
Accurate Sampling-Based Algorithms for Surface
Extraction and Motion Planning

by
Gokul Varadhan

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2005

Approved by:

Dinesh Manocha, Advisor

Ming Lin, Reader

Shankar Krishnan, Reader

Jack Snoeyink, Committee Member

Pankaj Agarwal, Committee Member

ii

iii

c© 2005

Gokul Varadhan

ALL RIGHTS RESERVED

iv

v

ABSTRACT
GOKUL VARADHAN: Accurate Sampling-Based Algorithms for Surface

Extraction and Motion Planning.
(Under the direction of Dinesh Manocha.)

Boolean operations, Minkowski sum evaluation, configuration space computation,

and motion planning are fundamental problems in solid modeling and robotics. Their

applications include computer-aided design, numerically-controlled machining, toler-

ance verification, packing, assembly planning, and dynamic simulation. Prior algo-

rithms for solving these problems can be classified into exact and approximate ap-

proaches. The exact approaches are difficult to implement and are prone to robustness

problems. Current approximate approaches may not solve these problems accurately.

Our work aims to bridge this gap between exact and approximate approaches. We

present a sampling-based approach to solve these geometric problems. Our approach

relies on computing a volumetric grid in space using a sampling condition. If the grid

satisfies the sampling condition, our algorithm can provide geometric and topological

guarantees on the output.

We classify the geometric problems into two classes. The first class includes surface

extraction problems such as Boolean operations, Minkowski sum evaluation, and con-

figuration space computation. We compute an approximate boundary of the final solid

defined using these geometric operations. Our algorithm computes an approximation

that is guaranteed to be topologically equivalent to the exact surface and bounds the

approximation error using two-sided Hausdorff error. We demonstrate the performance

of our approach for the following applications: Boolean operations on complex poly-

hedral models and low degree algebraic primitives, model simplification and remeshing

of polygonal models, Minkowski sums and offsets of complex polyhedral models, and

configuration space computation for low degrees of freedom objects.

The second class of problems is motion planning of rigid or articulated robots trans-

lating or rotating among stationary obstacles. We present an algorithm for complete

motion planning, i.e., finding a path if one exists and reporting a failure otherwise.

Our algorithm performs deterministic sampling to compute a roadmap that captures

the connectivity of free space. We demonstrate the performance of our algorithm on

challenging environments with narrow passages and no collision-free paths.

vi

vii

ACKNOWLEDGMENTS

First and foremost, I thank my advisor, Dinesh Manocha; without his guidance and

support, I would not have come anywhere close to finishing a PhD. I owe Shankar

Krishnan for being there as a coauthor, a friend, and a guide; his role has been nothing

short of a co-advisor. Many thanks to Ming Lin for her involvement during the course

of the research and for investing time and energy into it. I thank Jack Snoeyink and

Pankaj Agarwal for their support and constructive feedback as committee members.

Most of my work has been done jointly with a number of collaborators. I am

indebted to Young Kim for his role; it was our joint work that eventually led to my

disseration topic. I also thank TVN. Sriram and Liangjun Zhang for their efforts. Many

thanks to all the members of the GAMMA and Walkthru groups for their participation.

My work would not have been possible without the involvement of the excellent

students, faculty, and staff of the Department of Computer Science. I thank Russell

Taylor and members of nanoManipulator group for their support during my first year

in graduate school. I am grateful to the staff – in particular, Missy Wood, Janet Jones,

Karen Thigpen, and Charlie Bauserman – for their help. I thank the funding sponsors

of my work: ARO, NSF, ONR, DARPA, and Intel Corporation.

I am indebted to all my teachers for their support and encouragement but most of

all for inspiration. I thank all my friends in Chapel Hill – I do not dare to name all

of them. Without them, my stay here would not have been worthwhile. I thank my

uncle, Sridhar Raghavan, who has been a lifelong role model; my decision to do a PhD

was probably an attempt to emulate him. Most of all, my parents and brother for their

unconditional love and support.

viii

ix

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Boolean operations . 4

1.2 Minkowski Sum . 5

1.3 Configuration Space . 8

1.4 Motion Planning . 9

1.5 Prior Work and Challenges . 9

1.5.1 Surface Extraction Problems . 10

1.5.2 Motion Planning . 17

1.6 Goals . 20

1.7 Thesis Statement . 22

1.8 New Results . 22

1.9 Organization . 27

2 Related Work 29

2.1 Boundary Evaluation . 29

2.1.1 Accuracy and Robustness Problems 30

2.1.2 Surface Intersection . 32

2.2 Arrangements . 33

2.2.1 Complexity of a Single Cell . 34

2.2.2 Union Computation . 34

2.3 Isosurface Extraction . 35

2.3.1 Volumetric Visualization . 36

2.3.2 Implicit Modeling . 37

2.3.3 Marching Cubes . 38

x

2.3.4 Topological Considerations in Isosurface Extraction 40

2.4 Minkowski Sum and Offset Computation 42

2.4.1 Minkowski Sum of Polygons . 43

2.4.2 Minkowski Sum of Planar Curves 44

2.4.3 Minkowski Sum of Polyhedral Primitives 44

2.4.4 Minkowski Sum of Curved Surfaces 48

2.4.5 Offset Computation . 49

2.5 Motion Planning and Free Space Computation 51

2.5.1 Computational Complexity . 52

2.5.2 Planning Approaches . 55

3 Topology Preserving Isosurface Extraction 62

3.1 Notation and Preliminaries . 65

3.2 Overview of Marching Cubes . 69

3.3 Geometric and Topological Errors . 72

3.3.1 Geometric Errors . 72

3.3.2 Topological Errors . 72

3.3.3 Sampling Issues . 73

3.4 Sampling Condition . 74

3.4.1 Non-Degeneracy Condition . 74

3.4.2 Complex Cell Criterion . 75

3.4.3 Star-shaped Criterion . 76

3.4.4 Topology Preserving Isosurface Extraction 77

3.5 Topology Preserving Sampling . 85

3.5.1 Cell Intersection Query . 86

3.5.2 Star-shaped Query . 90

3.5.3 Adaptive Subdivision Algorithm 91

3.5.4 Star-shaped Query for Non-linear Primitives 93

3.6 Analysis . 96

3.6.1 Preliminaries . 97

3.6.2 Gauss Map Condition for Complex Cell Criterion 98

3.6.3 Gauss Map Condition for Star-shaped Criterion 100

3.6.4 Local Feature Size Condition 103

3.6.5 Termination . 107

3.7 Degeneracies . 108

xi

3.8 Geometric Error Bound . 110

3.9 Isosurface Extraction on Adaptive Grids 113

3.10 Speedup Techniques . 116

3.10.1 Cell Culling . 117

3.10.2 Expression Simplification . 118

3.11 Performance . 121

3.12 Implementation & Applications . 123

3.12.1 Boolean operations . 123

3.12.2 Topology Preserving Volumetric Simplification 124

3.12.3 Topology Preserving Remeshing 127

3.12.4 Discussion . 127

3.13 Limitations . 128

3.14 Summary . 128

4 Minkowski Sum Approximation 130

4.1 Approximate Algorithm . 132

4.1.1 Overall Approach . 133

4.1.2 Convex Decomposition . 133

4.1.3 Pairwise Minkowski Sum Computation 134

4.1.4 Union Computation . 135

4.1.5 Speedup Techniques . 135

4.2 Offsets and Mathematical Morphological Operations 138

4.3 Penetration Depth Estimation . 141

4.4 Results . 142

4.5 Summary and Limitations . 143

4.5.1 Limitations . 143

5 Free Space Approximation and Complete Motion Planning 144

5.1 Notation and Preliminaries . 148

5.2 Free Space Representation . 149

5.3 Supporting Queries . 150

5.3.1 Sign Query . 151

5.3.2 Star-shaped Query . 151

5.3.3 Free Space Existence Query . 153

5.3.4 Cell Intersection Query . 153

5.4 Free Space Approximation Algorithm 154

xii

5.4.1 Star-shaped Test . 155

5.4.2 Complex Cell Test . 155

5.4.3 Geometric and Topological Guarantees 156

5.5 Star-shaped Roadmaps for Complete Motion Planning 156

5.5.1 Star-shaped Property and Motion Planning 157

5.5.2 Overall Approach . 159

5.5.3 Star-shaped Decomposition and Guard Computation 159

5.5.4 Connector Computation . 159

5.5.5 Roadmap Computation . 160

5.5.6 Complete Motion Planning . 160

5.6 Adaptive Subdivision Algorithm for Star-shaped Roadmap Construction 163

5.6.1 Configuration Space Subdivision 163

5.6.2 Adaptive Subdivision and Guard Computation 166

5.6.3 Connector Computation . 166

5.6.4 Degeneracies . 167

5.7 Analysis . 170

5.7.1 Preliminaries . 170

5.7.2 Gauss Map Condition . 170

5.7.3 Local Feature Size Condition 175

5.7.4 Termination . 176

5.8 Implementation and Results . 176

5.9 Comparison with Prior Motion Planning Methods 179

5.9.1 Cell Decomposition Methods . 179

5.9.2 Randomized Sampling Methods 179

5.10 Limitations . 180

5.11 Conclusions . 181

6 Conclusion and Future Work 182

6.1 Surface Extraction . 185

6.2 Minkowski Sum Computation . 186

6.3 Configuration Space Computation and Motion Planning 186

A Overview of Interval Arithmetic 188

B Contact Surfaces 191

B.1 Configuration Space of a 2T+1R Planar Rigid Object 191

xiii

B.1.1 Contact Surfaces . 191

B.1.2 Representation of C-obstacle . 193

B.2 Configuration Space of a 3R Planar Articulated Object 194

B.2.1 Contact Surfaces . 194

B.2.2 Robot Self-Intersection . 198

Bibliography 201

xiv

xv

List of Figures

1.1 Bradley Fighting Vehicle . 2

1.2 Configuration Space . 3

1.3 2D Minkowski sum . 3

1.4 Penetration Depth . 5

1.5 Minkowski sums for constant-radius rounding and filleting 7

1.6 Sampling and reconstruction . 15

1.7 Accuracy problems with MC-like methods 17

1.8 Narrow Passage . 19

1.9 Simplification and Boolean operations 21

1.10 Remeshing of polygonal models . 22

1.11 Minkowski Sum Computation . 23

1.12 Offset Computation . 24

1.13 Star-shaped Primitive . 26

1.14 Motion Planning and Configuration Space Computation 28

3.1 Marching Cubes . 69

3.2 Marching Cubes Cases . 70

3.3 Errors in MC-like reconstruction . 71

3.4 Geometric and topological errors . 73

3.5 Grazing Contact . 75

3.6 Complex cell and Star-shaped Test Cases 76

3.7 Star-shaped Primitive . 77

3.8 Intersection Curves . 80

3.9 Face Homeomorphism . 82

3.10 Voxel Homeomorphism . 83

3.11 Adaptive Subdivision . 85

3.12 Voxel Intersection Test . 87

3.13 Star-shaped test for Boolean Combination 91

3.14 Star-shaped test on curved primitives 95

3.15 Figure supporting proof of Theorem 2 99

3.16 Condition for Star-shaped Criterion . 101

3.17 Local Feature Size . 104

xvi

3.18 LFS of an edge . 105

3.19 Tangential Contact . 108

3.20 Isosurface Extraction on Adaptive Grids 112

3.21 2D Modified Dual Contouring . 114

3.22 3D Modified Dual Contouring . 116

3.23 Cell Culling . 117

3.24 Expression Simplification . 119

3.25 Boolean operations on complex models and curved primitives 124

3.26 Topology-Preserving Simplification . 125

3.27 Remeshing of a CAD model . 126

4.1 Cell and Primitive Culling . 136

4.2 Offsets of polygonal models . 138

4.3 Offset of a triangle . 139

4.4 Minkowsi sum of polygonal models . 140

4.5 Complex Minkowski sum example . 141

5.1 Configuration Space Formulation . 149

5.2 Star-shaped Test . 151

5.3 Star-shaped property . 156

5.4 Star-shaped Roadmap . 158

5.5 Star-Shaped Roadmap Construction . 162

5.6 Connector . 163

5.7 Planar motion planning with translation and rotation 164

5.8 Configuration space of a planar robot capable of translation and rotation 165

5.9 Detecting path non-existence . 166

5.10 Planar articulated robot . 169

5.11 Figure supporting the proof of Theorem 14 171

5.12 Non-degeneracy condition . 173

B.1 Types of contacts between two polygons 192

B.2 Planar articulated robot . 196

xvii

List of Tables

3.1 Performance of our surface extraction algorithm 126

4.1 Performance of our Minkowski sum algorithm 143

5.1 Performance of our free space approximation algorithm 177

5.2 Performance of star-shaped roadmap method 177

5.3 Comparison with approximate cell decomposition 178

5.4 Comparison with randomized sampling approach 180

xviii

Chapter 1

Introduction

Geometric algorithms play a fundamental role in numerous application domains –

computer graphics, solid modeling, bio-informatics, geographic information systems,

robotics, computer vision, and others. Two key domains that are a rich source of

geometric problems are solid modeling and robotics.

Solid modeling deals with the design and representation of physical objects. To

model complex objects, a commonly used approach is to combine a set of simpler

primitives using geometric operations. An important class of geometric operations are

the Boolean operations – union, intersection, and difference. These operations serve as

fundamental building blocks of solid modeling, and are used to design complex objects.

Fig. 1.1 shows an example.

Robotics is the study of the technology associated with the design, theory and

application of robots. One of the ultimate goals of robotics is to build autonomous

robots (Latombe, 1991). Such robots will accept a high-level description of tasks and

execute them without any human intervention. As the robot executes the tasks, it

will need to move in the environment while avoiding collision with the obstacles in the

environment. Thus, one of the requirements of an autonomous robot is that it should be

able to plan its own motion, and research in motion planning is important for building

autonomous robot systems.

A basic version of the motion planning problem assumes that the robot is the only

moving object in a static workspace. The obstacles are rigid and static. The robot

may translate, rotate, or have different types of joints imposing sliding or rotating

constraints. The geometry of both the robot and the obstacles is known. Even this

seemingly simple problem is challenging from a computational standpoint and has been

a subject of considerable amount of research.

2

Figure 1.1: Bradley Fighting Vehicle: This image shows a view of the Bradley Fighting
Vehicle. This model has over 8, 500 solids generated entirely using Boolean operations.

The above motion planning problem is often studied using a tool called the configu-

ration space. The configuration space of a robot is the set of all possible positions and

orientations that the robot can assume. Its dimension is equal to the number of degrees

of freedom of the robot. Fig. 1.2 shows an example of a 2D configuration space. The

underlying idea of configuration space is to represent the robot as a point and to map

the obstacles to this space. The obstacles map to a region called the configuration space

obstacle (C-obstacle). If a configuration belongs to C-obstacle, then the robot placed

at that configuration collides with some obstacle. The complement of the C-obstacle is

called the free space of the robot. Configuration space reduces the problem of motion

planning of a dimensioned robot into the problem of planning the motion of a point

within the robot’s free space. Configuration space has played a crucial role in helping

understand motion planning problems, and led to the development of many motion

planning algorithms.

An important instance of the motion planning problem is when the robot is only

allowed to translate. In this case, the C-obstacle is obtained by performing an operation

called the Minkowski sum of the obstacle and the robot reflected about the origin.

The Minkowski sum is a natural set operation that has been used in several fields.

3

Figure 1.2: Configuration Space: The left figure shows a planar articulated robot moving
among polygonal obstacles (modified from (Latombe 1991)). The robot has two revolute
joints. The right figure shows the 2-dimensional configuration space of the robot. As
indicated by the arrows, robot (in its present configuration) maps to a point in the
configuration space, and the obstacle maps to a forbidden region.

Intuitively, the Minkowski sum of two objects can be considered as expanding one object

by sweeping it over the other. Fig. 1.3 shows a 2D example. Formally, the Minkowski

sum of two objects P and Q is defined as the set-sum, P⊕Q = {p+q | p ∈ P , q ∈ Q}.
Apart from robotics, Minkowski sum has numerous applications in CAD/CAM as well.

The above geometric problems – Boolean operations, motion planning, configuration

space computation, and Minkowski sum operation – are interesting not only because

of the many applications in which they play a central role but also because of the

computational challenges they present. We begin by examining each of the problems

and their applications in more detail. We describe the prior work on these problems,

Figure 1.3: 2D Minkowski sum

4

and discuss the issues and challenges in their computation. Finally, we present an

overview of our algorithms to solving these problems, and summarize the new results

of this dissertation.

1.1 Boolean operations

Boolean operations play a fundamental role in solid modeling. By performing Boolean

operations on simple objects, we can design more complex objects. This is the approach

taken by Constructive Solid Geometry (CSG), a popular representation in solid model-

ing. CSG represents objects as a sequence of operations defined over a set of primitive

solids. The primitive solids typically consist of simple objects such as a box, sphere,

cylinder, torus, etc. The operations involve either rigid transformations or Boolean

operations such as union, intersection, or difference. Fig. 1.1 shows a model of the

Bradley Fighting Vehicle. This model has over 8, 500 solids generated entirely using

Boolean operations.

The CSG representation uses a regularized version of the Boolean operations. The

regularized Boolean operations differ from their corresponding set-theoretic counter-

parts in that the result is the closure of the operation on the interior of the two solids.

Regularized operations are used to eliminate “dangling” lower-dimensional structures

(Hoffmann, 1989a). If op denotes a set operation, the regularized version of op is defined

as:

Aop∗B = cl(int Aop int B)

where int S and cl S denote the interior and closure of a set S.

Apart from CSG, another representation commonly used in solid modeling is the

boundary representation (B-rep). B-reps describe solids as a set of vertices, edges,

and faces with topological relations among them. Both CSG and B-reps have different

inherent strengths and weaknesses, and for most applications both are desired. For

instance, a CSG object is always valid in the sense that its surface is closed, orientable

and encloses a volume, provided the primitives are valid in this sense. A B-rep object,

on the other hand, can be easily rendered on a graphic display system and is useful for

visual feedback in solid design. A B-rep is also used for collision detection, dynamic

simulation, and model verification.

Algorithms for performing the regularized union, intersection, or set difference of two

solids can be used to convert solids represented by CSG representation to an equivalent

5

B-rep. Hence algorithms for Boolean operations on B-reps are also called boundary

evaluation algorithms.

Boolean operations are also used as building blocks for other geometric operations.

For example, the union operation can be used to implement a number of operations:

the Minkowski sum operation; the sweep operation that moves an object along some

trajectory while undergoing translational and rotational motion; the offset operation

that grows an object outwards by a fixed distance.

1.2 Minkowski Sum

The Minkowski sum of two objects P and Q is formally defined as:

P ⊕Q = {p + q | p ∈ P , q ∈ Q}

Intuitively, the Minkowski sum of two objects can be considered as expanding one

object by sweeping it over the other.

Minkowski sum has numerous applications in robotics and manufacturing. One

of the most important uses of the Minkowski sum is for motion planning of a robot

translating among stationary obstacles (Lozano-Pérez, 1983). Minkowski sum is used

to compute the free space of the robot. Then the problem of motion planning reduces

to finding a path within the free space. Fig. 1.14 shows an example of 3D translational

motion planning using the Minkowski sum.

Figure 1.4: Penetration Depth: The problem of penetration depth can be expressed in
terms of Minkowski sum. The penetration depth is equal to the distance between the
origin and the boundary of the Minkowski sum (Kim et al. 2002).

Minkowski sum is also used to compute the penetration depth between two objects

(Cameron, 1997; Kim et al., 2002). The penetration depth of two intersecting objects

P and Q, denoted as PD(P ,Q), is the minimum translational distance that one of the

6

polyhedra must undergo to render them disjoint. Formally, PD(P ,Q) is defined as:

min{‖ d ‖ | interior(P + d) ∩ Q = ∅} (1.1)

Here, d is a vector in R3. The problem of penetration depth computation arises in

robotics, dynamic simulation, computer gaming, virtual environments, etc. One can

reduce the problem of computing penetration depth between P and Q to a minimum

distance query on the surface of their Minkowski sum, P ⊕−Q (Cameron, 1997). See

Fig. 1.4.

An important use of Minkowski sum is to perform mathematical morphological op-

erations. The primary morphological operations, from which many others are derived,

are dilation and erosion. Dilation of an object P by an object Q, denoted as D(P ,Q), is

same as the Minkowski sum P⊕Q. Q is usually referred to as the structuring element.

Erosion of an object P by the structuring element Q, denoted as E(P ,Q), selects the

locus of points swept by the origin of Q where P entirely contains the translated Q.

Erosion can be expressed in terms of the Minkowski sum operation as:

E(P ,Q) = P ⊕Q′

where S denotes the complement of a set S, and Q′ denotes a copy of Q reflected about

the origin.

The dilation and erosion operations can be composed to define other mathematical

morphological operations such as opening and closing. Opening is an erosion followed

by dilation, while closing is a dilation followed by erosion. They are defined as:

Opening(P ,Q) = E(D(P ,Q),Q)

Closing(P ,Q) = D(E(P ,Q),Q)

While these operations have been mostly used in image processing (Serra, 1982),

they are becoming increasingly popular in geometry processing (Rossl et al., 2000;

Museth et al., 2002; Williams and Rossignac, 2004).

An interesting case of morphological operations is where the structuring element Q

is a ball. In this special case, dilation creates an offset surface a distance r outwards

from the original surface (Rossignac and Requicha, 1986). Here r is the radius of the

7

Figure 1.5: Minkowski sums for constant-radius rounding and filleting: (modified from
(Rossignac and Requicha 1986)). The top row of figures shows an example of a rounding
operation, while the bottom row shows filleting. D(S) and E(S) denote dilation and
erosion operations on a set S where the structuring element is a constant radius ball

ball. Mathematically, this is defined as

Offset(P) = {x ∈ R3 | ∃p ∈ P , ‖x− p‖ ≤ r}

See Fig. 1.12.

Similarly, erosion creates an offset surface a distance r inwards from the original

surface. The opening and closing operations with a ball reduce to constant-radius

rounding and filleting operations respectively (Rossignac and Requicha, 1986). See Fig.

1.5. These operations have applications in numerical control verification, tolerance

analysis, mold/die making, and rapid prototyping.

Mathematical morphological operations are also used for postprocessing of models

obtained by 3D scanning. The process of scannning is susceptible to both noise and

insufficient scanning in certain parts of the model. Consequently, the model can have

many artifacts: small holes, gaps, or isolated surface components. Opening and closing

operations can be used to repair such models. Opening can be applied to eliminate

unwanted small pieces or thin appendages. Closing operation can be applied to close

small gaps or holes within objects (Museth et al., 2002).

Minkowski sum has been used for packing and layout in CAD/CAM (Boissonnat

8

et al., 1997; Daniels and Milenkovic, 1997); it can be used to determine if an object can

be placed within a container without colliding with the other objects in the container.

Other applications include morphing (Kaul and Rossignac, 1991) and friction modeling

(Goyal et al., 1991).

1.3 Configuration Space

This section introduces the configuration space formulation for robot motion planning

(Lozano-Pérez and Wesley, 1979; Lozano-Pérez, 1983). Let R be a robot consisting

of a collection of rigid subparts moving in a Euclidean space W , called workspace,

represented as Rd. Let O1, . . . ,Oq be fixed rigid obstacles embedded in W . Assume

that the geometry ofR,O1, . . . ,Oq is accurately known, and that there are no kinematic

constraints to limit the motion ofR. The position and orientation of the subparts define

the configuration of R. The set of all configurations of R defines a configuration space

C. See Fig. 1.2.

Each position and orientation of the robot maps to a point in the configuration

space. Every obstacle Oi, i = 1, . . . , n, in W maps to the region

COi = {q ∈ C : R(q) ∩ Oi 6= ∅},

in C, where R(q) is the subset of W occupied by R at the configuration q.

The union of all COi,
⋃q

i=1 COi is called C-obstacle region or forbidden region. The

set

F = C \
q⋃

i=1

COi.

is called the free configuration space or the free space. Any configuration belonging to

F is called a free configuration.

If the robot is only allowed to translate, then the C-obstacle of an obstacle Oi is

given by the Minkowski sum: COi = Oi⊕−R. An example of such a C-obstacle in 3D

is shown in the rightmost image of Fig. 1.14.

The problem of configuration space computation is to compute the free space F .

It is a classical problem in algorithmic robotics and computational geometry. It arises

in several important applications such as motion planning (Avnaim and Boissonnat,

1989; Halperin, 2002a; Lozano-Pérez and Wesley, 1979; Sacks, 1999; Sacks, 2001),

collision detection and distance computation (Gilbert et al., 1988; Dobkin et al., 1993),

9

layout and containment problems in manufacturing (Daniels and Milenkovic, 1995;

Milenkovic, 1998), spatial reasoning (Xavier and LaFarge, 1997), assembly and task

planning (Thomas et al., 2003), tolerance analysis and mechanism design (Joskowitz

and Sacks, 1995).

1.4 Motion Planning

Motion planning is a fundamental problem in robotics. It is an essential part of an

autonomous robot system. Motion planning also finds applications outside the realm

of robotics, such as surgical planning, drug docking, molecular binding and protein

folding, design for manufacturing, graphic animation, and computer games (Latombe,

1999).

In the basic version of the motion planning problem, it is assumed that the robot - a

rigid or articulated object - is the only moving object in the workspace. The obstacles

are rigid and static. It is assumed that the geometry of both the robot and the obstacles

is known. The goal is to find a collision-free path - a path along which the robot can

move without colliding with any obstacle. The robot may translate, rotate or have

different types of joints imposing sliding or rotating constraints. Fig. 1.14 shows an

example of a robot translating in 3D.

The motion planning problem can be formally stated in terms of the configuration

space formulation. A collision-free path or a free path between two free configurations,

qinit and qgoal, is a continuous map τ : [0, 1] → F with τ(0) = qinit and τ(1) = qgoal.

Given an initial and a goal configuration, the basic motion planning problem is to

generate a free path between the two configurations, if one exists, and to report a

failure otherwise.

1.5 Prior Work and Challenges

In all the problems except motion planning, our goal is to compute a surface: In Boolean

operations and Minkowski sum computation, we wish to compute a surface correspond-

ing to the boundary of the final solid defined by the operation; in configuration space

computation, we wish to compute the boundary of the free space. Hence we refer to

this set of problems as surface extraction problems and treat them collectively. We will

refer to the surface as the final surface and denote it as E .

10

On the other hand, the problem of motion planning is different because there the

goal is to determine whether a path exists between a start and a goal configuration.

Hence we treat this problem separately.

In this section, we present the prior work on surface extraction problems and motion

planning. We discuss many issues and challenges in their computation.

1.5.1 Surface Extraction Problems

At a broad level, the prior algorithms for surface extraction problems can be classified

into exact or approximate approaches – depending on whether they compute an exact

or an approximate representation of the final surface E . We outline these approaches,

and discuss their merits and limitations.

Exact Approach for Surface Extraction Problems

Boolean Operations: Boundary evaluation is a well studied problem in solid mod-

eling. The heart of all boundary evaluation algorithms is a method for intersection

curve computation. Given two primitives, these algorithms subdivide the surfaces of

the primitives along the curve where the surfaces intersect. The subdivision yields a

set of surface components. Thereafter, the boundary of the final solid is generated by

combining certain surface components (Hoffmann, 1989a).

Most boundary evaluation algorithms follow a general framework. This framework

was first introduced by Requicha and Voelcker (Requicha and Voelcker, 1985) to per-

form Boolean operations on polyhedra. Given two polyhedra, A and B, the conceptual

structure of the algorithm (Hoffmann, 1989a) is as follows:

1. Determine which pairs of faces f ∈ A and g ∈ B intersect. If there are none, test

for containment only and skip all other steps.

2. For each face f ∈ A that intersects faces gi ∈ B, compute the intersecting line

segments between f and gi’s. The set of all intersecting line segments partitions

the surface of face f . Determine the partitions of f that contribute to some of

the surface area of the resulting solid.

3. Perform the same for all faces of B.

4. Assemble all the faces into the new solid.

11

This framework can be extended to also accommodate curve surface domains.

Boundary evaluation algorithms are not difficult conceptually, but their implemen-

tation requires substantial work for several reasons (Hoffmann, 1989a). Layers of prim-

itive operations have to be designed. Accounting for the many special positions of

incident structures in three dimensions can be tedious. Moreover, evaluating the inter-

section of curved surfaces is a difficult problem as it introduces nontrival mathematical

problems and robustness problems.

Minkowski Sum Computation: Minkowski sum computation is a challenging prob-

lem. The 3D Minkowski sum of two non-convex objects with n features (vertex, edge,

face) can have a combinatorial complexity as high as O(n6) (Dobkin et al., 1993).

There are two general approaches for computing the Minkowski sum of general poly-

hedral models.

The first approach for computing Minkowski sum of general polyhedra reduces the

problem to arrangement computation (Guibas et al., 1983; Kaul and Rossignac, 1991;

Kaul and O’Connor, 1992; Ghosh, 1993; Basch et al., 1996). The arrangement of a

finite collection Γ of geometric objects in Rd, denoted as A(Γ), is the decomposition

of Rd into relatively open connected cells of dimensions 0, . . . , d induced by Γ, where

each cell is a maximal connected set of points lying in the intersection of a fixed subset

of Γ (Agarwal and Sharir, 2000). The first approach for Minkowski sum computation

enumerates a set of surface primitives that form a superset of the boundary of the

Minkowski sum. For example, the algorithm by (Guibas et al., 1983; Basch et al.,

1996) is based on “convolution computation” defined on “polyhedral tracings”. The

convolution is a superset of the surface of the Minkowski sum, and can be computed

in O(n2) time in the worst case where n is the number of faces of each polyhedron. In

order to compute the actual boundary of the Minkowski sum, a 3D arrangement of the

convolution needs to be computed. The set of 2-dimensional cells in the arrangement

induces a partition of the convolution into a set of surface components. Given such

a partition, it is possible to select a subset of the surface components to obtain the

boundary of the Minkowski sum (Basch et al., 1996).

The second approach for computing Minkowski sum of general polyhedra reduces

the problem to union computation (Lozano-Pérez, 1983; Evans et al., 1992). These

algorithms decompose the polyhedral models into simpler objects whose Minkowski

sum can be easily computed. In particular, there are efficient algorithms for computing

the Minkowski sum of convex objects. Specifically, the algorithm by Guibas and Seidel

12

(Guibas and Seidel, 1987) can compute the Minkowski sum of two convex polyhedra in

O(n log n + k) time, where n is the number of features (vertex, edge, face) in the two

convex polyhedra and k is is the number of faces in the output. Hence one common

approach is to resort to convex decomposition (Lozano-Pérez, 1983). This approach

uses the following property of Minkowski sum: If P = P1 ∪ P2, then P ⊕ Q = (P1 ⊕
Q) ∪ (P2 ⊕Q). The approach combines this property with convex decomposition for

general polyhedral models:

1. Compute a convex decomposition for each polyhedron

2. Compute the pairwise Minkowski sums between all possible pairs of convex pieces

in each polyhedron.

3. Compute the union of pairwise Minkowski sums.

After the second step, there are O(mn) pairwise Minkowski sums where m and n are

the number of convex pieces of the two polyhedra. The pairwise Minkowski sums are

convex and their union can have a combinatorial complexity O(k3 + sk log(s)), where

k = mn and s is the number of total number of faces in the pairwise Minkowski sums

(Aronov et al., 1997).

Configuration Space Computation: A general approach for configuration space

computation proceeds by enumerating contact surfaces for every pair of features from

the robot R and the obstacle O. A contact surface of a geometric feature (vertex, edge,

face) of R and a similar feature (vertex, edge, face) of O is defined as the set of points

in the configuration space that represent configurations of R at which contact is made

between these specific features.

The set Γ of contact surfaces define an arrangement A(Γ). The free space F consists

of some cells in this arrangement. Therefore, F can be computed by computing A(Γ)

(Avnaim and Boissonnat, 1989; Latombe, 1991; Halperin and Sharir, 1995b; Sacks,

1999). The combinatorial complexity of the entire F can be O(nk) where n is the

number of contact surfaces in Γ and k is the dimension of the configuration space

(Sharir, 1997). For many applications of configuration space computation (e.g. motion

planning), it is not necessary to compute the entire F ; it may be sufficient to compute

just a single connected component. Halperin and Sharir (Halperin and Sharir, 1995a)

showed that the combinatorial complexity of a single cell of A(Γ) in three dimensions is

O(n2+ε), for any ε > 0, where the constant of proportionality depends on ε and on the

maximum degree of the surfaces. They also proposed an algorithm than can compute

13

a single cell in O(n2+ε) time. Subsequently, Basu (Basu, 1998) extended the result

of Halperin and Sharir to higher dimensions. Basu showed that the combinatorial

complexity of a single connected component of A(Γ) in k dimensions is O(nk−1+ε).

Furthermore, under a certain geometric assumption on the objects, this bound can be

improved to O(nk−1).

Both boundary evaluation and union computation can be treated as special cases

of arrangement computation. Thus, we can define a common framework for all surface

extraction problems:

1. Enumerate a set S of surface primitives that forms a superset of the final surface

E

2. Compute the arrangement A(S) of the surfaces in S.

3. Retain “appropriate” portions of A(S) to obtain E .

Challenges/Issues: 3D arrangement computation is a major bottleneck in using the

above framework. Arrangement computation requires computing intersections between

pairs of surface primitives and is prone to problems in accuracy and robustness (Hoff-

mann, 2001). In our context, two additional factors contribute to the difficulty of

arrangement computation. First, the number of surface primitives in the arrangement

can be high. In Minkowski sum and configuration space computation, the arrangement

may have O(n2) surfaces, where n is the number of features in the two objects. In

offset computation, the arrangement consists of O(n) surfaces. In our applications, the

arrangement may consist of several thousands of surface primitives (see Chapters 4 &

5). Second, the surfaces in the arrangement are non-linear in configuration space and

offset computation. Computing intersections between non-linear primitives is difficult

to implement and expensive in practice.

Abrams and Allen (Abrams and Allen, 2000) report robustness problems in comput-

ing union of polyhedral models for swept volume computation. They use a commerical

CAD system (ACIS geometric modeling system) to compute the union. They report a

failure of the system when performing union of thousands of polyhedra.

To overcome accuracy problems, some researchers have proposed the use of exact

arithmetic. These attempts have met with some success for polyhedral (Fortune, 1997)

and low degree algebraic models (Keyser et al., 1997). However, these algorithms have

been applied to inputs with only a small number of primitives. It is unclear whether

these algorithms can scale upto inputs with thousands of primitives.

14

Overall, 3D arrangement computation remains a major bottleneck in exact compu-

tation of Minkowski sum, offset and configuration space. Consequently, all the practical

algorithms for these problems have been limited to either inputs with a small combi-

natorial complexity or restricted cases (e.g. planar objects, convex objects).

Approximate approach

An alternative to the exact approach is to use an approximate approach based on

implicit representation. This representation uses a function f : Rd → R to represent

a closed surface. The function f is known as the implicit function or the scalar field.

A commonly used scalar field is the signed distance field. For a closed surface S, the

signed distance field D : Rd → R is a continuous function that at a point p measures

the distance between p and S. This value is positive or negative depending on whether

the point lies outside or inside S. The distance can be defined under any reasonable

norm (e.g., Euclidean, max-norm). S is the set of points p where f(p) = 0 and is

referred to as the implicit surface. Given a continuous scalar field f and a scalar value

s, the isosurface with isovalue s is the set, {x ∈ Rd | f(x) = s}, of points with identical

scalar value s. Thus, the implicit surface is an isosurface of f with zero isovalue.

A common way of representing the scalar field is to discretize the continuous scalar

field into discrete samples – to compute the value of the scalar field at the vertices

of a volumetric grid. We refer to this step as sampling of the scalar field. The grid

is an approximate representation of the scalar field; the accuracy of the approximate

representation depends on the rate of sampling – the resolution of the grid.

An explicit boundary representation of the implicit surface can be obtained by

extracting the zero-level isosurface using Marching Cubes (MC) (Lorensen and Cline,

1987) or any of its variants (Kobbelt et al., 2001; Ju et al., 2002; Varadhan et al.,

2003b). We refer to these algorithms collectively as MC-like algorithms. The output of

an MC-like algorithm is an approximation, usually a piecewise linear approximation,

of the implicit surface. We refer to this step as reconstruction of the implicit surface.

Implicit surface representations are easy to use to perform geometric operations like

union, intersection, difference, blending and warping. Specifically, they map Boolean

operations into simple minimum/maximum operations on the scalar fields of the prim-

itives. Suppose we have two primitives P1 and P2 with scalar fields f1 and f2. Then

15

(a) Union (b) Sampling and Opera-
tion

(c) Reconstruction

Figure 1.6: Sampling and reconstruction: This figure shows how to perform a union
operation using the sampling and and reconstruction approach. The sampling step gen-
erates a volumetric grid (shown as a uniform grid). At each grid point, it computes
a signed distance to the boundaries of each of the two primitives, P and Q. Next, a
minimum operation is performed on the two signed distances. This generates another
distance field on which the reconstruction is performed using an MC-like algorithm.
The rightmost figure shows the reconstruction, which is an approximation to the union.

we have

p ∈ ∂(P1 ∪ P2) ⇐⇒ min(f1(p), f2(p)) = 0

p ∈ ∂(P1 ∩ P2) ⇐⇒ max(f1(p), f2(p)) = 0

p ∈ ∂(P1 \ P2) ⇐⇒ max(f1(p),−f2(p)) = 0

Because of the above property, implicit representations are frequently used to perform

Boolean operations. They have been used for different applications including geometric

modeling, volume rendering, morphing, path planning, swept volume computation, and

sculpting digital characters (Wyvill et al., 1986; Bloomenthal and Ferguson, 1995; Pasko

et al., 1995; Wyvill and van Overveld, 1996; Breen et al., 2000; Kobbelt et al., 2001;

Perry and Frisken, 2001; Ju et al., 2002; Ohtake et al., 2003).

The above desirable properties of implicit surface representations make them suit-

able for surface extraction problems. We exploit these properties in sampling and re-

construction steps to obtain a boundary representation for the final surface E . Consider

16

a surface E defined by Boolean operations over a set of primitives. We represent E im-

plicitly – as an isosurface of a scalar field obtained by performing minimum/maximum

operations over the scalar fields associated with the primitives. The overall approach

proceeds as follows:

1. Sampling: Generate a volumetric grid and compute a scalar field (e.g, a signed

distance field) at its corner grid points.

2. Operation: For each geometric operation (union/intersection), perform an anal-

ogous operation (e.g., min/max) on the scalar fields of the primitives. At the end

of this step, the scalar values at the grid points define a sampled scalar field for

E .

3. Reconstruction: Perform isosurface extraction using Marching Cubes (Lorensen

and Cline, 1987) or its variant to obtain a piece-wise linear approximation of E .

This approach is illustrated in Fig. 1.6. The above approach can be extended to apply

to all surface extraction problems.

Two important advantages of the above approach are simplicity and efficiency. Each

step is easy to implement. A uniform grid or an adaptive grid (e.g. octree) may be

chosen. Geometric operations such as union or intersection are cheap – we only need to

perform simple min/max operations on the corresponding scalar fields; there is no need

to perform expensive arrangement computation. Isosurface extraction is also reasonably

straightforward; the MC-like algorithms are both simple and fast. Many public domain

implementations of MC-like algorithms (Schroeder et al., 1997) are available.

Challenges/Issues: The above approach produces an approximation to the final sur-

face E . The accuracy of the approximation mainly depends on the resolution of the

underlying grid. Insufficient grid resolution can result in a poor approximation. The

output of Marching Cubes may suffer from various kinds of geometric and topological

errors. Small components or handles present in E may not be captured in the output.

The process of reconstruction may also introduce “extraneous topology”, i.e., the re-

constructed surface may have unwanted additional components or undesirable handles

that were not present in E . Fig. 1.7 shows an example of such a situation.

The above problems occur on account of inadequate resolution of the grid. There-

fore, to alleviate these problems, many applications generate samples on a fine grid.

However, the use of fine grid can result in three problems. First, there may still be no

guarantees on the accuracy of the reconstructed isosurface. Second, a fine grid increases

17

Figure 1.7: Accuracy problems with MC-like methods: This figure highlights the errors
that can be present in the output when MC-like methods are used to reconstruct sur-
faces with thin features. The left image shows the “gun model” of the Bradley Fighting
Vehicle, which is generated using 8 Boolean operations. The right image shows the out-
put of a MC-like algorithm (dual contouring) on a distance field sampled on a uniform
64×64×64 grid. The output has many artifacts such as unwanted holes and extraneous
handles.

the storage overhead and the reconstructed surface can have a high number of polygonal

primitives. Finally, it is computationally expensive to use a fine grid. Recent work on

adaptive grid generation and subdivision algorithms overcomes some of these problems

(Frisken et al., 2000; Perry and Frisken, 2001). However, none of these algorithms give

rigorous guarantees on the accuracy of the reconstructed isosurface.

1.5.2 Motion Planning

The prior algorithms for motion planning can be classified as complete or approximate

algorithms.

Complete Algorithms

Some of the early work was on developing algorithms for complete motion planning. An

algorithm is complete, if it is guaranteed to find a solution when one exists and to return

a failure otherwise. In 1979, Reif showed that path planning for a 3-D linkage made of

polyhedral links is PSPACE-hard (Reif, 1979b). His analysis provides strong evidence

that any complete planner will run in exponential time in the number of degrees of

freedom (dofs).

There are two general algorithms for complete motion planning. The first algorithm,

proposed by Schwartz and Sharir (Schwartz and Sharir, 1983a), is based on a cylindrical

18

algebraic decomposition of the robot’s free configuration space (known as the Collin’s

decomposition). This algorithm takes time doubly exponential time in the number

of degrees of freedom. Later, Canny (Canny, 1988) developed an improved algorithm

based on computing a representation of the robot’s free space as a network of one-

dimensional curves. This representation is called the roadmap of the free space. This

method runs in time singly exponential in the number of dofs. We are not aware of any

implementations of either of these algorithms.

Many complete algorithms have been developed for specific instances of the motion

planning problem, mainly for robots with 2-3 dofs. A number of algorithms have been

proposed for path planning of polygonal robots moving among polygonal obstacles (Ke-

dem and Sharir, 1990; Avnaim and Boissonnat, 1989; Sacks, 1999; Flato and Halperin,

2000). Algorithms have also been proposed for planning the motion of a polyhedron

translating in 3-space amidst polyhedral obstacles (Lozano-Pérez and Wesley, 1979;

Aronov and Sharir, 1994). Some of these specific algorithms have been implemented.

These algorithms rely either on arrangement or “criticality” computation (Latombe,

1991). These computations are inefficient and may not be robust to floating-point

approximations. As a result, the applicability of these algorithms has been limited

(Latombe, 1999).

Approximate Algorithms

The high complexity and difficulty of implementing complete path planners have mo-

tivated the development of approximate planners. Two approximate approaches were

introduced in the 80’s: approximate cell decomposition (Latombe, 1991) and potential

field method (Latombe, 1991). Both approaches are resolution-complete, i.e., whenever

a path exists, they find one if the resolution parameters of the underlying grid are cho-

sen fine enough. However, due to insufficient resolution, they may fail to find a path

even if one exists. They have been used to solve complex path planning problems in

2-D and 3-D configuration spaces. However, they do not extend well to robots with

more than 4 or 5 dofs.

The need to perform high dof planning motivated the development of randomized

sampling based planners (Kavraki and Latombe, 1994; Overmars and Svestka, 1995).

This approach starts by randomly computing a set of samples, i.e., a set of collision-

free configurations in the configuration space. Then nearby samples are interconnected

by computing “local paths”, thus creating a probablistic roadmap (PRM) of the free

space. This approach avoids the expensive computation of an explicit representation of

19

the free space. Therefore, this approach is simple, general, and efficient in practice. It

has been successfully applied to do motion planning for robots with very high degrees

of freedom. Many of the recent practical motion planning algorithms have adopted

the randomized sampling approach (Amato et al., 1998; Wilmarth et al., 1999; Simeon

et al., 2000; LaValle and Kuffner, 2000).

Figure 1.8: Narrow Passage: The figure shows an example of a narrow passage in free
configuration space.

Challenges/Issues: There are two main issues with the randomized sampling based

methods. First, these methods may not be able to find paths through “narrow pas-

sages” in the free space. See Fig. 1.8. Intuitively, a narrow passage is a small region

whose removal changes the connectivity of the free space. A formal characterization of

narrow passages is given in (Barraquand et al., 1997; Hsu et al., 1999). To capture the

connectivity of the free space accurately, the planner must sample configurations in the

narrow passages. This is difficult, because narrow passages have small volumes, and

the probability of drawing random samples from small sets is low. Consequently, the

randomized sampling based methods may not be able to find a valid path even though

one may exist. A number of extensions have been proposed to improve the sampling to

better handle narrow passages (Amato et al., 1998; Wilmarth et al., 1999; Hsu et al.,

2003a). While these methods can find paths through narrow passages in many situa-

tions, they do not give guarantees. The second issue with randomized sampling based

methods is that they do not terminate when no path exists between the initial and goal

configuration. This is because the planner cannot detect non-existence of collision-free

path.

20

1.6 Goals

In the previous sections, we briefly described prior approaches for surface extraction

problems and motion planning. We looked at both exact and approximate approaches,

and discussed their merits and limitations. We described two approximate algorithms:

implicit modeling method for surface extraction problems and randomized sampling

based method for motion planning. Both share some similarities; the underlying prin-

ciple in both algorithms is the same – sampling. Hence we will refer to them as sampling

based algorithms.

Neither exact nor sampling based approach by themselves are satisfactory. While

the exact approach provides accuracy, it lacks in simplicity, and is prone to robustness

problems. On the other hand, the sampling based approach is simple to implement but

suffers from accuracy problems. Thus, there exists a gap between the two approaches,

and our work aims to bridge this gap. Our goal is to achieve an accuracy “close to” that

of the exact approach while retaining the simplicity of the sampling based approach.

We use the sampling based approach for both surface extraction problems and

motion planning. Our goal is to design sampling based algorithms that can provide

guarantees on the output. For surface generation problems, we wish to obtain an

approximation that is topologically equivalent to the exact surface and has a bounded

two-sided Hausdorff error.

Two objects P and Q are topologically equivalent if there exists a continuous bijec-

tive mapping between them with a continuous inverse (Munkres, 1975). The one-sided

Hausdorff distance between P and Q is defined as follows:

h(P ,Q) = max{min d(p,Q) | p ∈ P}

where d(p,Q) is the distance between a point p and a set Q. The two-sided Hausdorff

distance is defined as the maximum of h(P ,Q) and h(Q,P). We use the term Hausdorff

error to mean the two-sided Hausdorff distance between the approximation and the

exact surface.

Guarantees such as bounds on the Hausdorff error and correct topology are not only

important from a theoretical point of view, but also from a practical standpoint. The

Hausdorff error measures the deviation of the approximation from the exact surface.

Therefore, bounding this error is important to ensure a geometrically close approx-

imation. Preserving the topology is also important in many applications. In CAD,

topological features such as tunnels often correspond to distinguishing characteristics

21

Figure 1.9: Simplification and Boolean operations: This 1.7M triangle model of a
turbine has a high genus and many features in the interior. We highlight the applica-
tion of our algorithm to simplification and Boolean operations on this complex model.
The simplified model of the turbine has 511K triangles and we show a zoomed view in
the center-right image. We perform five difference (Boolean) operations on the tur-
bine model and reconstruct the boundary of the final solid. Our algorithm produces a
geometrically close and topology preserving approximation to the final solid. Overall,
our algorithm can perform such geometric computations on complex models in tens of
seconds and give rigorous guarantees in terms of preserving the topology of the final
surface.

of the model (Fig. 1.10). The geometric models used to represent the organs in medical

datasets often consist of handles (Fig. 3.26). Retaining these topological features can

be necessary in order to preserve the anatomical structure of the organ. This can be

crucial for visualization and analysis. The geometric model of a molecule may consist

of tunnels, which often act as atomic sieves that can aid the biochemical processes.

Preserving these features can be important for rational drug design. In robotics, the

tunnels may correspond to narrow passages through which the robot may pass to reach

the goal.

Apart from capturing important features present in the original surface, guarantee-

ing topology is important for another reason. An algorithm that preserves topology

avoids the introduction of extraneous topology; its output does not have unwanted ad-

ditional components or handles, and is immune from the kinds of errors shown in Fig.

