k + 2

points partition D into l × k ranges with Tij = T(xi−1,xi](yj−1,yj]. Define the ranges Ti+j+ =

(0, xi]×(0, yj], Ti−j+ = (xi, 1)×(0, yj], Ti+j− = (0, xi]×(yj, 1), and Ti−j− = (xi, 1)×(yj, 1)

(see figure 2.10). We use the following lemma to compute the Voronoi diagram within the

range Tij using the intersecting swept sets.

Lemma 2.4. Given l × k disjoint ranges which partition (0, 1]2,

VDTij(P) = VDTij(IS (Tij, Ti+j+) ∪ IS (Tij, Ti−j+)∪

IS (Tij, Ti+j−) ∪ IS (Tij, Ti−j−))

Proof. By definition, VDTij(P) = VDTij(I (Tij)). Also,

I (Tij) =I (Tij) ∩ P

=I (Tij) ∩ (S (Ti+j+) ∪ S (Ti−j+)∪

S (Ti+j−) ∪ S (Ti−j−))

=IS (Tij, Ti+j+) ∪ IS (Tij, Ti−j+)∪

IS (Tij, Ti+j−) ∪ IS (Tij, Ti−j−)

Thus,

VDTij(P) = VDTij(IS (Tij, Ti+j+) ∪ IS (Tij, Ti−j+)∪

IS (Tij, Ti+j−) ∪ IS (Tij, Ti−j−))

As a result of Lemma 2.4, we compute the Voronoi diagram VD(Tij) by computing four

intersecting swept sets. We perform two passes along each axis, sweeping from 0 to 1 and

52

Figure 2.12: PIS Computation in 2D: This image highlights the Voronoi computation in a 2D

range (xi−1, xi] × (yj−1, yj] based on the sweep along the +X and +Y axes. Fig. 2.12(a)

shows the 2D Voronoi diagram of a set of points and lines and the 2D range. In Fig. 2.12(b),

we highlight the PIS for the range (xi−1, xi] × (yj−1, yj] computed by sweeping along the

+X direction. Note that the PIS is conservatively computed as the union of PIS for the range

(xi−2, xi−1] × (yj−1, yj] and the set of sites that intersect the range (xi−1, xi] × (yj−1, yj].
Similarly, in Fig. 2.12(c), we show the computation of PIS for the range (xi−1, xi]×(yj−1, yj]
computed using a sweep along the +Y axis. The PIS for the sweep along both +X and +Y
directions is shown in Fig. 2.12(d). The receding set is highlighted in Fig. 2.12(e). Based on

the connectivity property of Voronoi diagrams, the sites in the receding set are ignored in the

Voronoi diagram computation for any range beyond (0, xi] in the +X direction and beyond

(0, yj] in the +Y direction.

then sweeping from 1 to 0, and compute the intersecting swept sets. Our approach for com-

puting the intersecting swept sets for three other ranges (i−j+, i+j−, i−j−) is similar to the

approach for computing the intersecting swept set IS (Tij, Ti+j+). However, the computa-

tion of exact intersecting swept set is equivalent to computing the exact Voronoi diagram.

Instead, we present a simple theorem to efficiently compute a superset of the intersecting

swept set. This conservative computation does not affect correctness of the algorithm, but

influences the level of culling achieved for each range.

Theorem 2.2. A superset of the intersecting swept set IS (Tij, Ti+j+) is given by the relation

IS (Tij, Ti+j+)

⊆ IS
(
T(i−1)j, T(i−1)+j+

)
∪ IS

(
Ti(j−1), Ti+(j−1)+

)
∪

S (Tij) (2.7)

Proof. Let X denote the l.h.s of eq (2.7) and Y denote the r.h.s of eq (2.7). Let pa ∈ X ⇒

53

V (pa) ∩ Tij 6= ∅ and κ(pa) ∈ Ti+j+ . We have two cases.

1. κ(pa) ∈ Tij ⇒ pa ∈ S (Tij)⇒ pa ∈ Y .

2. κ(pa) ∈ Ti+j+ \ Tij ⇒ V (pa) ∩ (Ti+j+ \ Tij) 6= ∅. Since V (a) is connected, V (pa) ∩

(Ti+j+\∂Tij) 6= ∅. This implies either V (pa)∩(xi−1×(yj−1, yj] 6= ∅ or V (pa)∩(xi−1×

(yj−1, yj] 6= ∅. Hence pa ∈ IS
(
T(i−1)j, T(i−1)+j+

)
∪ IS

(
Ti(j−1), Ti+(j−1)+

)
⇒ pa ∈

Y .

Similarly, we can conservatively compute IS (Tij, Ti−j+), IS (Tij, Ti+j−), and IS (Tij, Ti−j−).

Theorem 2.2 indicates that the voronoi diagram VDTij(P) can be computed incrementally

within each range (i+j+, i+j−, i−j+, i−j−). For example, in the range i+j+, both IS
(
T(i−1)j, T(i−1)+j+

)

and IS
(
Ti(j−1), Ti+(j−1)+

)
have already been computed before the sweep reaches Tij and

these sets are then used for incrementally computing IS (Tij, Ti+j+). The swept set S (Tij)

is easily computed by binning the sites into ranges using the pivot points. Fig. 2.12 highlights

the incremental computation of the VDTij(P) using sweep along +X and +Y directions.

Corollary 2.1. Let a site pa ∈ R
(
T(i−1)+(j−1)+

)
. Then pa /∈ IS (Tij, Ti+j+).

Proof. pa ∈ R
(
T(i−1)+(j−1)+

)

⇒ V (pa) ⊂ Int(T(i−1)+(j−1)+)⇒ κ(pa) ∈ T(i−1)+(j−1)+

⇒ pa /∈ S (Tij). Also V (pa) ∩ ∂T(i−1)+(j−1)+ = ∅ and by connectivity of Voronoi regions,

V (pa) ∩ I
(
T(i−1)j

)
= ∅,V (pa) ∩ I

(
Ti(j−1)

)
= ∅. Using the result of theorem 2.2, pa /∈

IS (Tij, Ti+j+) .

A direct consequence of Corollary 2.1 is that one can check if a site belongs to the re-

ceding set of range Ti+j+ and cull it for Voronoi diagram computation in T c
i+j+ . Further-

more, in the three other passes, let pa ∈ R (Tk−l+) ,R (Tm+n−) ,R (Tp−q−). Then V (pa) ⊂

(min(xk, xp), max(xi, xm)]× (min(yn, yq), max(yj, yl)], giving us spatial bounds on V (pa).

54

2.9.3 Culling in 3D and Higher Dimensions

Our approach for range-based culling extends directly to higher dimensions. In n-D, let

D = (0, 1]n. As in section 2.9.2, let there be ki ranges along each dimension, giving a

total of
∏n

i=1 ki ranges. Let range Ti1i2...in = (xi1−1, xi1] × (xi2−1, xi2] × . . . × (xin−1, xin],

where 1 ≤ ij ≤ kj ∀ 1 ≤ j ≤ n, and xik is the ith coordinate in kth dimension. Also,

Ti+1 i+2 ...i+n
= (0, xi1] × (0, xi2] × . . . × (0, xin], and the symmetric ranges along other sweep

directions are defined similarly. In particular, range Ti1i2...in partitionsD into 2n swept ranges.

Thus the intersecting set I (Ti1i2...in) is partitioned into 2n intersecting swept sets. We present

a theorem that is used to compute a superset of the intersecting swept set:

Theorem 2.3. A superset of the intersecting swept set IS
(
Ti1i2...in , Ti+1 i+2 ...i+n

)
is given by

the relation

IS
(
Ti1i2...in , Ti+1 i+2 ...i+n

)

⊆ IS
(
T(i1−1)i2...in , T(i1−1)+i+2 ...i+n

)
∪

IS
(
Ti1(i2−1)...in , Ti+1 (i2−1)+...i+n

)
∪

. . .

IS
(
Ti1i2...(in−1), Ti+1 i+2 ...(in−1)+

)
∪

S (Ti1i2...in) (2.8)

The proof is similar to that of Theorem 2.2 and uses the connectivity property to ensure

that any Voronoi region intersecting the range Ti1i2...in must intersect one of its adjacent

ranges, or the site must lie inside the range Ti1i2...in . The following corollary gives a similar

relation between the receding set R
(
T(i1−1)+(i2−1)+...(in−1)+

)
and the intersecting swept set

IS
(
Ti1i2...in , Ti+1 i+2 ...i+n

)
.

Corollary 2.2. Let a site pa ∈ R
(
T(i1−1)+(i2−1)+...(in−1)+

)
. Then pa /∈ IS

(
Ti1i2...in , Ti+1 i+2 ...i+n

)
.

55

As in 2D, Corollary 2.2 provides conservative bounds on the spatial bounds of the Voronoi

region of a site.

2.10 GPU Based Algorithm

In this section, we present our algorithm which uses the graphics hardware to efficiently

compute the discrete generalized Voronoi diagram. Computation of the exact intersecting

swept set IS (T1, T2) is equivalent to exact Voronoi computation. Instead we compute a

set of potentially intersecting swept (PIS) sites, ÎS (T1, T1′) which is a superset of the in-

tersecting swept set IS (T1, T1′). We use Corollary 2.1 to check if a site belongs to the

receding set and use it to cull receding sites from the potentially intersecting swept set. To

check for the membership in the receding set, we maintain conservative bounds V̂(pa) on the

Voronoi region V (pa) of each site pa, where V̂(pa) ⊇ V (pa). The bounds are maintained

at the resolution of a range T, i.e. T ⊆ V̂(pa) if V (pa) ∩ T 6= ∅. The key operation is

to test if a Voronoi region V (pa) intersects a given range T. A Voronoi region V (pa) inter-

sects a given range T if and only if the distance field of the site pa DT(pa) contributes to

the final distance field DT(P). This computation is performed by testing the distance field

DT(pa) for visibility. The visibility computations are performed using occlusion queries (e.g.

GL NV occlusion query) available on current graphics systems. As the distance values are

written to the depth buffer, these queries check for updates to the depth buffer and return the

number of pixels that are visible.

We first describe the algorithm for computing 2D discrete Voronoi diagrams and then

extend it to 3D discrete Voronoi diagrams.

56

2.10.1 2D Culling

In 2D, the domain is divided into k × l rectangular ranges, each range called a tile. All

tiles with the same X limits form a row. The Voronoi diagram for the domain is computed

by performing two sweeps across all rows. Within a row, we perform two sweeps across all

tiles and compute the Voronoi diagram for the tile. The algorithm for computing the Voronoi

diagram for the domain is given in Algorithm 3.

The function ComputeTile(Tij ,ÎS (T1, T1′) ÎS (T2, T2′)) computes the Voronoi diagram

in the range Tij using our incremental culling algorithm, where T1, T2 are adjacent to Tij , and

T1′ , T2′ are the corresponding swept sets. It returns the updated potential intersecting swept

set ÎS (Tij, Ti′j′) for Tij . The details are given in Algorithm 4.

Based on Corollary 2.1, we need to check if the Voronoi region V̂(pa) is a subset of the

interior of the range Tij , or equivalently if V̂(pa) does not intersect the boundary of Tij . The

intersection test is performed with the entire range Tij using visibility queries. To test if

V̂(pa) intersects the boundary of Tij , we compute the intersection with the adjacent ranges

T(i+1)j , T(i−1)j , Ti(j−1), Ti(j+1). The function UpdateBounds(pa,Tij) in Algorithm 4 updates

the Voronoi region bound V̂(pa) by adding Tij . Thus UpdateBounds(pa,Tij) adds the adjacent

ranges to the Voronoi region bounds V (pa).

Figure 2.13: GPU Based PIS Computation in 2D: This image highlights the PIS sets and the

Voronoi regions computed for the tile Tij shown in black during each of the four sweeps in 2D

(a) The final potential intersecting set I (Tij) (b) PIS ÎS (Tij, Ti+j+) (c) PIS ÎS (Tij, Ti−j+)

(d) PIS ÎS (Tij, Ti+j−) (e) PIS ÎS (Tij, Ti−j−)

57

Input: Domain D, site set P , num tiles k, l
Output: Voronoi Diagram VDD(P)

foreach site pa ∈ P do1

Find tile Tij s.t. κ(pa) ∈ Tij2

Initialize V̂(pa)← Tij3

end4

for j=1 to l do5

for i=1 to k do6 (
VDTij(P), ÎS (Tij, Ti+j+)

)
←7

ComputeTile(Tij, ÎS
(
T(i−1)j, T(i−1)+j+

)
,

ÎS
(
Ti(j−1), Ti+(j−1)+

)
)8

VDD(P)← VDD(P) ∪ VDTij(P)9

end10

for i = k downto 1 do11 (
VDTij(P), ÎS (Tij, Ti−j+)

)
←12

ComputeTile(Tij, ÎS
(
T(i+1)j, T(i+1)−j+

)
,

ÎS
(
Ti(j−1), Ti−(j−1)+

)
)13

VDD(P)← VDD(P) ∪ VDTij(P)14

end15

end16

for j=l downto 1 do17

for i=1 to k do18 (
VDTij(P), ÎS (Tij, Ti+j−)

)
←19

ComputeTile(Tij, ÎS
(
T(i−1)j, T(i−1)+j−

)
,

ÎS
(
Ti(j+1), Ti+(j+1)−

)
)20

VDD(P)← VDD(P) ∪ VDTij(P)21

end22

for i = k downto 1 do23 (
VDTij(P), ÎS (Tij, Ti−j−)

)
←24

ComputeTile(Tij, ÎS
(
T(i+1)j, T(i+1)−j−

)
,

ÎS
(
Ti(j+1), Ti−(j+1)−

)
)25

VDD(P)← VDD(P) ∪ VDTij(P)26

end27

end28

Algorithm 3: Compute2D(D, P , k, l)

58

Input: Tile Tij , PIS ÎS (T1, T1′), PIS ÎS (T2, T2′) where T1, T2 are adjacent to Tij

Output: Voronoi Diagram VDTij(P), PIS ÎS (Tij, Ti′j′)

Update ÎS (Tij, Ti′j′)← ÎS (T1, T1′) ∪ ÎS (T2, T2′) ∪ S (Tij)1

foreach site pa ∈ ÎS (Tij, Ti′j′) do2

if V̂(pa) ∩ Tij = ∅ then3

ÎS (Tij, Ti′j′)← ÎS (Tij, Ti′j′) \ {pa}4

Compute distance field DTij
(pa)5

Update VDTij(ÎS (Tij, Ti′j′))6

Check DTij
(pa) for visibility7

if DTij
(pa) is visible then8

UpdateBounds(pa,Tij)9

end10

Algorithm 4: ComputeTile(Tij ,ÎS (T1, T1′))

2.10.2 3D Culling

In 3D, the domain is divided into k × l ×m cubical ranges. The set of ranges with the

same Z coordinate forms a 2D domain called a slice. A slice is further divided into k × l

rectangular tiles. We compute the 3D Voronoi diagram by computing m slices. Computation

of a 2D slice is done as shown in Algorithm 3.

2.10.3 Conservative Sampling

The occlusion queries sample the visibility at fixed locations in each pixel and can result

in sampling errors. In particular, the algorithm presented above may incorrectly classify a

site pa as receding if its Voronoi region V (pa) does not cover any grid cells, i.e. the occlusion

query returns zero visible pixels for the distance field DTij
(pa). This may introduce errors

when V (pa) intersects the range Tij but its intersection with Tij is not sampled by the ras-

terization hardware. An incorrect classification of pa as receding can lead to errors in the

Voronoi diagram of subsequent ranges.

We account for these sampling errors using a conservative sampling approach presented

59

Figure 2.14: Approximate Medial Axis Transform: Left: Triceratops model (5.6k polygons,

Grid Size=255 × 111 × 84, Computation Time=0.7s) The medial surface is color coded by

the distance from the boundary. Right: Brake rotor model (4.7k polygons, Grid Size=4 ×
128× 128, Computation Time=0.31s). The medial seam curves are shown in red.

in [SOM04]. This involves expanding the Voronoi region of each site by the size of a grid

cell and again testing for visibility. Updates to the depth and color buffers are disabled during

this computation.

2.11 Applications

We have applied our distance field algorithm to compute an approximate medial axis

transform of polyhedral models and path planning. These applications require global distance

field computation along a 3D grid.

Simplified Medial Axis Computation: We compute a simplification of the Blum medial

axis, called the θ-simplified medial axis (θ-SMA) [FLM03]. The θ-SMA provides a good

approximation of the stable subset of the medial axis. The algorithm for computing the θ-

SMA of an object X is based on computing the vector field called the neighbor direction

field of the object X and denoted by N(X). N(X) is the negated gradient of the distance

field defined by the boundary of X . Given N(X), a separation criterion is defined using

the separation angle θ. The criterion is used to check whether a line segment connecting

the centers of adjacent voxels of a grid crosses a sheet of the medial axis. When a pair of

60

points passes the separation criterion, we add the facet between them to the approximation

of θ-SMA and compute a polygonal approximation of the medial axis. In some cases a

discrete voxel representation of the θ-SMA is desirable. A voxel is added to the medial

axis if it lies on one side of a facet on the medial axis, which is determined as above. This

selection operation can be efficiently performed on modern programmable graphics hardware

using fragment programs. The gradient field is stored on graphics card texture memory. This

avoids the costly readbacks of the entire distance field to the CPU.

Interactive Path Planning in Dynamic Environments: We have used our distance field

computation algorithm within a constraint-based path planner [GL02]. The path planning

problem is reduced to simulating a constrained dynamic system, and computes an approx-

imation of the generalized Voronoi diagrams (GVD) of the robot and obstacles in the en-

vironment. Each robot is subject to virtual forces introduced by geometric and mechanical

constraints, such as making the robot follow an estimated path computed using the GVD

and linking the rigid objects together to represent an articulated robot. The distance field is

used to compute an approximate GVD and a Voronoi graph. The distance field is also used

to perform proximity tests between the robot and the obstacles and maintain a minimum

clearance.

Given a pair of objects, R1 and R2, the distance field of R2 is drawn in a potentially

overlapping region. The surface of R1 is sampled at points inside the overlapping region, and

a force is generated at each sample point qi. The force is in the direction of the gradient of

the distance field and proportional to the distance between qi and the surface of R2. As the

obstacles in the environment undergo motion, our algorithm recomputes the distance field

and uses it for path computation. We have used this path planner for virtual prototyping

applications.

61

2.12 Implementation and Results

In this section we describe the implementation of our discrete generalized Voronoi dia-

gram computation algorithm and highlight its performance on different benchmarks.

Figure 2.15: Triceratops Model: Computa-

tion of 3D distance field and discrete Voronoi

diagram of Triceratops model (5660 poly-

gons). Distance increases from red to green.

Grid size = 255×111×84, Computation time

= 720ms.

Figure 2.16: Cassini Model: A volume ren-

dering of the distance field of the Cassini with

93K polygons. The distance to the surface is

color coded, increasing from red to green to

blue. Grid size = 186 × 254 × 188, Compu-

tation time = 5.86s.

2.12.1 Implementation

We have implemented our algorithm on a PC with a 3.2 GHz Pentium IV CPU with 2

GB memorywith an NVIDIA GeForce 7800 GPU connected via 16x PCI Express bus and

running Windows XP operating system. We used Microsoft Visual C++ 6.0 compiler and

OpenGL graphics API. The distance functions for each primitive are computed at each grid

cell on programmable graphics hardware using the OpenGL’s ARB fragment program ex-

tension. The fragment program is used to compute the magnitude of the distance vector. We

62

computed the distance field using a render texture with 32-bit floating point precision. The

slices of the 3D domain are laid out on a 2D texture using flat 3d textures [HBSL03]. Our

run-time algorithm computes the distance vectors for the vertices of the convex polygon asso-

ciated with each site. The polygons are rasterized onto the rendertexture. We incorporated the

optimizations to improve the performance of our algorithm on manifold objects. The visibil-

ity test is performed using the OpenGL occlusion query extension GL NV occlusion query [GL-02].

We efficiently utilize the parallelism on a GPU by batching together the occlusion queries for

an entire set of potentially intersecting sites. Our implementation involves no pre-computation

and is directly applicable to deformable models.

Figure 2.17: Brain Model (78 ×
110 × 60 image, 18944 boundary

voxels): Voxel centers are shown as

points. The θ-SMA (θ = 100◦) is

shown in blue. Computation Time

= 0.75s. The θ-SMA does not pro-

vide any topological guarantees on

the output.

(a) (b)

Figure 2.18: Right Hippocampus in the Brain

Model (813 boundary voxels), θ = 90◦: Voxel cen-

ters are shown as points. (a) Medial Axis approx-

imation (θ-SMA) (b) Boundary and Seam Curves.

The θ-SMA does not provide any topological guar-

antees on the output.

In 2D, our sweep based algorithm computes the Voronoi diagram for all tiles in row i

before computing the Voronoi diagram for tiles in row (i + 1). We store the Voronoi region

bounds as intervals along X and Y axes. In particular, we need to store the interval along X

for the current and previous rows only, giving tighter bounds compared to an AABB. In 3D,

63

we store the Voronoi region bounds along X and Y for the current and previous slices. In

addition, all

For medial axis computation, we generate the gradient vector field along with the distance

field. The gradient vectors are stored at 32-bit precision in the color buffer of floating point

textures. The voxel representation of the θ-SMA is computed on the graphics processor

using OpenGL’s ARB fragment program extension. The medial axis is rendered directly

from the GPU as a volume grid.

Given a discrete image data set, we compute the set of boundary voxels, which are all

background voxels adjacent to at least one feature voxel. A point primitive is placed at the

center of the boundary voxels. We use two optimizations to improve the performance on

these datasets:

1. The distance of the point primitive to a slice belongs to a finite discrete domain. We

precompute a set of distance meshes [HCK+99a] corresponding to set of distance value

and store them as vertex buffer objects in the GPU memory.

2. Instead of encoding the gradient vector into the color buffer for each vertex of the

distance mesh, we encode the position of the closest boundary voxel. We make a

second pass during which a fragment program efficiently computes the gradient vector

at each voxel.

2.12.2 Performance

We have applied our algorithm to various benchmarks, such as 2D data sets, 3D polygonal

as well as image models. These include scanned models and CAD models. Some of them

are non-manifold.

2D Models: We have applied our algorithm to several 2D models of points and lines. The

sites are distributed randomly across the domain. We have compared the performance of our

64

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

2500

3000

num sites

ti
m

e
 (

m
s
)

HAVOC
CuRV

Figure 2.19: Timing Comparison: Growth

of time to compute the 2D discrete Voronoi

diagram with number of random sites, us-

ing HAVOC(Hoff et al. 99) and CuRV (our

algorithm). We have used a high grid res-

olution of 1200 × 1200 for the computation

of discrete Voronoi diagram and used a tile

size equal to 75× 75.

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

num sites

F
il

l
(M

p
ix

e
ls

)

HAVOC
CuRV

Figure 2.20: Fill Rate: Number of pixels

where distance function is computed, using

HAVOC(Hoff et al. 99) and CuRV (our al-

gorithm). We have used a grid resolution

of 1024 × 1024, and a tile size of 32 × 32
to compute the Voronoi diagram. Our re-

sults indicate upto two orders of magnitude

reduction in fill over HAVOC.

Voronoi diagram computation algorithm (called CuRV) with the algorithm presented by Hoff

et al. [HCK+99a] (called HAVOC).

We have measured the performance of our algorithm with varying number of sites. Fig.

2.19 highlights the performance on upto 20K sites. We observe that the Voronoi computation

time scales linearly with the number of sites. Furthermore, the computation time scales better

than HAVOC. The computation cost of the Voronoi diagram is directly proportional to the

fill rate. The fill rate is the number of sample points (pixels) where the distance function

computation is evaluated. Fig. 2.20 shows the fill rate requirements of CuRV and HAVOC.

Our experimental results indicate up to 5 times performance improvement over HAVOC and

approximately two orders of magnitude reduction in the overall fill rate.

3D Models: We have applied our algorithm to compute 3D distance field and discrete gen-

eralized Voronoi diagram of polyhedral models (see figure 2.15).

For polygonal models, we have compared the performance of our distance field com-

65

Model Polys Resolution CSC HAVOC HAVOC+CSC DiFi

Rotor 4736 4x128x128 59.22 3.87 2.18 0.31
Rotor 4736 8x254x254 424.89 9.23 6.12 0.48

Triceratops 5660 128x56x42 127.81 2.11 1.10 0.41
Triceratops 5660 254x111x84 990.48 3.87 3.65 0.76

Hugo 17000 73x45x128 X 20.55 15.24 1.22
Hugo 17000 145x90x254 X 85.84 55.85 2.63
Head 21764 78x105x128 201.12 17.47 12.76 0.846
Shell 22598 254x252x252 X 81.97 41.31 2.12

Cassini 93234 186x254x188 X 186.03 148.55 5.86
Dragon 108926 57x90x128 X 89.13 49.69 4.76

Table 2.1: Distance Field Computation (Polygonal Models): Times (in seconds) to com-

pute the global distance fields using approaches by Mauch [Mau03] (CSC), Hoff et

al. [HCK+99a](HAVOC), an implementation combining CSC with HAVOC on graphics hard-

ware (HAVOC+CSC), and our algorithm (DiFi). For the entries marked X, CSC algorithm

fails as the model contains non-manifold sites.

putation algorithm (DiFi) with the algorithm presented by Hoff et al. [HCK+99a](called

HAVOC), a software implementation of CSC algorithm [Mau03], and an implementation that

combines HAVOC with CSC. The timings are presented in Table 2.1. For the image data set,

we have compared our algorithm with an implementation of Danielsson’s 4SED algorithm

[Dan80] from the ITK toolkit library. The results are shown in Table 2.2. The polygonal rep-

resentation of θ-SMA was smoothed using the algorithm presented by Taubin [Tau95]. In our

Model Resolution Points 4SED DiFi

Octahedron Image 256× 256× 58 4862 4.62 0.45
Brain 78× 110× 60 18944 0.55 0.75

Brain Lat Vent 78× 110× 60 4988 0.55 0.32
Sinus1 406× 363× 392 34507 66.1 5.1
Sinus2 406× 363× 392 104154 66.1 9.7

Table 2.2: Distance Field Computation (Image Models): Times (in seconds) to compute the

gradient field of image models using the 4SED algorithm [Dan80] and our algorithm (DiFi).

Points refers to the number of boundary voxels.

benchmarks, DiFi obtains more than two orders of magnitude over a software implementa-

tion of the CSC algorithm and upto one order of magnitude performance improvement over

an implementation combining HAVOC and CSC for manifold objects. For non-manifold

66

models, we obtain upto 30 times speedup over HAVOC. For 3D image models, we are able

to obtain up to 10 times performance improvement over the 4SED algorithm [Dan80].

Our approach takes a fraction of a second to compute the distance field of a model with

thousands of polygons on a 256 × 256 × 256 grid. We analyzed our implementation using

Intel’s vTune benchmarking software. The time spent on computation of the bounding con-

vex polygons was approximately 12% of the total time. The observed maximum number of

triangles sent to GPU was 3MTris/s; maximum number of pixels rendered was 1.6Gpixels/s

and estimated memory bandwidth achieved was 26GB/s.

(a) Sinus model

surface

(b) θ = 15◦ (c) θ = 60◦ (d) θ = 105◦

Figure 2.21: Different θ-SMA for the Sinus Image Dataset Image (406× 363× 392, 34507
boundary voxels). The surface representation shown was extracted using marching cubes.

Medial Axis Computation: We have applied the distance field to compute the simplified

medial axis of polyhedral models. The simplified medial axis for two models is shown in

Figure 2.14. Our algorithm takes less than a second to compute the medial axis of polyhedral

models consisting of thousands of polygons.

Path Planning: We have applied the path planning algorithm to an assembly environment

(shown in Figure 2.22). The environment consists of an articulated robot arm with 6 degrees

of freedom placed in the middle of a complicated piping structure. The robot arm reaches for

a part moving on a conveyor belt and avoids collision with obstacles. Various links on the

robot arm come in close proximity with the piping structures. We are able to dynamically

compute the path at interactive rates using our fast distance field computation algorithm.

67

Figure 2.22: Planning in an assembly environment: Constraint based planning in a dynamic

environment consisting of 26.9k polygons using distance fields. The robot arm tracks a mov-

ing part on a conveyor belt, while avoiding contact with other obstacles in the environment.

