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ABSTRACT

TYLER M. JOHNSON: A Cooperative Approach to Continuous Calibration in
Multi-Projector Displays

(Under the direction of Henry Fuchs)

Projection-based displays are often used to create large, immersive environments for virtual real-

ity (VR), simulation, and training. These displays have become increasingly widespread due to the

decreasing cost of projectors and advances in calibration and rendering that allow the images of multi-

ple projectors to be registered together accurately on complex display surfaces, while simultaneously

compensating for the surface shape—a process that requires knowledge of the pose of each projector

as well as a geometric representation of the display surface.

A common limitation of many techniques used to calibrate multi-projector displays is that they

cannot be applied continuously, as the display is being used, to ensure projected imagery remains

precisely registered on a potentially complex display surface. This lack of any continuous correction

or refinement means that if a projector is moved slightly out of alignment, either suddenly or slowly

over time, use of the display must be interrupted, possibly for many minutes at a time, while system

components are recalibrated.

This dissertation proposes a novel framework for continuous calibration where “intelligent” pro-

jector units (projectors augmented with cameras and dedicated computers) interact cooperatively as

peers to continuously estimate display parameters during system operation. Using a Kalman filter to

fuse local camera image measurements with remote measurements obtained by other projector units,

the projector units in a multi-projector display cooperatively estimate the poses of all projectors and

information about the display surface, such as its pose or shape, in a continuous fashion. This de-

centralized approach to continuous calibration has the potential to enable scalable and fault-tolerant

display solutions that can be configured and maintained by untrained users.
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CHAPTER 1

INTRODUCTION

The advent of the affordable commodity projector and the ease with which this device can be con-

nected to a source of computer generated imagery has created a surge of research interest in the

projector’s unique ability to turn almost any physical surface into a display. From office workspaces

to virtual environments, projection-based displays have proven to be viable alternatives to previously

established display technologies, while offering their own unique advantages. The ability to combine

multiple projectors into a single seamless display without the unsightly borders of other display tech-

nology makes the projector ideal for creating large, immersive environments for virtual reality (VR),

simulation, and training. Projection-based displays can also be quite flexible, since the size and field-

of-view of the display can be adjusted to suit a variety of different application requirements simply by

rearranging or repositioning the projectors.

Unfortunately, most projection-based displays in use today cannot take advantage of this flexibility

due to a reliance on tedious and time-consuming manual calibration and alignment procedures that

must be repeated at even the slightest change in display configuration, such as the movement of a

projector. To address this, algorithms have recently been developed that can automatically adjust to

such changes during actual display use. Such so-called continuous calibration approaches, which are

the subject of active research, are the topic of this dissertation and have the potential to dramatically

improve the usefulness and reliability of projection-based displays. Before delving deeper into this

topic, however, an introduction to the general problem of calibration and image correction in multi-

projector displays is provided.



1.1 Geometric Considerations

As the reader will observe over the course of this work, many of the challenges involved in projection-

based displays are geometric in nature. For example, when projecting onto a surface that is complex

(non-flat), such as the room corner in Figure 1.1 left, the imagery will bend and distort around the

surface according to its shape. This often results in a display that is unusable since the observed

imagery is not consistent with what the viewer is intended to observe.

Figure 1.1: Left: A simple room corner used for projection-based display without correction for the
shape of the display surface. Right: The same display after applying basic techniques to correct for
the display surface shape.

Fortunately, by appropriately distorting the imagery before projection, it is possible to neutralize

this effect for a given viewing location, causing the imagery to appear without distortion, as it was

originally intended (Figure 1.1 right). As will be described in more detail in Chapter 3, the ability to

pre-distort the imagery in this way requires that the following information is known:

• The shape of the display surface

• The relative position and orientation of the projectors

• The viewing location

These parameters must be known to a high degree of accuracy in order for image correction to

be successful. This is especially important for displays with multiple overlapping projectors, such as

that of Figure 1.2, since errors in these parameters can result in image misregistration or misalignment

2



that is revealed as blurring or “ghosting” in the imagery. For this reason, it is typically desired that

the above parameters are known to such a high degree of accuracy that sub-pixel registration between

overlapping projected images is achieved.

Figure 1.2: A room-sized display using two overlapping projectors.

1.2 Photometric Considerations

In addition to the aforementioned geometric challenges, there are also various photometric factors to

consider that may greatly affect the quality of a projection-based display. While geometric correction

is concerned with placing each pixel in its proper place on the surface, photometric correction is

concerned with ensuring each pixel has the proper color and brightness to produce a display with no

visible seams that would delineate the imagery of multiple projectors. For example, in areas where

imagery from multiple projectors overlaps on the surface, as in Figure 1.3, a brighter than normal

region will be visible due to the light contribution from multiple projectors being greater than that

of a single projector. Other photometric issues include compensating for the color of the display

surface, compensating for differences between projectors in color gamut and input-output response,

and accounting for the effects of light scattering between different parts of the display surface.

Just as it is possible to correct for the undesirable geometric effects in a multi-projector display,

the various photometric considerations that have been mentioned can be compensated for as well.
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Areas of increased brightness can have their image brightness attenuated to blend the images from

separate projectors together. Correction for differences in color-gamut and input-output response can

be achieved via altering the color and brightness of pixels before projection so that the resulting color

and brightness on the surface is matched across projectors. When properly combined with geometric

correction, it is possible to achieve a truly seamless multi-projector display.

Figure 1.3: A two-projector display without and with photometric blending. Notice the brighter area
in the center of the left image.

1.3 Continuous Calibration

In general, correcting for the potential geometric and photometric issues in a projection-based display

can be cast as the following problem: given a desired image that the user should observe, how should

this image be warped (its pixel rearranged) and its color values altered, so that the imagery from all

projectors combines together on the display surface to produce a coherent, seamless image. This

process is generally referred to as image correction. In most projection-based displays, the desired

image is rendered by a graphics application. In the case of an interactive application, such as a flight

simulator, the desired image will change from frame to frame with any motion of the scene, requiring

a real-time geometric and photometric correction process for projected imagery.

The integration of geometric and photometric correction into an interactive application is illus-

trated in Figure 1.4. As each frame is rendered by the application, geometric and photometric correc-

tion is performed before the image is sent to the projector for display. As illustrated in the figure, this

4



is an ongoing, repetitive process that occurs as the display is being used.

Figure 1.4: Geometric and photometric image correction is performed on images rendered by the
application before they are sent to the projector for display.

As mentioned previously, the ability to perform geometric and photometric correction requires

certain information about the display configuration to be known, for example, the shape of the display

surface, the relative position and orientation of the projectors, and/or the input-output response of the

projector(s). Currently, most techniques for geometric and photometric correction require an upfront

calibration process that occurs before the display is used and assumes a fixed display configuration

where display parameters do not change. This inability to adapt to changes in the display is a limita-

tion since even for “fixed” display configurations, display parameters are likely to change over time

due to inadvertent physical perturbations caused by vibration of the mounting structure, heating and

cooling cycles, and even gravity. One can also imagine situations where the user may wish to delib-

erately alter the display configuration due to varying field-of-view or spatial resolution requirements

between applications. Displays that are not able to adapt to these changes automatically require pe-

riodic manual recalibration in order to maintain a consistent level of display quality over time. This

can be costly; in many commercially available systems, recalibration must be performed on-site by

specially-trained professionals.

For these reasons it is desirable for a multi-projector display to continuously monitor and adapt
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to changes in display parameters over time as the display is being used. This process of adapting to

display changes during actual display use is referred to as continuous calibration. As illustrated in

Figure 1.5, continuous calibration is implemented as a module that runs concurrently with image cor-

rection and rendering, providing estimates of the latest display parameters to the correction software.

Some of the enabling technologies behind continuous calibration include the programmable graphics

processing unit (GPU), which more easily accommodates changing display parameters than earlier

static image correction solutions, and affordable commodity digital cameras that form the underlying

sensor system in many continuous calibration approaches.

Figure 1.5: Continuous calibration occurs as the display is being used and affects the geometric and
photometric correction that occurs.

1.4 Contributions

This dissertation presents several novel techniques for upfront and continuous calibration designed

to improve the utility of the projection-based displays. To begin with, the use of projectors equipped

with wide-angle lenses is examined. Such projectors can have an advantage over traditional projectors

in creating immersive display environments since they can be placed in close proximity to the display

surface to reduce user shadowing issues while still producing large images. However, wide-angle

projectors exhibit severe image distortion requiring the image generator to correctively pre-distort the

output image.

This dissertation describes a new technique based on [Raskar et al., 1998]’s two-pass rendering

algorithm that is able to correct for both arbitrary display surface geometry and the extreme lens
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distortion caused by fisheye lenses. Methods for implementing this distortion correction algorithm

in a real-time shader program running on a commodity GPU to create low-cost, personal surround

environments are also described.

Continuous calibration approaches must be scalable in order to be useful in large displays with

many projectors. In this respect, a distributed calibration methodology is better suited and can provide

greater fault tolerance than centralized approaches, where all calibration data is aggregated and pro-

cessed on a single machine. This dissertation also proposes a novel distributed cooperative framework

for continuous calibration in multi-projector displays where “intelligent” projector units (projectors

augmented with cameras and dedicated computers) interact cooperatively as peers to continuously

estimate display parameters over time.

In this framework, each projector unit continuously measures the location of features in the pro-

jected imagery using its cameras. These local measurements are fused with remote measurements

obtained by its peers using a Kalman filter. It is shown that this framework can be used during display

to estimate the poses of all projectors in a multi-projector display, as well as information about the

display surface, such as its shape or pose.

1.5 Thesis Statement

The central thesis of this dissertation is:

Geometric calibration of a multi-projector display can be maintained continuously, during system

operation, using a distributed cooperative approach that simultaneously refines

I. the poses of multiple projectors and

II. the geometry of the display surface.

1.6 Additional Contributions

In addition to this distributed cooperative framework, this dissertation makes several other contribu-

tions to the area of calibration in multi-projector displays. In addition to self-contained “intelligent”

7



projector units, one can also imagine continuously calibrated displays where the cameras may be sep-

arate from the projector(s). This idea is explored in published work [Johnson and Fuchs, 2007a] in-

cluded at the end of this document in the Appendix. Another published work [Johnson and Fuchs, 2007b]

included in the Appendix explores the use of projector-camera systems in the office and describes how

the task of displaying onto the surfaces of an office cubicle by combining projection and flat-screen

technology can be unified with the task of providing camera-based desktop scanning.

1.7 Publications

This dissertation is based the following published works that have appeared in the proceedings of

peer-reviewed conference proceedings, in book chapters, and in workshops:

T. Johnson, G. Welch, H. Fuchs, E. La Force, H. Towles, A Distributed Cooperative Frame-

work for Continuous Multi-Projector Pose Estimation, In Proceedings of the 2009 IEEE Virtual

Reality Conference, Lafayette, LA, March, 2009.

H. Towles, T. Johnson, H. Fuchs, Projector Based Displays, The PSI Handbook of Virtual En-

vironments for Training and Education. Vol 2 Ed. Denise Nicholson, Dylan Schmorrow, and

Joseph Cohn. Westport: Praeger Security International, 2009. 63-89.

T. Johnson, H. Fuchs, A Unified Multi-Surface, Multi-Resolution Workspace with Camera-

Based Scanning and Projector-Based Illumination, In Eurographics Symposium on Virtual En-

vironments/Immersive Projection Technology Workshop 2007, Weimar, Germany, July, 2007.

T. Johnson, H. Fuchs, Real-Time Projector Tracking on Complex Geometry Using Ordinary

Imagery, In 4th IEEE International Workshop on Projector-Camera Systems (ProCams 2007),
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1.8 Outline

This dissertation is organized as follows.

• Chapter 2 describes previous work related to geometric calibration in projection-based displays.

Special care is taken in this section to differentiate techniques based on their ability to provide

some type of automatic or continuous calibration.

• Chapter 3 introduces some preliminary concepts and mathematics that will prove useful to the

reader in understanding the techniques and concepts presented in this thesis.

• Chapter 4 represents the first contribution of this work, which is a novel technique for calibration

and image correction in projection-based displays that include a significant amount of projector

lens distortion.

• Chapter 5 introduces the distributed cooperative framework for continuous calibration in multi-

projector displays by examining the operation of the framework in the special case that the

geometry of the display surface is static and known prior to system operation and only the

poses of the projectors must be estimated.

• Chapter 6 describes an extension to the framework of the previous chapter that provides the

ability to simultaneously estimate information about the display surface and the poses of the

projectors.

• Chapter 7 provides a summary and a discussion of future work.

• The Appendix contains two additional publications whose contents have not been included in

the body of the dissertation.
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CHAPTER 2

PREVIOUS WORK

The concept of using imagery to create a desired optical effect from a particular viewpoint has been

in existence since the Renaissance. Using a technique called trompe-l’œil, artists were successful in

fooling the eye with illusionistic paintings that could make a hallway appear to continue through a

wall or a ceiling appear to possess an open portal to the sky. This was made possible by the artists’ ad-

vanced knowledge of perspective, which allowed them to create art rendered from true vanishing point

perspective. In much the same way, a well-calibrated multi-projector display creates, for example, the

illusion of a flat display surface even though its true geometry may be much more complex.

This chapter describes previous work in multi-projector displays beginning with a review of the

first techniques that were developed for camera-based calibration: those requiring a manual upfront

calibration process. This is followed by a discussion of several approaches designed to automate the

calibration process in a variety of scenarios. Continuous techniques designed to calibrate the display

during operation are then introduced before concluding with a discussion of previous work in the

related area of distributed Simultaneous Localization and Mapping (SLAM).

2.1 Upfront Techniques

The ability to determine how a desired image should be warped to appear correct to a viewer in a

multi-projector display has traditionally relied on an upfront calibration process where cameras are

used to measure properties of the display configuration such as the geometry of the display surface

and the position and orientation of each projector. A brief summary of upfront calibration techniques



follows.

[Surati, 1999] proposed a digital approach to calibrating tiled multi-projector displays on a pla-

nar surface that did not require the manual projector alignment of previous techniques. The basis

for this approach is to use a static camera to observe patterns projected by each projector, allowing a

pixel-to-pixel mapping to be established between the camera and projectors. By additionally imaging

a physical grid pattern placed on the display surface to establish the screen space, a second mapping

between the camera pixels and the screen is established. The mappings from camera-to-screen-space

and from projector-to-camera can then be composed to achieve geometric registration between multi-

ple projectors.

Concurrent work [Raskar et al., 1998, Raskar et al., 1999a] showed how camera-based calibra-

tion could be expanded to compensate for arbitrary surfaces. This work used time-multiplexed coded

structured light patterns, first proposed by [Posdamer and Altschuler, 1982], to establish image corre-

spondences between projectors and a set of calibrated cameras. The calibration and correspondence

information allows a point-sampled representation of the display surface model to be reconstructed,

which is then triangulated into a polygonal mesh for rendering. The set of 3D-2D correspondences in

each projector resulting from the reconstruction is also used to calibrate each projector using the Di-

rect Linear Transform (DLT) algorithm [Abdel-Aziz and Karara, 1971]. At display time, the display

surface model and projector calibration are used in conjunction with knowledge of the user’s position

to compensate for the geometry of the display surface using two-pass rendering, an algorithm that will

be discussed further in the next chapter.

[Bimber et al., 2005] compensates for complex display surface geometry by directly measuring

the warping functions that are induced by the display surface between the viewer and each projec-

tor. This is done by placing cameras at various unstructured locations around the environment and

measuring the pixel-to-pixel mapping between these cameras and the projectors. To compensate for

the geometry of the display surface at run-time for arbitrary viewpoints, the measured per pixel map-

pings are interpolated using a technique similar to unstructured lumigraphs [Buehler et al., 2001] that

takes into account the position of the viewer with respect to the known camera locations where the

mappings were measured.
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2.2 Automatic Upfront Techniques

Some advanced upfront calibration techniques are able to calibrate automatically without the need for

manual input from the user. Such techniques are the topic of this section. A common limitation of

both upfront and automatic calibration techniques, however, is that they are sensitive to even small

changes in display configuration, such as a projector being bumped slightly out of alignment. In such

an event, use of the display must be interrupted, potentially for many minutes at a time, while the

system is recalibrated.

The PixelFlex system [Yang et al., 2001, Raij et al., 2003] featured mirrors mounted on pan-tilt

units that allowed each projector’s image to be easily and quickly repositioned to create new display

configurations. Each new configuration could be automatically calibrated within a matter of minutes

by automating the process of mapping projector pixels to screen pixels using a dedicated camera

as described in [Surati, 1999]. The PixelFlex system also incorporated a number of advancements

in photometric correction used to achieve seamlessness across multiple projectors [Majumder, 2002,

Majumder and Stevens, 2002, Majumder et al., 2000].

[Chen et al., 2002] describes a vision-based system for automatically calibrating tiled multi-

projector displays. By observing the projection of calibration images with a number of camera views

sufficient to cover the entire displayable surface, the idea of a camera homography tree is introduced

to link each camera and projector to the global reference frame through a chain of homographies.

Methods of optimizing the homography tree and estimating both local and global alignment error are

also presented.

In [Raskar et al., 2003] a method is described for automatically calibrating a cluster of projectors

acting as a tiled display on a planar or quadric display surface. This work also demonstrated the ability

to easily incorporate new projectors into an already calibrated display. Each projector is equipped with

its own attached camera, and the two devices are pre-calibrated to one another. When a new projector

joins the display, projection of user imagery is interrupted by a calibration procedure where projectors

alternately display calibration images used to compute pair-wise homographies or quadric transfer

parameters. The pair-wise homographies or quadric transfer parameters are then globally adjusted

to reduce error. In the case of a planar surface, each projector independently computes the largest
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inscribed rectangle residing within the union of all projectors’ extents on the display surface. This

rectangle is used to establish the coordinate system of the display on the wall.

[Raij and Pollefeys, 2004] showed that given a camera with known intrinsics, it is possible to

automatically calibrate a multi-projector display on a planar display surface. Constraints on the cal-

ibration are produced by using structured light to generate correspondences between each projector

and the camera. After correspondences have been found, the intrinsics of the projectors as well as the

extrinsics of each projector and the camera with respect to the display surface are calculated using a

linear system followed by a non-linear refinement that assumes all projectors have the same unknown

principal point. This is a departure from previous techniques that were either homography-based and

lacked a full 3D calibration or used the DLT algorithm [Abdel-Aziz and Karara, 1971] for projector

calibration.

[Bhasker et al., 2006] proposed an asynchronous approach to calibration and photometric correc-

tion in multi-projector displays. While limited to a planar display surface and a tiled display configu-

ration, the work is truly scalable to a large number of projectors since calibration and rendering are not

performed in a centralized way. By projecting patterns in an upfront calibration step, each projector

is able to automatically and independently determine its location in the tiled display and compute the

geometric and photometric corrections it must perform to create a seamless display.

2.3 Continuous Techniques

In general, the continuous calibration techniques that have been developed for projection-based dis-

plays can be divided into two categories: active and passive. In the first are techniques where cal-

ibration aids that are imperceptible to a human observer are injected into the user imagery. These

techniques are called active since they affect what is displayed by the device. Techniques that make

no change to the imagery displayed by the projector are called passive and instead rely on their ability

to extract calibration information from the application imagery.

[Cotting et al., 2004] describes an active technique that is able to automatically and continuously

estimate the geometry of the surface being used for projection. This is accomplished by taking advan-

tage of the mirror flip sequences used in DLP R© projectors to embed imperceptible calibration images
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into the application imagery. Embedding is done by modifying the projected image slightly so that

a synchronized camera exposed during a short time slice of the total frame duration will observe an

embedded pattern. By embedding coded structured light into the images projected by the user, surface

depth estimates can be obtained each frame and used to update the model of the display surface used

in rendering. While the size of the time slice can be chosen small enough to make the embedded

pattern imperceptible to the user, the embedding process can result in a shift in the color values of the

displayed imagery.

[Cotting et al., 2005] improves upon the original result by describing how interference of the

encoded signals when using multiple projectors can be avoided to create large displays using imper-

ceptible structured light by multiplexing in time. The work also describes how the displacement of

projector-camera modules during use of the display can be compensated for by reconstructing the

pattern projected by the displaced projector using cameras on other modules.

[Grundhöfer et al., 2007] also describes an active embedding technique. Their approach is to

modify projected images at each pixel by some ∆ amount that can be detected by an observing camera.

Using a stereo projector, the modified image and its complement are projected as the left- and right-

eye images of the stereo projection. Since the images are projected time sequentially at 60 Hz, the

images integrate imperceptibly to form the original image. Synchronized cameras with shared optical

axes are able to capture the left- and right-eye images separately, allowing the coded pattern to be

reconstructed by taking the ratio of the two images. The authors note that careful choice of the ∆

parameter is needed at each pixel to prevent perception of the pattern in certain usage scenarios.

[Yang and Welch, 2001] is the first work to demonstrate the ability of a projector-camera system

to passively estimate the geometry of a display surface during display-time using only features present

in application imagery. The estimate of the surface begins as a single plane, and as features between

the projector and camera images are matched, the surface estimate is continuously refined over time.

An independent Kalman filter at each projector pixel processes the feature measurements that fall

on that pixel and updates the pixel’s depth estimate. This filter also provides an assessment of the

uncertainty in each estimate as well as a certain robustness against false correspondences.

[Zhou et al., 2008] also describes a passive system for continuous calibration that forgoes the

introduction of artificial features in favor of calibration using features already present in the imagery
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projected by the user. In a multi-projector display with known, complex display surface geometry,

this system demonstrated the ability to recalibrate projectors that have been moved using knowledge

of the surface shape and the calibration of other projectors that are known not to have moved. In cases

where the display surface is planar and the projectors are static, the system can also compensate for

motion of the display surface.

[Gupta and Jaynes, 2006] describes an interactive display where the pages of blank book are

augmented with projected multi-media content such as images and video. The projected imagery is

automatically and continuously registered to the pages of the book as they are turned by measuring

feature correspondences in the projected imagery between the projector and a calibrated camera. The

authors also demonstrate the ability to navigate volumetric datasets by removing a page from the book.

