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Jih-Fang Wang. A Real-time Optical 6D Tracker for Head-mounted Display Systems

(Under the direction of Henry Fuchs)

abstract

Significant advance has been made towards realistic synthesis and display of three-dimensional
objects using computers during the past two decades. However, the interaction between human
and computer-generated scenes remains largely remote through devices such as keyboards, mice,
joysticks, etc. Head-mounted display provides a mechanism for much more realistic visualizing and
interacting with computer-generated 3D scenes through the hand-eye-body coordination exercised
daily. Head-mounted display systems require that the position and orientation of the user's head
be tracked in real time with high accuracy in a large working environment. Current 6D positional

tracking devices (3 translational and 3 rotational parameters) fail to satisfy these requirements.

In this dissertation, a new system for real-time, six-dimensional position tracking is intro-
duced, studied, and documented. This system adopts an inside-out tracking paradigm. The working
environment is a room in which the ceiling is lined with a regular pattern of infrared LED beacons
which are flashing (invisible to the human eyes) under the system's control. Three cameras are
mounted on a helmet which the user wears. Each camera uses a lateral effect photodiode as the
recording surface. The 2D image positions of the flashing beacons inside the field of view of the
cameras are recorded and reported in real time. The measured 2D image positions and the known
3D positions of beacons are used to compute the position of the camera assembly in space.

We have designed an iterative algorithm to estimate the 6D position of the camera assembly
in space. This algorithm is a generalized version of the Church's method, and allows for multiple
cameras with nonconvergent nodal points. Several equations are formulated to predict the system's
error analytically, and the system's error is quantitatively studied and compared with the theoretical

prediction. The requirements of accuracy, speed, adequate working volume, light weight and small
size of the tracker are addressed. A novel approach to calibrate the positions of beacons automatically

is also proposed.

A prototype was designed and constructed to demonstrate the integration and coordination
of all essential components in the new tracker. This prototype uses off-the-shelf components and
can be easily duplicated. Our results indicate that the new system significantly out-performs other

existing systems. The new tracker prototype provides about 25 updates per second, and registers
0.1-degree rotational movements and 2-millimeter translational movements. The future full system
will have a working volume about 1,000 ft3 (10 ft on each side), and will provide more thall 200

updates per second with a lag of less than 5 milliseconds by running on a faster processor.

We aim at developing a new tracking system which offers a large working volume, high
accuracy in the estimated head position, fast update rate, and immunity to the electro-magnetic
interference of the environment. Such a system should find applications in many 6D position-

reporting apd input tasks.
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Chapter 1

Introduction

In this chapter, head-mounted display systems are introduced and their role in hu-

man/computer interaction is described. Important research problems pertinent to applying

head-mounted display systems to facilitate human/machine interaction are identified. The

particular issue which is the focus of this research, tracking the position and motion of the

user's head in space, is studied in more detail. Configuration of our tracking system is also

described. We conclude this chapter by defining the criteria of an ideal tracker, and outline

the structure of the remainder of this thesis.

1.1 The Head-mounted Display Systems

Significant advances have been made towards realistic synthesis and display of three-

dimensional objects using computers during the past two decades. It is now a common

practice to generate complicated 3D scenes with hidden surfaces removed, and visible surfaces

realistically lighted and smoothly shaded. However, the interaction between human and
computer-generated scenes remains largely remote through devices such as mice, joysticks,

rotary dials, tablets, etc. These devices do not allow a user to interact directly with the
virtual environments created by a computer.

An ideal interactive paradigm was proposed by Ivan Sutherland [Sut65] in 1965. The

concept of the Ultimate Display is that the host computer controls the existence of objects

in a virtual world. Computer-generated chairs could be sat upon, and computer-generated

bullets would be fatal. In this system, users experience and interact with computer-generated

objects just as they do with real physical objects. Unfortunately, the Ultimate Display

concept is a goal far from attainable even with today's technology. However, we are now

in a position to investigate certain feasible approximations to the Ultimate Display. lead



mounted display presents such an approximation.

For more than two decades, research effort has been expended to develop head-

mounted display systems for easy interaction with computers. The head-mounted display

system developed at UNC [Hol87][CHB+89] has been used to allow a user to "walk-around"

in a room-size environment. The walk-around concept, while not as powerful and real-

istic as the one advocated in the Ultimate Display, does provide a natural and effective

man/machine interaction mechanism. The computer-generated images are presented on the

screens of small television sets mounted in front of the user's eyes. As the user moves, his

or her head position is constantly measured, and appropriate views of the 3D environment

are displayed to provide illusion of a virtual world.

The head-mounted display provides a more realistic mechanism for visualizing and

interacting with virtual 3D objects than do conventin,,al methods of display and manipu-

lation. It allows viewpoint selection through natural head and body movements. Since the

method harnesses natural well-trained hand-eye-body coordination that is exercised daily, it

may prove to be a more effective paradigm for human-machine interaction.

1.2 The Problems

A head-mounted display system consists of three major components: a display engine.

a 6D position tracking subsystem, and a helmet. The head-mounted system developed at

UNC uses the Pixel-Planes 4 machine [FGH+85]-which is capable of generating thirty thou-

sand Gouraud shaded polygons per second-as the display engine. The helmet is equipped
with two color-liquid-crystal television sets, each with a two-inch-diagonal display screen.

The user's head position is tracked by a Polhemus position tracker. The Polhemus tracker

consists of a source which is fixed at a certain location inside the working environment, and

a sensor is attached to the helmet. The sensor detects a low-frequency magnetic field gener-

ated by the source. Based on the polarization and the orientation of the magnetic field, the

sensor's position and orientation relative to the radiating source are determined.

Much improvement needs to be done before this head-mounted display system can

be used for practical humau/computer interaction. The display engine needs to be made

even faster, and the LCD television sets need to have a higher resolution and a wider field

of view. As for the tracker, the Polihemus has a slow update rate and suffers from serious

lag (latency). The lag, which is the time between the user making a certain movement

and that movement being registered and reported by the Polhemus, can be as long as 120

milliseconds [CIIB+89]. One should note that the problems of update rate and latency are

different. For example, one can have a tracker with a fast update rate that still reports

2



events which occurred far back in time. The Polhemus also has a limited working range (the

user has to be within a short distance from the radiating source for the sensor to detect

the emitted waves). Finally, the function of Polhemus is affected by magnetic perturbations

in the environment. Interferences come from metallic furniture in the room, and possible

radiating sources such as TV sets, computers, and terminals. Hence, the tracker needs to be

made faster, more accurate, and to work in a larger range.

1.3 The Criteria

It is not difficult to identify the characteristics that an ideal tracking device should

possess:

" a fast update rate,

" low latency,

" high accuracy,

" a large working volume, and

" the ability to report both position and orientation.

An ideal tracker should also

" impose little restriction on the user,

" impose little restriction on the environment,

" be compact and rigid, and

" be light-weight and comfortable to the user.

As evident from the previous work on 3D position trackers (Section 2.1), it is difficult for
any single system to meet all the requirements.

1.4 The Proposed System

In this section, we present the configuration of the system we propose to build, and

describe the structure of a prototype we constructed to prove our design concept. Note that
there are two systems discivssed here: one is the proposed, or full scale system: the other

31



is the prototype , or bench-top system. In this dissertation, a bench-top prototype is built
which implements a subset of the proposed system.

The goal of this research is to design and construct a new tracker to be used with
head-mounted display systems. The working environment is a room where the ceiling is lined
with a regular pattern of beacons flashing under the system's control. Three cameras are

mounted on a helmet which the user wears; these cameras record the 2D image positions of
flashing LED beacons. Lateral-effect photodiodes are used as the recording surfaces of the
cameras so that the 2D positions of the LEDs can be measured in real time. A new algorithm
is designed to infer, from the 2D image positions of the flashing beacons, the 6D position

and orientation of the camera unit. Figure 1.1 depicts the configuration of the proposed
tracking system.

infrared - 2Di - /

... . ---'- -- -J2. '

I!I

3cameras trac"

" 2D ima soLEDs

head-mounted

display

Figure 1.1: The new tracking system

A bench-top prototype of the proposed system has been designed and built. The
prototype aims at proving the conceptual correctness of our design, and demonstrating that
a fast update, low latency, and a large working volume can be achieved using this new
tracker. The bench-top prototype is made of three cameras mounted on a small helet.



The three cameras are used to observe three infrared LEDs affixed to the ceiling. Although

the prototype system implements only a small part of the proposed system, it nonetheless

demonstrates the integration and coordination of all essential components in the new design.

The proposed system provides a large working volume about 1000 ft3 (10 ft on each

side), high accuracy in the computed head position (error less than 0.10 in rotation and

2 mm in translation), a fast update rate (> 200 Hz), low latency (i- 5 millisecond), and

immunity to electro-magnetic interference in the environment.

The remainder of this thesis is organized as follows: In chapter two, we survey the

state-of-the-art in motion tracking and discuss the fundamental working principles of the

new tracker. Several algorithms for tracking 6D motion are presented in chapter three, and

the particular tracking algorithm which we designed is formulated. The system's error is

analyzed theoretically and compared with the data gathered from a simulation program.

A prototype tracker was designed, built, and tested. Chapter four discusses the design

and implementation of the prototype system. In chapter five, performance of the prototype is

quantitatively measured and analyzed. Finally in chapter six, we discuss the future research

plan to achieve a full scale system.



Chapter 2

Tracking Devices and Methods

We begin this chapter with a survey of existing position-tracking systems. The

inside-out tracking paradigm which we adopt in our system is then presented and compared
with the conventional outside-in tracking paradigm adopted by most other systems. Several

important components in our system are described here. Details of the system design and

implementation will follow in later chapters.

2.1 Overview of Existing 3D Position Tracking Systems

In this survey, we place our emphasis on systems that can track in six dimensions,
which includes three positional (translational) and three orientational (rotational) degrees of

freedom. We also include discussion of those systems that report only position information.

Although the primary application of 6D tracking systems is in head-mounted display, such

tracking devices have also found applications in interactive surface design and 3D modeling,

and have been used as unconstrained 3D graphics input tools.

First, we discuss the general working principles of devices which provide 3D posi-

tional information. Commercial and experimental 3D position tracking devices have used

acoustic, magnetic, mechanical, and optical methods to report 3D position. These systems

are discussed in the following subsections.

2.1.1 Acoustic Systems

Acoustic ranging systems such as the Lincoln Wand [Rob66] use the time-of-flight

principle to estimate the range of o:)jects in space. A 3D acoustic tracking system uses

at least three microphones. Those microphones. are placed perpendicular to one another in
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space. 3D position of a sound-generating stylus is estimated using the time required for the

sound wave to be recorded by the three microphones. Such systems are position recording

devices. They do not sense orientation directly. The speed of sound also limits the update

rate and the working volume. Finally, because the speed of sound varies as a function of the
ambient air density, these systems have poor accuracy over a large working range.

2.1.2 Magnetic Systems

Polhemus Navigation Science manufactures the Polhemus 3D position sensor [Pol8]
which is used in our current head-mounted display system. The Polhemus uses a three-

axis magnetic-dipole source and a three-axis magnetic-dipole sensor. The three dipoles in
the source are excited sequentially to produce magnetic fields. The sensor dipoles detect
the polarization and orientation of the magnetic fields. Based on the recording of the sen-

sor dipoles, both the position and orientation of the sensor relative to the source can be
determined using a built-in microprocessor(RBS+79].

According to the specification [PoSO], the Polhemus provides a static position accu-
racy of 0.25 inch (6.35 mm), and an angular accuracy of 0.7 degree if the sensor is located
between ±4 and ±28 inches (±0.1 - ±0.7 meters) from the source. Operation of the sensor

up to ± 60 inches (±1.5 meters) away from the source is possible with reduced accuracy.
Maximum output update rate is 60 Hz.

The main advantage of the Polhemus is that the sensor attached to the user is small
and light-weight. Also, the operation of Poihemus does not suffer from the line-of-sight
constraint-the sensor does not need to "see" the radiating source with no opaque obstacle in
between-as most optical trackers do. However, the performance of the Polhemus is affected

by any conducting materials present in the environment. In our Graphics Laboratory, we

place all metal furniture and computers outside the working limits of the Polhemus to avoid
the undesirable interference. However, there is no escaping the effect of the metal floor
which can curve the Polhemus' space by as much as 300 near its spatial range, according to

[CHB+89]. Further, the Polhemus has a limited working range, a slow update rate and suffers
the lag problem. Experiments conducted in our head-mounted display project [CHB+S9]

indicate that the Polhemus can provide about 16 position updates per second, and the lag
in response can be as long as 120 milliseconds.

2.1.3 Mechanical Systems

The first mechanical lii kage hiead-rnomited display system was built at the Universitv

of Utah [Sut68][Vic.1]. The Argonne Reinote-Nlanipllator (ARM) at UNC [Ki176] and the



Noll box [Nol7l] also fall in this category. These types of systems have a limited working

range due to the mechanical linkages attached to the user. It is also difficult to track several

objects simultaneously with these kinds of systems.

2.1.4 Optical Systems

Commercial and experimental optical position tracking systems provide a new so-

lution to the 6D tracking problem. Most optical systems use several light sources as bea-

cons attached to the helmet the user wears. These light sources may be either blinking or

constantly lit. These beacons are observed by cameras with known, fixed positions. The

observed image positions of the beacons and the known positions of the cameras are used

to compute the position of beacons, hence that of the user, in space. Note that for optical

tracking systems with beacons, the line-of-sight constraint does apply. That is, in order for

the sensors to register and compute the beacon position in space, they have to "see" the bea-

con with no opaque obstacles obstructing the line of sight. This restriction is alleviated by

the natural environment trackers (discussed later in this section) which do not use beacons.

Below we introduce optical tracking systems. They are divided into beacon track-

ers and natural environment trackers, and are listed with commercial systems followed by

experimental ones in order of their publication.

