
View-Dependent Pixel Coloring - A
Physically-Based Approach for 2D View Synthesis

by
Ruigang Yang

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2003

Approved by:

&g Welch, Advisor

/

Committee Member

ii

iii

c© 2003

Ruigang Yang

ALL RIGHTS RESERVED

iv

v

ABSTRACT
RUIGANG YANG: View-Dependent Pixel Coloring – A Physically-Based

Approach for 2D View Synthesis.
(Under the direction of Greg Welch.)

The basic goal of traditional computer graphics is to generate 2D images of a syn-

thetic scene represented by a 3D analytical model. When it comes to real scenes

however, one usually does not have a 3D model. If however one has access to 2D im-

ages of the scene gathered from a few cameras, one can use view synthesis techniques

to generate 2D images from various viewing angles between and around the cameras.

In this dissertation I introduce a fully automatic, physically-based framework for

view synthesis that I call View-dependent Pixel Coloring (VDPC). VDPC uses a hybrid

approach that estimates the most likely color for every picture element of an image from

the desired view, while simultaneously estimating a view-dependent 3D model of the

scene. By taking into account a variety of factors including object occlusions, surface

geometry and materials, and lighting, VDPC has produced superior results under some

very challenging conditions—in particular—in the presence of textureless regions and

specular highlights, conditions that cause conventional approaches to fail.

In addition, VDPC can be implemented on commodity graphics hardware under

certain simplifying assumptions. The basic idea is to use texture-mapping functions to

warp the input images to the desired view point, and use programable pixel rendering

functions to decide the most consistent color for each pixel in the output image. By

exploiting the fast speed and tremendous amount of parallelism inherent in today’s

graphics board, one can achieve real-time, on-line view synthesis of a dynamic scene.

vi

vii

ACKNOWLEDGMENTS

Many thanks to my advisor Greg Welch, for making my PhD journey so rich and

valuable. In addition to the inspiration and guidance throughout my study, I deeply

admire his insistence on excellence and appreciate his care about the students.

I also like to thank my committee members: Anselmo Lastra, Guido Gerig, Henry

Fuchs, Gary Bishop, and Kostas Daniilidis. This dissertation could not have be com-

pleted without Anselmo and Guido’s many useful suggestions to the manuscript. Thanks

to Henry and Gary for their vision and insights. Kostas’s advice on computer vision

topics is invaluable for this dissertation.

I owe tremendous debts of gratitude to many people in this department or out.

In particular, I wish to thank Herman Towles for his support in almost all aspects of

my research; Marc Pollefeys for contributing some of the original ideas; and Zhengyou

Zhang for showing me the wonderful and challenging world of computer vision.

My deepest gratitude goes to the people who have had such a significant impact on

my life. My parents have always stood by me, and they have taught me everything I

truly value as important. My wife, Huahong, made my PhD journey possible with her

unconditional support and love.

Finally, I dedicate this dissertation to my new born son, Evan, who has been and

continues to be my constant source of joys and motivations.

viii

ix

Contents

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 A Brief Overview of Existing Methods 3

1.3 A Brief Historical Note . 6

1.4 View-Dependent Pixel Coloring . 7

1.4.1 Approach . 7

1.4.2 Thesis Statement . 10

1.4.3 Innovations . 10

1.5 Dissertation Outline . 13

2 Background and Related Work 14

2.1 3D Shape Recovery . 16

2.1.1 Stereo Vision Methods . 17

2.1.2 Volumetric Methods . 24

2.2 Image-based Modeling and Rendering 33

2.2.1 Light-Field Style Rendering Techniques 34

2.2.2 Plenoptic Sampling . 39

2.2.3 Geometry-Assisted Methods . 41

2.3 Real-time On-line View Synthesis Methods 43

2.3.1 Stereo Vision Methods . 43

2.3.2 Image-based Methods . 44

2.4 Discussion . 45

x

3 View-Dependent Pixel Coloring (VDPC) 47

3.1 Approach . 47

3.1.1 Representation . 47

3.1.2 Progressive Refinement . 48

3.1.3 View-dependent Smoothness Constraint 51

3.1.4 Physically-based Photo-consistency Measure 54

3.2 Implementation Details . 60

3.3 Discussion . 61

3.3.1 Innovations . 62

3.3.2 Limitations . 70

3.4 Results . 71

4 Real-time VDPC on Commodity Graphics Hardware 77

4.1 Motivation . 77

4.2 Approach . 78

4.3 Implementation Details . 79

4.3.1 Photo-consistency Evaluation 81

4.3.2 Aggregating Photo-consistency Values 82

4.3.3 Selecting Best Color . 86

4.4 Discussion . 86

4.5 Results . 88

4.5.1 Live View Synthesis . 88

4.5.2 Live Depth Estimation . 90

5 Conclusions and Future Work 96

5.1 Innovations . 97

5.2 Historical Notes . 99

5.3 Future work . 101

Bibliography 107

A Sample Code for Real-time VDPC on Graphics Hardware 125

A.1 Pseudo code for an OpenGL implementation 125

A.2 Code to compute the squared difference 125

A.3 Code to select the best color . 125

xi

List of Figures

1.1 A captured scene in a simulated surgical environment 3

1.2 The continuum for view synthesis methods 4

1.3 The basic formulation of VDPC . 8

1.4 Typical results of VDPC . 9

2.1 The continuum for view synthesis methods 16

2.2 Depth from a single image is undefined. 17

2.3 Depth from two (or more) images can be determined 17

2.4 Stereo rectification . 18

2.5 2D Visual Hull . 25

2.6 Volumetric Reconstruction Using Photo Consistency 28

2.7 Illustration of the Photo Hull . 31

2.8 The plenoptic function . 34

2.9 Light Field Rendering . 36

2.10 An analysis of light field rendering . 39

3.1 View-dependent parameterization of VDPC 48

3.2 Applying the disparity gradient principle 53

3.3 An illustration of a photo-consistency measure. 54

3.4 Light reflection under a fixed point light source 55

3.5 Collinearity in the RGB color space . 55

3.6 Probability Density Functions under different shininess (n) settings . . 59

xii

3.7 Reflected light under moving lights and cameras 60

3.8 Sample density distribution of reflected colors 61

3.9 VDPC vs. stereo reconstruction . 63

3.10 Synthetic input images . 64

3.11 VDPC vs. multi-baseline stereo . 65

3.12 Comparisons between VDPC and space carving 66

3.13 Cumulative distribution of color errors 66

3.14 Effects of texture variation on reconstruction 68

3.15 Our capture device—the Camera cube 72

3.16 Results from a hand with little texture 73

3.17 Eight images captured simultaneously by our camera cube 73

3.18 Results from a specular teapot . 74

3.19 Eight images of the teapot-and-book data set. 75

3.20 Results from a teapot and a book . 75

3.21 Comparison of different consistency measures 75

3.22 Results from a dynamic sequence . 76

3.23 Experiment with moving lights . 76

4.1 Illustration of real-time VDPC on graphics hardware. 79

4.2 The 3D space is discretized into parallel planes 80

4.3 Depth plane images . 81

4.4 SSD scores for different depth planes 82

4.5 Correlation curves for different points of the Tsukuba stereo pair 85

4.6 Shape of kernel for summing up six levels. 85

xiii

4.7 Live views synthesized in real time . 88

4.8 Frame rates from three graphics cards 89

4.9 Impact of support size on the color or depth reconstruction 89

4.10 Depth results on the Tsukuba data . 91

4.11 Calculated disparity map from another widely-used stereo pair. 92

4.12 Performance plot on a GeForce4 Card 93

4.13 Typical results from the real-time stereo system 94

4.14 More results from our real-time online stereo system 95

5.1 Comparing VDPC with a probabilistic space carving algorithm. 102

xiv

xv

List of Tables

2.1 Comparison of existing view synthesis methods 45

4.1 Rendering performance measurement 89

4.2 Depth estimation performance on a GeForce4 card (multiple levels) . . 92

4.3 Depth estimation performance on a GeForce4 card (single level) 93

xvi

Chapter 1

Introduction

View synthesis addresses the problem of generating images of a scene from arbitrary

viewing angles. In the Image-Based Modeling and Rendering community, the term

view synthesis has come to mean to the generation of new images from input images.

It differs from traditional computer graphics rendering in that traditional rendering

typically assumes a 3D model is known and given a priori as input. View synthesis, by

contrast, typically has only a number of 2D images as input.

In this dissertation I introduce a new fully automatic, physically-based framework

for view synthesis, that I call View-dependent Pixel Coloring (VDPC). It is designed

to allow direct view synthesis, i.e., assigning a color value for every pixel in the desired

view, while maintaining a view-dependent 3D model. By processing a set of input

images of a scene gathered from cameras in different positions, VDPC allows continuous

viewing of the scene on a computer, during which a user can explore the scene from

different angles and/or distances by controlling a virtual camera that can be moved

continuously throughout the environment imaged by the cameras.

1.1 Motivation and Goals

View synthesis can be used in many applications. For example, a real-estate agent can

use view synthesis techniques to show many houses to her potential customers, allowing

them to “visit” each house without leaving her office. Imagine how useful this tool would

be if the agent only needs to take a few images of each house instead of getting a full 3D

model of it. Or a flight simulation system can use view synthesis techniques to create

a live airport environment for the trainees using live video streams from a real airport,

instead of using canned and often crude animations of 3D models. Ideally, one would

2

like to have one view synthesis technique that can be used in all situations. However,

different characteristics in different scenarios often lead to different, sometimes even

contradictory, requirements that hardly any single method can satisfy all of them. For

the scope of this dissertation, I concentrate on two technically challenging application

areas: interactive visualization of surgical procedures and Tele-immersion.

View synthesis techniques allow interactive visualization of three-dimensional ob-

jects, which is particularly valuable in teaching and training applications. Because of

the ability to change the point of view, interactive visualization provides a much richer

user experience than 2D imagery taken from fixed points of view. Benefits include

better depth perception and better understanding of spatial relationships. In some

applications, rendering new views is relatively simple because a complete scene model

is readily available. This is often the case in architectural walkthroughs and virtual

prototyping. But there are many applications where the only available information is

a few images of the objects of interest. One such technologically challenging applica-

tion is teaching surgical management of difficult, potentially lethal, injuries (traumas).

These events are unpredictable and too complex to be modeled manually. But recon-

structing them algorithmically poses significant challenges. As shown in Figure 1.1,

many assumptions commonly found in most 3D reconstruction algorithms, such as rich

textures and diffuse surfaces, are violated in a surgical environment. One goal of this

dissertation is to be able to synthesize novel views under these difficult conditions.

Another driving application for this dissertation is Tele-immersion. The basic idea

of Tele-immersion is to enable users at geographically distributed sites to collaborate

in real time in a shared, simulated environment as if they were in the same physical

room. Among the many challenges for tele-immersion is view synthesis. A real-time

solution, coupled with stereo immersive display techniques, would allow a user to look

at a remote scene from different viewing angles, creating a sense of immersion as if she

were physically with the other participants.

In pursuit of these applications, this dissertation research began with the following

goals:

1. use a practical number of images as input (around one or two dozens);

2. be fully automatic;

3. be robust and accurate for a wide variety of shapes and surfaces (convex, concave,

specular, diffuse, etc.); and

4. work toward real-time, on-line view synthesis (over 10 fps).

In the next section, I describe how no existing method can simultaneously achieve

3

1
1

2

3

4

5

6 8

7

Cam1- 8

Figure 1.1: A captured scene in a simulated surgical environment. Lower left: Camera
cube—our scene capture system with eight video cameras on the top, looking down.
Lower right: Dr. Bruce Cairns at UNC Medical School was explaining a delicate
surgical procedure, which was being captured by the camera cube at the same time.
Top: eight images captured simultaneously.

all of these goals.

1.2 A Brief Overview of Existing Methods

In pursuit of a view synthesis method that will satisfy all of the goals set in the previous

section, let me first present a brief overview of what has been done for view synthesis

in general. A more extensive review of previous work is presented in Chapter 2.

There are many different ways to categorize and introduce the vast variety of ex-

isting view synthesis methods. For example, they can be categorized based on the

type of scenes they can handle, the number of input images required, or the level of

automation. In this dissertation, I choose to categorize existing methods based their

4

internal representations of the scene. Based on this criterion, there is a continuum of

view synthesis methods shown in Figure 1.2. They vary on the dependency of images

samples vs. geometric primitives.

3D model
Image

Image
Image

Image
Image

Computer

Graphics

Shape

Recovery

(b) Geometry-based Modeling and Rendering

New

imageNew

imageNew

image

(c) Image-based Modeling and Rendering

Image
Image

Image
Image

Image

New

imageNew

imageNew

imageAdditional

constraints

More image samplesMore geometric primitives

Light FieldLumigraphStereo FacadeSpace Carving

(a) The continuum of view synthesis methods

Figure 1.2: The continuum for view synthesis methods. Relative positions of some
well-known methods are indicated. The two sub-figures show two main sub-groups for
view synthesis. Note that the boundary between these two groups is blurry.

I categorize approaches on the left side of the continuum as geometry based. As

shown in Figure 1.2(b), given a set of input images, a 3D model is extracted, either

manually or algorithmically, and can then be rendered from novel viewing angles using

computer graphics rendering techniques. In this category, the primary challenge is in

the creation of the 3D model. Automatic extraction of 3D models from images has been

one of the central research topics in the field of computer vision for decades. Although

many algorithms and techniques exist, such as the extensively studied stereo vision

techniques, they are relatively fragile and prone to error in practice. For instance,

most 3D reconstruction algorithms assume a Lambertian (diffuse) scene, which is only

a rough approximation of real-world surfaces.

By contrast, I categorize approaches on the right side as Image-based Modeling and

Rendering (IBMR)—a popular alternative for view synthesis in recent years. As shown

in Figure 1.2(c), the basic idea is to synthesize new images directly from input images,

partly or completely bypassing the intermediate 3D model. In other words, IBMR

methods typically represent the scene as a collection of images, optionally augmented

with additional information for view synthesis. Light Field Rendering (LFR) [LH96,

5

GGSC96] represents one extreme of such techniques; it uses many images (hundreds

or even thousands) to construct a light field function that completely characterizes

the flow of light through unobstructed space in a scene. Synthesizing different views

becomes a simple lookup of the light field function. This method works for any scene

and any surface: the synthesized images are usually so realistic that they are barely

distinguishable from real photos. But the success of this method ultimately depends on

having a very high sampling rate, and the process of capturing, storing, and retrieving

many samples from a real environment can be difficult or even impossible.

In the middle are some hybrid methods that represent the scene as a combination of

images samples and geometrical information. Typically they require a few input images

as well as some additional information about the scene, usually in the form of approx-

imate geometric knowledge or correspondence information. By using this information

to set constraints, the input images can be correctly warped to generate novel views.

To avoid the difficult shape recovery problem, successful techniques usually require a

human operator to be involved in the process and use a priori domain knowledge to

constrain the problem. Because of the required user interaction, these techniques are

typically categorized under the IBMR paradigm. For example, in the successful Façade

system [DTM96] designed to model and render architecture from photographs, an op-

erator first manually places simple 3-D primitives in rough positions and specifies the

corresponding features in the input images. The system automatically optimizes the

location and shape of the 3D primitives, taking advantage of the regularity and sym-

metry in architectures. Once a 3D model is generated, new views can be synthesized

using traditional computer graphics rendering techniques.

View synthesis is an active research topic in both the computer graphics and com-

puter vision communities; many new algorithms and techniques are developed every

year. Among the existing view synthesis methods, there is no single one that is clearly

better than the rest. Certain trade-offs have to be made to select the best method for

a desired application. Factors to consider include the desired quality of synthesized

images, computational cost, number of input images, and level of automation. Unfor-

tunately, no existing method can satisfy all of the goals set out in the previous section

(see Table 2.1 in the end of Chapter 2 for detail).

LFR, for example, meets all of the goals except the first one—using a practical num-

ber of images. LFR can generate new images with a quality almost indistinguishable

from real photographs, but it typically requires thousands of input images. Stereo vi-

sion techniques, by contrast, require only two images, are usually fully automatic, and

6

can be computed in real time using special hardware or carefully optimized code. But

they are also known to be quite fragile in practice and thus fail to meet the third goal.

There are many other methods that use a reasonable number of images but require

the user to assist the reconstruction process; they do not meet the second and the last

goals. For example, the View Morphing technique allows very realistic results to be

obtained using only two images, or even a single one in some cases. However, a user

is required to establish correspondences between a pair of images, which is effectively

equivalent to constructing a 3D model by hand—a tedious and time-consuming task

that is impractical for real-time applications.

The lack of a existing view synthesis method to meet all of the goals in Section 1.1

prompted this dissertation research, which was aimed at combining the advantages of

existing methods while addressing their shortcomings.

1.3 A Brief Historical Note

Before I introduce my dissertation work, let me first present a brief historical note on

how I arrived at my dissertation (a more detailed account can be found in Section 5.2).

My first work on view synthesis was motivated by the 3D Tele-Immersion project

(http://www.advanced.org/tele-immersion/) in 1999, in which a real-time solution for

view synthesis was essential. Together with Prof. Greg Welch, my thesis advisor, we

made the observation that for the sake of view synthesis, we did not need to estimate a

full 3D model and then render the 3D model to obtain a 2D image, we only needed to

estimate a color for each pixel in the desired image. In the following years, I developed

a view-dependent formulation for view synthesis that can be accelerated on commodity

graphics hardware to achieve real-time performance. The basic idea is to use texture-

mapping functions in graphics hardware to warp the input images to the desired view

point, and use programable pixel functions to decide the most consistent color for

each pixel in the output image. At that time, I called the approach Sparse Light Field

Rendering (SLFR) in a spirit similar to Light Field Rendering because I was attempting

to synthesize novel views directly, bypassing the intermediate 3D model but with fewer

images.

While Sparse Light Field Rendering achieved the desired real-time performance, I

found a number of complications. It turned out that our first thought that I could

completely bypass a 3D geometric model was not entirely correct. Without a rather

accurate 3D model, the quality of synthesized images degraded rapidly as the viewpoint

7

moved away from any of the input viewpoints because of sampling artifacts and oc-

clusion problems. Consequently, the effective view volume was rather limited. Around

that time, in collaboration with Brown University, we began a project to visualize sur-

gical procedures (http://www.cs.unc.edu/Research/stc/projects/ebooks/ebooks.htm).

Experiments showed that the extensive amount of textureless regions and specular

highlights in a surgical scene significantly impacted the quality of images SLFR could

synthesize.

At that time, I realized that an image-geometry hybrid approach for view synthesis

was probably more appropriate. While my primary goal was 2D image synthesis as

opposed to 3D scene modeling, I realized that some amount of 3D scene modeling could

lead to a better 2D image. The question was how much understanding of the 3D scene

was necessary. I realized that if the 3D scene model was estimated specifically from the

perspective of the desired view, relatively little 3D scene understanding was necessary.

Further by estimating the 3D scene information from the perspective of the desired

view, I could apply spatial constraints that were specifically tailored to the desired

view. These realizations led me to a hybrid approach of 2D image synthesis using “just

enough” 3D scene information, estimated from the perspective of the desired view.

This hybrid formulation, together with novel constraints to improve reconstruction

qualities, formed the foundation of this dissertation. I now call the complete approach

View-Dependent Pixel Coloring (VDPC).

1.4 View-Dependent Pixel Coloring

In this dissertation I introduce a view-synthesis framework, View-Dependent Pixel Col-

oring (VDPC), which meets the goals set out in Section 1.1. In this section, I first

briefly provide a high level overview of VDPC, explaining how VDPC is formulated.

Then I present the thesis statement, followed by a section in which I highlight key

innovations.

1.4.1 Approach

VDPC uses a hybrid view-dependent approach. That is, it is designed for direct view

synthesis while maintaining a view-dependent 3D model. For a desired viewpoint C∗,

the 3D volume enclosing the objects of interest is discretized into a perspective grid of

voxels—volume elements (Figure 1.3 shows a bird’s-eye view of a horizontal slice of the

8

C*

C1

C2

…p

C0
Cn C*

p

C1

C2

…

Cn

v

Given

How likely does V correspond

to a surface point?

C0

Figure 1.3: The basic formulation of VDPC. C0...Cn represent the viewpoints of in-
put images, while C∗ represents the output viewpoint. VDPC uses a view-dependent
parametrization of the 3D space—a perspective voxel grid. Left: a bird’s-eye view of a
horizontal slice of the voxel grid, which corresponds to a scan line in the output image.
Right: VDPC determines a voxel’s occupancy by its projections in input images.

voxel grid). Each column of voxels (the slant-shaded voxels in Figure 1.3) corresponds

to a single pixel in the desired image to be synthesized for C∗. Initially, the volume is

filled with voxels. The goal of VDPC is to assign a color to each pixel in the desired

image. In order to do that, VDPC attempts to “carve” away voxels in empty space

and assign colors to voxels representing scene surfaces. Basically, VDPC examines each

voxel v by looking at its projections in all input images. If v represents a surface point

in the scene, then the pixels in its projections should be consistent—all having the same

color if the surface is diffuse. If v is consistent with the input images, it will be assigned

a color and remain in the view-dependent 3D model. Otherwise, it will be carved away.

Because of the one-to-one mapping between voxel columns and pixels in the desired

image, each pixel’s color is set to the color of the first opaque voxel in each column.

In the end, VDPC produces a desired image, as well as a surface voxel model from the

perspective of the desired viewpoint.

VDPC incorporates a progressive scheme to perform the carving and find the most

likely color for each pixel, taking into account occlusions, local shape smoothness,

illuminations, and surface materials. This scheme is discussed in Section 3.1.2.

Two novel physically-based constraints are incorporated into this framework. The

first is a view-dependent smoothness constraint. Many real world scenes are composed

of smooth surfaces almost everywhere except at surface boundaries. This observation

can be formulated as a smoothness constraint to provide a more accurate estimation of

the scene. The smoothness constraint used in this dissertation is based on the principle

9

Figure 1.4: Typical results of VDPC: these images are synthesized from eight synchro-
nized video streams captured using the system shown in Figure 1.1, in which a surgeon
was explaining a dedicated procedure for trauma management.

of disparity gradient limit, which I discuss in detail in Section 3.1.3.

The second constraint is a novel photo-consistency measure, i.e., a measure of color

and occupancy likelihood of a voxel given a number of pixel values collected from

input images C0...Cn. Based on previous studies in photometry, I designed a novel

physically-based photo-consistency measure that is valid for both specular and Lam-

bertian surfaces. Details can be found in Section 3.1.4.

In addition, if we choose to make certain simplifying assumptions about the scene,

the VDPC framework can be efficiently implemented on commodity graphics hardware,

allowing interactive viewing of a dynamic real scene in real time, on line. I present a

reduction of VDPC and its implementation on graphics hardware in Chapter 4.

10

1.4.2 Thesis Statement

By estimating a view-dependent 3D model using physically-based con-

straints, one can synthesize better 2D images of real scenes than conven-

tional alternatives, such as full 3D reconstruction or 2D image warping.

In the process of synthesizing 2D images one can also obtain a local 3D

geometric model. In addition, given simplifying assumptions about

the scene, the entire framework can be implemented using commod-

ity graphics hardware to achieve on-line, real-time image synthesis of

dynamic real scenes.

1.4.3 Innovations

The VDPC framework is comprised of the following conceptual and design innovations,

which allow VDPC to meet the goals set in Section 1.1.

Hybrid and view-dependent estimation. The primary goal of view synthesis

is to render or predict one or more output views from a set of input images. On

the one hand, if we could acquire a priori either enough image samples (as in Light

Field Rendering) or additional constraints (such as correspondence information in view

morphing), we could simply warp the input images to synthesize new views without

understanding the underlying geometry, materials, or lighting of the scene. However,

neither requirement can be met for the scope of this dissertation (see goal (1) and (2)

on page 2.).

On the other hand, we could first estimate a full 3D model then render the 3D

model from new viewing angles. However, estimating a full 3D model automatically is

a difficult task. Existing methods are typically fragile and prone to error in practice. In

addition, such an approach is less efficient for dynamic scenes (goal (4)) since usually

only part of a full 3D mode is visible for any given viewpoint, the effort to estimate

the occluded part is wasted. For the sake of view synthesis, a complete model is

unnecessary, we only need to extract enough information to allow us to predict the

immediately necessary output view. In other words, a partial model may suffice.

There are previous hybrid approaches that make use of the above observations.

For example, the view-dependent texture mapping technique represents a scene as an

approximate geometric model with a set of input images gathered from different view-

points [DTM96]. Multiple images are projected onto the basic model and blended at

11

run-time to better simulate geometric and photometric details not captured by the

basic model.

Unlike previous hybrid approaches in which the 3D model is fixed and/or known a

priori, I propose the notion of view-dependent estimation, which aims to construct a 3D

model optimized for a given output view. I use this view-dependent model to directly

improve the quality of the synthesized view.

Based on the above conceptual innovations, VDPC uses a view-dependent parame-

terization of 3D space (a perspective voxel grid), which allows a direct correspondence

between the 3D model and the 2D image. This formulation has a number of advantages.

For example, a voxel grid is relatively flexible, and can represent any shape—meeting

the geometry part of goal (3). In addition, a view-dependent formulation avoids some

common problems of view-independent ones, as detailed in Section 3.3.1.

Robust to textureless regions—a progressive refinement scheme with a view-

dependent smoothness constraint. It is difficult to estimate shapes in regions

lacking color variations—many possible ambiguous shapes exist. If not resolved cor-

rectly, artifacts will become obvious when the model is viewed from an oblique angle,

far from any of the input viewpoints. A typical treatment is to apply a smoothness con-

straint that biases the surface estimation toward locally flat surfaces. However the typi-

cal accompanying smoothing effect undermines the ability to reconstruct highly complex

shapes. Ideally, we want to apply a smoothness constraint only when there is ambiguity.

To this end, VDPC adopts a progressive scheme. Starting from a few reliable voxels,

VDPC incrementally refines the underlying shape estimate using photo consistency

measures, progressively updated visibility information, and smoothness constraints.

I also recognize that surface smoothness perceived by humans is a view-dependent

property and apply a smoothness constraint from the perspective of the output view-

point. The smoothness constraint I use, the Disparity Gradient Limit, is based on

psychophysical studies in human vision system, which provides a physically meaningful

way to fine-tune the parameters since the synthesized images are for humans to view.

This innovation allows VDPC to meet part of goal (3), providing better shape

estimates for textureless regions. It is discussed further in Section 3.3.1,

Robust to specular highlights—a novel physically-based photo-consistency

measure. Almost all existing 3D reconstruction methods make a relatively simplistic

assumption that all scene surfaces are diffuse: light reflected from the same surface

12

point to various viewing angles is assumed to be the same. While useful as a basis

for establishing correspondence, this property does not hold in practice for specular

surfaces. There have been some attempts to deal with specular surfaces. They either

treat specular highlights as outliers, or require a full calibration of the light source.