[Zollmann et al., 2006] proposes a hybrid projector display that is able to calibrate continuously

using both passive and active techniques. Correction for complex surface geometry is performed in

a manner similar to [Bimber et al., 2005] except the user is required to wear a head-mounted camera

that observes the projected imagery. Through matching features in the application imagery, the system

is able to make minor adjustments to the calibration in a passive way. When the system determines

the errors are too large to correct passively, the application imagery is interrupted while an active

calibration process visible to the user occurs to bring the display back into calibration.

2.4 Distributed SLAM Techniques

In the most general sense, a continuous calibration algorithm will attempt to estimate the full calibra-

tion of all projectors, the geometry of the display surface, and the location of the viewer in a common

coordinate system. The challenge of continuous calibration in a multi-projector display thus shares

some similarity to the Simultaneous Localization and Mapping (SLAM) problem, which refers to the

problem of generating a map of an unknown environment using a mobile vehicle or robot whose pose

in the environment must also be estimated. For this reason, a brief discussion of previous work in

the area of SLAM is included, with a strong focus on distributed SLAM, the problem of localizing

multiple robots in a distributed fashion, which is most similar to the continuous projector display

calibration approach described in this dissertation.
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The seminal work in vision-based SLAM was carried out in the late 1980s by [Smith et al., 1989],

who provided an elegant solution to the problem through the use of an extended Kalman filter whose

state consisted of both the vehicle pose and map estimates.

[Walter and Leonard, 2004] describes a solution to distributed SLAM in the case of a hetero-

geneous mix of robots where so-called masters have the ability to self-navigate using SLAM while

slaves have a more limited set of sensors for dead-reckoning and measuring the environment. Us-

ing moving baseline navigation, inter-vehicle and feature observations made by different robots are

integrated by the master vehicle via a Kalman filter.

[Dellaert et al., 2005] formulates the problem of distributed SLAM as a large-scale inference

problem on a factor graph and describes how it can be solved using a distributed Multi-Frontal QR

decomposition. In this work, one vehicle is designated to be the coordinating node with which all

other vehicles communicate. A clique tree [Pothen and Sun, 1992, Blair and Peyton, 1993] or junc-

tion tree [Cowell et al., 1999] that is consistent with this topology is then computed on the unknowns

such that the QR computation can be distributed among the vehicles in an efficient manner.
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CHAPTER 3

PRELIMINARIES

This chapter is intended to provide a brief introduction to techniques and concepts that will be referred

to in later chapters. It begins with a discussion of commonly used geometric models for projectors and

cameras and describes how these are related to geometric image correction in multi-projector displays.

This information will prove useful in Chapter 4 when developing methods for correcting wide-angle

lens distortion of projectors. Some results from the study of two-view geometry that provide useful

constraints for calibration are then provided before concluding with a discussion of various techniques

for estimation that will be used in formulating the distributed cooperative framework for continuous

calibration introduced in Chapter 5.

3.1 Geometric Models for Projectors and Cameras

Geometric models for cameras and projectors are needed for a variety of tasks. For example, we may

wish to determine the 3D location of a point in the world given measurements of the 2D point in

images captured by two different cameras. This is a common problem in reconstructing the structure

of a scene that is viewed by multiple cameras and requires a geometric model for the cameras that

includes such parameters as the position and orientation of the cameras in the world and the focal

length of the camera lenses.

While cameras and projectors serve different purposes, both use a lens to direct light. Cameras

use a lens to focus incoming light onto a sensor, while projectors use a lens to focus outgoing light

onto a surface. This symmetry means that cameras and projectors can be thought of as optical duals



of one another, and geometric models for cameras can be applied to projectors without modification.

Some of the more widely-used geometric models for projectors and cameras will now be discussed.

3.1.1 Pinhole Perspective Model

The most common lens model for cameras and projectors is the pinhole perspective model, which

describes the common pinhole camera. In this model, straight lines in the world correspond to straight

lines in the image as they pass through the lens. The pinhole perspective model includes 11 degrees

of freedom that are represented as a 3× 4 projection matrix P, defined up to scale, that relates a 3D

world point X = [X ,Y,Z,1]T to its 2D imaged pixel location x = [u,v,s]T through the linear equation

x = PX . (3.1)

The 11 degrees of freedom afforded by the pinhole perspective model can be divided into intrinsic

and extrinsic parameters. The extrinsic parameters include six degrees of freedom for the position and

orientation of the device in world coordinates. The orientation is represented as a 3×3 rotation matrix

R with three degrees of freedom and the position is represented by the 3-vector C. The intrinsics

describe the focal properties of the lens and remain constant as the device is moved around in the

world. The intrinsics include 5 parameters: the focal length in u and v image coordinates ( fu, fv),

the location of the principal point in the image (pu, pv) and a skew parameter s used to account for

non-square pixels. The intrinsics are represented as a 3×3 matrix K with

K =


fu s pu

0 fv pv

0 0 1

 . (3.2)

These intrinsic and extrinsic parameters are combined together to form the projection matrix P of

the camera from Equation 3.1 in the following way

P = K[R|−RC]. (3.3)

The rotation matrix R and translation vector −RC together describe the transformation of the
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world point X into the coordinate system of the device. The K matrix transforms points on the image

plane to pixel coordinates in the camera or projector image by applying the focal properties of the

lens.

Lens Distortion

While lens properties can vary drastically, no physical lens is a perfect pinhole and straight lines in

the world imaged by a camera, or in an image projected by a projector, will be distorted to a greater or

lesser extent by the lens. In practice, cameras and projectors are often treated as pinhole devices along

with a distortion model that attempts to compensate for deviations from the ideal pinhole model.

Since lens distortion affects where world points are imaged (or in the case of projectors, the

direction of the ray along which a pixel is projected), estimation of lens distortion in a device can

significantly improve calibration results, especially for wide-angle lenses. The most important type

of distortion is radial, which increases with distance from the center of distortion in the image. The

center of distortion is usually located at or near the principal point. In general, the amount of radial

distortion is inversely proportional to the focal length of the lens.

In the computer vision literature [Hartley and Zisserman, 2003, Heikkil and Silvn, 1997], camera

lens distortion is typically modeled as a process that occurs after the projection of a world point onto

the image plane of the camera. Using the decomposition of P = K[R|t], where R is the camera’s

rotation matrix, and t =−RC with C the camera’s center of projection, distortion is incorporated into

the projection process as

x = Kδin([R|t]X). (3.4)

The δin operator remaps homogeneous 2D points after their initial projection onto the image plane

to model deviations from the pinhole model for light entering the lens. This operator will necessarily

be non-linear in order to capture non-linearities in the projection process not modeled by the pinhole

projection model of Equation 3.1. Since each homogeneous 2D point on the image plane is the

projective equivalent of a ray, this function can also be thought of as operating on rays as they enter

the lens. An image plane example of a δin operator distorting an image border is depicted in Figure
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Figure 3.1: Example effect of lens distortion (pincushion) on the image plane.

3.1. The operation depicted in the figure is referred to as a pincushion distortion.

A technique developed by Brown [Brown, 1971], which has been adopted by the Matlab Camera

Calibration Toolbox and Intel’s OpenCV, models both radial and decentering lens distortion, where

the latter arises from imperfectly aligned lenses. Decentering distortion possesses both radial and

tangential components. For the Brown model with two coefficients for radial distortion (k1,k2) and

two for tangential (p1, p2), the distortion operator δin is

δ ([u,v,s]T ) =


a(1+ k1r2 + k2r4)+2p1ab+ p2(r2 +2a2)

b(1+ k1r2 + k2r4)+ p1(r2 +2b2)+2p2ab

1

 , (3.5)

where a = u/s, b = v/s and r2 = a2 +b2.

While this model is not directly invertible, the set of coefficients that invert a specific distortion

can be determined using a non-linear optimization based on correcting a set of distorted sample points

in the image plane of the device to their original positions [Heikkil and Silvn, 1997].
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Figure 3.2: Pinhole perspective versus f-theta fisheye lens.

3.1.2 Non-Pinhole Lens Models

Some lenses represent such a strong departure from the pinhole lens model that they require a com-

pletely different representation. For example, a fisheye lens can have a field of view as great as 180◦.

In the pinhole perspective model, the angle θ in radians between an incoming ray and the principal

ray is related to the focal length f in pixels and the distance r between the principal point and the

incoming ray’s pixel by r = f tanθ . While there are a number of different fisheye lenses with unique

properties, consider the most common type, an equidistance projection or f-theta lens where r = f θ .

The relationship between a pinhole perspective lens and an f-theta fisheye lens is depicted in Figure

3.2.

Non-pinhole lens models can be dealt with in the same way as the pinhole model - as functions

operating on homogeneous 2D points on the image plane. For example, given this framework, the δin

for an f-theta fisheye lens can be expressed as

δin([u,v,s]T ) =


arctan(r)∗ x

arctan(r)∗ y

r

 , (3.6)

where x = u/s, y = v/s and r =
√

x2 + y2. The focal length has been omitted from the above equation
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since it is equal to one on the image plane before the intrinsic matrix is applied. This can be thought

of as treating the fisheye lens as a pinhole lens with a distortion function that models its deviation

from the pinhole model. Of course, it is possible in practice that the behavior of the fisheye lens may

deviate somewhat from its own ideal model for the same reasons that a pinhole lens might. These

additional “distortions” can be modeled separately and incorporated into the δin or δout function of the

lens model.

In this example, δin can be directly inverted to produce δout , the distortion that light undergoes as

it exits the device. Also note that since the f-theta model is treated as a distortion within the pinhole

model, a singularity exists for θ =±π radians. This is of little consequence in practice since the field

of view can be limited to slightly less than 180◦ to avoid the singularity.

3.2 Geometric Image Correction

Geometric image correction is the process by which the images of one or multiple projectors are

registered together on a display surface so as to compensate for the surface shape and provide the

viewer with an image of a scene that is free of distortion. In general, the geometric correction that

must be performed is a function of the shape of the display surface, the calibration of all projectors,

and the location of the viewer. As such, all of this information must be known in a common coordinate

system for geometric correction to be successful.

Geometric image correction is fundamentally a ray-tracing problem whose solution is concep-

tually simple. Consider a scene consisting of simple geometric shapes, as illustrated in Figure 3.3,

where the known display surface geometry, viewing location, and projector calibration are superim-

posed. Now consider a pixel x in the image space of the projector. As shown in the figure, this pixel

is projected along a ray that intersects the display surface at some point A. The exact position of A

depends on the shape of the display surface and the projector calibration. The appropriate color for

the pixel x is then determined by the color of the point B, which is the intersection of the scene with

the ray originating at the viewing location that passes through the point A. The appropriate color for

all other projector pixels can be determined in a similar fashion.
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Figure 3.3: Geometric image correction for complex display surface geometry.

3.2.1 Two-Pass Rendering

Though ray-tracing is quite computationally intensive, two-pass rendering [Raskar et al., 1998] is a

simple, but powerful technique developed to perform geometric correction efficiently on graphics

hardware. The two-pass rendering algorithm assumes that the shape of the display surface has been

measured (and is available as a polygonal mesh) and that all projectors in the display have been

calibrated so that a projection matrix is available for each. The location of the viewer is also assumed

to be known in the coordinate system of the display surface and the projector calibration.

Two-pass rendering is performed independently for each projector and proceeds as follows. In

the first pass, as illustrated in Figure 3.4, the scene is rendered from the viewer’s perspective with a

frustum that overlaps the image extent of the projector on the display surface. This image rendered in

pass one is the desired image that the user is to observe on the surface. In the context of the previous

ray-tracing example, the desired image is a discrete sampling of the rays originating at the viewpoint

that pass through the surface and intersect the scene.

In the second pass, the desired image is warped into the perspective of the projector. This process

compensates for the surface shape, resulting in the viewer observing the desired image on the surface.

The warping process is illustrated in Figure 3.5. Using a technique called projective texturing, which

is supported on modern graphics hardware, the desired image rendered in pass one is mathematically
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Figure 3.4: The first pass of two-pass rendering.

projected onto the vertices of the display surface model. The textured model is then rendered from the

perspective of the projector using its projection matrix to produce the image that the projector must

display in order to compensate for the shape of the surface. In the context of the ray-tracing example,

this process is, in effect, remapping rays between the viewer and the projector.

The two-pass rendering algorithm, as presented here, implicitly assumes a pinhole perspective

model since the projective texturing step in pass two models the projector as a linear device using

a projection matrix. In Chapter 4, a method of extending the two-pass rendering algorithm to also

include a distortion model for the projector lens will be described.

3.3 Two-View Geometry

The geometry of two views is the minimum number of views required to fully constrain the 3D geom-

etry of a scene and is thus of particular interest in Chapter 5 in formulating a distributed cooperative

framework for continuous calibration in multi-projector displays. Much of two-view geometry is cen-

tered around epipolar geometry, which stipulates that given a point xl in one view, its corresponding

point xr in the second view must lie along a line called an epipolar line. This stems from the fact that

there exists a plane, called the epipolar plane, that spans xl , the two camera centers Cl and Cr and the
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Figure 3.5: The second pass of two-pass rendering.

actual 3D scene point. As illustrated in Figure 3.6, the epipolar plane projects to a line lr in the second

view on which the point xr must lie. The actual location of xr depends on the depth of the scene.

A convenient algebraic entity commonly used to represent the epipolar geometry of two views is

the fundamental matrix, typically denoted as F . Given any image correspondence between two views

xl ↔ xr, such that xl and xr arise from the same 3D point in the scene, the fundamental matrix is a

3× 3 matrix that satisfies the homogeneous equation xlFxr = 0. Using the fundamental matrix, it is

simple to compute the epipolar line lr in the second view that corresponds to the point xl in the first

via FT xl = lr or in the opposite direction Fxr = ll .

The fundamental matrix can be efficiently computed from image correspondences using the nor-

malized 8-point algorithm [Longuet-Higgins, 1981], which requires at least 8 image correspondences

in general (non-degenerate) position. Once it is known, it can be used for a variety of applications,

such as validating the correctness of image correspondences or directing the search for further corre-

spondences.

An algebraic entity that can be used to represent the special case of two-view planar scene geom-

etry is the homography, which maps a point in one view to its corresponding location in the second

view without having to search along an epipolar line. Given any correspondence between two views

xl↔ xr, the homography H between the two views induced by a plane satisfies the equation Hxl = xr.
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Figure 3.6: The epipolar geometry of two views.

A homography can be computed from a set of 4 image correspondences between two views using

DLT [Hartley and Zisserman, 2003]. As with the fundamental matrix, a homography can be used to

validate the correctness of image correspondences and direct the search for further correspondences.

3.4 Estimation

Parameter estimation is a branch of mathematics that deals with the estimation of parameters using

measured or empirical data. One tool for parameter estimation, the Kalman filter, will prove most

useful in Chapter 5 for processing camera image correspondences. In practice, one must also deal

with possibility of false image correspondences, a measurement in one camera view that is incorrectly

identified as corresponding to the same scene point as a measurement in a second camera view. One

way of detecting these false correspondences is by applying the RANSAC algorithm to an estimation

problem. A brief introduction to RANSAC is thus provided in Section 3.4.2.

3.4.1 The Kalman Filter

The Kalman filter [Kalman, 1960] is a set of mathematical equations used to estimate the state of a

random process (a system whose state evolves over time according to some probability distribution)

using noisy measurements of its output. While a brief introduction to the filter is provided here, an

excellent, and much more thorough, practical introduction can be found in [Welch and Bishop, 2006].

26



The Kalman filter has proved useful in many areas of computer vision including parameter estima-

tion and tracking, where its recursive nature (the previous state estimate is used as input in estimating

the current state) lends itself well to numerical computation. In its standard form, as discussed in

this section, the Kalman filter has been shown to be optimal for the problem of discrete-time linear

filtering. There are several variations on the standard filter, and one of these in particular, the extended

Kalman filter, will prove useful in this work and will be subsequently discussed.

The Kalman filter is a stochastic estimator that maintains estimates of both the mean of the process

state distribution (state estimate) and the state estimate error covariance (measure of uncertainty in the

state estimate). In its standard form, the Kalman filter assumes the process whose state x ∈ℜn is to be

estimated is linear and evolves over time according to a discrete-time stochastic difference equation

of the form

xk = Axk−1 +Buk−1 +wk−1. (3.7)

In the above equation, called the process model, A is an n×n matrix, with n the length of the state

vector x, that relates the state at the previous time step k−1 to the state at the current time step k. The

vector u ∈ℜl is optional control input that is related to the state by the n× l matrix B. Finally, w is a

random variable that models random variations in the process over time.

As an example of a process that follows this model, consider a remote-controlled robot whose

state consists of its position and velocity. Ignoring any controls or randomness, the position of the

robot will have changed between time steps k and k− 1 by an amount equal to its present velocity.

Thus, the action of the matrix A should be to sum the robot’s position and velocity at time k− 1 to

obtain its position at time k, leaving its velocity unchanged. Any controls applied to the robot by its

remote-controller during this time would be represented in the vector u, with the matrix B describing

how these controls translate into a change in position of the robot. Finally, some noise is added to

represent the fact that at any point in time, it is not possible to know with complete certainty the true

position and velocity of the robot.

The measurement model of the filter describes how measurements of the process output are related

to its state. In the standard Kalman filter, this relationship is assumed to be linear with measurements
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zk at time k related to the state through an n×n matrix H as follows:

zk = Hxk + vk, (3.8)

where v is a random variable used to model noise in the measurements.

Given a process and measurement model, the Kalman filter acts as a predictor-corrector, where at

each time step a prediction of the current process state is produced that is later corrected using mea-

surements of the process output. This predictor-corrector paradigm is embodied in the filter through

its two phases of operation, the so-called time and measurement update phases.

The time update phase (prediction) is responsible for propagating the filter state and error covari-

ance forward in time from the previous step, to produce a priori state x̂−k and error covariance P−k

estimates at time k. The standard set of filter update equations used in this phase come directly from

the process model and are as follows

x̂−k = Ax̂k−1 +Buk−1 (3.9)

P−k = APk−1AT +Q, (3.10)

where Q is the called the process noise covariance and is the covariance of the random variable w

from Equation 3.7. The purpose of Q is to add additional uncertainty to the error covariance due to

random variations in the process that arise between filter updates.

In the measurement update phase (correction), the measurements at time k are used in conjunction

with a set of measurement predictions to correct the a priori state and error covariance estimates into

a posteriori state and error covariance estimates. The standard filter update equations for this phase

are as follows
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Kk = P−k HT (
HP−k HT +R

)−1
(3.11)

x̂k = x̂−k +Kk
(
zk−Hx̂−k

)
(3.12)

Pk = (I−KkH)P−k . (3.13)

In these equations R is the called the measurement noise covariance and is the covariance of the

random variable v from Equation 3.8. The matrix K, called the Kalman gain, is used to weight a

residual term that is the difference between the actual measurements collected at time k, zk, and a

prediction of what the measurements should have been according to the measurement model and the

current a priori state estimate Hx̂−k . The above equation for K is called the optimal gain since it

results in a posteriori state and error covariance estimates such that the a posteriori error covariance

(uncertainty) is minimized.

The effect of the Kalman gain matrix is heavily dependent on the amount of process noise Q

relative to the amount of measurement noise R. As the measurement noise decreases, the gain K gives

more weight to the residual as opposed to the a priori state estimate, in effect placing more trust in the

actual measurements. In the same vein, as the a priori state error covariance P−k decreases, the gain K

gives less weight to the residual, in effect placing less trust in the actual measurements and more trust

in the process model.

The Extended Kalman Filter

Some systems are inherently non-linear or have a non-linear relationship between measurements and

state. While the standard Kalman filter cannot be applied to such systems, it is possible to apply

a variation called the extended Kalman filter. The extended Kalman filter works by linearizing the

process and measurement functions around the current state and error covariance estimates.

In the extended Kalman filter, the process is assumed to be governed by the equation

xk = f (xk−1,uk−1,wk−1) , (3.14)
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where f may be non-linear in its parameters. Similarly, the relationship between measurements and

the process state is represented by the non-linear function

zk = h(xk,vk) . (3.15)

The operation of the extended Kalman filter is much the same as a standard Kalman filter and is

divided into time and measurement update phases (prediction and correction, respectively).

In the time update phase, the following equations are used to propagate the state and error covari-

ance forward in time

x̂−k = f (x̂k−1,uk−1,0) (3.16)

P−k = AkPk−1AT
k +WkQk−1W T

k (3.17)

where Ak is the Jacobian of f with respect to x evaluated at (x̂k−1,uk−1,0), and Wk is the Jacobian of

f with respect to w evaluated at (x̂k−1,uk−1,0).

In the measurement update phase, we correct the a priori state and error covariance based on the

measurements collected at time k. The equations used for the extended Kalman filter are as follows

Kk = P−k HT
k

(
HkP−k HT

k +VkRV T
k

)−1
(3.18)

x̂k = x̂−k +Kk
(
zk−h

(
x̂−k ,0

))
(3.19)

Pk = (I−KkHk)P−k , (3.20)

where Hk is the Jacobian of h with respect to x evaluated at (x̂k−1,0), and represents the sensitivity

of the measurements to changes in the state. Vk is the Jacobian of h with respect to v evaluated at

(x̂k−1,0).

While the extended Kalman filter cannot be shown to be optimal in the sense that the a posteriori

error covariance is minimized, it is applicable to a more general set of processes. As we will see later, it

can be applied to the problem of estimating the poses of projectors using camera image measurements.
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Observability

In the estimation of parameters, it is possible that the input data that is used may be insufficient to

fully constrain a solution. This is seldom an all-or-nothing characterization since some portion of the

solution may be constrained, while other parts are not. For example, when estimating the pose of a

projector, it is possible that the z component of its pose may be constrained, while its x and y location

are not. Of course, it is also possible that some combination of parameters may be unconstrained, for

example the location of the projector along the vector < 0.5,0.5,0 >.