2.1.4.1 Beacon Trackers

SELSPOT [Wol74][L074], is a commercial system consisting of camera-like units

using lateral effect photodiodes as the recording surfaces (the properties of lateral effect

photodiodes will be discussed in detail in section 2.2.2.1). The system detects a single light
source and determines the 2D location where the light beam strikes the photodiode surface.

A pair of these cameras can be used to estimate the 3D location of the light source using the

stereopsis principle. The current system does not provide any software support for real-time

measurement. The whole system, including two cameras, a control unit which controls up

to 120 light sources, and an interface to an IBM personal computer, costs about $65,000.

Each additional camera costs about $15,000.

OP-EYE [Uni8l] is another commercial tracking system using lateral effect photodi-

odes. OP-EYE can track the motion of a single light source with an advertised resolution

of 1 part in 4000 and an update rate of 5000 Hz-implying a lag of only 0.2 millisecond.

Actual system performance appears intich worse titan that advertised. Like SELSPOT, it

provides a limited working volumne an(J do not sense orientation directly.



OPTOTRAK [Nor88] is a new system which claims to be much more accurate than

all other optical tracking systems (with a minimum resolution of 1 part in 10,000). It uses

one camera with two dual-axis CCD infrared position sensors. Each position sensor has a

dedicated processor board to calculate the image position of the light source. Again, the

triangulation principle is applied to recover the position of the light source in space. The

camera weighs about 10 pounds, and the whole system costs $30,000 and each additional
camera costs $10,000.

Twinkle Box [Bur73], a system developed by Burton, uses four fixed sensors to observe

a set of sequentially blinking light sources attached to the user. Each sensor consists of a

high-speed photomultiplier tube and a wide-angle lens. A rotating disk with slits around its

periphery is mounted in front of each sensor. As the disk rotates, each slit sweeps out a field

of view. When the photomultiplier detects a light beam, an electrical pulse is passed to the

host computer. The position of the disk at the moment determines the angular position of
the light source. Angular measurements from three different sensors are sufficient to compute

the position of the light sources.

Fuchs, Duran and Johnson [FJ77] developed a system using multiple one-dimensional

CCD array sensors. A sharp edge is placed in front of each CCD sensor. A light source held
by the user casts a shadow through the sharp edge on each CCD array. The cast shadow

position is used to estimate the position of the light source along a particular direction with

respect to each CCD sensor-the direction of the plane which is defined by the shadow
position and the position of the sharp edge in front of the sensor. The 3D position of the

light source is recovered by intersecting planes from all CCD sensors. For a sensor with 256

CCD elements, the working volume is about 1 cubic meter with an accuracy of 6 millimeters.

This system can infer orientation by time-multiplexing several light sources (flashing them
in a fast sequence). This is a simple and robust system which requires no lens.

A position reporting system using the triangulation principle similar to the ones

described above was constructed by Gary Bishop [FBP+82] at the Microelectronic Systems
Laboratory (MSL) of LrNC. In this system. two wall-mounted vidicon cameras are used to

track the position of four lamps attached rigidly to antennae affixed to the helmet the user
wears. The lamps flash in sequence. Images of the lamps are digitized and the centroid

positions are estimated using an Ikonas graphics system. 3D positions of the lamps are
computed using triangulation. The major drawback of this system is speed -digitizing video

signals takes time. Hence, this system cannot report 6D position in real time (the update rate
is about 2-3 per second [Bis8.]). Also, the amount of data in a digitized image sequence is
very large. For example, a black-and-white digital image of 500 by 500 resolution contains a

quarter of a million bits of information. The whole memory bandwidth of the host computer
is easily consumed by 1he daila transferred between the cameras and the host.



Another system similar to the Twinkle Box using lateral effect photodiodes was devel-
oped by Vernon Chi and John Poulton [FBP+82] at the MSL. The user wears a helmet with
a light source attached to it. This system estimates the 3D location of the light source, hence
that of the helmet, in the same manner as the SELSPOT system. A polarization method is
employed to sense the orientation of the helmet. The light source used is an unmodulated,

high-intensity light bulb. The light bulb is surrounded by a cone cut from a single sheet
of normal transparent polarizing material. The cone has the property that the direction of
polarization of the light emerging from the cone is a linear function of the azimuthal angle
of the cone. Angle of polarization is recovered by the photodiodes which view the target
through a rotating disc made of polarizing material. Light intensity registered at the sensor
is maximum when the disc's polarizer direction is aligned properly with that of the light
source. The major problem with this system is that a very bright light source and a 100%
duty cycle is needed to increase the signal-to-noise ratio. Such a high-intensity lamp requires
a power cable or a battery pack. Some form of cooling is also needed. Also, the user will be
distracted when the light source enters his/her field of view.

2.1.4.2 Natural Environment Trackers

All the above surveyed optical trackers use some sort of beacons as the basis of track-
ing. They are not "natural" in the sense that they alter the environment by incorporating

man-made tracking beacons. Further, as beacons are used, all these systems suffer from
the line-of-sight constraint. Natural environment trackers do not require artificial beacons
to guide the tracking. Instead, ambient light reflected from the working environment is
recorded and the change in the ambient light pattern is used to guide the tracking process.
In the following, we introduce two such systems.

Gary Bishop [Bis84][BF84] proposed a new scheme called Self-Tracker in which several
1D sensors are used for position reporting. Instead of mounting sensors on the wall like all
the other systems do, sensors are mounted on the helmet. Custom VLSI circuitry is built
to enable the sensors to report a shift in observed image pattern in real time. By clustering
sensors with different orientation together and pooling information on image shifts from all
sensors, 6D movements of the helmet can be derived by solving a set of non-linear equations.
The salient features of the Self-Tracker are that it uses an inside-out tracking paradigm, and
it does not use beacons, and hence does not have the line-of-sight constraint. However, the
Self-Tracker might be confused by moving objects in the room. For example, if some of the
sensors in the cluster hapl)en to see a person walking by, the cluster might report that the
user is moving even though he is statiomir.v. IFinally, the amount of data communication
between the Self-'Tracker aid ti holst comluter is much less than if 2D CCD cameras are

used.
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The full Self-Tracker system has never been built, so the performance of one cannot

be empirically measured. Gary Bishop reported IBis87] that the major problem with the

Self-Tracker is likely to be the size, weight, and fragility of the sensor cluster. The helmet

may be unwieldy with the mounting of chips, lenses, housing, and wiring.

John Tanner [TM84] constructed an analog VLSI circuit which reports the 2D motion

of the observed image pattern. This chip contains an integrated photosensor array and has
closely-coupled custom circuits to perform position computation and data extraction. The

sensor detects 2D motion by measuring the change of local image intensity. Several such

photosensors looking at different directions provide information to recover 6D position and
orientation of the observer's head. Again, since a complete system has not yet been built

and put into use, the speed and accuracy of such a system remains to be proven.

2.2 The Proposed 6D Tracking System

From the above survey, it should be obvious that the requirements outlined in Section
1.3 are hard to satisfy by a single tracking mechanism. However, of all the tracking mech-
anisms, optical methods seem to possess the most potential. Optical tracking is appealing

because it is relatively insensitive to environmentally induced distortion, has a large working
volume, and can be made fast and accurate. In the following, we will describe our design

adopting the optical tracking paradigm.

2.2.1 Inside-out vs. Outside-in Tracking

From Section 2.1.4.1, we learned that most commercially available optical tracking
systems place the sensors, which are heavy and bulky, at fixed locations. These sensors are

used to observe light emitted from the beacons attached to the helmet which the user wears.

Such schemes are termed outside-in tracking. Natural environment trackers introduce two
novel concepts: no artificial beacons are needed, and an inside-out tracking configuration is

used. In an inside-out configuration, sensors are placed on the helmet, which is in constant
motion. The sensors register the position of beacons which are fixed in the environment.

This inside-out tracking scheme was first proposed by Vernon Chi of the UNC MSL. It
was suggested that a tracking device can be designed in three dimensions using a concept

similar to that of the Optical Mouse [Lyo85]-with sensors directed at a room environment

instead of a specially marked surface. The idea. was first implemented by Gary Bishop in

the Self-Tracker.

The outside-in tracking inet lhd. all.hog ih ilt litively simple and appealing, places a
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much higher demand on the camera resolution. To compare the required resolution in an

outside-in and an inside-out scheme, consider a room 4 meters wide on each side. In an

outside-in tracking scheme, in order to cover a large working volume without using a lot

of cameras, each camera must have a wide field of view. For example, if we use only two

cameras, then each camera must cover at least 4 m 2 at a distance of 4 meters away. Suppose

several light sources are affixed on antennae mounted on the helmet which the user wears.

The base line separation of the light sources is 0.5m. A 0.10 rotation by the user moves the

light sources by less than 1mm. In order to detect this I millimeter movement at 4 meters,

the camera needs at least a 1 part in 4000 (lmm/4m) resolution. This resolution is difficult

to achieve by either CCD cameras or lateral effect photodiodes.

In an inside-out tracking scheme, many light sources, or beacons, are used, hence, a

camera needs to cover only a small field of view. In a small viewing field, a slight rotational

movement induces a large shift of the beacon image on the photodetector surface. Hence to

detect the same 0.10 rotation, a much less resolution is needed. For example, if a camera

uses a 50mm lens and a recording surface of 1 cm 2, then the field of view of the camera at 4

meters away is only 0.8x0.8 m 2.A camera with a 1 part in 800 resolution can detect a 1mm

movement easily.

2.2.2 System Overview

The system we propose to develop is based on the inside-out tracking configuration.

We attempt to combine the salient features from several optical trackers surveyed above.

namely the inside-out tracking paradigm and the use of beacons, in our system. The goal

is to provide a practical and flexible solution to the 6D tracking problem. The system aims

to provide reliable performance over a large working volume and should be suitable for use

as an unconstrained 6D input device. However, one should note that we do not claim this

system to be the ultimate solution to the 6D tracking problem. For one thing, our system

still relies on beacons with known positions for a sensor to register its position in space. The

placement of beacons does restrict the possible arrangement of the working environment.

Further, the line-of-sight constraint still applies.

In this system, all beacons will be placed on the ceiling. This configuration limits the

user's movement. For example, it is not possible for the user to tilt his/her head forward

900, as the camera would point at the wall. Mut by keeping the beacons on the ceiling, the
working environment is not rigidly fixed. a rd the line-of-sight constraint can be more easily

satisfied.

Our proposed systeni rises three cameras with lateral effect photodiodes as recording

surfaces. We use infrared ILEDs as beacon.. Beacons are placed in a regular pattern on the
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ceiling. The user wears a helmet which mounts three cameras. Three LEDs selected by the

system are flashed when they are inside the cameras' fields of view. The 6D position of the

camera assembly is recovered by correlating the observed image positions and the known 3D

positions of the beacons.

Below we introduce the components used in the system, namely the lateral effect

photodiodes as sensors and the infrared LEDs as beacons.

2.2.2.1 Lateral Effect Photodiodes

The advent of position-sensitive photodiodes [EAd57] makes possible the design of

high-performance real-time tracking systems. A lateral effect photodiode features a large

photo-sensitive surface, usually square in shape, on which the z, y location of the centroid of

an illuminance can be estimated. This is done by measuring the ratio of the photo-currents

flowing from the electrodes on each of the four sides of the photosensitive surface.

x ixelectrode 

7/E

incident light spot

Figure 2.1: Lateral effect photodiode

Specifically. when a light ray strikes the surface of a photodiode, photoelectric charges
are generated. The magnitude of the charges is proportional to the energy carried by the

incoming ray. The electric charges flow through the resistive surface and are collected by the

electrodes on the four sides of the photodiode. Since the resistivity of the surface is uniform.

the photocurrent collected by an electrode is a function of the distance between the incident

light position and the electrode. It is possible to calculate the z. y position of the incident

light beam on the photodiode surface using the following formulas:

.r+ -. -

.?-+ + .
Y+Y+ - Y- (2.1),11 =
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where x+ , x-, y+ and y- denote the photocurrents collected by the electrodes at the four

edges.

Lsing lateral-effect photodiodes as the recording surfaces has the following advantages

over conventional CCD arrays: lateral-effect photodiodes provide faster response and higher

positional resolution, have no dead-zone over the recording surfaces, and provide an accurate

positional reading even if the light spot is out of focus (or blurred). Finally, there is no need

to calculate the centroid of the recorded light spot. However, photodiode surfaces usually

have a spatially non-linear characteristic, and thermal noise and dark current can seriously

degrade the accuracy in the positional reading. Detailed analysis of the performance of

photodiodes will be presented in later chapters.

2.2.2.2 Beacons

The beacons used in this systeri must satisfy several requirements. First, they must
be easily distinguishable from the environment (by blinking or high luminance), and emit

light in the infrared-so as not to distract the user. Second, the beacons should have a

wide emission angle. Third, the beacons must be inexpensive since many are used. Beacons

chosen for this implementation are infrared light emitting diodes (LEDs). Properties of the

LEDs are discussed in Section 4.2.
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Chapter 3

An Optical Inside-out Tracker

In this chapter, we discuss the design criteria of the new 6D optical tracker. The
requirements of accuracy, speed, adequate working volume, light weight and small size are
addressed. In an inside-out tracking configuration with cameras and beacons, a mechanism

for computing 6D position of the camera assembly from the observed position of beacons is
needed. Various algorithms to accomplish this computation are surveyed. The particular
tracking algorithm which we adopt in our system is then discussed in more detail. The
system's error is studied, and several equations are formulated to predict the system's er-

ror analytically. Error predicted by the analytic formulation is compared with the results
obtained using a simulation program. Since beacons are used and accuracy of their place-
ment affects that of the system, a self-calibration method which automatically calibrates the
position of beacons is proposed.

