
Time Complexity Bounds for Shared-memory
Mutual Exclusion

by
Yong-Jik Kim

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2003

Approved by:

James H. Anderson, Advisor

Sanjoy K. Baruah, Reader

Jan F. Prins, Reader

Michael Merritt, Reader

Lars S. Nyland, Reader

Jack Snoeyink, Reader

ii

c© 2003

Yong-Jik Kim

ALL RIGHTS RESERVED

iii

ABSTRACT
YONG-JIK KIM: Time Complexity Bounds for Shared-memory Mutual

Exclusion.
(Under the direction of James H. Anderson.)

Mutual exclusion algorithms are used to resolve conflicting accesses to shared re-

sources by concurrent processes. The problem of designing such an algorithm is widely

regarded as one of the “classic” problems in concurrent programming.

Recent work on scalable shared-memory mutual exclusion algorithms has shown

that the most crucial factor in determining an algorithm’s performance is the amount of

traffic it generates on the processors-to-memory interconnect [23, 38, 61, 84]. In light of

this, the RMR (remote-memory-reference) time complexity measure was proposed [84].

Under this measure, an algorithm’s time complexity is defined to be the worst-case

number of remote memory references required by one process in order to enter and

then exit its critical section.

In the study of shared-memory mutual exclusion algorithms, the following funda-

mental question arises: for a given system model, what is the most efficient mutual

exclusion algorithm that can be designed under the RMR measure? This question is

important because its answer enables us to compare the cost of synchronization in dif-

ferent systems with greater accuracy. With some primitives, constant-time algorithms

are known, so the answer to this question is trivial. However, with other primitives (e.g.,

under read/write atomicity), there are still gaps between the best known algorithms

and lower bounds.

In this dissertation, we address this question. The main thesis to be supported by

this dissertation can be summarized as follows. The mutual exclusion problem exhibits

different time-complexity bounds as a function of both the number of processes (N)

and the number of simultaneously active processes (contention, k), depending on the

available synchronization primitives and the underlying system model. Moreover, these

time-complexity bounds are nontrivial, in that constant-time algorithms are impossible

in many cases.

In support of this thesis, we present a time-complexity lower bound of Ω(log N/

log log N) for systems using atomic reads, writes, and comparison primitives, such as

compare-and-swap. This bound is within a factor of Θ(log log N) of being optimal.

iv

Given that constant-time algorithms based on fetch-and-φ primitives exist, this lower

bound points to an unexpected weakness of compare-and-swap, which is widely regarded

as being the most useful of all primitives to provide in hardware.

We also present an adaptive algorithm with Θ(min(k, logN)) RMR time complexity

under read/write atomicity, where k is contention. In addition, we present another

lower bound that precludes the possibility of an o(k) algorithm for such systems, even

if comparison primitives are allowed.

Regarding nonatomic systems, we present a Θ(log N) nonatomic algorithm, and

show that adaptive mutual exclusion is impossible in such systems by proving that

any nonatomic algorithm must have a single-process execution that accesses Ω(log N/

log logN) distinct variables.

Finally, we present a generic fetch-and-φ-based local-spin mutual exclusion algo-

rithm with Θ(logr N) RMR time complexity. This algorithm is “generic” in the sense

that it can be implemented using any fetch-and-φ primitive of rank r, where 2 ≤ r < N .

The rank of a fetch-and-φ primitive expresses the extent to which processes may “order

themselves” using that primitive. For primitives that meet a certain additional con-

dition, we present a Θ(log N/ log log N) algorithm, which is time-optimal for certain

primitives of constant rank.

v

ACKNOWLEDGMENTS

First, I want to thank my advisor, Jim Anderson, for his support and enthusiasm. I

have learned an enormous amount from working with him, and this dissertation would

not have been possible without his far-reaching insight and constant encouragement.

I also want to thank Michael Merritt, who took the trouble of reading this large

dissertation and flying to attend my defense. Thanks, too, to the rest of my committee:

Jan Prins, Jack Snoeyink, Sanjoy Baruah, and Lars Nyland. I greatly appreciate their

willingness to bend their schedules to accommodate countless meetings and exams,

and also their support and encouragement throughout the process. I would also like to

thank Guido Gerig, my ex-advisor, and people in the medical imaging group, for being

supportive and friendly throughout my stay at UNC.

In addition, I would like to thank people in the distributed algorithms research

community for lively discussions and reviewing earlier versions of the results presented

in this dissertation. I cannot hope to recall everyone who should be mentioned, but

the list would surely include the following people: Hagit Attiya, Faith Fich, Maurice

Herlihy, Leslie Lamport, Victor Luchangco, Maged Michael, Mark Moir, Eric Ruppert,

Jennifer Welch, and many others.

Many thanks to Anand Srinivasan, Phil Holman, and Shelby Funk, for their friend-

ship and their help in term projects, writing papers, and other things. Lucia Cevidanes,

I enjoyed working with you; I hope you will find a better matlab programmer who can

decipher my code!

Special thanks to the Korean friends who made my stay in Chapel Hill a lot more

homelike: Juhyun, Sungeui, Joohee (of the math department), Joohi, Sang-Uok and

Hye-Chung, In-Kyung, Hyemi Choi, Kuan-Hui Lee, and (of course) many, many others.

No words will be enough to thank my family for their love and support. Thank you,

Mom and Dad, Namhee, Heeyeon, and Yonggon. I love all of you.

Finally, I would like to thank Eunjung, my lovely wife. Throughout the years we

have been together, she has always been kind, understanding, and inspiring. Without

her, I would have missed much of what life is.

vi

CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

1 Introduction 1

1.1 Known Local-spin Algorithms . 4

1.2 Known Adaptive Algorithms . 5

1.3 Known Nonatomic Algorithms . 6

1.4 Contributions . 6

1.4.1 General Mutual Exclusion . 8

1.4.2 Adaptive Mutual Exclusion . 9

1.4.3 Nonatomic Mutual Exclusion 9

1.4.4 Mutual Exclusion with fetch-and-φ Primitives 10

1.5 Organization . 11

2 Related Work 12

2.1 Preliminaries . 13

2.2 Local-spin Algorithms . 16

2.2.1 Algorithms that use fetch-and-φ Primitives 17

2.2.2 Algorithms that use Only Reads and Writes 23

2.3 Fast Mutual Exclusion . 26

2.3.1 Algorithm L: Lamport’s Fast Mutual Exclusion Algorithm . . 27

2.3.2 Fast Mutual Exclusion with Local Spinning 29

2.4 Adaptive Algorithms . 30

vii

2.4.1 Adaptive Algorithms using Filters 32

2.4.2 An Adaptive Bakery Algorithm 36

2.4.3 Adaptive Mutual Exclusion with Infinitely Many Processes . . . 37

2.4.4 Local-spin Adaptive Algorithms 38

2.5 Mutual Exclusion with Nonatomic Operations 38

2.6 Time- and Space-complexity Lower Bounds 41

2.6.1 Overview of Proof Methodologies 41

2.6.2 Lower-bound Results . 42

3 Space-optimal Mutual Exclusion Under Read/Write Atomicity 47

3.1 Transformation of Algorithm YA-N 48

3.2 Time Complexity . 55

3.3 Concluding Remarks . 57

4 Adaptive Mutual Exclusion Under Read/Write Atomicity 59

4.1 Adaptive Algorithm . 61

4.1.1 Related Algorithms and Key Ideas 61

4.1.2 Algorithm A-U: Unbounded Algorithm 65

4.1.3 Algorithm A-B: Bounded Algorithm 73

4.1.4 Algorithm A-LS: Linear-space Algorithm 75

4.2 Concluding Remarks . 83

5 Time-complexity Lower Bound for General Mutual Exclusion 85

5.1 Definitions . 87

5.1.1 Atomic Shared-memory Systems 87

5.1.2 Mutual-exclusion Systems . 93

5.1.3 Cache-coherent Systems . 95

5.2 Lower-bound Proof Strategy . 99

5.2.1 Process Groups and Regular Computations 99

5.2.2 Detailed Proof Overview . 103

5.3 Detailed Lower-bound Proof . 110

5.4 Constant-time Algorithm for LFCU Systems 137

viii

5.5 Concluding Remarks . 139

6 Time-complexity Lower Bound for Adaptive Mutual Exclusion 142

6.1 Proof Strategy . 143

6.2 Detailed Lower-bound Proof . 148

6.3 Concluding Remarks . 167

7 Algorithm and Time-complexity Lower Bound for Nonatomic Sys-
tems 169

7.1 Nonatomic Algorithm . 172

7.2 Nonatomic Shared-memory Systems . 175

7.3 Lower Bound: Proof Sketch . 180

7.3.1 Brief Overview . 181

7.3.2 Formal Definitions . 190

7.3.3 Detailed Proof Overview . 198

7.4 Concluding Remarks . 208

8 Generic Algorithm for fetch-and-φ Primitives 209

8.1 Definitions . 212

8.2 Constant-time Generic Algorithm . 213

8.2.1 Algorithm G-CC: A Generic Algorithm for CC Machines . . 214

8.2.2 Algorithm G-DSM: A Generic Algorithm for DSM Machines 218

8.3 Θ(logN/ log logN) Algorithms . 221

8.3.1 Algorithm T0: A Simple Tree Algorithm 222

8.3.2 Algorithm T: A Generic Tree Algorithm 230

8.4 Concluding Remarks . 240

9 Conclusion 241

9.1 Summary . 241

9.2 Future Work . 243

A Correctness Proof for ALGORITHM A-LS in Chapter 4 247

A.1 List of Invariants . 251

ix

A.2 Proof of the Exclusion Property . 256

A.3 Proof of Adaptivity under the RMR Measure 273

B Detailed Proofs of Lemmas 5.1–5.6 285

C Correctness Proof for ALGORITHM NA in Chapter 7 309

D Detailed Proof of the Time-complexity Lower Bound Presented in
Chapter 7 320

E Correctness Proof for ALGORITHM G-CC in Section 8.2.1 360

E.1 List of Invariants . 362

E.2 Proof of the Exclusion Property . 365

E.3 Proof of Starvation-freedom . 385

F Correctness Proof for ALGORITHM T in Section 8.3 392

F.1 List of Invariants . 396

F.2 Proof of the Exclusion Property . 400

F.3 Proof of Starvation-freedom . 434

BIBLIOGRAPHY 446

x

LIST OF TABLES

1.1 Contributions of this dissertation: lower and upper bounds for various
classes of mutual exclusion algorithms. 8

2.1 Comparison of known adaptive algorithms. 31

4.1 Comparison of known adaptive algorithms, extended. 60

xi

LIST OF FIGURES

1.1 Illustration of DSM and CC machines. 3

2.1 Algorithm TA: Array-based queue lock using fetch-and-increment and
fetch-and-add. 17

2.2 Algorithm MCS: List-based queue lock using fetch-and-store and compare-
and-swap. 20

2.3 Algorithm YA-2: A two-process version of Algorithm YA. 24

2.4 (a) Algorithm L: Lamport’s fast mutual exclusion algorithm. (b)
The splitter element and (c) its implementation. 28

2.5 (a) The filter element and (b) its implementation. 33

2.6 (a) A leader-election algorithm using filters. (b) Unbounded version of
Choy and Singh’s algorithm [30]. 34

2.7 Algorithm AST: An adaptive bakery algorithm by Afek, Stupp, and
Touitou [5]. 36

2.8 Algorithm JA: Two-process case. 39

3.1 Variable declarations. 48

3.2 Algorithm YA-N and Algorithm CC. 49

3.3 Algorithm LS and Algorithm F. 52

4.1 The splitter element and the code fragment that implements it. 61

4.2 (a) Renaming grid (depicted for N = 5). (b) Renaming tree. 62

4.3 Renaming tree and overflow tree. 64

4.4 Variables used in Algorithm A-U. 65

4.5 Algorithm A-U: Adaptive algorithm with unbounded memory. . . . 66

4.6 Algorithm A-B: Adaptive algorithm with Θ(N2) space complexity. . 73

4.7 Algorithm A-LS: adaptive algorithm with Θ(N) space complexity. . 76

4.8 Location of a process p during its entry and exit section. 79

4.9 Deflection of a process p at splitter i. 80

5.1 Transition events of an atomic mutual exclusion system. 94

xii

5.2 Process groups. 101

5.3 Induction steps. 104

5.4 Extending a regular computation. 105

5.5 Erasing strategy. 106

5.6 Roll-forward strategy. Part I. 107

5.7 Roll-forward strategy. Part II. 109

5.8 Algorithm for arranging the events of S so that information flow is suf-
ficiently low. 128

5.9 Algorithm for constructing H1, H2, . . . , Hk. 136

5.10 A mutual exclusion algorithm with O(1) time complexity in LFCU systems.138

6.1 Erasing strategy. 146

6.2 Roll-forward strategy. 147

7.1 Algorithms YA-N and NA. 173

7.2 Overlapping reads and writes of the same variable. 177

7.3 A possible solo computation by a process p. 180

7.4 Structure of a regular computation H after m − 1 induction steps. . . . 182

7.5 Extensions of H. 183

7.6 Covering strategy. 188

7.7 The use of reserve processes to “exchange” two processes before erasing. 189

7.8 The structure of a regular computation. 193

7.9 The single-writer case. 195

7.10 Construction of Y from Act(H). 199

7.11 The chain-erasing procedure. 201

7.12 An example of chain erasing. 202

7.12 An example of chain erasing, continued. 203

7.13 Construction of the “conflict graph” G. 205

7.14 Erasing strategy. 207

8.1 Algorithm G-CC: Generic fetch-and-φ-based mutual exclusion algo-
rithm for CC machines. 214

8.2 The structure of Algorithm G-CC. 215

xiii

8.3 Algorithm G-DSM: Generic fetch-and-φ-based mutual exclusion al-
gorithm for DSM machines. 219

8.4 Definitions of NodeType, AcquireNode, and ReleaseNode. 222

8.5 Algorithm T0: A tree-structured algorithm using a NodeType object. 223

8.6 Arbitration tree of Algorithms T0 and T. 224

8.7 Structure of a node used in Algorithm T0. 225

8.8 Variables used in Algorithm T. 232

8.9 Algorithm T. 233

8.9 Algorithm T, continued. 234

A.1 Algorithm A-LS with auxiliary variables added. (Continued on the
next page.) . 248

A.1 Algorithm A-LS with auxiliary variables added, continued. 249

C.1 Recursive version of Algorithm NA. 310

D.1 The chain-erasing procedure to erase processes in K = {p1, p2, . . . , ph}.335

E.1 Algorithm G-CC with auxiliary variables added. 361

F.1 Algorithm T with auxiliary variables added. 393

F.1 Algorithm T with auxiliary variables added, continued. 394

F.1 Algorithm T with auxiliary variables added, continued. 395

CHAPTER 1

Introduction

Mutual exclusion algorithms are used to resolve conflicting accesses to shared resources

by concurrent processes. The problem of designing such algorithms is widely regarded

as one of the “classic” problems in concurrent programming. In the mutual exclusion

problem, a process accesses the resource to be managed by executing a “critical section”

of code. Activities not involving the resource occur within a corresponding “noncritical

section.” Before and after executing its critical section, a process executes two other

code fragments, called “entry” and “exit” sections, respectively. A process may halt

within its noncritical section but not within its critical section. Furthermore, no vari-

ables (other than program counters) accessed within a process’s entry or exit section

may be accessed within its critical or noncritical section. The objective is to design the

entry and exit sections so that the following requirements hold.

• Exclusion: At most one process can execute its critical section at any time.

