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ABSTRACT
TIMOTHY B. TERRIBERRY: Continuous Medial Models in Two-Sample

Statistics of Shape.
(Under the direction of Guido Gerig.)

In questions of statistical shape analysis, the foremost is how such shapes should

be represented. The number of parameters required for a given accuracy and the types

of deformation they can express directly influence the quality and type of statistical

inferences one can make. One example is a medial model, which represents a solid

object using a skeleton of a lower dimension and naturally expresses intuitive changes

such as “bending”, “twisting”, and “thickening”.

In this dissertation I develop a new three-dimensional medial model that allows

continuous interpolation of the medial surface and provides a map back and forth be-

tween the boundary and its medial axis. It is the first such model to support branching,

allowing the representation of a much wider class of objects than previously possible

using continuous medial methods.

A measure defined on the medial surface then allows one to write integrals over

the boundary and the object interior in medial coordinates, enabling the expression of

important object properties in an object-relative coordinate system. I show how these

properties can be used to optimize correspondence during model construction. This

improved correspondence reduces variability due to how the model is parameterized

which could potentially mask a true shape change effect.

Finally, I develop a method for performing global and local hypothesis testing be-

tween two groups of shapes. This method is capable of handling the nonlinear spaces

the shapes live in and is well defined even in the high-dimension, low-sample size case.

It naturally reduces to several well-known statistical tests in the linear and univariate

cases.
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Chapter 1

Introduction

. . . it appears to me possible. . . to reconstruct the skeleton of the one

from our knowledge of the skeleton of the other, under the guidance of the

same correspondence as is indicated in their external configuration.

(Thompson, 1917)

1.1 Motivation and Goals

D’Arcy Thompson’s words, written the better part of a century ago to describe his

hand-made sketches of two different species of fish, eloquently sum up the goal of this

work. This dissertation seeks to place a mathematical formalism and computational

framework behind the process Thompson describes, and in so doing develops several

new tools for the understanding of populations of shapes.

Given the widespread use of medical imaging, there is a great need for techniques

to find and analyze the objects in them, a process greatly aided by an a priori under-

standing of the variability of shapes between subjects and over time. These can be used

for treatment planning: for visualizations of minimally-invasive surgery (possibly even

while the operation is in progress) or radiation therapy, which aims to target tumors

without killing the surrounding healthy tissue.

However, many applications also require comparisons between multiple popula-

tions. Several neurological disorders such as schizophrenia and autism show systematic

changes in various structures of the brain. Being able to prove a statistical difference

in the shape of an organ between healthy and unhealthy patients can aid in diagnosis.

Being able to localize these changes to specific areas and describe them in intuitive



ways, such as “bending”, “twisting”, or “thickness”, helps researchers to understand

the disease process. Furthermore, these tools help in understanding the effects of vari-

ous drugs used to treat these diseases. They can also be used to analyze the processes

of growth and early development.

However, describing shapes in these terms requires nonlinear models to capture

what are inherently nonlinear processes. These models require new statistical methods

that generalize those developed for linear spaces to nonlinear ones.

1.1.1 A Continuous Medial Model

One particularly powerful class of shape representations are medial representations, or

m-reps. As a kind of skeleton, their description carries with it information about the

solid shape that boundary descriptions do not and naturally decomposes into figural

parts, connected at branches where multiple parts meet. They also naturally describe

the intuitive types of shape change listed above.

The medial geometry provides an intrinsic link between the boundary and the me-

dial axis, which allows one to use the appropriate representation for the desired analysis

task. However, there are a number of limitations with current m-rep models. In the

discrete version (Pizer et al., 1999) the connection with the boundary is tenuous: the

link is given only at a coarse set of discrete points and the interpolation given by (Thall,

2004) to recover a dense sampling does not respect the intrinsic medial geometry. More

recent work on interpolation that does respect this geometry shows a promising alter-

native (Han et al., 2006), but it sacrifices the uniqueness of the representation, requires

expensive numerical integration, and in the end only approximately interpolates the

original discrete model.

An alternative approach, cm-reps, consider the problems of designing a discrete

computer representation and computing its associated continuous mathematical repre-

sentation together as a coupled system. However, generalizations to three dimensions

require an infinite number of boundary conditions to be satisfied. Existing techniques

for enforcing them are limited to a single figure (Yushkevich, 2003; Yushkevich et al.,

2005), and thus can represent only a limited class of objects.

In order to overcome these limitations, Chapter 3 describes a new continuous medial

model constructed with subdivision surfaces. It is based on a novel technique, called

a “control curve”, which can enforce any arbitrary first- and second-order boundary

condition on the entire length of the edges of a Catmull-Clark subdivision surface.
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This technique allows the creation of the first continuous medial model that supports

branching in three dimensions.

1.1.2 Model Fitting With Explicit Correspondence Optimiza-

tion

The link between medial geometry and the geometry of the boundary provided by a

continuous medial representation allows many operations on the boundary or interior

of the shape to be expressed in terms of integrals in object-relative, medial coordinates.

This forms the basis for the model-fitting framework outlined in Chapter 4. A method

of sampling the continuous medial axis is given, and this sampling is used to numerically

approximate medial integrals. Several examples of such integrals include the compu-

tation of volume overlap, which is a metric used to evaluate goodness-of-fit, as well as

moments up through second order, which are used to initialize the fitting process by

aligning a template to the target shape. The fitting process itself is governed by the

constrained optimization of an objective function, also given by a medial integral, over

several scales in succession. This chapter derives such multi-scale objective functions

for both voxelized binary images and also triangulated surface meshes.

Finally, it shows how medial integrals can be used to tackle the problem of correspon-

dence. An inherent problem in any shape representation used for statistical analysis,

one must ensure that the parameters of the representation in some sense control the

“same” features of the resulting shape. Otherwise, noise in the parameterization can

overwhelm the size of any shape change effect, reducing or eliminating the power of the

tests.

What Chapter 4 does not do is provide yet another means for determining the

correspondence between two shapes. Instead, it takes the stance that correspondence is

inherently specific to the problem domain. Consider the classic “box-bump” example in

Figure 1.1 (Kotcheff and Taylor, 1998). Depending on whether the underlying physical

model of the two shapes is that of multiple protrusions by varying amounts, or a

single protrusion with a varying position, the “average shape” produced gives two

very different results. Either result is valid, and the implicit correspondence given

by a particular shape representation could just as easily produce either, but without

some input governing the process whereby the representation is constructed results are

unpredictable. One such governing process is to examine a sufficiently large number of

examples from the population, and indeed many researchers have taken this approach.

3



Figure 1.1: Different notions of correspondence can lead to different meanings of the
average of a shape, as well as other statistics.

These methods of determining correspondence often focus solely on the boundary,

since in many medical imaging modalities the interior of objects are relatively uniform

in appearance and their features are poorly localized. Because a continuous represen-

tation affords an explicit link between the boundary and the medial locus, the implicit

correspondence given by the parameterization of the latter is optimized to match an

explicit correspondence given on the former. Any number of existing methods, as well

as future, problem-specific ones, can determine the correspondence, providing increased

flexibility to adapt to the problem at hand.

1.1.3 Nonlinear Hypothesis Testing

The recent development of tools like Principal Geodesic Analysis (Fletcher, 2004) can

characterize a single statistical distribution in a nonlinear space. Chapter 5 in turn

lays out a hypothesis testing framework for comparing two different distributions in

nonlinear spaces that is designed specifically to address the challenges of shape analysis:

a large number of parameters with a small number of subjects (high-dimension, low-

sample-size), correlation among the parameters, and non-commensurate parameters

measured in units that are not directly comparable. The resulting test is a multivariate

permutation test that can simultaneously combine all of the parameters of the shape

model—position, local thickness, etc.—in contrast with previous work that focused only

on a single aspect at a time. It requires only the existence of a metric on the space,

reduces to an ordinary permutation test in the univariate case, and converges to the

classic Hotelling’s T 2 test in the multivariate case as the sample sizes tend to infinity.

4



1.1.4 Thesis and Claims

Thesis: Nonlinear growth and deformation of biological objects requires nonlinear shape

models to effectively characterize these processes. A nonlinear hypothesis test based on

multivariate permutation tests provides an effective means of detecting and localizing

their effects between groups. A continuous medial model, which describes this variation

in a natural way, can be used to effectively represent these shapes. The geometric link

between the medial axis and the boundary such a model provides can be used to optimize

the correspondence across a population of objects, reducing parameterization noise to

increase the power of statistical tests.

The main contributions are

1. A novel “control curve” formulation capable of enforcing first- and second-order

boundary conditions at the edges of subdivision surfaces.

2. A new continuous medial model based on this formulation, the first such model

capable of representing branching in three dimensions.

3. A method of approximating medial integrals driven by a uniform sampling of

these continuous models.

4. Applications of these medial integrals. These include computing volume overlap

to evaluate goodness-of-fit and computing second-order moments to align models

to a common position, orientation and scale.

5. A multi-scale model fitting framework utilizing a highly constrained multivariate

nonlinear optimization to fit these models to a target shape.

6. A new correspondence optimization method that works in tandem with the model

fitting process to produce a group of models with a common parameterization.

7. A novel nonlinear hypothesis test for m-reps, which simultaneously considers all

of the parameters of the shape model.

1.1.5 Overview

After this introduction, Chapter 2 provides background on the medial axis, previous

research utilizing it for shape analysis, and the fundamental mathematics underlying it.

Other necessary background material on subdivision surfaces, nonlinear optimization,

5



correspondence, Riemannian geometry, and hypothesis testing are embedded directly in

the chapters that require them. The next three chapters form the bulk of the disserta-

tion, covering each of the three topics outlined above. Chapter 3 defines the new medial

representation, and shows how it can model branching in three dimensions. Chapter 4

gives a method for fitting these models to existing shapes. Chapter 5 describes the

nonlinear hypothesis test used to compare shape populations. Finally, Chapter 6 sum-

marizes the contributions made and discusses future work.

6



Chapter 2

Medial Properties

We are apt to think of mathematical definitions as too strict and rigid

for common use, but their rigour is combined with all but endless freedom.

. . . By means of these large limitations, by this controlled and regulated

freedom, we reach through mathematical analysis to mathematical synthe-

sis. . . as for instance, when we learn that, however we hold our chain, or

however we fire our bullet, the contour of the one or the path of the other

is always mathematically homologous.

(Thompson, 1917)

This chapter outlines the properties and mathematics of the Blum medial axis as it

has been used in research up to this point. Additional background material, being fairly

localized in its application, is not presented here, but rather directly in the chapters

that require it. Chapter 3 contains a review of Catmull-Clark subdivision surfaces,

Chapter 4 describes some necessary nonlinear optimization techniques, and Chapter 5

briefly reviews hypothesis testing and one-sample statistics in Riemannian symmetric

spaces.

2.1 An Overview of the Medial Axis

The medial axis was introduced by (Blum, 1967) primarily as a tool for 2D shape

analysis. Extensions to 3D were discussed in (Blum, 1973) and further developed in

(Nackman, 1982), and the relationship between the medial axis and the associated

boundary were explored in (Vermeer, 1994; Gelston and Dutta, 1995; Teixeira, 1998;



Giblin and Kimia, 2004). Extending the definition to higher dimensions is straightfor-

ward; doing so, (Damon, 2003; Damon, 2004) provides an analysis of the differential

geometry in any dimension.

A precise definition may be formulated in several different, equivalent ways. One

approach is in terms of a maximally inscribed ball.

Definition 2.1 Given a point m ∈ Rn, a closed ball of radius r around m is the set

Br(m) = {x ∈ Rn : ‖x−m‖ ≤ r}.

Definition 2.2 Given a closed, connected set Ω ⊆ Rn, a maximally inscribed ball

in Ω is a closed ball B ⊆ Ω such that there is no closed ball B′ with B ( B′ ⊆ Ω.

Definition 2.3 The Blum medial axis of a closed, connected set Ω ⊆ Rn is the set

M = {m ∈ Rn : Br(m) is maximally inscribed for some r}.

By itself, the Blum medial axis is insufficient to describe the shape of an object, as

many objects may have the same medial axis. Thus, we also define an augmented

structure.

Definition 2.4 The augmented Blum medial axis of a closed, connected set Ω ⊆
Rn is the set M = {(m, r) ∈ Rn × R≥0 : Br(m) is maximally inscribed}.

This is a complete description of the object. The set Ω may be recovered from M—at

least in an abstract mathematical sense—as the union of the maximally inscribed balls.

Authors in various fields have used the terms medial scaffold, central set, internal medial

locus, and others to refer to the augmented or unaugmented versions of the medial axis.

Where the notation, M or M, makes the definition in question clear, this dissertation

will omit the word “augmented”.

There are many equivalent, alternative ways to define the medial axis. One is based

on the symmetry set, which replaces maximally inscribed balls with bitangent spheres :

closed balls that are tangent to the boundary B = ∂Ω of the object in (at least)

two different places (Giblin and Brassett, 1985). This requires that the object have a

well-defined tangent plane (almost) everywhere on its boundary, which in practice is a

reasonable restriction. The full symmetry set is larger than the medial axis, containing

the closure of all such bitangent spheres. The closure is necessary to include points

like the end points (such as the A3 point in Figure 2.1(a)), which in the generic case

are only tangent in one place. The medial axis is then defined as the subset of those

spheres in the symmetry set that are also entirely contained inside the object.

8



A third approach defines the medial axis as the shocks of the grassfire flow (Blum,

1973). The analogy likens the object to a field of grass whose entire boundary is

simultaneously set ablaze. As the fire’s front spreads from the boundary at a uniform

speed, it meets at places called shocks from two different directions at once, where it

extinguishes itself. The augmented medial axis can then be defined as the location of

the shocks together with the times when they were formed. This can be modeled by

the differential equation

∂C
∂t

= −αN . (2.1)

Here C denotes the location of the fire front at time t, N is the outward facing normal

to the front, and α is a positive constant controlling the speed of the flow. This

analytic approach was shown to be equivalent to the geometric definition by (Calabi

and Hartnett, 1968).

A fourth approach is based on the Euclidean distance transform.

Definition 2.5 The signed Euclidean distance transform of a set Ω is the func-

tion DΩ : Rn → R≥0 given by

DΩ(x) =

infx′∈Ω d(x, x
′), x 6∈ Ω

− infx′∈Rn\Ω d(x, x
′), x ∈ Ω

, (2.2)

where d(·, ·) is the Euclidean distance function.

Then the medial axis is given by the “ridges” of the graph of DΩ that lie inside Ω.

These are given by the closure of the set of singular points, where two distinct points

x′ ∈ B both give the infimum in (2.2).

It is helpful to get a mental picture of what the set M looks like, so Figure 2.1

illustrates an example for two and three dimensions. In two dimensions, the centers of

the inscribed balls form a set of curves that meet at branch points. In three dimensions,

they are typically a set of 2D manifolds with boundary, called sheets, which meet along

branch curves. We will call the boundary of these sheets edges and points along them

edge points, to avoid confusion with the boundary of the object, B. The vectors from

the center of a ball to the points of tangency on the boundary have been called in

various places spokes, sails, or oars. In this work we shall adopt the term spokes.

These illustrations raise the question of whether or not it is possible to classify how

the medial axis is structured. Indeed, in their original work (Blum and Nagle, 1978)

9
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1

A3

(a) A 2D example. (b) A 3D example.

Figure 2.1: Examples of the medial axes of some generic shapes. Most points are
smooth points, like point A2

1, with a bitangent circle. Examples of singular points in
2D include branch points, like point A3

1, with a tritangent circle, and edge points, like
point A3, with an osculating circle. The An

k notation is explained in detail in the text.

give such a classification for two dimensions, while (Giblin and Kimia, 2004) give a

rigorous classification in three dimensions for a generic boundary. We shall adopt the

notation of the latter, where each point An
k is classified by the number of unique points

of tangency of the maximally inscribed ball with the boundary (n), along with the

order of contact (Ak). The only two possible orders of contact of a maximally inscribed

ball Br(m) at a point on the boundary x ∈ B are

• A1 contact: Br(m) is tangent to B at x.

• A3 contact: Br(m) is tangent to B at x, r is one of the principal radii of curvature

of B at x, and the corresponding principal curvature is a local extremum (also

called a ridge point of B).

There are three other orders of contact, A2, A4, andD4, but at such places the boundary

must penetrate the surface of the ball, so it can never be maximally inscribed. Thus

no ball on the medial axis will make such contact with B (but points on the symmetry

set might).

This notation is extended directly for contact at more than one point, e.g., A1A1 =

A2
1 is normal bitangent contact. In 2D, the possible generic cases are

1. Curves (one dimensional manifolds) of A2
1 points.

2. A3
1 branch points (zero dimensional manifolds), where three A2

1 curves meet.

3. A3 edge points (zero dimensional manifolds), where an A2
1 curve ends.

10



(a) Edge. (b) Branch curve. (c) Fin point. (d) Six-junction.

Figure 2.2: The generic local singular structures for the Blum medial axis in R3.

These can be extended to three dimensions, where two additional cases arise:

1. Sheets (two dimensional manifolds) of A2
1 points.

2. A3
1 branch curves (one dimensional manifolds), where three A2

1 sheets meet.

3. A3 edge curves (one dimensional manifolds), where an A2
1 sheet ends.

4. A1A3 fin points (zero dimensional manifolds), where an A3
1 branch curve ends.

5. A4
1 six-junction points (zero dimensional manifolds), where four A3

1 branch curves

connecting six A2
1 sheets meet.

These are illustrated in Figure 2.2.

In general, if we want to restrict our attention to genus zero objects—those home-

omorphic to the n-dimensional sphere—then we require some restrictions on how the

strata are connected to each other. For example, in 2D, it is enough to require that the

(undirected) graph of the connections between the medial sheets forms a tree (e.g., con-

tains no cycles). In higher dimensions, this is still sufficient, but not necessary. Rather,

the situation is more complex. Not only may the connectivity graph no longer be a

tree, but neither is it sufficient to simply describe which sheets are connected to each

other. Rather, how they are connected along branch curves also becomes important.

A complete characterization of the topologies of the medial axes of genus zero objects

in 3D is given by (Damon, 2005b).

There are many variations on the definition of a medial axis, including (Brady and

Asada, 1984; Leyton, 1987), which have different properties at branches and end-points,

different geometric relationships with the associated boundary, and different generic

structures. There are also numerous methods for computing (or approximating) the

11



medial axis of a given shape. Different approaches are based on Voronoi skeletons

(Székely et al., 1994; Sheehy et al., 1996; Sherbrooke et al., 1996; Amenta et al., 2001;

Leymarie and Kimia, 2003), morphological thinning (Borgefors et al., 1999; Manzanera

et al., 1999), core tracking (Pizer et al., 1998), and shock detection (Kimia et al., 1990;

Siddiqi et al., 2002; Torsello and Hancock, 2006); see (Pizer et al., 2003) for an overview

and comparison of most of these. However, the problem is in general ill-posed, as small

perturbations in the boundary of the shape can introduce large branches on the medial

axis, and the branching structure can vary drastically between similar shapes. It is not

clear how meaningful statistics can be performed over shape models with such widely

varying topology.

This fundamental difficulty has led researchers to a different approach (Golland

et al., 1999; Pizer et al., 1999). In a sense that will be made precise in Section 2.3.5,

the effect of these extra branches on the actual shape is very small. Thus, instead of

trying to extract the medial axis corresponding to an object, we start with a medial

axis with a fixed branching topology and deform it until it matches our target object

within a desired tolerance. Starting from a desired tolerance, (Styner et al., 2003) give

an automatic method for computing a suitable topology for a collection of objects based

on pruning their Voronoi diagrams. The specific incorporation of tolerance defines the

scale of the features being modeled, and varying it produces multi-scale methods with

all of their advantages.

This reversal of the original relationship, from an object describing a medial axis

to a medial axis describing an object, is the critical idea that makes medial represen-

tations effective image analysis tools. It replaces an inherently unstable and ill-defined

problem—computing the medial axis of an object from its boundary—with a well-

defined and stable one: computing the boundary of an object from its medial axis.

Proving such stability, in the sense that small changes in the medial axis lead to small

changes in the boundary, is beyond the scope of this dissertation, but the derivatives

of the boundary in terms of changes to the medial axis given in Appendix B for use

in Chapter 4 provide a direct means of computing and bounding such changes. One

cannot write derivatives for the reverse, the change in the medial axis for a change in

the boundary, since this can introduce topological changes.
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2.2 Shape Analysis Using the Medial Axis

As a descriptor of shape, the medial axis can be used to provide a detailed quantitative

and qualitative analysis that simpler object descriptors, such as volume, surface area,

pose, etc., cannot. To this end, the medial axis has been applied to a number of shape

analysis tasks by various researchers, as summarized below. The medial axis is certainly

not the only shape descriptor found in the literature. Others include landmarks and

point distribution models (PDMs) (Cootes et al., 1992; Bookstein, 1997), spherical

harmonics (SPHARMs) (Brechbühler et al., 1995; Shenton et al., 2002), deformation

fields (e.g., from a standard template or atlas) (Christensen et al., 1993; Martin et al.,

1994; Machado and Gee, 1998), or distance transforms (Golland et al., 2002; Leventon

et al., 2000). A complete discussion of all of these is beyond the scope of this chapter.

A medial representation, however, has a number of compelling features. Their

branching topology provides a natural organization of shapes into connected parts or

figures. There is evidence that the human visual system makes use of medial geometry

to understand (the 2D projection of) objects (Marr and Nishihara, 1978; Psotka, 1978;

Biederman, 1987; Burbeck et al., 1996). These symmetric relationships provide natural

ways to measure intuitive object properties such as local thickness, bending, narrowing,

and expansion. And finally, with a relatively small number of model parameters these

local properties can be used to statistically analyze coherent global shape changes, such

as bending, twisting, and tapering.

Näf et al. use the medial axis to identify places where the local bone thickness is

large enough to support a prosthetic hip replacement and to describe the sulco-gyral

foldings of the cortical surface in the brain (Näf et al., 1996). They construct the medial

axis using the Voronoi skeleton and, as is typical of such methods, apply considerable

attention to heuristics to prune away the insignificant portions of the result caused by

sampling artifacts and noise.

Bouix et al. apply the medial axis to estimate the local width of the hippocampus,

a part of the brain that has an important role in memory and learning (Bouix et al.,

2005). They compare their results with previous studies on volume loss in males during

early adulthood and localize this loss to the head and tail regions. They construct the

medial axis using the average outward flux of the Euclidean distance transform to detect

the shocks of the grassfire flow (Siddiqi et al., 2002). However, this method operates

only on voxelized objects and produces a voxel representation of the medial axis. In

order to overcome the limitations of working with discrete surfaces, they project all of
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the points into a single 2D plane. This is possible only because the medial axis of the

hippocampus is dominated by a single, relatively flat medial sheet, with the remaining

sheets contributing less than 1% to the total volume. However, in order to perform a

statistical analysis, there still remains the problem of identifying corresponding points

between different subjects. Bouix et al. propose two different approaches to solving

this problem. In the first, they rigidly align the projected axes in the plane. However,

the variations of that projected shape mean that only a small subset of the points will

be available across all subjects, and the correspondence between points aligned in this

matter is only weakly related to their true anatomical structure. The second approach

uses nonlinear deformations to warp the axis to a common template shape. This might

come much closer to producing anatomical correspondences, but the variability in the

shape of the medial axis is eliminated. It might be possible to analyze this variability

independently by examining the deformation fields, but they have not yet explored

methods of doing so.

Zhang et al. use the medial axis for articulated shape matching (Zhang et al., 2005).

They also use Siddiqi et al.’s shock detection algorithm to construct the medial axis and

classify the voxels according to Giblin and Kimia’s taxonomy directly via (Malandain

et al., 1991). This gives an automatic partition of the object into “parts”: volumetric

regions associated with a single medial sheet that are connected via articulated joints

along the branch curves. A directed acyclic graph (DAG) represents this connectivity,

and the graph spectra of these graphs are used to index and search a database of

shapes for a similar object. The graph spectra are computed from the first several

eigenvalues of a graph’s adjacency matrix, which are insensitive to “minor perturbations

of graph structure” (Shokoufandeh et al., 2005), which can account for minor topological

changes in the medial axis. Major topological instabilities are still reported to hinder

performance, e.g., with four-legged animals. Also, the associated object is reconstructed

directly via the union of enclosed balls, which does not give an explicit link between

points on the medial axis and the associated points of tangency on the boundary.

This does not hinder their method, which does not require such a link to place an

object into a broad category, but it makes the approach unsuitable when one wishes

analyze variations in corresponding points in multiple objects from the same category.

Yushkevich also argues in (Yushkevich, 2003) (pg. 35) that such a reconstruction

cannot (directly) produce the symmetry relationships between these boundary points,

relationships that contain important information about an object.

Golland et al. use “fixed-topology skeletons” for 2D shape classification. The medial
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axis of an object is estimated by starting with a graph that models the connectivity

of the branches, embedding this graph into a particular image, an then deforming

it using active contour methods (or “snakes”) to locate the ridges of the Euclidean

distance transform (Golland and Grimson, 2000). It is precisely because the topology

is fixed a priori that sensitivity to noise is reduced and statistical comparisons among

populations of objects are possible. Classification is done using two features (sampled

uniformly in arclength): the angle formed between three consecutive samples and the

radius at each sample, using both Fisher linear discriminants and linear Support Vector

Machines (Golland et al., 1999). They apply their method to the corpus callosum to

distinguish between schizophrenics and healthy controls, and while the cross-validation

results generally yielded below 70% accuracy, this may be because the classes are not

truly separable. While unsuitable for diagnosis by itself, such a classification could

support a diagnosis in conjunction with other evidence.

2.2.1 M-reps

Similar to Golland’s “fixed-topology skeletons”, (Pizer et al., 1999) introduce a sam-

pled medial representation called (discrete) m-reps, which was later extended to three

dimensions in (Joshi et al., 2001). The idea is that instead of using a complete rep-

resentation of the medial axis, a discrete set of samples called medial atoms are used

instead. Each medial atom m = (m0, r, n0, n1) represents a smooth point on the medial

axis m0, the radius of the maximally inscribed ball at that point r, and the two unit

spoke vectors pointing towards the tangent points on the boundary n0 and n1 (Fletcher,

2004). In 3D, this constitutes 8 intrinsic parameters: three for m0, one for r, and two

each for n0 and n1. This gives sufficient information to reconstruct two points on the

boundary per medial atom: m0 + rn0 and m0 + rn1. In place of the spoke directions,

earlier work used a local coordinate frame F = (b, n, b⊥) and an object angle θ, where

b = n0+n1

‖n0+n1‖ is the bisector of the spokes, n is the normal vector n = N , and b⊥ = b×n.

The spokes are arranged symmetrically at an angle θ from b in the b-n plane. Both

representations have the same number of intrinsic parameters if one uses a unit quater-

nion, requiring three parameters, to represent the rotation that gives the coordinate

frame F , and one can easily convert between the two representations. However, the

coordinate frame is degenerate when the spoke directions are nearly parallel, which oc-

curs when the radius is changing slowly. Any rotation of the frame around the normal

direction will produce similar, nearly parallel spoke directions. Representing the two

15



spoke directions explicitly avoids this degeneracy.

At the edges of the medial sheets, end atoms are used that contain one extra pa-

rameter, an elongation factor η ≥ 1. This is used to add a third boundary point along

the crest, at the point m0 + ηrb. Conceptually, this can be thought of as adding an

extra sample point on the edge of the medial axis itself, where there is only one point

of tangency to the boundary, but with multiplicity three. However, coupling it with

the interior atom just inside the edge in this manner helps avoid the instabilities that

might occur from estimating it independently, though this does limit the models to

shapes in which the medial sheet remains flat past the end atoms, instead of allowing

it to bend right up until the edge.

The medial atoms are typically sampled on a coarse mesh, so the boundary points

that can be reconstructed directly are too sparse relative to the voxel spacing in asso-

ciated volumetric imagery. Thus one needs a method of producing a finer sampling of

the boundary. Up until now, research has focused on the method described by (Thall,

2004), which uses a subdivision surface that approximately interpolates the explicitly

constructed boundary points, with normals approximately agreeing with the discrete

spoke directions. Branching structures are supported using a tree-structure hierarchy

of figures, which represent separate medial sheets. These are joined via hinge atoms,

which are positioned relative to their parent, and around which the boundary is blended

between the two figures. For details we refer the reader to (Han et al., 2004; Thall,

2004). In 3D, a tree-structure is not sufficient to describe every possible branching

topology, but it can represent a much broader class of objects than a single sheet.

However, figures can also be used to represent indentations, which in the manner of

constructive solid geometry are subtracted from the interior of their parent. This is a

departure from strictly medial geometry, but its close relation with the more general

symmetry set can provide additional flexibility in representation.

The primary drawback of Thall’s approach is that it does not respect the underlying

medial geometry that produced the explicitly sampled boundary points. The true

medial axis of the reconstructed boundary may not have the same branching structure

as the original m-rep model, and as described in Chapter 3 of (Yushkevich, 2003),

attempting to interpolate the medial axis from such a boundary without adjusting the

branching structure can produce an illegal axis that overfolds on itself. If one follows the

boundary normals inwards into the shape (for example, to sample image profiles near

the boundary), they will cross at points on the Blum medial axis. The introduction of

additional small branches may move these crossings quite close to the object boundary,
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even though the local thickness implied by the m-rep radius suggests one can go quite

deep into the object before encountering them. Additionally, if one does not force the

boundary to be orthogonal to the spokes at the explicitly sampled boundary points,

the true medial axis will not even contain the discrete samples used to generate it.

However, (Thall, 2004) shows that enforcing this orthogonality exactly with subdivision

surfaces produces fine-scale ripples in the boundary that are not plausibly implied by

the coarser underlying shape model. These are precisely the boundary features that

generate additional branches in the true medial axis of the reconstruction. Only by

relaxing exact orthogonality to fall within a relatively loose tolerance, often set as high

as fifty or sixty degrees, can these ripples be eliminated. This method of interpolation

was always meant as a temporary stopgap to be used until an interpolation that did

respect the medial geometry could be found.

An alternative approach is to interpolate the medial axis itself and reconstruct the

boundary from the medial information at every point. This avoids all of the problems

described above, but is quite difficult to do in practice due to the interrelations between

the medial parameters and the boundary conditions that must hold at the singular

points (the edge curves, branch curves, etc.). The first example of such an approach

was the cm-reps (for “continuous m-reps”) described by (Yushkevich, 2003), a B-spline

based representation limited to a single medial sheet. The work in this dissertation is

heavily based on this approach, but we defer a more detailed discussion to Chapter 3.

More recently, (Han et al., 2006) have attempted to interpolate discrete single-figure

m-reps directly, and in as yet unpublished work, multi-figure m-reps. In its current

form, it only approximates the spoke directions provided by the original m-rep, but like

Yushkevich’s cm-reps, overcomes most of the difficulties associated with interpolating

the boundary on its own. However, instead of producing a medial axis, it produces

a (restricted form of a) skeletal structure, foregoing the strict Blum requirement that

the spoke directions be normal to the boundary. The next section shall define skeletal

structures in more detail. Removing the Blum restriction introduces an ambiguity into

the shape representation, because the medial axis describing an object is unique, but

the skeletal structure is not.