3.1 Design Criteria

The criteria used to judge the performance of a 6D tracking system were outlined in

Section 1.3. Before we start the design and construction of a prototype system, the desired
performance of the prototype-evaluated against the criteria outlined in Section 1.3-has to
be stated. In the following subsections, we address the issues of accuracy, speed, working
volume, weight and size of the tracking system.

3.1.1 Accuracy and Speed

An obvious requireinent is for the 6D tracker to report the user's li&ad posit ion hat
accurately agrees with the user's true hcad position. Furthermor,. tie sytvni sliouh 1i he
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responsive, i.e, should be sensitive to small changes in the user's head position, and report
such changes in real time (small latency), and as often as possible (a high update rate). This

leads us to define the following three terms:

Accuracy The agreement between the true head position1 and the calculated head position

Resolution The minimal amount of head motion that can be registered by the tracker

Responsiveness The number of updates per second and the lack of latency

As discussed later in this chapter, the resolution of the system depends on the resolution
of the photodiode, whereas the accuracy of the system also depends on how accurately the
beacons are placed. The resolution of the prototype system aims at being able to report
5mm in translational movement and 0.4 degree in rotational movement. The resolution
corresponds roughly to a shift of 2 pixels in the displayed image-assuming that the user

is looking at a target 1 meter away with a 90 degree field of view, and an image resolution

of 512 by 512 pixels. Also, by a novel camera self-calibration process, we can reduce the
measurement error in beacon positions, thus improving the accuracy of the system. We can
achieve about 0.8 degree of rotational accuracy and 1cm of positional accuracy with this

camera self-calibration process (Section 3.4.2).

Our experience indicates that in order to maintain an illusion of smooth motion in a
graphic animation sequence, an update rate of at least 10 to 20 frames per second is required.
Also, the latency problem, which is an important issue in all interactive applications, must
also be addressed. For this prototype, the target update rate is 30 Hz. the latency was

targeted to be not longer than one update period, or 33 milliseconds.

3.1.2 Working Volume

Limited working volume is a major drawback of the Polhemus tracker currently used
in our head-mounted display system. The Polhemus has a working volume which is spherical
in shape and about 0.7 meter radius. The working volume can be extended to a 1.5 meter

radius sphere with reduced accuracy. This working volume is adequate for applications such

as simulating the combat situation display in a cockpit where the pilot has limited movement.

However, such a range is too restrictive for any interesting maneuvering or walk-around in.
say, a room-sized environment. With the new tracker, a much larger working range can be

achieved. We aim at a room of size (3m) 3 for this prototype.

flete the term implies 6D position
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3.1.3 Size, Weight and Moment of Inertia

Gary Bishop stated in his thesis [Bis84] that the size of the tracker should not

exceed that of a grapefruit, and the preferred size is no larger than an orange. Lacking any

theoretical study, we will use his observation as our size requirement. The camera is 4x4x6.5

cm 3 in size and weights 138 grams. The lens is 5cm in diameter and 5cm in length, and

weights 181 grams. The current prototype with multiple cameras and lenses weight nearly 1

kg. Hence, our prototype fails short in satisfying the size and weight requirements. Besides,

a 1 kg camera assembly on the helmet considerably raises the center of gravity of the head-

mounted display, and makes it harder for the user to tilt his/her head forward and back

and from side to side. Finally, in order for the user to rotate his/her head freely, we also

have to worry about the moment of inertia, not just the weight of the head-mounted display

system. The current EyePhone head-mounted system [VPL89] we use has a 2 kilograms

counter balance at the back of the user's head. It should be possible to distribute the weight

of the tracker and the video display screens to reduce the the moment of inertia.

In this current prototype, we do not intend to completely solve the above problems.

As the technology advances, photodiodes with better resolution can reduce the size and
weight of both the cameras and lenses. Also, the full-scale version of the prototype will

likely use holographic lenses which are compact and light-weight. This would reduce the size

of the assembly, and cut down the weight of the whole system significantly. Then, instead

of mounting the tracker on top of the helmet, we could mount the tracker at the back of the

user's head to act as the counter balance to the LCD TVs which are in front of the user's

eyes. So for the full scale system, the center of gravity will be lower and the moment of

inertia should not exceed that of the current EyePhone system we use.

3.2 Algorithms for Inferring 6D Position

For an outside-in tracking scheme, the 3D position of a beacon is routinely computed

using triangulation where at least two cameras are used. The position of the beacon's image

on the image plane of a camera determines a line along which the beacon must lie. The 3D

position of the light source is then located by intersecting at least two such projection lines

in space.

Position recovery is different in an inside-out configuration. Here, cameras are mounted

on top of the helmet which is in constant motion, so their position and orientation are un-

known. Besides, cameras are used to observe different beacons so the stereopsis principle

doesn't apply. Instead, the 6D position of the camera assembly is coinputed hY correlating

several observed image positions (3 to 6) an( the known 3D positions of the beacms I hrough
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a projection equation.

Given the position Bi = [Bil, Bi2 , Bi 3, 1] of several beacons in homogeneous world

coordinates, and the image locations bi = [bil, bi2, 1] of the beacons under a perspective

projection, the goal in both outside-in and inside-out tracking configuration is to find a

transformation matrix M 4. 3 -which represents the projection process-such that M satisfies

the following constraint:

[Bil, Bi 2 , Bi 3 , 1IM = [bil, bi2 , 1]. (3.1)

In an inside-out tracking configuration, several algorithms have been proposed to solve

this problem. Since there are twelve unknowns in M, and each observed beacon provides two

independent equations based on Equation 3.1. at least six beacons are needed to solve a set

of twelve linear equations for estimating M. This method is described in [PP86]. The method

is computationally expensive, for it requires the inversion of a 12 by 12 matrix. Further.

the coefficient matrix may be iU-conditioned, depending on the configuration of beacons in

space. Experience from implementing this algorithm shows that to avoid degeneration in

the computation, one has to make sure that the six observed beacons do not lie in the same

plane (e.g., ceiling).

Since a lateral effect photodiode is used as the recording surface, only one beacon

can be turned on inside the field of view of the camera at any time. Hence, beacons are

flashed sequentially. During the period of time between the flashing of the first beacon and

the flashing of the sixth beacon, the user may have moved. This movement will introduce

an error in the recovered 6D position of the camera. Hence, one important criterion in

judging the feasibility of a tracking algorithm is the number of beacons the algorithm needs

to observe to compute the 6D position of the camera. Below we introduce several algorithms

which use fewer beacons to solve for the transformation matrix M.

Ganapathy introduced a variation of the above method which needs only four coplanar

beacons [Gan84]. He observed that the 3x3 submatrix at the upper part of tle transformation

matrix NI4x3 represents the rotational motion of the observer. If this 3x3 rotational submatrix

R is expressed as
a b c

d e f ,
g h i

then, this matrix must be a "proper orthonormal matrix" which satisfies the condition R - 1

RT. This orthonormal property together with the property that the determinant of R is unity

(no scaling) imply that

a +b 2 +c 2 =d 2 +e 2 +f 2 =g 2 +h 2 + i2 = 1

ad + be + cf = d + eh + fi = ag + bh + ci = 0
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i=ae-bd g=bf-ec h=cd-af

a=ei-fh b=fg-di c=dh-eg

d=hc-bi e=ai-gc f =bg-ah. (3.2)

By imposing th. above constraints, he showed that only four beacons are needed in de-

termining uniquely the 6D position of the camera-provided that the four beacons are on

the same plane. This method provides a simple analytic solution which is computationally

efficient. Unfortunately from our simulation, it was found out that this method contains a

lot of degenerate cases, and does not perform well when input data are noisy.

Another method proposed by Earl Church [Chu45] was first used in aerial photogram-

metry. Church's method determines the position of a camera from an aerial photograph by

locating three known landmarks in the photograph. Since only three beacons are used, it

can be shown there is no linear solution [PP86], and an iterative method has to be employed

to derive the 6D position of the camera.

z word coordinate system

beacons y ceiling
x OB.o 2

camera coordinate

system

x face angle

image plane

Figure 3.1: Church's algorithm
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Figure 3.1 shows how Church's method may be applied in our tracking environment.

Two coordinate systems are defined here. The world coordinate system is defined on the

fixed room environment, while the camera coordinate system is defined by using the nodal

point of the camera lens as origin and the x-y plane taken as parallel to the image plane of

the camera. In Church's method, three beacons are observed by the camera. Any two of

the three observed beacons form a face angle with the camera origin. These face angles can
be computed using either the 2D image position or the 3D space position of the beacons.

Denote the position of the three beacons in space as B1 , B 2 and B 3, and the positions of

their images as bl, b2 and b3 as in Figure 3.1, then we have

k, = cos(b10b2)

k2 = cos(b20b 3)

k3 = cos(b3Obl)

K, = cos(BIOB2)

K2 = cos(B 2OB3)

K3 = cos(B 30B )

Church's solution is based on the condition that the face angle subtended by any two beacons
in space equals the face angle subtended at their corresponding image projections. This

condition states that

k2= K2

k3 = K3 (3.3)

The face angles formed by the camera origin and the images can be calculated directly

in the camera coordinate system. Further, the world coordinates of the three observed

beacons are known. Hence, the only unknown is the location of the camera origin in the
world coordinate system. Once the position of the camera origin is known, the orientation

of the camera can be easily figured out as discussed later. In order to determine the current

position of the camera origin, Church's method starts by guessing randomly a value for

the camera origin in the world coordinate system. With this hypothesized camera origin

position, we can form three face angles in the world coordinate system. These face angles
will in general not match those computed from the image unless the hypothesized camera

position is correct. An iterative search scheme is employed to estimate the correct 6D camera

location by minimizing the difference between the corresponding face angles.

The iterative method works as follows: we are given the positions of three beacons

B, = (.¥, Yi, Zi), and their images on the photodiode surface bi = (x,, yi, f), where f is., the
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focal length of the camera lens and 1 < i > 3. We then compute the face angles in the

camera coordinate system as

ki = Iij + mimi + nini, where j=(i+1) mod3,
where 1i =X

2+ y2+ f2

YiMi . + y12 + f2

zi
ni

x? + y + f2

If the hypothesized camera origin position is H = (Xh, Yh, Zh), then based on H, we calculate
face angles in the world coordinate system as

K = L iL, + MM + NiNi,

where Li = XhXi
Di

Yh-YMi =- h-Y
Di'

=Zh - Zi
Di

and Di = 1/(Xh - Xi) 2 + (Yh - Y,) 2 + (Zh - Zi) 2 .

These two sets of face angles will in general not match. Taking the partial derivative

of the expression (Ki - ki) 2 with respect to Xh, Yh, and Zh, we obtain an adjustment
(AXh, LYh, AZh) to H. The adjustment equations are:

aiXXh + 0AYh +7/AZh =AKj=k,-K, (3.4)

where ai = Lili+LjJi

A = MIi+Mji

-t= NI 1+NJi

Ii and Ji are auxiliary values used in the formation of the coefficients a i, )i, 7i in the adjust-

ment equations.

li=Di D

J= k=
Dj Di

The adjustment (AXh, AY h , AZh) derived from Equation 3.5 is then added back to tile

hypothesized position H. Iteration stops when the adjustment amount is less than a preset
threshold. In our system, we start the iteration using the user's latest, head position as the
initial guess of 1l, and iterate until A.\ + AY2 + AZ' < 1-10 1m2 , or a Maximum itration
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count is exceeded. The maximum iteration count is set to 10 in our implementation. Our

experience shows in our application the Church's method usually converges in just one or
two rounds, since we have a very good initial guess which is close to the true solution.

Church's method, due to the iterative procedure to find a final solution, doesn't
guarantee convergence. It is possible for the method to converge to a wrong position, or not

converge at all. From running the simulation , we learned that the method fails to converge
when the tetrahedron formed by the three beacons (or the three beacon images) and the

camera origin is ill-shaped (e.g., one face angle is too small or the three beacons are too close

together). In order to make sure the method works, we need to select three beacons which
are sufficiently far apart from one another.

After the current camera position is determined, orientation can be readily estimated.
Suppose the 3x3 rotation matrix is R with 9 unknowns, then from

(1i, mi, ni)R = (Li, Mi, Yi) (3.5)

we solve a set of 9 linear equations to estimate R. Appendix B lists the program which

implements the Church's method.

Fischler [FB81] solved Church's formulation analytically by applying geometric con-
straints to the tetrahedron formed in world coordinates using the three beacons and the
camera origin as vertices. Referring to Figure 3.1 again, 0 is the origin of the camera coor-

dinate system and B 1, B2 , and B3 are the beacon locations. Fischler's method first computes
the lengths ?MB1 , U", and UB3 based on the (known) lengths B1 B 2, B 2 B 3, and B3 B 1, and
the (known) face angles Lb1Ob, Lb2Ob3 , and /b 30b1 by solving the system of equations:

JB 1 B 2 12 = JOB, 12 + 1OB 2 12 - 2OBi1 JOB 2 1 cos(LblOb2)

JB2B 3 
2 = jOB 2 12 + lOB 312 - 2lOB 2 IOB3 1 cos(Lb 2Ob 3 )

B3B1 1
2 = 1OB 3 12 + JOB, 12 - 2lOB 3 IlOB, I cos(b 3Obl) (3.6)

Once the sides of the tetrahedron are known, the position of the origin 0 can be computed.
The drawback of this method is that in order to solve Equation 3.6, we have to find the roots
of a 4th order polynomial. This 4th order polynomial can be solved analytically [Edh30].

From our simulation, solving the 4th order equation in Fischler's method takes twice as long
as the iterative steps in Church's method. If the input data are noisy, Fischler's method

sometimes fails to compute any real solution.

Church's method was selected for our system because it requires the least number of
beacons among all the methods we have surveyed. Church's method is quite robust even

in the presence of errors (discussed in Section 3.3.6). Although Clirch's method requfires

iterations to converge to the correct solution, the convergence can be expedited if the initial
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guess is close to the true location of the camera. In our application, we can always use the

latest head position as an educated initial guess. Also, we can build the tracker in such a

way to make sure convergence will not be a problem (Section 3.3.3).