• Livelock-freedom: If some process is in its entry section, then some process

eventually executes its critical section.

Often, livelock-freedom is replaced by the following stronger property.

• Starvation-freedom: If some process is in its entry section, then that process

eventually executes its critical section.

For either variant, livelock-freedom or starvation-freedom, the following is required:

if a process is in its exit section, then it eventually enters its noncritical section (this

property holds trivially for most algorithms).

2

Previous work on mutual exclusion developed algorithms for both shared-memory

and message-passing systems. In this dissertation, we present several results that per-

tain to shared-memory algorithms.

Shared-memory mutual exclusion algorithms can be divided into two categories,

based on whether they employ operating-system services. Due to the Exclusion prop-

erty, when a process is in its critical section, all other processes in their entry sections

must wait. If operating-system services that suspend the execution of a waiting pro-

cess are not available, then such waiting must be done by busy waiting : each waiting

process repeatedly tests a condition by accessing shared variables, until that condition

is satisfied.

In this dissertation, we consider only busy-waiting algorithms that do not use

operating-system services. Although almost all modern operating systems support mul-

tiprogramming, busy-waiting algorithms still have two important applications. First, if

the expected waiting duration is shorter than the overhead induced by a context switch,

then it is desirable to avoid operating system calls altogether. Thus, busy waiting is

more efficient in this case. Second, in a multiprocessor system, a processor with a wait-

ing process may have no other job to execute. In such a case, invoking operating-system

services does not provide any advantage.

Among recent research on shared-memory mutual exclusion, work on “local-spin”

algorithms has been one of the most significant trends. Most early shared-memory

algorithms employ somewhat complicated busy-waiting loops in which many shared

variables are read and written [34, 49]. Under contention, such busy-waiting loops

generate excessive traffic on the processors-to-memory interconnect, resulting in poor

performance.

Local-spin mutual exclusion algorithms avoid this problem by requiring all busy-

waiting loops to be read-only loops in which one or more “spin variables” are repeatedly

tested and no shared variables are written. Such spin variables must be locally accessi-

ble, i.e., they can be accessed without causing an interconnect traversal. Two architec-

tural paradigms have been considered in the literature that allow shared variables to be

locally accessed: distributed shared-memory (DSM) machines and cache-coherent (CC)

machines. Both are illustrated in Figure 1.1. In a DSM machine, each processor has its

own memory module that can be accessed without traversing the global interconnect.

On such a machine, a shared variable can be made locally accessible by storing it in a

local memory module. In a CC machine, each processor has a private cache, and some

hardware protocol is used to enforce cache consistency. As a result, writable shared

3

P P

MM

Interconnect

P P

C C

Interconnect

M M

.

. . .

(a) (b)

Figure 1.1: (a) DSM model. (b) CC model. In both insets, ‘P’ denotes a processor,
‘C’ a cache, and ‘M’ a memory module.

data can be cached. On such a machine, a shared variable becomes locally accessible

by migrating to a local cache line. In this dissertation, we consider a DSM machine

with caches that are kept coherent to be a CC machine.

We also assume that there is a unique process executing on each processor; we

further assume that these processes do not migrate. If instead multiple processes are

allowed to execute on the same processor (multiprogramming), then busy-waiting-based

algorithms are probably inappropriate, since the preemption of a waiting process may

allow better processor utilization. In addition, allowing process migration would com-

plicate the definition of a “locally accessible” variable in a way that is unnecessarily

distracting.

In local-spin algorithms for DSM machines, each process must have its own dedi-

cated spin variables (which must be stored in its local memory module). In contrast,

in algorithms for CC machines, processes may share spin variables, because each pro-

cess can read a different cached copy. It is easy to see that any algorithm that locally

spins on a DSM machine will also locally spin on a CC machine, while the reverse is

not necessarily true. For this reason, it is generally more difficult to design local-spin

algorithms for the DSM model. (Although virtually every modern multiprocessor is

cache-coherent, non-cache-coherent DSM systems are still used in embedded applica-

tions, where cheaper computing technology often must be used due to cost limitations.

Thus, the DSM model is of relevance for reasons other than historical interest.)

Recent work on scalable local-spin mutual exclusion algorithms has shown that the

most crucial factor in determining an algorithm’s performance is the amount of in-

terconnect traffic it generates [23, 38, 61, 84]. In light of this, we adopt the RMR

4

(remote-memory-reference) time complexity measure [84] throughout most of this dis-

sertation: the RMR time complexity of a mutual exclusion algorithm is defined to be

the worst-case number of remote memory references by one process in order to enter

and then exit its critical section. A remote memory reference is a shared variable access

that requires an interconnect traversal.

An algorithm may have different RMR time complexities under the CC and DSM

models because the notion of a remote memory reference differs under these two models.

In the CC model, we assume that, once a spin variable has been cached, it remains

cached until it is either updated or invalidated as a result of being modified by another

process on a different processor. In other words, we ignore any cache displacements

caused by cache capacity or associativity constraints or by the execution of code within

the operating system (e.g., interrupt service routines).

Before describing the contributions of this dissertation, we first review relevant work

on mutual exclusion in the following sections. In particular, we discuss known local-spin

algorithms in Section 1.1, adaptive algorithms in Section 1.2, and nonatomic algorithms

in Section 1.3.

1.1 Known Local-spin Algorithms

The first local-spin algorithms were algorithms in which fetch-and-φ primitives1 are

used to enqueue blocked processes onto the end of a “spin queue” [23, 38, 61]. In

each of these algorithms, a constant number of remote memory references is required

per critical-section execution. The algorithms vary in the synchronization primitives

used, and whether spinning is local on both CC and DSM systems. The three most

well-known such algorithms are due to T. Anderson [23], Graunke and Thakkar [38],

and Mellor-Crummey and Scott [61].

• T. Anderson’s queue-based algorithm [23] uses both fetch-and-increment and

fetch-and-add. This algorithm has O(1) RMR time complexity under the CC

model.

• Graunke and Thakkar’s algorithm [38] uses fetch-and-store. This algorithm has

O(1) RMR time complexity under the CC model.

1Formal definitions of the primitives mentioned in this section are given in Chapter 2.

5

• Mellor-Crummey and Scott’s algorithm [61] uses both compare-and-swap and

fetch-and-store. This algorithm has O(1) RMR time complexity under both the

DSM and CC model.

Each of the algorithms mentioned above requires one or more strong synchronization

primitives. This led some researchers to question whether such primitives were in

fact necessary for local-spin synchronization. Anderson presented the first local-spin

mutual exclusion algorithm that uses only read and write operations. His algorithm has

Θ(N) RMR time complexity, where N is the number of processes [11].2 Later, Yang

and Anderson presented a read/write algorithm with Θ(logN) RMR time complexity,

in which instances of a local-spin mutual exclusion algorithm for two processes are

embedded within a binary arbitration tree [84].

1.2 Known Adaptive Algorithms

It is generally believed that “contention for a critical section is rare in well-designed

systems” [56]. Thus, it is desirable that the time complexity of a mutual exclusion

algorithm should not depend exclusively on N (the number of processes), which may

be much larger than the number of concurrently active processes. This insight led to

a major research trend in work on mutual exclusion, namely, the study of “adaptive”

algorithms.

A mutual exclusion algorithm is adaptive if its time complexity (under some mea-

sure) is a function of the number of contending processes [30, 63, 78]. Adaptive mu-

tual exclusion algorithms based on read and write operations have been proposed by

Styer [78], Choy and Singh [30], Attiya and Bortnikov [24], and Afek, Stupp and

Touitou [5]. Each of these algorithms is a non-local-spin algorithm,3 and is adaptive

under some time complexity measure. (A detailed discussion of various time complexity

measures of relevance in work on adaptive algorithms is given in Section 2.4.)

2Throughout this dissertation, N is defined to be the total number of processes, and is assumed to
be known a priori.

3Actually, these algorithms are adaptive under the RMR measure on CC machines with write-
update caches. In a system with write-update caches, when a processor writes to a variable v that is
also cached on other processors, a message is sent to these processors so that they can update v’s value
and maintain cache consistency.
Since these algorithms are quite complicated, it is unclear whether they are adaptive on CC machines

in general.

6

1.3 Known Nonatomic Algorithms

In most of the algorithms mentioned so far, shared variables are assumed to be accessed

atomically. However, requiring atomic memory access is tantamount to assuming mu-

tual exclusion in hardware [51]. Thus, mutual exclusion algorithms requiring this are

in some sense circular.

In nonatomic algorithms, variable accesses are assumed to take place over intervals

of time, and hence may overlap one another. Lamport presented the first nonatomic

algorithm, his famous bakery algorithm [51], which is not a local-spin algorithm and uses

variables of unbounded range. In later work, Lamport presented four other nonatomic

algorithms, each with bounded memory [54]. These algorithms differ in the progress

and fault-tolerance properties they satisfy. None are local-spin algorithms. Anderson’s

Θ(N) local-spin algorithm [11], which is mentioned in Section 1.1, was also the first

nonatomic local-spin algorithm.

1.4 Contributions

Recent work on shared-memory mutual exclusion has shed some light on the following

fundamental question: for a given system model, what is the most efficient mutual

exclusion algorithm that can be designed under the RMR measure? This question

is important because its answer enables us to compare the cost of synchronization

in different systems with greater accuracy. For example, its answer may help system

designers to analyze the relative costs and merits of different synchronization primitives

that may be provided.

With primitives such as fetch-and-increment and fetch-and-store, the answer to the

question above is trivial, because constant-time algorithms are already known [23, 38,

61], as mentioned in Section 1.1. However, with other primitives, there are still gaps

between the best known algorithms and lower bounds. For example, under read/write

atomicity, Yang and Anderson’s algorithm [84], the most efficient algorithm currently

known, has Θ(logN) time complexity.

Anderson and Yang [22] presented several lower bounds that establish trade-offs

between the RMR time complexity required for mutual exclusion and write- and access-

contention, where write-contention (access-contention) is the number of processes that

may potentially be simultaneously enabled to write (access) the same shared variable.

7

Cypher [33] was the first to present a lower bound under the RMR measure under

arbitrary access-contention. In particular, he established a lower bound of Ω(log logN/

log log log N) for systems with reads, writes, and comparison primitives. In this dis-

sertation, we present a substantially improved lower bound of Ω(log N/ log log N) in

Chapter 5.

These results indicate that we can obtain a nontrivial classification of (shared-

memory) system models based on the time complexity of available mutual exclusion

algorithms. Moreover, as shown shortly, this classification extends (in a nontrivial way)

to a wide variety of models and algorithms, such as nonatomic and adaptive algorithms.

The main thesis to be supported by the work in this dissertation is directed at the

question above. This thesis is stated below.

The mutual exclusion problem exhibits different time complexity bounds as

a function of both the number of processes (N) and current contention (k),

depending on the available synchronization primitives.

• In a nonatomic system, Ω(log N/ log log N) RMR time complexity is

required of any mutual exclusion algorithm, and thus adaptive algo-

rithms are impossible.

• In an atomic system, O(min(k,max(1, logr N))) RMR time complexity

is possible, if a primitive of “rank” r is available (the notion of a rank

is introduced later in this dissertation). Moreover, in a system with

only reads, writes, and comparison primitives, Ω(log N/ log log N)

RMR time complexity is required of any mutual exclusion algorithm,

and o(k) RMR time complexity is impossible.

Many of the results presented in this dissertation support this thesis directly, while

others are by-products of this research. In the following subsections, we describe the

contributions of this dissertation in detail. Lower and upper time-complexity bounds

for various classes of mutual exclusion algorithms are summarized in Table 1.1. In

this table, inset (a) lists various results obtained before the research reported in this

dissertation; inset (b) lists the contributions of this dissertation, which are described

below.

8

Class of algorithms Upper bound Lower bound

General algorithms with reads,
writes, and comparison primitives

Θ(logN) [84] Ω(log logN/ log log logN) [33]

Adaptive algorithms with reads,
writes, and comparison primitives

(no local-spin algorithm
under the DSM model)

—

Nonatomic algorithms Θ(N) [11] —

Algorithms with
fetch-and-φ primitives
• fetch-and-increment and Θ(1) (CC model) [23] Θ(1) (CC model)

fetch-and-add

• fetch-and-store Θ(1) (CC model) [38] Θ(1) (CC model)

• fetch-and-increment and Θ(1) [61] Θ(1)
compare-and-swap

(a) Results obtained before my research.

Class of algorithms Upper bound Lower bound

General algorithms with reads,
writes, and comparison primitives

Θ(logN) [84] Ω(logN/ log logN) (Ch. 5)

Adaptive algorithms with reads,
writes, and comparison primitives

O(min(k, logN)) (Ch. 4) o(k) is impossible (Ch. 6)

Nonatomic algorithms Θ(logN) (Ch. 7) Ω(logN/ log logN) (Ch. 7)

Algorithms with fetch-and-φ
primitives with rank r

O(min(k,max(1, logr N))) (Ch. 8) —

(b) Contributions of this dissertation.

Table 1.1: Contributions of this dissertation: lower and upper bounds for various classes
of mutual exclusion algorithms. Each entry applies to both DSM and CC system models
unless otherwise noted. In this table, N and k denote the number of processes and
current contention, respectively.

1.4.1 General Mutual Exclusion

In Chapter 5, we present a time-complexity lower bound of Ω(log N/ log log N) for

systems using reads, writes, and comparison primitives, such as compare-and-swap.

Given Yang and Anderson’s algorithm [84], this bound is within a factor of Θ(log logN)

of being optimal.

Given that constant-time algorithms based on fetch-and-φ primitives exist, this

lower bound points to an unexpected weakness of compare-and-swap, which is widely

regarded as being the most useful of all primitives to provide in hardware. In particular,

this result implies that the best algorithm based on compare-and-swap can have RMR

time complexity that is at most Θ(1/ log logN) times that of the best algorithm based

on reads and writes.

9

1.4.2 Adaptive Mutual Exclusion

In Chapter 4, we present an adaptive algorithm with Θ(min(k, log N)) RMR time

complexity under read/write atomicity, where k is contention. This is the first adaptive

local-spin algorithm ever proposed for this model. (As discussed later, Afek, Stupp,

and Touitou [6] have independently devised another local-spin adaptive algorithm, with

a structure similar to our algorithm.)

We also present another lower bound that precludes the possibility of an o(k) algo-

rithm for such systems. In particular, we prove the following:

For any k, there exists some N such that, for any N -process mutual exclu-

sion algorithm based on reads, writes, or comparison primitives, a compu-

tation exists involving Θ(k) processes in which some process performs Ω(k)

remote memory references to enter and exit its critical section.4

One may wonder whether a Ω(min(k, log N/ log log N)) lower bound follows from

our two lower bounds. Unfortunately, that is not the case, since we have shown that

Ω(k) RMR time complexity is required provided N is sufficiently large.

1.4.3 Nonatomic Mutual Exclusion

As explained in Section 1.3, the only prior nonatomic local-spin algorithm is that of

Anderson [11], which has Θ(N) RMR time complexity. Thus, we are led to the following

two questions.

• Is it possible to devise a nonatomic local-spin algorithm with Θ(log N) time

complexity, i.e., that matches the most efficient atomic algorithm known?

• Is it possible to devise an adaptive nonatomic algorithm?

Both questions are answered in this dissertation. We answer the first question in the

affirmative by presenting a Θ(logN) nonatomic algorithm, which is derived from Yang

and Anderson’s arbitration-tree algorithm by means of simple transformations. On the

other hand, the answer to the second question is negative. We show this by proving that

any nonatomic algorithm must have a single-process execution in which that process

accesses Ω(log N/ log log N) distinct variables. Therefore, adaptive algorithms are

impossible even if caching techniques are used to avoid accessing the interconnection

network.