Based on previous studies in photometry that recognized some distinctive distributions

of light reflected from certain surfaces, I have designed a novel physically-based photo-

consistency measure that addresses these problems. Using this new measure, I have

been able to successfully reconstruct highly specular objects, like the scene in Figure 1.1.

In addition, this measure does not require light calibration or surface normal estimation,

thus it can be used in many existing reconstruction algorithms to find correspondences

in the presence of specular highlight.

This innovation allows VDPC to meet part of goal (3), providing better shape

estimates for specular regions. It is discussed further in Section 3.3.1.

The recognition of the potential power in commodity graphics hardware

and its application in VDPC. Modern commodity graphics hardware is becom-

ing increasingly powerful and programmable. While most hardware improvements were

originally designed for rendering, i.e., generating images from a given geometric and

photometric model, I recognized the potential power of using commodity graphics hard-

ware for view synthesis. There is a great synergy between image processing and graphics

rendering. Both frequently use simple operations applied thousands or even millions of

times. Any application having similar characteristics can exploit the inherent Single-

Instruction-Multiple-Data (SIMD) parallel architecture in modern graphics boards to

accelerate their computation. Others have recognized this potential power for other

uses, for example, matrix multiplication [LM01].

Based on the above recognition, I present in Chapter 4 a reduction of VDPC,

real-time VDPC, that can be efficiently implemented on existing commodity graphics

hardware to meet goal (4). By exploiting the enormous internal bandwidth and compu-

tational power in today’s graphics cards, I have been able to develop a real-time on-line

system for view synthesis and depth estimation (a depth map), thanks to the hybrid

nature of our formulation. At the time of this writing (May 2003), my implementation,

when operating to output a depth map, is as fast as the fastest commercial software

package available. Furthermore, since all the processing is done entirely on the graphics

hardware, the CPU can be spared to perform other tasks.

13

1.5 Dissertation Outline

The remainder of my dissertation is organized as follows:

In Chapter 2, I review related work in detail. I categorize existing view synthesis

methods into two classes: geometry based and image based. They are reviewed in Sec-

tion 2.1 and Section 2.2, respectively. In addition, with the increasing computational

power on inexpensive personal computers, several real-time methods have been pro-

posed to capture and render dynamic live scenes. They are of particular interest to

this dissertation and are reviewed in Section 2.3. This chapter ends with a discussion

of the major problems with existing methods that prompted this dissertation research.

For the sake of clarity, as well as attempting to cater to different interests among dif-

ferent readers, I break up the VDPC framework into two chapters, one for the complete

VDPC framework and the other for a reduction of VDPC that can achieve real-time

performance using commodity graphics hardware.

In Chapter 3, I present the View-Dependent Pixel Coloring framework (VDPC).

First, the approach VDPC uses is presented in Section 3.1 and Section 3.2. A discussion

of VDPC, including its innovations and limitations, is in Section 3.3. This chapter ends

with experimental results from various data sets with difference geometry and material

properties.

A full implementation of VDPC in software is not real-time yet— each synthesized

image presented in Chapter 3 typically requires a few minutes to render on a PC. But

in Chapter 4, I present a special reduction of VDPC, real-time VDPC, that can be

efficiently implemented on commodity graphics hardware. Modern graphics hardware

offers orders of magnitude in acceleration, enabling real-time on-line view synthesis of

a live dynamic scene.

I conclude this dissertation in Chapter 5 with some historical notes of this disser-

tation research and possible directions for future work. Appendix A provides some

sample code for real-time VDPC introduced in Chapter 4.

Readers interested in implementing the full VDPC framework could start at Sec-

tion 3.1 in which I explain VDPC in detail and continue to Section 3.2 in which I discuss

some specific implementation issues. Readers looking for the real-time view synthesis

method could jump directly to Chapter 4, which is a self-contained chapter describing

real-time VDPC.

14

Chapter 2

Background and Related Work

In this chapter, I will set the context of this dissertation and introduce several related

previous approaches. Being able to look freely through a scene has long been an active

research topic in the computer graphics community. Historically, computer graphics

research has been focused on rendering. That is, given a 3D model, how to generate

new images faster, better, and more realistically. View synthesis addresses a typically

more challenging problem. It is aimed to generate new images using only a set of 2D

images, instead of 3D models.

There are many different ways to categorize and introduce the vast variety of exist-

ing view synthesis methods. For example, they can be categorized based on generality,

speed, the number of input images required, or the level of automation. In this disser-

tation, I chose to categorize existing methods based on their internal representations

of the scene. Based on this criterion, there is a continuum of view synthesis methods

as shown in Figure 1.2 and repeated in Figure 2.1. They vary on the dependency of

images samples vs. geometric primitives.

Roughly, approaches on the left side of the continuum are geometry based. As shown

in Figure 2.1(b), given a set of input images, a 3D model is extracted, either manually

or algorithmically; then the 3D model can be rendered from novel viewing angles using

computer graphics techniques. With this type of approach, automatic extraction of 3D

shapes from images is a very difficult task. It has been one of the central research topics

in computer vision for decades. I will survey a number of computer vision techniques in

Section 2.1. They range from basic stereovision techniques requiring only two images

to more advanced techniques such as Space Carving, which builds a complete 3D model

from multiple images.

A recent, popular alternative to geometry-based approaches is Image-based Modeling

16

3D model
Image

Image
Image

Image
Image

Computer

Graphics

Shape

Recovery

(b) Geometry-based Modeling and Rendering

New

imageNew

imageNew

image

(c) Image-based Modeling and Rendering

Image
Image

Image
Image

Image

New

imageNew

imageNew

imageAdditional

constraints

More image samplesMore geometric primitives

Light FieldLumigraphStereo FacadeSpace Carving

(a) The continuum of view synthesis methods

Figure 2.1: The continuum for view synthesis methods. Relative positions of some
well-known methods are indicated. Each of them will be reviewed in detail in this
chapter.

and Rendering, which resides roughly on the right side of the continuum. As shown in

Figure 2.1(c), the basic idea is to synthesize new images directly from input images,

bypassing the intermediate 3D model. I will review some of these methods in Section

2.2.

With the increasing computational power on inexpensive personal computers and

the wide availability of low-cost imaging devices, several real-time methods have been

proposed to capture and render dynamic scene. They are of particular interest to this

dissertation and are reviewed in Section 2.3.

At the end of this chapter (Section 2.4), I discuss some of the major problems with

existing methods that prompted this dissertation research.

2.1 3D Shape Recovery

3D reconstruction of an unknown scene from a set of images is one of the oldest prob-

lems in computer vision. One major driving application is autonomous robots, which

need to understand the shape of the scene to navigate throughout. Other applica-

tions include surveillance, reverse engineering, and human-computer interactions. 3D

reconstruction has been and continues to be one of the most active research areas in

computer vision; many methods and techniques have been tried and tested. These

17

Center of

Projection

Image 0

Figure 2.2: Depth from a single image is undefined.

Center of

Projection

Center of

Projection

Image 0

Image 1

Figure 2.3: Depth from two (or more) images can be determined if correspondences are
known.

methods vary vastly as to the image features used and the underlying scene repre-

sentation. I review two categories of methods: correspondence-based stereo methods

and volumetric reconstruction methods. They are the most widely-used methods and

are most relevant to this dissertation. Interested readers may refer to computer vision

textbooks [TV98, Fau93, KSK98, Hor86, Dav97] for other shape recovery methods,

such as shape from shading, sparse feature-tracking based methods, or active sensing

techniques.

2.1.1 Stereo Vision Methods

Stereo vision attempts to infer 3D shapes from images. While a single image can tell us

a lot about an observed scene, it does not contain enough information to reconstruct

the scene’s 3D geometry. This is due to the nature of the image formation process,

which consists of a projection from a three-dimensional scene onto a two-dimensional

18

Figure 2.4: A pair of stereo images before and after rectification. The first two are the
original images, while the last two are the rectified images. Note that the corresponding
features are on the same row of pixels after rectification.

image plane. During this process, the depth is lost [Pol98]. Figure 2.2 illustrates this.

From a single image, we know only that the three-dimensional point corresponding to a

specific image pixel is constrained to be on the associated line of sight; it is impossible

to determine which point on this line corresponds to the image pixel. If two (or more)

images are available, then, as can be seen from Figure 2.3, the intersection of the two

lines of sight can uniquely determine a three-dimensional point. This process is called

triangulation. In order to reconstruct a three-dimensional point, we must know the

following:

• Corresponding image points (pixels);

• Relative positions and orientations of the cameras from the different views (ex-

trinsic camera parameters);

• Relation between image pixels and the corresponding lines of sight (intrinsic

camera parameters).

While there are several techniques for reconstructing a 3D model with unknown, or

partially unknown, camera parameters [TK92, DTM96, PKG98, PG97, LZ99a], I limit

the scope of this dissertation, as in many existing reconstruction techniques, to cali-

brated cases. That is, both the intrinsic and extrinsic camera parameters are known a

priori. The central problem for stereo vision thus becomes finding the correspondences

between two images.

The earliest attempt to solve the stereo problem, by Marr and Poggio, dates back

to 1976 [MP76]. Since then, stereo matching has been one of the most active research

areas in computer vision. Compiling a complete survey of existing correspondence-

based stereo methods would be a formidable task. A large number of new methods

19

are published every year. However, there are a few excellent survey papers collectively

covering the history of stereo vision. There are two very good reviews of early vision;

the first is by Barnard and Fischler [BF82] and covers the early 70s and 80s. The second

is by Dhond and Aggarwal [DA89] and covers the late 80s. More recently, Scharstein

and Szeliski [SS02] updated us on the current state of art. They also introduced a

taxonomy of two-view, or binocular, stereo algorithms that allows the dissection and

comparison of individual algorithm component design decisions. First I will provide a

more rigorous definition of the binocular stereo problem (Section 2.1.1), and then I will

use the taxonomy from Scharstein and Szeliski to review a number of binocular stereo

algorithms (Section 2.1.1). Several metrics for quantitative evaluations of binocular

stereo algorithms are discussed in Section 2.1.1. I further examine several multi-view

stereo methods that use more than two images, in Section 2.1.1.

Binocular Stereo Representation

Most binocular stereo correspondence methods compute a univalued disparity func-

tion d(u, v) with respect to one of two reference images. The term disparity was first

introduced in the human vision literature to describe the difference in location of cor-

responding features seen by the left and right eyes [Mar82]. For a 2D feature s in one

reference image, say the left image, its corresponding 3D point is constrained to be

on the line of sight (Figure 2.2). This line’s projection in the other image is called

the epipolar line. Thus the corresponding feature s′ in the right image must be on

the epipolar line. This is the important epipolar constraint which reduces the search

space of corresponding features to one dimension. In computer vision, input images are

usually transformed so that the epipolar lines are aligned horizontally. This process is

called rectification [AH88, PD96, LZ99b, PKG99]1. A pair of stereo images before and

after rectification is shown in Figure 2.4. For a pair of rectified images, disparity can

be treated as synonymous with inverse depth, i.e., a large disparity value means that

the 3D point is close, a small disparity value means that the 3D point is further away,

and a zero disparity value means that the 3D point is at infinity.

Given a pair of rectified images, let (u, v) be the pixel coordinates in a reference

image chosen from the pair, say the left image. The correspondence between a pixel

1Readers are referred to the classic textbook by Faugeras [Fau93] for a detailed explanation of these
important concepts.

20

(u, v) in a reference image and a pixel (u′, v′) in matching image is then given as

u′ = u + d(u, v), v′ = v.

The goal of a stereo algorithm is then to produce a univalued function d(u, v) that best

describes the shape of the surfaces in the scene [SS02].

A Taxonomy of Stereo Algorithms

Scharstein and Szeliski [SS02] propose a taxonomy based on the observation that stereo

algorithms generally perform (subsets of) the following four steps:

1. matching cost computation;

2. cost (support) aggregation;

3. disparity computation / optimization; and

4. disparity refinement.

Matching cost computation A matching cost is a value indicating how likely two

pixels are to correspond to the same scene point. The three most common pixel-based

matching costs include squared intensity differences (SD) [Han74, Ana89, MSK89],

absolute intensity differences (AD) [Kan94], and normalized cross-correlation [Han74,

RGH80, BBH93]. They all behave similarly in terms of disambiguating power [SS02].

Besides the above three, there are many other cost criteria that are designed for

specific needs. Some costs are insensitive to differences in camera gain or bias; these

include, for example, gradient-based measures [Sei89, Sch94] and non-parametric mea-

sures such as rank and census transforms [ZW94]. More recently, robust measures such

as truncated quadratics and contaminated Gaussians [BA93, BR96, SS98] have been

introduced to limit the influence of mismatches during cost aggregation(the next step).

Other cost criteria include phase and filter-bank responses and the sample-insensitive

cost measure developed by Birchfield and Tomasi [BT98].

All these cost measures assume the scene surfaces are Lambertian, i.e., that their

appearance does not vary with viewpoint. This poses a significant restriction on the

type of scenes a stereo algorithm is able to reconstruct. Later in this dissertation

(Section 3.1.4), I will introduce a novel matching cost that is valid for both specular

and Lambertian surfaces.

21

Matching cost aggregation The matching cost for each pixel is usually ambiguous

and noisy. To reduce ambiguity, many stereo algorithms use a local and window-based

approach: matching costs are aggregated by summing or averaging over a support

region. Most stereo algorithms use a two-dimensional support region at a fixed disparity,

as in [Arn83, BI99, OK92, KO94a, KSC01, O.V01, BVZ98]. Such approaches favor

front-parallel surfaces. By contrast, a three-dimensional support region in x-y-d space,

as in [PMF85, Pra85, Gri85], does not have this bias, thus supporting both slanted and

front-parallel surfaces.

A different method of aggregation is iterative diffusion, i.e., an aggregation (or

averaging) operation that is implemented by repeatedly adding to each pixel’s cost

the weighted values of its neighboring pixels’ costs [SH85, Sha93, SS98]. The work pre-

sented in this dissertation uses a similar iterative strategy in applying a view-dependent

smoothness constraint (Section 3.1.2).

Disparity computation and optimization There are two broad classes of methods

used at this stage, local methods and global methods. In local methods, the disparity

computation at a given pixel depends only on the intensity values within a finite win-

dow. Computing the final disparities is trivial: one simply chooses for each pixel, the

disparity associated with the minimum cost value. Thus, these methods perform a

local “winner-take-all” (WTA) optimization for each pixel. A major limitation is that

the uniqueness of matches is enforced for only one image (the reference image), while

pixels in the other image might have multiple matches.

Global methods, by contrast, are usually formulated within an energy-minimization

framework [PTK85]. The objective is to find a disparity function d that minimizes the

global energy, such as:

E(d) = Edata(d) + αEsmooth(d) + βEvisibility(d). (2.1)

The data term, Edata(d), measures how well the disparity function d agrees with the

input image pair. The smoothness term, Esmooth(d), encodes the smoothness assump-

tions made by the algorithm. To make the optimization computationally tractable, the

smoothness term is often restricted to measuring only the differences between neigh-

boring pixels’ disparities. The last visibility term is often a bi-valued term—zero if the

visibility constraint is satisfied, infinity otherwise.

Once the global energy has been defined, a variety of algorithms can be used to find

22

a (local) minimum. Traditional approaches associated with regularization and Markov

Random Fields include continuation [BZ87], simulated annealing [GG84b, MMP87,

Bar89], highest confidence first [CB90], and mean-field annealing [GG84a]. More re-

cently, max-flow and graph-cut methods have been proposed to solve a special class of

global optimization problems [RC98, IG98, BVZ01, Vek99, KZ01, BGCM02]. Each of

these methods constructs a graph such that the maximum flow or minimum cut on the

graph also minimizes the energy. These approaches are more efficient than simulated

annealing and have produced good results. Kolmogorov and Zabih have characterized

the energy functions that can be minimized by graph-cut [KZ02b].

While the optimization of Equation 2.1 can be shown to be NP-hard for common

classes of smoothness functions [Vek99], dynamic programming can be used to find

the global minimum for each scanline independently in polynomial time [Bel96, BM92,

GLY92, CHRM96, BI99]. A major limitation of this approach is the difficulty of en-

forcing inter-scanline consistency.

While global methods tends to produce better results than local methods, they

are typically sensitive to the precise definition of the global energy. Usually these

parameters are tuned empirically, and parameters that work well for one data set may

not necessarily be good for others. In contrast, local methods typically have fewer

parameters and generate consistent, albeit not optimal, results. Local methods are also

computationally feasible for real-time implementations.

Disparities refinement Most stereo algorithms compute a disparity map using only

integer values. To improve quality, the disparity values can be interpolated for sub-pixel

accuracy. Usually, the profile of matching costs for a pixel is fitted into a parabolic

curve, then the local maximum is found as the refined disparity value [LK81, TH86,

MSK89, KO94b, MID02]. This increases the resolution of the disparity map with little

computation.

Other types of disparity post-processing are also possible, such as applying a median

filter to remove spurious mismatches or filling holes due to occlusion using surface fitting

or distributing neighboring disparity estimates [BT98, Sch99].

Stereo Quality Measures

As there are so many stereo algorithms, several different criteria have been developed

for evaluating their performance. Evaluation is a challenging task because it is difficult

to obtain the “ground truth” depth data.

23

Leclerc et.al. [LLF98] proposed a novel methodology that estimates the accuracy

and reliability of the results of any multiple-image point correspondence algorithm,

without the need for ground truth. The key concept behind their methodology is what

they call the self-consistency of an algorithm across independent experimental trials.

In other words, for a given collection of N input images (N > 2), apply the algorithm

being evaluated to subsets of the input images and check the consistency of the outputs

from these independent runs. This self-consistency test does not require knowledge of

the “ground truth”, which makes it more applicable to images captured from real

scenes. However, it should be noted that the self-consistency test is only a necessary

condition for the correctness of a point correspondence algorithm, though the authors

explained in their paper why they conjectured the proposed test provides a reasonable

approximation of the absolute error distributions.

Recently, Image-Based Rendering techniques have gained popularity, and two papers

[MID02, Sze99] have developed new criteria for evaluating the performance of dense

stereo algorithms from a view synthesis standpoint. The basic idea is to measure how

accurately the depth estimates (combined with the original image) can predict the

appearance of an image from a novel view. That is, render the depth map using one

of the original images as a texture, and compare the synthesized image with a real

image taken from the same viewpoint. Since this metric simply compares two images,

it is much easier to collect data sets for which algorithms can be evaluated. However,

view-dependent effects, such as specular highlights, undermine the accuracy of image-

based metrics. Even if there is no view-dependent effect, there is still the difficulty of

measuring the fidelity of synthesized images. The usual method is to compute the root

mean square (RMS) difference between the two images. However, it is known that the

RMS error can be easily fooled. In [Sze99], the authors used residue flow as the error

metric. Residue flow uses a conjunction of the RMS intensity error and the per-pixel

offset (flow) to register the rendered image with the actual image. Details are in their

paper.

More recently, Scharstein and Szeliski [SS02] provided a very comprehensive quan-

titative evaluation of stereo algorithms. Using several stereo data sets with ground

truth, they evaluated a large set of today’s best-performing stereo algorithms. They

also set up a web site to allow researchers to submit new algorithms and results to be

evaluated. Interested readers are encouraged to visit www.middlebury.edu/stereo for

the most up-to-date evaluation results. Note that while some of their data sets include

multiple frames, their evaluation is intended solely for binocular stereo algorithms.

24

Multi-view Stereo

While there has been significant progress on stereo algorithms during the last two

decades, from simplistic but fast local methods to sophisticated global methods based

on energy minimization, the problem of computing depth from two images has not been

entirely solved. Indeed, some even deem it an ill-posed problem in general [MMP87,

PTK85, Bas92]. There simply is not enough information to distinguish correct cor-

respondences from false positives in many practical cases. Various constraints and

assumptions have to be imposed to make the problem tractable.

To ameliorate the above problems, Okutomi and Kanade in 1993 proposed the use of

more than two images in stereo [OK93]. Using one of the input images as the reference

image, the matching costs from all the other images are summed up to a final matching

cost. This new cost is more salient to image noise and false positives. Since the search

for matches is still performed within the disparity space, there is a major restriction on

the camera arrangement: the cameras have to be co-planar or even co-linear.

In 1996, Collins [Col96] proposed a plane-sweep algorithm, which projects all im-

ages onto a series of planes in 3D space that correspond to different disparity values.

Matching is performed in 3D space. This allows more flexible camera configurations.

But an important problem—occlusion—is still not addressed. This is particular impor-

tant in the multi-view case, since as more and more cameras are added, it becomes less

and less likely that all the cameras will see the same surface. In the next section, I will

introduce several reconstruction methods based on a volumetric representation of the

scene. These methods can deal elegantly with the multi-view reconstruction problem.

2.1.2 Volumetric Methods

Instead of searching in image space as in stereo algorithms, an alternative approach

to scene reconstruction is based on computations in three-dimensional scene space,

in which a volumetric representation of the scene can be inferred from input images.

Volumetric methods usually assume there is a known, bounded volume in which the

objects of interest lie. The most common approach to representing this volume is as

a regular tessellation of cubes, called voxels, in Euclidean 3D space. The task of a

reconstruction algorithm is to decide which voxels belong to the objects of interest and

which do not. Most methods also assign a color to each voxel based on its projections

into input images.

Compared to the disparity space representation used in most stereo algorithms, a

25

C n

C 2
C 1

P

C 1

C 0

Q
N

M

C 0C 0

Figure 2.5: 2D Visual Hull. From left to right, (a) A single camera defines a cone
area in space containing the foreground object; (b) Two cameras refine the intersection
region (MPNQ); (c) As the number of cameras goes to infinity, the intersection region
converges to the object’s visual hull.

volumetric representation is much more flexible and general. In particular, it allows a

much wider range of camera arrangements, and more elegant modeling of visibility in

3D scene space.

Recently there has been considerable progress in developing techniques that build

volumetric scene models. There are two broad classes of volumetric reconstruction

methods; one uses only silhouette information to compute the visual hull of the original

shape; while the other uses photo-consistency measures to compute the photo hull of

the original shape. I will review these two classes in the sections that follow. Interested

readers are also encouraged to read two recent reviews of different volumetric scene

reconstruction methods by Slabaugh et al. [SCMS01] and Dyer [Dye01], respectively.

Shape from Silhouettes—Visual Hull Reconstruction

An object’s contour (or profile) provides important clues about the object shape. Sup-

pose a 3D object is viewed by a camera. The object’s silhouette image, which can be

obtained using segmentation algorithms or blue-screen techniques, contains values that

distinguish regions where the object is or is not present. Combined with calibration

information for the camera, each pixel in a silhouette defines a ray in scene space that

intersects the object at some unknown depth. The union of these visual rays for all

pixels in the silhouette defines a generalized cone within which the 3D object must lie,

as in the shaded area in Figure 2.5(a). If we are presented with multiple views of the

26

object, the intersection of these generalized cones from all views defines a volume of

the scene space that must contain the original object. As the number of the reference

views goes to infinity to include all the views possible from all locations, the intersec-

tion volume converges to the shape known as the object’s visual hull, a term defined

by Laurentini [Lau94]. The visual hull is guaranteed to contain the object. In 2D, the

visual hull is equal to the convex hull of the object. For 3D scenes, the visual hull is a

tighter fit than the convex hull. In a visual hull, hyperbolic regions are removed, but

concavities are not.

In practice, since one has access to only a finite number of views, one can only

construct approximate visual hulls. Given a set of n silhouette images from different

views, the approximate visual hull is the best conservative geometric description one

can achieve based on silhouette information alone. In Figure 2.5(b), I show an example

of the volume (the dark-shaded area MPNQ) computed from only two views. From

now on, I will use the term “visual hull” to mean the approximate volume computed

from n views.

Central to visual hull reconstruction is the intersection test. If the silhouettes are

described using a polygonal mesh, the visual hull representation can be constructed

using a series of 3D constructive solid geometry (CSG) intersections [PS85]. But it

is well known that polyhedral CSG operations are very hard to perform in a robust

manner due to numerical inaccuracy [LTH86].

A more common approach is to reconstruct a quantized representation of the visual

hull [Lau94, Lau95, Lau97, AV89, MA83, MBR+00, Pot87, Nie97, NFA88, SA90, Sze93,

MKJ96, CKBH00, SVZ00]. Starting from a bounding volume that is known to enclose

the entire scene, the volume is discretized into voxels. Voxels falling outside of the

back-projected silhouette cone of any given view are eliminated from the volume. This

can be done efficiently by projecting each voxel into 2D images and testing whether it

is contained in every silhouette. In the end, only voxels that are in the intersections of

back-projected silhouette cones from all views are retained.

To make the voxel traversal more efficient, most methods use an octree represen-

tation and test voxels in a coarse-to-fine hierarchy [CA86, Pot87, SA90, Sze93]. The

volume enclosing the entire scene space is initialized to a single voxel. The current

voxel is projected into all the views and tested to determine whether it is inside the

silhouette in each view. If the projected voxel is outside the silhouette in at least one

view, the voxel is removed (marked transparent). If the projected voxel is inside the

silhouette in every view, the voxel is retained (marked opaque). Otherwise, the voxel

27

intersects both background and silhouette points in some views, so it is subdivided into

octants and each sub-voxel is processed recursively. This process terminates when no

subdivision is necessary or when the size of the subdivided voxels reaches a user-defined

threshold.

As in the energy minimization framework for stereo reconstruction (see Equa-

tion 2.1), Snow et al. formulated the shape-from-silhouette problem as an optimization

problem in order to find a global minimum for an energy function [SVZ00]. In their

formulation, the data term of the energy function is based on the images’ intensities. In

general, the cost is high if there are large intensity differences among a voxel’s projec-

tions in different views. The smoothness term controls the degree of spatial smoothness;

there is a penalty for assigning different labels (opaque/transparent) to a pair of adja-

cent voxels. Because of the introduction of the smoothness term, this method allows

more robust reconstruction under noisy conditions than other methods based on direct

intersection tests.

Space Carving—Photo Hull Reconstruction

Shape-from-silhouettes methods avoid the difficult correspondence problem associated

with stereo vision, and are thus quite robust if the segmented silhouette images are

accurate. However, concavity cannot be preserved by the visual hull presentation. In

practice, image segmentation is not always possible. In addition, the color information

about the objects is not used in any shape-from-silhouettes method, except to assign

color to a voxel model already reconstructed.

In 1998 Seitz presented a volumetric reconstruction method, voxel coloring, that

makes full use of the photometric information contained in input images [SD99]. The

basic idea is to reconstruct the 3D scene model that best reproduces the input images

when rendered from the perspectives that correspond to the input images. Starting

from a regular 3D voxel grid that encloses the scene, the goal is to assign colors and

binary transparency values to voxels so as to achieve photo-consistency with a set of

input images (shown in Figure 2.6). That is, rendering the colored voxels from each

input viewpoint should reproduce the original image as closely as possible. Assuming a

Lambertian scene, a voxel on the scene surface is photo-consistent with a set of images

if, for each image in which it is visible, the voxel’s color is equal to the color of its

corresponding image pixel.