A parameter, or possibly some linear combination of parameters, that is constrained by the input

data is termed observable, while unconstrained parameters are said to be unobservable. In the case

of a time-invariant Kalman filter, as has been described in this section, there is a simple test for

observability that involves testing the rank of the so called observability matrix:

O =
[

HT AT HT
(
AT

)2 HT . . . (AT )n−1HT

]
, (3.21)

where the state is observable if the observability matrix O has row rank n, the dimension of the

system state vector [Grewal and Andrews, 2008]. As can be seen from the use of the matrix A in the

formulation of the observability matrix, the concept of observability includes the concept of time since

repeated observations of the system over time may allow the full state information to be accumulated.

Uncertainty

The Kalman filter provides an estimate of the uncertainty in the state parameters via the error covari-

ance matrix P. Since parameters may be uncertain along any vector in the state space, it is useful to

have a general technique for determining what directions in the state space are most uncertain. For

example, high amounts of uncertainty may indicate that some parameters, or directions in the state

space, are unobservable. Also, uncertainty in the parameters of a dynamic system may ebb and flow

over time due to the amount of information about the state parameters the filter is able to learn from

the measurements. Knowledge of the most uncertain direction in the state space can then be used

to guide measurement collection, a process called measurement selection, where measurements are

selected specifically for their ability to reduce the amount of uncertainty in the state estimate.
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The direction(s) of maximum uncertainty in the state space can be determined by performing a

singular value decomposition (SVD) on the error covariance matrix P of the filter. The SVD algorithm

will decompose the n×n matrix P such that P =UDV T , where U and V are n×n orthogonal matrices,

and D is an n×n diagonal matrix of the singular values of P. The direction of maximum uncertainty

is then the Eigenvector of P that corresponds to its maximum singular value, which is simply the first

column of U or V since P is a symmetric matrix. The next greatest direction of uncertainty is the

second column of U or V and so forth.

Sequential Measurement Processing

As opposed to closed form solutions for parameter estimation, such as the DLT algorithm for comput-

ing a homography between two images, the Kalman filter assimilates measurements across time and

it is thus possible that over time the state may be become observable, even though individual sets of

measurements processed by the filter are insufficient to fully constrain a solution.

Taking full advantage of this property, [Welch and Bishop, 1997] showed that a “SCAAT” (sin-

gle constraint at a time) approach to Kalman filtering, where single measurements or observations

are processed sequentially, can have several advantages over processing measurements in batch. In

multi-sensor systems, this has the advantage that measurements can be processed immediately as they

are available from each sensor rather than attempting to synchronize the sensors and then fuse the

measurements into a data set that fully constrains the state estimate. The authors also note that a

sequential processing approach can also be advantageous in systems where sensor synchronization

and data fusion are not an issue since the computational intensity of performing filter updates is less-

ened due to the smaller matrices that must be processed. A potential disadvantage of this approach

over batch processing, however, is that the filter may lose some tolerance to outlying measurements

or measurements that may not adhere to the underlying assumptions made by the filter, leading to a

greater potential for instability. It is thus important to randomize the processing of measurements in a

sequential approach.
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3.4.2 Robust Estimation using RANSAC

RANdom SAmple Consensus (RANSAC) [Fischler and Bowles, 1981] is a data-fitting tool that per-

forms well even for data sets that may contain a large proportion of outliers. It has been successfully

applied to many problems from computer vision such as the computation of homographies and the

fundamental matrix. The RANSAC algorithm will prove useful later in developing a distributed coop-

erative framework for continuous calibration in multi-projector displays that is robust against outlying

camera image measurements.

The basic concept is to first identify the smallest sample size s for which the model can be fit and

to then iteratively fit the model to randomly selected samples of size s until it can be said with a certain

probability that at least one chosen sample was free of outliers. For each selected sample, the number

of data points that are within a certain tolerance of the fitted model is determined. This is called the

sample’s support. During the iteration, the sample with the largest support is maintained and once the

iteration completes, the samples in its support (the inliers), are used to fit the final model.

As a practical example, consider the problem of fitting a plane to a set of N points in 3-space. Since

any three points determine a plane, we iteratively choose three points from the set at random, compute

the plane spanned by the points, and then determine the number of points (the sample’s support) that

are within the accepted tolerance of the sample plane. Once a sufficient number of iterations have

been completed (it can be said with probability p that at least one sample contained no outliers), we

fit a least-squares plane to the inliers of the sample of largest support. The results of this algorithm

for a real data set are shown in Figure 3.7, where the sample of largest support is shown as a green

triangle and its inliers are shown in blue. The red points in the figure are outside the tolerance of the

sample plane (outliers).

Given the proportion of inliers and the size of the samples, it is relatively simple to compute the

number of iterations required such that, with probability p, at least one sample is free from outliers.

If w is the probability that a selected data point is an inlier and s is the size of a sample, then the

probability p that after N iterations at least one sample contains no outliers is

p = 1− (1−ws)N . (3.22)
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Figure 3.7: Results of fitting a plane to a point cloud using RANSAC. Inlying points are shown in
blue. The sample of largest support is shown as a green triangle.

Given a desired probability p, we can then compute the number of iterations N that must be performed

via

N = log(1− p)/log(1−ws). (3.23)

Unfortunately, in practice the proportion of inliers is not typically known. This information can,

however, be estimated during iteration by examining the proportion of inliers for each sample. This

leads to the adaptive RANSAC algorithm where, initially, the proportion of inliers is assumed to be

small and is updated as iteration continues to adaptively determine the maximum number of iterations

N that must be performed. This process is outlined in Algorithm 1.

Input : Data Set S, Tolerance t, Probability p
Output: Fitted model M

1: N = ∞

2: i = 0
3: while N > i do
4: Select a sample s from S at random
5: Fit the model to s, yielding Ms

6: Determine the proportion w of data points in S that are within t of Ms

7: Update N via Equation 3.23 using desired probability p.
8: end while
9: Fit the model to the inliers of the sample of largest support.

Algorithm 1: ADAPTIVERANSAC
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CHAPTER 4

PROJECTIVE DISPLAY WITH CORRECTION

FOR DISPLAY SURFACE GEOMETRY AND

EXTREME LENS DISTORTION

Projectors equipped with wide-angle lenses (such as a fisheye lens) have an advantage over traditional

projectors in creating large display areas even in cases where the projector is positioned close to

the display surface (Figure 4.1). In front-projection configurations, this wide-angle capability may

allow the projector to be positioned between the viewer and the display surface, which has the added

advantage of eliminating the problem of user-shadowing. In practice, however, wide-angle lenses

typically exhibit increased or possibly extreme lens distortion that must be corrected to allow accurate

geometric image correction.

A number of displays have been designed to take advantage of the capability afforded by wide-

angle lenses through the use of specialized display surfaces. The Elumens VisionStation R© uses a

single wide field-of-view projector and a specialized display screen to provide an immersive expe-

rience to a stationary user. Konieczny et al. [Konieczny et al., 2005] use a fisheye lens projector to

allow a user to explore volume data by manipulating a tracked sheet of rear-projection material.

While these examples make use of specialized display surfaces, a general solution to the problem

of geometric image correction in the case of arbitrary display surface geometry and extreme projector

lens distortion is desirable. While the two-pass rendering technique described in Chapter 3 provides

a general solution to the problem of geometric image correction for arbitrary display surfaces, it



Figure 4.1: An immersive display built with a single fisheye projector.

assumes a pinhole perspective model for the projectors and is not suited to displays where significant

lens distortion is present.

To address this issue, this chapter describes an extension to the two-pass rendering algorithm that

provides geometric image correction for multiple projectors and arbitrary display surfaces even under

the condition of extreme projector lens distortion. It is also shown that the obvious extension to two-

pass rendering, adding an additional (third) lens distortion correction pass, cannot make use of the

full field-of-view of the projector without introducing strong aliasing artifacts. Finally, perspectively

correct results using a fisheye-lens projector displaying into a room corner are demonstrated.

4.1 Lens Distortion Correction for Cameras

Due to the dual relationship between projectors and cameras, a brief introduction to lens distortion

estimation and correction for cameras is provided here.

Lens distortion estimation in cameras is typically performed as an optimization on top of an initial

linear estimation (pinhole perspective model with no distortion) that approximates the behavior of the

camera. For example, we can estimate the projection matrix of a camera via a set of 3D-2D point cor-

respondences using the Direct Linear Transformation (DLT) technique [Abdel-Aziz and Karara, 1971,
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Faugeras and Toscani, 1987]. This projection matrix can then be used as an initial guess in a non-

linear optimization that estimates the parameters of the full model to minimize the sum of squared

reprojection errors.

If P = K[R|t] is the output of DLT and X1..N is a set of 3D points with a known set of 2D corre-

spondences x1..N , the non-linear technique should minimize

N

∑
i=1

dist(Kδin([R|t]Xi),xi))2, (4.1)

where δin is the distortion function of the camera for light entering the lens as described in Chapter 3.

When lens distortion correction is performed on camera images, the goal is to take a distorted

image captured by the device and use the distortion model to produce the undistorted image that would

have been captured by a perfect pinhole camera. This process can be performed in one of two ways.

Either we color the undistorted image at each pixel by sampling from the captured distorted image, or

we splat each pixel of the captured distorted image onto the pixels of the undistorted image in some

way. The first technique requires calculation of δin, while the second would require calculation of δout .

Since a sampling procedure is typically preferred, lens distortion properties for cameras are usually

calibrated in a way that allows the calculation of δin when the distortion model is not easily inverted,

If δin is known, a pixel p = [x,y,1]T in the desired undistorted image will map to a pixel p′ =

Kδin(K−1 p) in the captured distorted image. The captured image can then be filtered around p′ to

produce a color for p in the undistorted image.

4.2 Two-Pass Image Correction for Wide-Angle Lenses

The basic two-pass multi-projector image correction technique described in Chapter 3 works well

under the condition that the geometric properties of the display devices do not deviate significantly

from the pinhole perspective model. Significant deviations from this model can result in obvious

visual artifacts such as ghosting in projector overlap regions and miscorrected imagery. This section

describes an extension of Raskar’s original two-pass rendering algorithm that is able to overcome

these issues by incorporating correction for projector lens distortion and non-pinhole lens models.
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4.2.1 Modified Projector Calibration

Lens distortion can be incorporated into the geometric model of a projector by continuing Raskar’s

original treatment of the projector as the dual of a camera. Chapter 3 described some lens and distor-

tion models commonly used for cameras. These same models can be used for projectors by modifying

the calibration process slightly to account for projector/camera duality.

In contrast to cameras, when dealing with projectors we are interested in the light that travels

outward from the device, making it of greatest practical value to calibrate for projector lens distortion

in a way that allows the calculation of δout . This models how light is distorted as it exits the lens and

allows the back-projection of each projector pixel into a ray in world space in a manner that accounts

for distortions in non-pinhole lenses.

Following this observation, the process used to calibrate projectors in the face of lens distortion is

identical to that described in Section 4.1 for calibrating cameras with lens distortion, except that we

replace the minimization function for cameras in Equation 4.1 with

N

∑
i=1

dist(PXi,Kδout(K−1xi))2. (4.2)

Here we have distorted the projected feature locations x1..N at each iteration using δout , which can

model either a pinhole lens with radial and tangential distortion characteristics or a non-pinhole lens

model. For models such as the Brown model that are not easily invertible, this will yield distortion

coefficients allowing us to pre-distort an image before projection so that the projector becomes a linear

device.

4.2.2 Modified Geometric Correction

The previous section described how a projector can be calibrated in a way that allows compensation

for lens distortion by pre-distorting an image before projection. Given such a calibration, it would

be a simple process to add an additional third pass to the two-pass correction algorithm described

previously to perform this operation. To determine the color for a pixel p in the desired compensation

image, we can filter the image rendered during pass two around the pixel p′ = Kδout(K−1 p).

The problem with this technique when using wide-angle lenses is that rendering in pass two will
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not generate enough imagery to fill the field-of-view of the projector after distortion correction. This

occurs because the pass two image will be rendered with the pinhole perspective model using the

intrinsics of the wide-angle lens. This greatly reduces the field-of-view since a wide-angle lens has a

much greater field-of-view than a pinhole lens of the same focal length. One solution to this problem

would then be to calculate the set of intrinsics that a pinhole lens would require to have a field-of-view

comparable to the projector’s wide-angle lens.

Unfortunately, for extremely wide-angle lenses, such as fisheye lenses, this technique has the

downside of introducing aliasing artifacts. The reason for this is illustrated in Figure 4.2, which

was created using actual data from an experimental f-theta fisheye lens projector donated by D’nardo

Colucci of The Elumenati, LLC. The rectangle situated at the origin represents the border of an image

given to the projector on the image plane before it is distorted by the lens. This is the same as the

region of the image plane that the K matrix of the projector will transform to valid pixel coordinates in

the projector image. The contour surrounding the image depicts the extent to which the borders of the

image are distorted by the lens of an experimental f-theta fisheye lens projector when the field-of-view

is limited to 178◦ in order to avoid the singularity in the model at 180◦.

If 178◦ of the horizontal projector field-of-view is to be filled after distortion correction, the new

intrinsics K′ must transform a region enclosing the entire distorted contour into valid pixel coordinates.

Since K is an upper-triangular matrix, the region of valid pixel coordinates must form a parallelogram

on the image plane. Clearly, if such a region is to enclose the distorted border, the pixels of the pass-

two texture must be stretched over a much larger spatial extent, leading to a low-pass filtering of the

pass-one texture and aliasing during distortion correction due to large changes in pixel density over

the extent of the distorted region. Also, those pixels not falling within the convex hull of the distorted

contour are effectively wasted since no pixels in the compensated image will map to their location.

While increasing the resolution of the textures rendered during passes one and two of the pipeline

can reduce the amount of aliasing, it remains significant up to the maximum texture size that current

hardware is able to render. Figure 4.3a depicts the aliasing that results when this approach is used

to generate a 178◦ field-of-view image using the fisheye projector. Figure 4.3b shows that significant

aliasing is still present when rendering in passes one and two is performed at four times projector

resolution.
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Figure 4.2: Distortion resulting from fisheye projector lens. Compare this to the pincushion lens
distortion of Figure 3.1

A Better Approach

This section describes a novel two-pass rendering solution that eliminates the aliasing concerns that

a three-pass technique can introduce. The objective is to be able to simulate a non-pinhole rendering

model in pass two, eliminating the need for a third pass lens distortion correction step.

In pre-process, the projector calibration, including distortion properties, is used in conjunction

with the display surface model to determine the 3D location on the display surface that each projector

pixel illuminates. Given the projector calibration P = K[R|t] and δout , each pixel xi = [ui,vi,1]T of the

projector is back-projected to produce a ray

r(α) = C +αR−1
δout(K−1xi). (4.3)

This ray is then intersected with the polygons of the display surface model yielding a 3D point on

the display surface. This process is repeated until the mapping has been performed at the resolution

of the projector.

Using this 2D-3D mapping, it is possible to correct for both the display surface geometry and lens

distortion in the second pass by projecting each projector pixel’s 3D location into the pass-one texture

to produce the pixel’s output color. If both the projector and display surface remain static during

display, this 2D-3D mapping will remain fixed even though the position of a head-tracked viewer may

change.
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a) b)

c)

Figure 4.3: Three increasingly effective methods for performing geometric compensation in the case
of a fisheye projector lens. a) Three-pass correction for display surface geometry and fisheye distor-
tion. b) Three-pass correction super-sampled fourfold. c) Two-pass rendering extended to incorporate
fisheye lens model without super-sampling.
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Graphics card vendors now produce consumer cards with floating-point pipelines that allow the

use of textures consisting of four 32-bit floating-point values per pixel. This technology is used to

store the projector’s 2D-3D mapping directly on the graphics card. A floating-point texture is created

at the resolution of the projector where the floating-point location (x,y,z) on the display surface that a

pixel illuminates is stored as its (r,g,b) elements in the texture. The alpha component of each pixel in

the texture can also conditionally be used as a flag to indicate that the pixel should be left black. This

is useful when the geometry of the display surface model does not fill the entire field-of-view of the

projector.

At render time, a pixel shader takes as input the floating-point texture of display surface geometry,

the desired image from pass one, and the viewing matrix of the viewer modified to act as a texture

matrix. The shader simply looks up the vertex information for the pixel it is currently shading and

projects the vertex into the pass-one texture using the texture matrix to produce an output color. This

GPU implementation allows correction to take place at interactive frame rates.

4.2.3 Modified Edge Blending to Account for Lens Distortion

In addition to the two-pass algorithm to correct for image distortions due to arbitrary display sur-

faces, [Raskar et al., 1999b] also describes a simple technique for performing edge blending in multi-

projector displays that eliminates areas of increased brightness where projectors overlap. The basic

idea is to compute an alpha mask for each projector that gives the attenuation value to apply at each

pixel in order to blend smoothly between overlapping projectors.

The alpha masks are computed by observing projector overlap regions with a camera. Attenuation

values are then computed in the image space of the camera for each projector by taking into account

the number of projectors overlapping at each camera pixel and the distance to the convex hull of each

projector’s contribution in the camera image. The attenuation value for projector m at camera pixel

(u,v) is computed as

Am(u,v) =
αm(m,u,v)

∑i αi(m,u,v)
. (4.4)

In the above equation, αi(m,u,v) = wi(m,u,v) ·di(m,u,v) where wi(m,u,v) is 1 if (u,v) is within
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the convex hull of projector i and 0 otherwise. The di(m,u,v) term is the distance from camera pixel

(u,v) to the convex hull of projector i in the camera image. This technique produces weights that

sum to one at each camera pixel and decay gradually to zero at projector edges. Since weights are

computed in camera image space, each projector’s weights are transformed into its own image space

using the two-pass image correction algorithm.

Since the generation of the alpha masks for each projector relies on the use of the two-pass al-

gorithm, the original technique cannot be used to generate accurate alpha masks for projectors that

do not fit the pinhole model. A slightly different approach to the problem is to use the geometric

information from calibration, including the lens distortion model of the projector, to produce an alpha

mask for each projector without the additional use of a camera required by the original technique.

Alpha masks for each projector can be calculated in this way as outlined in Algorithm 2.

Input : Display surface model and calibration for each projector
Output: A projector-resolution attenuation mask Ai for each projector

1: for each projector i do
2: for each pixel j of projector i do
3: r← back-project j using Equation 4.3
4: X ← intersect r and display surface
5: sum← 0
6: for each projector k 6= i do
7: x← project X using Equation 3.4
8: if x within displayable area then
9: sum← sum + min dist to projector k’s image border at x

10: end if
11: end for
12: m← min dist to projector i’s image border at j
13: Ai[ j] = sum

sum+m
14: end for
15: end for

Algorithm 2: GENALPHAMASKS

4.3 Results

A number of different display configurations have been explored using the calibration and image

correction approach described in this chapter for projectors with lenses deviating from the pinhole

model. Each display was calibrated by observing projected structured light patterns with a stereo
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Figure 4.4: Fisheye projector used in a flight simulator application.

camera pair used to reconstruct the display surface via triangulation. A plane-extraction technique

was used [Quirk et al., 2006] to extract a polygonal display surface model from the reconstructed point

cloud that closely approximated the piece-wise planar display surfaces in the experimental display.

Figure 4.4 depicts a fisheye projector being used in a virtual reality application to illuminate a

multi-wall surface. An overhead view of this configuration is provided in Figure 4.6 left, which

clearly shows the close proximity of the projector to the display surface. The panorama of Figure

4.9 shows the view from a user’s position very near the projector. This illustrates the nearly 180◦

immersive environment created by the fisheye projector. Compare this with Figures 4.6 right and 4.7

where a conventional projector was used, showing the difference in the size of the imagery that is

produced.

The panorama of Figure 4.8 shows a fisheye projector displaying on this same multi-wall surface

without any consideration for lens distortion. Note how the imagery is warped by the lens, prohibiting

proper correction for the distortion due to the display surface geometry. Contrast this with the quality

of the correction that is achieved in Figure 4.9 using the methods described in this chapter. Any ap-

parent distortion due to the lens has been removed and distortions due to the display surface geometry

are also well corrected. The correction does have a slight flaw in the right side of the image where

there is a 1-2 pixel error in the correction for the corner geometry. This is likely due to slight optical

deviations of the fisheye lens from its f-theta model, which could be accounted for in future work.
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Figure 4.3c is a close-up of the correction method, which shows that it is able to correct for

the image distortion introduced by both the display surface geometry and the fisheye lens without

introducing the aliasing artifacts present in Figures 4.3a and 4.3b.

As an illustration of the general applicability of the method, the fisheye projector was combined

with a conventional projector to form a multi-projector display. The conventional projector was cal-

ibrated using the Brown distortion model while the fisheye projector was calibrated with the f-theta

model. The resulting display is depicted in Figure 4.5. This display uses the modified edge blending

algorithm described in this chapter. Unfortunately, the algorithm currently does not take into account

differences in pixel density or black and white levels between the two projector models, resulting in

some edges being only softened.

Figure 4.5: Display system combining a conventional projector and a fisheye-lens projector. Note the
accurate geometric registration in the overlap region (center of figure).

4.4 Summary

This chapter has demonstrated how a single fisheye-lens projector can be used in conjunction with

camera-based calibration to create a personal immersive display system in an ordinary room without

the need for a specialized display screen. This allows images several times larger than that of a con-

ventional projector to be generated at the same distance from the display surface, making it possible
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for viewers to stand close to the display surface without shadowing projected imagery.

The distortion introduced by the projector lens is corrected by extending the two-pass render-

ing algorithm for multi-projector displays that provides perspectively correct imagery to a tracked

viewer. This extended method is able to incorporate both conventional projectors with slight lens

distortion characteristics and non-conventional fisheye-lens projectors with extreme distortion into a

single display without sacrificing support for dynamic viewer tracking. Using programmable com-

modity graphics cards, this technique is able to take advantage of the extremely large field-of-view

afforded by fisheye lenses without introducing undesired aliasing artifacts that can occur when per-

forming lens distortion correction.