1.7.

For motion planning, our goal is to design a complete sampling based motion plan-

ning algorithm. Such a planner will be able to find a collision-free path whenever one

22

Figure 1.10: Remeshing: The left image shows a brake hub model, which has many
“skinny” triangles with poor aspect ratios (center image). We used our algorithm to
compute an improved triangulation of the model (right image). The original brake
hub model has 14K triangles. Our algorithm took 1.85 secs to perform remeshing and
generate a mesh with 7K triangles at a relative Hausdorff error of 1/32.

exists; in particular, it will be able to find paths even through narrow passages. The

planner will also be able to detect the non-existence of collision-free path and terminate.

1.7 Thesis Statement

Sampling algorithms can solve surface extraction and motion planning problems,

and provide geometric and topological guarantees on the output.

1.8 New Results

We now present the main results of this thesis.

A Sampling Based Method for Topology Preserving Isosurface Extraction

We propose a sampling condition for topology preserving isosurface extraction. Our

sampling condition requires that every grid cell satisfy three criteria – a complex cell

criterion, a star-shaped criterion, and a non-degeneracy requirement. These criteria will

be defined in Chapter 3. We show that these criteria are sufficient to ensure that the

isosurface reconstructed from the grid using MC-like methods is topologically equivalent

to the exact isosurface.

Furthermore, we can augment the above sampling condition to also bound the

geometric error in the reconstructed isosurface. Given any ε > 0, we can ensure that

the two-sided Hausdorff distance between the reconstructed isosurface and the exact

isosurface is less than ε.

23

(a) Brake Hub (b) Rod (c) Minkowski Sum Approximation

Figure 1.11: Minkowski Sum Computation: This example shows the application of our
Minkowski sum approximation algorithm. The rightmost image shows an approximation
to the Minkowski sum of Brake Hub and Rod models, which consist of 4, 736 and 24
triangles respectively. The final Minkowski sum has a number of narrow tunnels that
contribute to a high genus. Our algorithm produced an approximation that preserved
these features. It took 140 secs to compute a topologically correct approximation with
a relative two-sided Hausdorff error of less than 1/64. The relative Hausdorff error is
defined as the ratio of the absolute Hausdorff error to the maximum length of a “tight”
axis-aligned bounding box around the object.

We generate a volumetric grid satisfying the sampling condition by using an adaptive

subdivision algorithm. The subdivision algorithm generates an adaptive volumetric grid

by a recursive application of the sampling condition. If a grid cell satisfies the sampling

condition, the subdivision algorithm returns the grid cell as a leaf node of the adaptive

volumetric grid. Otherwise, the grid cell is subdivided and the sampling condition

is recursively applied to each of the children cells. In the absence of degeneracies, the

adaptive subdivision algorithm will terminate once all the grid cells satisfy the sampling

condition. The isosurface extraction is extracted from the resulting grid using an MC-

like method. The output of isosurface extraction has a bounded two-sided Hausdorff

error and is topologically equivalent to the exact isosurface.

The adaptive subdivision algorithm does not terminate in certain degenerate cases.

We discuss this further and suggest possible ways of dealing with them. We also

analyze the behavior of the subdivision algorithm and provide sufficient conditions for

its termination.

24

(a) Gear (b) Offset Approxi-
mation

Figure 1.12: Offset Computation: This example shows the application of our Minkowski
sum approximation algorithm to offset computation of polyhedral models. The images
show a gear-shaped model and an approximate offset computed by our algorithm. This
model has 2, 382 triangles. Our approximation algorithm took 84 secs to compute a
topologically correct approximation with a relative two-sided Hausdorff error of less
than 1/64.

Our algorithm is relatively simple to implement. It primarily relies on max-norm

distance computation, linear programming, and interval arithmetic. These computa-

tions can be performed efficiently for polyhedral and low-degree algebraic primitives.

We use our algorithm for accurate boundary evaluation of Boolean combinations

of polyhedra and low degree algebraic primitives, model simplification, and remeshing.

See Figs. 1.9 and 1.10.

The running time of our algorithm varies between a few seconds for simple models

composed of a few thousand triangles to a few tens of seconds for complex polyhedral

models represented using hundreds of thousands of triangles.

Accurate Minkowski Sum Approximation

We present an algorithm to approximate the 3D Minkowski sum of polyhedral ob-

jects. Our algorithm decomposes the polyhedral objects into convex pieces, generates

pairwise convex Minkowski sums, and computes their union. We compute the union

approximately by applying our sampling based isosurface extraction algorithm. The

geometric and topological guarantees of our isosurface extraction algorithm apply to

the Minkowski sum approximation as well.

The number of primitives in the union operation tends to be O(n2) where n is the

25

number of polygons in the input polyhedral objects. Our input models require a union

of tens of thousands of primitives. The high number of primitives can pose a major

overhead to the isosurface extraction algorithm. We reduce this overhead by employing

two types of culling techniques. Our algorithm employs primitive culling, and performs

efficient distance and inside/outside queries by considering only a small subset of prim-

itives, while preserving the correctness of these queries. Our algorithm also performs

cell culling to eliminate the grid cells that do not contain a part of the Minkowski

sum boundary. In practice, these culling techniques improve the performance of the

algorithm by more than two orders of magnitude.

Our algorithm is relatively simple to implement. We have used it approximate the

Minkowski sum and offset of complex polyhedral models. Figs. 1.11 and 1.12 highlight

some of our results.

Accurate Configuration Space Approximation

We present an approximate algorithm for configuration space computation. The free

space is formulated as an arrangement over a set of contact surfaces. We enumerate the

contact surfaces, and compute an approximate free space boundary expression using our

sampling based isosurface extraction algorithm. We present computational techniques

for applying the complex cell and star-shaped tests to the free space without explicit

free space computation. The geometric and topological guarantees of our isosurface

extraction algorithm apply to the free space approximation as well.

We apply our algorithm to two specific instances of motion planning. In each

instance, the robot has three degrees of freedom (dofs).

• 3T : A 3D robot translating among polyhedral obstacles. This instance reduces

to computing the Minkowski sum of the robot (reflected about its origin) and the

obstacles. Hence we use our Minkowski sum approximation algorithm for this

instance.

• 2T+1R : A planar rigid robot with 2 translational and 1 rotational dofs moving

among polygonal obstacles.

See Figs. 1.14 and 5.7.

26

Figure 1.13: Star-shaped Primitive: The figure shows a star-shaped primitive. Point
P is a guard of the kernel. In general, the guard in not unique and can be any point
belonging to a set called the kernel (shaded region in the interior of the primitive).

Star-shaped Roadmap Method for Complete Motion planning

We present a new sampling based method for complete motion planning. Our method

relies on computing a star-shaped roadmap of the free space. Informally, a region

is star-shaped if there exists a point (called the guard) in the region that can see

every point in the region. See Fig. 1.13. Sec. 3.1 provides a precise definition. The

star-shaped roadmap is constructed by computing a star-shaped decomposition of the

free space. This produces a set of guards that capture the intra-region connectivity

– the connectivity between points belonging to the same star-shaped region. The

inter-region connectivity is captured by computing connectors that connect guards of

adjacent regions. The guards and connectors are combined to obtain the star-shaped

roadmap.

We use an adaptive subdivision algorithm for constructing the star-shaped roadmap

without explicit computation of the free space. The adaptive subdivision algorithm

applies the star-shaped criterion in a recursive manner. In the absence of degeneracies

in the free space, the adaptive subdivision algorithm will terminate and produce a

star-shaped roadmap as the output. The resulting star-shaped roadmap captures the

complete connectivity of the free space, thus enabling complete path planning. The

roadmap can be used not only to find a path, but also detect non-existence of any

collision-free path.

We apply our algorithm to three specific instances of the general motion planning

problem. Two of these are 3T and 2T+1R. Additionally, we also apply our algorithm

to 3R - a planar articulated robot with 3 revolute joints moving among polygonal

obstacles. We demonstrate the performance of our algorithm on environments con-

taining narrow passages or no collision-free paths. Figs. 1.14, 5.7, 5.10 highlight the

application of our algorithm to different environments.

27

1.9 Organization

The rest of the thesis is organized as follows:

• Chapter 2 surveys the related work in the areas of arrangements, boundary

evaluation, isosurface extraction, Minkowski sum computation, motion planning,

and free space computation.

• Chapter 3 presents an algorithm for topology preserving isosurface extraction.

• Chapter 4 presents an approximate algorithm for Minkowski sum computation.

• Chapter 5 presents an algorithm for configuration space approximation and the

star-shaped roadmap method for motion planning.

• Chapter 6 suggests directions for future research and concludes this dissertation.

28

Figure 1.14: Motion Planning and Configuration Space Computation: This example
demonstrates the application of our motion planning and configuration space approxi-
mation algorithms to assembly planning. There are two parts each with pegs and holes.
The goal is to assemble the two parts so that the pegs of one part fit into the holes of
the other. The part is allowed to translate in 3D. This problem can be reduced to a
motion planning problem by treating one of the parts as a robot and the other as the
obstacle. The top row of images show a collision-free path computed by our motion
planning algorithm. Our algorithm took 15.9 secs to construct a star-shaped roadmap
and was able to find a collision-free path (shown in blue) in 0.22 secs. We also applied
our configuration space approximation algorithm to this example. The bottom row of
images show two views of the free configuration space approximation. The collision-free
path computed by our motion planning algorithm is also shown in these images. This is
a challenging example because the goal configuration is lodged within a narrow passage
in the free configuration space.

Chapter 2

Related Work

In this chapter, we discuss the prior work on boundary evaluation, arrangements, iso-

surface extraction, Minkowski sum evaluation, configuration space computation, and

motion planning. Each of these problems have been a subject of a considerable amount

of research. An exhaustive survey of all the methods is too extensive for this disserta-

tion. Hence we focus only on specific instances of these problems and refer the reader

to more comprehensive surveys.

2.1 Boundary Evaluation

Boundary evaluation refers to the process of performing Boolean operations on solids

and recovering a boundary representation of the final solid defined by the operation.

There has been a great deal of work on boundary evaluation. We only give a brief

overview of the subject and refer the reader to (Hoffmann, 1989b; Krishnan, 1997;

Keyser, 2000) for a more comprehensive treatment.

A large number of algorithms for boundary evaluation of polyhedra have been pro-

posed over the years (Okino et al., 1973; Voelcker, 1974; Hillyard, 1982; Sugihara and

Iri, 1989; Fortune, 1997). Few algorithms for curved solids have also been presented

(Fang et al., 1993; Chun-Yi et al., 1996; Krishnan et al., 1997; Keyser et al., 1997).

Most boundary evaluation algorithms follow a common approach. This approach in-

volves several steps. First, each patch of the first solid is intersected with each patch of

the second solid. To improve performance, additional data structures such as bounding

boxes may be used to prune out many non-intersecting pairs of patches. A pair of

intersecting patches results in an intersection curve in the domain of each patch. Next,

the intersection curves from different patches are merged together. The merged inter-

30

section curve partitions the boundary of the solid into various components. Finally, a

subset of these components are retained to obtain the boundary of the final solid.

While boundary evaluation algorithms are not difficult conceptually, two issues

make their implementation difficult in practice. First, the underlying computations

are prone to accuracy and robustness problems. Second, evaluating the intersection of

curved surfaces is a difficult problem as it introduces nontrival mathematical problems,

the problem of numerical precision, and stability of calculations (Hoffmann, 1989b;

Hoffmann, 2001). We discuss each issue separately and give an overview of the prior

work.

2.1.1 Accuracy and Robustness Problems

The robustness problem refers to the tendency of boundary evaluation algorithms to

fail on certain inputs. There are two main types of robustness problems: numerical

error and degenerate data.

Numerical Error

The first type of problem occurs due to the use of floating-point arithmetic in geometric

computations. This problem has been summed succinctly by Hoffmann in his survey

paper (Hoffmann, 2001):

“In geometric computations, logical facts such as incidence, separation, tangency,

etc., are deduced based on numerical calculations. Further inferences are drawn from

these deductions. The imprecision of floating-point arithmetic makes the conclusions

drawn from the numerical calculations unreliable. In particular, the same logical ques-

tions may arise repeatedly, in the form of different floating-point computations giving

contradictory answers. Unless this problem is avoided, it is not possible to write fully

correct/robust/reliable code for geometric operations using standard floating-point arith-

metic.”

The above problem has received considerable amount of attention in recent years

(Hoffmann, 2001). A common method for dealing with numerical error is to use tol-

erances, which allow two values that are within a certain fixed amount of each other

to be considered the same (Segal, 1990; Jackson, 1995). While this can often reduce

robustness problems, there are still many problems with using tolerances in boundary

evaluation. It may not be possible to define a global value of tolerance that works well

for all cases. Defining several values of tolerances and managing them can require a

31

large amount of user effort and may still not altogether eliminate robustness problems.

To completely eliminate numerical errors, many methods use exact arithmetic (Sug-

ihara and Iri, 1989; Yap and Dubé, 1995; Fortune, 1997; Keyser et al., 1997). Using

exact arithmetic, all decisions based on numerical data are guaranteed to be made as if

the numerical computations are exact. The main drawback of exact arithmetic is that

it can be much slower than standard floating point arithmetic or other fixed-precision

numbers that make direct use of the hardware.

Few methods have been proposed to speed up exact arithmetic by using floating

point filters (Fortune and Van Wyk, 1993), interval arithmetic (Chun-Yi et al., 1996),

and affine arithmetic (de Figueiredo, 1996). Most of these methods have been developed

for linear domains. Exact arithmetic in the non-linear domain is much more expensive.

The paper by Keyser et al. (Keyser et al., 1997) describes an exact implementation for

low degree algebraic surfaces.

Degeneracies

A second source of robustness problem is degenerate data. Many algorithms assume

that the input data is in general position and do not handle certain “degenerate cases”.

For example, a boundary evaluation algorithm may assume that the input primitives

are manifold and/or they intersect each other transversally. Failure to satisfy the

assumption can lead to program failure.

Handling degeneracies is a very challenging problem and has been studied in both

computational geometry and solid modeling. Many approaches have been proposed

to handle them. One option is to resort to “special case handling” (Yu, 1992). This

involves enumerating all the possible types of degeneracies and add code to explicitly

detect and resolve them. While this approach can be useful in many situations, it

leads to more complexity in the underlying algorithms and representations, e.g., these

algorithms need to work with non-manifold representations.

A different approach to handling degeneracies is to use perturbation methods. The

main idea behind perturbation methods is to modify the input data such that it is

guaranteed to have no degeneracies. A large number of perturbation techniques have

been proposed (Edelsbrunner and Mücke, 1987; Emiris and Canny, 1991; Yap, 1990;

Raab, 1999; Ouchi and Keyser, 2004). There are a few issues with using perturbation

methods (Seidel, 1994). One of the arguments against perturbation methods is that

degenerate cases are often present on purpose. Thus, perturbing the data to make it

non-degenerate actually invalidates the input data. A second argument against per-

32

turbation methods is that applying perturbation changes the problem – therefore the

solution to the perturbed problem is not actually a solution of the original problem. In

some cases, it is possibly to transform the computed solution to recover the solution to

the original problem. However, in general, this transformation can be difficult. Finally,

perturbation methods require some form of exact computation in order to be successful.

This makes implementation of perturbation methods slower than those that do not use

exact computation.

2.1.2 Surface Intersection

There is a large body of literature addressing the surface intersection problem. A survey

of various surface intersection techniques can be found in (Pratt, 1986; Patrikalakis,

1993; Hoffmann, 1989b; Krishnan, 1997).

The intersection of two surfaces can be complicated in general, with a number of

boundary segments, closed loops, and self-intersections (singularities). A good surface

intersection algorithm should, in theory, be able to detect all such features of the

intersection curve.

Early approaches to surface intersection were based on recursive subdivision tech-

niques (Lane and Riesenfeld, 1980; Pratt, 1986). The basic idea of these methods is to

decompose the problem into similar problems which are much simpler. These methods

subdivide the surface into small pieces until each piece satisfies some flatness criterion.

However the main problem with the approach lies in constructing the topology of the

intersection curve from the individual intersection pieces. This approach is not robust

and may fail in the presence of singularities.

An alternative approach for evaluating surface intersections is curve tracing. The

main idea behind tracing techniques is to compute a starting point on each loop of the

curve and use the local geometry of the curve to evaluate successive points. In this

class of methods, identifying a starting point on each loop is a difficult problem. This

had led to the development of a large number of techniques for loop detection (Sinha

et al., 1985; Sederberg and Meyers, 1988; Kriezis et al., 1990; Hohmeyer, 1991; Zundel

and Sederberg, 1993). Most of these methods subdivide each surface until sufficient

conditions for the nonexistence of loops are satisfied. Other methods perform loop

detection by mapping the intersection curve onto a different domain where the mapped

curve is always connected (Krishnan, 1997).

Two problems that must be addressed when tracing a curve are component jumping

33

and backtracking. Component jumping occurs when the tracing algorithm takes a step

that is too large and proceeds on a different component of the curve. Backtracking

occurs when for some reason the tracing algorithm generates points out of order. To

prevent either of these occurrences, the algorithm must choose appropriate step sizes

to march along the intersection curve (Hohmeyer, 1991; Krishnan, 1997).

2.2 Arrangements

The arrangement of a finite collection of geometric objects in Rd, denoted as A(Γ),

is the decomposition of the space into relatively open connected cells of dimensions

0, . . . , d induced by Γ, where each cell is a maximal connected set of points lying in

the intersection of a fixed subset of Γ (Agarwal and Sharir, 2000). They serve as the

underlying structure for many geometric problems arising in a wide range of applica-

tions including robotics, computer graphics, molecular modeling, and computer vision.

Halperin (Halperin, 1997) and Agarwal and Sharir (Agarwal and Sharir, 2000) present

a comprehensive survey on the subject of arrangements and their applications.

We restrict ourselves to arrangements of (hyper)surfaces in three or higher di-

mensions. Let the coordinate axes of Rd be denoted as x1,x2, . . . ,xd. Let Γ =

{γ1, γ2, . . . , γn} be a collection of (hyper)surface patches in Rd. Usually, the follow-

ing assumptions are made about the surface patches (Halperin, 1997):

1. Each surface patch is contained in an algebraic surface of constant maximum

degree.

2. The boundary of each surface patch is determined by at most some constant

number of algebraic surface patches each of constant maximum degree.

3. Every d-tuple of surface patches in Γ meet in at most s points.

4. Each surface patch is monotone in x1, . . . ,xd−1, namely every line parallel to the

xd axis intersects the surface patch in at most one point

5. The surface patches in Γ are in general position.

We will use the term arrangement of surfaces to refer to arrangements whose defining

objects satisfy the above assumptions. For additional remarks regarding the above

assumptions, see (Halperin, 1997).

34

The combinatorial complexity of the arrangement refers to the total number of cells

of various dimensions in the arrangement. Given a collection Γ of n surfaces in Rd,

as defined above, the maximum combinatorial complexity of the arrangement A(Γ) is

O(nd) where the constant of proportionality depends on d and on the maximum degree

of the surfaces and of their boundaries (Halperin, 1997).

2.2.1 Complexity of a Single Cell

A cell is a maximal connected subset of the intersection of a fixed (possibly empty)

subset of surface patches that avoids all other surface patches. The combinatorial com-

plexity of a single cell in the arrangement is the total number of cells of any dimension

on the boundary of the cell.

The problem of computing a single cell in the arrangement arises in motion planning

(Chapter 5). In this problem, Γ denotes a set of contact surfaces that arise due to con-

tact between pairs of geometric features of the robot and the obstacle (see Sec. 2.5 and

Chapter 5). The free space F consists of a collection of cells in the arrangement A(Γ);

a single connected component of F is a single cell in A(Γ). For motion planning, it is

sufficient to compute just the connected component containing the initial configuration

and check if the goal configuration belongs to the same connected component.

Halperin and Sharir (Halperin and Sharir, 1995a) showed that the combinatorial

complexity of a single cell of A(Γ) in three dimensions is O(n2+ε), for any ε > 0, where

the constant of proportionality depends on ε and on the maximum degree of the surfaces.

They also proposed an algorithm than can compute a single cell in O(n2+ε) time.

Subsequently, Basu (Basu, 1998) extended the result of Halperin and Sharir to higher

dimensions. Basu showed that the combinatorial complexity of a single connected

component of A(Γ) in k dimensions is O(nk−1+ε). Furthermore, under certain geometric

assumptions on the objects, this bound can be improved to O(nk−1).

2.2.2 Union Computation

Let K = {K1,K2, . . . ,Kn} be a set of n connected d-dimensional sets in Rd. We consider

the complexity of K = ∪n
i=1Ki in three dimensions.

An important application of union is to the problems of Minkowski sum computation

and translational motion planning. These problems can be reduced to computing a

union of a set of convex polyhedra Ki, i = 1, . . . , n where each Ki is defined as a

Minkowski sum of two convex polyhedra (see Chapter 4).

35

Aronov et al. (Aronov et al., 1997) proved that the complexity of the union of

n convex polyhedra in R3 with a total of s faces is O(n3 + ns log n). The bound

was improved by Aronov and Sharir (Aronov and Sharir, 1997) to O(ns log n) and

Ω(nsα(n)) when the given polyhedra are Minkowski sums of a fixed convex polyhedron

with n pairwise-disjoint convex polyhedra.

Very recently, Ezra (Ezra, 2005) has shown that a single cell in the arrangement of

convex polyhedra in R3 has a complexity O(sn1+ε) for any ε > 0. Thus their result gives

an upper bound on the combinatorial complexity of a single component of F for the case

of 3D translational motion planning. Ezra (Ezra, 2005) also presents a deterministic

algorithm that constructs a single cell in time O(sn1+ε log2 s) for any ε > 0.

Agarwal and Sharir (Agarwal and Sharir, 1999) considered the problem of planning

the motion of a ball B moving among a set of pairwise-disjoint polyhedral obstacles

with a total of n vertices in R3. They reduce the free space F to a union operation

and show that the maximum combinatorial complexity of F is B is O(n2+ε) for any

ε > 0. They also presented a randomized algorithm to compute the boundary of F
whose expected running time is O(n2+ε) for any ε > 0.

A useful consequence of the above result is that it gives an upper bound on the

combinatorial complexity of the (solid) offset of a polyhedron. The offset operation,

an important operation in solid modeling, is identical to the Minkowski sum operation

with a ball. We will discuss offsets in more detail in Sec. 2.4.5.

2.3 Isosurface Extraction

Given a continuous scalar field f : Rd → R and a scalar value s, the isosurface with

isovalue s is the set, {x ∈ Rd | f(x = s}, of points with identical scalar value s.

Isosurface extraction refers to the process of constructing a (usually piecewise linear)

approximation to the isosurface. In this chapter, we focus only on isosurface extraction

in R3. Even this topic has been extensively studied, and we do not attempt to survey

the entire literature on this topic. We refer the reader to (Sutton et al., 2000; Carr,

2004) for additional pointers. For work on isosurface extraction in higher dimensions,

see (Weigle and Banks, 1998; Bhaniramka et al., 2000; Bhaniramka et al., 2004).

The problem of isosurface extraction originated in two disparate domains – vol-

umetric visualization and implicit modeling. In volumetric visualization, isosurface

extraction was used as a tool to visualize volumetric datasets acquired experimentally.

Whereas in the field of implicit modeling, it was used to compute an explicit boundary

36

representation of surfaces represented using mathematical functions. The early work

in these two domains was done independently. Ultimately, it was realized that general

techniques for isosurface extraction could be applied to either domains.

We start by giving a brief overview of isosurface extraction methods in volumet-

ric visualization and implicit modeling (Sections 2.3.1 and 2.3.2). Next we describe

Marching Cubes (Lorensen and Cline, 1987) – the most popular method for isosurface

extraction – and many of its variants (Section 2.3.3). Then we discuss various topolog-

ical considerations during isosurface extraction (Section 2.3.4). We discuss a number

of isosurface extraction methods that provide some form of topological guarantees on

their output.

2.3.1 Volumetric Visualization

In the field of volumetric visualization, isosurface extraction techniques were developed

due to the need to visualize volumetric datasets acquired experimentally, e.g., medical

datasets obtained using magentic resonance imaging (MRI), Computed Tomography

(CT) (Lorensen and Cline, 1987; Payne and Toga, 1990a; Lorensen, 1995). These data

sets consist of scalar values on a voxel grid where the type of scalar values depend on

the application; typically they represent some kind of intensity/density corresponding

to the part being scanned. Often the data points are organized on a structured grid,

e.g., a L×M×N grid. Then the numbers L, M, and N define the resolution of the data

set. Isosurface extraction is used to visualize the boundary of some important feature

– typically, an anatomical organ. The boundary corresponds to a region of constant

value in the volumetric data.

Volumetric datasets are also generated during scientific simulations in computa-

tional fluid dynamics (CFD) (Favre, 1997; Heermann, 1998) and molecular dynamics

(Monks et al., 1996; Lanzagorta et al., 1998). In these applications, the data sets

consist of scalar values on a voxel grid where the scalar values represent the values

of various simulation parameters, e.g., temperature, pressure, etc. The objective is to

expose contours of constant value for understanding the structure of the scalar field.

These contours isolate surfaces of interest, focusing attention on important features in

the data such as material boundaries and shock waves.

Early volume visualization methods adopted two approaches to represent regions of

constant value within the volumetric data. The first approach, the cuberille method,

considered the subdivision of space created by the sample points and represented con-

37

stant value regions as a set of cubes that included the values of interest (Herman and

Liu, 1979; Artzy et al., 1981; Herman and Udupa, 1983).

The second approach used isosurface extraction. The desired surface was approx-

imated by choosing an isovalue and extracting a surface which partitioned the data

points (also called sample points) into two sets – those above the isovalue, and those

below the isovalue. The surface was extracted by interpolating the scalar values be-

tween data points. Early isosurface methods first generated two-dimensional contour

lines for parallel planes running through the data, and then connected the contour lines

into three dimensional isosurfaces (Fuchs et al., 1977; Christiansen and Sederberg, 1978;

Wright and Humbrecht, 1979; Cook et al., 1983). Subsequent methods created the iso-

surface by examining the three dimensions at once (Koide et al., 1986; Lorensen and

Cline, 1987; Payne and Toga, 1990a; Wilhelms and Gelder, 1990a).

2.3.2 Implicit Modeling

Implicit modeling uses a mathematical function f : Rd → R to represent an object.

The function f is a scalar field; in the context of implicit modeling, it is also known as

an implicit function. The implicit surface is the set of points p where f(p) = 0. Thus,

the implicit surface is an isosurface of f with zero isovalue.

Implicit representations became popular because of their simplicity and versatility

in performing a wide variety of geometric operations. For example, implicit repre-

sentations map Boolean operations on a set of primitives into minimum/maximum

operations on the scalar fields of the primitives (Ricci, 1973). Many other operations

such as offsetting, blending, warping, and sweep can also be expressed elegantly using

implicit representations (Blinn, 1982; Wyvill et al., 1986; Wyvill and van Overveld,

1996; Pasko et al., 1995; Bloomenthal, 1997). Because of these advantages, implicit

modeling techniques have been used by a large number of applications including geo-

metric modeling (Breen et al., 2000; Kobbelt et al., 2001; Perry and Frisken, 2001; Ju

et al., 2002; Ohtake et al., 2003), volume rendering (Wang and Kaufman, 1994), surface

reconstruction (Hoppe et al., 1992; Curless and Levoy, 1996; Carr et al., 2001), remesh-

ing (Kobbelt et al., 2001; Wood et al., 2002), swept volume computation (Schroeder

et al., 1994), animation (Wyvill et al., 1986), and sculpting digital characters (Perry

and Frisken, 2001).

Despite the above advantages of the implicit representation, many applications such

as graphical rendering, collision detection, dynamic simulation, and model verification

38

use an explicit representation such as a polygonal mesh representation. Isosurface

extraction techniques are used to convert implicit surfaces to an “explicit form”, i.e., a

polygonal mesh approximating the implicit surface.

Wyvill et al. (Wyvill et al., 1986) developed one of the early isosurface extrac-

tion methods for polygonizing implicit surfaces. They computed samples in a three-

dimensional rectangular lattice and constructed a polygonal surface in each cell in this

lattice individually. Bloomenthal (Bloomenthal, 1988) developed another method that

adaptively sampled the implicit function by surrounding the implicit surface by an oc-

tree. This method generated the octree by adaptively subdividing those cells of the

octree that contained highly curved regions. Then a piecewise polygonal representation

was extracted from the resulting octree. Subsequently, a large number of methods were

developed for polygonizing implicit surfaces (Hall and Warren, 1990; Velho, 1990; Ning

and Bloomenthal, 1993; Bottino et al., 1996; Stander and Hart, 1997; Kobbelt et al.,

2001; Perry and Frisken, 2001; Ohtake et al., 2001; Ju et al., 2002; Varadhan et al.,

2003b; Zhang et al., 2004; Boissonnat et al., 2004; Nielson, 2004; Schaefer and Warren,

2004).

We note one important difference between isosurface extraction methods for volu-

metric visualization and implicit modeling. The volume data set that is input to the

volumetric visualization methods is only a sampled version of a continuous scalar field.

Typically, these methods do not have knowledge of the continuous scalar field from

which the data set has been experimentally acquired. As a result, they have to use

some form of interpolation to obtain the scalar value at a point other than the data

points. On the other hand, in the case of implicit modeling methods, the implicit func-

tion f is usually available; consequently, they have the ability to resample the implicit

function.

2.3.3 Marching Cubes

The Marching Cubes algorithm (MC), proposed by Lorensen and Cline (Lorensen and

Cline, 1987), is a standard method to extract an isosurface from a volumetric dataset

with scalar values. It performs reconstruction by extracting surfaces separately in

every cell in a volumetric cubic grid. The algorithm iterates through all cells in the

grid, hence the term marching cubes. In each cell, each vertex is classified as “positive”

or “negative” depending on whether the scalar value of the vertex is greater or less

than the isovalue. For each edge of the cube whose vertices have opposite signs, a point

39

is generated by linear interpolation along the edge. These edge points are then used

to construct one or more polygonal surface separating the vertices with opposite signs.

Since each of the 8 vertices of the cubic cell can be either positive or negative, there

are 28 = 256 possible sign configurations. Lorenson & Cline used symmetries between

different sign configurations to reduce them to 15 basic cases (Fig. 3.2). They stored

each of these cases in a look-up table, and used it to find the polygonal approximation

of the isosurface in a given cell.

The original Marching Cubes algorithm examined all cells in the data set even

though typically the isosurface intersects only a small subset of the cells. If N is the

number of cells in the grid, MC takes O(N) time to generate the isosurface. Itoh and

Koyamada (Itoh and Koyamada, 1995) estimated that the number of cells intersected

by the isosurface is typically N2/3 since the isosurface is two-dimensional and the volu-

metric data is three-dimensional. Wilhelms and Gelder (Wilhelms and Gelder, 1990a)

estimated that MC spent between 30% and 70% of the total time examining empty

cells that do not intersect the isosurface. A tremendous amount of research has focused

on reducing the number of cells visited while constructing an isosurface (Wilhelms and

Gelder, 1990a; Bajaj et al., 1996; Cignoni et al., 1996; Livnat et al., 1996). These

methods utilize auxiliary data structures to examine only those cells that contain a

portion of the isosurface. While the search structures introduced by many of these

methods increase the storage requirements, the acceleration gained by the isosurfacing

technique offsets this overhead.

Another drawback of the original MC algorithm was that it generated an excessively

large number of triangles to represent the isosurface. To overcome this drawback,

many methods were developed for performing isosurface extraction adaptively using

hierarchies such as octrees or k-D trees (Bloomenthal, 1988; Hall and Warren, 1990;

Velho, 1990; Shekhar et al., 1996; Westermann et al., 1999; Frisken et al., 2000; Gerstner

and Pajarola, 2000; Ju et al., 2002). These methods use properties such as local

curvature to perform an adaptive polygonization of the surface, thus producing an

isosurface with fewer triangles.

A large number of variants of MC have also been developed that suggest alternative

ways of reconstructing the isosurface within the cell (Montani et al., 1994; Kobbelt

et al., 2001; Perry and Frisken, 2001; Ju et al., 2002; Varadhan et al., 2003b; Zhang

et al., 2004; Nielson, 2004; Schaefer and Warren, 2004).

Implicit surfaces defined in terms of Boolean operations usually have sharp edges or

corners. When MC is used for polygonizing such implicit surfaces, the output usually

40

has aliasing artifacts in the vicinity of the sharp features. Recently, a few extensions

have been proposed that can reconstruct sharp features and reduce aliasing artifacts

in the reconstructed model (Kobbelt et al., 2001; Ohtake et al., 2001; Ju et al., 2002;

Varadhan et al., 2003b).

2.3.4 Topological Considerations in Isosurface Extraction

Topological Ambiguity

In the original Marching Cubes algorithm, some of the base cases were ambiguous.

Given a face of a cube with two diagonally opposite corners above the surface, and the

other two below the surface, some of the basic cases assumed that the higher corners fell

inside the same connected component of the surface, while others assumed that they

did not. Since each face of a cube was shared with an adjacent cube, it was possible to

generate surfaces with holes by accident. This was noted by Durst (M.J.Durst, 1988),

and many solutions were proposed (Wilhelms and Gelder, 1990b; Nielson and Hamann,

1991; Natarajan, 1994; Cignoni et al., 2000; Lopes and Brodlie, 2003).

Nielson & Hamann’s solution (Nielson and Hamann, 1991), the asymptotic decider,

was based on assuming that the scalar field can be modeled as a bilinear interpolation

on each face of the cube. The known topology of contours of bilinear functions was

invoked to ensure that the assumption was consistent in both cells. The value of the

scalar field at the saddle point of the bilinear function was computed and used to

distinguish between the two possible solutions. Since this test gave the same result in

both cubes, consistent treatment was assured, and the holes disappeared.

Natarajan (Natarajan, 1994) extended the asymptotic decider by replacing bilinear

interpolation by trilinear interpolation. This enabled the algorithm to test for body

saddle points inside the cube. Cignoni et al. (Cignoni et al., 2000) and Lopes & Brodlie

(Lopes and Brodlie, 2003) presented further extensions of this idea.

The above algorithms deal with the problem of extracting a surface from a fixed

volumetric data set. The continuous scalar field is not available for resampling. Since

the scalar values are available only on the vertices of the cell, they model the scalar field

in the interior of the cell. For example, the algorithms by (Natarajan, 1994; Cignoni

et al., 2000; Lopes and Brodlie, 2003) model the scalar field as a trilinear function that

interpolates the scalar values at the vertices of the cell. Then they extract a surface

that is topologically equivalent to the isosurface of the trilinear function. However, due

to inadequate resolution of the data set, the trilinear function may not be an accurate

41

model of the continuous scalar field. Hence the output of these algorithms need not be

topologically equivalent to the isosurface of the continuous scalar field.

Topology Control and Simplification

Many volumetric approaches have used topological properties for generating an isosur-

face without additional handles or cavities from scanned data sets (Guskov and Wood,

2001; Wood et al., 2002; Bischoff and Kobbelt, 2002). Often the input data contains

noise due to the scanning process. During isosurface extraction, the inaccuracies in

the input data result in a surface whose genus is much higher than the actual sur-

face. In many applications, the topological type of the object under consideration is

known beforehand, e.g., the cortex of a human brain is always homeomorphic to a

sphere (Bischoff and Kobbelt, 2002). These methods exploit such a priori knowledge

to eliminate unwanted handles that arise from the noise.

Topology Preserving Implicit Surface Polygonization

Few methods based on Morse theory (Bottino et al., 1996; Stander and Hart, 1997;

Boissonnat et al., 2004) can guarantee a topology preserving polygonization of im-

plicit surfaces. These methods assume that the implicit surface is smooth and require

computation of all the critical points of the implicit surface.

The “shrinkwrap” algorithm by Bottino et al. (Bottino et al., 1996) and the algo-

rithm by Stander and Hart (Stander and Hart, 1997) follow the same general approach.

Both methods first find an isovalue such that the isosurface at that isovalue can be eas-

ily polygonized. The initial polygonization is then progressively transformed into the

desired one, by computing intermediate level sets. Morse theory is used to perform

topological changes to the polygonization when critical points are encountered. The

shrinkwrap algorithm begins with a polygonization of a large sphere that shrinks in-

wards until it adheres to the final implicit surface. In contrast, the algorithm by Stander

and Hart starts with an “empty” polygonization that expands outwards towards the

final implicit surface.

The algorithm by Boissonnat et al. (Boissonnat et al., 2004) uses a different ap-

proach. Their algorithm surrounds the implicit surface with a collection of tetrahedral

cells. They show that if these cells satisfy a set of conditions based on critical points,

then a topology preserving polygonization can be computed. They also describe an

algorithm for building such a mesh.

42

Snyder (Snyder, 1992) presented an adaptive subdivision method for computing a

isotopic approximation of an implicit curve. This method checks whether the implicit

curve is locally parametrizable with respect to one of the axes of the cell. The condition

for parametrizability is verified by performing interval analysis on the gradient of the

implicit function. If a cell fails the condition, it is subdivided and the algorithm is recur-

sively applied to the subdivided cells. Recently, Plantinga and Vegter (Plantinga and

Vegter, 2004) have presented a similar method for computing isotopic approximation

of both implicit curves and surfaces.

All the above methods assumes that the implicit surface is smooth. It is not clear

how to apply them to perform Boolean combinations where the final surface is not

smooth and whose topology can be very different from those of the input primitives.

2.4 Minkowski Sum and Offset Computation

The Minkowski sum operation was introduced by Hermann Minkowski in his classic

work in 1903 on integral geometry (Minkowski, 1903). Intuitively, the Minkowski sum

of two objects can be considered as expanding one object by sweeping it over the other.

Formally, the Minkowski sum of two objects P and Q is defined as the set-sum,

P ⊕Q = {p + q | p ∈ P , q ∈ Q}

Minkowski sums have found applications in a diverse set of domains. Hadwiger (Had-

wiger, 1957) discussed their fundamental properties in the context of classical geometry.

Matheron (Matheron, 1975) and Serra (Serra, 1982) studied them in mathematical

morphology. Lozano-Perez and Wesley (Lozano-Pérez and Wesley, 1979) used them

to define configuration space obstacles for path planning. Minkowski sums have also

been used for penetration depth computation (Cameron, 1997; Agarwal et al., 2000),

packing and layout (Boissonnat et al., 1997; Daniels and Milenkovic, 1997), and for

implementing solid modeling operations such as constant radius offsetting, rounding,

filleting, translational sweep (Rossignac and Requicha, 1986; Evans et al., 1987).

In this section, we briefly review the prior work on 2D and 3D Minkowski sum

computation. We make a distinction based on whether the input primitives are polyg-

onal/polyhedral or curved objects.

43

2.4.1 Minkowski Sum of Polygons

The Minkowski sum P ⊕Q of two polygons, P and Q, with m and n features (vertex

or edge) can have a worst case combinatorial complexity O(m2n2). This upper bound

is tight as there exist such examples (Agarwal et al., 2002).

When both P and Q are convex, the size of P ⊕Q is only O(m + n). For this case

Schwartz (Schwartz, 1981) and Lozano-Perez (Lozano-Pérez, 1983) presented a linear

time algorithm to compute P ⊕Q. The main idea behind this algorithm is as follows.

In a first step, the features of P and Q are sorted based on the slope of their edges.

The second step performs a counter-clockwise (or clockwise) sweep to combine features

of P and Q. This step produces a succession of features belonging to P ⊕Q. Provided

the sorted lists of features of P and Q are available, this algorithm takes O(m + n)

time. The algorithm can also be applied to non-convex polygons by decomposing them

into convex polygons. This approach, which will be described in Sec. 2.4.3, has been

taken by many subsequent methods (Kaul et al., 1991; Flato and Halperin, 2000).

An operation closely related to the Minkowski sum is the convolution operation

(Guibas et al., 1983). Like Minkowski sum, convolution is a general operation that can

be defined in any dimension. Convolution between two geometric objects is defined on

their respective “tracings”, which is obtained by augmenting the each object with a

“direction map”. For example, to obtain a tracing of a planar curve, each point p on

the curve is associated with a unit vector ~p tangent to the curve. This definition is

further extended to define a tracing of a polygon as follows. If p lies on an edge of P ,

then ~p is parallel to the edge. On the other hand, if p is a vertex of P , then ~p can vary

along an arc of the circle of directions (Guibas et al., 1983). A pair (p, ~p) is called a

state and the tracing P̂ is the set of all the states of the points p ∈ P . The convolution

of two tracings P̂ and Q̂ is defined as follows:

P̂ ∗ Q̂ = {(p + q, ~p | (p, ~p) ∈ P̂ , (q, ~q) ∈ Q̂, ~p = ~q}

We note a few properties of convolution that are important not only in their own

right but also in the context of Minkowski sum computation. First, the worst case

combinatorial complexity of P̂ ∗ Q̂ is only O(mn), which is much better than the

O(m2n2) worst case complexity of P⊕Q. Second, P̂ ∗Q̂ can be computed in O(m+n+k)

time where k is the size of P̂ ∗ Q̂. Third, it can be shown that P ⊕ Q corresponds

to a subset of P ∗ Q. Therefore, the convolution provides a good way to compute the

Minkowski sum. It provides a condition for selecting pairs of features of P and Q whose

44

interaction may contribute to the boundary of the Minkowski sum. This property has

been utilized by many subsequent algorithms. Finally, in the case where both P and

Q are convex, P̂ ∗ Q̂ is a tracing of a convex polygon that is identical to P ⊕Q. In this

case, P̂ ∗ Q̂ can be computed in linear time.

2.4.2 Minkowski Sum of Planar Curves

Many authors have studied the problem of computing the Minkowski sum of planar

curves. Bajaj and Kim (Bajaj and Kim, 1987) and Kaul and Farouki (Kaul and

Farouki, 1995) studied the convolution of algebraic curves. Lee et al. (Lee et al.,

1998) treated the case where the input curves were rational.

All of these methods follow a common approach. They first compute the convolution

of the two input curves. If the input curves are algebraic curves, then their convolu-

tion is also an algebraic curve. In general, the convolution curve is self-intersecting

and is a superset of the actual Minkowski sum boundary. To obtain the boundary of

the Minkowski sum, these methods trim away the redundant parts of the convolution

curve. There are two issues with this approach. First, the degree of the convolution

curve is usually quite high which introduces many numerical problems (Lee et al., 1998).

Second, the trimming of the convolution curve is difficult in practice. It is related to

the problem of computing arrangement of planar curves and there are no practical

implementations for arrangements of high degree planar curves. Typically, these meth-

ods compute a polygonized approximation to the convolution curve. This reduces the

trimming problem to computing arrangement of a collection of line segments.

The convolution of two rational curves need not be rational. Lee and Kim (Lee

et al., 1998) presented a method for computing a rational approximation to the convo-

lution curve which was then used to compute an approximation to the Minkowski sum

boundary.

2.4.3 Minkowski Sum of Polyhedral Primitives

The combinatorial complexity of the Minkowski sum of two convex polyhedra is O(mn)

where m and n denote the number of features (vertex, edge, face) in the two polyhe-

dra. On the other hand, the Minkowski sum of two non-convex polyhedra can have a

complexity as high as O(m3n3) (Dobkin et al., 1993).

We first discuss specialized algorithms for computing the Minkowski sum of convex

polyhedra, and then discuss general methods for non-convex polyhedra.

45

Convex Polyhedra

There are a number of efficient algorithms for computing the Minkowski sum of convex

polyhedra.

Convex hull method: This method is based on the following property:

P ⊕Q = CH({vi + vj|vi ∈ VP ,vj ∈ VQ}) (2.1)

Here, CH denotes the convex hull operator, and VP , VQ represent the sets of vertices,

respectively in polyhedra P and Q. Based on this fact, we compute the Minkowski sum

as follows:

1. Compute the vector sum between all possible pairs of vertices from each polytope.

2. Compute their convex hull.

Step 1 produces mn points. Computing their convex hull can take O(mn log(mn) time

(de Berg et al., 2000).

Convolution method: A more efficient method is presented by Guibas and Seidel

(Guibas and Seidel, 1987). This method by is based on the convolution operation

defined on polyhedral tracings. A polyhedral tracing is the 3D counterpart of a polygonal

tracing. It extends a polyhedron by augmenting the position with a direction map

defined at each point of the polyhedron. The direction map is defined in terms of the

Gauss map.

The Gauss Map G of a compact convex polyhedron P in Euclidean three-dimensional

space R3 is a set-valued function from P to the unit sphere S2, which assigns to each

point p the set of outward unit normals to support planes to P at p. The entire facet

f of P is mapped under G to a single point – the outward unit normal to f . An edge

e of P is mapped to an arc of a great circle G(e) on S2, whose length is the exterior

dihedral angle at e. A vertex v of P is mapped by G to a spherical polygon G(v),

whose sides are the images under G of edges incident to v.

The polyhedral tracing is defined as follows:

P̂ = {(p, ~p) | p ∈ P , ~p ∈ G(p)}

Then the convolution operation can be defined on two polyhedral tracings as in the 2D

case. P̂ ∗ Q̂ is another polyhedral tracing. Furthermore, if both P and Q are convex,

then P̂ ∗ Q̂ is a tracing of a convex polyhedron that is identical to P ⊕ Q. This fact

46

is used to compute the Minkowski sum using convolution computation (Guibas and

Seidel, 1987).

A key property of a convex polyhedron is that the Gauss map of the associated

tracing corresponds to a convex decomposition of the unit sphere. This property is

utilized to compute the convolution (and hence the Minkowski sum) in the following

manner:

1. Compute the Gauss maps of P and Q

2. Compute an overlay of GP and GQ.

3. The overlay can be further processed to obtain P ∗Q, which is identical to P⊕Q
(Guibas and Seidel, 1987).

This method is very efficient and has an output-sensitive time complexity. It can

compute the Minkowski sum of two convex polyhedra in O(m + n + k) time, where k

is the number of faces in the output. The output size k can vary between O(m + n)

and O(mn).

A number of variants of the above method have been proposed. Ghosh (Ghosh,

1993) presented a method based on computing a slope diagram that is obtained by pro-

jecting the Gauss map of a polyhedron onto a plane. The Minkowski sum of two poly-

hedra is obtained by merging their slope diagrams. Bekker and Roerdink (Bekker and

Roerdink, 2001) and Wu et al. (Wu et al., 2003) provided a number of improvements

to this method. Recently, Fogel and Halperin (Fogel and Halperin, 2005) presented a

method based on a Cubical Gauss Map representation that maps the Gauss map onto

a cube.

Incremental Surface Expansion: This method was proposed as a part of a poly-

hedral morphing system based on Minkowski sums (Kaul and Rossignac, 1991). This

method classifies the faces on the boundary of the Minkowski sum into three types. The

first type is a face/vertex (FV) type, where a face of one polyhedron is combined with

a vertex of the second polyhedron to obtain the face on the boundary of the Minkowski

sum. Similarly, a vertex/face (VF) and edge/edge (EE) types are defined. The al-

gorithm starts with any candidate face on the boundary of the Minkowski sum, and

incrementally expands the surface by finding the next candidate face. The incremental

expansion uses every possible FV, VF, EE combination that the current candidate face

can be extended to. The worst case asymptotic time complexity of this algorithm is

47

O(mn), but it works well in practice, with just a few degeneracies such as co-planar

faces that need special handling.

Non-convex polyhedra

Prior methods for Minkowski sum of non-convex polyhedral models can be classified

into two categories: union based methods and arrangement based methods.

Union Based Methods: The first class of methods reduce the problem to a union

computation (Lozano-Pérez, 1983; Evans et al., 1992). These algorithms decompose the

polyhedral models into simpler objects whose Minkowski sum can be easily computed.

Lozano-Perez (Lozano-Pérez, 1983) proposed a method based on convex decompo-

sition. This method uses the following property of Minkowski sum: If P = P1 ∪ P2,

then P ⊕Q = (P1 ⊕Q) ∪ (P2 ⊕Q). The method combines this property with convex

decomposition for general polyhedral models:

1. Compute a convex decomposition for each polyhedron

2. Compute the pairwise Minkowski sums between all possible pairs of convex pieces

in each polyhedron.