3.3 System Design and Error Analysis

In this section, we discuss the type of errors which occur in the system and how they

affect the accuracy in position reading. We also present methods to minimize these errors.

3.3.1 Error Sources

To quantify error in the system, we assume that Church's method, when given perfect

input data, converges to the correct 6D position. That is, we supply as input to Church's
me,: od one set of face angles in the world coordinate system and another set in the camera

coordinate system-all without any measurement error. If there is no error in the data

acquisition process, Church's method will converge after a certain number of iterations and

return with the correct camera origin in the world coordinate system.

Since Church's method does not introduce any significant computational error, any

error in the computed 6D location will be due to the input errors propagating to the output
[PW83]. As mentioned before in Church's method, the 6D location of the camera is computed

by matching two sets of face angles. Hence, errors in Church's method come from the

measurement errors in the two sets of face angles used as input to the algorithm.

The measurement error in the face angles formed by the camera origin and the pro-

jection of the beacons in the image plane is mainly due to the limited resolution of the

photodiode and the nonlinear characteristics of the photodiode surface. Recall from Section

2.2.2.1 that the photodiode is an analog device which provides continuous reading of x, y po-
sition across its surface. The resolution of the photodiode is limited by several factors, such

as the material used and thermal noise inherent in all devices. Increasing the incident light
energy increases the signal-to-noise ratio and hence gives a better resolution. Nonlinearity of

the photodiode surface can be compensated by carefully calibrating the photodiode surface

(discussed in 4.1.2).

The measurement error in the face angles formed by the cameraorigin and the beacons

in space is mainly due to the positional uncertainty of beacons. Since a working system might
contain hundreds or even thousands of beacons distributed over the ceiling, the problem of

placing them accurately and measuring their position reliably are nontrivial. These problems
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are addressed in Section 3.4.

Finally, the user's movement also induces error. Since beacons are flashed sequentially,

the user's movement during the period from flashing the first beacon to flashing the third

one will induce a certain amount of image shift on the photodiode surface. This problem is

addressed in Section 3.5.

3.3.2 Errors Due to the Limited Resolution of Photodiodes

B A

beacons

F b image plane

B'

Figure 3.2: System error analysis

An analytic expression of the errors which are due to the limited resolution of the

photodiode used is derived below. Figure 3.2 shows a plane which intersects the two beacons

A and B, and the nodal point of the camera 0. The two beacons form image 4' and B' on

the image plane of the camera respectively. It can be seen that 2

8 = LA'OB'=LA'OF+.B'OF

= tan-I a + tan-l b

f f,
2 The formulas derived in this section are for a restricted case where errors are only two-dimensional.

That is, we consider only error in the plane formed by camera origin 0, and beacons .4 and B. Formiila

for general cases are listed in appendix A
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where f is the focal length of the camera lens. From [PW83], we have

ao o90 ae

f f a b

- a2 + f2e +b2 + f2 (a f2 + b2 + f2)

where C., Cb and e! represent the absolute error bounds on the measurements of a, b, and f.

Assuming that a beacon's image location can be measured to D/r, where D' (mm2 )

is the size of the photodiode, and the resolution of the photodiode is 1 part in r., then

the maximum error in the measurement of a and b is half of D/r, or 6a = Eb = D/2r.
Error in measuring the focal length is a constant, independent of different readings from the

photodiode. We ignore this error term for now. Thus we have:

1 1 fD60 -;2 - 2 +- b2 -f2) 2r (.7

Equation 3.7 is the governing equation on the design of our tracking system. Equation 3.7

states that in order to minimize the measurement error of the face angles in the camera

coordinate system, lenses with long focal length should be used, the separation between

image points should be as far apart as possible, and the resolution of the photodiode should

be as high as possible.

We found that these requirements impose conflicting demands on the system design.
For example, lenses with long focal lengths have a relatively small field of view. In order to

locate at least three beacons inside this small viewing field, beacons must be placed tightly
together, which implies a lot of them are needed. How to place beacons and how to measure
their positions accurately becomes difficult. Furthermore, closely-placed beacons introduce

larger errors in the face angle measurements in the world coordinate system. Closely-placed
beacons also make it harder to find three beacons whose images are widely separated in the

image plane.

3.3.3 Single View vs. Multiple Views

In order to obtain a wide image separation of the projected beacon locations and

to use a lens with long focal length, it was suggested by Vernon Chi that more than one

camera should be used. For example, we can use lenses with long focal lengths for all
cameras so that each camera covers only a small field of view to obtain high accuracy

in the 2D position reading. These cameras can be oriented with zuutnall large angular
separations to achieve wide image separations and a wide field of view of the combined
assembly. Small translational movements are readily detected because of the snmall field of
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view of the individual cameras, while widely separated cameras make detection of rotational

movements easy. This idea is appealing because all mutually conflicting optical design criteria

can be optimized independently instead of interdependently.

o becaon

pyramid

0 camera
beacon

Figure 3.3: Realization of the multiple-view concept with pyramid

Other alternatives for generating multiple views are available. With a single camera,

a pyramid made of highly reflective mirrors can be placed in front of the camera as shown in

Figure 3.3. The pyramid reflects light from several different directions into the lens aperture.
The difficulty with this design is that since each view takes only part of the lens. the image
might shift if it is out of focus. Figure 3.4 shows the difference between a beacon that uses

the whole camera lens and one that uses only part of the lens. The dashed lines show a view

using only half of the lens aperture. Since the photodiode registers the centroid of the light

spot, it can be seen that blurring (out-of-focus) introduces image shift in this case.

A similar concept is to place a rotating mirror in front of the camera and this rotating
mirror reflects light from all directions. Rotation of the mirror must be carefully controlled

and synchronized with the tracking system, which implies expensive hardware might be

needed.

Another realization of multiple views is to stack several levels of partially-silvered

mirrors in front of the camera as shown in Figure 3.5. Each view then uises the wihole lens

aperture without the image shift problem present in pyramid design. Further. there are no
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Figure 3.4: Image shift due to blurring

movable components as in the rotating mirror design. A 1/n silvered mirror causes 1/n of

the light striking its surface to be reflected, while (n-1)/n of the ight will pass through the

mirror. From Figure 3.5, 1/3 of the light from the beacon on the left side of the camera will

be seen by the len aperture, and (1/2)*(2/3) = 1/3 of the light from each of the other two

beacons will be seen.

Holographic optics may prove to be an effective solution. According to [Tei8]. a

holographic lens can be made to observe in multiple (e.g., four) directions. The size of an

F/0.5 50mm lens is only that of a silver dollar. This method is worth pursuing because it

also solves the weight problem.

The method we adopt in this prototype is to use three cameras iMstcad of one. These

three cameras are set to an angular separation of 450 from the vertical direction, and are

azimuthally separated equally from one another. Each camera uses a 50 inni focal length

lens to observe a narrow angle of view (,,, 120).

3.3.4 Estimating the 6D Position of the Camera Assembly

If multiple cameras are used, the 6D position of the whole c;'mwra ;isswimnlv ha.s to
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Figure 3.5: Realization of the multiple-view concept with partially-silvered mirrors

be estimated. This is in general a more difficult problem than if a single camera is used.
With a single camera, light from different beacons always passes through the same nodal

point and focuses on a single image plane. The nodal point of the lens can then naturally

be chosen as the origin of the camera coordinate system in Church's method. If multiple

cameras are used and each camera has its own nodal point, then more than one nodal point
may exist in the system as the nodal points cannot norma"y coincide with eacii other. In

order to understand the difficulty caused by the disjoint camera nodal points, we show two

cameras with two distinct nodal points 0, and 06 looking at beacons A and B respectively
as in Figure 3.6. These two cameras are separated by an angle and the two nodal points

are separated by a fixed distance. By carefully measuring the camera positioiis. the vector

O0, in the camera coordinate system can be derived. Hence, the face aiu,le ZI(o9b in the
image coordinate system can be calculated by translating one of the nodal points (e.g. O) to

merge with the other (O). In order to derive the corresponding face aitle ZAO,, B in space.

we need to translate B by the same vector ObOa. Thus we need to know the expression of
0  ,, iii world coordinates system. However, the direction of ObO in the world coordinate
depends on the current head position which is unknown. Hence, Churchs ,nethod does not

apply when there are multiple cameras with distinct nodal points.

This problem has been attacked independently by John ilalt on [11 ] a bYI t the
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Figure 3.6: Problem with Church's method in multiple views

author. Two different solutions were formulated. Here we discuss my solution, which gen-
eralizes Church's method for multiple camera configurations. In the generalized Church's

method, the origin of the camera coordinate system 0 is arbitrarily chosen. Referring to
Figure 3.7, 0 and 0 can be measured in the camera coordinate system, as can 0a

and Obb. We can thus derive the expressions of the angles OO,,a and OObb

LOOa = cos-1( ( 0 0 1 )

/OO0 b = cos- 0 b I O b.0obl 10Ibol I

Now following Church's method, let's hypothesize the position of the virtual origin 0
in the world coordinate, then we can compute the face angle L.40B in the world coordinate

system in terms of the hypothesized position of 0. The face angle in the camera coordinate

system is derived as follows. From the law of cosines, we get

IOAI2 = I0.012 + IO.AI2 - 210,,41 I001 cos(LA0,,O). (3.8)

From the above equation, we compute 0,.4, the same for ObB. Since we are solving a second

or(ler equation here, there might be two real solutions for Q.I. Ihlowver. if w,, citoose Ole
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Figure 3.7: Generalized Church's method to suit multiple views

virtual camera origin 0 in such a way that ZOO.A is obtuse, then there can be only one

real solution, since = -0 "a + O-A, and

0. = -O .a j0AI / 1O0 al. (3.9)

Hence, we can derive OA in the camera coordinate system, and similarly for OB. Then
the face angle LAOB in the camera coordinate system can be computed. Using the two

sets of face angles as defined above with respect to the virtual camera origin 0. the original

Church's method again becomes applicable.

Compared with the original Church's method, the generalized version does introduce
additional computational overhead in calculating the face angles. In the original method.

the face angles in the camera coordinate system need to be calculated only once. whereas
in the generalized method these angles have to be recalculated for each iteration. However.

since 0 ,0 and O,,a do not change from iteration to iteration, the computation of the face

angles at each iteration involves solving 0,A using Equation 3.8 and OA using Equation 3.9

only. Our simulation shows only a small slow-down (, 8%-12%) running the generalized

method over the original method.
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3.3.5 Errors Due to Inaccurate Placement of Beacons

As pointed out in the previous section, the error in computing the face angles in the
camera coordinate system is largely due to the limited photodiode resolution, whereas the
error in computing the face angles in the world coordinate system is largely due to error in
the beacon position.

The number of the beacons used in the system depends on the field of view of the
cameras. Lenses with shorter focal length cover a wider field of view. Since only one beacon
needs to be observed by each camera if three cameras are used, fewer beacons are needed
with shorter focal length lenses. However, to discern the details presented in the wide field
of view, a photodiode of a much higher resolution is required. For example, consider two
lenses, one with a focal length of 50mm and another 10mm. Assume that the size of the
photodiode is I cm 2 . In order to detect a movement of one millimeter at 2 meters away, the
first photodiode needs to have a resolution of at least 1 part in 400 while the second one
needs 1 part in 2000.

The resolution of commercially available photodiodes is usually in the range of 1 part
in 1000 (discussed in Section 4.1.2), hence, it is not feasible to use very a wide field of view,
which implies the system may then need to use several hundreds of beacons. It becomes

difficult, if not impossible, to place them and measure their positions accurately.

The error in the face angles is computed using Figure 3.2 again. If the coordinates of

A and B are (x., y,), and (Xb, Yb), then

LAOB = =OA' TaX6 + Y 2

Let the maximum error in the positioning of beacons be Ep, then Er = s = sp. So we have

OO 0O 0 0 + O90O C
6' (Xa +y d7a Xb +9Y

(Xa + Y. Xb +Yb) \

- k OA12 + OB12 (3.10)

We see that this error is directly proportional to that in the placement of beacons. Again large
separation between the beacons seen by the camera decreases the error. Large separation
can be achieved by using a photodiode with larger surface area, or using imiltiple views
which are widely separated.

31



3.3.6 Computer Simulation Results

To verify the analytical prediction on the error bound and to help determine several

important system parameters, we developed a simulation program. This simulation program

allows us to selectively modify all the essential design parameters of the system, and study

their effects on the performance of the system. The user can specify the environment pa-

rameters which include the size of the room, the number of beacons used, the separation

between beacons, and the position of the user's head. The tracking method used can be

either outside-in or inside-out. For outside-in tracking, the additional parameters which in-

clude the number of cameras and their position must be specified. For inside-out tracking,

the user selects the number of views and their spatial relationship. Any one of the solution

methods (direct solution, Ganapathy's method, Church's method, and Fischler's method)

reviewed in Section 3.2 may be employed. Finally, the size and the resolution of the photo-

diode, the maximum error in the placement of the beacons, and the error of the focal length

measurement can also be adjusted.

During the simulation, the user's head position can be set interactively or generated

randomly by the simulation program. The simulation program then selects three beacons

that are inside the field of views of the cameras based on the current head position (the

user can also manually select these beacons). The solution method which the user chooses

is used to derive the transformation matrix M and to estimate the user's head position.

The discrepancy between the computed head position and the correct one is then calculated
and reported back to the user. The error in the estimation consists of two terms: one is

a translational error which represents the distance between the true head position and the

estimated one, and the other is a rotational error between the correct and inferred orientation

of the user's line of sight. The user can also use a joystick connected to the Pixel-Planes 4

machine to simulate the head motion. The proper image sequence is generated and displayed

to let the user verify the tracking process visually.