Conversely, in order to determine a voxel’s photo-consistency, we can project it

onto un-occluded images and test whether or not the pixels in its projection have equal

28

Camera
Camera

Figure 2.6: Volumetric Reconstruction Using Photo Consistency

color values. In the presence of image noise or quantization effects, we can evaluate the

correlation of the pixel colors to measure the likelihood of voxel consistency. Let s be

the standard deviation of the pixel colors. One possibility is to threshold the color space

error. If s is smaller than a user-defined threshold λ, the voxel is considered to be photo-

consistent and is assigned a color—the mean of the pixel colors. Otherwise, the voxel

is considered to belong to the free space and is marked as transparent. Alternatively,

a statistical measure of voxel consistency can be used [SD99]. This has been done

using an F test [Joh00], where a photo-consistency score is computed by the ratio

of the variances of pixels’ colors and the colors of pixels associated with a known

homogeneous surface. A threshold on this score determines the photo-consistency of

the voxel. Experiments using other definitions of photo-consistency have also been

conducted [BC00, KS00, SCMS01, Chh01].

Note that the photo-consistency test should only be applied to these visible pixels.

To avoid a combinational search of all visibility configurations, efficient methods for

determining the visibility of each voxel are essential. A voxel y can occlude a voxel x

if and only if y intersects at least one of the line segments connecting x to the optical

centers associated with input views. If there exists a topological sort of voxels in which

occluders must be before the voxels that are being occluded, i.e., if y occurs before x

in the ordering, then the visibility test becomes tractable. We can traverse voxels in

that order and guarantee that when a voxel is visited, all possible occluders for this

voxel have been visited. Seitz pointed out that such an order, which is referred to as

29

the occlusion-compatible order, does exist whenever no scene point is contained within

the convex hull of the camera centers [SD99]. For instance, if the cameras and the

scene are separated by a plane, voxels can be sorted by increasing distance from the

plane, resulting in a sequence of voxel planes. We can traverse these planes from near

to far, and only voxels in the previous planes, which have been processed and labelled,

can occlude the voxels in the current plane, enabling a single-pass algorithm. With

an appropriate photo-consistency measure and a voxel grid that has been sorted in an

occlusion-compatible order—for instance, a sequence of voxel planes for simplicity—the

complete voxel coloring algorithm can be outlined in Algorithm 1.

Algorithm 1 Pseudo code for the voxel coloring algorithm.

// Iterate through the planes

for (i = 1 to n) {
//Iterate through voxels in the plane Di

for every voxel v in Di {
Ψ = ∅ ; // Ψ is the visible pixel set

for (k = 1 to m) {// m is the number of input images

Project v to image Ik

for each pixel pk
j in v’s footprint in Ik

if (pk
j is not marked) { // still visible

Ψ = Ψ ∪ pk
j

}
}
s = consistency(Ψ);

if (s > λ) { // λ is the photo-consistency threshold

v = transparent

} else {
v = mean(Ψ);

mark p ∈ Ψ; // keep track of pixels that have been used;

}
} // end of the voxel loop within a plane

} // end of the voxel plane loop

In Algorithm 1, the threshold λ is supplied by the user, depending on the noise level

of the input images and the voxel resolution, and Ψ is the set of visible pixels for a

voxel v. Initially, all pixels in all input images are unmarked. When a voxel is declared

consistent, the pixels of its projection in the input images will be marked. They will not

participate in subsequent photo-consistency tests. Because of the occlusion-compatible

order for voxel evaluation, it is guaranteed that all pixels in Ψ are visible from v.

30

The voxel coloring algorithm is most closely related to the plane-sweeping algorithm

first proposed by Collins [Col96]. However, with its explicit modeling and handling of

visibility, the voxel coloring algorithm allows more flexible camera configurations and

typically generates superior reconstruction results, especially for highly complex scenes

in which occlusions and dis-occlusions frequently occur.

In 1999, Kutulakos and Seitz [KS00] extended the voxel color algorithm to allow

even more flexible camera configurations. In essence, all views are partitioned into sub-

groups, so that within each subgroup, an occlusion-compatible order exists. The basic

voxel coloring algorithm is applied successively for each subgroup to refine the voxel

model from previous passes. They called this method the Space Carving algorithm.

Culbertson et al. [CMS99] presented another variation of the basic voxel coloring

algorithm that also allows more flexible camera placement. At the expense of computer

memory, a visible list of surface voxels for every pixel in every image is maintained.

Thus visibility for a voxel can be quickly determined using all input images without

the need for an occlusion- compatible order.

To deal with practical issues such as inaccurate calibration, Kutulakos [Kut00] de-

fined an Approximate Space Carving algorithm using a weakened photo-consistency

test. Each voxel v is projected onto every input image at p1, . . . , pn, respectively. If

there is a common color for pixels within a small radius of pi in all input images, that

voxel v is declared to be photo-consistent. While this approach was designed to recover

shapes from images with inaccurate calibration information, it can also be used to build

a series of coarse-to-fine scene models from multiple views.

As always, voxel reconstruction can also be formulated as an energy minimization

problem. Slabaugh et al. [SCMS00] used an iterative method, which they presented as

a post-processing step, to add or remove surface voxels until the sum of the squared

differences between the input images and the scene model rendered in each camera was

minimized. Simulated annealing and greedy methods were used for optimization. This

refinement effectively produces a spatially varying consistency threshold. More recently,

Kolmogorov and Zabih [KZ02a] used graph-cut to optimize volume reconstruction di-

rectly. In order to make optimization tractable, the visibility test was approximated in

their formulation. While strong results have been obtained for a few standard data sets

with very small baselines (originally used for stereo), the effectiveness of their method

is yet to be evaluated using other multi-view data sets in which visibility changes are

substantial.

31

Green Magenta

Red Blue

Figure 2.7: Illustration of the Photo Hull [KS00]. Left: the scene consists of a square
whose sides are painted diffuse red, blue, magenta, and green. It is observed by four
cameras. Right: the photo hull of the scene is the gray-shaded area. The photo hull’s
projection in every input image is indistinguishable from that of the true object. The
union of the photo hull and these check-board-shaded areas is an approximation of the
visual hull, which can be reconstructed using silhouette information only. The use of
photometric information leads to a tighter bound of the true scene.

Photo Hull Theorem Kutulakos and Seitz in [KS00] made an important theoretical

contribution to volumetric reconstruction methods based on photo-consistency. They

presented the formal notion of the photo hull:

For a given shape V in 3D space, there is a unique photo-consistent shape

that subsumes, i.e., contains within its volume, all other photo-consistent

shapes in V . This unique shape is called the photo hull.

An illustration of the photo hull theorem is shown in Figure 2.7. Without additional

information or biases, the photo hull is the tightest bound based on direct comparison

with images. They further proved that if the photo-consistency function is monotonic,

their proposed space carving algorithm is guaranteed to generate the photo hull. The

monotonicity of the consistency function is crucial to the theoretical correctness of the

photo-hull theory. Kutulakos and Seitz formally expressed it as follows [KS00]:

Given N input images, an algorithm consistK() is available that takes as

input at least K ≤ N colors col1, . . . , colK , K vectors ξ1, . . . , ξk, and the

light source positions (non-Lambertian case), and decides whether it is pos-

sible for a single surface point to reflect light of color coli in direction ξi

simultaneously for all i = 1, . . . , K.

Furthermore, consistK() is assumed to be monotonic,

32

i.e., consistK(col1, . . . , colj; ξ1, . . . , ξj) implies that

consistK(col1, . . . , colj−1; ξ1, . . . , ξj−1), for every permutation of 1, . . . , j.

It should be noted that in practice, no monotonic consistency function has been

discovered so far.2 The most widely used consistency function, which is based on

sample variance, is not strictly monotonic, but is a fair approximation.

Probabilistic Space Carving The original space carving framework and its varia-

tions [KS00, SD99, CMS99, BC00] use a single global threshold to carve out the shape.

While this technique is very efficient and easy to implement, there are two potential

problems. First, the noise level and sampling artifacts in input images are not always

the same. Too small a threshold may lead to over-carving, i.e., too many voxels are

carved away. This could have a catastrophic ripple effect, since once a correct surface

voxel is erroneously carved away, there will be no inside voxels that would pass the

photo-consistency test. So an entire object could be lost. On the other hand, a large

threshold would cause false-positive photo-consistency for voxels that are in front of the

true surface. Secondly, once a decision is made about a voxel, there is no easy way to

change it. Again, an erroneous decision in a early stage could have a significant impact

on subsequent carving operations.

To overcome these problems, several probabilistic space carving methods have been

proposed [dBV99, BDC01, AD01, BFK02]. Instead of making these “hard” decisions

about voxels, each voxel is assigned a probability, computed by comparing the likeli-

hoods of the voxel existing and not existing.

Bonet and Viola [dBV99] formulated the voxel reconstruction problem in a fashion

similar to Computed Tomography (CT), assuming that the objects in the scene are

all semi-transparent and that an image is a projection of all the objects within the

volume. Starting from an initial voxel grid that is assumed to be semi-transparent,

an iterative approach is used to refine the transparency and color values of voxels. A

unique property of this method is that it can also model semi-transparent objects. The

work of Agrawal and Davis [AD01] is very similar, except that they assumed an opaque

scene and used different optimization procedures. Visibility is approximated in their

formulation.

Broadhurst et al. [BDC01] presented a one-pass probabilistic method for use with

data sets in which an occlusion-compatible order exists. Using a proximate function as

2The practical issue of monotonicity is a point conceded in [KS00]. Kutulakos discussed it only
during his oral presentation at ICCV99 [KS99]. It is also discussed in [Bro01].

33

the a priori probability distribution function for visibility testing, they derived a closed-

form solution to compute the probability of existence for voxels. Alternatively, Bhotika

et al. [BFK02] chose to access a voxel’s visibility exactly. To deal with the potentially

combinational search for visibility configurations, they used a stochastic variant of the

space carving algorithm. That is, a random configuration of the voxels is generated

and evaluated for photo-consistency. This process is repeated many times to generate

a set of photo hulls, and the most consistent one is selected as the final output. The

results presented in [BFK02] were obtained through several hundred iterations.

In theory, a probabilistic formulation should consider all possible visibility config-

urations for a voxel. For a set of m images, there are 2m possible configurations for

each and every voxel. To avoid the combinatorial search, existing probabilistic methods

either approximate the visibility tests based on heuristics or convenience, or solve them

in a stochastic manner through hundreds of iterations. I believe that an accurate treat-

ment of visibility is crucial for any multi-view reconstruction algorithm. If an efficient

and accurate probabilistic model of visibility can be found, a probabilistic approach

will be very promising.

2.2 Image-based Modeling and Rendering

Despite decades of research, 3D shape recovery remains one of the most difficult un-

solved problems in computer vision. As computers have increased memory and band-

width, computer graphics researchers have begun exploring an alternative approach to

view synthesis—Image-based Modeling and Rendering (IBMR). Pioneered by McMil-

lan and Bishop in 1995 [MB95, McM97], the basic idea is to use a large number of

input images to (partly) circumvent the difficult 3D reconstruction problems described

in Section 2.1. IBMR has been one of the most active research topics in computer

graphics for the past few years.

Within the IBMR paradigm, some methods use many images to generate novel views

without relying on geometric information [LH96, GGSC96, IPL98, CLF98, IMG00,

SCG97, SH97, LKHZ98, SVSG01, SH99, SHSd00]. They are collectively called Light-

Field style rendering techniques and are discussed in Section 2.2.1. Other methods use

geometric constraints, in the form of correspondence or a crude geometric “proxy” for a

full model, to correctly generate new views by warping a few input images [SD96, Che95,

DBY98, DTM96, SGHS98, CBL99]. I call them geometry-assisted IBMR techniques;

they are discussed in Section 2.2.3. Note that the line between these two categories is

34

θ
φ

(Vx, Vy, Vz)

Figure 2.8: The plenoptic function describes all of the image information visible from
any given viewing position (from [MB95] with permission).

rather vague. For example, the lumigraph method [GGSC96], which is usually classified

in the first category, also uses rough geometry to reduce the artifacts that result from

insufficient sampling.

2.2.1 Light-Field Style Rendering Techniques

Light-Field style rendering techniques are formulated around the plenoptic function

(from the Latin root plenus, meaning complete or full, and optic, pertaining to vi-

sion). The notion of plenoptic functions was first proposed by Adelson and Bergen in

1991 [AB91]. A plenoptic function describes all of the radiant energy that can be per-

ceived by an observer at any point in space and time. Adelson and Bergen formalized

this functional description by providing a parameter space over which the plenoptic

function is valid, as shown in Figure 2.8. Imagine we want to look at a scene freely.

The location of an idealized eye can be at any point in space (Vx, Vy, Vz). From there

one can perceive a bundle of rays defined by the range of the azimuth and elevation

angles (θ, φ), as well as a band of wavelengths λ. The time t can also be selected if the

scene is dynamic. This results in the following form for the plenoptic function:

ρ = P (θ, φ, λ, Vx, Vy, Vz, t) (2.2)

35

Adelson and Bergen used this seven-dimensional function to develop a taxonomy

for evaluating models of low-level vision. McMillan and Bishop first introduced the

plenoptic function to the computer graphics community in 1995 [MB95]. They claimed

that all image-based modeling and rendering approaches can be cast as attempts to

reconstruct the plenoptic function from a sample set of that function.

From a computer graphics standpoint, one can consider a plenoptic function as a

scene representation that describes the flow of light in all directions from any point at

any time. In order to generate a view from a given point in a particular direction, one

would merely need to plug in appropriate values for (Vx, Vy, Vz) and select from a range

of (θ, φ, λ) for some constant t.

This plenoptic function framework provides many venues for exploration, such as

the representation, optimal sampling, and reconstruction of the plenoptic function. In

the following sections, I will discuss several popular parameterizations of the plenoptic

function under varying degrees of simplification.

5D Light Field

Assuming that there is a static scene and that the effects of different wavelengths can

be ignored, McMillan and Bishop [MB95, McM97] discussed the representation of the

reduced 5D plenoptic function as a set of panoramic images at different 3D locations.

In their implementation, computer vision techniques are employed to compute stereo

disparities between panoramic images to avoid a dense sampling of the scene.3 After

the disparity images are computed, the input images can be interactively warped to

new viewing positions. Visibility is resolved by forward-warping [Wes90] the panoramic

images in a back-to-front order. This hidden-surface algorithm is a generalization of

Anderson’s visible line algorithm [And82] to arbitrary projected grid surfaces.

4D Light Field

Levoy and Hanrahan pointed out that the 5D representation offered by McMillan and

Bishop can be reduced to 4D in free space (regions free of occluders4) [LH96]. This is

3I was inclined to put McMillan and Bishop’s method in the second category, in which geometry in-
formation is used. However, their work is presented here, since the plenoptic function theory presented
in their original paper paved the way for subsequent light-field rendering techniques.

4Such a reduction can be used to represent scenes and objects as long as there is no occluder between
the desired viewpoint and the scene. In other words, the effective viewing volume must be outside
the convex hull of the scene. Thus a 4D representation cannot be used, for example, in architecture
workthroughs to explore from one room to another.

36

u

v

s

t L(u,v,s,t)

v

u

t

s

(a) The light slab representation

u

v

s

t

(b) Light slab construction

Figure 2.9: Light Field Rendering: the light slab representation and its construction
(from [LH96]).

based on the observation that the radiance along a line does not change unless blocked.

Levoy and Hanrahan called the 4D plenoptic function the light field function, which

may be interpreted as a functions on the space of oriented light rays. Such reduction

in dimensions has been used to simplify the representation of radiance emitted by

luminaries [Lev71, Ash93].

Levoy and Hanrahan parameterize light rays based on their intersections with two

planes(see Figure 2.9). The coordinate system is (u, v) on the first plane, and (s, t)

on the second plane. An oriented light ray is defined by connecting a point on the

uv plane to a point on the st plane. The authors called this representation a light

slab. Intuitively, a light slab represents the beam of light entering one quadrilateral

and exiting another quadrilateral.

To construct a light slab, one can simply take a 2D array of images. Each image

can be considered a slice of the light slab with a fixed (u, v) coordinate and a range of

(s, t) coordinates.

Generating a new image from a light field is quite different than previous view

interpolation approaches. First, the new image is generally formed from many different

pieces of the original input images, and need not look like any of them. Second, no

model information, such as depth values or image correspondences, is needed to extract

the image values. The second property is particularly attractive since automatically

37

extracting depth information from images is a very challenging task. However, many

image samples are required to completely reconstruct the 4D light field functions. For

example, to completely capture a small budda as shown in Figure 2.9, hundreds or even

thousands of images are required. Obtaining so many images samples from a real scene

may be difficult or even impossible. Gortler et al. [GGSC96] augmented the two-plane

light slab presentation with a rough 3D geometric model that allows better quality

reconstructions using fewer images. However, recovering even a rough geometric model

raises the difficult 3D reconstruction problem.

Isaksen et al. [IMG00] presented a more flexible parameterization of the light field

function. In essence, they allowed one of the two planes of the light slab to move.

Because of this additional degree of freedom, their method can simulate a number of

dynamic photograph effects, such as depth of field and apparent focus. Furthermore,

this reparameterization technique makes it possible to create integral-photography-

based [Oko76], auto-stereoscopic displays for direct viewing of light fields.

Besides the popular 2-plane parameterization of the plenoptic function, there is the

spherical representation introduced by Ihm et al. [IPL98]. Their image-based rendering

algorithm is different from previous systems. It is an object-space algorithm that can

be easily embedded into the traditional polygonal rendering system. Thus their method

can easily be accelerated by 3D graphics boards.

Light field rendering is the first image-based rendering method that does not require

any geometric information about the scene. However, this advantage is acquired at the

cost of many image samples. So what is the minimum number of samples required

for light field rendering? That is a very important, yet difficult question—it involves

complex relationships among various factors, such as the depth and texture variation

of the scene, the input image resolutions, and the desired rendering resolutions. I will

discuss this important problem in its own section, Section 2.2.2.

3D Plenoptic Function: Line Light Field and Concentric Mosaic

If we further constrain camera (viewing) motion to a continuous surface or curved man-

ifold, the plenoptic function can be reduced to a 3D function. Sloan et al. [SCG97]

derived a 3D parameterization of the plenoptic function. By constraining camera mo-

tion along a line, the 4D light field parameterization can be reduced to a 3D function.

Such reduction is necessary for time-critical rendering given limited hardware resources.

A (u, s, t) representation is used where u parameterizes the camera motion, and (s, t)

parameterizes the other plane. Moving along the line provides parallax in the motion

38

direction. To achieve complete coverage of the object, the camera can move along four

connected perpendicular lines, i.e., a square.

Shum and He presented an alternative parameterization for 3D plenoptic function

called concentric mosaics [SH97]. They constrained camera motion to planar concentric

circles, and created concentric mosaics by composing slit images taken at different

locations along each circle. Concentric mosaics index all input image rays naturally

according to three parameters: radius, rotation angle, and vertical elevation. Compared

to a 4D light field, concentric mosaics have much smaller file sizes because only a 3D

plenoptic function is constructed. Concentric mosaics allow a user to move freely in a

circular region and observe significant parallax without recovering the geometric and

photometric scene models.

Compared to Sloan’s method, concentric mosaics offer uniform and continuous sam-

pling of the scene. However, rendering with concentric mosaics could produce some dis-

tortions in the rendered images, such as bending of straight lines and distorted aspect

ratios. Details about the causes of and possible corrections for these problems can be

found in [SH97].

2D Plenoptic Function: Environment Map (Panoramas)

An environment map records the incident light arriving from all directions at a point.

Under the plenoptic function framework, we can reconstruct from a single environment

map a 2D plenoptic function in which only the gaze direction (θ, φ) varies. While the

original use of environment maps was to efficiently approximate reflections of the envi-

ronment on a surface [BN76, Gre86], Chen used environment maps to quickly display

any outward-looking view of the environment from a fixed location but at a variable ori-

entation. This is the basis of the Apple QuickTimeVR system [Che95]. In this system,

environment maps are created at key locations in the scene. A user is able to navigate

discretely from one location to another and, while at each location, continuously change

the viewing direction.

While it is relatively easy to generate computer-generated environmental maps [Gre86],

it is more difficult to capture panoramic images from real scenes. A number of tech-

niques have been developed. Some use special hardware [Mee90, Tec, Nay97], such as

panoramic cameras or cameras with parabolic mirrors; others use regular cameras to

capture many images that cover the whole viewing space, then “stitch” them into a

complete panoramic image [SS97, IAH95, MP94, Sze94, Sze96].

39

focal�plane

camera�i

camera�i+1

aperture�D

camera�plane
film

d

circle�of
confusion

synthetic
aperture�lens

focal
length�f

Z optZmaxZ minZ 0

Figure 2.10: A discrete synthetic aperture optical system for light field rendering
(from [CTCS00]).

2.2.2 Plenoptic Sampling

At the heart of light field rendering is the reconstruction of the plenoptic function

from a set of image samples. In [CTCS00], Chai et al. asked the following important

question:

“How many samples of the plenoptic function (e.g., from a 4D light field)

and how much geometrical and textural information are needed to generate

a continuous representation of the plenoptic function?”

In their original LFR paper [LH96], Levoy and Hanrahan considered the light field

rendering system to be a discrete synthetic aperture optical system [Hal94], as shown

in Figure 2.10. There are a number of analyses using this geometric approach [CF99,

LS00, FS00]. For the sake of completeness, a brief geometric analysis from [CTCS00]

is quoted here.

This analysis assumes uniform sampling geometry or lattice of the plenoptic

function that is parameterized as a 4D light field function. Analogous to the

Gaussian optical system, we can define the following optical parameters:

• Focal length f ;

• Smallest resolvable feature (on the image plane) d;

• Synthetic aperture D, i.e., distance between two adjacent cameras;

• Circle of confusion c = d/f ;

• Hyperfocal distance DH = D/c.

40

Let the plane of perfect focus be at the distance zopt and the minimum and

maximum distance at which the rendering is acceptable be zmin and zmax,

respectively. The following relations exist([Bas95], vol. 1, p.192):

zmin =
DHzopt

DH + zopt

, and zmax =
DHzopt

DH − zopt

, (2.3)

which lean to

1

zopt

= (
1

zmin

+
1

zmax

)/2
1

DH

= (
1

zmin

− 1

zmax

)/2 (2.4)

Therefore, to maintain the best rendering quality achievable, the focus

should be always at zopt. Moreover, to guarantee rendering without aliasing,

DH has to satisfy certain constraints,5, i.e.,

d/f

D
= (

1

zmin

− 1

zmax

)/2 (2.5)

In other words, given the minimum and maximum distances, the maximum

camera spacing can be determined in order to meet the specified rendering

quality. The hyperfocal distance describes the relationship among the ren-

dering resolution (circle of confusion), the scene geometry (depth of field),

and the number of images needed (synthetic aperture). Intuitively, the

minimum sampling rate is equivalent to having the maximum disparity less

than the smallest resolvable feature on the image plane, e.g., one camera

pixel(d = 1).

Chai et al. [CTCS00] introduced a mathematical framework for the plenoptic sam-

pling problem. They observed that in the frequency domain, the spectral support of a

light field signal is bounded by the minimum and maximum depths of objects in the

scene only, no matter how complicated the spectral support may be. Given the mini-

mum and maximum depths, a reconstruction filter with an optimal and constant depth

can be designed to achieve anti-aliased light field rendering. However, their analysis

of plenoptic sampling was based on the assumption that the surface is diffuse. Impor-

tant view-dependent effects, such as specular highlights, will significantly increase the

sampling rate. Compared to the optical analysis, their analysis also takes into account

5There is a typographical error in the equation as originally published, i.e., Equation 15 from
[CTCS00]. The left hand side is inverted.

41

the texture-richness of the scene. Intuitively, under the same geometric setup, a scene

without many high-frequency contents will require a lower sampling rate than a scene

with rich textures.

In general, if one wanted to build a camera array to capture a general scene, the

inter-camera distance would need to be so small that the lenses would touch each other.

2.2.3 Geometry-Assisted Methods

Light field rendering techniques introduced in the previous section fully embody the

spirit of IBMR—automatically synthesizing new views without relying on a geometric

model. However, they usually require a prohibitively high sampling rate of the scene of

interest. For static scenes, the sampling requirement could be satisfied by collecting the

image data sequentially, for example, by mounting a camera on a robotic arm to scan

the scene from many different viewpoints. But for dynamic scenes, it is currently im-

practical to employ the thousands of cameras that would likely be needed to completely

capture time-varying events.

On the other hand, there are other IBMR methods that get by with fewer im-

ages by using some other additional constraints to synthesize new views [SD96, Che95,

SGHS98, CBL99, MBR+00, DTM96, DBY98, SHS98, MMB97]. In essence, they use

some geometric information about the scene to warp and blend input images to syn-

thesize new views. The geometric information can be represented in many different

ways. For example, a crude geometric proxy is a rough representation of the scene,

while correspondence information implicitly encodes the scene geometry. Since auto-

matic recovery of these constraints from images is something really hard to achieve,

successful methods in this category usually require a human operator and/or a priori

domain knowledge.

For example, Seitz introduced view-morphing to generate continuous intermediate

views from a pair of images [SD96]. Using basic principles of projective geometry, view-

morphing is a simple extension of image morphing [Wol90] that correctly handles 3D

projective camera and scene transformations. While the ability to synthesize changes

both in viewpoint and image structure affords a wide variety of interesting 3D effects via

simple image transformations, view-morphing requires feature correspondence known

a priori. Typically this correspondence is established manually.

In the successful Façade system [DTM96] designed to model and render architec-

ture from photographs, an operator first manually places simple 3-D primitives in rough

42

positions and specifies the corresponding features in the input images. The system au-

tomatically optimizes the location and shape of the 3D primitives, taking advantage of

the typical regularity and symmetry in the architecture. To synthesize new images, the

authors presented view-dependent texture mapping (VDTM), a method of compositing

multiple views of a scene to provide more geometric and photometric details not cap-

tured by the basic model. This is implemented by assigning texture coordinates and

view-dependent blending weights at the vertices of the basic model. Later, Buehler et

al. [BBM+01] adopted VDTM as a basis for generalizing many current image-based

rendering algorithms.

Other extensions of texture mapping techniques have also been proposed, based

on the observation that once a complex scene has been captured/rendered from a

viewpoint, the image from a nearby viewpoint is likely to be very similar. In such cases,

the original 2D image, or sprite, can be slightly altered by a 2D affine or projective

transformation to approximate the view from the new camera position [SLS+96, SS96,

LS97, HiAA97]. These methods in fact approximate the scene geometry using a plane.