3. Compute the union of pairwise Minkowski sums.

The pairwise Minkowski sums can be computed using one of the methods presented

in the previous subsection. After the second step, there are O(kl) pairwise Minkowski

sums where k and l are the number of convex pieces of the two polyhedra. The pairwise

Minkowski sums are convex, and their union can have a combinatorial complexity

O(p3 + sp log(p)) where p = kl and s is the total number of faces in the pairwise

Minkowski sums (Aronov et al., 1997).

Evans et al. (Evans et al., 1992) presented a different method based on computing

the union of translational sweeps. Their method follows three steps:

1. Compute the Minkowski sum of each face of P and every non-parallel edge of Q.

The Minkowski sum of a single face and a non-parallel edge yields a triangular

prism. This step may produce O(mn) prisms.

2. Generate copies of Q translated by every vertex of P .

3. Generate copies of P translated by every vertex of Q.

48

Steps 2 and 3 produce m and n copies respectively. The collection of all the polyhedra

obtained in the above steps is unioned to obtain P ⊕Q.

Both the above methods (Lozano-Pérez, 1983; Evans et al., 1992) typically need to

perform a union of a large number (e.g. thousands) of primitives.

Arrangement Based Methods: The second class of methods reduce the problem to

arrangement computation (Kaul and Rossignac, 1991; Ghosh, 1993; Basch et al., 1996).

These algorithms are similar to the ones presented for convex polyhedra. However, for

non-convex polyhedra, the output of these methods is a superset of the boundary of the

Minkowski sum. To obtain the actual boundary of the Minkowski sum, the arrangement

of the superset has to be computed.

Kaul and Rossignac (Kaul and Rossignac, 1991) adapted their incremental surface

expansion method for the case of non-convex polyhedra. They enumerate different

possible FV, VF, EE combinations that can potentially contribute to the Minkowski

sum boundary. They generate a surface for each combination, thus yielding a superset

of the boundary of the Minkowski sum. Basch et al. (Basch et al., 1996) extended the

convolution method (Guibas and Seidel, 1987) to compute convolution of tracings of

non-convex polyhedra, which also produces a superset. Ghosh’s slope diagram based

method (Ghosh, 1993) can be applied to non-convex polyhedra. However, in this case

merging the slope diagrams can be nontrivial.

2.4.4 Minkowski Sum of Curved Surfaces

Bajaj and Kim (Bajaj and Kim, 1990) presented algebraic methods to compute the

convolution of a pair of curved convex objects bounded by patches of algebraic surfaces.

They show that the convolution can be represented exactly as an implicit algebraic

surface. However, the resulting algebraic degrees are usually very high (Lee et al.,

1998).

In general, computing the 3D Minkowski sum of curved surfaces is considered diffi-

cult. One source of complication is the difficulty in deriving an explicit parametrization

of the convolution. This has led to the development of algorithms for a restricted class

of surfaces. Kim and Sugihara (Kim and Sugihara, 2001) and Seong et al (Seong et al.,

2002) considered the case where the input surfaces are surfaces of revolution or lin-

ear extrusion generated by slope-monotone closed curves. Muhlthaler and Pottmann

(Mhlthaler and Pottmann, 2003) considered the case where the input surfaces are ruled

surfaces. These algorithms take advantage of the fact that for these classes of surfaces,

49

an explicit parametrization of the convolution can be derived. However, computing the

actual boundary of the Minkowski sum requires a trimming operation, which is difficult

to implement robustly.

2.4.5 Offset Computation

Two definitions of offsets are found in the literature – normal offset (n-offset) of a surface

(Maekawa, 1999) and solid offset (s-offset) of a solid (Rossignac and Requicha, 1986).

The normal offset of a curve/surface is defined as the locus of the points which are at a

constant distance r along the normal from the generator curve/surface. The definition

of n-offset require a well-defined normal at each point on the surface. Therefore, they

are not well-defined if a surface is not smooth. Furthermore, even when a curve/surface

is smooth, n-offsetting may lead to cusps and self-intersections.

Rossignac and Requicha (Rossignac and Requicha, 1986) extended the above defini-

tion by defining a solid offset (s-offset). The s-offset of a solid S is obtained by adding

to S all the points exterior to S that lie within a distance r of the boundary of S.

Mathematically, it is defined as:

s-offset(S) = {x ∈ Rd | ∃s ∈ S, ‖x− s‖ ≤ r}

A solid offset produces a solid that is an expanded version of the original solid. It can

be considered as a special case of Minkowski sum where one of the objects is a ball

(disk in 2D) (Rossignac and Requicha, 1986). The s-offset is well defined for a solid

even if its boundary is not smooth. In particular, it is well-defined for a polyhedron.

Rossignac and Requicha showed that the the boundary of the s-offset of a solid S is a

subset of a collection of surfaces generated by offsetting the faces, edges, and vertices

of ∂S They extended the definition of n-offset to generate offsets of edges and vertices

of ∂S.

We now give a brief overview of some of the prior work on offsets of curves and

surfaces. To keep the presentation simple, we do not distinguish between whether

these methods compute an n-offset or an s-offset; we use the term offset to refer to

both. We refer the reader to (Pham, 1992; Maekawa, 1999) for a comprehensive survey

of the literature.

There has been a lot of work on computing offsets of planar algebraic curves (Lee

et al., 1997; Maekawa, 1999). The offset of a planar algebraic curve is algebraic, but

can have a very high degree. For example, the offset of a cubic Bezier curve can have

50

an algebraic degree of 10 (Lee et al., 1997). These fundamental limitations have led

offset research to develop various offset approximation techniques (Lee et al., 1997).

The offset of a rational curve/surface need not be rational, except in special cases

(line, circle, plane, sphere, cylinder, etc). Therefore, some researchers have focused on

a special class of curves, e.g., Pythagorean hodograph (PH) curves, whose offsets are

rational curves (Farouki and Sakkalis, 1990). The notion of PH curves has also been

extended to 3D to define PH surfaces which have rational offsets (Pottmann, 1995).

One of the main issues with offset computation is that the offset curve/surface may

self-intersect. Two types of self intersections can occur. First, a self intersection may

occur locally when the absolute value of the offset distance exceeds the minimum radius

of curvature in the concave regions. Second, a self-intersection may also occur globally

when the distance between two distinct points on the curve/surface reaches a local

minimum (Maekawa, 1999). It is an essential task of an offset computation algorithm

to detect the self-intersections and generate the trimmed offset curve/surface.

There is considerable amount of prior work on offsets of surfaces in 3D (Farouki,

1985; Rossignac and Requicha, 1986; Forsyth, 1995; Elber and Cohen, 1997). Rossignac

and Requicha (Rossignac and Requicha, 1986) studied offsets based on regularized sets,

while Elber and Cohen (Elber and Cohen, 1997) studied them in the context of filleting

and rounding based on Bezier and NURBS surface representation. All these methods

compute offset surfaces of models first, then trim or extend these offset surfaces to

reconstruct a closed 3D model. Due to the complexity of trimming and extending

operations, they are difficult to implement robustly.

The difficulty of trimming has prompted many methods to adopt alternative repre-

sentations such as implicit and distance field based representations (Breen and Mauch,

1999; Perry and Frisken, 2001; Williams and Rossignac, 2004), ray representations

(Hartquist et al., 1999), to efficiently compute approximations to the offset. However,

most of these algorithms are developed for displaying purpose in computer graphics do-

main. No accuracy analysis of the offset approximation is presented. Recently, Chen et

al. (Chen et al., 2005) presented an approximate algorithm based on point based repre-

sentations. Their algorithm can produce an approximation with a bounded geometric

error.

51

2.5 Motion Planning and Free Space Computation

Motion planning is an extensively studied problem. It is beyond the scope of this

dissertation to provide a complete survey of the prior work. We refer the reader to

the following books and survey papers. The book by Latombe (Latombe, 1991) is

a standard reference for the work prior to 1991. A survey paper by Sharir (Sharir,

1997) covers algorithmic motion planning, emphasizing the theoretical analysis of the

problem. A recent book by Choset et al. (Choset et al., 2004) covers the more recent

advances in the field.

We restrict ourselves to the basic version of the motion planning problem which

assumes that the robot R – a rigid or an articulated object – is the only moving object

in a static workspace cluttered with rigid, stationary obstacles O. R may translate,

rotate or have different types of joints imposing sliding or rotating constraints. It is

assumed that the geometry of both R and O is known and that there are no kinematic

constraints to limit the motion of R. This version of the problem ignores issues such

as uncertainty, nonholonomic constraints, control issues, etc. The goal is to find a

collision-free path – a path along whichR can move from an initial configuration qinit to

a goal configuration qgoal without colliding with O. A collision-free path can be defined

using the configuration space formulation. Let C denote a k-dimensional configuration

space. The free space F is defined as the set of all the configurations of R for which

R does not intersect O (see Sec. 1.3 for a precise definition). A collision-free path is a

continuous map τ : [0, 1]→ F with τ(0) = qinit and τ(1) = qgoal. Sometimes the above

problem definition is modified slightly to allow a semi-free path that is allowed to touch

∂F , the boundary of F . A motion planning algorithm is complete if is guaranteed to

find a collision-free path if one exists and return a failure otherwise.

F can be expressed in terms of an arrangement of a set of contact surfaces (Sharir,

1997). A contact surface of a geometric feature (vertex, edge, face) of R and a similar

feature (vertex, edge, face) of O is defined as the set of points in C such that represent

configurations of R at which contact is made between these specific features. Let Γ

denote the set of all the contact surfaces defined by all pairs of features of R and O
that can be involved in a contact with each other. Then F consists of a collection of

cells in the arrangement A(Γ). A single connected component of F is a single cell in

A(Γ).

We start by presenting some the theoretical results on the computational complexity

bounds for path planning (Sec. 2.5.1). We discuss both general solutions as well as

52

algorithms for specific instances of the problem. All these algorithms are based on

computing some sort of free space representation. We cover only a small subset of all

the results on the subject. We refer the reader to Latombe (Latombe, 1991) and Sharir

(Sharir, 1997) for a more comprehensive survey.

Most of the prior methods for motion planning can be classified into a few general

approaches. We discuss these approaches in Sec. 2.5.2.

2.5.1 Computational Complexity

General Solutions

The first upper bound on the complexity of the motion planning problem problem was

established by Schwartz and Sharir (Schwartz and Sharir, 1983a). Their algorithm

used Collins cylindrical algebraic decomposition (Collins, 1975) to perform an exact

cell decomposition of the free space. This algorithm has a time complexity doubly

exponential in the configuration dimension. The algorithm takes randomized expected

time O((nd)3k
) where the contact surfaces are defined by a total of n polynomials of

maximum degree d and k is the configuration space dimension.

This doubly exponential time complexity bound was improved by Canny (Canny,

1987) to a singly exponential time. Canny proposed an algorithm that took expected

randomized O(nk(log n)dO(k2)) time. Rather than compute an exact cell decomposition

of the free space, Canny’s algorithm computed a one-dimensional network of curves in

the free space, called the roadmap (Sec. 2.5.2). The original Canny’s algorithm made

assumptions about the contact surfaces being in general position and the availability of

the generic projection plane. The issue of general position has been resolved by Basu

et al (Basu et al., 1996), whose algorithm produces a roadmap in time O(nk+1dO(k2)).

The maximum complexity of the entire F can be O(nk). Therefore, ignoring the

dependence on the degree d, Canny’s algorithm is close to optimal in the worst case,

provided some representation of the entire F has to be output, since there are exam-

ples where F has Ω(nk) connected components (Sharir, 1997). However, for motion

planning, it is not necessary to compute the entire F ; it is sufficient to compute the

connected component of F that contains qinit and check if qgoal lies in the same con-

nected component. Halperin and Sharir (Halperin and Sharir, 1995a) showed that the

combinatorial complexity of a single cell of A(Γ) in three dimensions is O(n2+ε), for

any ε > 0, where the constant of proportionality depends on ε and on the maximum

degree of the surfaces. Recent work by Basu (Basu, 1998) extends this result to higher

53

dimensions. Basu shows that the combinatorial complexity of a single connected com-

ponent of A(Γ) in k dimensions is O(nk−1+ε). Furthermore, under a certain natural

geometric assumption on the objects, this bound can be improved to O(nk−1).

The first lower bound on motion planning was established by Reif (Reif, 1979a) for

the complexity of generalized mover’s problem. The goal of this problem is to plan

a free path for a robot made of an arbitrary number of polyhedral bodies connected

together at some joint vertices, among a finite set of polyhedral obstacles. Reif proved

that this problem is PSPACE-hard. PSPACE-hardness has also been established for a

variety of other path planning problems (Latombe, 1991). These results strongly sug-

gest that the complexity of path planning increases exponentially with the dimension

of the configuration space. In light of these results, two different approaches have been

taken. The first approach focuses on specific planning problems in low dimensional

configuration spaces, where algorithms of reasonable complexity can be designed. An

alternative approach is to resort to heuristic or approximate algorithms that are incom-

plete. These algorithms may fail to find a path even if one exists. We will discuss the

first approach next, and the second approach in Sec. 2.5.2.

Specific Solutions

We focus on the complexity of motion planning problems with three degrees of freedom.

See (Sharir, 1997) for complexity of motion planning problems with two degrees of

freedom.

In a three dimensional configuration space, the maximum complexity of the entire F
can be O(n3) (Sharir, 1997). Halperin and Sharir (Halperin and Sharir, 1995a) showed

that the complexity of a single component is only O(n2 + ε). They also propose an

algorithm than can compute a single cell in O(n2+ε) time. We now consider certain

specific cases where it is possible to design algorithms with better worst case asymptotic

bounds. In the case where R is a robot that is capable of only translation, F can be

computed using the algorithms for Minkowski sum computation (Sec. 2.4). We now

consider certain cases involving rotation.

A line segment in a planar polygonal environment: Consider the case where

R is a line segment (“rod,” ladder”) translating and rotating in a planar polygonal

environment with m edges. The naive bound on the complexity of F is O(m3) However,

one can show that the maximum combinatorial complexity of F is only Θ(m2) (Sharir,

1997). Many near-quadratic algorithms have been developed including an algorithm

54

based on constructing a Voronoi diagram in F (Ó’Dúnlaing et al., 1987).

A convex polygon in a planar polygonal environment: Here R is a convex

polygon bounded by p edges, free to translate and rotate in an arbitrary polygonal

environment bounded by m edges. F is 3-dimensional, and there are at most 2pm

contact surfaces, of maximum degree 4. The naive bound on the complexity of F is

O((pm)3). Using Davenport-Schinzel sequences, one can show that the complexity of F
is O(pmλ6(pm)) where λs(n) is the maximum length of Davenport-Schinzel sequences

of order s composed of n symbols, and is nearly linear in n for any fixed s (Sharir,

1997). Agarwal et al. (Agarwal et al., 1997) presented an algorithm to compute F that

takes O(pmλ6(pm) log(pm)) time.

A nonconvex polygon in a planar polygonal environment: Here R is an ar-

bitrary polygonal region (not necessarily connected) bounded by p edges, translating

and rotating in a polygonal environment bounded by m edges, as above. One can show

that the maximum complexity of F is Θ((pm)3) (Sharir, 1997). A single connected

component of F can be computed in time O((pm)2+ε) using the algorithm by Halperin

and Sharir (Halperin and Sharir, 1995a).

Many algorithms compute F by using a discrete number of slices along the orien-

tation parameter (rotational degree of freedom). The boundary of ∂F is composed of

ruled surface patches generated by contacts between a moving vertex R and an obsta-

cle edge of O or between a moving edge of R and an obstacle vertex of O. Avnaim

et al. (Avnaim and Boissonnat, 1989) presented an algorithm for constructing F in

Θ((pm)3 log pm) time. They computed the contact surfaces by tracing their generating

line segments through a range of orientations. They explicitly computed the critical

orientations which represent changes in the number of segments or their endpoints.

The adjacent surfaces were linked in order to compute the boundary of F .

Brost (Brost, 1991) presented a similar algorithm where the contact surfaces are

computed by tracing the boundary curve segments wherever vertex-vertex contacts

occur. This is followed by exact intersection of surfaces to compute the contact space.

Based on the above formulation, Sacks (Sacks, 1999; Sacks, 2001) presented the

first complete motion planning algorithm that is practical for real-world applications.

Sacks’s algorithm is applicable to polygonal as well as curved primitives. For polygonal

primitives, testing for a criticality reduces the problem to solving only a quadratic

equation. In the worst case, the algorithm may need to test for O(m3n3) criticality

conditions.

55

2.5.2 Planning Approaches

At a broad level, the prior methods for motion planning can be classified into a few

general approaches: roadmap, cell decomposition, sampling, and potential field. In this

sub-section, we discuss roadmap methods, sampling based methods, and two types of

cell decomposition methods – exact cell decomposition and approximate cell decompo-

sition. Potential field methods have been surveyed in (Latombe, 1991; Choset et al.,

2004).

Roadmap Methods

The idea underlying this approach is to convert the path planning problem in a k-

dimensional configuration space to path planning in a network of one-dimensional

curves while maintaining the connectivity in the robot’s free space. This construc-

tion reduces the basic task into three subtasks: finding a subpath from qinit to the

roadmap, finding a subpath on the roadmap and finding a subpath from roadmap to

qgoal. The various types of roadmaps proposed to achieve this task are visibility graph,

Voronoi diagram or retraction approach, and silhouettes.

Visibility Graph Method: Visibility graph method is one of the earliest path plan-

ning methods (Nilsson, 1969) and has been widely used to implement path planners

for mobile robots. The visibility graph is the undirected graph G = (V, E) such that

V consists of qinit, qgoal and all the C-obstacle vertices, while E consists of all line seg-

ments connecting two nodes that do not intersect the interior of the C-obstacle region.

G can be searched for a semi-free path between qinit and qgoal. This path, if exists, is a

polygonal line connecting qinit to qgoal through C-obstacle vertices. In the case of a two-

dimensional configuration space with polygonal C-obstacles, the resulting path is also

the shortest semi-free path between qinit and qgoal. Using this approach, Lozano-Perez

and Wesley (Lozano-Pérez and Wesley, 1979) proposed an O(n3) algorithm, which was

improved to O(n2 log n) by Lee (Lee, 1978) and to O(n2) by Guibas and Hershberger

(Guibas and Hershberger, 1985) and Edelsbrunner (Edelsbrunner, 1987). An output

sensitive algorithm of O(k+n log n), where k is the output size, was proposed by Ghosh

and Mount (Ghosh and Mount, 1987). In a three-dimensional configuration space with

polyhedral C-obstacles, the visibility graph can still be applied, but the computed path

may not be the shortest semi-free path between qinit and qgoal. This is because, in

general, the shortest path is a polygonal line whose vertices lie along the edges of the

56

C-obstacle.

Laumond (Laumond, 1987) presented an extension to the visibility graph method

in the case where the C-obstacles are “generalized polygons”, i.e., regions bounded by

straight segments and/or circular arcs. Such C-obstacles occur when R is a generalized

polygon translating at a fixed orientation among obstacles which are also modeled as

generalized polygons.

A limitation of the visibility graph method is that it is not directly applicable

to robots with rotational degrees of freedom. In practice, its applicability has been

mainly limited to two-dimensional configuration spaces with a polygonal C-obstacle

region (Latombe, 1991).

Voronoi Diagrams and Retraction: The retraction approach to motion planning

uses the concept of retraction in topology to define a continuous mapping of the robot’s

free space F onto one-dimensional network of curves lying in F . A retraction is a

continuous map of a space onto a subspace leaving each point of the subspace fixed.

Let X be a topological space and Y a subspace of X. If there exists a continuous

map r : X → Y such that r(y) = y for all y ∈ Y , then we say Y is a retract of

X and r is a retraction. When C = R2 and the robot and obstacles are polygonal,

the Voronoi diagram is a roadmap obtained by retraction (Ó’Dúnlaing et al., 1983).

This approach provides the additional property that the obtained paths maximize the

clearance between the robot and the obstacles.

(Ó’Dúnlaing et al., 1987) described a retraction method for planning the motion of a

line segment moving among polygonal obstacles. In this method, the three dimensional

free space is first retracted onto a two-dimensional variant of the Voronoi diagram. In

a second step, this diagram is retracted onto a network of one-dimensional curves in F .

Canny and Donald (Canny and Donald, 1988) proposed a “simplified Voronoi diagram”

which is easier to extend to higher-dimensional configuration spaces than the classical

generalized Voronoi diagram.

Vleugels and Overmars (Vleugels and Overmars, 1997) presented a retraction method

for 3D translational motion planning of a convex polyhedral robot translating among

convex polyhedral obstacles. Instead of computing the exact Voronoi diagram, they

used a spatial subdivision algorithm to compute a discretized approximation of the

Voronoi diagram and use it for motion planning. Provided the subdivision algorithm

performs a sufficient level of subdivision, the resulting approximate Voronoi diagram

preserves the connectivity of the free space and can be used to guarantee complete

57

motion planning.

Silhouette Method: The silhouette method, proposed by Canny (Canny, 1987), is

one of the most general methods of solving the basic motion planning problem. This

is a complete algorithm that runs in single exponential time in the configuration space

dimension. This method constructs the roadmap recursively. First, F is projected

onto a generic two-dimensional plane and the silhouette of F under this projection

is computed. Next, the critical values of the projection on some line are found, and

a roadmap is constructed recursively within each slice of F at these critical values.

The resulting “sub-roadmaps” are then merged with the silhouette to obtain the final

roadmap.

Exact Cell Decomposition Methods

The crux of these methods is to partition the robot’s free space into a collection of

non-overlapping cells and to construct a connectivity graph representing the adjacency

between the cells. A path is found by a simple graph search after locating qinit and

qgoal in the connectivity graph.

Schwartz and Sharir (Schwartz and Sharir, 1983a) proposed the first exact cell

decomposition method for solving the general path planning problem, based on Collins

cylindrical algebraic decomposition of the free space. This method has a time complexity

doubly exponential in the configuration dimension and serves mainly as a proof of

existence of a general path planning method (Latombe, 1991).

Many exact cell decomposition methods have been proposed for specific instances of

the motion planning problem. For instance, Schwartz and Sharir (Schwartz and Sharir,

1983b) and Leven and Sharir (Leven and Sharir, 1985) presented methods for planning

the motion of a robot modeled as a line segment (“ladder”) translating and rotating

among polygonal obstacles.

Stappen and Overmars (van der Stappen and Overmars, 1994) presented an efficient

and simple paradigm for motion planning in the presence of fat obstacles. Here fatness

means that there exists a constant k > 0 such that for all hyperspheres S centered inside

the object E and not fully containing E, we have k volume(E ∩ S) > volume(S). The

definition forbids fat obstacles to be long and thin or to have long or thin parts.

58

Approximate Cell Decomposition Methods

The approximate cell decomposition methods partition the configuration space into a

collection of cells that have a predefined simple shapes (e.g., rectangloids). Unlike ex-

act cell decomposition methods, these methods do not represent the free space exactly.

Instead, they compute a conservative approximation to the free space. This approach

was first introduced by Lozano-Perez and Brooks (Lozano-Pérez, 1981; Brooks and

Lozano-Pérez, 1985). Subsequently, a large number of algorithms based on this ap-

proach have been proposed (Kambhampati and Davis, 1986; Donald, 1987; Zhu and

Latombe, 1991).

These methods classify the cells into three types: empty cells that lie completely

in free space, full cells that are completely within C-obstacle, and mixed cells that

contain the boundary of the free space. The set of empty cells provide a conservative

approximation of the free space and are used for path computation. The approximate

cell decomposition methods are resolution-complete, i.e., they can find a path if one

exists provided the resolution parameters are selected small enough (Latombe, 1991).

These methods have been applied mostly to robots with a small number of degrees of

freedom (k ≤ 4). Other cell decomposition algorithms divide the configuration space

using octrees or a lattice of points (Brooks and Lozano-Pérez, 1985; Donald, 1984; Zhu

and Latombe, 1990). These algorithms are are also resolution-complete.

Sampling Based Planners

The need to perform planning in high degree configuration spaces motivated the de-

velopment of probabilistic roadmap (PRM) planners, which resulted from the work

of independent research groups (Kavraki and Latombe, 1994; Overmars and Svestka,

1995; Kavraki et al., 1996b).

In a PRM planner, the configuration space is sampled randomly according to var-

ious sampling strategies. Samples in the free space, called milestones, are kept; the

samples in collision with obstacles are usually discarded. Nearby pairs of milestones

are then connected in a simple manner. For example, if we know for every milestone its

configuration space distance to an obstacle, we can use this information to argue that

a straight line path (in configuration space) between two nearby milestones is fully in

free space. These local connections transform the milestones into an undirected graph

that constitutes the probabilistic roadmap for the problem. Given an initial and a final

configuration of the robot, we can first connect them to the roadmap and then search

59

this graph for a path between the two configurations. Variations of this basic idea have

been demonstrated to work on a number of challenging problems. The simplicity of this

randomized method and its early successes have made it a popular subject of study in

the motion planning community in recent years. A number of different sampling strate-

gies have been developed, including shrinking the obstacles (Hsu et al., 1998), sampling

near the free space boundaries (Amato et al., 1998; Boor et al., 1999) or medial axis of

the free space (Wilmarth et al., 1999), and using visibility to reject unwanted samples

(Simeon et al., 2000). We will refer to all of these planners collectively as sampling

based planners.

An important characteristic of sampling based planners is that they can construct a

roadmap of the free space without explicitly constructing the boundaries of the configu-

ration space obstacles or representing the cells of F . This enables them to be applicable

to high dimensional configuration spaces.

Sampling based planners are not complete: They may fail to find a path even if

one exists. Under certain assumptions, they achieve a weaker form of completeness.

They have been shown to be probabilistically complete, i.e., if a solution path exists,

the planner will eventually find it (Kavraki et al., 1996a).

One drawback of randomized sampling based methods is that the running time

of the algorithm is variable; it depends on the the random samples chosen during

the sampling process. Branicky et et al. (Branicky et al., 2001) proposed the use of

quasi-random (also called deterministic) sampling techniques. This type of sampling

has several advantages. First, the running time of the algorithm is guaranteed to be

the same due to the deterministic nature of the sampling process. Second, they can

minimize certain statistical measures such as discrepancy and dispersion. Finally, the

resulting planners can be shown to be resolution-complete.

It is well known that there are two issues with sampling based planners. The first

problem is the so called “narrow passage” problem. It refers to the difficulty of the

planner to find paths through narrow passages in the free space (Fig. 1.8). The second

problem is that the planner does not terminate when no path exists between the initial

and goal configuration. This is because the planner cannot detect non-existence of any

collision-free path. We discuss each of these problems further.

Narrow passage problem The original PRM planner sampled configurations in the

free space using a uniform probability distribution (Choset et al., 2004). This type

of sampling exhibits a poor performance when the free space has narrow passages.

60

To capture the connectivity of the free space accurately, the planner must sample

configurations in the narrow passages. This is difficult, because narrow passages have

small volumes, and the probability of drawing random samples from small sets is low.

Consequently, the planner may not be able to find a valid path even though one may

exist.

A large number of different sampling strategies have been proposed to alleviate the

narrow passage problem (Amato et al., 1998; Hsu et al., 1998; Wilmarth et al., 1999;

Boor et al., 1999; Hsu et al., 2003b). These methods bias the sampling in order to

obtain a greater number of samples in the vicinity of the narrow passages. While these

methods may be able to find paths through narrow passages in many scenarios, none of

them can guarantee that a path will be found when one exists. We give a brief overview

of some of these methods.

Hsu et al. (Hsu et al., 1998) sample a “dilated” F by allowing the robot to penetrate

the obstacles by some small constant distance. The dilation of F widens the narrow

passages, making it easier for the planner to capture the connectivity of the free space.

The resulting samples that do not lie in F are then pushed onto F by performing local

resampling operations.

OBPRM (Amato et al., 1998) generates samples near the boundary of configuration

space obstacles. The motivation behind this kind of sampling is that narrow passages

can be considered as narrow corridoors in F surrounded by obstacles. Initially, OBPRM

generates many configurations at random from a uniform distribution. For each con-

figuration q found in collision, it chooses a random direction, and moves along that

direction until q becomes free, which is then added to the roadmap.

MAPPRM (Wilmarth et al., 1999) attempts to generate samples that are inside the

narrow passages but as far away as possible from the obstacles. It computes samples

near the Voronoi diagram of the free space to achieve this property. Although comput-

ing the Voronoi diagram in high dimensional configuration spaces is not practical, it

is possible to find samples near the Voronoi diagram without computing it explicitly.

MAPPRM uses a bisection method that moves each sample configuration until it is

equidistant from two points on the boundary of F . Similar techniques are also used by

other methods that first compute the Voronoi diagram in the workspace and then use

it to perform sampling in the configuration space (Choset et al., 2004).

Non-termination problem: If no path exists between the initial and goal config-

urations, then sampling based planners do not have an effective way of terminating.

61

Most of them simply pre-select a maximum number of milestones to be sampled and

report that no path exists, if that number is reached, and no path has been found. This

creates an ambiguity: We do not know whether there is actually no path between the

two configurations, or whether we simply failed to generate a set of milestones sufficient

for discovering the path. We will refer to this problem as the non-termination problem.

We are aware of only one work that addresses the non-termination problem. This

method (Basch et al., 2001) provides “disconnection proofs” for motion planning, i.e.,

proofs showing that no path is possible between two robot configurations in a given

environment. The authors present their method in a special setting: the goal is to

move a polyhedral robot through a gate – a polygonal hole in an infinite planar wall

in 3D. The main idea behind this method is as follows. Suppose the robot is able to

pass through the gate. Then there will be a moment when exactly half of the volume

of the robot remains on one side of the wall. Let d denote the orientation of the robot

at that moment and Sd denote the section of the robot defined by the plane of the

wall. Suppose we have a proof that for a certain specific orientation d, the section Sd

does not fit in the gate. Then the same proof is likely to work for a neighborhood of

orientations around d. While many of the ideas presented in this work are general,

the method as well as the proposed techniques are currently specialized for the simple

setting of a polyhedral robot moving through a gate.

62

Chapter 3

Topology Preserving Isosurface

Extraction

In Chapter 1, we observed that all the surface extraction problems – Boolean operations,

Minkowski sum operation, and configuration space computation – can be defined in

terms of an arrangement A(Γ) of a set Γ of primitives, where each primitive in Γ is a

polyhedral or an algebraic object. The primitives in Γ form a superset of the desired

surface E – in Boolean operations and Minkowski sum computation, E corresponds

to the boundary of the final solid defined by the operation; in configuration space

computation, E corresponds to the boundary of the free space. In all the surface

extraction problems, our goal is to compute an explicit boundary representation of

E . In this chapter, we will focus on the case where E is defined in terms of Boolean

operations. Minkowski sum and configuration space computation will be the subjects

of Chapters 4 and 5 respectively.

We adopt the sampling and reconstruction approach that was presented in Chapter

1. This approach represents E implicitly – as an isosurface of a scalar field obtained by

performing minimum/maximum operations over the scalar fields associated with the

primitives. Therefore we will also refer to E as the exact isosurface. Recall that this

approach consists of the following steps:

1. Sampling: Generate a volumetric grid and compute a scalar field (e.g, a signed

distance field) for each primitive at the grid points.

2. Operation: For each geometric operation (union/intersection/difference), per-

form an analogous operation (e.g., min/max) on the scalar fields of the primitives.

At the end of this step, the scalar values at the grid points define a sampled scalar

field for E .

64

3. Reconstruction: Perform isosurface extraction on the grid using an MC-like

algorithm

The output of isosurface extraction is a polygonal approximation A to E . We refer to

A as the reconstructed isosurface. This approach is illustrated in Fig. 1.6.

The accuracy of A is mainly governed by the rate of sampling – the resolution of the

underlying volumetric grid. Due to inadequate sampling, A may suffer from various

kinds of inaccuracies. Significant features, small components or handles present in

E may not be captured in A (Figs. 3.4(a),3.4(b)). Insufficient sampling could also

introduce “extraneous topology”, i.e., A may have unwanted additional components or

undesirable handles that were not present in E (Fig. 1.7).

In this chapter, we present an isosurface extraction algorithm that provides geomet-

ric and topological guarantees on A. Our algorithm guarantees that A is topologically

equivalent to E and has a bounded two-sided Hausdorff error. Our algorithm primarily

relies on two geometric criteria – complex cell criterion and star-shaped criterion (de-

fined in Sec. 3.4). These two criteria are combined to design a sampling condition. We

show that if the volumetric grid satisfies this sampling condition, then an MC-like algo-

rithm can be applied to the grid and produce a reconstruction A that is topologically

equivalent to E . Furthermore, we augment the sampling condition to also bound the

two-sided Hausdorff error in A. To generate a volumetric grid satisfying the sampling

condition, we perform adaptive subdivision by a recursive application of the sampling

condition. In the absence of degeneracies, the adaptive subdivision will terminate once

all the grid cells satisfy the sampling condition. Then isosurface extraction can be

performed on the resulting grid using an MC-like algorithm.

A significant part of the work described in this chapter was done jointly with Shankar

Krishnan and T.V.N Sriram, and is described in (Varadhan et al., 2004). The chapter

is organized as follows. Section 1 introduces the notation and definitions. Section

2 presents an overview of the Marching Cubes algorithm. In Section 3, we analyze

the errors in the output of Marching Cubes that can be caused due to inadequate

resolution of the grid. In Section 4, we present a sampling condition on the volumetric

grid to ensure topology preservation. In Section 5, we present an adaptive subdivision

algorithm to generate a volumetric grid. Section 6 analyzes the behavior of the adaptive

subdivision algorithm and presents conditions for its termination. Section 7 discusses

degenerate cases for our algorithm. In Section 8, we present a simple technique to

guarantee a tight geometric error bound on the approximation. Section 9 disusses a few

issues that arise when performing isosurface extraction on adaptive grids. In Section 10,

65

we present techniques to improve the performance of the algorithm. Section 11 discusses

the performance of the algorithm. Section 12 describes the implementation of the

algorithm, and presents three different applications: Boolean operations, simplification,

and remeshing.

3.1 Notation and Preliminaries

Input

We assume that the exact surface E is obtained by performing Boolean operations

(union, intersection, difference, complement) on a set of primitives in R3. The input to

our algorithm is a Boolean expression and a set Γ = {P1, . . . ,Pn} of primitives.

We assume that each primitive Pi is a closed 2-manifold, and is either a polyhedral

or an algebraic object. We assume each Pi bounds a solid, which we denote as P̃i. The

Boolean operations are performed on the solids P̃i, which yields a final solid Ẽ . The

exact surface is the boundary of Ẽ and is denoted as E . We assume that E is a closed

2-manifold.

Output

The output of our algorithm is a polygonal approximation A to the exact surface

E .

Notation

We introduce the notation used in the rest of this chapter.

• We use lower case bold letters such as p, q to refer to points in R3.

• We use upper case letters such as P ,Q,P1 to refer to geometric primitives. We

assume that each primitive is a closed manifold. Each primitive bounds a solid,

which we will refer to as the primitive solid, and denote it as P̃ .

• Boolean operations are defined on primitive solids. P̃1 ∪ P̃2, P̃1 ∩ P̃2, P̃1 \ P̃2

denote union, intersection, and difference operations on P̃1 and P̃2 respectively.

We will assume that these operations are regularized (Sec. 1.1).

Let S̃ denote a solid defined by Boolean operations. By a slight abuse of notation,

we will use S̃ to also refer to the Boolean expression of the solid, which is the

expression that defines S̃ in terms of Boolean operations over a set of primitive

solids, e.g., S̃ = P̃1 ∪ P̃2. A Boolean expression of a surface S is defined as the

Boolean expression of the corresponding solid S̃.

66

• The abbreviation w.r.t means with respect to.

• ∂S, S, int S, and cl S respectively denote the boundary, complement, interior

and closure of a set S.

• Let d ≥ 1 be an integer. Let o be the origin of Rd. Sd−1 and Bd denote the

(d− 1)-dimensional sphere and d-dimensional ball respectively. They are defined

as:

Sd−1 = {x ∈ Rd | |xo| = 1}

Bd = {x ∈ Rd | |xo| < 1}

Also define the 0-ball B0 = {o}.

• A scalar field is a function, f : R3 → R, which assigns each x ∈ R3 a scalar

value f(x). Given a continuous scalar field and a scalar value s, the isosurface

with isovalue s is the set, {x ∈ R3 | f(x = s}, of points with identical scalar

value s. Unless otherwise stated, the isovalue is assumed to be zero.

• For a closed polyhedral primitive, the scalar field is typically defined as a signed

distance field. For a closed surface S, the signed distance field D : R3 → R is

a continuous function that at a point x measures the distance between x and S.

This value is positive or negative depending on whether x lies outside or inside S.

The distance can be defined under any reasonable norm (e.g., Euclidean, max-

norm). For an algebraic primitive defined by a polynomial function g(x) = 0, the

scalar field is defined as g.

• A sampling of a scalar field f will refer to a volumetric grid in R3 such that every

grid vertex p stores the value f(p) of the scalar field at point p. A sampling of a

primitive is defined as the sampling of the associated scalar field. We will use the

term sampling to also refer to the process of generating such a volumetric grid.

• The term reconstruction refers to the process of isosurface extraction by using

Marching Cubes (MC) algorithm (Lorensen and Cline, 1987) or its variants (Mon-

tani et al., 1994; Kobbelt et al., 2001; Ju et al., 2002; Varadhan et al., 2003b).

We will collectively refer to all these algorithms as MC-like methods.

• The exact surface E and the approximation A may also be referred to as the

exact isosurface and the reconstructed isosurface respectively.

67

• G denotes a volumetric grid in R3. Unless otherwise stated, the grid is assumed to

be an octree (Samet, 1989). In a few instances, we will also consider tetrahedral

grids (Shewchuk, 1998); we will then state this explicitly. The letter C will be

used to refer to a single cell in G. When referring to the cell as a geometric

primitive, we will refer to it as a voxel. The boundary of a cell consists of faces,

edges, and vertices. A cube-shaped grid cell consists of one voxel, six faces, twelve

edges, and eight vertices. All of them are assumed to be closed sets. The symbols

ϑ, f , e, and v will refer, respectively, to a voxel, a face, an edge, and a vertex.

Let c be an edge/face/voxel of a cell C. The size of c, denoted as ‖c‖, is the

maximum distance between any two vertices in c. The size of C, denoted as ‖C‖,
is the size of its voxel. The width of c is the minimum distance between any two

vertices in c. The width of C is the width of its voxel.

• By a restriction of a set S w.r.t another set T , we mean S ∩ T , which is denoted

as ST . In particular, we will use the following notation frequently:

The restrictions of E w.r.t a cell C, voxel ϑ, a face f , or an edge e are denoted

as EC , Eϑ, Ef , and Ee respectively. Similarly, we can define AC , Aϑ, Af , and Ae.

The restriction w.r.t the cell is defined as the restriction w.r.t the voxel of the

cell.

• A homeomorphism is a continuous bijective mapping with a continuous inverse

(Munkres, 1975). Two objects P and Q are topologically equivalent if there

exists a homeomorphism H : P → Q. We denote this as P ≈ Q.

We will call an object P a topological disk if P ≈ Bd for d > 0.

An object is d-manifold if every point has a neighborhood that is topologically

equivalent to Rd.

A manifold is connected if for any two points on the manifold, there exists a

path between them in the set. If two points p ∈ S and q ∈ S are connected in a

set S, we denote this as p
S←→ q.

A manifold is said to be simply connected if any simple closed curve on the

manifold can be shrunk to a point continuously in the set.

• Let d(p, q) denote the distance (in a suitable metric) between two points p,q ∈
Rn. Unless explicitly stated, the metric is assumed to be Euclidean. Given a set

68

Q, we define the distance between a point p and Q as follows:

d(p,Q) = min{d(p, q) | q ∈ Q}

The diameter of a set P is defined as:

diam(P) = max{d(p1, p2) | p1, p2 ∈ P}

The one-sided Hausdorff distance between two sets P and Q is defined as follows:

h(P ,Q) = max{min d(p,Q) | p ∈ P}

Note that the above definition is not symmetric, i.e., h(P ,Q) is not necessarily

equal to h(Q,P). h(P ,Q) and h(Q,P) are also referred to as the forward and

backward Hausdorff distances respectively. The two-sided Hausdorff distance

is defined as:

H(P ,Q) = max(h(P ,Q), h(Q,P))

• By a surface, we refer to a 2-manifold in R3.

– A set P ⊆ S is a component of surface S if P is connected and there exists

no point p ∈ P such that p
S←→ q for some point q ∈ S \ P.

– We call a component P a component with boundary if it has a nonempty

boundary. Otherwise, we call P a closed component.

• Let S be a nonempty subset of Rn. The set Kernel(S) consists of all s ∈ S such

that for any x ∈ S, we have sx ⊆ S. S is star-shaped if Kernel(S) 6= ∅. We

call a point belonging to Kernel(S) as a guard of S. See Fig. 3.7

69

Figure 3.1: Marching Cubes: This figure shows a cell intersecting the isosurface. The
output of Marching Cubes algorithm is shown on the right.

3.2 Overview of Marching Cubes

Given a continuous scalar field, f : R3 → R and a scalar value s, an isosurface with

isovalue s is the set, {p | f(p) = s}, of points with identical scalar value s. In the

following discussion, we will assume that the isovalue s is zero. The Marching Cubes

algorithm (MC) (Lorensen and Cline, 1987) is a simple method for generating a polyg-

onal reconstruction A of an isosurface E in R3. The input to MC is a volumetric cubic

grid with a scalar value at each grid vertex. MC performs reconstruction by extracting

surfaces separately in every grid cell. The algorithm iterates through all grid cells,

hence the term marching cubes. The algorithm operates on a single grid cell C to

produce a polygonal approximation AC of EC .

1. Classification: Classify each vertex of C as inside or outside E . We refer to

this inside/outside classification as the sign of the vertex. The sign of a point p

is defined as the sign of the scalar value f(p). The signs at the 8 vertices of C

define a sign configuration (s1, . . . , s8) where si is 1 if the ith vertex is positive

and 0 otherwise, i = 1, . . . , 8.

2. Detection: Test if E intersects C, i.e., if EC = E ∩C 6= ∅. This test is performed

by checking if C exhibits a sign change, i.e., not all the vertices of C have the

same sign. In this case, proceed to Step 3. On the other hand, if all the grid

vertices of C have the same sign, then assume that EC = ∅ and do not perform a

reconstruction within C.

70

Figure 3.2: Marching Cubes Cases (Courtesy Hamish Carr).

3. Reconstruction:

• For each edge of C whose endpoints have different signs, estimate an edge

point by linear interpolation of the scalar field along the edge.

• Use the edge points enumerated in Step 2 to construct one or more polyg-

onal facets separating the vertices with different signs. This is done as per

the sign configuration of C. See Fig. 3.1. Since each of the 8 vertices of

a cube can be either positive or negative, there are 28 = 256 possible sign

configurations. Lorenson & Cline (Lorensen and Cline, 1987) used symme-

tries between different sign configurations to reduce them to 15 basic cases.

Fig. 3.2 shows all the 15 cases. They stored each of these cases in a look-up

table, and used them to find AC .

The union of AC over all the grid cells produces the reconstructed isosurface A.

There are a large number of extensions of MC (Montani et al., 1994; Kobbelt et al.,

2001; Ju et al., 2002; Varadhan et al., 2003b), and all of them follow the same general

71

approach. We refer to these algorithms collectively as MC-like methods.

(a) Unreliable Detection

(b) Unreliable Reconstruction

Figure 3.3: Errors in MC-like reconstruction: When the isosurface has complicated
features, MC-like methods are unreliable, and may produce inaccurate output. Fig.
(a) shows three cases where the isosurface intersects the cell, but the MC-like methods
cannot detect the presence of the isosurface with the cell. In these cases, MC-like
methods produce no output within the cell. Fig. (b) shows a case where they output a
polygon, but they do not reconstruct the surface component in the interior of the cell.

72

3.3 Geometric and Topological Errors

MC-like methods rely on the sign configuration of a cell C for two tasks: (a) to detect

the isosurface, i.e., if EC 6= ∅ and (b) to reconstruct EC – the portion of the isosurface

within the cell. The reliance on sign configuration is merely a heuristic and not a

fool-proof test.

There can be two kinds of problems:

• Unreliable Detection: MC-like methods may wrongly assume that E does not

intersect C and perform no reconstruction within C (Fig. 3.3(a)).

• Unreliable Reconstruction: MC-like methods produce AC by indexing into a

lookup table using the sign configuration of C. The sign configuration of C may

not adequately capture EC . As a result, AC may be a poor approximation to EC

(Fig. 3.3(b)).

The above two problems can lead to both geometric errors and topological errors in A.

We discuss each of them separately.

3.3.1 Geometric Errors

The inability of MC-like methods to detect E reliably can lead to a large geometric error

in A. See Fig. 3.4(a). One way of measuring the geometric error of A is to compute

the Hausdorff distance between E and A. For a definition of Hausdorff distance, see

Sec. 3.1. From now on, we will assume that the geometric (or Hausdorff) error of A is

equal to the two-sided Hausdorff distance H(A, E).
While it is possible for MC-like methods to guarantee a bound on the one-sided

Hausdorff distance h(A, E), this guarantee is applicable only one-way: They do not

bound the backward distance h(E ,A); there can be points on E that are far from A.

See Fig. 3.4(a). Thus the geometric error H(A, E) can be quite large; consequently, A
can be a poor approximation to E .

3.3.2 Topological Errors

The problems of unreliable detection and unreliable reconstruction can cause topolog-

ical errors in A. Due to unreliable detection, MC-like methods may miss small surface

components or handles present in E . As a result, these features may not be captured

in A. See Fig. 3.4(b).

73

(a) Geometric Error

(b) Topological Error

Figure 3.4: This figure shows 2D examples where MC-like methods produce output with
geometric and topological errors. In Fig (a), a feature present at the top of E has not
been captured in A. In Fig (b) A does not capture all the components present in E

Due to the problem of unreliable reconstruction, the topology of AC in a cell C

may not match the topology of EC . This can introduce “extraneous topology” in A,

i.e., A may have unwanted additional components or undesirable handles that were not

present in E (Fig. 1.7).

3.3.3 Sampling Issues

The above geometric and topological errors occur due to insufficient resolution of the

volumetric grid. These errors could be avoided by choosing a grid with a sufficiently

high resolution. The main question that arises is how much resolution is sufficient to

ensure an accurate approximation. Our goal is to come up with a condition for what

constitutes a sufficient resolution of the volumetric grid.

Our overall approach proceeds by sampling and reconstruction. In any approach

based on sampling and reconstruction, the key to an accurate output is to ensure that

the sampling satisfies the requirements of the reconstruction. The nature of require-

74

ments depend on the reconstruction method. To ensure accuracy of MC-like recon-

struction methods, we impose the following requirements on the sampling.

We require that the every cell in the volumetric grid must satisfy two requirements:

1. Reliable Detection: EC 6= ∅ if and only if C exhibits a sign change.

2. Reliable Reconstruction: EC ≈ AC ≈ B2.

Failure to satisfy the above requirement implies an insufficient rate of sampling for MC-

like reconstruction methods, which can cause both geometric and topological errors in

A. We avoid these errors by using a sampling condition that enforces the requirement.

We present this condition in the following section.

3.4 Sampling Condition

We present a sampling condition that ensures accuracy during isosurface extraction.

If the volumetric grid satisfies the sampling condition, then we can apply an MC-like

method to obtain an approximation A with a bounded two-sided Hausdorff error and

same topology as E .
We first address the issue of ensuring that MC-like methods preserve topology during

isosurface extraction. We defer the problem of bounding the geometric error to Sec. 3.8.

We can achieve our goal of topology preservation by making sure that the requirements

of MC-like methods are satisfied, i.e., E should intersect a grid cell C in a simple

manner, and should have a simple topology within C. In particular, we ensure that EC

is a topological disk. We present a simple condition to ensure this property. Then we

show that this condition is sufficient – if the every cell in the volumetric grid satisfies

this condition, then an MC-like method can be reliably applied to the grid to obtain a

topologically correct approximation.

Our sampling condition consists of two geometric criteria: complex cell criterion

and star-shaped criterion. For these criteria to be well defined, we require that the

isosurface intersect the grid cells in a non-degenerate manner. We present the non-

degeneracy requirement followed by the sampling criteria.

3.4.1 Non-Degeneracy Condition

We require that the isosurface should not graze the boundary of the cell. See Fig.