3.3.6.1 Errors Induced by Limited Photodiode Resolution

To study the effects of the photodiode resolution on the perforniance of the system.

we used a Monte Carlo method to randomly generate one thousand head posit ions in a room

4x4x2.5 m3 in size. A three-camera configuration was used in the simulation. These cameras

were set to an angular separation of 45* from the vertical direction, and azint hally separated

equally from one another. The focal length was set to be 50 mm for all cameras, and the

placement error of beacons was set to be zero (we know the positions of beacons accurately).

Thc generalized Church's method was used to recover the 6D position of the camera assembl..

The effect of the photodiode resolution to final system error was determined by chanlging
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the photodiode resolution from one run to the next, and measuring the difference between

the correct head position and the one calculated with Church's method.

In Figures 3.8 and 3.9, the average translational and rotational errors (over a thousand

runs) of the estimated head position as functions of the photodiode resolution are depicted.

The results confirm Equation 3.7 and the curve is hyperbolic in shape. One can observe from

these plots that the error in the estimated camera position remains fairly constant over a

large range of the photodiode resolution. Also, the photodiode resolution required to achieve

a desired accuracy is much coarser than the 1 part in 4000 which we originally expected to be

necessary. The reason that we can tolerate a much poorer photodiode resolution is because

in a three-camera configuration, each camera covers only a small field of view. Hence,

movements inside this small viewing field can be detected with relatively poor photodiode

resolution.

In the current system, we will use photodiodes with a minimum resolution of at least

1 part in 1000. With this resolution, we can achieve a resolution of less than 5mm in position

error and less than 0.4 degree in orientation error in a room size environment, which is the

requirement listed in Section 3.1.1.

3.3.6.2 Errors Induced by the Misplacement of Beacons

To quantify the effect of the placement error of beacons, the simulation conditions in
the previous simulation were used. However, the resolution of the photodiode vas assumed

to be infinite while the placement error of beacons was made to vary. Figures 3.10 and 3.11
depict the average errors (again, over a thousand runs) of the translational and rotational

measurements induced by error in the placement of beacons. These results agree with Equa-
tion 3.10 and the error in the estimated position of the user's head increases linearly with

that of the beacon positions.

In the current system, we aim at measuring the beacon position down to ±5amm

maximum error. This accuracy will enable us to achieve an accuracy of 0.8 degree in rotation

movement and 1 cm in translational movement, which is the requirement listed in Section

3.1.1.

3.3.7 Combined Errors

The error in the final position report can be induced by either of these two effects. In

Figures 3.12 and 3.13, the system error is plotted as a function of the plhotodiodl iesolution.

Each curve in Figures 3.12 and 3.13 represents a different beacon placenient error. As
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can be seen from these plots, the system error is primarily induced by limited photodiode

resolution- if the resolution is poor. If the resolution of the photodiode is above some

crossover point (approximately 1 part in 200), the system error becomes dominated by error

in the placement of beacons.

To understand how system errors dominate, consider the following example. If a

camera with a 50mm lens and a 1 cm 2 photodiode recording surface is directed at a beacon

2 meters away as shown in Figure 3.14, a misplacement of the beacon by 5mm corresponds

to a 0.125mm shift in the photodiode surface. A photodiode with a resolution of 1 part

in 80 (10/0.125) will report the misplacement of the LED position. Hence, increasing the

resolution of the photodiode will not increase the accuracy of the estimated image position

because the error in beacon placement is an independent factor. Increasing photodiode

resolution does increase the resolution of the system, which is a very important consequence

that will be discussed in Section 3.4.2. The simulation results clearly suggest that the two

error sources should be optimized together. It does not help to have a photodiode with .high

resolution unless we can place beacons more precisely.

photodiode

(not to scale)

nodal 5m2point

5mm

50mm

Figure 3.14: Comparing the two error sources

Now, examine Figure 3.14 more carefully. Suppose that we have a photodiode with a 1

part in 1000 resolution. Based on the above argument, we need to know the beacon position

to ±0.4 mm (lcm/r*(50mm/2m)). This is a very strict requirement. and this requirement

is difficult, if not impossible, to satisfy if several hundred LEDs are used in the systems and

each individual LED has to be placed to that accuracy. We present a partial solittion to this

problem in the next section.
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3.4 Self-Calibration of the Camera Unit

As pointed out in Section 3.1.1, there are two different criteria (accuracy and res-
olution) in judging the performance of a head-mounted display system. In this section,
we propose two methods: smoothing and camera self-calibration, which can be applied to

improve the accuracy of head-mounted systems.

In Church's method, beacons are used as the bases for inferring 6D head position.

Errors in the positions of beacons will degrade the accuracy in the estimated head position.

However, the misplacement of beacons will not affect the resolution of the system, which is
governed by the photodiode used. In some head-mounted systems where the user's field of
view is completely covered to display some virtual world environment (e.g. VPL EyePhone),

then the user is not aware of his or her position in the real world. Hence, as long as the
animation sequence depicts a smooth motion and the motion corresponds roughly to the
head movement of the user, the user's perception will be of moving smoothly in a virtual

world.

A simulation was performed to study the system error in such dynamic eavironments.
Figures 3.15 and 3.16 shows the error between the calculated and true head position when
the user moves along a smooth path across a virtual room. This path was a straight line 2

meters in length between two randomly chosen end points in the virtual room. The head
was tilted from -35* to 350 back to front and sideways, and rotated horizontally 180' along
the path. The simulation was done under the same conditions as the previous simulations

but with both error sources (photodiode resolution and beacon placement error) turned

on. In this particular simulation, photodiode resolution was set to 1 part in 1000. and the

maximum placement error of beacons was 5mm (Figure 3.15) and 2cm (Figure 3.16). Error

curves for rotational error have similar characteristic shapes similar to Figures :3.15 and
3.16, but with different scales. The error curve resembles a square waveform with jumps
between the plateaus. High frequency error components are easily noticeable from the plots.

So these plots are characterized by high frequency noise and considerably more error with
larger beacon placement error.

As the user moves about the room, if one beacon used in the previous sampling
interval moves out of sight, a new visible beacon has to be selected to continue the tracking

process. In Figures 3.17 and 3.18, we superimpose on Figures 3.15 and :3.16 vertical dashed
lines indicating where the system switches beacons. It becomes obvious from Figures 3.17
and 3.18 that the switching of beacons causes the abrupt jumps in the error curve.

This effect can be accounted for by observing that in Church's algorithii, b eacous

are used as references to infer the current head position. Errors in the position of beacons
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will introduce error in the estimated head position even though the photodiode used has an

infinite resolution. That is, the accuracy of the system is limited by the placement error of
beacons. When a different set of beacons are selected, a different error is introduced into
the estimated head position, which explains the sudden jumps. On the other hand, limited

photodiode resolution creates the "jittering" along the path. Jittering shows up as the high
frequency components in the error curve. That is, the resolution of the system is limited
by the photodiode resolution. Note that noise inherent in the photodiode readouts will also

produce jittering, which is discussed in Section 4.1.1.

Referring to Figure 3.16 again, it is now desired to decrease the amplitude of the square
wave (or "flatten" the curve) by placing the beacons more accurately. We can also smooth out

the high-frequency error components by using a photodiode with higher resolution. Below.
we introduce two methods: the first method tries to smooth the path by interpolating the

head position along the path, This method is useful when the beacon placement error is

small (Figure 3.15), or in virtual-world applications where accuracy is not a major issue
(e.g. walking around a building during its design phase, or displaying molecular structures

in a void environment without real-world objects as backdrop). The second method is to
let the camera to automatically calibrate beacon positions. This method can be used when

both resolution and accuracy are important. These two methods can also be used together

to achieve even better results.

3.4.1 Smoothing

The sudden jumps in the error curves in Figures 3.15 and 3.16 will cause jumps or

discontinuities in the displayed image sequences in the head set. The discontinuities can

be made less noticeable by interpolating the path. That is, when the system switches from
one set of beacons to another set of beacons, the system retains the information on the old

head position and calculates the new head position using the new set of beacons. Now.
instead of displaying the images based on the new head position, the system displays the

images according to some weighted average of the old and new head positions. Effectively. we
smooth the transition of the displayed image sequence. In Figures 3.19 and 3.20. smoothing

is done using a simple weighted average of the old and new head positions. The weight of
the new position increases after each head position updated. Although smoothing does get
rid of the abrupt change in the display image sequence, the images can still 'swim- arotid.

The "swim" effect occurs when the system switches from one set of beacons to another set
of beacons. Hence, even if the user is walking straight along a fixed direction, the displayed

image sequence "zigzags" due to the sinoothing effect.
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3.4.2 Camera Self-Calibration

Smoothing alone does not decrease the positional error, it only makes the error less

noticeable. To decrease the error and to minimize the "swim" effect, it is necessary to "'flat-

ten" the error curve-not just to interpolate paths between jumps. In other words, we want
to keep the amplitude at every point along the curve below some fixed threshold value. The

basic idea is to use the higher resolution of the photodiode camera to automatically determine
the locations of ceiling-mounted LEDs more accurately during the tracking process.

The camera self-calibration process assumes that all LEDs are affixed in a regular
pattern on the ceiling, so their height is fixed. This self-calibration process uses a small

number of beacons (the initial set), the positions of which are assumed to be precisely
measured, and the beacons in the initial set form a coordinate system. The system infers
the position of the camera assembly with a high accuracy using this initial set of beacons.
Before the tracker moves to a new position and uses a new set of beacons for tracking (which

might include those not in the initial set), the beacons surrounding those in the initial set
are flashed. The 3D position of the flashed beacons can be computed using the known head

position (inferred using the initial beacon set) and the 2D projection of the flashed beacons.

The current head position and the 2D image of a beacon determine a line on which the
flashing beacon must lie, and the fixed ceiling height gives us another constraint to fix the
beacon position along that line, as shown in Figure 3.21.

Note that in an actual implementation, the LEDs will probably be mounted on circuit
boards, so their positions on the boards will be quite accurate. It should be easy to place

them with an accuracy of ±5mm with today's technology. Actually. we probably will be
able to place them with error within lmm on the boards, but we still have to worry about

placement error between two adjacent boards, which can be much larger. So in the remaining
analysis, we will use 2cm (Figure 3.16) as the bound on maximum placement error. \Ve show

that it is possible to reduce the beacon placement error through the self-calibration process

as described below.

Using the initial set as a reference, the system determines accurately the )ositions
of beacons not in the initial set. The position of these neighboring beacons can then be in

the subsequent tracking process. The advantage of this automatic calibration process it that
because the resolution of the photodiode is relatively high, we compute a position reading
for those beacons much more accurately than we can do manual Ineasurelnents. The error

curve becomes -flattened" even though the curve might not lie anywhere close to zero if the

placement error of those beacons in the initial set is large.

Camera self-calibration should be perfornied before the systein is pmiit in us,. That
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Figure 3.21: Camera self-calibration

is, after the system is set up and beacons are placed, the locations of a small set of beacons

are measured. The self-calibration process is then adopted to calibrate positions of the
rest of beacons. Further, since the sampling rate of our tracking system is very high (see

later chapters), this calibration can be performed while the user walks slowly around the
environment during an initial "training" run. The tracker will flash the beacons surrounding

the current active ones and derives the positions of those flashed beacons based on the current
head position. In Figures 3.22 and 3.23, we show the results of this camera self-calibration

process. The simulation assumed a scenario where the user wearing the helmet was walking

slowly around in a virtual room. As can be seen, although camera self-calibration does

give us a smooth curve with no big jumps anywhere, it is not totally satisfactory due to
the error accumulation problem. Error accumulation comes from the fact that since new

LED positions are inferred based upon the current calculated head position. the error in the

current head position tends to magnify itself through the process. The problem becomes

more significant as the beacon placement error increases.

In order to solve this problem, some initial LED position information is needed as

reference to keep the error under control, but the information doesn't have to be very ac-

curate. The initial reference positions can be obtained by roughly measuring the beacon
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positions when they are placed. In our system, the LEDs will be mounted on circuit boards,

so their positions can be determined with a certain accuracy. If the maximum error in the

initial LED placement doesn't exceed, say 0.5cm, then the beacon positions derived from

camera self-calibration can be averaged with the original measurement. By adjusting the
weights given to the original measurement and the data derived from self-calibration when

averaging, we can prevent errors from accumulating. In Figures 3.24 and 3.25, we show the

simulation result under the same situation as before, but the derived LED positions from

camera self-calibration are averaged with the original measurement. The result is in the

same scale as in Figures 3.15 and 3.16 so we can easily compare them. The curve shows that

we can effectively flatten the error curve with camera self-calibration, even if there is a large

error in the initial measured beacon positions.

3.5 Errors Induced by Motion

Finally, besides the errors studied above, the user's motion will also introduce error

into the recovered position. This dynamic error comes from the fact that since a photodiode

can only register the position of a single light source at a time, the three beacons used for the

tracking process must be flashed sequentially. During the sampling period from flashing the

first beacon to flashing the third beacon, the user might have moved a little. The movement
will introduce some shift to the beacon images on the photodiode surfaces, which induces

error to the recovered position.

In order to determine the error induced by the user's motion, we have to first determine

how fast a person can move his/her head. According to the study done by Gary Bishop

[Bis84], 70 degrees per second is the natural rate for most head rotations, 200 degrees should
give us a good safety margin for normal rotations, and 750 degrees per second is the peak

rate. We simulate the motion error under the following circumstance: the resolution of the

photodiode is set at 1 part in 1000, the flashing between beacons is 100 psec, and we simulate

the user rotating his/her head at the speed of 70*, 200*, 360*, and 750' per second. Figure
3.26 shows the results. As can be seen, under normal motion (75* to 2000), the error induced

by motion is very small. Besides, the error is not random, since the error curves lie at a fixed

distance from the zero error line. This error can be corrected by motion prediction which is

not covered in this thesis, or ignored for an opaq,,e system like EyePhone.