Even though this correction algorithm allows fisheye-lens projectors to be used in multi-projector

displays without introducing aliasing, there are other sampling issues that should be addressed. Since

a projection matrix is used to texture the desired image onto the display surface model in pass two, as

the viewer approaches the display surface, the field-of-view of the frustum that must be used to texture

the entire display surface geometry may approach 180◦. This can lead to substantial aliasing artifacts

in the corrected image due to over- and/or undersampling of the pass one image. One solution would

be to render multiple views from the viewing position in different directions during pass one. Also,

when resampling the desired image during pass two, it is possible to extend the method to take into

account the complex ways in which projector pixels may overlap with pixels of the desired image after

they are projected onto the display surface model. Currently, the basic bilinear filtering supported by

the graphics hardware is used, but ideally the desired image would be filtered using an area-weighted

sampling technique that is not limited to four pixels.

A more general lens model such as that described in [Kannala and Brandt, 2006], which allows

both pinhole and fisheye lenses to be modeled in the same way, could also be of benefit. This would

allow deviations of a lens from its associated lens model to be accounted for, while making it possible

to utilize a field-of-view larger than 180◦.

Although fisheye-lens projectors can be used to create immersive displays at close proximity to a

display surface, they can suffer from loss of brightness near the image periphery. Also, conventional

projector lenses may be better suited when the spatial resolution of projected imagery is favored over

its size since a fisheye lens will distribute the resolution of the device over a much larger field-of-view.
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Figure 4.6: Imagery produced by a single fisheye-lens projector (left) versus that produced by a single
conventional projector placed at the same location (right).

Figure 4.7: Imagery produced by a conventional projector placed at the same location as the fisheye
projector in Figures 4.8 and 4.9.

Figure 4.8: Distorted imagery produced by a fisheye lens projector when modeled as a pinhole lens.

Figure 4.9: Imagery produced by a fisheye-lens projector using extended two-pass rendering.
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CHAPTER 5

A DISTRIBUTED COOPERATIVE

FRAMEWORK FOR CONTINUOUS

MULTI-PROJECTOR POSE ESTIMATION

Projection-based displays have long been used in the creation of large, immersive environments for

virtual reality (VR), simulation, and training. These displays have become increasingly useful due to

advancements in automatic calibration that allow the images of multiple projectors to be registered

together accurately on complex display surfaces, while simultaneously compensating for the surface

shape. While these techniques have been shown to be accurate and robust, the geometric aspects of the

calibration are typically only computed prior to display use. However, even for “fixed” configurations

of projectors, vibration of the mounting structure and gravity may cause changes in projector pose

over time, ultimately decreasing the quality of the display. In areas where the imagery of multiple

projectors overlaps, even a few pixels of error can make certain imagery, such as text, almost useless.

The goal of this work is a framework that provides for continuous and automatic adjustment to

even the slightest change in projector poses during display use. This continuous pose estimation

should increase the robustness of projection-based displays, while also offering new flexibility. For

example, the most suitable positioning of projectors may vary between applications due to certain

field-of-view or spatial resolution requirements. In these situations it might be desirable to deliberately

reposition the projectors without having to interrupt display use to perform a recalibration of the entire

system. It may also be useful in rapid set-up applications by allowing the use of a quick, initial



calibration of the display that is subsequently refined using continuous calibration.

This chapter presents a novel continuous calibration framework for estimating the poses of mul-

tiple projectors during actual display use. This framework is designed around “intelligent” projector

units (IPUs): a projector augmented with two rigidly-mounted cameras, and paired with a dedicated

computer (see Figure 5.1). The IPUs operate in a distributed fashion, each cooperating with its neigh-

bors through the exchange of pose estimates, error covariances, and measurements to continuously

estimate all of the poses. In cases where the projection surface is static, this system is able to contin-

uously refine all of the poses, even when IPUs move simultaneously. A simple extension that allows

simultaneous estimation of projector pose and information about the display surface, such as its pose

or shape, is described in the next chapter.

5.1 Design and Goals

This section describes the design of the distributed cooperative framework presented in this chapter

and how the goals of this design are supported by the use of “intelligent” projector units.

5.1.1 Continuous Projector Calibration

The primary goal of this framework is to support rapid set-up and reconfiguration of multi-projector

displays. Towards achieving this goal, the framework is designed to continuously estimate the poses

of all projectors during actual display use.

In order to estimate changes in projector pose over time, the use of an auxiliary measurement

device is required. Cameras were chosen for this purpose due to the inherent duality between cameras

and projectors—both use lenses to direct light, but one for the purpose of sensing and the other for the

purpose of display. The utility of such combinations of projectors and cameras is described in a vari-

ety of previous work [Bhasker et al., 2006, Raskar et al., 2003, Cotting et al., 2004, Zhou et al., 2008,

Underkoffler and Ishii, 1998].

This system is designed to be flexible enough to recover the poses of all projectors even in the case

that all projectors have been moved. This is important because, even in displays where projectors are

not intentionally moved, the poses of all projectors are likely to change slightly over time. Previous
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work [Zhou et al., 2008, Cotting et al., 2005] solves this problem only partially by using projector-

camera pairs with known calibration as references in re-estimating the poses of other projector-camera

pairs that have been moved. This approach fails when all projector-camera pairs have been moved,

and it is not clear how errors may accumulate over time as devices are moved, recalibrated, and then

used to recalibrate other devices.

In order to achieve the goal of allowing any and all projectors to be moved simultaneously, the

known display surface geometry is used as an additional constraint in estimating projector pose. This

allows the distinction between calibrated and uncalibrated projectors to be eliminated and instead

refines the calibration of all projectors continuously over time. In this chapter, we will assume that

the geometry of the entire display surface is known a priori and does not change, but will relax this

constraint in Chapter 6.

A secondary goal of the current implementation is to allow continuous projector pose estimation

to take place without affecting the imagery projected by the user. While techniques for embedding im-

perceptible patterns [Cotting et al., 2004, Cotting et al., 2005, Grundhöfer et al., 2007] into projected

imagery ensure a steady supply of features that can be used as camera image measurements, these

techniques are currently limited in the types of projectors that can be used, i.e. DLP R© or stereo, and

the embedding process requires that some amount of image quality be sacrificed. For this reason, the

projected imagery itself is used as a source of camera image features that can be used to estimate

projector pose during display use.

5.1.2 Distributed Cooperative Operation

In order to be useful in large displays with many projectors, continuous calibration approaches must be

scalable. As described in [Bhasker et al., 2006] a distributed calibration methodology has far greater

potential for scalability and fault tolerance than more traditional centralized approaches where all

calibration data is aggregated and processed on a single machine.

The design of this distributed cooperative framework allows for scalability by pairing computation

with each projector to create a number of self-contained, intelligent units that act in a cooperative

fashion, leveraging their combined computational power to estimate the pose of each projector through

the exchange of pose estimates, error covariances, and measurements over a local network.
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5.1.3 Intelligent Projector Units (IPUs)

Intelligent projector units (IPUs) are the basic building blocks of the system. An IPU, as seen in

Figure 5.1, consists of a projector augmented with rigidly-mounted cameras and computation that

includes network capability. While the computation component currently consists of a separate PC,

future designs will fully integrate the computation with the rest of the unit.

Figure 5.1: An intelligent projector unit (IPU).

5.2 Distributed Computational Framework

This section describes the distributed computational framework for continuous calibration of projector

pose in multi-projector displays.

5.2.1 Assumptions

1. The internal calibration of each IPU is fixed and known. (The internal calibration consists of the

intrinsic parameters of the projector and both cameras, such as focal lengths, principal points,

and lens distortion coefficients, as well as the relative positions and orientations of all three

devices.)

2. The geometry of the display surface is static and known (this is relaxed in Chapter 6).
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3. Projectors remain mostly stationary, however they may drift over time or occasionally be moved,

purposefully or inadvertently, by the user.

5.2.2 General Approach

In the distributed computational framework that is developed here, each IPU is tasked with the re-

sponsibility of estimating its own pose and does so by interacting with its peers in a decentralized,

peer-to-peer-based fashion. In general, the pose of a camera or projector has six degrees of freedom

that correspond to its position and orientation. The three position parameters x,y,z represent the de-

vice’s center-of-projection, while the three rotational parameters rx,ry,rz represent the orientation of

its principal axis.

When the internal calibration of an IPU is known (Assumption 1 in Section 5.2.1) knowledge

of the pose of any one of the optical devices (projector or either camera) that are part of the IPU is

sufficient to completely constrain the poses of all three devices. Taking advantage of this property,

one of the two cameras in each IPU is chosen arbitrarily to serve as its “primary” camera, whose pose

will be continuously estimated. The pose of an IPU is thus defined to be equivalent to the pose of its

primary camera. The pose estimate of the IPU’s primary camera can then be transformed into a pose

estimate for its projector, for use in warping the projected imagery to register it to the other projectors

and compensate for the shape of the display surface.

In this framework, each IPU estimates the pose of its primary camera using image (feature) cor-

respondences between cameras. An image correspondence between two cameras consists of a pixel

location in the image of each device that correspond to the same 3D point in the scene. In general,

given a measurement in the image of one camera, its correspondence in the image of another camera

is determined by the intrinsic and extrinsic calibration of both devices and the geometry of the scene

that is observed (the display surface in the case of a multi-projector display).

Local and Remote Correspondences

In continuously estimating the pose of its primary camera, each IPU makes use of two types of im-

age correspondences. The first type consists of correspondences between its primary and secondary
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cameras. These will be referred to as “local” correspondences since each IPU can obtain these cor-

respondences independently of the other IPUs. The second type of correspondence that is used in

the system are correspondences between an IPU’s primary camera and the primary cameras of other

remote IPUs. These are referred to as “remote” correspondences.

Figure 5.2: The IPU Ul considers itself to be the local IPU. It collects both local correspondences (be-
tween its primary and secondary cameras) and remote correspondences (between its primary camera
and the primary cameras of remote IPUs).

The concept of local and remote correspondences is illustrated in Figure 5.2 from the perspective

of one IPU in a four IPU display. The IPU Ul considers itself to be the local IPU, and the other

IPUs are considered to be remote IPUs. The local IPU collects local correspondences between its

primary and secondary cameras, as well as remote correspondences between its primary camera and

the primary cameras of other remote IPUs.

Both local and remote correspondences produce constraints on an IPU’s pose. As seen in Figure

5.3, local correspondences constrain the structure of the display surface that is currently observed by

an IPU since its primary and secondary cameras are calibrated as a stereo camera pair. The pose of

the IPU is then constrained by requiring that the currently observed surface geometry (shown as blue

points in the figure) match the model of the display surface, which is assumed to be static and known

(Assumption 2 Section 5.2.1).
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Figure 5.3: The pose of an IPU Ul is constrained by image correspondences between its primary and
secondary cameras Cp

l and Cs
l by forcing the structure of the display surface that is currently observed

(blue points) to coincide with the known display surface model.

Remote correspondences provide constraints on an IPU’s pose via measurements from other re-

mote IPUs. In this case, correspondences are measured between the primary camera Cp
l of the local

IPU Ul and the primary camera Cp
r of another remote IPU Ur. Given an estimate of the pose of Cp

r , this

information can be used in conjunction with the known surface geometry to produce constraints on

the pose of Cp
l as illustrated in Figure 5.4. Using the estimated pose of Cp

r , each correspondence can

be back-projected into a ray that, when intersected with the known display surface model, produces

a point on the surface. The resulting set of 3D surface points and their measured 2D positions in

Cp
l ’s image can then be used to produce an estimate of the pose of Cp

l that is conditioned on the pose

estimate of Cp
r .

5.2.3 Kalman Filter-Based Estimation

While various geometric algorithms could be used to estimate the pose of an IPU using local and re-

mote correspondences, a Kalman filter [Kalman, 1960, Welch and Bishop, 2006] was chosen for this

purpose. There are several advantages to this approach. First, temporal filtering allows the effects of
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Figure 5.4: The pose estimate of IPU Ur is used as a reference in estimating the pose of IPU Ul via
image correspondences between their primary cameras.

measurement noise on pose estimates to be mitigated. Without temporal filtering, measurement noise

can cause small variations in the estimated pose over time, ultimately resulting in small changes in the

projected imagery that can be distracting to the viewer. Second, with the Kalman filter it is straight-

forward to account for uncertainty in the pose estimates of remote IPUs for which correspondences

have been measured. This is due to the fact that, in addition to estimating the state of the process,

the Kalman filter also estimates the state error covariance—an indication of uncertainty in the state

estimate due to the failure of measurements to fully constrain a solution.

Filter Operation

Each IPU maintains a Kalman filter that processes the local and remote correspondences obtained at

each time step and produces a filtered pose estimate. Due to the non-linear nature of the measurement

function, which includes perspective projection, an extended Kalman filter is used.

In what follows, superscripts p and s are used to differentiate primary and secondary cameras,

while subscripts l and r are used to denote “local” and “remote”. Since all IPUs operate identically,

consider an arbitrary IPU Ul with primary and secondary cameras Cp
l and Cs

l . Let xl and Pl be the pose

and error covariance estimates of Cp
l and let local correspondences be denoted as zp

l ⇔ zs
l , where zp

l

is measured in Cp
l and zs

l is measured in Cs
l . Additionally, let Ur1 ,Ur2 , ...Urn be the set of remote IPUs
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with primary cameras Cp
r1 ,C

p
r2 , ...,C

p
rn for which remote correspondences have been measured, and

let their respective pose estimates and error covariances be xr1 ,xr2 , ...,xrn and Pr1 ,Pr2 , ...,Prn . Finally,

remote correspondences will be denoted as zp
l,ri
⇔ zp

ri,l , where zp
l,ri

is a set of feature measurements

in local primary camera Cp
l that correspond to a set of feature measurements zp

ri,l in remote primary

camera Cp
ri . The notation that will be used in this chapter is summarized in Table 5.1.

The state vector X̂k that is estimated by the Kalman filter at each time step k aggregates the pose

of Cp
l and the poses of the Cp

r1 ,C
p
r2 , ...,C

p
rn

X̂k =



xl

xr1

xr2

...

xrn


, (5.1)

where the “super hat” symbol ∧ is used to denote aggregation.

Formulating the state vector in this way allows the filter to take into account uncertainty in the

poses of the Cp
r1 ,C

p
r2 , ...,C

p
rn since their individual error covariances appear in the aggregate error co-

variance P̂k estimated by the filter

P̂k =



Pl Pr1,l Pr2,l . . . Prn,l

Pl,r1 Pr1 0 . . . 0

Pl,r2 0 Pr2

...
...

...
. . . 0

Pl,rn 0 . . . 0 Prn


. (5.2)

The individual error covariances of Cp
l and the Cp

r1 ,C
p
r2 , ...,C

p
rn lie on the main diagonal while the cross-

covariances relating Cp
l to the Cp

r1 ,C
p
r2 , ...,C

p
rn lie in the first row and column. These cross-covariance

terms relating the poses of the local and remote IPUs are important in preventing overconfidence in

the IPU pose estimates, especially in cases where the poses may be globally unobservable, e.g. due

to the shape of the display surface. Cross-covariances between the remote IPUs are not maintained

since they are not directly related to the local IPU’s pose or error covariance. These covariance terms
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Symbol Explanation
Ul The local IPU
Uri The ith remote IPU
Cp

l Primary camera of the local IPU
Cs

l Secondary camera of the local IPU
Cp

ri Primary camera of the ith remote IPU
xl Pose of the local IPU’s primary camera
xri Pose of the ith remote IPU’s primary camera
Pl Error covariance of the local IPU
Pri Error covariance of the ith remote IPU
Ql Process noise covariance of the local IPU
Qri Process noise covariance of the ith remote IPU
hl Measurement function for local correspondences
hri Measurement function for remote correspondences to the ith remote IPU
Hl Jacobian of hl with respect to xl
Hl,ri Jacobian of hri with respect to xl
Hri,l Jacobian of hri with respect to xri

zp
l Set of measurements in the local IPU’s primary camera that correspond to zs

l
zs

l Set of measurements in the local IPU’s secondary camera that correspond to zp
l

zp
l,ri

Set of measurements in the local IPU’s primary camera that correspond to zp
ri,l

zp
ri,l Set of measurements in the ith remote IPU’s primary camera that correspond to zp

l,ri

z̃p
l Prediction of zp

l
z̃s

l Prediction of zs
l

z̃p
l,ri

Prediction of zp
l,ri

Ẑk Aggregate measurement vector
Z̃k Aggregate measurement prediction vector
X̂k Aggregate Kalman filter state vector
P̂k Aggregate error covariance matrix
Q̂k Aggregate process noise covariance
R̂k Aggregate measurement noise covariance
Ĥk Aggregate measurement Jacobian
Kk Kalman gain
κ

p
l Intrinsics of the local IPU’s primary camera

κs
l Intrinsics of the local IPU’s secondary camera

κ
p
ri Intrinsics of the ith remote IPU’s primary camera

∆l Coordinate transformation between the local IPU’s primary and secondary cameras
S Display surface model

Table 5.1: Mathematical Notation
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are, however, maintained by the remote IPUs and are indirectly incorporated by the local IPU when

remote pose and error covariance information is communicated to the local IPU as described later in

Section 5.3.

A Kalman filter acts as a predictor-corrector. At each time step the filter employs a time update

and measurement update. These are described in the following sections.

Time Update

The time update phase is responsible for propagating the filter state X̂k−1 and error covariance P̂k−1

forward in time from the previous time step k−1, to produce a priori state and error covariance esti-

mates X̂−k and P̂−k at time k. Due to the assumption that the IPUs are normally stationary (Assumption

3 in Section 5.2.1) a “constant” motion model is employed, with the following corresponding time

update equations:

X̂−k = X̂k−1 (5.3)

P̂−k = P̂k−1 + Q̂k. (5.4)

Alternatively, other motion models, such as a position-velocity model or multi-modal Kalman filter,

could be employed [Bar-Shalom and Li, 1998].

The process noise Q̂k added to P̂k−1 models uncertainty due to presumed random variations

between filter updates. A different process noise matrix for each of the local and remote poses

xl,xr1 ,xr2 , ...,xrn is allowed, but it is assumed that there is no correlation between them. Each IPU esti-

mates its own process noise covariance Ql using the technique described in [Myers and Tapley, 1976].

Q̂k =



Ql 0 0 . . . 0

0 Qr1 0 . . . 0

0 0 Qr2

...
...

...
. . . 0

0 0 . . . 0 Qrn


. (5.5)
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Measurement Update

In the measurement update phase, the measurements Ẑk at time k are used in conjunction with a set of

computed measurement predictions Z̃k to correct the a priori state X̂−k and error covariance P̂−k esti-

mates into a posteriori state X̂k and error covariance estimates P̂k. The measurement update equations

also require a measurement noise covariance matrix R̂ and a Jacobian matrix Ĥk that indicates the

sensitivity of the measurements to changes in the state parameters.

The measurement update equations that are used are

Kk = P̂−k ĤT
k

(
ĤkP̂−k ĤT

k + R̂
)−1

(5.6)

X̂k = X̂−k +Kk

(
Ẑk− Z̃k

)
(5.7)

P̂k =
(

I−KkĤk

)
P̂−k . (5.8)

Using the Jacobian Ĥk, the measurement covariance R̂, and the a priori error covariance P̂−k , the

so-called Kalman gain Kk is computed. The Kalman gain is used to weight the measurement residual

between Ẑk and Z̃k to produce a correction to the a priori state estimate.

The measurement vector Ẑk aggregates all measurements in the local primary camera Cp
l into a

single measurement vector

Ẑk =



zp
l

zp
l,r1

zp
l,r2

...

zp
l,rn


. (5.9)

The measurement prediction Z̃k is generated by a mathematical function that predicts the mea-

sured values based on the current a priori state estimate. In the case of local correspondences where

zp
l corresponds to zs

l , the function hl is used to produce a prediction z̃p
l of zp

l using the following

parameters
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z̃p
l = hl

(
xl;zs

l ,κ
p
l ,κs

l ,∆l,S
)
, (5.10)

where xl is the pose of Cp
l , κ

p
l and κs

l are the intrinsics of Cp
l and Cs

l , ∆l is the coordinate transformation

between Cp
l and Cs

l , and S is the model of the display surface.

The function hl performs the following operation. The pose xl of Cp
l is used in addition to κ

p
l , κs

l ,

and ∆l to produce projection matrices for local cameras Cp
l and Cs

l . Each measurement zs
l in the local

secondary camera is back-projected into a ray using the projection matrix of Cs
l , and these rays are

intersected with the surface S to produce a set of 3D surface points. The projection matrix of Cp
l is

then applied to each of these 3D surface points to produce a prediction z̃p
l of the measurement in the

local primary camera.

In the case of remote correspondences, where zp
l,ri

corresponds to zp
ri,l for remote IPU Uri , the

measurement function hri is used to produce z̃p
l,ri

(a prediction of zp
l,ri

)

z̃p
l,ri

= hri

(
xl,xri ;zp

ri,l,κ
p
l ,κ p

ri
,S

)
, (5.11)

where xl is the pose of Cp
l and xri is the pose of Cp

ri , κ
p
l and κ

p
ri are the intrinsics of Cp

l and Cp
ri , and S

is the model of the display surface.

The operation of hri is analogous to that of hl . The poses xl and xri of Cp
l and Cp

ri are used in

conjunction with κ
p
l and κ

p
ri to produce projection matrices for Cp

l and Cp
ri . Each of the zp

ri,l is back-

projected into a ray using the projection matrix of Cp
ri , and each of these rays is intersected with the

surface S to produce a set of 3D surface points. The projection matrix of Cp
l is then applied to each of

these surface points to produce z̃p
l,ri

.

The vector Z̃k is then

Z̃k =



z̃p
l

z̃p
l,r1

z̃p
l,r2

...

z̃p
l,rn


=



hl
(
x−l ;zs

l , . . .
)

hr1

(
x−l ,x−r1

;zp
r1,l, . . .

)
hr2

(
x−l ,x−r2

;zp
r2,l, . . .

)
...

hrn

(
x−l ,x−rn

;zp
rn,l, . . .

)


. (5.12)
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The Jacobian matrix Ĥk indicates the sensitivity of the measurements to changes in the state pa-

rameters. Since Ẑk is split between local and remote correspondences, so too is Ĥk,

Ĥk =



∂hl(x−l ;zs
l ,...)

∂ X̂
∂hr1 (x−l ,x−r1

;zp
r1,l ,...)