Some argue that this is a potential advantage due to the highly constrained nature

of the parameters of the Blum medial axis. As we will show in the next section,

the spoke directions of the Blum medial axis can be derived entirely from m and

r. A skeletal structure, on the other hand, must model them independently using

additional parameters. Both representations must satisfy numerous conditions to avoid
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singularities in the reconstructed boundary. With its additional degrees of freedom,

a skeletal structure can more accurately represent a shape without violating these

conditions. However, when performing statistics, one generally wants to eliminate

unnecessary degrees of freedom. Thus we have taken the philosophical stance that for

shape statistics, one wants a unique representation, meaning the medial axis. This is

still an area of active research. Only time will tell the real practical merits of the two

approaches.

2.3 Mathematical Background

This section covers the necessary mathematical background needed to work with the

medial geometry in this thesis in more precise terms, including the differential geometry

of the medial axis and the computation of integrals in medial coordinates.

First, let us define the term generic. Topologically speaking, a property holds in

the generic case if it holds for all the elements of a residual subset of a Baire space. A

Baire space, such as Rn, is a topological space where any countable intersection of open

and dense sets is dense1. Thus, a Baire space is “large” in a way that, for example,

a set of isolated points is not. A residual subset is one that contains a countable

intersection of open and dense sets, and thus in a Baire space it is itself dense. In

layman’s terms, this means that something holds generically if it can be made true

for any object by an arbitrarily small perturbation. Similarly, a generic property of an

object is one that does not disappear under any sufficiently small perturbation. Being

able to represent generic objects means being able to come arbitrarily close to any

degenerate configuration, which is usually sufficient.

2.3.1 Whitney Stratified Sets

With this introduction, we can state that for a generic object Ω, the medial axis M

forms a Whitney stratified set (Damon, 2003), which has the following definition.

Definition 2.6 A subset M of a topological space X is locally closed if every point

x ∈M has a neighborhood Nx ⊆ X such that M ∩Nx is closed in Nx.

Lemma 2.7 Any open set M is locally closed, as M itself is an (open) neighborhood

containing every point in M , and M is always closed in itself.

1Recall that a dense set is one whose closure is the whole space.
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Definition 2.8 A collection of subsets {Mα}α∈I , where I is an index set, of a topolog-

ical space X is locally finite if, for every x ∈ X, there exists a neighborhood of x that

intersects only a finite number of the subsets Mα.

Definition 2.9 A closed set M ⊆ Rn is a stratified set if, given a partially ordered

index set I, M can be written as the union of a locally finite collection of disjoint,

locally closed smooth submanifolds Mα ⊆ Rn, α ∈ I, called strata, which satisfy the

axiom of the frontier: Mα ∩Mβ 6= ∅ if and only if Mβ ⊆ Mα and only if β ≤ α. Here

Mα is the closure of Mα in Rn.

Lemma 2.10 The strata {Mα} also form a partially ordered set, with Mβ ≤Mα if and

only if Mβ ⊆Mα.

The resulting strata are smooth manifolds “without boundary”; the boundaries are

separated into their own strata of lower dimension. Throughout this chapter we will

take smooth to mean differentiable up to order Cµ, with µ fixed throughout as either

∞ (the normal definition of smooth), or some positive integer. The definitions and

theorems are valid in either case.

Definition 2.11 A Whitney stratified set is a stratified set satisfying the two Whit-

ney conditions. For any pair of strata Mβ < Mα, suppose {xi} ⊆ Mα is a sequence

converging to y ∈ Mβ, and {yi} ⊆ Mβ is a sequence also converging to y. Let τ be the

limit of the sequence of tangent spaces Txi
Mα and let ` be the limit of the sequence of

secant lines `i connecting xi and yi. Then the two Whitney conditions are

1. TyMβ ⊆ τ , and

2. ` ⊆ τ .

The Whitney conditions are technical requirements that ensure that in some sense

each stratum Mα locally “looks the same” at every point. As it turns out, the second

condition actually implies the first. In 3D, as long as the local structure of a set is

given by one of the cases illustrated in Figure 2.2, it will admit a stratification that

satisfies the Whitney conditions. An excellent, brief introduction to stratified sets is

provided by (Gunnells, 2003), and the reader interested in a more in-depth introduction

is referred to (Mather, 1970).
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2.3.2 Skeletal Sets and Radial Vector Fields

The foregoing has prepared the presentation of a number of constructs introduced by

Damon that will be indispensable in describing the structure of a medial axis. Most

of these definitions are taken directly from (Damon, 2003), with minor adaptations to

our notation.

The Whitney stratification allows us to break up the points in M into two subsets.

One set, Mreg, contains the points in the strata of codimension one (dimension n− 1):

the curves in 2D and the sheets in 3D. These are the highest dimensional strata; a

medial axis never has strata of codimension zero (dimension n). Strictly speaking,

there is no requirement that these strata be connected ; however, the stratification can

always be refined into connected components, and we assume henceforth that this is

done. This document refers to these connected, codimension 1 strata individually as

medial sheets, regardless of the dimension they appear in.

The other set, Msing, contains all the points in strata of higher codimension (lower

dimension): the branch points and end points in 2D, and branch curves, edge curves,

etc. in 3D. In other words, Mreg contains the “smooth points” ofM , whileMsing contains

the singular points. It is helpful to single out the subset ∂M ⊆ Msing, defined to be

the points of Msing where M is locally an n − 1 dimensional manifold with boundary,

as well as its closure, ∂M . ∂M is the set containing all of the edges or A3 edge points

of the medial sheets in Mreg. ∂M also contains combination edge and branch points,

such as the A1A3 fin points.

We add one final definition so that we can talk about the local geometry of the

strata in the neighborhood of a point.

Definition 2.12 The local neighboring components of a singular point m0 ∈Msing

are the portions of the medial sheets Mα adjacent to m0, in the sense that they are part

of the intersection with a small closed ball around m0, Bε(m0) ∩Mreg, where ε > 0 is

taken sufficiently small so that this is well-defined.

The Whitney conditions ensure that this can be done. Although this dissertation uses

the same notation Mα for a full sheet and for the local neighboring component, the

latter is assumed to be a single connected component inside the closed ball. Thus,

a sheet Mα that wraps around and abuts itself in a branch curve would create three

distinct local neighboring components at the points along that curve.

We are now prepared to review what Damon refers to as a skeletal set.

20



Definition 2.13 An (n − 1)-dimensional compact2 Whitney stratified set M ⊂ Rn is

a skeletal set if it satisfies the following conditions:

1. Given a point m0 ∈Mβ, where Mβ ⊆Msing, for each local neighboring component

Mα, there is a unique limiting tangent space Tm0Mα from all sequences of points

in Mα. By the first Whitney condition, Tm0Mβ ⊂ Tm0Mα.

2. For any point m0 ∈Msing, for some sufficiently small neighborhood Nm0 ∈ Rn, the

set M∩Nm0 can be written as the union of a set of smooth n−1 dimensional man-

ifolds Mγ with boundaries and corners, called the local manifold components

for m0, where any pair of manifolds intersect only at these boundary facets.

3. If m0 ∈ ∂M , the local manifold components Mγ of m0 that intersect ∂M do so in

an n− 2 dimensional facet.

The first condition prevents situations like that found in the Whitney umbrella,

which is illustrated in Figure 2.3. The “peak” of the umbrella forms a pinch point,

which does not have a single, well-defined tangent plane. It is a well-known, but non-

trivial fact that such a point cannot occur on the medial axis of a generic object.

The second condition ensures that M contains no degenerate pieces. For example,

the medial axis of a circle in 2D is a single point, which is not part of a 1D manifold

with boundary. Similarly, degenerate curves are produced by tubes in 3D, etc. Such

degeneracies are not generic, in that a small perturbation of the shape makes them

non-tubular. It may still be useful to create specialized shape models to handle them

in order to avoid instabilities in how such a perturbation is chosen, as in (Damon,

2006). However, this dissertation focuses on the general case.

The third condition ensures that two pieces do not meet in a degenerate way. For

example, if two medial sheets meet in 3D, they must do so along one-dimensional branch

curve and not just at a zero-dimensional point.

The skeletal set, however, is just one part of the medial axis. We also need to define

how the points on the medial axis relate to the boundary of the object. For the Blum

medial axis, this is done in terms of the spokes, the vectors that lie normal to the

boundary, but we start with a more general structure called the radial vector field, S.

This vector field is defined over the set M and, like a number of other constructs we

will use, is multivalued. That is, it has multiple values at each point and not necessarily

the same number of them at every point (cf. the arrows in Figure 2.1(a)).

2Recall that in Rn, a set is compact if and only if it is closed and bounded.
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Figure 2.3: The Whitney umbrella is an example of a stratified set that fails the first
condition required of a skeletal set. It is given by the equation (x, y, z) = (uv, u, 1−v2)
over the domain (u, v) ∈ [−1, 1]2.

The purpose of the radial vector field is to give a mapping from a skeletal set to

the object boundary. At regular points on the skeletal set, there are always two radial

vectors, which correspond precisely to two points of tangency on the bitangent spheres.

One corresponds to the “top” of the medial sheet, and the other corresponds to the

“bottom”. However, smoothly extending the vector field to singular points may require

one, three, or even more vector values at a single point.

We adopt a slightly non-standard definition of smooth at edge points to overcome a

problem of parameterization. In order to have a closed boundary, at edge points the top

vector field must continuously join with the bottom vector field on the corresponding

smooth manifold component, Mα. However, like the function
√
x evaluated at x =

0, on a Blum medial axis the resulting vector fields are not differentiable on Mα,

because the slope lies perpendicular to the manifold. Damon uses an edge coordinate

parameterization to overcome this limitation.

Definition 2.14 An edge coordinate parameterization at an edge closure point

m0 ∈ ∂M lying on the boundary of the closure of a local neighboring component Mα

consists of an open neighborhood Nm0 ∈ Mα, an open neighborhood Ñ0 ∈ Rn−1
≥0 , and a

differentiable homeomorphism φ : Ñ0 → Nm0 such that both φ restricted to (Ñ0 ∩Rn−1
+ )
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and to (Ñ0 ∩ Rn−2) are diffeomorphisms.

The (Ñ0∩Rn−1
+ ) restriction corresponds to the parameterization of the local piece of

the neighboring manifold Mα, while (Ñ0 ∩ Rn−2) corresponds to the parameterization

along the edge curve. Then we say a scalar or vector field is smooth at an edge closure

point if the composition with an edge parameterization is smooth. As a trivial example,
√
x is smooth on x ∈ R≥0 under the edge parameterization φ(u) = u2. In general, any

smooth function on Mα is smooth under an edge parameterization, but as the
√
x

example illustrates, the converse is not true.

Describing how smooth extensions work at non-edge singular points requires the

introduction of local complementary components.

Definition 2.15 Given m0 ∈ Msing and a closed ball Bε(m0) ⊂ Rn, let Ci be the con-

nected components of Bε(m0)\M . Again ε > 0 is chosen to be sufficiently small so that

these are well defined (up to a homeomorphism). These are the local complementary

components of m0.

Definition 2.16 Given m0 ∈Msing with local complementary components Ci and local

neighboring components Mα, let ∂Ci , {Mα : Mα ∩ Ci 6= ∅}. These are the local

neighboring components adjacent to Ci.

Definition 2.17 We say a vector u points into a local complementary component Ci

from a point m if there exists an ε > 0 such that m+ tu ∈ Ci for all 0 < t < ε.

The idea will be to ensure that every local complementary component has exactly one

radial vector pointing into it at each singular point m0. This, along with smoothness

constraints, ensures that the radial vectors do not poke through one of their neighboring

strata, at least locally. Of course if the vector is too long, it may poke through a non-

local piece of the medial axis, but in so doing it must of necessity cross other radial

vectors. Later, we will show how to detect such crossings. But first, we give Damon’s

complete definition of a radial vector field.

Definition 2.18 Given a skeletal set M ⊂ Rn, a radial vector field S on M is a

nowhere zero multivalued vector field satisfying the following conditions.

1. (Behavior at smooth points) Let N be a smooth unit normal vector field over each

of the medial sheets in Mreg. Then for each smooth point m0 ∈Mreg, S has exactly

two values, S+ and S−, such that S+ ·N (m0) > 0 and S− ·N (m0) < 0. Moreover,

in a neighborhood of m0 in Mreg, S
+ and S− each form a smooth vector field.
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2. (Behavior at non-edge singular points) Let m0 ∈ Msing \ ∂M be a singular point

with local neighborhood component Mα. Then S+ and S− on Mα each extend

smoothly to a value of S(m0). If there exists a neighborhood Nm0 such that Nm0 ∩
Mα ∩ ∂M = ∅, then that value S(m0) 6∈ Tm0Mα. Conversely, for each value

of S(m0), there is exactly one local complementary component Ci of M at m0

such that the value S(m0) locally points into Ci in the following sense. Let

Mα ∈ ∂Ci be a local neighboring component adjacent to Ci and let Nm0 be an

open neighborhood chosen sufficiently small so that Nm0 ∩Mα ⊂ Ci. Then for

all m ∈ Nm0 ∩Mα, either N , −N , or both point into Ci. Let S ′ be a restriction

of S to the values where the corresponding normal direction points into Ci, along

with the value of S(m0) under consideration. Then S(m0) smoothly extends to the

values of S ′ on Mα. Furthermore S ′(m0) points into Ci and for all m ∈ Nm0∩Mα,

S ′(m) points into Ci.

3. (Tangency behavior at edge points) Let m0 ∈ ∂M be an edge point and Mα ⊆Mreg

be the stratum whose edge it is, i.e., m0 ∈ Mα. Then S has exactly one value

S(m0) such that S(m0) ∈ Tm0Mα, and S(m0) points away from M . This value

extends smoothly into Mα (under some edge parameterization).

The radial vector field corresponds to the spokes linking the centers of the maximally

inscribed balls to their points of tangency with the boundary in the Blum medial axis.

In addition to the constraints in its definition, two local initial conditions must be

satisfied:

1. (Local Separation Property) For each a non-edge point m0 6∈ ∂M , let Mα be the

local neighboring components, and let Ci be the local complementary components

contained in the ball Bε(m0). Then for all m ∈ ∂Mα on the boundary of the

closures of the neighboring component with radial vector S(m) locally pointing

into a given Ci, the set {m+ tS(m) : t ∈ R≥0} ∩Bε(m0) ⊂ Ci.

2. (Local Edge Property) For each edge closure point m0 ∈ ∂M , there exists a

neighborhood Nm0 ⊂M and an ε > 0 such that for each choice of smooth vector

fields S over W , the function ψ(m, t) = m+ tS(m) is one-to-one on Nm0 × [0, ε].

These two conditions are necessary to account for the fact that a different ε value can

be used at every point to determine if a vector points into a particular component. As

one approaches a given point m0, these choices of ε can converge to zero, with the result
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that in a neighborhood around m0, for any fixed choice of ε one can find a spoke that

pierces the skeletal set before traveling a distance ε along it.

A skeletal set together with a radial vector field satisfying the local initial conditions

is called a skeletal structure. It is a far more general structure than a Blum medial axis,

since the radial vectors are not explicitly required to be normal to the boundary, nor

even the same length on each side. Several theorems presented later will apply to all

skeletal structures, not just the Blum case.

2.3.3 The Blum Medial Axis as a Skeletal Structure

A skeletal structure, as defined, does not have a radius associated with each point, but

we can partition the radial vector field into two parts: S = rU , where r = ‖S‖ is a

positive function (obeying smoothness constraints similar to those on S), and U is a

unit radial vector field. On the smooth parts of M , we will use U± to denote the two

unit radial vectors on either side. In general, r is multivalued, but for a Blum medial

axis, all of the values at a single point must be equal, e.g., all the spoke values must

be the same length. Also, r is allowed to be zero in Definition 2.4, but in a skeletal

structure it must always be positive. The only places that the radius would go to zero

are sharp, non-smooth corners or creases. These are not generic, as they make the

boundary undifferentiable at those points, so they are intentionally disallowed.

On the Blum medial axis the radial vectors correspond to the points where the

maximally inscribed balls are tangent to the boundary of the object. This gives rise

to relation between r and U described by the compatibility one-form3. It is defined as

ηU , ωU + dr, where ωU(v) , U · v is the one-form dual of U , and dr is the one-form

defined by the directional derivative of r. Like U , ηU is multivalued. Lemma 6.1 of

(Damon, 2003) states that if ηU ≡ 0 at a point m0, then U(m0) is orthogonal to the

boundary at m0 + rU(m0). Here ηU ≡ 0 means that for all v ∈ Tm0M , ηU(v) = 0. The

tangent space at singular points is chosen to correspond to the limiting tangent space

of a local neighboring component for which U(m0) is a smooth extension. There can

be more than one such local neighboring component for a particular value of U(m0)

and hence more than one tangent space and more than one value of ηU . ηU ≡ 0 holds

only if ηU(v) = 0 holds for all choices of ηU and limiting tangent spaces at m0. Damon

terms this the partial Blum condition. By itself it is sufficient to describe the geometry

of the boundary of an object, even when r or dr has multiple distinct values at a point.

3 A one-form is a linear function ω1 mapping a vector to a scalar, ω1(v) : Rn → R, e.g., it has “one
slot” to fill. One forms are the duals of vectors.
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We can use the partial Blum condition to derive an explicit formula for U in terms

of r on the smooth points Mreg. The immediate implication is that the component of

U in the tangent plane is −∇r, where ∇r ∈ Tm0M is the Riemannian gradient4. This

vector lies in the tangent space Tm0M and is independent of the parameterization of

r and M . Since U(m0) is a unit vector, this leaves only two possible choices for the

component normal to the tangent plane, one for each side:

U± = −∇r ±
√

1− ‖∇r‖2 · N (2.3)

This definition can then be smoothly extended to points in Msing. It is independent

of dimension and generalizes earlier formulas given by (Blum and Nagle, 1978) for two

dimensions, and (Nackman, 1982) and (Giblin and Kimia, 2004) for three.

On the Blum medial axis, where r and thus ∇r are single-valued, the vector (U+−
U−) points in the normal direction N of M , and the bisector 1

2
(U+ + U−) lies in the

tangent space Tm0M . Furthermore, at edge points, by Definition 2.18(3) one must have

U(m0) ∈ Tm0M , implying the normal component vanishes. Hence, at these points we

have

‖∇r‖ = 1 . (2.4)

In the complementary component Ci of a non-edge singular point m0 ∈Msing, each

of the local neighboring components Mα ∈ ∂Ci must contribute a spoke S(m0) pointing

into Ci by smooth extension, and all of these S(m0) values must be equal. Using (2.3),

we can write this as a constraint on ∇r in each of the local neighboring components.

For example, on branch curves in 3D, given three local components Mk oriented so that

S(k)−(m0) = S(k⊕1)+(m0), the restriction becomes (Yushkevich et al., 2003)

∇r(k⊕2) −∇r(k⊕1) = N (k) ·
√

1− ‖∇r(k)‖2 , (2.5)

where ⊕ denotes addition modulo 3. At fin creation points, ‖∇r(k)‖ goes to 1 for one

of the sheets, causing the angle between the other two to go to π, and the constraint

in (2.5) to disappear.

Enforcing the two conditions in (2.4) and (2.5) will become the primary focus of

Chapter 3.

4The vector dual of the directional derivative on manifolds.
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2.3.4 Geometry of the Boundary

Given a skeletal structure (M,S), we have only guaranteed that the radial vectors S

do not cross in a small neighborhood of the space around M . In order to ensure that

the boundary associated with a skeletal structure is smooth, we must ensure that no

such crossings occur anywhere along the entire length of the spokes. These can be

classified into local intersections and non-local intersections (Hoffman and Vermeer,

1994). Non-local intersections are caused when two spokes separated by a non-trivial

distance intersect, e.g., when one end of an object wraps around and abuts another.

These are difficult to describe mathematically but for most objects are relatively easy

to avoid during the modeling process by using geometric priors. Local intersections, on

the other hand, occur when two spokes that originate from within an arbitrarily small

neighborhood of each other on M cross somewhere along their length (not necessarily

close to M), causing the boundary to fold over on itself, as illustrated in Figure 2.4.

These can be detected by using a radial shape operator, Srad, on non-edge points and a

similar edge shape operator, SE, on edge points.

The radial shape operator is not an ordinary shape operator in the differential

geometric sense. The traditional shape operator measures how the unit normal N
changes for an infinitesimal step along the surface of a manifold; it is a linear map

that can be expressed as a self-adjoint matrix for any choice of orthonormal basis. Its

eigenvalues are called the principal radial curvatures.

The radial and edge shape operators, in contrast, give the components of the change

in the radial vectors U for such an infinitesimal step on M and ∂M , respectively. They

are linear operators but are not in general self-adjoint. The eigenvalues of Srad are

termed the principal radial curvatures κri, and the generalized eigenvalues of SE the

principal edge curvatures κEi. Their definition now proceeds.

Definition 2.19 Given a non-edge point m0 ∈M \ ∂M of M and a choice of smooth

values of S on a stratum Mα or the closure of a local neighboring component Mα

containing m0 with tangent space Tm0M , the radial shape operator Srad : Tm0M →
Tm0M is defined as

Srad(v) = − projU(
∂U

∂v
) . (2.6)

Here, projU denotes projection onto Tm0M along U , which is in general not orthogonal

projection. Like U , the radial shape operator is multivalued. At smooth points, it
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Figure 2.4: An example of overfolding, causing a swallowtail singularity in the bound-
ary. The top surface is one half of the boundary, the bottom is the medial sheet, and
the lines connecting them denote the spoke field. The radial shape operator detects
this overfolding everywhere in the bottom segment of the swallowtail, where the spokes
exhibit retrograde motion: a step forward along the medial axis causes a step backwards
along the boundary.

will have two values, one for each value of U , and at non-edge singular points m0 ∈
Msing \ ∂M each local neighboring component Mα will contribute two values via the

smooth extension of U onto m0.

For a given (not necessarily orthonormal) basis of Tm0M , v = {v1, . . . , vn−1}, Srad

can be represented by an (n−1)×(n−1) matrix Sv. The precise details of calculating Sv

for a parameterized surface in 3D are given in Appendix A. Because U is not necessarily

normal and the projection is not orthogonal, Sv will not in general be self-adjoint, so

its eigenvalues need not be real. Nevertheless, these eigenvalues, which are independent

of the choice of basis, form what are termed the principal radial curvatures κri. If the

partial Blum condition is satisfied in a local neighborhood, then the eigenvalues are real

and have a one-to-one correspondence with the principal curvatures of the boundary,
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κi, given by

κi =
κri

1− rκri

, κri =
κi

1 + rκi

. (2.7)

This holds so long as 1
r

is not an eigenvalue of Srad, which corresponds to a non-smooth

singularity of the boundary.

We can also define radial analogues of the mean curvature and Gaussian curvature,

namely the mean radial curvature Hrad and the Gaussian radial curvature Krad. They

are defined exactly like their classical counterparts, except using Srad instead of the

traditional shape operator:

Hrad ,
1

2
trace(Srad) , Krad , det (Srad) . (2.8)

Again, these numbers are the same irrespective of the choice of basis.

Every operation in this dissertation involving Srad in three dimensions can be defined

in terms of these two numbers. The principal radial curvatures κri can be recovered

via

κri = Hrad ±
√
Hrad

2 −Krad . (2.9)

And the usual relations hold:

Hrad =
κr1 + κr2

2
, Krad = κr1κr2 . (2.10)

We now turn to the edge shape operator, SE.

Definition 2.20 Given an edge point m0 ∈ ∂M lying in the boundary of the closure of

a local neighboring component Mα with tangent space Tm0M , a choice of smooth values

of U on Mα, and a unit normal vector field N on Mα, the edge shape operator

SE : Tm0M → Tm0∂M ⊕ 〈N〉 is defined as

SE(v) = − proj′U(
∂U

∂v
) . (2.11)

Now proj′U denotes projection onto Tm0∂M ⊕ 〈N〉 along U , which again is not in

general orthogonal. The edge shape operator is unusual in that it changes bases from

the source to the target. However, this is precisely what is needed to overcome the non-

differentiability of U on the edge of Mα. The matrix representation SEv starts with
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a (not necessarily orthonormal) basis ṽ = {v1, . . . , vn−2} of Tm0∂M and adds a vector

vn−1 that points in the U(m0) direction under the edge coordinate parameterization to

form a basis v = {v1, . . . , vn−1} of Tm0M . The basis of the destination space is then

taken as
(

ṽ
N
)
. Then, letting In−2,1 denote the (n− 1)× (n− 1) diagonal matrix with a

one in the first (n− 2) diagonal elements and zeros everywhere else, the principal edge

curvatures κEi are defined as the generalized eigenvalues5 of (SEv, In−2,1).

Suppose we are given a skeletal structure (M,S) satisfying the following conditions:

1. (Radial Curvature Condition) For all points m0 ∈ M \ ∂M , r < 1
κri

for all real,

positive principal radial curvatures κri.

2. (Edge Curvature Condition) For all points m0 ∈ ∂M , r < 1
κEi

for all real, positive

principal edge curvatures κEi.

3. (Compatibility Condition) For all singular points m0 ∈Msing, ηU ≡ 0.

Theorem 2.5 of (Damon, 2003) states that if the associated boundary B has no non-

local intersections, it is an embedded manifold that is smooth at all points except those

corresponding to points in Msing. At points corresponding to the singular points Msing,

it has G1 continuity, i.e., it has a well-defined tangent plane.

The compatibility condition is just the partial Blum condition restricted to singular

points. If we add the partial Blum condition everywhere and restrict r to be single-

valued, we obtain the following lemma.

Lemma 2.21 Suppose (M,S) is a skeletal structure satisfying the radial and edge cur-

vature conditions and the partial Blum condition and further suppose that the associated

radius function r is single-valued. Then if the associated boundary B has no non-local

intersections, it is an embedded manifold that is smooth at all points except those cor-

responding to points in Msing, where it has G1 continuity. Furthermore, if every ball

defined by M is contained in the interior of the object, M is the Blum medial axis of

B.

This is the main result of this section. Given a generative model for a medial axis,

it tells us what conditions need to be checked to ensure the associated boundary is

legal, in the sense that it could be the boundary of a real, physical object. We start

with a single-valued r and derive U and hence S from (2.3), ensuring that the partial

5The generalized eigenvalues of a pair of matrices (A,B) are the values λ such that A − λB is
singular.
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Blum condition holds by construction. The most difficult part is then ensuring that

the behavior of U at singular points is sufficient to make it a valid radial vector field,

which is the subject of Chapter 3. Then all that remains is to verify the radial and

edge curvature conditions, and check for non-local intersections. The first is done as

the model evolves to fit a particular shape in Chapter 4, and the assumption that our

shapes are sufficiently well-behaved makes checking the second unnecessary.

Because the edge shape operator requires an edge coordinate parameterization, it

is more difficult to deal with than the radial shape operator. However, since almost all

of the points on the medial axis are smooth points, in general it is substantially less

useful. The edge curvature condition is technically required for a smooth boundary,

but so long as a sufficient margin of safety is kept in the radial curvature conditions, it

cannot be violated. Therefore the remainder of this work will not devote a great deal

of effort to its analysis.

2.3.5 Integrals Over Skeletal Structures

The ability to compute integrals over an object Ω and its boundary B using medial co-

ordinates is an invaluable tool. Trivial examples include computing the volume, center

of mass, or second order moment of an object defined by its medial axis. These are

later used to align two or more objects. More complex examples include the geometry

to image match function used to fit a model to a given shape, as in Chapter 4. Because

the model is defined via its medial axis, the medial coordinate system provides a natu-

ral way to parameterize these integrals. Damon shows how to define a medial measure

dM that makes M into a measure space and consequently how to write formulas for

these integrals (Damon, 2005a).

One conceptual difficulty that arises is that integration must take place on “both

sides” of M . To do this, Damon introduces the “double” of M , denoted M̃ .

Definition 2.22 The double of a skeletal structure (M,S) is the set M̃ = {(m0, S0) ∈
Rn × Rn : m0 ∈M and S0 is a value of S at m0}.

The vectors S0 serve to label each “side” of the smooth strata in Mreg. As the notation

indicates, points of M̃ should be thought of as a point on the medial axis together with

a direction, and not as the associated point on the boundary, m0 + S0.

The definition of a topology on M̃ proceeds from a system of neighborhoods.

Definition 2.23 Let (m0, S0) ∈ M̃ be a point in the double of M , W ′ be an open

neighborhood of m0 in Rn, and let Ci be the unique local complementary component of
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m0 into which S0 points. Then the abstract neighborhood of (m0, S0) is given by the

set W = {(m,S ′) ∈ M̃ : m ∈ W ′ ∩ ∂Ci and S ′ points into Ci}.

Then M̃ can be decomposed into a Whitney stratified set so that the canonical projec-

tion π : M̃ → M given by π(m0, S0) = m0 is continuous and smooth with respect to

this neighborhood system.

The definition of the skeletal integral of a multivalued function f on M now follows

from assuming that f has one value corresponding to each value of S at a pointm0 ∈M ,

so that f lifts to a well-defined function f̃ : M̃ → R given by f̃ = f ◦ π. Then

Proposition 2.2 of (Damon, 2005a) states that there is a unique regular positive Borel

measure dM on M̃ such that the integral of f on M is given by∫
M̃

f̃ dM . (2.12)

The measure dM is called the medial measure, and it is given by dM = ρ dA, where

dA is the ordinary (n−1)-dimensional differential unit of area on M , and ρ = ±U± ·N
on points in Mreg. Values on Msing are defined by smooth extension from the local

neighboring components. At edge points ∂M it is exactly zero, and the total measure

of the whole set Msing is also zero, meaning that so long as f is bounded on Msing,

the singular points may be ignored for purposes of integration. For a generic skeletal

structure, ρ is multivalued, but on the Blum medial axis it is actually single-valued

over Mreg, thanks to the symmetry of U±.

The factor ρ corrects for the failure of S to be orthogonal to M . Thus, areas where

S is nearly tangent to M are “small” with respect to this measure. For example,

adding a small bump to the boundary of an object can create a spurious branch on the

medial axis, but all of the spokes will be nearly tangent to this branch, making their

contribution to any integral small.

This integral has the usual linearity and positivity properties, e.g.,
∫

M̃
f̃ + g̃ dM =∫

M̃
f̃ dM +

∫
M̃
g̃ dM and if f̃ ≥ 0,

∫
M̃
f̃ dM ≥ 0. We say that f is measurable and

integrable on M if f̃ is measurable and integrable on M̃ . Damon calls this a skeletal

integral and, in the special case where (M,S) satisfies the partial Blum condition, a

medial integral.

This shows how to compute integrals of functions defined on M̃ , but typically in-

teresting functions are defined on Ω or B. To compute these, associate a normal line

bundle N with M̃ to use as the domain for integration. A vector bundle on a manifold

is a set of vector spaces associated with the points on the manifold that together also
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have a manifold structure. A line bundle is a rank one vector bundle, meaning that each

of these vector spaces has dimension one. In our case, the vector space associated with

(m0, S0) is spanned by S0. The word “normal” appears by convention, even though

this vector space is not in general orthogonal to M . Locally N looks like M̃ ×R, with

a point in N denoted (m0, tS0) for t ∈ R. From this domain, the radial vector flow

mapping in the opposite direction of the grassfire flow, from the medial axis to the

boundary, yields the object interior:

Definition 2.24 The radial vector flow ψ̃ : N → Rn is the mapping given by

ψ̃(m0, tS0) = m0 + tS0.