Our algorithm computes the distance field at interactive rates and uses the distance field to

compute a collision free path.

2.13 Discussion

In this section we analyze the computational complexity, space requirements and the

accuracy of our algorithm. We also compare our algorithm with some existing distance fields

and discrete Voronoi diagram computation algorithms.

2.13.1 Analysis

Accuracy: Our approach does not require tessellation of the distance functions. The com-

puted distance field is accurate to 32-bit floating point precision. Hence the discrete Voronoi

region deviates from the exact boundary by at most one cell (see figure 2.23).

Time Complexity: First we shall provide the time complexity for generalized range culling,

and then provide the expressions for 3D distance field computation for the special case when

each slice is treated as one tile (range). Let the model contain m sites.

Let the 2D domain D̃ contain k× l tiles, each covering p grid cells (pixels). We introduce

the notion of average PIS size which gives the average number of sites for which the distance

68

Figure 2.23: Voronoi Diagram Accuracy: Error in Voronoi region computation in (a) HAVOC

[Hoff et al 99] and (b) CuRV (our algorithm). There are two point sites close to the diagonal.

The exact boundary is indicated using a dotted blue line. With HAVOC the error can be

several pixels, whereas it is at most 1 pixel with CuRV

field is computed per tile, and is defined as

〈ÎS〉 =
1

kl

k∑

i=1

l∑

j=1

(|ÎS (Tij, Ti+j+) |+ |ÎS (Tij, Ti−j+) |+

|ÎS (Tij, Ti+j−) |+ |ÎS (Tij, Ti−j−) |)

In higher dimensions, 〈ÎS〉is similarly defined. Then the cost of updating the PIS in al-

gorithm 4 is O(〈ÎS〉 log〈ÎS〉). The cost of computing the distance field for each site is

proportional to the number of grid cells (pixels) inside the tile, O(p). Thus the total cost

of one call to algorithm 4 is O(〈ÎS〉 log(〈ÎS〉) + 〈ÎS〉m), and the cost of algorithm 3 is

O
(
22kl(〈ÎS〉 log〈ÎS〉+ p〈ÎS〉)

)
. Similarly in n dimensions, the computational cost is

O
(
2n

∏n
i=1 ki(〈ÎS〉 log〈ÎS〉+ m〈ÎS〉)

)
. Note that

∏n
i=1 ki × p gives the total number of

grid cells in domain D̃.

In 3D, let the number of cells in domain D̃ be M = k× k× k, the cost of computing the

distance field is proportional to the number of processed cells over which the distance func-

tion is evaluated. The optimal cost for computing the 3D distance field is O(k3) = O(M).

For a slice sk, the optimal number of processed cells is
∑|I (k)|

i=1 |Qi,k| = k2. The actual

69

number of processed cells is
∑|bI

k
|

i=1 |Q̂i,k|. We define the following average number of cells

covered by one site:

optimal = 〈|Qi,k|〉 =
P|I(k)|

i=1 |Qi,k|
|I (k)| , actual = 〈|Q̂i,k|〉 =

P|bI
k
|

i=1 | bQi,k|
|bI

k
|

The per-slice efficiency of our algorithm can be measured by two ratios: the clamping effi-

ciency, e1k =
〈|Qi,k|〉
〈| bQi,k|〉

and culling efficiency, e2k = |I (k)|
|bI

k
| . The average efficiency per slice can

be defined as 〈e〉 = 1
k

∑k
k=1 e1k × e2k. The total cost of the algorithm is O(M/〈e〉), and is

bounded between O(M) and O(mM). For non-manifold sites, the clamping efficiency e1k

approaches 1 as the sites are uniformly distributed on the 3D grid. For manifold sites, the

complexity is similar to that of the CSC algorithm, i.e. O(m+ rM). However, our algorithm

obtains tighter bounds on the parameter r, r = 1/〈e〉. In practice, e1k ≈ 1, thus r = 1
〈e2k〉 .

Storage Cost: In terms of storage cost, we have to store the PIS for each tile. Thus the

storage cost increases by O(kl〈ÎS〉) in 2D and O(
∏n

i=1 ki〈ÎS〉) in n dimensions.

2.13.2 Comparison

We now compare our algorithm (DiFi) with some previous approaches to compute dis-

crete generalized Voronoi diagrams using graphics hardware: HAVOC [HCK+99a], a quadtree

based culling algorithm [Den03b] and GPU-based CSC algorithm. [SPG03].

HAVOC: HAVOC ([HCK+99a]) computes discrete generalized Voronoi diagrams in 2 and 3

dimensions, under any distance function. However the computational complexity of HAVOC

is O(mM), where m is number of sites in P and M is number of grid cells in D̃. For large

models, the distance mesh approximation step becomes a bottleneck as all the triangles are

sent from the CPU to the GPU during each frame for rasterization. This approach does not

scale well with large number of sites and in higher dimensions. Furthermore, the discrete

Voronoi diagram computed by HAVOC can have significant errors in computed Voronoi re-

gions and can deviate from the exact Voronoi region by more than a single cell (see Fig.

2.23). This error is caused due to the tessellation error in the distance functions used by

70

HAVOC.

In contrast, our algorithm only computes the distance vector at the vertices of the convex

polygons and uses the bilinear interpolation capabilities of the texture mapping hardware.

Our distance computation algorithm has much lower CPU-GPU bandwidth requirements as

we only transmit the distance vectors at the vertices of the convex polygon of each site. Our

algorithm provides bounds on the region of distance computation for each site, and the ap-

proach is extensible to n dimensions, and scales well to large number of sites. Also, the com-

puted distance field is accurate to 32-bit floating point precision, hence the discrete Voronoi

region deviates from the exact boundary by at most one cell (see figure 2.23). However, in

order to compute the Voronoi diagram efficiently, DiFi utilizes the connectivity property of

Voronoi diagrams. Therefore, it is applicable for only distance functions which are metrics.

Like HAVOC, it is applicable to generic models without connectivity information, and has

the same error bounds.

Quadtree Culling: Denny [Den03a] presents an efficient approach for computing 2D dis-

crete Voronoi diagrams for points under Euclidean distance, when the point distribution is

approximately uniform in the domain. This approach increases the amount of tessellation to

bound errors in the Voronoi region boundaries to 1 cell size. However, the approach is not

directly extensible to 3D and higher order sites, and is sensitive to the order of computation of

the distance functions. In comparison, our algorithm is simple and applicable to both higher

order sites and dimensions.

GPU-based CSC algorithm: Sigg et al. [SPG03] also mentioned the idea of using bilinear

interpolation and dot products. However, they do not provide any details on their derivation

or implementation. Instead they present an approach which reduces the number of polyhedra

that are scan converted. The fragment program used by [SPG03] is more complex and in-

creases the load on the fragment processor. Moreover, Sigg et al.’s algorithm is restricted to

inputs that are closed manifolds, and has the same asymptotic complexity as the CSC algo-

71

rithm [Mau03], i.e. O(m + rM). Overall, their approach is useful for very highly tessellated

models and distance field computations with low-grid resolutions and narrow band sizes. In

these cases, each polyhedron can become smaller than a few voxels. The polygon trans-

form can become a bottleneck, and reducing number of polyhedra scan-converted provides

speedups. For small band sizes, the parameter r is close to unity. However, for computing

the global distance field of complex environments with multiple manifold surfaces and high

depth-complexity, r can be O(m). Further, it does not provide the complete generalized

Voronoi diagram.

In contrast, we provide a formal presentation of the linear factorization and the neces-

sary details to implement it. Our algorithm is applicable to general polygonal models. Fur-

thermore, our approach computes a pixel accurate discrete generalized Voronoi diagram (as

demonstrated in Figure 2.23). Our fragment program is much simpler. For large grid resolu-

tions and global computations, the distance computation on the fragment processor becomes

the bottleneck and our approach is more efficient that [SPG03]. This has been verified by

our benchmarks. The cost of slicing the polyhedra is small and the observed triangle transfer

rates are significantly less than the theoretical peak. Further, our approach makes efficient

use of the fragment processor.

2.13.3 Limitations

Our algorithm has certain limitations. Our distance field computation is performed on a

uniform grid and its accuracy is governed by grid resolution. Current graphics processors

provide up to 4K × 4K pixel resolution and this imposes an upper bound on the grid res-

olution. The accuracy of the algorithm is governed by that of the graphics hardware. For

example, the current hardware provides support for 32-bit floating point representation and

it is not fully compatible with the IEEE floating-point standard. Secondly, our algorithm in-

volves a readback from the GPU back to the CPU, which can have additional overhead for

72

high resolution distance fields. For narrow bands, and highly tessellated models, polygon

transformation can become a bottleneck.

Our algorithm is only useful for computing discretized distance fields and the resulting

algorithms for proximity queries and medial-axis computation only perform approximate

computations (up to grid resolution). Hence there are no topological guarantees on the com-

puted medial axis approximation. An adaptive approach that provides topological guarantees

on the output is presented in Chapter 5.

73

74

Chapter 3

Surface Distance Maps

In this chapter, we consider the problem of computing the distance map on triangulated

meshes in R
3. The surface distance map is defined as follows: Given a set P of triangulated

objects, at each point on an object Oi the surface distance map provides distance to closest

object in P \ Oi (the closest object is trivially the one on which the point lies). The distance

function varies continuously along the object surface and the gradient of the distance map at

a point yields the direction vector to the closest object that does not contain the point. If the

primitives are orientable, we can also associate a sign with the distance map.

Most of the prior techniques compute the distance field along a volumetric grid or a

voxelized representation of space. At a broad level, these algorithms can be classified into

object space methods that represent the distance field using adaptive grids or image space

methods that compute the closest primitive at each grid point on a uniform grid. The latter

methods can be accelerated by rasterizing the distance functions using the graphics hardware

as shown in Chapter 2. These algorithms compute the distance field along each slice of

a 3D grid and the computation can be accelerated by using spatial bounds on the Voronoi

regions of the primitives [SOM04, PS05]. However, these volumetric techniques have many

limitations. Their storage overhead and computation time is O(k3), where k is the resolution

along the grid. As a result, current 3D distance field computation algorithms are not fast

enough for interactive applications. Moreover, their accuracy can be low as most of the grid

Figure 3.1: Surface distance map of the Hugo model enclosed in a box: We show the surface

distance maps between the Hugo model (17.2K polys - in wireframe) and a box (12 polys

- in wireframe). (a) The surface distance fields of Hugo on the box and of the box on the

Hugo model. The distance increases from red to green. (b) The Voronoi diagrams of the

Hugo and box that are used to compute the distance maps. Each colored region represents

the intersection of the Voronoi region of a site on Hugo with the surface mesh of the box (and

vice versa). (c) The normalized gradient of the distance field. The color of a point on the box

encodes a vector representing the direction to its closest point on Hugo (and vice versa). Our

algorithm can compute surface distance map of the Hugo and the box in 600ms on a grid of

resolution 256× 256.

vertices do not exactly lie on the mesh, and adaptive sub-voxel refinement techniques are not

well suited for graphics hardware [OLG+05].

We present a new algorithm to compute surface distance maps of triangulated models.

Our algorithm uses a simple texture representation to store a piecewise planar parametrization

of the mesh. The parameterization defines an affine transformation for each primitive of the

mesh. The 2D texture map is used as a discrete sampling of the mesh for distance map

computation.

We apply the affine transformation of the geometric primitive to compute the distance

functions of 3D primitives using the texture mapping hardware. We use the stencil test to

clip the distance functions to regions corresponding to the geometric primitive in the 2D

texture. Our algorithm employs spatial hierarchies to localize the distance field computations

and improve the overall performance.

76

3.1 Related Work

In this section, we give a brief overview of related work on distance fields and surface

mappings.

3.1.1 Distance Fields

Algorithms to compute distance fields are widely studied. At a broad level, these algo-

rithms can be broadly classified based on the model representations such as images, volumes

or polygonal representations. Good surveys of these algorithms are given in [Cui99, Aur91].

The algorithms for image-based data sets perform exact or approximate computations in

a local neighborhood of the voxels. [Dan80, Set99, BGKW95, MQR03, GF03]. Exact algo-

rithms for handling 2-D and k-D images have been propose to compute the distance trans-

forms in voxel data in O(M) time, where M is the number of voxels [BGKW95, MQR03].

There is extensive work in computing the exact Voronoi diagram of a set of points

[Aur91]. However, exact computation of Voronoi regions of higher order primitives such

as lines or triangles is a hard problem due to its algebraic and combinatorial complexity. As a

result, most practical algorithms compute an approximation to the Voronoi diagram by com-

puting distance fields on a uniform grid or an adaptive grid. A key issue is the underlying

sampling criterion used for adaptive subdivision [VO98, TT97, ER02, PF01].

The computation of a discrete Voronoi diagram on a uniform grid can be performed ef-

ficiently using graphics rasterization hardware. This idea was original proposed for point

primitives in [WND97]. Hoff et al. [HCK+99b] render a polygonal approximation of the dis-

tance function on depth-buffered graphics hardware and computed the generalized Voronoi

Diagrams in two and three dimensions. The 3D algorithm computes each slice separately. An

efficient extension of the 2-D algorithm for point primitives is proposed in [Den03a]. Sud et

al. [SOM04, SGGM06] present algorithms efficiently compute distance fields of polygonal

77

primitives by using a combination of culling and clamping algorithms and map the com-

putations to the texture mapping hardware. In practice, these algorithms can improve the

performance of 3D distance field computation considerably, but are not fast enough for inter-

active applications. Fischer and Gotsman [FG05] describe techniques to approximate higher

order Voronoi diagrams and distance fields using GPUs.

A class of exact distance computation and collision detection algorithms based on ex-

ternal Voronoi diagrams are described in [Lin93]. A scan-conversion method to compute

the 3-D Euclidean distance field in a narrow band around manifold triangle meshes (CSC

algorithm) is presented by Mauch [Mau03]. The CSC algorithm uses the connectivity of the

mesh to compute polyhedral bounding volumes for the Voronoi cells. The distance function

for each site is evaluated only for the voxels lying inside this polyhedral bounding volume.

Sigg et al. [SPG03] describe an efficient GPU based implementation of the CSC algorithm.

Peikert and Sigg [PS05] present algorithms to compute optimized bounding polyhedra of

the Voronoi cell for GPU-based distance computation algorithms. Lefohn describe an al-

gorithm for interactive deformation and visualization of level set surfaces using graphics

hardware [LKHW03].

3.1.2 Surface Mapping and Parameterization

Surface distance maps can be regarded as a mapping computed on the surface. In some

ways, this problem is related to other surface mapping problems such as texture mapping

[Cat74], which is used to define the color on the surface; displacement mapping [Coo84],

which consists of perturbations of the surface positions; bump mapping [Bli78], which give

perturbations to the surface normals; and normal maps [Fou92], which contains the actual

normals instead of the perturbations. All these mapping are supported by current graphics

hardware.

The problem of computing a parameterization is well studied in the literature. A recent

78

survey of these techniques is given in [FH05]. Given a closed model, these algorithms cut the

model into charts such that each chart is homeomorphic to a disk. Each chart is parameterized

separately and the final parameterization is an atlas of these chart parameterizations.

3.2 Surface Distance Maps

In this section, we present surface distance maps and our algorithm to compute them

efficiently using texture mapping hardware. We first introduce the notation used in the paper.

O2
T

MV1

V2

V3

P

2w

q
1w

3w

Domain

Parameterization

Mesh Triangle

Figure 3.2: Affine map and distance computation: We compute the distance map at a point

q on triangle t (of O1). The green vector shows the closest site of O2 to q. The affine map

M1 maps triangle t to a triangle t̄ in the 2D domain T1.

3.2.1 Notation

We denote piecewise linear 2-manifold objects or meshes in 3D as Oi. Furthermore, Oi is

decomposed into vertices, open edges and open faces, also known as sites. A site is denoted

as pi. Let Ti ⊂ R
2 represent the 2D parametric domain for object Oi. We use an overbar to

represent the mapping of a 3D primitive to the 2D domain T, for e.g. A point q and triangle

t in 3D map to q̄ and t̄ respectively on T.

The distance function of a site pi at a point q ∈ R
3 is denoted d (q, pi). The distance

function of a site pi on a triangle t in the 3D mesh represents the closest distance from each

79

point q ∈ T to pi. The closest vector from q to pi is known as the distance vector, denoted

~d(q, pi).

Given two triangulated objects O1 and O2, the surface distance map D(O1) of an object

O1 at a point q ∈ O1 is the minimum value of the distance functions of all sites pk ∈ O2 at q.

We define an affine mapping M1
i : ti → T1 to transform the sampled points on the triangles

ti ∈ O1 into the 2D domain T1 ⊂ R
2. For ease of notation, when the object id j is implicit

(j = 1 in this case), we shall drop the superscript from M
j

i and denote the affine map as Mi.

3.2.2 Distance Fields: Background

Distance fields can be computed efficiently on discrete volumetric grids by rasterizing

the distance function of each site to the points in the grid. Many algorithms compute the

distance functions from each site to the points on the planes swept along the Z-axis of the

grid [SOM04, SGGM06, SPG03]. These algorithms perform the distance field computation

using one of these approaches:

1. Evaluate the distance function d (q, pk) at each point q in the plane directly by raster-

izing the distance functions and use the depth-buffer hardware.

2. Compute the distance vector from q to the site and use the magnitude of the distance

vector to compute d (q, pk). This computation can be efficiently performed using the

bilinear interpolation capabilities of the texture mapping hardware.

In order to accelerate the computations, prior algorithms construct a convex bounding poly-

tope G to bound the Voronoi region of site. As a result, the distance function is only evaluated

at the points inside. Details on the computation of these polytopes are given in Section 2.4.

We use similar techniques to accelerate the computation of surface distance maps.

80

3.2.3 Planar Parameterization

Given a 3D mesh O with triangles tk, k = 1, . . . , n, our algorithm transforms tk into t̄k

by applying an affine mapping Mk (see Fig. 3.2). Mk is represented as a matrix and ensures

the following properties:

• There is a one-to-one mapping from a point q ∈ tk to the point Mkq ∈ t̄k.

• No two transformed triangles t̄k = Mktk and t̄l = Mltl share a common interior point

in the 2D domain T.

These constraints are satisfied using piece-wise planar parameterizations of the surface in

3D space and the mapped triangles can be represented in a 2D texture atlas.

The affine transform for a triangle tk with vertices v0,v1,v2 to a triangle t̄k with vertices

v̄0, v̄1, v̄2 in 2D domain T is given as

M(x) = A(x− v0) + v0 (3.1)

where

A =

[
v̄1 − v̄0 v̄2 − v̄0 v̄3 − v̄0

] [
v1 − v0 v2 − v0 v3 − v0

]−1

v3 = (v1 − v0)× (v2 − v0)

v̄3 = (v̄1 − v̄0)× (v̄2 − v̄0)

Since M is affine, A can be written as a composition of a scale, shear and rotation ma-

trices. Mathematically, A = AsAr where As represents a scale and shear matrix in the

XY plane and Ar is a rotation matrix. We shall use this representation to perform an error

analysis in Section .

81

3.2.4 Surface Distance Computation

Surface distance maps compute the distance-to-closest-primitive in the the scene to the

sampled points on the surface of the mesh, excluding primitives on same mesh. We first

compute the affine mappings, Mk for each triangle tk in the 3D mesh. These affine map

defines a sampling on each triangle tk in 3D space by sampling the projected triangle t̄k in

the 2D domain T. The surface distance map samples the domain T uniformly using a 2D

texture. Instead of computing distances using a volumetric grid, our algorithm computes the

distance map on each triangle tk using affine transforms of distance functions to a 2D plane

containing t̄k.

We present an algorithm to compute distance functions on a set of sampled points on

the triangles of the 3D mesh. For each site pi, we compute a convex bounding polytope Gi,

which acts as a spatial bound on the Voronoi region of pi. In other words, any point outside

Gi can not lie in the Voronoi region of pi. We intersect Gi with the triangle tk in 3D mesh.

Let x1, . . . ,xl denote the vertices of Gi ∩ tk. From the bilinear interpolation property of

distance vectors presented in Section 2.3, for a point q ∈ tk the distance vector ~d(q, pi) is

a convex combination of the distance vectors at the vertices xj, j = 1, . . . , l. Since Mk is

affine, the distance vector at a point q̄ ∈ t̄k is the convex combination of distance vectors at

x̄j = Mkxj, j = 1, . . . , l.

Thus the distance vector computation on Gi ∩ tk can be performed as follows:

1. Assign to each vertex xj a vector ~d(xj, pi).

2. Each vertex xj, j = 1, . . . , l is transformed to a vertex x̄j in the 2D domain T, using

the affine map Mk.

3. The distance vector ~d(q̄, pi) at a point q̄ ∈ t̄k is computed as a convex combination of

the vectors ~d(xj, pi) associated with the vertices x̄j, j = 1, . . . , l.

4. The distance vector for a point q ∈ tk is given as ~d(q, pi) = ~d(q̄, pi), where q̄ = Mkq.

82

3.3 Interactive Distance Map Computation

In this section, we will present our algorithm to efficiently compute surface distance maps

using GPUs.

3.3.1 Mapping to GPUs

Surface distance maps can be computed by the rasterization hardware by using the trans-

formation, clipping and interpolation capabilities of the GPUs. We use the approach men-

tioned in Section 3.2.4 to design an efficient pipeline for surface distance map computation

using GPUs:

• Polytope Computation and Intersection: We compute the bounding polytope of site

pi, and intersect it with the plane πk containing triangle tk on the CPU. This gives a

convex polygon gi in the plane πk containing tk.

• Distance Vector Computation and Transform: We compute the distance vectors at

each vertex of gi and project the vertices of gi to the 2D domain T using the affine map

Mk. This per vertex computation is efficiently performed in parallel using the vertex

processor on the GPU.

• Clipping: We restrict the computation of distance vectors to the domain given by

Gi ∩ tk. This is equivalent to clipping the polygon gi against tk, or in the 2D domain

T clipping the projection ḡi against t̄k. We use the stencil functionality of GPUs to clip

the projection of gi to the region inside t̄k.

• Bilinear Interpolation: The linear interpolation of distance vectors is equivalent to

the interpolation of texture co-ordinates assigned to the vertices of the triangle. This

functionality computes the distance vectors in the texture atlas.

83

(a) (b) (c)

Figure 3.3: Surface Distance map computation on deforming letters ”EG”: Deforming dy-

namic simulation on two letters, (3.7K triangles total). (a)-(b) Two frames from the simula-

tion. (c) The gradient of surface distance maps of each alphabet shows the direction of the

closest point on the other alphabet. Our algorithm can compute the global distance maps for

both bunnies in 100ms at a grid of resolution 512× 512.

• Distance Computation: The distance value at a texel in the texture atlas is the norm

of the distance vector and computed using the fragment processor.

• Distance Comparison: The distance value is returned as depth and compared with

the current minimum distance value using the depth test functionality of GPUs. The

minimum distance value is stored in the depth buffer.

The complete algorithm to compute the surface distance map of object O1 using sites in

object O2 is given in Algorithm 5. The algorithm requires computing of intersections between

bounding polytopes of sites and the triangles in the 3D mesh, and clipping of polygons in

2D. We present details of stencil-based clipping and hierarchical culling techniques used to

accelerate the performance of the algorithm.

3.3.2 Clipping

Surface distance maps require an efficient clipping algorithm for each triangle-site pair.

Given a site pi and a triangle tk, we restrict the computation on the 2D domain to the interior

of t̄k using stencil. As a result, each triangle-site pair requires a valid stencil to be set in the

region corresponding to tk. We first describe an algorithm to perform clipping using a single

84

valid stencil value, and present a more efficient stencil caching algorithm that uses multiple

valid stencil values to perform clipping.

Input: Two objects O1, O2. Parameterization from O1 to T1.

Output: The Surface Distance Map D(O1) of object O1.

Initialize D(O1) to∞ for all points q in T11

Update AABB hierarchy of O12

foreach triangle tk in O1 do M1
k ← UpdateAffine(tk)3

foreach site pi in O2 do4

OBB(Gi)← ComputeOBB(pi)5

Intersect OBB(Gi) against AABB hierarchy of O16

foreach triangle tk in O1 intersecting Gj do7

gi ← ClipPolytope(Gi, tk)8

foreach vertex xj in gi do9

Compute distance vector ~d(xj, pi)10

Transform xj to x̄j using M1
k11

Assign texture coordinates of x̄j , (r, s, t)← ~d(xj, pi)12

end13

Draw textured polygon gi on domain T114

end15

end16

Read-back T117

foreach triangle t̄k in T1 do18

Map distance values from t̄k to tk19

end20

Algorithm 5: Pseudo-code to compute the surface distance map of O1 using sites in

O2. We initialize the distance values in the surface distance map D(O1) to∞ (line

1). We then update the hierarchy and the affine transforms of triangles in O1 using

a linear-time algorithm (lines 2–3). Next, we update the surface distance map of O1

using the sites in O2 (lines 4 – 16). For each site, we compute its bounding polytope

and intersect the OBB of bounding polytope with the AABB hierarchy (lines 5–6).

For each intersecting polytope, we clip the bouding polytope using stencil tests (line

8) and compute the surface distance map (lines 7–15).

The algorithm proceeds as follows. For each site pi and a triangle tk in a plane πk in 3D

space, we first compute the bounding polytope Gi and compute the convex polygon given by

Gi ∩ πk. Next, we clip the transformed polygon Mk(Gi ∩ πk) to t̄k in the 2D domain. We

use the stencil test functionality to perform the clipping operation. We first set the stencil

85

value of the triangle to 1 by rendering t̄k. We then render Mk(Gi ∩ πk) onto the portions of

the surface distance map where the stencil value set is to 1. We then render t̄k by setting the

stencil value to 0 on the triangle.

For every two consecutive triangle-site pairs (tk, pi), (tl, pj), k 6= l, our algorithm resets

stencil on regions corresponding to t̄k and sets the stencil on regions corresponding to t̄l.

Each reset and set stencil operations incurs a GPU state change and can become fill-bound.

We improve the performance of our clipping algorithm using a buffer that maintains multiple

stencil values to reduce number of stencil reset operations. Initially, all the stencil values are

unassigned. As the surface distance map computations are performed on the triangles, the

buffer allocates unassigned stencil values to each new triangle. In order to compute the valid

stencil value for tl, we first test if the stencil is set on regions corresponding to t̄l. If the stencil

is set, we simply use that value for the clipping operations. On the other hand, if the stencil

value is not set, we need to assign a valid stencil value to tl. In order to assign a valid stencil

value, we check if any of the stencil values in the buffer are unassigned. If an unassigned

value is available, we assign that value to tl. If no valid stencil value is available, the buffer

uses the least recently used (LRU) replacement policy to determine the stencil value to be

allocated to tl. In this case, we first reset the stencil on the triangle whose stencil is least

recently used and then allocate that stencil value to tl.

3.3.3 Hierarchical Culling

We use a hierarchical distance culling algorithm to reduce the number of triangle-site

pairs in the surface distance map computation. The distance functions are computed from a

site pi to a triangle tk in 3D mesh only when the intersection of the bounding polytope with

the triangle is non empty (i.e. Gi ∩ tk 6= ∅). We use an AABB-hierarchy of each object to

quickly cull away sites whose bounding polytopes do not overlap with the triangles in the 3D

mesh.

86

Our algorithm initially constructs an AABB hierarchy for each object. Each leaf of the

hierarchy stores a triangle of the object. At run-time, we update the AABB-hierarchy and

use it for culling bounding polytopes that do not intersect with the AABB-hierarchy. The

hierarchy nodes are updated in a bottom-up manner. The update cost of a hierarchy is linear

to the number of leaves in the AABB-hierarchy and is usually fast [GKJ+05]. For each site

pi, we construct a bounding polytope Gi and compute a tight-fitting oriented bounding box

OBB(Gi) that encloses Gi. We perform overlap tests between OBB(Gi) and the nodes of

the AABB hierarchy. For each leaf with triangle tk that overlaps with OBB(Gi), we perform

distance computations on Gi∩ tk as described in Section 3.3. The OBBs are constructed only

once for each site, and therefore, the time taken to update the OBBs is linear to the number

of sites in the scene.