Thus the fidelity of the synthesized view depends highly on the depth variation of the

scene and the distance from the original viewpoint to the new viewpoint.

The sprite can be augmented with per-pixel depth information to better approxi-

mate the views, as in [BSA98, SGHS98, MMB97, DSV97]. But the one-depth-per-pixel

limitation causes gaps in the synthesized image due to visibility changes when portions

of the scene become un-occluded. To overcome this difficulty, Shade et al. [SGHS98]

introduced the Layered Depth Image, or LDI, which contains potentially multiple depth

pixels at each discrete location in the image. Instead of a 2D array of depth pixels (pix-

els with associated depth information), they store a 2D array of layered depth pixels.

A layered depth pixel stores a set of depth pixels along one line of sight sorted in front

to back order. When rendering from an LDI, the requested view can move away from

the original LDI view and expose surfaces that were not visible in the first layer. The

previously occluded regions may still be rendered from data stored in some later layer

of a layered depth pixel.

More recently Chang et al. [CBL99] introduced the LDI tree, which combines a

hierarchical space partitioning scheme with the concept of the LDI. It preserves the

sampling rates of the reference images by adaptively selecting an LDI in the LDI tree

for each pixel. While rendering from an LDI tree, levels comparable to the sampling

rate of the output image are selected to avoid aliasing.

43

2.3 Real-time On-line View Synthesis Methods

Recently, with the increasing computational power of inexpensive personal computers,

and the wide availability of low-cost imaging device, several real-time methods have

been proposed to capture and render dynamic scenes. They are of particular interest

to this dissertation and are reviewed here.

2.3.1 Stereo Vision Methods

Stereo vision is one of the oldest and most active research topics in computer vision.

An overview of stereo vision methods is present in Section 2.1.1, based on a recent

survey by Scharstein and Szeliski [SS02]. While many stereo algorithms obtain high-

quality results by performing global optimizations, today only correlation-based stereo

algorithms are able to provide a dense (per pixel) depth map in real time on standard

computer hardware.

Only a few years ago special hardware had to be used to achieve real-time perfor-

mance with correlation-based stereo algorithms [FHM+93, KYO+96, WH97]. It is only

recently that, with the tremendous advances in computer hardware, software-only real-

time systems have begun to emerge. For example, Mulligan and Daniilidis proposed a

new trinocular stereo algorithm in software [MID02] to achieve 3-4 frames/second on a

single multi-processor PC. Hirschmuler introduced a variable-window approach while

maintaining real-time suitability [HIG03, Hir01]. There is also a commercial package

from Point Grey Research [Inc], which seems to be the fastest one available today.

They report 45 million disparity calculations per second (Mdc/s) on a 1.4GHz PC,

which extrapolates to 64 Mdc/s on a 2.0GHz PC.

These methods use a number of techniques to accelerate the calculation, most im-

portantly, assembly level instruction optimization using Intel’s MMX extension. While

the reported performance of 35-65 Mdc/s is sufficient to obtain dense correspondences

in real-time, there are few CPU cycles left to perform other tasks such as high-level

interpretation of the stereo results. Furthermore, most approaches use an equal-weight

box-shaped filter to aggregate the correlation scores, so the result from the previous

pixel location can be used in the current one. While this simplifies the implementa-

tion and greatly reduces computational cost, the size of the aggregation window has a

significant impact on the resulting depth map.

44

2.3.2 Image-based Methods

Image-based Visual Hull. Matusik et. al. presented an efficient method for real-time

rendering of a dynamic scene [MBR+00]. They used an image-based method to compute

and shade visual hulls [Lau94] from silhouette images. A visual hull is constructed by

using the visible silhouette information from a series of reference images to determine

a conservative shell that progressively encloses the actual object (a detailed review of

visual hull reconstruction techniques is in Section 2.1.2). Unlike previously published

methods, they constructed the visual hulls in the reference image space and used an

efficient pixel traversing scheme to reduce the computational complexity to O(n2),

where n2 is the number of pixels in a reference image. Their system uses a few cameras

(four in their demonstration) to cover a very wide field of view and is very effective

in capturing the dynamic motion of objects. However, their method, like any other

silhouette-based approach, cannot handle concave objects, which makes close-up views

of concave objects less satisfactory. Another disadvantage of the image-based visual

hull is that it completely relies on successful background segmentation.

Hardware-assisted Visual Hull. Based on the same visual hull principle, Lok

presented a novel technique that leverages the tremendous capability of modern graph-

ics hardware [Lok01]. The 3D volume is discretized into a number of parallel planes,

the segmented reference images are projected onto these planes using projective tex-

tures. Then, he makes clever use of the stencil buffer to rapidly determine which

volume samples lie within the visual hull. His system benefits from the rapid advances

in graphics hardware and the main CPU is liberated for other high-level tasks. In ad-

dition, this approach can be used to detect collisions between virtual and real objects,

since the real objects (represented as visual hulls) are already in the graphics hardware

in which virtual objects are to be rendered. However, this approach suffers from a

major limitation—the computational complexity of his algorithm is O(n3), compared

to the software-based method of [MBR+00] with O(n2) complexity.

Generalized Lumigraph with Real-time Depth. Schirmacher et. al. intro-

duced a system for reconstructing arbitrary views from multiple source images on the

fly [SMS01]. The basis of their work is the two-plane parameterized Lumigraph with

per-pixel depth information. The depth information is computed on the fly using a

depth-from-stereo algorithm in software. With a dense depth map, they can model

both concave and convex objects. Their current system is primarily limited by the

quality and the speed of the stereo algorithm (1-2 frames/second).

45

Goal (1): Use a pratical number of cameras (one to two dozens).
Goal (2): Be fully automatic.
Goal (3): Be robust and accurate for a wide variety of shapes and surfaces.
Goal (4): Work towards real-time, on-line view synthesis.

Method Goal Goal Goal (3) Goal
(1) (2) Concave Convex Diffuse Specular (4)

Stereo (Sec. 2.1.1) � � � � � † �
Shape-from-sil. (Sec. 2.1.2) � � � � � �
Space carving (Sec. 2.1.2) � � � � �
Light field (Sec. 2.2.1) � � � � � �
View morphing (Sec. 2.2.3) � � � �
VDTM (Sec. 2.2.3) � � � � � �
LDI (Sec. 2.2.3) � � � � ‡
† Avoid specular highlights using polarization filters or detect and discard pixels in highlight.
‡ Only for rendering. The creation of LDI is off-line.

Table 2.1: Comparison of existing view synthesis methods in the context of the goals
of this dissertation.

2.4 Discussion

After a thorough review of existing view synthesis methods, I found that no existing

method can satisfy all the goals set out in Section 1.1, as shown in Table 2.1. Note

that Table 2.1 does not attempt to compare the relative accuracy and appropriateness

of these different techniques on a general basis. Rather, I seek to capture their relative

strengths and weaknesses in the context of the goals of this dissertation.

In terms of image quality, light field rendering techniques typically surpass the rest.

They work for any surface, any scene. The synthesized images are usually so good that

they are barely distinguishable from real photos. However, as shown in Section 2.2.2,

the number of input images required is prohibitively high—it would be impractical to

deploy the hundreds or even thousands of cameras likely to be needed to capture a

dynamic scene of meaningful size. Thus light field rendering techniques fail to meet

the first goal—using a practical number of input images. There are other image-based

modeling and rendering techniques that require far fewer input images, such as those

introduced in Section 2.2.3 including view morphing, View-Dependent Texture Mapping

(VDTM), Layered Depth Images (LDI). But these methods usually require a human

operator in the loop and/or a priori domain-specific knowledge to provide additional

constraints for view synthesis, and thus fail to meet the goal 2: full automation.

In contrast, 3D shape recovery methods are usually fully automatic, but the quality

46

of the reconstructions they offer is typically less satisfactory. In particular, many ex-

isting 3D reconstruction methods assume that the scene is primarily diffuse, a basis for

establishing correspondence between different images. This limits the types of scenes

they can reconstruct. One notable exception is the shape-from-silhouettes technique

(Section 2.1.2), which avoids the correspondence problem completely by performing

volume intersections. But the difficulty is that concavity cannot be preserved in the

reconstructed model. Overall, existing 3D shape recovery methods have difficulties

meeting the goal of being able to deal with a wide variety of shapes and surfaces.

In addition, most 3D shape recovery methods generate a quantized model, be it a

depth map or a voxel model. When rendered from different viewpoints, the quantization

effects can be disconcerting.

These difficulties prompted my dissertation research, which attempts to find a

framework that will keep the advantages while addressing the shortcomings of existing

approaches.

Chapter 3

View-Dependent Pixel Coloring

(VDPC)

In this chapter, I present the complete View-Dependent Pixel Coloring framework

(VDPC). First, I present the basic approach to VDPC in Section 3.1, followed by

Section 3.2, which is about specific implementation issues. I discuss VDPC, including

its innovations and limitations, in Section 3.3. I end the chapter with experimental

results from applying VDPC to various data sets with different geometry and material

properties.

3.1 Approach

In this section, I explain in great detail how VDPC works but leave some specific im-

plementation issues to the next section (Section 3.2). I start with the representation

VDPC uses in Section 3.1.1, followed by a progressive refinement scheme of VDPC in

Section 3.1.2. Then, two important components of VDPC, a view-dependent smooth-

ness constraint and a novel physically-based photo-consistency measure, are presented

in detail in Section 3.1.3 and Section 3.1.4, respectively. There is no dependency be-

tween these two components, each of these can be applied independently.

3.1.1 Representation

In VDPC, the 3D scene space is discretized into a perspective voxel grid from the desired

output viewpoint. Figure 3.1 (which is a repeat of Figure 1.3) shows a bird’s-eye view

of a horizontal slice of the voxel grid, in which C∗ is the output viewpoint. Each column

48

of voxels (the slant-shaded voxels in Figure 3.1) corresponds to a single pixel in the

image to be synthesized for C∗. This image is referred to as the desired image. Initially,

the volume is filled with voxels. The goal of VDPC is to assign a color to each pixel in

the image to be synthesized. In order to achieve that, VDPC attempts to carve away

voxels in empty space, and assign colors to voxels representing scene surfaces. As in

space carving, a voxel’s occupancy is determined by a photo-consistency test. Because

of the one-to-one correspondences between voxel columns and image pixels, the color

of the first opaque (not empty) voxel in each column is assigned to its corresponding

pixel. In the end, VDPC outputs a desired image, as well as a surface voxel model from

the perspective of the desired output viewpoint.

C*

C1

C2

…p

C0
Cn

Figure 3.1: VDPC uses a view-dependent parameterization (a perspective voxel grid)
of the 3D scene space. C∗ corresponds to the desired output viewpoint. This figure
shows a bird-eye view of a horizontal slice of the grid, which corresponds to a scan line
in the output image.

3.1.2 Progressive Refinement

Overview VDPC uses a progressive refinement scheme to carve away voxels and

assign color to pixels. For each voxel column, which corresponds to a single pixel

in the output image, VDPC calculates a weighted photo-consistency value for each

voxel. The weight is computed from other constraints or assumptions—local shape

smoothness, for example. Then the profile of the weighted photo-consistency values is

examined. If, based on the profile, there is a unique voxel whose photo-consistency value

is much better compared to the other voxels in the same column, its color is assigned

49

to the corresponding pixel. If there is ambiguity, the decision will be postponed until

enough confidence is accumulated from local shape smoothness and updated visibility

constraints.

VDPC starts with a voxel array without any constraints. At each iteration, VDPC

first calculates the weighted photo-consistency values for all voxels. Note that the

photo-consistency values of some voxels could be “contaminated” due to an incorrect

visibility configuration that will be corrected later. Once the calculation is done, voxels

are classified as reliable or not, based on their weighted photo-consistency values. These

reliable voxels change the visibility configuration, so previously contaminated photo-

consistency values of other voxels can be corrected in the next iteration. Based on

a local shape smoothness assumption, these reliable voxels also affect the weights for

other voxels. The weights propagate recovered depth information to regions lacking

color variations; the best-effort reconstruction provides some depth estimate, instead

of leaving a hole or making an arbitrary choice.

Details Algorithm 2 (on page 50) outlines a progressive refinement scheme for VDPC.

Each voxel can have one of four labels: UNKNOWN, EMPTY, SURFACE, or INVISIBLE. At the

beginning, every voxel is labelled UNKNOWN. In order to deal with occlusions, a visibility

mask is created for each input image. A visibility mask is a binary image with the

same dimensions as its corresponding input image. It is used to indicate whether or

not an input pixel should be included in the photo-consistency evaluation. The visibility

masks are initially set to true, meaning that every pixel in every input image should be

included. Each voxel also has a weight value, which is computed from other constraints,

such as a smoothness constraint (I will present one in the next section). The initial

weight value is set to 1.

At each iteration of the progressive scheme, there are three stages of calculations:

scoring, selection, and update. At the scoring stage, a weighted photo-consistency value

(the product of the current weight and photo-consistency value) for each UNKNOWN voxel

is caculated. This value indicates how likely it is that the given voxel belongs to an

object in the scene, rather than to empty space. If a voxel cannot be seen from at least

two views, it is immediately labelled INVISIBLE. (Note that we can traverse the voxels

in any order, since the visibility configuration is fixed during an iteration.)

Once the scoring for all voxels has been done, VDPC enters the selection stage,

trying to find the one voxel in each voxel column that is most likely to be a surface

voxel. VDPC examines at a column of voxels that all correspond to a single pixel, say

50

Algorithm 2 Pseudo Code for a Progressive View-Dependent Pixel Coloring Scheme.
Clear visibility mask MI for every image I;

for every voxel v {
label[v] = UNKNOWN;

weight[v] = 1.0;

}

while (true) {

// the scoring stage

for every UNKNOWN voxel v {
s = ∅ ; // s is the visible pixel set

for every image I {
{pI} = v’s projection in I

if (pI visible) s = s ∪ pI

}
if (‖s‖ < 2) // v is visible in less than 2 views

label[v] = INVISIBLE; // its occupancy can’t be determined.

else {
score[v]=photo_consistency(s)

*weight[v];

}
}

// the selection stage

n = select_consistent_voxels();

// if no more voxels can be selected, stop

if (n == 0) break;

// the update stage

update weight;

update visibility masks;

}

51

p, in the output image. These voxels are denoted as {vi
p}. Assuming an opaque scene,

only one voxel in {vi
p} is the surface voxel reflecting light to p; thus that voxel should

have the best photo-consistency value if visibility is solved correctly. Considering the

photo-consistency curve of {vi
p}, if there is a single local maximum (assuming a larger

photo-consistency value means better consistency), then the corresponding voxel v is

considered consistent and labelled SURFACE, and its color is assigned to pixel p. In

addition, any voxels in {vi
p} that are in front of v will be labelled EMPTY, i.e., carved

away. If no SURFACE voxel can be found, all voxels in {vi
p} are ambiguous, and their

occupancies are left to be resolved in later iterations.

At the update stage, all SURFACE voxels are projected back into every view to update

the visibility mask. Pixels in SURFACE voxels’ footprints will be marked as false (not

visible), and they will not participate in future photo-consistency computations. In

addition, the weights for UNKNOWN voxels are updated based on a smoothness constraint

that I will explain in the next section (Section 3.1.3).

After the update stage, the progressive scheme goes back to the scoring stage to

start a new iteration. The entire process is repeated until all pixels in the output view

are assigned a color. In the end, VDPC outputs a synthesized image, as well as a

surface voxel model from the perspective of the output viewpoint.

In the following two sections, I explain two central components of VDPC: a view-

dependent smoothness constraint and a novel physically-based photo-consistency mea-

sure. The smoothness constraint is used to compute the weights for voxels in the update

stage. The photo-consistency measure is used to compute the photo-consistency scores

in the scoring stage. There is no dependency between these two components, each can

be applied independently or replaced by other constraints or measures.

3.1.3 View-dependent Smoothness Constraint

While there are many possible smoothness constraints [SH85, OK92, KZ02a, PTK85],

I chose to use the disparity gradient limit [BJ80] because of its relevance to the human

vision system, its simplicity, and its successful use in stereo algorithms. Before I get

into the details of our formulation, I first present a brief overview of the principle of

the disparity gradient limit.

Disparity Gradient Principle Disparity is defined between a pair of rectified

stereo images. Given a pixel (s, t) in the first image and its corresponding pixel (s′, t′)

in the second image, disparity is defined as d = s′ − s (where t = t′ since the image

52

is rectified). Disparity is inversely proportional to the distance of the 3D point to the

cameras. A disparity of zero implies that the 3D point is at infinity.

For two 3D points whose pixel coordinates are (s1, t1) and (s2, t2) in the first image

and (s′1, t
′
1) and (s′2, t

′
2) in the second image, their disparities are d1 = s′1 − s1 and

d2 = s′2 − s2, respectively. Then the disparity gradient (DG) can be defined as

DG =

∣∣∣∣ ∆d

∆s − ∆d/2

∣∣∣∣ (3.1)

where ∆s = s2 − s1 and ∆d = d2 − d1. Experiments in psychophysics have provided

evidence that there is an upper bound on the disparity gradient DG that humans

can perceive. In [BJ80] the limit DG < 1 was reported. The theoretical limit for

opaque surfaces is 2, to ensure that the surfaces are visible to both eyes [PPMF86].

Also reported in [PPMF86], is that under normal viewing conditions most surfaces are

observed with a disparity gradient well below the theoretical value of 2.

Applying the Disparity Gradient Limit Manipulating Equation 3.1 we can

arrive at

− ∆s · DG

1 − DG/2
+ d1 ≤ d2 ≤ ∆s · DG

1 − DG/2
+ d1, (3.2)

This equation tells us that if one pixel’s disparity, say d1, is known and DG is limited,

then the disparity range (the possible values of d2) of a neighboring pixel is also limited.

The closer these two pixels are, the smaller the disparity variation can be. Thus the

disparity gradient principle has been used as a smoothness constraint in several stereo

matching algorithms [BJ80, PPMF86, ZS01, YZ02]. However it has not been applied

in a volumetric representation. One problem is that the disparity gradient is defined

between a pair of images, so it is not directly applicable in a multi-view volumetric

setting. Here, thanks to our view-dependent formulation, I apply the disparity gradient

principle from the perspective of the output viewpoint, and introduce a way to relate

the disparity gradient to the 3D voxel grid.

For a given output viewpoint C∗, we can assume that there is an imaginary image,

taken from a parallel viewpoint C̃∗ some distance away, as shown in Figure 3.2. Assum-

ing there is a pixel m1 whose depth is known at v1, the allowable disparity range for a

neighboring pixel m2 given a limit on DG can be obtained from Eq. (3.2). Then we can

back-project the disparity range onto the set of voxels that intersect the line of sight

from m2, denoted as {vi
2}. A voxel that is both in the disparity range and in {vi

2} is

more likely to be the voxel reflecting light to m2 (the slant-fill voxels in Figure 3.2). In

53

other words, because v1 is known to be a surface voxel, the disparity gradient principle

tells us that neighboring voxels to v1 are also likely to be surface voxels.

Imaginary

Image Plane

1m

2m

*C *~
C

jC nC

…

1v

Disparity

Range

Voxel weights

Image

Plane

Figure 3.2: Applying the disparity gradient principle in a volumetric setting. An imag-
inary image C̃∗ is introduced to define the disparity range. The back-projection of the
disparity range provides a limit about where surface voxels are more likely. The blue
dotted curve illustrates the weights for voxels.

In practice, we want to favor voxels that have a similar depth as v1, as well as

allow a small possibility that voxels may fall beyond the disparity range at occlusion

boundaries. So I use a weighting function similar to a normal distribution. Let v2

be a voxel in the voxel column corresponding to pixel m2 in the output image; m1 is

the closest pixel to m2 with a known depth at v1; the disparity difference ∆d can be

obtained by projecting v2 and v1 into the imaginary image C̃∗. Eq. 3.2 can be re-written

as

‖ ∆d ‖≤ ∆s · DG

1 − DG/2
(3.3)

Thus the weight for v2 is

Wv2 =
1√
2πσ

exp(
−(∆d/∆s)2

2σ2
), (3.4)

54

C*

p

C1

C2

…

Cn

v

Given

How likely does V correspond

to a surface point?

C0

Figure 3.3: An illustration of a photo-consistency measure.

where σ = DG
1−DG/2

.

3.1.4 Physically-based Photo-consistency Measure

Central to VDPC and many space carving algorithms (presented in Section 2.1.2) is

the photo-consistency measure. As shown in Figure 3.3, for a given voxel v, we project

it into all images in which v is visible. A photo-consistency measure is designed to

estimate that, given all pixels in v’s footprints, how likely v corresponds to a surface

point instead of empty space in the scene and what the most likely color of v is.

Almost all existing photo-consistency measures assume the surface is diffuse [SD99,

KS00, Joh00]. In this section, I present a new photo-consistency measure that is valid

for both specular and diffuse surfaces.

Studies in photometry have shown that the reflected light (C) from many real-world

surfaces can be approximated as the sum of diffuse and specular components [FP03,

Pho75]. This can be modeled as

C = diffuse(Cl, Ĉ, N, L) + specular(Cl, Ĉ, R, V) (3.5)

where Cl is the color of a light source, Ĉ is the object color, N is the normal vector

of the surface, L is the lighting vector—where the light comes from, V is the viewing

vector, and R is the reflection vector which is the mirrored vector of V about the surface

normal N (as in Figure 3.4). Usually colors are expressed in the RGB color space, so

C,Cl, and Ĉ are all three-vectors, i.e., C = [Ir, Ib, Ig] where Ir, Ig, and Ib are scalars

corresponding to the red, green, and blue channels in the RGB color space, respectively.

Now let us examine the change of radiance for a given surface point under differ-

ent viewing directions. As a start, we assume that the scene and lighting are both

55

N
V

L

R

Figure 3.4: Light reflection under a fixed point light source

Color of

the lightB

Specular

term

Diffuse

term

G

R

Figure 3.5: Light reflected from a specular surface point forms a line in the RGB color
space.

static when images are taken, i.e., N and L are constant. Under this condition, from

Equation 3.5, we can see that the diffuse term remains a constant from any view di-

rection. If the specular effect can be ignored, the color samples (pixels) from input

images will cluster into a point in the color space. That is the basis for the original

photo-consistency check proposed by Seitz and Dyer [SD99]. To check if a voxel exists

or not, we simply need to compute the variance of the color samples. I call this the

variance measure. A large variance indicates they are not likely to be from the same

surface point, and thus that voxel should be carved away.

On the other hand, if the specular highlights cannot be ignored, then for a broad

class of materials known as dielectric materials, including plastic and glass, the specular

reflection is only modulated by the incident light [FP03]. In other words, Eq. 3.5 for

56

dielectric materials can be simplified to

C = diffuse(Cl, Ĉ, N, L) + Cl specular(R, V). (3.6)

For these materials the color values observed from different viewpoints are co-linear

in the color space. As shown in Figure 3.5, they form a ray originating from the

diffuse term of the reflected light (which is a constant independent of viewing angles)

and extending toward the color of the light Cl. Note that the direction of the line is

independent of the object color. The basic idea of my photo-consistency measure is to

detect such a “signature” in the color space. If the surface is diffuse, its signature will

be a point; if the surface is specular, its signature will be a line. Because I do not have

a priori knowledge about whether a voxel represents a specular point or a diffuse point,

I want to design a measure that is valid for both cases, while simultaneously providing

as much disambiguating power as possible.

Maximum Likelihood Estimation Based on the above observations, I cast our

novel photo-consistency measure as a maximum likelihood estimator aimed at estimat-

ing the most likely color for a given voxel, and its likelihood of being a surface voxel.

I assume that a color sample can be classified in one of three ways: a diffuse color

Cd , an “onset” color Co, or a saturated color Cs. Each case has a different a priori

likelihood, denoted Pd, Po, and Ps respectively. I also assume that the color samples

from the images are corrupted by zero-mean gaussian noise with a variance of σ2
s . For

simplicity and robustness, I assume the color of the light is known. (It can be measured

by imaging a white object.)

Thus given an object color Ĉ, the likelihood of observing a particular color sample

Cj is

p(Cj|Ĉ) = max




N(Cj|Ĉ, σ2
s)Pd,

N(distance(Cj, line(Ĉ))|0, σ2
s)Po,

N(Cj|Cs, σ
2
s)Ps


 , (3.7)

where N denotes a normal distribution, Cs is the saturation color, usually [1, 1, 1]

for normalized RGB images, and distance(Cj, line(Ĉ)) is a function to compute the

distance between Cj and a ray defined by Ĉ and the color of the light.

Given a set of m color samples, the maximum likelihood estimation for an object

57

color Ĉ is

max(
m∏

j=1

p(Cj|Ĉ)). (3.8)

The photo consistency “cost” is the residual after maximum likelihood estimation. The

Ĉ with the maximum likelihood is assigned as the diffuse color of the voxel. I call this

measure the MLE photo-consistency measure.

Note that in Equation 3.7, I assume that the distribution along the line is uniform.

This is an approximation derived from the Phong lighting model [Pho75]. I present

a detailed derivation here. For simplicity in the derivation and notation, I assume

everything is monochromatic (or derive using one of the three RGB channels as an ex-

ample). Note this does not affect the correctness of the MLE measure. In the derivation

here, I follow the common practice in statistics, i.e., f(x) to denote probability density

functions, and F (x) to denote cumulative distribution functions. Random variables

are denoted in their upper case while the corresponding lower-case letters are used to

represent possible values.

If we ignore ambient light and the atmospheric attenuation factor (i.e., no fog), the

Phong lighting model becomes

I = IpkdOd(NL) + Ipks(RV)n (3.9)

where Ip is the intensity of a light source, Od is the surface albedo, kd is a diffuse

coefficient, ks is a specular coefficient, n is the object’s shininess, and all vectors are

normalized. Compared with Equation 3.5, IpkdOd(NL) corresponds to the diffuse term

and Ipks(RV)n corresponds to the specular term in a monochromatic world.

For a static scene under fixed lighting, let the constant diffuse term IpkdOd(NL)

be Î, and let the angle between the reflection vector R and the viewing vector V be

Θ. It is reasonable to model Θ as a random variable with uniform distribution in its

valid range, meaning that a surface point is likely to be viewed from any direction in

the hemisphere. Thus the probability density function of Θ is

fΘ(θ) =

{
1/π, −π/2 ≤ θ ≤ π/2;

0, otherwise.
(3.10)

Now we need to find the density function of the random variable I corresponding to the

intensity of the reflected light. This will tell us how the color samples are distributed

along the ray. Let us first look at the cumulative distribution function FI(i). From

58

Equation 3.9, we know that I has a minimum value of Î and a maximum value of

Î + Ipks, thus FI(i) = 0 when i < Î or i > Î + Ipks. When Î ≤ i ≤ Î + Ipks, we have

FI(i) = P{I ≤ i} = P{Î + Ipks cosn Θ ≤ i}

= P{cosn Θ ≤ k}, where k =
i − Î

Ipks

= P{Θ ≤ − arccos k
1
n , or Θ ≥ arccos k

1
n}

=

∫ − arccos k
1
n

−π
2

fΘ(θ) dθ

+

∫ π
2

arccos k
1
n

fΘ(θ) dθ.