Unlike the grassfire flow, the rate of flow at each point is not uniform but rather is

controlled by the radius function r. Thus the flow reaches the boundary everywhere at

time t = 1. This is denoted by the special function ψ1 : M̃ → B, where ψ1(m0, S0) ,

m0 + S0.

Now given a Borel measurable and Lebesgue integrable function g : Ω → R, let

g̃(m0, S0) =

∫ 1

0

g(m0 + tS0) · det (I− t · rSrad) dt (2.13)

if the integral is defined. Then Theorem 6 of (Damon, 2005a) says that g̃ is defined for

almost all (m0, S0) ∈ M̃ , it is integrable on M̃ , and∫
Ω

g dV =

∫
M̃

g̃ · r dM . (2.14)

This converts an integral over the object Ω into a skeletal integral over M̃ . The ex-

pression det (I− t · rSrad) is derived from the Jacobian of the radial vector flow given

in (Damon, 2003).

If (M,S) satisfies the partial Blum condition, a similar integral may be defined on

the boundary B. If h : B → R is Borel measurable and integrable, then Theorem 1 of

(Damon, 2005a) states that∫
B
h dB =

∫
M̃

h̃ · det (I− rSrad) dM , (2.15)

where h̃ = h ◦ψ1. This converts an integral over the boundary B into a medial integral

over M̃ .

A useful expansion of these integral formulas can be obtained in terms of r via the
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elementary symmetric polynomials of the principal radial curvatures κri. The elemen-

tary symmetric polynomials σrj are the sums of all combinations of a fixed number of

the radial curvatures, e.g.,

σr0 , 1 , (2.16)

σr1 ,
∑

1≤i<n

κri , (2.17)

σr2 ,
∑

1≤i<j<n

κriκrj , (2.18)

...

σrn−1 ,
∏

1≤i<n

κri . (2.19)

Then we have

det (I− rSrad) =
n−1∑
j=0

(−1)jσrjr
j . (2.20)

In three dimensions σr1 and σr2 have particularly simple forms, namely σr1 = 2Hrad

and σr2 = Krad. Thus

det (I− rSrad) = 1− 2rHrad + r2Krad . (2.21)

This can be used to expand g̃(m0, S0) to obtain exact formulas for simple functions

g. Letting

mj(g)(m0, S0) ,
∫ 1

0

g(m0 + tS0) · tj dt , (2.22)

we can expand g̃ into

g̃(m0, S0) =
n−1∑
j=0

(−1)jmj(g)σrjr
j . (2.23)

Chapter 4 makes use of the following three functions to align multiple shapes: the

volume V (Ω), the center of mass Ω, and second order moment tensor IΩ. These are
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given by

V (Ω) =

∫
Ω

1 dV , (2.24)

Ω =
1

V (Ω)

∫
Ω

x dV , (2.25)

IΩ =

∫
Ω

xxT dV − V (Ω)Ω Ω
T
, (2.26)

where the integration is over all x ∈ Ω. For the volume, the function to integrate is

g = 1. Let δ0 = g̃. Then

δ0 =
n−1∑
j=0

(−1)j 1

j + 1
σrjr

j . (2.27)

This leads to the three-dimensional volume formula

V (Ω) =

∫
M̃

r dM −
∫

M̃

r2Hrad dM +
1

3

∫
M̃

r3Krad dM . (2.28)

A similar formula for the center of mass may be obtained via integrating the function

g(x) = x and dividing by the volume. In this case letting δ1 = g̃ yields

δ1 =
n−1∑
j=0

(−1)j

(
1

j + 1
m0 +

1

j + 2
S0

)
σrjr

j . (2.29)

In three dimensions again, this gives

Ω =
1

V (Ω)

(∫
M̃

(
m0 +

1

2
S0

)
r dM −

∫
M̃

(
m0 +

2

3
S0

)
r2Hrad dM

+

∫
M̃

(
1

3
m0 +

1

4
S0

)
r3Krad dM

)
. (2.30)

Finally, the second order moment tensor may be obtained via g(x) = xxT . Defining

δ2 = g̃ yields

δ2 =
n−1∑
j=0

(−1)j

(
1

j + 1
m0m

T
0 +

1

j + 2
(m0S

T
0 + S0m

T
0 ) +

1

j + 3
S0S

T
0

)
σrjr

j . (2.31)
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The full formula in three dimensions is now

IΩ =

∫
M̃

(
m0m

T
0 +

1

2
(m0S

T
0 + S0m

T
0 ) +

1

3
S0S

T
0

)
r dM

−
∫

M̃

(
m0m

T
0 +

2

3
(m0S

T
0 + S0m

T
0 ) +

1

2
S0S

T
0

)
r2Hrad dM

+

∫
M̃

(
1

3
m0m

T
0 +

1

4
(m0S

T
0 + S0m

T
0 ) +

1

5
S0S

T
0

)
r3Krad dM

− V (Ω)Ω Ω
T
. (2.32)

The last term centers the tensor around the center of mass, i.e., subtracting it off is

equivalent to replacing x with x−Ω in the definition of g. Separating the contribution of

this term out, however, allows the computation of all of these integrals simultaneously

in a single pass.
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Chapter 3

A Continuous Medial Model1

. . . if the difficulties of description and representation could be overcome,

it is by means of such coordinates in space that we should at last obtain

an adequate and satisfying picture of the processes of deformation and the

direction of growth.

(Thompson, 1917)

This chapter describes a new, continuous medial model, which is based on subdivi-

sion surfaces. The goal in creating such a model is to obtain a system of coordinates

over the entire interior of the object (and some of the exterior) that is directly com-

parable with other objects. Previously, Yushkevich also developed a model based on

cubic B-splines, which is well suited for 2D shapes, where the number of points on the

boundary of the medial axis is finite (Yushkevich et al., 2003; Yushkevich, 2003). Its

extension to 3D, however, has several issues.

The primary issue is enforcing the condition ‖∇r‖ = 1 at the boundary. Since there

are infinitely many boundary points, but only a finite number of control point values

to use as free parameters, this cannot be enforced explicitly by constraining control

point values. Instead, Yushkevich chooses the value of the radius at the boundary

control points to be a large, negative number, which ensures that the condition holds

along some curve in the region, which can be solved for implicitly. Unfortunately, this

means that the boundary for every shape model appears at a different location in the

parameter space, and due to its unconstrained, irregular shape, it is difficult to obtain

1 This chapter is based on work done in collaboration with Guido Gerig and previously published
in (Terriberry and Gerig, 2006).



a mapping between the domains of different shapes. This makes the representation

unsuitable for performing shape statistics across a population.

Later work solved this problem by interpolating a potential function ρ across the

medial surface instead of the radius (Yushkevich et al., 2005). The radius is recovered

from ρ by numerically solving a differential equation whose boundary conditions also

ensure ‖∇r‖ = 1. This allows the boundary condition to be enforced explicitly on a

rectangular domain and thereby solves the problem of an implicit boundary curve, at

the expense of losing an explicit function for the radius.

However, both methods also exhibit a problem with boundary conditions at branch

points. In order to handle branching, two constraints must be enforced where medial

sheets meet: a condition on the derivatives of r to ensure the spoke directions U± are

the same and the condition that the values of r themselves are equal. The first method

cannot choose where the derivative condition holds true and thus has little chance of

getting the radii (or even the edge of the medial sheets themselves) to line up. The

second method, with only a single free parameter, the potential function value at that

point, yields an over-constrained problem. A solution to these problems has not, as of

the time of this writing, been found.

We take a different approach. To move efficiently from a discrete grid of medial

control points to a continuous surface and to provide local control, we use Catmull-

Clark subdivision surfaces with what we shall term an ordinary, corner-free bound-

ary to model the medial sheets. These surfaces model the four-dimensional quantity

M = (m, r), where m is the medial sheet location, and r the radius. The boundary

conditions are then enforced by modifying the patches at the edges of the sheet to

use an interpolating spline. This reduces the degree of the polynomial equation for

the boundary conditions from 12 to 2, yielding an explicit and efficient solution. The

solutions to these equations are used to construct a “control curve” that replaces the

outer layer of control points, effectively providing the infinite number of free parameters

needed to enforce the condition everywhere. These two key ideas—interpolating splines

and control curves—are what makes this approach possible. The rest of the chapter

lays out the details.

3.1 Catmull-Clark Subdivision on the Medial Axis

First, we present a brief review of Catmull-Clark subdivision surfaces. These are a

generalization of B-spline knot insertion to meshes of arbitrary topology (Catmull and
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Clark, 1978). They were initially created as a graphics primitive to represent the

boundary of closed objects. A continuous surface, called the limit surface, is created

from an initial, discrete mesh by recursive subdivision. At each step, a new vertex

is added to every face and every edge, and these are then connected in a new mesh,

as illustrated in Figure 3.1. After the first level of subdivision, all of the faces are

quadrilaterals, and every new vertex will have valence four.

Catmull-Clark surfaces as originally developed are restricted to closed surfaces, so

the rules on the interior of the mesh are presented first. Any (interior) vertex of

valence four is thus called an ordinary vertex, while the remaining (interior) vertices

are extraordinary. After two subdivision steps, every face has at most one extraordinary

vertex. Away from an extraordinary vertex, the limit surface behaves exactly like a

B-spline patch, and thus the surface and its derivatives can be evaluated efficiently at

arbitrary points. Stam showed how, with some one-time setup, the limit surface could

also be efficiently evaluated near extraordinary vertices (Stam, 1999). Catmull-Clark

surfaces are everywhere C2 continuous, except at extraordinary vertices, where they

are C1.

This level of continuity is sufficient for our purposes. C1 continuity ensures that

∇r, and thus the spoke field, is continuous everywhere. Since the spoke field is normal

to the boundary, a continuous spoke field ensures a well-defined tangent plane and thus

G1 continuity of the reconstructed boundary. C2 continuity everywhere except on a set

of measure zero ensures that we can compute Srad almost everywhere, so we can check

for illegalities and compute medial integrals.

Subdivision surfaces are also appealing because a control point only influences a

small local region of the surface surrounding it, instead of the whole surface. This is

the local control property alluded to earlier. It will become advantageous later when

computing derivatives describing how the medial axis changes when a control point is

moved.

3.1.1 Ordinary Corner-Free Boundary

Blum medial sheets are surfaces with edges and creases, and there are several different

strategies in the literature for handling such meshes. Initially, (Hoppe et al., 1994) pro-

posed a set of rules for triangular subdivision surfaces that are provably C1. They have

a straightforward adaptation to quadrilateral subdivision surfaces—including Catmull-

Clark surfaces—as described by, e.g., (DeRose et al., 1998; Warren and Schaefer, 2004).
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(c) V-mask.

Figure 3.1: Catmull-Clark subdivision masks. The F-mask creates a new vertex at the
center of each existing face, and the E-mask creates a new vertex splitting each existing
edge. Finally the V-mask updates all existing vertices in the previous subdivision level
to their new positions. The black vertex in each mask is the vertex being created
or updated, the white vertices are other pre-existing vertices, and the gray vertices
are other new vertices created by the subdivision. Only vertices with a solid border
contribute to the mask; those with a dashed border are shown merely for context. The
value of n in the F-mask and the V-mask is the valence of the center vertex.
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The latter also describe a simple method of implementing these rules, but neither proved

that the rules produce C1 limit surfaces. A more complete set of rules that are prov-

ably C1 everywhere was proposed by (Biermann et al., 2000), addressing problems with

extraordinary edge vertices and convex and concave corners.

For simplicity, we require that the edges of the mesh contain only ordinary vertices.

Unlike interior vertices, they will not have valence four, but the term may also describe

vertices that could be made ordinary by some extension of the mesh past the edge.

For reasons made clear in Section 3.2, we also disallow corners, i.e., no two adjacent

edges on a branch or edge curve can belong to the same face. Besides being a practical

requirement, mesh corners are also undesirable for many of the objects we wish to

model. The result is that all vertices on the edge of the mesh will have valence three,

and any two adjacent edges will belong to different patches.

There is one exception where corners are allowed, and in fact required, and that

is at the fin creation points at the end of a branch curve. Two of the three medial

sheet pieces joined at a branch curve flatten into a single medial sheet, and the end of

this crease is modeled with a dart vertex, which blends smoothly into the joined sheet.

The remaining fin sheet ends in an edge curve, which intersects the branch curve in a

corner. This is the sole exception to the exclusion of corners.

We call the result a mesh with ordinary, corner-free boundary. Under these mesh

restrictions, the subdivision rules due to both (Hoppe et al., 1994) and (Biermann et al.,

2000) are equivalent. They are implemented here as follows. Each vertex is assigned

a dimension corresponding to the type of structure it belongs to; interior points have

dimension two, edge and crease points have dimension one, and corners have dimension

zero. Then, during subdivision, the subdivision masks are modified to exclude vertices

of a higher dimension.

This effectively causes the edge of the mesh to degenerate to a one-dimensional

B-spline curve, unaffected by the other control points in the interior of the mesh. This

makes it straightforward to join two medial sheets along a branch curve, simply by

sharing control points everywhere on that curve except at a fin creation point (see

Figure 2.2(c)). Corners are not modified at all by the subdivision process, while dart

vertices are treated as interior points and require no special rules. Hence we set the

corner at a fin creation point equal to the limit point of the associated dart vertex.

Now, in order to enforce the boundary conditions required to ensure that the recon-

structed boundary forms a closed surface, we need to subdivide the mesh into patches

and then modify patches near the edge and branch curves. To construct the patches,
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we first perform two levels of subdivision. This ensures that each face is a quadrilateral

and falls into exactly one of three disjoint classes: patches adjacent to an edge or branch

curve, patches with exactly one extraordinary vertex, or ordinary interior patches.

3.1.2 Interior Patches

The ordinary interior patches behave exactly like uniform cubic B-spline surfaces, with

the local vertices from the subdivided mesh used directly as control points. We denote

these Pi,j, where each is a tuple (m, r) of control points for M, and use P to refer to

the 4× 4 matrix of control points for a single patch. We write m(P) or r(P) to refer to

each component of the control point matrix P, and similarly for an individual control

point Pi,j.

The local portion of the medial sheet is now defined by the equation

M(u, v) ,
[
1 u u2 u3

]
BPBT

[
1 v v2 v3

]T
. (3.1)

Here B is the B-spline basis matrix:

B ,
1

6


1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1

 . (3.2)

The reconstructed boundary is then given by

B±(u, v) , m(u, v)± r(u, v) · U±(u, v) , (3.3)

where U± is defined as in (2.3). For notational simplicity we drop the parameters (u, v)

where they are unnecessary.

Since m and r are cubic polynomials, their derivatives are simple to calculate, and

with these derivatives U± can be computed as shown in Appendix A. The case is similar

for patches with an extraordinary vertex. For these, we evaluate the patch using Stam’s

method (Stam, 1999), which we will briefly summarize here.

A patch with an extraordinary vertex of valence k is affected by 2k + 8 control

points, as illustrated in Figure 3.2. We arrange these in a single column vector P0. A

new set of 2k + 17 control points P̄1 can be produced by subdivision, allowing 3
4

of

the patch to be evaluated as ordinary B-splines, as illustrated in Figure 3.3. The nine
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= P0 + = P̄1 = P1

Figure 3.2: Control points around an extraordinary vertex. The different circles indi-
cate membership in each of the sets as labeled. These sets are described in the text.

points in P̄1 away from the extraordinary vertex can be discarded, to obtain a new set

of 2k + 8 points P1, which describe the remaining quadrant of the patch.

Both P̄1 and P1 can be written as linear combinations of P0, related by the subdi-

vision matrices A and Ā:

P1 , AP0 , P̄1 , ĀP0 . (3.4)

The precise definition of these subdivision matrices can be derived from the Catmull-

Clark weights and is given in (Stam, 1999). This subdivision can be repeated indefi-

nitely to get a parametric surface representation arbitrarily close to the extraordinary

vertex with, e.g.,

Pn = APn−1 = AnP0 , P̄n = ĀPn−1 = ĀAn−1P0 . (3.5)

The matrix exponentiation is easily computed if the eigendecomposition of A is avail-

able:

A = VΛV−1 , (3.6)
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= P0 + = P̄1 = P1

Figure 3.3: Subdivision near an extraordinary vertex. Groups of 16 control points from
the set P̄1 can be used to construct B-spline patches over three of the four quadrants
of the patch near the extraordinary vertex.

44



where V is a matrix of orthogonal eigenvectors, and Λ is a diagonal matrix of real

eigenvalues, sorted in descending order. Then the new control points can be written

P̄n = ĀAn−1P0 = ĀVΛn−1V−1P0 . (3.7)

The product on the right, V−1P0, is constant regardless of what portion of the patch is

being evaluated. The product on the left, ĀV, depends solely on the valence, n. Thus,

if V−1, Λ, and ĀV are pre-computed for each valence, then after one matrix multiply

per patch, some exponentiation, and one additional matrix multiply per quadrant each

point can be evaluated via a normal B-spline. For precise details, we refer the reader

to (Stam, 1999), which contains some corrections2 over a previous version of the work

appearing in (Stam, 1998).

This allows the patch and its derivatives to be evaluated everywhere except at

the extraordinary vertex without the computational expense and memory needed to

compute n levels of subdivision. At the extraordinary vertex itself, the values of m and

r are easily obtained from the first eigenvector, whose corresponding eigenvalue is 1.

All of the other eigenvalues are less than one, so setting

Λ∞ =


1

0
. . .

 (3.8)

will return the limit point. To compute first derivatives within a patch, Stam suggests

2 Even in this version, there are several mistakes in its Appendix A. The re-shuffling of the eigen-
values described gives precisely the same order as before. The correct order is

µ4 = λ−1 , µ5 = λ+
n−1,

µ6 = λ+
2 , µ7 = λ−n−2,

...

This also means that µl+3 in the expressions for eigenvectors u2l+2 and u2l+3 should be µ2l+2 instead.
Additionally, when Stam calls for “the same reshuffling as above” to compute V−1, the reshuffling
(even if the above were correct) is not precisely the same. Obviously it is now done on rows instead of
columns, but in addition, for the resulting real left eigenvectors to form a true inverse, the formulas
must be modified slightly, as follows:

u−1
2l+2 = k−1

l+3 + k−1
2N−l+2 ,

u−1
2l+3 = i(k−1

l+3 − k−1
2N−l+2) .

We have thus far been unsuccessful in contacting Stam to offer these corrections, but we would be
remiss if we did not provide them to you here.
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simply using a large value for n in the exponent. Another possibility is reparameterizing

the surface based on the eigenbasis functions corresponding to the second and third

eigenvectors. This is, however, much more complex, as it requires computing derivatives

of the inverse characteristic map.

Unlike the first derivatives, the second derivatives at the extraordinary vertex are

inherently unstable, as the curvature diverges when n 6= 4. This means that Srad cannot

be computed, so the radial curvature condition cannot be checked. This does not pose

a problem for evaluating the spoke field itself, as these curvatures remain integrable

(Reif and Schröder, 2001). While theoretically it would be nice to be able to compute

Srad for an extraordinary vertex, as a practical matter it is not a serious hindrance.

However, should a fully G2 solution be desired, there are several known approaches in

the subdivision surface literature. One strategy is to modify the subdivision masks,

as described by (Prautzsch and Umlauf, 1998), but this produces surfaces whose cur-

vature is zero at the extraordinary point (and no local subdivision algorithm can do

otherwise). Alternatively, the patches can be replaced by Bézier patches of a higher

degree, as described by (Loop, 2004), but this requires biseptic polynomials. Many

other alternatives exist with differing restrictions, requirements, and constructions; see

(Loop, 2004) for a recent summary.

3.2 Edge Patches

Having described the general case in the interior, we now turn to the challenge of

patches along the edge of the medial sheet. On these patches, the four control points

that lie outside of the surface, beyond the edge, represent free parameters that can be

modified without affecting the surface defined by the interior patches. However, with

the four parameters of m and r per control point, this gives only sixteen free parameters

to enforce the requisite boundary condition at all of the points on the edge, of which

there are infinitely many. With a straightforward formulation, finding a configuration

which satisfies this edge condition even just at the control points requires solving for

a root of a twelfth degree polynomial. To find a valid solution at every point on the

curve, a more creative approach had to be derived.

The general approach taken here is two-fold. First, the spline is converted to an

interpolating basis in one of the variables. This breaks the dependence between u and

v, meaning that the solution for a control point that enforces the edge condition at one

specific point does not depend on the solution at other points, reducing the resulting
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polynomial to a quadratic. Second, to extend this solution from just the control points

to the entire edge curve, the four free control points are replaced with a control curve.

The control curve provides one free parameter for every point on the edge, which is

fixed by the boundary condition. The details of these two steps follow.

Without loss of generality, assume the edge of the medial axis lies along the line

u = 0, as illustrated in Figure 3.4. Adding P0,j points out past the boundary, where

P0,j , 2P1,j −P2,j, gives a full set of B-spline control points that produce the Catmull-

Clark limit surface of this patch.

u

v

u=0

r (v)0
P1,0

P1,1

P1,2

P1,3

P2,0

P2,1

P2,2

P2,3

P3,0

P3,1

P3,2

P3,3

Figure 3.4: The control curve, r0(v), on an edge patch.

The medial sheet m is computed us usual, but in order to enforce the edge condi-

tion (2.4) along this edge, we compute r using a control curve r0(v) instead of a few

isolated control points. This lets us ensure the condition holds at every point on the

edge, which would not be possible with only a finite number of control point values as

free parameters. This curve does not represent a set of parameters explicitly defined

by the modeler, but is implicitly defined by the boundary condition.

Unfortunately, the use of such a curve makes evaluation fundamentally asymmetric

with respect to the two variables u and v. We must first expand the v terms, obtaining

new control points for a spline in u. Then we use a change-of-basis to convert the

spline in u to an interpolating spline, which passes through its control points. Finally,

we replace the control point on the left with the point from our control curve and
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perform interpolation in the u direction. Because of this asymmetry, we cannot, for

example, add a control curve to both the u = 0 and v = 0 edges of the same patch,

which is why we disallow corners on the edge of the mesh.

The particular interpolating spline we use is the Catmull-Rom spline, since it is C1

and has third-order, meaning that when used to approximate an arbitrary function,

it matches the first three terms of its Taylor series approximation, making any error

terms at least cubic. It is defined as in (3.1), but replacing the basis matrix on the left

with

C ,
1

2


0 2 0 0

−1 0 1 0

2 −5 4 −1

−1 3 −3 1

 . (3.9)

The change-of-basis may be accomplished by replacing BP in (3.1) by CP′ and

using the new set of control points

P′ , C−1BP , (3.10)

producing

M(u, v) =
[
1 u u2 u3

]
CP′BT

[
1 v v2 v3

]T
. (3.11)

Now, we can replace the row P ′0,j with our control curve, and the result will still

pass through the limit surface at either end of the patch. Furthermore, P ′0,j has no

influence on the derivative with respect to u on the right edge of the patch. Hence,

whatever the value of the control curve, the right edge retains C1 continuity. We now

derive an equation for the control curve and show that we also retain C1 continuity

along the top and bottom edges.

3.2.1 Solving for ru(0, v)

As outlined in Section 2.3.3, in order to ensure that the top and bottom spokes meet,

we must have

‖∇r‖ = 1 . (3.12)
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The gradient here is the Riemannian gradient, which on a two-dimensional manifold is

given by

∇r ,
[
mu mv

]
I−1
m

[
ru

rv

]
, (3.13)

where Im is the metric tensor of m:

Im ,

[
Em Fm

Fm Gm

]
,

[
mu ·mu mu ·mv

mv ·mu mv ·mv

]
. (3.14)

With some algebra, the entire expression can be rewritten as∥∥∥∥(rumv − rvmu)× (mu ×mv)

‖mu ×mv‖2

∥∥∥∥ =
‖rumv − rvmu‖
‖mu ×mv‖

= 1 . (3.15)

Hence,

‖rumv − rvmu‖2 = ‖mu ×mv‖2 , (3.16)

which expands to

r2
uGm − 2rurvFm + r2

vEm = EmGm − F 2
m . (3.17)

Now, we hold mu(0, v), mv(0, v), and rv(0, v) fixed and solve for ru(0, v). The

key observation is that using a spline interpolative in u means that r(0, v), and hence

rv(0, v), is completely determined by the control point values r(P ′1,j) along the edge.

In particular, they do not depend on the values of our unknown control curve. This is

the crucial reason for choosing an interpolating spline in the first place. Solving (3.17)

for ru produces

ru =
1

Gm

(
rvFm ±

√
(Gm − r2

v)(EmGm − F 2
m)
)
. (3.18)

There are two possible solutions, one of which corresponds to spokes along the crest

pointing outward from the medial sheet, and the other of which corresponds to spokes

pointing inwards. The latter is clearly illegal for a Blum medial axis, so we want to

identify which solution corresponds to the former.

Along the crest, the spokes always lie in the (mu,mv) plane, so we can construct
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the vector ((mu ×mv)×mv), which should lie in the same plane, perpendicular to the

crest’s tangent vector and pointing outwards. Then, we can test that

−r∇r · ((mu ×mv)×mv) ≥ 0 . (3.19)

By applying Lagrange’s formula to expand the cross products and employing some

simplifying algebra, this can be reduced to

−r(rvFm − ruGm) ≥ 0 . (3.20)

However, plugging our two solutions for ru into (3.20) yields

−r
(
rvFm −

(
rvFm ±

√
(Gm − r2

v)(EmGm − F 2
m)
))

≥ 0 , (3.21)

which reduces to

±r
√

(Gm − r2
v)(EmGm − F 2

m) ≥ 0 , (3.22)

whose sign clearly only depends on the radius and the square root term. Since we always

require a positive radius, the plus solution is always the solution pointing outwards.

3.2.2 The Complete Control Curve

Now, given ru(0, v), it is a simple matter to solve for the value of the control curve r0(v)

that produces this derivative. Let r1(v), r2(v), and r3(v) be the continuous curves given

by the three lines of ordinary control points in the v direction:

ri(v) ,
[
P ′i,0 P ′i,1 P ′i,2 P ′i,3

]
BT
[
1 v v2 v3

]T
, i = 1 . . . 3 . (3.23)

Then

ru(0, v) =
[
0 1 0 0

]
C
[
r0(v) r1(v) r2(v) r3(v)

]T
, (3.24)

and solving for r0(v) yields

r0(v) =
1

C1,0

(ru(0, v)− C1,1r1(v)− C1,2r2(v)− C1,3r3(v)) , (3.25)
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where Ci,j is the (0-indexed) i, jth element of C. It is important to emphasize that this

formulation only works for interpolating splines, since otherwise ru(0, v) would not be

independent of r0(v) in the right-hand side of (3.25).

Now r0(v) is a function of mu(0, v), mv(0, v), and rv(0, v) only. As these are all first

derivatives of functions obtained from B-spline patches, they are C1 across patches,

and hence so is r0(v). This ensures that r(u, v) is C1 with neighboring patches along

the top and bottom edges, as well as the right edge.

Finally, we complete the interpolation in the u direction to obtain the final value of

r:

r(u, v) =
[
1 u u2 u3

]
C
[
r0(v) r1(v) r2(v) r3(v)

]T
. (3.26)

3.2.3 Sympathetic Overfolding

Due to the cubic nature of our functions, modification to r on the left edge of the

patch can produce a sympathetic crease on the right edge, which can cause overfolding,

especially when r is increasing quickly as one approaches the edge of the medial axis.

An example is illustrated in Figure 3.5. Our initial hypothesis was that this is due to

the fact that our choice of spline, the Catmull-Rom spline, is only C1, and that raised

the question of whether or not another spline would give better behavior. This turns

out not to be the case, but the better spline developed to answer the former question

gave the mechanism needed to solve the real problem.

In general there at not enough free parameters to create a C2 interpolating spline

with only one piecewise cubic segment between control points. Enforcing the necessary

constraints produces a basis matrix whose first column is all zeros. The resulting

spline is thus quadratic and completely independent of r0(v), so we cannot enforce

our boundary condition. Under the traditional formulation, the local C2 interpolating

spline with smallest degree is quartic, and its support spans six control points (Blu

et al., 2003).

A cubic, interpolating C2 spline can be created by subdividing the interval into

multiple piecewise cubic segments. Each segment interpolates just part of the interval

[0, 1], but all three use the same set of control points. Using equal-sized segments and

following the procedure outlined by (Keys, 1981), one can derive a spline with the

necessary continuity. Adding more segments introduces extra free parameters, which

can be fixed by optimizing the order of convergence. Three segments are sufficient to

achieve third-order convergence, meaning that any quadratic can be represented exactly.
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(a) A crease on the boundary. (b) The medial axis and spoke field.

Figure 3.5: An example of sympathetic overfolding, created even when ζ = 11
8
. The

cluster of red spokes near the crease indicate the places where overfolding was detected.

The approximation order cannot be increased further by adding more segments; the

additional segments become duplicates of one another.

The resulting third-order spline is given by the following three basis matrices, used

over the intervals [0, 1
3
], [1

3
, 2

3
], and [2

3
, 1], respectively:

B(0) ,
1

12


0 12 0 0

−6 0 6 0

6 −12 6 0

7 −21 21 −7

 ,

B(1) ,
1

12


1 9 3 −1

−15 27 −21 9

33 −93 87 −27

−20 60 −60 20

 ,

B(2) ,
1

12


−7 33 −21 7

21 −81 87 −27

−21 69 −75 27

7 −21 21 −7

 .

(3.27)

Other splines are possible for different choices of the segment end points.

Unfortunately, because each segment has its own basis matrix, there is no longer a
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simple change of basis formula to convert a B-spline to the new spline; each segment has

its own formula. Yet if the segments do not all use the same set of control points, the

spline is no longer C2. Enforcing the constraint that all three change of basis formulas

produce the same control points again restricts the curve to a quadratic. However, the

advantage to this formulation over one using just one segment is that it is no longer

independent of r0(v), so the boundary condition can be enforced.

By increasing the support size from four to six control points (while retaining the

cubic basis functions), a fourth-order C2 interpolating spline can be obtained, still using

three segments. Using equally spaced segment endpoints again, the spline is given by

the following three basis matrices:

B(0) ,
1

24


0 0 24 0 0 0

2 −16 0 16 −2 0

0 12 −24 12 0 0

−6 23 −36 30 −14 3

 ,

B(1) ,
1

216


−5 24 170 44 −21 4

63 −360 414 −252 171 −36

−135 756 −1458 1296 −567 108

81 −441 918 −918 441 −81

 ,

B(2) ,
1

24


3 −16 58 −36 19 −4

−9 44 −130 156 −77 16

9 −42 102 −132 81 −18

−3 14 −30 36 −23 6

 .

(3.28)

However, because the spline is now fourth-order, it can represent any cubic curve

exactly, which means that a single change of basis matrix must exist. Solving for it

produces

A ,
1

6



27 −44 31 −8

8 −5 4 −1

1 4 1 0

0 1 4 1

−1 4 −5 8

−8 31 −44 27


. (3.29)

Using six control points instead of four requires slightly more computation, but because
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all six are computed from one set of four control points, the locality of the method

remains unchanged. That is, the six control points produced here do not depend on

any more model parameters than the original four did.