We further improve the performance of our surface distance map algorithm by reducing

the number of distance function rasterization operations using distance bounds computed

using the AABB hierarchy. For each node in the AABB hierarchy, we maintain a lower

bound on the maximum distance from the AABB of a triangle tk to the AABB of the sites.

Initially, the maximum distance bound of each node in the hierarchy is set to∞. We do not

perform distance evaluation of a site pi for triangle tk if the distance bound stored for a node

in the hierarchy is less than than the minimum distance from the AABB of the node to the

AABB of pi. This culling test based on distance bounds is used to reject sites whose distance

functions do not contribute to the distance map on tk, as there exists some other sites that are

closer to Tk.

If a site is not culled away, we intersect the bounding polytope Gi of the site with tk and

compute the distance vectors at the vertices of Gi ∩ tk. We then perform distance function

computation on Gi ∩ tk.

87

Figure 3.4: Distance map computation for a

deforming triangle: The triangle undergoes

a non-rigid deformation (S) in terms of shear

and scale. We compute a new affine mapping

for the triangle (M2) and use it to compute

the distance map on the triangle. The sample

locations are shown as dots in the 2D domain

and the triangles.

Figure 3.5:]

This figure highlights the distance between

adjacent samples in the 2D plane when a

rectangular planar primitive (shown in (c))

undergoes a scale (shown in (a)), or shear

transformations ((b) and (d)). The shear in

(b) does not increase the sampling error. The

large shear in (d) increases the sampling

error.

3.4 Error Analysis

In this section, we analyze the accuracy of our algorithm. We show that our algorithm

can be used to compute a distance map up to a desired precision. We also consider the case

when the triangles undergo non-rigid deformations and highlight the accuracy of distance

maps based on the affine transformations.

The algorithm presented in Section 3.3 computes an accurate surface distance map at

the sample points on the boundary of the objects. Its accuracy is governed by the precision

of the texture mapping hardware that performs bilinear interpolation. Current GPUs offer

32-bit floating arithmetic to perform these computations. We also present an error bound

on the computed distance for any point on the surface, as the object undergoes non-linear

deformations. Given a sampling on the texture domain, we derive a function to compute

the sampling density on the surface in 3D using the inverse of the affine map. Given the

88

sampling density in 3D, we compute bounds on the distance. One can also use the inverse

of the function to compute the sampling required in the texture domain to achieve a desired

precision in the distance field.

Given two points p and q on an object O1 and the surface distance map of O1 w.r.t. object

O2, the change in the value of surface distance map from p to q is bounded by the distance

between p and q [SOM04]:

‖ d (p, O2)− d (q, O2) ‖≤‖ p− q ‖ .

In order to bound the error in computed distances, we bound the distance between two adja-

cent samples on the mesh. This is bounded by the maximum distance between four adjacent

samples in the 2D domain T.

Let p and q be adjacent points on a triangle tk on O1. The corresponding points p̄ and

q̄ on the texture domain T1 are given by the affine transform M1
k. The affine transform is

defined using a combination of scaling, translation and rotations. The transform M1
k is in-

vertible since the scaling used to compute the affine transforms is non-zero. The distances are

preserved under rigid transformations. Only scaling and shear change the distance between

four adjacent samples and we derive error bounds under shear and scaling.

We assume the initial mapping M1
k for each triangle tk on object O1 to the texture atlas

T1 has unit scale and shear, and the spacing between two adjacent samples along each axis in

T1 is δ. We provide a function f(δ) which bounds the distance between two adjacent samples

in O1, as triangles in O1 undergo non-rigid deformation (see Figure 3.4).

In the initial position of O1, since sx = 1, sy = 1, sh = 0, the distance between two

samples is bounded by f(δ) ≤
√

2δ.

Let the maximum motion of a vertex in 3D, modulo any rigid body transformations, space

be bounded by dm. This gives a bound on the maximum deformation of a face on O1. An

upper bound on the scaling is given by (s2
x + s2

y) ≤ 2dm. Maintaining the sample spacing

89

Figure 3.6: Relative error in distance map computation for a deformable model: The relative

error measures the ratio of maximum error in the surface distance map for a given frame to

the maximum error in the beginning of the simulation. The error is introduced due to discrete

sampling of the distance map. The graph highlights the relative error on a deformable simu-

lation using a resolution of 512 × 512. The relative error provides an indicator of the error

bounds in the discrete distance field during the simulation.

in T1 to be δ, the maximum distance between two adjacent samples in O1 is bounded by

f(δ) ≤
√

(sxδ)2 + (syδ)2 ≤ 2dmδ.

We now show the change in distance between two adjacent samples when the shear ex-

ceeds a threshold, and derive the bounds. Consider a rectangular face in 2D with width b

along X , and height h. Let the shear along Y be sh. Assuming that the motion only produces

shear (see figure 3.5(b)-(d)),

sh =
2dm

h
(3.2)

Distance between two adjacent samples increases by more than
√

2δ only if the first sample

in row y + δ beyond past the last sample in row y (see figure 3.5(d)), i.e. shδ > b + δ.

Replacing from equation (3.2) we get

dm >
bh

2δ
+ 1.

Thus, if dm ≤ bh
2δ

+ 1, then there is no additional error due to shear. If dm > bh
2δ

+ 1,

90

Figure 3.7: Surface distance map computation on deformable models: Dynamic simulation of

two deforming bunnies, each with 2K triangles . (a)-(b) Two frames from the simulation. (c)

The surface distance map of both the bunnies that shows the distance field on the boundary.

The distance increases from red to green. Our algorithm can compute the global distance

maps in 300− 320ms at a resolution of 512× 512.

then the effective increase in spacing along X axis between two rows of adjacent samples is

dx = max(sh − (b
δ

+ 1), 0). In presence of scaling, the spacing along each axis is replaced

by sxδ and syδ respectively. We make the simplifying assumption that sx = sy. Then the

increase in spacing along X is given by (sx + dx), where dx = max(sh − (b
sxδ

+ 1), 0), and

the total error bound in the distance is f(δ) ≤ δ
√

(sx + dx)2 + s2
y. A plot of this error for

first 350 frames of a deformable model simulation is shown in figure 3.6.

3.5 Implementation and Performance

In this section we describe the implementation of our algorithm to compute surface dis-

tance maps between deformable models. We also compare our algorithm with prior distance

field computation algorithms.

3.5.1 Implementation

We have implemented our algorithm on a PC with a 2.4Ghz Opteron 280 CPU, 2GB of

memory and an NVIDIA 7800 GTX GPU connected via a PCI-Express bus, running Win-

dows XP operating system. We used OpenGL as the graphics API and the Cg programming

91

language for implementing the fragment programs. The initial mapping from the manifold

objects to the texture atlas is computed using NVIDIA’s Melody 1 software. The surface

distance map of each object is computed on a floating point buffer using 32-bit floating point

precision. The distance vectors are passed as texture parameters to the fragment program.

Our algorithm can compute high-resolution (512×512 to 1K×1k) surface distance map

of objects with tens of thousands of polygons in a fraction of a second. We highlight the

performance of our algorithm on scenes with varying polygon counts is highlighted in the

graph. We also compute the gradient of the distance field which gives the direction to the

closest primitive for a point on the surface of an object. As compared to prior approaches

based on volumetric techniques, our surface distance map computation algorithm is about

5− 10 times faster.

3.5.2 Proximity Queries

We use our algorithm to compute proximity information among 3D deformable models.

This includes separation distance, collision detection, penetration depth and contact normal

computation [HZLM01]. We first localize the region of overlap between two objects O1 and

O2, and compute the surface distance map for all triangles of each object that lie inside the

localized region. The separation distance between two objects is computed using minimum

Euclidean distance from points on one object to points on the other object. We read back

the surface distance maps of O1 and O2, and scan the pixels to determine the minimum

distance. Collision detection is performed by checking for pixels with zero distance. In

order to compute local penetration depth, we assign a sign to the distance values based on

the orientation of the surface. In particular, all points of O2 that are inside O1 are assigned

negative distance values. We then compute the maximum of these values to approximate the

local penetration depth.

1http://developer.nvidia.com/object/melody home.html

92

We used our algorithm for proximity query on 2 scenarios consisting of deforming ob-

jects. The first is a sequence of two deforming alphabets as shown in figure 3.3. The alphabet

’E’ consists of 2.1K polygons, while the object ’G’ consists of 1.6K polygons. At each

frame, we compute a surface distance map at a resolution 512 × 512. The average time to

perform all proximity queries is 110ms. As compared to [HZLM01, SGGM06], our surface

distance algorithm results in speedup of 8 times. All these GPU-based algorithms are image-

space algorithms. Since we are computing the distance map at a much higher resolution,

the image-space error using our algorithm is much lower as compared to prior approaches.

We also perform the proximity computation on a sequence of two deforming bunnies. Each

bunny consists of 2K polygons. At each frame, we compute a surface distance map at a reso-

lution 512×512. The distance map computation and proximity queries take about 300−320

ms per frame.

3.6 Discussion

In this section we analyze the computational complexity and space requirements of our

algorithm. We also compare our algorithm with some existing distance fields and discrete

Voronoi diagram computation algorithms.

3.6.1 Comparison

We compare the features and performance of our surface distance map algorithm with

prior approaches that compute the distance field on a uniform volumetric grid using GPUs.

These include DiFi [SOM04], linear factorization [SGGM06] and efficient GPU implemen-

tations of CSC algorithm [SPG03, PS05]. All the prior approaches com pute the distance

field along a uniform 3D grid. Since the GPU computes the distance field along one slice,

these algorithm perform the computations along different slices and exploit spatial coherence

93

between the slices to speed up the computation.

The precision of the distance field computed using a volumetric approach is governed by

the cell size in the uniform grid. Let the number of cells in the grid k × k × k, and storage

overhead is O(k3). Then the error of the distance field is
√

3
2k

. In comparison, for a surface

distance map of size k × k, the storage cost is O(k2), and the error in the distance field is
√

2
2k

in absence of any scale and shear. As the model undergoes deformation, the error bound for

surface distance map is given by the function f(1
k
) presented in Section 3.4. Typically, the

maximum amount of deformation dm is small, and the error in the distance field is O(1
k
). As

a result, surface distance maps provide a more compact representation of the distance field

with similar error bounds. Conversely, our approach results in higher resolution distance

fields. Current GPUs have 512MB or 1GB of video memory. It may not even be possible to

store a volumetric distance at a very high memory (e.g. (1K)3) on current GPUs, as it would

require 8GB of memory. Furthermore, the cost of reading back a 3D distance field of (1K)3

and scanning is rather high, i.e. about 16 seconds using a readback bandwidth of 500MB/sec.

On the other hand, we restrict the distance field computation to the surface of a mesh and can

compute a high resolution mesh at interactive rates.

Let there be m sites in each object. Then the computation cost to compute the global

distance field using a volumetric approach varies between O(mk3) and O(k3). For narrow

bands, the cost is O(m + n1) where n1 is the number of pixels near the surface. On the other

hand, the rasterization cost of computing the global surface distance map on the GPU varies

between O(mk2 + m log m) and O(k2 + m log m). For narrow bands, the cost is close to

O(k2 + m log m) - as all k2 pixels lie on the surface. A quantitative comparison of average

time to compute the distance fields on deformable models is shown in figure 3.8.

94

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

1600

1800

Frame

P
ro

x
im

it
y

 T
im

e
 (

m
s)

SDF

Linear Factorization

Figure 3.8: Timing comparison between our algorithm and a GPU-based volumetric distance

field algorithm [SGGM06] labeled as SDF and Linear Factorization respectively: Our algo-

rithm is able to achieve 5–10 times speedup in proximity computation between two deforming

alphabets. The scene is composed of 3.7K polygons. The surface distance field is computed

at a resolution of 512×512 and the volumetric distance field is computed at 180×150×256.

Our algorithm is able to obtain higher accuracy in distance field computation on the surface

and achieves an interactive performance of 5–10 frames per second.

3.6.2 Limitations

Our approach has certain limitations. We compute a 2D domain triangle for each triangle

in the 3D mesh. We pack all these 2D domain triangles in the texture atlas and our current

packing algorithm may not be optimal. Our current approach is limited to deforming trian-

gles with fixed connectivity. If the underlying simulation consists of objects with changing

topologies, we may need to update the planar parameterization and recompute the spatial

hierarchies.

95

96

Chapter 4

Fast Proximity Computation among

Deformable Models using Discrete

Voronoi Diagrams

Interactive simulation systems with deforming objects are used in many diverse applica-

tions, including surgical simulation, robotics, computer games, computer animation, haptics

and bioinformatics. The three main components of such systems are dynamic simulation,

collision detection and contact response. Different proximity queries are needed to perform

each of these components. The set of proximity queries includes collision detection, sep-

aration distance and penetration depth computation. These queries are performed among

different objects (i.e. inter-object queries) or within the same object (i.e. self-collision or

intra-object queries). Penetration depth (PD) computation is often used to compute contact

forces in penalty-based methods [HTK+04, KOLM02]. Separation distances are useful in

computing the repulsive forces or estimating the time of contact between moving objects

in a discretized simulation [BW01, KOLM02]. Robust simulations of cloth dynamics may

require penetration depth computation [BWK03] or continuous collision detection [BFA02].

The problem of fast and reliable geometric proximity queries has been extensively stud-

Figure 4.1: Multiple deformable models simulation with dynamic topology: This sequence

shows the positions of the objects at three time instances in a simulation. The environment

initially consists of 10 deforming objects represented using 5.5K triangles. As the simulation

proceeds, the objects break into 25 sub-objects. Our algorithm is able to perform collision

and separation distance computations, including self-collisions, among dynamically gener-

ated objects within 120 ms on a high-end PC.

ied. Despite the vast literature, real-time proximity queries remain one of the major bottle-

necks for interactive deformable simulation [TKH+05, MHTG05]. Many existing methods

are based on hierarchical representations and work well for rigid models. Several efficient

collision detection algorithms have been proposed for deformable models, but they do not

compute separation or penetration distances. One of the challenges in the area is to per-

form fast N-body proximity queries in scenes composed of multiple deforming objects. The

Voronoi diagram is considered as one of the most powerful data structures for proximity

queries. However, the application of Voronoi diagrams for proximity queries has been lim-

ited to rigid bodies that can be represented as a union of convex shapes.

In this chapter we present novel algorithms for fast proximity computation among mul-

tiple deformable models. Our approach involves no preprocessing and is applicable to all

triangulated models undergoing non-rigid motion. In order to perform different proximity

queries in complex environments, we present three key results:

N-body distance query: We introduce a unified approach to perform different proximity

queries using N-body distance computation: given a set P of primitives, for each primitive

pi we compute the closest primitive in P \ {pi}. We also present efficient algorithms for

98

continuous collision detection and local penetration depth computation based on the N-body

distance query.

Voronoi-based culling: We use properties of Voronoi diagrams to perform the N-body dis-

tance query efficiently. The closest primitive to any primitive (pi) is one of the Voronoi

neighbors of pi. Therefore, the Voronoi diagram of primitives is an efficient data structure to

perform N-body distance culling. We use the 2ndorder Voronoi diagram because it provides

information about two closest primitives at each point in space and results in a higher culling

efficiency.

Fast and conservative computations using discrete Voronoi diagrams: The exact compu-

tation of continuous 3D Voronoi diagrams for general triangulated models is a hard problem.

Instead, we efficiently compute discrete Voronoi diagrams using graphics hardware along

uniform grids (Chapter 2) or along 2-manifolds (Chapter 3). We exploit properties of the

2ndorder Voronoi diagram to derive distance error bounds that take into account discretiza-

tion and sampling errors in discrete Voronoi diagrams. We use the distance bounds to effi-

ciently compute the closest primitive at object-space precision i.e. IEEE 64-bit floating point

accuracy.

4.1 Related Work

The problems of collision detection and distance computation are well studied in the

literature. We refer the readers to recent surveys [Eri04, LM04, TKH+05]. In this section,

we briefly discuss some of the prior algorithms for deformable models.

4.1.1 N-body algorithms

Many N-body culling algorithms that reduce the number of pairwise tests have been pro-

posed. These include algorithms based on spatial grids and octrees [Eri04], and 3D sorting

99

based on tight fitting axis-aligned bounding boxes [CLMP95]. More recently, GPU-based

algorithms [GRLM03, GKJ+05] use occlusion queries to compute potentially colliding sets

of overlapping objects. Most of these algorithms have been limited to N-body collision de-

tection and their culling performance varies based on the relative configuration of the objects.

4.1.2 Bounding volume hierarchies

Bounding volume (BV) hierarchies are widely used for collision detection and separation

distance computation. The choice of BVs include simple shapes such as spheres or AABBs or

tight-fitting volumes such as oriented bounding boxes (OBBs), discretely oriented polytopes

(k-DOPs) or swept sphere volumes [Eri04]. These hierarchies are precomputed for rigid

models and dynamically updated or recomputed for deformable models [LAM01, vdB97].

However, these hierarchies may not be able to perform significant culling in close proximity

configurations or for self-proximity queries. Thus, they can result in a high number of false

positives.

4.1.3 Deformable model collision detection

Many specialized algorithms have been proposed to perform collision queries on de-

formable models. These include GPU-based algorithms [KP03, GKJ+05] for inter-object

or intra-object collisions. Other methods for self-collisions are based on the “curvature

test” [VT00] and these can be combined with BV hierarchies. Teschner et al. [THM+03]

use spatial hashing techniques to check for inter-object collisions and self-collisions. All of

these algorithms perform only collision queries.

100

4.1.4 Distance and penetration queries

Most prior distance and penetration computation algorithms are designed for pairwise

inter-object separation distance queries. These include algorithms based on hierarchies of

spheres [Qui94] or rectangular swept spheres [LGLM00] or different model types [JC04].

Techniques have been proposed to update the hierarchies incrementally for deformable mod-

els [SL00].

Distance Fields: 3D discrete distance fields can be efficiently computed using graphics hard-

ware [FG05, SPG03, SOM04, SGGM06]. The discrete distance fields can be used to per-

form inter-object proximity queries between deformable models at image-space resolution

[HZLM02, SGGM06]. However, there are two limitations of current algorithms based on

distance fields. Firstly, currently algorithms can take many seconds to compute high resolu-

tion distance fields in 3D [SGGM06, TKH+05] and do not provide interactive performance.

Secondly, they perform approximate queries and give no bounds on the errors.

Penetration Depth Computation: Efficient penetration depth computation algorithms have

been proposed for rigid polyhedral models [KOLM02], but they involve considerable prepro-

cessing. Many approximate PD computation algorithms for deformable models are based on

GPU-based computations [HZLM02, RL06], precomputed distance fields [FL01] or spatial

hashing [HTK+04].

4.1.5 Voronoi diagrams

The Voronoi diagram is regarded as a powerful proximity data structure in computational

geometry [OBS92]. In relation to 3D proximity queries, external Voronoi regions have been

used to perform collision and distance queries between rigid objects that can be represented

as the union of convex polytopes [LC91b, EL01, Mir98, KS00]. These algorithms have

been implemented within different proximity query packages such as I-COLLIDE, V-CLIP

and SWIFT++. However, it is difficult to extend these algorithms to general non-convex or

101

deformable models.

4.2 N-body Distance Query

Our goal is to perform both inter-object and intra-object queries. The inter-object queries

are performed among different objects. The intra-objects queries are performed between the

non-adjacent features of an object. Two given features are classified as adjacent if they share

either a common edge or a vertex.

We make no assumptions about the motion of the objects and these scenes may include

breaking objects or models with changing topologies. In this section, we introduce the “N-

body distance query” and use this formulation to perform different proximity queries.

4.2.1 Notation and Terminology

We first describe the notation used in the paper. Given a simulation environment consist-

ing of n deforming objects, O1, O2, . . . , On, we assume that each object has been triangulated

and we use the symbol f i to denote the boundary features such as the triangles. For example,

the boundary of Oi is represented as {f i
1, f

i
2, . . . , f

i
ni
}, where ni is the number of features in

Oi. The position of these features is updated during each step of the simulation.

N-body Distance Queries: Given m sites, P = {p1, p2, . . . , pm}, where the sites may cor-

respond to the objects Oi or their features f i
j , let d (pi, pj) denote the Euclidean distance

between pi and pj . The N-body distance query computes the closest site in P \ {pi} to each

pi. A site, pk, is the closest site to pi, if d (pi, pk) ≤ d (pi, pl) for every l 6= i, where k 6= i.

Later, in Section 4.3 we present Voronoi-based algorithms to perform the N-body distance

query efficiently.

It is obvious that the N-body distance query can be used to perform separation distance

queries. We now present algorithms for efficient collision detection and penetration depth

102

Figure 4.2: N-body distance query: In this cloth mesh, we compute the closest non-adjacent

triangle for every triangle in the mesh. The white arrows highlight the closest triangle to

each triangle.

computation based on N-body distance query.

4.2.2 Collision Detection

The collision query checks whether two objects intersect and returns all pairs of over-

lapping features. We consider two kinds of collision queries: discrete and continuous. The

discrete collision query is performed at a specific or discrete instance of the simulation. The

discrete collision detection query is a special case of the N-body distance query, in which we

check whether any d (pi, pk) is zero. Eventually, we report all the intersecting sites.

In continuous collision detection (CCD), we interpolate the motion between features from

two successive instances of the simulation. The CCD query computes the first time of contact

between any two primitives within the time interval. The query is efficiently performed by

culling away primitive pairs whose swept volumes do not overlap [RKLM04]. As a result,

CCD computation reduces to a volumetric collision detection problem between the swept

volumes of the primitives. We use the N-body distance query to check for volumetric overlaps

among the primitives. We first compute tight bounding prisms that enclose the swept volumes

of the primitives. Given a pair of primitives, we perform the volumetric overlap test using the

signed distance function between the bounding prisms of the primitives (see figure 4.3). The

103

signed distance function of the bounding prisms represents the interior, and exterior regions

of the prisms. By convention, the signed distance values in the interior of an object/prism are

negative. Specifically, for any two primitives pi, pj , we use the following properties of the

signed distance function to perform volumetric overlap culling:

• Perform elementary CCD tests between the primitives if there exists a point such that

the signed distances of the point to pi and to pj are both ≤ 0.

• Do not perform elementary CCD tests between the primitives if there exists no point

whose signed distances to pi and pj are both ≤ 0.

The above formulation corresponds to computing a distance query between the two prim-

itives using signed Euclidean distance functions. Our approach can be directly extended to n

primitives by performing N-body distance queries using the 2ndorder Voronoi diagram of the

n primitives.

O
1

O
1

M
a

1

O
2

O
2

M
b

2

d
ab

Figure 4.3: Continuous Collision Detection for two polygons O1 and O2: Two polygons,

O1 and O2, move to positions Ô1 and Ô2 at time t + ∆t. The volume swept by a pair of

features is bounded by the prisms, M1
a and M2

b , respectively. A conservative CCD check is

performed by volumetric collision detection between M1
a and M2

b . We compute the signed

distance between the prisms, shown as dab. Eventually, we use the N-body distance query to

compute the signed distance functions for all the prisms.

104

4.2.3 Penetration Depth (PD) Computation

The PD query measures the extent of overlap between two intersecting objects. We as-

sume Oi and Oj are orientable 2-manifolds in the region of penetration. This guarantees that

we have a well defined ‘interior’ for each penetrating object. We define PD as the minimum

translational distance needed to make the two objects disjoint [DHKS93]:

min{‖ T ‖| interior(Oi + T) ∩ Oj = ∅},

where T is the translation vector computed by the algorithm. However, exact computation

of PD between two polyhedral models is a global problem and cannot be solved using any

‘divide-and-conquer’ or localized approach [KOLM02]. Its worst complexity can be as high

as O(n3
i n

3
j). As a result, we restrict ourselves to computing an approximate local PD between

deforming objects.

We compute the local PD between two objects Oi and Oj based on the N-body distance

query. The same approach can also be used to compute self-penetrations. The local PD is

computed among all locally overlapping features. We use the N-body distance query de-

scribed in Section 4.2.2 to compute the overlapping features. Next, we use the orientation

and connectivity information among the overlapping features to compute all of the features

of Oi that are inside Oj and vice-versa. We denote these features as f i
a, a = 1, . . . , k and f j

b ,

b = 1, . . . , l (see figure 4.4).

Our PD algorithm proceeds in two stages. We first use a greedy strategy to estimate

the direction of the translation vector and then compute the extent of penetration along that

direction.

1. Penetration direction computation: We consider all overlapping features and perform

the N-body distance query among them. For each feature, f i
a, we compute the closest feature

among f j
b ’s and represent the closest feature pairs as (f i

a, f
j
a). Similarly, we compute the

105

closest feature pairs (f j
b , f i

b). Given these k+l closest feature pairs, we compute the distances

between them and use the pair that represents the maximal distance. We use the direction of

the maximal distance feature pair as the direction of T .

O
i

O
j

T

f
6

j

f
7

j

f
1

i

f
2

i

Figure 4.4: Local PD Computation for two polygons Oi and Oj : Dotted arrows represent

direction vectors showing the separation distance between pairs of overlapping features of

O1 and O2. The maximum separation distance is shown by a thick black arrow and is the

local penetration direction T.

2. Penetration depth computation: Given the direction of T , we compute its magnitude

by projecting all of the overlapping features onto T . The maximal width of the projected

features along T gives us the value for penetration depth.

We note that T is the locally optimal direction if the overlapping features of the objects

are connected and convex. Therefore, T can be a good estimate for the penetration direction

when the intersecting region is convex and has a small width.

4.3 Voronoi-based Culling for Proximity Queries

In this section we present our Voronoi-based culling algorithm to perform the N-body

distance query. We first give an overview of 2ndorder Voronoi diagrams and show how they

can be used for proximity computations. Next, we describe our N-body distance culling

algorithm based on discrete Voronoi diagrams.

106

4.3.1 2nd Order Voronoi diagrams

We first introduce some of the terminology related to Voronoi diagrams. Two sites are

independent if there does not exist a path of edges on a triangle mesh connecting them. Given

a set of sitesP in domainD, and a subset T ofP , with |T | = k, the k-th order Voronoi region

is the set of points closer to all sites in T than to any other site:

Vk(T |P) = {q ∈ D | d (q, pi) ≤ d (q, pj) ∀ pi ∈ T , pj ∈ P \ T }.

The k-th order Voronoi diagram is a partition of D into k-th order Voronoi regions:

VDk(P) =
⋃

pi∈P
Vk(T ,P) , |T | = k.

The standard Voronoi diagram is the same as VD1(P). We are specifically interested

in the 1st and 2ndorder Voronoi diagrams, denoted as VD1(P) and VD2(P). A 1storder

Voronoi region V1(pi|P) contains points closest to site pi, and the 2ndorder Voronoi region

V2({pi, pj}|P) contains points closest to two sites pi and pj (see figure 4.5).

The 2nd order governor set of a point is the set of two closest sites. For a point q ∈ D,

let the two closest sites be {pi, pj}, i.e. q ∈ V2({pi, pj}|P). Then the 2nd order governor set

of q is denoted as G2(q|P) = {pi, pj}. For a site pi, the 2nd order governor set is given as

G2(pi|P) =
⋃

q∈pi
G2(q|P).

4.3.2 PNS Computation Using 2nd Order Voronoi Diagrams

We use the 2ndorder Voronoi diagram to compute the potentially neighboring set (PNS)

for each site. The PNS of a site p, denoted PNS(p|P), is a subset of P such that a site in

PNS(p|P) is closer to p than any site in P \ PNS(p|P). To perform the N-body distance

query, we compute a tight PNS for each site. The 2ndorder Voronoi diagram provides the

107

(a) (b)

O1O2 O3

O9

V1(O1)

V1(O2)

V1(O3)

V2(O2,O1)
O1O2

O9

V2(O3,O1)

O3

Figure 4.5: The 1st and 2ndorder Voronoi diagrams of 9 polygons (denoted as Oi) in a plane.