4The actual bound on N is given in Theorem 6.1 as N ≥ (2k + 4)2(2k−1).

10

1.4.4 Mutual Exclusion with fetch-and-φ Primitives

As shown in Section 1.1, constant-time local-spin mutual algorithms are known that

use primitives such as fetch-and-increment and fetch-and-store. The existence of these

constant-time algorithms gives rise to a number of intriguing questions regarding mutual

exclusion algorithms. Is it possible to devise an O(1) algorithm for DSM machines that

uses a single fetch-and-φ primitive? Can such an algorithm be devised using primitives

other than fetch-and-increment and fetch-and-store? Is it possible to automatically

transform a local-spin algorithm for CC machines so that it has the same RMR time

complexity on DSM machines? Can we devise a ranking of synchronization primitives

that indicates the singular characteristic of a primitive that enables a certain RMR

time complexity (for mutual exclusion) to be achieved? Such a ranking would provide

information relevant to the implementation of blocking synchronization mechanisms

that is similar to that provided by Herlihy’s wait-free hierarchy [41], which is relevant

to nonblocking mechanisms.5

We partially address these questions by presenting a generic N -process fetch-and-φ-

based local-spin mutual exclusion algorithm that has O(1) RMR time complexity on

both CC and DSM machines. This algorithm is “generic” in the sense that it can be

implemented using any fetch-and-φ primitive of rank 2N . Informally, a primitive of

rank r has sufficient symmetry-breaking power to linearly order up to r invocations

of that primitive. This generic algorithm breaks new ground because it shows that

O(1) RMR time complexity is possible using a wide range of primitives, on both CC

and DSM machines. By applying our generic algorithm within an arbitration tree, one

can easily construct a Θ(max(1, logr N)) algorithm using any primitive of rank r ≥ 2.

Furthermore, by combining this arbitration-tree algorithm with our adaptive algorithm

presented in Chapter 4, one can easily construct an O(min(k,max(1, logr N))) adaptive

algorithm (where k is contention), using any primitive of rank r ≥ 2.

5In Herlihy’s hierarchy, a primitive has consensus number n if it can be used to implement wait-free
consensus for n, but not n+ 1, processes. In the consensus problem, each process starts with its own
input value, and every process must eventually agree on the same output value, which must be the
input value of some participating process. An object’s ranking is determined by its consensus number.
Herlihy’s hierarchy is concerned with computability : if the consensus number of a primitive (or

object) X is higher than that of a primitive (or object) Y , then X can be used to implement Y
(in a non-blocking manner) but not vice versa. The ranking suggested here is not concerned with
computability, but rather time complexity. Nonetheless, both rankings provide information concerning
the usefulness of primitives. Herlihy’s hierarchy indicates which primitives should be supported in
hardware if one is interested in implementing nonblocking algorithms; the proposed ranking indicates
which primitives should be supported in hardware if one is interested in implementing scalable mutual
exclusion algorithms.

11

For primitives that meet a certain additional condition, we present a Θ(log N/

log logN) algorithm, which is time-optimal for certain primitives of contant rank. This

algorithm can also be made adaptive in a similar way.

1.5 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we describe prior

work on shared-memory mutual exclusion. In Chapter 3, we present a simple transfor-

mation of Yang and Anderson’s algorithm that results in optimal space complexity. In

Chapter 4, we present an adaptive mutual exclusion algorithm with atomic reads and

writes. In Chapter 5, we present our time-complexity lower bound for generic mutual

exclusion algorithms based on reads, writes, and comparison primitives. In Chapter 6,

a time-complexity lower bound for adaptive mutual exclusion algorithms is given. In

Chapter 7, we present a mutual exclusion algorithm based on nonatomic reads and

writes, together with a very close time-complexity lower bound. In Chapter 8, we de-

scribe mutual exclusion algorithms based on generic fetch-and-φ primitives. Finally, we

conclude and discuss future directions for this research in Chapter 9. Detailed proofs

of the lower bounds given in Chapters 5 and 7, as well as correctness proofs for the

algorithms given in Chapters 4, 7, and 8, are given in appendices.

CHAPTER 2

Related Work∗

In this chapter, we survey prior research on shared-memory mutual exclusion. As men-

tioned in Chapter 1, we will consider only busy-waiting algorithms that do not rely

on operating-system services. The first such algorithm was published by Dijkstra in

1965 [34]. Dijkstra’s algorithm, which is based on an earlier unpublished two-process

algorithm by Dekker, is livelock-free but not starvation-free. A related algorithm pub-

lished by Knuth in 1966 was the first starvation-free solution [49]. In the years since

the publication of Dijksta’s and Knuth’s algorithms, many other algorithms have been

proposed. Many of these algorithms are described in a survey by Michel Raynal in

1986 [72]. A more detailed description of the algorithms mentioned in this chapter, as

well as other recent algorithms, can be found in [20].

In recent research on shared-memory mutual exclusion, local-spin algorithms have

been one of the major research trends. Most early shared-memory algorithms employ

somewhat complicated busy-waiting loops in which many shared variables are read

and written. Under contention, such busy-waiting loops generate excessive traffic on

the processors-to-memory interconnection network, resulting in poor performance. In

local-spin mutual exclusion algorithms, this problem is avoided by requiring all busy-

waiting loops to be read-only loops in which only variables cached or stored locally are

accessed. We survey work on local-spin algorithms in Section 2.2, after first presenting

some needed definitions in Section 2.1.

Another major research trend is work on “fast” mutual exclusion algorithms, namely,

algorithms in which a process executes a constant-time “fast path” in the absence of

contention. This line of research was motivated by the widely accepted belief that

∗The contents of this chapter are adapted from the following survey paper.
[20] J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion: Major research trends
since 1986. Distributed Computing, 16(2–3):75–110, September 2003.

13

“contention for a critical section is rare in well-designed systems” [56]. In Section 2.3,

an overview of research on such algorithms is presented.

Over the years, work on fast mutual exclusion algorithms evolved into a broader

study of “adaptive” algorithms. In many fast algorithms, there is a sudden jump in time

complexity between the contention-free and contention-present cases. In an adaptive

algorithm, the rise in time complexity as contention increases is more gradual. Research

on such algorithms is surveyed in Section 2.4.

In early work on the mutual exclusion problem, Lamport noted the circularity in-

herent in algorithms that require accesses of shared memory to be atomic [51]. In the

same paper, he presented an algorithm that is correct even if memory accesses are

nonatomic. Many nonatomic algorithms have been devised since then. A brief survey

of this work is given in Section 2.5.

Reducing time complexity has been an overriding theme in all of the work described

above. In work on local-spin algorithms, time complexity is measured by counting

memory accesses that cause interconnection network traffic. In work on fast mutual

exclusion algorithms, time complexity in the absence of contention is the primary con-

cern. In work on adaptive algorithms, the goal is to minimize time complexity as a

function of contention. Given this emphasis on time, it is not surprising that several

researchers began to investigate fundamental limits on time complexity through work

on lower bounds. Space-complexity bounds has also received related interest. Research

on time- and space-complexity lower bounds is discussed in Section 2.6.

2.1 Preliminaries

Before presenting any algorithms, we first define our execution model and describe

notational conventions that will be used in the rest of this dissertation. A concurrent

program consists of a set of processes and a set of variables. A process is a sequential

program consisting of labeled statements. (We sometimes refer to such statements as

operations .) Each variable of a concurrent program is either private or shared. A

private variable is defined only within the scope of a single process, whereas a shared

variable is defined globally and may be accessed by more than one process. In the

code listings we present, private variables are uncapitalized and shared variables are

capitalized. To distinguish private variables of different processes in our algorithm

descriptions, we sometimes use the notation p.v to refer to the private variable v of

process p. Each process of a concurrent program has a special private variable called

14

its program counter : the statement with label k in process p may be executed only

when the value of the program counter of p equals k.

A program’s semantics is defined by its set of “fair histories.” The definition of a

fair history, which is given below, formalizes the requirement that each statement of a

program is subject to weak fairness. Before giving the definition of a fair history, we

introduce a number of other concepts; all of these definitions apply to a given concurrent

program on atomic systems. (Only atomic statement execution is considered here. Our

notion of a nonatomic system is formally defined in Chapter 7.)

A state is an assignment of values to the variables of the program. One or more

states are designated as initial states . If state u can be reached from state t via the

execution of statement s, then we say that s is enabled at state t and we write t
s→u. If

statement s is not enabled at state t, then we say that s is disabled at t. A history is

a sequence t0
s0→t1

s1→ · · · , where t0 is an initial state. A history may be either finite or

infinite; in the former case, it is required that no statement be enabled at the last state

of the history. We say that a history satisfies weak fairness, or simply, is fair, if it is

finite or if it is infinite and each statement is either disabled at infinitely many states

of the history or is infinitely often executed in the history [57]. Note that this fairness

requirement implies that each continuously-enabled statement is eventually executed.

Each mutual exclusion algorithm we consider is specified as a concurrent program

with N processes, each with the following structure.

while true do
Noncritical Section;
Entry Section;
Critical Section;
Exit Section

od

The conditions imposed on these code sections were described in Chapter 1. The

Exclusion property is required to hold in any history, while the Livelock-freedom and

Starvation-freedom properties are required to hold only in fair histories. Unless specified

otherwise, we will assume that any solution to the mutual exclusion problem is required

to be starvation-free.

Throughout this dissertation, we assess space complexity by counting words of mem-

ory (not bits). We use several different time complexity measures, which are introduced

as needed.

15

Some of the algorithms we consider employ read-modify-write synchronization prim-

itives. These primitives execute atomically, i.e., they cause a single state transition.

The primitives we consider include fetch-and-increment, fetch-and-decrement, fetch-

and-add, fetch-and-store, and compare-and-swap. These primitives are defined below.

In these definitions, Var denotes a shared variable, and val, old, and new are used as

input and output parameters. In the definition of compare-and-swap, Var , old , and

new are assumed to be type-consistent. We assume that Var is passed by reference.

(That is, the address of Var is actually passed as an argument.)

Primitives compare-and-swap and test-and-set are ordinarily defined to return a

boolean value indicating if the comparison succeeded. In this dissertation, we instead

assume that each returns the accessed variable’s original value, as in [41]. It is straight-

forward to modify any algorithm that uses the boolean versions of these primitives to

use the versions considered in this dissertation.

fetch-and-increment(Var : integer) returns integer
old := Var ;
Var := Var + 1;
return(old)

fetch-and-decrement(Var : integer) returns integer
old := Var ;
Var := Var − 1;
return(old)

fetch-and-add(Var : integer, val : integer constant)
Var := Var + val

fetch-and-store(Var , new) returns typeof(Var)
old := Var ;
Var := new ;
return(old)

test-and-set(bit : boolean) returns boolean
if bit = false then bit := true; return false

else return true
fi

compare-and-swap(Var , old , new) returns boolean
if Var = old then Var := new ; return old

else return Var
fi

16

Throughout this dissertation, the statement “await B,” where B is a boolean ex-

pression, is used as a shorthand for the busy-waiting loop “while ¬B do /∗ null ∗/
od.” Also, we use log n to denote log2 n (base-2 logarithm), and use logk n to denote

(log2 n)
k.

2.2 Local-spin Algorithms

In local-spin mutual exclusion algorithms, all busy waiting is by means of read-only

loops in which one or more “spin variables” are repeatedly tested. Such spin variables

must be locally accessible, i.e., they can be accessed without causing message traffic

on the processors-to-memory interconnection network. As explained in Chapter 1,

two architectural paradigms have been considered in the literature that allow shared

variables to be locally accessed: distributed shared-memory (DSM) machines and cache-

coherent (CC) machines. Both are illustrated in Figure 1.1. As explained in Chapter 1,

we define the RMR (remote memory reference) time complexity of a mutual exclusion

algorithm to be the worst-case number of remote memory references by one process in

order to enter and then exit its critical section.

The first local-spin algorithms were “queue-lock” algorithms in which read-modify-

write primitives are used to enqueue blocked processes onto the end of a “spin queue” [23,

38, 61]. In each of these algorithms, a process enqueues itself by using a read-modify-

write primitive to update a shared “tail” pointer; a process’s predecessor (if any) in the

queue is indicated by the primitive’s return value. A process in the spin queue waits

(if necessary) until released by its predecessor. In Section 2.2.1 below, three queue-lock

algorithms are considered in detail and a brief overview of several related algorithms

is presented. The three algorithms covered in detail vary in the synchronization prim-

itives used, and whether spinning is local on both CC and DSM systems. In each, a

constant number of remote memory references is required per critical-section execution,

provided spinning is local.

Yang and Anderson later called into question the necessity of strong synchronization

primitives by presenting an algorithm with comparable performance that uses only read

and write operations [84]. In terms of RMR time complexity, however, this algorithm is

somewhat inferior to the queue locks mentioned above, as it requires Θ(logN) remote

memory references per critical-section execution. This algorithm and a few other related

algorithms are described in Section 2.2.2.

17

const
has lock = 0;
must wait = 1

shared variable
Slots: array[0..N − 1] of {has lock , must wait};
Next slot : integer initially 0

initially
Slots[0] = has lock ∧
(∀k : 0 < k < N :: Slots[k] = must wait)

process p /∗ 0 ≤ p < N ∗/
private variable

my place: integer

while true do
1: Noncritical Section;
2: my place := fetch-and-increment(Next slot);
3: if my place = N − 1 then
4: fetch-and-add(Next slot , −N)

fi;
5: my place := my place mod N ;
6: await Slot [my place] = has lock ; /∗ spin ∗/
7: Slots[my place] := must wait ;
8: Critical Section;
9: Slot [my place + 1 mod N] := has lock

od

Figure 2.1: Algorithm TA: Array-based queue lock using fetch-and-increment and
fetch-and-add.

2.2.1 Algorithms that use fetch-and-φ Primitives

We begin by considering two queue-lock algorithms, by T. Anderson [23] and by

Graunke and Thakkar [38], in which the spin queue is stored in a shared array. Each of

these algorithms has O(1) RMR time complexity under the CC model, but unbounded

RMR time complexity under the DSM model. In the third algorithm we consider, the

spin queue is stored as a shared linked list. This algorithm, which was proposed by

Mellor-Crummey and Scott [61], has O(1) RMR time complexity under both the CC

and DSM models.

Algorithm TA. T. Anderson’s algorithm [23], denoted Algorithm TA,1 is shown

in Figure 2.1. Algorithm TA uses both fetch-and-increment and fetch-and-add. (A

1Throughout this dissertation, an algorithm is named after the initial of its author(s) (if it is
published by others) or its chief characteristic (if it belongs to the work presented in this dissertation).

18

fetch-and-increment primitive that takes the value to add as input can be used in place

of fetch-and-add; in this case, the return value of fetch-and-increment is ignored.) The

spin queue is defined by an array of “slots.” These slots are indexed from 0 to N − 1.

The next free slot at the tail of the queue is indicated by the shared variable Next slot .

A process p enqueues itself onto the end of the spin queue by simply using fetch-and-

increment to increment Next slot (statement 2). In addition to updating Next slot , the

fetch-and-increment operation returns the slot for p to use, which is stored in the private

variable p.my place. The main complication to be dealt with occurs when some process

increments Next slot beyond slot N − 1. In this case, the process q that increments

Next slot from N − 1 to N will find q.my place = N − 1 at statement 3, and then

execute the fetch-and-add operation at statement 4 to “correct” the value of Next slot .