∂ X̂
∂hr2 (x−l ,x−r2

;zp
r2,l ,...)

∂ X̂
...

∂hrn (x−l ,x−rn ;zp
rn,l ,...)

∂ X̂


, (5.13)

As a result of the dependence of hl on only Cp
l ’s pose and the dependence of hri on only the poses

of Cp
l and Cp

ri , Ĥk has the following block structure

Ĥk =



Hl 0 0 . . . 0

Hl,r1 Hr1,l 0 . . . 0

Hl,r2 0 Hr2,l
...

...
...

. . . 0

Hl,rn 0 . . . 0 Hrn,l


, (5.14)

where Hl is the Jacobian of the local measurement function hl with respect to xl , and Hl,ri and Hri,l are

the Jacobians of the remote measurement function hri with respect to xl and xri , respectively. More

formally,

Hl =
∂hl(x−l ;zs

l ...)
∂xl

(5.15)

Hl,ri =
∂hri(x

−
l ,x−ri

;zp
ri,l, . . .)

∂xl
(5.16)

Hri,l =
∂hri(x

−
l ,x−ri

;zp
ri,l, . . .)

∂xri

. (5.17)

The final piece of the measurement update equations to discuss is the measurement noise covari-

ance matrix R̂. It is assumed that measurement noise is constant over time and independent across

measurements, but that the noise level in local and remote measurements may differ. The matrix R̂
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is then a diagonal matrix where the diagonal entries have value vl for local measurements and vr for

remote measurements

R̂ =



vl

. . .

vl

vr

. . .

vr


. (5.18)

Sequential Measurement Processing

A sequential measurement processing or “SCAAT” approach to filtering, as discussed in Chapter 3,

can be used to reduce the computational cost associated with performing updates to the Kalman fil-

ter. This is largely due to the fact that, when processing a single measurement at a time, the matrix

inversion that must occur during the measurement update step involves only a 2×2 matrix. As with

any kind of sequential measurement processing approach, it is important to randomize the measure-

ments to eliminate any structure that may be present in their ordering. Also, sequential measurement

processing can be much less stable in the face of erroneous measurements, such as false image corre-

spondences, and should be used in conjunction with techniques to improve robustness as described in

the following section.

Sequential measurement processing would proceed as illustrated in Algorithm 3. Since all mea-

surements originated at the same time, the time update step of the filter remains unchanged and can

occur before any measurements from the current time step are processed. Then, for each measure-

ment, the state X̂k and error covariance matrices P̂k, which remain aggregate, are updated using the

measurement Jacobian Hs, the non-aggregate Jacobian for a single measurement. The form of Hs

will differ depending on whether the measurement is a local or remote correspondence. For a local

correspondence, we have simply Hs =
[

Hl 02,6n

]
, while for a remote correspondence to remote

IPU Uri , Hs =
[

Hl,ri 02,6(i−1) Hri,l 02,6(n−i)

]
, where 0m,n denotes an m×n matrix of zeros and

n denotes the number of remote IPUs with which measurements are currently being exchanged. Note
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that Hs must be recomputed with every measurement that is processed since it is a function of the

current state estimate. Rs is a 2×2 diagonal matrix where the value of each diagonal element depends

on whether it corresponds to a local or remote correspondence. Finally, z̃s = hl
(
xl;zc,κ

p
l ,κs

l ,∆l,S
)

or

z̃s = hri

(
xl,xri ;zc,κ

p
l ,κ p

ri ,S
)
, depending on whether zs is from a local or remote correspondence, and

zc is its correspondence.

Input : State X̂k−1, CovarianceMatrices P̂k−1, Q̂k, Rs, Measurements Ẑk
Output: State X̂k, ErrorCovariance P̂k

1: X̂−k = X̂k−1

2: P̂−k = P̂k−1 + Q̂k

3: for each measurement zs ∈ Ẑk do
4: Hs = Compute-Jacobian(X̂−k )
5: z̃s = Predict-Measurement(X̂−k )

6: Ks = P̂−k HT
s

(
HsP̂−k HT

s +Rs

)−1

7: X̂−k = X̂−k +Ks (zs− z̃s)
8: P̂−k = (I−KsHs) P̂−k
9: end for

10: X̂k = X̂−k
11: P̂k = P̂−k

Algorithm 3: SEQUENTIAL MEASUREMENT PROCESSING

5.2.4 Robustness

The Kalman filter described in this chapter operates under the assumption that the correspondences

provided to it are correct, or that the corresponding points in two camera views originate from the same

3D scene point. Unfortunately, false correspondences are likely to be encountered in practice since

no feature matching algorithm has been shown to produce 100% correct correspondences in all cases.

Processing these false correspondences can lead to incorrect estimation and/or instability especially

in the case of a non-linear measurement model, as in this distributed cooperative framework.

It is thus necessary to employ some method of identifying and eliminating false correspondences.

This becomes even more important when processing measurements sequentially since a single erro-

neous correspondence can have a drastic effect on the estimation. Fortunately, this is a problem the

computer vision community has dealt with for some time and a number of approaches for identifying

false correspondences have been developed. For example, [Clipp et al., 2007] proposes a pipelined
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Kalman filter approach where multiple filters are offset in time such that the final filter in the pipeline

processes only the most reliable measurements. Alternatively, a RANSAC approach based on the

constraints of two-view geometry is also possible.

Recall from Chapter 3 two algebraic representations of two-view geometry, the homography and

the fundamental matrix, both of which can be estimated from image correspondences between two

views and then used to validate further correspondences. Computation of both these entities can also

be made robust through the use of RANSAC, which will directly determine inlying and outlying

image correspondences. Thus, given a set of putative image correspondences between two views,

a RANSAC-based computation of a homography or fundamental matrix can be used to divide the

correspondences into sets of inliers and outliers. The false correspondences are discarded as outliers

and the inliers are forwarded to the Kalman filter for processing.

Which of these algebraic entities to use, a homography or the fundamental matrix, depends largely

on the type of display surface that is being used, or is expected to be used. In displays consisting of

a planar or multi-planar display surface, a homography-based approach is most appropriate since

computation of the fundamental matrix is degenerate in this case. In the case of a curved or more

general surface geometry, a RANSAC-based computation of the fundamental matrix should be used.

5.3 Implementation

This section describes the distributed system that realizes the computational framework described in

Section 5.2.

5.3.1 Pre-Calibration

Before system operation, the internal calibration of each IPU and the model of the display surface

must be estimated in addition to obtaining an initial estimate of each IPU’s pose.

The process used to estimate the internal calibration of each IPU consists of first calibrating the

IPU’s stereo camera pair using the Matlab Camera Calibration Toolbox [Bouguet, 2008]. Once the

cameras have been calibrated, the projector calibration is estimated by projecting structured light

patterns onto a non-planar surface and capturing the projected patterns with the IPU’s cameras. The
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resulting images are then decoded to produce three-way image correspondences between the cameras

and the projector. The correspondences between the cameras are then triangulated into 3D points to

produce a set of 3D-2D correspondences in the projector that is then used to calibrate the projector

using the DLT algorithm [Abdel-Aziz and Karara, 1971].

Once the internal calibration of each IPU has been estimated, they are arranged to form a display,

and the display surface geometry and initial pose of each IPU is estimated. This pre-calibration

process assumes that the camera field-of-view of each IPU overlaps with the camera field-of-view of

at least one other IPU. The IPUs then take turns projecting encoded structured light patterns while the

cameras of all IPUs capture images. Decoding of these structured light patterns allows precise inter-

and intra-IPU image correspondences to be obtained.

The intra-IPU correspondences are used to reconstruct a point-cloud representation of the display

surface from the perspective of each IPU. The inter-IPU correspondences are then used to stitch these

individual reconstructions together, resulting in a point-cloud representation of the display surface and

an estimate of the pose of each IPU together in a common coordinate system.

To construct a polygonal model from this point-cloud representation, a RANSAC-based plane-

fitting algorithm described in [Quirk et al., 2006] is used, which is robust against noise and outlying

points resulting from false stereo matching. This algorithm extracts planes from the point cloud

representation of the display surface and intersects them to produce a polygonal model of the surface.

5.3.2 Distributed Architecture

In order to continuously estimate its pose, each IPU must collect local and remote correspondences

and process them using its Kalman filter. While local correspondences can be collected at each IPU

without the need to communicate with other IPUs, a mechanism for obtaining remote correspondences

is required. The system that has been developed accomplishes this through inter-IPU communication

of camera images over a local network. An alternative approach that favors communicating feature

vectors instead of camera images is described in Section 5.5.5.

A request/response architecture is used to allow IPUs to operate asynchronously by requesting pri-

mary camera images from other IPUs captured at a specified time. Camera synchronization hardware

from Point Grey Research (http://www.ptgrey.com) is currently used to synchronize the exposures of
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all cameras and provide an absolute time reference between IPUs.

To facilitate the ability of IPUs to respond to requests for camera images captured at a specified

time, each IPU maintains a history of recently captured camera images in its camera buffer. Each

IPU maintains two camera buffers, one each for its primary and secondary cameras. A special camera

buffer thread is dedicated to updating the camera buffer by replacing the oldest image in the buffer

with a new image from the camera whenever one is available. In this way, a recent history of camera

images is available at each IPU that can be searched based on time stamp when an image request is

received from another IPU.

Collection and Processing of Local Correspondences

The following process occurs asynchronously at each IPU to collect a set of local correspondences.

First, the latest image is requested from the camera buffer of the local primary camera, call this image

Ip
l . Once this image has been obtained, the corresponding image in time Is

l from the camera buffer of

the local secondary camera is requested.

The next step is to obtain correspondences between Ip
l and Is

l . This is done by first detecting

a set of features in Ip
l using the OpenCV implementation of [Shi and Tomasi, 1994]. Correspon-

dences for these features are then found in Is
l using the OpenCV implementation of KLT track-

ing [Lucas and Kanade, 1981, Bouguet, 1999]. Finally, each correspondence is checked against the

epipolar constraint between the primary and secondary cameras to yield the zp
l ⇔ zs

l from Section 5.2.

Each IPU is provided with local access to its own fixed internal calibration as well as the display

surface model, which is currently assumed to be static but will be allowed to change in Chapter 6. In

conjunction with the zp
l ⇔ zs

l , this provides all necessary information to compute the Jacobian Hl from

Equation 5.15 as well as z̃p
l using Equation 5.10. The Jacobian Hl can be estimated numerically using

forward differences.

Collection and Processing of Remote Correspondences

Remote correspondences are collected by requesting camera images from other IPUs that were cap-

tured by their primary cameras at the same time as Ip
l . When such a request is processed by another
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IPU Uri , its response includes not only the requested camera image Ip
ri , but also its intrinsics κ

p
ri , cur-

rent pose estimate xri , and a priori error covariance (Pri +Qri). In using the current pose estimate

rather than the pose estimate at the time Ip
ri was captured, it is effectively assumed that the time that

has elapsed between when Ip
ri was captured and when it was requested in small, or that any changes in

pose during this time are small. Should this assumption be violated in practice, it possible to maintain

a history of pose and error covariance estimates along with the history of camera images in the camera

buffer.

Once the requested image Ip
ri has been received from another IPU, correspondences between Ip

l

and Ip
ri are measured. This is accomplished by first finding a set of correspondences between Ip

ri

and Ĩp
ri , a prediction of Ip

ri generated on graphics hardware using the current estimated calibration

of Cp
l and Cp

ri , and then transforming these into a set of correspondences between Ip
l and Ip

ri . This

approach greatly improves feature matching success for algorithms like KLT when there are large

perspective distortions between the two views, as is likely the case for camera images from different

IPUs. More details on this technique can be found in [Johnson and Fuchs, 2007a], which is included

in the Appendix.

Once the correspondences zp
l,ri
⇔ zp

ri,l , between Ip
l and Ip

ri have been measured, all information

necessary to compute Hl,ri , Hri,l , and z̃p
l,ri

from Equations 5.16, 5.17, and 5.11 is available. The

Jacobian Hl,ri is computed using the closed-form solution in [Haralick and Shapiro, 1993], and the

Jacobian Hri,l is estimated numerically using forward differences.

Continuous Operation

Algorithms 5 and 6 summarize the implementation for collecting and processing local and remote

correspondences and Algorithm 7 describes the steps involved in processing a request received from

a remote IPU. Algorithm 4 illustrates how these processes are organized into a continuous calibra-

tion loop that is executed by each IPU at display time. This loop is executed independently of the

application rendering in a separate calibration thread. This calibration thread is implemented to run

concurrently with the rendering thread, but without causing rendering performance to drop below a

certain frame rate.

In the current implementation, each IPU broadcasts its image requests to all IPUs in the display
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and processes each of their responses as they are received. While this limits the scalability of the

system, plans to improve this are described in Section 5.5.3.

In order to absorb network latency, each IPU collects and processes local correspondences while

it waits to receive image responses from the other IPUs. It then enters an inner loop where it processes

camera image responses and requests until all IPUs have responded or a timeout condition has been

reached. This timeout condition provides fault tolerance by allowing system operation to continue

when an IPU is unable to provide a response for some reason.

The final step is to update the Kalman filter to produce a new pose estimate that is communicated

to the rendering process in order to allow the new estimate to affect the image correction that takes

place.

Input : Initial display calibration incl. DisplaySurface S, Intrinsics κ
p
l ,κs

l , Extrinsics xl , and
CoordinateTransform ∆l

Output: Continuous estimate of local IPU pose xl

1: while true do
2: [Ip

l , Is
l ] = Get-Local-Camera-Images

3: BroadCast-Request(Ip
l .time)

4: Process-Local
5: repeat
6: if responseReceived then
7: Process-Remote;
8: end if
9: if requestReceived then

10: Process-Request
11: end if
12: until timeout ∨ allResponsesReceived
13: Update-Kalman-Filter
14: end while

Algorithm 4: CONTINUOUSPOSEESTIMATION

Input : Image Ip
l ,Is

l , Intrinsics κ
p
l ,κs

l , Extrinsics xl , CoordinateTransform ∆l , DisplaySurface S
Output: ImageMeasurements zp

l , zs
l , MeasurementJacobian Hl , PredictedMeasurements z̃p

l

1: zp
l = Detect-Features(Ip

l )
2: zs

l = Match-Features(zp
l ,Ip

l ,Is
l )

3: [zp
l ,zs

l ] = Verify-Epipolar-Constraint(zp
l ,zs

l , κ
p
l ,κs

l ,xl ,∆l)
4: [Hl, z̃

p
l ] = Compute-Filter-Mats-L(xl ,zs

l ,κ
p
l ,κs

l ,∆l ,S)
5: Add-Local-Correspondences-To-Filter(zp

l ,zs
l ,Hl ,z̃

p
l )

Algorithm 5: PROCESS-LOCAL
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Input : Image Ip
l , Ip

ri , Intrinsics κ
p
l ,κ p

ri , Extrinsics xl ,xri , DisplaySurface S
Output: ImageMeasurements zp

l,ri
,zp

ri,l , MeasurementJacobians Hl,ri , Hri,l ,
PredictedMeasurements z̃p

l,ri

1: Ĩp
ri = Predict-Remote-Image(Ip

l , κ
p
l ,κ p

ri ,xl ,xri ,S)
2: F̃ = Detect-Features(Ĩp

ri )
3: zp

ri,l = Match-Features(F̃ ,Ĩp
ri ,I

p
ri )

4: zp
l,ri

= Warp-Features(F̃ , κ
p
l ,κ p

ri ,xl ,xri ,S)
5: [Hl,ri ,Hri,l, z̃

p
l,ri

] = Compute-Filter-Mats-R(xl ,xri ,z
p
ri,l ,κ

p
l ,κ p

ri ,S)
6: Add-Remote-Correspondences-To-Filter(zp

l,ri
,zp

ri,l ,Hl,ri , Hri,l , z̃p
l,ri

)
Algorithm 6: PROCESS-REMOTE

Input : Intrinsics κ
p
l , Extrinsics xl , Covariances Pl ,Ql , Time-Stamp t

Output: Data response sent to remote host
1: I = Search-Camera-Buffer(t)
2: Send-Response(I,κ p

l ,xl ,Pl +Ql)
Algorithm 7: PROCESS-REQUEST

5.4 Results

The framework for distributed cooperative pose estimation described in this chapter was tested using

two real-time applications in two and three-IPU configurations. The first application displays a rotat-

ing panorama of real-world imagery that contains many strong features, while the second application

is an open source flight simulator called Flight Gear, whose synthetic imagery contains far fewer fea-

tures. Figure 5.5 shows the capability of the system to continuously estimate the pose of two IPUs

when both are moved simultaneously using the panorama application. Similar results for the flight

simulator application are shown in Figure 5.6. Figure 5.7 shows a close-up of the projector image

overlap as the projectors are moved and recalibrated. Since the framework does not currently sup-

port dynamic recomputation of intensity blending masks, no photometric compensation is performed,

resulting in the bright bands visible in the images where the projectors overlap.

Figure 5.8 shows the results of pose estimation over time for one IPU in a two-IPU display using

the panorama application. In this sequence, captured over roughly four minutes, the IPU is moved

once about halfway through the sequence. Frames extracted from the corresponding video sequence

show the display configuration before, during, and after movement of the projector. Rotation of the

panorama was disabled during this experiment for comparison purposes. The ringing effect in the
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Figure 5.5: A two-projector display after both projectors have been moved (left) and after roughly
ten seconds of continuous calibration (right). A close-up of the corrected imagery is shown in the
lower image to illustrate the accuracy of the image registration. No photometric correction is being
performed, resulting in the clearly visible projector overlap region in roughly the center of the display.

plots as the IPU is moved is a result of the temporary violation of the assumption inherent in the

motion model that the IPU is stationary. Also, a slight drift over time may be observed in the y com-

ponent of the IPU’s position. Due to the vertical ambiguity in the shape of the display surface, which

corresponds to the y axis, the y component of projector pose was unconstrained in the experimental

set-up.

To obtain a quantifiable comparison of the poses estimated using this distributed cooperative

framework to actual ground truth, one IPU in a two-IPU display was placed on a checkerboard pattern

with checkers of known size and moved through a series of known displacements. The experimental
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Figure 5.6: A two-projector display after both projectors have been moved (left) and after roughly
ten seconds of continuous calibration (right). A close-up of the corrected imagery is shown in the
lower image to illustrate the accuracy of the image registration. No photometric correction is being
performed, resulting in the clearly visible projector overlap region in roughly the center of the display.
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Figure 5.7: A close-up of calibration accuracy in projector image overlap after both projectors have
been moved (left) and after roughly 10 seconds of projector pose refinement (right).

Before Movement During Movement After Movement

Position Orientation
x rx

y ry

z rz

Figure 5.8: Results of estimating the pose of a single projector as it is moved once over the course of
four minutes. Frames from the corresponding video sequence show the configuration of the display
before, during, and after the projector is moved.
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Figure 5.9: Experimental set-up for comparison to ground truth. One IPU is placed on a checkerboard
pattern and moved through a series of known displacements as its pose is estimated.

set-up is shown in Figure 5.9, where the IPU was moved through four displacements in the pattern

of a square with sides of length 240mm. After each displacement of approximately 240mm, the IPU

remained stationary for approximately one minute, resulting in an experiment that lasted roughly five

minutes.

The plane of the checkerboard pattern in this experiment corresponded to the x-z plane in cali-

bration coordinates. Plots of the x and z position estimates across time are given in Figure 5.10. The

plots clearly show the changes in the estimated position of the IPU as it is moved. The points P1-P4

in the image have been selected to represent the position estimate of the filter just before the IPU is

moved. These points are shown connected by solid red lines in the plot of the estimated z versus x

positions in Figure 5.11 left. The estimated displacement between each pair of consecutive points is

also shown superimposed on the graph. As can be seen, the estimated displacements are close to the

ground truth of 240mm. The estimated position of the IPU appears to “curve” as it is moved between

positions. This curved pattern to the estimates is a result of dynamically estimating the process noise

in the IPU’s pose. In this case, a different amount of uncertainty or process noise is being added to

each of the parameters, allowing the filter to make larger changes to the parameter with larger process

noise and resulting in faster convergence.

Figure 5.11 right shows a plot of absolute distance from the point P1 across time. After the

first displacement, the distance approaches the ground truth distance of 240mm. After the second

displacement, the distance increases further to approach the ground truth of 339.4mm (the length of
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Figure 5.10: Plots of x and z position estimates across time as the IPU is moved through four known
displacements. The points P1-P4 have been selected to represent the position estimate of the filter just
before the IPU is moved. The point P5 represents the estimate of filter after the IPU is returned to its
initial position.

the hypotenuse of the motion). The estimated displacements for the final two displacements are close

to the ground truth as well. It should be noted that since the IPU was placed manually by a human in

these experiments, human error on the order of a few millimeters is likely.

5.5 Discussion

This section discusses several topics related to the distributed cooperative framework that has just been

described including observability, the incorporation of additional measurement types, and scalability.

5.5.1 Observability

It is possible that the configuration of features that are measured cannot fully constrain the pose of

one or more projectors. There is such an ambiguity in the example of Figure 5.8 where, due to the

shape of the display surface (which included only vertical walls), the vertical component of projector

location is unconstrained. This is because the display surface can be thought of as a vertically-extruded

surface such that the measurement residuals are unaffected as the IPU is moved along this vertical (y)

direction. A general test for observability using the observability matrix [Grewal and Andrews, 2008]

74



Figure 5.11: A plot of z versus x position estimates with points P1-P4 from Figure 5.10 connected by
red lines (left). The estimated displacement between consecutive points from P1-P4 is also shown. A
plot of absolute distance from P1 across time (right).

is described in Chapter 3. In the case of the Kalman filter that is used in this framework, which is time-

invariant and uses a contant motion model, the observability test simplifies to evaluating the rank of

the measurement Jacobian Ĥk, where the system is observable if Ĥk has row rank equal to the number

of state parameters in the state vector X̂k.