Either of these splines gives C2 continuity on the right edge, regardless of the control

point value on the left edge, but the fourth-order spline does not limit the input to

quadratic curves. However, we have tested both of them and found that the increased

order of continuity does nothing to help avoid the sympathetic overfolding. Therefore

our initial hypothesis was incorrect.

The real problem appears to be related to the rate at which the parameterization

approaches the left edge of the medial sheet. We have observed less overfolding when

mu(0, v) is small. A simple way to control this value is to modify our choice of P0,j.

If we also require that the spline interpolate the same limit point at u = 0, we will

need to replace P1,j with a modified P̃1,j, as well, which will affect the adjacent patch

slightly. This gives rise to the one-parameter family of control points,

P0,j = (6− 4ζ)P1,j − (5− 4ζ)P2,j , P̃1,j = ζP1,j + (1− ζ)P2,j (3.30)

The original Catmull-Clark control points are given by ζ = 1. A choice of ζ = 6
5

makes P0,j = P̃1,j, which gives some improvement, but better results are obtained by

a choice of ζ = 11
8
, which makes P0,j = 1

2
(P1,j + P2,j). This is the strategy we have

adopted in this work, and as Figure 3.5 shows, the disparity in radii near the edge

now needs to be quite severe to cause overfolding. This is the approach we will take

throughout the rest of this work, due to its simplicity.

However, we continue to describe a more theoretically pleasing solution that com-

pletely eliminates the problem at the cost of some additional complexity. Further

increasing ζ gives only marginally better results, until ζ = 3
2

makes P0,j = P2,j and

forces mu(0, v) to be identically zero, regardless of the choice of control points. Unfor-

tunately, this poses a problem as we use mu(0, v) to compute the normal vector and

tangent plane of the medial axis along the crest.

If we switch to an alternate parameterization, û = u2, and differentiate with respect

to û instead of u, we can recover a well-defined tangent plane. However, unless ru(0, v)

is also identically zero, ∇r will diverge to infinity. Thus we have two constraints to

satisfy: that ru(0, v) = 0 and that rû(0, v) is chosen in accordance with (3.18). However,

we can obtain the extra free parameter we need to enforce both of these conditions

simultaneously from our fourth-order interpolating spline.
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Figure 3.6: An example of a pair of adjacent edge patches evaluated with two different
methods. On the left, we use the Catmull-Rom spline with ζ = 1, the value corre-
sponding to ordinary Catmull-Clark subdivision. On the right, we use our fourth-order
cubic spline and ζ = 3

2
. Both sides were derived using the same set of original control

points. Pictured are (a), (c) the radius function, (b), (d) ‖∇r‖2, (e), (g) the unit spoke
field U±, and (f), (h) the medial sheet and reconstructed boundary.

Let ri(v) for i = 1 . . . 5 be defined analogous to (3.23). We are again free to choose

r0(v), but modifying r1(v) will affect the first derivative on the right. Therefore, we

also modify r5(v) to compensate. As long as the first and last spline segments have the

same size, the coefficients of r1(v) and r5(v) in this derivative will be symmetric, e.g.,

B
(2)
1,1 +2B

(2)
2,1 +3B

(2)
3,1 +B

(2)
1,5 +2B

(2)
2,5 +3B

(2)
3,5 = 0, so we can choose r̃1(v) = r1(v)+∆r1(v)

and r̃5(v) = r5(v)+∆r1(v) for some value ∆r1(v). In this case, it will also be true that

the coefficients of r0(v), r1(v), and r5(v) in the second derivative on the right will be

zero, so we will retain C2 continuity on the right.

We use r0(v) to enforce ru(0, v) = 0, producing

r0(v) = − 1

B
(0)
1,0

(
B

(0)
1,1 r̃1(v) +B

(0)
1,2r2(v) +B

(0)
1,3r3(v) +B

(0)
1,4r4(v) +B

(0)
1,5 r̃5(v)

)
. (3.31)
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Then, using ∆r1(v) to fix rû(0, v) gives

∆r1(v) =
1

B
(0)
2,1

(
rû(0, v)−B

(0)
2,1r1(v)−B

(0)
2,2r2(v)−B

(0)
2,3r3(v)

)
. (3.32)

We have assumed B
(0)
2,0 = B

(0)
2,4 = B

(0)
2,5 = 0. Without this assumption the above expres-

sions are considerably more complicated.

(a) Bunching in u, ζ = 1 (b) Bunching completely eliminated, ζ = 3
2

Figure 3.7: Two close-ups of the right edge of the bottom portion of the boundary
pictured in Figure 3.6. At the right edge of (a), where ζ = 1, the iso-parameter lines in
u are bunched up. In (b), using ζ = 3

2
causes the surface to come to a complete stop on

the left edge. Meanwhile, on the right edge, the iso-parameter lines are evenly spaced
again.

This approach gives infinite slowdown of m as u approaches zero. As shown in

Figure 3.7, without it, iso-parameter lines in u bunch up at the right edge of the patch,

eventually causing a kink to appear if the bunching becomes too severe, despite the

fact that the original control points in this example were regularly spaced. However,

with this approach, one can see that the iso-parameter lines remain evenly spaced,

eliminating these kinks.

3.3 Branch Curve Patches

The exact same approach used for edge curves can now be applied to branch curves.

A control curve in r on the edge of each of the patches intersecting along the curve

provides the means to ensure that the boundaries of each of the medial sheets meet.
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The primary difficulty lies at the fin creation point, where the corner on the fin sheet

requires both edge curve and branch curve boundary conditions to be enforced on

different edges of the same patch. This is done by adding a control curve to m as well

as r on one edge of the other two patches, so that a control curve is needed on only

one edge of the fin patch. A small number of additional constraints is needed at the fin

point itself, but because they are only required at a single point, they can be enforced

directly by adjusting control points. The remainder of this section describes how all of

this is done.

We gave a succinct expression of the boundary conditions along a branch curve in

(2.5), which we repeat for reference:

∇r(k⊕2) −∇r(k⊕1) = N (k) ·
√

1− ‖∇r(k)‖2 , (3.33)

However, it is not obvious how these branch conditions should be enforced. We motivate

the solution with a geometric approach.

With some algebra, we can decompose ∇r into a component ∇r(v) in the mv direc-

tion and a component ∇r(⊥v) in the orthogonal direction m
(⊥v)
u = mv × (mu ×mv):

∇r = ∇r(v) mv

‖mv‖
+∇r(⊥v) m

(⊥v)
u∥∥m(⊥v)
u

∥∥ , (3.34)

∇r(v) =
rv√
Gm

, ∇r(⊥v) =
ruGm − rvFm√
Gm(EmGm − F 2

m)
. (3.35)

Without loss of generality, we assume our three patches are oriented so that they meet

at the u = 0 curve in each. Then rv and Gm are the same in each patch, and hence so

is ∇r(v).

Now, since all three normal vectors N (i) are perpendicular to mv, they lie in the

same plane, and hence so do the endpoints of ∇r(i) and U (i)±. The vectors ∇r(i) and

U (i)± do not lie in this plane, just their tips. We project everything into this plane, as

illustrated in Figure 3.8.

We use θ(i) to denote the angle between ∇r(⊥v,i) and U (i)± and use φ(i) to denote

the counter-clockwise angle between m
(⊥v,i)
u and m

(⊥v,i⊕1)
u , i.e.

φ(i) = θ(i) + θ(i⊕1) . (3.36)
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Figure 3.8: (a) The cross-section of a branch curve, with mv pointing out of the page.
(b) The projection of one of the U (i) vectors into this plane along ∇r(v).

As one can see, the sums of the angles θ(i) must be π, and the vectors m
(⊥v,i)
u must

bisect these angles. This provides a full set of geometric constraints. There are two

basic ways these constraints can be enforced, and we have some freedom to choose how

we go about it. Either we can adjust r
(i)
u to produce the desired angles θ(i), or we can

adjust the orientation of the tangent plane via m
(i)
u to produce the desired angles φ(i).

3.3.1 Satisfying Branch Conditions Away From Fin Creation

Points

Some adjustment of r
(i)
u is always necessary to ensure that the values of θ(i) sum to π.

Therefore, away from a fin creation point, we hold the tangent vectors m
(i)
u —and thus

the angles φ(i)—fixed and enforce the boundary condition solely via r
(i)
u . Starting from

φ(i) and solving for θ(i) in (3.36), we have

θ(i) =
1

2
(φ(i) + φ(i⊕2) − φ(i⊕1)) . (3.37)

This solution is valid (e.g., θ(i) ≥ 0) so long as no single φ(i) is greater than π. A

negative θ(i) indicates that the spokes have pierced through one of the medial sheets.
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From the right triangles in Figure (b), we can see that

∇r(⊥v,i) = −‖U (i) +∇r(v)‖ cos θ(i) = −

√
1− r2

v

Gm

cos θ(i) . (3.38)

This constraint can be enforced with a control curve exactly as in Section 3.2. First,

we solve (3.38) for r
(i)
u (0, v) while holding m

(i)
u (0, v), mv(0, v), and rv(0, v) fixed:

r(i)
u =

1

Gm

(
rvF

(i)
m − cos θ(i)

√
(Gm − r2

v)(E
(i)
m Gm − F

(i)
m

2
)

)
. (3.39)

This solution is defined so long as ∇r(v) is not already large enough to make ‖∇r‖ ≥ 1

by itself. Given ru(0, v), we follow the procedure outlined in Section 3.2.2 to construct

a control curve that produces this derivative along the entire edge of the patch.

3.3.2 Satisfying Edge and Branch Conditions at a Fin Cre-

ation Point

The fin point is represented as a corner on the fin sheet and a dart vertex on the main

medial sheet. Catmull-Clark subdivision does not produce B-spline patches around a

dart vertex due to the adjacent crease vertices, but after the first two levels of subdi-

vision, we approximate the medial surface with B-spline patches that interpolate the

same branch curve. Since we are about to modify these patches to enforce the branch

conditions this deviation from the Catmull-Clark scheme is relatively inconsequential.

However, it simplifies the analysis a great deal by avoiding the introduction of a control

curve on a patch evaluated with Stam’s eigendecomposition method.

Without loss of generality, we will assume m(0) is the fin patch. This patch contains

a corner vertex at (0, 0) and must satisfy the edge condition ‖∇r‖ = 1 on the v = 0

edge as well as the branch conditions on the u = 0 edge. Since we cannot introduce a

control curve for two adjacent edges of the same patch, we choose to enforce the edge

constraint with a control curve that modifies rv(u, 0). This fixes θ(0), so we must enforce

the branch conditions by adjusting the remaining angles. This poses two problems.

First, the introduction of the edge control curve cannot change m(0)(0, v) or r(0)(0, v),

or they will no longer match the other two branch curve patches. Second, at the fin

point itself, the other two patches must blend smoothly into the rest of the medial

sheet, which limits the adjustments we can make to these patches in order to enforce

the branch conditions. However, both of these are much simpler to deal with than
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enforcing the general branch conditions along the entire edge, because they can be

encapsulated by a finite set of conditions at a single point. Therefore, we can deal with

them by adjusting control points before applying the control curve.

The first constraint at a fin creation point is that

θ(0)(0) = 0 . (3.40)

This is caused by the two sheets m(1) and m(2) flattening out, which implies

φ(1)(0) = θ(1)(0) + θ(2)(0) = π . (3.41)

This occurs precisely when ‖∇r(0)‖ = 1, which we are enforcing already via the edge

constraint, so there is no problem there. However, to keep the control curve from modi-

fying m(0)(0, v) and r(0)(0, v), thus violating our initial assumption that these curves are

the same in all three patches, we adjust control points to ensure that ‖∇r(0)(0, 0)‖ = 1

before application of the control curve. This can be done by modifying r
(0)
u (0, 0) while

holding r(0)(0, v) fixed. This is a simple matter of applying the mask

r(P(0)′) = r(P(0)) +


0 ∆r′ 0 0

0 0 0 0

0 −∆r′ 0 0

0 0 0 0

 (3.42)

for a suitable choice of ∆r′. Currently we solve for this value (and the values in the

subsequent constraints) numerically. The control points we are modifying have been

produced after two levels of Catmull-Clark subdivision, so none of the original control

points provided by the modeler are affected. Thus no change is required to how the

model is parameterized.

We are assuming the edge constraint is enforced using Catmull-Rom as our interpo-

lating spline. Using our fourth-order spline instead to eliminate sympathetic overfolding

is a non-trivial matter, as it requires r
(0)
v (0, 0) and m

(0)
v (0, 0) to both be zero, which will

not in general match the other two branch patches.

The next constraint is that m
(⊥v,0)
u (0, 0) bisect the angle between U (1)+(0, 0) and

U (2)−(0, 0). Since these two vectors are equal they must lie in the tangent plane of

m(0)(0, 0). From (3.35) it should be clear that rotating mu around mv does not change

the magnitude of ∇r(v) or ∇r(⊥v), merely the m
(⊥v)
u direction. The coefficients Em, Fm,
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and Gm remain unchanged. Thus, we rotate m
(0)
u (0, 0) around mv(0, 0) until U (0)±(0, 0)

coincides with U (1)+(0, 0) = U (2)−(0, 0). This is done without affecting m(0)(0, v) by

applying the mask

m(P(0)′) = m(P(0)) +


0 ∆m′ 0 0

0 0 0 0

0 −∆m′ 0 0

0 0 0 0

 (3.43)

for a suitable choice of ∆m′.

We will see that one additional constraint is necessary to ensure continuity across

the v = 0 edge of the two non-fin patches, m(1) and m(2), but to motivate it, we

must first describe the control curves used on those patches. After applying the edge

constraint to m(0), we are taking θ(0) as fixed, so we adjust θ(1) and θ(2) to ensure their

sum is π. We denote the amount of the adjustment by α and β, so that

θ(1) = φ(0) − θ(0) − α , (3.44)

θ(2) = φ(2) − θ(0) − β . (3.45)

There are two degrees of freedom, α and β, but the sum of the θ(i) angles provides

only one constraint. As a second constraint, we make the amount of the adjustment

proportional to the associated φ(i) angles:

αφ(2) = βφ(0) (3.46)

This ensures that a solution exists whenever θ(0) ≤ π, which is always the case. Then

solving for α and β we have

α = φ(0) ·
(

1− π + θ(0)

φ(0) + φ(2)

)
, (3.47)

β = φ(2) ·
(

1− π + θ(0)

φ(0) + φ(2)

)
. (3.48)

The resulting angles θ(1) and θ(2) are then produced by adjusting r
(1)
u and r

(2)
u with a

control curve.

We now have choices of θ(i) that sum to π, but m
(⊥v,i)
u may not necessarily bisect

the angle between its adjacent U (i)± vectors. To accomplish this, we rotate m
(1)
u by
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α and m
(2)
u by −β around mv. We can now apply the procedure in Section 3.2.2 to

mu instead of ru, producing the desired tangent plane. Because these rotations do

not change the magnitude of ∇r(⊥v,i), just the direction, these two control curves are

completely independent of each other. Therefore it does not matter in which order they

are applied.

We now return to the final constraint that must be imposed at the fin creation point

to ensure continuity across the v = 0 edge on the non-fin patches. From (3.41) we have

φ(0)(0) + φ(2)(0) = π, which combined with (3.40) implies α = β = 0. Thus, θ(1)(0)

and θ(2)(0) remain unchanged and no rotation is applied to m
(1)
u (0, 0) and m

(2)
u (0, 0).

However, the modifications produced by the remainder of the control curve can affect

r
(1)
v (u, 0), m

(1)
v (u, 0), r

(2)
v (u, 0), and m

(2)
v (u, 0) for any u > 0. If these derivatives are

modified, these two branch patches will no longer smoothly blend into the rest of the

medial sheet with C1 continuity. These derivatives are held fixed precisely when the

two derivatives αv(0) = βv(0) = 0. Both of these latter derivatives are proportional

to φ
(0)
v + φ

(2)
v + θ

(0)
v . Recall that φ(0) and φ(2) are functions of the angles between the

patches before any rotation is applied to them, which by construction join the rest of

the medial sheet with C2 continuity at the fin point. Beyond the fin creation point

φ(0) +φ(2) = π everywhere, therefore the derivatives φ
(0)
v +φ

(2)
v must be identically zero.

The constraint we want to enforce thus reduces to

θ(0)
v (0) = 0 . (3.49)

This holds precisely when

∂‖∇r(0)‖2

∂v
= 0 . (3.50)

This constraint can be enforced by adjusting control points to modify r
(0)
uu (0, 0) while

holding r
(0)
u (0, 0) and r(0)(0, v) fixed by applying the mask

r(P(0)′′) = r(P(0)′) +


0 −2∆r′′ 0 0

0 ∆r′′ 0 0

0 −2∆r′′ 0 0

0 0 0 0

 (3.51)

for a suitable choice of ∆r′′. With this final constraint, the formulation for fin points

is complete.
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Figure 3.9: An example of the interpolated patches near a fin creation point.

3.3.3 Transition Region

Section 3.3.1 and Section 3.3.2 have described two different procedures for enforcing

the branch conditions on different parts of the branch curve. We could have continued

the procedure for fin points along the whole curve, but we have no guarantee that

the same sheet will be the fin sheet at the other end of the branch curve, so the

first procedure, which is agnostic to which sheet is which, is preferred. Therefore we

introduce a transition region that moves from the procedure at fin points to that away

from them.

Our approach is to blend the two strategies together using a weight function

ω(v) = 1− 3v2 + 2v3 , (3.52)

chosen specifically so that ω(0) = 1, ω(1) = 0, and ωv(0) = ωv(1) = 0. Then in the
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transition region we use

θ(i) = ω · θ(i)
fin + (1− ω) · θ(i)

branch , α = ω · αfin , β = ω · βfin , (3.53)

where θ
(i)
fin, αfin, and βfin are chosen in accordance with the fin point procedure, and

θ
(i)
branch is chosen in accordance with the procedure away from fin points.

Because of ω, this will connect the two strategies while retaining C1 continuity

at the patch edges. Other choices of ω are possible, e.g., cos(π
2
v), but we have not

experimented with them. Another strategy we have not explored is adjusting control

points to enforce an explicit set of continuity constraints where the patches meet, like

we do at the fin point. The set of constraints is finite, so this should at least in theory

be possible.

3.4 Summary and Conclusion

The entire model evaluation process used in the rest of this dissertation is summarized

as follows. The model is constructed from a set of control points in m and r arranged in

a mesh with ordinary, corner-free boundary. Two levels of Catmull-Clark subdivision

are used to construct a collections of patches with creases and edges representing branch

and edge curves. The control points around the edge are adjusted via (3.30) to limit

sympathetic overfolding, using ζ = 11
8
. Then the control points around a fin point

are adjusted using the masks in (3.42), (3.43), and (3.51). A B-spline like (3.2) is now

used to evaluate each interior patch. On patches containing an extraordinary vertex, the

actual spline control points are computed using Stam’s evaluation method, summarized

in (3.7). On those patches containing an edge or branch curve, the evaluation instead

uses a two-step asymmetric process. First, the right half of (3.2) is expanded for a

specific value of v to produce four control points for a spline in u, where here the

v coordinate goes along the edge, and u goes across it. These are converted to the

Catmull-Rom basis using (3.10). The first derivatives mu, mv, and rv at u = 0 are also

evaluated and used to compute the desired ru, e.g., using with (3.18) for edge curves.

From there, (3.25) gives the value of the control curve that replaces the first control

point, and the remaining half of the spline is evaluated, as in (3.26). The result is a

continuously defined medial axis, M. Applying the same procedure with appropriate

modifications to the spline basis functions produces derivatives as well, as summarized

in Appendix A. With first derivatives the associated boundary can be reconstructed
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using (3.3), and second derivatives allow the computation of Srad.

This chapter has presented a new, generative, continuous 3D medial model. Unlike

the problem of computing the medial axis of a given boundary model, the reverse

problem of computing the boundary associated with a given medial model is stable.

This makes generative models important tools for shape analysis based on the medial

axis.

Our model builds on work by (Yushkevich et al., 2003) and removes most of its

major limitations. It uses subdivision surfaces, which are closely related to the B-splines

used by Yushkevich’s original approach. These are highly efficient and well-researched

modeling tools, and because of this we can leverage existing work in this field (for

example, if we wanted to make the limit surface around extraordinary vertices G2).

Yet we are able to provide a fixed parameterization domain for each model (allowing

statistical analysis of model populations) without resorting to a differential equation

approach, which is more cumbersome. Finally, ours is the first continuous 3D model

that is not restricted to a single medial sheet.

There are, however, still some limitations to our approach. The lack of corners

along the edge of the medial sheets, while a desirable feature for most biological objects,

could be a hindrance for synthetic ones. Furthermore, we do not explicitly enforce the

‖∇r‖ ≤ 1 constraint off the edge, nor the Radial Curvature Condition. Instead, these

are enforced during model optimization (described in the next chapter) by sampling the

medial axis and checking them at the discrete samples. This requires sampling at the

finest resolution at which the model will be used (which may not be known a priori) and

does not guarantee that a finer sampling will not locate places where these constraints

are violated. An analytic method of identifying whether or not a patch satisfies these

constraints (without sampling) would be of great utility in creating robust models.

We have provided practical examples of all the concepts in this chapter using the

symbolic computation package Mathematica to prove their feasibility. In addition,

we have written a C library for computing and displaying single-sheet models, which

will be described in more detail in the next chapter. Without any special optimization,

this library can compute sampled boundary representations for a medial model at

interactive rates.

Much future work remains. First and foremost is the extension of our C library to

support branching. Chronologically, the theory behind branching was one of the last

pieces developed for this dissertation, and incorporating it into a practical, useful tool

is an important next step. Additionally, we would like to explore ways of supporting
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both our fourth order spline for eliminating sympathetic overfolding and branching in

the same model. This may be as simple as transitioning back to the Catmull-Rom

spline at fin creation points, or forcing rv(0, 0) = mv(0, 0) = 0 on all three patches at

the fin point to allow the branch curve to match. Initial explorations of the latter route

have raised the problem that θ
(0)
v becomes independent of r

(0)
uu , meaning a different set

of control point adjustments would need to be found to enforce the constraint in (3.49).

Finally, the same techniques we use to handle fin creation points should be applicable

to six-junctions as well, the last step needed to provide complete support for all of

the generic medial topologies in 3D. The challenge there is identifying a way to apply

enough control curves to satisfy all of the branch conditions on all six patches when

each one has a corner.
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Chapter 4

Model Fitting With Explicit

Correspondence Optimization

The problem is closely akin to that of the cartographer who transfers

identical data to one projection or another; and whose object is to secure

(if it be possible) a complete correspondence, in each small unit of area,

between the one representation and the other.

(Thompson, 1917)

Having described an object model, this chapter turns to the problem of producing

a collection of models that represent a collection of shapes to be used in statistical

tests. The basic approach is to start with a template object, described medially, with

a fixed branching structure, to align a copy of that template to each target shape, and

then to deform it to match. This work only considers fitting a model to an existing,

segmented shape, represented as a binary image, a triangulated surface, etc. The

approach described is readily adaptable, however, to the job of segmentation itself

when coupled with a statistical model of the shape variability and an image match

function that determines how well a shape matches the data from a particular image.

The chapter begins by describing a method for sampling a continuous medial axis

and then shows how this sampling can be used to approximate medial integrals. Com-

puting volume overlap, an error metric used to evaluate goodness of fit, is used as a

motivating example. The complete process for fitting a single model to a single target

shape follows. This is involves aligning a template to the target shape and deforming

it using a multi-scale constrained optimization. Finally, this is extended to a tech-

nique for producing a population of models with a common correspondence. This is



integrated directly into the deformation process by deforming the model in a manner

approximately transverse to the fitting process. The models are mapped to a common

coordinate system and the control points are adjusted to achieve a parameterization

that matches an explicit correspondence given on the boundary, as illustrated in Fig-

ure 4.1. This is done by taking advantage of the inherent link between the boundary and

the medial axis given by a continuous medial model, moving the problem of formulating

correspondence to the boundary, where most of the information lies.

Figure 4.1: The entire population of objects is mapped to a common coordinate system
to optimize correspondence.

This chapter considers two specific discretized representations for the target shapes,

though of course many others are possible. One is the binary image, I(x) : R3 → {0, 1},
defined to be 1 when x is in the shape’s interior, and 0 elsewhere. The image is defined

on a regular grid—though the spacing along each axis may not be the same—and

extended to the whole space via some interpolation method. The second representation

is the triangle mesh, T , composed of a set of (oriented) triangles. The fitting process

for the latter is not yet implemented, but a complete description of the mathematics

involved given here shows how it could easily be incorporated into this optimization

framework.

In principle one representation can be converted to the other. Algorithms such as

Marching Cubes could construct a mesh from a binary image. Similarly the function

I(x) could be implemented as a series of inside-outside tests against the triangular

mesh, discretizing the result on a regular grid (though of course this discretization is

not always required). However, these conversions can have difficult to predict effects on

the model fitting process, making it desirable to work with the original representations

when possible.
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4.1 Approximating Medial Integrals

Most of the functions used during model fitting are expressed as medial integrals.

Medial coordinates provide a natural, object-centric coordinate system for these prob-

lems, and being able to operate directly in these coordinates makes object-centric tasks

straightforward. The actual computation of these integrals is done by simple numerical

approximation.

4.1.1 Sampling the Medial Axis

The first step in computing a medial integral is defining a sampling of the medial axis.

The same sampling will be used for display purposes and to check the boundary for

illegalities, e.g., using the radial curvature condition defined in Section 2.3.4. One could

simply evaluate the splines at a given, fixed resolution, but choosing an appropriate one

is difficult. Near the edges of the medial axis, the rate of change of the spoke direction

for an infinitesimal step along the medial axis diverges to infinity. Even away from the

edge, the unit piece of surface area on the boundary can change substantially relative to

a unit piece of area on the medial axis. The real goal is to limit the amount of surface

area on the boundary each sample represents to something, say, commensurate with

the size of a voxel in a binary image or triangle in a mesh. Recursive subdivision drives

this process. It is also possible to to limit the volume element instead of the surface

area element, but most of the integrals we are approximating are over the boundary,

and using additional subdivision along the spoke direction provides a more uniform

sampling of the object interior when required.

The sampling consists of a tiling of the unit square in the (u, v) plane for each patch,

starting with a single sample at (u, v) = (1
2
, 1

2
), with sample dimensions ∆u = ∆v = 1.

This represents the rectangle in the (u, v) plane with corners (u− 1
2
∆u, v − 1

2
∆v) and

(u + 1
2
∆u, v + 1

2
∆v). Subdivision proceeds in the u or v direction (or both) until the

corresponding area on the boundary is sufficiently small. For example, to subdivide in

the u direction, the original sample at (u, v) is replaced with two samples at (u− 1
4
∆u, v)

and (u + 1
4
∆u, v), and ∆u is scaled by a factor of 1

2
. The process is then repeated on

the new samples.

The stopping condition is based on the differentiable unit of area on the boundary,

which is given by

dB± = ‖B±u × B±v ‖ du dv . (4.1)
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By applying (3.3) this can be expanded to

dB± =
∥∥(mu + ruU

± + rU±u
)
×
(
mv + rvU

± + rU±v
)∥∥ du dv (4.2)

Expressions for computing U±u and U±v are given in Appendix A. The formula in (4.2)

is precisely equivalent to the det (I− rSrad) dM given in Section 2.3.5, but it makes

explicit which portion of the area comes from a step in the u direction, and which from

a step in v. This allows refinement of the sampling in one variable without affecting

the other. This avoids very long, very thin samples near the edge of the medial axis,

where a small step in the u direction (towards the edge) produces a large change in U±,

but a step in the v direction (along the edge) does not. Always subdividing in both

dimensions would make getting below the requisite area bound require very small steps

in both u and v.

Replacing du dv above by ∆u∆v, the unit steps in u and v at the current sampling

level, the sample area falls below a threshold τ 2 when

‖B±u ∆u× B±v ∆v‖ < τ 2 . (4.3)

This is true if both

‖B±u ∆u‖ < τ√
|sin θ|

and ‖B±v ∆v‖ < τ√
|sin θ|

(4.4)

are satisfied, where θ is the angle between B±u and B±v . The
√
|sin θ| term adjusts the

threshold to correct for the degree to which B±u and B±v fail to be orthogonal. Unless

otherwise specified, the sampling resolution τ is the (geometric) average voxel spacing

in each direction for binary images or the (geometric) average edge length for triangle

meshes.

Noting that

|sin θ| = ‖B±u ∆u× B±v ∆v‖
‖B±u ∆u‖‖B±v ∆v‖

, (4.5)

the check for the first half of (4.4) reduces to

‖B±u ∆u‖2‖B±u ∆u× B±v ∆v‖2 < ‖B±v ∆v‖2τ 4 . (4.6)

A similar check can be obtained for the second half by swapping u and v. Thus, once B±u
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and B±v are available, the check for whether or not to stop subdivision can be computed

with just one cross product and three dot products. Computing these checks for both

the top and bottom sides, subdivision continues if either fails.

At each level of subdivision, samples are split in u, v, or both, depending on which

thresholds are exceeded, and replaced with two or four new samples at the next lower

subdivision level. As a practical matter, because the sample area is only an approxi-

mation, once u or v is left unsplit at a given level, that threshold may later be exceeded

again at a deeper level. However, this happens seldom. To simplify the data structures

involved, once the threshold is satisfied for one of the variables in a particular sample,

its descendants are never subdivided in that direction again. Any further subdivision

is done instead with respect to the other variable only.

There is also no inherent requirement that the sampling on the top side be the

same as the sampling on the bottom side, and indeed the curvature on the boundary

may differ greatly between the two, for example when the medial sheet itself is curved.

However, in the current implementation, subdivision always proceeds on both sides

simultaneously. This can lead to a larger number of samples than is necessary on the

concave side of such a curved medial sheet, but this gives a greater chance of detecting

overfolding in this region.

A simplistic recursive scheme yields a polygon mesh for display purposes. A tree

traversal connects adjacent points at the same subdivision level with edges and connects

adjacent points at different levels with triangle fans. To save memory, the list of faces

and edges is determined implicitly directly from the tree structure and never stored.

This scheme avoids sampling at the edge of any of the patches, which avoids all

singular points as well as extraordinary vertices. This means that Srad is well defined

at each sample location, ensuring that the radial curvature condition can be checked

to avoid overfolding and making the point’s contribution to a numeric approximation

of a medial integral simple. The problems that arise with some patch edges only

affect the computation of Srad, either because M is not C2 continuous at these points

due to the presence of a control curve on the patch, or because they are edge points

or extraordinary vertices where Srad itself diverges. The radial vectors U and the

associated points on the boundary are still well-defined at these points, and for display

purposes it might even be a good idea to compute them, especially along the crest

region. However, the size of a local surface patch around these boundary points is no

longer well-approximated by derivatives at the patch center. The places that are not C2

continuous could be handled by using one-sided derivatives to compute multiple values
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of Srad, and at edge points we could use SE instead, if we could find a suitable edge

coordinate parameterization. But because the set of such points has measure zero, the

simple route is to avoid them altogether.