(Note that Next slot may be incremented at most N −1 times by other processes before

this correcting step is performed. This is because any such process is enqueued after q

and thus is blocked until q finishes its critical section.) Statement 5 ensures that the

value of q.my place ranges over {0, . . . , N − 1}.
The value of each slot ranges over {has lock , must wait}. A process in its entry

section waits until its slot has the value has lock (statement 6). If there is a successor

to process p in the spin queue, then its slot is p.my place + 1 mod N . If a successor

does exist, then it is granted the lock when p executes statement 9. If no successor

exists, then statement 9 ensures that the lock will be granted to the next process that

performs the fetch-and-increment operation at statement 2. (The initial conditions also

ensure this.) Statement 7 is executed by p to reinitialize its slot for future use.

The RMR time complexity of Algorithm TA is clearly determined by the number

of remote memory references generated by statement 6. Under the CC model, state-

ment 6 generates a constant number of remote memory references. To see this, note

that the first read of Slots [p.my place] creates a cached copy. If Slots [p.my place] =

must wait holds, then Slots [p.my place] will remain cached until it is either invalidated

or updated by another process, but this occurs only when p’s predecessor in the spin

queue executes statement 9, which establishes Slots [p.my place] = has lock . At this

point, an additional read of Slots [p.my place] causes p’s waiting to terminate. Un-

der the DSM model, Algorithm TA has unbounded RMR time complexity. This is

because different processes spin on different memory locations at different times, and

hence, these locations cannot be statically allocated so that all spins are local. Thus,

we have the following theorem.

19

Theorem 2.1 (T. Anderson) The mutual exclusion problem can be solved with O(1)

RMR time complexity using fetch-and-increment under the CC model. �

Algorithm GT. Graunke and Thakkar’s algorithm [38], denoted Algorithm GT,

is also an array-based queue lock, with a structure similar to the previous algorithm. In

this case, however, the enqueue operation is implemented using fetch-and-store. Recall

that in Algorithm TA, the association of slots to processes is not fixed but the

ordering of the slots comprising the queue of waiting processes is (e.g., if slot 0 is not

at the end of the queue, then slot 1 is the slot following it). Here, the association of

slots to processes is fixed but the ordering of the slots comprising the queue varies

dynamically. In particular, each slot is defined by a boolean value and is “owned” by a

unique process. A process enqueues itself by appending its slot to the end of the queue.

A waiting process uses its predecessor ’s slot as a spin variable, i.e., a process p with a

predecessor q in the queue waits until q updates the slot owned by q. This is different

from Algorithm TA, where each process uses the slot it obtains from the fetch-and-

increment operation as its spin variable.

The RMR time complexity of Algorithm GT is O(1) under the CC model. Under

the DSM model, Algorithm GT has unbounded RMR time complexity. This is

because each process waits on information stored within the slot of its predecessor in

the spin queue. This information cannot be statically allocated so that all spins are

local. Thus, from Algorithm GT, we have the following theorem.

Theorem 2.2 (Graunke and Thakkar) The mutual exclusion problem can be solved

with O(1) RMR time complexity using fetch-and-store under the CC model. �

Algorithm MCS. The final queue-lock algorithm we consider in detail is a linked-

list-based algorithm due to Mellor-Crummey and Scott [61]. This algorithm, denoted

Algorithm MCS, is shown in Figure 2.2. (In this figure, a-> b is used as a shorthand

for (∗a).b, where a is a pointer to a record with component b.) Algorithm MCS

employs both fetch-and-store and compare-and-swap.

Each entry in the linked list is called aQnode, and each process has its own dedicated

Qnode (which is assumed to be stored locally, if the algorithm is implemented on a DSM

machine). The Qnode for each process p has two components: a pointer to p’s successor

in the spin queue (if any), and a boolean variable locked , which is p’s spin location.

The shared variable Tail points to the last Qnode in the queue. Tail is initially NIL.

20

type
Qnode = record next : pointer to Qnode; locked : boolean end /∗ stored in one word ∗/

shared variable
Nodes: array[0..N − 1] of Qnode; /∗ Nodes[p] is stored locally to process p ∗/
Tail : pointer to Qnode initially NIL

process p /∗ 0 ≤ p < N ∗/
private constant

my node = &Nodes[p]

private variable
pred : pointer to Qnode

while true do
1: Noncritical Section;
2: my node -> next := NIL;
3: pred := fetch-and-store(Tail , my node);
4: if pred �= NIL then
5: my node -> locked := true;
6: pred -> next := my node;
7: await ¬my node -> locked /∗ spin until granted the lock by predecessor ∗/

fi;
8: Critical Section;
9: if my node -> next = NIL then
10: if compare-and-swap(Tail , my node, NIL) �= my node then
11: await my node -> next �= NIL; /∗ spin until next field is updated ∗/
12: my node -> next -> locked := false

fi
else

13: my node -> next -> locked := false
fi

od

Figure 2.2: Algorithm MCS: List-based queue lock using fetch-and-store and
compare-and-swap.

A process p threads itself onto the end of the spin queue by performing the fetch-and-

store operation at statement 3. This fetch-and-store causes Tail to point to p’s Qnode

and also returns to p the previous value of Tail . If p threads itself onto a nonempty

spin queue, then this previous value gives p’s predecessor in the queue. In this case, p

initializes its spin location (statement 5), updates the next pointer of its predecessor

(statement 6), and then busy-waits until released by its predecessor (statement 7).

In its exit section, p must release its successor in the spin queue, if subsequent pro-

cesses in the queue do indeed exist. If p.my node -> next �= NIL holds when p executes

statement 9, then p can easily update its successor’s spin location (statement 13). How-

ever, if p.my node -> next = NIL holds, then a potential problem arises. In particular,

21

it may be the case that p has no successor, or it may be the case that it does have a

successor, but that process has not yet updated p’s next field. This ambiguity is re-

solved by the compare-and-swap on Tail performed at statement 10. If p indeed has no

successor, then Tail must still point to p’s Qnode, in which case the compare-and-swap

succeeds. On the other hand, if p has a successor, then the compare-and-swap fails,

and p executes statements 11–12. Statement 11 causes p to wait until its next pointer

has been updated by its successor. (This is one of the few mutual exclusion algorithms

found in the literature in which a process may wait in its exit section.) Statement 12

then updates its successor’s spin location.

Because each process has its own dedicated spin location, it should be clear that the

algorithm has O(1) RMR time complexity under either the CC or DSM model. Thus,

we have the following.

Theorem 2.3 (Mellor-Crummey and Scott) The mutual exclusion problem can be

solved with O(1) RMR time complexity using fetch-and-store and compare-and-swap

under either the CC or DSM model. �

One problem with Algorithm MCS is that it relies on two synchronization prim-

itives, which may limit its applicability. To circumvent this problem, Mellor-Crummey

and Scott also presented a variant that uses only fetch-and-store [61]. Unfortunately,

this variant is only livelock-free. However, the authors argue that starvation should be

very unlikely in practice.

Other related algorithms. A number of researchers have proposed extensions to

the three algorithms covered so far that support process priorities or that tolerate pro-

cess preemptions [13, 32, 44, 50, 60, 73, 82, 83]. Priorities can be supported either by

requiring the spin queue to be priority ordered, or by requiring each process in its exit

section to completely scan the queue to find the highest-priority waiting process. In

the former case, a process must have the ability to scan the queue and insert its queue

record at the position indicated by its priority. Priority-based systems are often mul-

tiprogrammed, i.e., there may be multiple processes bound to the same processor. In

multiprogrammed systems, preemptions may be common. Preemptions are especially

problematic for queue locks, because a preempted process may delay every process after

it in the spin queue. Most proposals for dealing with preemptions rely on the kernel to

deactivate or remove the queue record of a preempted process.

22

A restricted form of priority that has been well-studied occurs in algorithms for

reader/writer synchronization [31]. Reader/writer synchronization is a generalization

of mutual exclusion in which each process is classified as either a reader or a writer.

Readers may execute their critical sections simultaneously, but writers require exclusive

access. Because readers and writers have different requirements, it is necessary to give

readers priority over writers or vice versa. After the development of Algorithm MCS,

Mellor-Crummey and Scott presented several extensions of that algorithm that support

reader/writer synchronization [62].

Other authors have investigated algorithms that use circular waiting lists [36, 42, 43].

Note that, in Algorithm MCS, each process p finds its predecessor in the list by

performing the fetch-and-store at statement 3. However, p cannot identify its successor

(if any) until that successor first updates p’s next field. By using a circular list, this

problem can be eliminated, because all nodes can be reached by traversing through the

list by reading predecessor pointers.

Fu and Tzeng [36, 43] considered a circular-list algorithm where processes are ar-

ranged in a tree, each node of which contains a circular waiting list. Each process in

its entry section enqueues itself onto a leaf circular list. A process that is at the head

of the circular list at some node ascends the tree, merging the circular list of that node

with the circular list of its parent node. It is argued that the tree structure elimi-

nates hot-spot contention, leading to better performance. (Hot-spot contention occurs

when many processes repeatedly access the same shared variable, or variables stored

in the same memory module. Hot-spot contention can lead to degraded performance

for all memory accesses, even those that do not target the hot spot [71].) In other

work, Huang [42] presented a circular list algorithm that uses only fetch-and-store and

that has constant amortized RMR time complexity on both CC and DSM systems

(i.e., the number of remote memory references in a history divided by the number of

critical-section entries in that history is constant).

In other related work, extensions of some of the queue-based algorithms discussed

above were recently proposed in which timeout mechanisms are incorporated [75, 76].

Such mechanisms can be used by a process to abandon its lock request if it has waited

too long (e.g., if a deadline has passed).

As noted earlier, Algorithms TA and GT have O(1) RMR time complexity only

under the CC model. In later work, Craig [32] and Landin and Hagersten [59] indepen-

dently proposed a queue-based algorithm based on fetch-and-store. While Landin and

23

Hagersten considered only CC machines, Craig presented constant-time variants of the

algorithm for both CC and DSM machines. Thus, Theorem 2.2 can be strengthened to

also apply to DSM systems. In Chapter 8, we show that constant-time algorithms can

be constructed for DSM systems using any of a large class of primitives that includes

fetch-and-increment. Thus, Theorem 2.1 also can be strengthened to apply to DSM

systems.

2.2.2 Algorithms that use Only Reads and Writes

Algorithms TA, GT, and MCS were the first local-spin mutual exclusion algorithms

to be published, and each requires one or more read-modify-write primitives. This

led some researchers to question whether such primitives were in fact necessary for

local-spin synchronization. In 1993, Anderson showed that this was not the case by

presenting an Θ(N) algorithm that uses only read and write operations [11]. Although

this algorithm showed that local-spin synchronization without strong primitives was

possible in principle, its RMR time complexity is significantly higher thanAlgorithms

TA, GT, and MCS. In subsequent work, Yang and Anderson narrowed this time-

complexity gap by presenting an Θ(log N) algorithm based on reads and writes [84].

From the lower bound of Chapter 5, it follows that the RMR time complexity of Yang

and Anderson’s algorithm is within a factor of Θ(log logN) of optimality for algorithms

that use only atomic reads and writes.

In the rest of this section, an overview is given of Yang and Anderson’s algorithm,

hereafter denoted Algorithm YA [84]. The earlier algorithm of Anderson [11] is

considered in Section 2.5.

Algorithm YA. In [45], Kessels proposed implementing N -process mutual exclusion

by using instances of a two-process algorithm (which, in Kessels’ algorithm, is not a

local-spin algorithm) in a binary arbitration tree. Associated with each link in the tree

is an entry section and an exit section. The entry and exit sections associated with

the two links connecting a given node to its children constitute a two-process mutual

exclusion algorithm. Initially, all processes are “located” at the leaves of the tree. To

enter its critical section, a process is required to traverse a path from its leaf up to the

root, executing the entry section of each link on this path. Upon exiting its critical

section, a process traverses this path in reverse, this time executing the exit section of

each link.

24

shared variables
C: array[u, v] of {u, v, ⊥} initially ⊥;
P : array[u, v] of 0..2 initially 0;
T : {u, v}

process u process v

while true do while true do
1: Noncritical Section; 1: Noncritical Section;
2: C[u] := u; 2: C[v] := v;
3: T := u; 3: T := v;
4: P [u] := 0; 4: P [v] := 0;
5: if C[v] �= ⊥ then 5: if C[u] �= ⊥ then
6: if T = u then 6: if T = v then
7: if P [v] = 0 then 7: if P [u] = 0 then
8: P [v] := 1; 8: P [u] := 1

fi; fi;
9: await P [u] ≥ 1; /∗ spin ∗/ 9: await P [v] ≥ 1; /∗ spin ∗/
10: if T = u then 10: if T = v then
11: await P [u] = 2 /∗ spin ∗/ 11: await P [v] = 2 /∗ spin ∗/

fi fi
fi fi

fi; fi;
12: Critical Section; 12: Critical Section;
13: C[u] := ⊥; 13: C[v] := ⊥;
14: if T �= u then 14: if T �= v then
15: P [v] := 2 15: P [u] := 2

fi fi
od od

Figure 2.3: Algorithm YA-2: A two-process version of Algorithm YA.

Algorithm YA is based on the arbitration-tree approach of Kessels. For this

approach to work in a DSM system when all busy-waiting is by local spinning, the

two-process algorithm being used must provide a mechanism that allows a process

to deduce the process (if any) with which it must compete. (If a process incorrectly

determines its competitor at some node of the tree, then it may end up writing to

a spin variable of a process that has not even accessed that node!) The two-process

version of Algorithm YA provides such a mechanism. A slightly-simplified version

of the two-process algorithm, denoted Algorithm YA-2, is shown in Figure 2.3. In

this figure, the two processes are denoted by the identifiers u and v, which are assumed

to be distinct, nonnegative integer values.

The two-process algorithm employs five shared variables, C[u], C[v], T , P [u], and

P [v]. Variable C[u] ranges over {u, v, ⊥} and is used by process u to inform process

v of its intent to enter its critical section. Observe that C[u] = u �= ⊥ holds while

25

process u is at statements 3–13, and C[u] = ⊥ holds otherwise. Variable C[v] is used

similarly. Variable T ranges over {u, v} and is used as a tie-breaker in the event that

both processes attempt to enter their critical sections at the same time. The algorithm

ensures that the two processes enter their critical sections according to the order in

which they update T . Variable P [u] ranges over {0, 1, 2} and is used by process u

whenever it needs to busy-wait. Variable P [v] is used similarly by process v. (Note

that these are statically-allocated spin variables; hence, on DSM machines, they can

be stored locally.)

When process u wants to enter its critical section, it informs process v of its intention

by establishing C[u] = u. Then, process u assigns its identifier u to the tie-breaker

variable T , and initializes its spin location P [u]. If process v has not shown interest in

entering its critical section, i.e., if C[v] = ⊥ holds when u executes statement 5, then

process u proceeds directly to its critical section. Otherwise, u reads the tie-breaker

variable T . If T �= u, which implies that T = v, then u can enter its critical section, as

the algorithm prohibits v from entering its critical section when C[u] = u ∧ T = v holds

(recall that ties are broken in favor of the first process to update T). If T = u holds,

then either process v executed statement 3 before process u, or process v has executed

statement 2 but not statement 3. In the first case, u should wait until v exits its critical

section, whereas, in the second case, u should be able to proceed to its critical section.

This ambiguity is resolved by having process u execute statements 7–11. Statements 7–

8 are executed by process u to release process v in the event that it is waiting for u to

update the tie-breaker variable (i.e., v is busy-waiting at statement 9). Statements 9–

11 are executed by u to determine which process updated the tie-breaker variable first.