Plug in fΘ(θ) = 1
π
, and take the derivative of both sides, to get

fI(i) = (
d(− arccos k

1
n)

di
− d(−π

2
)

di
)
1

π

+(
d(−π

2
)

di
− d(arccos k

1
n)

di
)
1

π

= −2 · d(− arccos k
1
n)

di
· 1

π

So the probability density of the random variable I is

fI(i) =




2
π
· k

1−n
n

n

√
1−k

2
n

· 1
Ipks

, Î ≤ i ≤ Î + Ipks;

0, otherwise,
(3.11)

where Î = IpkdOd(NL) and k = i−Î
Ipks

.

In Figure 3.6, I plot several density curves of I under different shininess (n) settings.

If we have these curves a priori, we can formulate a photo-consistency measure in

terms of Bayesian inference. However, that would require an accurate estimation of the

surface material properties, as well as a careful photometric calibration of the lights

and the sensing device (cameras). So I chose to use a discrete approximation. From

the plot in Figure 3.6, we can see that, indeed, the middle “onset” part is relatively

flat. In the meantime, the parts at the beginning and the end have higher probabilities.

They represent the diffuse and saturated classes, respectively. The maximum likelihood

estimator approximates this distribution nicely.

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Intensity

P
ro

ba
bi

lit
y

D
en

si
ty

n = 10
n = 1
n = 30

Figure 3.6: Probability Density Functions under different shininess (n) settings. The X
axis is the normalized intensity value (k), while the Y axis is probability density with
Ipks = 1.

Simplified Linearity Test The maximum likelihood estimation presented above

needs to know the a priori likelihoods of the three color sample classes. In case the a

priori likelihood is unknown or inaccurate, I use a simplified approach by assuming all

samples belong to the onset class, i.e., Pd = 0, Po = 1, Ps = 0. In addition, I assume

that less than half of the pixel samples are in specular highlights. Thus I can use the

median of the color samples as the object color Ĉ, and simply compute the sum of

distances to the ray defined by Ĉ and the color of the light as the photo-consistency

measure. Note that this simplification will fail in smoothly shaded diffuse surfaces with

uniform colors. In this case, everywhere is consistent, similar to the result of applying

a simple variance test to textureless regions. In practice, I find it still works well

on scenes with moderate textures. I call this measure the LMF (Line-Model-Fitting)

photo-consistency measure. Similarly, if we set Pd = 1, Po = 0, Ps = 0, i.e., only diffuse

colors are possible, then the MLE measure reduces to the standard variance measure.

Multiple Stationary Lights The above analysis is valid for multiple fixed lights

as long as they have the same color. This is true even if their intensities are different

or there are area light sources. If the light colors are different, then there will be

multiple lines in the color space, one for each unique light source. In this case, it would

be interesting to investigate if a multiple-line fitting and clustering method would be

practical.

Moving Lights and Cameras It is also interesting to consider data captured on

a turntable. Typically in this case both the lights and the camera are (effectively)

moving. For a given static light configuration, corresponding color samples of a sur-

60

Color of

the light
B

G

R

(a) One lighting configu-
ration (fixed lights)

B

G

R

(b) Two lighting config.
(lights moved once)

R

G

Color of

the light

Diffuse-

bound ray

B

(c) Moving lights

Figure 3.7: Reflected light under moving lights and cameras

face point will fall on the ray defined by the color of the light and the diffuse term

(Figure 3.7(a)). For multiple lighting configurations, there will be multiple rays in the

color space (Figure 3.7(b)). If the lights do not change their colors in different config-

urations, all rays will have the same direction. In addition, all rays originate from the

diffuse term, if the surface can be approximated using the Phong model, their origins

will form a ray starting from the origin of the color space and extending toward IpkdOd.

Let us call this line the diffuse-bound ray. All color samples will form a plane spanned

by the diffuse-bound ray and the ray pointing toward the color of the light, as shown

in Figure 3.7(c). Thus it is possible to reconstruct scenes under moving lights and

moving cameras. In particular, if the scene is primarily diffuse, the plane will reduce

to the diffuse-bound ray, then we can use a measure similar to the LMF measure to

reconstruct diffuse scenes under moving lights and cameras.

3.2 Implementation Details

I use Powell’s method [Pow78] to optimize the function in Equation 3.8. I also assume

the color of light is white. If the light is not white, it can be measured using a camera

easily. Note that due to the limited dynamic range provided by the cameras, the ray

defined by Ĉ has three segments in general (left in Figure 3.8). One channel will first

saturate, then the second, and finally the last channel. In Figure 3.8, I show a sample

probability density distribution on the right. Similarly, I compute the distance to the

three line segments in the Line-Model-Fitting (LMF) measure.

61

Direction of

the light

Diffuse

color

Saturation

point

0 1

1

1

B

G
R

Figure 3.8: Left: Reflected colors from a surface point form a line; due to limited
dynamic range, it becomes three connected line segments in the RGB cube space .
Right: Sample density distribution with object color [0.3, 0.5, 0.1], σs = 10/255, and a
priori probability [0.4, 0.4, 0.2]

There are two places where O exploit the graphics hardware to accelerate computa-

tion. Note that the way I use graphics hardware here is completely different than the

real-time VDPC introduced in the next chapter. The first place is the visibility update.

I render each surface voxel as a cube for every input image, thus I can get the exact

footprint to update the visibility mask. The second place is the computation of the

smoothness weight in Eq. 3.4. For each voxel, I need to find the closest colored pixel in

the output view, i.e, the closest pixel with known depth. Since each voxel corresponds

to a single pixel in the output view, this problem can be reduced to a 2D search, i.e.,

given a pixel, find the closest colored pixel. I use Delaunay triangulation to create a

2D mesh of colored pixels in the output view, each triangle is assigned a unique color

(not to be confused with the assigned color to pixels), and render the color-coded mesh.

The rendered image serves as a look-up table to find the closest pixel in O(1) time. I

found dramatic speedup compared to performing a linear search of all colored pixels in

software.

3.3 Discussion

In previous sections, I explained in detail how VDPC works and some specific imple-

mentation issues. In this section, I put VDPC in the context of other related work,

explaining key innovations over the state of the art. I also discuss the limitations of

VDPC.

62

3.3.1 Innovations

Hybrid and View-dependent Estimation

In this section, I explain the conceptual design choices I have made for VDPC. In par-

ticular, two questions are answered: why I chose a hybrid approach, and why I chose a

view-dependent voxel representation. Results from controlled experiments (using syn-

thetic images) are presented here to support the argument. Results using real images

will be presented in the result section (Section 3.4).

Why Use a Hybrid Approach? This dissertation is aimed at view synthesis, i.e.,

we need to assign a color to each pixel in a synthesized view. However, aimed for

dynamic scenes captured with a feasible number of cameras (to meet the first goal in

Section 1.1), I do not have the luxury we would in light field rendering (Section 2.2.1)

of simply interpolating the color from input images—rather, I have to estimate it. An

image is the end result of complex interactions among surface geometry and materials,

occlusions, and lighting. Thus maintaining a 3D model that takes into account all these

factors is necessary. However creating a full 3D model automatically is a difficult task.

Existing methods are usually fragile and prone to error in practice. In addition, usually

only part of a full 3D mode is visible for any given viewpoint. For dynamic and live

scenes, it is less efficient to first create a full model and then render it from a desired

viewpoint. For the sake of view synthesis, I only need to extract enough information

to allow us to predict the new view. In other words, a partial model may suffice. Thus

using a hybrid approach seems logical and natural for the scope of this dissertation.

An added benefit of a hybrid approach is that I can acquire an image and a 3D model

at the same time. This 3D model can be useful in a number of ways. For example,

in an augmented reality application, the 3D model is needed to detect collisions in

the interactions between real and virtual objects. The 3D model can also be used to

decouple the rendering and update rates. Nearby views can be rendered using the last

available 3D model while a new image with a new model is being estimated.

Why Use a View Dependent Formulation? Once I have decided to employ a

hybrid approach, the next question is what kind of representation to use. In order to

meet the goal of being able to deal with both convex and concave shapes (part of goal

(3) in Section 1.1), I chose to use a volumetric representation (a voxel grid), since it is

flexible enough to represent arbitrary shapes and allows more flexible camera configu-

63

C0 C2

…

C
v

Cn

C1 C
v

C2

…
Cn

C0 C1

Figure 3.9: VDPC vs. stereo reconstruction. Left: VDPC estimates a depth map from
the perspective of the output view (Cv). Right: stereo estimates a depth map from one
of the input views, the problem of dis-occlusion leads to holes or “skins” in the output
view (Cv).

rations [KS00]. Using a voxel grid also allows the problem of occlusion to be handled

elegantly in a fashion similar to space carving ([KS00], reviewed in Section 2.1.2).

In addition, I introduce a view-dependent formulation that has a number of ben-

efits. First, there is a one-to-one correspondence between the 3D model and the final

image. Since there is no additional rendering of the voxel grid, quantization effects are

minimized.

Secondly, the view-dependent formulation avoids some shortcomings of stereo and

space carving. Compared to stereo, VDPC computes a depth map from the perspective

of the output view, instead of one input view, as shown in Figure 3.9. When a depth

map from one input view is warped to the output view, there is the problem of dis-

occlusion. That is, the depth values for some pixels are not defined, resulting in either

a hole or a “skin” stretching over different surfaces. But there is no such problem in

a view-dependent formulation, assuming the surfaces are visible in at least two input

images.

As shown in [BC00], space carving is usually sensitive to the global threshold for

the photo-consistency test. In practice, as a result of random noise and quantization

effects, a single threshold rarely achieves optimal results for a complex scene. But in our

view dependent formulation, I need only to find the most consistent voxel for a column

of voxels corresponding to an output pixel, so a global threshold is unnecessary. In

fact, we can think of VDPC as having a varying threshold depending on the relative

photo-consistency values for every column of voxels.

64

Figure 3.10: Five synthetic images rendered from a scene of a cube and a flat back wall.
Note the change of perspectives on the sides of the cube.

Results from Controlled Experiments To support the argument for the view-

dependent formulation, I ran some controlled experiments using synthetic imagery.1 I

rendered five synthetic images of a scene that consists of a cube and a flat back wall,

as shown in Figure 3.10.

For the sake of comparison, I implemented the multi-baseline plane-sweep stereo

algorithm [Col96] and the original space carving algorithm [KS00]. Since the scene is

perfectly diffuse, I used the standard color variance as the matching metric. I applied

both algorithms to the synthetic data set in Figure 3.10. Each created a 3D model,

then I rendered the model from different viewpoints. In addition, for every viewpoint,

I applied VDPC to the data set using the color variation as the photo-consistency

measure but without enforcing any additional constraints, i.e., the weight for every

voxel is always one.

Figure 3.11 shows the images generated by VDPC (first row) and the rendered

images from an estimated depth map using the stereo algorithm I implemented (second

row). Note the holes in the images in the second row. Some of the holes, such as these

scattered on the background, are due to quantization effects. In stereo, the depth map

has a regular sampling pattern in the image space of the reference camera (from which

the depth map is generated). Thus the sampling patter of the depth map in 3D space is

not uniform. Depth points around the image center are closer to each other in 3D space

than those close to the edges of the image. So when they are viewed from a different

viewpoint, they may not cover every pixel in the new image. In my experiment, because

the viewpoint actually moves down, depth points in the lower part, which are close to

edges in the reference image, move closer to the center area in the new image that

requires higher sampling rate. This is the cause of the holes on the background. There

are other holes due to dis-occlusions. Parts of the background become dis-occluded as

the viewpoint moves, but their depth values are not defined since they are not visible

1I also show results using real imagery in Section 3.4.

65

Figure 3.11: VDPC vs. multi-baseline stereo. Images in the top row are synthesized
using VDPC. Images in the bottom row are rendered views of an estimated depth map.
The depth map, generated by my implementation of [Col96], is from the perspective of
the third image in Figure 3.10. As the viewpoint moves away, note the holes in some
of the rendered images in the second row.

in the estimated depth map. VDPC addressed both problems, thus there are no holes

in the images in the first row.

In Figure 3.12, the first row shows the images generated by VDPC and the images

rendered from a model using the original space carving algorithm I implemented. The

second row shows the corresponding 3D models rendered from a 90 degree viewing

angle. Space carving requires a global threshold for the photo-consistency test. Results

from three different thresholds—5, 10, 20—are presented. A threshold of 5 means

that if the normalized color variation of a voxel’s corresponding pixels is greater than

five levels (assuming 8 bit/channel input images), that voxel will be carved away. In

Figure 3.12(b) to 3.12(d), we can see that a single threshold can rarely achieve the

optimal reconstruction. Too small a threshold leads to holes, too large a threshold

creates many false positives (see the oblique views in the second row). VDPC, by

contrast, does not rely on a single threshold to determine a voxel’s occupancy. It looks

at each column of voxels and attempts to find a best one in each column, which can

be thought of as using a varying threshold depending on the relative photo-consistency

values.

66

(a) VDPC (b) Space Carving:
var = 5

(c) Space Carving:
var = 10

(d) Space Carving:
var = 20

Figure 3.12: Comparisons between VDPC and space carving. The top row shows the
synthesized image, the bottom row shows the 3D models from a 90 degree viewing angle.
Since space carving requires a global threshold, results from three different thresholds
are shown. VDPC, by contrast, does not need a global threshold.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Color Error (Euclidian distance in RGB color cube, 8 bit/channel)

F(
x)

Empirical Cumulative Distribution Function (CDF) of Color Errors

VDPC
Space Carving (Var = 5)
Space Carving (Var = 10)
Space Carving (Var = 20)
Stereo

Figure 3.13: CDF of color errors

67

Progressive Refinement with a View-dependent Smoothness Constraint

Another innovation of VDPC is the progressive refinement with a view-dependent

smoothness constraint, which enables VDPC to be robust for textureless regions—part

of goal (3) in Section 1.1.

From a shape-recovery standpoint, VDPC can be considered a variation of the space

carving framework. Kutulakos and Seitz showed that, without additional constraints

the space carving framework provides the tightest reconstruction using color informa-

tion alone [KS00]. They called the recovered shape the photo hull. The idea of using

color information alone has its pros and cons. On the one hand, in regions with rich

textures, arbitrarily complex shapes can be recovered. On the other hand, the lack of

additional constraints make space carving more susceptible to image noise and quanti-

zation problems.

In addition, space carving has difficulty resolving ambiguity in textureless regions.

In regions with low color variation, i.e., different surface points having similar radiance,

false positive photo-consistencies typically result in extraneous voxels that “fatten” the

reconstruction in front of the true surface. This effect is particularly pronounced when

the model is viewed from an oblique angle, far away from any of the input viewpoints.

Figure 3.14 shows this effect for synthetic images in which an intensity gradient across

the image is varied. In regions with low intensity variations, the reconstructed surfaces

differ substantially from the original surface.

Additional constraints are often applied in an attempt to resolve the ambiguity.

For example a typical approach in stereo vision is to increase the support of the re-

construction kernel. However the accompanying smoothing effect (low-pass filtering)

undermines a unique feature of these voxel based methods: the ability to reconstruct

highly complex shapes. Instead we want to apply additional constraints only when

there is ambiguity. To this end, VDPC employs an iterative approach to progressively

refine the shape estimates. As explained in Section 3.1.2, the basic idea is to defer

decisions about ambiguous voxels until there is enough supporting evidence, including

updated visibility information and local smoothness constraints.

I also recognize that smoothness is a view-dependent property. Think about a thin

sheet of paper: when viewed from the front, the paper is smooth everywhere; when

viewed from a 90 degree angle the sheet barely exists. That is probably one of the

reasons that volumetric reconstruction methods, which are typically view-independent,

either do not use a smoothness constraint, or use some simple ones such as averaging of

68

Figure 3.14: Effects of texture variation on reconstruction (From [SD99] with per-
mission). (a) A concave scene surface and the positions of five input cameras. (b)
Reconstruction when the surface has constant radiance gives the same result as shape-
from-silhouettes. (c – g) Successively better reconstructions result when the surface is
textured with an intensity gradient that doubles in frequency with each image.

69

neighboring voxels. But in my view-dependent formulation, smoothness can be natu-

rally defined from the perspective of the output viewpoint. From the output viewpoint,

we are more likely to see frontal-parallel surfaces compared to ones at oblique angles.

So it makes sense to use smoothness constraints that favor such frontal-parallel surfaces

in the absence of additional information.

Since the synthesized images are to be viewed by humans, I chose to use a smooth-

ness constraint that is based on psychophysical studies of the human vision system–the

disparity gradient principle. These studies also provide a meaningful range for the

parameters used in our smoothness constraint formulation.

In conclusion, the progressive refinement scheme with a psychophysical based view-

dependent smoothness constraint is designed to provide better shape reconstruction

in low texture regions, leading to more visually pleasing images without sacrificing

VDPC’s flexibility in recovering highly complex shapes.

Physically-based Photo-consistency Measure

The new photo-consistency measure discussed in Section 3.1.4 is another innovation of

VDPC. It allows VDPC to be applied in scenes with specular surfaces—part of goal

(3) in Section 1.1.

Most 3D reconstruction algorithms rely on the diffuse surface assumption as a ba-

sis to establish correspondence. The effects of specular highlights have largely been

ignored. This severely limits applicability of these algorithms in certain scenes, such

as surgical scenes in which specular highlights are the norm rather than the exception.

The new photo-consistency measure breaks this barrier. Here some related work to

deal with specular reflections is discussed and compared to our new photo-consistency

measure.

Although the use of more sophisticated lighting models was envisioned in the orig-

inal space carving work [KS00], almost all existing methods use a photo-consistency

measure based on a diffuse (Lambertian) surface assumption. Two notable exceptions

are the Surfel (surface element) sampling algorithm by Carceroni and Kutulakos [CK01]

and the color caching algorithm by Chhabra [Chh01]. The former differs substantially

from traditional voxel-based methods. The scene is divided into a very coarse voxel

grid, with each voxel represented as a parametric surface referred to as a surfel. Un-

der calibrated lighting, additional properties such as surface normal and reflectance

parameters can be estimated. Only results from scenes with point light sources were

demonstrated. In practice, light calibration is not always possible, especially for area

70

light sources. In the color caching algorithm, Chhabra tries to characterize the reflected

light from specular surfaces in the color space. While this analysis is very similar to

my thinking, it is restricted to the case where the reflected light passes through the

origin of the color cube. This simplification is only valid in some very limited cases,

such as monochromatic surfaces under white light. Based on an analysis of the sur-

face color response under a more generic lighting model [FP03], I recognized that for

the sake of matching, i.e., finding corresponding pixels in different images, full light

calibration is unnecessary since reflected lights from many real-world surfaces have a

certain “signature” in color cube space. A photo-consistency measure only needs to de-

tect these signatures independent of lighting. Based on this idea, I arrived at a general

photo-consistency measure that makes use of the linear color response of some typical

surface.

There is also some work in the stereo vision literature to recover a disparity map in

the presence of specular reflections [Wol89, LB92, BN95, JYS01, LLL+02, LLK+02]. To

my knowledge, these all try to first detect specular reflections, either through color his-

tograms or using polarized filters, and then reject them as outliers or occluders. Instead

my method treats specular reflections as “inliers” and accounts for them inherently.

My new photo-consistency measure does not need to know the lights’ positions or

orientations. It works for both point light sources and area light sources. It requires no

surface normal estimation, which is very difficult to obtain under unknown geometry

and lighting. Given these relaxed pre-conditions, my photo-consistency measure can

be used in any existing space carving or multi-view stereo algorithms to extend their

applicability to scenes with specular surfaces.

3.3.2 Limitations

Like many, if not all, existing algorithms, VDPC also has its limitations. Here I will

discuss these limitations and how we can possibly address them.

While VDPC’s view-dependent formulation has a number of advantages, as ex-

plained in Section 3.3.1, a major limitation of such a formulation is that the global

consistency of the 3D model is not guaranteed. That is, if we merge the 3D mod-

els from different viewpoints, the combined global 3D model is not guaranteed to be

consistent with all view-dependent sub-models. Note that this problem is not entirely

insurmountable. In fact, for situations in which the emphasis is on creating a global 3D

model rather than synthesizing an image, I have found a way to reconstruct a globally

71

consistent voxel model using a variation of VDPC [YPW03]. Changes include a view-

independent formulation, which is in-line with space carving, and a more sophisticated

“best” voxel selection scheme that considers all visible views simultaneously, instead of

just from the output view.

Compared to view-independent reconstruction techniques such as space carving or

stereo, VDPC takes considerable computing time. Suppose the complexity of space

carving is O(1); then the complexity of VDPC is O(m), where m is the number of

output views. So VDPC is best suited for dynamic scenes, when each moment is likely

to be viewed only once. From an efficiency standpoint, the variation from [YPW03], in

which a view-independent voxel model is first computed, might be desirable for static

scenes. Nevertheless the quantization effect of the view-independent voxel model is

likely to be visible in the output images rendered.

Another concern is that VDPC uses a progressive refinement scheme that has dif-

ficulty recovering from previous errors. The same problem exists for space carving. In

fact, VDPC suffers less than space carving since VDPC incorporates additional con-

straints and decides a voxel’s occupancy by looking at a number of related voxels.

However, VDPC still makes “hard” decisions about voxels, and once a voxel is carved

away, it will not be put back. To overcome this difficulty, several probabilistic space

carving methods have been introduced [dBV99, BDC01, AD01, BFK02]. In theory,

a probabilistic formulation should consider all possible visibility configurations for a

voxel. To avoid the combinatorial search, the visibility tests are typically approxi-

mated based on heuristics [dBV99, AD01, BDC01] or solved in a stochastic manner

through hundreds of iterations [BFK02]. I believe that an accurate treatment of visibil-

ity is crucial for any multi-view reconstruction algorithm. If an efficient and accurate

probabilistic model of visibility can be found, a probabilistic approach will be very

promising.

3.4 Results

I have implemented the full VDPC framework in software. We also constructed a

capture rig I call the camera cube (Figure 3.15). It consists of eight digital video cameras

with VGA resolution (640 × 480). All cameras are fully calibrated and synchronized.

I am able to capture and store VGA videos at 15 frames/second. Lens distortions are

removed after capture. In the results shown here, I synthesize images from a viewpoint

from the top, looking down. In some cases, I also show the underlying 3D surface voxel

72

Figure 3.15: Camera Cube: our one meter-cubed camera rig with eight cameras looking
down at a human patient model

models. I further define a robust measure to reject potential outliers: if in the color

cube space the average distance/pixel to the color ray is over a threshold, the voxel is

rejected. I used a very generous number—100 levels (assuming 8 bit/channel), and this

number was fixed throughout all experiments. Experiments have shown that VDPC is

not sensitive to this threshold.

I captured and reconstructed a variety of real-world scenes. Unless otherwise indi-

cated, all were reconstructed at a resolution of 256 × 256 × 128.

In Figure 3.16, I show synthesized views of a hand at a high resolution (5123). It

is computed using the variance consistency measure through four iterations. Note the

textureless regions are nicely reconstructed.

My second data set contain a teapot with rich textures (Figure 3.17) and I tested

the photo-consistency measure without applying the smoothness constraint. See Fig-

ure 3.18. Since I knew nothing about the surface materials or the scene lighting, except

that the color of lights is white, I tried different settings of the a priori likelihood (de-

noted as
P) for the MLE measure (introduced in Section 3.1.4). With a 0.1 granularity,

there are about 50 different combinations. The most visually pleasing result is shown

in Figure 3.18(a), where
P = [0.5, 0, 0.5]. I also show the result with
P = [1.0, 0, 0]

in Figure 3.18(b), which is equivalent to using the standard variance measure. Fig-

ure 3.18(c) shows the result with
P = [0, 1.0, 0], which is very similar to the result from

73

Figure 3.16: Hi-resolution progressive reconstruction on a 512 × 512 × 256 grid using
the variance measure.

the LMF measure (introduced in Section 3.1.4). Compared to the best one, it has more

stray voxels when viewed from the side.

Figure 3.17: Eight images captured simultaneously by our camera cube. They are
cropped to show more details. The teapot roughly took a 300 × 300 area in every
image.

My next data set consists of a teapot and a book with substantial textureless regions

(Figure 3.19). I used the LMF measure and applied the smoothness constraint through

a few iterations, shown in Figure 3.20. I stopped at the fourth iteration when newly

selected SURFACE voxels were less than 2% of the total SURFACE voxels. I compare it

with the result using the variance measure in Figure 3.21.

I further captured a dynamic sequence in which a surgeon was explaining a med-

ical procedure. The torso model was constructed using the LMF measure, while the

hand and other moving parts were constructed using the variance measure. They are

composited together and shown in Figure 3.22.

74

(a) �P = (0.5, 0, 0.5), visu-
ally best from 50 combina-
tions of �P

(b) �P = (1.0, 0, 0) (same as
the variance measure)

(c) �P = (0, 1.0, 0) (similar
to the LMF measure)

Figure 3.18: Reconstruction results from data in Figure 3.17. I used the MLE measure
under different a priori assumptions, no smoothness weight was applied.

The last data set, courtesy of the Mitsubishi Electric Research Lab, is a teapot

captured on a turntable. The light was not static with respect to the teapot. I did

not know this when I first tried my method. In Figure 3.23, I show the results using

the LMF and the variance measure. On the top of the teapot where highlights exist,

neither method produces meaningful results. However on the side of the teapot where

there are virtually no highlights, the LMF measure performs much better than the

variance measure, since under moving lights the reflected lights of a diffuse point form

a line (not a point) in the RGB color space.

Since there is no established data set or standard to evaluate multi-view reconstruc-

tion algorithms2, I have attempted to contact several researchers, asking them if they

would be willing to apply their view synthesis or 3D reconstruction methods to my data

set or share their implementations with me. I had a very limited success in obtaining

such an evaluation; details can be found in Section 5.2.

2I will discuss possible ways for quantitative evaluations as future work in Section 5.3.

75

Figure 3.19: Eight images of the teapot-and-book data set.

Figure 3.20: Reconstruction results using data in Figure 3.19. From left to right, I
show the progressively refined results after iterations one to three. I used the LMF
consistency measure and set the disparity gradient limit to 0.8.

Figure 3.21: Comparison of different consistency measures. Left column (top and side
views): LMF measure; right column: variance measure. Both results were obtained
after four iterations. All other parameters were kept the same.

76

Figure 3.22: A dynamic sequence captured by the camera cube. It was constructed
using the LMF measure.

Figure 3.23: Experiment with moving lights. Left: LMF measure; right: variance
measure.