Taking the simple route produces a sampling where the local patch areas are easy

to compute, a term whose definition follows. A sampling is a set of sample points S
consisting of their (u, v) coordinates as well as the patch they are located on, along with

the area each sample covers in parameter space, ∆u∆v. Abusing notation, a tuple of

functions evaluated at a single point (u, v) on some patch is treated as if they were part

of the sampling itself. Therefore, (m0, r, U0,∆M) ∈ S stands for the values m(u, v),

r(u, v), U+(u, v) or U−(u, v), and ∆M(u, v). The latter is defined as

∆M(u, v) , ρ(u, v) ‖mu(u, v)×mv(u, v)‖∆u∆v

= U+(u, v) · (mu(u, v)×mv(u, v)) ∆u∆v

= −U−(u, v) · (mu(u, v)×mv(u, v)) ∆u∆v .

(4.7)

The two tuples corresponding to U±, that is (m(u, v), r(u, v), U+(u, v),∆M(u, v)) and

(m(u, v), r(u, v), U−(u, v),∆M(u, v)), are considered two distinct elements of S. De-

pending on the precise usage of the sampling in a given context, it will also include

various derivatives of m, r, and values constructed from them, such as Srad (again with

one copy for each side). This will hopefully become clear as several examples illustrate

how a sampling is used to approximate medial integrals.

4.1.2 Moment Integrals

The standard moment integrals up through second order describe the distribution of

mass in an object. They can be thought of as approximating the object by an ellipsoid,

or equivalently, a multivariate Gaussian distribution. They are interesting primarily

as a means of aligning two different shapes into a common coordinate system, though

such a simple alignment scheme may fail or be inadequate for bent or twisted objects.

Section 2.3.5 gave formulas for the integrals, using an exact analytic expression

for g̃. To evaluate them numerically, one simply sums up the contribution from each

sample. For example, to compute the volume of an object (from (2.28)),

V (Ω) ≈
∑

(r,Hrad,Krad,∆M)∈S

(
r − r2Hrad +

1

3
r3Krad

)
∆M . (4.8)
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A similar approximation can be constructed for both (2.30) and (2.32).

Ω ≈ 1

V (Ω)

∑
(m0,r,U0,Hrad,Krad,∆M)∈S

(
m0

(
r − r2Hrad +

1

3
r3Krad

)
+

U0

(
1

2
r2 − 2

3
r3Hrad +

1

4
r4Krad

))
∆M , (4.9)

IΩ ≈
∑

(m0,r,U0,Hrad,Krad,∆M)∈S

(
mT

0m0

(
r − r2Hrad +

1

3
r3Krad

)
+

(
mT

0U0 + UT
0 m0

)(1

2
r2 − 2

3
r3Hrad +

1

4
r4Krad

)
+

UT
0 U0

(
1

3
r3 − 1

2
r4Hrad +

1

5
r5Krad

))
∆M − V (Ω)Ω

T
Ω . (4.10)

4.1.3 Estimating Volume Overlap

Volume overlap is a standard measure of how close the shape given by a model, Ωm,

and the target shape, Ωt, are to each other. It can be defined in several ways, but

herein shall be

Voverlap(Ωm,Ωt) ,
V (Ωm ∩ Ωt)

V (Ωm ∪ Ωt)
=

V (Ωm ∩ Ωt)

V (Ωm) + V (Ωt)− V (Ωm ∩ Ωt)
. (4.11)

Some authors also call this the Jaccard coefficient (Jaccard, 1901) or sometimes even

erroneously the Rogers-Tanimoto coefficient (Rogers and Tanimoto, 1960)1. Other au-

thors use 1
2
(V (Ωm)+V (Ωt)) for the denominator, also called the Czekanowski, Sorenson,

or Dice coefficient (Czekanowski, 1932; Sorenson, 1948; Dice, 1945) (or various hyphen-

ated combinations thereof). This results in higher overlap measurements than with our

definition. The two are related by VDice = 2
Voverlap

1+Voverlap
.

The volume overlap of a medial model with a binary image is again expressed as a

medial integral. Letting Ωt be the shape defined by the image, counting the number

of voxels x such that I(x) = 1 and scaling by the voxel spacing yields an estimate

for V (Ωt). Similarly, letting Ωm be the shape defined by a medial model, via the

approximation in (4.8) provides an estimate for V (Ωm). Another medial integral is

constructed to compute V (Ωm ∩ Ωt).

1 The real definition of this latter coefficient also includes terms for the points that are in neither
set, which is clearly only useful in bounded spaces.
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The function being integrated is still g = 1, but its domain is restricted to the

specific region Γ = Ωm ∩ Ωt. By Corollary 7 of (Damon, 2005a), if Γ ⊆ Ω is a Borel

measurable region, then this can be done simply by replacing g with χΓ · g in the

definition of a skeletal integral given in (2.13) and (2.14):

g̃Γ(m0, S0) =

∫ 1

0

χΓ(m0 + tS0) · g(m0 + tS0) · det (I− t · rSrad) dt (4.12)∫
Γ

g dV =

∫
M̃

g̃Γ · r dM . (4.13)

Here χΓ(x) is the characteristic function of Γ, defined to be 1 when x ∈ Γ, and 0

otherwise. This is precisely the definition of the binary image I(x) (restricted to the

interior of Ωm).

For binary images, instead of deriving an exact formula for g̃Γ, it is approximated

numerically given a tuple (m0, r, U0) ∈ S. The number of steps used for the approxi-

mation is nsteps , d r
τ
e. An approximation for mj(gΓ) from (2.22) is given by

m0(gΓ) ≈
nsteps∑
i=1

I(m0 + ti · rU0) ·∆t , (4.14)

m1(gΓ) ≈
nsteps∑
i=1

I(m0 + ti · rU0) · ti∆t , (4.15)

m2(gΓ) ≈
nsteps∑
i=1

I(m0 + ti · rU0) ·
(
t2i +

∆t2

12

)
∆t . (4.16)

where ti = 2i−1
2nsteps

and ∆t = 1
nsteps

. The terms ∆t, ti∆t, and (t2i + ∆t2

12
)∆t represent the

exact analytic integrals of tj from (ti − 1
2
∆t) to (ti + 1

2
∆t) for j = 0, 1, 2, respectively.

The value of the binary image, I(x), is sampled using nearest neighbor interpolation.

Plugging these sums into (2.23) gives an approximation for g̃Γ, and thus the full medial

integral.

For triangle meshes, the algorithm given in (Mirtich, 1996) allows direct compu-

tation of V (Ωt) and the other moment integrals2 V (Ωm) is computed as before, there

is a better approximation of V (Ωm ∩ Ωt). Given all the intersection points of the ray

m0 + t · rU0 with the mesh T , there is an exact formula for the contribution from each

2 The reader is cautioned that the inertia tensor J computed by Mirtich is not the same as the
second moment tensor IΩ used here, even though the former is used to compute the moment of inertia
about an axis, and even though they are both denoted I in various texts. However, Mirtich’s algorithm
produces all the quantities needed to compute either tensor, and both have the same eigenvectors.
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segment (t0, t1) of the ray that lies inside the target shape:

mj(gΓ) =
tj+1
1 − tj+1

0

j + 1
. (4.17)

The values (t0, t1) are clamped to fall in the interval [0, 1]. Summing the contributions

for each segment and plugging them into (2.23) again completes the integral.

It is possible, of course, to also find such intersection points in a voxelized image

using some kind of variation of Bresenham’s line drawing algorithm (Bresenham, 1965).

However, such a formulation would be complicated by the need to determine which faces

of each voxel represent shape boundaries and of those, which are intersected by the ray,

and at what time t. The sampling approach used instead is much simpler to implement.

4.2 Single-Subject Model Fitting

Before describing the process for an entire collection, this section first considers fit-

ting a single model to a single image. This assumes that a template that defines the

number and arrangement of control points and the branching topology of the medial

axis is given as input. Currently, these templates are hand-constructed, though it

is certainly reasonable to expect that one could develop automatic template-creation

methods similar to those developed for discrete m-reps (Styner et al., 2003).

4.2.1 Template Alignment

The first step is to align the template model with the target shape. This is done using

the moment integrals derived in Section 4.1.2 to derive a similarity transform to apply

to the template object. From the volumes V (Ωm) and V (Ωt), the desired scale factor

is given by

s =

(
V (Ωt)

V (Ωm)

) 1
3

. (4.18)

The next step is to compute the matrices UΩm and UΩt , containing an orthonormal

set of right eigenvectors of IΩm and IΩt , respectively, sorted by the descending order of

their associated eigenvalues. This gives the desired rotation:

R = UΩtU
−1
Ωm

. (4.19)
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There is some ambiguity here, since flipping any of the eigenvectors to point in the

opposite direction yields a different orthonormal set of eigenvectors.

Using the combination of orientations that produces the minimum total rotation,

e.g., as measured by computing the axis of rotation and looking at the magnitude of the

angle of rotation around it, and rejecting orientations that would introduce a reflection

into R resolves this ambiguity. This works so long as the two shapes are not too bent or

twisted and are expected to be relatively close in orientation. The latter is a reasonable

assumption in the case that the original imagery, such as a whole-brain MRI scan, is

stored in a standard coordinate system. Another (more computationally expensive)

strategy that could handle more general positioning, including reflections, would be

to choose the eigenvector orientations that give maximum volume overlap. To handle

heavily bent or twisted objects, one could use a small number of easily identifiable

landmarks to drive the alignment, such as the tips of the head or tail of the object.

Technically, alignment via moments may also fail when two or more eigenvalues are

very close, since when they are equal there are infinitely many valid sets of orthonor-

mal eigenvectors. This occurs when an object is nearly spherically or cylindrically

symmetric.

However, the computed R yields the following similarity transform to apply to each

control point:

m′ = sR
(
m− Ωm

)
+ Ωt , (4.20)

r′ = sr . (4.21)

The application of a scale factor means that the new model will have a different sam-

pling than the original template, because the sample size will fall under the sampling

resolution at different points in the subdivision process. Due to approximation errors,

the moment integrals of the transformed shape might not not match those of the target

shape exactly. Assuming that the template is roughly commensurate with the size of

the targets, this scale factor will be near 1, and these errors can be ignored. Performing

a pre-scaling using just the volumes and then resampling the model before computing

the full similarity transform ensures this assumption is true.

4.2.2 Model Deformation

The next step attempts to find a globally optimal choice of control point values that

minimize the average distance to the target shape. This is a global nonlinear opti-
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mization problem, to which no well-known panacea gives the solution. Our approach

is inspired by continuation methods, which have met with some success in, for exam-

ple, the biomedical engineering problem of determining the configuration of complex

protein molecules (Moreé and Wu, 1997).

Continuation methods attempt to find the global minimum of a function with many

local minima by applying a diffusion process driven by the heat equation to smooth the

objective function. Standard local minimization techniques are then used to find the

minimum of the smoothed function, and this minimum is traced back to the original

objective function by gradually reducing the amount of diffusion. As the smoothing is

reduced, the local minimum produced by one iteration is used as the initial point for a

local minimization process in the next iteration. Continuation methods rely on being

able to efficiently solve the heat equation, which has an analytic solution for several in-

teresting classes of functions (Gaussians, polynomials, and trigonometric polynomials)

(Kostrowicki and Piela, 1991). Without an analytic solution to this partial differential

equation, numeric integration is required, which becomes equivalent to sampling the

entire (high-dimensional) domain one is optimizing over.

There is no known analytic solution to the heat equation for our objective functions

over the domain of possible control point values. However, applying some diffusion in

the spatial domain can still reduce the number and magnitude of local extrema in the

target shape. That does not imply that this property pulls back into the control point

domain at every scale, but it must certainly do so in the limit, as eventually the shape

is obliterated and the objective function becomes uniform. Thus the procedure is to

compute a coarse scale representation of the target shape, fit a model to that using local

nonlinear optimization, and then reduce the scale and refine the model until reaching

the desired sampling resolution.

The Objective Function for Images

The first step is to give a precise definition of the objective function for binary images.

This formulation is straightforward, but the formulation for triangle meshes that follows

is much more interesting. We convert the target image to a scale-space representation
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by convolving it with a family of Gaussians, defined by their scale parameter, σ:

gσ(x) =
1

(2πσ2)
n
2

e−
‖x‖2

2σ2 (4.22)

Iσ(x) = (gσ ∗ I)(x) =

∫
y∈Rn

I(y)gσ(x− y) dV . (4.23)

Scale-space theory (Lindeberg, 1997) tells us that such a family of Gaussians is both

necessary and sufficient for producing a multi-scale representation that (along with

other invariance properties) does not enhance local maxima or minima. The convolution

can done by applying a finite filter to the image, which truncates the rapidly decaying

Gaussian after several standard deviations. The boundary Bσ
t of the target shape at a

scale σ is then given by the level set

Bσ
t = {x ∈ Rn : Iσ(x) = `0} . (4.24)

Here `0 is the target level of the level set, chosen to be the threshold that gives the

maximum volume overlap with the original shape. This choice helps prevent thin

structures from being entirely destroyed, possibly breaking the target shape into several

disconnected pieces. As the amount of diffusion decreases, it converges to `0 = 1
2
.

It is possible to optimize over the distance to this set by computing the distance

transform of the result, either by thresholding it to a binary image (Maurer et al., 2003)

or by explicitly solving for the location of Bσ
t , using, e.g., Marching Cubes (Mauch,

2000). However, using level set methods directly can avoid the additional computational

expense and discretization errors this would introduce. We use a medial integral on the

boundary as defined in (2.15) to construct the objective function:

F σ
I ,

1

2

∫
M̃

(Iσ(m0 + rU0)− `0)
2 · det (I− rSrad) dM . (4.25)

This drives the model surface to fit the same shape as the distance function formulation

would.

Unfortunately, this objective function has a trivial global minimum: M = 0 every-

where. This forces the total surface area of the object, and thus the objective function,

to zero. One solution would be to divide F σ
I by the area, but it makes computing

derivatives much simpler to fix the weights applied to each sample throughout the
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optimization. That is, we use the approximation

F σ
I ≈

∑
(m0,S0)∈S

wi · (Iσ(m0 + S0)− `0)
2 (4.26)

where

wi =
∣∣∣det (I− rSrad) ∆M

∣∣∣ . (4.27)

The weights wi are computed once at the beginning of the optimization and periodically

updated throughout, but they are assumed to be constant when computing the gradient

of F σ
I . The absolute value handles the case of overfolding at the current sample when

the weights are first evaluated. If the ‖∇r‖ < 1 constraint is violated, meaning the

spoke S0 cannot be computed, we temporarily set wi = 0.

In particular, the derivative of F σ
I with respect to a given control point component

ν is given by

∂F σ
I

∂ν
≈

∑
(m0,S0)∈S

wi · (Iσ(m0 + S0)− `0)∇Iσ(m0 + S0) ·
(
∂m0

∂ν
+
∂S0

∂ν

)
. (4.28)

Details on how to compute the derivative ∂S0

∂ν
= rνU0+r

∂U0

∂ν
can be found in Appendix B.

We sample Iσ at non-lattice positions using linear interpolation (for speed) and choose

the gradient ∇Iσ to match this interpolation. Not updating wi at each step avoids the

need to differentiate ∆M and Srad with respect to ν, of which the latter, at least, is

relatively expensive to compute. This prevents the optimizer from trying to reduce the

objective function by shrinking the surface area of samples with large errors.

The Objective Function for Surfaces

The question of how to introduce a scale space on surfaces is far more subtle, and a

very recent approach based on work by (Glaunès et al., 2004; Vaillant and Glaunès,

2005; Glaunès and Joshi, 2006) gives a possible solution. The problem is one of putting

a distance metric on two unlabeled surfaces. Our two surfaces can, and will, have

different triangulations, with no a priori knowledge about which points correspond to

each other, other than the canonical choice of the “closest” points, which are difficult

to compute and may not be unique. In fact, this correspondence is not fixed precisely

to allow it to change as the optimization proceeds. However, without such a fixed
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correspondence, the space of surfaces is infinite dimensional. Either one of the surfaces

can have arbitrarily many points, and there is no a priori bound on the number of

points computed when sampling a medial model.

Thus we turn to an infinite dimensional vector space, the space of Borel measures

on R3, to represent them. This space has the nice feature that, although infinite

dimensional, it can be viewed as a Reproducing Kernel Hilbert Space (Daumé, 2004)

with a computationally tractable (for finitely representable elements) inner product and

norm. Without delving too deep into the mathematical theory, the measure associated

with an oriented surface T ∈ R3 is given by the linear functional [T ](ω) =
∫

T
ω over 2-

forms ω(x) (see (Vaillant and Glaunès, 2005) for details). This is precisely the measure

associated with integrating a vector field over the surface: a collection of unit vectors

normal to the surface, NT , distributed with a density equal to the element of surface

area, dT . This is a specific formulation of the more general theory of currents from

Geometric Measure Theory (Federer and Fleming, 1960), which can generalize the

concept to sub-manifolds of any dimension embedded in an ambient space of any larger

dimension. In other words, one could apply the concept to point sets, as in (Glaunès

et al., 2004), or even hand-drawn contours on a stack of 2-D image slices—a typical

method of manual segmentation employed by radiologists. However, this chapter will

not go into this generalization further. A suitable matrix-valued kernel K(x, y) : R3 ×
R3 → R3×3 gives the K-norm, defined as

‖[T ]‖2
K =

∫
T

∫
T

N (y)TK(x, y)N (x)dT (x)dT (y) . (4.29)

For a discretely triangulated surface, the sum over a collection of Dirac delta func-

tions δx
3 approximates the integral:

‖[T ]‖2
K ≈

∥∥∥∥∥
nT∑
i=1

ηiδci

∥∥∥∥∥
2

=

nT∑
i=1

nT∑
j=1

ηT
i K(ci, cj)ηj . (4.30)

Here nT is the number of triangles in T , ci is the center of mass of the ith triangle, and

ηi is the outward pointing (non-unit) normal vector with length equal to the triangle’s

area. E.g., for a triangle with vertices xi, yi, and zi in counter-clockwise order,

ci =
1

3
(xi + yi + zi), ηi =

1

2
(yi − xi)× (zi − xi) . (4.31)

3 Defined here to be a function δx(y) such that δx(y) = 0 when y 6= x and
∫

y∈R3 δx(y) dV = x.
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A sampling S yields a similar measure without needing to triangulate the surface.

For a sample (m0, r, U0,Bu,∆u,Bv,∆v) ∈ S (or equivalently (m0, r, U0, Srad,∆M) ∈ S),

c′i = m0 + rU0, η′i = (Bu∆u)× (Bv∆v) = U0 det (I− rSrad) ∆M . (4.32)

All that remains is to choose a suitable kernel, such as a uniform Gaussian Kσ(x, y) =

gσ(x − y)I. Thus the distance metric naturally has a free scale parameter σ, which

again allows a continuation-like method of optimization.

This norm introduces a distance metric between the model boundary B and the

triangulated target surface T via subtraction on measures. Letting nS denote the

number of points in the sampling S, the objective function is

F σ
T ,

∥∥∥∥∥
nS∑
i=1

η′iδc′i −
nT∑
i=1

ηiδci

∥∥∥∥∥
2

=

nS∑
i=1

nS∑
j=1

η′Ti Kσ(c′i, c
′
j)η

′
j

− 2

nS∑
i=1

nT∑
j=1

η′Ti Kσ(c′i, cj)ηj +

nT∑
i=1

nT∑
j=1

ηT
i Kσ(ci, cj)ηj .

(4.33)

The biggest reductions in this distance will come from making the cross terms in the

center large, e.g., by making the surfaces “close” to each other. Not only does this

require that each point c′i be near some of the cj points, but their normal vectors must

point in similar directions. It does not have the same trivial global minimum as our

objective function for binary images, since even if the surface area of our object goes to

zero, there will still be a large contribution from the last term, the norm of the target

surface.

The double summations might also at first glance make the method seem expensive

to compute. Unlike with binary images, the Gaussian blurring is no longer a simple filter

applied on a regular grid. However, one can truncate the Gaussians beyond a certain

threshold and take advantage of the fact that the target shape T does not change during

the optimization to implement fast query structures to retrieve the nearby points, such

as oriented bounding box (OBB) trees (Gottschalk et al., 1996). For large scales or

dense point sets one of the Fast Gauss Transforms (Greengard and Strain, 1991; Yang

et al., 2003; Lee et al., 2005) provides an O(nS + nT ) approach, albeit with a large

constant factor that depends on the desired accuracy.

The gradient is again given by derivatives with respect to each control point com-
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ponent, ν:

∂F σ
T

∂ν
=

nS∑
i=1

[(
∂η′i
∂ν

)T
(

nS∑
j=1

Kσ(c′i, c
′
j)η

′
j − 2

nT∑
j=1

Kσ(c′i, cj)ηj

)

+ η′Ti

nS∑
j=1

((
∇c′i

Kσ(c′i, c
′
j) +∇c′j

Kσ(c′i, c
′
j)
)
η′j +Kσ(c′i, c

′
j)
∂η′j
∂ν

)

−2η′Ti

nT∑
j=1

∇c′i
Kσ(c′i, cj)ηj

]
.

(4.34)

Here ∇c′i
Kσ(·, ·) denotes the directional derivative of the kernel in the

∂c′i
∂ν

direction (and

similarly for c′j). That is, for the isotropic Gaussian kernel,

∇c′i
Kσ(c′i, c

′
j) = − 1

2σ2

∂c′i
∂ν

· (c′i − c′j)gσ(c′i − c′j)I , (4.35)

∇c′j
Kσ(c′i, c

′
j) =

1

2σ2

∂c′j
∂ν

· (c′i − c′j)gσ(c′i − c′j)I . (4.36)

4.2.3 Local Nonlinear Optimization

The optimization process itself is skirted over by many researchers, often being summa-

rized in a couple of sentences and seldom described in enough detail to be reproducible

by others. In contrast, this section attempts to go into considerable detail, where the

strict page limits of conference proceedings and journal publications are not in force.

The uninterested reader may skip to the next section after being told that we use a

nonlinear conjugate gradient method, resampling the model each time the method is

restarted (termed a macro step herein). The interested reader is invited to continue.

The model-fitting process is inherently nonlinear, due to the nonlinear relation

between the radial vector field U and the radius function r. All nonlinear optimization

methods are iterative and depend on starting from a good initial solution. There

are two general types of multivariate nonlinear solvers: trust region and line-search

methods. Trust region methods estimate a local model of the objective function, as

well as the size of the region in which the model is valid, and take steps within that

region, updating the region size depending on how closely the actual objective function

matched the prediction of the model. Line search methods, on the other hand, choose

a single direction at each step, and then perform a one-dimensional optimization along

this direction. This can require many more evaluations of the objective function.
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Special methods like Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) or

Powell’s Dog Leg method (Powell, 1970) are available for optimizing sum-of-squares

objective functions4 like F σ
I , our objective function for binary images. Even though

these methods are specifically designed to take advantage of the special structure of

these problems and despite the fact that they offer second order convergence near a

local minimum, they have two distinct drawbacks. First, they require computation of

a Jacobian matrix, with a row for each of the residuals, which typically number in the

tens of thousands at small scales. The rows themselves are sparse, with O(1) non-zero

elements, and sparse methods can be used to solve the set of Gaussian normal equations

that arise, but even so their solution dominates the computational time. Second, both

methods are trust-region methods. When a step fails to reduce the objective function

in a trust region method, the size of the trust region is reduced and the step is re-

computed. However, the objective function fails to be continuous when a step causes

the ‖∇r‖ < 1 constraint to be violated at one or more samples, because we cannot

evaluate the spoke vector S0 (and simply drop the corresponding terms from the sum).

Since continuity is assumed in all trust region methods, a gradient pointing into one

of these regions will cause the method to step up very close to its edge, after which

the models it constructs will fail to be valid in a region of any size, terminating the

optimization. Initial experiments with a Dog Leg optimizer confirm that it does indeed

reach points where the objective function does not actually decrease when moving

in the gradient descent direction5, and this prevents the optimizer from producing a

reasonable fit. A line search method, in contrast, can select a step that actually moves

in the opposite of the search direction, which can help avoid getting stuck in such

places.

The line search method used is a nonlinear conjugate gradient method (Shewchuk,

1994), which performs well on objective functions with a steep, narrow valley, such as

can be produced by the penalty functions described in the next section. Conjugate

gradients have a vastly reduced memory footprint, as only a couple of gradient vectors

need be stored, and also avoid expensive linear algebra computations. The bottleneck

of the optimizer then becomes the computation of the gradient vector itself, which due

4 Both methods share similar qualities, and Levenberg-Marquardt is generally more popular, but
the Dog Leg method has considerable computational advantages (Lourakis and Argyros, 2005).

5 The accuracy of the gradient can be confirmed by approximating it numerically using finite
differences smaller than the minimum allowed step size. That is, this result is not due to a bug in the
gradient calculation.
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to locality is roughly a (large) constant factor more expensive to evaluate than the

objective function.

The basic method for an objective function F (xk) proceeds as follows. Given a

search direction δk at step k, a line search is used to find a step xk+1 , xk +αkδk. The

search direction is initialized to δ0 , −∇F (x0). The next search direction is chosen to

be approximately orthogonal to all of the previous ones using the update step

βPR
k+1 , max

(
∇F (xk+1) · (∇F (xk+1)−∇F (xk))

‖∇F (xk)‖2
, 0

)
, (4.37)

δk+1 , βPR
k+1δk −∇F (xk+1) . (4.38)

This approximation is exact (within numerical precision) in the case of a quadratic

function, in which case (for a well conditioned problem) convergence is achieved in

exactly n iterations, where n is the number of variables. The optimization continues

until the L∞ norm of ∇F (xk) drops below a threshold ε1. It also stops if the chosen

step size αk‖δk‖ falls below the threshold ε2(‖xk‖+ ε2). We set both ε1 and ε2 to ε
3/4
0 ,

where ε0 is the floating-point precision of the machine.

The update strategy used here is due to Polak and Ribiere, which generally pro-

vides better convergence than the original strategy proposed by Fletcher and Reeves:

βFR
k+1 , ‖∇F (xk+1)‖2/‖∇F (xk)‖2. The max operator in the βPR

k+1 formula restarts the

optimization in the gradient descent direction whenever βPR
k+1 < 0, a modification to

the original Polak-Ribiere update formula that is necessary to avoid potentially getting

trapped in an infinite cycle around the minimum. This restart discards information

about the local quadratic model from previous points, which may also be helpful if the

current point has moved a sufficient distance to make this model invalid. Therefore it

is also common practice to restart the method when two successive gradients are not

sufficiently orthogonal, e.g., whenever

|∇F (xk) · ∇F (xk+1)|
‖∇F (xk)‖2

> c1 (4.39)

for some constant c1, here fixed at c1 = 1
10

. One can also choose to restart after a fixed

number of iterations (e.g., n), but typically the orthogonality check will fail long before

this limit is reached.

A series of steps up until a restart (for any reason) is considered a single macro step.

The sampling of a model is kept fixed for the duration of a macro step. Whenever the

conjugate gradient optimization is restarted, the models are resampled, which of course
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means that F (xk) and ∇F (xk) must be recomputed as well. For F = F σ
I , each restart

also updates the weights, wi. The total number of macro steps at each scale level is

limited to some value Kmax. All the fits reported in this chapter use Kmax = 200.

Returning to the line search, the direction vectors δk are badly scaled, so using

an initial guess for the step size of αk,0 = 1 will typically land far from the actual

minimum. However, there is a strong coherence in the step sizes between iterations, so

a good initial guess is

αk,0 , αk−1
‖δk−1‖
‖δk‖

. (4.40)

From there a Golden Section Search similar to the one described in Chapter 10 of (Press

et al., 1992) brackets the minimum. That is, three consecutive points on the line are

identified where the objective function at the middle one is smaller than that at the

outer two. The step size coherence usually allows this to be done with only three or

four additional function evaluations.

The bracketing process tries successively larger steps until it finds one where the

objective function is larger than the smaller of F (xk) and F (xk+αk,0δk). The algorithm

described by Press et al. uses steps in the negative direction if the αk,0 step actually

led to an increase of F . However, one expects that the function should decrease in the

search direction. Naively reversing the search direction just because the initial step led

to an increase runs the danger of the line search failing. To see how, imagine a function

that blows up to a very large value outside of some small interval around the base

point, xk (such as the penalty functions introduced below). By reversing the direction,

the chosen bracket will surround the base point and will appear to the minimization

process to lead to such a large reduction in F that it is immediately chosen as the

minimum. The resulting step αk = 0 halts the optimization process.

Therefore if the initial choice of αk,0 leads to an increase, it is cut in half repeatedly

until a bracket is formed or αk,j falls below a threshold, chosen here to be 216ε2
‖δk‖

. This

prevents the bracket from moving too close to the same kind of function discontinuities

that plague the trust region methods. Only if this process fails is the search direction

reversed.

Given a bracket, the actual line search is done using Brent’s Method (Brent, 1973),

a derivative-free 1D optimization method. Despite the fact that this search may require

many function evaluations, it is extremely fast because it does not need to calculate

the gradient vector at each step. Doing the line search without derivatives eliminates
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the major drawback of line search methods: the computational expense of the extra

function evaluations. Typically, the entire bracketing process and 1D minimization are

completed in less time than it takes to compute a single gradient, i.e., in fewer than 64

steps, typically much fewer. Since the conjugate gradient method converges better the

closer the minimizer is to the true minimum and additional iterations are so cheap, the

line search continues all the way to the tolerance used for the step size, ε2.

4.2.4 Constrained Optimization

The preceding optimization techniques are unconstrained; control points can take on

any values. However, in reality a model must obey a number of restrictions at each

sample:

• The normal to the medial sheet, mu ×mv, must be non-zero.

• ‖∇r‖ must be less than 1 off the edges.

• For each value of v on an edge patch, rv(0, v) must not be so large as to cause

‖∇r‖ to be larger than 1 all by itself.

• The radial curvature condition must be satisfied off the edges, for both the top

and bottom sides.

A set of control point values that satisfies all of these restrictions is said to lie in the

feasible region.

Three simple tests can summarize these restrictions. Because one of the conditions

they enforce is that the normal is non-zero, they avoid dividing by its magnitude.

This makes each test non-commensurate with the others, so division by the sampling

threshold τ is used to restore them to approximately the same scale. Converting the

equality in (3.16) to an inequality yields the first test:

1

τ 4

(
‖mu ×mv‖2 − ‖rumv − rvmu‖2

)
> 0 (4.41)

This test actually covers the first two restrictions. The next test simply ensures that

the square root term from (3.18) is positive:

1

τ 6

((
‖mv(0, v)‖2 − r2

v(0, v)
)
· ‖mu(0, v)×mv(0, v)‖2

)
> 0 (4.42)
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The final test is given by the radial curvature condition and is necessary only on edge

patches:

1− rκr
±
i > 0 (4.43)

Only the largest eigenvalue on each side needs to be checked, and only if the eigenvalue

is real. The latter should always be the case on a Blum medial axis, but a complex

value might arise due to numerical imprecision. No constraint need be imposed in this

case.