Note that P [u] ≥ 1 implies that v has already updated the tie-breaker, and P [u] = 2

implies that v has finished its critical section. To handle these two cases, process u first

waits until P [u] ≥ 1 (i.e., until v has updated the tie-breaker), re-examines T to see

which process updated T last, and finally, if necessary, waits until P [u] = 2 (i.e., until

process v finishes its critical section).

After executing its critical section, process u informs process v that it is finished by

establishing C[u] = ⊥. If T = v, in which case process v is trying to enter its critical

section, then process u updates P [v] so that v does not wait.

It is straightforward to construct a general N -process algorithm, by embedding

instances of this two-process algorithm within a binary arbitration tree. (A general

26

N -process algorithm, denoted Algorithm YA-N, can be found in Figure 3.2.) Thus,

we have the following theorem.

Theorem 2.4 (Yang and Anderson) The mutual exclusion problem can be solved

with Θ(log N) RMR time complexity using only reads and writes under either the CC

or DSM model. �

Other related algorithms. As mentioned before, Anderson also devised a Θ(N)

algorithm that uses only reads and writes [11], which was also the first nonatomic

algorithm in which all spins are local; this algorithm is discussed in Section 2.5.

Aside from the algorithms already mentioned, the only other published local-spin

mutual exclusion algorithm that uses only reads and writes that we know of is one by

Tsay [80]. Tsay’s algorithm is very similar to Algorithm YA and also the earlier algo-

rithm of Anderson [11]. Tsay derives his algorithm through a series of transformations

from well-known algorithm of Peterson [69].

Zhang, Yan, and Castañeda have conducted an extensive evaluation of several

(read/write)-based mutual exclusion algorithms [85]. Algorithm YA is one of the

algorithms tested by them. Their evaluation is based on several metrics that take into

account the effects of architectures, systems, and software implementations. In ad-

dition, they present three new algorithms, including two tree-based algorithms, that

incorporate both local-spin and non-local-spin techniques.

2.3 Fast Mutual Exclusion

In 1987, Lamport devised a novel mutual exclusion algorithm that requires only seven

memory accesses in the absence of contention [56]. Algorithms such as this, in which a

process executes a constant-time “fast path” in the absence of contention, are known as

“fast” mutual exclusion algorithms. (When determining contention-free time complex-

ities, all memory references are counted, local and remote.) Each of the fetch-and-φ-

based algorithms covered in Section 2.2.1 clearly has constant time complexity in the

absence of contention. Thus, time complexity in the absence of contention is a non-issue

if suitable fetch-and-φ primitives are available. For this reason, the term “fast mutual

exclusion algorithm” is usually applied only to algorithms that use only reads and

writes. In this section, we present an overview of research to date on such algorithms.

27

2.3.1 Algorithm L: Lamport’s Fast Mutual Exclusion Algo-

rithm

Lamport’s fast mutual exclusion algorithm, hereafter denoted Algorithm L, is shown

in Figure 2.4(a). In this algorithm, a fast-path process reaches its critical section by

executing (only) statements 2, 3, 4, 8, and 9. Of these, statements 3, 4, 8, and 9 are

of special significance. These statements are shown separately in Figure 2.4(c), where

they are used to define a “black box” element called a splitter , which is illustrated in

Figure 2.4(b). (The term “splitter” is not due to Lamport; it was first abstracted as

a “black box” by Moir and Anderson [66], and first called a “splitter” by Attiya and

Fouren [25].) In the following paragraphs, we consider some properties of the splitter

that make it so useful, and then show how these properties ensure the correctness of

Algorithm L.

The splitter element. Each process that invokes the splitter code either stops,

moves down, or moves right. (The move is defined by the value assigned to the private

variable dir .) One of the key properties of the splitter that makes it so useful is the

following: if several processes invoke a splitter, then at most one of them can stop at

that splitter. To see why this property holds, suppose to the contrary that two processes

p and q stop. Let p be the process that executed statement 4 last. Because p found

that X = p held at statement 4, X is not written by any process between p’s execution

of statement 1 and p’s execution of statement 4. Thus, q executed statement 4 before

p executed statement 1. This implies that q executed statement 3 before p executed

statement 2. Thus, p must have read Y = false at statement 2 and then assigned

“p.dir := right ,” which is a contradiction. Similar arguments can be applied to show

that if n processes invoke a splitter, then at most n − 1 can move right, and at most

n − 1 can move down.

Because of these properties, the splitter element and related mechanisms have

proven to be immensely useful in wait-free algorithms for renaming [2, 4, 26, 25, 27,

66, 67]. Renaming algorithms are used to “shrink” the name space from which process

identifiers are taken. Such algorithms can be used to speed up concurrent computations

with loops that iterate over process identifiers. Because of the splitter’s properties, it

is possible to solve the renaming problem by interconnecting a collection of splitters in

a grid [67].

28

shared variable
B: array[1..N] of boolean initially false;
X: 1..N ;
Y : 0..N initially 0

process p /∗ 1 ≤ p ≤ N ∗/
private variable

j: 1..N

while true do
1: Noncritical Section;
2: B[p] := true;
3: X := p;
4: if Y �= 0 then
5: B[p] := false;
6: await Y = 0; /∗ busy wait ∗/
7: goto 1

fi;
8: Y := p;
9: if X �= p then
10: B[p] := false;
11: for j := 1 to N do
12: await ¬B[j] /∗ busy wait ∗/

od;
13: if Y �= p then
14: await Y = 0; /∗ busy wait ∗/
15: goto 1

fi
fi;

16: Critical Section;
17: Y := 0;
18:B[p] := false
od

(a)

stop
1

n

n-1
right

downn-1

(b)

/∗ X and Y are as in part (a) ∗/
process p

private variable
dir : {stop, right , down}

1: X := p;
2: if Y �= 0 then dir := right

else
3: Y := p;
4: if X �= p then dir := down

else dir := stop
fi

fi

(c)

Figure 2.4: (a) Algorithm L: Lamport’s fast mutual exclusion algorithm. (b) The
splitter element and (c) its implementation.

Correctness of Algorithm L. The splitter’s properties also ensure that Algo-

rithm L is correct. In particular, because at most one process can stop at a splitter,

at most one process at a time can “take the fast path” by reading Y = 0 at statement 4

and X = p at statement 9. (This corresponds to the assignment of dir := stop at Fig-

ure 2.4(c).) Moreover, if no process takes the fast path during a period of contention,

then some process must reach statements 10–15. It can be shown that, of these pro-

cesses, the last to update the variable Y eventually enters its critical section and then

29

reopens the fast path by assigning Y := 0 at statement 17. Thus, the algorithm is

livelock-free, giving us the following theorem.

Theorem 2.5 (Lamport) The mutual exclusion problem can be solved by a livelock-

free algorithm that requires only seven memory references in the absence of contention. �

On the other hand, starvation-freedom is not satisfied, because an unfortunate pro-

cess may repeatedly find either Y �= 0 at statement 4 or Y �= p at statement 13, and

hence wait forever.

Variations. A number of authors have proposed variants of Algorithm L. Alur

and Taubenfeld have shown that the number of memory references in the absence of

contention can be reduced to five, if each process has the ability to delay itself by an

amount of time that depends on the speeds of other processes [8]. (Fischer initiated

the study of such delay-based algorithms. Fischer’s algorithm can be found in [56].

In this algorithm, a process repeatedly writes to a common variable X, delays itself,

and examines X again. The delay is assumed long enough to ensure that any other

competing process must have written to X. Thus, a process reads the value it has

written only if there exists no other competing process.) Michael and Scott showed that

only two reads and four writes are required in the absence of contention, if processes

have the ability to read and write at both full- and half-word granularities [65].

In contrast, Merritt and Taubenfeld proposed modifications that speed up the algo-

rithm in the presence of contention, as compared with Algorithm L [63]. In Algo-

rithm L, each process that reaches statement 11 must check the status of every other

process. However, in an actual system, the number of processes that actually invoke

the algorithm concurrently is likely to be much less than the total number of processes

in the system. Merritt and Taubenfeld showed that by using a linked list instead of a

simple array scan, the time complexity of this check can be made proportional to the

number of contending processes.

2.3.2 Fast Mutual Exclusion with Local Spinning

All of the fast mutual exclusion algorithms discussed above employ busy-waiting loops

in which shared variables are both read and written. Thus, while these algorithms are

fast in the absence of contention, each has unbounded RMR time complexity under

30

contention. In this section, we consider fast mutual exclusion algorithms in which all

busy-waiting is by local spinning.

The first such algorithm to be published was actually a variant of Algorithm YA-

N considered earlier in Section 2.2.2 [84]. Unfortunately, in this fast-path variant of Al-

gorithm YA-N, RMR time complexity under contention is Θ(N) instead of Θ(logN).

In later work [16], Anderson and Kim presented an improved fast-path mechanism that

results in O(1) time complexity in the absence of contention and Θ(logN) RMR time

complexity under contention, when used in conjunction with Algorithm YA-N. This

result is subsumed by an adaptive algorithm devised later, which is presented in Chap-

ter 4.

2.4 Adaptive Algorithms

Although fast mutual exclusion algorithms perform well in the absence of contention,

most such algorithms exhibit a sudden rise in time complexity when contention is

present. In this section, we consider adaptive algorithms, which are designed to alleviate

this problem. Formally, a mutual exclusion algorithm is adaptive if its time complexity

(under some measure) is a function of the number of contending processes. As is the case

with fast algorithms, adaptivity is a non-issue if appropriate synchronization primitives

are available. Thus, the term “adaptive” is usually applied only to algorithms that use

only reads and writes.

Two notions of contention have been considered in the literature: “interval con-

tention” and “point contention” [2]. These two notions are defined with respect to a

history H. The interval contention over H is the number of processes that are active

in H, i.e., that execute outside of their noncritical sections in H. The point contention

over H is the maximum number of processes that are active at the same state in H.

Note that point contention is always at most interval contention. In this section, unless

stated otherwise, we let k (k′) denote the point (interval) contention experienced by an

arbitrary process over a history that starts when that process becomes active and ends

when it once again becomes inactive. We also let M denote an upper bound on the

maximum number of processes concurrently active in the system (possibly less than

N). The algorithms considered in this section are summarized in Table 2.1.

Several different time complexity measures have been applied in work on adaptive

algorithms. In defining a meaningful time complexity measure for concurrent algo-

rithms, dealing with potentially unbounded busy-waiting loops is the main difficulty

31

System Step RMR/DSM
response time time Space

Algorithm time complexity complexity complexity

Styer [78] O(min(N, k′ logN)) O(min(N, k′ logN)) ∞ Θ(N)
Choy & Singh [30] O(k′) O(N) ∞ Θ(N)
Attiya & Bortnikov [24] O(log k) O(k) ∞ Θ(N logM)
Attiya & Bortnikov [24] O(log k′) O(k′) ∞ Θ(M logM)
Afek, et al. [5] O(k4) O(k4) ∞ Θ(N3 +M3N)
Afek, et al. [6] O((k′)2) O(min((k′)2, k′ logN)) O(min((k′)2, k′ logN)) Θ(N2)
Chapter 4 O(min(k, logN)) O(min(k, logN)) O(min(k, logN)) Θ(N)

Table 2.1: Comparison of known adaptive algorithms. In this table, k denotes point
contention, k′ denotes interval contention, and M denotes an upper bound on the
maximum number of processes concurrently active in the system (possibly less than
N). (Although [5] uses a bounded number of variables, some of these variables are
unbounded.) Each algorithm has bounded RMR time complexity on CC machines
with write-update caches. Since these algorithms are quite complicated, it is unclear
whether they are adaptive on CC machines in general.

to be faced. Indeed, under the standard sequential-algorithms measure of counting all

operations, such a busy-waiting loop has unbounded time complexity. This is inevitable

under contention [8], and thus the standard sequential measure provides information

that is not very interesting or useful.

The step time complexity (also called the “remote step complexity”) of an algorithm

is the maximum number of shared-memory operations required by a process to enter

and then exit its critical section, assuming that each “await” statement is counted as

one operation [78]. This measure simply ignores repeated memory references generated

by a process while it waits. The system response time is the length of time between

the end of a critical section and the beginning of the next critical section, assuming

every active process performs at least one step within some constant time bound [30].

By forcing active processes to take steps, unbounded waiting times are precluded,

provided each waiting condition in an algorithm is eventually established by some

process within a finite number of its own steps. The amortized system response time

of an algorithm, a measure also proposed in [30], is defined as the average system

response time, provided that all k contending processes start execution simultaneously.

The RMR time complexity measure is also of interest in work on adaptive algorithms.

Before continuing, let us examine the relationship between RMR time complexity

and step time complexity. Under the DSM model, if all await statements within an

algorithm access only locally-accessible variables, then each statement has O(1) step

32

time complexity and O(1) RMR time complexity.2 On the other hand, if an await

statement accesses a non-local variable, then the algorithm’s RMR time complexity

is obviously unbounded. Under the CC model, any variable accessed in an await

statement will be brought into a local cache line. Therefore, if write-update cache is

used, then an algorithm’s RMR time complexity is at most its step time complexity.

However, in systems with write-invalidate caches, a single await statement might gen-

erate a large number of cache misses if the variables it accesses keep changing value

without satisfying the await condition. The step time complexity measure ignores the

remote references caused by these misses. Therefore, in general, an algorithm’s step

time complexity and RMR time complexity need not be the same.

As mentioned at the end of Section 2.3.1, Merritt and Taubenfeld proposed a variant

of Algorithm L in which a linked list of active processes is scanned, rather than an

array of per-process status variables [63]. However, their algorithm requires an external

mechanism for inserting active processes into the list and for removing ones that are no

longer active. (These operations must be done in a critical section in order to ensure

correctness. Hence, unless we assume an external mechanism, another solution of the

mutual exclusion problem is required.) Thus, it is not a true adaptive algorithm in the

sense considered here.

One of the first true adaptive algorithms was an algorithm of Styer that hasO(min(N,

k′ log N)) step time complexity and O(min(N, k′ log N)) system response time [78].

This algorithm is rather complicated and is not discussed in detail here.

2.4.1 Adaptive Algorithms using Filters

Choy and Singh [30] devised a novel code fragment called a filter, which is shown in

Figure 2.5. A process executing a filter either exits (succeeds) or halts (fails). A filter

satisfies the following two properties.

• Safety: If m processes enter the filter, then at most �m/2� processes exit.

• Progress: If some processes enter the filter, then at least one of them exits.

To see that the Progress property holds, let p be the last process to execute state-

ment 1. If no other process exits, then all the halting processes will assign b := false

2This conclusion is based upon the assumption that, under the step time complexity measure, each
await statement has constant cost regardless of the number of variables it accesses. It is not clear if
this is reasonable if the number of variables accessed is a function of N . In all papers where step time
complexity is used, only await statements that access a constant number of variables are considered.

33

"halt" (those that do not exit)

"exit": between 1 and

m

 m/2 processes

(a)

shared variable
turn: 1..N ;
b: boolean initially false

process p /∗ 1 ≤ p ≤ N ∗/
1: turn := p;
2: await ¬b;
3: b := true;
4: if turn �= p then
5: b := false;
6: halt

else
7: exit

fi

(b)

Figure 2.5: (a) The filter element and (b) its implementation.

at statement 5. Therefore, p will eventually find b = false at statement 2 and exit suc-

cessfully. Now, consider the safety property. Assume that e processes exit. Note that,

for any two exiting processes, their executions of statements 1–4 do not overlap. (If

an exiting process p executes statement 1 before another exiting process q does, then p

must execute statement 4 before q executes statement 1, in order to exit.) While such a

process executes statements 1–4, the value of b changes from false to true at least once.