(a) The 1storder Voronoi diagram: Each color represents the set of points closest to one of the

polygon. In this case, O1 has 8 1storder Voronoi neighbors. The PNS of O1 is all the objects

which share a Voronoi edge, i.e. all other 8 objects. (b) The 2ndorder Voronoi diagram: Each

color represents a region with same two closest objects. O1 is contained completely inside

two 2ndorder Voronoi regions. Therefore, PNS of O1 = {O2, O3}. We get a tighter PNS with

2ndorder Voronoi diagram.

two closest sites for each point in space. At a point that lies on a given site, p, the closest

site is trivially p, thus p is ignored in PNS(p|P). We use the 2ndorder Voronoi diagram

and the 2ndorder governor set to compute a tight PNS. Then we have the following property

(illustrated in figure 4.5):

Lemma 4.1 (PNS Computation). Given a set of independent sites P , the PNS of a site pi is

given by PNS(pi|P) ⊇ G2(pi|P). The closest site(s) to pi is (are) contained in PNS(pi|P).

Proof. Let pj be the closest site to pi. Since pj is closest to pi then there is a point r ∈ pi

s.t. the two closest sites to r are pi and pj . By definition, G2(r|P) = {pi, pj} ⇒ pj ∈

PNS(pi|P).

Lemma 4.1 provides a culling scheme to compute the closest sites for a given set of sites.

In addition to a tighter culling scheme, the 2ndorder Voronoi diagram also provides tight

108

bounds on the separation distance, and we use them to perform conservative PNS computa-

tion using discrete Voronoi diagrams in Section 4.3.4.

N-body distance query: We use the 2ndorder Voronoi diagram to perform the N-body query.

Given n independent sites P , we compute VD2(P) and the 2ndorder governor set of each

site pi. This computation gives PNS(pi|P) for each site. We perform pairwise distance

computations between pi and each site in PNS(pi|P) to compute the closest site to pi. A key

issue is defining an appropriate set of sites for inter-object and intra-object queries. More

details are given in Section 4.4.

4.3.3 Discrete Voronoi Diagram Computation

In the previous subsection, we showed that the PNS for each site can be efficiently com-

puted based on the 2ndorder Voronoi diagram. However, exact computation of the Voronoi

diagram of triangulated models is a hard problem due to its algebraic and combinatorial

complexity. In this section, we introduce discrete approximations of Voronoi diagrams and

compute them efficiently using the graphics hardware.

Given a finite set of point samples D̃ in domain D, and a set of sites P , the k-th order

discrete Voronoi diagram (DVD) is a partition of the point samples onto discrete k-th order

Voronoi regions, and is denoted as ṼD
k
(P). For a set T of k sites, the k-th order discrete

Voronoi region is a finite set of points which are closest to all sites in T than to any other

site. The 1st and 2ndorder discrete Voronoi regions are obtained by using k = 1 and k = 2,

and denoted by Ṽ1(pi|P) and Ṽ2({pi, pj}|P), respectively.

GPU-based DVD Computation: The discrete Voronoi diagram for a triangulated model

can be efficiently computed along a uniform 3D grid D̃ using depth-buffered graphics hard-

ware [SGGM06, SPG03]. The 3D domain is discretized into a set of 2D slices, and a discrete

2D distance field is computed for each slice by rasterizing the distance functions of the prim-

itives. Specifically, we rasterize the distance functions corresponding to each vertex, edge

109

and triangular face of the object. The distance values are stored in the depth buffer and the

closest site identifier is computed in the color buffer. Together, these two buffers provide us

with the discrete 1storder Voronoi diagram and we read it back to the CPU.

In addition to the 1storder Voronoi diagram of triangulated models, we compute the

2ndorder Voronoi diagram along the points that belong to a site. We first rasterize all the

sites in P into a uniform grid. Each triangle is clipped to the volume between two 2D slices

and is scan converted using graphics hardware [HZLM02]. The distance computations to a

site pi are performed on grid points belonging to P \ {pi}. We compute ṼD
2
(P) in the color

buffer of the graphics hardware. The depth buffer stores the distance values to the second

closest site. We read back the color and depth buffers from the GPU to the CPU and use

them to compute the PNS. However, each site pi is sampled (rasterized) at a finite set of

points Q on the uniform grid. Finally, we compute the 2ndorder governor sets for all points

in Q using ṼD
2
(P).

The ṼD
2
(P) computed using graphics hardware is not accurate and can have errors due

to under-sampling [HZLM02, SGGM06]. We first list the sources of under-sampling errors

and present our approach to compute a conservative PNS in Section 4.3.4.

1. Discretization of Sites: The grid Q only consists of a finite number of points. The

point on a site corresponding to the minimum separation distance may not get sampled on

the grid. As a result, we may not compute the correct separation distance.

2. Discretization of the Voronoi Diagram: The Voronoi region of the closest site may

not get sampled on the uniform grid. Therefore, ṼD
2
(P) may return an incorrect closest site.

3. GPU Precision: Current GPUs support 32-bit floating point precision for distance

computation, and 24-bit fixed point precision for distance comparisons on depth buffer. These

can lead to precision errors in the distance values.

110

4.3.4 Conservative PNS Computation using Distance Bounds

We present an approach to compute a conservative PNS using bounds on the distance

values computed using GPUs. First we define an approximate separation distance, which

is computed using the discrete Voronoi diagram as described above. The accuracy in the

approximation is given by the image-resolution used for second order Voronoi computation.

Given a discrete Voronoi diagram ṼD
2
(P) and a finite set of points Q on a site pi, the

approximate separation distance of pi, denoted S̃D(pi), is the minimum of the distance values

from ṼD
2
(P) for all points inQ. We now present our approach to compute the bounds on the

exact separation distance Θ(pi) from the approximate separation distance S̃D(pi). Our exact

SDSD
~

SDSD+
~

O
1

O
2

O
1

O
2

PNS

(a) (b)

Figure 4.6: Conservative PNS using discrete Voronoi diagram: Given 2 objects O1 and O2.

(a) O1 is sampled at a finite set of points. The closest points on O2 are shown using dotted

vectors. SD is the exact separation distance Θ(O1), S̃D is the approximate separation

distance S̃D(O1). δ is the distance between 2 adjacent samples. (b) S̃D + δ is the bounded

separation distance for O1. First we compute the features on O1 that are within distance

S̃D + δ to O2. For these features of O1, we compute features of O2 that are within a distance

S̃D + δ. These features of O2 constitute the PNS of O1.

distance computation algorithm exploits the fact that Euclidean distance field is a continuous

scalar field. Moreover, the change in distance to the closest site between two adjacent points

on the uniform grid is bounded by the distance between the two points. We use this property

to compute a bound on separation distances between two sites computed using the discrete

111

Voronoi diagram. Let δ1 be the diagonal length of a cell in the uniform grid D̃, and δ2 be the

error due to limited GPU precision (typically δ2 ≪ δ1). Let δ = δ1
2

+ δ2 represent the total

error in discrete Voronoi diagram computation.

Lemma 4.2 (Distance Bound using DVD). Given the approximate separation distance,

S̃D(pi), the exact separation distance Θ(pi) is bounded by S̃D(pi)−δ ≤ Θ(pi) ≤ S̃D(pi)+δ.

Proof. We first prove that the change in distance to the closest site between two adjacent

points on the uniform grid is bounded by the distance between the two points. Let D(q,P) be

the value of the distance field of a set of sitesP at a point q ∈ D. D(q,P) = minpi∈P(d (q, pi)).

We need to prove for two points q, r |D(q,P) − D(r,P) ≤ |q − r|. We proceed in two

cases: (a) q, r lie in same Voronoi region, (b) q, r lie in separate Voronoi regions.

The distance field is continuous scalar field for all q ∈ D. Further, the gradient of

the distance field is unity at all points where defined, i.e |∇D(q,P)| = 1 at all points in the

interior of a first order Voronoi region. The gradient is undefined at all points on the boundary

of a Voronoi region.

(a) q, r lie in same Voronoi region. Then ∇D(p,P) is defined at all points in the line

segment joining q and r. Then |∇D(p,P) · (q− r)| ≤ 1⇒ |D(q,P)−D(r,P)| < |q− r|.

(b) q, r lie in different Voronoi regions. Then∇D(p,P) is not defined at all points where

the line segment joining q and r intersects a Voronoi boundary. We proceed along segments

contained inside each Voronoi region. Since distance field is continuous, the values are equal

across a Voronoi boundary. This leads to above result.

Lemma 4.2 gives tight lower and upper bounds on the exact separation distance for a site.

These bounds are used to cull objects or features and compute a PNS. Thus, we are able to

address the last two issues of under-sampling on a discrete grid. In order to address the first

issue, we use the idea of growing a site by taking its Minkowski sum with a pixel [GKJ+05].

When we rasterize the Minkowski sum, we ensure that every point on a site gets sampled. In

Section 4.4, we use these queries to perform accurate inter-object and intra-object queries.

112

4.4 Proximity Queries using Discrete Voronoi Diagrams

In this section, we present our overall approach to compute inter-object and intra-object

queries. Our algorithm proceeds in three stages, as shown in figure 4.7. We first use an

AABB based culling approach to compute a very conservative PNS for each object. Next, we

present algorithms to perform inter-object or intra-object proximity queries using Voronoi-

based culling. Finally, we perform exact tests between the triangle primitives in the conser-

vative PNS.

4.4.1 Stage I: AABB Culling

In this stage we compute the AABBs of each object and perform the N-body distance

query between the AABBs, by computing overlaps along the three axes. For example, we

compute AABBi for Oi and use that AABB to compute a conservative upper bound on the

separation distance of Oi. As a result, all AABBs whose distances are more than this bound,

do not belong to PNS(Oi). The projections of AABBs are sorted along each axis to compute

a sequence of intervals along each axis [CLMP95]. If the projection of AABBi does not

overlap with any other interval, we compute the closest AABB along that axis. Otherwise,

we consider all other AABBs that overlap with the projection of AABBi and use the one

with maximal overlap. This computation is repeated along the three axes to compute the

potentially closest AABB to AABBi. We compute an upper bound to the separation distance

for each Oi by computing the maximal distance between the vertices of AABBi and its clos-

est AABB. For each object Oi, all objects that are at a distance less than this conservative

distance bound constitute a conservative bound to an object level PNS of Oi.

113

AABB Culling
Compute

Discrete

Distance Fields

Compute

Discrete Voronoi

Diagram

Compute PNS

(Object Level)

Compute PNS

(Feature Level)

Exact Feature

Tests

Voronoi Culling

Distance Bounds

Potential Nearest

Features

N-Objects

Stage I
Stage II

Stage III

Figure 4.7: Overall proximity computation algorithm: Our proximity computation algorithm

proceeds in three stages: AABB-based culling, Voronoi culling and exact distance tests on

the PNS.

4.4.2 Stage II: Voronoi-based Culling

We use the distance bound from AABB culling as an upper bound to localize distance

field computation. The distance computation for object Oi is performed in a banded region

around Oi. The width of this band is the maximum distance between an object and its poten-

tial neighbors. For each object Oi, we compute the set of objects Oj such that Oi belongs to

PNS(Oj), and use the maximum separation distance as a bound on the width of the banded

region of Oi. We use these bands to narrow the grid region for discrete Voronoi diagram

computation. Eventually, we use the discrete Voronoi diagram to compute a tighter PNS for

inter-object and intra-object proximity queries.

Inter-Object Proximity Queries

The set of sites is the set of objects P = {Oi, . . . , On}. Our algorithm for inter-object

proximity queries proceeds in two phases. First we compute a tighter object level PNS for

each object. Secondly, we perform PNS computations at feature level to compute a set of

potentially closest features between a pair of objects.

114

(a) (b) (c) (d)

Figure 4.8: Application of our proximity query algorithm to a simulation with 10 objects:

(a) Position of 10 deforming objects - ’siggraph 06’ (with the bowl removed). (b)-(d) Stages

in PNS computation. The red wireframe represents conservative bound on the separation

distance between ‘r’ and other letters. This bound is used to compute the PNS of ‘r’. (b)

The object level PNS of letter ‘r’ after stage I that uses AABB-based culling. (c) Object level

PNS computed using our 2nd order DVD based algorithm. (d) Zoomed view of feature level

PNS between ‘r’ and ‘g’. The exact distance tests are performed between red triangles in ‘r’

and blue triangles in ‘g’. Total number of pairs in feature level PNS=12K. Total computation

time is around 60 ms per frame.

Object-level PNS computation: We compute ṼD
2
(P) using GPUs. Next, we compute an

upper bound on the separation distance of each object using Lemma 4.2. Let Du(Oi) =

S̃D(Oi) + δ denote the upper bound on the separation distance for Oi. The PNS(Oi|P)

of an object Oi is computed as a set of objects, whose distance to Oi is less than Du(Oi).

We expand the AABB of Oi by Du(Oi) along each axis and reduce the distance query to a

collision query between the expanded AABB of Oi and AABB of Oj . The overlap tests are

efficiently performed using the sorted intervals computed in Stage I.

Feature-level PNS computation: Given a feature f i
k in object Oi, our goal is to compute the

minimum distance to all features in PNS(Oi|P), but ignore the features on Oi as part of this

computation. During this stage, we compute the feature level PNS for a subset of features in

object Oi, as explained below. We use the upper bound on the separation distance of object

Oi to cull away features in Oi that do not contribute to closest site computation.

We compute ṼD
2
(P) for all the points on f i

k and use it to compute the approximate

separation distance of f i
k, denoted S̃D(f i

k), to its closest feature. Based on Lemma 4.2, the

115

lower bound on the separation distance of f i
k is given as Dl(f

i
k) = S̃D(f i

k)−δ. We cull away a

feature f i
k, if Dl(f

i
k) > Du(Oi), as the closest object to f i

k is further away than the separation

distance between Oi and P \ Oi. Finally, for each feature f i
k with Dl(f

i
k) ≤ Du(Oi), we

compute a set of features in PNS(Oi|P) which are at a distance less than the separation

distance of Oi. This is illustrated in figure 4.6. This computation is performed by expanding

the AABB of each feature by Du(Oi) and performing overlap tests as mentioned in Stage I.

In the end we compute the PNS for each object and its features.

Intra-Object Queries

Our goal is to perform the N-body distance query on all the features of an object. Given

a feature, we ignore its adjacent features and compute the closest among the non-adjacent

features. In order to classify the features into adjacent and non-adjacent, we define the notion

of 1-ring and 2-ring for each feature, f i
k. The 1-ring, denoted as I(fi), is the set of features

that are adjacent to f i
k (i.e share a vertex with f i

k). The 2-ring is the set of features that are

adjacent to the features in the 1-ring, excluding fi and I(fi).

We first compute the minimum distance between f i
k and the set of features in the 2-ring

of f i
k. This minimum distance provides an upper bound to the separation distance of f i

k. This

computation can be performed in O(ni) time for all the features in the deforming object,

where ni is the number of features in the object.

Our next goal is to refine the upper bound computed using the 2-ring based on 2ndorder

Voronoi diagrams. The set of sites is the set of features in an object, P = {f i
1, . . . , f

i
ni
}.

Then f i
k and P \ I(f i

k) are mutually independent sets. We perform proximity computa-

tions on f i
k by using the discrete Voronoi diagram ṼD

2
(P \ I(f i

k)) and compute the PNS,

PNS(f i
k|P \ I(f i

k)). This process is repeated for all the features f i
k. In practice, we do not

compute O(ni) 2ndorder Voronoi diagrams. Rather, we store the adjacency information of

each feature in a texture. For a grid cell on a feature f i
k, we perform vector comparisons on

116

programmable graphics hardware to avoid distance computations to I(f i
k). This computes

the discrete Voronoi region Ṽ2(P \ I(f i
k)) at all points on a feature f i

k, and the approximate

separation distance S̃D(f i
k|P \ I(f i

k)) is computed using the distance values at these points.

An upper bound Du(f
i
k) on the separation distance of feature f i

k is computed from the ap-

proximate separation distance using Lemma 4.2. Eventually all non-adjacent features, f i
l ,

whose distance to f i
k is less than Du(f

i
k) are added to PNS(f i

k|P \ I(f i
k)).

(a) (b) (c) (d)

Figure 4.9: Computation of 2nd order Discrete Voronoi Diagram (DVD) on GPU: (a) A

scene with 3 cuboids. Each cuboid is one site. The DVD is computed on a grid of resolution

16× 16× 16. The first slice is shown in white. (b)-(c) The flat rendertexture during various

stages of DVD computation. The rendertexture stores all slices of the 3D DVD computation.

Each slice is stored as one tile of size 16 × 16, the rendertexture has 4 × 4 tiles. The tile

corresponding to first slice is shown in white outline. The DVD is computed at pixels lying

on the boundary of a site (b) The 1st order DVD obtained by rasterizing the boundary of each

site. (c) The 2nd closest site at each pixel on boundary of a site. The combination of (b) and

(c) gives the 2nd order DVD. In our implementation the two closest sites are stored in red-

green color channels of the rendertexture. (d) The depth buffer corresponding to the distance

to 2nd closest sites. This rendertexture is read back to the CPU, which scans the boundary

(non-zero) pixels to compute the approximate separation distance for each site.

4.4.3 Stage III: Exact Proximity Tests

Given a feature f i, we perform exact queries between f i and the features in PNS(f i).

In order to perform discrete collision detection or penetration depth computations, we check

whether two triangles overlap. In order to perform continuous collision test between two

triangles whose prisms overlap, we perform 15 elementary tests described in [BFA02]. We

117

Figure 4.10: Skirt cloth simulation: The cloth is modeled using 12.5K triangles. Our

proximity computation algorithm is able to perform the N-body distance query at object-

space precision within 400− 600 ms.

use the triangle-triangle distance computation algorithm described in [LGLM00] to compute

the separation distance between the primitives. We also compute the local penetration depth

between the overlapping features.

4.5 Implementation and Performance

In this section we describe the implementation of our N-body distance query algorithm

and highlight its application to perform various proximity queries between multiple de-

formable models.

4.5.1 Implementation

We have implemented our algorithm on a PC running Windows XP operating system

with an AMD Athlon 4800 X2 CPU, 2GB memory and an NVIDIA GeForce 7800 GPU . We

used OpenGL as the graphics API and Cg language for implementing the fragment programs.

The discrete Voronoi diagram and discrete distance field are computed using a flat 2D render

texture with 32-bit floating point precision. The 2nd order DVD is computed only at pixels

118

Figure 4.11: Cloth-Sphere simulation: The cloth mesh is composed of 15K triangles and has

a high number of triangles in close proximity. As the simulation progresses, the cloth wraps

around the sphere and the simulation generates many complex folds. Our algorithm is able

to perform continuous self-collision detection among all the triangles within 800 msec.

that lie on an object using 2 rendering passes. In the first pass, we scan convert the triangles

into the red channel of the grid, giving the 1st order DVD. In the second pass, we perform

distance field computations [SGGM06]. The 2nd order DVD is concurrently computed in the

green channel.

Inter-object queries: During scan conversion, the id of each object is stored in the stencil

buffer. During distance field computation, the reference value and function for the stencil test

are set to discard the fragment if the current object id is equal to value in stencil buffer. This

avoids distance computation to an object Oi on grid points that belong to Oi. The nearest

object and triangle ids are stored in the green and blue channels of the color buffer, and

distance values are stored in depth buffer.

Intra-object queries: The list of adjacent feature ids is stored in an adjacency texture.

During distance field computation, a dependent texture lookup is performed to query this list,

and the fragment is discarded if the current feature id is present in the adjacency list.

We maintain a sorted list of intervals corresponding to the projection of an AABB along

119

each axis. We compute the PNS used for the exact distance computation using the distance

bounds computed from 2ndorder Voronoi diagrams. We expand the sorted intervals with the

distance bounds and compute features that overlap along the three axis. Next, we perform

exact feature level distance tests. We used the code from [LGLM00] for computing the

separation tests. The average time to perform one separation distance query between two

triangles is 1–2 microseconds.

Figure 4.12: Multiple deformable models simulation: The simulation of 10 deforming objects

(4.5K triangles) falling in a bowl. Our algorithm is able to perform collision and separation

distance computations among dynamically generated objects within 70 ms on a high-end PC.

Our unified approach to perform N-body distance queries is based on efficient computation

of the 2nd order discrete Voronoi diagram on the GPU.

We have implemented PD computation by first computing the intersecting triangles us-

ing AABB hierarchies. We then perform a local walk to compute the overlapping features.

Finally, we perform the N-body query to compute local PD.

In order to perform CCD tests, we compute tight prisms that enclose the swept volumes

of the primitive [GKJ+05]. We then perform distance computations among the prisms and

cull away primitive pairs not in close proximity. Finally, we perform elementary tests among

the primitives in close proximity. The average time for performing a CCD test among two

primitives is 50 microseconds.

120

Figure 4.13: Large scale deformable object simulation: In this simulation, many deforming

letters are falling inside a funnel and will eventually slide through a ramp. Each object is

composed of nearly 175 triangles and there are a total of 200 letters in many close-proximity

scenarios. Our algorithm is able to perform both inter-object and intra-object queries in this

simulation within a second.

4.5.2 Benchmarks Used

We now highlight the performance of our algorithm on various benchmarks with multiple

deformable objects. The set of benchmarks include:

1. A cloth simulation of a skirt (figure 4.10)

2. A cloth folding on a rotating sphere (figure 4.11)

3. Ten deforming letters falling in a bowl (figure 4.12)

4. Two hundred deforming objects falling through a funnel and sliding over a ramp (fig-

ure 4.13)

5. Fourteen objects undergoing dynamic topological fractures (figure 4.1)

Our algorithm involves no pre-processing and is able to compute the separation distances,

inter-object and intra-object proximity queries.

121

0

100

200

300

400

500

600

700

800

Ti
m
e
(m

s)

1 2 3 4 5

Benchmark Number

Stage I

Stage II

Stage III

Figure 4.14: This graph highlights the average time spent in the three stages of our algorithm

for the five benchmarks described in Section 6.2. Due to the high culling efficiency obtained

during stage II, we observe that the average time spent in performing exact overlap tests is

lower than 300ms.

Benchmark Tris Resolution AABB(s) Voronoi(s)

1. Skirt 12K 200× 175× 45 1.8 0.53

2. Cloth-Ball 15K 190× 200× 60 3.8 0.70

3. Bowl 4.5K 150× 100× 30 1.1 0.07

4. Ramps 38K 45× 300× 40 13.5 1.10

5. Breaking 5.5K 100× 100× 60 2.6 0.12

Table 4.1: Timings on deformable simulation benchmarks: Average time per frame (in sec-

onds) to perform proximity queries on different benchmarks. AABB = Avg time/frame using

an efficient AABB-based algorithm. Voronoi= Avg time/frame using our Voronoi-based algo-

rithm.

A comparison of the performance of our Voronoi-based algorithm against an efficient

AABB-based algorithm is provided in table 4.1. The grid resolution is a function of the

bounding box of the environment. We use a different resolution along each axis to ensure

that the resulting voxels have the same dimension along the 3 axes. As noted from figure 4.16,

the resolution is chosen such that the total computation time is minimized.

122

1

10

100

1000

10000

100000

1 2 3 4 5
Benchmark Number

Ex
ac
t
D
is
ta
n
ce

Q
u
e
ri
e
s

(l
o
g
sc
al
e
)(
x1
0
0
0
)

AABB

Voronoi

5x

7x

74x

34x

103x

Figure 4.15: In this log-scale plot, we show the average number of exact triangle-triangle

distance queries performed using an AABB-based algorithm and using Voronoi diagrams.

We observe a 5 − 100 times higher culling efficiency using Voronoi diagrams on the five

benchmarks. The high culling efficiency is due to the tight distance bounds obtained using

the 2ndorder Voronoi diagrams.

4.6 Discussion

In this section, we compare our algorithms with prior methods and analyse the perfor-

mance benefits of our approach.

4.6.1 Comparison

We compare our algorithms with prior methods including distance and penetration depth

computation, as well as continuous collision detection.

Separation distance and penetration depth: Most of the algorithms for inter-object queries

use N-body techniques for the broad phase and bounding volume hierarchies for the narrow

phase. However, prior N-body techniques are limited to collision or penetration queries, and

may not provide sufficient culling for distance queries. Algorithms based on hierarchies for

deformable models typically use AABBs or spheres [vdB97, LAM01] as bounding volumes,

because the computation or update cost of hierarchies of OBBs or k-DOPs can be high. In

123

0 0.5 1 1.5 2
x 10

6

0

500

1000

1500

2000

Num Voxels

T
im

e
 (

m
s

)

Voronoi

Exact Tests

Scan

Figure 4.16: We show the time taken in computing the discrete Voronoi diagram and the

culling efficiency as a function of the Voronoi grid resolution on a deformable simulation

with 200 objects. The culling efficiency is measured in terms of the number of exact distance

tests. The scan operation reads back the Voronoi diagram, and performs a linear scan. We

observe the number of exact tests decreases as the grid resolution increases.

Fig. 4.17, we compare the performance our Voronoi-based culling algorithm with AABB

hierarchies for separation distance computation in Benchmark 4. We observe more than

an order of magnitude performance improvement in the query timings. This is due to the

fact that Voronoi-based culling results in 5 − 100x times reduction in the number of exact

primitive tests as compared to the AABBs (shown in Fig. 4.15). The higher culling efficiency

also reduces the additional overhead of hierarchy traversal for performing exact distance

tests. As the number of objects in the scene increase, we obtain higher culling efficiency

and performance improvement. Furthermore, hierarchical approaches may not work well

for objects with changing topologies. The entire hierarchy has to be computed from scratch

during each frame.

Collision detection: We compared the performance of our continuous collision detection al-

gorithm with the one proposed by Govindaraju et al. [GKJ+05]. In particular, we performed

self-collision queries on Benchmark 1 and found that the performance of both algorithms

was comparable and in the range of 400 − 800 msec per frame. However, the algorithm

124

0 50 100 150 200
0

2

4

6

8

10

12

14

16

AABB

Voronoi

Frame Number

T
im

e
 (

s)

Figure 4.17: This graph highlights the performance improvement obtained using our

Voronoi-based algorithm over an efficient AABB-based algorithm on the deformable sim-

ulation with 200 objects. Due to the high culling efficiency obtained using Voronoi diagrams,

we are able to achieve nearly one order of magnitude performance improvement over AABBs.

proposed by Govindaraju et al. [GKJ+05] assumes that the mesh connectivity is fixed and

precomputes a chromatic decomposition. As a result, such an approach would not work on a

scene with breaking objects (e.g. Benchmark 5). On the other hand, our approach involves

no preprocessing and is applicable to all deformable models.

Distance field based algorithms: As compared to prior distance field algorithms [FL01,

HZLM02, SGGM06], our approach is more accurate and we can perform queries at object-

space precision. Furthermore, we can handle N-body, inter-object and intra-object queries.

On the other hand, prior algorithms are restricted to performing these queries at image-space

precision on a pair of objects.

Spatial hashing: Spatial grid and hashing techniques have been used to accelerate collision

detection and penetration depth queries between a pair of objects [THM+03, HTK+04]. They

work well when the models are represented as a union of tetrahedra or on queries involving

points. In our benchmarks, spatial hashing-based methods resulted in a higher number of

exact primitive tests as compared to AABB-based hierarchies. Moreover, the overhead of

scan-converting the polygons among 3D grids can be high as compared to updating the hier-

125

archies.

4.6.2 Analysis

Voronoi diagram in computational geometry is considered as one of the most powerful

data structure for proximity queries. Our algorithm computes a tight superset (PNS) of po-

tential Voronoi neighbors of primitives using discrete Voronoi diagrams and distance bounds.

We use the PNS to perform N-body distance culling in complex environments composed of

multiple deforming objects. Moreover, we show that other proximity queries such as contin-

uous collision detection and penetration depth computation can also be efficiently performed

using N-body distance culling. The overall benefit of our approach is due to two reasons:

• Culling efficiency: The 2ndorder discrete Voronoi diagrams and tight distance bounds

are used to cull away a high fraction of primitives that are not in close proximity. As

a result, we have observed 30− 50 times improvement in culling efficiency over prior

methods based on AABBs in complex deformable simulations.

• Runtime performance: We use the rasterization power of current GPUs for fast com-

putation of 2ndorder discrete Voronoi diagrams. We also localize the region for distance

field computation. Our algorithm can compute the Voronoi information in a few hun-

dred milli-seconds for complex environments. Moreover, our algorithm involves no

hierarchy computation or update.

Based on these two reasons, we obtain considerable speedups over prior methods based on

hierarchies. Moreover, we are able to perform various queries at almost interactive frame

rates.