The reason that only a very small amount of error is induced by motion is due to

the high sampling speed. Since motion induces image shift, if we treat the image shift as

error, then the error basically reduces the resolution of the photodiode. From Figure 3.8
and 3.9, we know that reduced pjhotodiode resolution doesn't increase the final system error

linearly. Instead, there is a threshold point below which the error increa.ses sharply. InI
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order tc determine the relationship between the sampling speed and system error, we also

simulate a 2000 per second motion under different sampling speeds. It can be seen clearly

from Figure 3.27 that the sampling speed must be very fast, otherwise the image shift will

become a problem. At the current sampling speed (100 psec), the error induced by the user's

motion is very small (- 0.020) and can be safely ignored under the criteria we set.
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Chapter 4

The Bench-Top Prototype System

In this chapter, a laboratory bench-top prototype tracking system is described. This

prototype system was constructed to prove the correctness of our design. Although limited in
working volume, this prototype nonetheless demonstrates the integration and coordination of

all essential components in the new tracker. The prototype shows that the 6D head position

and orientation of the observer can be estimated if the positions of a sufficient number of
beacons are observed, and that the tracking system can provide a fast update of the head
position to maintain an illusion of a smooth motion, and a small lag so that stationary

virtual objects will appear stable.

The prototype consists of three cameras on a mounting stage which provides two
rotational (pitch and roll) and two translational (vertical and horizontal) degrees of freedom.

The other rotational (yaw) and translational degrees of freedom are achieved by simply

rotating the whole stage. Three infrared light emitting diodes (IR LEDs) are used as beacons

of the system -'-" ' T' LD inside each camer.'s field of view. The outputs from the cameras

are processed by signal processing circuitry which converts the analog signals to digital form.

A parallel interface is used to connect the digital output from the circuitry to a general-

purpose computer, which executes the generalized Church's algorithm for position recovery.

The configuration of the prototype system is shown in Figure 4.1. In tile prototype, all
but the LED addressing circuitry (dotted lines in Figure 4.1) are implemented. Since there

are only three infrared LEDs in this prototype, a simple multiplexer is used to select each

individual LED (The final full scale system will contain several hundreds or even thousands

of LEDs, and the addressing circuitry is still under design).

In the following sections, the components that make up the prototvpe-cameras.

LEDs, photodiodes and the signal processing circuit-are described in more detail.
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Figure 4.1: System Configuration

4.1 Camera

Three cameras are used. Each camera uses a lateral effect photodiode as the recording
surface and contains a special-purpose circuit to amplify and process the output signals from
the photodiode. The lateral effect photodiode used is a Hamamatsu S1880 pin-cushion type
photodiode [Ham85]. Pin-cushion type photodiodes measure current output from the four
corners of the photodiode surface, instead of from the four sides of the surface as the type
described in Section 2.2.2.1. This type of photodiode has smaller dark current (described in
Section 4.3), faster response, and smaller signal distortion along the circumference (described

in Section 4.1.2).

4.1.1 Circuit Noise Analysis

Noise is inherent in all electronics devices. For photodiodes, noise limits the reso-
lution, causes erroneous outputs, and induces jittering in the displayed images. Jittering

is the small trembling motion in the displayed image even if the user of the head-mounted
display remains perfectly still. Both the photodiode and the amplifier introduce noise which
degrades the perforniance of the system. Ilence, it is crucial to study quantitatively tile
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effects of the noise introduced by both the photodiode and the amplifier.

Generally speaking, there are many more varieties of amplifiers than there are photo-

diodes. Hence, it is possible to select amplifiers with the desired performance and low noise,

such that the noise in the amplifiers is insignificant compared to the noise in the photodiode.

The noise characteristics of the photodiode can then be studied and special filters such as
Kalman filters [Bro83] can be designed to filter out the noise. In this project, we quanti-

tatively measure and analyze the noise from the photodiode and amplifiers to ensure that

the noise component from the photodiode dominates. Designing filters for cleaning up the

signals is delayed until a later stage in the project if deemed necessary.

R

i n

ground

Figure 4.2: Circuit noise analysis

Figure 4.2 shows the schematic diagram of the photodiode/amplifier assembly. There

are two noise sources, the photodiode and the amplifier. The vendor's specification states

that the equivalent input noise voltage of the amplifier is several orders of magnitude larger

than the noise voltage coming from the equivalent input noise current flowing through the

resistor R. Hence in the study of the noise effect, the amplifier is connected to a noise voltage

source at one of the amplifier's two input ports. Since the photodiode is basically a current
device, it is represented by a noise current source in the analysis.

In order to measure the noise contributed by these two sources quantitatively, we

first detach the photodiode from the amplifier and connect the amplifier inputs to ground.

The output of the amplifier thus represents the noise characteristics inherent in the amplifier
itself. The frequency spectrum of the output is plotted in Figure 4.3. It can be seen that the

noise exhibits 1/f or flicker noise characteristics up to 15 kHz. This observation confirins

the vendor's specification.
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Figure 4.3: Noise spectrum of the amplifier

We then reconnect the photodiode to the amplifier. The current noise from the
photodiode is studied. For an op-amp as depicted in Figure 4.2 we have

eo = e, - iR. (4.1)

The contribution of the two noise sources at the output is calculated using the following pro-

cedure: The power spectrum of a signal X(t) is defined to be the average of the periodograms

of the signal, or

Power Spectrum of X = E I 1F(X)12],

where F denotes the Fourier transform and E(x) denotes the expected value of x. Assume

that there is no correlation between e, and i, then the power spectrumn of e call be shown
to be the sum of the spectra of e, and of i,, weighted by R 2:

E [IF.'(eo)12] = E [I IY(e,)12] + E [- 2-(in) 12. (1.2)

In Figure 4.4, we plot the power spectrum of the noise signal from the amplifier alone and the
power spectrm of the combined noise signal from both the amplifier and the photodiode.

According to Eqtiation .1.2, it is clear that the ioise from the photodiode doinhiates.
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Figure 4.4: Power spectrum of the photodiode (upper graph) and the amplifier (lower graph)

4.1.2 Photodiode Resolution and Linearity

The resolution of the photodiode is governed mainly by its signal-to-noise (S/N)
ratio. To increase the S/N ratio, either we increase the signal strength or we decrease the
noise strength. We cannot do much to decrease the amount of noise inherent in a device
unless we choose a different one. In this project, we tested two photodiodes made by United

Detector Technology and Hamamatsu, and selected the one with higher resolution which is

made by Hamamatsu. However, signal strength can be increased by using high power LEDs,
low F-number lenses, or both. The current implementation uses F/1.4, 50-mm television
lenses and very high power infrared LEDs. Furthermore, we can perform simple filtering

such as integration to smooth out the noise. For example, in our system the signal from the

photodiode is integrated to smooth out the high frequency noise.

Figure 4.5 shows the calibration result of the photodiode reading. This result was

obtained by placing a LED 3 meters away from the camera. The LED was mounted on

a translation stage and moved in the direction parallel to the photodiode surface with a

0.5mm movement each time. If the size of the photodiode is 1 cm 2 , the 0.5amm movement
at .3 meters away corresl)onds roughly to a I part in 1200 resolution. The plot shows a good

linear characteristic and confirms our ability to get a working range of at least (3u)3 .
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Figure 4.5: Photodiode resolution at 3m away over 20% of the photodiode surface

The surface of the photodiode is not strictly linear. That is, even if the light source

moves at a constant velocity along a straight line, the positional readouts from the photodiode

will in general not indicate a linear movement. This nonlinear distortion is greatest near

the the edges of the photodiode. In order to calibrate the response from the photodiode.

an LED was mounted on the pen holder of an x-y plotter, with translational accuracy 0.025
mm. A host computer controlled the movement of the LED on the plotter surface. The

movement of the LED traced out a rectangular grid on the plotter surface and the photodiode

readings with the LED positioned at the grid junctions were recorded. Figure 4.6 shows this

calibration result. The distortion of positional reading at the edges of the photodiode can
easily be seen. This effect is partly due to the distortion of the lens and partly (me to the

nonlinearity of the photodiode. Since the photodiode and the lens will always, be used as ani

assembly, we only calibrate the combined distortion effect in our experinient.

Some post- processi ng is niecessary to compensate the distortionl of the readinig. A table

is created which stores the readings from the photodiode at each grid poit. The readig

from the photodiode is iised as an index inito the table to find the closest grid point, awd tHie

correctedI readig is olbtainced by linearly interpolatig between the nearest grid J)oiits.
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Figure 4.6: Calibration of the photodiode surface and camera lens unit wvithi target LED at
3 meters
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4.2 LED Circuitry

Infrared LEDs are selected as the beacons of the system. Since the infrared LEDs

do not emit visible light, the user will not be distracted by their constant blinking. Infrared

LEDs were selected that deliver high output power and a wide emission angle to maximize

the working range of the tracker. From a practical point of view, since many such beacons

are used, the LEDs should be inexpensive.

The LED used in the system is Seimens' Model SFH487P [Sei85]. It has a flat surface

in front, delivers high output power (20mw/sr), has a very wide half power angle of 600 (as
shown in Figure 4.7), and is inexpensive (i, $0.71).

radiant power

1.00

0.50

0. 00
0 30 60 90

e nis sion angle [degree]

Figure 4.7: Measured LED radiant power spectruni

In the prototype, only three LEDs are used. In a full scale workinig sYstem. sev-eral

hiindlreds or eveni thouisands of LEDs will he uised. H ow to address tholn Mlh~i lv will he
an un portal) t issue.
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4.3 Signal Processing Circuitry

Equation 2.1 is the governing equation of the x and y readouts from the photodiode.

One straight-forward implementation of the equation would be to use an analog divider and
perform the division in the analog domain. However, analog division cannot be implemented
with simple line tr circuitry using only capacitors, resistors, and amplifiers. Commercial

analog dividers suffer poor accuracy and limited working range. Further, several external
parameters must be tuned to guarantee satisfactory performance from the divider.

Figure 4.4 indicates that a substantial amount of high frequency noise is present in
the photodiode readout. High-frequency noise can be smoothed out by integration. If the

transient response of the photodiode is relatively short-lived (the rise time of the photodiode

signal is short compared to the integration interval), then during the period of time the LED
is turned on, the photodiode readout can be assumed to be a constant except for a negligible

portion along the leading and trailing edges of the signal. Hence, we can actually integrate
and digitize the four channels, z + , z-, y+, and y- independently over their individual stable

ranges and perform the division digitally. That is:

X+ - X_ f X+- f X-

f + X- f + + f X-

Y= y++y-- fy++fy- (4.3)

The integrators are implemented with simple RC elements.

In Equation 4.3, the division operation normalizes the photodiode readout under dif-
ferent signal strengths. Different signal strengths from the photodiode is a result of different
light intensities passed through the camera lens. Since we integrate and digitize each signal
separately, the normalization is not done in real time any more. To prove that the divi-

sion operation still compensates for the effect of varying light intensity, we moved the LED
along the same path several times but each time with a different luminance from the LED.

Figure 4.8 depicts the photodiode readouts with three different LED luminances (different
currents flow through the LED). As can be seen, the division still effectively compensates
varying luminance as curves of different luminance coincide. This proves the correctness of
our new approach. Also note that if the power output from the LED is too low, the S/N

ratio decreases and the resolution of the photodiode suffers. This explains the jagged curve

in Figure 4.8.

Since noise is an inlherent problem when working in the analog domain, we perform all
the necessary mathematical calculations in the digital domain. After the analog integration
of the signals in the four channels, the signals are sampled and digitized. 'he subseqIlient

division operation can then be performed by the host in digital doniain. The final .r,y
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Figure 4.8: Photodiode readout under different luminances (LED current: dashed line: IA,
solid line: 0.75A, jagged line: 0.5A

reading is computed digitally using Equation 4.3.

In order to eliminate the effect of dark current from the photodiode, the background
light of the room, and the static offset voltage in the components, the integration is done

twice for each channel. First, with the LEDs turned off, we integrate the dark currents of
the four channels and digitize them. Then with the LEDs on, we integrate and digitize the
signals from the four channels again. We then subtract the first reading from the second to

eliminate the constant offset which is induced by the dark current, background light, and
the constant offset voltage of the amplifiers, the sample-and-hold (S/H) amplifier and the
analog-to-digital (A/D) converter.

Figure 4.9 shows the schematic diagram of the signal processing circuitry. On the left
is the integrator. The output from the integrator is fed to the S/lI amplifier and then to
the A/D converter. Since the integrator is an RC circuit, we need to specify the values of

R and C. These values are decided as follows: After each integration, the integrator must
discharge before next integration can take place. So there must be al inactive time period
between two successive integrations. Currently, the integration lasts for 100 lisec. which
corresponds to the longest period of time the LEDs can be left on at high current (- I A).
according to the vendor's specification. The time t. between two successive integrations is 20
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Figure 4.9: Signal Processing Circuitry

psec. Usually, between two successive integrations, the host computer has to read back the
data from A/D's, which will definitely take longer than 20 ssec, so the integration circuitry
will always have more time to discharge. A rule of thumb states that the time constant
T = RC < .1 * t, allows the capacitor to discharge to 0.01%. So r = 0.2 * 10-6, where
R, the "on" resistance of the switch, is about 200 fQ. Hence, we have C = 10- 8 F = 10nF.
Furthermore, the photodiode output signal saturates at 10 V, this maximum output from
the photodiode should correspond to the maximum working range of the A/D converter.
which happens to be 10 V, so we have:

C = 10- 8 Q  fi dt 7710- 10(4

V V V R

and we compute R = 10kQ.