3.5. To avoid such situations, we require that the grid cells satisfy a non-degeneracy

75

Figure 3.5: Grazing Contact: This figure shows (in 2D) two instances of an isosurface
touching the boundary of a grid cell. Our algorithm requires that all the grid cells satisfy
a non-degeneracy condition that prohibits such contacts.

condition.

Edelsbrunner & Shah (Edelsbrunner and Shah, 1994) presented a condition for non-

degeneracy in context of Delaunay triangulation. We use their condition to define a

non-degenerate intersection of E and a grid cell C. Let c denote a voxel, face, or edge

of C. We say E intersects c generically if

1. E ∩ c = ∅ or

2. E ∩ (int c) = relative int(E ∩ c) and E ∩ c has the right dimension where the right

dimension for a voxel, a face, and an edge is 2, 1, and 0 respectively.

DEFINITION 1 A cell is non-degenerate if E intersects each of its voxel, faces,

and edges generically.

3.4.2 Complex Cell Criterion

We define a voxel (face) of a grid cell to be complex if it intersects E and the grid

vertices belonging to the voxel (face) do not exhibit a sign change (see Figs. 3.6(a) &

3.6(b)). An edge of the grid cell is said to be complex if E intersects the edge more

than once (see Fig. 3.6(c)).

MC-like methods that operate on cubical grid cells cannot handle certain sign com-

binations in a topologically reliable manner. There are two types of ambiguity — face

ambiguity and voxel ambiguity (Wilhelms and Gelder, 1990b). When the signs at the

vertices of a single face alternate during counterclockwise (or clockwise) traversal, the

resulting configuration is a face ambiguity. A voxel ambiguity results when any pair of

diagonally opposite vertices have one sign while the other vertices have a different sign

(see Fig. 3.6(d)). We refer to both face ambiguity and voxel ambiguity as an ambiguous

sign configuration.

76

Figure 3.6: Complex cell and Star-shaped Test Cases: This figure shows the different
cases corresponding to the complex cell and star-shaped test. Figs (a), (b), (c) and (d)
show cases of complex voxel, complex face, complex edge, and topological ambiguity.
The white and black circles denote positive and negative grid points respectively. Fig.
(e) shows the case where the isosurface is not star-shaped w.r.t a voxel. In Fig (f), the
restriction of the isosurface to the right face of the cell is not star-shaped.

DEFINITION 2 1. Complex cell: A non-degenerate cell is complex if it has a

complex voxel, complex face, complex edge, or an ambiguous sign configuration.

2. Complex cell criterion (C�) : A non-degenerate cell C satisfies C� if C is not

complex.

Intuitively, the complex cell criterion ensures that E intersects C in a simple man-

ner most of the times. However, this criterion by itself is not sufficient. There are

cases where a C may not be complex, but EC may have a complicated topology (see

Figs. 3.6(e) & 3.6(f)). In such cases, AC will be a poor approximation to EC . In

Fig. 3.6(e), MC-like methods miss the surface component present in the interior of the

cell 1. Similarly in Fig. 3.6(f), MC-like methods will not reconstruct the handle present

in E . We avoid such situations by enforcing a star-shaped criterion within all the grid

cells.

3.4.3 Star-shaped Criterion

We begin by defining the star-shaped property. We consider a few cases:

1. Let S be a d-dimensional nonempty subset of Rd. The set Kernel(S) consists of

all s ∈ S such that for any x ∈ S, we have sx ⊆ S. Set S is star-shaped if

Kernel(S) 6= ∅. We call a point belonging to Kernel(S) a guard of S. Intuitively,

a guard can see every point within a star-shaped primitive. See Fig. 3.7.

1We cannot detect the presence of the internal surface component and reconstruct it independently
because we do not have an explicit representation of E .

77

Figure 3.7: Star-shaped Primitive The figure shows a star-shaped primitive and its
kernel (shaded region in the middle). P is a guard of the kernel.

2. Let S be a (d− 1)-dimensional closed manifold in Rd. The set Kernel(S) consists

of all o ∈ Rd such that for any x ∈ S we have ox ∩ S = {x}. S is star-shaped

if Kernel(S) 6= ∅. A point belonging to Kernel(S) is a guard of S. We assume

that E is a 2-manifold in R3. Therefore we use this definition when we say E is

star-shaped.

3. Next we define the star-shaped property for a cell. We say E is star-shaped with

respect to (w.r.t) a voxel ϑ if there exists a point o ∈ R3 such that for any

x ∈ Eϑ = E ∩ ϑ we have ox∩Eϑ = {x}. Point o is a guard of Eϑ. We note that it

is not required to lie within the voxel. This makes the condition less restrictive.

Consider a face f . We treat Ef = E ∩f as a curve in R2. Let Πf denote the plane

containing f . We say E is star-shaped w.r.t f if there exists a point o ∈ Πf such

that for any x ∈ Ef , we have ox ∩ Ef = {x}. Point o is a guard of Ef . We define

E to be star-shaped w.r.t a cell if it is star-shaped w.r.t the cell’s voxel, and each

of its faces.

DEFINITION 3 Star-shaped criterion (CF) : A cell C satisfies CF if E is star-

shaped w.r.t C.

The surface is star-shaped w.r.t the cell in Figs. 3.6(a), (b), (c). On the other hand,

Figs. 3.6(e) & 3.6(f) show cases where the surface is not star-shaped w.r.t a voxel or a

face of the cell.

3.4.4 Topology Preserving Isosurface Extraction

DEFINITION 4 A cell C satisfies C�F if

1. EC = ∅ or

2. (a) C is non-degenerate,

78

(b) C satisfies C�, and

(c) C satisfies CF.

3. If C satisfies C�F, we refer to it as a C�F-cell.

We now present our main result on topology-preserving isosurface extraction: If

all the grid cells are C�F-cells, then MC-like algorithms extract an approximation A
that has the same topology as E . In order to prove this result, we first show that

the intersection of E with a voxel, face, or edge is homeomorphic to a disk in the

right dimension (provided the intersection is non-empty). This property is then used

to establish topological equivalence. We begin by defining the properties of MC-like

methods.

Properties of MC-like Reconstruction Methods

Recall that A is a piece-wise linear approximation of E obtained by performing isosur-

face extraction using an MC-like method. We require that the MC-like method satisfy

the following properties:

Property 1: The signs of the scalar field at all the grid vertices are preserved during

isosurface extraction; every grid vertex has an identical sign w.r.t both E and A.

This property is satisfied by the original Marching Cubes algorithm (Lorensen and

Cline, 1987) and most of its extensions (Montani et al., 1994; Kobbelt et al., 2001).

However, there are a few methods such as Dual Contouring (Ju et al., 2002) that may

not satisfy the property. We propose an extension to the Dual Contouring algorithm

that satisfies the property (Sec. 3.9).

Property 2: Let c be an edge, face, or voxel of a cell C such that c exhibits a sign

change, i.e., not all the vertices of c have the same sign. If C is a C�F-cell then

Ac ≈ Bk

where k is 0, 1, or 2 depending on whether c is an edge, face, or a voxel.

Consider an edge e that exhibits a sign change. MC-like algorithms output one

intersection point along e. Therefore, we have Ae ≈ B0.

Let c be a face or voxel of a C�F-cell cell. The sign configurations for which MC-like

reconstruction is not a topological disk are topologically ambiguous. Because C�F-

cells, by definition, are not topologically ambiguous, the remaining sign configurations

79

always result in a reconstruction such that Ac ≈ Bk. This is a property of MC-like

reconstruction methods.

Proof of Topology Preserving Reconstruction

LEMMA 1 Let e be an edge of a C�F-cell such that Ee 6= ∅. Then

(i) Ee ≈ B0

(ii) Ae ≈ B0

Proof:

(i) Because Ee 6= ∅, edge e intersects E . There has to be exactly one intersection point:

otherwise e will be complex. Therefore, Ee ≈ B0.

(ii) Because e is not complex and intersects E , e will exhibit a sign change. By Property

2, we have Ae ≈ B0.

�

LEMMA 2 Let f be a face of a C�F-cell such that Ef 6= ∅. Then

(i) Ef ≈ B1

(ii) Af ≈ B1

Proof: (i)

Define a curve I embedded in a planar face f bounded by a set of edges to be a

boundary curve if I ≈ B1 and its boundary points belong to ∂f . We will show that Ef

is a single boundary curve.

Ef can have no closed component. We prove this by contradiction. Suppose Ef has

a closed component. Then Ef cannot have any other curve component because it will

contradict the fact that Ef is star-shaped w.r.t f (see Fig. 3.8(a)). But if Ef is a single

closed component, then f is a complex face. Therefore, Ef cannot have any closed

components.

This means that Ef consists of a set of boundary curves. We will show that there

exists only one boundary curve. We will prove this by contradiction. Suppose that Ef

has multiple boundary curves. The complex edge criterion ensures that a boundary

80

(a) (b)

Figure 3.8: Intersection Curves Fig. (a) supports proof of Lemma 2. It shows a grid
cell face f and the intersection of E with f . The figure shows the intersection curve
consisting of two curve components, one of which is closed. As a result, it is not star-
shaped. Fig. (b) shows the case where the curve has two boundary curves. This results
in a face ambiguity.

curve intersects exactly two edges of the face f . It also ensures that two boundary

curves cannot intersect the same edge. Therefore, Ef can have at most two boundary

curves, each intersecting two edges of f . However, this results in a face ambiguity (see

Fig. 3.8(b)). Hence, Ef can have only a single boundary curve. This means Ef ≈ B1.

(ii) f intersects Ẽ . Because f is not complex, it must exhibit a sign change. By

Property 2, we have Af ≈ B1.

�

LEMMA 3 Let ϑ be a voxel of a C�F-cell such that Eϑ 6= ∅. Then

(i) Eϑ ≈ B2

(ii) Aϑ ≈ B2

Proof: (i) We prove that Eϑ cannot contain any closed component. Similar to the

proof of Lemma 2, the presence of a closed component would imply that either the

primitive is not star-shaped w.r.t. ϑ, or ϑ is a complex voxel.

We now prove that Eϑ has at most one surface component with a boundary and

is connected. The boundary of each surface component corresponds to a boundary

curve on the faces of the cell. From the result of Lemma 2, each face contains only one

81

boundary curve. Furthermore, the complex face and complex edge criteria preclude

the boundary curve from intersecting one or two faces. Therefore, each boundary curve

intersects at least three faces. Since each face can have at most one boundary curve,

Eϑ cannot have more than two surface components. The only way there can be two

surface components is if two diagonally opposite cell vertices are inside the primitive

while the others are outside (see Fig. 3.6(d)). This is the case of a voxel ambiguity.

Therefore, Eϑ has at most one surface component with a boundary and is connected.

To show that Eϑ is a topological disk, we show that Eϑ is a simply connected sur-

face. Suppose that Eϑ is not simply connected. This means that Eϑ has two or more

boundaries. The remainder of the proof is similar to the above argument. Existence of

two boundaries results in a voxel ambiguity. Therefore, Eϑ is simply connected. This

proves that Eϑ is a topological disk. This concludes the proof.

(ii) ϑ intersects Ẽ . Because ϑ is not complex, it must exhibit a sign change. By

Property 2, we have Aϑ ≈ B2.

�

THEOREM 1 If all the grid cells are C�F-cells, then

E ≈ A

Proof: Lemmas 1, 2, and 3 establish that the restrictions of E and A to the edges,

faces, and voxels of the grid are homeomorphic to each other. This fact can be used to

construct a homeomorphism H between E and A inductively. We first define H on the

edges, then faces, and finally voxels of the grid.

Edge Case: Consider an edge e of the grid that intersects E . According to Lemma

1, e intersects both E and A once. Let p and q be the intersection of e with E and A
respectively. We define He(p) = q. In this manner, we define homeomorphism on the

edges of the grid.

Face Case: Consider a face f of the grid such that Ef 6= ∅. According to Lemma

2, both Ef ≈ B1 and Af ≈ B1. Therefore, there exists a homeomorphism between Ef

and Af . However, for our purpose, any homeomorphism does not suffice. We need to

define a homeomorphism is consistent with the homeomorphisms defined on the edges

of face f .

The complex edge criterion ensures that Ef must intersect two edges bounding the

face. Let e1 and e2 be the two edges. E intersects e1 and e2 at intersection points p1

82

Figure 3.9: Face Homeomorphism: This figure shows how to construct a homeomor-
phism between Ef and Af on a face f . The homeomorphism is given by H2 ◦ H−1

1 .

and p2, where p1 = Ee1 , and p2 = Ee2 . By Lemma 1, A also intersects e1 and e2 at

intersection points q1 and q2, where q1 = Ae1 , and q2 = Ae2 . See Fig. 3.9.

Because Ef ≈ B1, there exists a homeomorphism H1 : [0, 1]→ Ef such that H1(0) =

p1 and H1(1) = p2. Similarly, there exists a homeomorphism H2 : [0, 1] → Af such

that H2(0) = q1 and H2(1) = q2. Define a face homeomorphism Hf : Ef → Af as

Hf = H2 ◦ H−1
1 (Fig. 3.9).

Note thatHf is consistent with the homeomorphisms defined on the edges bounding

the face. For example, we have

Hf (Ee1) = Hf (p1)

= H2 ◦ H−1
1 (p1)

= H2(0)

= q1

= Ae1

Voxel Case: Consider a voxel ϑ of the grid and let Eϑ 6= ∅. Let f1, . . . , fk denote the

cell faces that intersect Eϑ. Our goal is to define a voxel homeomorphism Hϑ between

Eϑ and Aϑ that is consistent with the face homeomorphisms Hfi
, i = 1, . . . , k.

Eϑ is bounded by a set Ef1 , . . . , Efk
of boundary curves. Eϑ also intersects k edges

of the cell. Let {p1, . . . ,pk} denote the set of intersection points along the edges.

According to Lemma 3, we have Eϑ ≈ B2. Therefore, there exists a homeomorphism

83

Figure 3.10: Voxel Homeomorphism: This figure shows how to construct a homeomor-
phism between Eϑ and Aϑ in a voxel ϑ. The homeomorphism is given by H−1

2 ◦H4 ◦H1.

H1 : Eϑ → B2. Let H1(pi) = ai and H1(Efi
) = li, , i = 1, . . . , k. The points a1, . . . , ak

belong to ∂B2 = S1, and partition S1 into k arcs l1, . . . , lk. See Fig. 3.10.

Similar arguments hold for Aϑ. Aϑ intersects the same set of cell faces and cell edges

as Eϑ. Aϑ is bounded by a set Af1 , . . . ,Afk
of boundary curves. Aϑ intersects the cell

edges giving rise to a set {q1, . . . ,qk} of intersection points. Since Aϑ ≈ B2, there exists

a homeomorphism H2 : Aϑ → B2. Let H2(qi) = bi and H2(Afi
) = mi, , i = 1, . . . , k.

The points b1, . . . ,bk belong to S1, and partition S1 into k arcs m1, . . . ,mk (Fig. 3.10).

It is possible to construct a homeomorphism H3 : S1 → S1 that maps li to mi. We

can use an argument similar to the one in the Face Case to construct a homeomorphism

Hi
3 between li and mi that maps ai to bi and ai+1 to bi+1. H3 is then defined as an

extension of Hi
3, i = 1, . . . , k; H3(x) = Hi

3(x) if x ∈ li

We can then extend H3 to define a homeomorphism H4 : B2 → B2. H4 is defined

as follows:

H4(0) = 0

H4(x) = ‖x‖2 ∗ H3(x/‖x‖2),x ∈ B2, ‖x‖2 > 0

Since H4 is an extension of H3, it also maps li to mi.

We are now ready to define a homeomorphism Hϑ between Eϑ and Aϑ. Define

84

Hϑ = H−1
2 ◦ H4 ◦ H1. Hϑ is a homeomorphism between Eϑ and Aϑ. See Fig. 3.10.

Note that it is consistent with the homeomorphisms defined on the faces of the cell. In

particular, we have

Hϑ(Efi
) = H−1

2 ◦ H4 ◦ H1(Efi
)

= H−1
2 ◦ H4(li)

= H−1
2 (mi)

= Afi

We define the homeomorphism H : E → A in terms of the homemorphisms defined

on the edges, faces, and voxels of the grid.

H(x) = Hϑ(x) if x belongs to a voxel ϑ

= Hf (x) if x belongs to a face f

= He(x) if x belongs to an edge e

�

The above proof assumes that the reconstructed isosurface in two adjacent cells

matches along the common face shared by the two cells. While the original Marching

Cubes algorithm ensures this property for uniform grids, applying the algorithm to an

adaptive grid violates the property, resulting in cracks in the reconstructed isosurface.

Several extensions have been proposed to rectify this problem (Shekhar et al., 1996; Ju

et al., 2002). We assume that one of these algorithms is used for reconstruction in our

applications. We will address this issue in more detail in Sec. 3.9.

In the above proofs, we showed that E restricted to a cell is a topological disk in

the right dimension. This topological disk property is then used to establish topolog-

ical equivalence of E and A. This property is similar to the topological ball property

proposed by Edelsbrunner & Shah (Edelsbrunner and Shah, 1994). They used the

topological ball property to ensure topology preservation in the context of Delaunay

triangulation. While our approach shares the goal of topology preservation, it is dif-

ferent in that it is geared towards MC-like reconstruction methods. The novelty of our

overall approach lies in the use of two simple criteria – complex cell and star-shaped

criteria – to guarantee topology preserving MC-like reconstruction.

85

(a) 2D Example (b) Correct Topology (c) Bounded Geometric
Error

Figure 3.11: Adaptive Subdivision: This figure is a 2D illustration of our adaptive sub-
division algorithm. Fig. (a) shows a volumetric grid generated by applying the sampling
condition. Fig. (b) shows a topology preserving approximation obtained by applying an
MC-like method to the volumetric grid. Fig. (c) shows an approximation with a bounded
geometric error (see Sec. 3.8). Our algorithm performs adaptive subdivision until the
isosurface within each cell is a topological disk. We ensure this condition by testing
whether a cell is complex and if the isosurface is star-shaped with respect to the cell. In
this figure, cell ABCD was subdivided because it corresponds to a complex voxel, cells
AEFG and FNCP were subdivided because the isosurface within the cell was not star-
shaped and FKLM was subdivided because of topological ambiguity. Edge IJ is complex;
as a result, cells AHIJ and JIQG are subdivided.

3.5 Topology Preserving Sampling

In this section, we provide adaptive subdivision criteria to generate a grid such that

each grid cell is a C�F-cell. Our sampling algorithm performs two tests on each grid

cell. The first test checks if a cell satisfies C� using a cell intersection query (Sec. 3.5.1).

The second test checks if a cell satisfies CF using a star-shaped query (Sec. 3.5.2). If

the grid cell fails to satisfy either of the two tests, the cell is subdivided and the two

tests are recursively applied to the children cells. If the grid cell satisfies both the tests,

the cell is returned as a leaf node in the octree grid. Fig. 3.11 shows a 2D illustration

of the adaptive subdivision.

We first describe computational techniques for polyhedral models and their Boolean

combinations, and later extend them to non-linear primitives. We also discuss details

of the adaptive subdivision algorithm.

86

3.5.1 Cell Intersection Query

The objective of cell intersection query is to test if E intersects the cell. Specifically,

we need to test if E intersects a voxel, a face, or an edge of a cell. We refer to these

three tests collectively as cell intersection queries, and individually as voxel, face, and

edge intersection query.

Interval Arithmetic

One technique for performing the cell intersection query is using interval arithmetic.

Early work on interval arithmetic was done by Moore (Moore, 1966). Since then,

it has been widely used in a large number of domains including computer graphics

(Kalra and Barr, 1989; Mitchell, 1991; Snyder, 1992). Interval arithmetic is a general

technique that is applicable to a wide variety of primitives. It is well suited to non-

linear primitives. It also extends easily to higher dimensions. An overview of interval

arithmetic is given in Appendix A.

Given a primitive P defined by an algebraic function f : R3 → R = 0, we can write

an interval form f of the function. Then we can use f to answer the cell intersection

query. We take advantage of the fact that each edge/face/voxel corresponds to a

product of intervals.

Consider a voxel ϑ of an axis-aligned grid. ϑ corresponds to a product of intervals

defined by two diametrically opposite vertices of the voxel. Let vi, i = 0, . . . , 7 denote

the vertices of the voxel. Let vi = (vi.x, vi.y, vi.z). Let si = vi.x + vi.y + vi.z. Given a

set {a1, . . . , an}, ai ∈ R, i = 1, . . . , n, let arg mini ai return k if ak = mini ai. arg max is

defined similarly. Let

p = vk where k = arg min
i

si

q = vl where l = arg max
i

si

The voxel ϑ corresponds to a product of intervals Iϑ = [p.x,q.x]× [p.y,q.y]× [p.z,q.z].

We can test if the boundary of P intersects ϑ by evaluating f on Iϑ. We use the

following fact:

ϑ intersects the boundary of P if 0 ∈ f(Iϑ)

Interval arithmetic can also handle voxels that are not axis-aligned by applying a rigid

transformation to Iϑ before evaluating f .

The conservativeness of interval arithmetic makes the above intersection test conser-

87

Figure 3.12: Voxel Intersection Test: We use the l∞ distance (indicated by the dotted
red cube) to perform a voxel-intersection test. The isosurface intersects the voxel if and
only if l∞ distance between the center of the voxel (o) and the isosurface is less than
half the voxel size.

vative: While the test is guaranteed to be satisfied by a voxel that intersects the surface,

it may also be satisfied by some voxels that do not actually intersect the surface. This

does not, however, affect the correctness of our algorithm.

Max-Norm Distance Computation

Another technique to answer the cell intersection query relies on max-norm distance

computation (Varadhan et al., 2003a). It is efficient in practice, and is well suited to

polyhedral and low degree non-linear primitives. Under the max-norm, the distance

between two points p and q (in 3 dimensions) is denoted as D∞(p,q) and is defined as

D∞(p,q) = max
i
|pi − qi|, i = 1, 2, . . . , 3

We can extend this definition for distance between a point p and a set Q in R3.

D∞(p,Q) = min
q∈Q

D∞(p,q) (3.1)

The iso-distance ball, i.e., the set of points at a constant distance from the origin, under

max-norm is a cube; so it is a natural metric for cubical cells. The above definition can

be extended to cuboids by defining a suitably weighted version of the max-norm along

different dimensions.

For a closed primitive, we use a signed version of the distance. Let Q denote the

boundary of the closed primitive and let Q̃ be the solid bounded by Q. We define the

88

signed max-norm distance Ds
∞(p,Q) as follows:

Ds
∞(p,Q) = sign(p,Q) ∗min

q∈Q
D∞(p,q) (3.2)

where

sign(p,Q) = −1 if p ∈ Q̃

= 1 otherwise

We use max-norm distance computation to check whether E intersects a voxel of

the cell. We use the fact that a voxel intersects the surface if and only if its unsigned

three-dimensional max-norm (l∞) distance from the center of the voxel is less than half

the size of the cell. This is shown in Fig. 3.12. It is formally stated as the following

lemma:

LEMMA 4 Voxel Intersection Test Given a voxel ϑ,

Eϑ 6= ∅ ⇔ |Ds
∞(o, E)| = D∞(o, E) ≤ l/2

where o and l are the center and width of ϑ respectively.

Similarly, the face intersection test for a face f can be performed by computing

two-dimensional max-norm distance between the center of f and Ef . In this manner,

we can use max-norm distance to perform the cell intersection query. We can efficiently

compute max-norm distance for a wide variety of geometric primitives (Varadhan et al.,

2003a).

Boolean Expression

When E is defined by a Boolean expression involving a number of primitives, it is

difficult to compute the signed distance Ds
∞(p, E) because we do not have an explicit

boundary representation of E . Instead, we compute an estimate D̃s
∞(p, E) of the signed

max-norm distance.

The Boolean operations on the primitives define a solid whose boundary is E . Let

Ẽ denote this solid. We perform a case analysis on Ẽ to define D̃s
∞(p, E). We note that

D̃s
∞(p, E) is an estimate of the signed max-norm distance; hence it is also signed.

89

1. Ẽ is a primitive solid P̃ . Let P denote the boundary of P̃ . We have

D̃s
∞(p, E) = Ds

∞(p,P)

2. Ẽ is a union of two solids: Ẽ = Ẽ1 ∪ Ẽ2.

D̃s
∞(p, E) = min(D̃s

∞(p, E1), D̃s
∞(p, E2))

3. Ẽ is an intersection of two solids: Ẽ = Ẽ1 ∩ Ẽ2.

D̃s
∞(p, E) = max(D̃s

∞(p, E1), D̃s
∞(p, E2))

4. Ẽ is the complement of a solid: Ẽ = Ẽ1.

D̃s
∞(p, E) = −D̃s

∞(p, E1)

We use D̃s
∞ to perform the voxel intersection test. D̃s

∞ may not be equal to the

actual signed distance Ds
∞ at some points. However, its absolute value is always less

than the absolute value of Ds
∞. This is stated in the following lemma.

LEMMA 5

|D̃s
∞(p, E)| < |Ds

∞(p, E)|

We skip the proof. It follows directly from the definition of D̃s
∞.

�
While the above property makes the voxel intersection test conservative, it preserves

its correctness: If a voxel intersects E , we take it into account. On the other hand, we

may also take into account some voxels that do not intersect E . While this may result

in some unnecessary computation, it does not affect the correctness of the algorithm.

A similar technique can also be used to perform interval arithmetic on Boolean

combinations of primitives. Given a voxel ϑ, we first apply interval arithmetic to each

of the primitives, and then perform min/max operations on the resulting intervals. This

produces an interval IE,ϑ for E . We then check if 0 ∈ IE,ϑ to test whether E intersects

ϑ.

Edge Intersection Query

We use directed distances (Kobbelt et al., 2001) to answer the edge intersection

query. The directed distance between a point p and a primitive Q along a unit vector

90

~v is the distance to the closest point on the primitive along ~v. It is denoted as D~v(p,Q)

and is defined as:

S = {q ∈ Q | ∃λ > 0 such that q− p = λ~v} (3.3)

D~v(p,Q) = min{d(p,q) | q ∈ S} if S 6= ∅ (3.4)

= ∞ otherwise

Our edge intersection test is based on the following property: If an edge ab intersects

E , then the directed distance at a along the direction vector ~ab is less than the length

of the vector ~ab. Based on this fact, we define an edge ab to be intersecting if

D−→
ab

(a, E) < d(a,b).

Kobbelt et al. (Kobbelt et al., 2001) have presented computational techniques for

computing directed distance for a wide variety of geometric primitives. If E is defined

as a Boolean expression, then we can compute a conservative estimate D̃~v of the directed

distance in a manner similar to the max-norm distance.

3.5.2 Star-shaped Query

The computation of the exact kernel of an orientable polyhedral primitive reduces to the

intersection of halfspaces determined by the tangent planes of the faces of the primitive.

Using the point-hyperplane duality, this is equivalent to convex hull computation. In

R3, for a polyhedral surface with n facets, this can be performed in O(n log n) (de Berg

et al., 2000). However, to test if a primitive is star-shaped, it suffices to check if the

kernel is empty or not. We refer to this test as the star-shaped query.

For the sake of simplicity, we first consider the star-shaped query for polyhedral

primitives. We discuss extension to non-linear primitives in Section 3.5.4. For a poly-

hedral primitive, testing for a non-empty kernel reduces to linear programming (LP)

(Schrijver, 1998). If p is a point belonging to the kernel, then each face of the polyhe-

dron with centroid c and outward normal n defines the linear constraint n · (c−p) > 0

on p. As a result, the kernel is non-empty if the set of constraints admits a feasible

solution for p. In fixed dimensions, LPs can be solved in linear time, and a number of

efficient public domain implementations are available (GLPK, 2003; QSOPT, 2005).

91

Figure 3.13: Star-shaped test for Boolean Combination: If two star-shaped primi-
tives S1 and S2 are star-shaped w.r.t a common point, i.e. Kernel(S1) overlaps with
Kernel(S2), then both S1 ∪ S2 and S1 ∩ S2 are star-shaped.

Boolean Expression

When E is defined by a Boolean expression involving a number of primitives, a sufficient

condition for the star-shapedness of E is that the intersection of all the primitive kernels

is non-empty. If S1 and S2 are two star-shaped primitives with a common guard, then

S1 � S2 is also star-shaped where � denotes a Boolean operation such as union and

intersection. This is because

Kernel(S1) ∩Kernel(S2) ⊆ Kernel(S1 � S2)

See Fig. 3.13.

For polyhedral primitives, we check for the above condition by combining the linear

constraints defined by the individual primitives and testing for feasibility by solving the

resulting LP. The difference operation can be rewritten as an intersection by inverting

the linear constraints of the negated primitive.

We note here that the above condition is sufficient, but not necessary. We do not

perform an exact test as we do not have an explicit representation of E .

3.5.3 Adaptive Subdivision Algorithm

We start with a single grid cell that is guaranteed to bound E . We perform two tests,

complex cell test and star-shaped test, to decide whether to subdivide a grid cell. We

now describe each of these tests.

92

Algorithm 1 Adaptive Subdivision(C)

Input: Grid cell C associated with a Boolean expression ẼC .
Output: An adaptive subdivision of C such that any MC-like algorithm generates
topologically correct output.

if C can be disregarded by cell culling (Sec. 3.10.1) then
return

end if
if C satisfies complex cell and star-shaped tests then

return
end if
Subdivide C into children cells Ci, i = 1, . . . , k
for i = 1 to k do

Perform expression simplification w.r.t Ci: ẼC
Ci−→ ẼCi

(Sec. 3.10.2)
Adaptive Subdivision(Ci)

end for

Complex Cell Test

To check whether a cell is complex, we perform the following tests:

• Complex Voxel/Face: We use the cell intersection query to check whether E
intersects a voxel or face of the cell. If E intersects the voxel (face), then we

determine if the voxel (face) is complex by checking for a sign change at the cell

vertices. If E does not intersect the voxel (face), then the voxel (face) is not

considered complex.

• Complex Edge: We use directed distances (Kobbelt et al., 2001) to test if an

edge is complex. An edge is complex if the sum of the directed distances (along

the edge) from the two endpoints of the edge is less than the edge length.

• Ambiguity: We use the signs at the grid vertices to resolve cases corresponding

to face and voxel ambiguity (see Fig. 3.8(b) and Fig. 3.6(d)).

If any of these tests results in the affirmative, the cell is complex, and we subdivide it

and apply the algorithm recursively to the new cells. See Fig. 3.11. Alg. 1 shows the

pseudo-code of our algorithm.

Star-shaped Test

Linear programming (LP) is used to test for the star-shapedness of a polyhedral primi-

tive. As described earlier in this section, E described by a single primitive or implicitly

93

by a collection of primitives can be conservatively checked for the star-shaped property.

We need to perform two tests on each cell C – (a) star-shaped w.r.t voxel of C, and

(b) star-shaped w.r.t. each face of C.

For each polyhedral primitive, we consider only those faces of the polyhedron that

intersect the voxel. This set of faces defines the constraints for an LP in R3, whose

solution answers the test (a). For each face of the cell, we consider those faces of

the polyhedron that intersect it. These faces result in a collection of piecewise linear

segments on the face of the cell. Solving a similar LP defined by these linear curves

in R2 answers test (b). When there are multiple primitives intersecting the cell, we

combine the linear constraints arising from each primitive and then solve the resulting

LP. Since we are only dealing with linear programs in two and three dimensions, a dual

formulation of constraints and objective function is much more efficient in practice. We

use such a formulation to perform the star-shaped test.

If either of these tests turns out to be negative, we subdivide the cell. Fig. 3.11

illustrates the working of the algorithm on a 2D example.

3.5.4 Star-shaped Query for Non-linear Primitives

In the previous subsections, we presented methods for performing the complex cell and

star-shaped tests. We used interval arithmetic and max-norm distance computation

for the complex cell test. Both of these methods are applicable to a wide class of

geometric primitives. On the other hand, our method for the star-shaped query using

linear programming was restricted to polyhedral primitives.

In this section, we describe a method to extend this computation to non-linear prim-

itives. This method was proposed by Shankar Krishnan, and is described in (Varadhan

et al., 2004).

It is well-known that the kernel for non-linear closed primitives like parametric and

algebraic surfaces can be computed by finding the intersection of the tangent planes at

points on the surface with zero Gaussian curvature (Seong et al., 2003). However, this

approach involves solving a system of high degree equations and curve tracing, which

is computationally intensive. Therefore, the applicability of this approach is limited.

We describe a method that avoids exact kernel computation. As previously ob-

served, the star-shaped query reduces to testing whether the kernel is empty or not.

Therefore, all we need is a point that is witness to the actual kernel. We describe a

simple method to conservatively perform this test. This method proceeds by selecting

94

a candidate point that lies in the interior of an approximate kernel of a discretized

version of the primitive. This point is computed by linear programming. We check

if the candidate point belongs to the kernel of the curved primitive by using interval

arithmetic. In this section, we provide the details of the candidate point selection and

kernel membership test.

Candidate Point Selection

We start with a discretization of the curved primitive. We compute a set of sample

points pi, i = 1, . . . , n on the curved surface. Let the unit outward normal at pi be ni.

These sample points define a set of linear constraints on the kernel. The constraints

are of the form ni
Tx ≤ di = ni

Tpi, i = 1, . . . , n. We add a new slack variable δ to each

of the constraints - ni
Tx + δ ≤ di subject to δ > 0. We set the objective function to

maximize δ. Intuitively, the modified constraints can be viewed as a family of parallel

planes (planes moving away from the normal) defining a kernel parameterized by δ.

As δ increases, the kernel shrinks. If the original constraints define a valid kernel, the

maximum value of δ for the new constraints is reached at a point that is maximally

interior in the kernel (see Fig. 3.14(a)). Further, the maximum δ value also gives a

lower bound on the volume of the approximate kernel, and hence an indication of the

existence of a non-empty exact kernel.

Kernel Membership Test using Interval Arithmetic

The candidate point computed above will lie inside the exact kernel (if non-empty)

provided we computed a sufficient number of sample points (pi’s) on the curved surface.

In general, we do not know how many such points are needed; so we choose a fixed

number of points. To ensure correctness, we need to check if the candidate point is

actually a witness to the exact kernel. Such a witness p would satisfy n(x)T (x− p) > 0,

for all points x on the primitive where n(x) is the normal to the surface at x. For an

algebraic surface f(x, y, z) = 0, the expression becomes 5fT (x− p). We can derive a

similar expression for parametric surfaces.

Consider a closed algebraic surface f(x) = 0 and a point p. The expression defining

the kernel membership test is Γ(f,p) : 5fT (x− p) subject to the condition that

f(x) = 0. Consider the case of a quadric surface, where f() is given by xTAx. In

this case, the expression for the gradient is Ax. Therefore, Γ(f,p) = (x − p)TAx =

−pTAx, since xTAx = 0. In this special case, the expression to be tested is a linear

95

(a) (b)

Figure 3.14: Star-shaped test on curved primitives: Fig. (a) shows the candidate
point selection. The black curve is the curved primitive, while the red points form a
discretized approximation. The same color scheme is used for the respective kernels.
The linear program is set up so that if an approximate kernel exists, the objective
function δ is optimized near its center. Fig. (b) shows the kernel membership test.
After choosing candidate point p, we use interval arithmetic to perform the test. Given
a cell C, we compute an initial voxelization V of the primitive and use the intervals
generated by each of the voxels inside C in the interval arithmetic step. Since the
voxels closely approximate the primitive, the performance of the membership test is
significantly improved.

expression.

Given such an expression and an axis-aligned cell, we need to verify if it is positive

inside the cell. We use interval arithmetic to perform this test reliably on the interval

determined by the cell. If the expression turns out to be positive inside the cell, p is a

witness to the exact kernel and we stop subdivision. Otherwise, the cell is subdivided

and the tests are repeated on each child cell.

The above approach is conservative and may result in some unnecessary subdivision.

The main benefit of this method is that it is similar in flavor to the test for polyhedral

primitives, and this makes it efficient. This approach requires an explicit expression

for the normal field of the surface. This is a reasonable assumption because such

expressions are available for the class of surfaces representable in algebraic or rational

parametric form (Manocha and Canny, 1992).

The performance of interval arithmetic depends on the degree of the expression and

the tightness of the interval used. If the cells are big, interval arithmetic can return

false negatives. This is primarily due to the fact that we are unable to impose the

restriction that x should satisfy f(x) = 0. Furthermore, if p lies inside the interval

96

box on which we perform the evaluation using interval arithmetic, Γ(f,p) will never be

positive. We alleviate these problems as follows:

• We do not impose the restriction that p be inside the grid cell. This gives us

candidate points that are usually far away from the grid cell.

• Along with a discretization of the original primitive, we can also precompute a

voxelization. Given a grid cell, we find voxels that intersect the cell and test

for Γ(f,p)’s sign in each of the voxel intervals (see Fig. 3.14(b)). If all the tests

return a positive sign, the point is a valid witness to the kernel. The motivation

to perform the voxelization is to generate intervals that are as close to the original

surface as possible. This also serves the purpose of significantly improving the

performance of the interval arithmetic step.

The combination of these two steps eliminates most of the problems mentioned

earlier, and avoids unnecessary subdivision.

3.6 Analysis

In this section, we analyze the behavior of our adaptive subdivision algorithm and pro-

vide a sufficient condition for its termination. We show that under certain conditions,

once a cell becomes smaller than a certain size, it will eventually satisfy both complex

cell and star-shaped criteria. Our analysis assumes that E is a smooth surface – twice-

differentiable manifold. This assumption may not hold when E is defined using Boolean

operations. We note that we make this assumption only to simplify the analysis of the

algorithm; the algorithm itself does not make this assumption.

We perform the analysis in two stages. In the first stage, we analyze both complex

cell and star-shaped criteria in terms of the Gauss map of E within the cell. The Gauss

map G of a smooth surface S in R3 is a set-valued function from S to the unit sphere

S2, which assigns to each point p ∈ S the outward unit normal to S at p. We use

the Gauss map of E to provide sufficient conditions for when a cell will satisfy both

the complex cell and star-shaped criteria. There are two separate conditions – one for

complex cell criterion and another one for star-shaped criterion.

In the second stage, we relate the Gauss map conditions to the notion of local feature

size (LFS), proposed by Amenta and Bern (Amenta and Bern, 1998). The local feature

size LFS(p) at a point p on a surface S is defined as the least distance of p to the medial

97

axis of S (Fig. 3.17). The medial axis of S is the set of points with more than one

closest point on S. Amenta and Bern used the LFS to design a sampling condition for

topology preserving reconstruction using Delaunay triangulation. They showed that it

suffices to choose a set of samples on S such that every point p ∈ S has a sample at a

distance less than a fraction of LFS(p).

We extend the above definition to define the LFS of a grid cell. We then show that

if a cell is smaller than a certain fraction of its LFS, then it will meet the Gauss map

conditions thus satisfying both the complex cell and star-shaped criteria. This provides

a bound on the size of a cell relative to its LFS. In the absence of degeneracies, the

adaptive subdivision algorithm will terminate once all the cells become smaller than

a fraction of their respective LFS. We use the LFS to also characterize some of the

degenerate cases of our algorithm. This will be discussed in Sec. 3.7.

3.6.1 Preliminaries

We use the following notation in this section. d(p,q) denotes the Euclidean distance

between p and q. ‖~u‖ denotes the length of a vector ~u. ∠m,n denotes the angle

between two vectors m and n.

Let o be the origin of Rd where d = 2, 3. Let x+
i ,x−i , i = 1, . . . , d denote the

principal directions of Rd. x+
i is a unit vector in Rd whose ith component is 1 and rest

of the components are 0. x−i is equal to −x+
i . By a principal hemisphere, we mean a

hemisphere whose axis is along one of the principal directions. For example, a principal

hemisphere with x1+ axis in R3 is defined as:

{x = (x, y, z) ∈ R3 | ‖ox‖ = 1, x ≥ 0}

A right circular cone with an axis ~u and a half-angle θ is defined as the set of points

{x ∈ Rd | ∠~u,ox = θ}.
Given a cell C, we define a Gauss map of restrictions of E to the voxel and faces of

C.

• For a voxel ϑ of C, define Gϑ as a set valued function from Eϑ to the unit sphere

S2, which assigns to each point p ∈ Eϑ the outward unit normal to Eϑ at p.

• For a face f of a cell, we consider the restriction of E to the plane Πf containing

f . Ef is treated like a curve in R2. We use a 2D definition of Gauss map. Define

98

Gf as a set valued function from Ef to the unit circle S1, which assigns to each

point p ∈ Ef the outward unit normal (defined in 2D) to Ef at p.

We use the term Gauss map to also refer to the image of the Gauss map.

3.6.2 Gauss Map Condition for Complex Cell Criterion

In Sec. 3.4, we had defined a cell to be complex if it has a complex voxel, a complex

face, a complex edge, or an ambiguous sign configuration. There is some redundancy in

this definition: a complex voxel is allowed to have complex faces or complex edges. We

now provide an equivalent definition without the redundancy. We refer to a voxel (face)

as strongly complex if it is complex and none of its faces (edges) intersect E . Unlike a

complex voxel, a strongly complex voxel cannot have a complex face or a complex edge.

A strongly complex voxel always contains a closed component of E in its interior. We

define a cell to be complex if it has a strongly complex voxel, a strongly complex face, a

complex edge, or an ambiguous sign configuration. This definition of a complex cell is

equivalent to the one presented in Sec. 3.4.

We now present a Gauss map condition for when a cell satisfies the complex cell

criterion. First, we introduce a definition.

DEFINITION 5 Let c be a voxel/face of a cell. Let ~u be a unit vector and θ be a

value such that 0 < θ ≤ π/2.

1. We say c is normal-bounded w.r.t (~u, θ) if

(a) Ec = ∅ or

(b) ∠~u,n < θ ∀n ∈ Gc(Ec)

This means that the Gauss map Gc(Ec) lies within a right circular cone whose

axis is ~u and whose half-angle is θ.

2. We say c is normal-bounded by θ if

(a) Ec = ∅ or

(b) For any two vectors n1,n2 ∈ Gc(Ec), we have ∠n1,n2 < θ.

THEOREM 2 Consider a cell C. If the following conditions hold:

99

(a) Topological Ambiguity (b) Supports Proof of Theorem 2

Figure 3.15: This figure supports the proof of Theorem 2. Fig. (a) shows a face with
ambiguity. In Fig. (b), the unit vectors along pa, sa, qc and rc have been mapped
onto the the unit circle. The figure shows a cone with an axis ~u and half-angle θ. We
show that it is not possible for the Gauss map of the curve to lie within this cone.

1. The voxel of C is normal-bounded w.r.t (~u, arcsin(1/
√

(3))) for some unit vector

~u ∈ S2.

2. Every face of C is normal-bounded w.r.t (~u, π/4) for some unit vector ~u ∈ S1.

3. No edge e of C is complex.

then C is not complex.

Proof: Let c be a voxel/face of C satisfying (1) or (2). We show it cannot be strongly

complex and cannot have an ambiguity. Therefore, C cannot be complex.

Consider a face f satisfying (2). If f is strongly complex, then there exists a closed

component of Ef within f . Therefore Gf (Ef) would span the entire circle S1. This

contradicts the fact that f is normal-bounded w.r.t (~u, π/4). Therefore, f cannot be

strongly complex.

We now prove that f cannot have a face ambiguity. Let the vertices of f be a,

b, c, and d, as shown in Fig. 3.15(a). Suppose f has an ambiguity. Without loss of

generality, assume that a and c have a positive sign, while b and d have a negative

100

sign. Each of the four edges intersect E . Let the intersection points on ab, bc, cd, da

be p, q, r, s respectively. If an edge has more than one intersection point, then choose

the one that is closest to the positive endpoint of the edge. Let nx denote the unit

normal to Ef at x ∈ Ef . Assume that the unit normal points “outwards”, i.e., towards

a point with a positive sign.

Since f is ambiguous, it has two boundary curves. Without loss of generality,

assume p and s belong to one of the boundary curves, while q and r belong to the

other. See Fig. 3.15(a).

Because a and c have a positive sign and the normals to Ef point outwards, the

normals have to lie within a range specified by the following:

∠np, ~pa < π/2 ∧ ∠ns, ~sa < π/2 (3.5)

∠nq, ~qc < π/2 ∧ ∠nr, ~rc < π/2

where ~pa, ~sa, ~qc, ~rc denote the unit vectors along pa, sa,qc, rc respectively. Under the

Gauss map Gf (Ef), these unit vectors will map to extremal points in S1, i.e. points

belonging to the set {(1, 0), (0, 1), (−1, 0), (0,−1)}. See Fig. 3.15(b).

Since f is normal-bounded w.r.t (~u, π/4), Gf (Ef) lies within a right circular cone

C centered at the origin and with a half-angle π/4. The portion of S1 that lies within

such a cone is always a subset of a principal hemisphere. Let H1 denote such a principal

hemisphere. Then we have Gf (Ef) ⊆ H1. Furthermore, H2 = S1\H1 is another principal

hemisphere. The apex of H2 is an extremal point in S1 (~rc in Fig. 3.15(b)). This

extremal point corresponds to a unit vector. Let us denote it as ~v. Since Gf (Ef) ⊆ H1,

the angle between ~v and any vector in Gf (Ef) is greater than π/2. In particular,

the angle between ~v and each of np,nq,nr,ns is greater than π/2. This contradicts

Equation 3.5.

We can use a similar argument to show that the voxel ϑ of C is not strongly

complex and does not have an ambiguity. We can show that if ϑ is normal-bounded

w.r.t (~u, arcsin(1/
√

(3))), then Gϑ(Eϑ) is always a subset of a principal hemisphere.

This fact can then be used to prove the result.

�

3.6.3 Gauss Map Condition for Star-shaped Criterion

We now present a Gauss map condition for when E is star-shaped w.r.t a voxel. We

show that a voxel ϑ will satisfy the star-shaped criterion if there exists a unit vector ~u

101

Figure 3.16: Condition for Star-shaped Criterion: This figure supports the proof of
Theorem 3. If there exists a unit vector ~u such that angle between ~u and the normal at
any point in Eϑ is less than π/2, then Eϑ is star-shaped.

such that ϑ is normal-bounded w.r.t (~u, π/2). A similar 2D result holds for the faces

of the cell.

Before proving the result, we introduce a definition.

DEFINITION 6 Consider a line segment pq that intersects E.

• We call an intersection point r ∈ Epq a tangential intersection point if pq ·
nr = 0. Otherwise we say r is a transversal intersection point. We call r an

entry point if pq · nr < 0, an exit point if pq · nr > 0.

• If all the intersection points are transversal then we say pq intersects E transver-

sally.

If pq intersects E transversally, then we can classify each intersection point as an entry

point or an exit point. We can sort the intersection points in the order of increasing

distance from p. In the sorted order, the entry and exit points will alternate each other.

This is because E is an oriented closed manifold.

THEOREM 3 Let ϑ be a boundary voxel, i.e. Eϑ 6= ∅. If there exists a unit vector ~u

such that Eϑ is normal-bounded w.r.t (~u, θ) for any θ, 0 < θ < π/2, then

102

1. E is star-shaped w.r.t ϑ.

2. Any point belonging to the set

{(x− α‖ϑ‖~u) | x ∈ ϑ, α > 1/ cos(θ)}

is a guard of Eϑ.

Proof: (2) implies (1). Hence we prove (2). Choose any point x ∈ ϑ. Let c =

x− α‖ϑ‖~u. Consider any point p ∈ Eϑ. We first show that cp · np > 0.

See Fig. 3.16. We have

cp = cx + xp

= α‖ϑ‖~u + xp

cp · np = α‖ϑ‖~u · np + xp · np

> α‖ϑ‖ cos(θ) + xp · np because ∠~u,np < θ

> ‖ϑ‖+ xp · np

> 0 because ‖xp‖ < ‖ϑ‖ and np is a unit vector

We now show that cp ∩ E = {p}. We first note that cp intersects E transversally

because otherwise it will contradict the fact that cp · np > 0 for all p ∈ Eϑ.

Suppose cp intersects E at a point other than p. Let r be a point belonging to

E ∩ (cp \ {p}) that is closest to p. Since r and p are “consecutive” intersection points,

one of them is an entry point and the other is an exit point. This means either cp·nr < 0

or cp · np < 0 which is a contradiction.

�

We note that the condition in the above theorem is sufficient, but not necessary.