In the distributed cooperative framework that has been presented, when the pose of at least one

IPU is constrained in a direction that may be unobservable for others, this will be reflected in its error

covariance matrix and will allow the IPU to propagate constraints to other IPUs via remote corre-

spondences. Also, in the situation where the poses of all IPUs are unconstrained in some direction,

as in the examples above, the behavior of framework is for the IPUs to estimate values that result

in their projected imagery being registered together. While this is a globally consistent and visually

appealing result, the result may not be consistent with the viewing position, resulting in an inability

of the system to correctly compensate for the shape of the display surface. This could be remedied by

continuously estimating the viewer’s position with respect to one of the projectors, adding a fiducial

to the display surface whose position is measured continuously, or adding a horizontal floor or ceiling

plane to the display surface.
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5.5.2 Additional Image Measurement Types

The framework, as described in this chapter, uses 2D feature points detected in camera images as

measurements. While 2D feature points are likely to be useful in a variety of application, one can

imagine situations where other types of measurements may be more desirable. For example the pro-

jected imagery may be rich in lines that could be detected and matched between camera images. It

may also be desirable to combine measurement types together, e.g. points and lines, when performing

the estimation. It is simple to extend the framework to handle such measurement strategies, and the

case of points and lines is described here.

Akin to points, lines have two degrees of freedom and each line measurement in an image can be

represented by two scalar values (the choice of line representation is not important as long as it is used

consistently). From a representation perspective this means there is no difference between points and

lines, and we can interchange them in the measurement vector Ẑk. However, we must be careful to

distinguish between points and lines when it comes to the measurement functions hl and hri that are

used to process them, which in turn affects computation of Z̃k and Ĥk from Equations 5.12 and 5.13.

The measurement function for local line correspondences should act as follows. The pose xl of

Cp
l is used in addition to κ

p
l , κs

l , and ∆l to produce projection matrices for Cp
l and Cs

l . Each line

correspondence is back-projected into a plane using the projection matrix of Cs
l and intersected with

the surface S to produce a line on the surface. In general, the intersection of a plane and a surface will

be a curve, however the fact that we have corresponding lines between two images guarantees that the

intersection results in a line on the surface. This is because the corresponding lines in the two camera

images can each be back-projected into a plane, and the intersection of two planes forms a line in

non-degenerate cases. Finally, the projection matrix of Cp
l is then applied to each of these lines on the

surface to produce predicted line z̃p
l measurements in the primary camera. The measurement function

for remote line correspondences follows directly from this. Since Z̃k and Ĥk are stacked matrices

(according to measurements), we can simply select the appropriate measurement function for each

measurement on a case-by-case basis when computing them.

In general, any type of image measurement is compatible with this framework as long as its

mapping between two camera views (prediction) and the sensitivity of this mapping to changes in the
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state parameters can be modeled.

5.5.3 Scalability

There are several issues that may affect the scalability, in terms of the number of IPUs, of an imple-

mentation of the distributed cooperative framework described in this chapter. First of all, there is the

consideration of how increasing the number of IPUs affects the cost of the Kalman filter update that

each IPU performs locally to estimate its own pose and, secondly, the cost of obtaining the 2D image

correspondences that are the input to the filter.

The computational complexity of updating the Kalman filter that is used to process local and

remote correspondences into an estimate of each IPU’s pose is considered first. When processing

measurements in batch, the measurement update of the filter, which is performed by each IPU locally,

requires O(m3 + n3) time (assuming cubic-time matrix multiplication and inversion), where m is the

total number of measurements (local and remote) processed at the current time step, and n is one plus

the number of remote IPUs for which remote correspondences have been measured. In practice, it

is reasonable to assume m >> n since it is desirable to obtain a large number of measurements in

each time step in order to amortize the cost of distributed communication. When measurements are

processed sequentially, the complexity of the time update step becomes O(mn3) since the processing

of each measurement involves updating the error covariance matrix via matrix multiplication. Even

in a large display with many IPUs, it is likely that the cameras of each IPU will share an overlapping

field-of-view with only a small number of other IPUs. It is thus reasonable to assume n is small, or

that each IPU shares measurements with only a small number of other IPUs, resulting in a significant

reduction in computational complexity when processing measurements sequentially.

In performing the filter updates there may also be a hidden cost associated with computing the

measurement prediction (Equations 5.10 and 5.11) depending on the type of surface representation.

For example, given a polygonal mesh representation, forming the measurement prediction requires

that a ray be intersected with the display surface geometry once for each measurement. For dense sur-

faces with many faces, this can be a costly operation and should be combined with efficient techniques

for ray casting, such as the use of a k-d tree.

Secondly, there is the cost of obtaining the image correspondences that are the input to the filter.
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This involves the cost of communicating camera images, or possibly just feature vectors, across the

network, as well as the cost of feature detection and matching in camera images. Since an IPU with

no camera overlap cannot contribute any remote measurements to a local IPU, the scalability of an

implementation of the framework can be improved by limiting the number of IPUs that each IPU

communicates with to just those whose cameras have an overlapping field-of-view.

5.5.4 Sequential versus Batch Processing

While a sequential measurement processing paradigm has been advocated in this chapter primarily

for the sake of computational efficiency, it is of course possible to reach a desired balance between

computation time and robustness to outliers by adjusting the number of measurements processed at

once from a single measurement up to the total number of measurements that have been obtained at

each time step. In the end, however, a single-measurement-at-a-time approach is likely to be best

since it allows time to collect additional features that could be chosen as part of a measurement

selection strategy designed to reduce uncertainty along directions in the state space where uncertainty

is currently highest, as described in Section 3.4.1.

5.5.5 Choice of Feature Matching Approach

As described in the Implementation Section 5.3, the KLT tracking algorithm is used in conjunction

with perspective warping of remote camera images to obtain correspondences between cameras, in

effect using a feature tracking algorithm to solve a feature matching problem. This approach was

chosen mainly due to its robustness against large differences in perspective between the cameras

of IPUs placed far apart, but alternative solutions are not without their advantages. For example,

matching SIFT [Lowe, 2004] features would allow the communication of entire camera images across

the network to be replaced with the more efficient communication of feature vectors and locations.

5.6 Summary

This chapter has presented a novel distributed calibration framework for multi-projector displays

where intelligent projector units interact to cooperatively re-estimate the poses of all projectors during
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actual display use. By making use of features in the projected imagery itself, this technique can be

applied to any type of projector and is able to operate without altering the projected imagery or af-

fecting its quality. The following chapter describes how this can be extended to estimate information

about the display surface as well.

While local and remote correspondences could be obtained without the existence of a secondary

camera mounted to each IPU, for example by substituting measurements in the secondary camera for

measurements in the projector’s image, the use of the secondary camera allows each IPU to obtain

local measurements in imagery that may not have originated from its own projector. This has the

potential to greatly increase the number of available measurements in practice.

It is possible for calibration accuracy to be quite poor for some applications where the imagery

is so lacking in strong features that calibration may not be successful. In this case, since the com-

putational framework imposes no requirements on the source of the image measurements, it could

be used in conjunction with techniques for embedding imperceptible patterns into projected imagery

[Cotting et al., 2004, Cotting et al., 2005, Grundhöfer et al., 2007].

The framework presented in this chapter can impose a significant amount of computational over-

head that competes with the rendering process for resources when both operate on the same machine.

These performance penalties can be overcome by fully integrating a computational unit with each IPU

whose sole responsibility is to estimate the unit’s pose. The rendering application could then operate

on a separate machine that periodically receives updates of IPU’s current pose.
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CHAPTER 6

EXTENSIONS FOR CONTINUOUS DISPLAY

SURFACE ESTIMATION

In the previous chapter, a computational framework was presented that allows a group of intelligent

projector units (IPUs) to cooperatively estimate the poses of all IPUs in a continuous manner via

communication over a local network. The formulation of the framework that was presented does,

however, rely on one assumption that may be undesirable in certain situations: the assumption that the

geometry of the display surface is known and static. This limits the usefulness of the framework in

situations where the parameters of the display surface, such as its position or shape, may change over

time. Also, even in cases where the display surface is static, the model of the surface may contain

small errors that should be corrected in order to achieve the best possible geometric image correction.

This chapter describes how the distributed cooperative framework for continuous calibration from

Chapter 5 can be extended to estimate the poses of all projectors and information about the display

surface, such as its shape or pose, in a unified fashion. A description of how the distributed cooperative

framework can be extended to estimate parameters of the display surface in two practical scenarios is

provided. The first scenario describes a dynamic shader lamps display [Bandyopadhyay et al., 2001,

Raskar et al., 2001] where the pose of a rigid, moving display surface is estimated by the framework in

addition to the poses of all projectors. The second describes how a polygonal mesh representation of a

multi-planar display surface can be refined in a particularly important situation to improve alignment

of mesh edges with edges of the physical display surface.



6.1 Unified Projector Pose and Display Surface Estimation

In general, information about the display surface can be estimated using the framework of the previous

chapter by including it in the Kalman filter state vector. In order to do so, however, the information

about the display surface we wish to estimate must first be parameterized, or represented as a set of

variables xs, which will be referred to collectively as the display surface state vector.

6.1.1 Display Surface State Parameterization

Since the information about the display surface that must be estimated is likely to vary widely between

displays and applications, some examples of appropriate parameterizations in a variety of practical

scenarios are provided here.

Dynamic Shader Lamps

Consider a dynamic shader lamps display [Bandyopadhyay et al., 2001] where an architectural model

augmented with projected texture (Figure 6.1) can be moved by the viewer. We might assume that the

geometry of the display surface is static and known, but that the surface as a whole may move. For

example, the surface might be located on a turn table that can be rotated by the user, requiring us to

estimate the angle r of the surface with respect to its axis of rotation. In this case, the display surface

state vector would simply be xs = [r]. Alternatively, we might not be able to place any constraints

on the motion of the surface, requiring us to represent the full six degrees of freedom in its pose.

The display surface state vector would then be xs = [ Sx Sy Sz Sψ Sθ Sφ
]T , with (Sx,Sy,Sz)

the location of the display surface and (Sψ ,Sθ ,Sφ ) its orientation, which is the same as the chosen

representation of projector pose.

Estimating and Refining Surface Shape

In other examples, we might expect the shape of the display surface to change, requiring us to param-

eterize the surface shape in some way. For example, if the display surface consists of two walls that

intersect in a corner, we might choose to represent each wall as an infinite plane li = [ x y z d ]T ,
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Figure 6.1: A shader lamps display. An untextured architectural model is augmented with projected
texture [Raskar et al., 2001].

where (x,y,z) is the plane normal and d is its offset. In this case, the display surface state vector would

be xs = [ l1 l2 ]T .

In some situations, the surface shape may be very complex and/or difficult to represent using com-

monly used parametric shapes such as planes, cylinders, and curves. In this case, it may be appropriate

to represent the surface as a polygonal mesh or an unorganized set of points. This representation is

described further in the Section 6.5.2 in the context of refining the shape of the display surface as it is

represented by a polygonal mesh.

Remarks

When choosing how to parameterize the information about the display surface that is to be estimated

by the filter, such as its shape and/or orientation, it is desirable to choose a concise representation that

accurately reflects any constraints on the shape of the surface. For example, it is superior to represent

two planar walls intersecting in a corner as two infinite planes rather than a polygonal mesh of two

quads sharing a pair of vertices. The more compact representation of two infinite planes is not only

more computationally efficient from a filtering standpoint due to the fewer number of parameters, but

will also exhibit greater estimation stability since the mesh representation has many weakly observable

parameters. For example, each quad is essentially representing a plane using twelve parameters (three

parameters for each of its four vertices). The over-parameterization of the problem can lead to issues

with convergence (optimizing in a 12D space as opposed to 4D) and drift, since not all parameters
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will be strongly observable.

6.1.2 Kalman Filter Modifications

Regardless of the parameterization of the display surface state, incorporating the estimation of xs

into the Kalman filter involves straightforward modifications to the Kalman filter state vector, error

covariance matrix, and measurement Jacobian. Incorporating the display surface state xs into the

Kalman filter state vector, Equation 5.1 from the previous chapter becomes

X̂k =

 X̂I

xS

 , X̂I =



xl

xr1

xr2

...

xrn


, (6.1)

where X̂I is the aggregate vector of IPU poses from the previous chapter. The time-update equations of

the Kalman filter remain unaltered, effectively assuming, as was the case for projectors, that the state

of the display surface remains mostly constant, but may drift over time or occasionally undergo small

changes. Of course, a different motion model could be used for the display surface state depending

on the specific situation.

These changes to the state vector require a corresponding update to the filter’s error covariance

matrix previously defined in Equation 5.2:

P̂k =

 P̂I PIS

PSI PS

 , P̂I =



Pl Pr1,l Pr2,l . . . Prn,l

Pl,r1 Pr1 0 . . . 0

Pl,r2 0 Pr2

...
...

...
. . . 0

Pl,rn 0 . . . 0 Prn


, (6.2)

where PS is the error covariance of the display surface state, P̂I is the matrix of IPU pose covariances

from the previous chapter, and PIS = PT
SI is the cross-covariance between the IPU poses and the display

surface state. Equation 5.5 is correspondingly updated to include process noise for the display surface
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state vector QS:

Q̂k =

 Q̂I 0

0 QS

 , (6.3)

where Q̂I is the process noise of the IPU poses from before, and QS is the process noise of the display

surface state.

Finally, the Jacobian matrix Ĥk must be updated to include the sensitivity of the measurements to

changes in the display surface state as follows

Ĥk =



Hl 0 0 . . . 0 Hl,S

Hl,r1 Hr1,l 0 . . . 0 Hr1,S

Hl,r2 0 Hr2,l
... Hr2,S

...
...

. . . 0
...

Hl,rn 0 . . . 0 Hrn,l Hrn,S


, (6.4)

where

Hl,S =
∂hl(x−l ;zs

l ...)
∂xs

(6.5)

Hri,S =
∂hri(x

−
l ,x−ri

;zp
ri,l, . . .)

∂xs
. (6.6)

While the above is the extent of the mathematical changes that must be made to the filter in order

to continuously estimate changes in the desired display surface parameters, there are additional issues

related to observability and maintaining global consistency of the display surface state that must be

dealt with in practice. These issues are discussed in Sections 6.2 and 6.3.

6.2 Maintaining Global Consistency

The state of the display surface can be thought of as a set of global state parameters that all IPUs may

alter in the course of performing their filter updates. It is thus important to ensure that the state of the
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display surface remains globally consistent as it is updated by each of the IPUs.

In the current implementation, global consistency of the display surface is maintained through the

use of a token passing approach, where the IPUs perform their filter updates sequentially in a round-

robin fashion. When an IPU receives the token, it sends a request to the other IPUs in the display for

their matching camera image and current pose estimate as described in the previous chapter. After

receiving a response from the other IPUs, it performs its Kalman filter update and distributes the

updated state of the display surface to the other IPUs before passing on the token. This ensures a

globally consistent estimate of the display surface at the cost of serializing the operation of the IPUs.

This need to serialize the operation of the IPUs when simultaneously estimating both the poses

of the IPUs and the display surface can, however, be eliminated in future work via incorporating the

work of [Rao and Durrant-Whyte, 1991], which describes a method of decentralizing a Kalman filter

among a number of independent sensor nodes. The authors show that even though each node processes

only its own local measurements and updates its own local copy of the state and error covariance, it

is possible to achieve a globally consistent estimate of the state and error covariance by having each

sensor node broadcast its local estimates of the a priori and a posteriori state and error covariance

to all other sensor nodes. All nodes then incorporate this remote information into their own local

estimates using the so-called “assimilation” equations, which guarantee not only that the resulting

estimate is consistent among all nodes, but also that it is equivalent to that which would have been

computed by a single global Kalman filter processing all measurements in a centralized fashion.

As suggested by Greg Welch, accurately reflecting any constraints provided by the surface shape

can also be beneficial in achieving a globally consistent solution. For example, if it is known that

the display surface is a cylinder of unknown radius, using a parametric cylinder representation for the

surface, e.g. radius, height, position, and orientation, enforces the cylindrical constraint. As various

IPUs update the state of the display surface, its shape is guaranteed to remain cylindrical.

6.3 Observability

Recall from Chapter 1 that in order for geometric image correction to be successful, the calibration

of all projectors, the geometry of the display surface, and the position of the viewer must be known
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with respect to some coordinate system or frame of reference. In displays where only a subset of

the above parameters are estimated, it is important that this frame of reference be maintained so that

the remaining parameters continue to be meaningful. For example, in the extensions proposed in this

chapter, parameters of the display surface and the poses of all projectors are estimated continuously,

but the position of the viewer is not. The estimation algorithm must therefore ensure that estimates

are linked to the original frame of reference lest knowledge of the viewing location relative to the

projectors and display surface is lost.

In general, this becomes a question of whether the state parameters that are being estimated are

observable in the original coordinate system, which can be verified by testing the rank of the ob-

servability matrix as described in Section 3.4.1. In the previous chapter, the entire display surface

was assumed to be known and static, allowing it to act as the known frame of reference, in a sense

“anchoring” the pose estimates of the IPUs to the original coordinate system. A link to the original

coordinate system can also be maintained in other ways. For example, this role could be fulfilled by

an IPU whose pose is static, fiducials placed in a static area of the surface, or some triangle of the

display surface mesh that is assumed to be static and is not included in the filter state vector.

In some displays, it may only be important that the state parameters are observable relative to

one another rather than in the original coordinate frame. For example, in the case of a dynamic

shader lamps display, there is no concept of a viewing location. The only concern is that the projected

imagery be properly registered to the surface, which requires only that the poses of the IPUs be correct

relative to the display surface or vice versa. Display parameters can be estimated relative to the display

surface or the pose of one IPU simply by not including its pose in the filter state vector. This effectively

makes it the known coordinate system with respect to which the other state parameters are estimated.

In practice, this may be necessary to prevent the system from being inherently unobservable due to the

fact that any 6-DOF transformation applied to both the surface and all projectors will have no effect

on the measurement residuals. This unobservability could result in a tendency for the poses of the

IPUs and surface to drift over time, potentially causing numerical instability.
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6.4 Detecting Motion

In the distributed cooperative framework of the previous chapter, motion of the IPUs could only be

detected indirectly via examining changes in the poses of the IPUs as driven by the measurement

residuals. One consequence of this is that motion of one IPU may result in undesired changes to the

poses of other stationary IPUs or the display surface state. Consider a two-IPU display where one IPU

is moved while the other remains stationary. In this situation, the motion of one IPU will cause both

IPUs to encounter increased measurement residuals due to the processing of remote correspondences.

Since no information about which IPU is moving is provided to the filter, significant changes may be

made to the stationary IPU’s pose during this time. Though these changes may later be reversed as

the filter accumulates more information about the system state, changes in the imagery of stationary

projectors can be visually distracting.

The underlying problem is that, using only reprojection errors between cameras, it is not possible

to determine in all cases which of the IPUs and/or display surface is undergoing changes. Indeed,

the Ẑk− Z̃k term in Equation 5.7, often called the measurement residual or measurement innovation

is a vector of reprojection errors. Since reprojection errors depend only on the relative placement

and shape of the display surface and IPUs, it may be ambiguous whether the residuals arise due to

errors in the poses of one or more projectors, errors in the state of the display surface model, or some

combination of both.

As an example of the ambiguity associated with reprojection error, consider a single IPU display

that uses only local correspondences. In terms of reprojection error, there is no difference between

translating the entire display surface x units to the left and translating the IPU x units to the right.

After performing either transformation, the IPU is at the same location relative to the display surface.

It is thus impossible to determine in this case whether the IPU has moved or whether the surface has

moved.

One way this ambiguity can be resolved is by adding sensors to the IPUs that give a direct in-

dication of motion. The current implementation of the system makes use of inertial motion sensors

attached to each IPU to query at high rates whether an IPU is moving at any instant in time. When
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motion of an IPU is detected, the amount of process noise, or uncertainty, in its pose estimate is sub-

stantially increased via the process noise matrix Q̂k (Equation 5.5), which describes how uncertainty

in the various estimated parameters increases as a function of time between filter updates. This indi-

cates to the filter that it should be less certain of the pose of this IPU relative to the other IPUs in the

display and allows it to make the appropriate corrections to the state.

6.5 Application Specific Implementations

In this section, two extensions to the framework of the previous chapter are examined that estimate

information about the display surface under different surface representations and assumptions. A

dynamic shader lamps scenario is first considered where the display surface is rigid with known ge-

ometry, but may be moving over time. This is followed by a description of how the framework can

be used to refine the vertices of a static display surface represented by a polygonal mesh in order to

remove small errors.

6.5.1 Dynamic Shader Lamps

This situation was described briefly earlier. We have a display surface that is rigid in relation to

itself, but the entire surface may move over time. In this case, the basic geometry of the surface is

unchanging and can be considered an intrinsic parameter of the surface that need not be part of the

display surface state vector xs. The extrinsics of the display surface must, however, be estimated. In

general, this consists of a 6-DOF pose that is conceptually the same as the pose of a projector

xs =
[

Sx Sy Sz Sψ Sθ Sφ

]T

, (6.7)

where (Sx,Sy,Sz) is the location of the display surface and (Sψ ,Sθ ,Sφ ) is its orientation.

Since it is known that the display surface is or could be moving, the process noise of the display

surface pose is estimated dynamically, such that when the surface is moving, a larger amount of

process noise, or uncertainty, is added to its pose relative to when it remains stationary. This indicates

to the filter that it should be less certain of the pose of the display surface relative to the poses of any

IPUs that may be stationary at the time (which will have a lower, constant amount of process noise).
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Figure 6.2: A model of a house with texture provided by two projectors. The pose of the house
is estimated continuously, allowing the projected imagery to remain registered to the house as it is
moved to different orientations and positions by the user.

This dynamic shader lamps extension has been demonstrated in a two-IPU display consisting of a

textureless doll house that is augmented with projected imagery, as seen in Figure 6.2. The pose of the

house is estimated continuously using the cooperative continuous calibration framework such that the

projected imagery remains registered to the house as it is moved by the user to various orientations and

positions. As the house remains stationary, the IPUs can also be moved and automatically recalibrated.

6.5.2 Polygonal Mesh Refinement

This section describes how the distributed cooperative framework can be used to improve geometric

correction results in a multi-projector display by removing small, local errors in the vertices of a static

display surface represented as a polygonal mesh.