These tests transform an unconstrained method into a constrained method via the

standard technique of adding a penalty function to the objective function. This in-

creases the value of the objective function when any of these conditions are violated,

forcing the optimum to lie in the feasible region. Yet our problem is somewhat unusual

in several regards. There are many more constraints than variables, in fact O(nS) of

them. Generally only a handful are active at any given time, however. All of the

constraints are inequality constraints, while most penalty function methods are first

designed to enforce equality constraints and then adapted to inequality constraints

through the use of slack variables. This requires adding an extra variable to the prob-

lem per constraint, which is clearly impractical. Not only are there tens of thousands of

such constraints at small scales, but the number changes every time model is resampled.

A similar problem occurs with Lagrange multiplier approaches. Also, each constraint

is a strict inequality. No constraints should be active at the final solution, so active set

methods are not appropriate. This could be handled by adding a “safety margin” to the

right hand side of each of the constraints above, but it raises the question of how large

a margin is appropriate. In particular, the left-hand side of (4.41) becomes exactly

zero on the edge points, so it can take on arbitrarily small values in the neighborhood

of these points.

The following now describes the method actually used, which works reasonably well

in practice, yet which could almost certainly be improved by further research. The

general approach is to introduce penalty terms of the form

δi , υ(εγi − pi) . (4.44)

Here pi is the left-hand side of one of the expressions in (4.41), (4.42), or (4.43). The

parameter υ controls the strength of the penalty, and ε controls the size of the safety

margin. As the optimization progresses, υ is increased, and ε is adjusted adaptively.
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The weights γi act roughly like Lagrange multipliers, but are held constant; they do

not require careful tuning. These are fixed at γi = 2−12 for (4.41), γi = 2−16 for (4.42),

and γi = 2−4 for (4.43). Collecting all of the terms where δi > 0 yields the penalty

p ,
∑

i:δi>0

δ2
i . (4.45)

This function is C1 continuous in pi at the point each constraint is activated, since
∂δi

∂pi
= −2υδi, and at that point δi = 0. A constraint being active (δi > 0) is distinct

from it being violated (pi ≤ 0). A point lies in the infeasible region only if one or more

constraints are actually violated.

Making ε one of the optimization variables allows the optimization process to adjust

it adaptively. However, to avoid introducing yet another constraint to ensure it remains

positive, the actual variable used is instead log ε. The derivative for the active δi terms

plog ε = ευ
∑

i

γi (4.46)

is always positive whenever there is at least one active constraint, so ε will be steadily

decreased throughout the optimization. The remaining derivatives with respect to

control point parameters ν,

pν = −υp
∑

i

∂pi

∂ν
, (4.47)

may require derivatives of Srad, etc., but they need only be computed for the active

constraints. There are typically only a handful of these.

A typical approach to adjusting the strength parameter υ would be to solve the

repeated minimization problem

argmin
x,ε

F (x) + p(x, ε, υ) (4.48)

as υ →∞. However, solving even one of these minimizations is already very expensive,

so to make the optimization practical υ is held fixed just for the duration of each macro

step and adjusted upward under certain conditions.

This is done by introducing a factor Υ and setting υK+1 = max(υK ,
Υ
ε
) after macro

step K. Thus as ε decreases, υ increases, keeping the total penalty at the pi = 0

boundary of the feasible region roughly constant. At the start of the coarsest scale, Υ
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is chosen according to the scale of the target image, and υ0 = Υ. A good choice for

Υ is the square root of the total surface area of the target, or the conservatively low

approximation (6
√
πV (Ωt))

1
3 , the latter being the choice used here. The parameters ε,

υ, and Υ are not reset after each scale, but carried over from one to the next, except

that Υ is increased by a factor of
√

2 whenever the optimization at a given scale σ

finishes with a point in the infeasible region. This doubles the strength of the penalty

function because of the squaring therein. Making Υ extremely large makes the problem

extremely stiff and could prevent the optimizer from making any progress at all, and

so it is only increased a limited number of times, and only when the penalty function

is failing to keep the solution in the feasible region.

It is possible that the optimization even at the final scale could finish in the infeasible

region. This occurs because we both limit the number of iterations via Kmax and do

not force Υ → ∞. To make sure it produces a feasible model, every time the model

is resampled, if it lies in the feasible region it is copied. After the optimization at the

finest scale finishes, the optimization returns the last feasible model as the final result.

The entire process is summarized as follows. The medial model is aligned to the

target shape using the procedure outlined in Section 4.2.1. Then the model is fit to

this shape over a number of steadily decreasing scales, σ. The sampling of the model

is tied directly to the scale, with τ = 1
2
σ. Thus at large scales where the biggest steps

are taken, the iteration proceeds very quickly. The factor of 1
2

ensures the model is still

legal well below the sampling resolution of the target image. In the results presented

below, the largest scale was computed from geometric average lengths of the edges of

the template model and of its spokes after alignment. The smallest scale was taken as

the geometric average of the voxel spacing in each direction.

The objective function of the local optimization is F σ
I + p, constructed from (4.26)

and (4.45). The fitting process itself is the non-linear conjugate gradient method pre-

sented in Section 4.2.3 using Brent’s method for a derivative-free line search. The

variables in this optimization are the components of the control points in the sub-

division mesh along with ε, which controls the size of the safety margin around the

infeasible region in the penalty function. The sample weights wi from (4.27) and the

penalty strength υ are held fixed during this optimization until the conjugate gradient

optimization restarts, which we term a macro step. The total number of macro steps

at a given scale is limited to a constant Kmax. After the optimization at that scale is

complete, the penalty parameter Υ is increased if the model is infeasible, the scale σ

and sampling resolution τ are decreased, and a new local optimization at the finer scale
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starts from the result of the previous scale. At the end of the finest scale, the most

recent feasible model is returned as the final result of the optimization.

4.2.5 Results

A simple test population was created from an ellipsoid deformed by a set of 20 diffeo-

morphisms of the form (Han, 2006)

Ψα,β,γ(x, y, z) , (x, eγx(y cos(βx)− z sin(βx)), eγx(y sin(βx) + z cos(βx)) + αx2) ,

(4.49)

where α, β, and γ are parameters controlling bending, twisting, and tapering, respec-

tively. These parameters were drawn from normal distributions with standard devia-

tions 1.5, 1.05, and 2.12, respectively, and the resulting deformation was applied to a

standard ellipsoid with axis lengths of (1/2, 1/3, 1/4) centered around the origin. Com-

pared to the size of these ellipsoids, these are relatively large deformations, as shown

in the figures below. The result was converted to a 128 × 128 × 128 binary image for

fitting.

The fitting process used 10 scales and the maximum number of macro steps was

Kmax = 200. The choice of these parameters was conservatively large; during the fitting

process itself most of the finer scales changed the model very little beyond eliminating

illegalities, which was usually done in the first few iterations. They could probably be

reduced significantly without affecting the quality of the fits. The template model was

constructed by fitting a regular 4×6 slab with the corners removed (20 control points, 80

parameters) to each model and aligning and averaging the results, using the arithmetic

average for the m components and the geometric average for the r components. Then

the models were fit again starting from the template model.

Examples of the best, worst, and an average (median) fit obtained are shown in

Figures 4.2, 4.3, and 4.4, respectively. The average volume overlap over all 20 subjects

was 93.64% (VDice = 96.72%). Table 4.1 summarizes the errors between the boundary

surfaces for each model and the original binary images, computed using MeshValmet

(Xu, 2006). Figure 4.5 shows how these errors are distributed over the three repre-

sentative models. Except for the worst case, which was an outlier, voxelization effects

account for the majority of the error. This outlier merely represents a local minimum.

Re-fitting this image starting from the model fit to one of the other bent ellipsoids pro-

duced a result with Voverlap = 93.62% (VDice = 96.71%) and dropped the maximum error
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Deformed ellipsoids Average over the surface Maximum over the surface

Average over the cases 0.318 4.189
Maximum over the cases 0.977 20.300

Table 4.1: The absolute error between the reconstructed boundary of the medial model
and the original voxelized boundary of the binary image. All measurements given in
voxels.

for this case from 20.300 to 2.807 voxels. Using Principal Geodesic Analysis (PGA)

(Fletcher et al., 2004) to extract the major modes of variation in the population and

performing an initial deformation along just these modes after alignment and before the

main optimization could likely eliminate such an outlier. This technique has already

been employed with some success in fitting discrete m-reps.

Models were also fit to real-world data from an ongoing clinical longitudinal pedi-

atric autism study (Styner et al., 2006). The study includes two groups: 23 autistic

(AUT) and 14 typically developing controls (TYP), with a baseline scan at age two and

a follow-up at age four. Four of the control baselines were paired with follow-ups from

an unrelated subject, and an additional 4 of the controls had no associated follow-up.

This gives a total of 70 images from 46 autistic and 24 typically developing subjects.

This analysis focuses on the left and right caudate, which were segmented by experts

via semi-automatic means into binary images at 0.75 × 0.75 × 0.75 mm3 resolution.

Spherical harmonics (SPHARM) (Brechbühler et al., 1995) were also constructed, using

first order harmonics to establish correspondence (Gerig et al., 2001). A template was

built by fitting a hand-deformed 5×10 mesh with the corners removed (46 control points,

184 parameters) to a half-dozen subjects, aligning and averaging the results, and then

fitting that to the entire population. This matches the number of free parameters in

the 3 × 7 discrete m-reps used in (Styner et al., 2006) (16 end atoms × 9 + 5 interior

atoms × 8 = 184), which the automatic method in (Styner et al., 2003) determined

to be the minimum sampling. The same sampling threshold and iteration limits were

used as for the deformed ellipsoids.

Examples of the best, worst, and an average (median) fit obtained for each side are

shown in Figures 4.6, 4.7, and 4.8, respectively. Because the shapes are curved and not

well-aligned to the axes of the image, they are plotted against their SPHARM surfaces

for better visualization. The average volume overlap over all 70 subjects was 84.89%

(VDice = 91.82%) on the left, and 85.25% (VDice = 92.04%) on the right. A good deal of
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(a) Axial (b) Sagittal (c) Coronal (d) Boundary

Figure 4.2: The best fit obtained for the deformed ellipsoids, Voverlap = 95.97% (VDice =
97.94%).

(a) Axial (b) Sagittal (c) Coronal (d) Boundary

Figure 4.3: The worst fit obtained for the deformed ellipsoids, Voverlap = 79.56%
(VDice = 88.62%). Here the bending was simply too severe, and the optimization
became trapped in a local minimum.

(a) Axial (b) Sagittal (c) Coronal (d) Boundary

Figure 4.4: An example of an average (median) fit obtained for one of the deformed
ellipsoids, Voverlap = 95.74% (VDice = 97.82%).
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(a) Best (b) Worst (c) Median

Figure 4.5: The signed error between the reconstructed boundary of the medial model
and the original voxelized boundary of the binary image. For the best and average
cases, small-scale voxel effects dominate the error.

Left caudates Average over the surface Maximum over the surface

Average over the cases 0.241 2.812
Maximum over the cases 0.307 4.689

Right caudates Average over the surface Maximum over the surface

Average over the cases 0.243 2.754
Maximum over the cases 0.307 6.502

Table 4.2: The absolute error between the reconstructed boundary of the medial model
and the original voxelized boundary of the binary image. All measurements are given
in mm.

this error is due to voxelization effects; the errors improve several percentage points on

each side—87.97% (VDice = 93.59%) and 89.13% (VDice = 94.25%), respectively—when

volume overlap is computed against the smooth SPHARM representation instead of

the voxel images, even though the models were fit to the images. Table 4.2 summarizes

the errors between the boundary surfaces for each model and the original binary im-

ages, computed using MeshValmet (Xu, 2006). Figure 4.9 shows how these errors are

distributed over the median model from each side.

4.3 Population-Based Model Fitting

The previous discussion was restricted to fitting a single model against a single target

shape. But typically statistics involves an entire population of target shapes. Up to the

tolerance afforded by the number of control points, there are often many configurations
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(a) The SPHARM bound-
ary over the model

(b) The model over the
SPHARM boundary

(c) The medial mesh

(d) The SPHARM bound-
ary over the model

(e) The model over the
SPHARM boundary

(f) The medial mesh

Figure 4.6: The best fit obtained for the caudates on each side. (a)-(c) On the left,
Voverlap = 87.72% (VDice = 93.46%). (d)-(f) On the right, Voverlap = 87.80% (VDice =
93.50%).

(a) The SPHARM bound-
ary over the model

(b) The model over the
SPHARM boundary

(c) The medial mesh

(d) The SPHARM bound-
ary over the model

(e) The model over the
SPHARM boundary

(f) The medial mesh

Figure 4.7: The worst fit obtained for the caudates on each side. (a)-(c) On the left,
Voverlap = 82.18% (VDice = 90.22%). (d)-(f) On the right, Voverlap = 82.71% (VDice =
90.54%).
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(a) The SPHARM bound-
ary over the model

(b) The model over the
SPHARM boundary

(c) The medial mesh

(d) The SPHARM bound-
ary over the model

(e) The model over the
SPHARM boundary

(f) The medial mesh

Figure 4.8: An average (median) fit obtained for the caudates on each side. (a)-(c)
On the left, Voverlap = 84.66% (VDice = 91.69%). (d)-(f) On the right, Voverlap = 85.25%
(VDice = 92.04%).

(a) Left (b) Right

Figure 4.9: The signed error between the reconstructed boundary of the medial model
and the original voxelized boundary of the binary image for the two average cases above.
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of those control points that will fit each target equally well. For example, consider a flat

slab, with a constant radius function away from the edges. In the interior of the slab,

control points can be moved arbitrarily without changing the reconstructed surface.

By performing the optimization individually for every subject, control points are

allowed to wander far from their initial configuration, and the resulting pieces of the

boundary each represent may be very different from subject to subject. The approach

taken when optimizing discrete m-reps has been to add a number of regularization

penalties to keep the edges of the mesh roughly of uniform size and to prevent de-

formation too far from the template itself. This has a good chance of producing the

desired effect when the objects themselves are not too different than the template, but

seems an unreasonable assumption when inter-subject variation is large.

With a continuous medial model, there is another alternative, which is to repa-

rameterize the medial sheet to produce a better correspondence. This chapter does

not tackle the problem of defining what the “correct” correspondence is between two

shapes. Determining correspondence, while a prerequisite for any kind of statistics, is

an extremely difficult problem. For example, in the lateral ventricles (see Chapter 5)

the tail sometimes becomes pinched so thin that the end of it is cut off during the seg-

mentation process, meaning that it is not even possible to construct a valid anatomical

correspondence with a ventricle whose tail is complete. Careful researchers will thus

devote every effort to improving the binary segmentations, but there are no statisti-

cal methods that can cope with these errors. Even with other structures that are not

subject to this problem, there is an inherent difficulty in separating variability in the

observable image features from the variability in shape (the correspondence map).

If one wants to perform statistics on image intensities, for example, and also register

those images using the intensities, one has to be careful not to destroy the very statis-

tics being measured. If the correspondence map is allowed to be arbitrary, a perfect

registration can be obtained, and there will be no local information left to analyze. The

typical response is to impose some smoothness prior on the correspondence map, even if

it is not expected that the map should actually be smooth everywhere, or as in DetCov

(Kotcheff and Taylor, 1998) or MDL6 (Davies et al., 2002; Thodberg, 2003; Heimann

et al., 2005), to optimize the maps to have a compact statistical model. However, one

of the difficulties of MDL techniques in particular is avoiding “data-piling”, wherein the

optimization process causes landmark points to migrate away from the highly variable

6 The University of Manchester holds a patent on optimizing the Minimum Description Length
(MDL) to establish correspondence.
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parts of the shape because it can get more compact models by not sampling them at

all. This could damage the statistics of shape change in precisely the places that are

most interesting.

Davies et al. try to avoid this by choosing a fixed subject as the “master” that

all others are matched against (as do Pizer et. al with their discrete m-reps), but in

addition to potentially biasing the results if a poor choice of master is made, (Thod-

berg, 2003) point out this still fails to prevent the migration when the weight of the

majority overwhelms the cost of a single outlier. Thodberg adds an extra term to the

optimization to penalize this drift, but this requires a choosing an appropriate weight

to balance it against the rest of the cost function (Thodberg, 2003). Heimann et al.

optimize the parameterization of each model, instead of the location of the landmarks

within that parameterization, and report that no data-piling occurs (Heimann et al.,

2005). However, this just transfers the problem to enforcing the smoothness of the

parameterization. Recent work by (Cates et al., 2006) seeks to balance a uniform sam-

pling of landmarks within each shape against the variability of the landmark locations

across shapes using an information theoretic metric, eliminating the need for a scale

factor to relate the two. Yet however mathematically principled, it is unclear how such

schemes relate back to the underlying biology.

As explained in Section 1.1.2, any kind of true anatomical correspondence is in-

herently defined by the problem domain. Population-based methods are a valuable

tool for learning these correspondences from a large set of examples, but they are ul-

timately limited by the class of models they can construct. Different problems may

require different types of models to capture the underlying variability of the processes

that govern the population. Instead of deriving a new correspondence algorithm and

attempting to justify the difficult claim that it is the “correct” correspondence for some

class of problems, the method presented here takes as input a fixed correspondence on

the boundary (or possibly the entire object interior) and optimizes the implicit medial

correspondence to match. This takes advantage of the link between the boundary and

the continuous medial axis to leverage any conceivable method of determining corre-

spondence, including population-based methods.

The model is reparameterized by moving control points along the surface of the

medial sheet to give a better match between the implicit medial correspondence and

the explicitly given boundary correspondence. The idea here is that for small steps and

within the tolerance afforded by the number of control points in the model, this does

not change the model itself, but merely the coordinate system imposed on it. Thus,
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this operation is (approximately) transverse to the model fitting process and needs

no relative weight to balance against it. Instead the two proceed in lock-step. The

optimization takes alternating macro steps first using one of the shape-fit objective

functions from the previous section, followed by the correspondence-match objective

function described below.

4.3.1 The Objective Function for Correspondence

First consider the situation for two models, M(1) and M(2). Correspondence is given

by a map φ2
1 : R3 → R3 from the first to the second, and a map φ1

2 : R3 → R3

from the second to the first. In the case where these maps φi
j are defined only on the

boundary of the target shape, B(j)
t , they can be extended to the boundary of the model

using projection. If the correspondence is not even available over the whole boundary,

but only at a discrete set of points, triangulating the points and linearly interpolating

between them can extend the correspondence to the entire boundary. Given a map

φi
j
′

: B(j)
t → R3 on the boundary B(j)

t , one can construct φi
j = φi

j
′ ◦ πj, where πj

is projection onto the boundary along the medial spokes of M(j). For a given point

(m
(j)
0 + S

(j)
0 ) ∈ B(j)

m , this is the intersection of m
(j)
0 + tS

(j)
0 closest to t = 1, if one

exists. If there is no such intersection, the corresponding term is simply dropped from

the summations below. It may be worth adding a small constant instead to discourage

spokes from being pushed outside the target, but there is little reason to heavily penalize

such points. The reparameterization step cannot, by itself, move a piece of the medial

axis into the interior of the target, since resampling will simply produce more spokes

on the exterior.

Then optimizing the following squared error ensures that the implicit medial corre-

spondence “matches” the explicit correspondence given by these maps in some sense:

F2C ,
(
m

(1)
0 + S

(1)
0 − φ1

2(m
(2)
0 + S

(2)
0 )
)2

+
(
m

(2)
0 + S

(2)
0 − φ2

1(m
(1)
0 + S

(1)
0 )
)2

, (4.50)

for a pair of corresponding samples in M(1) and M(2). This implies that both models

must have the same sampling, a fact ensured by continuing to subdivide on each model

until the subdivision threshold is satisfied on all models in the population. One could

certainly imagine other objective functions that would also drive the implicit and ex-

plicit correspondences to agreement, such as for example using the geodesic distance

along the model boundary B(j)
m instead of the simple Euclidean distance in the ambi-

ent space, but this one has the advantage of being relatively simple to compute and
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optimize.

Extending this directly to n models would require O(n2) maps, and O(n2) terms

in the direct product, which is prohibitive for large populations. Therefore we borrow

an idea from recent work on computing unbiased, symmetric averages of shapes (Davis

et al., 2004; Škrinjar and Tagare, 2004; Joshi et al., 2004): map all of the points to

a common coordinate system and measure the errors there. The number of maps and

the number of error terms then become linear in the number of subjects. Without any

other prior information, an “average shape” serves as a good choice for the reference

coordinate system. All the shapes are Procrustes aligned, and the average is constructed

by directly averaging corresponding boundary points on each subject. Then each map

φj simply sends a point to the average of all explicitly corresponding points.

Then, if all the implicitly corresponding points on the models match the explicit

correspondence on the targets, they will be mapped to the same point. Therefore one

should minimize the intra-cluster distances
∑

i6=j(φi(m
(i)
0 + S

(i)
0 ) − φj(m

(j)
0 + S

(j)
0 ))2.

However, when holding all the models but M(j) fixed, the minimizer becomes exactly

the cluster mean

µ(m0,S0) ,
1

n

n∑
i=1

φi(m
(i)
0 + S

(i)
0 ) . (4.51)

Letting µ(m0,S0) be the mean for each sample on the models, the optimization proceeds

by taking a macro step for each model in turn, minimizing the objective function

F j
C ,

∫
M̃

(
φj(m0 + S0)− µ(m0,S0)

)2 · det (I− rSrad) dM , (4.52)

≈
∑

(m0,S0,r,Srad,∆M)∈S(j)

(
φj(m0 + S0)− µ(m0,S0)

)2 · det (I− rSrad) ∆M . (4.53)

To preserve the symmetry of the operation, the means µ(m0,S0) are held fixed between

macro steps for different models.

Often correspondence is only given on the boundary, but it is possible to extend this

approach to the entire volume of an object simply by extending the above objective

function from a boundary integral to one over the interior. For neuroanatomy in par-

ticular, recent work on symmetric atlas formation can provide a means for obtaining

voxel-wise correspondences over the entire brain (Davis et al., 2004; Joshi et al., 2004;

Lorenzen et al., 2006). Because these methods map all subjects into a single atlas, they

provide the φj maps directly, without the need to construct them from the all-pairs
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maps. They also eliminate the need to project the model boundary onto the target

shape.

4.3.2 Parameterizing the Correspondence Optimization

The above mentioned that in order to make the correspondence-match optimization

approximately orthogonal to the shape-fit optimization, it moves the control points

along the existing medial sheet. In reality, since the medial sheet does not pass through

the control points, this is done by moving them so that their corresponding limit points

slide along the surface of a base model, M(j)
0 , the current model produced by the

shape-fit optimization. This does not optimize the control point values directly but

uses another set of variables that parameterize this sliding process.

This requires constructing a mapping between the control points and their corre-

sponding limit points. This mapping is linear and can be expressed as a sparse mask

matrix K computed from the subdivision process. This mask is fixed for a given model

topology and can be computed once in advance, along with its inverse. Although the

inverse K−1 is not sparse, the LU decomposition K = LU is (Halstead et al., 1993),

with typically fewer than eight non-zero elements per control point total in the two

matrix factors. Analysis of a general subdivision mesh is difficult, but experiments

with regular grids confirm Halstead et al.’s empirical observations that the non-zero

coefficients grow linearly with the number of control points and the time to compute

the decomposition grows quadratically. Also, because the largest element of each row

of K is on the diagonal, one does not even need to use pivoting when computing the

decomposition.

Given the LU decomposition, one can solve for a set of control points P that inter-

polate corresponding limit points Q via KP = Q using forward and back substitution

in linear time. Halstead et al. warn that K might actually be singular but do not say

under what conditions this can occur. A least-squares solution (like the Penrose pseu-

doinverse) could be used in this case, but all of the mask matrices we have produced

have been very well-conditioned.

The next step is the parameterization of the set of limit points, Q. For control points

on the edge of the mesh, this is simple, as one can use the M(j)
0 (0, v) curve on patches in

the base model around the control point, with v as the parameter. For control points

in the interior, there are two degrees of freedom, but around extraordinary vertices

it is not obvious how one should map these two parameters into the domain of the
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surrounding patches. Given a vertex of valence n, one reasonable choice is the simple

bilinear map Φ = (φx, φy) given by (Loop, 2004), which maps the (u, v) coordinates of

a patch to a portion of the unit regular n-gon centered around the origin:

φx(u, v) ,
[
1 u

] [0 Cn

1 −Cn

][
1

v

]
, (4.54)

φy(u, v) ,
[
1 u

] [0 Sn

0 Tn − Sn

][
1

v

]
, (4.55)

where Cn = cos(2π
n

), Sn = sin(2π
n

), and Tn = tan(π
n
). The entire unit n-gon is parame-

terized by using n rotated copies of this map, Rk
n ◦ Φ, where Rn is a rotation by 2π

n
in

the x-y plane. This map is G2 continuous across patch boundaries, which is more than

sufficient.

To go from the unit n-gon back to the patches requires the inverse map, Φ−1 =

(φu, φv), given by

φu(x, y) = −
Cn(y − Tnx)− Sn +

√
(Cn(y − Tnx) + Sn)2 − 4CnTny

2CnTn

, (4.56)

φv(x, y) =
Cn(y − Tnx) + Sn −

√
(Cn(y − Tnx) + Sn)2 − 4CnTny

2CnTn

, (4.57)

and with associated derivatives

φu
x =

1

2Tn

(
(Cn(y − Tnx) + Sn)Tn√

(Cn(y − Tnx) + Sn)2 − 4CnTny
+ Tn

)
, (4.58)

φu
y =

1

2Tn

(
2Tn − (Cn(y − Tnx) + Sn)√

(Cn(y − Tnx) + Sn)2 − 4CnTny
− 1

)
, (4.59)

φv
x =

1

2Tn

(
(Cn(y − Tnx) + Sn)Tn√

(Cn(y − Tnx) + Sn)2 − 4CnTny
− Tn

)
, (4.60)

φv
y =

1

2Tn

(
2Tn − (Cn(y − Tnx) + Sn)√

(Cn(y − Tnx) + Sn)2 − 4CnTny
+ 1

)
. (4.61)

The complete mapping to patch k is then given by Φ−1 ◦R−k
n , and the patch k is iden-

tified from k = b n
2π

arctan(y, x)c. Then if M(j,k)
0 (u, v) are the patches surrounding the

control point, the limit point to be interpolated is given by (M(j,k)
0 ◦Φ(−1) ◦R−k

n )(x, y).

The inverse in (4.56) and (4.57) is well-defined on the interior of the n-gon except
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when n = 4, since C4 = 0. However, in this case Φ(u, v) = (u, v), the identity map, and

the inverse is trivial. The optimization is constrained to lie in the n-gon interior simply

by setting the objective function to ∞ outside of it. This means that the farthest a

single control point can move in one macro step is to the edge of an adjacent patch, or

approximately one quarter of the distance to a neighboring control point. Edge points

are constrained to lie on an adjacent patch in the same way. From these mappings, it

is a couple of simple applications of the chain rule to obtain a gradient with respect

to the parameters controlling each limit point from the gradient with respect to the

control point parameters.

4.3.3 Results

For the ellipse data set, the correspondence is known; it is given by Ψ from (4.49).

Therefore φj is set to Ψ−1
αj ,βj ,γj

. Although this map does describe the deformation

applied to obtain the target object, it may not be physically realistic, since one would

not, for example, expect two points on the top and bottom of an ellipsoid with the

same x coordinate to still have the same x coordinate after bending it. Starting from

the same template as in Section 4.2.5 and using the same number of scale levels and the

same iteration limit Kmax, the models were re-fit. However, each iteration comprised

one macro step optimizing the binary image match, F σ
I , followed by one macro step

optimizing the correspondence match for each subject, F j
C . The optimization only

stopped when one of the stopping criteria was encountered for every model, which in

this case meant it proceeded to the iteration limit at every scale. The average volume

overlap was extremely similar to the individual fit case, and in fact slightly higher:

93.95% (VDice = 96.88) vs. the 93.64% (VDice = 96.72%) reported in Section 4.2.5. The

fact that the correspondence optimization continues to evolve the model even after the

image match optimization has converged for a particular subject, giving it the chance

to escape a local minimum, likely accounts for this small improvement. However, it did

not help the one outlier case.

In order to visually evaluate how well the surface correspondence was maintained by

the medial model, Figure 4.10 shows the endpoints of the spokes associated with each

control mapped into the reference coordinate system via φj for the models fit both with

and without correspondence optimization enabled. When correspondence optimization

is enabled, these points form much tighter clusters, especially towards the center of the

ellipsoid, where the radius changes more slowly. This is precisely the place where the

102



parameterization is most ambiguous, allowing the correspondence match to produce

tight clusters without sacrificing fit quality. The clusters on the ends are not as tight,

but for the most part they are still well-separated, unlike their counterparts obtained

by fitting models individually.

(a) Without correspondence optimization (b) With correspondence optimization

Figure 4.10: Clusters of corresponding points in the reference coordinate system,
both with and without correspondence optimization enabled. Points with the same
color belong to the same cluster. The wireframe model connects the cluster centers.
Enabling correspondence optimization gives much tighter clusters, especially near the
center of the ellipsoid, where the parameterization is most ambiguous.

For the caudates, ten subjects each from the AUT and TYP groups were chosen and

their scans from age four used to test the correspondence optimization. The SPHARM

models gave correspondence, with φj chosen to map to their average after Procrustes

alignment. Ray-triangle intersections computed with the algorithm in (Möller and

Trumbore, 1997) were used to project m0 + S0 onto the SPHARM surface, and OBB

trees (Gottschalk et al., 1996) were used to reduced the number of triangles that needed

to be tested. To speed up these tests even further, the most recent triangle intersecting

each ray was cached, and the OBB tree was searched only if the intersection test against

the cached triangle failed. The results in Figure 4.11 are even more striking than for

the ellipse data, especially in the tail region.

4.4 Conclusion

This chapter has described a fitting process for the medial model developed in Chap-

ter 3. As presented, it is not a complete, robust system for segmentation, but it
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(a) Without correspondence optimization (b) With correspondence optimization

(c) Without correspondence optimization (d) With correspondence optimization

Figure 4.11: Clusters of corresponding points in the reference coordinate system, both
with and without correspondence optimization enabled. Points with the same color
belong to the same cluster. The wireframe model connects the cluster centers for both
(a)-(b) the left and (c)-(d) the right caudates.

demonstrates that the same kinds of optimizations used with discrete m-reps can also

be performed with their continuous counterparts. The same kind of one-sample statis-

tics used to drive a Bayesian segmentation algorithm in the discrete case can be applied

here, and future work in this direction is certainly planned.

In addition, it shows how specific knowledge of correspondence can be incorporated

into the model fitting process. This eliminates excess variability in the parameteriza-

tion of the objects which could mask real statistical effects of the shape change. The

correspondence match optimization introduced does not sacrifice the quality of the fit.

Instead, it operates transversely to the fitting process up to the tolerance of the model,

requiring no tuning parameter to trade off between the two.