126

4.6.3 Limitations

Our approach has a few limitations. The computation of discrete Voronoi diagrams has

overhead, in terms of rasterizing the distance functions and reading back the color and depth

buffer. Even for small environments, the readback overhead can be 20 − 30 msec. As a

result, our current implementation would take at least 50− 60 msec to perform these queries,

even on a simple environment. The main benefit of Voronoi-based culling arises in complex

environments with a high number of primitives (e.g. a few thousand triangles). Our PNS

computation can be conservative if the resolution of the discrete 3D grid is low. This can

result in a high number of exact tests between the triangle primitives. Finally, our PD algo-

rithm only computes a local PD. Our approach only works well if there is an isolated contact

between the two objects. Many deformable simulations can result in deep penetrations or

multiple contacts [BWK03, HTK+04]. Our local PD algorithm may not work well in such

situations.

127

128

Chapter 5

Homotopy Preserving Simplified Medial

Axis

In this chapter, we introduce the θ-Homotopy Medial Axis (θ-HMA) of a 3D polyhe-

dron. The θ-HMA is a simplified medial axis approximation which tends to remove unstable

features of Blum’s medial axis, and has the same homotopy type as Blum’s medial axis.

Homotopy equivalence enforces a one-to-one correspondence between the connected

components, holes, tunnels or cavities and the way they are related in the exact Voronoi

diagram and the computed approximation. Thus, the θ-HMA is useful for applications that

exploit the topological structure of the polyhedron including motion planning, topology pre-

serving simplification, shape analysis and feature identification.

Our approach for computing the θ-HMA involves two key steps. In the first step we

compute an approximate Voronoi diagram of the polyhedron. The computation is based on

a spatial subdivision scheme and performs simple and efficient tests to compute a simpli-

fication of the exact Voronoi diagram. Moreover, we also describe algorithms to perform

topological tests to guarantee homotopy equivalence of the approximate Voronoi diagram.

We also provide Hausdorff distance bounds on the geometric structure of the approximate

Voronoi diagram.

In the second step, we compute the θ-HMA from the homotopy preserving approximate

Voronoi diagram. We use the separation angle formed connecting a point on the medial axis

to closest point on the boundary as a measure of the stability of the medial axis at the point.

The medial axis is decomposed into its parts, that are the sheets, seams and junctions. We

present a stability measure of each part of the medial axis based on separation angles. Our

simplification algorithm uses iterative pruning of the parts based on efficient local tests.

5.1 Related Work

The problem of Voronoi diagram and medial axis computation is well studied in com-

putational geometry, solid modeling and their applications. In this section, we give a brief

overview of previous algorithms on Voronoi diagram computation as well as medial axis sim-

plification. We make this separation for convenience, but it is important to realize that the

two are often integrated in practice.

5.1.1 Voronoi Diagram and Medial Axis Computation

Previous work on computation of the Voronoi diagram and the medial axis of 3D shapes

can be categorized based on the sampling of R
3. The discretization based methods approx-

imate either the boundary of a polyhedral model with finite point samples, or sample the

domain inside the polyhedron using spatial subdivision. The analytic methods trace the com-

ponents of the Voronoi diagram using algebraic techniques.

Discretization based methods

Image datasets. The problem of MAT computation of a point dataset has been exten-

sively studied in computer vision and image processing. In two and three dimensions, ap-

proximations to the medial axis have been computed using thinning algorithms [LLC92,

130

ZW93]. Many algorithms based on partial differential equations of front propagation have

also been proposed [KSKB95, SBS97]. Pizer et al. [PSS+03] have generated structures re-

lated to the medial axis using filters which yield high values for points near the medial axis

of an object.

Voronoi Graph of finite point samples: These methods approximate the boundary of

the 3D polyhedron by a finite set of points and compute the Voronoi graph. Robust and effi-

cient methods for computing the Voronoi diagram of point samples are well known. We refer

the reader to a survey by[AK00]. The Voronoi graph of a finite set of points provides an ap-

proximation to the exact Voronoi diagram of the polyhedron[ACK01b]. The convergence to

the exact Voronoi diagram has been shown for a sufficient dense sampling of smooth shapes.

However, these methods algorithms may fail to provide a high quality approximation near

sharp features of the original. Dey and Zhao [DZ02b] present an algorithm to approximate

Voronoi diagrams and also give a convergence guarantee.

Spatial Subdivision techniques: These methods subdivide the space into cells and com-

pute an approximate Voronoi diagram of a polyhedral model. The key step common to

these algorithms is to compute and label each cell with a set of Voronoi governors and

compute an approximate arrangement of Voronoi elements inside each cell. Vleugels and

Overmars [VO98] present a technique to compute an approximate Voronoi diagram by de-

termining cells that lie near Voronoi region boundaries. Approaches to efficiently perform

labeling of a cell using propagation techniques have been presented for tetrahedral [TT97]

and octree grids [BCMS05]. Etzion and Rappoport [ER02] decouple the computation of

the symbolic part (the topology) of the Voronoi diagram from the geometric part and trace

Voronoi elements across cell boundaries. We provide more detailed comparison with these

approaches in Section 7.

There is also work on computing a discrete approximation to the Voronoi diagram by

sampling the domain on a uniform grid. In such methods, the Voronoi regions are approxi-

131

mated using a finite set of points along a uniform grid. These approaches are well suited for

interactive computation using graphics hardware [HCK+99a, Den03b].

Foskey et al. [FLM03] used graphics hardware to generate an image-space representation

of the gradient of the distance field to the boundary, which can be analyzed to find the medial

axis. The gradient field in their method is actually the same as the velocity field of the propa-

gating front in the methods of Siddiqi et al. [SBTZ02] mentioned above. Du and Qin [DQ04]

also computed an approximation of the medial axis using diffusion partial differential equa-

tions solved at a discrete sample of boundary points. Yang et al. [YBM04] generated sample

points on the boundaries of maximal spheres, and apply a separation angle criterion to select

the points approximately on the medial axis.

However, previous spatial subdivision approaches cannot provide topological guarantees

and may require extremely high level of subdivision to resolve near degenerate configurations

in the Voronoi diagram.

Analytic methods

These methods detect topological events in the structure of the Voronoi diagram by

tracing through a continuous domain. The correctness of continuous methods are not re-

stricted by sampling parameters. For line segments in 2D, a sweep algorithm has been

presented [For87]. Hanniel et al [HREK05] present a method for extracting the Voronoi

regions of free-form rational planar closed curves based on tracing of the bisector curves. In

3D, these algorithms trace the 3D Voronoi edges (seams) [Mil93, SPB96, RT95a]. The ap-

proaches are highly sensitive to numerical precision, and robust implementations are difficult

since it requires solving systems of tri-variate non-linear equations. In presence of degenerate

configurations of the Voronoi diagram, such algorithms may fail to produce a valid output. A

technique based on exact curve tracing is presented in [CKM04], however it does not scale

well to large models. Furthermore, extremely high arithmetic precision is required to resolve

132

near-degenerate configurations.

5.1.2 Medial Axis Simplification

In this section we give a brief overview of medial axis simplification algorithms. The in-

stability of the medial axis, and its resulting complexity for objects with boundaries exhibit-

ing fine detail, has been known for some time (see for instance, Blum and Nagel [BN78]). A

number of methods for simplifying the medial axis have been proposed. Pizer et al. [PSS+03]

have presented an extensive survey of methods for approximating and simplifying the medial

axis.

A well known criterion for medial axis simplification is based on the object angle [DDS03].

The separation angle is twice the object angle at any point on the medial axis. The underly-

ing methods involve computing subsets for which the object angle is above a certain thresh-

old. Malandain and Fernández-Vidal [MFV98] traced the idea, in varying forms, back to

Meyer [Mey79] and Kruse [Kru91]. Our simplification algorithm also uses this criterion.

Siddiqi et al. [SBTZ02] formulated the detection of gradient discontinuities in terms of

the average gradient flux into a neighborhood, which has been shown to be closely related

to the object angle [DDS03]. Malandain and Fernández-Vidal [MFV98] used a criterion

combining the object angle and the distance between the two points nearest to the medial

axis point. Foskey et al. [FLM03] detected gradient discontinuities across adjacent voxels by

comparing the directions of neighboring vectors.

Another class of approaches are based on using a point sampling of the boundary. These

algorithms approximate the medial axis by computing the Voronoi diagram of the set of

points and eliminating some of the Voronoi faces using different criteria. Amenta et al. [ACK01b]

used the distance between the two points nearest to the medial axis point as a criterion for

medial axis simplification. Dey and Zhao [DZ02a] combined a similar distance criterion with

an object angle criterion and observed that the two criteria together tend to eliminate spurious

133

holes. Tam and Heidrich [TH03] used a volume criterion to remove parts of the medial axis

while preserving the topology. Leymarie and Kimia [LK01] also began with surface point

samples, but their algorithms are based on the differential equations of front propagation.

5.1.3 Topological and Smoothness Properties

Attali, Boissonat, and Edelsbrunner [ABE04] survey different techniques that generate

a stable and homotopy preserving medial structure. The homotopy relationship between an

object and its medial axis has been proven in a particularly general form by Lieutier [Lie03],

who shows that homotopy preservation holds for any bounded open subset of R
n. Chazal and

Soufflet [CS04] present smoothness constraints on the boundary of a solid, which need not

be polyhedral, under which the medial axis obeys certain stability and finiteness conditions.

Chazal and Lieutier [CL04] have also proven results about stability, and present a homotopy

preserving medial axis simplification, however the approach has not been demonstrated on

complex models.

5.2 Notation and Background

In this section, we introduce some of the terminology used in the rest of the chapter. We

also provide a brief overview of the θ-simplified medial axis (θ-SMA).

5.2.1 Basic Terminology

The notations are summarized in Table 5.2.1. We explain some of those terms below.

Given a closed polyhedral solid O in 3D, it boundary ∂O can be decomposed disjointly into

vertices, open edges, and open faces, which we refer to collectively as sites. We shall denote

the set of sites in ∂O as P .

The carrier of an edge (face) site is the infinite line (plane) containing the site. The carrier

134

Notation Meaning

X Closure of a set X
X c Complement of X

Int(X) Interior of X
∂X Boundary of X
|X | Cardinality of X
O A polyhedral solid in R

3

pi A face, edge or vertex site in R
3

car(pi) Carrier of a site pi

d (q,p) Distance between points q and p

d (q, pi) Distance between a site pi and point q

d (q, pi) = minp∈pi
(d (q,p))

πpi
(q) Projection of a point q on a site pi

ni(x) Normal to a site pi from a point x

NB(x) Set of boundary points closest to x ∈ O
G(x) Set of governors of a point x ∈ O
X ∼ Y Sets X , Y are homotopy equivalent

X ∼= Y Sets X , Y are homeomorphic

Bd A topological ball in d dimensions

Sd A topological d-sphere in d + 1 dimensions

M Medial axis of O
F , fi Set of sheets ofM, one sheet ofM
E , ei Set of seams ofM, one seam ofM
V , vi Set of junctions ofM, one junction ofM
R(fi) Set of rim curves of a sheet fi

S(fi) Set of seam curves of a sheet fi

Table 5.1: This table highlights the notation used in the chapter

of a vertex site is the vertex itself. The projection of a point q on a site pi, represented as

πpi
(q), is the closest point on the the site pi to the point q:

πpi
(q) = {x ∈ pi | d (q,x) ≤ d (q, pi)},

where d () is the distance function.

The closed Voronoi region of a site pi is defined as:

V (pi) = X , where X = {q | d (q, pi) < d (q, pj)∀pj ∈ P}.

135

For each point x, we define the set of governors, G(x), to be the set of sites for which x

belongs to the Voronoi region.

G(x) = {pi | x ∈ V (pi), pi ∈ P}

The governor set of a set of points is the union of governors of each point. For a point x ∈ O,

any point on the boundary of O that is at least as close to x as any other will be called a

nearest neighbor of x, and the set of nearest neighbors will be called the neighbor set of x

and denoted NB(x). With a distance function d (),

NB(x) = {y ∈ ∂O | d (x,y) = d (x, ∂O)}.

Each nearest neighbor of x will be in exactly one site, hence we can also define the set of

governors G(x) to be the set of sites containing a nearest neighbor of x:

G(x) = {pi | y ∈ pi for some y ∈ NB(x)}.

A cell in the spatial subdivision of the space is denoted C, and is homeomorphic to a

closed ball B3. The elements of a cell are the cell faces, edges and vertices. For a cell C,

G(C) is the set of sites whose Voronoi regions intersect C. A cell C is called a boundary cell

if C ∩ P 6= ∅, i.e. the cell intersects one or more sites. A cell which is not a boundary cell is

called an interior cell.

5.2.2 Voronoi Diagram Point Classification

Let α denote a set of two or more sites. The boundary of the Voronoi region is composed

of bisectors with other sites called Voronoi faces. A Voronoi face or a sheet, denoted fα, is a

maximally connected 2-manifold surface which has the same 2 governors, i.e. |α| = 2. The

136

2-D Voronoi faces meet in maximally connected 1-manifold curves called Voronoi edges or

seams, which have the same set of governors. Each Voronoi edge has 3 or more governors. A

Voronoi edge is denoted eα, |α| ≥ 3. Finally, the Voronoi edges meet at points called Voronoi

vertices or junctions which are equidistant from four or more sites. A Voronoi vertex is

denoted vα, |α| ≥ 4. The set of all Voronoi faces, edges and vertices is the generalized

Voronoi diagram of P , represented as VD(P) [AK96]. Formally,

VD(P) =
⋃

pi,pj∈P,i6=j

V (pi) ∩ V (pj).

The Voronoi diagram decomposes the space into Voronoi regions. For each point x ∈

Int(V (pi)), |G(x)| = 1. The Voronoi faces, edges and vertices are collectively called the

elements of the Voronoi diagram.

We use the formulation described in [ER02] and define the Voronoi graph VG(P) as an

undirected graph with the following properties:

1. Each node n in VG(P) corresponds to a Voronoi element (face, edge or vertex).

2. Two nodes in VG(P) share an arc iff there is an incidence relationship between the

two corresponding Voronoi elements.

3. Each node is labeled by the governor set of its corresponding elements.

The Voronoi graph encodes the symbolic part of the Voronoi diagram. The approximate

Voronoi diagram computed by our algorithm has the following property: a node in the graph

of the approximate Voronoi diagram replaces a sub-graph in the graph of the exact Voronoi

diagram.

137

5.2.3 Medial Axis Point Classification

The medial axis of O, denotedM, is defined as the set of points inside O with at least

two nearest neighbors.

M = {x ∈ O, |NB(x)| ≥ 2}

Clearly, |G(x)| ≥ 2 for any point x on the medial axis.

We define a sheet set to be the set of all medial axis points governed by a specified pair

of sites (or at least having that pair among their governors), and we define a sheet to be a

connected component of a sheet set. The interior of a sheet is a smooth surface. A seam

curve, or seam, is a connected component of the intersection of two or more sheets. The

intersection of three or more seams is a junction. This definition corresponds approximately

to those given in [CKM99] and [SPB96]. Finally, for any subsetM′ ofM, the intersection

of a seam with the boundary will be a seam end. The intersection of a sheet with seam ends

removed, and the boundary of M′ will be a rim set. An example of seam points, junction

points, and rim points is given in figure 5.1. A similar classification of medial axis points for

any bounded set in R
3 is given in [GK00]. Since the medial axis is a subset of the Voronoi

diagram, the sheets, seams and junctions correspond to Voronoi faces, Voronoi edges and

Voronoi vertices.

We make one special proviso about rims and seam ends. In general, including the case

whenM′ =M, the boundary ofM′ will not be contained inM′. In this case, it is possible

that two sheets that do not intersect will have boundaries that do intersect. If this occurs, their

rim curves and seam ends will be treated as distinct combinatorial entities, since the goal is

to reflect the connectivity properties ofM, not its closure.

138

Figure 5.1: Medial axis point classification: (a) Classification of the points on the medial

axis (thin lines) of a simple polyhedron (thick lines) (b) A subsetM′ ⊂M is shaded in gray.

A rim point and a seam point on the boundary of the central sheet are shown.

5.2.4 Homotopy Equivalence

One of the major goals of our work is to compute a simplification of the MAT that is

homotopy equivalent to the exact MAT. The notion of homotopy equivalence between topo-

logical sets enforces a one-to-one correspondence between connected components, holes,

tunnels or cavities and also the way in which they are related. It has been shown by Lieu-

tier [Lie03] that any bounded open subset X ⊆ R
n is homotopy equivalent to its medial axis.

Intuitively this implies that the medial axis and the shape are connected in the same way.

Thus by computing a homotopy preserving Voronoi diagram, one can compute a simplified

medial axis homotopy equivalent to the original shape [SFM05].

Formally, two maps f : X → Y and g : X → Y are homotopic if there exists a continuous

family of maps ht : X → Y , for t ∈ [0, 1], such that h0 = f and h1 = g. Thus, a homotopy is

a deformation of one map to another. Two spaces X and Y are homotopy equivalent if there

exist continuous maps f : X → Y and g : Y → X such that g ◦ f and f ◦ g are homotopic

to the identity maps on their respective spaces. As an example, f could be the inclusion of a

circle into an annulus, and g could be radial projection of the annulus onto the circle.

In situations such as this one, where f is an inclusion and f◦g is actually equal to the iden-

139

tity map, the homotopy equivalence is called a deformation retraction. See Spanier [Spa89]

for details of these definitions. Our medial axis simplification algorithm also performs a se-

quence of deformation retractions on the original medial axis to generate a simplified medial

axis with the same homotopy type as the original.

5.2.5 θ-Simplified Medial Axis

Given a polyhedral model O and a medial axis M, the separation angle Θ(x) at each

point x onM is the largest angle subtended by a pair of nearest neighbor points on ∂O, and

is given by

Θ(x) = max
yi,yj∈NB(x)

(∠yixyj)

Given an angle θ, the θ-simplified medial axis (θ-SMA) of O, denoted by Mθ, is the set

of points of M with separation angle greater than θ [FLM03] (see figure 5.2). Foskey et

Figure 5.2: θ-Simplified Medial Axis,Mθ: (a) The medial axis (black) of a part of a polyhe-

dron (blue) (b)Mθ for θ = π/2.

al. [FLM03] discuss the convergence and stability of Mθ and provide error bounds on the

boundary reconstructed from Mθ. The speed of medial axis formation at point x is pro-

portional to 1
sin Θ(x)

[PSS+03]. Parts of the medial axis with a higher speed of formation

are regarded as more important [Blu67], and the separation angle Θ(x) has been used as a

140

measure of the stability of the medial axis at the point x.

5.3 Homotopy Preserving Voronoi Diagram

In this section, we provide an overview of our approach for computing the homotopy pre-

serving approximate Voronoi diagram of a 3D polyhedron. We then present our theoretical

results and subdivision criterion to guarantee homotopy equivalence between the approxi-

mate Voronoi diagram and the exact Voronoi diagram in a cell. We use this criterion as part

of the algorithm presented in Section 5.4. Finally, we show that our criterion is satisfied at

some finite level of subdivision, and thereby proving completeness.

5.3.1 Overview

(a) (b)

Figure 5.3: Homotopy Preserving Approximate Voronoi Diagram: A subset of a 2D polygon

is shown in bold. (a) The exact Voronoi diagram is shown in green. Two cells of a spatial sub-

division are shown with dotted lines. Brown points represent Voronoi vertex nodes. (b) Each

cell satisfies the homotopy preserving criterion. The corresponding homotopy preserving ap-

proximate Voronoi graph is shown in blue. The red points represent nodes approximating the

Voronoi subgraph inside the cell.

We assume that the Voronoi diagram is defined with respect to the Euclidean metric.

We construct the Voronoi diagram by separately computing the symbolic and geometric

141

parts. We compute an approximate Voronoi graph, such that the corresponding approximate

Voronoi diagram is homotopy equivalent to the exact Voronoi diagram.

The computation of the symbolic part of the Voronoi diagram is based on spatial subdivi-

sion that is used to compute the incidence relationships between Voronoi diagram elements.

During spatial subdivision, each cell and the cell elements are labeled by their respective gov-

ernors. The subdivision is terminated when the portion of the Voronoi diagram constrained

to the interior of the cell is homotopy equivalent to a point. Under this condition, multiple

vertex nodes in the Voronoi graph inside the cell can be replaced by a single vertex node. An

example is shown in figure 5.3.

To guarantee homotopy equivalence, we first highlight some topological properties of

Voronoi regions under the Euclidean distance metric. Moreover, we present a criterion to

guarantee that the Voronoi diagram computed within a cell is homotopy equivalent to a

point. The criterion is based on computing the arrangement of conics (i.e. degree two al-

gebraic curves) on a plane and involves solving univariate quartic equations. The criterion

is presented in Section 5.3. In order to accelerate the computation and reduce the number

of non-linear tests, we perform spatial subdivision and update the governor set associated

with each cell. The algorithms to evaluate the homotopy criteria and computing a homotopy

preserving approximate Voronoi graph are presented in Section 5.4.

Given the graph of homotopy preserving approximate Voronoi diagram, we compute

a geometric approximation to the Voronoi diagram using techniques presented in [ER02,

BCMS05]. This involves computing an approximation of the seams and sheets. Further-

more, the diameter of the cell used for spatial subdivision algorithm provides bounds on the

two sided Hausdorff distance between the geometric approximation and the exact Voronoi

diagram. In other words, the cell size is chosen as a function of the Hausdorff bound.

In our approach, we ignore degenerate Voronoi regions. A Voronoi region V (pi) is said to

be degenerate if it has zero volume, i.e. there does not exist a ball B3 such that B3 ⊂ V (pi).

142

Such Voronoi regions belong to an edge shared between two co-planar triangles, or a vertex

for which all incident triangles are co-planar. Sites with degenerate Voronoi regions are

removed from P as a preprocess. Note that removal of degenerate Voronoi regions does not

change the homotopy type of the Voronoi diagram, since a degenerate Voronoi region is a

subset of the closure of an adjacent Voronoi region. Furthermore, we constrain the domain

of computation to be inside a bounding box of the polyhedron, so that each Voronoi region is

closed and bounded (i.e. it is a compact set).

5.3.2 Homotopy Criterion

We begin by presenting a topological property of Voronoi regions used by the homotopy

criterion to guarantee homotopy equivalence. Then we present the criterion to check if the

Voronoi diagram inside a cell in the spatial subdivision is homotopy equivalent to a point,

and prove the homotopy equivalence.

Proposition 5.1 (Voronoi regions are topological balls). If each site pi is a convex set, then

each bounded Voronoi region V (pi), under the Euclidean distance metric, is homeomorphic

to an open ball B3.

Proof. We show that V (pi) is contractible, i.e. homotopy equivalent to a point in R
3. and rely

on the fact that a contractible compact subset of R
3 is homeomorphic to a ball B3 [CZ06].

We prove contractibility by constructing an explicit map. We define a continuous map F :

V (pi) × I → V (pi), such that F (x, 0) = x, for any x ∈ V (pi), and F (x, 1) = c for some

point c. Here I is the unit interval [0, 1]. Let I1 = [0, 0.5], I2 = [0.5, 1]. We construct F in

two stages,

F (x, t) = G(x, t)∀t ∈ I1

= H(G(x, 0.5), t)∀t ∈ I2

143

where, G : V (pi)× I1 → V (pi) and H : pi × I2 → pi, G(V (pi), 0.5) ⊆ pi and H(pi, 1) = c.

First we shall construct G. Consider the map πpi
(x) : V (pi) → pi. Let G(x, t) =

(1 − 2t)x + 2tπpi
(x), where t ∈ I1,x ∈ L. To prove that G is continuous, we need to

show that πpi
(x) is continuous. Assume that πpi

(x) is not continuous. Then some point

x ∈ V (pi) has 2 unique closest points on pi, let πpi
(x) = {p1,p2}. Consider the isosceles

triangle ∆xp1p2 and the mid-point, p = p1+p2

2
. Then xp is an altitude from x to p1p2

and d (x)p < d (x)p1 = d (x)p2. Since pi is convex, p ∈ pi and leads to the contradiction

πpi
(x) = p. Thus the maps πpi

(x) and G are continuous. Further G(x, t) gives the shortest

path from x to pi. Sherbrooke et al. [She95] show that (a) the shortest path from a point on the

Voronoi diagram (medial axis) to the closest site lies entirely inside the Voronoi region, and

(b) the shortest paths from two points on the Voronoi diagram to the closest site can intersect

only at the site. Thus G(x, t) ∈ V (pi) for all x ∈ V (pi), t ∈ I1, and G(x1, t) ∩G(x2, t) = ∅

for x1,x2 ∈ V (pi),x1 6= x2, t ∈ [0, 0.5).

Now we construct the map H . Let c be the centroid of pi. Since pi is convex, c ∈ pi.

Let H(x, t) = 2(1 − t)x + 2(t − 0.5)c, t ∈ I2,x ∈ pi. H(x, t) is a continuous function,

by definition. Since each site is simply connected, H(x, t) ∈ pi for all x ∈ pi, t ∈ I . By

definition, F (x, t) is continuous at t = 0.5. Thus V (pi) is contractible.

Definition (Homotopy Criterion): An AABB cell C, with governor set G(C), satisfies

the homotopy criterion if V (pi) ∩ ∂C is homeomorphic to a topological disk B2, for each

pi ∈ G(C).

We will show that the Voronoi diagram inside a cell satisfying the homotopy criterion is

contractible (i.e. homotopy equivalent to a point). Following this result, all Voronoi vertices

inside the cell can be replaced by a single vertex while preserving the homotopy type. We

now present some results that follow from the homotopy criterion and prove that the Voronoi

diagram in the cell is indeed contractible.

144

Lemma 5.1. Let C be a cell satisfying the homotopy criterion. For all pi ∈ G(C), (a)

V (pi) ∩ ∂C 6= ∅, (b) ∂V (pi) ∩ C ∼= B2 and (c) V (pi) ∩ C ∼= B3.

C

p

V(p)V
2

V
1

M
1

M
c

L

Figure 5.4: Proof of Lemma 5.1: The Voronoi region V (p), of a line site p, intersecting a 3D

cell C. The boundary of the cell partitions V (p) into 2 regions: V1 in the interior of C and

V2 in the exterior. ∂V1 = M1. Intersection of V (site) with ∂C is a topological disk, denoted

Mc

Proof. The result (a) follows from the definition of G(C). ∂C partitions V (pi) into 2 spaces,

V1 = V (pi) ∩ C, V2 = V (pi) ∩ Cc (i.e. V2 is outside the cell C) (see figure 5.4). Let

M1 = ∂V (pi) ∩ C,Mc = V (pi) ∩ ∂C, L = ∂Mc = ∂V (pi) ∩ ∂C. We need to show that

M1
∼= B2, V1

∼= B3. From the homotopy criterion, Mc
∼= B2, and the boundary L is a simple

closed curve, L ∼= S1. This boils down to proving that V1
∼= B3. From property 5.1, it

follows that ∂V (pi) ∼= S2. Furthermore, L ⊂ ∂V (pi), and using the Jordan curve theorem on

the 2-sphere, it partitions ∂V (pi) into 2 topological disks. Thus, M1
∼= B2. We now define a

homeomorphism f : ∂M1 → ∂Mc which glues M1 to Mc. We also have M1∩Mc = L ∼= S1.

Thus f is the identity map on L, which maps each point on ∂M1 to the identical point on ∂Mc.

Thus the connected sum of M1 and Mc is homeomorphic to a 2-sphere. Then M1∪Mc
∼= S2,

thus ∂V1
∼= S2, V1

∼= B3.

145

Using the above results, we provide an explicit construction to prove that the homotopy

criterion is sufficient for the Voronoi diagram constrained to the cell is contractible. To prove

this, we perform a series of retractions on the Voronoi regions contained inside a cell.

We define a retraction gi : C → C to be the exclusion of the interior of Voronoi region

from the cell C (see figure 5.5). Given cell C satisfies homotopy criterion, let Vk be the

subset of C left after k retractions, where k = 0, 1, . . . , |G(C)|. We now prove a result on the

retractions.

V(a)

g(v(a))

(v(a))

Figure 5.5: Deformation retract of a Voronoi region: A 2D cell is shown with dotted bound-

ary. The solid curves represent a Voronoi diagram. Each Voronoi region satisfies the ho-

motopy criterion (in 2D). The retraction g takes all points in the Voronoi region V (a) to its

boundary ∂V (a).

Lemma 5.2. Vk+1 is homotopy equivalent to Vk.