The display is illustrated in Figure 6.3 and contains two projectors that illuminate a display surface

formed by three walls of a room that intersect in two corners. Initial calibration of the display was

performed upfront using structured light projection with a process that reconstructs each wall of the

surface as an infinite plane and intersects these planes to form a polygonal model of the surface.

Unfortunately, due to slight deviations from planarity in each of the walls, this initial calibration

resulted in significant errors in the corner regions as seen in Figure 6.4a and b, which shows imagery

projected into the corner with and without the underling mesh representation superimposed. Due to

the sharp discontinuity in the surface, errors in this area are likely to be disturbing to viewers.

In order to remove these errors using the cooperative calibration framework, each wall’s planar
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Figure 6.3: Left: The layout of a two-projector display as seen from above with a display surface
consisting of two simple room corners. Right: The internal representation of the surface as a polygonal
mesh. Due to deviations from planarity, each wall is subdivided into a small number of triangles.

representation is first divided into a number of smaller facets to provide the freedom in the surface

representation necessary to achieve accurate corner registration. The internal mesh representation of

the surface is depicted in Figure 6.3.

Since the errors in the display surface mesh are small, only the vertices of the mesh are included

in the display surface state xs, and it is assumed that the connectivity information does not change.

However, by re-evaluating the connectivity of the vertices after each update to the mesh, it should be

possible to accommodate larger changes to the surface. The display surface state vector estimated by

the filter is thus

xs =
[

v1 v2 . . . vη

]T

, (6.8)

where each vi is a 3-vector representing a vertex of the mesh. Since the surface is assumed to be static,

a small amount of constant process noise is added to the display surface state vector to allow the filter

to correct the errors in the display surface vertices.

Figure 6.4c shows the results of running the continuous calibration algorithm with polygonal mesh

refinement on the surface after only a few seconds. The corner vertices in the display surface model

are now accurately registered to the true room corner, allowing accurate geometric image correction.

The discontinuity in the projected imagery as it crosses the corner has now been eliminated.
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Figure 6.4: Room corner registration before continuous calibration with and without display of under-
lying mesh (a & b). Room corner registration improves noticeably after a few seconds of continuous
calibration (c).

Global Consistency

Since the initial errors in the display surface estimate are small, it was not necessary in this example to

enforce global consistency in the display surface model between IPUs by communicating changes in

the vertices between IPUs. While this may be acceptable for displays where the poses of the IPUs are

not expected to change significantly, there may be scenarios where global communication of display

surface updates are required. In this case, it is possible to employ the methods for maintaining global

consistency described in Section 6.2.

Surface Representation

While it would be desirable to represent the display surface as a number of infinite planes instead of a

polygonal mesh as described in Section 6.1.1, ultimately it was not practical since many of the planes

would have been nearly coplanar, leading to issues when intersecting the planes to form a polygonal

model of the surface for performing two-pass rendering.
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Performance

When used on a large mesh with many vertices, computational performance is likely to be poor due to

the large size of the state vector. Recall from discussion in the previous chapter that the complexity of

the measurement update step is O(m3 +n3) for batch processing or O(mn3) for sequential processing

with m the number of measurements to be processed and n the size of the state vector. However, if we

can assume the vertices of the mesh are statistically independent, a sequential measurement process-

ing approach suddenly becomes much more attractive since, as each measurement is processed, the

Kalman filter state vector need only include the locations of at most three vertices in addition to the

projector poses. This is because assumed independence of the vertices means that the processing of

a measurement requires only that we update the vertices of the one face in the mesh from which the

measurement originated.

In a sequential measurement processing approach, the form of the sequential Kalman filter state

vector X̂s, error covariance P̂s, and measurement Jacobian Hs would be

X̂s =



X̂I

v1

v2

v3


, P̂s =

 P̂I 0

0 P̂v

 , Hs =
[

Hl,ri 02,6(i−1) Hri,l 02,6(n−i) Hv1 Hv2 Hv3

]
,

(6.9)

where independence between the vertices and the poses of the IPUs is assumed, and 0m,n denotes an

m x n matrix of zeros, Hvi is the Jacobian of the measurement function with respect to vertex vi, and

P̂v is the aggregate matrix of individual vertex covariances:

P̂v =


Pv1 0 0

0 Pv2 0

0 0 Pv3

 . (6.10)

In this formulation, the computational complexity for large meshes is greatly reduced since the

cost of performing the filter update is independent of the size of the mesh. Determining the face of
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the mesh on which a measurement lies is, however, dependent on the size of the mesh and efficient

techniques for ray-casting should be employed as discussed in the previous chapter in Section 5.5.3.

6.6 Summary

This chapter has described how a distributed cooperative approach can be used to estimate the poses

of all projectors as well as information about the display surface in a unified fashion. Actual results

were demonstrated using two practical display scenarios: a dynamic shader lamps display where the

display surface position and orientation is estimated continuously and a display where continuous

calibration is used to refine the vertices of a display surface represented as a polygonal mesh.

Beyond the display scenarios presented here, it should be possible to use this distributed cooper-

ative framework in additional applications of continuous calibration. For example, as projectors are

repositioned to illuminate portions of the display surface that do not yet exist in the display surface

model, one can imagine extending the surface by initializing new vertices or new sets of parameters

that are subsequently refined using cooperative continuous calibration. A variety of additional future

extensions are described in Chapter 7.
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CHAPTER 7

SUMMARY AND FUTURE WORK

The previous chapters have directly supported the central thesis of this dissertation:

Geometric calibration of a multi-projector display can be maintained continuously, during system

operation, using a distributed cooperative approach that simultaneously refines

I. the poses of multiple projectors and

II. the geometry of the display surface.

Chapter 5 introduced a novel cooperative calibration framework for multi-projector displays and

described how it could be used to estimate the poses of all projectors in a multi-projector display. This

framework was built upon the concept of using groups of intelligent projector units (IPUs), projectors

combined with cameras and computation, that exchange information across a network to cooperate

in estimating the poses of all projectors. This was made possible through the collection of both local

correspondences (obtained by each IPU independently) and remote correspondences (obtained via

communication with other IPUs). A Kalman filter was used at each IPU to process these local and

remote correspondences into an estimate of its pose that is subsequently communicated to the other

IPUs in the display. The details of how this framework can be implemented are also described, and

practical results from an actual two-projector display with multi-planar display surface were provided,

although the implementation has been demonstrated with as many as three IPUs.

Chapter 6 described how this framework can also be used to estimate the poses of all projectors

in a multi-projector display as well as information about the display surface in a unified fashion,

resulting in a complete framework for continuous geometric calibration in a multi-projector display.

Actual results from two practical scenarios were provided. The first described how the pose of a rigid



display surface with known geometry can be estimated in addition to the poses of the projectors for

use in a dynamic shader lamps [Bandyopadhyay et al., 2001] scenario. In the second, the cooperative

calibration framework was used to eliminate errors in the vertices of a display surface represented as

a polygonal mesh.

7.1 Future Work

There are many additional research directions that could be explored beyond the work presented in

this dissertation. A few of these are described here.

• It would be interesting and worthwhile to explore using the distributed cooperative framework

to estimate additional geometric parameters of the display. For example, as projectors are repo-

sitioned by the user, it may be necessary to change the focus of the projector to maintain image

quality. This could be accommodated by continuously estimating the intrinsics of the projector

in addition to its pose. Also, the repositioning of a projector may cause new portions of the

display surface to be illuminated that do not yet exist in the display surface model. In this case,

one can imagine extending the surface by initializing new vertices or new sets of parameters

that are subsequently refined using cooperative continuous calibration.

• Beyond geometric calibration, the framework could be extended to perform continuous pho-

tometric calibration, for example continuous estimation of blending masks or continuous lu-

minance and color correction. This cooperative framework may also be useful in estimating

photometric properties of the display surface such as its bidirectional reflectance distribution

function (BRDF), by cooperatively integrating photometric measurements of the surface cap-

tured from various perspectives by multiple IPUs.

• One area where this framework could be of benefit is projectors in office environments. As

suggested by Greg Welch, continuous calibration could be used in this environment to maintain

a consistent (and measurable) display quality over time, possibly alerting the user to the fact

that display contrast has decreased to the point where a projector bulb needs to be replaced.

• The framework could also be improved through the incorporation of additional sensors, such
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as an off-the-shelf orientation sensor, that can be queried at high rates to augment the vision-

based pose estimation. As suggested by Greg Welch, one possible way of achieving this is

through the use of a complementary or error-state Kalman filter [Maybeck, 1979] as illustrated

in Figure 7.1. In this design, estimates from the additional sensor, such as an orientation sensor

in the figure, can be used as soon as they are available and are corrected using an error term

produced by a Kalman filter. This filter estimates the difference between the values produced

by the sensor and vision systems, in effect estimating the error in the sensor output using the

vision system output as a reference. This allows the vision system to correct for any long term

drift or bias in the sensor estimates, while allowing the use of low latency updates from the

sensor itself. This can be implemented in either a feed-backward or feed-forward configuration

as shown in Figure 7.1. Typically, a feed-backward approach is desirable due to the potential for

error estimates in the feed-forward implementation to grow unbounded as the sensor estimate

drifts over time.

Figure 7.1: Error-state Kalman filter for incorporating additional sensors (orientation sensor in this
example) in feed-forward and feed-backward configurations.
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APPENDIX A

ADDITIONAL CONTRIBUTIONS

This appendix contains additional published contributions whose contents have not been included in

the body of the dissertation. The first work examines continuous projector pose estimation in a single

projector display when cameras are not mounted to the projector itself, but rather to a separate rigid

structure in the vicinityof the display. The second work describes how two-pass rendering can be used

to create a unifying framework for many tasks in projector-enhanced office environments. These tasks

include displaying on the surface of an office cubicle, camera-based scanning of documents, and the

use of focus-plus-context displays [Baudisch et al., 2001].
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Real-Time Projector Tracking on Complex Geometry Using Ordinary Imagery
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Abstract

Calibration techniques for projector-based displays typ-
ically require that the display configuration remain fixed,
since they are unable to adapt to changes such as the move-
ment of a projector. In this paper, we present a tech-
nique that is able to automatically recalibrate a projector
in real time without interrupting the display of user im-
agery. In contrast to previous techniques, our approach
can be used on surfaces of complex geometry without re-
quiring the quality of the projected imagery to be degraded.
By matching features between the projector and a station-
ary camera, we obtain a new pose estimate for the projec-
tor during each frame. Since matching features between a
projector and camera can be difficult due to the nature of
the images, we obtain these correspondences indirectly by
first matching between the camera and an image rendered
to predict what the camera will capture.

1. Introduction
Research in adaptive projector displays has enabled pro-

jection on display surfaces previously thought impracti-
cal. Raskar [16] and Bimber [3] describe general meth-
ods of correcting for the geometric distortions that oc-
cur when non-planar surfaces are used for display. Other
work [2, 10, 13] has focused on eliminating the need for
high-quality projection screens by compensating for the
color and texture of the display surface. These techniques
and others have greatly increased the versatility of the pro-
jector and brought us closer to a “project anywhere” display.

Recently, the focus has begun to shift towards robust au-
tomatic calibration methods [1, 15, 17] that require little or
no interaction on the part of the user. Within this category
are techniques that can perform calibration while user im-
agery is being projected. This allows display interruption
to be avoided in the event that the display configuration
changes, e.g. a projector is moved.

These “online” auto-calibration techniques can be di-
vided into two categories. In the first are the active tech-
niques where calibration aids that are imperceptible to a hu-

Figure 1. Our tracking process adapts to changes in projector pose,
allowing ”on the fly” display reconfiguration.

man observer are injected into the user imagery. Cotting
et al.[5, 6] embed these imperceptible calibration patterns
in the projected imagery by taking advantage of the micro-
mirror flip sequences used to form images in DLP projec-
tors. Image intensity is modified slightly at each pixel so
that a camera exposed at a small frame interval will capture
the desired calibration pattern. This technique currently re-
quires that a portion of the projector’s dynamic range be
sacrificed, leading to a slight degredation of the user im-
agery.

The second type of auto-calibration technique does not
rely on the use of calibration aids and instead attempts to
extract calibration information from the user-projected im-
agery itself. In Yang and Welch [20], features in the user
imagery are matched between a pre-calibrated projector and
camera and used to automatically estimate the geometry of
the display surface. This technique leaves the user imagery
unmodified, but relies on the presence of features in the user
imagery that are suitable for matching.

To our knowledge, no existing work has demonstrated
the ability to continuously track a projector in real-time on
complex display surface geometry without modifying the
projected imagery or using fixed fiducials. In addition to



allowing dynamic repositioning of the projector during dis-
play, such a system could also be used for projector-based
augmentation. Here, a hand-held projector can be used to
augment objects with information or to alter their appear-
ance [17, 18]. This effectively allows a projector to be used
as a graphical “flashlight” where the projector can be con-
trolled directly by the user to create imagery on previously
unlit portions of a surface or to enhance image detail by
moving the projector closer to the surface.

In this paper, we describe a technique that enables such
a system. By matching features between the projector and a
stationary camera, we re-estimate the pose of the projector
continuously. Since matching features between a projector
and camera directly can be difficult, we propose obtaining
these correspondences indirectly by first matching between
the camera and an image generated to predict what the cam-
era will capture. We present a simple radiometric model for
generating this predicted image. Our technique does not
affect the quality of the projected imagery and can be per-
formed continuously without interrupting the display.

2. Predictive Rendering for Feature Matching
Given a static camera of known calibration, where the

depth at each camera pixel is also known, a set of image cor-
respondences between the camera and a projector indirectly
provides a set of 2D-3D correspondences in the projector,
allowing the calibration of the projector to be determined.
Unfortunately, there are a variety of factors that complicate
the process of matching between projector and camera im-
ages as seen in Figure 4. Some of these complications in-
clude

1. differences in resolution, aspect ratio and bit-depth

2. large camera-projector baselines

3. radiometric effects e.g. projector/camera transfer function
and surface BRDF present in camera image, but not in pro-
jector image

To avoid these problems, we instead perform matching
between an actual image captured by the camera and a
prediction of this captured image generated using graphics
hardware. We will refer to the image sent to the projector
as the projected image, the image captured by the camera
as the captured image, and the prediction of the captured
image as the predicted image.

Since the displacement of a projector within a single
frame is small, geometric differences between the predicted
and captured images will be small as well. Also, by generat-
ing a predicted image that takes into account the radiomet-
ric properties of the display, the captured and predicted im-
ages will be similar in intensity, leading to better matching
results. By reversing the process used to generate the pre-
dicted image, we can map features in the predicted image to

Figure 2. Mapping projector pixels to camera pixels.

their original locations in the projected image to obtain 2D-
3D correspondences allowing us to calibrate the projector.

2.1. Geometric Prediction

The first step in generating the predicted image is to de-
termine the mapping from projector pixels to camera pixels.
This allows us to warp the projected image into the frame
of the camera as if it had observed the projected imagery.
This mapping is completely defined by the calibration of
the projector and camera and the geometry of the display
surface and is the same process needed to determine the re-
quired warping to compensate for the display surface ge-
ometry when displaying a desired image to a viewer. In the
case of generating the predicted image, we map between
projector and the camera instead of between the projector
and the viewer.

We accomplish the warping between the camera and pro-
jector using the second pass of the two-pass rendering tech-
nique proposed by Raskar [16]. Using the projection ma-
trix of the projector, we project the texture coordinates of
the projected image onto the display surface geometry and
render it using the projection matrix of the camera. An il-
lustration of this process is provided in Figure 2.

2.2. Radiometric Prediction

As Tables 1 and 2 show, incorporating a radiometric sim-
ulation into the generation of the predicted image can re-
sult in an immense improvement in feature matching per-
formance, especially for rendered imagery. The radiomet-
ric model we use assumes that the projector can be reason-
ably approximated as a point light source, which implies
that each point on the display surface receives illumination
from only one direction. We will additionally assume a dis-
play surface with a uniform, diffuse BRDF since this type
of surface is commonly used for projective display. We also
ignore any contribution to the captured image from indirect



illumination.
For a point X on the display surface, we will denote its

projection in the camera and projector images as xc and xp.
Given one of the these points, the locations of the other two
are easily determined using the calibration of the camera
and projector and the model of the display surface.

The radiometric value measured by a camera sensor is
irradiance, the amount of energy per area. The irradiance
within a sensor pixel is integrated over time to produce the
sensor’s output. A pixel’s intensity value in the final image
may however be a non-linear function of the sensor output.
The goal of our radiometric simulation is then to predict the
irradiance arriving at each camera pixel and apply the trans-
fer function of the camera, also called its input-output re-
sponse function or simply response. Let Rc be the response
function of the camera and E (xc) the irradiance at a camera
pixel xc. The intensity in the captured camera image Mc (xc)
is then

Mc (xc) = Rc (E (xc)) . (1)

The irradiance at a point on the camera sensor is a func-
tion of the scene radiance, the energy per area per solid an-
gle of the source. Assuming a small aperture and a thin lens,
the irradiance E (x) at a point x on the camera sensor is di-
rectly proportional to the scene radiance L arriving at x [9].
Specifically, this proportionality is

E (x) = L
π

4
cos4θ

n2 , (2)

where n is the f-number of the lens and θ is the angle
between the normal of the sensor plane and the unit vector
from x to the center of the lens. This equation indicates
a variation in the proportionality between scene radiance
and sensor irradiance over the camera’s field-of-view. We
have found this variation to be negligible and instead use
the simplification

E (xc) = αL
(

X ,
−→
XC

)
, (3)

where L
(

X ,
−→
XC

)
is the radiance at X in the direction of

the camera center C, and α is some constant.
The value of L

(
X ,
−→
XC

)
is the result of illumination from

the projector being reflected by the display surface towards
the camera and depends on the surface BRDF. Since we
consider the projector to be a point light source, the point
X receives illumination only along the direction from the
projector center

−→
XP. This, combined with the assumption

of a uniform, diffuse surface, leads to

L
(

X ,
−→
XC

)
= ρE

(
X ,
−→
XP

)
, (4)

where E
(

X ,
−→
XP

)
is the incident irradiance at X due to

the projector and ρ is the surface BRDF.
The incident irradiance at a surface point due to a point

light source depends on the radiant intensity of the light
source in the direction of the surface point, the orientation
of the surface normal with respect to the incoming light di-
rection, and the distance to the light source. If I

(
P,
−→
PX

)
is

the radiant intensity of the projector in the direction of point
X , then

E
(

X ,
−→
XP

)
= I

(
P,
−→
PX

) cos(θ)
r2 , (5)

where θ is the angle between the surface normal at X
and the direction

−→
XP and r the distance between X and the

projector.
We model the radiant intensity I(P,

−→
PX) as a function of

the intensity of the projected image at pixel xp, Mp (xp) =
[r,g,b] ∈ [0,1]3, and the response function Rp of the projec-
tor such that

I
(

P,
−→
PX

)
= S (xp) [Rp (Mp (xp)) · [Ir, Ig, Ib]] , (6)

where Ir..b are the maximum radiant intensities of the red,
green and blue color channels of the projector and S ∈ [0,1]
is a per-pixel attenuation map. The purpose of S, which we
refer to as the projector intensity profile, is to model changes
in brightness over a projector’s field-of-view due to effects
such as vignetting.

Combining the above equations, the final intensity value
measured at each camera pixel as a function of the intensity
at its corresponding location in the projected image is

Mc (xc) = Rc

(
cos(θ)

r2 S(xp)
[
Rp (Mp (xp)) ·

[
Ir, Ig, Ib

]])
,

(7)
where we have combined α , ρ and the Ir..b into the terms

Ir..b. Since the field-of-view of each camera pixel may en-
compass more than a single projector pixel, we filter the
projected image to obtain an average intensity value that we
use to evaluate Equation (7).

3. Calibration
In this section, we describe our process of calibrating the

geometric and radiometric parameters necessary to apply
the technique we use to generate the predicted image.

3.1. Geometric Calibration

We accomplish initial geometric calibration in an up-
front step by observing projected structured light patterns



with a stereo camera pair. This process yields a set of cor-
respondences between the projector and camera pair that
allows us to reconstruct the geometry of the display surface
and calibrate the projector. Raskar provides a thorough dis-
cussion of this process in [16]. To obtain an accurate model
of our room-like display surface as seen in Figure 2, we use
the RANSAC-based plane fitting technique introduced by
Quirk [14]. Any other reconstruction method that gives a
geometric description of the surface could also be used.

3.2. Radiometric Calibration

In addition to the geometric calibration, generation of
the predicted image requires estimation of the projector and
camera response, the projector intensity profile, and the
terms Ir..b. Since these are intrinsic properties, they can be
calibrated once in an up-front process and then used in ar-
bitrary geometric configurations.

Since we use the stereo camera pair for geometric cali-
bration, out of convenience, we also use one of these cam-
eras for projector tracking. To prevent indirect scattering
from affecting the results, we perform radiometric calibra-
tion by projecting on a portion of the display surface that
produces low levels of these effects. In our case, we project
onto a single plane and use our geometric calibration pro-
cess to establish the geometric relationship between the
camera, projector and display surface.

3.2.1 Projector Response

The first step in our radiometric calibration process is to
calibrate the projector response. We accomplish this man-
ually by projecting an image where half the image is filled
with some intensity I and the other half with a dither pat-
tern computed using error-diffusion dithering [8] to have
a certain proportion of black and full intensity pixels. By
adjusting the proportion of black and white pixels such that
the intensity of the image appears consistent throughout, we
can determine what proportion of the projector’s maximum
output intensity the intensity I represents. This is done for
a number of intensities and the resulting data points are in-
terpolated with a spline to reconstruct the response function
of the projector.

3.2.2 Intensity Profile

We recover the intensity profile of the projector by project-
ing a sequence of solid grayscale images of increasing in-
tensity. To remove the effect of projector response on the
captured camera images, we linearize the output of the pro-
jector during this step using the inverse of the projector re-
sponse.