Therefore, the value of b must change from true to false at least e − 1 times, so there

are at least e − 1 halting processes. The safety property follows from the inequality

e+ (e − 1) ≤ m.

Leader election using filters. A leader-election algorithm can be constructed by

concatenating filters so that only those processes that exit from a filter move to the

next. The algorithm is shown in Figure 2.6(a).

We concatenate �log2 N� + 1 filters, indexed from 0. Since each filter halves the

number of exiting processes, at most one process may exit from filter A[�log2 N�].
When a process p exits from filter A[i+ 1], it checks filter A[i] in order to determine if

p is the only process that has exited from filter A[i]. If this is the case, then p elects

itself as the leader. (This is why we need one additional filter after A[�log2 N�].) The

detailed mechanism is explained next.

Each filter has an additional variable c, which is initially false and set to true when

a process fails at that filter. Once c is set to true, it remains true. Therefore, if process

34

shared variable
A: array[0..�log2 N�+ 1] of record

turn: 1..N ;
b, c: boolean initially false end

process p /∗ 1 ≤ p ≤ N ∗/
private variable

curr : 0..�log2 N�+ 1
curr := 0;
while true do
1: A[curr].turn := p;
2: await ¬A[curr].b;
3: A[curr].b := true;
4: if A[curr].turn �= p then
5: A[curr].c := true;
6: A[curr].b := false;
7: halt
8: elseif curr > 0 ∧ A[curr − 1].c then
9: elected

else
10: curr := curr + 1

fi
od

(a)

shared variable
A: array[0..∞] of record

turn: 1..N ;
b, c: boolean initially false end;

Entry : 0..∞ initially 0

process p /∗ 1 ≤ p ≤ N ∗/
private variable

curr , lentry : 0..∞;
elected : boolean

while true do
1: Noncritical Section;
2: elected := false;
3: while ¬elected do
4: lentry , curr := Entry , Entry ;
5: while ¬elected ∧ Entry = lentry do
6: A[curr].turn := p;
7: await (¬A[curr].b ∨
8: Entry �= lentry);
9: if Entry = lentry then
10: A[curr].b := true;
11: if A[curr].turn �= p then
12: A[curr].c := true;
13: A[curr].b := false;
14: await Entry �= lentry
15: elseif curr > lentry ∧

A[curr − 1].c then
16: elected := true

else
17: curr := curr + 1

fi fi
od

od;
18: Critical Section;
19: Entry := curr + 1
od

(b)

Figure 2.6: (a) A leader-election algorithm using filters. (b) Unbounded version of
Choy and Singh’s algorithm [30].

p exits from filter A[i + 1] and finds A[i].c = false, then no process has (yet) failed

at filter A[i]. It follows that A[i].b has (so far) been changed from false to true only

once (by process p at statement 3). Thus, no process other than p has (yet) exited

from filter A[i]. Moreover, any process that subsequently exits from A[i] will become

blocked at the await of filter A[i+ 1]. Thus, p can elect itself as the leader. From the

35

filter safety property, at most one process enters filter A[�log2 N�], and hence Θ(logN)

filters suffice. Thus, the algorithm’s space complexity is Θ(log N).

Mutual Exclusion: an unbounded version. The election algorithm can be used

to create a simple unbounded mutual exclusion algorithm. This algorithm is shown in

Figure 2.6(b). The algorithm uses an unbounded number of filters, A[0], A[1],

All competing processes participate in the election algorithm using the set of filters

A[Entry], A[Entry+1], . . . , where Entry is a shared variable that “points” to the next

unused filter. If a process is elected as the leader, then it enters its critical section. In

its exit section, the leader initiates another round of the election algorithm by updating

Entry . (Since each filter is properly initialized and used only once, a process only has

to update Entry to point to a new filter.) The algorithm has O(k′) system response

time. (The analysis of this is rather complicated and will not be presented here. We

refer the interested reader to [30].) However, since a process may repeatedly lose in the

election algorithm, the algorithm is not starvation-free.

The arbiter mechanism. The algorithm just described has two shortcomings: it

uses unbounded memory, and is not starvation-free. Choy and Singh proposed an

arbiter mechanism as a solution to both problems. In this mechanism, a shared variable

Arbt is used to ensure that each process in its entry section eventually is accorded a

chance to enter its critical section. The Arbt pointer is updated each time a critical

section is executed, and cycles through the processes in a round-robin fashion. When

a process p exits its critical section, it first checks whether the process pointed to by

Arbt is in its entry section. If so, process p signals that process to immediately enter

its critical section. The next election algorithm starts only after the process pointed to

by Arbt finishes its critical section.

In this way, a process is guaranteed to enter its critical section after at most N

critical-section executions. Since each election round uses O(log N) filters, and since

no process is left in an old election round after N rounds, the number of filters can be

limited to Θ(N logN). Also, since each election algorithm uses O(log k′) filters, where

k′ is the interval contention over the election period, and since each filter has O(1) step

time complexity, the entire algorithm has O(N log k′) step time complexity.

Choy and Singh also presented further optimizations, which result in O(k′) system

response time, O(1) amortized system response time, and O(N) step time complexity.

Later, Attiya and Bortnikov [24] devised an improved filter algorithm, which has O(k)

36

shared variables
Number : array[0..N − 1] of 0..∞ initially 0;
Choosing : array[0..N − 1] of boolean initially false

process p /∗ 0 ≤ p < N ∗/
private variables

q: 0..N − 1;
S: (a set of processes)

while true do
1: Noncritical Section;
2: Join(p);
3: Choosing [p] := true;
4: S := Get Set();
5: Number [p] := 1 + maxq∈S Number [q];
6: Choosing [p] := false;
7: S := Get Set();
8: for each q ∈ S − {p} do
9: await ¬Choosing [q];
10: await (Number [q] = 0) ∨

(Number [p], p) < (Number [q], q)
od;

11: Critical Section;
12: Number [p] := 0;
13: Leave(p)
od

Figure 2.7: Algorithm AST: An adaptive bakery algorithm by Afek, Stupp, and
Touitou [5].

step time complexity, O(log k) system response time, and O(N logM) space complexity,

where k is point contention. They also presented another algorithm with O(M logM)

space complexity, but at the price of adapting only to interval contention (k′). From

these results, we have the following theorem.

Theorem 2.6 (Attiya and Bortnikov) The mutual exclusion problem can be solved

with O(log k) system response time and O(k) step time complexity using only reads and

writes, where k is point contention. �

2.4.2 An Adaptive Bakery Algorithm

Afek, Stupp, and Touitou [5] constructed an adaptive bakery algorithm, by combining

Lamport’s bakery algorithm [51] with a wait-free active set object. Their algorithm,

denoted Algorithm AST, is illustrated in Figure 2.7. An active set object manages

a set of processes, and each process p may execute the following three operations.

37

• Join(p): adds p to the active set.

• Leave(p): removes p from the active set.

• Get Set(): returns the current active set S. If a process q’s execution of Join(q)

or Leave(q) overlaps p’s execution of Get Set, then S is allowed to either contain

q or not.

Afek, et al. also devised a wait-free implementation of an active set object based

on a generic adaptive long-lived renaming algorithm. Several such algorithms are pre-

sented in [1, 2], with various tradeoffs among the following parameters: the size of the

output name space, step time complexity, space complexity, and whether the algorithm

is adaptive to interval or point contention. By using an O(k2)-renaming algorithm pre-

sented in [1], the active set algorithm of Afek, et al. achieves O(k4) step time complexity,

where k is point contention.

If we remove statements 2 and 13 of Algorithm AST and change statements 4 and

7 to S := {0..N − 1}, then we obtain the original bakery algorithm. Due to these four

statements, Algorithm AST only has to check processes that are concurrently active,

instead of checking every process in the system. Thus, the for loop of statements 8–10

has O(k) step time complexity.

Clearly, overall time complexity is dominated by the active set algorithm, and hence

Algorithm AST has O(k4) step time complexity. Since the active set algorithm is

wait-free, it can be shown that Algorithm AST also has O(k4) system response time.

Unfortunately, as in the original bakery algorithm, each process’s Number variable in

Algorithm AST has unbounded range. (The total number of shared variables is

Θ(N3 +M3N).)

2.4.3 Adaptive Mutual Exclusion with Infinitely Many Pro-

cesses

Merritt and Taubenfeld [64] investigated mutual exclusion, as well as other concurrent

programming problems, when the number of participating processes is possibly un-

bounded. In particular, they presented a number of mutual exclusion algorithms under

various system models, some of which are adaptive under the system-response-time

measure. From their results, we have the following theorem.

38

Theorem 2.7 (Merritt and Taubenfeld) For systems with a possibly unbounded

number of processes, there exists a starvation-free mutual exclusion algorithm with in-

finitely many variables and system response time that is a function of interval con-

tention. �

2.4.4 Local-spin Adaptive Algorithms

None of the previously-cited adaptive algorithms is a local-spin algorithm, and thus

each has unbounded RMR time complexity. Surprisingly, while adaptivity and local

spinning have been the predominant themes in recent work on mutual exclusion, the

problem of designing an adaptive, local-spin algorithm under read/write atomicity has

remained open until recently. In Chapter 4, we close this problem by presenting an

adaptive algorithm with Θ(min(k, log N)) RMR time complexity, where k is point

contention. This algorithm has Θ(N) space complexity, which is clearly optimal.

In addition, Afek, Stupp, and Touitou [6] have independently devised another local-

spin adaptive algorithm, based on a long-lived implementation of a splitter element,

with a structure that is similar to our algorithm. Due to the close similarity of these

two algorithms, the algorithm of Afek et al. is considered in Chapter 4.

2.5 Mutual Exclusion with Nonatomic Operations

To this point, we have assumed that shared variables are accessed atomically. Re-

quiring atomic variable accesses is tantamount to assuming mutual exclusion at some

lower level. Thus, mutual exclusion algorithms requiring this are in some sense circu-

lar. Lamport recognized that mutual exclusion can be implemented without requiring

operations to be atomic in some early papers [51, 52], and later wrote more extensively

on the topic in a two-part work [53, 54].

One shortcoming of Lamport’s algorithms is that they are not local-spin algorithms.

In later work, Anderson devised a nonatomic algorithm in which all spins are local [11].

As mentioned previously, this algorithm was actually the first local-spin algorithm

that uses only read and write operations. This algorithm, hereafter referred to as

Algorithm JA, is described below.

Algorithm JA was obtained by first solving the two-process case, and by then

using the two-process solution to solve the N -process case. The two-process version of

Algorithm JA is shown in Figure 2.8. The two processes are denoted u and v. With

39

shared variable P, Q, T : array[u, v] of boolean initially true

process u process v

private variable x: boolean private variable x: boolean
initially x = T [u] initially x = T [v]

while true do while true do
1: Noncritical Section; 1: Noncritical Section;
2: P [u] := false; 2: P [v] := false;
3: Q[u] := false; 3: Q[v] := false;
4: x := T [v]; 4: x := ¬T [u];
5: T [u] := x; 5: T [v] := x;
6: if x then 6: if x then
7: P [u] := true; 7: Q[v] := true;
8: await P [v] 8: await P [u]

else else
9: Q[u] := true; 9: P [v] := true;
10: await Q[v] 10: await Q[u]

fi; fi;
11: Critical Section; 11: Critical Section;
12: P [u] := true; 12: P [v] := true;
13: Q[u] := true 13: Q[v] := true

od od

Figure 2.8: Algorithm JA: Two-process case.

the exception of statements 4, 7, and 9, the two processes are identical. Algorithm JA

is similar to earlier two-process solutions given by Peterson [69] and by Kessels [45],

but uses only single-reader, single-writer boolean variables.

The two shared variables T [u] and T [v] are used as a tie-breaker in the event that

both processes attempt to enter their critical sections at the same time. Process u

attempts to establish T [u] = T [v] and process v attempts to establish T [u] �= T [v].

Process u enters its critical section only if T [u] �= T [v] holds or if process v has not

expressed interest in entering its critical section. Similarly, process v enters its critical

section only if T [u] = T [v] holds or if process u has not expressed interest in entering its

critical section. Thus, in the event of a “tie,” process u is favored if T [u] and T [v] differ

in value and process v is favored if T [u] and T [v] are equal. This is essentially the idea

of Kessels’ algorithm. In Algorithm JA, each process checks the condition that is

required for it to enter its critical section by waiting on one single-reader, single-writer

boolean variable. The manner in which this is accomplished is explained next.

Because T [u] is written only by process u, process u can keep track of its value by

using a private variable; variable u.x is used for this purpose. In order for process u

to wait until T [u] �= T [v] holds, it simply tests u.x and then waits for T [v] to have the

40

appropriate value. In particular, if u.x is true (which implies that T [u] is true), then

process u waits until T [v] is false, and if u.x is false (which implies that T [u] is false),

then process u waits until T [v] is true. Process u waits for T [v] to have the appropriate

value by waiting on either P [v] or Q[v]. As explained next, these variables serve the

dual purpose of “signaling” the value of T [v] and “signaling” that process v is in its

noncritical section.

Loosely speaking, P [v] is used by process v to signal to process u that T [v] is false,

and Q[v] is similarly used to signal that T [v] is true. While the value of T [v] is being

determined in statements 4 and 5 of process v, the appropriate value to signal is not

known; thus, to ensure that process u does not enter its critical section when it should

not, P [v] and Q[v] are both kept equal to false while this value is being determined.

When process v is in its noncritical section (where it may halt), process u should not

be blocked in its entry section; thus, while v is in its noncritical section, P [v] and Q[v]

are both kept equal to true. In this way, P [v] and Q[v] serve both purposes mentioned

in the previous paragraph. Variables P [u] and Q[u] are similarly used by process u to

signal the value of T [u] to process v, except their roles are reversed: P [u] is used to

signal that T [u] is true, and Q[u] is used to signal that T [u] is false.

The N -process version of Algorithm JA is obtained by applying the two-process

version in the following.

process p /∗ 0 ≤ p < N ∗/
while true do
Noncritical Section;
for i := 0 to N − 1 do

if i �= p then ENTRY(p, i)
od;
Critical Section;
for i := 0 to N − 1 do

if i �= p then EXIT(p, i)
od

od

In this algorithm, ENTRY(i, j) denotes the entry section from a two-process solu-

tion that process i executes to compete with process j. EXIT(i, j) is defined similarly.

ENTRY(i, j) and EXIT(i, j) are assumed to be implemented using the algorithm in Fig-

ure 2.8. It should be straightforward to see that the two-process version of Algo-

rithm JA has O(1) RMR time complexity, and the N -process version has Θ(N) RMR

time complexity.

41

As mentioned above, Algorithm JA remains correct even if variable accesses are

nonatomic. Since only single-reader, single-writer boolean variables are used in the

algorithm, the only potential problem that must be considered is the case of a read of a

boolean variable that overlaps a write of that variable. In such a case, it can be shown

that it is safe for the read to return either true or false. Thus, we have the following

theorem.

Theorem 2.8 (Anderson) The mutual exclusion problem can be solved with Θ(N)

RMR time complexity using only nonatomic reads and writes under either the CC or

DSM model. �

In Chapter 7, we show that by applying simple transformations to Algorithm YA-

N, covered earlier in Section 2.2.2, a nonatomic algorithm with the same RMR time

complexity can be derived. The key idea is to replace all multi-reader, multi-writer,

multi-bit variables by single-reader, single-writer, single-bit variables, so that overlap-

ping operations on the same variable have no adverse impact.