Chapter 4

Real-time VDPC on Commodity

Graphics Hardware

A full software implementation of VDPC as presented in Chapter 3 is not real-time

yet. The results presented in the previous chapter typically require minutes to render.

In this chapter, I present a reduction of VDPC that can be efficiently implemented on

commodity graphics hardware. Modern graphics hardware offers orders of magnitude

in accelerating the view synthesis time, enabling real-time on-line view synthesis of a

live dynamic scene. Readers may also want to refer to Section 2.3 for related work in

real-time view synthesis.

4.1 Motivation

Modern graphics hardware systems continue to offer increasingly powerful performance

in terms of both speed and programmability. Today (as of May 2003), the latest graph-

ics cards on the market achieve over 50 gigaflops, and the programming languages for

these cards, Cg for example [NVI02], are almost as flexible as the C language. The con-

sumer graphics boards on the market offer specialized but powerful Single-Instruction-

Multiple-Data (SIMD) processing. While such hardware is designed and optimized for

computer graphics, there is increasing interest in using the high-performance graph-

ics processing unit (GPU) for tasks other than rendering. For example, Holzschuch

and Alonso used the GPU to speed visibility queries [HA00], Hoff et al. to compute

generalized Voronoi Diagrams [IKL+99] and proximity information [IZLM01], Larsen

and McAllister for fast matrix multiplies [LM01], and Lok to reconstruct an object’s

visual hull given live video from multiple cameras [Lok01]. Each of these applications

78

obtained significant performance improvements by exploiting the speed and inherent

parallelism of modern graphics hardware.

As described in Section 1.2, I began this work by wondering how I could harness

the power in graphics hardware for view synthesis. In the next few sections, I will

present a reduction of VDPC under some simplifying assumptions. This reduction can

be implemented entirely on commodity graphics hardware. Once the input images are

downloaded to the graphics board, the CPU is essentially idle. By utilizing the fast

speed of the graphics board, which is already an ubiquitous component in commodity

PCs, we can synthesize views of a live scene at interactive rates on one’s desktop.

4.2 Approach

While commodity graphics cards are getting more and more programmable in every

generation, they are still designed and optimized to render images from geometric prim-

itives. In order to fit VDPC on the current graphics hardware architecture, as well as

to maximize the utilization of the graphics hardware to achieve real-time performance,

I made a few simplifying assumptions about VDPC.

First, I assume, as in the case for multi-baseline stereo, that the problem of occlusion

can be ignored. Since there is no visibility change for any voxel, I can compute the

photo-consistency values and select the best colors in a single pass. Secondly, I assume

that the scene is Lambertian, so I can use the standard variation measure for the

photo-consistency test. Thirdly, I use a smoothness constraint that simply aggregates

weighted photo-consistency values from neighboring voxels, a practice commonly used

in stereo.

Under these assumptions, VDPC can be implemented entirely on commodity graph-

ics hardware. Before I present the detail of such an implementation in the next section,

I first briefly introduce the hardware features that are essential to make such an imple-

mentation possible.

I make use of multi-texture mapping, the Pixel Shader, and the mipmap functions

in graphics hardware. Multi-texture mapping functions allow more than one texture to

be rendered onto the same geometry primitive in a single pass. The Pixel Shader, first

proposed and implemented by NVIDIA [Nvi], is a texture compositing unit that can

perform fixed function arithmetic on a per-pixel basis [Kil00]. The Mipmap [Wil83]

was originally developed to deal with the aliasing problem in texture mapping. A base

texture is pre-filtered down recursively to create a texture pyramid called mipmap.

79

Cv

I0 I1
I2

I
0

I
1

I
2

Cv

Figure 4.1: Illustration of real-time VDPC on graphics hardware.

At run time, an appropriate level of the mipmap is selected to match the sampling

rate desired. Modern graphics boards support automatic generation of mipmaps in

hardware and biased selection of a mipmap level.

Using these features, which are available on virtually every graphics board on the

market today, I can implement real-time VDPC entirely on a commodity graphics

board, enabling real-time, online view synthesis of a dynamic live scene.

4.3 Implementation Details

I first outline the entire real-time VDPC algorithm, then discuss several key steps, and

how they map to graphics hardware.

Modern graphics hardware typically has multiple processing pipelines to increase

throughput. In order to utilize the inherent parallelism, I can compute a voxel plane

a time, instead of a single voxel a time. As shown in Figure 4.1, the basic idea is

first to project the input images on to each voxel plane, then to use programmable

graphics hardware to compute the photo-consistency values of voxels and select the

most consistent ones. Essential to this implementation are the multi-texture mapping

functions and Pixel Shader, both of which have been available on commodity graphics

hardware since 2000. I use multi-texture mapping functions to project input images

onto voxel planes, and Pixel Shader to compute photo-consistency values and select the

best colors.

In an implementation on a graphics card, there is no need to maintain an explicit

80

Figure 4.2: A configuration where there are five input cameras. The red dot represents
the new view point. Space is discretized into a number of parallel planes.

voxel representation because the rasterization hardware will automatically divide a

voxel plane into discrete cells. I call each voxel plane a depth plane, to contrast with

the explicit voxel representation in a software implementation.

Now I can outline my implementation on a graphics card. From the perspective of a

desired viewpoint (the red dot in Figure 4.2), the 3D space is discretized into a number

of depth planes. The depth planes are traversed from near to far. At each step (i),

there are three stages of operations, scoring, aggregation, and selection. In the scoring

stage, the reference images are project onto the depth plane Di, the graphics hardware

is programmed to compute the per-pixel mean color and consistency measure. In the

second optional aggregation stage, a simplified smoothness constraint is applied. That

is, consistency values are aggregated from neighboring pixels. In the final selection

stage, the textured Di, with a RGB color and a photo-consistency value for each pixel,

is rendered into the the frame buffer. At each pixel location in the frame buffer, if the

incoming pixel has a better photo-consistency value, it will replace the existing pixel.

After all the depth planes are traversed and computed, the frame buffer consists of a

synthesized view in which each pixel has the best photo-consistency value.

Comparing real-time VDPC to the full VDPC approach in Section 3.1, there are two

major differences. First, the visibility constraint is waived, every input pixel is visible.

Secondly, the smoothness constraint is simplified and optionally applied right after the

photo-consistency value is computed. From an algorithmic standpoint, real-time VDPC

is similar to the plane-sweeping algorithm by Collins [Col96], but by using the graphics

81

Figure 4.3: Depth plane images from step 0, 14, 43, 49, from left to right; The scene,
which contains a teapot and a background plane, is discretized into 50 planes.

hardware my approach supports real-time applications. In the next few sections, I will

explain how to implement the entire algorithm using the standard OpenGL API, which

is supported by virtually all graphics boards. A complete pseudo code and detailed

settings in Pixel Shader can be found in Appendix A.

4.3.1 Photo-consistency Evaluation

In the first scoring stage, we need to warp the input images and compute the photo-

consistency values. For a given depth plane Di, we project the input images on it,

and render the textured plane from the desired perspective to get an image (Ii) of Di.

While it is natural to think of these as two sequential operations, in practice one can

combine them into a single homography (plane-to-plane) transformation. In Figure

4.3, I show a number of images from different depth planes. Note that each of these

images contains the projections from all input images, and the area corresponding to

the intersection of objects and the depth plane remains sharp.

For each pixel location (u, v) in Ii, we want to use the Pixel Shader to compute the

photo-consistency value and the corresponding most-likely color. Assuming a Lamber-

tian scene, my current implementation uses the sum-of-square-difference (SSD) of the

luminance as the photo-consistency value, that is

SSD =
∑

i

(Yi − Ybase)
2 (4.1)

where Yi is the luminance from an input image and Ybase is the luminance from the

base reference image selected as the input image that is closest to the new viewpoint.

The most likely color is the mean color from all images. With a minimum of two

multi-texture units (two textures at a time), graphics hardware can compute the SSD

score sequentially, an image pair at a time. In this stage, the frame buffer acts as an

82

Figure 4.4: SSD scores (encoded in the alpha channel) for different depth planes in
the first scoring stage. I use the same setup as in Figure 4.3. From left to right, the
corresponding depth steps are 0, 14, 43, 49.

accumulation buffer to keep the mean color (in the RGB channel) and the SSD score

(in the alpha channel) for Di. In Figure 4.4, I show the SSD score images (the alpha

channel of the frame buffer) at different depth steps. The corresponding color channels

are shown in Figure 4.3.

4.3.2 Aggregating Photo-consistency Values

The photo-consistency value for each pixel sometimes can be ambiguous, especially in

low-texture regions. In these cases, it is desirable to apply some kind of smoothness

constraint. A usual approach is to aggregate the values over a large support window.

This approach can be implemented very efficiently on a CPU, and by reusing data from

previous pixels, the complexity becomes independent of the window size. However on

today’s graphics hardware, which uses a Single-Instruction-Multiple Data (SIMD) par-

allel architecture, it is not so simple to efficiently implement this type of optimization.

One has several options to aggregate the photo-consistency values. One is to use

convolution functions in the Imaging Subset of the OpenGL Specification (Version 1.3

and above) [1.301]. By convolving a blurring filter with the contents of the frame

buffer, one can sum up the consistency measures from neighboring pixels to make color

estimates more robust.

If the convolution function were implemented as a part of the pixel transfer pipeline

in hardware, as in the OpenGL specification, there would be little performance penalty.

Unfortunately, hardware-accelerated convolutions are only available on expensive graph-

ics workstations such as SGI’s Oynx2, but these expensive workstations do not have

programmable pixel shaders. On commodity graphics cards available today, convolu-

tion is only implemented in software because it is not used very often and implementing

it in hardware adds cost. In a software implementation, pixels have to be transferred

83

between the main memory and the graphics board. This is not an acceptable solution

since such out-of-board transfer operations will completely negate the benefit of doing

computation on the graphics board.

There are ways to perform convolution using standard graphics hardware [WND96].

One could use multiple textures, one for each of the neighboring pixels, or render the

scene in multiple passes and perturb the texture coordinates in each pass. For example,

by enabling bilinear texture interpolation and sampling in the middle of 4 pixels, it is

possible to average those pixels. Note that in a single pass only a summation over a

2 × 2 window can be achieved. In general such tricks would significantly decrease the

speed as the size of the support window becomes larger.

A less obvious option is to use the mipmap functionality available in today’s Graph-

ics Processing Units (GPUs). This approach is more general and quite efficient for

certain types of convolutions. Modern GPUs have built-in box-filters to efficiently gen-

erate all the mipmap levels needed for texturing. Starting from a base image J0 the

following filter is recursively applied:

J i+1
u,v =

1

4

2v+1∑
q=2v

2u+1∑
p=2u

J i
p,q,

where (u, v) and (p, q) are pixel coordinates. Therefore, it is very efficient to sum

values over 2n × 2n windows. Note that at each iteration of the filter the image size is

divided by two. Therefore, a disadvantage of this approach is that the color consistency

measures can only be evaluated exactly at every 2n × 2n pixel location. For other pixels,

approximate values can be obtained by interpolation. However, given the low-pass

characteristics of box-filters, the error induced this way is limited.

Multi-resolution Approach

Choosing the size of the aggregation window is a difficult problem. The probability of

a consistency mismatch goes down as the size of the window increases [Nis84]. How-

ever, using large windows leads to a loss of resolution and to the possibility of missing

some important image features. This is especially so when large windows are placed

over occluding boundaries. This problem is typically dealt with by using a hierarchical

approach [FHM+93], or by using special approaches to deal with depth discontinu-

ities [HIG03].

Here I will follow a different approach that is better suited to the implementation

84

on a GPU. By observing correlation curves for a variety of images, one can observe

that for large windows the curves mostly only have a single strong minimum located in

the neighborhood of the true depth, while for small windows often multiple equivalent

minima exist. However, for small windows the minima are typically well localized.

Therefore, I wanted to combine the global characteristics of the large windows with

the well-localized minima of the small windows. The simplest way to achieve this in

hardware seems to be just adding up the different curves. In Figure 4.5 some example

curves are shown for the Tsukuba dataset.

Summing two variance images obtained for windows differing by only a factor of

two (one mipmap-level) is very easy and efficient. It suffices to enable trilinear texture

mapping and to set the correct mipmap-level bias. Additional variance images can

easily be summed using multiple texturing units that refer to the same texture data,

but have different mipmap-level biases.

In fact, this approach corresponds to using a large window, but with larger weights

for pixels closer to the center. An example of a kernel is shown in Figure 4.6. The

peaked region in the middle allows good localization while the broad support region

improves robustness.

I will call this approach the Multiple Mip-map Level (MML) method. In contrast,

the approach that only uses one mip-map level will be called the Single Mip-map Level

(SML) method.

In the actual implementation, I first have to copy the frame buffer, which has the

individual photo-consistency values, to a texture, with automatic mipmap generation

enabled. Then I use the multi-texture functions to sum up different mipmap levels.

Note that all texture units should bind to the same texture object but with different

settings of the mipmap bias. This is possible because the mipmap bias, as defined in

the OpenGL specification, is associated per texture unit, not per texture object.

Note that if we want to use the SML method, which is equivalent to aggregating

the consistency measures over a fixed-size support region, we only need to reduce the

rendered image size proportionally (by changing the viewport setting) in the last selec-

tion stage. The automatic mipmap selection mechanism will select the correct mipmap

level. A sub-pixel texture shift can also be applied in the last selection stage to increase

the effective resolution.

85

50 100 150 200 250 300 350

50

100

150

200

250

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5
x 10

4

0 2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

C A

D

B

A B

C D

S
S

D
 s

co
re

s
S

S
D

 s
co

re
s

disparities

small windows large windows combined
(lifted for clarity)(8x8, 16x16)(1x1, 2x2, 4x4)

disparities

Figure 4.5: Correlation curves for different points of the Tsukuba stereo pair. Case
A represents a typical, well-textured, image point for which SSD would yield correct
results for any window size. Case B shows a point close to a discontinuity where SSD
with larger windows would fail. Cases C and D show low-texture areas where small
windows do not capture sufficient information for reliable consistency measures.

Figure 4.6: Shape of kernel for summing up six levels.

86

4.3.3 Selecting Best Color

In the last selection stage, one need to select the mean color with the smallest SSD

score. The content of the frame buffer is copied to a temporary texture (Texwork),

while another texture (Texframe) holds the mean color and minimum SSD score from

the previous depth step. These two textures are rendered again into the frame buffer

through orthogonal projection. I reconfigure the Pixel Shader to compare the alpha

values on a per pixel basis, the output color is selected from the one with the minimum

alpha (SSD) value. Finally the updated frame buffer’s content is copied to Texframe

for use in the next depth step.

My technique is implicitly computing a depth map from a desired view point, I

just choose to keep the best color estimate for the purpose of view synthesis. If we

choose to trade color estimation for depth estimation, we can use almost the same

method to compute a depth map in real-time, and liberate the CPU for other high

level tasks. The only change necessary is to reconfigure the graphics hardware to keep

the depth information instead of the color information in the last selection stage. The

color information can then be obtained by re-projecting the reconstructed 3D points

into input images. From an implementation standpoint, we can encode the depth

information in the RGB portion of the texture image.

4.4 Discussion

Real-time VDPC meets the real-time requirement—goal (4) in Section 1.1. In addition,

I believe that real-time VDPC combines the advantages of previously published real-

time methods in Section 2.3, while avoiding some of their limitations as follows.

• I achieve real-time performance without using any special-purpose hardware, and

our method, based on the OpenGL specification, is relatively easy to implement.

• I can deal with arbitrary object shapes, including concave and convex objects.

• I do not use silhouette information, so there is no need for image segmentation,

which is not always possible in a real environment.

• I use graphics hardware to accelerate the computation without increasing the

symbolic complexity—our method is O(n3), the same as most correlation-based

stereo algorithms.

87

• Real-time VDPC is more versatile. I can use two or more cameras in a ca-

sual configuration, including configurations where the images contain epipolar

points. This case is problematic for image-pair rectification [Fau93], a required

pre-processing step for most real-time stereo algorithms.

• The hybrid formulation VDPC uses allows one to acquire a model (a depth map)

in addition to a synthesized image. So it is possible, though I have not demon-

strated this, to decouple the rendering and update loop. That is, we can render

new images using the last available depth map at a rate higher than the rate of

generating new depth maps. This is important for interactive applications.

Of course, there are certain tradeoffs I have to make when using the graphics hard-

ware. One common complaint about current graphics hardware is the limited arith-

metic resolution. My method, however, is less affected by this limitation. Computing

the SSD scores is the central task of our method. SSD scores are always non-negative,

so they are not affected by the unsigned nature of the frame buffer. (The computation

of SSD is actually performed in signed floating point on recent graphics cards, such as

the GeForce4 from NVIDIA.) A large SSD score means there is a small likelihood that

the color/depth estimate is correct. So it does not matter if a very large SSD score is

clamped, it is not going to affect the estimate anyway.

A major limitation of the current hardware acceleration scheme is the inability to

handle occlusions. This is a common problem for most real-time stereo algorithms.

To address this problem in practice, I use a small baseline between cameras, a design

adopted by many multi-baseline stereo systems. However, this limits the effective view

volume, especially for direct view synthesis.

The bottleneck in the hardware acceleration scheme is the fill rate. This limitation

is also reported by Lok in his hardware-accelerated visual hull computation [Lok01]. In

each stage, there is a texture copy operation that copies the frame buffer to the texture

memory. I found that texture copies are expensive operations even within the graphics

board, especially when the automatic mipmap generation is enabled. I have explored

the use of P-buffer, an OpenGL extension that allows to render directly to an off-screen

texture buffer. There was no performance gain, in fact performance was worse in some

cases. I suspect that this extension is still a “work in progress” in the current drivers

from NVIDIA. I expect to see a substantial performance boost when this work is done.

In late 2002 NVIDIA introduced the Cg programming language [NVI02]. It is similar

to C but has no looping or branching. With its power, many simplifications that had

88

Figure 4.7: directly captured from the screen. They are synthesized using five cameras

to be imposed previously to fit VDPC on graphics hardware are no longer necessary.

For instance, the implementation of the LMF measure (introduced in Section 3.1.4)

on graphics hardware is entirely possible. In addition, the occlusion problem may be

solved using the new texture-look-up functionality to see if a color sample should be

included for the photo-consistency evaluation.

4.5 Results

In order to test real-time VDPC’s performance, I have implemented a distributed sys-

tem using four PCs and up to five calibrated 1394 digital cameras (SONY DFW-V500).

The camera exposures are synchronized using an external trigger. Three PCs are used

to capture the video streams and correct for lens distortions. The corrected images

are then compressed and sent over a 100Mb/s network to the rendering PC, in which

real-time VDPC is running, to synthesize new views. Some experiments are presented

in the next two sections.

4.5.1 Live View Synthesis

I have tested my algorithm on three NVIDIA cards, a Quadro2 Pro, a GeForce3, and a

GeForce4, using all five cameras for view synthesis. Figure 4.7 shows some live images

computed online in real time. Performance comparisons are presented in Table 4.1 and

Figure 4.8. On average, a GeForce3 is about 75 percent faster than a Quadro2 Pro for

our application, and a GeForce4 is about 60 percent faster than a GeForce3.

For comparison purposes, I also ran some tests using different support sizes. The

results are shown in Figure 4.9. Even a small support window (4 × 4) can make

substantial improvements, especially in low texture regions, like the cheek or forehead

89

1282 2562 5122

20 9, 16, 40 18, 31, 55 51, 82, 156
50 20, 31, 85 42, 70, 130 120, 211, 365

100 40, 62, 140 84, 133, 235 235, 406, 720

Table 4.1: Rendering time per frame in milliseconds (number of depth planes vs out-
put resolutions). The numbers in each cell are from a GeForce4, a GeForce3, and a
GeForce2, respectively. All numbers are measured with five 320×240 input images.

0 10 20 30 40 50 60

128^2

256^2

512^2

O
u

tp
u

t
R

e
s

o
lu

ti
o

n

Frame Rate (fps)

GF4

GF3

GF2

Figure 4.8: Frame rates from three cards at different output resolutions with 50 depth
planes—corresponding to the second row in Table 4.1.

Figure 4.9: Impact of support size on the color or depth reconstruction(using all five
cameras); First row: Synthesized images from an oblique viewing angle (view extrapola-
tion) with different levels of aggregation using the MML method. Second row: extracted
depth maps using the MML aggregation method. The erroneous depth values in the
background are due to the lack of textures in the image. The maximum mipmap level
is set from zero to four, corresponding to a support size of 1×1, 2×2, 4×4, and 8×8,
respectively.

90

on the face. The black areas in the depth map are due to the lack of textures on the

background wall. They will not impact the synthesized views.

4.5.2 Live Depth Estimation

I also tested real-time VDPC using only a pair of images. If one makes a slight change

to enable depth output, real-time VDPC in this case is in fact very similar to standard

correlation-based stereo. This flexibility of real-time VDPC may lend itself well for

computer vision applications that require real-time depth computation—automatous

robotic navigation, for example. So in this section, I only show the depth map generated

by real-time VDPC using only two input images. All depth maps shown in this section

are encoded based on disparity. So they are referred to as disparity maps from here on.

The first test set is the Tsukuba set, which is widely used in computer vision lit-

erature. The results are shown in Figure 4.10, in which I show the disparity maps

with different aggregation methods. For disparity maps on the left column, I used the

SML method so that the SSD image was only rendered at a single mipmap level to

simulate a fixed-size box filter. Note that texture shift trick effectively doubles the size

of the filter. So it is equivalent to the use of a 2 × 2 kernel at mipmap level zero, and

a 4 × 4 kernel at mipmap level one, etc. The right column shows results from using

the MML method, i.e., summing up the different mipmap levels. I computed the dif-

ferent disparity maps in each subsequent row by varying the maximum mipmap level

(abbreviated as MaxML) from zero up to five. We can see that the results using a

1 × 1 kernel (second row) are almost meaningless. If we use a higher mipmap level,

i.e. increase the support size, the results improve for both methods. But the image

resolution drops dramatically with the SML method (left column). The disparity map

seems to be the best when using the MML method with MaxML = 4 (i.e. a 16 × 16

support). Little is gained when MaxML > 4. Results from another widely used stereo

pair using MaxML = 4 are shown in Figure 4.11.

In terms of performance, I tested my implementation on an NVIDIA GeForce4

Card—a card with four multi-texture units. I found virtually no performance difference

when MaxML was changed from one to four. This is not surprising since I can use all

four texture units to sum up all four levels in a single pass. If MaxML is set to over four,

another additional rendering pass is required, which results in less than 10% increase

in calculation time.1 In practice, I find that setting MaxML to four usually strikes a

1I do not use trilinear interpolation in our performance testing, and it seems that in practice setting

91

Figure 4.10: Depth results on the Tsukuba data set using only two images. The top-
right image shows the ground-truth disparity map. For the remaining rows, on the left
column I show the disparity maps from the SML method, while on the right I show the
ones from the MML method. The mipmap levels are set to zero to five, corresponding
to a support window of size 1 × 1, 2 × 2, 4 × 4, etc.

92

Figure 4.11: Calculated disparity map from another widely-used stereo pair.

Output Search Times Img. Update Read Disp. Calc.

Size Range (ms) (Hz) (ms) (ms) (M/sec)

20 71.4 14 (VGA) 58.9
5122 50 182 5.50 5.8 × 2 6.0 65.6

100 366 2.73 68.3
20 20.0 50 (QVGA) 53.1

2562 50 49.9 20 1.6 × 2 1.5 60.0
100 99.0 10.1 63.2

Table 4.2: Depth estimation performance on an NVIDIA GeForce4 card when summing
all mipmap levels. The two input images are 640 × 480, the maximum mipmap level
(MML) is set to 4 in all tests.

good balance between smoothness and preserving small details for stereo. Details of

the performance data for the MML method can be found in Table 4.2. On average, the

MML method can achieve 50-60 million disparity cacluations/second, including all the

overhead to send the images to the graphics board and read back the result. Plotting

this data in Figure 4.12, we can see that our algorithm exhibits linear performance with

respect to the image size.

I also tested the SML method (results shown in Table 4.3). In this case the frame-

rates are higher, especially when going to a higher mipmap level. Note that for higher

mipmap levels the number of evaluated disparities per seconds drops because in this

case the output disparity map has a lower resolution. This method might be preferred

for some applications where speed is more important than detail.

When running under the stereo configuration, my current real-time prototype per-

forms a few additional steps in software, such as radial distortion correction and segmen-

tation.2 As a proof of concept, these yet-to-be-optimized parts are not fully pipelined

with the reconstruction. This overhead slows down the overall reconstruction rate to

MaxML over four has an detrimental effect on the final result.
2The cameras are facing a white wall with little texture. So I segment the images to fill the

background with different colors.

93

Base Output Search Times Overhead Disp. Calc.

Size Size Range (ms) (Hz) (ms) (M/sec)

20 2.5 40 11.7
5122 1282 50 6.4 15.6 12.0 10.7

(4 × 4) 100 12.8 7.8 8.86
20 28.3 35.3 31.7

5122 2562 50 71.4 14.0 13.1 38.8
(2 × 2) 100 144 6.9 41.7

20 40.8 24.5 89.8
5122 5122 50 106 9.4 17.6 106

100 207 4.8 117
20 12.7 78.7 20.1

2562 1282 50 31.6 31.6 3.58 23.3
(2 × 2) 100 63.1 15.8 24.6

20 16.2 61.7 62.7
2562 2562 50 40.3 24.8 4.7 72.8

100 80.7 12.4 76.7

Table 4.3: Depth estimation performance on an NVIDIA GeForce4 card when using
only a single mipmap level with texture shift enabled. Throughput decreases propor-
tionally to the output resolution because the majority of the time is spent on computing
the SSD score. The overhead includes both the image update time and the time to
read back the depth map from the frame buffer.

71.4

182

366

20.2

49.9

99

0

50

100

150

200

250

300

350

400

20 50

Disparity Search Range

E
la

p
s

e
d

 T
im

e
 (

in
 m

s
)

512 x 512 Output 256 x 256 Output

Update VGA Img. Update QVGA Img.

100

20 Hz

10 Hz

5 Hz

2.5 Hz

3.3 Hz

Figure 4.12: Depth estimation performance on an NVIDIA GeForce4 Card. The two
image-update curves show the time to update two input images at different resolutions.
The data are from Table 4.1.

94

Figure 4.13: Typical results from the real-time online stereo system. The first row shows
the two input images and the disparity map. The second row shows the reconstructed
3D point cloud from different perspectives. Some holes in the 3D views are caused by
the rendering. I simply render fixed-size (in screen space) points using the GL POINT
primitive.

6-8 frames per second at 256 × 256 resolution with 100 depth planes. In Figure 4.13,

I show a sample stereo pair and a reconstructed depth map. In the real-time system,

darker colors in the depth map mean that the object is closer to cameras while brighter

colors mean further. To better illustrate the results, I also show the reconstructed 3D

point cloud from different perspectives in Figure 4.13. More scenes and their depth

maps can be found in Figure 4.14.