The only downside is the additional time required, since the optimization generally

does not converge within the iteration limit. However, the limit was set conservatively

high here, and the thresholds for convergence were set very low. Both could likely

be aggressively relaxed without sacrificing much fit quality. The optimization is also
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easily parallelizable, since each subject is fit to its target shape and to the cluster cen-

ters independently. Coordination is only needed to resample the models and compute

the cluster centers, µ(m0,S0). These operations require only a trivial amount of the

optimization time, the majority of which is spent in the gradient calculations.
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Chapter 5

Nonlinear Hypothesis Testing1

If no chain hangs in a perfect catenary and no raindrop is a perfect

sphere, this is for the reason that forces and resistances other than the

main one are inevitably at work. The same is true of organic form, it is

for the mathematician to unravel the conflicting forces which are at work

together. And this process of investigation may lead us on step by step to

new phenomena. . .

(Thompson, 1917)

5.1 Introduction

Statistical shape analysis is a powerful tool for understanding the structure of anatom-

ical objects in ways that simpler method like volume analysis cannot. This chapter fo-

cuses this analysis on discrete m-reps, via their medial atoms m = (m0, r, n0, n1) ∈ M,

where M = R3 × R+ × S2 × S2 and S2 is the unit sphere in R3. An example of such

a model is given in Figure 5.1. A continuous m-rep model, like the one described in

Chapter 3, can easily be converted to this representation. However, because this work

was done chronologically before this model was developed, it focuses on the discrete

case.

Except for the first term, the spaces involved are nonlinear, although one can eas-

ily map the radius to a linear space. This is not so simple for the spoke directions,

however. One could argue that since the spoke directions can be recovered directly via

1 This chapter is based on work done in collaboration with Sarang C. Joshi and Guido Gerig and
previously published in (Terriberry et al., 2005).



Figure 5.1: Left: An example m-rep of a left lateral ventricle. The mesh vertices and
off-shooting spokes make up the medial atoms. The shape the m-rep was fit to is shown
as a point cloud surrounding it. Right: Ventricle pairs from five monozygotic twin pairs
(top) and five dizygotic twin pairs (bottom).

derivatives of m and r, they do not contain any additional information. However, the

belief is that they are valuable in capturing the types of deformations for which medial

representations are designed, such as tapering.

A simple motivating example illustrates how the nonlinear combination of a set of

linear variates can lead to improvements in the ability to separate two populations.

Consider the problem of trying to find a separating plane between two groups of points

in the x-y plane, where one group is contained inside the unit circle, and the other

outside of it. If one considers only linear combinations of x and y to define this plane,

then there is no good solution that provides separation between the groups. However,

if one instead parameterizes the points by the 4-tuple (x, y, x2, y2), the plane equation

x2 + y2 − 1 = 0 exactly separates them. The latter two coordinates of the tuple do

not provide any new information but are still essential to determining the type of class

boundaries one can represent.

However, the situation for the spoke directions is not as simple as for polynomials;

we cannot simply fall back to the ambient space. The average of two squares in R is

still a square, but the average of two unit vectors in R3 in general no longer lies in

S2. Therefore this (and many other useful shape spaces) require an alternative to the

traditional analysis tools designed for Euclidean spaces.

This chapter formalizes the notion of hypothesis testing against data that lies in

the direct product of a large number of nonlinear spaces as a tool for understanding

growth and disease. Unlike previous analysis, which has focused on a single (linear)

component of the medial atom at a time, we incorporate the entire atom in a single

test. We build on the recent methods of Fletcher et al. for one-sample statistical shape
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analysis based on m-reps (Fletcher et al., 2003; Fletcher et al., 2004; Fletcher, 2004)

to develop two-sample statistics designed to answer the following question: given two

samples from two different populations, do they have the same statistical distribution?

This is the classic problem of testing the null hypothesis, H0, that the populations are

identical, against its complement, H1.

The main difficulty arises from the fact that m-reps lie on high-dimensional nonlin-

ear manifolds where assumptions of Gaussianity are unreasonable, making traditional

parametric or linear methods inapplicable. We present a multivariate permutation test

approach (more accurately described as a multivariate combination of univariate tests)

that is equivalent to traditional nonparametric permutation tests in the univariate

case and converges to the same result as Hotelling’s well-known T 2 test in the linear,

normally-distributed case in the limit as the number of observations in each sample

goes to infinity. The only tool required on the underlying space the shapes live in is

the existence of a metric.

The mechanics of the method are similar to those used in correction for multiple

tests (Pantazis et al., 2004), discussed later in more detail. Unlike methods of direct

combination, which sum up various test statistics (Chung and Fraser, 1958; Blair et al.,

1994), our method is invariant to the scale of each term. This is critical when different

shape parameters have different physical units and the choice of weighting between

them can be arbitrary. The test also accounts for the dependencies between model

parameters.

5.1.1 A Metric Space for M-reps

Fletcher et al. treat the space M of medial atoms as a Riemannian symmetric space

(Fletcher et al., 2004). Such a space is a differentiable manifold and has a Rieman-

nian metric that is invariant to certain transformations of the space. R3, invariant to

translation, uses the normal Euclidean metric, while the positive reals, R+, use the

metric d(r1, r2) = |log(r1) − log(r2)|, which is invariant to scale. The unit sphere, S2,

uses distance measured along the surface of the sphere, which is invariant to rotation.

We now proceed to describe some of the additional structure of Riemannian symmetric

spaces that allows for fast computation of distances and of the mean (defined below),

but we emphasize that this structure is not essential for the results in the remainder of

this chapter.

Every point m0 on the manifold has a tangent plane Tm0
M, which is a vector
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space, and an exponential map Expm0
: Tm0

M → M that projects points from the

tangent plane onto the manifold. Shortest paths, or geodesics, on the manifold are all

of the form Expm0
(tv) for a vector v ∈ Tm0

M and t ∈ R. The set of points where

these geodesics cross is called the cut locus. Inside the cut locus, the exponential map

preserves distances to the base point m0 between the vector space and the manifold and

has a well-defined inverse, the log map, Logm0
: M → Tm0

M. This provides a simple

computational framework for computing distances on the manifold: map to the tangent

plane at one of the points and compute the length of the corresponding tangent vector.

In Rn, the exponential and log maps are the identity, since it is already a vector

space. For r0, r ∈ R+, the maps are given by the ordinary exponential and natural

logarithm: Expr0
(r) = er−r0 and Logr0

(r) = log(r) − log(r0). Geodesics never cross

in both of these spaces, so the log map is well-defined everywhere. For S2, we define

the maps with respect to the base point p = (0, 0, 1), the z-axis. The tangent plane is

parameterized by points v = (v1, v2) ∈ R2.

Expp(v1, v2) =

(
v1

sin‖v‖
‖v‖

, v2
sin‖v‖
‖v‖

, cos‖v‖
)
, (5.1)

Logp(x, y, z) =

(
x

θ

sin θ
, y

θ

sin θ

)
, (5.2)

where θ = arccos(z). Notice that the log map is not well-defined when z = 1 or z = −1.

In the first case, it can be defined by the limit, which is (0, 0). However in the second

case no such limit exists; every geodesic through p crosses at −p, which is the only

point in the cut locus. These maps can be generalized to other base points by first

applying a rotation to align the base point with the z-axis, but there is an inherent

ambiguity in the resulting parameterization of the tangent plane. Any rotation in the

x-y plane does not move the z-axis, but yields different tangent vectors.

This is merely an outline of the mathematics behind these spaces. For a more

complete treatment, we refer the reader to Fletcher’s Ph.D. thesis (Fletcher, 2004).

5.1.2 One-sample Statistics in Nonlinear Spaces

In linear spaces the most important property of a probability distribution is often its

first moment, the mean. Fréchet generalized the notion of an arithmetic mean of a

sample of n points xi drawn from a distribution in a general metric space M as the
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point that minimizes the sum-of-squared distances (Fréchet, 1948):

µ̂ = argmin
x∈M

1

2n

n∑
i=1

d(x, xi)
2 . (5.3)

This is sometimes referred to as the Fréchet mean or the intrinsic mean, but hereafter

will just be called the mean.

In general, this mean may not exist, or may not be unique, and without additional

structure on the metric space, the minimization may be difficult to perform. However,

for Riemannian manifolds, it is possible to compute the gradient of this functional

(Karcher, 1977), making a gradient descent algorithm possible (Pennec, 1999). The

resulting algorithm is a simple iterative computation

µ̂k+1 = Expµ̂k

(
1

n

n∑
i=1

Logµ̂k
(xi)

)
. (5.4)

A reasonable choice of starting point µ̂0 is one of the data points, xi. Kendall showed

that existence and uniqueness is guaranteed if the data is well-localized (Kendall, 1990).

The additional structure provided by a differentiable manifold that allows this gradient

calculation is helpful from a computational standpoint but is not required for the ideas

presented here.

Fletcher et al. extend this notion to describe the variance of one sample around the

mean through the notion of Principal Geodesic Analysis (PGA) (Fletcher et al., 2004).

They define this as the set of one-dimensional subspaces (geodesics) that maximizes

the (remaining) variance after projection onto the geodesic. However, these geodesics

are not directly computable, so they resort to approximating them with principal com-

ponent analysis (PCA) in the tangent plane at the mean.

There are a number of theoretical issues with this. First, maximizing the variance

of the projection is not the only way to define PCA. Minimizing the sum of squared

distances to the subspace provides an equivalent definition in the linear case, but this

equivalence breaks down in the nonlinear case, even for simple spaces such as the sphere.

Furthermore, the geodesic that maximizes the variance of the projection does not of

necessity even pass through the mean. Consider a set of points evenly distributed on

the equator of a sphere, with one point offset slightly into the northern hemisphere.

The mean of these points will be (approximately) the north pole, but the geodesic that

maximizes the projected variance of the points is (approximately) the equator. Nev-
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ertheless, for well-localized data the PCA-in-the-tangent-plane approximation works

well.

5.1.3 Two-sample Statistics

If we assume that both of our distributions are identical around the mean and that they

can be characterized entirely by the distance from the mean (e.g., they are isotropic),

then a single global distance value is sufficient to construct a univariate permutation

test for equality of the two means. Permutation tests are appealing because they

make no other distributional assumptions, requiring only that the data in each group

be exchangeable under the null hypothesis that they do in fact come from the same

distribution. The interested reader is referred to Bradley (Bradley, 1968) or Nichols

and Holmes (Nichols and Holmes, 2002) for details.

However, geometric models contain parameters in nonlinear spaces, like the sphere.

Some parameters may have a large variance, masking the effects of other variables with

a smaller variance that might provide greater discrimination. Some may be highly

correlated, unduly increasing their contribution to the distance over that of parameters

with less correlation. Some will have completely different scales, and appropriate scale

factors need to be determined to combine them in a single metric. These factors make

the assumption that the distance from the mean entirely characterizes the distribution

hard to justify.

For example, scaling the model will change the distance between medial atom cen-

ters, x, without affecting the distance between radii or spoke directions. To combat

this, Fletcher et al. propose scaling the latter by the average radius across correspond-

ing medial atoms (Fletcher et al., 2004), but this choice is somewhat arbitrary. It does

restore invariance to scale, but it does nothing to handle differing degrees of variabil-

ity or correlation. Different choices of scale factors will produce tests with differing

amounts of power.

In Rn when relaxing the assumption that the distribution is characterized by the

distance from the mean and instead assuming only a common covariance, the classic

Hotelling’s T 2 test provides a test invariant to coordinate transformations. For nor-

mally distributed data, it is uniformly the most powerful (see a standard text, such

as Anderson’s (Anderson, 1958), for a derivation). The test is based on the statistic

T 2 ∝ D2 = (µ̂1 − µ̂2)
T Σ̂−1(µ̂1 − µ̂2), where µ̂1 and µ̂2 are the sample means and Σ̂

the pooled sample covariance. Any linear change of coordinates yields a corresponding
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change in metric, but this is absorbed by the Σ̂−1 term, leaving the statistic unchanged.

5.2 Multivariate Permutation Tests

The hypothesis test proposed is an attempt to generalize the desirable properties of

Hotelling’s T 2 test to a nonparametric, nonlinear setting. We cannot take advantage of

the vector space structure of the tangent plane, as Fletcher et al. do, to apply Hotelling’s

test directly, because there is a different tangent space around each sample’s mean, and

there may be no unique map between them. For example, on the sphere the ambiguity

in the coordinate axes used to parameterize the tangent planes gives such a map one

degree of freedom. Instead, we take a more general approach, only requiring that our

objects lie in a metric space.

Our approach is based upon a general framework for nonparametric combination

introduced by (Pesarin, 2001). The general idea is to perform a set of partial tests, each

on a different aspect of the data, and then combine them into a single summary statistic,

taking into account the dependence between the variables and the true multivariate

nature of the data. These results of these partial tests produce a new set of features,

the p-values, that unlike the original features are insensitive to scale and have a known

marginal distribution. The latter can be used to construct a mapping to a linear space

and develop a test based on a standard Gaussian distribution to determine if the means

are equal under the assumption of two distributions with the same structure around

the mean. We now describe the details.

5.2.1 The Univariate Case

We begin by introducing notation and describing the procedure for a single, univariate

permutation test. Suppose we have two data sets of size n1 and n2, x1 = {x1,i, i ∈
1 . . . n1} and x2 = {x2,i, i ∈ 1 . . . n2}, and a test statistic, T (x1, x2). To test for a

difference in the means, a natural test statistic is

T (x1, x2) = d(µ̂1, µ̂2) , (5.5)

where µ̂1 and µ̂2 are the sample (Frechét) means of the two data sets computed via the

optimization in (5.3) and d is the metric on the nonlinear manifold containing the data

points. For other tests, other statistics are possible.
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Under the null hypothesis, both samples are drawn from the same distribution,

so we may randomly permute the data between the two groups without affecting the

distribution of T (x1, x2). We pool the data together and then generate N =
(

n1+n2

n1

)
random partitions into two new groups, still of size n1 and n2. We label these xk

1,i and

xk
2,i, with k ∈ 1 . . . N , and compute the value of the test statistic, T k, for all of them.

We always include the actual observed groupings among this list and denote its test

statistic T o. This forms an empirical distribution of the statistic, from which we can

calculate the probability of observing T o under the null hypothesis:

p(T o) =
1

N

N∑
k=1

H(T k, T o) , H(T k, T o) =

1, T k ≥ T o

0, T k < T o
. (5.6)

5.2.2 Partial Tests

If our data can be adequately summarized by a single test statistic, then this is the

end of the story. We now turn to the case where we have M test statistics, one

for each of the parameters in our shape model. Let µ1,j and µ2,j be the means of

the jth model parameter for each population. Then we wish to test whether any

hypothesis H1,j : {µ1,j 6= µ2,j} is true against the alternative, that each null hypothesis

H0,j : {µ1,j = µ2,j} is true. The partial test statistics Tj(x1, x2), j ∈ 1 . . .M are defined

analogously to (5.5), and the values for permutations of this data are denoted T k
j , with

j ∈ 1 . . .M , k ∈ 1 . . . N .

Given that each Tj(x1, x2) is significant for large values, consistent, and marginally

unbiased, Pesarin shows that a suitable combining function (described in the next

section) will produce an unbiased test for the global hypothesis H0 against H1 (Pesarin,

2001). The meaning of each of these criteria is as follows:

1. Significant for large values: Given a significance level α and the critical value

of Tj(x1, x2) at α—Tα
j —the probability that T o

j ≥ Tα
j is at least α. For a two-sided

test Tj(x1, x2) must be significant for both large and small values.

2. Consistent: As the sample size n = n1 +n2 goes to infinity, the probability that

T o
j ≥ Tα

j must converge to 1.

3. Marginally unbiased: For any threshold z, the probability that T o
j ≤ z given

H0,j must be greater than the probability that T o
j ≤ z given H1,j, irrespective of
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the results of any other partial test. This implies that T o
j is positively dependent

in H1,j regardless of any dependencies between variables.

Since each of our tests are restricted to the data from a single component of the

direct product and we have assumed that the distributions around the means are identi-

cal, they are marginally unbiased. However, consider adding a separate test for equality

of the distributions around the means. Our test statistic for the means is only unbi-

ased if the distributions around them are in fact equal, so this unbiasedness would be

conditioned on the outcome of the additional test. Hence no such test can be added

without also constructing a different test against the means.

To illustrate these ideas, we present a simple example, which we will follow through

the next few sections. We take two samples of n1 = n2 = 10 data points from the

two-dimensional space R × R+, corresponding to a position and a scale parameter.

The samples are taken from a multivariate normal distribution by exponentiating the

second coordinate and then scaling both coordinates by a factor of ten. They are plotted

together in Figure 5.2a. They have the common covariance (before the exponentiation)

of 1
2
( 3 1

1 3 ), and the two means are slightly offset in the second coordinate. That is,

µ1,1 = µ2,1, but µ1,2 < µ2,2.

We construct M = 2 partial test statistics using (5.5) for each coordinate and

evaluate them using Monte Carlo simulation. To avoid an exponential complexity,

we use a fixed N = 10, 000 permutations, which still provides an unbiased test. The

results are shown in Figure 5.2b. The first partial test value, T o
1 , lies in the middle

of the abscissa distribution, while the second, T o
2 , lies near the edge of the ordinate

distribution. However, the scale of the first test is much larger, because no logarithm

is involved in its metric.

5.2.3 Multivariate Combination

Given the partial tests from the previous section, we wish to combine them into a

single test while preserving the underlying dependence relations between the tests.

This is done in the following manner. We apply the same N permutations to the data

when computing each of partial tests and then compute a p-value using the empirical

distribution for that test over all of the other permutations:

p(T k
j ) =

1

N

N∑
l=1

H(T l
j , T

k
j ) . (5.7)
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Figure 5.2: The observed data and test statistics for our simple example. (a) shows
the distribution of our two samples, with ×’s for the first and ◦’s for the second. (b)
shows the distribution of the partial test statistics under permutation. The large dot
indicates the location of the observed data point.

Thus, for every permutation k we have a column vector of p-values,

p(T k) = (p(T k
1 ), . . . , p(T k

j ), . . . , p(T k
M))T . (5.8)

It is critical to use the same permutations for each partial test, as this is what captures

the nature of the joint distribution. Because the p-value vector is needed for every

permutation instead of just the observed test statistic, computing them is equivalent

to sorting the empirical distribution for each feature, and thus is O(MN logN).

We now wish to design a combining function to produce a single summary statistic,

T ′(p(T k)), from each p-value vector. For one-sided tests, this statistic must be mono-

tonically non-increasing in each argument, must obtain its (possibly infinite) supremum

when any p-value is zero, and the critical value T ′α must be finite and strictly smaller

than the supremum. If these conditions are satisfied, along with those on the partial

tests from the previous section, then T ′(p(T k)) will be an unbiased test for the global

hypothesis H0 against H1 (Pesarin, 2001).

Our combining function is motivated by the two-sided case, where we can use the

Mahalanobis distance. First, we compute a Uk vector for each permutation, where

Uk
j = Φ−1(p(T k

j )− 1

2N
) (5.9)

and j ∈ 1 . . .M . Here Φ is the cumulative distribution function for the standard normal

distribution. The extra 1
2N

term keeps the values finite when the p-value is 1 and is
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negligible as N goes to infinity. The resulting vector lies in a linear space, making a

linear test appropriate.

Because the distribution of p-values for each partial test is uniform by construction,

the marginal distribution of the Uk
j values over k for a single j is standard normal.

Arranging these vectors into a single N ×M matrix U , we can estimate the covariance

matrix Σ̂U = 1
N
UTU and use the Mahalanobis statistic: T ′k = (Uk)T Σ̂−1

U Uk. In the

event that the data really is linear and normally distributed, Σ̂U matrix converges to the

true covariance as the sample size goes to infinity (Pallini and Pesarin, 1992), making

it asymptotically equivalent to Hotelling’s T 2 test. Even if the sample size is small,

the matrix ΣU is well-conditioned regardless of the number of variables, since it is the

covariance over the N permutations.

Typically, our distances are not signed, so we are interested in a one-sided test. In

this case, we use the positive half of the standard normal c.d.f., Uk
j = Φ−1(1− 1

2
(p(T k

j )−
1

2N
)) and assume the Uk distribution is symmetric about the origin. This assumption,

however, implies that the covariance between Uk
j1

and Uk
j2

when j1 6= j2 is exactly zero.

The diagonal entries of Σ̂U are 1 by construction, so Σ̂U = I, the identity matrix. The

fact that the p-values of the partial tests are invariant to scale obviates the need for

arbitrary scaling factors. Thus, our one-sided combining function is

T ′k = (Uk)T · Uk . (5.10)

Normality of the partial test statistics is not required, and even though the marginal

distributions of the Uk vectors are normal, the joint distribution may not be. Therefore,

we must use a nonparametric approach to estimating the distribution of the T ′o statistic

under the null hypothesis. Just as in the univariate case, this produces a single p-value:

p(T ′o) =
1

N

N∑
k=1

H(T ′k, T ′o) . (5.11)

It is this nonparametric approach that corrects for correlation among the tests, even

without explicit diagonal entries in the covariance matrix.

We return to our example from the previous section. The Uk vectors are plotted in

Figure 5.3a, along with the α = 0.95 decision boundary, and our sample is shown to lie

outside of it. Equal power is assigned to alternatives lying at the same distance from

the origin in this space. Figure 5.3b shows this boundary mapped back into the space

of the original p-values. The p-values of the individual partial tests are 0.36 and 0.022,
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Figure 5.3: The empirical distribution of our example plotted against the decision
boundary at α = 0.95. (a) The distribution of the Uk vectors, where the cutoff is a
circle centered around the origin. (b) The distribution of the original p-values with the
decision boundary pulled back into this space.

and the combined result is 0.049.

The entire procedure can be summarized as follows. Compute N permutations and

compute the partial test statistics T k
j for each feature j and permutation k. Then

map these to p-values with (5.7) using the empirical distribution for each feature.

These p-values have a uniform marginal distribution and are invariant to scale, or

indeed any monotonic transformation. Next, stack them into a vector p(T k) for each

permutation and map them via (5.9) to RM . Here they have a Gaussian (or half-

Gaussian, if unsigned) marginal distribution. Finally, combine these vectors into a

single test statistic T ′k by (5.10) and compute the overall p-value from its empirical

distribution with (5.11).

5.2.4 Relation to Other Testing Procedures

The method presented here is very similar to procedures used in correction for multiple

tests, such as that proposed by Pantazis et al. (Pantazis et al., 2004). In fact, another

alternative for a combining function is Tippet’s T ′k = maxM
j=1(1−p(T k

j )), which results

in a Bonferroni-style correction (Pesarin, 2001). Some authors have suggested methods

of direct combination applied to the T k
j statistics themselves (Chung and Fraser, 1958;
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Blair et al., 1994). They are more appealing computationally, being O(MNn) instead

of our method’s O(MN(n+log(N))), but they do not avoid problems of differing scale

or strong correlation.

Consider what happens when T ′k =
√

(T k
1 )2 + (T k

2 )2. Now, the first test dominates

the results, and the overall p-value becomes 0.34. With n1 = n2 = 100 samples, our

test becomes much more significant (p = 0.0008), while the direct combination test

becomes even worse (p = 0.44).

5.3 Experimental Data and Results

The data for our experiments comes from a twin pair schizophrenia study conducted by

Weinberger et al. (Weinberger et al., 2001). High resolution (0.9375×0.9375×1.5 mm3)

Magnetic Resonance Imaging (MRI) scans were acquired from three different subject

groups: 9 healthy monozygotic twin pairs (MZ), 10 healthy dizygotic twin pairs (DZ),

and 9 monozygotic twin pairs with one twin discordant for schizophrenia and the co-

twin unaffected. See Figure 5.1 for some examples. A fourth group of 10 healthy

non-related subject pairs (NR) was constructed by matching unrelated members of the

two healthy groups. All four groups were matched for age, gender, and handedness.

A tenth healthy, monozygotic twin pair was discarded due to segmentation problems

attributed to head trauma suffered by one of the twins in a car accident at age seven.

A tenth twin pair discordant for schizophrenia was discarded due to hydrocephaly in

the unaffected twin.

The left and right lateral ventricles were segmented using supervised classification

and 3-D connectivity (van Leemput et al., 1999). An automatic morphological closing

operation was applied to ensure a spherical topology. An area-preserving map was

used to map them to a sphere, after which they were converted to a spherical harmonics

representation (SPHARM) (Brechbühler et al., 1995). Correspondence on the boundary

was established using the first order harmonics (Gerig et al., 2001). Point Distribution

Models (PDMs) were constructed by uniformly sampling the boundary at corresponding

points. The m-rep models were constructed using a robust method that ensures a

common medial topology (Styner et al., 2003). For our data, this consists of a single

medial sheet with a 3 × 13 grid of medial atoms, which provides 98% volume overlap

with the original segmentations.

From this data set, we wish to determine if the twin pairs that were more closely

related had smaller variations in shape. We also wish to see if the shape variations
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between the discordant and the unaffected twins in the schizophrenic pairs is similar

to the normal variation between healthy monozygotic twins. For this purpose, we use

the partial test statistics

Tj(x1, y1, x2, y2) =
1

n2

n2∑
i=1

d(x2,i,j, y2,i,j)−
1

n1

n1∑
i=1

d(x1,i,j, y1,i,j) . (5.12)

Here (x1, y1) form the twin pairs for one group, while (x2, y2) form the twin pairs for the

other. The partial tests are applied separately to all three components of the medial

atom location, m0, as well as the radius and two spoke directions. This gives six partial

tests per medial atom, for a total of M = 3 × 13 × 6 = 234, much larger than the

sample size. Each is a one-sided test that the variability in group 2 is larger than that

in group 1.

For consistency with previous studies (Styner et al., 2005), all shapes were volume

normalized. After normalization, we also applied m-rep alignment, as described by

Fletcher et al. (Fletcher et al., 2004), to minimize the sum of squared geodesic distances

between models in a medial analog of Procrustes alignment. First, the members of each

twin pair were aligned with each other, and then the pairs were aligned together as a

group, applying the same transformation to each member of a single pair.

In order to ensure invariance to rotations, we had to choose data-dependent coor-

dinate axes for the m0 component of each medial atom. Our choice was the axes that

diagonalized the sample covariance of the displacement vectors from one twin’s atom

position to the other at each site. While this had some small influence on the results,

the general trend was the same irrespective of the axes used.

For each pair of twin groups, we generated N = 50, 000 permutations and com-

puted their p-value vectors using (5.7). Following Sect. 5.2.3, these were mapped into

Uk vectors, from which the empirical distribution of the combined test statistic T ′k

from (5.10) was estimated, producing a single global p-value via (5.11).

The results are summarized in Table 5.1. For comparison, we list the results of a

previous study that used a univariate test on the average distance between correspond-

ing points on the PDMs (Styner et al., 2005). While the significance of a p-value on

an experimental data set is not a useful metric for comparing different methods, it is

interesting to see the differences between the two. Our tests give a consistent ranking:

MZ ≈ DS < DZ ≈ NR, which is fully transitive. The boundary study, however, finds a

significant difference between DZ and NR, but fails to identify the difference between

DS and DZ.
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Our Study Boundary Study (Styner et al., 2005)
Left Right Left Right

MZ vs. DS 0.12 0.38 0.28 0.68
MZ vs. DZ 0.00006 0.0033 0.0082 0.0399
MZ vs. NR 0.00002 0.00020 0.0018 0.0006
DS vs. DZ 0.020 0.0076 0.25 0.24
DS vs. NR 0.0031 0.00026 0.018 0.0026
DZ vs. NR 0.16 0.055 0.05 0.016

Table 5.1: p-values for paired tests for the difference in the amount of shape variability
in groups with different degrees of genetic similarity. Results from our method are in
the first two columns, while results from a previous study (Styner et al., 2005) are in the
last two for comparison. Groups are: monozygotic (MZ), monozygotic twins with one
twin discordant for schizophrenia (DS), dizygotic (DZ), and non-related (NR). Results
significant at the α = 0.95 level are shown in bold.

We also performed local tests, to identify specific medial atoms with with strong

differences. A multivariate test was conducted using our procedure on the 6 components

of each atom, and the results were corrected for multiple tests using the minimum p-

value distribution across the shape, as described by Pantazis et al. (Pantazis et al.,

2004). The results are shown in Figure 5.4.

However, we get a very different result when we try to test for differences between

the schizophrenic groups and the controls. We pooled the healthy MZ and DZ subjects

and created a control group by randomly selecting one twin from each pair. A template

healthy ventricle was then constructed from the mean of the other twins in each of the

pairs. We then tested the distance to this mean for the control group, the group of

affected twins from each DS pair, and the group of unaffected twins. Unlike the (Styner

et al., 2005) study on the boundary, none of our results were significant.

What went wrong? If one examines the ventricles pictured in Figure 5.1, it is

immediately apparent that the shape variation between two unrelated subjects is much

larger than the variation between two twins. In the face of this large variation, the

implicit correspondence of the samples on the medial axis breaks down.

Consider Figure 5.5, which shows plots the atom locations of 18 m-reps after align-

ment. If the alignment had succeeded, small clusters in a regular grid pattern cor-

responding to the 3 × 13 grid in each individual m-rep should be readily apparent.

Instead, there is no visible structure at all because atoms were allowed to move ar-

bitrarily during the model fitting process, with no regard paid to the correspondence
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MZ vs. DZ MZ vs. NR DS vs. NR

MZ vs. DZ MZ vs. NR DS vs. NR

Left

Right

Figure 5.4: Results for local tests for the difference in shape variability in groups with
different degrees of genetic similarity. Atoms with differences significant at the α = 0.95
level are shown in a larger size. Tests not shown had no significant local differences.

across subjects of the associated piece of boundary each atom represents. As a re-

sult, the total variation within the group dwarfs any variation between groups. This

was precisely the motivation for the correspondence optimization method introduced

in Chapter 4.

5.4 Conclusion

We have presented a multivariate permutation test approach for hypothesis testing in

direct products of metric spaces. The resulting test does not require a priori scaling

factors to be chosen and captures the true multivariate nature of the data. It is well-

defined even in the high-dimensional, low-sample size case. The method has been

applied to shape discrimination using m-reps, though it is suitable for any type of

metric data, including potentially categorical data.

An important area for future research is the design of suitable partial tests to use in

each space. Because they cannot be broken into smaller pieces than a single component

of the direct product, the distance to the mean and similar tests are limited in the types

of distributions they can describe. For example, the distance from the mean can only

characterize an isotropic distribution on the sphere. An interesting candidate is the
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Figure 5.5: The atom centers (m0) for the m-reps of all 18 of the left lateral ventricles
in the MZ group, after Procrustes alignment.

test designed by Hall and Tajvidi, which can test for equality of entire distributions in

a single metric space with commensurate coordinates (Hall and Tajvidi, 2002). This

would allow relaxation of the assumption of identical distributions about the mean.

For manifolds, another possibility is the use of tests based on Distance Weighted

Discrimination (DWD) (Marron and Todd, 2002). Styner et al. have recently explored

using DWD in the tangent space of the pooled mean and achieved promising results

(Styner et al., 2006). However, this must still contend with the fact that the distance

between two points on the manifold is not preserved in the tangent plane in general.

Rather, only the distance of each point to the mean (within the cut locus) is preserved.

As long as the portion of the manifold containing the population is nearly flat, this will

not have a large influence, but it is an open question how gross of an approximation

this is.