2.6 Time- and Space-complexity Lower Bounds

In this section, we survey several papers that present time- and space-complexity lower

bounds for mutual exclusion. We begin in Section 2.6.1 by briefly discussing some of

the proof techniques used in these papers. Then, in Section 2.6.2, a summary of results

is presented.

2.6.1 Overview of Proof Methodologies

Most interesting lower bounds pertaining to the mutual exclusion problem are based

on arguments that are quite complex. Therefore, we provide only a brief overview of

commonly-used proof techniques.

Time-complexity lower bounds for mutual exclusion are often derived by inductively

constructing longer and longer histories. Usually, such histories must be constructed

in a way that limits “information flow” among competing processes. Information flow

occurs when one process reads (from a shared variable) a value that was written by

another process. If n processes are in their entry sections, and no information flow

among them has occurred, then at least n − 1 of them must perform further accesses

to shared variables; otherwise, the current history under consideration can be extended

42

to one in which multiple processes are in their critical sections. In other words, if no

information flow has occurred among processes in their entry sections, then “most”

of these processes have a “next” shared-variable access. By inductively appending

such variable accesses while limiting information flow, a lower bound on entry-section

execution time can be derived.

One way to prevent information flow is by “erasing” processes in the history under

consideration [22, 33]. When a process is erased, its statement executions are com-

pletely removed from the history. For example, suppose a history is to be extended

by appending the next statement execution of each process in its entry section. If the

statement to be appended for process p is a read of some variable x that was previously

written, and process q was the last process to write x, then the resulting information

flow from q to p can be eliminated by erasing either p or q. Of course, if another

process wrote x prior to q, then erasing q does not eliminate all information flow to p.

In general, determining which processes to erase so that the induction can continue is

a tricky balancing act.

Sometimes, erasing alone does not leave enough processes for the next induction

step. In this case, the “roll-forward” strategy can be used: some processes are selected

and allowed to “roll forward” until they return to their noncritical sections [33]. For

instance, in the example above, information flow among competing processes can be

eliminated by allowing q to roll forward. In this way, p’s read of x obtains a value written

by a process in its noncritical section, i.e., a process that p is not competing with. Of

course, as q is rolled forward, it may read shared variables that have been written by

other processes. Depending on the proof strategy being used, the resulting information

flow may need to be dealt with by erasing or rolling forward other processes. These

two strategies, erasing and roll-forward, are used in the lower-bound proofs presented

in Chapters 5 and 6.

Note that, in the example in the previous paragraph, q’s write to x eliminates

any information flow through x among concurrently-competing processes. This basic

proof technique, in which certain processes may be “hidden” by the writes of other

processes, dates back to a paper on the space complexity of mutual exclusion by Burns

and Lynch [28, 29].

2.6.2 Lower-bound Results

We now present an overview of research on lower bounds.

43

Alur and Taubenfeld proved that a naive definition of “time complexity” (in which

every shared-variable access is counted) is not meaningful for mutual exclusion [8].

Theorem 2.9 (Alur and Taubenfeld) For any N -process mutual exclusion algo-

rithm with N ≥ 2, the first process to enter its critical section may perform an un-

bounded number of shared-variable accesses. �

Anderson and Yang presented several lower bounds that establish trade-offs between

the number of remote memory references required for mutual exclusion and write-

and access-contention [22]. The write-contention (access-contention) of a concurrent

program is the number of processes that may potentially be simultaneously enabled to

write (access) the same shared variable.3

Theorem 2.10 (Anderson and Yang) For any N -process mutual exclusion algo-

rithm, if write-contention is w, and if each atomic operation accesses at most v remote

variables, then there exists a history involving only one process in which that process

performs Ω(logvw N) remote memory references (under the DSM model) for entry into

its critical section. Moreover, among these memory references, Ω(
√
logvw N) distinct

remote variables are accessed. �

Theorem 2.11 (Anderson and Yang) For any N -process mutual exclusion algo-

rithm, if access-contention is c, and if each atomic operation accesses at most v remote

variables, then there exists a history involving only one process in which that process

accesses Ω(logvc N) distinct remote variables for entry into its critical section. �

According to Theorem 2.10, under the DSM model, Ω(logvw N) remote memory

references are required, even in the absence of contention. In CC machines, the first

access of a remote variable must cause a cache miss. Thus, by counting the number

of distinct remote variables accessed, a lower bound for the CC model is obtained.

Thus, Theorems 2.10 and 2.11 imply that Ω(
√
logvw N) (or Ω(logvc N)) remote memory

references are required under the CC model in the absence of contention. Note that

Theorem 2.10 implies that fast mutual exclusion algorithms require arbitrarily high

write-contention. Thus, the fact that Algorithm L uses N -writer shared variables is

no accident.

Burns and Lynch considered the space complexity of mutual exclusion algorithms [29].

3The notions of write-contention, access-contention, and contention cost (defined later in this sec-
tion) are different from the concepts of point and interval contention defined earlier in Section 2.4.

44

Theorem 2.12 (Burns and Lynch) Any livelock-free N -process mutual exclusion al-

gorithm that uses only reads and writes must use at least N shared variables. �

They also showed that this bound is tight by presenting a livelock-free algorithm

with N boolean shared variables.

Alur and Taubenfeld investigated limitations on variable size in algorithms that use

only atomic reads and writes [9].

Theorem 2.13 (Alur and Taubenfeld) For any N -process mutual exclusion algo-

rithm using only reads and writes, if each shared variable has l bits, then there exists a

history involving only one process in which that process executes at least
(
(log2 N)/(l−

2 + 3 log2 log2 N)
)

operations for entry into its critical section. Moreover, among

these operations, at least
√
(log2 N)/(l + log2 log2 N) distinct shared variables are ac-

cessed. �

They also established the following upper bound by constructing a simple variant

of Algorithm L.

Theorem 2.14 (Alur and Taubenfeld) For every l such that 1 ≤ l ≤ log N , there

exists a livelock-free N -process mutual exclusion algorithm using only reads and writes,

where each shared variable has l bits, such that a process executes at most 7�(log2 N)/l�
operations to enter and exit its critical section in the absence of contention. More-

over, among these operations, at most 3�(log2 N)/l� different shared variables are ac-

cessed. �

According to Theorem 2.13, a “fast” algorithm requires variables with Ω(log N)

bits, i.e., variables large enough to hold process identifiers, or at least some constant

fraction of a process identifier. Most modern multiprocessor systems have at least 32-

bit memory words, so requiring variables of size Ω(logN) usually poses no problem in

practice. However, there exist systems and algorithms that exploit the ability to access

memory at different granularities. For example, as mentioned in Section 2.3.1, Michael

and Scott presented a variant of Algorithm L in which processes access memory at

both full- and half-word granularities [65]. Alur and Taubenfeld’s results show that

there are limitations to this approach.

Dwork, Herlihy, andWaarts questioned the assumption that each access to a variable

is equally expensive [35]. Their chief contribution was to introduce a formal complexity

model that takes into account the (hardware) contention caused by overlapping accesses

45

to the same variable. Specifically, their model distinguishes between the invocation and

response of each operation. An operation’s contention cost is defined to be the number

of response events from the same variable that occur between the operation’s invocation

and matching response. Note that the access contention of a program, as defined earlier,

is simply the worst-case contention cost of any variable. Dwork, et al. applied this model

to various classes of algorithms in order to study trade-offs between average/worst-case

contention cost and time complexity. Regarding the mutual exclusion problem, they

proved the following.

Theorem 2.15 (Dwork, et al.) For any N -process mutual exclusion algorithm using

reads, writes, and read-modify-write operations, if access-contention is c, then there

exists a history in which a process executes Ω((log N)/c) operations for entry into its

critical section. �

Note that Theorems 2.13 and 2.15 do not distinguish between local and remote

memory references.

Cypher [33] was the first to present a lower bound on remote memory references

under arbitrary access-contention. His lower bound applies to algorithms using reads,

writes, and comparison primitives such as compare-and-swap, and test-and-set .

Theorem 2.16 (Cypher) For any N -process mutual exclusion algorithm using reads,

writes, and comparison primitives, there exists a history satisfying the following:

the total number of remote memory references

the number of processes that participate in the history
= Ω(log logN/ log log logN).

�

Cypher’s lower bound applies to either DSM or CC systems. Given that primi-

tives such as fetch-and-increment and fetch-and-store can be used to implement mutual

exclusion in O(1) time, Cypher’s result pointed to an unexpected weakness of compare-

and-swap, which is still widely regarded as being the most useful of all primitives to

provide in hardware.

As noted earlier, in Chapter 5, we improve Cypher’s result to obtain a lower bound

of Ω(log N/ log log N). This lower bound also applies to both CC and DSM systems.

Also, in Chapter 6, we present a time-complexity lower bound for adaptive mutual

exclusion. This lower bound precludes the possibility of an o(k) adaptive algorithm.

Finally, in Chapter 7, we present a time-complexity lower bound of Ω(logN/ log logN)

46

for nonatomic mutual exclusion, which precludes the possibility of a fast or adaptive

nonatomic algorithm. (See Section 1.4.)

CHAPTER 3

Space-optimal Mutual Exclusion

Under Read/Write Atomicity∗

In this chapter, a simple code transformation is presented that reduces the space com-

plexity of Yang and Anderson’s local-spin mutual exclusion algorithm, which was de-

scribed in Section 2.2.2 (Algorithm YA-N). In both the original and the transformed

algorithm, only atomic read and write instructions are used; each process generates

Θ(logN) RMRs (remote memory references) per lock request, where N is the number

of processes. The transformed algorithm uses Θ(N) distinct variables, which is clearly

optimal. This algorithm is used in Chapter 4 to construct a space-optimal adaptive

mutual exclusion algorithm with Θ(min(k, log N)) RMR time complexity, where k is

point contention.

As described in Section 2.2.2, Algorithm YA-N is constructed by embedding

instances of a two-process mutual exclusion algorithm (Algorithm YA-2) within a

binary arbitration tree. The two-process algorithm has O(1) time complexity, so the

overall per-process RMR time complexity is Θ(log N). The algorithm’s correctness

relies crucially on the fact that, when a process p is blocked within a node n of the

tree, it can be later released only by the (unique) “winning” process at that node — in

particular, other processes that p may compete with elsewhere in the tree should not

“interfere” with the node-n algorithm by updating p’s spin variable at that node. To

prevent such interference, a distinct spin variable is used for each process at each level

of the tree. Thus, the algorithm’s space complexity is Θ(N log N) (where, as noted

earlier, “space complexity” is defined as the total number of variables used).

∗The results presented in this chapter have been published in the following paper.
[47] Y.-J. Kim and J. Anderson. A space- and time-efficient local-spin spin lock. Information Process-
ing Letters, 84(1):47–55, September 2002.

48

const /∗ for simplicity, we assume N = 2L ∗/
L = logN ; /∗ height of arbitration tree = O(logN) ∗/
Tsize = 2L − 1 = N − 1 /∗ size of arbitration tree = O(N) ∗/

shared variables
T : array[1..Tsize] of 0..N − 1;
C: array[1..Tsize][0..1] of (0..N − 1, ⊥) initially ⊥;
R: array[1..Tsize][0..1] of (0..N − 1, ⊥); /∗ Algorithm LS ∗/
Q: array[1..L][0..N − 1] of 0..2 initially 0; /∗ Algorithm YA-N ∗/
P : array[1..Tsize][0..1] of 0..2 initially 0; /∗ Algorithms CC, LS and F ∗/
S: array[0..N − 1] of boolean initially false /∗ Algorithms LS and F ∗/

private variables
h: 1..L;
node: 1..Tsize;
side: 0..1; /∗ 0 = left side, 1 = right side ∗/
rival : 0..N − 1

Figure 3.1: Variable declarations.

In this chapter, we present a simple code transformation that reduces the space

complexity of Algorithm YA-N from Θ(N log N) to Θ(N). In our new algorithm,

each process uses the same spin variable for all levels of the arbitration tree. The

algorithm is constructed in a way that prevents interference between different nodes

from having any ill effect. Like Algorithm YA-N, the RMR time complexity of our

new algorithm is Θ(logN).

This chapter is organized as follows. In Section 3.1, we show that our new algorithm

can be derived from Algorithm YA-N in a manner that preserves the Exclusion and

Starvation-freedom properties. In Section 3.2, we prove that the algorithm’s RMR time

complexity is Θ(logN). We conclude in Section 3.3.

3.1 Transformation of ALGORITHM YA-N

Starting with Algorithm YA-N, we construct three other algorithms, each obtained

from its predecessor by means of a simple code transformation. These other algorithms

are Algorithm CC (for cache-coherent), Algorithm LS (for linear space), and

Algorithm F (the final algorithm). The first two algorithms are shown in Figure 3.2,

and the second two in Figure 3.3. Variable declarations for all the algorithms are given

in Figure 3.1.

49

/∗ statements of Algorithm CC that are different from Algorithm YA-N have boldface line numbers ∗/
Algorithm YA-N
/∗ the original algorithm in [84] ∗/

process p :: /∗ 0 ≤ p < N ∗/
while true do
1: Noncritical Section;

for h := 1 to L do
node :=

⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

2: C[node][side] := p;
3: T [node] := p;
4: Q[h][p] := 0;
5: rival := C[node][1− side];

if (rival �= ⊥ ∧
6: T [node] = p) then
7: if Q[h][rival] = 0 then
8: Q[h][rival] := 1

fi;
9: await Q[h][p] ≥ 1;
10: if T [node] = p then
11: await Q[h][p] = 2

fi
fi

od;

12: Critical Section;

for h := L downto 1 do
node :=

⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

13: C[node][side] := ⊥;
14: rival := T [node];

if rival �= p then
15: Q[h][rival] := 2

fi
od

od

Algorithm CC
/∗ the cache-coherent algorithm ∗/

process p :: /∗ 0 ≤ p < N ∗/
while true do
1: Noncritical Section;

for h := 1 to L do
node :=

⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

2: C[node][side] := p;
3: T [node] := p;
4: P [node][side] := 0;
5: rival := C[node][1− side];

if (rival �= ⊥ ∧
6: T [node] = p) then
7: if P [node][1− side] = 0 then
8: P [node][1− side] := 1

fi;
9: await P [node][side] ≥ 1;
10: if T [node] = p then
11: await P [node][side] = 2

fi
fi

od;

12: Critical Section;

for h := L downto 1 do
node :=

⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

13: C[node][side] := ⊥;
14: rival := T [node];

if rival �= p then
15: P [node][1− side] := 2

fi
od

od

Figure 3.2: Algorithm YA-N and Algorithm CC.

Algorithm YA-N. We begin with a brief, informal description of Algorithm YA-

N. At each node n at height h in the arbitration tree, the following variables are used:

C[n][0], C[n][1], T [n], and a subset of Q[h][0], . . . , Q[h][N − 1]. Variable C[n][0] ranges

over {0, . . . , N − 1, ⊥} and is used by a process from the left subtree rooted at n to

inform a process from the right subtree rooted at n of its intent to enter its critical

section. Variable C[n][1] is similarly used by processes from the right subtree. Variable

T [n] ranges over {0, . . . , N − 1} and is used as a tie-breaker in the event that two

processes attempt to “acquire” node n at the same time. In such a case, the process

50

that first updates T [n] is favored. Variable Q[h][p] is the spin variable used by process p

at node n (if it is among the processes that, by the structure of the tree, can access node

n). At each node n, the two-process algorithm behaves as explained in Section 2.2.2,

except that variables C[u], C[v], T , P [u], and P [v] (shown in Figure 2.3) are replaced

by C[n][0], C[n][1], T [n], Q[h][l], Q[h][r], respectively (where l (r) is the process from

the left (right) subtree).