The above theorem can also be rephrased as follows: If the Gauss map Gϑ(Eϑ) is a

strict subset of a hemisphere of S2, then Eϑ is star-shaped. The unit vector ~u will point

towards the apex of such a hemisphere. Similar Gauss map conditions have been widely

used in the boundary evaluation literature (Hohmeyer, 1991).

Conservative Star-shaped Test

In the case where E is non-linear, we use a conservative technique to answer the star-

shaped query (Sec. 3.5.4). The conservative technique enumerates a set of samples

103

on E to estimate a candidate point for the guard and verifies whether E is actually

star-shaped w.r.t the candidate point. Due to a poor estimate of the candidate point,

it is possible that a voxel satisfies the condition in Theorem 3, but still fails the star-

shaped criterion as per the conservative technique. However, under a more restrictive

condition than the one used in Theorem 3, we can show that a voxel will satisfy the

star-shaped criterion even as per the conservative technique. This restrictive condition

requires that a voxel be normal-bounded by π/2.

COROLLARY 4 Consider a voxel ϑ that is normal-bounded by θ, 0 < θ < π/2.

Then

1. E is star-shaped w.r.t ϑ.

2. Any point belonging to the set

{(p− α‖ϑ‖np) | p ∈ Eϑ, α > 1/ cos(θ)}

is a guard of Eϑ.

This corollary follows directly from Theorem 3 by choosing ~u = np for any point

p ∈ Eϑ. The corollary provides a sufficient condition when a voxel will satisfy the

star-shaped criterion as per the conservative technique. It suffices to choose merely one

sample (say p ∈ Eϑ) within the voxel. Then any point belonging to the set

{(p− α‖ϑ‖np) | α > 1/ cos(θ)}

can be chosen as a guard. In practice, we enumerate more than one sample point to

obtain a faster convergence. This enables us to verify the star-shaped criterion even in

the case where the voxel is not normal-bounded by π/2.

3.6.4 Local Feature Size Condition

In this subsection, we derive a conservative lower bound on the size of the grid cells

during adaptive subdivision. This provides a sufficient condition for the termination of

the algorithm.

We reduce the Gauss map conditions for both the complex cell and star-shaped

criteria to a common condition based on local feature size (LFS). We start by defining

the LFS of a cell. Then we show that both the Gauss map conditions are met if the

104

(a)

Figure 3.17: Local Feature Size (LFS): The LFS of a point p w.r.t E is defined as the
distance between p and the medial axis of E. We extend this definition to a face. The
LFS of a face f is defined as the minimum of the LFS of all points in Ef .

grid cells are smaller than a certain fraction of their LFS. This yields a lower bound on

the cell size and in turn a sufficient condition for termination of the algorithm.

We define the LFS of a cell, which in turn is defined in terms of the LFS of its voxel,

faces and edges. The LFS of a voxel is defined as the minimum of the LFS of all the

points on E that belong to the voxel. The LFS of a face/edge is defined similarly by

considering the restriction of E to the face/edge. See Figs. 3.17 and 3.18.

LFS of a Voxel: Let LFS : E → R denote the LFS of E . Recall that LFS(p) at a

point p on E is defined as the least distance of p to the medial axis of E . Then the LFS

of a voxel ϑ is defined as:

LFS(ϑ) = min{LFS(p) | p ∈ Eϑ} if Eϑ 6= ∅

= ∞ otherwise

LFS of a Face: Let Πf be the plane containing a face f . Consider the restriction EΠ
of E to Π. We can treat EΠ as a curve in R2; hence we can use a 2D definition of LFS

for EΠ. Let the LFS be defined by the function LFSΠf
: EΠ → R. Then the LFS of f

is defined as:

105

(a)

Figure 3.18: LFS of an edge: This figure shows the LFS of an edge e that is intersected
by E at two points. In this case, the LFS of the edge is equal to the distance between
the two intersection points.

LFS(f) = min{LFSΠf
(p) | p ∈ Ef} if Ef 6= ∅

= ∞ otherwise

See Fig. 3.17.

LFS of an Edge: Let le be the line containing an edge e. Consider the restriction Ele

of E to le. We define a one-dimensional LFSle for points on Ele in terms of three cases:

1. If Ele = ∅, then LFSle is always infinity.

2. Suppose E intersects le at one point. If this intersection is tangential, then LFSle

is always zero. Otherwise it is infinity.

3. E intersects le at multiple points. Then LFSle is defined as follows:

LFSle(p) = 0 if p is a tangential intersection point

= inf{d(p,q) | q ∈ Ele , q 6= p} otherwise

106

The LFS of edge e is defined as follows:

LFS(e) = min{LFSle(p) | p ∈ Ee} if Ee 6= ∅

= ∞ otherwise

See Fig. 3.18.

LFS of a Cell: The LFS of a cell is defined as the minimum of the LFS of its edges,

faces, and the voxel.

Intuitively, our goal is to show that a cell will satisfy the complex cell and star-

shaped criteria if it is “sufficiently small”. We make the previous statement precise

using the following definition.

DEFINITION 7 Let c be an edge/face/voxel of a cell C.

1. c is LFS-small if ‖c‖ < ρ LFS(c) for any ρ < β/(1+3β) where β = arcsin(1/
√

(3)).

2. C is LFS-small if every edge/face/voxel of C is LFS-small.

The choice of the value of ρ is determined by Theorem 5 (see below). We show that

a LFS-small cell satisfies the complex cell and star-shaped criteria. Our proof relies

on the following lemma presented by Amenta and Bern (Amenta and Bern, 1998). It

basically states that the normals at two closeby points on the surface are close to each

other. The surface E is assumed to be a twice-differentiable manifold.

LEMMA 6 For any two points p and q on E with d(p,q) ≤ ρ min{LFS(p), LFS(q)},
for any ρ < 1/3, the angle between the normals to E at p and q is at most ρ/(1− 3ρ)

(Amenta and Bern, 1998).

THEOREM 5 Let C be a LFS-small cell. Then,

1. C is not complex.

2. E is star-shaped w.r.t C.

Proof: Let c be a face/voxel of C. Because c is LFS-small, any two points in Ec are

within distance ‖c‖ < ρ LFS(c) where ρ < β/(1 + 3β). Then according to Lemma

6, the angle between the normals to any two points in Ec is at most ρ/(1 − 3ρ) =

β = arcsin(1/
√

(3)). Hence c is normal-bounded by β. We now use Theorem 2 and

Corollary 4 to prove the result.

107

To apply Theorem 2, we choose ~u to be the normal at any point in Ec. Thus c is

normal-bounded w.r.t (~u, π/4). Furthermore, by definition, an LFS-small edge is not

complex. Therefore C cannot have complex edges. Theorem 2 implies that C is not

complex.

Since c is normal-bounded by π/4, Corollary 4 ensures that E is star-shaped w.r.t

both voxel as well as faces of C.

�

3.6.5 Termination

Theorem 5 provides a lower bound on the size of the grid cells relative to the LFS.

During adaptive subdivision, once the size of a cell C is less than ρLFS(C), then

it is LFS-small, and satisfies both the complex cell and star-shaped criteria. The

algorithm will terminate provided there exist a lower bound on the LFS of every grid

cell. Suppose there exists such a lower bound τ . Assuming a cell halves its size at

each subdivision step, this implies a lower bound of ρτ/2 on the size of every cell. We

use this fact to provide the following sufficient condition for the termination of the

subdivision algorithm:

COROLLARY 6 If there exists an τ > 0, such that during adaptive subdivision, the

LFS of every grid cell is greater than τ , then the subdivision algorithm will terminate

and the grid cells will be of size greater than ρτ/2.

In general, it is difficult to enforce the above condition during adaptive subdivision.

During the subdivision process, as new voxels, faces and edges are created, the LFS of

the newly created voxels/faces/edges change. While it is true that the LFS of a voxel

of a child cell is always greater than or equal to the LFS of the voxel of its parent cell, a

similar property does not hold for the faces and edges of the children cells. The LFS for

the newly created faces and edges depends on how they intersect E . If these faces and

edges intersect E in a “near grazing” manner, then their LFS can be arbitrarily small.

For example, if E has large flat regions that are parallel to the axis-aligned planes of

the coordinate system (XY, YZ, or ZX), then the LFS of some of the faces and edges

can be zero. Such problems may sometimes be alleviated by choosing a different set of

co-ordinate axes.

We conclude the analysis with a few remarks. We note that LFS-small condition

is sufficient, but not necessary. Furthermore, the lower bound (ρτ/2) is an overly

conservative lower bound on the cell size. In practice, we have observed that the

108

algorithm produces much larger cells. Finally, even though our analysis is restricted to

only smooth surfaces, our algorithm is applicable to surfaces with sharp features.

Figure 3.19: Tangential Contact: This figure shows a case where two primitives touch
each other at a point. We call such a contact a tangential contact. It is a degenerate
case for our algorithm.

3.7 Degeneracies

There are two types of degenerate cases for our algorithm. The first type of degeneracy

occurs when E has a tangential contact. See Fig. 3.19. This can occur when two input

primitives touch each other. Different types of tangential contacts are possible: the

contact region may be a point, curve, or a surface. Our algorithm cannot handle such

cases. No matter how much subdivision is performed in the vicinity of the tangential

contact, the complex cell and star-shaped properties are never satisfied.

Another kind of degeneracy occurs when the E grazes an edge or a face of a cell. The

contact region may be a point, curve, or a surface. We refer to these types of situations

as grazing contacts. Fig. 3.5 shows a few examples. In the vicinity of a grazing contact,

the sampling condition is never met; an edge (face) with grazing contact will not satisfy

the complex edge (complex face) criterion. One way of reducing the likelihood of grazing

contacts is to perform the adaptive subdivision randomly, i.e., choose random points

to split the voxel, faces, and edges of the cell. For example, we can randomly select a

point in the interior of the voxel, and subdivide the voxel into tetrahedral regions with

the chosen point as an apex. This type of subdivision would generate a tetrahedral

109

grid. Isosurface extraction can then be performed using an MC-like algorithm such as

Marching Tetrahedra (Payne and Toga, 1990b; Gueziec and Hummel, 1995).

Both tangential contact and grazing contact can be characterized in terms of the

LFS. At a tangential contact, the LFS of the voxel containing the contact is zero.

Similarly, at a grazing contact along a face or an edge, the LFS of the corresponding

face or edge is zero.

Detecting the occurence of either type of degeneracy is difficult. This is because

we do not have an explicit representation of E . Note that the portion of E involved in

the contact may belong to either a single primitive or the intersection curve between

multiple primitives. While it may be possible to detect the first case, the second case

is much harder as this requires intersection curve computation.

Handling degeneracies is a challenging problem that has been extensively studied

in solid modeling (Seidel, 1994; Hoffmann, 2001; Ouchi and Keyser, 2004). Many

approaches have been proposed to handle them. One option is to perform “special

case handling”: enumerating all the possible types of degeneracies and adding code

to explicitly detect and resolve them. While this approach can be useful in many

situations, it leads to more complexity in the underlying algorithms and representations,

e.g., these algorithms need to work with non-manifold representations. Moreover, these

algorithms will not be compatible with MC-like reconstruction methods: We cannot

use special-purpose algorithms in cells containing degeneracies and MC-like methods

in the remaining cells as this may lead to cracks in the output.

Another approach to handling degeneracies is to use perturbation methods. This

approach applies a perturbation to the input to eliminate the degeneracy. The per-

turbation may be done either symbolically (Seidel, 1994) or numerically (Ouchi and

Keyser, 2004). It may be possible to use perturbation methods to resolve grazing and

tangential contacts. The input primitives defining E can be numerically perturbed.

This defines a perturbed surface E ′. If the perturbation is chosen randomly, it is likely

that E ′ is not degenerate. We can then apply our adaptive subdivision approach to the

perturbed input.

The main advantage of perturbation methods is that we can apply the adaptive

subdivision algorithm directly without having to explicitly handle degeneracies. How-

ever, there are a few issues with using numerical perturbation. It modifies the input

data, and hence the output will be topologically equivalent to the perturbed surface

Ẽ and not the original surface E . Moreover, adding a numerical perturbation may not

necessarily eliminate the degeneracy, or even worse, it may create another. Therefore,

110

this method requires a robust test for detecting degeneracy. If the applied perturbation

does not resolve the degeneracy, another perturbation is needed.

3.8 Geometric Error Bound

We extend our adaptive subdivision algorithm to generate A with a bounded geometric

error. We define the geometric error as the two-sided Hausdorff distance H(A, E), which

we call the Hausdorff error. For a definition of Hausdorff distance, see Sec. 3.1.

We describe a simple extension to the adaptive subdivision algorithm that bounds

the Hausdorff error. We exploit the fact that E is a subset of the boundaries of a set of

primitives. We bound the Hausdorff distance between A and the boundaries of these

primitives. Assume that we are given an error tolerance ε > 0. Let Γ = {P1, . . . ,Pn}
denote the set of primitives that define E . We augment the subdivision algorithm with

the following criterion:

DEFINITION 8 Hausdorff criterion (Cε) : Given an ε > 0, a cell C satisfies Cε

if

H(AC ,Pi,C) < ε ∀ Pi ∈ Γ such that Pi,C 6= ∅

where Pi,C = Pi ∩ C is the restriction of Pi to C.

If every grid cell bounding E satisfies Cε, then the Hausdorff error of A is also bounded

by ε.

THEOREM 7 If every cell C ∈ G satisfies Cε, then

H(A, E) < ε

We combine Cε with C� and CF to define the following sampling condition:

DEFINITION 9 A cell C satisfies C�Fε if C satisfies both C�F and Cε.

If we apply C�Fε during adaptive subdivision, then we obtain a reconstruction A with

a bounded two-sided Hausdorff error as well as correct topology. See Fig. 3.11(c).

We compute an upper bound δ on H(AC ,Pi,C), and check if δ is less than ε. The

diameter of the cell diam(C) serves as a trivial upper bound. Hence a simple subdivision

criterion is to subdivide a cell if its diameter is greater than ε. Using diam(C) as an

upper bound can be overly conservative: It may result in excessive subdivision for

111

small values of ε. This is because the diameter of the cell is a loose upper bound

on the Hausdorff distance between AC and Pi,C . It is possible to obtain a tighter

upper bound in the case where all the primitives Pi are polyhedral. Since the output

of Marching Cubes AC is polygonal, the problem reduces to bounding the Hausdorff

distance between two polygonal objects.

Hausdorff distance computation between polygonal objects is a well studied prob-

lem. Aspert et al. (Aspert et al., 2002) and Guthe et al. (Guthe et al., 2005) propose

efficient techniques for estimating the Hausdorff distance. We provide a brief descrip-

tion of these techniques. Let P and Q denote two polygonal objects whose Hausdorff

distance needs to be computed. We will focus on computing the forward distance

h(P ,Q); the backward distance can be computed similarly. For a fixed point p ∈ P , it

is relatively easy to calculate the distance d(p,Q). However, the goal is to obtain the

maximum over all points p ∈ P , which is difficult in practice. The above techniques

resort to sampling in order to estimate h(P ,Q). Each polygon of P is sampled, and the

distance between each sample and Q is computed. The maximum over these distances

provides an estimate of the Hausdorff distance.

We can use similar techniques to compute an upper bound δ on h(P ,Q). We use

the error tolerance ε to determine the sampling density; we recursively subdivide the

polygons in P such that each polygon has a diameter less than or equal to ε/2. The

vertices of the resulting polygons provide the set S of samples. Let τ = maxs∈S d(s,Q)

and δ = τ + ε/2. We can show that δ is an upper bound on h(P ,Q). The proof is as

follows.

Consider any point p ∈ P . Let r be any vertex of the polygon containing p.

Since every polygon has a diameter less than or equal to ε/2, we have d(p, r) ≤ ε/2.

Since r belongs to the set S of samples used in estimating the Hausdorff distance,

we have d(r, Q) ≤ τ . Let q be the point on Q that is closest to r; in other words

d(r,Q) = d(r,q). Then by triangle inequality, it follows:

d(p,q) ≤ d(p, r) + d(r,q) ≤ ε/2 + τ = δ

This implies that d(p,Q) ≤ δ. Since this is true for any arbitrary point p ∈ P, it

follows that h(P ,Q) ≤ δ.

We can use the above technique to compute upper bounds on both forward and

backward Hausdorff distances between AC and Pi,C . Let δi
1 and δi

2 denote the upper

bounds on h(AC ,Pi,C) and h(Pi,C ,AC), respectively. The maximum δi = max(δi
1, δ

i
2)

112

is an upper bound on the two-sided distance H(AC ,Pi,C). Let δC = maxi δ
i. We can

use δC as a threshold during adaptive subdivision: we check if δC > ε and in that case,

subdivide cell C. Using δC , rather than the cell diameter, can alleviate the problem of

excessive subdivision.

Figure 3.20: Isosurface Extraction on Adaptive Grids: This figure shows a cell at a
coarse resolution sharing a face ABCD with 4 cells at a finer resolution. Applying
Marching Cubes to these grid cells results in a reconstruction that does not match along
the common face ABCD.

The above technique is applicable only to polygonal primitives. In case of non-

linear primitives, it is harder to bound the Hausdorff distance. One possible solution

relies on computing Sleve to the non-linear primitive (Peters, 2003). Sleve is a pair

of matched triangulations that sandwiches a surface. We can exploit the fact that the

two triangulations enclose the non-linear surface to compute an upper bound on the

Hausdorff distance. Consider a surface P whose Sleve consists of triangulations Ps
1

and Ps
2 . If both H(A,Ps

1) < ε and H(A,Ps
2) < ε, then we have H(A,P) < ε. We

can compute the distance between A and the two triangulations using the techniques

described for polygonal objects.

113

3.9 Isosurface Extraction on Adaptive Grids

The adaptive subdivision algorithm generates an adaptive volumetric grid on which

we perform isosurface extraction. Applying the original Marching Cubes algorithm

(Lorensen and Cline, 1987) to an adaptive grid can result in cracks in the reconstructed

isosurface. A crack occurs when the reconstructed isosurface in two adjacent cells at

different resolutions does not match along a shared face (see Fig. 3.20). This becomes an

issue when defining a homeomorphism between E and A. One solution this problem is

to employ crack patching (Shekhar et al., 1996). Crack patching modifies the extracted

isosurface within the larger cell to match the extracted surface within the smaller cell.

In this way, we ensure that our approximation A is C0 continuous. Crack patching

maintains the property that A restricted to the edges, faces, and voxel of the cell is a

topological disk. As a result, we can still define a homeomorphism between E and A,

and the topological equivalence result holds.

114

(a) 2D Example

(b) Dual Contouring

(c) Modified Dual Con-
touring

Figure 3.21: 2D Modified Dual Contouring: This figure illustrates the working of the
Dual Contouring algorithm on an adaptive grid in 2D. Fig. (a) shows (in 2D) an iso-
surface E (black curve). Fig. (b) shows the output A1 (brown curve) of Dual Contouring
algorithm. A1 violates a requirement of our algorithm – it does not intersect the same
set of edges as E. For example, while E intersects edge BG, A1 does not. Therefore,
we apply a modification to the Dual Contouring algorithm to enforce this requirement.
The output A2 of this algorithm, shown in Fig. (c), satisfies the requirement.

115

A better alternative is to use dual methods such as Dual Contouring (Ju et al., 2002)

for isosurface extraction. An important advantage of these methods is that they can

handle adaptive grids easily, and can produce a reconstructed isosurface without any

cracks. We provide a brief description of the Dual Contouring algorithm. See Fig. 3.21

for a 2D example. It operates on a grid in two steps. First, for each cell that exhibits a

sign change across the edges, this method examines the set of intersection points and

generates a vertex (per cell) such that a quadratic error function is minimized. We

refer to this vertex as the error-minimizing vertex. Second, for each edge that exhibits

a sign change, the contouring method connects the error-minimizing vertices of the

cells sharing the edge. In 2D grids, each edge is shared by two cells; hence the method

outputs a line segment connecting the error-minimizing vertices of the two adjacent

cells sharing the edge. In 3D uniform grids, each edge is shared by four cells; hence the

method outputs a quad for each edge. In 3D adaptive grids, some of the edges in the

grid may be shared by three cells; for such edges, the method outputs a triangle.

We use Dual Contouring for isosurface extraction. However, we cannot apply Dual

Contouring directly – this is because the Dual Contouring does not satisfy Property 1

in Section 3.4.4. Property 1 states that the reconstructed isosurface A must intersect

each edge, face, or voxel that exhibits a sign change. However, when applied to an

adaptive grid, Dual Contouring may not satisfy this property. For example, in Fig.

3.21(b), edge BG exhibits a sign change, but does not intersect A.

We correct this problem using a simple modification to the dual contouring method.

We insert an additional intersection point along edge BG and connect it to the error-

minimizing vertices of the adjacent cells. This is shown in Fig. 3.21(c). With this

simple modification, both E and A exhibit identical sign configurations for every cell.

A similar modification works in 3D. See Fig. 3.22. It shows an edge e that intersects

E . The dual contouring method outputs a triangle that may not satisfy Property 1.

We circumvent this problem by inserting an additional vertex v on e and generating a

triangle fan around v. See Fig. 3.22(c). In order to satisfy Property 1, merely inserting

v may not be enough: we also insert additional vertices on the faces that are adjacent

to e. This is shown in Fig. 3.22(c).

With the above modification, we ensure that Dual Contouring preserves the sign

configuration of the cell. It maintains the property that A restricted to the edges,

faces, and voxel of the cell is a topological disk. As a result, the topological equivalence

between E and A holds.

The above modification may increase the number of triangles in the reconstructed

116

(a) 3D Example

(b) Dual Contouring

(c) Modified Dual Contour-
ing

Figure 3.22: 3D Modified Dual Contouring: This figure illustrates the working of the
Dual Contouring algorithm on an adaptive grid in 3D. Fig. (a) shows a portion of an
isosurface E intersecting an edge e. Fig. (b) shows the output A1 of Dual Contouring
algorithm. However, A1 violates a requirement that it should intersect the same set of
edges as E. While E intersects edge e, A1 does not. Therefore, we use a modified Dual
Contouring algorithm that enforces this requirement. The output A2 of this algorithm,
shown in Fig. (c), satisfies the requirement.

isosurface. However, the modifications need to be applied only when Property 1 is

violated. Therefore, we can first check whether Property 1 fails, and only then apply

the modification. Since typically such a violation occurs only in a small number of cells,

the increase in the number of triangles is not substantial.

3.10 Speedup Techniques

In this section we present two speedup techniques that improve the efficiency of the

adaptive subdivision algorithm. Together, they improve the overall performance signif-

icantly.

117

3.10.1 Cell Culling

Since our objective is to approximate E , it is sufficient to process only those cells that

intersect E . Based on this fact, we classify the cells in the grid into two types:

DEFINITION 10 A cell C is a boundary cell if EC 6= ∅, and a non-boundary

cell otherwise.

We need to apply the sampling condition to only the boundary cells. While appli-

cation of the sampling condition to a non-boundary cell preserves correctness of the

algorithm, it is undesirable because it adds an unnecessary overhead to the algorithm.

We reduce this overhead by using a technique called cell culling. Cell culling enables

the adaptive subdivision algorithm to disregard non-boundary cells and improves the

overall performance considerably.

Figure 3.23: Cell Culling: This figure shows a case where Ẽ is defined as a union of
two solids, Ẽ = Ẽ1∪ Ẽ2. The gray shaded region shows the union. Since C1 is contained
within Ẽ1, it is contained within the union and is a non-boundary cell. Therefore, C1

can be disregarded. Similarly, C2 can also be disregarded. On the other hand, cell C3 is
a boundary cell and needs to be taken into account.

Let Ẽ denote the solid enclosed by E . We disregard a cell C if it is either completely

inside or completely outside Ẽ . This is the main idea behind cell culling. Fig. 3.23

shows an example of cell culling where Ẽ is defined as a union of two solids, Ẽ = Ẽ1∪Ẽ2.
Cell culling is based on the voxel intersection test (Lem. 4). We use the following

property: If the signed max-norm distance to E at the center of a cell C is greater than

half the voxel size, then we can disregard C as it is guaranteed not to intersect E . As

explained in Sec. 3.5.1, we do not compute the exact signed distance Ds
∞ to E ; it is

sufficient to compute a conservative estimate D̃s
∞ of the distance. Lemma 5 ensures

that the absolute value of D̃s
∞ is less than the absolute value of Ds

∞. Therefore, we

118

can use D̃s
∞ to perform cell culling while preserving correctness. The condition for cell

culling is as follows:

Cell Culling Condition: Let C be a cell with center o and length l.

If |D̃s
∞(o, E)| > l/2 then C is a non-boundary cell.

We show an application of this condition to cell C1 in the union example (Fig. 3.23).

Let d1 and d2 denote the signed max-norm distances from o to E1 and E2 respectively.

Since cell C1 lies completely within Ẽ1, we have d1 < −l/2. This implies:

D̃s
∞(o, E) = min(d1, d2) < −l/2

=⇒ |D̃s
∞(o, E)| > l/2

Therefore C1 satisfies the condition for cell culling and we can rule out C1 from further

consideration. Similarly, we can employ cell culling for intersection and difference

operations. It can also be used for a sequence of Boolean operations.

Cell culling is conservative: While every cell discarded by cell culling is a non-

boundary cell, the converse is not true – it may not eliminate all the non-boundary

cells. This is because we use a conservative estimate D̃s
∞ of the signed max-norm

distance. Due to conservativeness of cell culling, we may unnecessarily process some

non-boundary cells; however, this does not affect the correctness of the algorithm.

3.10.2 Expression Simplification

The adaptive subdivision algorithm processes each cell in the grid independently. Within

a cell C, it needs to consider only EC – the portion of E that is contained within C. It

may be possible to define EC by simplifying the Boolean expression of E . This is the

main idea behind expression simplification.

Ẽ denotes the solid enclosed by E . By a slight abuse of notation, we will use Ẽ to

also refer to the Boolean expression associated with the solid Ẽ .
Consider the case of a union Ẽ = Ẽ1 ∪ Ẽ2, as shown in Fig. 3.24(a). Because cell C

lies completely outside Ẽ2, C is not influenced by Ẽ2. Consequently, we can simplify the

Boolean expression by getting rid of Ẽ2 from the expression. This produces a simplified

expression Ẽ1 for cell C. We refer to this step as expression simplification. It can

also be used for intersection and difference operations as well as a sequence of Boolean

operations. See Figs. 3.24(b), 3.24(c).

119

(a) Union (b) Intersection (c) Difference

Figure 3.24: Expression Simplification: Figs. (a), (b), & (c) shows examples of ex-
pression simplification for union, intersection, and difference operations respectively.
In each figure, the gray shaded region shows the final solid obtained by performing the
Boolean operation.

In order to simplify an expression of Ẽ w.r.t a cell C, we need to determine if C lies

completely outside or completely inside the solids corresponding to the sub-expressions

of Ẽ . For example, in the case of a union Ẽ = Ẽ1∪Ẽ2, we need to test if C is completely

outside Ẽ1 or Ẽ2. We perform these tests using max-norm distance computation. Given

a primitive P and a cell C, we use the following conditions:

If D̃s
∞(o,P) > l/2 then C lies completely outside P̃

If D̃s
∞(o,P) < −l/2 then C lies completely inside P̃

where o and l are the center and length of cell C respectively.

Below we provide the conditions for expression simplification. We provide a con-

dition for each Boolean operation: union, intersection, difference, and complement.

A C−→ B denotes a simplification of a Boolean expression A into an expression B in

cell C.

1. Union: Ẽ = Ẽ1 ∪ Ẽ2
We can simplify an expression involving union operation when C lies completely

outside either Ẽ1 or Ẽ2.

If D̃s
∞(o, E1) > l/2 then Ẽ1 ∪ Ẽ2

C−→ Ẽ2
If D̃s

∞(o, E2) > l/2 then Ẽ1 ∪ Ẽ2
C−→ Ẽ1

120

2. Intersection: Ẽ = Ẽ1 ∩ Ẽ2
We can simplify an expression involving intersection operation when C lies com-

pletely inside either Ẽ1 or Ẽ2.

If D̃s
∞(o, E1) < −l/2 then Ẽ1 ∩ Ẽ2

C−→ Ẽ2
If D̃s

∞(o, E2) < −l/2 then Ẽ1 ∩ Ẽ2
C−→ Ẽ1

3. Difference: Ẽ = Ẽ1 \ Ẽ2
We can simplify an expression involving difference operation in either of two cases:

(1) C lies completely inside Ẽ1; (2) C lies completely outside Ẽ2.

If D̃s
∞(o, E1) < −l/2 then Ẽ1 \ Ẽ2

C−→ Ẽ2
If D̃s

∞(o, E2) > l/2 then Ẽ1 \ Ẽ2
C−→ Ẽ1

4. Complement: Ẽ = Ẽ1
We can simplify a complement of an expression Ẽ1 by simplifying Ẽ1.

If Ẽ1
C−→ Ẽ2 then Ẽ1

C−→ Ẽ2

Fig. 3.24 shows several examples of expression simplification.

We perform expression simplification in a top-down manner during adaptive subdi-

vision. With every cell C, we maintain the corresponding Boolean expression ẼC . The

root cell of subdivision is associated with the original Boolean expression Ẽ . Each time

we subdivide a cell C into a set of children cells Ci, i = 1, . . . , k, we simplify ẼC w.r.t

the children cells, i.e.,

ẼC
Ci−→ ẼCi

This gives us a Boolean expression ẼCi
for each child cell Ci.

Alg. 1 shows pseudo-code for the complete adaptive subdivison algorithm including

expression simplification. Expression simplification can reduce the original Boolean

expression considerably. As the adaptive subdivision progresses, the expressions corre-

sponding to the subdivided cells become progressively simpler. Typically, the simplified

expression requires only a small number of Boolean operations. This improves the per-

formance of the overall algorithm considerably.

121

Consider a situation where Ẽ is expressed as a union of a high number of primitives

Ẽ = ∪iP̃i. For a cell C we can simplify Ẽ by eliminating all the primitives that lie

completely outside C. Typically the resulting simplified Boolean expression has only a

small number of primitives. This type of union operation arises frequently in many other

problems such as Minkowski sum and swept volume computation. In Chapter 4, we

discuss its application to Minkowski sum computation. For our inputs, the Minkowski

sum reduces to a union of several tens of thousands of primitives. Without expression

simplification, computing such a large union would be infeasible. Using expression

simplification, we reduce the problem to computing a union of only a small number of

primitives – typically less than a hundred. We will discuss this in more detail in Chap.

4.

3.11 Performance

In this section, we analyze the performance of our algorithm. The total time taken by

the algorithm is the sum of the times taken by the sampling and reconstruction steps.

• Sampling: This is the dominant step of our algorithm. The total time taken by

this step is given by TS =
∑

C∈G T (C) where T (C) is the time spent on a single

cell C ∈ G. We will provide a bound on T (C) below.

• Reconstruction: MC-like methods spend O(1) time on each cell of the grid.

Therefore, the time complexity of this step is O(N) where N is the number of

cells in the grid.

We analyze the cell complexity, T(C), the time taken to process a single grid cell C.

T (C) is the sum of the time taken by the complex cell and star-shaped tests. Below

we bound the time taken by each test separately. We begin by analyzing the time

complexity of the two tests on a single primitive. We consider two cases – depending

on whether the primitive is polyhedral or algebraic.

Polyhedral Primitive

Consider a polyhedral primitive with n polygons. We define the size of the primitive

to be n.

• Complex Cell Test: The complex cell test requires two types of computations:

122

– Sign query: Determining the sign of a point takes O(n) time.

– Cell intersection: This requires directed distance and max-norm distance

computation. Each of them takes O(n) time.

• Star-shaped test: For a polyhedral primitive, the star-shaped test reduces to

linear programming. We combine the linear constraints defined by each polygon

of the primitive, and solve the resulting linear program. This step takes O(n)

expected time.

Algebraic Primitive

We assume an algebraic primitive with a fixed degree.

• Complex Cell Test:

– Sign query: Computing a sign for an algebraic primitive requires evaluating

a polynomial function. We consider the time taken by this step to be O(1).

– Cell intersection: We use directed and max-norm distance computation

for low degree algebraic primitives and interval arithmetic for higher order

primitives. For an algebraic primitive, both directed and max-norm distance

computation reduce to solving a univariate polynomial equation. We con-

sider the time taken by this step to be O(1). Performing interval arithmetic

on an algebraic primitive reduces to evaluating a polynomial function. We

assume this step also takes O(1) time.

• Star-shaped test: Our star-shaped test for an algebraic primitive uses a com-

bination of linear programming and interval arithmetic. The linear programming

step requires a discretization of the algebraic primitive. We assume that each al-

gebraic primitive P has an associated discretization (see Sec. 3.5.4). Let n denote

the number of points in the discretization. We define the size of the algebraic

primitive to be n. The linear programming step takes an O(n) expected time.

We assume the interval arithmetic step takes O(1) time.

Therefore, applying the complex cell and star-shaped tests to a single primitive – poly-

hedral or algebraic – takes O(n) expected time, where n is the size of the primitive.

Our algorithm performs the complex cell and star-shaped tests on E . Specifically,

within a cell C, we perform them on EC , whose associated Boolean expression ẼC is

obtained by performing expression simplification. Let ΓC = {Pi1 , . . . ,Pik} denote the

123

set of primitives in the Boolean expression ẼC . In order to perform the complex cell

and star-shaped tests on EC , we need to take into account every primitive in ΓC . For

example, in order to compute the sign of a point w.r.t EC , we need to compute its sign

w.r.t every primitive in ΓC . Similarly, in case of star-shaped test, we combine the linear

constraints derived from the all the primitives in ΓC . Therefore, the complex cell and

star-shaped tests take
∑k

j=1 O(nj) time where nj is the size of Pij . This means the cell

complexity T(C) is given by:

T (C) =
k∑

j=1

O(nj) = O(n)

where n =
∑k

j=1 nj.

3.12 Implementation & Applications

In this section, we describe the implementation of our algorithm and highlight three

different applications: Boolean operations, simplification, and remeshing.

We used C++ programming language with the GNU g++ compiler under Linux

operating system. We demonstrate the performance of our algorithm on many complex

models. Table 3.1 highlights the performance of our algorithm on these models. All

execution times are on a 2 GHz Pentium IV PC with a GeForce 4 graphics card and 1

GB RAM.

In all our applications, we first generate an adaptive octree grid using our adaptive

subdivision algorithm. We then compute a polyhedral approximation to the boundary

of the final solid using a modified Dual Contouring algorithm (See 3.9). The recon-

structed surface is a manifold. We used a freely available linear programming package,

QSOPT (QSOPT, 2005), to implement the star-shaped test.

3.12.1 Boolean operations

Figure 3.25(left) shows the reconstruction of the final surface generated by our algo-

rithm on the dragon model. The solid is defined as a union of two dragons, each with

over 870K triangles. It took 95 secs to compute the approximate union. The second

example is obtained by performing 5 difference operations on the Turbine Blade model

(see rightmost image in Fig. 1.9). The model has more than 1.7 million triangles. The

final surface has multiple components and a higher genus. Our algorithm computes

124

Figure 3.25: Boolean operations on complex models and curved primitives: The left
figure shows the result of the union of two dragons. Each dragon is represented using
850K triangles. Our algorithm computes a topology preserving approximation of the
final boundary. It took 95 secs to compute an approximation with 118K triangles at
a relative Hausdorff error bound of 1/128. Recall that the relative Hausdorff error is
defined as the ratio of the absolute Hausdorff error to the maximum length of a “tight”
axis-aligned bounding box around the object. The right figure shows the result of 100
difference operations between a polyhedron and 100 ellipsoids. The resulting surface has
a complex topology; it has a genus of 208. Our algorithm took 16 secs to generate an
approximation with the correct topology at a relative Hausdorff error bound of 1/64.

the boundary in 116 secs. Figure 3.25(right) highlights application of our algorithm

to perform Boolean operations on curved primitives. It shows a challenging scenario

where we perform 100 difference (Boolean) operations between a polyhedron and 100

ellipsoids. The resulting surface has a complex topology with numerous small holes; it

has a genus of 208. Our algorithm took 16 secs to generate an approximation with the

correct topology.

3.12.2 Topology Preserving Volumetric Simplification

Model simplification algorithms produce a lower polygon count approximation of a

polygonal object that preserves the shape or appearance of the object. Simplification

techniques have been used for fast display and simulation. In order to compute a drastic

simplification for interactive visualization, many algorithms do not preserve the surface

topology. On the other hand, preserving topology during simplification is important

for applications like CAD, medical visualization, and molecular modeling. Volumetric

125

(a) Hand model (b) Coarse Approxi-
mation

(c) Fine Approxima-
tion

(d) Adaptive Subdivision (e) Closeup

Figure 3.26: Topology-Preserving Simplification: Figs (a),(b),(c) show the original
model along with a coarse and fine approximation generated using our topology pre-
serving simplification algorithm. The original model has 654K triangles, while the two
approximations consist of 27K and 58K triangles respectively at relative Hausdorff er-
ror bounds of 1 and 1/128. Fig (d) shows the adaptive grid generated for the coarse
approximation. The colors, green, blue, and red in that order, indicate the increasing
level of subdivision. Fig (e) shows a closeup view of a part of the fine approximation.
It highlights the features in the original model and our algorithm is able to reconstruct
all these features accurately. It took 36 secs to generate the approximation.

algorithms have been proposed for model simplification (He et al., 1996; Nooruddin

and Turk, 2003). These algorithms are fast in practice and are applicable to all kind of

models. However, none of these algorithms give rigorous guarantees on preserving the

surface topology.

We compute a discrete sampling of the distance field by applying our adaptive

subdivision algorithm. Different levels of detail are generated by changing the value

of the two-sided Hausdorff error tolerance. The reconstruction algorithm generates an

isosurface that has the same topology as the original model. Our metric of Hausdorff

error can be easily combined with other metrics such as curvature, quadric error, etc,

to guide the simplification.

126

Figure 3.27: Remeshing of a CAD model: The left image shows a CAD model, which has
many “skinny” triangles with poor aspect ratios (center image). We used our algorithm
to compute an improved triangulation of the model (right image). The original model
had 41K triangles. Our algorithm took 2.8 secs to perform remeshing and generate a
mesh with 16K triangles at a relative Hausdorff error of 1/32.

Combi. Complexity Performance (secs)
Model Input Output Complex Star-shaped Subdivision Total

Hand Simplification (Fig. 3.26) 654,666 58,966 4.3 8.1 23 36
Turbine Simplification (Fig. 1) 1,765,388 511,182 14.1 31.3 65.8 110
Turbine Blade Boolean (Fig. 1) 1,765,388 319,074 16.8 29.1 70.4 116
Union of Dragons (Fig. 3.25) 1,714,920 118,214 10.2 21.1 63.6 95
Curved Boolean (Fig. 3.25) - 57,286 5.4 5.1 5.5 16

Brake Hub Remeshing (Fig. 1.10) 14,208 7,056 0.38 0.55 0.90 1.85
CAD model Remeshing (Fig. 3.27) 41,152 16,524 0.58 0.81 1.41 2.8

Table 3.1: Performance: This table highlights the complexity of our input models and
performance of our algorithm. The columns on the left shows the the triangle count of
the input and triangle count in our reconstruction. The columns on the right show the
cumulative time taken by the complex cell test, star-shaped test and adaptive subdivision
over all the grid cells. The rightmost column shows the total execution time.

Figure 3.26 shows our simplification algorithm applied to a medical dataset, a 650K

triangle Hand model. This model has a number of topological features that need to

be preserved in order to maintain the anatomical structure of the hand. Figs. 3.26(b)

(27K triangles) and 3.26(c) (58K triangles) show a coarse and a fine approximation,

respectively, of the original model. The coarse approximation was computed by apply-

ing our adaptive subdivision algorithm without imposing any Hausdorff error bound.

The resulting grid is shown in Fig. 3.26(d). Fig. 3.26(e) shows a closeup view of part

of the finer approximation. It took 36 secs to generate the approximation. Figure 1.9

shows our simplification algorithm applied to the Turbine Blade model. This model has

a high genus and many tunnels in the interior. It took 110 secs to generate a simplified

model with 511K triangles. Note that our method preserves the complex topological

features in the simplified model.

Some prior surface simplification methods can be adapted to perform topology pre-

serving simplification (Cohen et al., 1996; Zelinka and Garland, 2002). However, one

limitation of these approaches is that they need to perform global tests to avoid surface

127

self-intersections, which can result in considerable overhead. On the other hand, our

algorithm is guaranteed not to produce self intersections.

Our subdivision criterion ensures that the isosurface is a topological disk within each

grid cell by satisfying the complex cell and star-shaped criteria. In applications such

as simplification and remeshing, a simpler test exists. In these applications, we have

a polygonization of the original surface. We can ensure the topological disk property

by computing the Euler characteristic and testing if it is equal to 1. However, in

case of Boolean operations, we do not have a polygonization of the final surface (in

fact, our goal is to compute a polygonization). Consequently, the test based on Euler

characteristic does not work for Boolean operations.

3.12.3 Topology Preserving Remeshing

Volumetric approaches have been used for remeshing of polygonal models (Kobbelt

et al., 2001; Nooruddin and Turk, 2003). In many applications, the polygonal models

can have triangles with bad-aspect ratios. The goal is to compute a valid manifold

representation of the underlying closed solid and ensure that the resulting triangles have

a good aspect ratio. The mesh generated after remeshing can be used for multiresolution

analysis or simplification.

Earlier algorithms generated a volumetric representation by sampling the distance

field on a uniform grid (Kobbelt et al., 2001), or with a simplified topology (Nooruddin

and Turk, 2003). However, these methods provide no guarantees on the genus or

the number of connected components. We have applied our subdivision algorithm to

compute a topology preserving remeshing of CAD models. Figs. 1.10 and 3.27 show

some of our results. The Euler characteristic test (see Section 3.12.2) could also be

used for remeshing.

3.12.4 Discussion

Table 3.1 highlights the performance of our algorithm on these models. It also provides

a breakup of the total time spent in performing the complex cell test, star-shaped test,

and adaptive subdivision. This corresponds to the time taken to “push” the input

triangles down the octree data structure. For each octree cell C, we perform expression

simplification to obtain a smaller set of primitives ΓC that define the isosurface within

the cell. We maintain a list TC of triangles that belongs to the primitives in ΓC . We

maintain the set TC in cell C. As we subdivide C, we partition it into 8 children Ci and

128

compute their triangle lists TCi
similarly. For large input models, this takes substantial

fraction of the total time.

3.13 Limitations

In this section, we discuss the limitations of our algorithm. As discussed earlier in Sec.

3.7, our algorithm does not terminate in certain degenerate cases. Our algorithm can

only generate manifold boundaries and is not applicable to the cases where the exact

boundary is non-manifold.

We do not provide a bound on the time complexity of our algorithm as a function of

the combinatorial complexity of the input primitives. This is because of we are unable

to give an absolute lower bound on the size of the grid cells generated during adaptive

subdivision. Sec. 3.6 provides a lower bound on the cell size relative to the LFS of

a cell. However, to obtain an absolute bound, the LFS needs to be expressed as a

function of the combinatorial complexity of the input. This requires further analysis.

Our algorithm may perform conservative subdivision. Within a cell, we require

that all the primitives should be star-shaped with respect to a common guard. This

is a conservative condition. The isosurface defined by the Boolean expression over the

primitives can be star-shaped within the cell even though this condition may not be

satisfied. This can result in additional subdivision and lead to higher polygon counts

in the approximation.

Our topology preserving simplification algorithm cannot perform drastic simplifi-

cations. This is due to the conservative subdivision and also the fact that volumet-

ric approaches can not produce drastic simplifications (El-Sana and Varshney, 1997).

Moreover, for a fixed polygon budget, approaches based on surface decimation opera-

tions like edge collapses or vertex removal (Cohen et al., 1996) will generate a higher

quality simplification.

3.14 Summary

In this chapter, we have described a novel approach to compute topology preserving iso-

surfaces that arise in a variety of geometric processing applications. We have presented

a sufficient sampling condition based on the complex cell and star-shaped criteria so that

the reconstruction maintains the topology of the original isosurface. We have described

a simple extension to the sampling condition to also bound the two-sided Hausdorff

129

error of the reconstruction. We have also described an adaptive subdivision algorithm

which is efficient in practice and easy to implement. We have demonstrated the appli-

cation of our algorithm to Boolean operations, topology preserving simplification, and

remeshing on a number of complex examples.

130

Chapter 4

Minkowski Sum Approximation

The Minkowski sum of two sets P and Q is the set of points {p + q | p ∈ P, q ∈
Q}. Minkowski sums have been used for robot motion planning (Lozano-Pérez, 1983),

penetration depth computation (Cameron, 1997; Kim et al., 2002), offset computation

(Rossignac and Requicha, 1986), and mathematical morphological operations (Williams

and Rossignac, 2004).

Our goal is to compute the boundary of the 3D Minkowski sum of two polyhedral

models. The Minkowski sum of two convex polytopes (with n features) can have O(n2)

combinatorial complexity and is relatively simple to compute. On the other hand,

the Minkowski sum of non-convex polyhedra is much more challenging: its complexity

can be as high as O(n6) (Halperin, 2002b). One common approach is to decompose

the two non-convex polyhedra into convex pieces, compute their pairwise Minkowski

sums, and finally the union of the pairwise Minkowski sums (Lozano-Pérez, 1983).

The main bottleneck in implementing such an algorithm is computing the union of

pairwise Minkowski sums. Given m pairwise Minkowski sums, their union can have a

combinatorial complexity O(m3 + sm log(m)) where s is the number of total number

of faces in the pairwise Minkowski sums (Aronov et al., 1997). In the context of

Minkowski sum computation of complex non-convex polyhedral models, m is typically

high – usually several thousands. Furthermore, robust computation of the boundary

of the union and handling all degeneracies remains a major issue (Halperin, 2002b;

Abrams and Allen, 2000). As a result, no practical algorithms are known for robust

computation of exact Minkowski sum of complex non-convex polyhedral models.

Instead of computing the exact union, we approximate the union using our isosur-

face extraction algorithm based on C�Fε sampling condition (Chapter 3). This yields

an approximation to the exact Minkowski sum boundary. The geometric and topo-

132

logical guarantees of our isosurface extraction algorithm apply to the Minkowski sum

approximation as well: Provided the C�Fε condition is satisfied, the approximation

is topologically equivalent to the exact Minkowski sum boundary and has a bounded

two-sided Hausdorff error.

In order to speed up the computation, we employ two culling techniques that are

specialized for Minkowski sum computation. The sampling algorithm performs cell

culling to eliminate the grid cells that do not contain a part of the Minkowski sum

boundary. The sampling algorithm also takes advantage of primitive culling and per-

forms efficient distance and sign queries by only considering a small subset of primitives,

while preserving the correctness of these queries. In practice, these culling techniques

can improve the overall performance by more than two orders of magnitude on complex

models.

We have used our Minkowski sum approximation algorithm for two applications.

• Robot motion planning of robots with translational degrees of freedom.

• Offsets and mathematical morphological operations.

Our algorithm can also be used for estimating tight penetration depth of polyhedral

models.

Our algorithm is simple to implement. We have tested its performance on a number

of polyhedral models ranging from several hundred to a few thousand triangles. The

computation of Minkowski sum takes a few minutes on a 2 GHz Pentium IV processor.

The rest of the chapter is organized as follows. Section 1 presents our approxi-

mate algorithm to compute the boundary of Minkowski sum. It also presents speedup

techniques that improve the overall performance considerably. Section 2 discusses ap-

plication to offsets and mathematical morphological operations. Section 3 discusses

application to penetration depth estimation. Section 4 highlights the performance of

our algorithm on a number of complex polyhedral models. Section 5 provides a sum-

mary of the algorithm and a discussion of its limitations.

4.1 Approximate Algorithm

In this section, we present our algorithm for approximating the 3D Minkowski sum of

polyhedral models.

133

4.1.1 Overall Approach

One common approach for computing Minkowski sum of general polyhedra is based on

convex decomposition (Lozano-Pérez, 1983). It uses the following property of Minkowski

sum. If P = P1 ∪P2, then P ⊕Q = (P1⊕Q) ∪ (P2⊕Q). The approach combines this

property with convex decomposition:

1. Compute a convex decomposition for each polyhedron

2. Compute the pairwise convex Minkowski sums between all possible pairs of convex

pieces in each polyhedron.