Proof. Vk+1 = Vk \ Int(V (pi)). Since C satisfies homotopy criterion, V (pi) ∩ C ∼= B3 and

∂V (pi)∩C ∼= B2. Also, (V (pi)∩C)\ Int(V (pi)) = ∂V (pi)∩C. There exists a deformation

retract from a ball B3 to a disc B2. This implies existence of a map G : V (pi) ∩ C →

∂V (pi) ∩ C such that: (a) the restriction of H to ∂V (pi) ∩ C is equal to the identity on

146

∂V (pi) ∩ C, and (b) H ◦ G is homotopy equivalent to the identity on ∂V (pi) ∩ C, where H

is the inclusion ∂V (pi)→ V (pi).

We then define Ĝ : Vk → Vk+1 to be the identity on Vk+1 ⊂ Vk and equal to G on

Int(V (pi)). Then if Ĥ is the inclusion Vk+1 → Vk, it is clear that Ĝ ◦ Ĥ is homotopic to the

identity on Vk and Ĥ ◦ Ĝ is homotopic to the identity on Vk+1. Thus Vk ∼ Vk+1.

Theorem 5.1. If a cell satisfies the homotopy criterion, then the Voronoi diagram constrained

to the cell is contractible.

Proof. Initially V0 = C and finally Vf = VD(P) ∩ C where f = |G(C)|. From lemma 5.2,

V0 and Vf are homotopy equivalent. We know that the cell C is contractible. Thus Vf is

contractible.

5.3.3 Completeness

In this section, we prove the completeness. To do this we use the following theorem:

Theorem 5.2. For any point on the boundary of a Voronoi region V (pi), there exists an open

ball Br of strictly positive radius r such that ∂V (pi) ∩Br
∼= B2.

Proof. We perform case analysis on the location of the point.

(a) The point lies in the interior of a Voronoi face. Each face is a 2-manifold embedded

in R
3. Then at each point on the face, there exists an open ball of finite radius such that

intersection of the ball with the face is 2-manifold - i.e. homeomorphic to a disk.

(b) The point lies in the interior of a Voronoi edge. At a Voronoi edge, the Voronoi region

is bounded by 2 Voronoi faces. Each bisector surface (i.e. a quadric surface) is diffeomorphic

to a disk. In a small neighborhood of the point, the arrangement of the Voronoi faces incident

at the Voronoi edge is homeomorphic to the arrangement of a set of half-planes incident at

an edge. The intersection of a half-plane with a sphere centered on the edge is a single curve

segment. Then the 2 curve segments, arising from the intersection of the sphere and the two

147

bounding Voronoi faces meet at exactly 2 points - the end points of the 2 curves. Thus the

boundary of the intersection of Voronoi region boundary at a Voronoi edge and the boundary

of ball (centered on edge) is a circle. Therefore, the intersection with the ball is a disk.

(c) The point lies on a Voronoi vertex. The proof for case (b) extends to this case. The

boundary of a Voronoi region in the neighborhood of a vertex consists of a finite number of

Voronoi faces meeting at Voronoi edges.

Theorem 5.2 implies that for any point on the Voronoi diagram VD(P), we can find a ball

of a finite radius such that the intersection of the Voronoi regions with the ball satisfy the

homotopy criterion. Thus the subdivision will terminate once the current cell is contained

inside such a ball.

5.4 Approximate Voronoi Diagram Computation

In this section, we present details of our algorithm. First we describe how we evaluate the

homotopy criterion for each Voronoi region in a given cell. Then we present our algorithm

to compute the graph of the approximate Voronoi region.

5.4.1 Homotopy Criterion Computation

Theorem 5.1 in Section 5.3.2 implies that this test reduces to checking whether the inter-

section of the Voronoi diagram with the boundary of a cell is homeomorphic to a disk. This

is equivalent to determining if the intersection of the boundary of a Voronoi region with a

cell is homeomorphic to a circle. We compute the boundary of the Voronoi region along each

face of the cell and compute the union over all faces.

The boundary of a Voronoi region consists of sheets, seams and junctions. Each sheet is

a subset of the bisector between the carriers of two sites. Given a sheet fα and a cell face F ,

a Voronoi face event is the intersection of fα and F and corresponds to a conic curve on F

148

in the general case. We compute an arrangement of the conics on the face [KCMh99]. The

intersection of the conic sections gives Voronoi edge events [ER02], representing intersection

of seams with a cell face. Along with each edge event, we store the set of governors of the

Voronoi edge. If the sheet is a plane tangential to cell face, we compute the intersection with

the face vertices. In case the Voronoi edge event consists of infinite number of points, we

compute its intersection with the boundary of a face.

a b

d c

abg

abcd

a
b

e

f

g

Figure 5.6: Homotopy criterion computation: We show a face of a cell in the computa-

tion of approximate Voronoi diagram of the L-shape. Each colored region represents the

intersection of a Voronoi region with the face, and is labeled by its governor. Each region

is homeomorphic to a disc, hence satisfies the homotopy criterion. The circles represent

Voronoi edge events: e.g. the point (abcd) represents intersection of a degenerate Voronoi

edge and the face. The bold conic segments represent the face events, representing boundary

of the Voronoi region of site a, computed by our tracing algorithm.

All intersections of conics do not provide the valid edge events. We compute the valid

edge events based on the algorithm CellFaceVoronoiEdgeIntersection presented

in [ER02]. Given the set of edge events, we trace the conic segments between edge events

sharing a common governor to obtain the Voronoi face events. A closed sequence of face

149

events sharing a common governor provides the boundary of the Voronoi region of the site on

the cell face. Two edge events are connected by a face event if they share at least two common

governors (corresponding to the bisector between the governors). In case there are multiple

points sharing same 2 governor labels, we sort them according to their parametric coordinates

on the conic and connect the 2 closest points. In the presence of degenerate seams, each

conic segment between two edge events may not represent a valid face event. Checking if

a segment is a valid face event is equivalent to determining if it lies on the boundary of the

Voronoi region of a site pi. In order to perform this test, we enumerate all conic segments

incident on an edge event and trace along the conic segment which is closer to the pi than

to all other governors of the edge event. Finally, we join the face events at boundaries of

adjacent faces to compute the intersection of the Voronoi region with the boundary of the

cell. A cell satisfies the homotopy criterion if all the Voronoi region boundaries on the cell

boundary form one simple closed loop.

5.4.2 Computing cell governors

The homotopy criterion needs to be satisfied for all sites that belong to the governor set

of a cell. Here we present our scheme to compute a set of governors of the cell. We use a

sequence of culling tests to prune the set of governors of a cell. A site pi can be removed

from the governor set of a cell C of diameter δ if:

1. Distance exclusion: There exists another governor pj ∈ G(C) such that centroid of C

is closer to pj and difference in distance is greater than δ.

2. Polytope exclusion: The domain polytope (a polytope bounding the Voronoi region of

site pi) does not intersect C.

3. Bisector exclusion: There exists another governor pj ∈ G(C) such the cell C is closer

to pj and lies inside the domain polytope of pj .

150

Each of these tests involves solving inequalities or a system of linear equations [Cul00].

These tests provide a conservative estimate of the governors of a cell. The exact set of

governors of the faces of a cell is computed from the arrangement of Voronoi regions on

the faces, as described in section 5.4.1. We now present a result that ensures computing the

arrangement on the boundary of a cell is sufficient for computing the cell governors.

Lemma 5.3. For an interior cell C, if V (pj) ∩ Int(C) 6= ∅ then V (pj) ∩ ∂C 6= ∅.

The proof follows trivially from the facts that the Voronoi regions are connected (topo-

logical balls) and contain the site. A consequence of Lemma 5.3 is that it suffices to check the

boundary of a cell to compute governors of an interior cell. For boundary cells, we impose

further restrictions on the governor set of the cell to check if each Voronoi region intersects

the cell boundary.

Boundary cell criterion: Given a boundary cell C, with a set of sites X intersecting C,

C satisfies the boundary cell criterion if:

1. X contains at most one point site pp, and X \ {pi} contains sites incident on the point

pi.

2. The governor set G(C) is a subset of X .

These two conditions ensure that each non point site in the governor set G(C) intersects

the boundary of the cell - thus their Voronoi regions must intersect the boundary of the cell.

For each point site, its Voronoi region constrained to the cell is given by intersection of its

domain polytope and the cell, thus its Voronoi region must intersect the cell boundary if its

domain polytope is non-empty. Condition (1) can be trivially tested. We conservatively test

for condition (2) by checking if the conservative governor set does not include any sites from

P \ X .

151

5.4.3 Approximate Voronoi Diagram Computation

In this section we provide our algorithm for computing a homotopy preserving approxi-

mate Voronoi diagram. We first compute a homotopy preserving approximate Voronoi graph

using spatial subdivision. The steps are given as follows:

1. Compute a discrete distance field on uniform grid at some fixed resolution.

2. Compute the governor set of each cell using exclusion tests presented in Section 5.4.2.

3. Check if a cell satisfies the homotopy criterion. In addition, check if each boundary

cell satisfies the boundary criterion. If either of the criteria are not met, subdivide and

update the governor sets of the children cells.

4. If a cell satisfied the homotopy and boundary criteria, insert a subgraph node inside the

cell. Connect the node to the edge events on the boundary of the cell.

This algorithm provides us with a homotopy preserving approximate Voronoi graph. To

extract the homotopy preserving approximate Voronoi diagram, we further refine it to detect

unique vertex nodes and edge nodes. We use a result from [ER02] to detect Voronoi vertices:

If the number of intersection points of a Voronoi edge eα and ∂C is odd, then there exists a

Voronoi vertex in C. We subdivide a leaf cell if it contains more than two edge events with

same governor set. If a cell has exactly two edge events with same governor set, we remove

the subgraph node and directly connect the two edge events with a subset of the Voronoi

edge. The refined approximate Voronoi graph consists of nodes of type Voronoi vertex and

subgraph and edge nodes connecting the vertex and subgraph nodes. We follow a loop of

Voronoi edge events joined by the same face event on the boundary of a cell to extract the

Voronoi faces.

152

5.5 θ-Homotopy Medial Axis

In this section, we analyze the topological characterization of θ-SMA and present a for-

mulation for computing a homotopy-preserving simplified medial axis, the θ-homotopy me-

dial axis. The problem with the θ-SMA is that it does not in general preserve the homotopy

type of the medial axis. The θ-SMA can be disconnected when the medial axis is connected,

or have holes when the medial axis does not, and lack holes when the medial axis has them.

An illustration of the failure of connectivity is shown in Figure 5.7. The other kinds of con-

Figure 5.7: The θ-Simplified Medial Axis, Mπ/3 is disconnected even though the original

object O is connected. Note that the separation angle at x is less than π/3, while it exceeds

π/3 for the portions of the medial axis shown.

nectivity problems also arise because the angle criterion may discard topologically significant

portions. The fundamental issue here is that homotopy type is a global property, whereas the

separation angle is a local measure.

Decreasing the θ threshold does not provide a guaranteed solution to fix the problems.

As illustrated in Figure 5.7, the problem is associated with local minima of the separation

angles, and such a local minimum can occur for any value of θ. In any event, decreasing θ

153

only increases the number of unstable features of the θ-SMA.

Our goal is to compute a simplified medial axis that would allow significant simplification

corresponding to large values of θ, while preserving the homotopy type ofM. Clearly such

a simplified medial axis has to be a superset ofMθ. However, we would like such an axis to

be minimal in some regard in order to minimize the unstable parts. We now formally present

the desired subset of the medial axis. Let Hθ denote the class of subsets of M which are

supersets ofMθ and are homotopy equivalent toM.

Hθ = {X |X ⊆M,X ⊇Mθ,X ≃M}

Define a set X ∈ Hθ to be irreducible if the removal of any sheet yields a set that either has

a different homotopy type, or is no longer a superset ofMθ. That is,

M∗
θ = {X |X ∈ Hθ, for all fi ∈ X , (X \ {fi}) /∈ Hθ}

We will refer to any irreducible set in Hθ as a θ-homotopy medial axis, or θ-HMA. We will

typically denote a θ-HMA by M∗
θ. The set M∗

θ is not unique. A discussion about lack of

uniqueness is presented in Section 5.9.

5.6 θ-Homotopy Medial Axis Computation

In this section we present an algorithm for computing an approximate θ-HMAM∗
θ, given

a homotopy preserving approximate Voronoi graph of the polyhedron. Given the approximate

Voronoi graph, a sub-graph corresponding to a approximate medial axis of the polyhedron

is computed using the property of Lemma 12 in [ER02]. Since the approximate Voronoi

digram is homotopy preserving, the approximate medial axis corresponding to this sub-graph

is homotopy equivalent to the exact medial axisM. Hence, this approximate medial axis is

154

a θ-HMA, for θ = 0, denotedM∗
0. The Voronoi faces, edges and vertices correspond to the

medial axis sheets, seams and junctions respectively.

The diameter of a cell after the spatial subdivision gives a polygonal approximation to

the geometric part of the Voronoi diagram. The approximation has bounded Hausdorff error

to the exact Voronoi diagram, like the Proximity Structure Diagram [ER02]. This geometric

approximation is used to construct a polygonal mesh approximation of the θ-HMA consisting

of axis aligned faces.

Given the medial axis M∗
0, our simplification algorithm is presented in Section 5.6.2

and it simplifies the medial axis by pruning sheets of the medial axis. We first define the

separation angle of a sheet fi to be the supremum of the separation angles for all points

interior to the sheet:

Θ(fi) = max
x∈Int(fi)

(Θ(x)).

Θ(fi) gives a measure of the stability of the sheet fi. We use a conservative definition for the

separation angle of the sheet to ensure that the simplified medial M∗
θ is a superset of Mθ.

Similarly we define the separation angle of a seam ei as:

Θ(ei) = max
x∈Int(ei)

(Θ(x)).

5.6.1 Sheet Separation Angle Computation

The Voronoi diagram computation algorithm computes a piecewise linear approximation

of each sheet based on a discrete sampling introduced by spatial subdivision. In this section,

we address the problem of computing a bounded approximation of the sheet separation angle

Θ(fi). Each sheet of the medial axis of a polyhedron is trimmed quadric surface [Cul00].

Exact computation of the sheet separation angle involves computing the extreme value of a

non-linear function on a quadric surface. Instead we present an efficient approach to compute

a conservative upper bound on the separation angle using spatial subdivision. The tightness of

155

the bound depends on the degree of subdivision. This approach fits well with our subdivision

algorithm for computing the Voronoi graph.

Given a cell C and a sheet fi intersecting the cell, our goal is to compute the maximum

separation angle for all points on the sheet inside the cell. Let {p1, p2} be the two governors

of the sheet fi and c be the center of the cell C. We classify the inputs into 2 cases:

1. The governors do not intersect the cell C, i.e. C ∩ {p1, p2} = ∅

2. At least one of the governors intersects the cell C, i.e. C ∩ {p1, p2} 6= ∅.

Case 1: C ∩ {p1, p2} = ∅. We simplify the problem to computing the maximum of the

separation angles for all points inside the cell to the two governors. We compute the sepa-

ration angle from the center c of the cell to each of the two governors and add conservative

error bounds to get the maximum separation angle. Let x be any point inside cell C. Let

ni(x) denote the normal vector from a point x to the sites pi, (i = 1, 2), and αi(x) represent

the angle between ni(c) and ni(x). If ∆θi is an upper bound on αi(x) for all x ∈ C, then the

maximum separation angle for sheet fi inside cell C is given by:

Θ(fi ∩ C) ≤ cos−1

(
n1(c) · n2(c)

|n1(c)||n2(c)|

)
+ ∆θ1 + ∆θ2

The computation of the error bounds ∆θi for each of the three types of governors (point site,

line site and triangle site) is presented below:

Point Site pi : p. The range of angles subtended by a point site to all points in the cell is

given by a normal cone. The normal cone is the smallest cone enclosing the cell C with the

apex at p and axis along ni(c) (see figure 5.8). Let ∆θi be the half opening angle of the cone.

The angle αi(x) is maximized when point x is one of the corner vertices vj (1 ≤ j ≤ 8) of

the cell C. Thus, for the smallest cone enclosing the cell C,

∆θi = max
1≤j≤8

[
cos−1

(
ni(vj) · ni(c)

|ni(vj)||ni(c)|

)]
, where ni(x) = p− x.

156

Figure 5.8: Normal Cone to compute ∆θ for a point site

Line Site pi : p + λ(q− p). The range of angles subtended by a line to all the points in the

Figure 5.9: Wedge to determine ∆θ for a line site

cell is given by the smallest wedge enclosing the cell, with the top edge of the wedge being

the line site (see figure 5.9). Let ∆θi be the half angle of the wedge. As in the point site case,

the angle αi(x) is maximized when point x is one of the corner vertices vj (1 ≤ j ≤ 8) of

the cell C. Thus, for the smallest wedge enclosing the cell C,

∆θi = max
1≤j≤8

[
cos−1

(
ni(vj) · ni(c)

|ni(vj)||ni(c)|

)]
,

where ni(x) = p + λ(q− p)− x, λ =
(x− p) · (q− p)

(q− p)2
.

Triangle Site pi with face normal n̂. The shortest path from any point to the triangle is

perpendicular to the face. Thus ni(x) = n̂ for all x, and ∆θi = 0.

157

Case 2 C ∩ {p1, p2} 6= ∅. If the two sites do not intersect (p1 ∩ p2 = ∅), then the bisector

surface (and sheet fi) also do not intersect either site. In such a case we can subdivide the

cell C into sub-cells {Ck} such that Ck ∩{p1, p2} = ∅ if C ∩ fi 6= ∅. The computation of the

sheet separation angle is then reduced to Case 1.

If the two sites intersect (p1 ∩ p2 6= ∅), then the sheet corresponds to one of the non-

generic cases of a bisector surface [Cul00], and the separation angle Θ(fi) can be determined

exactly from the pairs of governors. The case of two point governors case never occurs, we

examine each of the other 5 pairs of governors individually.

Point-Triangle The bisector surface is a redundant line, and never occurs on the medial

axis [Cul00].

Point-Line The bisector surface is a plane through the point and perpendicular to the line,

Θ(fi) = 0

Line-Line The bisector surface is an orthogonal plane pair, Θ(fi) = angle between the

two lines.

Line-Triangle The bisector surface is a right circular cone, or a plane if the line is incident

on the triangle. In first case, the separation angle Θ(fi) = π/2− cos−1(̂l · n̂), where l̂ and n̂

are unit normals along the line and to the triangle respectively. In the second case, Θ(fi) = 0.

Triangle-Triangle The bisector surface is an orthogonal plane pair, and the separation

angle is given by Θ(fi) = cos−1(n̂1 · n̂2), where n̂1, n̂2 are unit normals to the two triangles.

5.6.2 Simplification Algorithm

We now present our medial axis simplification algorithm. We treat the medial axisM as

an abstract 2-dimensional complex consisting of faces, edges, and vertices. Initially, edges

correspond either to the seam curves, which lie between sheets, or rim curves, which lie on

the boundary.

The key idea in our algorithm is a simple criterion for determining whether a sheet can

158

be removed without changing the homotopy type of the medial structure. We call such sheets

frontier sheets (Figure 5.10). We will describe this criterion below, but first give an overview

of how it is used in the algorithm. We maintain a setQ of all frontier sheets. We successively

Figure 5.10: Classification of sheets for iterative pruning: The sheets colored gray are fron-

tier sheets, and can be removed without changing the homotopy type. For the ‘loop’ sheets

the rim set is not connected and they will never become frontier sheets. The ‘interior’ sheet

has an empty rim set, however it may become a frontier sheet after removal of one of its

adjacent sheets.

remove sheets from this set until it is empty. As each sheet is removed from Q, it is also

removed from the medial structure if its separation angle is no greater than θ. Removal of a

sheet from the structure can affect whether its neighbors are frontier sheets, and so each time

we remove a sheet we check each neighbor of that sheet to see if it needs either to be added

or removed.

A sheet fi is defined to be a frontier sheet provided that its set of rim pointsR(fi) and its

set of seam points S(fi) are both connected and nonempty. The set Q is defined as:

Q = {fi | R(fi) 6= ∅,R(fi) is connected,

S(fi) 6= ∅,S(fi) is connected}. (5.1)

In Section 5.7.2 we will prove that the frontier sheets are precisely those sheets which may

be removed without changing the homotopy type. We present an intuitive justification for

that claim here. If the rim set and seam set are both connected then each set is a single curve,

159

and removing the sheet is equivalent to retracting the sheet onto its seam set via a homotopy

(see Figure 5.11(a)). On the other hand, if the rim set is disconnected or empty, removing the

Figure 5.11: Sheet pruning: (a) The cyan sheet is a valid frontier sheet, and has a deforma-

tion retract to its seam set. (b) The cyan sheet is not a frontier sheet. (c) Removing the sheet

makes the two adjacent sheets disconnected.

sheet removes a path between two points on different seam components and hence does not

preserve the homotopy type (see Figures 5.11(b),(c)). Note that, when we remove a sheet,

we remove its interior and its rim set, but not its seam set.

We noted earlier that removing a sheet can cause other sheets either to lose or gain frontier

status, and we can now explain why this is true. A sheet with an empty rim set can gain a

rim edge if one of its neighboring sheets is removed, and thereby become a frontier sheet.

Conversely, a sheet with a single seam component can find that its seam set is broken into

two components if an adjacent sheet is removed.

Input: Initial medial axisM0, angle θ
Output: Final medial subsetMf

Label all sheets inM as unmarked1

Initialize Q0, j ← 02

repeat3

fi← ExtractSheet (Qj)4

(Qj+1,Mj+1)← RemoveSheet (fi, Qj ,Mj , θ)5

j ← j + 16

until (Qj = ∅)7

Mf ←Mj+18

Algorithm 6: SimplifyMAT(M0, θ): Computes a simplified medial axisMf , given

an initial medial axisM0 and a separation angle θ.

160

Algorithm 6 simplifies M based on removal of frontier sheets. Let the resulting me-

dial subset after the jth iteration beMj , and let the corresponding frontier set be Qj . The

frontier set is maintained as a priority queue, the priority determined by the sheet separation

angle. Initially, M0 = M∗
0. Q0 is computed using M0 in equation (5.1). The function

ExtractSheet(Qj) in line 4 returns a sheet with minimum separation angle from the set Qj

(but does not remove it from Qj). The key step in the algorithm is the removal of a frontier

sheet in line 5, which is described in Algorithm 7.

Input: A frontier sheet fi, frontier set Qj , medial subsetMj , angle θ
Output: Frontier set Qj+1, medial subsetMj+1

if Θ(fi) ≥ θ then1

Label fi as fixed2

Qj+1 ← Qj \ {fi}3

else4

Mj+1 ←Mj \ {fi}5

Qj ← Qj \ {fi}6

Qj+1 ← UpdateFrontierNbrs(fi,Qj)7

end8

Algorithm 7: RemoveSheet(fi, Qj ,Mj , θ): Removes a frontier sheet fi satisfying

the separation angle threshold θ from a medial subsetMj . The frontier set Qj is

also updated.

Algorithm 7 removes a frontier sheet from the medial subsetMj only if the separation

angle of the sheet lies below the angle threshold θ. (line 1). The removal of a frontier sheet

does not change the homotopy type ofMj . As we noted earlier, removal of the sheet from

Mj may change the frontier status of its neighboring sheets. Neighboring sheets are checked

for such changes and the frontier set is updated in (line 7), which is described in detail as

Algorithm 8.

161

Input: A frontier sheet fi, frontier set Qj

Output: Frontier set Qj+1

Initialize Qj+1 ← Qj1

foreach sheet fk sharing a seam point with fi do2

if (Label(fk) 6= fixed) then3

if (fk is a frontier sheet) then4

Qj+1 ← Qj+1 ∪ {fk}5

else6

Qj+1 ← Qj+1 \ {fk}7

end8

Algorithm 8: UpdateFrontierNbrs(fi, Qj): Updates the frontier set Qj after re-

moval of a frontier sheet fi.

5.7 Correctness

In this section we demonstrate that Algorithm 6 is correct, i.e. the final medial subset is

a valid θ-HMA. Let Mf be the subset of M∗
0 obtained as the final out of algorithm 6. To

prove correctness, we must show thatMf containsMθ,Mf has the homotopy type ofM,

andMf is irreducible. We will first show thatMθ ⊂Mf .

5.7.1 Separation Angles of Medial Axis Parts

It is clear from the definition of the separation angle for a sheet that every sheet interior

point that is removed will have a separation angle no greater than the threshold θ. So it

remains to show that no seam or junction point is removed if its separation angle is greater

than θ.

The set of governors for all points in the interior of the sheet, and on the boundary curves,

remains the same and each governor is linear. Thus the separation angle Θ(x) is a continuous

function of all points in the interior of a sheet, and on the rim points on the boundary of the

sheet. However, the set of governors changes at a seam or a junction, causing the separation

angle to be discontinuous on the boundary of the sheet (figure 5.12). Lemma 5.4 bounds the

discontinuity in the separation angle at the seam and junction boundaries of a sheet.

162

Figure 5.12: Separation angle of a seam ei: Three sheets f1, f2 and f3 meet at a seam ei.

For any point y on ei, Θ(y) ≤ Θ(f1).

Lemma 5.4.

(i) Let ei be a (non-degenerate) seam of a medial axis, formed by intersection of three

sheets f1, f2 and f3. Then, Θ(ei) ≤ max1≤j≤3(Θ(fj))

(ii) Let vi be a (non-degenerate) junction of a medial axis, formed by intersection of four

sheets f1, f2, f3 and f4. Then, Θ(vi) ≤ max1≤j≤4(Θ(fj))

Proof. (i) Let the set of governors of sheet f1 be G(f1) = {a, b}. Since f1 and f2 intersect,

G(f1)∩G(f2) 6= ∅. Also G(f1) 6= G(f2) as two intersecting sheets cannot have same set

of governors. Thus |G(f1)∩G(f2)| = 1, and G(f2) = {b, c}. Similarly G(f3) = {a, c},

and the set of governors of ei is G(ei) = {a, b, c}. For any point x ∈ ei, the closest

points on a, b and c be ya, yb, yc. Then NB(x) = {ya,yb,yc}, and by definition of

163

Θ(x),

Θ(x) = max(∠yaxyb,∠ybxyc,∠yaxyc)

= ∠yaxyb (assume WLOG)

Let y be a point on sheet f1 inside a δ-neighborhood of x. Since Θ(fi) is continu-

ous and G(f1) = {a, b}, limy→x Θ(y) = ∠yaxyb = Θ(x). By definition of Θ(f1),

Θ(f1) ≥ limy→x Θ(y). Hence, Θ(x) ≤ Θ(f1). Since choice of point x on ei was

arbitrary,

Θ(ei) = Θ(x) ≤ Θ(f1) ≤ max
1≤j≤3

(Θ(fj))

(ii) Proof follows as above, using 4 governors of the junction, instead of 3 governors of the

seam.

The implication of Lemma 5.4 is that we can get an upper bound on the separation angle

of a non-degenerate seam (junction) from the separation angles of the incident sheets. This

ensures that during simplification, if a seam (junction) belongs toM∗
θ, then at least one of the

incident sheets will belong toM∗
θ. Conversely, if all incident sheets do not belong toM∗

θ,

then the seam (junction) will not belong to M∗
θ. Hence, it suffices to compute separation

angles and test the sheets for pruning during simplification.

Lemma 5.5. For a non-degenerateM,Mθ ⊆Mf .

Proof. Let x ∈ Mθ, i.e. Θ(x) ≥ θ. If x is in the interior of a sheet fi, then Θ(fi) ≥ θ. If x

is in the interior of a seam ej , then by Lemma 5.4, Θ(fi) ≥ θ for some sheet fi incident on

that seam. Thus, fi will never be removed from the medial subset, and so ej , being incident

on fi will be inMf . Therefore, x ∈ ej will also be inMf . In the same way, Lemma 5.4

also implies that x ∈Mf if x is a junction point.

164

5.7.2 Homotopy Preservation

Lemma 5.6. Mf is homotopy equivalent toM.