4.4 Controller

From Figure 4.9, we observe that the signal processing circuitry is controlled by several
control signals: the integration signal which controls the the integration and discharge, tie
LED signal which switches the LEDs on and off, and the hold signal which toggles the S/II
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and A/D between the sample and hold modes. Since the host computer determines which
LEDs to flash next, the signal processing circuitry has to wait for the host computer to supply
the LED addresses. The host computer, after computing the addresses of the LEDs to be
flashed next, transmits a go signal and the LED address to the controller. The controller
then generates appropriate control signals to the circuitry to start the cycle of integrating

dark current, turning on the LEDs, integrating the signals, and digitizing the signals. The
timing diagram of the control signals is shown in Figure 4.10.

go

integration [][

hold

LED

time

I I I I I I I I I I I I I I I 1 I I I I I I

integrate integrate

dark current LED signal

Figure 4.10: Control signals

The controller itself is a finite state machine implemented using an erasable pro-
grammable logic array (EPLA). A laboratory generator supplies the clock signal to the
controller. Each clock period is 20 jisec long. This value is selected based on the LED duty
cycle and the PLA capacity. Since there are only a fixed number of product terms in the

controller chip, we cannot afford too many states. As can be seen froin Figure 4.10. integra-
tion takes 6 states which is 120 pisec. The S/H circuit holds the value at the end of the t00
pisec. The integrator starts to discharge after 120 jtsec while the computer reads the results

back from the A/D's. During all these c'cles, the computer holds the go signal high. When
data have been transmitted from the A/D's to the host, the host lowers the go signal to

prepare for the next iteration. Note that the led signal goes high only once in two successive

integrations.
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The whole circuit was built on a breadboard. Two power supplies were used. The

output from the photodiode shows an increased noise at low frequency as in Figure 4.4, so

it might be possible at a later stage of this project to optimize the circuitry using filters to

filter out the noise. A more sophisticated controller needs to be built to control LEDs, and

the circuitry should be constructed on a more robust platform (printed circuit board) which

can be plugged directly into the host computer.

4.5 Computer Interface

Currently, a DRV-11 parallel interface card is used to connect the circuitry to the host

computer, which is a DEC uVAX-II. The DRV-11 provides sixteen inputs, sixteen outputs,
three control lines, and three status lines. Twelve of the sixteen input lines are used to read

data from the A/D's. Four output lines are used to address one of the 12 A/D's for output,

leaving twelve output lines to address the LEDs. Hence, a total of 4096 LEDs can be directly
addressed. One control line is used to send the go signal to the circuit. The circuit returns

two status signals on the current status of the controller. A block diagram of the interface

is shown in Figure 4.11.

- - ...................

LED addressing 12 bit LED address
circuitry ."

go

controller status 2
DRV- 11

signal 4 bit A/D address

processing

circuitry 12 bit data

Figure 4.11: Computer Interface

The host computer (DEC 1VAX-lI) runs the Ultrix operating system. The problem
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with multi-tasking operating systems like Ultrix for real-time control is that the operat-

ing system might introduce additional delay due to its time sharing characteristics. Each
time when a process running on the computer reads data from the circuitry, the process
is temporarily suspended while the operating system steps in to perform the I/O opera-
tions. In order to avoid unnecessary delay, a device driver was written in such a way that

the communication between the process and the circuitry is handled in the most efficient
way. That is, the communication between the process and the circuitry is done in just one

handshake. The process prepares the three LED addresses and sends them as one packet to
the operating system. The device driver, upon receiving the LED addresses, generates the
go signal to the controller which starts the integration of dark currents. The dark currents
from all three cameras are integrated and then digitized simultaneously by 12 independent

S/H's and A/D's, and stored while the device driver sends control signals to flash the LEDs.
The images of the LEDs are recorded by the cameras, and the data from each camera are

digitized and stored. After the data from all three cameras have been read back into the
computer memory, the device driver returns to the application program with the values of
both dark currents and LED signals for all three cameras.
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Chapter 5

System Performance Evaluation

In this chapter, we describe the measurement of the performance of the prototype. To

prove the correctness of our design, we have conducted experiments to evaluate the three most
important performance parameters, namely speed, range and resolution. In the following
sections, we describe the experimental procedures and tabulate the results we obtained.

5.1 Speed and Lag

The process of tracking consists of two phases: the sampling phase and the computing

phase. The sampling phase starts when the host sends the go signal to initiate the controller
cycles and ends when data are acquired from all A/D channels. The computing phase starts

immediately afterward to calculate the 6D position and orientation of the camera assembly

using the algorithm presented in Section 3.3.4.

The current prototype was implemented on a uVax-II workstation. Our data on
the uVax-II indicate that the time spent on sampling is much smaller than that spent on
computing, or the tracking process is computationally intensive. Without doing any position
computation, the pure sampling rate of the system can be as high as 1500 Hiz. If complete

cycles of sampling and computation were performed, a maximum of about 25 updates per

second is what can be achieved on a jiVax-II.

We can see that even though the update rate of this prototype is only comparable

to that of most commercial trackers, the performance of the system can be improved sig-

nificantly using a fast host machine. We estimated the update rat- of the tracker-using

a number of different comp,,ters as hosts-by running Church's algorithm on them. One
should note that since tle sampling circuitry is hard-wired to the lsVax-lT, the time ,pent

on the sampling phase on different ,nachines cannot be estimated this way.
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machine speed of computation speed (+ sampling)

(updates/sec) (updates/sec)
Sun 3/50 < 1 < 1
Sun 3/60 7 71

Sun 4 86 821
,Vax-II - 252

uVax-3200 70 691
DECstation 3100 251 215'

Table 5.1: Speed comparison on different machines (1: simulated, 2: measured)

We ran the same Church's algorithm for position estimation on several Sun work-

stations: 3/50, 3/60, and Sun 4, and DEC workstations: "Vax 3200 and DECstation 3100.

Table 5.1 shows the average update rate on different machines. The second column C2 shows
the result of running Church's method on different machines, while the third column C3 takes
into account the time spending on the sampling phase by adding about 700 /sec (1/1500)

for each update. That is, C 3 = 11(1/C 2 + 0.0007).

The result seems to indicate that a DECstation 3100 currently best suits our appli-

cation. Since the tracking process is slowed down by the time-sharing nature of the Unix
operating system, single user personal computers such as the IBM-PC or Macintosh might

be worth investigating as host computers.

Since the computer controls the both the sampling and the computing phase, and one

report is sent out after each complete sampling and computing cycle, the lag of the system
is no longer than one update period. Thus, the latency of a 3100 based system is about 4.65

milliseconds (1/215).

In summary, although the prototype provides a slow update rate, it is possible to

select a different host machine to achieve a speed for near real-time performance with little

lag.

5.2 Range and Accuracy

Range and accuracy are tightly related. As the distance from tile camera to the
beacon increases, the signal-to-noise ratio decreases, hence, the accuracy degraides. -ks ol-

served in our experiment (Figure 4.5), a photodiode can provide a 1 part in 1200 resolution
at al)otit 3 meters in the worst case. which is niucih larger than the worki ig ratig, ofI tie

Polihemns tracker.
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Figure 5.1: Three photodiode cameras mounted on a helmet (size: 8x7x4.5 in 3 )

F~igutre 5.2: 'Ilie bewicb-top prototype



To prove that the prototype can achieve such a working range, we conducted the

following experiments: A helmet which can mount three cameras was constructed (Figure

5.1). This camera assembly was positioned on a mounting device which provides six degrees

of freedom in motion that can be measured precisely. Three beacons were mounted on

tripods, with one beacon inside the field of view of each camera. The distances from the

cameras to the beacons were about 3 meters. Figure 5.2 depicts the experimental setup.

Translational resolution was measured by moving the helmet through 1mm increments along
one of the axes, and rotational resolution was measured by rotating the helmet in 0.10

increments about one of the rotational axes. Figures 5.3 and 5.4 graphically depict results

from our experiments. From these figures, we conclude that the prototype can provide a

0.1' resolution in rotation and about 2 mm resolution in translation. This extremely high
sensitivity in detecting both the rotational and translational motions can be attributed to the

use of the inside-out tracking paradigm and the multiple-view concept. Our results clearly

demonstrate the superiority of the new design.

Also from Figures 5.3 and 5.4, we see that the tracker can detect rotational movement

better than translational movement according to the scales we used (0.1 degree for rotation
and 1 mm for translation). The reason of the discrepancy is due to the fact that with inside-
out tracking, a small rotational movement induces larger image shift on the photodiode

surface than a small translational movement at large object distances. For example, with
the 50 mm lens we use, a 0.10 rotation shifts the light source image by 0.087 mm, while a 1

mm translation produces only about 0.025 mm image shift, when the light source is 2 meters

distant.

Another factor which affects the performance of the tracker is the jittering effect.
Due to the noise inherent in the analog circuitry, the report from the tracker might oscillate

slightly even if the user stands perfectly still. Large jittering distracts the user more than
poor resolution. Again, jittering depends on the signal-to-noise ratio. To study the jittering

effect in our system, we repeatedly sampled the tracker output while the helmet remained

stationary at about 3 meters from the beacons. A typical result with five hundred samples

shows a maximum of 0.05' jittering in orientation and 1.5 mm jittering in position (observed
peak to peak noise). Since the sampling rate of the tracker is very high. jittering could be

smoothed out by repeated sampling and averaging.

Finally, a demo prograin was developed for this bench-top prototype. The user [noves
the helmet on the mounting stage by hand. The tracker reports the 6D position of the helmet.

These reported positions are sent through ethernet to either the Pixel-Planes -1 machine or
a X window based workstation for image generation. The video signal from the Pixel-

Planes 4 machine is transmitted back and displayed on a television so the user can view the

movement directly. While several Imtiers are displayed using X windows to qu;mitti;I a vI
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Figure 5.5: Tile demo program displayed using an X window

show the amount of movement in different directions (Figure 5.5). The three boxes on the

top row in Figure 5.5 show the light source images on the photodiode surfaces, so the user

can make sure the movement of the prototype will not cause the cameras to lose the LEDs.

5.3 Camera Self-calibration

We have also tested the concept of camera self-calibration (Section 3.4.2) ising this

prototype. The basic idea behind camera self-calibration, as mentioned in Section 3.4, is to

figure otit the beacon position by bark projectitig a line through the cainera's nod ;l p.oinit

and the beacon's i nge po)5 li lon. The Ih)em-oli po sition iIItist be soiiewlire aloiig lie Ikick-

Ii!)



projected line. Since the beacons will be mounted on the ceiling, that position information
gives us another constraint to pinpoint the beacon position in 3D.

The prototype consists of only three LEDs, so in order to test this idea, we had to
design an experimental procedure to simulate many LEDs on the ceiling. The experiment

was carried out by mounting three LEDs on tripods so as to be easily moved. Since LEDs
are mounted on tripods, the height of each LED can be measured and remains fixed as the

tripod is moved. The height information corresponds to the ceiling height in the real case.

We started by setting the helmet at a fixed position, and then let the tracker automatically
calibrate the positions of the LEDs by the method described above. The camera unit was
moved until one of the LED was about to be out of sight. At this point, we manually
moved that tripod to a new location back toward the center of the camera's field of view.
but without measuring where exactly we moved it. We then let the system calculate the
new position of the LED. Thus we could test the idea of camera self-calibration with only a

limited number of LEDs Figure 5.6 shows what we did.

LED
LED

a0
tripod

cameras

LE D 0 . . . . . . . . . . . .....

manually move to
a new position mounting

device

Figure 5.6: Camera self-calibration

In a particular experinient as shown in Figure 5.7, we rotated tile tracker horizontally

and measured the physical movement by reading the scale from the rotation stage t he tracker
is mountod on. The outpot f'oiu the tracker was twen plotted against the true 11nov('uuIet.

7)



The vertical dashed lines show places where new LEDs are calibrated and included as ref-

erence. From the experiment, we show that camera self-calibration is a flexible idea. The

tracker can effectively determine the new LED positions, then use those as new references

to continue the tracking process. Also, since the sampling rate of the system is very fast,

the operation introduces little overhead.

tracker output [degree]

4

2

2 4
rotation [degree]

Figure 5.7: Experimental result of camera self-calibration
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Chapter 6

Discussion

In summary, this thesis presents a new design concept for a 6D position tracking

device. This new tracker can be employed in a head-mounted display system to track the

movement of the user's head. Our prototype system uses an inside-out tracking method,

and was designed and built using off-the-shelf components for easy duplication. In this

final chapter, the steps to build a full scale system are outlined. We also point out several

interesting related research topics.

6.1 A Full Scale System

The following research problems should be addressed before we attempt to build a

full scale system.

Circuit noise analysis More studies need to be done to minimize the noise effect of the
photodiode and the circuitry for signal processing. The noise effect of the photodiode

is the major limiting factor on the resolution of the system and produces the jittering

effect which distracts the user. A suitable filter may need to be designed and built to

clean up the noise should jittering become a problem.

New circuit design Currently, the signal processing circuitry is built on a breadboard.

Our experience indicates that using a breadboard has many problems and is not reliable
for day-to-day operations. Broken and loose wiring is common with a breadboard. This

causes the system to cease functiomning for no apparent reason, and a lengthy deblmipni

process ha.s had to be repeated mni y tinies. :A printed circuit board ius dfiii elv n,(,i(hl

at a later st;,ge of thi.s projec't.
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Interface and host computer selection The current host (juVax-II) has limited compu-

tational power and is not fast enough for real-time tracking applications. Furthermore.

the UNIX time sharing system does not allow a process to communicate directly with
the tracker. Real-time 6D position tracking calls for a stand-alone facility, such as

a microcomputer or a floating-point chip (e.g. Weitek), to be used as a dedicated

processor for the tracker. The DRV-11 interface should be removed from the working

system, with the circuit board plugged directly into the host.

LED addressing In the final working system, thousands of LEDs will be used as beacons.

As mentioned before, how to address them efficiently will need to be studied. Ron

Azuma, who recently joined the project, is investigating several different alternatives.