3. Compute the union of pairwise Minkowski sums.

After the second step, there are O(mn) pairwise Minkowski sums where m and n are

the number of convex pieces of the two polyhedra. The pairwise Minkowski sums are

convex and their union can have a combinatorial complexity O(k3 + sk log(s)), where

k = mn and s is the number of total number of faces in the pairwise Minkowski sums

(Aronov et al., 1997).

Our algorithm for Minkowski sum computation is based on the above framework.

We now discuss each of the above steps in detail.

4.1.2 Convex Decomposition

The problem of computing an optimal convex decomposition of a non-convex polyhe-

dron is known to be NP-hard (O’Rourke and Supowit, 1983). Chazelle proposed one

of the earliest convex decomposition algorithms (Chazelle, 1981), which can generate

O(r2) convex parts and uses O(nr3) time, where n and r are the number of polygons and

notches in the original polyhedron respectively. However, no robust implementation of

this algorithm is known. Most practical algorithms for convex decomposition perform

surface decomposition or tetrahedral volumetric decomposition (Joe, 1991; Chazelle

et al., 1997; Ehmann and Lin, 2001). Typically, these methods can generate O(n)

convex parts where each part has only a few faces.

We use a modification of the convex decomposition scheme available in a public

collision detection library, SWIFT++ (Ehmann and Lin, 2001). This method is an

implementation of the algorithm presented in (Chazelle et al., 1997). It performs surface

decomposition and generates a set of convex patches ci’s of the object boundary ∂P .

We compute a convex hull of each surface patch, ci, and denote the resulting polytope

134

by Ci. The Ci’s constitute a convex decomposition of object P . Ci’s consists of two

types of faces: real faces that belong to the original polyhedron and virtual faces that

are artifacts of the convex hull computation. In general, the union of Ci’s need not

cover the entire volume of P . Ci’s may create some undesirable voids in the interior

of P that are bounded by the virtual faces. We disregard these voids by ignoring the

virtual faces while performing the sign, distance, and star-shaped queries.

Given two polyhedra P and Q each with n triangles, the convex decomposition

method divides each polyhedron typically into O(n) convex parts. In practice, each

convex part usually has very few polygons (4− 8 on an average). Computing pairwise

Minkowski sums between all pairs of convex pieces results in O(n2) pairwise Minkowski

sums. Although this quadratic complexity may seem high, it should be viewed in con-

text of the high complexity of the final Minkowski sum (O(n6)). Even though we may

need to compute the union of a large number of primitives (pairwise Minkowski sums),

the primitives themselves are relatively simple and typically have a low combinatorial

complexity. Our approximate algorithm is well suited to this problem.

4.1.3 Pairwise Minkowski Sum Computation

We compute the pairwise Minkowski sums between all possible pairs of convex pieces,

CP
i and CQ

j , belonging to P and Q, respectively. Let us denote the resulting Minkowski

sum as Mij. We use a convex hull algorithm to compute Mij. Its complexity is

O(n2 log n) where n is the number of vertices in CP
i and CQ

j . Algorithms with better

time complexity bounds are known, e.g., the algorithm by Guibas and Seidel (Guibas

and Seidel, 1987) can compute the Minkowski sum of two convex polyhedra in O(n+k)

time, where k is the number of polygons in the output. However, since CP
i , CQ

j and

Mij usually have a constant combinatorial complexity, we chose use the simpler convex

hull algorithm described below.

Convex Hull Approach: It is based on the following property:

P ⊕Q = CH({vi + vj|vi ∈ VP ,vj ∈ VQ}) (4.1)

Here, CH denotes the convex hull operator, and VP , VQ represent the sets of vertices,

respectively in polyhedra P and Q. Based on this fact, we compute the Minkowski sum

as follows:

1. Compute the vector sum between all possible pairs of vertices from each polytope.

2. Compute their convex hull.

135

4.1.4 Union Computation

The Minkowski sum M is given by the union of the pairwise Minkowski sums: M =

∪i,jMij. However, computing an exact union of the pairwise Minkowski sums is not

practical due to the high number of the pairwise Minkowski sums. In our input models,

M is defined by union of tens of thousands of primitives (pairwise Minkowski sums).

Exact boundary evaluation of this size is slow and prone to robustness problems.

Instead of computing the exact union, we approximate the union using our sampling-

based isosurface extraction algorithm. We use the C�Fε sampling condition to generate

a grid G on which we perform isosurface extraction. The reconstructed isosurface is an

approximationA to ∂M, the boundary of the exact Minkowski sum. The geometric and

topological guarantees of our isosurface extraction algorithm apply to the Minkowski

sum approximation as well. Therefore, we have the following result.

THEOREM 8 If every cell in G satisfies C�Fε, then

1. Geometric Guarantee: H(A, ∂M) < ε.

2. Topological Guarantee: A ≈ ∂M.

Together, the geometric and topological guarantees ensure a good approximation.

4.1.5 Speedup Techniques

A naive application of the above approximate algorithm can result in poor performance.

This is because in the context of Minkowski sum computation, we are dealing with

a high number of primitives (Mij’s). We use two culling techniques to significantly

accelerate the algorithm.

Cell Culling

As explained in Sec. 3.10.1, the sampling condition needs to be applied to only boundary

cells, i.e., cells C such that ∂M ∩ C 6= ∅. We perform cell culling (Sec. 3.10.1)

to eliminate “non-boundary” cells, This improves the performance of our algorithm

considerably.

Let Γ denote the set of all the pairwise Minkowski sum primitives (Mij’s). In the

context of Minkowski sum computation, the cell culling step discards a cell C if either

of two conditions hold:

136

Figure 4.1: Cell and Primitive Culling: Cell culling discards cells C1 and C2. Primitive
culling on cell C3 reduces the set of primitives to {P4, P5}.

1. C lies outside all the primitives, C ∩Mij = ∅ ∀Mij ∈ Γ.

2. C lies inside any of the primitives, C ⊆Mij for some Mij ∈ Γ.

We check for the above conditions using max-norm distance (see Secs. 3.10.1 and

3.10.2). See Fig. 4.1.

Primitive Culling

The sampling algorithm needs to perform sign, distance, and star-shaped queries. These

queries are performed several times for each grid cell and therefore significantly impact

the overall performance of the algorithm. Among these queries, the sign query and

the (signed) distance query are global in scope in that the answer to the query may

depend on all the primitives. In order to perform a query onM = ∪Mij, we may have

to examine each Mij. Given the large number of primitives, this can slow down the

overall algorithm.

Our objective is to perform local queries such that the answer to the query depends

only on a small subset of primitives. In particular, when performing a query within a

cell, we would like to inspect only those primitives that intersect the cell. Of course,

we need to perform this in a manner that preserves the correctness of the query.

We achieve this by performing expression simplification (Sec. 3.10.2). We take

advantage of the fact that the above queries need not be performed within cells that

have been eliminated due to cell culling. In particular, we need to perform these queries

within a cell C only if C 6⊆ Mij for all Mij ∈ Γ. Applying expression simplification to

137

M = ∪ijMij within C results in the following simplification:

∪ijMij
C−→ ∪{Mij ∈ ΓC}

where

ΓC = {Mij | ∂Mij ∩ C 6= ∅}

Using the above simplification, we can answer the queries by considering a much smaller

number of primitives. Hence we refer to this step as primitive culling. See Fig. 4.1.

The correctness of primitive culling follows from the following theorem:

THEOREM 9 Let C be a cell such that C 6⊆Mij ∀Mij ∈ Γ. We have

MC = C ∩ (∪{Mij ∈ ΓC})

Proof: Consider any primitive Mkl /∈ ΓC . In other words, ∂Mkl does not intersect cell

C. We show that Mkl will not contribute to MC . Since C 6⊆ Mkl, the only possible

case is C ∩Mkl = ∅. In this case, we have

MC = C ∩ (∪Mij) = C ∩ (∪{Mij ∈ Γ \ {Mkl}})

i.e., Mkl does not contribute toMC . This concludes the proof.

�

Primitive culling is important for the efficiency of Minkowski sum computation. For

example, the Minkowski sum models shown in Fig. 4.4 require a union of several tens of

thousands of primitives. Primitive culling reduces the number of primitives to a much

smaller number – typically, less than a hundred. Primitive culling not only drastically

improves the overall performance of the algorithm, but also enables the algorithm to

scale up to more complex models.

We can extend the above result to perform additional culling. Let P be a primitive

that intersects a cell C. In order to answer queries within cell C, we only need to

consider PC = P ∩ C – the portion of P contained within C. We use this property to

disregard triangles belonging to P that lie outside C. Let Tij be the set of triangles

in Mij and TC
ij ⊂ Tij be the subset of triangles that intersect C. In order to answer

queries within C, we only need to consider the set TC = ∪ijT
C
ij .

138

4.2 Offsets and Mathematical Morphological Oper-

ations

In this section, we discuss an application of our Minkowski sum approximation algo-

rithm to mathematical morphological operations, which were introduced in Sec. 1.2.

We first consider the case of morphological operations on polyhedral objects. Both

the primary morphological operations – dilation and erosion – can be expressed in terms

of the Minkowski sum. Dilation of an object P by a structuring element Q, is same

as the Minkowski sum P ⊕ Q. Erosion can be expressed in terms of a dilation of the

complement of P . Formally, we have

Erosion(P ,Q) = P ⊕Q′

where S denotes the complement of a set S, and Q′ denotes a copy of Q reflected about

the origin.

Therefore, we can perform both dilation and erosion using our Minkowski sum

approximation algorithm. Since our algorithm relies on a convex decomposition of the

objects involved in the Minkowski sum operation, the erosion operation on an object

P will require a convex decomposition of the complement of P . Complementing P can

be achieved by merely inverting the orientation of the polygons of P . The opening

and closing operations (see Sec. 1.2 for definitions) can then be implemented as a

composition of dilation and erosion operations.

Cup (1, 000 tris) Cup ⊕ Sphere Gear (2, 382 tris) Gear ⊕ Sphere

Figure 4.2: Offsets: The figures show two polygonal models, Cup and Gear, with 1, 000
and 2, 382 triangles respectively. Our approximation algorithm computed their offsets
by computing their Minkowski sum with a sphere. It took 33 and 84 secs to compute the
offsets for the two models. The approximate boundary consisted of 14, 895 and 22, 742
triangles.

139

An interesting case of morphological operations is where the structuring element Q

is a ball. In this special case, the dilation operation reduces to the offset operation.

The offset of a solid is obtained by adding to the solid all the points that lie within a

distance r. Mathematically it is defined as

Offset(P) = {x ∈ R3 | ∃p ∈ P , ‖x− p‖ ≤ r}

Similarly, erosion creates an offset a distance r inwards from the original surface.

(a) Vertex (b) Edge (c) Triangle

Figure 4.3: Offset: The offset of a triangle has three types of regions: a spherical region
around each vertex, a cylindrical region around each edge and a planar region due to
the displacement of the original triangle along its normal by distance r. This results in
a triangular prism. We can thus express the offset of a triangle as a union of spheres,
cylinders and a triangular prism.

The offset of a polygonal object P consists of three types of regions:

• A spherical region around a vertex vi of P . This region is part of a sphere Si of

radius r centered at vi.

• A cylindrical region around an edge ej of P . This region is part of a cylinder Cj

of radius r and whose axis is same as ej.

• A planar region due to a polygon pk of P obtained by displacing pk along its

outward normal by a distance r. This results in a prism Pk.

See Fig. 4.2. Let O = (∪iSi)
⋃

(∪jCj)
⋃

(∪kPk). The (outward) offset of P is given by

P
⋃
O. The offset surface inwards from the original surface is given by P \ O. In this

case the prisms Pk are obtained by displacing the polygon along the inward normal.

Thus, offset computation of polyhedral objects reduces to performing Boolean op-

erations on polyhedra, prisms, spheres, and cylinders. We need to perform three union

operations per triangle followed by a union or a difference operation with the original

object. Therefore, the offset computation of an object with n triangles requires Boolean

140

operations on 3∗n+1 primitives. Exact computation of the offset is difficult in practice

due to the presence of non-linear primitives in the boundary as well as the large number

of primitives. Instead, we use our sampling-based isosurface extraction algorithm to

compute a good approximation. Fig. 4.2 shows some of our results.

Note that, unlike Minkowski sum computation, the method for offset computation,

does not require a convex decomposition of the object.

Anvil Spoon Anvil ⊕ Spoon
(144 tris) (336 tris) (Union of 4, 446 prims, 15K tris)

Wrench Spiral Wrench ⊕ Spiral
(772 tris) (500 tris) (Union of 38, 703 prims, 25K tris)

Knife Scissors Knife ⊕ Scissors
(516 tris) (636 tris) (Union of 62, 790 prims, 26K tris)

Figure 4.4: Minkowski sum of polygonal models: The left two columns show the two
primitives whose Minkowski sum is being computed. The triangle counts for the two
primitives are shown in brackets. Two views of the approximation computed by our
algorithm are shown in the right. Our algorithm took 63, 316 and 778 secs respectively
to generate an approximation. The approximate boundary consists of 15K, 25K and
26K triangles respectively (see Table 3.1).

141

Grate 1 (444 tris)

Grate 2 (1, 134 tris)
Grate 1 ⊕ Grate 2 (Union of 66, 667 prims, 358K tris)

Figure 4.5: Complex Minkowski sum example: The left figure show two grates with 444
and 1, 134 triangles respectively. We decomposed them into 163 and 409 convex pieces
respectively and computed the pairwise Minkowski sums between the convex pieces. The
final Minkowski sum is given by the union of 66, 667 pairwise Minkowski sums. Our
approximation algorithm computed an approximation (shown in the right) in 3, 162 secs
(52 minutes). It was able to reconstruct the complex features present on the boundary.

4.3 Penetration Depth Estimation

Our Minkowski sum approximation algorithm can be used to estimate the penetration

depth between two polyhedral models. We guarantee that our estimate of penetration

depth is within a user-specified tolerence ε of the actual value. The penetration depth of

two intersecting polyhedra P and Q, PD(P, Q), is the minimum translational distance

that one of the polyhedra must undergo to render them disjoint. Formally, PD(P, Q)

is defined as:

min{‖ d ‖ | interior(P + d) ∩ Q = ∅} (4.2)

Here, d is a vector inR3. It is well known that one can reduce the problem of computing

the PD between P and Q to a minimum distance query on the surface of their Minkowski

sum, P ⊕−Q (Cameron, 1997).

142

Our Minkowski sum approximation algorithm can be used to obtain a tight penetra-

tion depth estimate. Given any ε > 0, we compute a geometrically close approximation

Aε, i.e., H(Aε, ∂M) < ε (Theorem 8). Our penetration depth estimate δ is given by

δ = D(OQ−P ,Aε). It is easy to prove that our estimate δ is close to the actual PD. In

particular, we have δ− ε < PD(P, Q) < δ + ε. Thus δ− ε and δ + ε provide bounds on

the PD. By decreasing ε, we can obtain arbitrarily tight bounds on the actual PD.

Our Minkowski sum approximation algorithm uses the C�Fε sampling condition,

which is designed to ensure topologically correct approximation with a bounded two-

sided Hausdorff error. For the purpose of penetration depth estimation, preserving

topology is not necessary: It is sufficient to compute an approximation with a bounded

two-sided Hausdorff error. Hence we can relax the sampling condition; we can drop C�

and CF conditions, and merely use the Cε condition.

4.4 Results

In this section, we highlight the performance of our approximate algorithm on different

input models. We implemented our algorithm on a 2 GHz Pentium IV PC with 1 GB

main memory.

We have tested our algorithm on a number of complex models. The model com-

plexity (Table 4.1) varied from several hundred to a few thousand triangles. Figs. 1.12

and 4.2 show some of our results on offset computation.

Figure 1.11 shows the Minkowski sum of Brake Hub and Rod models. The final

Minkowski sum has a number of narrow tunnels. Our algorithm produced an approxi-

mation that preserved these features. Fig. 4.4 shows the Minkowski sum of a number

of CAD models.

Fig. 4.5 shows a complex example consisting of two Grates. This is a very challeng-

ing scenario as the resulting Minkowski sum has a large number of complex features. It

has numerous thin and needle-like features. Our algorithm is able to reconstruct these

features.

Fig. 1.14 shows an application of Minkowski sum to 3D translational motion plan-

ning. Table 4.1 shows the model complexity and performance of our algorithm on these

models. The culling techniques improve the performance significantly. We applied our

algorithm without any culling techniques to the Anvil and Spoon model (Figure 4.2).

It took more than 7 hours to generate an approximation. In comparison, using culling

techniques, our algorithm was able to produce an approximation in just 63 secs.

143

Primitive 1 Primitive 2 Num Performance (secs) Output
Tris Pieces Tris Pieces Prims Convex Samp Recons Tris

Cup 1000 338 Sphere - 1 338 1.2 32 0.08 14,895
Gear 2,382 744 Sphere - 1 744 3.6 81 0.09 22,742

Brake Hub 4,736 1777 Rod 24 1 1,777 4.3 135 0.04 45,753
Anvil 144 57 Spoon 336 78 4,446 3.9 59 0.02 15,638

Wrench 772 291 Spiral 500 133 38,703 27 289 0.06 25,280
Knife 516 273 Scissors 636 230 62,790 36 742 0.06 26,038

Grates 1 444 163 Grates 2 1134 409 66,667 40 3120 1.5 358,030

Table 4.1: Performance: This table shows the performance of our algorithm on differ-
ent models. The columns on the left show the statistics of the two primitives whose
Minkowski sum is computed. They show the number of triangles in each primitive
and the number of convex pieces generated by convex decomposition. The column, Num
Prims, shows the number of convex Minkowski sums generated. The right three columns
show the time taken to generate the convex Minkowski sums, sampling and isosurface
reconstruction.

4.5 Summary and Limitations

We have presented an algorithm to approximate the 3D Minkowski sum of polyhedral

objects. Our algorithm provides geometric and topological guarantees on the approx-

imation. We employ cell and primitive culling techniques to improve the performance

of our algorithm. We have applied our algorithm to offset computation and motion

planning of robots with translational degrees of freedom.

4.5.1 Limitations

A bottleneck in our algorithm is the convex decomposition method. Typically, it pro-

duces O(n) convex pieces. Given two polyhedra each with n triangles, we usually obtain

O(n2) pairwise convex Minkowski sums whose union needs to be computed. Since this

set of pairwise convex Minkowski sums is an input to our approximation algorithm,

its large size impacts the performance of the overall algorithm. Although our algo-

rithm is capable of handling a high number of primitives, the large number of pairwise

Minkowski sums lowers the overall performance. Using a better convex decomposition

method will alleviate this problem.

144

Chapter 5

Free Space Approximation and

Complete Motion Planning

We introduced the configuration space formulation (Lozano-Pérez, 1983) in Chapter 1.

In this formulation, each position and orientation of the robot R maps to a point in

the configuration space C. Each obstacle Oi, for i = 1, . . . , n maps to a region

COi = {q ∈ C : R(q) ∩ Oi 6= ∅},

in C, where R(q) is the subset of W occupied by R at the configuration q.

The union of all the COi’s,
⋃n

i=1 COi, is called C-obstacle region or forbidden region.

The set

F = C \
n⋃

i=1

COi.

is called the free configuration space or the free space.

This chapter addresses the problems of free space computation and motion planning.

In free space computation, our goal is to compute ∂F – the boundary of the free space.

We assume that ∂F is an orientable closed manifold. Given an initial configuration qinit

and a goal configuration qgoal, the objective of motion planning is to find a collision-free

path – a continuous map τ : [0, 1]→ F with τ(0) = qinit and τ(1) = qgoal.

Free Space Approximation

It is well known that for a translating robot R and an obstacle O, the C-obstacle

can be expressed as a Minkowski sum: CO = O ⊕ (−R) (Lozano-Pérez, 1983). This

formulation shrinks the robot to a point, and the obstacle Oi is transformed to the

respective Minkowski sum COi. The free space boundary ∂F can be approximated

146

using our Minkowski sum approximation algorithm (Chapter 4).

In this chapter, we present an algorithm for approximating the free space of robots

with translational and rotational degrees of freedom (DOF). We represent the free space

in terms of contact surfaces (C-surfaces). A C-surface of a geometric feature (vertex,

edge, face) of R and a similar feature (vertex, edge, face) of O is defined as the set of

points in the configuration space that represent configurations of R at which contact is

made between these specific features. The set Γ of contact surfaces define an arrange-

ment A(Γ). The free space F consists of some cells in this arrangement. Therefore, ∂F
can be computed by computing A(Γ). However, because there are a large number of

C-surfaces in A(Γ) and the the C-surfaces are non-linear, it is difficult to compute A(Γ)

robustly. Therefore, instead of exact computation of ∂F , we compute an approximation

A to ∂F using our isosurface extraction algorithm based on C�Fε sampling condition

(Chapter 3). To apply the C�Fε sampling condition, we need to perform complex cell

and star-shaped tests on ∂F . We present computational techniques to perform these

tests without explicitly computing ∂F . The geometric and topological guarantees of

our isosurface extraction algorithm apply to ∂F as well: provided C�Fε is satisfied, A
is geometrically close and topologically equivalent to ∂F . We have implemented the

algorithm and applied it to compute free space approximation for planar robots with

translational and rotational degrees of freedom.

Complete Motion Planning

An immediate application of the free space computation algorithm is to the problem

of motion planning. We assume that the robot – a rigid or articulated object – is the

only moving object in a static workspace. The obstacles are rigid and static. The

robot may translate, rotate, or have different types of joints imposing sliding or rotating

constraints. The geometry of both the robot and the obstacles is known.

The C�Fε sampling condition is designed to compute a bounded-error and topolog-

ically correct approximation to the free space. However, for motion planning, this is

not necessary: It suffices to capture only the connectivity of the free space. The star-

shaped criterion is sufficient for this purpose. Hence we drop the C� and Cε criteria,

and propose a relaxed sampling condition based only on CF.

We present a new deterministic sampling based algorithm for complete motion plan-

ning. Our algorithm is based on computing a star-shaped roadmap of the free space.

The roadmap is constructed by computing a star-shaped decomposition of the free

space. This produces a set of guards that capture the intra-region connectivity – the

147

connectivity between points belonging to the same star-shaped region. The inter-region

connectivity is captured by computing connectors that connect guards of adjacent re-

gions. The guards and connectors are combined to obtain the star-shaped roadmap.

We present an adaptive subdivision algorithm for constructing the star-shaped

roadmap without explicit computation of the free space. The adaptive subdivision

algorithm applies the star-shaped criterion in a recursive manner. In the absence of

degeneracies in the free space, the adaptive subdivision algorithm will terminate and

produce a star-shaped roadmap as the output. The resulting star-shaped roadmap

captures the complete connectivity of the free space, thus enabling complete motion

planning. The roadmap can be used not only to find a path, but also detect non-

existence of any collision-free path.

The subdivision algorithm cannot handle degenerate cases such as tangential con-

tacts, when two C-obstacles intersect each other “tangentially”. The algorithm will

not terminate in such cases. We analyze the behavior of the subdivision algorithm and

present sufficient conditions for its termination. We also discuss the issue of degenera-

cies further and suggest possible ways of dealing with them.

The underlying computation in our planner is the star-shaped test. We perform

this test efficiently using a conservative technique that reduces to linear programming

and interval arithmetic. Unlike prior criticality-based complete algorithms (Latombe,

1991), our algorithm is able to avoid exact computation of roots of algebraic equations.

Thus, it is relatively simple to implement.

We compare some features of our deterministic sampling algorithm with randomized

sampling based algorithms and approximate cell-based decomposition methods. We

have implemented our algorithm and applied it to compute collision free paths for low

DOF robots in challenging scenarios with narrow passages and no collision-free paths.

Organization: Section 1 presents the notation used in the chapter. Section 2 describes

a free space formulation in terms of C-surfaces. Appendix B provides background on

C-surfaces. It describes methods for enumerating C-surfaces for two classes of robots:

2T+1R - a planar rigid robot with 2 translational and 1 rotational dofs moving among

polygonal obstacles, and 3R - a planar articulated robot with 3 revolute joints moving

among polygonal obstacles.

Section 3 presents computational techniques to answer certain queries required by

the free space approximation and motion planning algorithms. Section 4 presents the

free space approximation algorithm.

148

Sections 5 and 6 present the star-shaped roadmap method for motion planning;

Section 5 presents the concept of star-shaped roadmaps, while Section 6 describes

an adaptive subdivision algorithm for roadmap construction. Section 7 analyzes the

behavior of the adaptive subdivision algorithm and presents sufficient conditions for its

termination.

Section 8 describes the implementation of our free space approximation and motion

planning algorithms, and demonstrates their performance on several models. Section 9

compares the star-shaped roadmap method with several prior motion planning methods.

Section 10 discusses limitations of our algorithms. Section 11 concludes the chapter.

5.1 Notation and Preliminaries

R denotes a robot consisting of a collection of rigid subparts moving in a Euclidean

space W , called the workspace, represented as Rd. Let O1, . . . ,Oq be fixed rigid obsta-

cles embedded in W . Assume that the geometry of R,O1, . . . ,Oq is accurately known,

and that there are no kinematic constraints to limit the motion of R. The position and

orientation of the subparts define the configuration of R. The set of all configurations

of R defines the configuration space C. Let C be k-dimensional. F denotes the free

configuration space, hereafter known as the free space. ∂F denotes its boundary. We

assume that ∂F is a (k − 1)-dimensional orientable closed manifold. R(q) denotes

the subset of W occupied by R at a configuration q. A region R will refer to a k-

dimensional connected subset of C. Recall the definition of the star-shaped property

for a k-dimensional region R; R is said to be star-shaped if there exists a point o ∈ R

such that op ⊆ R ∀ p ∈ R where op denotes the line segment between points o and p

(including both endpoints). Point o is referred to as a guard.

Given a set S, two points p, q ∈ S are connected if there exists a path between

p and q that lies in S. We use the shorthand notation p
S←→ q to mean p and q

are connected in S. The connectivity relation is symmetric. Given a roadmap (an

undirected graph) R = (V, E) and two vertices v, w ∈ V , v
R←→ w means that v

and w are connected in R, i.e., there exists a path between v and w consisting of a

sequence of edges in E. We use p
S

← /→ q to mean p and q are not connected in S.

v
R

← /→ w is defined similarly.

149

(a) Workspace (b) Configuration Space (c) Contact Surfaces

Figure 5.1: Configuration Space Formulation: Fig. (a) shows a robot (green) navigating
in a 2D workspace. The robot is capable of only translation. Fig. (b) shows the two
dimensional configuration space of the robot. Fig. (c) shows the contact surfaces (brown
line segments) that arise from the contact between features of the robot and the obstacle.
For example, γ1 is generated as a result of a contact between the top vertex of the robot
(C) and edge AB of the obstacle. We can assign an orientation to the contact surfaces
(indicated by the arrows) to “point towards C-obstacle”.

5.2 Free Space Representation

The free space F can be described in terms of different types of contact between the

robot R and obstacle O. Note that R and O are in contact if

R(q) ∩ O 6= ∅ ∧ int R(q) ∩ int O = ∅

There can be different types of contacts depending on the type of features of the robot

and the obstacle that are in contact. For example, in the case of a polygonal robot

navigating among polygonal obstacles along a plane, two types of contacts are possible:

a vertex of R may be in contact with an edge of an obstacle or an edge of R may be in

contact with a vertex of an obstacle. If we displace R in such a way that the contact

between the pair of features is maintained, then the robot’s configuration moves along

a surface in C called a contact surface (C-surface). A C-surface is generated for every

pair of features of the robot and the obstacle that can be involved in contact. In the

general case of a d-dimensional configuration space, a C-surface is a (d−1)-dimensional

manifold. An overview of contact surfaces is given in Appendix B.

We note two important properties of C-surfaces:

1. Superset property: The set Γ of C-surfaces define an arrangement in C. F
is a collection of cells in this arrangement; a cell corresponding to a connected

150

component of F . Furthermore, Γ is a superset of the boundary ∂F of free space,

i.e., ∂F ⊆
⋃
{γi ∈ Γ}. See Fig. 5.1.

2. Orientation property: We can assign an orientation to the C-surfaces. Each

C-surface γ is a subset of an algebraic surface represented as a zero-set of an

algebraic function hγ : C → R. Suppose γ corresponds to a contact between

a robot feature f1 and an obstacle feature f2. Then for a point q ∈ γ, we have

hγ(q) = 0 and q is a robot configuration where f1 and f2 are in contact. Consider

a point r in a small neighborhood of q. If h(r) < 0, then r is a robot configuration

where f1 and f2 overlap each other. Therefore, r belongs to C-obstacle. On the

other hand, in the case where h(r) > 0, r is a robot configuration where there is

no overlap or contact between f1 and f2. We orient γ by defining a normal at

each point q ∈ γ as follows:

n(q) = − 5h(q)

‖ 5 h(q)‖
, 5h(q) 6= 0

The normal n(q) “points towards C-obstacle”, i.e., in the direction of overlap

between f1 and f2. See Fig. 5.1(c).

∂F can be obtained by computing the arrangement of Γ. The set of (d − 1)-

dimensional cells in the arrangement provides a partition of the C-surfaces into a set

of surface components. Given such a partition, we can combine a subset of the surface

components to obtain ∂F . However, this is not feasible in practice due to the difficulty

of arrangement computation. Therefore, we avoid explicit free space computation.

Instead, we perform a deterministic sampling of the free space.

5.3 Supporting Queries

Our algorithms for free space approximation and motion planning are based on the

complex cell and star-shaped tests (Sec. 3.5). We generate an adaptive volumetric grid

in C by performing the complex cell and star-shaped tests on ∂F . These tests rely on

a number of queries: sign query, star-shaped query, and cell intersection query. In Sec.

3.5, we presented computational techniques to answer these queries. Those techniques

took advantage of the fact that the surface was defined as a Boolean combination over

a set of primitives. We adapt these techniques to apply them to the case where the

surface of interest ∂F is defined differently – in terms of an arrangement of a set of

151

C-surfaces. We answer these queries without computing an explicit representation of

∂F .

5.3.1 Sign Query

Given a point q ∈ C, the sign query determines whether q belongs to the free space,

i.e., if q ∈ F . The definition of the free space reduces this query to a collision check

between R(q) and all the obstacles (Lin and Manocha, 2003): q ∈ F if and only if

R(q) does not intersect any obstacle. For a 2T+1R robot, the query reduces to a

collision check between two polygons. For a 3R robot, it reduces to a collision check

between a line segment and a polygon.

Figure 5.2: Star-shaped Test: If in a cell C, all the C-surfaces satisfy the contact surface
condition (Equation 5.1), then F ∩ C is star-shaped w.r.t o. The arrows indicate the
orientation of the C-surfaces.

5.3.2 Star-shaped Query

Consider a grid cell C in the configuration space. Let S be a voxel or a face of C. The

star-shaped query is slightly different for free space computation and motion planning.

• Star-shaped query for free space computation: Is ∂F star-shaped w.r.t S?

This query is analagous to the query introduced in Sec. 3.5.2.

• Star-shaped query for motion planning: Is FS = F ∩ S star-shaped w.r.t a

point in FS? This query imposes a restriction that the guard of FS belong to FS.

We present a common conservative test to answer the query in both cases. We

exploit the fact that the C-surfaces form a superset of ∂F (Superset property, Sec.

5.2). This reduces the problem to performing star-shaped tests on the C-surfaces.

152

Contact Surface Test

Let Γ denote the set of all C-surfaces. For each C-surface γi ∈ Γ that intersects S,

compute the restriction γi,S = γi∩S to S. Let ΓS denote the resulting set of surfaces. We

can answer the star-shaped query provided S satisfies the following condition: Contact

Surface Condition:

Is there a point o ∈ S such that for each γi,S ∈ ΓS the following holds:

For each x ∈ γi,S with normal nx we have ox · nx > 0 (5.1)

See Fig. 5.2.

If S satisfies the above condition, then we can answer the query. This is formally

stated as the following theorem.

THEOREM 10 Star-shaped test: Suppose S satisfies the contact surface condition

(Equation 5.1). Then

1. FS 6= ∅ ⇐⇒ o ∈ F .

2. If o ∈ F , then FS is star-shaped w.r.t o.

3. If ∂FS 6= ∅, then ∂FS is star-shaped w.r.t o.

Proof : We first prove 1). o ∈ F =⇒ o ∈ FS =⇒ FS 6= ∅. We now prove the

converse. Assume FS 6= ∅. We show that o ∈ F . Consider a point p ∈ FS. We

prove that o can see p, i.e., line segment po lies completely in F . We prove this by

contradiction. Suppose o does not see p. In other words, the line segment po intersects

the free space boundary ∂F . The superset property of C-surfaces implies that the line

segment po is intersected by a C-surface γk. Let q ∈ γk be the intersection point

on the line segment po that is closest to p. Since q lies on a C-surface and F is a

open set, we have q /∈ F . Suppose we start at point p ∈ F and march along the ray

~po. Then q is the point closest to p that does not belong to F . Hence q belongs

to ∂F . Moreover, The orientation property of C-surfaces ensures that the normal nq

at q “points towards C-obstacle”. Since p ∈ F , qp makes an obtuse angle with nq.

Therefore, we have qp ·nq < 0. This implies oq ·nq < 0 which contradicts the contact

surface condition. Thus po lies completely in F which means o ∈ F .

Because o can see any point p ∈ F , it means that FS is star-shaped w.r.t o.

Furthermore, if ∂FS 6= ∅, then for any point q ∈ ∂FS, we have oq ∩ ∂F = {q}. In

other words, ∂FS is star-shaped w.r.t o.

153

Theorem 10 reduces the star-shaped query on ∂F to verifying the contact surface

condition for the contact surfaces. We perform these tests using a combination of linear

programming and interval arithmetic (Secs. 3.5.2 3.5.4).

Conservativeness of the Star-shaped Test

There are two possible sources of conservativeness in the above test.

1. The contact surface condition is only a sufficient condition for when ∂F is star-

shaped. It is possible for F to be star-shaped w.r.t C even if the contact surface

condition is not satisfied. The main advantage of the test is that it does not

require an explicit representation of F .

2. When the C-surfaces are non-linear, we use a discretization technique to verify

the contact surface condition (Sec. 3.5.4). This technique enumerates a set of

samples on the C-surfaces to estimate a candidate point and then verifies if the

contact surface condition holds for the candidate point. This test may fail due to

a poor estimate of the candidate point.

Due to the conservativeness of these tests, it is possible for a cell C to fail the tests even

though ∂F may be star-shaped w.r.t C. If C fails the above tests, then we subdivide

C and repeat the tests on the subdivided cells. As a result, we preserve the correctness

of the algorithm. These conservative tests may, however, result in some additional

subdivision.

5.3.3 Free Space Existence Query

This query answers whether F intersects S, i.e., if FS 6= ∅. In general, this query is

difficult without an explicit representation of F . We answer this query in two special

cases:

1. One or more of the vertices of S belongs to F .

2. S satisfies the contact surface condition. In this case, Theorem 10. provides the

following test: FS 6= ∅ ⇐⇒ o ∈ F .

5.3.4 Cell Intersection Query

Voxel/Face Intersection Query: This query answers whether ∂F intersects S, i.e.,

if ∂FS 6= ∅. We answer the intersection query in a special case – when S satisfies the

154

contact surface condition. In this case, we use a test based on the following corollary

of Theorem 10.

COROLLARY 11 Cell Intersection query: Suppose S satisfies the contact surface

condition. Then

o ∈ F ∧ ΓS 6= ∅ ⇐⇒ ∂FS 6= ∅

Proof : Suppose o ∈ F ∧ ΓS 6= ∅. We prove ∂FS 6= ∅ by contradiction. Suppose

∂FS = ∅. This means either FS ⊆ F or FS = ∅. Because S satisfies the contact surface

condition and o ∈ F , Theorem 10 implies that FS 6= ∅. Therefore S ⊆ F . But this

means every point q ∈ S corresponds to a collision-free configuration of the robot R.

In other words, no point in S belongs to a C-surface. This contradicts the fact that

ΓS 6= ∅.
The proof of the converse follows from the superset property and Theorem 10.

�

To check if ΓS 6= ∅, we need to test if any C-surface in Γ intersects S. This can

be done using either max-norm distance computation or interval arithmetic techniques

described in Sec. 3.5.1.

Edge Intersection Query: Consider an edge e with endpoints a and b. This query

computes the number of points at which ∂F intersects e. If the number of intersection

points is greater than 0, then e is intersected by ∂F .

We exploit the superset property of contact surfaces. We compute the intersection

of e with all the contact surfaces. Let I = {p1,p2, . . . ,pk} denote the resulting set

of intersection points. Since the contact surfaces are a superset of ∂F , some of these

intersection points may not belong to ∂F . We perform a test on each pi to check if it

belongs to ∂F .

Assume that the intersection points in I are sorted along the edge: Point pi is closer

to a than pi+1. Define p0 = a and pk+1 = b. Compute a set of points {q0, . . . ,qk}
where qi = (pi + pi+1)/2. Point pi belongs to ∂F if either qi−1 ∈ F or qi ∈ F , which

can be tested using the sign query.

5.4 Free Space Approximation Algorithm

We compute an approximation to ∂F using an adaptive subdivision algorithm that

is almost identical to the one previously presented in Sec. 3.5. Like the previous

155

algorithm, the current algorithm performs both complex cell test and star-shaped test

on the grid cells. There is, however, one important difference. Unlike the previous

algorithm, we now impose an order in which the two tests must be applied: We require

that the star-shaped test be executed before the complex cell test.

5.4.1 Star-shaped Test

The star-shaped test performs two tests on ∂F – (a) star-shaped w.r.t voxel, and (b)

star-shaped w.r.t. each face. We use the star-shaped query presented in Sec. 5.3.2 to

perform these tests.

If any of these tests results in the negative, we subdivide the cell and apply the

algorithm recursively to the new cells.

5.4.2 Complex Cell Test

We perform the complex cell test on a cell C only when C has already satisfied the

star-shaped test. This means C satisfies the contact surface condition (Equation 5.1).

Hence we can use Corollary 11 to perform the cell intersection query on C. We take

advantage of this fact while performing the complex cell test.

To check whether a cell is complex, we perform the following tests:

• Complex Voxel/Face: We use the cell intersection query to check whether ∂F
intersects a voxel or face of the cell. If ∂F intersects the voxel (face), then we

determine if the voxel (face) is complex by checking for a sign change at the cell

vertices. The signs at the cell vertices are computed using the sign query. If

∂F does not intersect the voxel (face), then the voxel (face) is not considered

complex.

• Complex Edge: We use the edge intersection query to test if an edge is complex.

An edge is complex if the ∂F intersects the edge in more than one point.

• Ambiguity: We use the signs at the grid vertices to resolve cases corresponding

to face and voxel ambiguity.

If any of these tests results in the affirmative, the cell is complex, and we subdivide it

and apply the algorithm recursively to the new cells.

156

5.4.3 Geometric and Topological Guarantees

The adaptive subdivision algorithm generates a volumetric grid G on which we apply

isosurface extraction. The output of isosurface extraction is an approximation A to

∂F . The geometric and topological guarantees on A follow from Theorem 1: If every

cell in G satisfies C�F, then A is topologically equivalent to ∂F . Furthermore, we

augment the subdivision algorithm with the Hausdorff criterion (Sec. 3.8), and bound

the two-sided Hausdorff error between A and ∂F . Therefore, we have the following

result.

THEOREM 12 If every cell in G satisfies C�Fε, then

1. Geometric Guarantee: H(A, ∂F) < ε.

2. Topological Guarantee: A ≈ ∂F .

5.5 Star-shaped Roadmaps for Complete Motion

Planning

In this section, we present the concept of a star-shaped roadmap, and show that it

captures the connectivity of the free space, thus enabling complete motion planning.

We present a deterministic algorithm for constructing a star-shaped roadmap in Sec.

5.6.

Figure 5.3: Star-shaped property: This figure shows a star-shaped region (in white). It
contains a guard o that can see every point within the region. A path between any two
points p ∈ R and q ∈ R is given by po :: oq.

157

5.5.1 Star-shaped Property and Motion Planning

A region R is star-shaped if there exists a point o ∈ R, a guard, that can see every point

p in the region, i.e., the straight line segment op ⊆ R. It is easy to show that a star-

shaped region is always connected. Moreover, every point in the region is connected to

the guard along a straight line segment. Thus, the star-shaped property is a compact

way of encoding the connectivity of a region. It provides a path between every point

in the region and the guard. We exploit this property for motion planning. A path

between any two points p ∈ R and q ∈ R is given by po :: oq where :: denotes path

concatenation (see Fig. 5.3(a)). We extend this idea to compute a path between two

arbitrary configurations in free space.

158

(a) Star-Shaped Decomposition (b) Star-Shaped Roadmap

(c) Path Planning

Figure 5.4: Star-shaped Roadmap: This figure shows how to construct a star-shaped
roadmap and its application to path planning. The C-obstacle is shown in gray while the
free space is shown in white. We first compute a star-shaped decomposition of the free
space (Fig. (a)). Each region in the decomposition contains a guard (green star) that
can see every point in the region. We connect guards of adjacent regions by computing
connectors (blue circles) on the common boundary between the two regions. The guards
and connectors are used to create the star-shaped roadmap as shown in Fig. (b). Fig
(c) shows how a path is computed between two points p and q by connecting them to
the roadmap and finding a path along the roadmap.

159

5.5.2 Overall Approach

Our method relies on a star-shaped decomposition of the free space, i.e., a partition

of F into a set of star-shaped regions. We show how to compute such a partition in

Sec. 5.6. The guards of the star-shaped regions capture the intra-region connectivity.

However, we also need to take into account the inter-region connectivity, i.e., the con-

nectivity between points belonging to separate regions. We achieve this by computing

connectors1. Our method consists of the following steps:

1. Compute a star-shaped decomposition Σ of the free space into a set of star-shaped

regions {R1, . . . , Rn}.

2. For every pair of adjacent regions (Ri,Rj) in Σ, compute a point c on the common

boundary shared by Ri and Rj. We refer to c as a connector – it connects the

guards of Ri and Rj.

3. Construct a star-shaped roadmap R using the guards and connectors computed

in Steps 1 and 2.

These steps are illustrated in Fig. 5.4.

5.5.3 Star-shaped Decomposition and Guard Computation

Step 1 computes a star-shaped decomposition of the free space. The resulting set of

guards constitutes a sampling of the free space and we refer to it as a star-shaped sam-

pling of the free space. The star-shaped sampling provides an implicit representation

of the free space.

p ∈ F ⇐⇒ p is visible to at least one of the guards.

The concept of star-shaped decomposition is related to the famous art gallery problem

(O’Rourke, 1987). The art gallery problem is concerned with finding the minimum

number of guards that can cover a region. In our context, computing a smaller number

of guards would be desirable, but not necessary.

5.5.4 Connector Computation

In Step 2, we capture the inter-region connectivity. It suffices to only consider paths

between adjacent regions Ri and Rj that cross their common boundary Rij. We com-

160

pute a point c belonging to Rij. c is a connector. Since the regions Ri and Rj are

star-shaped, c is visible to the guards of Ri and Rj. Hence, c connects the guards of

two adjacent regions (see Fig. 5.4(b)).

5.5.5 Roadmap Computation

In Step 3, we combine the guards and connectors to construct a star-shaped roadmap

R of the free space (see Fig. 5.4(b)). R is an undirected graph. Let VG and VC denote

the set of guards and connectors respectively. The set of graph vertices is V = VG∪VC .

Each connector c connects two guards g1 ∈ VG and g2 ∈ VG of two adjacent regions.

This defines two graph edges (c, g1) and (c, g2). Let GUARDS (c) denote the set

{g1, g2}. The set of graph edges E is defined as:

E = {(c, g) | c ∈ VC , g ∈ GUARDS (c)}

R is the undirected graph (V, E, w) where the weight function w : E → R is defined as

a distance between the edge vertices using a suitable metric (e.g. Euclidean).

5.5.6 Complete Motion Planning

Given a star-shaped decomposition Σ and the roadmap R, path planning becomes

straightforward. Let p and q respectively denote the initial and goal configuration

respectively. Assume they are connected. The star-shaped property of each region in

Σ implies we can connect p and q to guards p? and q? respectively by straight line

paths. In general, there may be more than one guard p? that may see p; any one may

be chosen. We compute a path between p? and q? in the roadmap R based on a graph

search. The following theorem states that the star-shaped roadmap enables complete

motion planning.

THEOREM 13 A path exists between two points p and q in F if and only if p and

p? are connected in F , p? and q? are connected in R, and q? and q are connected in

F , i.e.,

p
F←→ p? ∧

p
F←→ q ⇐⇒ p? R←→ q? ∧

q? F←→ q

161

Proof : We prove that if p
F←→ q, then the right hand side holds. The proof of the

converse is straightforward. Assume p
F←→ q. The star-shaped property implies that

p
F←→ p? q? F←→ q

We prove that p? R←→ q?. The case where p and q belong to the same region is trivial

because in that case p? = q?. Suppose p and q belong to two separate regions Rp and

Rq respectively. Let P be any collision-free path between p and q. Let Ri, i = 0, . . . n,

be the set of regions that are intersected by P such that R0 = Rp and Rn = Rq.

Consider any two adjacent regions Rk and Rk+1. P passes from Rk to Rk+1 through

the common boundary. This means the boundary contains a connector c that is visible

to both R?
k as well as R?

k+1. where R? denotes the guard of region R. This implies

R?
k

R←→ c ∧ c
R←→ R?

k+1

=⇒ R?
k

R←→ R?
k+1

Since this is true for every pair of adjacent regions along P , we have R?
p

R←→ R?
q.

Because R?
p = p? and R?

q = q?, we have p? R←→ q?. This concludes the proof.

�

An important consequence of the above theorem is that it enables us to find a

collision-free path for complete motion planning.

Path Planning: if p
F←→ q, then

1. There exists a straight line path α between p and p?. Similarly, there exists a

straight line path β between q and q?.

2. There exists a path δ between p? and q? in the roadmap R.

3. A path between p and q is given by α :: δ :: β where :: denotes path concatenation.

Theorem 13 also provides a test for non-existence of any collision-free path.

Path Non-Existence: If there is no path between p? and q? in the roadmap R, then

there is no collision-free path between p and q in F .

p?
R

← /→ q? =⇒ p
F

← /→ q

162

(a) Adaptive Subdivision (b) Star-Shaped Roadmap

(c) Path Planning

Figure 5.5: Star-Shaped Roadmap Construction: This figure shows how we compute a
star-shaped roadmap using adaptive subdivision of the configuration space. We subdivide
the configuration space into regions R such that the free space contained within R, given
by F∩R, is star-shaped. Fig. (b) shows the star-shaped roadmap that was obtained from
the resulting subdivision. Fig. (c) shows how the roadmap is used for path computation.

163

5.6 Adaptive Subdivision Algorithm for Star-shaped

Roadmap Construction

In this section, we present an algorithm to compute a star-shaped roadmap by sampling

the free space in a deterministic manner.

5.6.1 Configuration Space Subdivision

The algorithm presented in Sec. 5.5 relied on a star-shaped decomposition of the

free space. In practice, we do not have an explicit representation of F ; hence it is not

possible to compute such a decomposition explicitly. Instead, we compute a subdivision

of the configuration space C into a collection of grid cells such that each cell C satisfies

the star-shaped criterion:

FC = F ∩ C is star-shaped

Such a subdivision is sufficient for computing a star-shaped roadmap of the free space.

Figure 5.6: Connector: A connector is a point that connects the free space of two
adjacent cells Ci and Cj. The connector c lies along the shared boundary Cij and is
visible to the guards of both the regions.

164

Figure 5.7: 2T+1R: This figure highlights application of our algorithm to planar motion
planning with both translational as well as rotational dof. Fig. (a) shows a gear-shaped
robot R navigating amongst two gear-shaped obstacles (O1 & O2) shown in gray. The
start and goal locations of the robot are shown in red and green respectively. The two
obstacles form a narrow passage through which the robot must pass in order to reach its
goal. Moreover, it must undergo both translation as well as rotation. The figure shows
a number of intermediate configurations of the robot during its motion along the path.

165

(a) C-Surfaces

(b) Free Space Approximation (View 1)

(c) Free Space Approximation (View 2)

Figure 5.8: 2T+1R Configuration Space: This figure highlights application of our
configuration space approximation algorithm to the Gears example shown in Fig. 5.7.
Fig. (a) show a color-coded image of the C-surfaces. These C-surfaces form a superset
of the boundary of the free space. Figs. (b) and (c) shows two views of our free space
approximation (drawn translucently). The figures also show the path computed in Fig.
5.7. The path passes through a narrow passage in the configuration space.