Proof. We perform induction on j. Since M∗
0 is computed from a homotopy preserving

approximate Voronoi diagram,M0 is homotopy equivalent toM. Our proof is complete if

we show thatMj is homotopy equivalent toMj+1, or, equivalently, that removing a frontier

sheet fi does not change the homotopy type. If both the seam set S(fi) and the rim set

R(fi) are non-empty and connected, then the boundary of the sheet can have at most two

components. If the boundary has one component, then the sheet is a topological disk, with

a boundary consisting of two curves, the seam set and the rim set. If the boundary has two

components, then one component must be the seam set, and the other the rim set. In that

case, the sheet is an annulus, which can also be retracted onto the seam set.

The existence of a retraction means that there is a map h : fi → S(fi) such that (a) the

restriction of h to S(fi) is equal to the identity on S(fi), and (b) g ◦ h is homotopic to the

identity on fi, where g is the inclusion S(fi) → fi. We can then define ĥ : Mj → Mj+1

to be equal to the identity onMj+1 ⊂ Mj , and equal to h on fi. Then, if ĝ is the inclusion

Mj+1 →Mj , it is clear that ĥ ◦ ĝ is equal to the identity onMj+1, and ĝ ◦ ĥ is homotopic

to the identity onMj . Thus, the two spaces are homotopy equivalent to one another.

Lemma 5.7. Mf is irreducible.

Proof. Let fi be any frontier sheet in the final subsetMf . Then fi is labeled fixed, and either

Θ(fi) ≥ θ or fi is an isolated component. ThusMf \ {fi} is not a subset ofMθ, or does not

have the same number of components asM.

Let fi be any non-frontier node in the final connectivity graphMf . If Θ(fi) ≥ θ,Mf \

{fi} is not a subset ofMθ. If Θ(fi) < θ, thenMf \ {fi} is not homotopy equivalent toMf .

We prove this by treatingMj as a cell complex and considering its Euler characteristic.

A 2-dimensional cell complex in R
3 is a space that can be decomposed into open topological

165

disks (faces), open curves (edges) and points (vertices) in such a way that the boundary of

each face is a union of edges and vertices from the decomposition, and the boundary (that

is, the endpoints) of each edge are vertices from the decomposition. Strictly speaking, the

medial axis is not a cell complex, because the curves bounding frontier sheets are not in

general part of the medial axis. However, we may add abstract edges without changing the

homotopy type to construct a cell complex. The Euler characteristic, given by χ = F−E+V

where F , E, and V are the numbers of faces, edges and vertices respectively, is a well-known

homotopy invariant (see, e.g., [Spa89]).

When we remove a sheet fi from Mj to get Mj+1, we remove all of the faces, edges,

and vertices of fi except for the edges and vertices that are part of the seam set S(fi). Thus,

the change in Euler characteristic resulting from removing the sheet is given by

χ(Mj)− χ(Mj+1) = χ(fi)− χ(S(fi)).

We wish to show that χ(fi)− χ(S(fi)) is nonzero unless fi is a frontier sheet.

The sheet fi (which is connected by definition) is homotopy equivalent to a disk with n

holes removed, for some n. The Euler characteristic of such a complex is given by χ = 1−n.

The seam set consists of components of two types. There are loops, for which the number

of vertices equals the number of edges, and χ = 0. There are also unclosed chains of edges,

for which there is one more vertex than edges, and χ = 1. Therefore, χ(S(fi)) cannot be

negative, so that there are only two ways χ(fi) − χ(S(fi)) can be zero. First we may have

χ(fi) = χ(S(fi)) = 0, in which case fi is an annulus with connected, non-empty seam and

rim sets. Second, we may have χ(fi) = χ(S(fi)) = 1, in which case fi is a (topological)

disk, also with connected seam and rim sets. These cases are precisely the two kinds of

frontier sets.

Together, the foregoing results show thatMf =M∗
θ, as desired.

166

(a) Cuboid (b) L-Shape

Figure 5.13: The homotopy preserving approximate Voronoi diagram is computed for two

simple models with degeneracies. The edges of the approximate Voronoi diagram are shown

in blue. The vertices are highlighted with red. (a) A cuboid with 2 equal dimensions. (b)

An L-shape. The orange region shows a zoomed in view of a degenerate vertex with 6 seams

incident on it.

5.8 Implementation and Results

In this section, we briefly describe our implementation and highlight its performance on

different benchmarks.

5.8.1 Implementation

We have implemented the system in C++, and use OpenGL to display the results. The

timings reported in this paper were taken on a 2.4Ghz Opteron PC with 2GB of memory.

The discrete distance field and spatial grid is computed efficiently using graphics hardware

as presented in Chapter . The resolution of the uniform grid was chosen to be half of the

length of the smallest edge of the polyhedron to ensure satisfiability of Condition (1) of the

167

boundary criterion.

Figure 5.14: Spoon Model: The model has 254 sites, including 84 triangle sites, 126 edge

sites, and 44 vertex sites. The computation for homotopy preserving approximate Voronoi

diagram took 1.7s for this model. The edges and vertices of the approximate Voronoi graph

are highlighted in blue and red respectively.

To test if a sheet fi is a frontier sheet, we first extract a sub-graph of the connectivity

graph. The sub-graph corresponds to fi and its incident set of seam curves S(fi). We then

perform a depth-first-search on the sub-graph to determine the number of components in

S(fi) and in R(fi)). If sheet fi is a frontier sheet, then number of components in R(fi) and

S(fi) is 1. Iterative pruning during the medial axis simplification algorithm involves removal

of nodes corresponding to the sheets and incident seam curves. The final graph captures the

connectivity of the θ-HMA. The priority queue Qj is implemented as a heap.

5.8.2 Approximate Voronoi Diagram Computation

We have tested our algorithm to compute the homotopy preserving approximate Voronoi

diagram on a set of examples ranging from simple geometry with known degenerate config-

urations to more complex models consisting of thousands of sites.

Figure 5.13 shows a cuboid and an L-bracket with symmetric cubical sections. The mod-

els contain degenerate seams and junctions. Figure 5.14) shows a spoon model with 254

sites. Figure 5.15) shows a flattened chisel model with a radial axis of symmetry and random

perturbations added to the handle. This benchmark is particularly difficult to handle with

168

many several degenerate configurations near the axis of the handle. As a result, there is a

large governor set for many cells.

Figure 5.15: Chisel Model: The model has 1, 797 sites, including 632 triangle sites, 847 edge

sites, and 318 vertex sites. It has many degenerate configurations near the axis of the handle.

Two views of the approximate Voronoi graph are shown in the bottom. The computation for

homotopy preserving approximate Voronoi diagram took 130.3s for this model. The edges

and vertices of the approximate Voronoi graph are highlighted in blue and red, respectively.

5.8.3 θ-Homotopy Medial Axis Computation

We have also applied our algorithm to compute the θ-HMA of polyhedral models of

various sizes, ranging from 1000 triangles to 60k triangles. The complexity of the Blum

medial axis ranged from 1.3k sheets to 89k sheets. Our benchmark models include CAD

models with many sharp edges and high-aspect-ratio triangles. Such models can be relatively

hard for medial axis algorithm that compute a point sampling on the boundary of the objects

and a Voronoi diagram of the point samples.

Some of the benchmark models have a high genus and holes that are preserved during

medial axis simplification. We also tested our algorithm on synthetic benchmark models

169

(a) Model (b) θ-SMA (c) θ-HMA (d) θ-HMA

Figure 5.16: Flange Plate Model (990 polygons): Medial axis sheets through a cut-out of the

model (b) The sheets become disconnected, holes disappear for the θ-SMA (θ = 150◦). (c) In

the θ-HMA the holes are preserved, and the entire medial axis remains connected (θ = 150◦).

(d) The homotopy is preserved even as θ is set to maximum value of θ = 180◦

(a) Model (b) θ-SMA (c) θ-HMA (d) θ-HMA

sheets

Figure 5.17: Brake Rotor Model (4.7k polygons): Rim curves are shown in green, θ = 150◦

(b) The small holes in the center disappear in the θ-SMA, and the outer boundary becomes

disconnected. (c) the θ-HMA the holes in the center are preserved, and the entire medial axis

remains connected. (d) the entire θ-HMA with the sheets and rim curves.

with cavities and tunnels introduced obtained by performing boolean operations with various

solids. A topologically accurate polygonal boundary approximation of CSG operations is

computed using techniques presented in [VKSM04].

For simplicity, in the figures we only show seam curves that are the intersections of

three or more sheets. Also, maximally connected 2-manifolds have been grouped into one

sheet. The models and their corresponding medial axes are shown in Figures 5.16 - 5.23.

The polygonal meshes corresponding to the θ-SMA and θ-HMA have been smoothed using

Taubin’s algorithm [Tau95]. Table 5.2 lists the complexity of the polyhedral models, and of

the original medial axis and corresponding simplifications θ-HMA and θ-SMA. The time to

simplify the Blum medial axis to θ-HMA is also listed.

170

(a) θ-SMA (b) θ-HMA

Figure 5.18: Primer Anvil Model (4.3k polygons): Model boundary is shown in wireframe.

The medial axis sheets are in blue, rim curves in green, seam curves in magenta, θ = 150◦

(a) In the θ-SMA the sheets become disconnected, a thin sheet remains at the bottom (b) In

the θ-HMA the sheets remain connected.

Figure 5.19: Ridged Rod (5k poly-

gons), θ = 120◦: The model

has ridges near the surface, around

which θ value is high. The medial

sheets are shown in (b).

(a) Model (b) θ-HMA

Figure 5.20: CAD Mount (2.4k polygons), θ =
45◦: The sheets emerging from the center of the

vertical rod have low separation angle and have

been removed. Note that the removal does not

change the homotopy type.

Choice of angle θ: The angle θ used to guide the level simplification is provided as a

user-defined parameter. The values of θ used in the results presented were chosen experimen-

tally such that the computed θ-HMA exhibited significant simplification while preserving the

topological structure of the medial axis. A statistical scheme for selecting the value of θ has

been presented in [AM97].

171

Model Polys θ Num Sheets Time

(◦) BMA θ-HMA θ-SMA (s)

Plate 990 150 1896 21 22 1.29

Rotor 4736 150 1365 41 17 1.23

Mount 2442 45 7455 536 283 2.43

Knot 2562 150 13940 451 386 5.01

Ridge-Rod 5012 120 30676 74 36 18.10

Anvil 4340 150 32102 4 4 17.51

Drivewheel 60712 90 89885 16 759 24.94

Drivewheel 60712 150 89885 3 4 26.05

Table 5.2: Medial Axis Complexity: Polygon and sheet count of various models. θ is the

separation angle (in degrees) used for computing θ-HMA and θ-SMA. Num Sheets refers to

number of sheets in the exact Blum medial axis (BMA), and the simplified θ-HMA and θ-

SMA. Time is the time in seconds used by Algorithm 6 to compute the θ-HMA from the Blum

medial axis.

(a) Model (b) θ-HMA

curves

Figure 5.21: Knot Model (2.5k polygons), θ =
150◦: Rim curves are shown in bold green.

The sheets consist of thin and long surfaces.

Figure 5.22: Cube with spherical void

(1.5k polygons: A cut-out showing the

cube and the spherical void in the cen-

ter. The θ-HMA curves are drawn in ma-

genta, θ = 180◦. The θ-HMA remains

connected, and preserves the void.

5.9 Discussion

In this section we perform an analysis of the individual stages of our homotopy-preserving

approximate Voronoi diagram computation algorithm and compare it with prior techniques.

We also analyze the performance of our simplification algorithm. We highlight its compu-

tational complexity, and perform comparisons with some related algorithms for medial axis

simplification.

172

(a) Model (b) Initial Medial Axis (c) Medial Axis Closeup

(d) θ-HMA sheets, θ =
150◦

(e) θ-HMA sheets, θ =
90◦

(f) θ-HMA sheets closeup,

θ = 90◦

Figure 5.23: DriveWheel model (60k Polygons) and medial axis at different resolutions:

Artificial noise was added to the model. Rim curves are shown in green, seam curves are

shown in magenta. (a) The Model, with the front faces shown in wireframe (b) Blum medial

axis, black box highlights the zoomed in region (c) A closeup highlighting the tiny sheets

corresponding to the unstable parts. (d) Sheets of the θ-HMA, θ = 150◦. Connectivity of the

model and all holes are preserved. (e) Sheets of the θ-HMA, θ = 90◦, black box highlights

the zoomed in region (f) A closeup of the θ-HMA, θ = 90◦, showing the stable subset of the

medial axis.

5.9.1 Approximate Voronoi Diagram Computation

Time Complexity: The total running time of the subdivision algorithm is depends on

the depth of the subdivision performed and the relative configuration of the Voronoi faces.

In this section, we provide time bounds on the computation cost per cell, specifically the

cost of computing the homotopy criterion. Let the size of governor set of a cell be k. Then

the number of intersection points is bounded by O(k2). Each intersection point is checked

against remaining O(k) governors to determine if it is a valid edge event. Given the set of

edge events, they are sorted by their governor labels in O(k2 log k) time. Next the algorithm

used to trace the Voronoi edges in a single region boundary performs O(1) computations at

173

each edge event. Thus the total cost of computing the edge events and tracing the all Voronoi

region boundaries on a cell is at most O(k3). Typically, the number of governors per cell is

small, but in the worst case it can be k = O(N), N = number of entities on the boundary)

for degeneration configurations. The boundary criterion can be computed in O(k) time.

Comparison: We compare our algorithm to prior approaches for computing the Voronoi

diagram of polyhedral models.

The seam curve tracing methods [CKM04, SPB96, RT95a] compute the exact Voronoi

diagram. In practice, they can compute a topologically correct Voronoi diagram, but they

require use of exact arithmetic to solve a system of tri-variate non linear equations. Further-

more, they are prone to degenerate configurations. As a result, these approaches may not

scale well to large models.

Our work is most similar to work on computing an approximate Voronoi diagram using

spatial subdivision. The work of [VO98, BCMS05] does not provide any topological guar-

antees on the computed approximation - instead the subdivision is carried out to a predefined

level. The work of Etzion and Rappoport [ER02] provides a topologically valid Voronoi

graph for cells of size greater than some predefined constant ǫ. In general, it is not easy to

select a good value of ǫ for large models. For degenerate and near-degenerate configurations,

they compute an approximate Voronoi graph, with no topological guarantees. In case of large

cells, their approach computes an approximation that is homeomorphic to the exact Voronoi

diagram only for non-degenerate configurations. Moreover, they require that the cells are

subdivided till the number of governors of a cell is small (typically 4− 6, except for special

cases). As a result, their approach can be rather conservative.

In comparison, our algorithm provides a less strict topological guarantee on the output.

We ensure homotopy equivalence between the exact Voronoi diagram and our approximation,

even in the presence of degenerate and near degenerate configurations. We exploit the fact

that in the neighborhood of a near-degenerate configuration, the Voronoi diagram is homo-

174

topy equivalent to a point and this property simplifies the overall computation. The homotopy

criterion, introduced in Section 4, also checks for this condition in a cell containing a degen-

erate configuration. Furthermore, the homotopy criterion allows for early termination during

subdivision, even if a call has a large number of governors. This results in fewer levels of

subdivision. In practice, the size of leaf nodes in the subdivision is of similar scale as the

input geometry.

5.9.2 θ-Homotopy Medial Axis Computation

Time Complexity: We provide the complexity of the algorithm as a function of the

combinatorial complexity of the Blum MAT. A key step in our simplification algorithm is

the operation to check if a sheet fi is a frontier sheet. Let |S(fi)| denote the number of

seam curves incident on fi, given by the number of sheets adjacent to fi, and 〈|S(f)|〉 be

the average number of seam curves of a sheet. Then the cost of checking if a sheet fi is

frontier is O(|S(fi)|). We first present the cost of Algorithm 8. In the worst case, the fron-

tier sheet check is performed on each sheet fk adjacent to a sheet fi, i.e. |S(fi)| times.

The cost of each frontier check is O(|S(fk)|). The cost of adding or deleting a sheet from

the priority queue Qj is O(log |Qj|). Hence the cost of a single instance Algorithm 8 is

∑|S(fi)|
k=1 [O(|S(fk)|) + O(log |Qj|)]. Therefore, the cost of a single instance of Algorithm 7

is O(log |Qj|) +
∑|S(fi)|

k=1 [O(|S(fk)|) + O(log |Qj|)] = O(〈|S(f)|〉2 + log |Qj|). A sheet fi

can get added to the frontier set Qj at most |S(fi)| times. Hence, the number of iterations

in Algorithm 6 is at most
∑|F|

i=1 |S(fi)| = O(|F|〈|S(f)|〉). Moreover, the size of the frontier

set is bounded by the number of sheets, |Qj| ≤ |F|. Thus the total cost of the Algorithm 6

is O(|F|〈|S(f)|〉3 + |F| log |F|〈|S(f)|〉). Typically, 〈|S(f)|〉is a constant, the size of the

frontier set is much smaller than |F|, and the simplification cost is usually linear (or better)

in |F|.

Comparison: We compare some features of our MAT simplification algorithm with prior

175

techniques. There are many known approaches for computing and simplifying the medial

axis. It is hard to make direct comparisons between all these algorithms, as different algo-

rithms make varying assumptions about the input and generate different kind of approxima-

tions.

The main feature of our approach is that we preserves the homotopy type of the medial

axis while allowing for significant simplification of the medial axis. Our algorithm has been

applied to polyhedral models as input, and faithfully captures the medial axis near sharp

edges and corners in the input. Further, the algorithm preserves cavities corresponding to

internal voids in the medial axis.

Some of the earlier analytic algorithms for MAT computation are based on tracing the

seam curves [CKM99, RT95b, SPB96]. These algorithms are relatively expensive and the

worst case complexity is O(n3), where n is the number of features in the input solid. In prac-

tice, they have been applied to polyhedral models with few thousand triangles and compute

the Blum medial axis and not a simplification of the medial axis. The adaptive subdivision

algorithms [VO95, ER02] compute the generalized Voronoi Diagram, rather than a simpli-

fied medial axis. Further, these approaches may not be able to handle polyhedral models with

internal voids.

The surface sampling approaches, such as [ACK01b, DZ02a], take a point sampling on

the surface as input and approximate the medial axis using the Voronoi diagram. Robust and

efficient methods for computing the Voronoi diagram for point samples are well known. It

is hard to make a direct comparison, as the output generated by these algorithms is differ-

ent than our approaches which compute a distance field on a spatial grid. Many times the

algorithms based on a point samples of the boundary may not be able to generate a good

quality of approximation of the medial axis near the sharp features of the polyhedral model.

The convergence of the Voronoi diagram to the medial axis with a finite discrete sampling

has been proven, and extended algorithms have been proposed to generate good quality ap-

176

proximations for CAD models [DZ02a]. However, these methods guarantee a convergence

to the medial axis in the limit, and may not provide topological guarantees on the computed

medial axis approximation. Tam and Heidrich [TH03] describe an iterative algorithm to sim-

plify the medial axis of polyhedral models while avoiding some topological artifacts during

the construction. Their work builds upon point sampling approaches, and has been applied

to scanned models without many sharp features. There are no guarantees on the homotopy

equivalence of the medial axis. Furthermore, the pruning algorithm needs to perform expen-

sive global operations for topology preservation.

The λ-medial axis [CL04] provides a simplification of the medial axis for any open

bounded shape in R
n with homotopy equivalence to the original medial axis. The constraints

on λ depend on the critical points in the gradient field of the distance function. An ǫ-sampling

of the boundary of the shape is required, the choice of ǫ depends on different heuristics. Also,

a single value of λ may not be appropriate to provide significant simplification for the entire

shape. We are not aware of a practical implementation of this method. Attali et al. [ABE04]

acknowledge these open issues and suggest a nested sequence of λ-Voronoi graphs with dif-

ferent values of λ for portions of the shape. In fact, a λ-medial axis with a small value of λ

can be used as the original medial axis for our simplification algorithm, which subsequently

allows significant simplification while preserving homotopy equivalence.

5.9.3 Limitations

Our algorithm has a few limitations. The approximate Voronoi diagram computed by our

algorithm is not homeomorphic to the exact Voronoi diagram. Since it is based on spatial

subdivision, the cost of computation and the complexity of the approximate Voronoi diagram

varies based on the configuration the subdivision grid. In particular, one may encounter

degenerate configurations in which the intersection of the Voronoi regions with the boundary

of the cell may be a single point (i.e. a tangential intersection), and such cases cannot be

177

easily resolved with only subdivisions. We believe a subdivision scheme which allows for

perturbation of the cell faces may be able to alleviate this problem.

Our simplification algorithm depends on a spatial subdivision scheme to compute the

Voronoi graph of the polyhedron, and relies on the accuracy of the computed approximate

Voronoi diagram. The measure of stability that depends on separation angles, provides scale

invariance but may retain noisy features if they exhibit high separation angles. The simplifi-

cation algorithm uses a greedy approach for pruning the unstable parts of the medial axis and

a global minimum of the stability measure is not guaranteed. The elementary primitive in

our pruning algorithm is a sheet, and the amount of simplification is influenced by the size of

sheets. Finally, the simplified medial axis is not unique for a fixed value of θ, but depends on

the pruning order. Actually, determining a unique order for iterative pruning for 3D models

using topological constraints alone is still an open problem [PSS+03].

178

Chapter 6

Conclusions

The Voronoi diagram is one of the most fundamental data structures, and along with the

medial axis axis provides a well defined shape representation. However, the use of Voronoi

diagrams and medial axes to applications involving 3D polygonal models has been limited.

This is due to difficulty in design and implementation of reliable and efficient algorithms

for computation and application of the Voronoi diagram and medial axis of 3D polygonal

models.

In this thesis, we present present efficient algorithms for computing discrete Voronoi di-

agram and simplified medial axis of complex 3D polyhedral models, with geometric and

topological guarantees, and demonstrated the application to proximity queries among multi-

ple deformable models. We describe algorithms to compute 3D distance fields of complex

geometric models at interactive using culling and clamping techniques and an efficient map-

ping to graphics hardware. We provide geometric guarantees on the result using Hausdorff

distance bounds. We also present an adaptive sampling algorithm to provide topological

guarantees on the approximate Voronoi diagram and computing the homotopy-preserving

simplified medial axis from the approximate Voronoi diagram. Finally, we present a uni-

fied approach for performing different proximity queries among multiple deformable models

using second order discrete Voronoi diagrams.

In spite of the advances presented in this dissertation, there are still many open problems

in application of Voronoi diagrams of 3D polygonal models. The techniques presented have

certain limitations on the output, and have some performance limitations. In this chapter,

I summarize the main results of my dissertation. I also discuss possible future research

directions.

6.1 Summary of Results

In this thesis we have presented efficient algorithms for computing discrete Voronoi di-

agram and approximate medial axis of complex 3D polyhedral models. We described an

algorithm to compute 3D distance fields of geometric models by using a linear factorization

of Euclidean distance vectors. This formulation maps directly to the linearly interpolating

graphics rasterization hardware and enables us to compute distance fields of complex 3D

models at interactive rates. We also used clamping and culling algorithms based on proper-

ties of Voronoi diagrams to accelerate this computation. We used occlusion queries to speed

up the computation and have presented a conservative scheme to overcome sampling errors.

We provided geometric guarantees on the result using Hausdorff distance bounds.

We presented a unified and general approach to perform collision and distance queries in

complex environments composed of multiple deforming objects. We showed the reduction

of different proximity queries to specializations of N-body distance queries. We used proper-

ties of Voronoi diagrams to perform N-body culling and conservatively compute the Voronoi

neighbors using second order discrete Voronoi diagrams and distance bounds. We have used

our algorithms to perform different proximity queries in complex deformable models com-

posed of tens of thousands of triangles. The performance of our collision detection algorithms

is comparable to prior approach, except our algorithm can also handle models with changing

topologies. Moreover, we observed one order of magnitude improvement over prior distance

and penetration depth computation algorithms.

180

We also presented an adaptive sampling algorithm to provide topological guarantees on

the approximate Voronoi diagram of a 3D polyhedron. Homotopy equivalence is a weaker

topological guarantee compared to homeomorphism, however it captures all the topological

features of the shape. Our algorithm uses subdivision criteria to compute an approximate

Voronoi diagram which is homotopy equivalent to the exact Euclidean Voronoi diagram. The

subdivision criteria is based on computing the arrangement of 2D conic sections, which can

be performed accurately and efficiently [Be05, KCMh99]. Hence our algorithm is simpler

than exact 3D Voronoi diagram computation and can handle near-degenerate configurations

of the Voronoi diagram.

Finally, we have presented a simplified medial axis approximation, the θ-HMA, that com-

putes a stable subset of Blum’s medial axis, and preserves the homotopy type of Blum’s me-

dial axis. The stability of the medial axis is guided by a separation angle criterion, which

has been well studied. For polyhedral models, we presented a formal characterization of

the relationship between the stability of medial axis junctions and seams to the stability of

incident sheets, based on separation angles. Our algorithm computes a bounded measure of

stability of a medial axis sheet using discrete sampling. The construction of the θ-HMA is

based on an iterative pruning algorithm which uses efficient local tests. We have highlighted

the performance of our algorithm on many complex benchmarks and also used it to compute

a homotopy preserving medial axis approximation.

6.2 Summary of Limitations

In previous chapters we have already discussed several limitations of the techniques pre-

sented in this thesis (Sections 2.13, 3.6, 4.6, 5.9). Here we summarize the key limitations.

The distance field computation is performed on a uniform grid on the GPU and its ac-

curacy is governed by grid resolution. Current graphics processors provide up to 4K × 4K

181

pixel resolution and this imposes an upper bound on the grid resolution. The accuracy of the

algorithm is governed by that of the graphics hardware. For example, the current hardware

provides support for 32-bit floating point representation and it is not fully compatible with the

IEEE floating-point standard. Secondly, our algorithm involves a read-back from the GPU

back to the CPU, which can have additional overhead for high resolution distance fields.

Furthermore, the computed discrete Voronoi diagram does not provide any topological guar-

antees on the output. Our algorithms are best suited for global distance field computations

in complex environments. The culling techniques involve an occlusion query, which incur

an overhead on current graphics hardware. For narrow bands, and highly tessellated mod-

els, polygon transformation can become a bottleneck. Finally, our current work is limited to

Euclidean distance functions.

Surface distance map computation is limited to deforming meshes with fixed connectivity.

If the underlying simulation consists of objects with changing topologies, we may need to

update the planar parameterization and recompute the spatial hierarchies.

The proximity query computation incurs the overhead or computing the discrete Voronoi

diagrams. Even for small environments, the read-back overhead can be high. Our PNS

computation can be conservative if the resolution of the discrete 3D grid is low. This can

result in a high number of exact tests between the triangle primitives. Finally, our penetration

depth algorithm only computes a local penetration depth. Our approach only works well if

there is an isolated contact between the two objects.

The approximate Voronoi diagram computed by our algorithm is not homeomorphic to

the exact Voronoi diagram. Since it is based on spatial subdivision, the cost of computation

and the complexity of the approximate Voronoi diagram varies based on the configuration

the subdivision grid. In particular, one may encounter degenerate configurations in which the

intersection of the Voronoi regions with the boundary of the cell may be a single point (i.e. a

tangential intersection).

182

The medial axis simplification algorithm relies on separation angles, provides scale in-

variance but may retain noisy features if they exhibit high separation angles. The simplifica-

tion algorithm uses a greedy approach for pruning the unstable parts of the medial axis and a

unique result is not guaranteed. The elementary primitive in our pruning algorithm is a sheet,

and the amount of simplification is influenced by the size of sheets.

6.3 Future Work

There are many avenues for future work. One possibility to improve the performance

of discrete Voronoi diagram computation is utilizing temporal coherence between successive

frames for dynamic or deformable models. We are also exploring hierarchical techniques

to perform distance field computation on adaptive grids [SAC+07]. It would be useful to

extend distance field computation to other distance metrics, (e.g. Lk norm), and higher order

primitives including splines or algebraic surfaces. In this regard, the work on efficient raster-

ization of algebraic curves and surfaces on the GPU holds promise [LB06]. Finally, it would

be interesting to explore the mapping of these algorithms to newer GPUs and multi-core

architectures.

It may be possible to extend our algorithm for surface distance map computation to ob-

jects with changing topologies, where we incrementally recompute the affine transformation

to the parametric domain. Surface distance maps could also be useful to accelerate ray tracing

dynamic scenes [SKALP05].