95

Figure 4.14: More results from our real-time online stereo system. The first row shows
the input images; The second row shows the corresponding disparity map.

96

Chapter 5

Conclusions and Future Work

This dissertation investigates the problem of synthesizing new images from varying

viewing angles by processing a set of images gathered from different viewpoints of a

scene. Driven by applications such as 3D video-teleconferencing and surgical training,

this dissertation research began with the following goals:

1. Use a practical number of input images (from one to two dozen);

2. Be fully automatic;

3. Be robust and accurate for a wide variety of shapes and surfaces (convex, concave,

specular, diffuse, etc.); and

4. Work toward real-time, on-line view synthesis (over 10 fps).

The framework presented in this dissertation, Dependent-View Pixel Coloring (VDPC),

meets all of these goals. In the next section, I will summarize the innovations of VDPC

and how each of them maps to a specific goal.

5.1 Innovations

In contrast to the way the innovations were presented in Chapter 1, I explicitly dis-

tinguish between conceptual innovations and design innovations in this section. Con-

ceptual innovations are high-level insights and observations, while design innovations

are specific realizations and implementations of conceptual innovations. The VDPC

framework is comprised of the design innovations, while the conceptual innovations can

lead to new algorithms and techniques.

This dissertation contains the following conceptual innovations:

98

• Hybrid and view-dependent estimation. Unlike traditional approaches in

which a complete model is first extracted, I recognized that, for the sake of view

synthesis, I only need to recover enough information to synthesize the current

view. Details can be found in Section 3.3.1.

• The recognition of the potential power in commodity graphics hard-

ware. There is a great synergy between image processing and graphics rendering.

Both frequently use simple operations applied thousands or even millions of times.

Any application having similar characteristics can exploit the fast speed in mod-

ern graphics boards to accelerate their computation.

Bearing the above conceptual innovations in mind, I have developed a novel and

practical view synthesis framework, View-Dependent Pixel Coloring. The main practi-

cal innovations of VDPC from a design standpoint are:

• Hybrid and view-dependent formulation. Results from controlled experi-

ments shows the advantages of my formulation over traditional view-independent

approaches, such as stereo or space carving. Details can be found in Section 3.3.1.

• Progressive refinement with a view-dependent smoothness constraint.

Experiments results in Section 3.4 have shown that this scheme can recover highly

complex shapes (such as a human hand), and, at the same time, be robust in

textureless regions. Details can be found in Section 3.3.1.

• A novel physically-based photo-consistency measure. Strong results have

been obtained using this photo-consistency measure. In addition, this measure

requires no light calibration or surface normal estimation, thus it can be used in

any existing stereo or space carving algorithms to extend their applicability to a

specular environment. Details can be found in Section 3.3.1.

• Real-time VDPC on commodity graphics hardware. Details can be found

in Chapter 4. At the time of this writing (May 2003), my implementation, when

operating to output a depth map, is as fast as the fastest commercial software

package available [Inc]. In addition, the graphics processing unit (GPU) continues

to be evolving at a faster pace than CPU.

99

5.2 Historical Notes

The chronological order in which this dissertation research was conducted is, in fact,

the reverse of the way it is laid out in this dissertation. I have briefly introduced the

history in Chapter 1, here is a more detailed account.

I started this dissertation with research on real-time VDPC, which was motivated by

the 3D Tele-Immersion project (http://www.advanced.org/tele-immersion/) in which

a real-time solution for view synthesis was essential. Together with Prof. Greg Welch,

my thesis advisor, we made the observation that for the sake of view synthesis, we did

not need to estimate a full 3D model, we only needed to estimate a color for each pixel

in the desired image. Based on this concept, I developed a view-dependent formulation

for view synthesis that can be effectively accelerated on commodity graphics hardware

to achieve real-time performance.

While real-time VDPC’s speed is surprisingly fast, its reconstruction quality is

mediocre. The lack of visibility handling substantially limits the usable viewing range.

Around that time, the space carving framework was introduced [KS00]. Its elegant

visibility handling attracted me. The formulation looked quite simple, yet from the re-

sults, it seemed to be very effective. But space carving also has a number of problems,

like its sensitivity to the global threshold and difficulties with textureless regions and

specular highlights. I decided to focus my dissertation research on view synthesis. My

basic goal was to combine some ideas from space carving with real-time VDPC and

extend them for more general scenes, in particular, scenes with a substantial amount

of textureless regions and specular highlight—the kind of scenes commonly found in a

surgical environment. After careful deliberation and discussion with Prof. Welch, it

seemed at that time that a full probabilistic modeling of geometry, surface materials,

and lighting had a lot of promise.

During the course of developing the full probabilistic framework, several papers

about probabilistic modeling of the space carving problem came out [dBV99, BDC01,

AD01, BFK02]. Some of the ideas in them were actually quite similar to what I had

intended to do then. However, I found that the results from these new probabilistic

space carving algorithms were not significantly better than those from the original

algorithm. In fact, one author even mentioned in his dissertation [Bro01] that if he were

to choose a space carving algorithm, he probably would not choose the full probabilistic

framework he developed. The additional sophistication required in the implementation

outweighs the improvement in the results. The difficulty is in the handling of visibility.

100

In theory, a probability formulation should consider all possible visibility configurations

for a voxel. For a set of n input images, there are 2n configurations for each voxel. To

avoid a combinatorial search, the visibility tests in these published works are either

approximated based on heuristics or solved in a stochastic manner through hundreds of

iterations. I believed that an accurate treatment of visibility is crucial for a multi-view

reconstruction. The results in these papers seemed to support my belief. So I decided to

treat visibility exactly in my dissertation work. Given the demonstrated effectiveness of

the deterministic visibility treatment in the original space carving algorithm, I decided

to adopt it without further change.

While reading published papers related to space carving, I found that many of them

mentioned the problem of specular highlights and the lack of regularization terms (shape

smoothness). I was working on these problems and was encouraged to see that many of

my fellow researchers agreed that they were the right and important ones. Even if I did

not make a contribution to visibility treatment, solving the other problems would still

have a significant impact. Research on these problems finally led to this dissertation.

I would also like to acknowledge that the original idea for the photo-consistency

measure I developed is attributable to Prof. Marc Pollefeys. My first idea was to use

singular value decomposition to find the diffuse component. As I discussed the problem

with Prof. Pollefeys, he pointed out that there had already been some work in computer

vision on detecting specular highlights based on color sample distributions in the RGB

color space. Based on his advice, I developed a novel photo-consistency measure that

has been very effective in practice.

In order to evaluate the improvements of my approach over existing approaches,

in particular, these probabilistic space carving approaches [dBV99, BDC01, AD01,

BFK02], I have attempted to contact several authors, asking them if they would be

willing to apply their methods to my data set or share their implementations with me.

It seems that this is the only practical way to compare my results with others since there

is no established data set or standard to evaluate multi-view reconstruction algorithms.

(I will discuss possible ways for quantitative evaluations in the next section) Only Dr.

Adrian Broadhurst, an author of [BDC01], kindly agreed. He generated only a top view

of the teaching model data set (the images shown in Figure 1.1). Figure 5.1(a) shows

the result I received. For comparison, I also included images synthesized by VDPC (a

top view and a side view) in Figure 5.1(b). It is difficult to judge the quality of the

recovered shape from a single view. Comparing the two top views, surface boundaries

with substantial specular highlights, such the intestine region and the area between the

101

lungs and the heart, are less clear in Figure 5.1(a). Part of the legs (textureless regions)

are also missing in Figure 5.1(a). However, the blue color of the vein near the neck is

more obvious in Figure 5.1(a).

5.3 Future work

I believe the major difficulty in creating photo-realistic imagery, which used to be in

rendering, is now shifting to modeling—how to create a model in minute detail so that

it will match the visual acuity of human vision system. The essence of this dissertation

is in creating models optimized for view synthesis, including the representation of the

model, the formulation of novel constraints, and the realization of several practical

algorithms. Thinking along these directions will lead to new algorithms and techniques

for view synthesis. For instance, how can we explore the temporal coherence of a

dynamic scene in VDPC? Would it be possible to reliably estimate parametric surface

properties? Is there an optimal sampling pattern for a given scene, i.e., how many

cameras are needed and where are the optimal locations for them? Can we deal with

un-calibrated cases in which cameras are moving? Or is there an accurate and efficient

probabilistic treatment of visibility to make a full probabilistic estimation possible?

Questions like these are very interesting to explore.

One primary motivation of this dissertation is to find an effective solution for real-

time online view synthesis to enable tele-immersion. Traditionally, tele-immersion in-

corporates a centralized architecture. That is, input images are gathered and sent

to a central server in which a complete view-independent model is exacted, then the

same model is distributed to every participating site to be rendered from a desired

viewpoint. In contrast to this centralized “push” model, VDPC can be used to fa-

cilitate a distributed “pull” model. That is, each site can directly pull the necessary

raw input pixels from a broadcasting (or multi-casting) network, and then render the

desired images from the pixel data directly. This architecture eliminates the need for a

powerful central server. In addition, it is more effective in today’s heterogenous com-

puting environment. For example, a mobile user is calling in through her cell phone

with a color screen, she probably cannot make full use of the model that is optimized

for high resolution displays. It would be very interesting to design both software and

hardware for this kind of “just-in-time” and “just-enough” distributed visualization

systems. From an even higher level, I believe computer graphics is migrating from a

centralized paradigm to a distributed paradigm in which a cluster of inexpensive PCs

102

(a) A top view synthesized using
the method in [BDC01].

(b) A top view and a side view synthesized using VDPC

Figure 5.1: Comparing VDPC with a probabilistic space carving algorithm.

103

are used to accomplish complex rendering tasks. This shift follows the general trend

in computing. When computers first emerged a few decades ago, the concept of cen-

tralized computing was popular (and only feasible at that time too), but it turned out

that distributed solutions are more viable and popular, for example, the world wide

web and file sharing programs.

Another important thing to look at is the potential of commodity graphics hardware

for other tasks. The development of commodity graphics hardware during the last

few years has been phenomenal, both in term of speed and capability. Today (as of

May 2003), the latest cards on the market achieve over 50 gigaflops, and the program

languages for these cards, Cg for example [NVI02], are comparable to C code. One

can almost claim there is already a very powerful Digital Signal Processor (DSP) on

every desktop PC that can be used for computing problems both within the computer

graphics domain or outside it.

Looking into the immediate future, there are a number of issues and possible ex-

tensions related to this dissertation work.

Extension to more general materials The photo-consistency measure introduced

is valid only for dielectric materials. Metal, for example, is not a dielectric material.

However, it is possible to extend the basic idea to include more general materials. In

the RGB color space, the reflected light from a piece of metal is bound to have a

different “signature” than that from a piece of dielectric material. It is likely to be a

high order curve or surface, instead of a line or a point. While detecting any signature

algorithmically is possible in theory (a pattern recognition problem), it has yet to be

seen whether or not a high-order curve or surface can be detected reliably from a small

collection of pixel samples. And if a more sophisticated signature can be detected, does

it provide enough disambiguating power to be useful in practice? Any greater degree of

freedom in the signature is likely to reduce the robustness. Or does it help to formulate

a photo-consistency measure in other color spaces? Questions like these remain to be

answered.

Put back specular highlights Careful readers may have already noticed that all

the synthesized images presented lacked specular highlights. This is because I chose to

assign an optimized object color to every pixel. On the one hand, my method is quite

effective in removing specular highlights to reveal the true color of the object. On the

other hand, scenes without specular highlights may sometimes seem two-dimensional.

104

A quick fix is to use view-dependent texture mapping, i.e., using the pixel color from

the closest input image. A more elaborated approach is to include surface normal

estimation. Surface normals can be estimated as a post-processing step. Alternatively,

VDPC can be extended to estimate surface normals directly, probably as a part of the

photo-consistency evaluation. With surface normal information, one can re-light the

scene with synthetic lighting.

Quantitative evaluations I believe that the results presented in this dissertation

(Section 3.4) demonstrate visually substantial improvements over the state of the art,

especially in textureless and/or specular regions. However, the results from real im-

agery lack quantitative evaluations. In general, quantitative evaluation of any view-

synthesis/reconstruction method is difficult. Different methods make different assump-

tions. So one method might perform well with one data set, but badly with another

set, and another method might do the contrary.

Recently, Scharstein and Szeliski proposed an evaluation method of stereo algo-

rithms [SS02]. Their evaluation is designed for dense (pixel-by-pixel) two-frame stereo

algorithms only, under the Lambertian surface assumption. Two metrics are used. One

is geometry-based, comparing the estimated depth map with the ground truth. The

other is image-based: first render the textured depth map from a different viewpoint,

then compare the synthesized image with a ground-truth image.

While both metrics can be used to evaluate VDPC, there are a number of practical

issues. First, for multi-view methods like VDPC, there are many more compounding

factors that could affect the final results, such as the number of input images, their

spatial locations, and the reconstruction resolution. Secondly, it is my belief that

any reconstruction/view-synthesis algorithm should be evaluated on real scenes. In a

synthetic scene, everything is so ideal that the quantitative results from it rarely indicate

an algorithm’s performance in practice. But how can we obtain the ground-truth depth

data for a real scene? In [SS02], depth maps from real scenes were manually labelled.

The alternative image-based metric seems more practical, but measuring image fidelity

is a very tricky business. The fact that VDPC deals with view-dependent specular

highlights makes the evaluation more complicated. Using a perceptually-based error

metric, such as the Sarnoff Just-Noticeable Difference (JND) [LF97], may provide a

more meaningful measure of image fidelity.

In conclusion, the design of quantitative evaluation methodology and procedures for

multi-view techniques is a research venue that deserves attention in both the computer

105

vision and the computer graphics communities.

Real-time VDPC Improvement Real-time VDPC was implemented two years ago

when programmable graphics hardware just began to emerge. Today’s graphics hard-

ware has much more programmability, thus some simplifications that had to be imposed

previously to fit VDPC on graphics hardware two years ago are no longer necessary.

For instance, the implementation of the LMF measure (introduced in Section 3.1.4)

on graphics hardware is entirely possible. In addition, the occlusion problem may be

solved using the new texture-look-up functionality to see if a color sample should be

included for the photo-consistency evaluation. If real-time VDPC incorporates these

changes, I expect to see substantial improvement in image quality with little speed

degradation.

As graphics hardware is getting more and more powerful, I could even imagine a

“smart” display device with built-in cameras, a graphics card, and a network port.

Such a device can be deployed anywhere on the world (as long as it can receive raw

video streams) to allow interactive 3D distributed meetings as envisioned in the Office

of the Future [RWC+98].

106

107

Bibliography

[1.301] OpenGL Specification 1.3, August 2001.

http://www.opengl.org/developers/documentation/ ver-

sion13/glspec13.pdf.

[AB91] E. H. Adelson and J. Bergen. The Plenoptic Function and the Elements

of Early Vision. In Computational Models of Visual Processing, page 320,

Cambridge, MA, August 1991. MIT Press.

[AD01] M. Agrawal and L. Davis. A Probabilistic Framework for Surface Recon-

struction from Multiple Images. In Proceedings of Conference on Computer

Vision and Pattern Recognition (CVPR), 2001.

[AH88] N. Ayache and C. Hansen. Rectification of Images for Binocular and Trinoc-

ular Stereovision. In Proceedings of International Conference on Pattern

Recognition, pages 11–16, 1988.

[Ana89] P. Anandan. A Computational Framework and an Algorithm for the Mea-

surement of Visual Motion. International Journal of Computer Vision

(IJCV), 2(3):283–310, 1989.

[And82] D. Anderson. Hidden Line Elimination in Projected Grid Surfaces. ACM

Transactions on Graphics, October 1982.

[Arn83] R. D. Arnold. Automated Stereo Perception. Technical Report AIM-351,

Artificial Intelligence Laboratory, Stanford University, 1983.

[Ash93] I. Ashdown. Near-field photometry: A new approach. Journal of the Illu-

minating Engineering Society, 22(1):163–180, Winter 1993.

[AV89] N. Ahuja and J. Veenstra. Generating Octrees from Object Silhouettes in

Orthographic Views. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 11(2):137–149, 1989.

[BA93] M. J. Black and P. Anandan. A Framework for the Robust Estimation

of Optical Flow. In Proceedings of International Conference on Computer

Vision (ICCV), pages 231–236, 1993.

108

[Bar89] S. T. Barnard. Stochastic Stereo Matching over Scale. International Journal

of Computer Vision (IJCV), 3(1):17–32, 1989.

[Bas92] Ronen Basri. On the uniqueness of correspondence under orthographic and

perspective projections. In Proceeding of Image Understanding Workshop,

page 875C884, 1992.

[Bas95] M. Bass. Handbood of Optics. McGraw-Hill, New York, 1995.

[BBH93] R. C. Bolles, H. H. Baker, and M. J. Hannah. The JISCT Stereo Evaluation.

In DARPA Image Understanding Workshop, pages 263–274, 1993.

[BBM+01] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and

Michael Cohen. Unstructured Lumigraph Rendering. In Proceedings of

SIGGRAPH 2001, Los Angels, August 2001.

[BC00] Adrian Broadhurst and Roberto Cipolla. A Statistical Consistency Check

for the Space Carving Algorithm. In Proceedings of 11th British Machine

Vision Conference, pages 282–291, 2000.

[BDC01] A. Broadhurst, T. Drummond, and R. Cipolla. A Probabilistic Framework

for Space Carving. In Proceedings of International Conference on Computer

Vision (ICCV), pages 388–393, 2001.

[Bel96] P. N. Belhumeur. A Bayesian Approach to Binocular Stereopsis. Interna-

tional Journal of Computer Vision (IJCV), 19(3):237–260, 1996.

[BF82] S.T. Barnard and M.A. Fischler. Computational Stereo. Computer Surveys,

14(4):553–572, 1982.

[BFK02] R. Bhotika, D. J. Fleet, and K. N. Kutulakos. A Probabilistic Theory

of Occupancy and Emptiness. In Proceedings of European Conference on

Computer Vision (ECCV), pages 112–132, 2002.

[BGCM02] C. Buehler, S. J. Gortler, M. Cohen, and L. McMillan. Minimal Surfaces for

Stereo Vision. In Proceedings of European Conference on Computer Vision

(ECCV), pages 885–899, 2002.

[BI99] A. F. Bobick and S. S. Intille. Large occlusion stereo. International Journal

of Computer Vision (IJCV), 33(3):181–200, 1999.

109

[BJ80] P. Burt and B. Julesz. A Gradient Limit for Binocular Fusion. Science,

208:615–617, 1980.

[BM92] P. N. Belhumeur and D. Mumford. A Bayesian Treatment of the Stereo

Correspondence Problem Using Half-occluded Regions. In Proceedings of

Conference on Computer Vision and Pattern Recognition (CVPR), pages

506–512, 1992.

[BN76] J.F. Blinn and M.E Newell. Texture and Reflection in Computer Generated

Images. CACM, 19(10):542–547, October 1976.

[BN95] D. Bhat and S. Nayar. Stereo in the presence of specular reflection. In

Proceedings of International Conference on Computer Vision (ICCV), page

1086C1092, 1995.

[BR96] M. J. Black and A. Rangarajan. On the Unification of Line Processes,

Outlier Rejection, and Robust Statistics with Applications in Early Vision.

International Journal of Computer Vision (IJCV), 19(1):57–91, 1996.

[Bro01] Adrian Broadhurst. A Probabilistic Framework for Space Carving. PhD

thesis, Trinity College, University of Cambridge, 2001.

[BSA98] S. Baker, R. Szeliski, and P. Anandan. A layered approach to stereo recon-

struction. In Proceedings of Conference on Computer Vision and Pattern

Recognition (CVPR), Santa Barbara, CA, June 1998.

[BT98] S. Birchfield and C. Tomasi. A Pixel Dissimilarity Measure That Is In-

sensitive to Image Sampling. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 20(4):401–406, 1998.

[BVZ98] Y. Boykov, O. Veksler, and R. Zabih. A Variable Window Approach to Early

Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(12), December 1998.

[BVZ01] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimiza-

tion via graph cuts. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 23(11):1222–1239, 2001.

[BZ87] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987.

110

[CA86] C.H. Chien and J.K. Aggarwal. Volume surface octrees for the presentation

of 3d objects. Computer Vision, Graphics and Image Processing, 36:100–

113, 1986.

[CB90] P. B. Chou and C. M. Brown. The Theory and Practice of Bayesian Image

Labeling. International Journal of Computer Vision (IJCV), 4(3):185–210,

1990.

[CBL99] Chun-Fa Chang, Gary Bishop, and Anselmo Lastra. LDI tree: A hierar-

chical representation for image-based rendering. In Alyn Rockwood, editor,

Siggraph 1999, Computer Graphics Proceedings, pages 291–298, Los Ange-

les, 1999. Addison Wesley Longman.

[CF99] E. Camahort and D. Fussell. A geometric study of light field representa-

tions. Technical Report TR99-35, Department of Computer Sciences, The

University of Texas at Austin, Austin, Texas, 1999.

[Che95] S. E. Chen. Quicktime VR: An Image-Based Approach to Virtual Environ-

ment Navigation. In Proceedings of SIGGRAPH 1995, pages 29–38, 1995.

[Chh01] Vikram Chhabra. Reconstructing specular objects with image based ren-

dering using color caching. Master’s thesis, Worcester Polytechnic Institute,

2001.

[CHRM96] I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs. A Maximum

Likelihood Stereo Algorithm. Computer Vision and Image Understanding

(CVIU), 63(3):542–567, 1996.

[CK01] Rodrigo L. Carceroni and Kiriakos N. Kutulakos. Multi-View Scene Capture

by Surfel Sampling: From Video Streams to Non-Rigid 3D MotionShape

and Reflectance. In Proceedings of International Conference on Computer

Vision (ICCV), 2001.

[CKBH00] G. K. M. Cheung, T. Kanade, J-Y. Bouguet, and M. Holler. A Real time

System for Robust 3D Voxel Reconstruction of Human Motions. In Proceed-

ings of Conference on Computer Vision and Pattern Recognition (CVPR),

pages 714–720, 2000.

111

[CLF98] Emilio Camahort, Apostolos Lerios, and Donald Fussell. Uniformly Sam-

pled Light Fields. In Eurographics Rendering Workshop 1998, pages 117–

130, 1998.

[CMS99] B. Culbertson, T. Malzbender, and G. Slabaugh. Generalized Voxel Col-

oring, volume 1883 of Lecture Notes in Computer Science, pages 100–115.

Springer-Verlag, 1999.

[Col96] R. Collins. A Space-Sweep Approach to True Multi-Image Matching. In

Proceedings of Conference on Computer Vision and Pattern Recognition,

pages 358–363, June 1996.

[CTCS00] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum.

Plenoptic Sampling. In Proceedings of SIGGRAPH 2000, page 307318, New

Orleans, August 2000.

[DA89] U. Dhond and J. Aggrawal. Structure from stereo: a review. IEEE Trans-

actions on Systems, Man, and Cybernetics, 19(6):14891510, 1989.

[Dav97] E.R. Davies. Machine Vision: Theory, Algorithms, Practicalities. Academic

Press, 1997.

[dBV99] J.S. de Bonet and P. Viola. Poxels: Probabilistic Voxelized Volume Recon-

struction. In Proceedings of International Conference on Computer Vision

(ICCV), pages 418–425, 1999.

[DBY98] Paul E. Debevec, George Borshukov, and Yizhou Yu. Efficient View-

Dependent Image-Based Rendering with Projective Texture-Mapping. In

9th Eurographics Rendering Workshop, Vienna, Austria, June 1998.

[DSV97] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Navigating Static

Environments Using Image-Space Simplification and Morphing. In Proceed-

ings of Symposium on I3D Graphics, page 2534, 1997.

[DTM96] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering archi-

tecture from photographs: A hybrid geometry-and image-based approach.

In SIGGRAPH, pages 11–20, August 1996.

112

[Dye01] C. R. Dyer. Volumetric scene reconstruction from multiple views. In L. S.

Davis, editor, Foundations of Image Understanding, pages 469–489. Kluwer,

2001.

[Fau93] O. Faugeras. Three-Dimensional Computer Vision: A Geometric View-

point. MIT Press, 1993.

[FHM+93] O. Faugeras, B. Hotz, H. Mathieu, T. Viville, Z. Zhang, P. Fua, E. Thron,

L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real time

sorrelation-based stereo: Algorithm, amplementations and application.

Technical Report 2013, INRIA, August 1993.

[FP03] D. Forsyth and J. Ponce. Computer Vision: A Modern Approach, chapter 6,

page 119. Prentice Hall, 2003.

[FS00] T. Feng and H.-Y. Shum. An optical analysis of light field rendering. Tech-

nical report MSR-TR-2000-38, Microsoft Research, May 2000.

[GG84a] D. Geiger and F. Girosi. Parallel and Deterministic Algorithms for MRF’s:

Surface Reconstruction. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (PAMI), 6(6):721–741, 1984.

[GG84b] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distribution, and

the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 6(6):721–741, 1984.

[GGSC96] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The Lumigraph.

In Proceedings of SIGGRAPH 1996, pages 43–54, New Orleans, August

1996.

[GLY92] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and Binocular Stereo.

In Proceedings of European Conference on Computer Vision (ECCV), pages

425–433, 1992.

[Gre86] N Greenem. Environment Mapping and Other Applications of World Pro-

jections. IEEE Computer Graphics and Applications, 6(11):21–29, Novem-

ber 1986.

113

[Gri85] W. E. L. Grimson. Computational experiments with a feature based stereo

algorithm. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (PAMI), 7(1):17–34, 1985.

[HA00] Nicolas Holzschuch and Laurent Alonso. Using graphics hardware to speed-

up visibility queries. Journal of Graphics Tools, 5(2):33–47, 2000.

[Hal94] M. Halle. Holographic stereograms as discrete imaging systems. In Proceed-

ings of SPIE, volume 2176 of Practical Holography VIII, pages 73–84, May

1994.

[Han74] M. J. Hannah. Computer Matching of Areas in Stereo Images. PhD thesis,

Stanford University, 1974.

[HiAA97] Youichi Horry, Ken ichi Anjyo, and Kiyoshi Arai. Tour Into the Picture:

Using a Spidery Mesh Interface to Make Animation from a Single Image.

In SIGGRAPH, June 1997.

[HIG03] H. Hirschmuller, P. Innocent, and J. Garibaldi. Real-Time Correlation-

Based Stereo Vision with Reduced Border Errors. International Journal of

Computer Vision, 47(1-3), April-June 2003.

[Hir01] Heiko Hirschmuler. Improvements in Real-Time Correlation-Based Stereo

Vision. In Proceedings of IEEE Workshop on Stereo and Multi-Baseline

Vision, pages 141–148, Kauai, Hawaii, December 2001.