It is also possible to extend our approach to different shape models, such as PDMs

with surface normals or deformable templates (Grenander and Keenan, 1993; Miller and
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Younes, 2001; Fletcher and Whitaker, 2006). These latter in particular describe shapes

as points on an infinite dimensional Riemannian manifold representing the deforma-

tions. In such spaces, the degree of curvature and structure of the cut locus are much

less well-understood than on the sphere, and even simple linearization techniques must

contend with the fact that the tangent space is also infinite dimensional. Nevertheless,

steps have been taken towards computationally tractable methods of approximating

the log and exponential maps of these spaces (Arsigny et al., 2006).
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Chapter 6

Conclusion

But we come in time to forms which, though both may still be simple,

yet stand so far apart that direct comparison is no longer legitimate.

(Thompson, 1917)

At the end of this work, this chapter takes a moment to revisit the claims laid out

in Chapter 1 and to discuss possible future research directions. These claims were:

1. A novel “control curve” formulation capable of enforcing first- and second-order

boundary conditions at the edges of subdivision surfaces.

This was the primary mechanism for enforcing boundary conditions laid out in

Chapter 3. Although it was put to a specific application there, it could be used to

enforce any boundary condition that can be expressed in terms of the derivative

of the subdivision surface across the edge. The fourth-order interpolating spline

from Section 3.2.3 gives a second free parameter which can be used to enforce a

second-order boundary condition as well.

The main drawback to this method is its inability to handle corners on the edge

due to the asymmetry of the interpolation. Though eliminating these corners

has long been desired for anatomical objects, this limitation of the control curve

method was the real impetus for moving to a subdivision surface formulation.

It might be possible to include corners given boundary conditions that do not

interfere with each other. For example, it is very easy to see how a constraint on

the tangent vector to the medial sheet mu on the u = 0 edge could co-exist with

a constraint on ‖∇r‖ on the v = 0 edge. Enforcing the latter via the derivative

rv would not interfere with the former. Such an approach may eventually lead to

a method for handling six-junctions.



2. A new continuous medial model based on this formulation, the first such model

capable of representing branching in three dimensions.

This is the featured result of this dissertation, the main focus of Chapter 3. It is a

complicated construction, with each of the pieces—subdivision surfaces with ordi-

nary, corner-free boundary, control curves, and interpolating splines—included to

solve very specific parts of the problem. Even with all these elements in place, the

method for handling fin-points was non-obvious. However, it has only marginally

more computational complexity than subdivision surfaces by themselves. The

computation of the control curves affects evaluation in only one direction on only

some of the patches. The majority of the points, even on such patches, are eval-

uated with a cubic B-spline.

3. A method of approximating medial integrals driven by a uniform sampling of these

continuous models.

These medial integrals are the fundamental tool developed in Chapter 4 for taking

advantage of the link between the medial axis and the boundary. It allows proper-

ties of the boundary to be expressed on the boundary but be evaluated in medial

coordinates. This gives continuous medial models advantages of both representa-

tions. Although Damon introduced the concept, this work is the first application

to demonstrate that they are computable and to apply them to computational

problems. However, it does not derive error bounds for the surface area element

approximation of (4.2). Especially near the crest region, where U±u diverges, this

approximation error may be non-trivial. A higher-order approximation could be

helpful here.

4. Applications of these medial integrals. These include computing volume overlap

to evaluate goodness-of-fit and computing second-order moments to align models

to a common position, orientation and scale.

Chapter 4 gave a number of examples of the way medial integrals could be used

to compute basic object properties. Although the applications were simple, they

paved the way for understanding the more complex functions to follow. Their

most important feature was demonstrating that these properties could be com-

puted without first converting to a boundary representation, avoiding the addi-

tional complexity and approximation error such a conversion would involve.
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5. A multi-scale model fitting framework utilizing a highly constrained multivariate

nonlinear optimization to fit these models to a target shape.

The optimization framework developed in Chapter 4 serves as a validation that

the medial model presented in Chapter 3 can be integrated into a complete shape

modeling system. To that end, the methods used were fairly basic. More robust

methods of alignment and initialization would produce better and more reliable

results, and the automatic learning of population statistics could provide a more

reliable means of avoiding local minima.

A number of problems could be avoided simply by moving from the F σ
I objec-

tive function for binary images to the F σ
T objective function for triangle meshes.

For example, if the initialization places a part of the boundary of the model on

the wrong side of the true medial axis of the target, F σ
I will actually drive the

boundary farther away, in the wrong direction. In contrast, the surface normal

agreement required by F σ
T would flip the sign of the gradient in these regions,

pulling the surface in the proper direction. Similarly, the model sometimes fails

to match thin tips well because the boundary in these regions is nearly parallel

to the medial axis. This means that the gradient of F σ
I points nearly orthogonal

to the direction needed to push the model in or out of this tip. While F σ
T as

presented has a similar problem, it could be extended to also require curvature

agreement instead of just normal agreement, which would help point the gradient

in the right direction and drive the end curves into the crests.

6. A new correspondence optimization method that works in tandem with the model

fitting process to produce a group of models with a common parameterization.

This feature serves as a good example of the reasons to use a continuous medial

representation over a discrete one, and it is another non-trivial example of how

the link between the medial axis and the boundary can be exploited to give a

medial model the advantages of the latter without sacrificing those of the for-

mer. The sliding process used to remove ambiguities in the parameterization

of the axis would not be possible with a discrete representation. Although the

amount of variability this process eliminates is visually remarkable, little has

been done to evaluate the quantitative effect this has on the power of statisti-

cal tests, and more work needs to be done in this area. Moreover, the effects

of conflicts between the explicit correspondence given on the boundary and the

implicit correspondences achievable while respecting the medial geometry need
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further consideration. While it is believed that shape changes due to growth and

deformation should be well-represented by the latter, if this is not the case for a

given population then medial methods may not be an appropriate representation

for it.

7. A novel nonlinear hypothesis test for m-reps, which simultaneously considers all

of the parameters of the shape model.

This last accomplishment returns to the driving problem of the dissertation: being

able to compare multiple populations of shapes. It was applied to real data and

shown to provide more consistent results than boundary methods. Yet it was not

as powerful in the presence of very large shape variation, discovering no significant

effects where boundary analysis found some. It remains to be seen whether this

is due to the nature of the shape representation, or the test itself. The obvious

experiment to perform would be to see if the correspondence optimization of

Chapter 4 improves the situation, but the ventricles are a very challenging data

set, and the aforementioned improvements in model-fitting robustness are needed

before this can be done. A formal power analysis on the test itself would also be

instructive as to the types of changes it is good at detecting.

One other fundamental question this dissertation has not addressed is what the

“right” distance metric to use for comparing medial structures is. With a discrete

model, there are a limited number of options, and the metric of Fletcher et al. made

use of here is a logical one, in the sense that it is directly computable from and intrinsic

to the model parameters. However, when a continuous representation is available,

one is not limited to the information available at discrete samples. For example, the

intrinsic medial coordinates of objects with the same medial topology could allow the

expression of shape change as a diffeomorphism on the object interior, although there

is some difficulty in representing this computationally.

Restricting these coordinates to the boundary produces a similar diffeomorphism.

Either space of diffeomorphisms has its own set of intrinsic metrics, though the fact

that the domain of the transformation is no longer all of Rn complicates the issue. An

approach along these lines can be viewed as a natural extension of the discrete case in

the following sense: whereas the rotation, translation, and elongation of a spoke can

be likened to the transport of the small, differential piece of surface attached to its

endpoint, the medial measure theory used throughout this dissertation would seem to

provide exactly the means to weight the relative geometric significance of these changes.
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However, differing degrees of variability and correlation may make the statistical signif-

icance quite different. Unfortunately, such spaces are also infinite dimensional, so the

direct product decomposition on which the tests presented here rely does not apply.

Perhaps it could be brought to bear on an appropriate numerical approximation, and

in some sense this is precisely what the method presented in Chapter 5 does, but in all

likelihood fundamentally different statistical tools for infinite dimensional spaces will

need to be developed. Given the difficulty of the problem already in high dimensions,

it is unlikely that simple extensions of existing techniques will engender much success.
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Appendix A

Computing U± and Srad in Three

Dimensions

This appendix describes how to compute all of the values necessary to reconstruct the

boundary, check for overfolding, and perform medial integration at an arbitrary smooth

point of a parameterized 3D medial axis. These include the radial vectors U± and its

derivatives, the radial shape operator Srad, and the medial measure dM . At non-edge

singular points, several patches will meet, and each one contributes a valid pair of values

for U and Srad. At edge singular points, and on the edge patches of edge-closure points,

U may still be computed, but its derivatives, and thus Srad, may not be. The same

holds true for places where the medial axis is only C1, though if second derivatives may

be evaluated when approaching from one or more sides, multiple valid values of Srad

may still be computed. The radial curvature condition must then be enforced for all of

them.

The computations given here are mostly straightforward, but they are provided

for completeness. They require derivatives of m and r up to second order, which are

easily computable on a normal B-spline patch and everywhere except the extraordinary

vertex on an interior patch containing one. On edge patches and branch patches, their

computation is more involved. They can be approximated numerically, but Section A.1

derives exact expressions for them on edge patches.

First, two quantities will appear repeatedly:

a , rumv − rvmu b , mu ×mv (A.1)

We will also write a2 = a · a in place of ‖a‖2 for simplicity, and similarly with b2. As

an aside, we note that b2 = EmGm − F 2
m, the determinant of the metric tensor on m.

With this notation and some tedious algebra, we can write

∇r =
a× b

b2
(A.2)
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Substituting this into (2.3) gives us an expression for U±:

U± =
1

b2
·
(
b× a±

√
b2 − a2 · b

)
. (A.3)

In order to compute Srad, the derivatives of U±—and thus also of a and b—are

required:

au = rumuv + ruumv − rvmuu − ruvmu , (A.4)

av = rumvv + ruvmv − rvmuv − rvvmu , (A.5)

bu = mu ×muv +muu ×mv , (A.6)

bv = mu ×mvv +muv ×mv . (A.7)

The following are also needed:

(a2)u = 2a · au , (a2)v = 2a · av , (A.8)

(b2)u = 2b · bu , (b2)v = 2b · bv , (A.9)

(b× a)u = b× au + bu × a , (b× a)v = b× av + bv × a , (A.10)

(
√
b2 − a2)u =

(b2)u − (a2)u

2
√
b2 − a2

, (
√
b2 − a2)v =

(b2)v − (a2)v

2
√
b2 − a2

. (A.11)

The derivatives of U± may now be expressed as

U±u =
1

b2

(
(b× a)u ±

√
b2 − a2 · bu ± (

√
b2 − a2)u · b− U± · (b2)u

)
, (A.12)

U±v =
1

b2

(
(b× a)v ±

√
b2 − a2 · bv ± (

√
b2 − a2)v · b− U± · (b2)v

)
. (A.13)

Along the edge of the medial axis, the expression
√
b2 − a2 goes to zero, so these

derivatives do not exist. This is the reason for the introduction of SE, the edge shape

operator.

Now using v = {mu,mv} as a basis for Tm0M allows the computation of a matrix

representation of Srad. We also denote the ith vector of the basis as vi and the matrix

representation of Srad as S±v . The superscript emphasizes that it is multivalued. This

choice of basis means that ∂U±

∂v1
= U±u and ∂U±

∂v2
= U±v . For each vi, the coefficients of
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S±v must satisfy the following equation (Damon, 2003):

∂U±

∂vi

= t±i · U± −
n∑

j=1

s±jivj . (A.14)

The t±i coefficients measure the amount ∂U±

∂vi
is displaced in the U± direction by the

projU operator in (2.6), while s±ji are the coefficients of S±v . In three dimensions this

gives rise to the following linear system:[
U± mu mv

]
·
[
t±i −s±1i −s±2i

]T
=
∂U±

∂vi

, (A.15)

whose solutions are[
t±i −s±1i −s±2i

]T
=
[
U± mu mv

]−1

· ∂U
±

∂vi

, (A.16)

However, there is no need to explicitly compute the inverse, especially as the t±i
coefficients are not needed. Instead, a simple solution is given by applying Cramer’s

rule, which allows us to write S±v as

S±v =
−1

det
(
U± mu mv

)
det

(
U± U±u mv

)
det
(
U± U±v mv

)
det
(
U± mu U±u

)
det
(
U± mu U±v

) . (A.17)

The determinants can be evaluated via the scalar triple product: det(x y z) =

x · (y × z). In particular, note det(U± mu mv) = U± · b = ±
√
b2 − a2, an expression

already used to compute U± itself. The two expressions U±×mv and mu×U± can be

factored out of the remaining triple products to save computation:

S±v =
±1√
b2 − a2

[
U±u · (U± ×mv) U±v · (U± ×mv)

U±u · (mu × U±) U±v · (mu × U±)

]
. (A.18)

One might question whether or not it is worth computing Srad, given that we already

compute B±u and B±v in order to apply the test in (4.6) to decide when to stop refining

our sampling. The differential unit of area on the boundary is readily obtainable from

their cross product, and as pointed out in (Yushkevich et al., 2003), one can test for

overfolding by computing the principal curvatures of the boundary directly. These can

be expressed as the eigenvalues of IIB±I−1
B± , where IIB± is the second fundamental form.
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The metric tensor on the boundary IB± is defined as in (3.14), with B±u and B±v in place

of mu and mv. A matrix representation of the second fundamental form, the traditional

shape operator, is given by

IIB± ,

[
B±uu · U± B±uv · U±

B±vu · U± B±vv · U±

]
= −

[
B±u · U±u B±v · U±u
B±u · U±v B±v · U±v

]
. (A.19)

The simplification on the right is given by the relation

∂

∂u

(
B±u · U±

)
= B±uu · U± + B±u · U±u = 0 . (A.20)

This holds because B±u · U± is identically zero everywhere, since B±u is orthogonal to

U±, and hence its derivative is also identically zero. Similar relations hold when v is

substituted for one or more occurrences of u.

Careful reuse of expressions makes this approach almost exactly as computationally

expensive as computing Srad, however it is not as versatile. By storing just two numbers

derived from Srad, namely the Hrad and Krad defined in (2.8), one can compute its

eigenvalues to check the radial curvature condition, compute the Jacobian of the radial

vector flow, and conveniently separate out the contributions from different powers of r

in medial integrals.

A.1 Derivatives of the Edge Control Curve

On edge patches, differentiating r requires differentiating the control curve, r0(v). The

surface m(u, v) and the other ri(v) curves defined in (3.23) are simple polynomials,

so their derivatives are easily obtained. In the following, we assume all expressions

are evaluated at (0, v)—or simply at (v) for the ri(v) curves—and drop the explicit

argument lists to improve readability.

First, derivatives of the metric tensor coefficients are needed:

∂Em

∂v
= 2mu ·muv ,

∂2Em

∂v2
= 2 (mu ·muvv +muv ·muv) , (A.21)

∂Fm

∂v
= mu ·mvv +muv ·mv ,

∂2Fm

∂v2
= mu ·mvvv + 2muv ·mvv +muvv ·mv , (A.22)

∂Gm

∂v
= 2mv ·mvv ,

∂2Gm

∂v2
= 2 (mv ·mvvv +mvv ·mvv) . (A.23)
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Three new common sub-expressions follow:

c , Fm
∂r1
∂v

, d , Gm −
(
∂r1
∂v

)2

, e , d
(
EmGm − F 2

m

)
= d · b2 (A.24)

Using these to rewrite (3.18) produces

ru =
1

Gm

(
c+

√
e
)
. (A.25)

The fact that the spline for r is interpolative in u allows the replacement of r(0, v) with

r1(v) here. Differentiating the various sub-expressions yields

(b2)v = Em
∂Gm

∂v
+
∂Em

∂v
Gm − 2Fm

∂Fm

∂v
, (A.26)

cv = Fm
∂2r1
∂v2

+
∂Fm

∂v
· ∂r1
∂v

, (A.27)

dv =
∂Gm

∂v
− 2

∂r1
∂v

· ∂
2r1
∂v2

, (A.28)

ev = d · (b2)v + dv · b2 , (
√
e)v =

ev

2
√
e
. (A.29)

Re-deriving (b2)v instead of using the expression given in (A.9) allows the reuse of

the derivatives of the metric tensor coefficients, saving computation. Putting these

together, one obtains

ruv =
1

Gm

(
cv + (

√
e)v −

∂Gm

∂v
ru

)
. (A.30)

A second round of differentiation proceeds in much the same way.

(b2)vv = Em
∂2Gm

∂v2
+
∂2Em

∂v2
Gm + 2

(
∂Em

∂v
· ∂Gm

∂v
− Fm

∂2Fm

∂v2
−
(
∂Fm

∂v

)2
)

, (A.31)

cvv = Fm
∂3r1
∂v3

+ 2
∂Fm

∂v
· ∂

2r1
∂v2

+
∂2Fm

∂v2
· ∂r1
∂v

, (A.32)

dvv =
∂2Gm

∂v2
− 2

(
∂r1
∂v

· ∂
3r1
∂v3

+
∂2r1
∂v2

· ∂
2r1
∂v2

)
, (A.33)

evv = d · (b2)vv + 2dv · (b2)v + dvvb
2 , (

√
e)vv =

evv − 2 ((
√
e)v)

2

2
√
e

, (A.34)

ruvv =
1

Gm

(
cvv + (

√
e)vv −

∂2Gm

∂v2
ru − 2

∂Gm

∂v
ruv

)
. (A.35)
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The only expressions that involve third derivatives in v are ∂2Fm

∂v2 , ∂2Gm

∂v2 , cvv, and dvv.

Finally, plugging these into (3.25) gives the complete derivatives for r0:

∂r0
∂v

=
1

C1,0

(
ruv − C1,1

∂r1
∂v

− C1,2
∂r2
∂v

− C1,3
∂r3
∂v

)
, (A.36)

∂2r0
∂v2

=
1

C1,0

(
ruvv − C1,1

∂2r1
∂v2

− C1,2
∂2r2
∂v2

− C1,3
∂2r3
∂v2

)
. (A.37)

Replacing ri in (3.26) with ∂ri

∂v
and ∂2ri

∂v2 then yields the corresponding derivatives of r

itself. Since r is a polynomial in u, derivatives in that direction are simple to obtain.
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Appendix B

Derivatives for Optimizing U± and

Srad

This appendix describes the derivatives needed by the model fitting process. It assumes

that ν is the variable of optimization and that at a given sample location the following

derivatives are available: mν , rν , muν , ruν , mvν , rvν , muuν , ruuν , muvν , ruvν , mvvν , rvvν .

The last six are only necessary if the radial curvature constraint is violated or the

objective function for triangle meshes is used. Away from the singular points, these

are all linear in the control point derivatives and can be computed in exactly the same

manner as m and r, substituting the derivatives Pν for the control point matrix P

in (3.1). Near singular points, one could resort to numeric derivatives, but like before

Section B.1 gives exact expressions for edge patches. The remainder of this appendix

gives the expressions for the derivatives of the quantities computed in the previous

appendix.

The first derivatives computed are for the two common sub-expressions from (A.1):

aν = rumvν + ruνmv − rvmuν − rvνmu (B.1)

bν = mu ×mvν +muν ×mv (B.2)

These lead to the related derivatives

(a2)ν = 2a · aν , (b2)ν = 2b · bν , (B.3)

(b× a)ν = b× aν + bν × a , (
√
b2 − a2)ν =

(b2)ν − (a2)ν

2
√
b2 − a2

. (B.4)

These are sufficient to compute the derivatives of the unit spoke vectors. The first two

also allow the computation of the derivative of the constraint in (4.41). If this condition
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is violated, computation stops here. Otherwise, it continues with

U±ν =
1

b2

(
(b× a)ν ±

√
b2 − a2 · bν ± (

√
b2 − a2)ν · b− U± · (b2)ν

)
. (B.5)

When differentiating the objective function for binary images, as long as the radial

curvature constraint is satisfied these are all the derivatives necessary. The derivatives

of the associated boundary points are given by

B±ν = mν + rνU
± + rU±ν . (B.6)

The objective function for triangle meshes requires the derivative of the medial

measure ∆M , given by

∆Mν = (
√
b2 − a2)ν∆u∆v (B.7)

If the radial curvature constraint in (4.43) is violated or triangle meshes are used,

derivatives of Srad and its eigenvalues are required. Starting with the second derivatives

of the common sub-expressions,

auν = rumuvν + ruνmuv + ruumvν + ruuνmv

− rvmuuν − rvνmuu − ruvmuν − ruvνmu ,
(B.8)

avν = rumvvν + ruνmvv + ruvmvν + ruvνmv

− rvmuvν − rvνmuv − rvvmuν − rvvνmu ,
(B.9)

(a2)uν = 2(a · auν + aν · au) , (B.10)

(a2)vν = 2(a · avν + aν · av) , (B.11)

buν = mu ×muvν +muν ×muv +muu ×mvν +muuν ×mv , (B.12)

bvν = mu ×mvvν +muν ×mvv +muv ×mvν +muvν ×mv , (B.13)

(b2)uν = 2(b · buν + bν · bu) , (B.14)

(b2)vν = 2(b · bvν + bν · bv) , (B.15)

(b× a)uν = bu × aν + buν × a+ b× auν + bν × au , (B.16)

(b× a)vν = bv × aν + bvν × a+ b× avν + bν × av , (B.17)
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(
√
b2 − a2)uν =

(b2)uν − (a2)uν − 2(
√
b2 − a2)u(

√
b2 − a2)ν

2
√
b2 − a2

, (B.18)

(
√
b2 − a2)vν =

(b2)vν − (a2)vν − 2(
√
b2 − a2)v(

√
b2 − a2)ν

2
√
b2 − a2

. (B.19)

This allows the computation of the derivative of the change in the spokes in each

direction:

U±uν =
1

b2

(
(b× a)uν ±

√
b2 − a2 · buν ± (

√
b2 − a2)ν · bu ± (

√
b2 − a2)u · bν

±(
√
b2 − a2)uν · b− U± · (b2)uν − U±ν · (b2)u − U±u · (b2)ν

)
,

(B.20)

U±vν =
1

b2

(
(b× a)vν ±

√
b2 − a2 · bvν ± (

√
b2 − a2)ν · bv ± (

√
b2 − a2)v · bν

±(
√
b2 − a2)vν · b− U± · (b2)vν − U±ν · (b2)v − U±v · (b2)ν

)
.

(B.21)

These allow the computation of the derivative of the matrix S±v from those of its

coefficients, s±ji:

∂s±11

∂ν
=

±1√
b2 − a2

(
U±u · (U± ×mvν + U±ν ×mv)+

U±uν · (U± ×mv)− s±11(
√
b2 − a2)ν

)
,

(B.22)

∂s±12

∂ν
=

±1√
b2 − a2

(
U±v · (U± ×mvν + U±ν ×mv)+

U±vν · (U± ×mv)− s±12(
√
b2 − a2)ν

)
,

(B.23)

∂s±21

∂ν
=

±1√
b2 − a2

(
U±u · (mu × U±ν +muν × U±)+

U±uν · (mu × U±)− s±21(
√
b2 − a2)ν

)
,

(B.24)

∂s±22

∂ν
=

±1√
b2 − a2

(
U±v · (mu × U±ν +muν × U±)+

U±vν · (mu × U±)− s±22(
√
b2 − a2)ν

)
,

(B.25)

∂S±v
∂ν

=

[
∂s±11
∂ν

∂s±12
∂ν

∂s±21
∂ν

∂s±22
∂ν

]
. (B.26)
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These coefficients give ∂κri

∂ν
, the derivative of the radial curvatures:

∂Hrad

∂ν
=

1

2

(
∂s±11

∂ν
+
∂s±22

∂ν

)
, (B.27)

∂Krad

∂ν
= s±11

∂s±22

∂ν
+
∂s±11

∂ν
s±22 − s±12

∂s±21
∂ν

− ∂s±12
∂ν

s±21 , (B.28)

∂κri

∂ν
=
∂Hrad

∂ν
± 1√

Hrad
2 −Krad

(
Hrad

∂Hrad

∂ν
− 1

2
· ∂Krad

∂ν

)
. (B.29)

For triangle meshes, assembling the above expressions yields the derivatives of the

weighted normal vectors, η′i:

∂ηi

∂ν
= U±ν

(
1− 2rHrad + r2Krad

)
∆M

+ U±
(

1− 2

(
rνHrad + r

∂Hrad

∂ν

)
+ 2rrνKrad + r2∂Krad

∂ν

)
∆M

+ U±
(
1− 2rHrad + r2Krad

)
∆Mν .

(B.30)

This completes the set of derivatives needed to evaluate the objective functions and the

associated penalty functions from Chapter 4.

B.1 Derivatives of the Edge Control Curve

Once again, evaluating the derivatives in the preceding section on edge patches requires

first differentiating the control curve, r0(v). This section essentially applies another

round of differentiation to the expressions in Section A.1. It assumes that the other

derivatives on the patch with respect to ν are already available, namely those of the

medial surface m and of the three spline ri curves, i ∈ 1 . . . 3. In the following, all

expressions are evaluated at (0, v)—or simply at (v) for the ri(v) curves—allowing the

explicit argument lists to be dropped to improve readability.

First, derivatives of the metric tensor coefficients are needed:

∂Em

∂ν
= 2mu ·muν , (B.31)

∂Fm

∂ν
= mu ·mvν +muν ·mv , (B.32)

∂Gm

∂ν
= 2mv ·mvν . (B.33)
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Then, differentiating the common sub-expressions from Section A.1,

(b2)ν = Em
∂Gm

∂ν
+
∂Em

∂ν
Gm − 2Fm

∂Fm

∂ν
, (B.34)

cν = Fm
∂2r1
∂v∂ν

+
∂Fm

∂ν
· ∂r1
∂v

, dν =
∂Gm

∂ν
− 2

∂r1
∂v

· ∂
2r1

∂v∂ν
, (B.35)

eν = d · (b2)ν + dν · b2 , (
√
e)ν =

eν

2
√
e

(B.36)

gives

ruν =
1

Gm

(
cν + (

√
e)ν −

∂Gm

∂ν
ru

)
, (B.37)

∂r0
∂ν

=
1

C1,0

(
ruν − C1,1

∂r1
∂ν

− C1,2
∂r2
∂ν

− C1,3
∂r3
∂ν

)
. (B.38)

Repeating the process on the first-order derivatives with respect to v,

∂2Em

∂v∂ν
= 2 (mu ·muvν +muν ·muv) , (B.39)

∂2Fm

∂v∂ν
= mu ·mvvν +muν ·mvv +muv ·mvν +muvν ·mv , (B.40)

∂2Gm

∂v∂ν
= 2 (mv ·mvvν +mvν ·mvv) , (B.41)

(b2)vν = Em
∂2Gm

∂v∂ν
+
∂Em

∂ν
· ∂Gm

∂v
+
∂Em

∂v
· ∂Gm

∂ν
+
∂2Em

∂v∂ν
Gm

− 2Fm
∂2Fm

∂v∂ν
− 2

∂Fm

∂ν
· ∂Fm

∂v
,

(B.42)

cvν = Fm
∂3r1
∂v2∂ν

+
∂Fm

∂ν
· ∂

2r1
∂v2

+
∂Fm

∂v
· ∂

2r1
∂v∂ν

+
∂2Fm

∂v∂ν
· ∂r1
∂v

, (B.43)

dvν =
∂2Gm

∂v∂ν
− 2

(
∂r1
∂v

· ∂3r1
∂v2∂ν

+
∂2r1
∂v∂ν

· ∂
2r1
∂v2

)
, (B.44)

evν = d · (b2)vν + dν · (b2)v + dv · (b2)ν + dvν · b2 , (B.45)

(
√
e)vν =

1√
e

(
evν − 2(

√
e)v · (

√
e)ν

)
, (B.46)

ruvν =
1

Gm

(
cvν + (

√
e)vν −

∂2Gm

∂v∂ν
ru −

∂Gm

∂v
ruν −

∂Gm

∂ν
ruv

)
, (B.47)

∂2r0
∂v∂ν

=
1

C1,0

(
ruvν − C1,1

∂2r1
∂v∂ν

− C1,2
∂2r2
∂v∂ν

− C1,3
∂2r3
∂v∂ν

)
. (B.48)

141



And once more for the second-order v derivatives:

∂3Em

∂v2∂ν
= 2 (mu ·muvvν +muν ·muvv + 2muv ·muvν) , (B.49)

∂3Fm

∂v2∂ν
= mu ·mvvvν +muν ·mvvv + 2(muv ·mvvν +muvν ·mvv)

+muvv ·mvν +muvvν ·mv ,

(B.50)

∂3Gm

∂v2∂ν
= 2 (mv ·mvvvν +mvν ·mvvv + 2mvv ·mvvν) , (B.51)

(b2)vvν = Em
∂3Gm

∂v2∂ν
+
∂Em

∂ν
· ∂

2Gm

∂v2
+
∂2Em

∂v2
· ∂Gm

∂ν
+
∂3Em

∂v2∂ν
Gm

+ 2

(
∂Em

∂v
· ∂

2Gm

∂v∂ν
+
∂2Em

∂v∂ν
· ∂Gm

∂v

−Fm
∂3Fm

∂v2∂ν
− ∂Fm

∂ν
· ∂

2Fm

∂v2
− 2

∂Fm

∂v
· ∂

2Fm

∂v∂ν

)
,

(B.52)

cvvν = Fm
∂4r1
∂v3∂ν

+
∂Fm

∂ν
· ∂

3r1
∂v3

+ 2

(
∂Fm

∂v
· ∂3r1
∂v2∂ν

+
∂2Fm

∂v∂ν
· ∂

2r1
∂v2

)
+
∂2Fm

∂v2
· ∂

2r1
∂v∂ν

+
∂3Fm

∂v2∂ν
· ∂r1
∂v

,

(B.53)

dvvν =
∂3Gm

∂v2∂ν
− 2

(
∂r1
∂v

· ∂4r1
∂v3∂ν

+
∂2r1
∂v∂ν

· ∂
3r1
∂v3

+
∂2r1
∂v2

· ∂3r1
∂v2∂ν

+
∂3r1
∂v2∂ν

· ∂
2r1
∂v2

)
,

(B.54)

evvν = d · (b2)vvν + dν · (b2)vv + 2
(
dv · (b2)vν + dvν · (b2)v

)
+ dvv · (b2)ν + dvvνb

2 ,
(B.55)

(
√
e)vvν =

1

2
√
e

(
evvν − 2

(
(
√
e)vv(

√
e)ν + 2(

√
e)v(

√
e)vν

))
, (B.56)

ruvvν =
1

Gm

(
cvvν + (

√
e)vvν −

∂2Gm

∂v2
ruν −

∂3Gm

∂v2∂ν
ru

−2

(
∂Gm

∂v
ruvν +

∂2Gm

∂v∂ν
ruv

)
− ∂Gm

∂ν
ruvv

)
,

(B.57)

∂3r0
∂v2∂ν

=
1

C1,0

(
ruvvν − C1,1

∂3r1
∂v2∂ν

− C1,2
∂3r2
∂v2∂ν

− C1,3
∂3r3
∂v2∂ν

)
. (B.58)

Although these expressions appear expensive to evaluate, this only needs to be done

once for each unique value of v on a patch. Their values are cached and re-used for all

subsequent samples at the same v coordinate on the same patch. Also, at least for the

binary image objective function, the second-order v derivatives are only required if one

of the samples violates the radial curvature constraint.
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