At each pixel in a captured camera image, we have

υ(xc) =
r2R−1

c (Mc(xc))
cos(θ)

= S(xp)[Mp(xp) · [Ir, Ig, Ib]]. (8)

The value of υ at each camera pixel can be evalutated
given the response function of the camera. Since we have
linearized the projector response when projecting the se-
quence of grayscale images, we can use the captured camera
images to get a rough estimate of the camera response. We
do this by finding the median intensity value in each camera
image and use this as the camera response for the grayscale
intensity of the projected image. In the next section, we will
describe our technique for refining the camera response es-
timate.

Next, we compute υ(xc) at each pixel of the camera im-
ages. Let xm be the pixel in an image where the maximum
value of υ occurs. Dividing the value of υ at each pixel by
υ(xm) gives the relation

S(xp)
S(xpm)

=
cos(θm)r2R−1

c (Mc(xc))
cos(θ)r2

mR−1
c (Mc(xm))

, (9)

with subscript m indicating values for pixel xm. The
Mp(xp) · [Ir, Ig, Ib] terms in both the numerator and denom-
inator cancel since the projected image was uniform in in-
tensity. Because υ(xm) is a maximum in the camera image,
S(xpm) = 1, and we can compute an estimate of the intensity
profile of the projector at each pixel using a single camera
image.

Since the computed intensity profile may vary between
images, we use the average of the intensity profiles ex-
tracted from each image as our final estimate. It is important
in this step to exclude camera images containing saturated
pixels, which will affect the computation of the intensity
profile. We also blur the extracted profile with a small gaus-
sian kernel to remove noise.

3.2.3 Projector Brightness and Camera Response

The remaining terms to be calibrated are the Ir..b and the
refinement of the camera response. The process we use for
calibrating the camera response is based on the technique
described in Debevec [7].

In addition to the grayscale images used to calibrate the
intensity profile of the projector, we also project a series
of solid color images of different intensities, linearizing the
output of the projector as we did before. From Equation (7),
at each pixel in a camera image taken of one of these solid
color images, we have a linear equation in the Ir..b and one
of the 256 discrete values that form the domain of R−1. If
the projected intensity is (r,g,b) and the intensity measured
by the camera at some pixel is i, we have

srIr + sgIg + sbIb−R−1
c (i) = 0, (10)



where s = cos(θ)
r2 S(xp).

Let gi = R−1(i) and let zk be a vector of length 256 com-
posed of all zeros except that it contains the value 1 at the
location corresponding to the intensity value measured by
the camera in the kth equation. The system of equations
can then be put into matrix form as


s1r1 s1g1 s1b1 z1
s2r2 s2g2 s2b2 z2

. . .
snrn sngn snbn zn





Ir
Ig
Ib
g1
...

g256


=

 0
...
0

 . (11)

This system can be efficiently solved using SVD to pro-
duce the best solution vector in the least-squares sense. In
practice, it may be possible that no camera pixel of a cer-
tain intensity can be found in any of the camera images.
In this case, the values of R−1

c for which data exists can
be calibrated and then interpolated to produce the missing
values. To enforce smoothness between the gis, we also
add a second derivative term to Equation (11) of the form
λ (gi−1 − 2gi + gi+1) where λ can be used to control the
smoothness.

Since the solution vector is only defined up to an arbi-
trary scale and sign, we choose the sign such that the solu-
tion vector is positive and the scale such that the gi lie in the
range [0,1]. The response function of the camera is easily
obtained by inverting the gis.

In our testing, we captured images of 17 different inten-
sities each of red, green, blue, and yellow. In choosing the
camera image pixels we use as contraints in Equation (11),
we have created an automated process that selects pixels
uniformly across color, intensity, and image location.

3.2.4 Error

To estimate the error in our calibration and validate our
model, we used the calibration to predict the camera images
used in calibrating the projector intensity profile. Compar-
ing the predicted images to the actual camera images, we
found the overall average error to be just under 4 camera
intensity values.

4. Rendering
We implemented our radiometric model in a real-time

GPU pixel shader that allows predicted images to be pro-
duced at interactive rates. The shader takes as input all
of the radiometric parameters with the projector and cam-
era response stored as 1D textures and the intensity profile
stored as a 2D texture. The geometric parameters are two
2D floating-point textures called the geometry and normal

map, which store the (x,y,z) position and normal of the dis-
play surface at each camera pixel. The projection matrix
of the projector and its center-of-projection are also input
parameters.

To predict the intensity measured by the camera at each
pixel, the shader program first estimates the average color of
the projected image pixels that fall within the extent of each
camera pixel. At each predicted image pixel, we look up the
display surface vertex X in the geometry map and project it
into the projected image using the projector calibration to
obtain a texture coordinate. We repeat this process at three
neighboring pixels, allowing us to compute two derivative
vectors indicating the size of the region in the projected im-
age that should be filtered. We pass this information to the
texture mapping hardware, which filters the projected im-
age and the intensity profile using a kernel of the appropri-
ate size. We next apply the projector response to the filtered
color by performing a per channel look-up in the projector
response texture.

Using the center-of-projection of the projector and the
value of X , the value of r2 for the pixel is easily computed.
To compute the value of cos(θ), we look up the display sur-
face normal in the normal map and take the dot product of
the normal and the unit vector from X to the projector cen-
ter. Composing the rest of the model terms together, we do
a final look-up in the camera response texture to get the fi-
nal predicted intensity for the pixel. The shader program
then returns the predicted intensity in one color channel of
the predicted image with the other two channels left black.
This allows us to read back the predicted image to the CPU
as a single channel texture, greatly improving read-back ef-
ficiency.

Figure 3 shows a captured camera image and a predicted
image rendered using our technique. We computed the dif-
ference between these images to be 15.1 intensity levels on
average per pixel with a standard deviation of 3.3. The im-
ages appear very similar, with the most significant differ-
ence being the higher contrast in the rendered image. The
rendered image is also slightly darker. We attribute both
of these differences to indirect scattering effects caused by
the complex display surface geometry being present in the
camera image, but not reproduced in the predicted image.

5. Continuous Projector Calibration
To track the projector motion in real-time using the pre-

dicted image, we first detect a set of features in the cap-
tured camera image during each frame. As described pre-
viously, by matching features between the captured image
and the predicted image, we indirectly obtain a set of 2D-
3D point projector point correspondences that allows us to
estimate the pose of the projector. For feature detection in
the captured image, we use Intel’s OpenCV library imple-
mentation of the feature detection algorithm introduced by



Figure 3. An actual image captured by a camera (left) and a rendered prediction of the camera image (right).

Shi and Tomasi [19]. To obtain correspondences for the
detected features in the predicted image, we use pyramidal
Lucas-Kanade tracking [12, 4], also part of OpenCV.

To transform these correspondences into 2D-3D projec-
tor point correspondences, we use the same geometry map
used in rendering the predicted image, which stores the
mapping between camera pixels and 3D points on the dis-
play surface. To obtain the 3D correspondences, we per-
form a look-up in the geometry map for each feature in the
captured image. To obtain the 2D correspondences for these
points, we reverse the mapping from projected image pixels
to predicted image pixels. This is done by consulting the
geometry map using the feature locations in the predicted
image and projecting the resulting points into the projected
image using the projector calibration.

5.1. Pose Estimation

We assume that any motion of the projector does not af-
fect its intrinsic calibration, requiring only the 6 parame-
ters comprising the extrinsic calibration (position and ori-
entation) to be re-estimated. To calculate the projector pose
from the 2D-3D correspondences, we use a common tech-
nique from analytic photogrammetry described in Haral-
ick [11].

The technique takes as input a set of 2D-3D correspon-
dences as well as an initial estimate of the pose and mini-
mizes the sum of squared reprojection errors using a non-
linear least-squares technique. While the need for an initial
guess is a limitation of the technique, it has the advantage of
being able to compute the correct pose in situations where
a linear technique will fail, such as when all 3D correspon-
dences are coplanar. We have found that using the previous
pose of the projector as an initial guess for the current pose
is adequate for convergence even when the projector pose is
changing rapidly.

5.2. Outliers

We have found it essential to incorporate RANSAC into
the pose estimation to prevent false correspondences from
affecting the pose estimation results. In our RANSAC ap-
proach, we estimate the projector pose using three corre-
spondences selected at random and record the number of
correspondences whose resulting reprojection error is less
than 10 projector pixels as inliers. We perform this iteration
repeatedly until there is a 99% chance that at least one inter-
ation has chosen a set of three correct corrspondences. We
then take the largest inlier set over all iterations and perform
a final pose estimate.

5.3. Filtering

Since we do not synchronize the projector and camera,
it is possible for the captured and predicted images to be
out of step by a frame. This introduces error into the cor-
respondences used to calibrate the projector and can lead to
instability if the pose estimates are not filtered.

In our experimentation, we have found that by limiting
the amount of change that is made to the pose estimate each
frame, any instability caused by an unsynchronized camera
and projector can be removed. After the change in pose
has been calculated, we add it to the current pose estimate
at 10% of its original scale. We have found this to ensure
tracking stability while still providing a responsive system.

6. Results
We tested the tracking ability of our system using two

dynamic applications. The first application displays a ro-
tating panorama of a real environment and contains many
strong features. The second application is a virtual flight
simulator that displays rendered 3D geometry and is rela-
tively sparse in strong features.



a) b)

c) d)
Figure 4. a) An image captured by a camera. b) An image rendered to predict the captured image. c) The projected image that was
captured. d) A contrast-enhanced difference image of the captured and predicted images.

Imagery Avg. Feature Count Avg. % Inliers
Panorama(front) 191 81
Panorama(back) 197 84
Flight Simulator 36 60

Table 1. Feature matching performance using both geometric and
radiometric prediction of the captured image.

Imagery Avg. Feature Count Avg. % Inliers
Panorama(front) 183 38
Panorama(back) 192 46
Flight Simulator 13 30

Table 2. Feature matching performance using only geometric pre-
diction of the captured image.

To test the feature detection and matching capability of
the system, we recorded the number of features successfully

matched between the predicted and camera images and the
number of these matches found to be correct by RANSAC
in each frame. Table 1 shows the results we collected over
1000 frames for both applications. The maximum number
of features to detect and match was limited to 200 for this
experiment, which we have found to be more than adequate
for tracking.

While the results are considerably better for the
panorama application, we were not able to notice a visible
difference in the quality of the tracking results. This is due
to the lower number of matched features in the flight sim-
ulator being sufficient to accurately calculate the projector
pose and the success of RANSAC in removing the incorrect
correspondences.

To estimate the improvement in feature matching gained
by performing radiometric prediction, we ran the same tests
using predicted images generated using only geometric pre-



diction. The predicted images were converted to grayscale
using the NTSC coefficients for color to grayscale conver-
sion. The results of this experiment are present in Table
2. Note that during this experiment, tracking for the flight
simulator was lost after only 6 frames.

The performance of the tracker is heavily dependent on
the number of features that the system attempts to detect
and match each frame. Setting the maximum number of
features to detect and match at 75, we were able to obtain
excellent tracking results and measured the performance of
the tracker to be approximately 27 Hz for both applications.

7. Summary and Future Work

We have described a new technique that enables a projec-
tor to be tracked in real-time without affecting the quality of
the projected imagery. This technique allows dynamic repo-
sitioning of the projector without display interruption. By
matching features between the projector and a static cam-
era, the pose of the projector is estimated each frame. Since
obtaining correspondences between the projector and cam-
era can be difficult, we obtain these correspondences indi-
rectly by matching between the camera image and an image
rendered using the current calibration information to predict
the image the camera will capture. We describe a simple ra-
diometric model that can easily be implemented on graphics
hardware to produce this predicted image.

Our current technique has certain limitations we would
like to overcome in future work. Our radiometric calibration
process currently requires a uniform display surface albedo
and that there be a portion of the display surface to project
on that does not introduce substantial indirect scattering ef-
fects. A futher limitation is the reliance on the presence of
features in the user imagery that are suitable for matching.
We believe, however, that exposing the camera for a short
frame interval will expose additional features in the user im-
agery when using a DLP projector since small differences
in intensity can be magnified greatly by the mirror flips that
occur.
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Abstract

Research in the area of projector- and camera-augmented office environments has demonstrated the use of cameras
as desktop scanning devices, shown the benefits of using multiple display devices for focus and context information,
and advocated display on multiple surfaces for visualization of multi-dimensional data. In this paper, we describe
how the implementation of these ideas can be unified to simplify the creation of a workspace that combines them.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms

1. Introduction

Research in projector- and camera-augmented office envi-
ronments has made it possible to create large digital desk-
tops that allow digital documents to be interacted with as if
they were real documents. The digital desk [Wel93] blurred
the line between real and digital content by allowing digital
documents displayed on a desk surface to be marked with a
pen as if they were real. It also demonstrated how cameras in
the office could be used for desktop scanning, allowing user-
selected portions of real documents to be copied and pasted
into digital documents directly on the desk.

Other researchers have experimented with combining
multiple display devices to create focus plus context dis-
plays [BGS01, AR03]. In this type of system, one display
provides high spatial resolution for tasks such as text edit-
ing, while another display provides context information at a
lower spatial resolution, e.g. other documents that may be of
interest, but not currently being edited. This context infor-
mation is useful in many applications.

By extending the digital desktop beyond just the desktop
itself and onto other surfaces as well, the workspace can also
be used to visualize 3D content. Ashdown et al. [AFSR04]
describe how this can be accomplished using a multi-planar
surface. In this work, an automatic technique for calculating
mutually consistent rectifying homographies between each
plane and the projector is described.

We imagine an office environment that combines all of

Figure 1: Multi-surface workspace concept. (Andrei State)

these ideas in a single workspace. A conceptual illustration
of our vision for this new type of workspace is shown in Fig-
ure 1. In this paper, we describe techniques for calibration
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and rendering that allow these previous ideas from projector-
and camera-augmented office environments to be combined
to create a multi-surface, multi-resolution workspace with
camera-based scanning and projector-based illumination.
We show that techniques from multi-projector displays can
provide a robust calibration procedure and simplify the task
of combining these ideas in a common framework.

2. The Workspace

The workspace we have created is reminiscent of an office
cubicle. Our environment, as seen in Figure 3, consists of a
flat desktop abutted on two sides by vertical walls. An LCD
panel is also embedded within the surface of the desktop. A
projector-camera module consisting of a projector and two
greyscale cameras is positioned a short distance away to il-
luminate the surface of the desk as well as the two walls.

3. Calibration

Before imagery is displayed on the workspace, a simple cal-
ibration procedure is performed. This determines the infor-
mation needed to project imagery onto the surfaces of the
workspace in a way that compensates for the orientation
of the surfaces with respect to the projector. Instead of a
homography-based approach, we perform a full 3D calibra-
tion, which easily allows content to be displayed across mul-
tiple surfaces. The procedure estimates a polygonal model
of the workspace geometry as well as a projection matrix for
the projector, both cameras, and the LCD panel. This deter-
mines an invertible mapping from 2D pixel locations in each
device to 3D locations on the surfaces of the workspace.

Our calibration process begins by projecting encoded
structured light patterns that are observed by the cameras.
Decoding of these structured light patterns allows precise
image correspondences between the cameras to be obtained.
Since the projector and cameras are rigidly attached, we as-
sume the devices have been pre-calibrated using an existing
technique such as [Zha00, RWC∗98]. The camera calibra-
tion can then be used to triangulate each correspondence into
a 3D point, forming a 3D point-cloud representation of the
surfaces of the workspace.

To construct a polygonal model from this point-cloud rep-
resentation, we use the RANSAC-based plane-fitting algo-
rithm described in Quirk [QJS∗06], which is robust against
noise and outlying points resulting from false stereo match-
ing. The algorithm is used to find the three most dominant
planes in the point-cloud data, which are then intersected to
form a simple polygonal mesh. This plane intersection pro-
cess allows the wall corners of the workspace, where calibra-
tion errors will be most apparent, to be accurately estimated.

We treat the LCD screen as a projector and display the
same structured light patterns. This results in a point-cloud
representation of the plane of the LCD screen in the same

coordinate system as the projector-camera module and the
polygonal model of the workspace. We then calculate a pro-
jection matrix relating the 3D points on the surface of the
LCD screen to their 2D pixel coordinates in the LCD im-
age. While this mapping could also be accomplished using a
homography, a 3D calibration allows the LCD screen to be
handled in the same way as the projector during rendering.

The standard technique for calculating projection matri-
ces from 2D-3D correspondences is the direct linear trans-
form (DLT) [AAK71]. In the case of the LCD screen, the 3D
points are coplanar, and the DLT algorithm will fail. Knowl-
edge of the center-of-projection (COP) is however sufficient
to fully determine a projection matrix. The choice of COP
is arbitrary in this case, so we choose it to lie some distance
along the normal of the LCD plane.

4. Rendering

In this section, we describe how it is possible to provide the
user with content displayed on only a single surface with
content displayed on multiple surfaces in a unified way us-
ing a single technique - two-pass rendering [RWC∗98]. We
also describe how this same technique can be used to correct
image distortion when using a camera for desktop scanning.

4.1. Two-Pass Rendering

The basic approach behind two-pass rendering is to take a
desired image to be observed on a projection surface and de-
termine the necessary warping of this desired image to com-
pensate for the geometry of the projection surface.

The desired image is rendered in pass one. This can be an
image generated from a 3D graphics application or simply
an image of a 2D windowed application such as a word pro-
cessor. The warping of this image occurs in the second pass
using projective texturing, where the image is projected onto
the geometry of the projection surface from the user’s view-
point. The textured surface geometry is then rendered from
the perspective of the projector using its projection matrix.

4.2. Single-Surface Content

Some types of imagery, such as that of a word processor,
are best displayed to the user on a single surface of the
workspace. While this content can be made to look geomet-
rically correct across multiple surfaces from the user’s view-
point, the notion that this type of content is flat can conflict
with the stereo cues the user receives and be disturbing.

Using two-pass rendering, we can easily determine how
to display a window in order to align it with the natural co-
ordinate system of one of the workspace surfaces. When a
window is opened on one of the surfaces, the four coplanar
corners of the window are used to calculate a projection ma-
trix with a COP located a short distance from the center of
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a) b)

Figure 2: a) Undesired projection on a real document. b) Neutral illumination on a document and keyboard.

the window along the plane normal. This is identical to the
calibration process we described for the LCD screen.

During rendering, this matrix is used as the projective tex-
turing matrix in pass-two to project the window contents
onto the geometry of the workspace model before it is ren-
dered from the perspective of the projector. Note that this
process for displaying content on a single surface is inde-
pendent of the location of the viewer.

4.3. Multi-Surface Content

The two-pass rendering algorithm also supports the display
of imagery across multiple surfaces. The workspace can then
also be used as a convenient medium for visualizing content
such as 3D models or virtual data sets. The rendering process
used to display this content is identical to that used to display
single-surface content except that the COP of the projective
texturing matrix is constrained to be the viewpoint of the
user, which can be maintained by a separate tracking system.

4.4. Desktop Scanning

Using the projector-camera module, it is also possible to cre-
ate a desktop scanner, allowing the user to copy from real
documents and paste into digital ones without the need to
leave his desk. This technology was first demonstrated as
part of the digital desk [Wel93]. Here, we describe how this
technology can be implemented in the context of a multi-
surface workspace to allow documents located on any sur-
face of the workspace to be copied.

Using a selection rectangle, which is handled as a single-
surface window that follows the motion of the mouse, the
user selects the portion of a document he wishes to copy.
The projector then illuminates the selected area to improve
its brightness while the camera captures an image. Two steps

now remain - the user-selected portion of the camera image
must be segmented from the rest of the image, and the dis-
tortion caused by the orientation of the camera with respect
to the surface must be removed.

Both of these steps can be accomplished simultaneously
using two-pass rendering. We set the desired image to be the
captured camera image and use the camera’s projection ma-
trix as the projective texturing matrix. The geometry that is
projectively textured and rendered is a quad formed from the
corners of the selection rectangle. This quad is then rendered
with the projection matrix of the selection rectangle window.

4.5. Projector-Based Illumination

There are often objects present in the office environment on
which it may not be desirable to have imagery projected.
As shown in Figure 2a, when documents have imagery pro-
jected on them, it can be difficult to distinguish the document
from the projected imagery. This is especially troubling for
documents containing text, which are made difficult to read.

We have created a simple interface that allows the user
to select the corners of a quad where uniform white light
should be displayed by the projector. In Figure 2b, the im-
agery projected on the document has been replaced with uni-
form white light from the projector, allowing the contents of
the document to be clearly seen. The keyboard has also been
illuminated by the projector in this image.

5. Results

We have implemented an application allowing windows con-
taining various types of content to be opened on any sur-
face of the workspace. The windows are simply static frames
used to demonstrate the calibration and rendering and are not
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tied to any application. Figure 3 is an image of the applica-
tion running. Using our rendering process, when a window
overlaps the LCD screen, the overlapping window contents
are automatically displayed in high resolution on the LCD
screen and registered to the surrounding projected imagery.
The satellite in the image demonstrates the ability to simul-
taneously view content on multiple surfaces.

Figure 4 shows a hard-copy document and the resulting
digitized version selected by the user to be scanned. The dis-
tortion involved in capturing an image of the document from
the perspective of the camera has been eliminated.

Figure 3: A multi-surface, multi-display workspace com-
bining both single- and multi-surface content.

Figure 4: Desktop scanning using a projector-camera mod-
ule.

6. Conclusions and Future Work

We have described a framework that allows previously sepa-
rate ideas from projector- and camera-augmented office en-
vironments to be combined into a single workspace. Our
system includes a multi-planar surface, a projector-camera
module, and an LCD screen and allows single- and multi-
surface content to be displayed in a unified way. Using this

framework, the LCD screen is calibrated to the projector and
its imagery automatically registered to the projected imagery
to provide an area for tasks requiring high resolution. We
also describe how the cameras of the projector-camera mod-
ule can be used for desktop scanning within the same frame-
work to further simplify implementation.

We have focused solely on rendering and calibration is-
sues in this paper, but the potential for new interaction tech-
niques should also be investigated. We think this type of
display has great potential for remote collaboration with the
wall surfaces being used as a window to a remote environ-
ment. In the future, we hope to replace the need for man-
ual selection of objects that should only be illuminated by
white light with an automatic technique that detects objects
occluding projected imagery.
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