LED placement In order to make the system more portable, LEDs should be mounted on
large circuit boards and the boards then affixed to the ceiling. Boards can be moved

relatively easily and configured for different room shapes in this way. Since the system

is intended to function in a normally lit room environment, the interference of the
ambient light has to be taken into consideration. Either wavelength filters have to be

used in conjunction with the lenses to filter out the room light, or the room lights have
to be regulated so that they do not emit infrared energy and thus interfere with the

photodiode. Currently, the working environment is installed with normal fluorescent
lights which emit little energy in the infrared band, and a wavelength filter is used so
they do not interfere with the photodiodes.

Size and Weight As mentioned, the whole camera assembly weighs a little less than 1 kg.

The weight of the helmet and the camera assembly will restrict the movement of the
user. Hence, how to reduce the size and weight of the camera assembly is important.

The holographic lens described in Section 3.3.3 deserves careful consideration. The

holographic lens can shrink the weight of the current prototype down to around 250

grams, and greatly reduce its size. Then the tracker can be positioned somewhat
behind the user's head to act as a counter balance the LCD TV sets mounted before

the user's eyes. This should lower the center of gravity of the head-mounted system

and reduce the moment of inertia of the EyePhone system we use.

6.2 Further Research

The final system will use hundreds of LEDs in a room size environment. llow to
figure out which LEDs should be turned on to guide the tracking process is a nontrivial

problem. The LEDs selected depend on the current head position and current field of view
of the cameras. Ilow to make tie selection efficiently will be important to maintain a high

system performance. One solhitiom is lo eico'e Ithe spatial relationship amiong the LEI.)s it
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a large table. When one LED is out of sight, its nearest neighbor, which is most likely to be

the next candidate, can be easily located by a table lookup. A table is desirable since it can

be easily changed for different working configurations.

With head-mounted display systems, it is possible to track and report the user's

current head position. In such systems, one also allows the user to interact directly with

the virtual objects in the environment. For example, the user may use his/her hand to

move virtual objects around. Hence, a way to track hand gestures should be studied. In
our current head-mounted display system, the user can manipulate virtual objects in several

different ways. For examples, we have put a Polhemus inside a pool ball with two buttons
added. The user holds the pool ball, and the Polhemus inside the pool ball tracks the 6D

position and orientation of user's hand. Hand gestures are encoded using the two buttons.

More numerous hand gestures can be distinguished by a Dataglove. However, the Dataglove

does not provide any positional information. We can certainly put a Polhemus sensor on a

Dataglove to get both position and orientation. But the ideal solution would be to let the
system figure out the hand gesture automatically without putting anything on the user's

hand. It was suggested by Professor Fuchs that a 2D optical sensor mounted on the helmet

can track the user's hand movements in a reasonable working range, and hand gestures can

be derived by observing the image shift between frames. This will be an interesting research

project.

Finally, even though the system considerably out-performs the Polhemus in speed,

range, and accuracy, it will not replace the Polhemus! The reason is the complexity involved

in setting up the system. The environment will need a lot of changes. The room light has to

be regulated and the ceiling has to be totally replaced. One way to alleviate this problem is to

incorporate other technologies (e.g. accelerometers) to work with the tracker so the tracker

doesn't have to be active all the time. The tracker might just provide reference information
occasionally when it can see enough beacons, and the system can correct accumulated drift

in its output at these times.

The line-of-sight constraint of the current system restricts the user's movements. In
order to overcome this limitation, Gary Bishop's Self-Tracker idea merits further research.

It also uses the inside-out tracking paradigm, and does not require any beacons except for

recalibration. If we can overcome the size and weight problem of the Self-Tracker, nd make

sure it can provide adequate resolution in a unregulated environment, it might prove to be

a good solution to the tracking problem.
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Appendix A

Error Formulas

In section 3.3, we derived errors caused by limited photodiode resolution and beacon

placement uncertainty. Those formulas are derived under a restricted condition. Here we

formulate those errors for the general case. If the coordinates of images A', B' are (Xa, Ya, f)

B A

beacons

b image plane

B'

Figure A.I: System Error analysis
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and (Xb, Yb, f). Then,

0 = LA'OB' = tan- 1  + tan- 1

f f
So, the error in the measurement of 0 is:

06 0 6 0 6 0 6 a 0e

(e X + af 07Y+ +YX + b)! v'f
(X X + (X +I6f C'++E

- 10a12 VIT +A j~bJ2 VXb + y62J 10a12 + 10b12

Where , = D/2r is the absolute error bound on the measurement error of the photodiode.

The error due to the uncertainty of beacon placement is derived as follows: The

coordinates of beacons A and B are (XA, YA, ZA) and (XB, YB, ZB), respectively.

cosI OA*OB XAXB + YAYB + ZAZB

IOA tOBK VX2+~z 2 Y2 2

So, the error in the measurement of 0 is:

00 (90 80 490 80 80
- + Y--A + --ZA + j- B + O B + 5-B)'o

Each term in the above equations takes a similar form. For example,

06 (YA(XBYA - ZAYB) + ZA(XBZA - XAZB)

- OA12 V(XAYB - XBYA) 2 + (YAZB - YBZA) 2 + (Z.4XB - ZBX4)
2

The above formulas, although more complex than those presented in section 3.3, tell
us the same results. That is, to minimize errors, large base line separations and long focal

lengths are necessary.
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Appendix B

Implementation of Church's
Algorithm

/* *

/* church.c: church's method. */
/c */

#include <stdio.h>
#include <math.h>
#include "defs.h"
#indlude "gvars.h"

/*
* variables for church's method

#define MAXTRY 10 /* maximum number of iterations allowed */
#define EPSILOI I.OE-10 /* iteration stopping criterion */

static Point origin; /* camera origin position */
double k[MAXVIEW+2]; /* face angles in camera coordinate system */
double LEMAXVIEW],

MNCAXVIEW],

I(MAXVIEW]; /* directional cosine in world coordinate */
double l[MAXVIEW],

m[MAXVIEW],

n(MAXVIEW]; /* directional cosine in camera coordiante */

/* ,/

/s Church's method. It first called calculate-k to compute the face */

/* angles in camera coordinate system. Then compute the adjustment */
/* equations to get an adjustment amount. The adjustment amount is */
/* added to the current camera origin and iterated again. The method */

/* stops when the adjustment amount is smaller than EPSILON, or number */

I* of iterations exceeds MAXTRY */

so



/ I  */

church()
{

double D[MAXVIEW]; /* lengths from camera origin to beacons */
double K[MAXVIEW]; /* face angles in world coordinate */

double I [MAXVIEW],
J[MAXVIEW]; /* auxiliary variables */

double A[3MAXVIEW), /* coefficient matrix of adjustment */
dk[MAXVIEW+2]; /* adjustment amount */

int count = 3; /* number of iterations */
int i;

/*

** face angles in camera cocoordinate system, calculate only once

calculatek(image);

/*

** calculate directional cosines in world coordinate system
*/

do {
for (i = 0; i < cviei; i++) {

D[i] = sqrt(sqr(led[pledli]].x - origin.x) +
sqr(led[pledli]].y - origin.y) +
sqr(led[pled[i]].z - origin.z));

D[i] I / Di);
L~i] = (ledpledli]l.x - origin.x) * D~i;
x[i] = (led[pled[i]].y - origin.y) * D[i];

ii = (led[pledli]].z - origin.z) * D[i];

/*

** calculate face angles in world coordinate system
*/

for (i 0; i < cview; i++)
K[i] = L[i)*L[(i+l)%cview] + Nli]*M[(i+l)%cview] +

Ici]*N[(i+l)%cvieg];

/*

** calculate auxiliary variables
*/

for (i = 0; i < cview; i++) {
I(i] = k[i] * D[i] - D[(i+l)%cview];
J(i] = k[i] * DE(i+l)%cview] - D(i];

}

4* adjustment equations, calculate adjustment amount
*/

for (i = 0; i < cview; i++) {
A[i*3] = L~i]*I[i] + L((i+l)%cviev]J(i];
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A~i*3+1J = M~i]*I~i) + M[(i+1)%/cview]*J~i];
A~i*3+2] = I~i1~I~i) + EC(i+1)%cviev)*J~i];
dk~i] k~i) - i]

*check stop condition

error = innerproductC3, dk, dk);
if (error > EPSILON){

inverse(3, A, A);
multiplication(3, 3, 1, A, dk *dk);

origin.x += dkEO];
origin.y += dk[iJ;
origin.z += dkE2];

counlt++;

}while (count < MAXTRY kk error > EPSILON);

Cprint a message if it fails to converge in 10 runs. otherwise
*calculate the transformation matrix based on the current position

if (count >= MAXTRY kk error > EPSILON)
fprintf(stderr, "doesn't converge after %d round, error: ln"

MAXTRY, fabs~dk[o) )+fabs(dk~l))+fabs(dk[2)));
else

calculate-.matrix~origin);

/* Calculate the directional cosines of the camera origin and the light *

/* source images on the photodiode surface in camera coordinate system. *
/* Face angles are the inner product of the directional cosines *

calculate-.k(image)
Point *image;

double length;
int i;

CCdirectional cosine

for Ci = 0; i < cview; i ++){

length =sqrt(sqr(image[i).x)+sqr(imagetiJ.y)+sqr(image~ij.z));
length z / length;
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lEi] = imageEi].x * length;
m[i] = image[i].y * length;
nri] = image[i].z * length;

/*

** face angle in camera coordinate
*/

for (i = 0; i < cvieu; i++)
k[i] = l[i*l[(i+l)%cvieu) + m[i]*m[(i+i)%cviev)

+ n[i)*n[(i+l)%cview];

/* */
/* Calculate the current transformation matrix based on the head */
/* position from Church's method */
/* *I

calculate-matrix(origin)
Point origin;
{

/,

** calculate the 3x3 rotational matrix
*/

copyvector(3, &X[0] [0], 1);
copyvector(3, &X[0] [3), m);
copyvector(3, &X[1] [2, n);
transpose(3, 3, X, I);
inverse(3, X, 1);

multiplication(3, 3, 1, X, L, L);
multiplication(3, 3, 1, X, M, M);
multiplication(3, 3, 1, I, N, N);
identity(4, X);
copyvector(3, X[03, L);
copyvector(3, X[1], N);
copyvector(3, X[2), U);
transpose(4, 4, X, X);

/*

** copy in the translational vector
*/

copyvector(3, X[31, korigin);

/*
'* use for debugging and testing
*/

if (debug) {
fprintf(stdout, "correct transformation matrix: \n");
printmat(4, 4, ctow);
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fprintf(stdout, "calculated tranusformation matrix: \n");
printmat(4, 4, X);



/* */

/* defs.h: common definitions used in all subroutines */
I* */

#define ERROR -1
#define TRUE 1
#define FALSE 0
#define XYI 0 /* polar coordinate system */
#define POLAR 1

#define radian(x) (double)(MPI/180.O*x)
#define degree(x) (double)(180.O/PI*x)
#define sqr(x)((x)*(x))

typedef struct { /* homogeneous coordinate system */

double x, y, z;
double d;

} Point;

typedef struct { /* two dimensional image coordinate */

double x, y;
} Point2d;

typedef struct {/* camera view direction */

double rx, ry, rz;

double tx, ty, tz;

} View;

typedef struct { /* a complex number presentation */
double r, i;

int f;
} Complex;
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I* *1
/* gvars.h: global variables */

#define CHURCH 0
#define DIRECT 1
#define NEW 2

#define CLOSE 0
#define OPEN 1
#define ENTER-HEADER 2
#define ENTER-DATA 3
#define UPDATE-JOY 4

#define NAXCANERA 2 /* camera number (outsidein) C/

** variables common to both tracking methods

int insideout; /* insideout or ousidein tracking */
int method; / which method used to get solution */
double fl; /* local length of the camera */
double efl; /* local length of the camera */
double diode; /* photocell size */
int resolution; /* photocell resolution */
double rmx, rmy, rmz; /* room size
View camera[NAXCAMERA), /* camera position */

head; /* head position (outsidein) */
double spacingx, spacingy,

spacingz; /* led spacing */
double errx, erry, errz; /* lead position error */
double vrerr, vterr; "/ error in position each camera */
int jitter; /e jittering */
int filter; /* filter jitter motion */
int klk2uv; /* which value set in new method */
int debug, /* report church's error and the

/* calculated and correct matrix
perror, qerror, verror, /* position and quantization error */
select, /* select led, seldom used now */
mylog, /* log file */
ledchange, /* report led change */
smooth, /* calculate led position */
setorigin, /e set head position
global, /* report when move too fast */
converge. /* report iteration result */
nonconverge, /* report when non converge */
display, /* final matrix got inverse (pxpl4) */
time, /* timing */
selfcal, /* camera self calibration */
deform, /* set when 1 view with 2 leds 5/

joystick; /* really enter display mode */



** variables used in church's method and Ganapathy's method

#define MAXLED 1200
define KAXVIEW 4

double ctow[4] [4], /* camera to world transformation C/
wtoc[4J [4J; /* world to camera transformation */

double ctov[MAXVIEW] [4] [4), /* transformation from camera to view */
vtoc[MAXVIEW] [4) [4); /* transformation from view to camera */

View view[MAXVIEW]; /* keep view error */
double ectov[MAXVIEW] [4) [4], /* transformation from camera to view */

evtoc[MAXVIEW] [41[4); /* transformation from view to camera */
double X[41][4; /* calculated transformation matrix s/

int uled; /* number of led C/

int nview, /* number of view */
cview; /* view index. */

int diodex, diodey, diodez; /* diode number */
Point led[MAXLED]; /* led array */
Point eled[MAXLED]; /* true led array, with eror Cf

int pled[MAXVIEW]; /* the three led the camera use Cf

Point image[MAXVIEW]; /* iamge points on image plane */

FILE *fopeno;
FILE *tty;

double innerproduct C);
double determinant 0;
double vectorlengtho;

double pdisto);
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