166

Figure 5.9: 2T+1R Path non-existence: If the two obstacles in Fig. 5.7 are moved
closer to each other, then no collision-free path exists. Our algorithm is able to detect
the non-existence of any collision-free path.

5.6.2 Adaptive Subdivision and Guard Computation

We generate an adaptive subdivision of C by a recursive application of the star-shaped

criterion. The star-shaped criterion is verified by invoking the star-shaped query (Sec.

5.3.2). Our algorithm starts with a cell C that corresponds to the entire configuration

space C. It invokes the star-shaped query on C and depending on the outcome, performs

an adaptive subdivision of C. Our algorithm proceeds as follows:

1. Check if C satisfies the contact surface condition (Equation 5.1). If true, then

(a) Perform the free space existence query (Sec. 5.3.3) on C: Check if o ∈ F .

(b) If o ∈ F , set o as a guard. Otherwise disregard C because it does not

contain any point in F (Theorem 10).

2. Otherwise, subdivide C into a set of children cells Ci, and recursively apply Step

1 to each Ci.

Fig. 5.5(a) illustrates the subdivision algorithm in 2D.

5.6.3 Connector Computation

The objective of connector computation is to determine if the free space of two adjacent

cells, Ci and Cj, are connected through a point on their common boundary Cij. In other

words, we wish to test if F ∩ Cij 6= ∅. If there exists a point c ∈ F ∩ Cij, we call c a

connector. The star-shaped property implies that the connector is visible to the guards

of Ci and Cj. See Fig. 5.6.

167

The problem of connector computation reduces to the free space existence query

(Sec. 5.3.3). We can answer this query in two special cases: (a) if any of the vertices of

Cij belong to F or (b) Cij satisfies the contact surface condition. In the second case,

we have

F ∩ Cij 6= ∅ ⇐⇒ o ∈ F

We exploit the above fact and compute the connector as follows:

1. If any vertex v of Cij lies in F , use v as a connector and terminate early.

2. If Cij satisfies the contact surface condition and o ∈ F , then use o as the connector

and terminate early.

3. If Steps 1 and 2 did not compute a connector, then subdivide Cij into a set of

children cells, and recursively apply Steps 1 and 2 to each of the children cells.

Since we need to compute just one point in F (rather than capture all of them), we

terminate as soon as we find one such point. This point is classified as a connector.

If Cij contains no point in F , then the subdivision process will continue until all the

children cells satisfy the contact surface condition and none of the corresponding points

lie in the free space. In this case, the free space of Ci and Cj belong to two separate

components of the free space.

Note that the above adaptive subdivision method for connector computation resem-

bles the subdivision method for guard computation. There are, however, two differ-

ences: (a) If d denotes the configuration space dimension, the guard and the connector

are computed in dimensions d and (d − 1) respectively. (b) The adaptive subdivision

method for guard computation continues to perform a subdivision of a cell C until a

sufficient set of guards are computed that cover every point in FC . Whereas the adap-

tive subdivision method for connector computation continues to perform a subdivision

of Cij only until either a single connector is found or non-existence of any connector is

determined.

5.6.4 Degeneracies

Our algorithm cannot handle tangential contacts on the boundary of free space (Sec.

3.7). A tangential contact occurs when two C-obstacles touch each other at a point thus

forming a narrow passage of width zero in the free space. In such cases, the subdivision

algorithm will not terminate. This is because the free space in a neighborhood of a

168

tangential contact is never star-shaped – for any arbitrary neighborhood of nonzero

volume.

Planning a path through a tangential contact requires motion in contact space:

The robot must touch the obstacles while passing through a tangential contact. Our

algorithm does not support this type of motion. One possible solution is to isolate a set

of regions potentially containing a tangential contact and use a separate contact space

planner such as (Redon and Lin, 2005) to do the local planning in those regions.

169

(a) Path Planning

(b) Path Non-existence

Figure 5.10: 3R: This figure highlights application of our star-shaped roadmap algorithm
to planar motion planning of an articulated robot with 3 revolute joints. The start and
goal locations of the robot are shown in red and green respectively. The figure shows
a number of intermediate configurations of the robot during its motion along the path.
In Fig. (b), the obstacle is moves closer to the robot; as a result, no collision-free path
exists. Our algorithm is able to detect path non-existence.

170

5.7 Analysis

We had analyzed both complex cell and star-shaped criteria in Sec. 3.6 of Chapter

3. The analysis of the star-shaped criterion in Sec. 3.6 is not applicable to motion

planning because the star-shaped criterion in motion planning is more restrictive: We

require that the guard of a cell belong to the cell. In this section, we analyze the

star-shaped criterion taking this restriction into account. Our analysis is valid only

under the assumption that ∂F is a smooth surface – twice-differentiable manifold. We

note that we make this assumption only to simplify the analysis of the algorithm; the

algorithm itself does not make this assumption.

Like in Sec. 3.6, we perform the analysis in two stages. In the first stage, we analyze

the star-shaped criteria using Gauss map of ∂F within the cell. We provide a Gauss

map condition for when the star-shaped criterion is satisfied. In the second stage, we

relate the Gauss map condition to another condition based on local feature size.

5.7.1 Preliminaries

We use the following notation in this section. d(p,q) denotes the Euclidean distance

between p and q. ‖~u‖ denotes the length of a vector ~u. ∠m,n denotes the angle

between two vectors m and n. For a point p ∈ S, np will denote the normal to S at p.

A ball in Rd with center p ∈ Rd and radius ε will be denoted as B(p, ε) and is defined

as {x | ‖x− p‖ < ε}.
The Gauss map G of a smooth surface S in R3 is a set-valued function from S to

the unit sphere S2, which assigns to each point p ∈ S the outward unit normal to S at

p. We use the term Gauss map to also refer to the image of the Gauss map.

5.7.2 Gauss Map Condition

Given a voxel ϑ, the star-shaped query for motion planning checks whether Fϑ is star-

shaped w.r.t a point in ϑ. If ϑ is completely contained in F , then this is trivially true.

So it suffices to consider only a boundary voxel, i.e., when ∂Fϑ 6= ∅. For a boundary

voxel, Fϑ is star-shaped if ∂Fϑ is star-shaped w.r.t a point in ϑ. So in the rest of the

section, we will only consider the problem of checking whether ∂Fϑ is star-shaped.

According to Corollary 4 in Sec. 3.6, if a voxel ϑ is normal-bounded by θ, 0 ≤ θ <

π/2 – i.e., if the angle between the normals at any two points in ∂Fϑ is less than θ

– then a point p − α‖ϑ‖np can be chosen as a guard for any choice of p ∈ ∂Fϑ and

171

α > 1/ cos(θ). However, because α is always greater than 1, this guard always lies

outside the voxel. While this was sufficient for the algorithm in Chapter 3, it is not

sufficient in the current context. It turns out that the requirement that α > 1/ cos(θ)

in Corollary 4 is overly restrictive. In the following theorem (Theorem 14), we show

that it suffices if α > 2 sin(θ/2)/ cos(θ). For small values of θ, α is roughly equal to θ.

Thus α can assume small values, thereby allowing the guard to lie inside the voxel.

Recall the following definitions from Sec. 3.6.

DEFINITION 11 Consider a line segment pq that intersects ∂F .

• We call an intersection point r ∈ ∂Fpq a tangential point if pq · nr = 0.

Otherwise we say r is a transversal point. We call r an entry point if pq·nr <

0, an exit point if pq · nr > 0.

• If all the intersection points are transversal then we say pq intersects ∂F transver-

sally.

Suppose pq intersects ∂F transversally and that the intersection points are sorted in

the order of increasing distance from p. Then the intersection points will alternate

between entry and exit points. This is because we assume ∂F is an oriented closed

manifold.

Figure 5.11: This figure supports the proof of Theorem 14. If for any two points p and
q in ∂Fϑ, the angle between the corresponding normals np and nq is less than π/2,
then ∂Fϑ is star-shaped. Point c is the guard for the voxel.

THEOREM 14 Let ϑ be a boundary voxel. If ϑ is normal-bounded by θ, 0 ≤ θ < π/2,

then

1. ∂F is star-shaped w.r.t ϑ and

172

2. F (p, α) = p − α‖ϑ‖np is a guard of ∂Fϑ for any choice of p ∈ ∂Fϑ and α >

2 sin(θ/2)/ cos(θ).

Proof: Let c = F (p, α). Consider any point q ∈ ∂Fϑ. We show that cq · nq > 0.

Using this fact, we can prove that cq ∩ ∂F = {q} in a manner similar to Theorem 3.

See Fig. 5.11. We have

cq = cp + pq

= α‖ϑ‖np + pq

cq · nq = α‖ϑ‖np · nq + pq · nq

(5.2)

Because ϑ is normal-bounded by θ, ∠np,nq < θ. Therefore,

cq · nq > α‖ϑ‖ cos(θ) + pq · nq (5.3)

We now bound pq·nq. We can assume that ∂F intersects pq transversally at q because

otherwise pq · nq = 0 =⇒ cq · nq > 0.

The line segment pq may intersect ∂F at points other than p and q. Let r be a

point belonging to ∂F ∩ (pq \ {q}) that is closest to q. (Fig. 5.11).

pq · nq = rq · nq (5.4)

For the sake of simplicity, let us first assume that r is a transversal intersection point.

Then since r and q are “consecutive” intersection points, one of them is an entry point

and the other is an exit point. This means rq ·nr and rq ·nq have opposite signs. This

implies

|rq · nq| < |rq · (nr − nq)| (5.5)

< ‖rq‖‖(nr − nq)‖

< ‖rq‖2 sin(θ/2) because ∠nr,nq < θ

< ‖ϑ‖2 sin(θ/2) because ‖rq‖ < ϑ

< α‖ϑ‖ cos(θ) (5.6)

Equations 5.3, 5.4 and 5.6 together imply cq · nq > 0.

173

We now consider the case where r is a tangential intersection point, i.e., pq ·nr = 0.

Even in this case Equation 5.5 holds. This is because

rq · nq = rq · nq − pq · nr

= rq · nq − rq · nr

= rq · (nq − nr)

�

If a voxel satisfies the condition in the above theorem, then any point from the set

S = {F (p, α) | p ∈ ∂Fϑ, α > 2 sin(θ/2)/ cos(θ)}

can be chosen as a guard. S is a subset of the kernel of ∂Fϑ. The distance between

∂Fϑ and the closest guard depends on θ: As θ approaches π/2, the distance approaches

infinity; however, for small values of θ, the distance approaches zero, allowing the guard

to lie inside the voxel. We now present a set of conditions under which a guard will

belong to the voxel. First, we introduce a few definitions.

DEFINITION 12 Consider a boundary voxel ϑ. A point p ∈ ∂Fϑ is ε-interior if

there exists a ball B(p, ε) ⊂ ϑ. A set S is ε-interior if every point in S is ε-interior.

Figure 5.12: Non-degeneracy condition C2: The figure shows a point p ∈ ∂Fϑ in a
voxel ϑ such that a ball of radius ε‖ϑ‖ centered at p lies inside ϑ. We call such a point
an ε‖ϑ‖-interiorpoint. We require that every boundary voxel have such a point.

174

DEFINITION 13

θϑ = sup{∠n1,n2 | n1,n2 ∈ Gϑ(∂Fϑ)}

αϑ = 2 sin(θϑ/2)/ cos(θϑ)

Intuitively, θϑ and αϑ are a measure of the size of the Gauss map of ∂Fϑ. We show

that if αϑ is sufficiently small, then there exists a guard of ∂Fϑ that lies inside ϑ. To

prove this, we need two conditions to hold.

DEFINITION 14

1. Monotonicity condition C1: θϑ decreases with ‖ϑ‖ (unless θϑ is zero). Intu-

itively, this condition means that as a voxel ϑ becomes smaller, the Gauss map of

∂Fϑ occupies a smaller region in S2. This is true for smooth surfaces.

2. Non-degeneracy condition C2: There exists an ε > 0 such that every bound-

ary voxel ϑ contains an ε‖ϑ‖-interior point. See Fig. 5.12. This condition pre-

vents ∂F from grazing along the boundary of the voxel.

From now on, we will assume that the above two conditions hold.

As ‖ϑ‖ decreases, θϑ decreases, which in turn causes αϑ to decrease. At a certain

size of the voxel, αϑ becomes smaller than ε/2. For such a voxel ϑ, we show that there

exists a guard belonging to ϑ.

COROLLARY 15 Suppose there exists an ε > 0 satisfying Condition C2. If every

boundary voxel ϑ satisfies αϑ < ε/2, then we have

1. ∂F is star-shaped w.r.t ϑ,

2. F (pϑ, αϑ + ε/2) is a guard of ∂Fϑ, and

3. F (pϑ, αϑ + ε/2) ∈ Fϑ.

where pϑ is an ε‖ϑ‖-interior point in ϑ.

Proof: Define qϑ = F (pϑ, αϑ + ε/2). Theorem 14 implies that qϑ is a guard of ∂Fϑ.

We prove that qϑ belongs to both ϑ and F . We have

qϑ = F (pϑ, αϑ + ε/2)

= pϑ − (αϑ + ε/2)‖ϑ‖np

∈ B(pϑ, ε‖ϑ‖) because αϑ < ε/2

⊂ ϑ because pϑ is ε‖ϑ‖-interior (5.7)

175

Because qϑ is a guard of ∂Fϑ, the line segment between pϑ and qϑ does not intersect

∂F at any point other than pϑ. Since pϑ ∈ ∂F and q is obtained by moving along the

outward normal to ∂F , we have qϑ ∈ F . Therefore, qϑ ∈ Fϑ.
�

The above corollary ensures that as voxels become smaller, the star-shaped criterion

is eventually satisfied and the resulting guard belongs to the voxel. This is true only

if the monotonicity condition (C1) and the non-degeneracy condition (C2) hold. A

similar result holds for the star-shaped criterion on the faces of the cell.

5.7.3 Local Feature Size Condition

In this subsection, we derive a conservative lower bound on the size of the grid cells

during adaptive subdivision. This provides a sufficient condition for the termination of

the algorithm.

We reduce the Gauss map condition (Corollary 15) to a condition based on local

feature size (LFS). We show that the Gauss map condition is met if the grid cells are

smaller than a certain fraction of their LFS. This yields a lower bound on the cell

size and in turn a sufficient condition for termination of the algorithm. The following

analysis closely follows to the one presented in Sec. 3.6.4.

Our goal is to show that a cell will satisfy the star-shaped criterion provided it

is “sufficiently small”. We make the previous statement precise using the following

definition.

DEFINITION 15 Let c be a face/voxel of a cell C. Given any ε > 0, we have

1. c is ε-small if ‖c‖ < ρLFS(c) for any ρ < ε/(4 + 3ε).

2. C is ε-small if every face/voxel of C is ε-small.

The above definition of ε-small resembles the definition of a LFS-small cell presented in

Sec. 3.6.4. However, there are two differences. First, the value of ρ is different. Second,

unlike the definition of LFS-small, ε-small does not place a requirement on the edges

of the cell. This is because the star-shaped criterion needs to be applied only to the

voxel and faces of the cell.

For an ε-small voxel ϑ, we have θϑ < ε/4. This follows from Lemma 6 by substituting

ρ = ε/(4 + 3ε). Furthermore, we can show that αϑ = 2 sin(θϑ/2)/ cos(θϑ) is always less

than ε/2. Then Corollary 15 ensures that a ε-small voxel will satisfy the star-shaped

criterion. This yields the following result.

176

THEOREM 16 Suppose there exists an ε > 0 satisfying Condition C2. If a voxel ϑ

is ε-small, then ∂Fϑ is star-shaped w.r.t F (pϑ, αϑ + ε/2) ∈ Fϑ.

5.7.4 Termination

The preceding analysis provides a sufficient condition for the termination of our al-

gorithm. Our algorithm performs two types of adaptive subdivision – one for guard

computation and another for connector computation. Theorem 16 is applicable to the

adaptive subdivision algorithm for guard computation. It provides a lower bound on

the size of the voxels relative to the LFS. During adaptive subdivision, once the size of

a voxel ϑ is less than ρLFS(ϑ), it is ε-small and satisfies the star-shaped criterion. The

adaptive subdivision will terminate provided there exist a lower bound on the LFS of

every grid cell. Suppose there exists such a lower bound τ > 0. Assuming a cell halves

its size at each subdivision step, this implies a lower bound of ρτ/2 on the size of every

cell. We use this fact to provide the following sufficient condition for the termination

of the subdivision algorithm:

COROLLARY 17 If the following two conditions hold,

1. There exists an ε > 0 satisfying Condition C2.

2. There exists a τ > 0 such that during adaptive subdivision, the LFS of every voxel

is greater than τ .

then the adaptive subdivision (for guard computation) will terminate and the voxels will

be of size greater than ρτ/2.

A similar argument holds for the adaptive subdivision algorithm for connector compu-

tation.

5.8 Implementation and Results

In this section, we describe the implementation of our algorithm demonstrate its per-

formance on several models. Tables 5.1 and 5.2 highlight the performance of the free

space approximation and motion planning algorithms on these models. All timings

were obtained on a 2 GHz Pentium IV PC with a GeForce 4 graphics card and 1 GB

RAM. We used C++ programming language with a GNU g++ compiler under Linux

operating system.

177

Complexity Performance
Model Num of Edges/Tris # Surf Grid Gen Isosurface Grid Size Appr Size

Obstacle Robot size (s) (s) size size
Gears 36 72 3,929 212 3.2 78,384 66,389

Assembly 224 224 256 6 1.8 25,124 22,928

Table 5.1: Performance of our free space approximation algorithm: The model com-
plexity is provided in terms of the number of edges/triangles of the polygonal/polyhedral
objects. The table shows the number of contact surfaces, the time for grid generation,
the time for isosurface extraction, the size of the grid, and the size of our free space
approximation.

Complexity Performance Statistics
Model Robot Obstacle # Surf Guard Connector Planning # Guards # Connectors

(s) (s) (s)
Gears A 36 72 3,929 62 49 0.22 6,764 11362

Gears B (No path) 36 72 3,929 58 32 0.18 3,412 5,348
Assembly 224 224 256 10.1 5.8 0.22 6137 15,399

3R A 3 32 140 12.3 4.9 0.43 11,349 30,566
3R B 3 32 176 12.2 4.4 0.14 10,062 25,270

Table 5.2: Performance of star-shaped roadmap method: This table highlights the per-
formance of our motion planning algorithm on different models. The model complexity
is provided in terms of the size of the robot and the obstacle as well as the number of
contact surfaces. The size of an object refers to the number of vertices for the planar
examples (Gears and 3R), and the number of triangles for the 3D Assembly example.
The performance is measured in terms of the roadmap construction time and the time
to answer a single planning query. The roadmap construction time is the sum of the
time taken to compute an adaptive subdivision (includes guard computation) and the
time to compute the connectors. The table also provides statistics on the number of
guards and connectors in the roadmap.

Fig. 5.7 shows a 2T+1R example. The figure shows a gear-shaped robot navi-

gating among two gear-shaped obstacles. The robot and the obstacles are obtained

by extruding planar polygons. By considering pairs of features of these planar poly-

gons, we enumerated a set of 3, 929 contact surfaces. Our algorithm computed a free

space approximation in 215 secs. The figure also shows application of our star-shaped

roadmap algorithm for motion planning. Our algorithm took 111 secs to construct a

star-shaped roadmap. Using this roadmap, it took only 0.22 secs to compute a path.

The robot must pass through a very narrow passage to reach its goal. Furthermore, it

must undergo both translation as well as rotation in order to pass through the narrow

passage.

178

Fig. 5.7 (d) highlights the use of our algorithm to detect non-existence of any

collision-free path. The two obstacles are too close to each other, and consequently,

the robot cannot pass through the passage between them. Our algorithm took 90

secs to compute a roadmap for this environment and detected non-existence of any

collision-free path in 0.18 secs.

Fig. 1.14 shows an application of our algorithm to assembly planning. It consists

of two parts each with pegs and holes. The goal is to assemble the two parts so that

the pegs of one part fit into the holes of the other. We treat one of the parts as the

robot R and the other as the obstacle O. The parts are allowed to translate in 3D.

The free space is expressed in terms of the Minkowski sum: F = O ⊕−R. We use

our Minkowski sum approximation method (described in Chapter 4) to compute the

free space approximation. The free space is defined as a complement of the union of

256 pairwise Minkowski sums. Our algorithm computed an approximation in 7.8 secs.

Our star-shaped roadmap algorithm took 16 secs to construct a roadmap and was able

to find a path (shown in blue) in 0.22 secs. This is a challenging example because the

goal configuration, wherin the pegs fit into the holes, is lodged within a very narrow

passage in the configuration space.

Fig. 5.10 shows application of our algorithm to a 3R planar articulated robot with

3 revolute joints. Our algorithm took 17 secs to construct a star-shaped roadmap.

Using this roadmap, it took only 0.43 secs to compute a path. The robot must pass

through a narrow passage to reach its goal.

In Fig. 5.10(b), the environment is too close to the robot and consequently, there

exists no collision-free path between the initial and goal configurations. Our algorithm

was able to detect non-existence of any collision-free path. It took 16 secs to compute

a roadmap for this environment and detected path non-existence in 0.14 secs.

Approx. Cell Decomposition Star-Shaped Roadmaps

Decomposition of C into Decomposition of C into cells
empty, full and mixed cells satisfying star-shaped property
Conservative approximation of F Complete connectivity of F ;

the guards cover every point in F
Need to subdivide mixed cells; Not necessary to subdivide mixed cells
no stopping condition that satisfy the star-shaped property
Large storage and search requirements; Storage and search varies based on free
function of resolution parameter space complexity; Lower requirements
Check for paths through empty Check for paths through empty cells
cells and not mixed cells. as well as mixed cells that

satisfy the star-shaped property

Table 5.3: Comparison: This table compares a number of aspects of our approach with
approximate cell decomposition.

179

5.9 Comparison with Prior Motion Planning Meth-

ods

In this section, we compare various aspects of our star-shaped roadmap method with

cell decomposition methods and randomized sampling based methods.

5.9.1 Cell Decomposition Methods

Our algorithm performs adaptive subdivision similar to cell decomposition algorithms

(Latombe, 1991). However, there is one major difference; unlike exact cell decomposi-

tion methods, we do not compute an explicit decomposition of the free space. Instead,

we compute a subdivision of the entire configuration space, which represents the free

space implicitly. The main advantage of our method is that we are able to perform the

subdivision without an explicit representation of the free space.

Most practical cell decomposition algorithms are based on approximate cell decom-

position approach. We perform a detailed comparison with approximate cell decom-

position approach in Table 5.3. While approximate cell-decomposition algorithms are

resolution complete, our algorithm is able to perform complete motion planning. The

approximate cell decomposition methods partition the free space into empty and mixed

cells. These methods find a path only through the empty cells. These are cells that

lie completely in free space and form a conservative approximation of the free. They

do not find a path through mixed cells, which intersect the boundary of the free space.

To overcome this problem, they subdivide mixed cells. However, a drawback of these

methods is that there is no stopping condition for the subdivision of mixed cells.

One important benefit of our method is that we do not always have to subdivide the

mixed cells. If a mixed cell satisfies the star-shaped test, then we do not subdivide it.

We can plan paths through mixed cells directly by exploiting the star-shaped property.

This reduces the total number of subdivisions considerably.

5.9.2 Randomized Sampling Methods

We generate samples in the free space that are represented by guards and connectors.

Table 5.4 compares our deterministic sampling approach with randomized sampling

approach by showing the different steps of the two approaches. Our approach does not

need to perform explicit local planning to connect nearby samples. The star-shaped

property ensures that the connectors link guards belonging to adjacent regions thus

180

providing local planning implicitly. The main benefit of randomized sampling meth-

ods is that they easily extend to high dof robots, whereas our method has additional

overhead for contact surface enumeration and conservative star-shaped tests.

Randomized Sampling Star-shaped Roadmaps

Compute samples randomly Compute guards & connectors deterministically
Check whether samples are in The guards and connectors are in free space
free space by construction
Perform local planning between No explicit local planning; star-shaped
nearby samples property guarantees local collision-free paths
Easily extends to high-dof robots Storage complexity and cost of star-shaped

tests increases with number of dof
May not terminate with narrow Guaranteed to terminate if there are no
passages or no collision-free path tangential contacts in free space

Table 5.4: Comparison: This table compares the steps of our approach with those of the
randomized sampling approach.

Our approach shares some similarities with the visibility based probabilistic roadmap

method (Visibility-PRM) (Simeon et al., 2000). Visibility-PRM method takes inter-

sample visibility into account during the randomized sampling process. While the

star-shaped property is related to visibility, it is different from the type of visibility

computed by (Simeon et al., 2000). While the star-shaped property implicitly deter-

mines the visibility of an entire region, the visibility-PRM method computes the visi-

bility of a new randomly computed sample with respect to the current set of samples.

Finally, the goals of the two methods are different: the objective of the visibility-PRM

method is to generate a probabilistic roadmap with fewer nodes, whereas our goal is to

do complete path planning.

5.10 Limitations

Our algorithm assumes that the free space does not have any tangential contacts. Hence

it cannot handle cases where the robot must touch an obstacle in order to pass through

a narrow passage to get to the goal configuration.

A bottleneck in our approach is the large number of C-surfaces. Typically, our

method enumerates O(n2) C-surfaces where n is the number of features in the robot

and the obstacles. Many of these C-surfaces lie within C-obstacle and do not contribute

to the actual boundary of the free space, thus adding an unnecessary overhead to the

algorithm. We can alleviate this problem by using better culling techniques to eliminate

such C-surfaces (Sacks, 1999).

Our motion planning algorithm is not specific to fixed number of dof. In theory, it

181

is applicable to robots with arbitrary dof. However, the theoretical complexity and the

implementation complexity grow considerably with dof. The main bottleneck in our

method is contact surface enumeration, which becomes difficult for high dof.

5.11 Conclusions

We have presented a practical algorithm for approximating the free configuration space

of robots with translational and rotational degrees of freedom. Unlike previous meth-

ods, our method avoids computing an arrangement of the C-surfaces. Instead, we use

a sampling-based method to compute a geometrically close and topologically correct

approximation.

We have presented a sampling based algorithm for complete motion planning. It

relies on computing a star-shaped roadmap of the free space. We construct this roadmap

using deterministic sampling. Provided the sampling condition is met, the resulting

roadmap captures the connectivity of the free space enabling us to perform complete

path planning. Our algorithm is simple to implement and primarily relies on a star-

shaped test which can easily be implemented. We have demonstrated the performance

of our planner in complex scenarios with low dof robots.

182

Chapter 6

Conclusion and Future Work

In this thesis, we have addressed two classes of geometric problems. The first class

includes surface extraction problems such as Boolean operations, Minkowski sum eval-

uation, and configuration space computation. The second class of problems is motion

planning of rigid or articulated robots translating or rotating among stationary ob-

stacles. We propose solutions to both classes of problems based on sampling. Our

approach has the following advantages:

1. Accuracy: It provides geometric and topological guarantees on the output. Our

surface extraction algorithm computes a polygonal approximation of the exact

surface. The approximation is guaranteed to be topologically equivalent to the

exact surface and has a bounded two-sided Hausdorff error. Our motion planning

algorithm performs complete planning. It is capable of not only finding a path

when one exists but also detecting non-existence of any collision-free path.

2. Simplicity: Our approach is relatively simple to implement. It is based on the

following components:

(a) Sign computation,

(b) Distance computation (max-norm or directed distance),

(c) Linear programming,

(d) Interval arithmetic,

(e) Isosurface extraction.

All the above techniques are easy to implement. Moreover, there exist public do-

main implementations for linear programming (GLPK, 2003; QSOPT, 2005), in-

184

terval arithmetic (Mehlhorn and Näher, 1995), and isosurface extraction (Schroeder

et al., 1997; Schaefer, 2002).

3. Practicality: We have demonstrated the performance of our surface extrac-

tion algorithm for the following applications: Boolean operations on complex

polyhedral models and low degree algebraic primitives, model simplification and

remeshing of polygonal models, Minkowski sums and offsets of complex polyhedral

models, and configuration space computation for low degrees of freedom objects.

We have demonstrated the performance of our motion planning algorithm on a

number of challenging environments with narrow passages and no collision-free

paths.

However, our overall approach suffers from the following limitations:

1. Degeneracies: As noted in Sec. 3.7, the adaptive subdivision step of the ap-

proach is susceptible to degeneracies. While subdividing a cell, the resulting

children cells might graze the exact surface. In such cases, the algorithm does

not terminate. Perturbation methods may offer a potential solution to these

problems, but this requires further investigation.

2. Robustness Problems: Our current implementation uses floating point arith-

metic which makes it prone to accuracy problems. For example, the sign query

and directed distance query rely on ray shooting. A ray is shot from a query point

in a certain direction and intersection points of this ray with the exact surface are

computed. This computation is not robust when the query point is too close to

the exact surface or when the ray passes through a vertex or edge of a polyhedral

surface. Exact arithmetic may be needed to overcome the robustness problem.

3. Conservative Tests: As described in Sec. 3.5, our algorithm uses conservative

tests to verify the complex cell and star-shaped criteria. Due to the conserva-

tiveness of these tests, a cell may be subdivided even though it satisfies both the

criteria. This can result in some unnecessary subdivision and reduce the overall

performance. The main advantage of these tests is that they do not require an

explicit representation of the exact surface.

In the following sections, we summarize our algorithms and discuss directions for

future investigation.

185

6.1 Surface Extraction

We have presented an algorithm for topology preserving isosurface extraction. It re-

lies on a sufficient sampling condition based on complex cell and star-shaped criteria

that ensures that the reconstructed isosurface maintains the topology of the original

isosurface. We have described a simple extension to the sampling condition to bound

the two-sided Hausdorff error of the reconstructed isosurface. We enforce the sampling

condition by performing adaptive subdivision. This is efficient in practice and easy to

implement. We have demonstrated the application of our algorithm to Boolean op-

erations, topology preserving simplification, and remeshing on a number of complex

examples.

There are many avenues for future work. Our sampling criteria – complex cell and

star-shaped criteria – are geared towards Marching Cubes reconstruction. We would

like to develop better reconstruction algorithms so that we could make the sampling

criteria less conservative and yet preserve topology.

The star-shaped criterion ensures that the surface within every cell is star-shaped.

A useful property of a star-shaped surface is that it has a spherical parametrization.

The fact that every point on the surface is visible to the guard can be used to map

the surface onto a portion of the unit sphere. Then a tessellation of this portion of the

sphere yields a polygonization of the star-shaped surface. It would be useful to develop

a reconstruction algorithm that exploits this property.

Current algorithms for kernel computation on curved primitives involve solving

non-linear equations and can be slow. For the special case of rational freeform sur-

faces, kernel computation can be reformulated as computing the zero sets of polynomial

equations (Seong et al., 2004). Solving such equations for each grid cell can be rather

expensive in practice. Moreover, no good algorithms are known for kernel computation

on free-form solids defined using subdivision surfaces. We would like to develop efficient

algorithms for kernel computation on curved solids.

In applications such as laser scanning, the input data often contains topological noise

due to inaccuracies in the scanning and merging process. We would like to investigate

whether our results can be combined with the algorithms presented in (Guskov and

Wood, 2001; Bischoff and Kobbelt, 2002) and used to perform topological reasoning

for noise removal.

Our current implementation supports polyhedral and low order algebraic primitives.

We would like to apply our algorithm to higher order NURBS and subdivision surfaces.

186

Finally, we plan to use our algorithm for other surface extraction problems such as

swept volume computation.

6.2 Minkowski Sum Computation

We have presented an algorithm to approximate the 3D Minkowski sum of polyhedral

objects. Our algorithm provides geometric and topological guarantees on the approx-

imation. We employ cell and primitive culling techniques to improve the performance

of our algorithm. We have applied our algorithm to offset computation and motion

planning of robots with translational degrees of freedom.

Our algorithm relies on convex decomposition. This is the main bottleneck in the

algorithm. We used a convex decomposition scheme available in a public collision

detection library, SWIFT++ (Ehmann and Lin, 2001). The convex decomposition

method often produces a large number of convex pieces: For a non-convex polyhedron

with n triangles, it typically produces O(n) convex pieces. This lowers the performance

of our algorithm. A potential way of overcoming this problem is to design an algorithm

that does not rely on convex decomposition. It can be shown that the Minkowski

sum of two star-shaped polyhedra is a star-shaped polyhedron. We could exploit this

property and design our overall approach based on star-shaped decomposition instead

of convex decomposition. The main advantage of this approach is that the star-shaped

decomposition of a polyhedron would typically result in fewer primitives. However, to

pursue this approach, we need to develop efficient algorithms for computing Minkowski

sums of star-shaped primitives. We plan to investigate this further.

6.3 Configuration Space Computation and Motion

Planning

We have presented a practical algorithm for approximating the free configuration space

of robots with translational and rotational degrees of freedom. Unlike many previous

methods, our method avoids computing an arrangement of the C-surfaces. Instead, we

use the surface extraction algorithm to compute a geometrically close and topologically

correct approximation.

We have presented a sampling based algorithm for complete motion planning. It re-

lies on computing a star-shaped roadmap of the free space. We construct this roadmap

187

using deterministic sampling. The resulting roadmap captures the connectivity of the

free space thus guaranteeing complete path planning. Our algorithm is simple to im-

plement and primarily relies on a star-shaped test which can easily be implemented.

We have demonstrated the performance of our planner in complex scenarios with low

DOF robots.

There are a range of directions to pursue for future work. We are interested in the

application of our algorithm to higher DOF motion planning. Our approach uses linear

programming and interval arithmetic. Both these techniques are extensible to higher

dimensional spaces. However, our current algorithm relies on contact surface enumer-

ation, which becomes difficult for high DOF. We wish to extend the algorithm so that

it no longer requires contact surface enumeration. Currently we use contact surfaces to

perform the star-shaped query in configuration space. One direction worth pursuing is

whether this query can be performed in the workspace instead of configuration space.

We would like to combine our algorithm with randomized sampling techniques to

design a hybrid algorithm for high-dof robots. Such an algorithm would first use ran-

domized sampling techniques to compute samples in the free space and then use star-

shaped sampling only in those regions where randomized sampling techniques failed to

capture the local connectivity.

A bottleneck in our approach is the large number of C-surfaces. Typically, our

method enumerates O(n2) C-surfaces where n is the number of features in the robot

and the obstacles. Many of these C-surfaces lie within C-obstacle and do not contribute

to the actual boundary of the free space, thus adding an unnecessary overhead to the

algorithm. We plan to develop better culling techniques to eliminate such C-surfaces.

Our current algorithm does not handle scenarios where the robot is allowed to be

in contact with the boundary of the obstacle. We would like to extend our algorithm

to handle such cases.

188

189

Appendix A

Overview of Interval Arithmetic

We provide a brief overview of interval arithmetic. Interval arithmetic is defined on a

set of intervals rather than sets of real numbers. An interval [a, b] is an ordered pair

a ≤ b representing the range of numbers {x | a ≤ x ≤ b}. Arithmetic operations

on intervals are guaranteed to return an interval containing all possible solutions over

the given domain. The standard arithmetic operations can be extended to intervals as

follows:

[a, b] + [c, d] = [a + b, c + d]

[a, b]− [c, d] = [a− b, c− d]

[a, b]× [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

[a, b]/[c, d] = [a, b]× [1/d, 1/c] if 0 /∈ [c, d]

Given a function f : Rd → R, we can use the above rules to write an interval form

f : Rd × Rd → R × R that takes as input an interval for the domain and returns an

interval for the range. For example, consider the function

f(x, y) = x(y − 1)

We can define an interval form f of the function f that takes a product of intervals

as an input. For example, suppose x and y belong to the intervals [a, b] and [c, d]

respectively. Then we have

f([a, b], [c, d]) = [a, b]([c, d]− 1)

= [a, b][c− 1, d− 1]

= [min(ac− a, ad− a, bc− b, bd− b), max(ac− a, ad− a, bc− b, bd− b)]

We can use f to obtain bounds on the range of f over a product of intervals. For

190

example, on [0, 1] × [0, 1], we have f([0, 1], [0, 1]) = [−1, 0], which contains the exact

range [−1/4, 0].

The range returned by interval arithmetic Q = f([a, b], [c, d]) on [a, b] × [c, d] is

guaranteed to contain the exact range R = {f(x, y) | x ∈ [a, b], y ∈ [c, d]}. Interval

arithmetic is conservative: in general, Q is not equal to R.

191

Appendix B

Contact Surfaces

This appendix provides background on contact surfaces (C-surfaces). It describes meth-

ods for enumerating C-surfaces for two classes of robots: 2T+1R - a planar rigid robot

with 2 translational and 1 rotational dofs moving among polygonal obstacles, and 3R

- a planar articulated robot with 3 revolute joints moving among polygonal obstacles.

B.1 Configuration Space of a 2T+1R Planar Rigid

Object

A detailed discussion of the configuration space of a planar rigid object is provided in

(Latombe, 1991).

We assume that the robot R and the obstacle O are planar polygons that are

defined with respect to their local coordinate frames WR and WO respectively. The

configuration q of R is represented by (x, y, θ) ∈ R2 × [0, 2π), and x and y are the

coordinates of the origin ofWR with respect to the global coordinate frameW . θ is the

angle between the x-axes of WR and WO. θ can “wrap around” from 2π to 0 and vice-

versa (θ is mapped to θ mod 2π). Let us represent R with a set of vertices ai and edges

ER
i , and O with bi and EO

i , each defined with respect to WR and WO, respectively.

Let ~vRi (q) and ~vOj be the outgoing normal vectors to ER
i (q) and EO

j , respectively.

B.1.1 Contact Surfaces

We first consider the case in which both R and O are convex polygons. The non-convex

case will be treated later.

Let us assume that R and O are in contact. A C-surface arises from two types of

contacts between R and O:

Type A Contact: A type A contact occurs when an edge ER
i of R contains a vertex

bj of O. See Fig. B.1(a). The constraint that the interiors of R and O do not overlap

192

(a) Type A contact (b) Type B contact

Figure B.1: 2T+1R: The figures shows the two types of contacts possible between the
vertices and edges of R and O.

makes a type A contact between ER
i and bj feasible only for a subrange of orientations

of R. This subrange is determined by the following condition:

APPLA
i,j(q) = [~vRi (q) · (bj−1 − bj) ≥ 0] ∧ [~vRi (q) · (bj+1 − bj) ≥ 0]

The above condition is called the applicability condition of type A contact between ER
i

and bj.

If we displace R in such a way that the type A contact between ER
i and bj is

maintained, then the robot’s configuration moves along a surface in C whose equation

is

fA
i,j(q) = 0

with:

fA
i,j(q) = ~vRi (q) · (bj − ai(q))

The above equation represents a surface called a C-surface of type A. It is a ruled

surface in R2 × [0, 2π). It separates C into two half spaces. The C-obstacle CO lies

completely within the half space determined by fA
i,j(q) ≤ 0.

DEFINITION 16 The expression

APPLA
i,j(q) =⇒ [fA

i,j(q) ≤ 0]

is called a C-constraint of type A. It is denoted as CONSTA
i,j(q).

Type B Contact: A type B contact occurs when a vertex ai of R is contained in

an edge EO
j of O. See Fig. B.1(b). In the same manner as type A contact, a type B

193

contact between ai and EO
j is feasible only for a subrange of orientations of R. This

subrange is determined by the following condition:

APPLB
i,j(q) = [(ai−1(q)− ai(q)) · ~vOj ≥ 0] ∧ [(ai+1(q)− ai(q)) · ~vOj ≥ 0]

The above condition is called the applicability condition of type B contact between ai

and EO
j .

If we displace R in such a way that the type A contact between ai and EO
j is

maintained, then the robot’s configuration moves along a surface whose equation is

fB
i,j(q) = 0

with:

fB
i,j(q) = ~vOj · (ai(q)− bj)

The above equation represents a surface called a C-surface of type B. Like C-surface

of type A, it is a ruled surface in R2× [0, 2π) and separates C into two half spaces. The

C-obstacle CO lies completely within the half space determined by fB
i,j(q) ≤ 0.

DEFINITION 17 The expression

APPLB
i,j(q) =⇒ [fB

i,j(q) ≤ 0]

is called a C-constraint of type B. It is denoted as CONSTB
i,j(q).

B.1.2 Representation of C-obstacle

The C-obstacle CO can be expressed in terms of the C-constraints. More precisely, we

have the following theorem:

THEOREM 18 Let R and O be two convex polygons. The C-obstacle:

CO = {q ∈ C : R(q) ∩ O 6= ∅}

is such that

q ∈ CO ⇐⇒ CO(q)

where

CO(q) ≡ (∧ijCONSTA
i,j(q)) ∧ (∧ijCONSTB

i,j(q))

194

The proof of the above theorem is given in Chapter 3 of (Latombe, 1991).

The C-obstacle is a three dimensional volume in R2 × [0, 2π). The boundary of

C-obstacle consists of patches of type A and type B C-surfaces.

If R and O are non-convex polygons, they can be represented as finite unions of

convex polygons Rk and Ol, i.e., R =
⋃

kRk and O =
⋃

lOl. By defining:

COkl = {q ∈ C | Rk(q) ∩ Ol 6= ∅}

we get:

CO =
⋃
k,l

COkl

Therefore, even in the case of non-convex polygons, the C-obstacle is a three-dimensional

volume in R2 × [0, 2π), bounded by patches of C-surfaces.

B.2 Configuration Space of a 3R Planar Articulated

Object

Let R be a planar articulated robot with three revolute joints (see Fig. B.2). Let us

represent R with a set of vertices ai, i = 0, . . . , 3 and edges ER
i , i = 1, . . . , 3 defined

with respect to a coordinate system WR. The vertices ai correspond to joints while

the edges ER
i correspond to links of the articulated robot. Each joint ai is associated

with a joint angle θi. The joint angle θ1 is the angle between ER
1 and one of the axes

of WR. The joint angle θi, i = 2, 3 measures the angle between ER
i−1 and ER

i . See Fig.

B.2(a). The configuration q of R is represented by (θ1, θ2, θ3) ∈ [0, 2π)3. Angle θ1 can

“wrap around” from 2π to 0 and vice-versa. The obstacle O is represented as in Sec.

B.1. Let ~vRi (q) and ~vOj be the outgoing normal vectors to ER
i (q) and EO

j , respectively.

Here ~vRi (q) represents the normal to a link in the counter-clockwise direction.

B.2.1 Contact Surfaces

We first consider the case where O is a convex polygon. The non-convex case will be

treated later.

Type A Contact: This type of contact occurs when an edge ER
i of R contains a

vertex bj of O. See Fig. B.2(b). The constraint that the interiors of R and O do not

overlap makes a contact between ER
i and bj feasible only for a subrange of orientations

195

of R. In general, there can be two sub-ranges for which a type A contact between ER
i

and bj occurs. These sub-ranges are determined by the following conditions:

APPLA1
i,j (q) = [~vRi (q) · (bj−1 − bj) ≥ 0] ∧ [~vRi (q) · (bj+1 − bj) ≥ 0]

We refer to this type of contact as as a type A1 contact. Similarly, a contact can also

occur for another range of orientation of the robot.

APPLA2
i,j (q) = [~vRi (q) · (bj−1 − bj) ≤ 0] ∧ [~vRi (q) · (bj+1 − bj) ≤ 0]

We refer to this type of contact as as a type A2 contact. For any orientation of R,

atmost one of type A1 or type A2 contact is possible between ER
i and bj: Both can never

occur simultaneously. We refer to the above conditions as the applicability condition of

type A contact between ER
i and bj.

If we displace R in such a way that the type A contact between ER
i and bj is

maintained, then the robot’s configuration moves along a surface in C whose equation

is

fRi,j(q) = 0

with:

fA
i,j(q) = ~vRi · (bj − ai(q))

The above equation represents a surface called a C-surface of type A. In general, the

C-surface consists of two components, one corresponding to each of type A1 and type

A2.

If a configuration q satisfies APPLA1
i,j , then q ∈ CO =⇒ fA

i,j(q) ≤ 0. On the other

hand, if q satisfies APPLA2
i,j , then q ∈ CO =⇒ fA

i,j(q) ≥ 0.

DEFINITION 18 The expression

APPLA1
i,j (q) =⇒ [fA

i,j(q) ≤ 0] ∧ APPLA2
i,j (q) =⇒ [fA

i,j(q) ≥ 0]

is called a C-constraint of type A. It is defined by CONSTA
i,j(q).

Type B Contact: A type B contact occurs when a vertex ai of R is contained in

an edge EO
j of O. See Fig. B.2(c). The contact between ai and EO

j is feasible only

for a sub-range of orientations of R. This sub-range is determined by the following

196

(a) 3R Robot (b) Type A Contact

(c) Type B Contact (d) Type C Contact

Figure B.2: 3R: Fig. (a) shows a planar articulated robot with 3 revolute joints. Figs.
(b) and (c) show the two types of contacts possible between the vertices and edges of R
and O. Fig. (d) shows a type C contact that arises when one link of the robot touches
another link, resulting in robot self-intersection.

condition:

APPLB
i,j(q) = [(ai−1(q)− ai(q)) · ~vOj ≥ 0] ∧ [(ai+1(q)− ai(q)) · ~vOj ≥ 0]1

The above condition is called the applicability condition of type B contact between ai

and EO
j .

If we displace R in such a way that the type B contact between ai and EO
j is

maintained, then the robot’s configuration moves along a surface whose equation is

fB
i,j(q) = 0

1We assume that a4 = a3; hence when the above condition is applied to vertex a3, the second part
of the and condition reduces to true.

197

with:

fB
i,j(q) = ~vOj · (ai(q)− bj)

The above equation epresents a surface called a C-surface of type B. It separates C into

two half spaces. The C-obstacle CO lies completely within the half space determined

by fB
i,j(q) ≤ 0.

DEFINITION 19 The expression

APPLB
i,j(q) =⇒ [fB

i,j(q) ≤ 0]

is called a C-constraint of type B. It is defined by CONSTB
i,j(q).

The C-obstacle w.r.t the i’th link of R can be expressed in terms of the type A

constraint derived from edge ER
i as well as the type B constraints derived from the

vertices ai−1 and ai. Thus the C-obstacle of the i’th link of the robot

COi = {q ∈ C : ER
i (q) ∩ O 6= ∅}

is such that

q ∈ COi ⇐⇒ COi(q)

where

COi(q) ≡ (∧jCONSTA
i−1,j(q)) ∧ (∧jCONSTA

i,j(q)) ∧ (∧jCONSTB
i,j(q))

The C-obstacle is given by the union of the C-obstacles of the individual links. We

have the following theorem:

THEOREM 19 Let O be a convex polygon. The C-obstacle is given by

CO =
⋃
i

COi

If O is a non-convex polygon, then it can be represented as finite unions of convex

polygons Ol, i.e., O =
⋃

lOl. By defining

CO(l) = {q ∈ C | R(q) ∩ Ol 6= ∅}

198

we get:

CO =
⋃

l

CO(l)

B.2.2 Robot Self-Intersection

In addition to preventing the robot from colliding with any obstacle, we also need to

ensure that the different links of the articulated robot do not collide with each other.

This means the robot cannot assume a certain set of configurations. This set is given

by

CR = {q ∈ C | ER
i (q) ∩ ER

j (q) 6= ∅, i ∈ {1, 2, 3}, j ∈ {1, 2, 3}, i 6= j}

We now enumerate contact surfaces that arise due to contact between pairs of links

of the robot. There are three cases corresponding to the pairs of links involved in

contact: (ER
1 , ER

2), (ER
2 , ER

3), or (ER
1 , ER

3). We can prevent link pairs (ER
1 , ER

2) and

(ER
2 , ER

3) from touching each other by preventing the corresponding orientation angle

to wrap around – more precisely, we restrict both θ2 and θ3 to lie within the open

interval (0, 2π). Hence we only need to consider the case where the link pair (ER
1 , ER

3)

is involved in a contact.

Two types of contacts can occur between (ER
1 and ER

3): (a) A contact between

vertex a3 and edge ER
1 and (b) A contact between vertex a0 and edge ER

3 . We refer to

these contacts as type C contacts. See Fig. B.2(d).