We would like to use our proximity computation algorithms for other applications such

as surgical or finite-element simulation, where the mesh connectivity or topologies of the

objects may change. It may be useful to extend our penetration depth computation algorithm

to robustly handle deep penetrations and multiple contacts. We are also exploring the use of

higher-order Voronoi diagrams for motion planning of multiple agents [SAC+07].

183

For approximate homotopy preserving Voronoi diagram computation, we would also like

to combine our algorithm to other subdivision schemes such as kd-trees, which offer a better

choice of partitioning planes. As previously mentioned, the approximate homotopy preserv-

ing Voronoi diagram can have a complicated structure for large models. We would like to

study various methods for simplifying this structure and within the context of specific appli-

cations like motion planning, feature identification and shape analysis. This may involve use

of other medial axis simplification criteria in conjunction to separation angles. A challeng-

ing task is to compute a simplified medial axis approximation with better guarantees on the

global minimum of the stability measures, possibly leading to a unique pruning order. We

are interested in applying the simplification algorithm to other medial axis approximations.

Finally, we would like to explore applications of the θ-HMA such as mesh generation and

shape analysis.

184

BIBLIOGRAPHY

[AB02] D. Attali and J. Boissonnat. A linear bound on the complexity of the Delaunay

triangulation of points on polyhedral surfaces. In Proc. of ACM Solid Modeling,

pages 139–146, 2002.

[ABE04] Dominique Attali, J.-D. Boissonat, and Herbert Edelsbrunner. Stability and

computation of the medial axis. In Mathematical Foundations of Scientific

Visualization, Computer Graphics, and Massive Data Exploration. Springer-Verlag,

2004.

[ACK01a] N. Amenta, S. Choi, and R. K. Kolluri. The power crust, unions of balls, and the

medial axis transform. Computational Geometry: Theory and Applications,

19:127–153, 2001.

[ACK01b] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust. In

Proc. ACM Symposium on Solid Modeling and Applications, pages 249–260, 2001.

[AK96] F. Aurenhammer and Rolf Klein. Voronoi diagrams. Technical Report 198,

Department of Computer Science, FernUniversität Hagen, Germany, 1996.

[AK00] F. Aurenhammer and Rolf Klein. Voronoi diagrams. In Jörg-Rüdiger Sack and

Jorge Urrutia, editors, Handbook of Computational Geometry, pages 201–290.

Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[AM97] D. Attali and A. Montanvert. Computing and simplifying 2d and 3d continuous

skeletons. Computer Vision and Image Understanding, 67(3):261–273, 1997.

[Aur91] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data

structure. ACM Comput. Surv., 23(3):345–405, September 1991.

[BBGS99] R. Blanding, C. Brooking, M. Ganter, and D. Storti. A skeletal-based solid

editor. In Proc. ACM Symposium on Solid Modeling and Applications, pages

141–150, 1999.

[BCMS05] Imma Boada, Narcis Coll, Narcis Madern, and J. Antoni Sellares.

Approximations of 3D generalized voronoi diagrams. In Proc. 21st European

Workshop on Computational Geometry, pages 163–166, 2005.

[Be05] E. Berberich and et al. Exacus: Efficient and exact algorithms for curves and

surfaces. Proc. of the 13th European Symposium on Algorithms, 2005.

[BFA02] R. Bridson, R. Fedkiw, and J. Anderson. Robust treament for collisions, contact

and friction for cloth animation. Proc. of ACM SIGGRAPH, pages 594–603, 2002.

185

[BGKW95] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time Euclidean

distance transform and Voronoi diagram algorithms. IEEE Trans. Pattern Anal.

Mach. Intell., 17:529–533, 1995.

[Bli78] J. F. Blinn. Simulation of wrinkled surfaces. In Computer Graphics (SIGGRAPH

’78 Proceedings), pages 286–292, 1978.

[Blu67] H. Blum. A transformation for extracting new descriptors of shape. In

W. Wathen-Dunn, editor, Models for the Perception of Speech and Visual Form, pages

362–380. MIT Press, 1967.

[BMW00] D. Breen, S. Mauch, and R. Whitaker. 3d scan conversion of csg models into

distance, closest-point and color volumes. Proc. of Volume Graphics, pages 135–158,

2000.

[BN78] Harry Blum and Roger Nagel. Shape description using weighted symmetric axis

features. Pattern Recognition, 10:167–180, 1978.

[BW01] D. Baraff and A. Witkin. Physically Based Modeling. ACM SIGGRAPH Course

Notes, 2001.

[BWK03] D. Baraff, A. Witkin, and M. Kass. Untangling cloth. Proc. of ACM

SIGGRAPH, pages 862–870, 2003.

[Cat74] E. Catmull. A subdivision algorithm for computer display of curved surfaces. PhD

thesis, University of Utah, 1974.

[CD85] L. P. Chew and R. L. Drysdale, III. Voronoi diagrams based on convex distance

functions. In ACM Symposium on Computational Geometry, pages 235–244, 1985.

[CKM98] T. Culver, J. Keyser, and D. Manocha. Accurate computation of the medial axis

of a polyhedron. Technical Report TR98-034, Department of Computer Science,

University of North Carolina, 1998. Appeared in Proceedings of ACM Solid

Modeling 99.

[CKM99] Tim Culver, John Keyser, and Dinesh Manocha. Accurate computation of the

medial axis of a polyhedron. In Proc. ACM Symposium on Solid Modeling and

Applications, pages 179–190, 1999.

[CKM04] T. Culver, J. Keyser, and D. Manocha. Exact computation of a medial axis of a

polyhedron. Computer Aided Geometric Design, 21(1):65–98, 2004.

[CL04] Frédéric Chazal and André Lieutier. Stability and homotopy of a subset of the

medial axis. In Proc. ACM Symposium on Solid Modeling and Applications, 2004.

[CLMP95] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-COLLIDE: An interactive

and exact collision detection system for large-scale environments. In Proc. of ACM

Interactive 3D Graphics Conference, pages 189–196, 1995.

186

[Coo84] Robert L. Cook. Shade trees. In Hank Christiansen, editor, Computer Graphics

(SIGGRAPH ’84 Proceedings), volume 18, pages 223–231, July 1984.

[CS02] S. W. Choi and H.-P. Seidel. Linear onesided stability of MAT for weakly injective

3D domain. In Proc. ACM Symposium on Solid Modeling and Applications, pages

344–355, 2002.

[CS04] Frédéric Chazal and Rémi Soufflet. Stability and finiteness properties of medial

axis and skeleton. Journal of Control and Dynamical Systems, 10(2):149–170, 2004.

[Cui99] O. Cuisenaire. Distance Transformations: Fast Algorithms and Applications to

Medical Image Processing. PhD thesis, Universite Catholique de Louvain, 1999.

[Cul00] T. Culver. Accurate Computation of the Medial Axis of a Polyhedron. PhD thesis,

Department of Computer Science, University of North Carolina at Chapel Hill, 2000.

[CZ06] Huai-Dong Cao and Xi-Ping Zhu. A complete proof of the poincaré and

geometrization conjectures of the Hamilton-Perelman theory of the Ricci flow. Asian

Journal of Mathematics, 10(2):165 – 498, 06 2006.

[Dan80] P. E. Danielsson. Euclidean distance mapping. Computer Graphics and Image

Processing, 14:227–248, 1980.

[DDS03] Pavel Dimitrov, James N. Damon, and Kaleem Siddiqi. Flux invariants for shape.

In International Conference on Computer Vision and Pattern Recognition, Madison,

Wisconsin, 2003.

[Den03a] M. Denny. Solving geometric optimization problems using graphics hardware.

Computer Graphics Forum, 22(3), 2003.

[Den03b] Markus Denny. Solving geometric optimization problems using graphics

hardware. In Proc. of Eurographics, 2003.

[DHKS93] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Computing the

intersection-depth of polyhedra. Algorithmica, 9:518–533, 1993.

[DMB+96] R. J. Donaghy, W. McCune, S. J. Bridgett, C. G. Armstrong, D. J. Robinson,

and R. M. McKeag. Dimensional reduction of analysis models. In Proc. 5th

International Meshing Roundtable, pages 307–320, PO Box 5800, MS 0441,

Albuquerque, NM, 87185-0441, 1996. Sandia National Laboratories. Also Sand.

Report 96-2301.

[DQ04] H. Du and H. Qin. Medial axis extraction and shape manipulation of solid objects

using parabolic PDEs. In Proc. ACM Symposium on Solid Modeling and

Applications, 2004.

187

[DZ02a] Tamal K. Dey and Wulue Zhao. Approximate medial axis as a Voronoi

subcomplex. In Proc. ACM Symposium on Solid Modeling and Applications, pages

356–366, 2002.

[DZ02b] Tamal K. Dey and Wulue Zhao. Approximating the medial axis from the Voronoi

diagram with a convergence guarantee. In European Symposium on Algorithms,

pages 387–398, 2002.

[Egg98] H. Eggers. Two fast euclidean distance transformations in z2 based on sufficient

propagation. Computer Vision and Image Understanding, 69(1):106–116, 1998.

[EL01] S. Ehmann and M. C. Lin. Accurate and fast proximity queries between polyhedra

using convex surface decomposition. Computer Graphics Forum (Proc. of

Eurographics’2001), 20(3):500–510, 2001.

[ER02] Michal Etzion and Ari Rappoport. Computing Voronoi skeletons of a 3-d

polyhedron by space subdivision. Computational Geometry: Theory and

Applications, 21(3):87–120, March 2002.

[Eri04] C. Ericson. Real-Time Collision Detection. Morgan Kaufmann, 2004.

[ES86] H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete and

Computational Geometry, 1:25–44, 1986.

[FG05] I. Fischer and C. Gotsman. Fast approximation of high order Voronoi diagrams and

distance transforms on the GPU. Technical report CS TR-07-05, Harvard University,

2005.

[FG06] L. Fisher and C. Gotsman. Fast approximation of high order voronoi diagrams and

distance transforms on the gpu. Journal of Graphics Tools, 2006.

[FGLM01] M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based hybrid

planner. Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2001.

[FH05] M. Floater and K. Hormann. Surface parameterization:: A tutorial and survey.

Technical report, 2005.

[FL01] S. Fisher and M. C. Lin. Deformed distance fields for simulation of non-penetrating

flexible bodies. Proc. of EG Workshop on Computer Animation and Simulation,

pages 99–111, 2001.

[FLM03] M. Foskey, M. Lin, and D. Manocha. Efficient computation of a simplified

medial axis. Proc. of ACM Solid Modeling, pages 96–107, 2003.

[For87] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica,

2:153–174, 1987.

188

[Fou92] Alain Fournier. Normal distribution functions and multiple surfaces. In Graphics

Interface ’92 Workshop on Local Illumination, pages 45–52, May 1992.

[FPRJ00] S. Frisken, R. Perry, A. Rockwood, and R. Jones. Adaptively sampled distance

fields: A general representation of shapes for computer graphics. In Proc. of ACM

SIGGRAPH, pages 249–254, 2000.

[GBK05] Michael Guthe, Aakos Balazs, and Reinhard Klein. Gpu-based trimming and

tessellation of nurbs and t-spline surfaces. ACM Trans. Graph., 24(3):1016–1023,

2005.

[GF03] J. Gomes and O. Faugeras. The vector distance functions. Int. Journal of Computer

Vision, 52(2):161–187, 2003.

[GK00] Peter Giblin and Benjamin Kimia. A formal classification of 3D medial axis points

and their local geometry. In Proc. IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 566–573, 2000.

[GKJ+05] N. Govindaraju, D. Knott, N. Jain, I. Kabal, R. Tamstorf, R. Gayle, M. Lin, and

D. Manocha. Collision detection between deformable models using chromatic

decomposition. ACM Trans. on Graphics (Proc. of ACM SIGGRAPH),

24(3):991–999, 2005.

[GL-02] Nvidia occlusion query.

http://oss.sgi.com/projects/ogl-sample/registry/NV/occlusion query.txt, 2002.

[GL02] M. Garber and M. Lin. Constraint-based motion planning using voronoi diagrams.

Proc. Fifth International Workshop on Algorithmic Foundations of Robotics, 2002.

[GLW+04] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast

computation of database operations using graphics processors. Proc. of ACM

SIGMOD, 2004.

[GRLM03] N. Govindaraju, S. Redon, M. Lin, and D. Manocha. CULLIDE: Interactive

collision detection between complex models in large environments using graphics

hardware. Proc. of ACM SIGGRAPH/Eurographics Workshop on Graphics

Hardware, pages 25–32, 2003.

[HBSL03] M. Harris, B. Baxter, G. Scheuermann, and A. Lastra. Simulation of cloud

dynamics on graphics hardware. SIGGRAPH/Eurographics Workshop on Graphics

Hardware, pages 92–101, 2003.

[HCK+99a] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computation of

generalized voronoi diagrams using graphics hardware. Proceedings of ACM

SIGGRAPH 1999, pages 277–286, 1999.

189

[HCK+99b] Kenneth E. Hoff, III, Tim Culver, John Keyser, Ming Lin, and Dinesh

Manocha. Fast computation of generalized Voronoi diagrams using graphics

hardware. In Computer Graphics Annual Conference Series (SIGGRAPH ’99), pages

277–286, 1999.

[HCK+00] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Interactive motion

planning using hardware accelerated computation of generalized voronoi diagrams.

IEEE Conference on Robotics and Automation, pages pp. 2931–2937, 2000.

[HLC+01] J. Huang, Y. Li, R. Crawfis, S.C. Lu, and S.Y. Liou. A complete distance field

representation. In Proceedings of IEEE Visualization, pages 247–254, 2001.

[HREK05] Iddo Hanniel, M. Ramanathan, Gershon Elber, and Myung Soo Kim. Voronoi

region extract of free-form rational planar closed curves. In Symposium on Solid and

Physical Modeling, 2005.

[HTK+04] B. Heidelberger, M. Teschner, R. Keisner, M. Mueller, and M. Gross.

Consistent penetration depth estimation for deformable collision response. Proc. of

Vision, Modeling and Visualization, pages 315–322, 2004.

[HZLM01] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple 2d geometric

proximity queries using graphics hardware. Proc. of ACM Symposium on Interactive

3D Graphics, pages 145–148, 2001.

[HZLM02] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast 3d geometric proximity

queries between rigid and deformable models using graphics hardware acceleration.

Technical Report TR02-004, Department of Computer Science, University of North

Carolina, 2002.

[JC04] D. E. Johnson and E. Cohen. Unified distance queries in a heterogeneous model

environment. In ASME DETC, 2004.

[KCMh99] Joh”n Keyser, Tim Culver, Dinesh Manocha, and Shankar Kris hnan. MAPC: A

library for efficient and exact manipulation of alge braic points and curves. In Proc.

15th Annual ACM Symposium on Computational Geometry, pages 360–369, 1999.

[KOLM02] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha. Fast penetration depth

computation for physically-based animation. In Proc. of ACM/Eurographics

Symposium on Computer Animation, pages 23–31, 2002.

[KP03] D. Knott and D. K. Pai. CInDeR: Collision and interference detection in real-time

using graphics hardware. Proc. of Graphics Interface, pages 73–80, 2003.

[Kru91] B. Kruse. An exact sequential Euclidean distance algorithm with application to

skeletonizing. In 7th Scandinavian Conference on Image Analysis (SCIA ’91), pages

517–524, 1991.

190

[KS00] K. Kawachi and H. Suzuki. Distance computation between non-convex polyhedra

at short range based on discrete Voronoi diagrams. IEEE Geometric Modeling and

Processing, pages 123–128, 2000.

[KSKB95] R. Kimmel, D. Shaked, N. Kiryati, and A. M. Bruckstein. Skeletonization via

distance maps and level sets. Computer Vision and Image Understanding,

62(3):382–391, 1995.

[KY04] T. Kanai and Y. Yasui. Per-pixel evaluation of parametric surfaces on gpu. ACM

Workshop on General Purpose Computing on Graphics Processors, 2004.

[LAM01] Thomas Larsson and Tomas Akenine-Möller. Collision detection for

continuously deforming bodies. In Eurographics, pages 325–333, 2001.

[LB05] Charles Loop and Jim Blinn. Resolution independent curve rendering using

programmable graphics hardware. ACM Trans. Graph., 24(3):1000–1009, 2005.

[LB06] Charles Loop and Jim Blinn. Real-time gpu rendering of piecewise algebraic

surfaces. ACM Trans. Graph. (Proc ACM SIGGRAPH), 25(3):664–670, 2006.

[LC91a] M. C. Lin and J. F. Canny. Efficient algorithms for incremental distance

computation. In Proc. IEEE Internat. Conf. Robot. Autom., volume 2, pages

1008–1014, 1991.

[LC91b] M.C. Lin and John F. Canny. Efficient algorithms for incremental distance

computation. In IEEE Conference on Robotics and Automation, pages 1008–1014,

1991.

[LGLM00] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Distance queries with

rectangular swept sphere volumes. Proc. of IEEE Int. Conference on Robotics and

Automation, pages 3719–3726, 2000.

[Lie03] André Lieutier. Any open bounded subset of Rn has the same homotopy type than

its medial axis. In Proc. ACM Symposium on Solid Modeling and Applications, pages

65–75, 2003.

[Lin93] M.C. Lin. Efficient Collision Detection for Animation and Robotics. PhD thesis,

Department of Electrical Engineering and Computer Science, University of

California, Berkeley, December 1993.

[LK01] Frederic F. Leymarie and Benjamin B. Kimia. The shock scaffold for representing

3D shape. In Visual Form 2001, pages 216–229. Springer-Verlag, 2001. Lecture

Notes in Computer Science, no. LNCS 2059.

[LKHW03] A. Lefohn, J. Kniss, C.D. Hanses, and R. Whitaker. Interactive deformation

and visualization of level set surfaces using graphics hardware. In Proceedings of

IEEE Visualization, page To Appear, 2003.

191

[LLC92] L. Lam, S.-W. Lee, and C. Y. Chen. Thinning methodologies—A comprehensive

survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,

14(9):869–885, 1992.

[LM04] M. C. Lin and D. Manocha. Collision and proximity queries. In J. E. Goodman

and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, 2nd

Ed., chapter 35, pages 787–807. CRC Press LLC, Boca Raton, FL, 2004.

[Mau03] Sean Mauch. Efficient Algorithms for Solving Static Hamilton-Jacobi Equations.

PhD thesis, Californa Institute of Technology, 4 2003.

[Mey79] F. Meyer. Cytologie quantitative et morphologie Mathématique. PhD thesis,

École des Mines, 1979.

[MFV98] Grégoire Malandain and Sara Fernández-Vidal. Euclidean skeletons. Image and

Vision Computing, 16:317–327, 1998.

[MHTG05] M. Mueller, B. Heidelberger, M. Teschner, and M. Gross. Meshless

deformation based on shape matching. Proc. of ACM SIGGRAPH, pages 471–478,

2005.

[Mil93] V. Milenkovic. Robust construction of the Voronoi diagram of a polyhedron. In

Proc. 5th Canad. Conf. Comput. Geom., pages 473–478, 1993.

[Mir98] Brian Mirtich. V-Clip: Fast and robust polyhedral collision detection. ACM

Transactions on Graphics, 17(3):177–208, July 1998.

[MQR03] C.R. Maurer, R. Qi, and V. Raghavan. A linear time algorithm for computing

exact euclidean distance transforms of binary images in arbitary dimensions. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 25(2):265–270, February

2003.

[Mul92] James C. Mullikin. The vector distance transform in two and three dimensions.

CVGIP: Graphical Models and Image Processing, 54(6):526–535, November 1992.

[OBS92] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessellations:

Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester,

UK, 1992.

[OLG+05] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,

Aaron E. Lefohn, and Tim Purcell. A survey of general-purpose computation on

graphics hardware. In Eurographics 2005, State of the Art Reports, pages 21–51,

September 2005.

[PDC+03] T. Purcell, C. Donner, M. Cammarano, H. Jensen, and P. Hanrahan. Photon

mapping on programmable graphics hardware. ACM SIGGRAPH/Eurographics

Conference on Graphics Hardware, pages 41–50, 2003.

192

[PF01] R. Perry and S. Frisken. Kizamu: A system for sculpting digital characters. In Proc.

of ACM SIGGRAPH, pages 47–56, 2001.

[PG90] N. M. Patrikalakis and H. N. Gürsoy. Shape interrogation by medial axis transform.

In Proc. 16th ASME Design Automation Conference, September 1990.

[PS05] R. Peikert and C. Sigg. Optimized bounding polyhedra for gpu-based distance

transform. In Scientific Visualization: The visual extraction of knowledge from data,

2005.

[PSS+03] Stephen M. Pizer, Kaleem Siddiqi, Gabor Szekely, James M. Damon, and

Stephen W. Zucker. Multiscale medial loci and their properties. International

Journal of Computer Vision, 55:155–179, 2003.

[Qui94] S. Quinlan. Efficient distance computation between non-convex objects. In

Proceedings of International Conference on Robotics and Automation, pages

3324–3329, 1994.

[Rag92] I. Ragnelmam. Neighborhoods for distance transformations using ordered

propagation. Computer Vision, Graphics and Image Processing, 56(3):399–409,

1992.

[RKLM04] S. Redon, Young J. Kim, Ming C. Lin, and Dinesh Manocha. Fast continuous

collision detection for articulated models. In Proceedings of ACM Symposium on

Solid Modeling and Applications, 2004.

[RL06] S. Redon and M. Lin. A fast method for local penetration depth computation.

Journal of Graphics Tools, page To Appear, 2006.

[RT95a] J. Reddy and G. Turkiyyah. Computation of 3D skeletons using a generalized

Delaunay triangulation technique. Computer-Aided Design, 27:677–694, 1995.

[RT95b] Jayachandra Reddy and George Turkiyyah. Computation of 3D skeletons using a

generalized Delaunay triangulation technique. Comput. Aided Design,

27(9):677–694, 1995.

[SA95] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric

Applications. Cambridge University Press, New York, 1995.

[SAC+07] Avneesh Sud, Erik Andersen, Sean Curtis, Ming Lin, and Dinesh Manocha.

Real-time path planning for virtual agents in dynamic environments. In Proc. of

IEEE Virtual Reality, page to appear, 2007.

[SBS97] K. Siddiqi, Kimia B.B., and Chi-Wang Shu. Geometric shock-capturing eno

schemes for subpixel interpolation, computation and curve evolution. Graphical

Models and Image Processing, 59(5):278–301, 1997.

193

[SBTZ02] Kaleem Siddiqi, Sylvain Bouix, Allen Tannenbaum, and Steven W. Zucker.

Hamilton-Jacobi skeletons. International Journal of Computer Vision, 48:215–231,

2002.

[SERB98] A. Sheffer, M. Etzion, A. Rappoport, and M. Bercovier. Hexahedral mesh

generation using the embedded voronoi graph. 7th International Meshing

Roundtable, pages 347–364, 1998.

[Set99] J. A. Sethian. Level set methods and fast marching methods. Cambridge, 1999.

[SFM05] Avneesh Sud, Mark Foskey, and Dinesh Manocha. Homotopy preserving medial

axis simplification. In Proc. ACM Symposium on Solid and Physical Modeling, 2005.

[SFYC96] R. Shekhar, E. Fayyad, R. Yagel, and F. Cornhill. Octree-based decimation of

marching cubes surfaces. Proc. of IEEE Visualization, pages 335–342, 1996.

[SGGM06] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha. Interactive 3d distance

field computation using linear factorization. In Proc. ACM Symposium on Interactive

3D Graphics and Games, pages 117–124, 2006.

[SH75] M. I. Shamos and D. Hoey. Closest-point problems. In Proc. 16th Annu. IEEE

Sympos. Found. Comput. Sci., pages 151–162, 1975.

[She95] E. C. Sherbrooke. 3-D Shape Interrogation by Medial Axis Transform. Ph.D.

thesis, Dept. Ocean Engineering, Massachusetts Institute of Technology, Cambridge,

Massachusetts, 1995.

[SJP05] Le-Jeng Shiue, Ian Jones, and Jörg Peters. A realtime gpu subdivision

kernel. ACM Trans. Graph., 24(3):1010–1015, 2005.

[SKALP05] L. Szirmay-Kalos, B. Aszodi, I. Lazanyi, and M. Premecz. Approximate

ray-tracing on the gpu with distance impostor. Proc. of Eurographics, 2005.

[SL00] K. Sundaraj and C. Laugier. Fast contact localization of moving deformable

polyhedra. In Proc. of IEEE Int. Conference on Control, Automation, Robotics and

Vision, 2000.

[SOM04] A. Sud, M. A. Otaduy, and D. Manocha. DiFi: Fast 3D distance field

computation using graphics hardware. Computer Graphics Forum (Proc.

Eurographics), 23(3):557–566, 2004.

[Spa89] Edwin H. Spanier. Algebraic Topology. Springer, 1989.

[SPB96] E. C. Sherbrooke, N. M. Patrikalakis, and E. Brisson. An algorithm for the medial

axis transform of 3d polyhedral solids. IEEE Trans. Visualizat. Comput. Graph.,

2(1):45–61, March 1996.

194

[SPG03] C. Sigg, R. Peikert, and M. Gross. Signed distance transform using graphics

hardware. In Proceedings of IEEE Visualization, pages 83–90, 2003.

[SS06] Svetlana Stolpner and Kaleem Siddiqui. Revealing significant medial structure in

polyhedral meshes. In Third International Symposium on 3D Data Processing,

Visualization and Transmission, 2006.

[Sur03] K. Suresh. Automating the CAD/CAE dimensional reduction process. In Proc.

ACM Symposium on Solid Modeling and Applications, pages 76–85, 2003.

[Tau95] G. Taubin. A signal processing approach to fair surface design. In Proc. of ACM

SIGGRAPH, pages 351–358, 1995.

[TH03] R. Tam and W. Heidrich. Shape simplification based on the medial axis transform.

IEEE Visualization, 2003.

[THM+03] M. Teschner, B. Heidelberger, M. Muller, D. Pomeranets, and M. Gross.

Optimized spatial hashing for collision detection of deformable objects. Proc. of

Vision, Modeling and Visualization, pages 47–54, 2003.

[TKH+05] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,

A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, and

P. Volino. Collision detection for deformable objects. Computer Graphics Forum,

19(1):61–81, 2005.

[TT97] M. Teichmann and S. Teller. Polygonal approximation of Voronoi diagrams of a set

of triangles in three dimensions. Technical Report 766, Laboratory of Computer

Science, MIT, 1997.

[vdB97] G. van den Bergen. Efficient collision detection of complex deformable models

using AABB trees. Journal of Graphics Tools, 2(4):1–14, 1997.

[VKSM04] G. Varadhan, S. Krishnan, T. V. N. Sriram, and D. Manocha. Topology

preserving surface extraction using adaptive subdivision. In Eurographics

Symposium on Geometry Processing, 2004.

[VO95] Jules Vleugels and Mark Overmars. Approximating generalized Voronoi diagrams

in any dimension. Technical Report UU-CS-1995-14, Department of Computer

Science, Utrecht University, 1995.

[VO98] J. Vleugels and M. H. Overmars. Approximating Voronoi diagrams of convex sites

in any dimension. International Journal of Computational Geometry and

Applications, 8:201–222, 1998.

[VT00] P. Volino and N. Magnenat Thalmann. Accurate collision response on polygon

meshes. In Proc. of Computer Animation, page 154, 2000.

195

[WND97] M. Woo, J. Neider, and T. Davis. OpenGL Programming Guide, Second Edition.

Addison Wesley, 1997.

[Wol92] F. E. Wolter. Cut locus and medial axis in global shape interrogation and

representation. Technical Report 92-2, MIT, Dept. Ocean Engg., Design Lab,

Cambridge, MA 02139, USA, January 1992.

[Yam84] H. Yamada. Complete euclidean distance transformation by parallel operation. In

Proc. of 7th International Conf. on Pattern Recognition, pages 336–338, Montreal,

Canada, 1984.

[YBM04] Yuandong Yang, Oliver Brock, and Robert N. Moll. Efficient and robust

computation of an approximated medial axis. In Proc. ACM Symposium on Solid

Modeling and Applications, pages 15–24, 06 2004.

[ZW93] Y. Y. Zhang and P. S. P. Wang. Analytical comparison of thinning algorithms. Int.

J. Pattern Recognit. Artif. Intell., 7:1227–1246, 1993.

196