[Hor86] B.K.P. Horn. Robot Vision. MIT Press, 1986.

[IAH95] M. Irani, P. Anandan, and S. Hsu. Mosaic based representations of video

sequences and their applications. In Proceedings of ICCV, page 605611,

Cambridge, Massachusetts, June 1995.

[IG98] H. Ishikawa and D. Geiger. Occlusions, Discontinuities, and Epipolar Lines

in Stereo. In Proceedings of European Conference on Computer Vision

(ECCV), pages 232–248, 1998.

[IKL+99] Kenneth E. Hoff III, John Keyser, Ming C. Lin, Dinesh Manocha, and Tim

Culver. Fast Computation of Generalized Voronoi Diagrams Using Graphics

Hardware. In Proceeding of SIGGRAPH 99, pages 277–286, August 1999.

114

[IMG00] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynamically

Reparameterized Light Fields. In Proceedings of SIGGRAPH 2000, pages

297–306, August 2000.

[Inc] Point Grey Research Inc. http://www.ptgrey.com.

[IPL98] Insung Ihm, Sanghoon Park, and Rae Kyoung Lee. Rendering of Spherical

Light Fields. In Pacific Graphics 97, Seoul, Korea, 1998.

[IZLM01] Kenneth E. Hoff III, Andrew Zaferakis, Ming C. Lin, and Dinesh Manocha.

Fast and simple 2d geometric proximity queries using graphics hardware. In

2001 ACM Symposium on Interactive 3D Graphics, pages 145–148, March

2001. ISBN 1-58113-292-1.

[Joh00] Richard Arnold Johnson. Miller and Freund’s Probability and Statistics for

Engineers. Prentice Hall, 2000.

[JYS01] H. Jin, A. Yezzi, and S. Soatto. Variational multiframe stereo in the presence

of specular reflections. Technical Report TR01-0017, UCLA, 2001.

[Kan94] T. Kanade. Development of a Video-rate Stereo Machine. In DARPA Im-

age Understanding Workshop, page 549C557, Monterey, CA, 1994. Morgan

Kaufmann Publishers.

[Kil00] Mark J. Kilgard. A Practical and Robust Bump-mapping Technique for

Today’s GPUs. In Game Developers Conference 2000, San Jose, California,

March 2000.

[KO94a] T. Kanade and M. Okutomi. A Stereo Matching Algorithm with an Adap-

tive Window: Theory and Experiment. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 16(9):920–932, 1994.

[KO94b] T. Kanade and M. Okutomi. A Stereo Matching Algorithm with an Adap-

tive Window: Theory and Experiment. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 16(9):920 – 932, September 1994.

[KS99] K.N. Kutulakos and S. M. Seitz. A Theory of Shape by Space Carving. In

Proceedings of International Conference on Computer Vision (ICCV), page

307C314, 1999.

115

[KS00] K. Kutulakos and S. M. Seitz. A Theory of Shape by Space Carving. In-

ternational Journal of Computer Vision (IJCV),, 38(3):199–218, 2000.

[KSC01] S. B. Kang, R. Szeliski, and J. Chai. Handling Occlusions in Dense Multi-

view Stereo. In Proceedings of Conference on Computer Vision and Pattern

Recognition (CVPR), 2001.

[KSK98] Reinhard Klette, Karsten Schlns, and Andreas Koschan. Computer Vision:

Three-Dimensional Data from Images. Springer, 1998.

[Kut00] K. N. Kutulakos. Approximate N-view Stereo. In Proceedings of European

Conference on Computer Vision (ECCV), pages 67–83, 2000.

[KYO+96] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka. A Stereo Engine

for Video-rate Dense Depth Mapping and Its New Applications. In Pro-

ceedings of Conference on Computer Vision and Pattern Recognition, pages

196–202, June 1996.

[KZ01] V. Kolmogorov and R. Zabih. Computing Visual Correspondence with Oc-

clusions Using Graph Cuts. In Proceedings of International Conference on

Computer Vision (ICCV), pages 508–515, 2001.

[KZ02a] Vladimir Kolmogorov and Ramin Zabih. Multi-camera Scene Reconstruc-

tion via Graph Cuts. In Proceedings of European Conference on Computer

Vision (ECCV), pages 82–96, 2002.

[KZ02b] Vladimir Kolmogorov and Ramin Zabih. What Energy Functions Can Be

Minimized via Graph Cuts? In Proceedings of European Conference on

Computer Vision (ECCV), pages 65–81, 2002.

[Lau94] A. Laurentini. The Visual Hull Concept for Silhouette Based Image Under-

standing. IEEE Transactions on Pattern Analysis and Machine Intelligence,

16(2):150–162, February 1994.

[Lau95] A. Laurentini. How Far 3D shapes Can be Understood from 2D Silhou-

ettes? IEEE Transactions on Pattern Analysis and Machine Intelligence,

17(2):188–195, 1995.

[Lau97] A. Laurentini. How Many 2D Silhouettes Does It Take to Reconstruct a 3D

Object? Computer Vision and Image Understanding, 67(1):81–87, 1997.

116

[LB92] S. W. Lee and R. Bajcsy. Detection of Specularity using Color and Mul-

tiple Views. In Proceedings of European Conference on Computer Vision

(ECCV), pages 643–653, 1992.

[Lev71] R. Levin. Photometric characteristics of light controlling apparatus. Illu-

minating Engineering, 66(4):205–215, 1971.

[LF97] J. Lubin and D. Fibush. Sarnoff JND vision model, 1997. T1A1.5 Working

Group Document 97-612, ANSI T1 Standards Committee, 1997.

[LH96] M. Levoy and P. Hanrahan. Light Field Rendering. In Proceedings of

SIGGRAPH 1996, pages 31–42, New Orleans, August 1996.

[LK81] B. D. Lucas and T. Kanade. An Iterative Image Registration Technique with

an Application in Stereo Vision. In Seventh International Joint Conference

on Artificial Intelligence (IJCAI), pages 674–679, Vancouver, Canada, 1981.

[LKHZ98] Wei Li, Qi Ke, Xiaohu Huang, and Nanning Zheng. Light field rendering of

dynamic scenes. Machine Graphics and Vision, 7(3):551–563, 1998.

[LLF98] Y. G. Leclerc, Q.-T. Luong, and P. Fua. Self-consistency: A novel approach

to characterizing the accuracy and reliability of point correspondence al-

gorithms. In DARPA Image Under-standing Workshop, pages 793–807,

November 1998.

[LLK+02] Stephen Lin, Yuanzhen Li, Sing Bing Kang, Xin Tong, and Heung-Yeung

Shum. Diffuse-Specular Separation and Depth Recovery from Image Se-

quences. In Proceedings of European Conference on Computer Vision

(ECCV), pages 210–224, 2002.

[LLL+02] Y. Li, S. Lin, H. Lu, S.B. Kang, and H-Y Shum. Multibaseline Stereo in the

Presence of Specular Reflections. In International Conference on Pattern

Recognition, pages 573–576, 2002.

[LM01] E. Scott Larsen and David K. McAllister. Fast Matrix Multiplies using

Graphics Hardware. In Proceeding of Super Computer 2001, November

2001.

117

[Lok01] B. Lok. Online Model Reconstruction for Interactive Virtual Environments.

In Proceedings 2001 Symposium on Interactive 3D Graphics, pages 69–72,

Chapel Hill, North Carolina, March 2001.

[LS97] Jed Lengyel and John Snyder. Rendering with Coherent Layers. In SIG-

GRAPH, June 1997.

[LS00] Z.-C. Lin and H.-Y. Shum. On the numbers of samples needed in light field

rendering with constant-depth assumption. In Proceedings of Conference

on Computer Vision and Pattern Recognition (CVPR), 2000.

[LTH86] D. Laidlaw, W. Trumbore, and John F. Hughes. Constructive solid ge-

ometry for polyhedral objects. ACM Computer Graphics (SIGGRAPH),

20(4):161–170, 1986.

[LZ99a] David Liebowitz and Andrew Zisserman. Combining Scene and Auto-

Calibration Constraints. In Proceedings of International Conference on

Computer Vision (ICCV), pages 293–300, 1999.

[LZ99b] C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo

Vision. In Proceedings of Conference on Computer Vision and Pattern

Recognition (CVPR), volume 1, pages 125–131, 1999.

[MA83] W. N. Martin and J. K. Aggarwal. Volumetric Description of Objects from

Multiple Views. IEEE Trans. Pattern Analysis and Machine Intelligence,

5(2):150–158, 1983.

[Mar82] D. Marr. Vision. W. H. Freeman and Company, 1982.

[MB95] L. McMillan and Gary Bishop. Plenoptic Modeling: An Image-Based Ren-

dering System. In Proceedings of SIGGRAPH 1995, pages 39–46, 1995.

[MBR+00] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image-

Based Visual Hulls. In Proceedings of SIGGRAPH 2000, pages 369–374,

New Orleans, August 2000.

[McM97] L. McMillan. An Image-Based Approach to Three-Dimensional Computer

Graphics. PhD thesis, University of North Carolina at Chapel Hill, 1997.

[Mee90] J. Meehan. Panoramic Photography. Watson-Guptill, 1990.

118

[MID02] J. Mulligan, V. Isler, and K. Daniilidis. Trinocular Stereo: A New Algorithm

and its Evaluation. International Journal of Computer Vision (IJCV), Spe-

cial Issue on Stereo and Multi-baseline Vision, 47:51–61, 2002.

[MKJ96] S. Moezzi, D.Y. Kuramura, and R. Jain. Reality Modeling and Visualization

from Multiple Video Sequences. IEEE Computer Graphics and Applications,

16(6):58–63, 1996.

[MMB97] W. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. In

Proceedings of Symposium on I3D Graphics, pages 7–16, 1997.

[MMP87] J. Marroquin, S. Mitter, and T. Poggio. Probabilistic Solution of Ill-posed

Problems in Computational Vision. Journal of the American Statistical

Association, 82(397):76–89, 1987.

[MP76] D. Marr and T. Poggio. Cooperative Computation of Stereo Disparity.

Science, 194:283–287, 1976.

[MP94] S. Mann and R. W. Picard. Virtual bellows: Constructing high-quality

images from video. In Proceedings of ICIP, volume I, page 363367, Austin,

Texas, November 1994.

[MSK89] L. Matthies, R. Szeliski, and T. Kanade. Kalman Filter-based Algorithms

for Estimating Depth from Image Sequences. International Journal of Com-

puter Vision (IJCV), 3:209–236, 1989.

[Nay97] Shree K. Nayar. Catadioptric Omnidirectional Camera. In Proceedings of

Conference on Computer Vision and Pattern Recognition (CVPR), Peurto

Rico, June 1997.

[NFA88] H. Noborio, S. Fukada, and S. Arimoto. Construction of the Octree Ap-

proximating Three-Dimensional Objects by Using Multiple Views. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 10(6):769–782,

1988.

[Nie97] W. Niem. Error analysis for silhouette-based 3D shape estimation from

multiple views. In Proc. Int. Workshop on Synthetic-Natural Hybrid Coding

and Three-Dimensional Imaging, 1997.

119

[Nis84] H. Nishihara. PRISM, a Pratical Real-Time Imaging Stereo Matcher. Tech-

nical Report A.I. Memo 780, MIT, 1984.

[Nvi] Nvidia. http://www.nvidia.com.

[NVI02] NVIDIA. Cg: C for Graphics, 2002. http://www.cgshaders.org/.

[OK92] M. Okutomi and T. Kanade. A Locally Adaptive Window for Signal Match-

ing. International Journal of Computer Vision (IJCV), 7(2):143–162, 1992.

[OK93] M. Okutomi and T. Kanade. A Multiple-baseline Stereo. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 15(4):353–363, 1993.

[Oko76] Takanori Okoshi. Three-Dimensional Imaging Techniques. Academic Press,

Inc., New York, 1976.

[O.V01] O.Veksler. Stereo Matching by Compact Windows via Minimum Ratio

Cycle. In Proceedings of International Conference on Computer Vision

(ICCV), pages 540–547, 2001.

[PD96] D. Papadimitriou and T. Dennis. Epipolar line estimation and rectification

for stereo image pairs. IEEE Transactions on Image Processing, 5(4):672–

676, 1996.

[PG97] M. Pollefeys and L. Van Gool. A Stratified Approach to Self-calibration.

In Proceedings of Conference on Computer Vision and Pattern Recognition

(CVPR), pages 407–412. IEEE Computer Society Press, 1997.

[Pho75] Bui-Tuong Phong. Illumination for computer generated pictures. CACM,

18(6):3111–317, June 1975.

[PKG98] M. Pollefeys, R. Koch, and L. Van Gool. Self-Calibration and Metric Recon-

struction in spite of Varying and Unknown Internal Camera Parameters. In

Proceedings of International Conference on Computer Vision (ICCV), pages

90–95. Narosa Publishing House, 1998.

[PKG99] M. Pollefeys, R. Koch, and L. Van Gool. A Simple and Efficient Rectification

Method for General Motion. In Proceedings of International Conference on

Computer Vision (ICCV), pages 496–501, Corfu, Greece, 1999.

120

[PMF85] S. B. Pollard, J. E. W. Mayhew, and J. P. Frisby. PMF: A Stereo Correspon-

dence Algorithm Using a Disparity Gradient Limit. Perception, 14:449–470,

1985.

[Pol98] M. Pollefeys. Visual 3D Modeling from Images. online tutorial, 1998.

http://www.cs.unc.edu/ marc/tutorial/index.html.

[Pot87] M. Potmesil. Generating Octree Models of 3D Objects from their Silhouettes

in a Sequence of Images. Computer Vision, Graphics and Image Processing,

40:1–20, 1987.

[Pow78] M.J.D Powell. A Fast Algorithm for Nonlinearly Constrained Optimization

Calculations. Numerical Analysis, 630, 1978. Lecture Notes in Mathematics,

Springer Verlag.

[PPMF86] S. Pollard, J. Porrill, J. Mayhew, and J. Frisby. Disparity Gradient, Lip-

schitz Continuity, and Computing Binocular Correspondance. In O.D.

Faugeras and G. Giralt, editors, Robotics Research: The Third Interna-

tional Symposium, volume 30, pages 19–26. MIT Press, 1986.

[Pra85] K. Prazdny. Detection of Binocular Disparities. Biological Cybernetics,

52(2):93–99, 1985.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduc-

tion. Springer-Verlag, 1985.

[PTK85] Tomaso Poggio, Vincent Torre, and Christof Koch. Computational Vision

and Regularization Theory. Nature, 317(314-319), 1985.

[RC98] S. Roy and I. J. Cox. A Maximum-flow Formulation of the N-camera Stereo

Correspondence Problem. In Proceedings of International Conference on

Computer Vision (ICCV), pages 492–499, 1998.

[RGH80] T. W. Ryan, R. T. Gray, and B. R. Hunt. Prediction of Correlation Errors

in Stereo-pair Images. Optical Engineering, 19(3):312–322, 1980.

[RWC+98] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The

Office of the Future: A Unified Approach to Image-Based Modeling and

Spatially Immersive Displays. Computer Graphics, 32(Annual Conference

Series):179–188, 1998.

121

[SA90] S. K. Srivastava and N. Ahuja. Octree Generation from Object Silhouettes

in Perspective Views. Computer Vision, Graphics and Image Processing,

49(1):68–74, 1990.

[SCG97] P.-P. Sloan, M. F. Cohen, and S. J. Gortler. Time Critical Lumigraph

Rendering. In Symp. on Interactive 3D Graphics, April 1997.

[Sch94] D. Scharstein. Matching Images by Comparing Their Gradient Fields. In

Proceedings of International Conference on Pattern Recognition (ICPR),

volume 1, pages 572–575, 1994.

[Sch99] D. Scharstein. View Synthesis Using Stereo Vision. Lecture Notes in Com-

puter Science (LNCS), 1583, 1999.

[SCMS00] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer. Improved

Voxel Coloring via Volumetric Optimization. Technical Report 3, Center

for Signal and Image Processing, Georgia Institute of Technology, 2000.

[SCMS01] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer. A Survey of

Methods for Volumetric Scene Reconstruction from Photographs. 1, Center

for Signal and Image Processing, Georgia Institute of Technology, 2001.

[SD96] S.M. Seitz and C.R. Dyer. View Morphing. In SIGGRAPH 96 Conference

Proceedings, volume 30 of Annual Conference Series, pages 21–30, New

Orleans, Louisiana, 1996. ACM SIGGRAPH, Addison Wesley.

[SD99] S. M. Seitz and C. R. Dyer. Photorealistic Scene Reconstruction by Voxel

Coloring. International Journal of Computer Vision (IJCV),, 35(2):151–

173, 1999.

[Sei89] P. Seitz. Using Local Orientation Information as Image Primitive for Robust

Object Recognition. SPIE Visual Communications and Image Processing

IV, 1199:1630C1639, 1989.

[SGHS98] Jonathan Shade, Steven J. Gortler, Li Wei He, and Richard Szeliski. Layered

Depth Images. In Proceedings of SIGGRAPH 98, pages 231–242, August

1998.

122

[SH85] R. Szeliski and G. Hinton. Solving Random-dot Stereograms Using the Heat

Equation. In Proceedings of Conference on Computer Vision and Pattern

Recognition (CVPR), pages 284–288, 1985.

[SH97] H. Y. Shum and L. W. He. Rendering with Concentric Mosaics. In Pro-

ceedings of SIGGRAPH 1997, pages 299–306, 1997.

[SH99] P.-P. Sloan and C. Hansen. Parallel Lumigraph Reconstruction. In Proc.

Symposium on Parallel Visualization and Graphics, pages 7–15, 1999.

[Sha93] J. Shah. A Nonlinear Diffusion Model for Discontinuous Disparity and Half-

occlusion in Stereo. In Proceedings of Conference on Computer Vision and

Pattern Recognition (CVPR), pages 34–40, 1993.

[SHS98] H.Y. Shum, M. Han, and R. Szeliski. Interactive construction of 3D models

from panoramic mosaics. In Proceedings of Conference on Computer Vision

and Pattern Recognition (CVPR, pages 427–433, Santa Barbara, CA, June

1998.

[SHSd00] H. Schirmacher, W. Heidrich, and H.-P. Sei-del. High-quality Interactive

Lumigraph Rendering through Warping. In Proc. Graphics Interface 2000,

Montreal, Canada, 2000.

[SLS+96] Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and John

Snyder. Hierarchical Image Caching for Accelerated Walk-throughs of Com-

plex Environments. In SIGGRAPH, August 1996.

[SMS01] Hartmut Schirmacher, Li Ming, and Hans-Peter Seidel. On-the-Fly Pro-

cessing of Generalized Lumigraphs. EUROGRAPHICS 2001, 20(3), 2001.

[SS96] Gernot Schaufler and Wolfgang Stürzlinger. A Three-Dimensional Image

Cache for Virtual Reality. In Proceedings of Eurographics ’96, August 1996.

[SS97] Richard Szeliski and Heung-Yeung Shum. Creating full view panoramic im-

age mosaics and environment maps. Computer Graphics, 31(Annual Con-

ference Series):251–258, 1997.

[SS98] D. Scharstein and R. Szeliski. Stereo Matching with Nonlinear Diffusion.

International Journal of Computer Vision (IJCV), 28(2):155–174, 1998.

123

[SS02] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-

Frame Stereo Correspondence Algorithms. International Journal of Com-

puter Vision, 47(1):7–42, May 2002.

[SVSG01] Hartmut Schirmacher, Christian Vogelgsang, Hans-Peter Seidel, and Gn-

ther Greiner. Efficient Free Form Light Field Rendering. In Proc. Vision,

Modeling, and Visualization 2001 (VMV01), pages 249–256, 2001.

[SVZ00] D. Snow, P. Viola, and R. Zabih. Exact Voxel Occupancy with Graph Cuts.

In Proceedings of Conference on Computer Vision and Pattern Recognition,

pages 345–352, 2000.

[Sze93] R. Szeliski. Rapid Octree Construction from Image Sequences. Computer

Vision, Graphics and Image Processing, 58(1):23–32, 1993.

[Sze94] R. Szeliski. Image mosaicing for tele-reality applications. In IEEE Work-

shop on Applications of Computer Vision, page 4453, Sarasota, Florida,

December 1994.

[Sze96] R. Szeliski. Video mosaics for virtual environments. In IEEE Computer

Graphics and Applications, page 2230, March 1996.

[Sze99] R. Szeliski. Prediction Error as a Quality Metric for Motion and Stereo.

In Proceedings of International Conference on Computer Vision (ICCV),

pages 781–788, Sept 1999.

[Tec] BeHere Technology. http://www.behere.com.

[TH86] Q. Tian and M. N. Huhns. Algorithms for Subpixel Registration. Computer

Vision, Graphics and Image Processing, 35:220–233, 1986.

[TK92] C. Tomasi and T. Kanade. Shape and Motion from Image Streams under

Orthography: A Factorization Approach. International Journal of Com-

puter Vision, 9(2):137–154, 1992.

[TV98] Emanuele Trucco and Allessandro Verri. Introductory Techniques for 3D

Computer Vision. Prentice Hall, 1998.

[Vek99] O. Veksler. Efficient Graph-based Energy Minimization Methods in Com-

puter Vision. PhD thesis, Cornell University, 1999.

124

[Wes90] L. A. Westover. Footprint Evaluation for Volume Rendering. In Proceedings

of SIGGRAPH 1990, August 1990.

[WH97] John Woodfill and Brian Von Herzen. Real-Time Stereo Vision on the

PARTS Reconfigurable Computer. In Kenneth L. Pocek and Jeffrey Arnold,

editors, IEEE Symposium on FPGAs for Custom Computing Machines,

pages 201–210, Los Alamitos, CA, 1997. IEEE Computer Society Press.

[Wil83] Lance Williams. Pyramidal Parametrics. In Computer Graphics (SIG-

GRAPH 1983 Proceedings), volume 17, pages 1–11, July 1983.

[WND96] Mason Woo, Jackie Neider, and Tom Davic. ”OpenGL Programming

Guide”. Addison-Wesley, second edition, 1996.

[Wol89] L. B. Wolff. Using Polarization to Separate Reflection Components. In

Proceedings of Conference on Computer Vision and Pattern Recognition

(CVPR), page 363C369, 1989.

[Wol90] G. Wolberg. Digital Image Warping. IEEE Computer Society Press, 1990.

[YPW03] R. Yang, M. Pollefeys, and G. Welch. Dealing with Textureless Regions

and Specular Highlights—A Progressive Space Carving Scheme Using a

Novel Photo-consistency Measure. In submitted for publication, under re-

view, 2003.

[YZ02] Ruigang Yang and Zhengyou Zhang. Eye Gaze Correction with Stereovi-

sion for Video-Teleconferencing. In Proceedings of European Conference on

Computer Vision (ECCV), pages 479–494, 2002.

[ZS01] Z. Zhang and Y. Shan. A Progressive Scheme for Stereo Matching. In

M. Pollefeys et al, editor, Springer LNCS 2018: 3D Structure from Images

- SMILE 2000, pages 65–85. Springer-Verlag, 2001.

[ZW94] R. Zabih and J. Woodfill. Non-parametric Local Transforms for Computing

Visual Correspondence. In Proceedings of European Conference on Com-

puter Vision (ECCV), page 151C158, 1994.

125

Appendix A

Sample Code for Real-time VDPC

on Graphics Hardware

I present here complete pseudo code and detailed settings in Pixel Shader for real-time

VDPC (Chapter 4). The code for Pixel Shader is written roughly following the syntax

of nvparser, a generalized compiler for NVIDIA extensions. Documentation about

nvparser can be found on NVIDIA’s web site at http://www.nvidia.com.

A.1 Pseudo code for an OpenGL implementation

Algorithm 3 outlines the implementation of real-time VDPC on graphics hardware,

discussed in Section 4.3.

A.2 Code to compute the squared difference

The piece of code presented here (Algorithm 4) corresponds to function

setupPixelShaderForSDD in Algorithm 3. It assumes that there are m input images.

The alpha channel of the input images contains a gray scale copy of the image, and

the base reference image is stored in tex0. The squared difference is computed on the

gray scale images. The scales in the code are necessary because the unsigned char

values are converted to floating point values between [0, 1] within Pixel Shader. If no

scale is applied, the output squared value (in unsigned char) will be floor((a− b)2/256),

where a and b are the input values (in unsigned char). In my implementation, I use a

combined scale factor of 32, effectively computing floor((a − b)2/32).

A.3 Code to select the best color

The piece of code presented here (Algorithm 5) corresponds to function

setupPixelShaderForMinMax in Algorithm 3. It assumes that the mean colors are

126

stored in the RGB channel while the SSD scores are stored in the alpha channel. It

will select the pixel color (or color-coded depth) with the smaller alpha value.

127

Algorithm 3 Pseudo code for an OpenGL implementation

createTex(workingTexture);

createTex(frameBufferTexture);

for (i = 0; i< steps; i++) {

// the scoring stage;

setupPerspectiveProjection();

glEnable(GL_BLEND);

glBlendFunc(GL_ONE, GL_ONE);

setupPixelShaderForSDD();

for (j = 0; j< inputImageNumber; j++)

projectImage(j, baseReferenceImage);

// the OPTIONAL aggregation stage

// MML is the Maxinum Mipmap Level

if (MML > 0)

sumAllMipLevels(MML);

// the selection stage;

if (i == 0) {

copyFrameToTexture(frameBufferTexture);

continue;

} else

copyFrameToTexture(workingTexture);

setupPixelShaderForMinMax();

setupOrthogonalProjection();

renderTex(workingTexture,

frameBufferTexture);

copyFrameToTexture(frameBufferTexture);

}

128

Algorithm 4 Pixel Shader code to compute the SSD score.

const1 = {1/m, 1/m, 1/m, 1};

// the base reference image will be added

// m-1 times more than the other images;

const0 = {1/((m)(m-1)), 1/((m)(m-1)), 1/((m)(m-1)), 1};

// **** combiner stage 0;

{

rgb {

spare0 = tex1*const1 + tex0*const0;

}

alpha {

spare0 = tex1 - tex0;

scale_by_four ();

}

}

// **** combiner stage 1

{

alpha{

spare0 = spare0*spare0;

scale_by_four ();

}

}

// **** final output

{

out.rgb = spare0.rgb;

out.alpha = spare0;

}

129

Algorithm 5 Pixel Shader code to do the minimum alpha test.

// **** combiner stage 0;

{

alpha {

// spare0 = tex1 - tex0 + 0.5

spare0 = tex1 - half_bias(tex0);

}

}

// **** combiner stage 1

{

rgb{

// select the color with the smaller alpha;

// spare0 = (spare0.alpha < 0.5) ? (tex1) : (tex0);

spare0 = mux();

}

alpha{

// select the smaller alpha value

spare0 = mux();

}

}

// **** final output

{ out = spare0; }