Type C Contact: Suppose vertex a3 lies on edge ER
1 . The contact between a3 and

ER
1 is feasible only for a sub-range of orientations of R. In general, there can be two

sub-ranges, which are determined by the following conditions:

APPLC1
3,1(q) = [θ2 ≤ π/2]

APPLC2
3,1(q) = [θ2 ≥ 3π/2]

We refer to these types of contacts as type C1 and type C2 contacts. For any orientation

of R, atmost one of them is possible between a3 and ER
1 . We refer to the above

conditions as the applicability condition of type C contact between a3 and ER
1 . See Fig.

B.2(d).

If we displace R in such a way that this contact is maintained, then the robot’s

199

configuration moves along a surface whose equation is

fC(q) = 0

with:

fC(q) = ~vR1 · (a3(q)− a1(q))

The above equation represents a surface called a C-surface of type C. In general, the

C-surface consists of two components, one corresponding to each of type C1 and type

C2.

For a configuration q satisfies APPLC1
3,1, q ∈ CR =⇒ fC(q) ≤ 0. On the other

hand, if q satisfies APPLC2
3,1, , then q ∈ CR =⇒ fC(q) ≥ 0.

The above types of contacts lead to the following C-constraint.

DEFINITION 20 The expression

APPLC1
3,1(q) =⇒ [fC(q) ≤ 0] ∧ APPLC2

3,1(q) =⇒ [fC(q) ≥ 0]

is called a C-constraint of type C. It is denoted as CONSTC
13(q).

The C-constraint corresponding to the contact between vertex a0 and edge ER
3 can

be treated similarly. Let us denote the resulting C-constraint by CONSTC
31(q).

CR can be defined as follows.

CR = {q ∈ C | ER
i ∩ ER

j 6= ∅, i ∈ {1, 2, 3}, j ∈ {1, 2, 3}, i 6= j}

is such that

q ∈ CR ⇐⇒ CR(q)

where

CR(q) ≡ (θ2 == 0) ∨ (θ3 == 0) ∨ (CONSTC
13(q) ∧ CONSTC

31(q))

The forbidden region of R is then defined as CO′ = CO ∪ CR.

200

201

Bibliography

Abrams, S. and Allen, P. (2000). Computing swept volumes. Journal of Visualization

and Computer Animation, 11.

Agarwal, P. K., Amenta, N., Aronov, B., and Sharir, M. (1997). Largest placements

and motion planning of a convex polygon. In Laumond, J.-P. and Overmars,

M. H., editors, Algorithms for Robotic Motion and Manipulation, pages 143–154,

Wellesley, MA. A. K. Peters.

Agarwal, P. K., Flato, E., and Halperin, D. (2002). Polygon decomposition for efficient

construction of minkowski sums. Comput. Geom. Theory Appl., 21(1):39–61.

Agarwal, P. K., Guibas, L. J., Har-Peled, S., Rabinovitch, A., and Sharir, M. (2000).

Computing the penetration depth of two convex polytopes in 3d. In Scandinavian

Workshop on Algorithm Theory, pages 328–338.

Agarwal, P. K. and Sharir, M. (1999). Pipes, cigars, and kreplach: The union of

Minkowski sums in three dimensions. In ACM Symposium on Computational

Geometry, pages 143–153.

Agarwal, P. K. and Sharir, M. (2000). Arrangements and their applications. In Sack, J.-

R. and Urrutia, J., editors, Handbook of Computational Geometry, pages 49–119.

Elsevier Science Publishers B.V. North-Holland, Amsterdam.

Amato, N., Bayazit, O. B., Dale, L. K., Jones, C., and Vallejo, D. (1998). OBPRM:

An obstacle-based PRM for 3D workspaces. In Agarwal, P. K., Kavraki, L. E.,

and Mason, M., editors, Workshop on Algorithmic Foundations of Robotics. A.

K. Peters, Wellesley, MA.

Amenta, N. and Bern, M. (1998). Surface reconsruction by Voronoi filtering. In ACM

Symposium on Computational Geometry, pages 39–48.

Aronov, B. and Sharir, M. (1994). On translational motion planning in 3-space. In

ACM Symposium on Computational Geometry, pages 21–30.

Aronov, B. and Sharir, M. (1997). On translational motion planning of a convex

polyhedron in 3-space. SIAM Journal on Computing, 26:1785–1803.

202

Aronov, B., Sharir, M., and Tagansky, B. (1997). The union of convex polyhedra in

three dimensions. SIAM Journal on Computing, 26:1670–1688.

Artzy, E., Frieder, G., and Herman, G. T. (1981). The theory, design, implementa-

tion, and evaluation of 3-d surface detection algorithms. Comput. Graph. Image

Process., 15:1–24.

Aspert, N., Santa-Cruz, D., and Ebrahimi, T. (2002). Mesh: Measuring error between

surfaces using the hausdorff distance,. In Proceedings of the IEEE International

Conference on Multimedia and Expo, pages 705–708.

Avnaim, F. and Boissonnat, J.-D. (1989). Practical exact motion planning of a class

of robots with three degrees of freedom. In Proc. of Canadian Conference on

Computational Geometry, page 19.

Bajaj, C. and Kim, M. (1987). Generation of configuration space obstacles III: The case

of moving algebraic curves. In Proc. 4th IEEE Internat. Conf. Robot. Autom.

Bajaj, C. L. and Kim, M.-S. (1990). Generation of configuration space obstacles. I. J.

Robotic Res., 9(1):92–112.

Bajaj, C. L., Pascucci, V., and Schikore, D. R. (1996). Fast isocontouring for improved

interactivity. In 1996 Volume Visualization Symposium, pages 39–46. IEEE. ISBN

0-89791-741-3.

Barraquand, J., Kavraki, L., Latombe, J.-C., Motwani, R., Li, T.-Y., and Raghavan,

P. (1997). A random sampling scheme for path planning. Int. J. Rob. Res.,

16(6):759–774.

Basch, J., Guibas, L., Ramkumar, G., and Ramshaw, L. (1996). Polyhedral tracings

and their convolutions. In Proc. Workshop on the Algorithmic Foundations of

Robotics.

Basch, J., Guibas, L. J., Hsu, D., and Nguyen, A. T. (2001). Disconnection proofs for

motion planning. In ICRA, pages 1765–1772.

Basu, S. (1998). On the combinatorial and topological complexity of a single cell.

Basu, S., Pollack, R., and Roy, M.-F. (1996). Computing roadmaps of semi-algebraic

sets. pages 168–173.

203

Bekker, H. and Roerdink, J. B. T. M. (2001). An efficient algorithm to calculate the

minkowski sum of convex 3d polyhedra. In ICCS ’01: Proceedings of the Inter-

national Conference on Computational Sciences-Part I, pages 619–628, London,

UK. Springer-Verlag.

Bhaniramka, P., Wenger, R., and Crawfis, R. (2000). Isosurfacing in higher dimensions.

In VISUALIZATION ’00: Proceedings of the 11th IEEE Visualization 2000 Con-

ference (VIS 2000), Washington, DC, USA. IEEE Computer Society.

Bhaniramka, P., Wenger, R., and Crawfis, R. (2004). Isosurface construction in any

dimension using convex hulls. IEEE Transactions on Visualization and Computer

Graphics, 10(2):130–141.

Bischoff, S. and Kobbelt, L. (2002). Isosurface reconstruction with topology control.

Proc. of Pacific Graphics, pages 246–255.

Blinn, J. F. (1982). A generalization of algebraic surface drawing. ACM Transactions

on Graphics, 1(3):235–256.

Bloomenthal, J. (1988). Polygonization of implicit surfaces. Comput. Aided Geom.

Design, 5(4):341–355.

Bloomenthal, J., editor (1997). Introduction to Implicit Surfaces, volume 391. Morgan-

Kaufmann.

Bloomenthal, J. and Ferguson, K. (1995). Polygonization of Non-Manifold implicit

surfaces. In SIGGRAPH 95 Conference Proceedings, pages 309–316.

Boissonnat, J.-D., Cohen-Steiner, D., and Vegter, G. (2004). Isotopic implicit surface

meshing. STOC.

Boissonnat, J.-D., de Lange, E., and Teillaud, M. (1997). Minkowski operations for

satellite antenna layout. In Symposium on Computational Geometry, pages 67–

76.

Boor, V., Overmars, M. H., and van der Stappen, A. F. (1999). The gaussian sampling

strategy for probabilistic roadmap planners. In ICRA, pages 1018–1023.

Bottino, A., Nuij, W., and van Overveld, K. (1996). How to shrinkwrap through

a critical point: An algorithm for the adaptive tesselation of iso-surfaces with

arbitrary topology. Implicit Surfaces, pages 53–72.

204

Branicky, M., Lavalle, S., Olson, K., and Yang, L. (2001). Quasirandomized path

planning.

Breen, D. and Mauch, S. (1999). Generating shaded offset surfaces with distance,

closest-point and color volumes. In Proceedings of the International Workshop on

Volume Graphics, pages 307–320.

Breen, D., Mauch, S., and Whitaker, R. (2000). 3d scan conversion of csg models

into distance, closest-point and color volumes. Proc. of Volume Graphics, pages

135–158.

Brooks, R. A. and Lozano-Pérez, T. (1985). A subdivision algorithm in configuration

space for findpath with rotation. IEEE Trans. Syst, SMC-15:224–233.

Brost, R. (1991). Analysis and planning of planar manipulation tasks. PhD thesis,

Carnegie Mellon University. Report CMU-CS-91-149.

Cameron, S. (1997). Enhancing GJK: Computing minimum and penetration distance

between convex polyhedra. IEEE International Conference on Robotics and Au-

tomation, pages 3112–3117.

Canny, J. (1987). The Complexity of Robot Motion Planning. ACM – MIT Press

Doctoral Dissertation Award Series. MIT Press, Cambridge, MA.

Canny, J. (1988). The Complexity of Robot Motion Planning. ACM Doctoral Disser-

tation Award. MIT Press.

Canny, J. F. and Donald, B. (1988). Simplified voronoi diagrams. Discrete and Com-

putational Geometry, 3:219–236.

Carr, H. (2004). Topological Manipulation of Isosurfaces. PhD thesis, The University

of British Columbia.

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum,

B. C., and Evans, T. R. (2001). Reconstruction and representation of 3d objects

with radial basis functions. In SIGGRAPH ’01: Proceedings of the 28th annual

conference on Computer graphics and interactive techniques, pages 67–76, New

York, NY, USA. ACM Press.

Chazelle, B. (1981). Convex decompositions of polyhedra. In ACM Symposium on

Theory of Computing, pages 70–79.

205

Chazelle, B., Dobkin, D., Shouraboura, N., and Tal, A. (1997). Strategies for polyhedral

surface decomposition: An experimental study. Computational Geometry: Theory

and Applications, 7:327–342.

Chen, Y., Wang, H., Rosen, D., and Rossignac, J. (2005). A point-based offsetting

method of polygonal meshes. In GVU Tech Report GIT-GVU-05.

Choset, H., Burgard, W., Hutchinson, S., Kantor, G., Kavraki, L. E., Lynch, K.,

and Thrun, S. (2004). Principles of Robot Motion: Theory, Algorithms, and

Implementations. MIT Press.

Christiansen, H. N. and Sederberg, T. W. (1978). Conversion of complex contour line

definitions into polygonal element mosaics. In SIGGRAPH ’78: Proceedings of

the 5th annual conference on Computer graphics and interactive techniques, pages

187–192, New York, NY, USA. ACM Press.

Chun-Yi, H., Patrikalakis, N. M., and Ye, X. (1996). Robust interval solid modelling

part i: representations. Computer-Aided Design, 28(10):807–817.

Cignoni, P., Ganovelli, F., Montani, C., and Scopigno, R. (2000). Reconstruction of

topologically correct and adaptive trilinear isosurfaces. Computers & Graphics,

24(3):399–418.

Cignoni, P., Montani, C., Puppo, E., and Scopigno, R. (1996). Optimal isosurface

extraction from irregular volume data. In 1996 Volume Visualization Symposium,

pages 31–38. IEEE. ISBN 0-89791-741-3.

Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P., Brooks, F.,

and Wright, W. (1996). Simplification envelopes. In Proc. of ACM Siggraph’96,

pages 119–128.

Collins, G. E. (1975). Quantifier elimination for real closed fields by cylindrical algebraic

decomposition. In Proc. 2nd GI Conference on Automata Theory and Formal

Languages, volume 33, pages 134–183. Springer-Verlag.

Cook, L. T., III, S. J. D., Batnitzky, S., and Lee, K. R. (1983). A three-dimensional

display system for diagnostic imaging applications. IEEE Comput. Graphics Ap-

plications, 3:13–19.

206

Curless, B. and Levoy, M. (1996). A volumetric method for building complex models

from range images. In Rushmeier, H., editor, SIGGRAPH 96 Conference Pro-

ceedings, Annual Conference Series, pages 303–312. ACM SIGGRAPH, Addison

Wesley. held in New Orleans, Louisiana, 04-09 August 1996.

Daniels, K. and Milenkovic, V. (1995). Multiple translational containment: Approxi-

mate and exact algorithms. pages 205–214.

Daniels, K. and Milenkovic, V. (1997). Multiple translational containment: Approxi-

mate and exact algorithms. In Algorithmica 19:148-182.

de Berg, M., van Kreveld, M., Overmars, M. H., and Schwarzkopf, O. (2000). Computa-

tional Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany,

2nd edition.

de Figueiredo, L. H. (1996). Surface intersection using affine arithmetic. In GI ’96:

Proceedings of the conference on Graphics interface ’96, pages 168–175, Toronto,

Ont., Canada, Canada. Canadian Information Processing Society.

Dobkin, D., Hershberger, J., Kirkpatrick, D., and Suri, S. (1993). Computing the

intersection-depth of polyhedra. Algorithmica, 9:518–533.

Donald, B. R. (1984). Motion planning with six degrees of freedom. Master’s thesis,

MIT Artificial Intelligence Lab. AI-TR-791.

Donald, B. R. (1987). A search algorithm for motion planning with six degrees of

freedom. Artif. Intell., 31(3):295–353.

Edelsbrunner, H. (1987). Algorithms in Combinatorial Geometry, volume 10 of EATCS

Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West

Germany.

Edelsbrunner, H. and Mücke, E. P. (1987). Simulation of simplicity: a technique to cope

with degenerate cases in geometric algorithms. Technical Report UIUCDCD-R-

87-1393, Dept. Comput. Sci., Univ. Illinois, Urbana-Champaign, IL.

Edelsbrunner, H. and Shah, N. R. (1994). Triangulating topological spaces. In ACM

Symposium on Computational Geometry, pages 285–292.

207

Ehmann, S. and Lin, M. C. (2001). Accurate and fast proximity queries between

polyhedra using convex surface decomposition. Computer Graphics Forum (Proc.

of Eurographics’2001), 20(3):500–510.

El-Sana, J. and Varshney, A. (1997). Controlled simplification of genus for polygonal

models. Proc. of IEEE Visualization, pages 403–410.

Elber, G. and Cohen, E. (1997). Filleting and rounding using trimmed tensor prod-

uct surfaces. In SMA ’97: Proceedings of the fourth ACM symposium on Solid

modeling and applications, pages 206–216, New York, NY, USA. ACM Press.

Emiris, I. and Canny, J. (1991). A general approach to removing degeneracies. pages

405–413.

Evans, R. C., Koppelman, G., and Rajan, V. T. (1987). Shaping geometric objects

by cumulative translational sweeps. IBM Journal of Research and Development,

31:343–360.

Evans, R. C., O’Connor, M. A., and Rossignac, J. R. (1992). Construction of

minkowski sums and derivatives morphological combinations of arbitrary poly-

hedra in cad/cam systems. US Patent 5159512.

Ezra, E. (2005). Almost tight bound for a single cell in an arrangement of convex

polyhedra in r3. In SCG ’05: Proceedings of the twenty-first annual symposium

on Computational geometry, pages 22–31, New York, NY, USA. ACM Press.

Fang, S., Bruderlin, B., and Zhu, X. (1993). Robustness in solid modeling: a tolerance-

based intuitionistic approach. Computer-Aided Design, 25(9):567–576.

Farouki, R. (1985). Exact offset procedures for simple solids. Comput. Aided Geom.

Design, 2:257–279.

Farouki, R. T. and Sakkalis, T. (1990). Pythagorean hodographs. IBM J. Res. Dev.,

34(5):736–752.

Favre, J. M. (1997). Towards efficient visualization support for single-block and multi-

block datasets. In VIS ’97: Proceedings of the 8th conference on Visualization

’97, pages 425–ff., Los Alamitos, CA, USA. IEEE Computer Society Press.

208

Flato, E. and Halperin, D. (2000). Robust and efficient construction of planar

minkowski sums. In Abstracts 16th European Workshop Comput. Geom., pages

85–88. Eilat.

Fogel, E. and Halperin, D. (2005). Exact minkowski sums of convex polyhedra. In

Symposium on Computational Geometry, pages 382–383.

Forsyth, M. (1995). Shelling and offsetting bodies. In SMA ’95: Proceedings of the

third ACM symposium on Solid modeling and applications, pages 373–381, New

York, NY, USA. ACM Press.

Fortune, S. (1997). Polyhedral modeling with multiprecision integer arithmetic. Com-

put. Aided Design, 29(2):123–133.

Fortune, S. and Van Wyk, C. J. (1993). Efficient exact arithmetic for computational

geometry. In ACM Symposium on Computational Geometry, pages 163–172.

Frisken, S., Perry, R., Rockwood, A., and Jones, R. (2000). Adaptively sampled distance

fields: A general representation of shapes for computer graphics. In Proc. of ACM

SIGGRAPH, pages 249–254.

Fuchs, H., Kedem, Z. M., and Uselton, S. P. (1977). Optimal surface reconstruction

from planar contours. Commun. ACM, 20(10):693–702.

Gerstner, T. and Pajarola, R. (2000). Topology preserving and controlled topology

simplifying multi-resolution isosurface extraction. Proc. of IEEE Visualization,

pages 259–266.

Ghosh, P. (1993). A unified computational framework for minkowski operations. In

Computers and Graphics, 17(4), pp.357-378.

Ghosh, S. K. and Mount, D. M. (1987). An output sensitive algorithm for computing

visibility graphs. In Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci., pages

11–19.

Gilbert, E. G., Johnson, D. W., and Keerthi, S. S. (1988). A fast procedure for comput-

ing the distance between complex objects. Internat. J. Robot. Autom., 4(2):193–

203.

GLPK (2003). Gnu linear programming kit, url:http://www.gnu.org/software/glpk/glpk.html.

209

Goyal, S., Ruina, A., and Papadopaulos, J. (1991). Planar sliding with dry friction i:

Limit surface and moment function. In Wear 143 (2), 307-330.

Gueziec, A. and Hummel, R. (1995). Exploiting triangulated surface extraction using

tetrahedral decomposition. IEEE Transactions on Visualization and Computer

Graphics, 1(4):328–342. ISSN 1077-2626.

Guibas, L., Ramshaw, L., and Stolfi, J. (1983). A kinetic framework for computational

geometry. In Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci.

Guibas, L. and Seidel, R. (1987). Computing convolutions by reciprocal search. Discrete

Comput. Geom, 2:175–193.

Guibas, L. J. and Hershberger, J. (1985). Computing the visibility graph of n line

segments in O(n2) time. Bull. EATCS, 26:13–20.

Guskov, I. and Wood, Z. (2001). Topological noise removal. Proc. of Graphics Interface.

Guthe, M., Borodin, P., and Klein, R. (2005). Fast and accurate hausdorff distance

calculation between meshes. volume 13, pages 41–48.

Hadwiger, H. (1957). Vorlesungen ber inhalt, oberflche, und isoperimetrie. Berlin:

Springer Verlag.

Hall, M. and Warren, J. (1990). Adaptive polygonalization of implicitly defined surfaces.

IEEE Comput. Graph. Appl., 10(6):33–42.

Halperin, D. (1997). Arrangements. In Goodman, J. E. and O’Rourke, J., editors,

Handbook of Discrete and Computational Geometry, chapter 21, pages 389–412.

CRC Press LLC, Boca Raton, FL.

Halperin, D. (2002a). Robust geometric computing in motion. International Journal

of Robotics Research, 21(3):219–232.

Halperin, D. (2002b). Robust geometric computing in motion. International Journal

of Robotics Research, 21(3).

Halperin, D. and Sharir, M. (1995a). Almost tight upper bounds for the single cell and

zone problems in three dimensions. 14:385–410.

210

Halperin, D. and Sharir, M. (1995b). Arrangements and their applications in robotics:

Recent developments. In Goldberg, K., Halperin, D., Latombe, J.-C., and Wilson,

R., editors, Algorithmic Foundations of Robotics, pages 495–511. A. K. Peters,

Wellesley, MA.

Hartquist, E. E., Menon, J., Suresh, K., Voelcker, H. B., and Zagajac, J. (1999).

A computing strategy for applications involving offsets, sweeps, and minkowski

operations. Computer-Aided Design, 31(3):175–183.

He, T., Hong, L., Varshney, A., and Wang, S. (1996). Controlled topology simplification.

IEEE Transactions on Visualization and Computer Graphics, 2(2):171–184.

Heermann, P. D. (1998). Production visualization for the asci one teraflops machine.

In VIS ’98: Proceedings of the conference on Visualization ’98, pages 459–462,

Los Alamitos, CA, USA. IEEE Computer Society Press.

Herman, G. and Liu, H. (1979). Three-dimensional display of human organs from

computed tomograms. Comp. Graph. and Image Processing, 9:1–21.

Herman, G. T. and Udupa, J. K. (1983). Display of 3-D digital images: Computational

foundations and medical applications. IEEE Computer Graphics and Applica-

tions, 3:39–46.

Hillyard, R. C. (1982). The build group of solid modellers. IEEE Computer Graphics

and Applications, 2:43–52.

Hoffmann, C. (1989a). Geometric and Solid Modeling. Morgan-Kaufmann, San Mateo,

CA.

Hoffmann, C. (1989b). Geometric and Solid Modeling. Morgan Kaufmann, San Mateo,

California.

Hoffmann, C. (2001). Robustness in geometric computations. Journal of Computing

and Information Science in Engineering, 1:143–156.

Hohmeyer, M. E. (1991). A surface intersection algorithm based on loop detection.

1(4):473–490.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1992). Surface

reconstruction from unorganized points. In Computer Graphics (SIGGRAPH ’92

Proceedings), volume 26, pages 71–78.

211

Hsu, D., Jiang, T., Reif, J., and Sun, Z. (2003a). The bridge test for sampling nar-

row passages with probabilistic roadmap planners. In Proc. IEEE Int. Conf. on

Robotics & Automation, pages 4420–4426.

Hsu, D., Jiang, T., Reif, J. H., and Sun, Z. (2003b). The bridge test for sampling narrow

passages with probabilistic roadmap planners. In ICRA, pages 4420–4426.

Hsu, D., Kavraki, L. E., Latombe, J.-C., Motwani, R., and Sorkin, S. (1998). On

finding narrow passages with probabilistic roadmap planners. Wellesley, MA. A.

K. Peters. To appear.

Hsu, D., Latombe, J.-C., and Motwani, R. (1999). Path planning in expansive configura-

tion spaces. International Journal of Computational Geometry and Applications,

9((4 & 5)):495–512.

Itoh, T. and Koyamada, K. (1995). Automatic isosurface propagation using an extrema

graph and sorted boundart cell lists. IEEE Transactions on Visualization and

Computer Graphics, 1(4):319–327. ISSN 1077-2626.

Jackson, D. (1995). Boundary representation modeling with local tolerances. Proc.

ACM Symposium on Solid Modeling and Applications, pages 247–253.

Joe, B. (1991). Geompack. A software package for the generation of meshes using

geometric algorithms. Advances in Engineering Software and Workstations, 13(5–

6):325–331.

Joskowitz, L. and Sacks, E. (1995). HIPAIR: Interactive mechanism analysis and design

using configuration spaces. In ACM Symposium on Computational Geometry,

pages V5–V6.

Ju, T., Losasso, F., Schaefer, S., and Warren, J. (2002). Dual contouring of hermite

data. ACM Trans. on Graphics (Proc. SIGGRAPH), 21(3).

Kalra, D. and Barr, A. H. (1989). Guaranteed ray intersections with implicit surfaces.

In Computer Graphics (SIGGRAPH ’89 Proceedings), volume 23, pages 297–306.

Kambhampati, S. and Davis, L. S. (1986). Multiresolution path planning for mobile

robots. Internat. J. Robot. Autom., RA-2(3):135–145.

Kaul, A. and Farouki, R. T. (1995). Computing minkowski sums of plane curves. Int.

J. Comput. Geometry Appl., 5(4):413–432.

212

Kaul, A., O’Connor, M., and Srinivasan, V. (1991). Computing minkowski sums of

regular polygons. Proc. 3rd Canad. Conf. Comput. Geom., pages 74–77.

Kaul, A. and O’Connor, M. A. (1992). Computing minkowski sums of regular poly-

hedra. Report RC 18891 (82557) 5/12/93, IBM T.J. Watson Research Center,

Yorktown Heights, NY.

Kaul, A. and Rossignac, J. (1991). Solid-interpolating deformations: Construction and

animation of PIPs. In Purgathofer, W., editor, Eurographics ’91, pages 493–505.

North-Holland.

Kavraki, L., Kolountzakis, M., and Latombe, J. (1996a). Analysis of probabilistic

roadmaps for path planning.

Kavraki, L. and Latombe, J. C. (1994). Randomized preprocessing of configuration

space for fast path planning. IEEE Conference on Robotics and Automation,

pages 2138–2145.

Kavraki, L., Svestka, P., Latombe, J. C., and Overmars, M. (1996b). Probabilis-

tic roadmaps for path planning in high-dimensional configuration spaces. IEEE

Trans. Robot. Automat., pages 12(4):566–580.

Kedem, K. and Sharir, M. (1990). An efficient motion planning algorithm for a convex

rigid polygonal object in 2-dimensional polygonal space. Discrete Comput. Geom.,

5:43–75.

Keyser, J. (2000). Exact Boundary Evaluation for Curved Solids. PhD thesis, Depart-

ment of Computer Science, University of North Carolina at Chapel Hill.

Keyser, J., Krishnan, S., and Manocha, D. (1997). Efficient and accurate B-rep gen-

eration of low degree sculptured solids using exact arithmetic. In Proceedings of

ACM Solid Modeling. To appear.

Kim, M.-S. and Sugihara, K. (2001). Minkowski sums of axis-parallel surfaces of rev-

olution defined by slope-monotone closed curves. In IEICE Transactions on In-

formation and Systems, pages 1540–1547.

Kim, Y. J., Lin, M. C., and Manocha, D. (2002). Fast penetration depth computation

using rasterization hardware and hierarchical refinement. Proc. of Workshop on

Algorithmic Foundations of Robotics.

213

Kobbelt, L., Botsch, M., Schwanecke, U., and Seidel, H. P. (2001). Feature-sensitive

surface extraction from volume data. In Proc. of ACM SIGGRAPH, pages 57–66.

Koide, A., Doi, A., and Kajioka, K. (1986). Polyhedral approximation approach to

molecular orbital graphics. J. Mol. Graph., 4(3):149–155.

Kriezis, G., Prakash, P., and Patrikalakis, N. (1990). Method for intersecting algebraic

surfaces with rational polynomial patches. Computer-Aided Design, 22(10):645–

654.

Krishnan, S. (1997). Efficient and Accurate Boundary Evaluation Algo-

rithms for Sculptured Solids. PhD thesis, Department of Computer

Science, University of N. Carolina at Chapel Hill. Available at

http://www.cs.unc.edu/∼krishnas/dissertation.html.

Krishnan, S., Gopi, M., Manocha, D., and Mine, M. (1997). Interactive boundary

evaluation on boolean combinations of sculptured solids. Computer Graphics

Forum, 16(3):C67–C78. Proc. of Eurographics’97.

Lane, J. M. and Riesenfeld, R. R. (1980). A theoretical development for the computer

generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern

Anal. Mach. Intell., PAMI-2(1).

Lanzagorta, M., Kral, M. V., J. Edward Swan, I., Spanos, G., Rosenberg, R., and

Kuo, E. (1998). Three-dimensional visualization of microstructures. In VIS ’98:

Proceedings of the conference on Visualization ’98, pages 487–490, Los Alamitos,

CA, USA. IEEE Computer Society Press.

Latombe, J. (1991). Robot Motion Planning. Kluwer Academic Publishers.

Latombe, J. (1999). Motion planning: A journey of robots, molecules, digital actors,

and other artifacts. International Journal of Robotics Research, pages 1119–1128.

Laumond, J.-P. (1987). Obstacle growing in a nonpolygonal world. Information Pro-

cessing Letters, 25:41–50.

LaValle, S. M. and Kuffner, J. J. (2000). Rapidly-exploring random trees: Progress and

prospects. Robotics: The Algorithmic Perspective (Proc. of the 4th Int’l Workshop

on the Algorithmic Foundations of Robotics.

214

Lee, D. T. (1978). Proximity and reachability in the plane. Report R-831, Dept. Elect.

Engrg., Univ. Illinois, Urbana, IL.

Lee, I., Kim, M., and Elber, G. (1997). New approximation methods of planar offset

and convolution curves. In Geometric Modeling: Theory and Practice.

Lee, I.-K., Kim, M.-S., and Elber, G. (1998). Polynomial/rational approximation

of minkowski sum boundary curves. Graphical Models and Image Processing,

60(2):136–165.

Leven, D. and Sharir, M. (1985). An efficient and simple motion planning algorithm

for a ladder moving in two-dimensional space amidst polygonal barriers. In ACM

Symposium on Computational Geometry, pages 221–227.

Lin, M. and Manocha, D. (2003). Collision and proximity queries. In Handbook of

Discrete and Computational Geometry.

Livnat, Y., Shen, H.-W., and Johnson, C. R. (1996). A near optimal isosurface extrac-

tion algorithm using the span space. IEEE Trans. Visualizat. Comput. Graph.,

2:73–84.

Lopes, A. and Brodlie, K. (2003). Improving the robustness and accuracy of the march-

ing cubes algorithm for isosurfacing. IEEE Transactions on Visualization and

Computer Graphics, 9(1):16–29.

Lorensen, W. E. (1995). Marching through the visible man. In VIS ’95: Proceedings of

the 6th conference on Visualization ’95, page 368, Washington, DC, USA. IEEE

Computer Society.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D surface

construction algorithm. In Computer Graphics (SIGGRAPH ’87 Proceedings),

volume 21, pages 163–169.

Lozano-Pérez, T. (1981). Automatic planning of manipulator transfer movements.

IEEE Trans. Syst. Man Cybern., SMC-11(10):681–698.

Lozano-Pérez, T. (1983). Spatial planning: A configuration space approach. IEEE

Trans. Comput., C-32:108–120.

Lozano-Pérez, T. and Wesley, M. (1979). An algorithm for planning collision-free paths

among polyhedral obstacles. Comm. ACM, 22(10):560–570.

215

Lozano-Pérez, T. and Wesley, M. A. (1979). An algorithm for planning collision-free

paths among polyhedral obstacles. Commun. ACM, 22(10):560–570.

Maekawa, T. (1999). An overview of offset curves and surfaces. Computer Aided Design,

31,165-173.

Manocha, D. and Canny, J. F. (1992). Implicit representation of rational parametric

surfaces. J. Symb. Comput., 13(5):485–510.

Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley & Sons, New

York.

Mehlhorn, K. and Näher, S. (1995). LEDA: a platform for combinatorial and geometric

computing. Commun. ACM, 38(1):96–102.

Mhlthaler, H. and Pottmann, H. (2003). Computing the minkowski sum of ruled sur-

faces. In Graphical Models, volume 65, pages 369–384.

Milenkovic, V. J. (1998). Rotational polygon overlap minimization and compaction.

Computational Geometry: Theory and Applications, 10:305–318.

Minkowski, H. (1903). Volumen und oberflche. Math. Ann., 57:447–495.

Mitchell, D. P. (1991). Three applications of interval analysis in computer graphics. In

SIGGRAPH ’91 Frontiers in Rendering course notes.

M.J.Durst (1988). Letters: Additional reference to marching cubes. ACM Computer

Graphics, 22(4):72–73.

Monks, C. R. F., Crossno, P. J., Davidson, G., Pavlakos, C., Kupfer, A., Silva, C.,

and Wylie, B. (1996). Three dimensional visualization of proteins in cellular

interactions. In VIS ’96: Proceedings of the 7th conference on Visualization ’96,

pages 363–ff., Los Alamitos, CA, USA. IEEE Computer Society Press.

Montani, C., Scateni, R., and Scopigno, R. (1994). Discretized marching cubes. Proc.

of IEEE Visualization, pages 353–355.

Moore, R. E. (1966). Interval Analysis. Prentice Hall, Englewood Cliffs, NJ.

Munkres, J. (1975). Topology: A First Course. Prentice-Hall.

216

Museth, K., Breen, D., Whitaker, R., and Barr, A. (2002). Level set surface editing

operations. ACM Trans. on Graphics (Proc. SIGGRAPH), 21(3):330–338.

Natarajan, B. K. (1994). On generating topologically consistent isosurfaces from uni-

form samples. Vis. Comput., 11(1):52–62.

Nielson, G. M. (2004). Dual marching cubes. In VIS ’04: Proceedings of the conference

on Visualization ’04, pages 489–496, Washington, DC, USA. IEEE Computer

Society.

Nielson, G. M. and Hamann, B. (1991). The asymptotic decider: Removing the ambi-

guity in marching cubes. In Visualization ’91, pages 83–91.

Nilsson, N. (1969). A mobile automaton: An application of artificial intelligence tech-

niques. In Proc. IJCAI, pages 509–520.

Ning, P. and Bloomenthal, J. (1993). An evaluation of implicit surface tilers. IEEE

Comput. Graph. Appl., 13(6):33–41.

Nooruddin, F. S. and Turk, G. (2003). Simplification and repair of polygonal mod-

els using volumetric techniques. IEEE Trans. on Visualization and Computer

Graphics, 9(2):191–205.

Ó’Dúnlaing, C., Sharir, M., and Yap, C. K. (1983). Retraction: A new approach to

motion-planning. In Proc. 15th Annu. ACM Sympos. Theory Comput., pages

207–220.

Ó’Dúnlaing, C., Sharir, M., and Yap, C. K. (1987). Generalized Voronoi diagrams for

a ladder: II. Efficient construction of the diagram. Algorithmica, 2:27–59.

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.-P. (2003). Multi-level

partition of unity implicits. ACM Trans. Graph., 22(3):463–470.

Ohtake, Y., Belyaev, A. G., and Pasko, A. (2001). Dynamic meshes for accurate

polygonanization of implicit surfaces with sharp features. Prof. of Shape Modeling

International, pages 135–158.

Okino, N., Kakazu, Y., and Kubo, H. (1973). TIPS-1: Technical Information Processing

System for Computer Aided Design and Manufacturing. Computer Languages for

Numerical Control, J. Hatvany, ed., North Holland, Amsterdam.

217

O’Rourke, J. (1987). Art Gallery Theorems and Algorithms. The International Series

of Monographs on Computer Science. Oxford University Press, New York, NY.

O’Rourke, J. and Supowit, K. (1983). Some np-hard polygon decomposition problems.

IEEE Transactions on Information Theory, vol. IT-29, pp.181-190.

Ouchi, K. and Keyser, J. (2004). Handling degeneracies in exact boundary evaluation.

In Proceedings of 9th ACM Symposium on Solid Modeling and Applications, pages

321–326.

Overmars, M. H. and Svestka, P. (1995). A probabilistic learning approach to motion

planning. In WAFR: Proceedings of the workshop on Algorithmic foundations of

robotics, pages 19–37, Natick, MA, USA. A. K. Peters, Ltd.

Pasko, A., Adzhiev, V., Sourin, A., and Savchenko, V. (1995). Function representation

in geometric modeling: concepts, implementation and applications. The Visual

Computer, 11(8):429–446.

Patrikalakis, N. (1993). Surface-to-surface intersections. IEEE Computer Graphics and

Applications, 13(1):89–95.

Payne, B. A. and Toga, A. W. (1990a). Medical imaging: Surface mapping brain

function on 3d models. IEEE Comput. Graph. Appl., 10(5):33–41.

Payne, B. A. and Toga, A. W. (1990b). Surface mapping brain function on 3D models.

IEEE Computer Graphics and Applications, 10(5):33–41.

Perry, R. and Frisken, S. (2001). Kizamu: A system for sculpting digital characters. In

Proc. of ACM SIGGRAPH, pages 47–56.

Peters, J. (2003). Efficient one-sided linearization of spline geometry. 10th IMA Con-

ference on Mathematics of Surfaces, pages 297–319.

Pham, B. (1992). Offset curves and surfaces: a brief survey. Computer-Aided Design,

24(4):223–229.

Plantinga, S. and Vegter, G. (2004). Isotopic approximation of implicit curves and

surfaces. In SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH

symposium on Geometry processing, pages 245–254, New York, NY, USA. ACM

Press.

218

Pottmann, H. (1995). Rational curves and surfaces with rational offsets. Computer

Aided Geometric Design, 12(2):175–192.

Pratt, M. (1986). Surface/surface intersection problems. In Gregory, J., editor, The

Mathematics of Surfaces II, pages 117–142, Oxford. Claredon Press.

QSOPT (2005). Qsopt linear programming solver,

url:http://www.isye.gatech.edu/ wcook/qsopt/index.html.

Raab, S. (1999). Controlled perturbation for arrangements of polyhedral surfaces with

application to swept volumes. In SCG ’99: Proceedings of the fifteenth annual

symposium on Computational geometry, pages 163–172, New York, NY, USA.

ACM Press.

Redon, S. and Lin, M. C. (2005). Practical local planning in the contact space. Pro-

ceedings of IEEE International Conference on Robotics and Automation.

Reif, J. (1979a). Complexity of the mover’s problem and generalizations. Proc. 20th

Symp. on the Foundations of Computer Science, pages 421–427.

Reif, J. H. (1979b). Complexity of the mover’s problem and generalizations. pages

421–427.

Requicha, A. and Voelcker, H. (1985). Boolean operations in solid modeling: boundary

evaluation and merging algorithms. Proceedings of the IEEE, 73(1).

Ricci, A. (1973). A constructive geometry for computer graphics. Computer Journal,

16(2):157–160.

Rossignac, J. and Requicha, A. (1986). Offsetting operations in solid modeling. Comput.

Aided Geom. Design, 3:129–148.

Rossl, C., Kobbelt, L., and Seidel, H.-P. (2000). Extraction of feature lines on trian-

gulated surfaces using morphological operators. Proceedings of the 2000 AAAI

Symposium.

Sacks, E. (1999). Practical sliced configuration space for curved planar pairs. Interna-

tional Journal of Robotics Research, 18(1).

Sacks, E. (2001). Deterministic path planning for planar assemblies. Proc. of IEEE

Int. Conf. on Robotics and Automation.

219

Samet, H. (1989). Spatial Data Structures: Quadtree, Octrees and Other Hierarchical

Methods. Addison Wesley.

Schaefer, S. (2002). Dual contouring, url:http://www.subdivision.org/comp460/beasts/download/index.jsp.

Schaefer, S. and Warren, J. (2004). Dual marching cubes: Primal contouring of dual

grids. In PG ’04: Proceedings of the Computer Graphics and Applications, 12th

Pacific Conference on (PG’04), pages 70–76, Washington, DC, USA. IEEE Com-

puter Society.

Schrijver, A. (1998). Theory of Linear and Integer Programming. John Wiley & Sons.

Schroeder, W., Martin, K., and Lorensen, B. (1997). The Visualization Toolkit: An

Object-Oriented Approach to 3D Graphics. Prentice-Hall Inc, New Jersey, NJ.

Schroeder, W. J., Lorensen, W. E., and Linthicum, S. (1994). Implicit modeling of swept

surfaces and volumes. In VIS ’94: Proceedings of the conference on Visualization

’94, pages 40–45, Los Alamitos, CA, USA. IEEE Computer Society Press.

Schwartz, J. T. (1981). Finding the minimum distance between two convex polygons.

Inf. Process. Lett., 13(4/5):168–170.

Schwartz, J. T. and Sharir, M. (1983a). On the piano movers probelem ii, general tech-

niques for computing topological properties of real algebraic manifolds. Advances

of Applied Maths, 4:298–351.

Schwartz, J. T. and Sharir, M. (1983b). On the “piano movers” problem I: The case

of a two-dimensional rigid polygonal body moving amidst polygonal barriers.

Commun. Pure Appl. Math., 36:345–398.

Sederberg, T. and Meyers, R. (1988). Loop detection in surface patch intersections.

Computer Aided Geometric Design, 5:161–171.

Segal, M. (1990). Using tolerances to guarantee valid polyhedral modeling results. In

Proceedings of ACM Siggraph, pages 105–114.

Seidel, R. (1994). The nature and meaning of perturbations in geometric computing.

Manuscript.

Seong, J. K., Elber, G., Johnston, J., and Kim, M. S. (2004). The convex hull of

freeform surfaces. Computing.

220

Seong, J.-K., Elber, G., Johnstone, J., and Kim, M.-S. (2003). The convex hull and

kernel of freeform surfaces. In UAB Technical Report (UABCIS-TR-2004-120104-

02).

Seong, J.-K., Kim, M.-S., and Sugihara, K. (2002). The minkowski sum of two simple

surfaces generated by slope-monotone closed curves. Geometric Modeling and

Processing: Theory and Applications.

Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press,

London, UK.

Sharir, M. (1997). Algorithmic motion planning. In Goodman, J. E. and O’Rourke,

J., editors, Handbook of Discrete and Computational Geometry, chapter 40, pages

733–754. CRC Press LLC, Boca Raton, FL.

Shekhar, R., Fayyad, E., Yagel, R., and Cornhill, F. (1996). Octree-based decimation

of marching cubes surfaces. Proc. of IEEE Visualization, pages 335–342.

Shewchuk, J. R. (1998). Tetrahedral mesh generation by Delaunay refinement. In ACM

Symposium on Computational Geometry, pages 86–95.

Simeon, T., Laumond, J. P., and Nissoux, C. (2000). Visibility based probabilistic

roadmaps for motion planning. Advanced Robotics Journal, 14(6).

Sinha, P., Klassen, E., and Wang, K. (1985). Exploiting topological and geometric prop-

erties for selective subdivision. In ACM Symposium on Computationl Geometry,

pages 39–45.

Snyder, J. M. (1992). Interval analysis for computer graphics. In Catmull, E. E., editor,

Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 121–130.

Stander, B. T. and Hart, J. C. (1997). Guaranteeing the topology of an implicit surface

polygonization for interactive modeling. In Proc. of ACM SIGGRAPH, pages

279–286.

Sugihara, K. and Iri, M. (1989). A solid modelling system free from topological incon-

sistency. J. Inform. Proc., 12(4):380–393.

Sutton, P., Hansen, C., Shen, H., and Schikore, D. (2000). A case study of isosurface

extraction algorithm performance.

221

Thomas, U., Barrenscheen, M., and Wahl, F. (2003). Efficient assembly sequence

planning using stereographical projections of c-space obstacles. Proc. of the 5th

IEEE International Symposium on Assembly and Task Planning.

van der Stappen, A. F. and Overmars, M. H. (1994). Motion planning amidst fat

obstacles. In ACM Symposium on Computational Geometry, pages 31–40.

Varadhan, G., Krishnan, S., Kim, Y., Diggavi, S., and Manocha, D. (2003a). Ef-

ficient max-norm computation and reliable voxelization. Proc. of ACM SIG-

GRAPH/Eurographics Symposium on Geometry Processing, pages 116–126.

Varadhan, G., Krishnan, S., Kim, Y., and Manocha, D. (2003b). Feature-sensitive

subdivision and isosurface reconstruction. Proc. of IEEE Visualization.

Varadhan, G., Krishnan, S., Sriram, T. V. N., and Manocha, D. (2004). Topology pre-

serving surface extraction using adaptive subdivision. In Eurographics Symposium

on Geometry Processing.

Velho, L. (1990). Adaptive polygonization of implicit surfaces using simplicial decom-

position and boundary constraints. In Vandoni, C. E. and Duce, D. A., editors,

Eurographics ’90, pages 125–136. North-Holland.

Vleugels, J. and Overmars, M. (1997). Approximating Voronoi diagrams of convex

sites in any dimension. International Journal of Computational Geometry and

Applications, 8:201–222.

Voelcker, H. B. (1974). An introduction to padl: Characteristics, status, and rationale.

Technical Report Research Memo. #22, University of Rochester. Production

Automation Project.

Wang, S. and Kaufman, A. (1994). Volume-sampled 3d modeling. IEEE Computer

Graphics and Applications, 14(5):26–32.

Weigle, C. and Banks, D. C. (1998). Extracting iso-valued features in 4-dimensional

scalar fields. In VVS ’98: Proceedings of the 1998 IEEE symposium on Volume

visualization, pages 103–110, New York, NY, USA. ACM Press.

Westermann, R., Kobbelt, L., and Ertl, T. (1999). Real-time exploration of regular

volume data by adaptive reconstruction of isosurfaces. The Visual Computer,

2:100–111.

222

Wilhelms, J. and Gelder, A. V. (1990a). Octrees for faster isosurface generation ex-

tended abstract. In Computer Graphics (San Diego Workshop on Volume Visu-

alization), volume 24, pages 57–62.

Wilhelms, J. and Gelder, A. V. (1990b). Topological considerations in isosurface gen-

eration extended abstract. Computer Graphics, 24(5):79–86.

Williams, J. and Rossignac, J. (2004). Mason: Morphological simplification. GVU

Tech. Report GIT-GVU-04-05.

Wilmarth, S. A., Amato, N. M., and Stiller, P. F. (1999). Maprm: A probabilistic

roadmap planner with sampling on the medial axis of the free space. IEEE

Conference on Robotics and Automation, pages 1024–1031.

Wood, Z., Hoppe, H., Desbrun, M., and Schroder, P. (2002). Iso-surface topology

simplification. Technical report, Microsoft Research, MSR-TR-2002-28.

Wright, T. and Humbrecht, J. (1979). Isosurf: an algorithm for plotting iso-valued

surfaces of a function of three variables. In SIGGRAPH ’79: Proceedings of the

6th annual conference on Computer graphics and interactive techniques, pages

182–189, New York, NY, USA. ACM Press.

Wu, Y., Shah, J. J., and Davidson, J. K. (2003). Improvements to algorithms for com-

puting the minkowski sum of 3-polytopes. Computer-Aided Design, 35(13):1181–

1192.

Wyvill, B., McPheeters, C., and Wyvill, G. (1986). Animating soft objects. The Visual

Computer, 2(4):235–242.

Wyvill, B. and van Overveld, K. (1996). Polygonization of Implicit Surfaces with

Constructive Solid Geometry. Journal of Shape Modelling, 2(4):257–274.

Xavier, P. G. and LaFarge, R. A. (1997). A configuration space toolkit for automated

spatial reasoning: Technical results and ldrd project final report. Technical Report

SAND97-0366, Sandia Natioanl Laboratories.

Yap, C. K. (1990). Symbolic treatment of geometric degeneracies. J. Symbolic Comput.,

10:349–370.

223

Yap, C. K. and Dubé, T. (1995). The exact computation paradigm. In Du, D.-Z.

and Hwang, F. K., editors, Computing in Euclidean Geometry, volume 4 of Lec-

ture Notes Series on Computing, pages 452–492. World Scientific, Singapore, 2nd

edition.

Yu, J. (1992). Exact arithmetic solid modeling. PhD thesis, Purdue University.

Zelinka, S. and Garland, M. (2002). Permission grids: Practical, error-bounded simpli-

fication. ACM Trans. on Graphics.

Zhang, N., Hong, W., and Kaufman, A. (2004). Dual contouring with topology-

preserving simplification using enhanced cell representation. In VIS ’04: Pro-

ceedings of the conference on Visualization ’04, pages 505–512, Washington, DC,

USA. IEEE Computer Society.

Zhu, D. and Latombe, J. (1990). Constraint reformulation in a hierarchical path plan-

ner. Proceedings of International Conference on Robotics and Automation, pages

1918–1923.

Zhu, D. and Latombe, J. (1991). New heuristic algorithms for efficient hierarchical path

planning. IEEE Trans. on Robotics and Automation, 7(1):9–20.

Zundel, A. and Sederberg, T. (1993). Using pyramidal surfaces to detect and isolate

surface/surface intersections. In SIAM Conference on Geometric Design, Tempe,

AZ.