Algorithm CC. In Algorithm CC, each node n has two associated spin variables,

P [n][0] and P [n][1]. P [n][0] is used by all processes that try to acquire node n from

the left side. P [n][1] is similarly used by all right-side processes. Algorithm CC uses

three shared arrays, C, P , and T , each with Θ(N) elements. Thus, its space complexity

is Θ(N). Its RMR time complexity remains Θ(logN) on cache-coherent (CC) systems,

because each spin variable is waited on by at most one process at any time. For example,

when a left-side process p repeatedly reads P [n][0] at statement 9, the first such read

causes P [n][0] migrate to p’s local cache; any subsequent reads before P [n][0] is written

are therefore local. The algorithm ensures that once P [n][0] is written, p’s busy-waiting

loop terminates.

In contrast, Algorithm CC has unbounded time complexity on DSM systems

without coherent caches. This is because different processes may block on the same

spin variable at different times, which makes it impossible to statically allocate spin

variables to processes in such a way that all spins are local.

Note that the two-process version of Algorithm CC is isomorphic to Algo-

rithm YA-2. Thus, the correctness of the two-process version of Algorithm CC

follows directly from the correctness of Algorithm YA-2. Because the two-process

version of Algorithm CC is correct, its application within an N -process arbitration

tree results in a correct N -process algorithm. (The arbitration-tree approach can be

applied using any correct two-process algorithm, as long as the instances of the two-

process algorithm used employ distinct variables.) As it turns out, Algorithm YA-N

is actually trickier to prove correct than Algorithm CC. This is because, in Algo-

rithm YA-N, the basic two-process version has been modified in a way that ensures

that different processes use different spin variables at each node. In Algorithm CC,

the two-process algorithm is being applied directly without modification.

Algorithm LS. Algorithm LS has been obtained from Algorithm CC by ap-

plying a simple transformation, which we examine here in isolation. In Algorithm

51

CC, all busy-waiting is by means of statements of the form “await B,” where B is some

boolean condition. Moreover, if a process p is waiting for condition B to hold, then

there is a unique process that can establish B, and once B is established, it remains

true, until p’s “await B” statement terminates.

In Algorithm LS, each statement of the form “await B” has been replaced by

the following code fragment:

a: R := p;
b: while ¬B do
c: await S[p];
d: S[p] := false

od

where S[p] is initially false (see statements 9 and 11). In addition, each assignment of

the form “B := true” has been replaced by the following:

e: B := true;
f: rival := R;
g: S[rival] := true

(see statements 8 and 15). Note that the code implementing “await B” can terminate

only if B is true, i.e., it terminates only when it should. Moreover, if a process p finds

that B is false at statement b, and if another process q subsequently establishes B by

executing statement e, then because p’s execution of statement a precedes q’s execution

of statement f, q establishes S[p] = true when it executes statement g. Thus, if a process

p is waiting for condition B to hold, and B is established by another process, then p

must eventually exit the while loop at statement b.

Algorithm F. Algorithm F has been obtained fromAlgorithm LS by removing

the shared array R, which was introduced in applying the transformation above at each

node of the arbitration tree. The fact that this array is unnecessary follows from several

invariants of Algorithm LS, which are stated below. In stating these invariants (as

well as those needed in later chapters), we use the following notational conventions.

Notational conventions. We use s.p to denote the statement with label s

of process p, and (as in Chapter 2) p.v to represent p’s private variable v.

Let S be a subset of the statement labels in process p. Then, p@S holds

if and only if the program counter for process p equals some value in S.

52

/∗ statements that are different from Algorithm CC have with boldface line numbers ∗/
Algorithm LS
/∗ the linear-space algorithm ∗/

process p :: /∗ 0 ≤ p < N ∗/
while true do
1: Noncritical Section;

for h := 1 to L do
node :=

⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

2: C[node][side] := p;
3: T [node] := p;
4: P [node][side] := 0;
5: rival := C[node][1− side];

if (rival �= ⊥ ∧
6: T [node] = p) then
7: if P [node][1− side] = 0 then
8: 8e P [node][1− side] := 1;

8f rival := R[node][1− side];
8g S[rival] := true

fi;
9: 9a R[node][side] := p;

9b while P [node][side] = 0 do
9c await S[p];
9d S[p] := false

od;
10: if T [node] = p then
11: 11a R[node][side] := p;

11b while P [node][side] ≤ 1 do
11c await S[p];
11d S[p] := false

od
fi

fi
od;

12: Critical Section;
for h := L downto 1 do

node :=
⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

13: C[node][side] := ⊥;
14: rival := T [node];

if rival �= p then
15: 15e P [node][1− side] := 2;

15f rival := R[node][1− side];
15g S[rival] := true

fi
od

od

Algorithm F
/∗ the final algorithm ∗/

process p :: /∗ 0 ≤ p < N ∗/
while true do
1: Noncritical Section;

for h := 1 to L do
node :=

⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

2: C[node][side] := p;
3: T [node] := p;
4: P [node][side] := 0;
5: rival := C[node][1− side];

if (rival �= ⊥ ∧
6: T [node] = p) then
7: if P [node][1− side] = 0 then
8: 8e P [node][1− side] := 1;

8f —
8g S[rival] := true

fi;
9: 9a —

9b while P [node][side] = 0 do
9c await S[p];
9d S[p] := false

od;
10: if T [node] = p then
11: 11a —

11b while P [node][side] ≤ 1 do
11c await S[p];
11d S[p] := false

od
fi

fi
od;

12: Critical Section;
for h := L downto 1 do

node :=
⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

13: C[node][side] := ⊥;
14: rival := T [node];

if rival �= p then
15: 15e P [node][1− side] := 2;

15f —
15g S[rival] := true

fi
od

od

Figure 3.3: Algorithm LS and Algorithm F.

53

(Note that if s is a statement label, then p@{s} means that statement s of

process p is enabled , i.e., p has not yet executed s.)

We assume that each labeled sequence of statement(s) is atomic. Note that

each numbered statement reads or writes at most one shared variable. �

Before stating the required invariants, first note that removing array R does not

affect safety, because thewhile conditions at statements 9b and 11b still ensure that the

busy-waiting loops terminate only when they should. However, there is now a potential

danger that a process may not correctly update its rival’s spin variable, and hence that

process may wait forever at either statement 9c or 11c. The following invariants (of

Algorithm LS) imply that this is not possible.

Informally, invariant (I1) below implies that, as long as q is spinning at node n, the

entries of R and C that pertain to node n correctly show q’s presence. Invariant (I2)

implies that, if p is at statements 6..8f and its variable p.rival holds an inaccurate value

(i.e., p.rival �= C[p.node][1 − p.side]), then p’s true rival, q, either has not yet updated

T [p.node] (i.e., q@{3} holds), or has updated T [p.node] and in fact did so after p (i.e.,

T [p.node] = q holds). In either case, because ties are broken in favor of p, it does not

matter that p.rival is inaccurate. Invariant (I3) implies that, if p is at statement 8f and

its rival q is spinning, then either p.rival is accurate (i.e., p.rival = R[p.node][1−p.side]),

or ties are broken in favor of p (i.e., T [p.node] = q). Finally, (I4) implies that when p

is about to exit from node n, if its rival, q, is still spinning, then T [n] cannot hold the

identifier of a process other than p or q. Therefore, p can correctly infer its competitor

by reading T [n].

invariant q@{9b..9d, 11b..11d} ⇒
R[q.node][q.side] = q ∧ C[q.node][q.side] = q (I1)

invariant p@{6..8f} ∧ p.rival �= C[p.node][1 − p.side] ∧
q@{3..11d} ∧ q.node = p.node ∧ q.side = 1 − p.side ⇒

q@{3} ∨ T [p.node] = q (I2)

invariant p@{8f} ∧ q@{9b..9d, 11b..11d} ∧
q.node = p.node ∧ q.side = 1 − p.side ⇒

p.rival = R[p.node][1 − p.side] ∨ T [p.node] = q (I3)

invariant p@{14, 15e..15g} ∧ q@{9b..9d, 11b..11d} ∧ q.node = p.node ⇒
T [p.node] = p ∨ T [p.node] = q (I4)

54

Invariant (I1) follows easily from the correctness of the arbitration-tree mechanism

used in Algorithm LS and the fact that process q establishes C[q.node][q.side] = q

(statement 2) before it establishes R[q.node][q.side] = q (statements 9a and 11a).

To see that (I2) holds, note that p.rival = C[p.node][1−p.side] holds when p@{6} is

established by process p. The only other statements that may establish its antecedent

are statements 2 and 13 of some other process q with q.node = p.node ∧ q.side =

1−p.side. These statements may establish q@{3..11d} or falsify p.rival = C[p.node][1−
p.side]. However, q@{3..11d} is false after q executes statement 13 (moreover, by

the correctness of the arbitration-tree mechanism, r@{3..11d} ∧ r.node = p.node ∧
r.side = 1− p.side is false after the execution of statement 13 by q for any choice of r).

Also, statement 2 establishes q@{3}, i.e., the consequent of (I2) holds. Finally, note

that whenever q@{3} is falsified, T [p.node] = q is established.

Invariant (I3) follows from (I1) and (I2) by considering two cases. Assume that its

antecedent holds. If p.rival = C[p.node][1− p.side] holds, then p.rival = R[p.node][1−
p.side] follows by (I1). Otherwise, T [p.node] = q follows by (I2).

By the correctness of the arbitration-tree mechanism, it easily follows that after both

p and q have executed statement 3 with p.node = n ∧ q.node = n and before either of

them leaves node n, no other process can enter node n. Therefore, the consequent of

(I4) is not falsified while its antecedent holds.

Our objective now is to show that the reads of R[p.node][1 − p.side] by p at state-

ments 8f and 15f are superfluous. We show this by proving that if p’s rival q is executing

within statements 9b–9d or 11b–11d, where it may potentially block, and if p attempts

to release its rival by executing statements 7–8g or statements 14–15g, then q cannot

be blocked forever. Consider the following two lemmas.

Lemma 3.1 If q.node = p.node ∧ q.side = 1 − p.side ∧ q@{9b..9d, 11b..11d} holds

while p executes statements 14–15f, then p’s execution of statement 15f does not change

the value of p.rival .

Proof: By (I4), p must have found T [p.node] = q at statement 14. By (I1), p also

finds R[p.node][1 − p.side] = q at statement 15f. �

Of course, if p reaches statement 15f when q.node = p.node ∧ q.side = 1 − p.side

holds and q@{9b..9d, 11b..11d} is established afterwards, then q executes statement 9b

or 11b after p executes 15e, so q will not spin on variable S[q]. In other words, the

potential removal of statement 15f causes no problems in this case.

55

Lemma 3.2 If q.node = p.node ∧ q.side = 1 − p.side ∧ q@{9b..9d, 11b..11d} holds

while p executes statements 7–8f, then (i) p’s execution of statement 8f does not change

the value of p.rival , or (ii) p enters its critical section before q does.

Proof: By (I3), either p.rival = R[p.node][1 − p.side] holds or T [p.node] = q holds

when p executes statement 8f. In the former case, statement 8f does not change the

value of p.rival . In the latter case, by the tie-breaking strategy used in Algorithm LS,

p enters its critical section before q. �

As before, the potential removal of statement 8f causes no problems if p reaches

statement 8f when q.node = p.node ∧ q.side = 1−p.side holds and q@{9b..9d, 11b..11d}
is established afterwards. Note that if (ii) above applies, then because p enters its critical

section before q, p will eventually execute statements 15e–15g and release q from its

spinning. Hence, the algorithm remains starvation-free if both statements 8f and 15f

are removed. Finally, with statements 8f and 15f removed, statements 9a and 11a can

be eliminated as well. Thus, we have the following theorem.

Theorem 3.1 Algorithm F is a correct, starvation-free mutual exclusion algorithm,

with Θ(N) space complexity. �

3.2 Time Complexity

Although we showed in the previous section that Algorithm F is a starvation-free

algorithm, we did not establish its time complexity. (Starvation-freedom merely indi-

cates that a process eventually enters its critical section; it does not specify how soon.)

In this section, we show that each process performs Θ(log N) remote memory refer-

ences in Algorithm F to enter and then exit its critical section. Because the spins

at statements 9c and 11c are local, it clearly suffices to establish a Θ(log N) bound

on the total number of iterations of the while loops at statements 9b and 11b for one

complete entry-section execution.

Consider a process p. During its entry section, the total iteration count of the while

loops at statements 9b and 11b is bounded by the number of statement executions that

establish S[p] = true. This can happen only if some other process q executes statement

8g or 15g while q.rival = p holds. The arbitration-tree structure implies that this can

happen only if

• process p always enters node n from side s, where s = 0 or 1, and

56

• process q executes either statement 8g or 15g while q.node = n ∧ q.side = 1 −
s ∧ q.rival = p holds.

Since there are Θ(logN) nodes along the path taken by process p to reach its critical

section, it suffices to prove the following lemma.

Lemma 3.3 Consider a process p and a node n. Assume that p always enters node

n from side s (s = 0 or 1) during its entry section. During an interval in which p is in

its entry section, there can be at most seven1 events e such that e is an execution of

statement 8g or 15g by some process q with q.node = n ∧ q.side = 1−s ∧ q.rival = p.

Proof: We represent process p’s execution of statement z by z.p[n, s], where n and s

are the values of p.node and p.side, respectively, before statement z is executed. We

consider three cases, depending on the program counter of process p.

Case 1. Process p has not yet executed 2.p[n, s].

By the program text, C[n][s] �= p holds before statement 2.p[n, s] is executed. A

process q, other than p, can establish S[p] = true by executing either 8g.q[n, 1 − s]

or 15g.q[n, 1 − s] only once. Note that, after that single event, and while Case 1

continues to hold, any process r (r could be q or another arbitrary process) executing

with r.node = n ∧ r.side = 1 − s will find r.rival �= p at statement 5 or 14, and hence

cannot establish S[p] = true.

Case 2. Process p has executed 2.p[n, s] but not 3.p[n, s] (i.e., p@{3} ∧ p.node =

n ∧ p.side = s holds).

Case 3. Process p has executed 3.p[n, s] but not 4.p[n, s] (i.e., p@{4} ∧ p.node =

n ∧ p.side = s holds).

Case 4. Process p has executed 4.p[n, s].

While each of these cases holds, a process q, other than p, can establish S[p] = true

twice by executing statements 8g.q[n, 1 − s] and 15g.q[n, 1 − s].

Assume that after q exits node n, a process r (r could be q again, or another arbitrary

process) enters node n from side 1− s. Note that statement 15g.q[n, 1− s] has already

established P [n][s] �= 0, which is not falsified by any statement while one of Cases 2, 3,

or 4 continues to hold. (By the correctness of the arbitration-tree mechanism, the only

1The number of events can be actually reduced to five with careful bookkeeping, but since this
does not change the asymptotic argument, we will content ourselves with a less tight bound here.

57

statement that may falsify P [n][s] �= 0 is 4.p[n, s], which falsifies Case 3 and establishes

Case 4.) Therefore, process r will find P [n][s] �= 0 at statement 7 if any of Cases 2, 3,

or 4 continues to hold, and will not execute statements 8e and 8g.

Similarly, note that process r itself establishes T [n] = r by executing 3.r[n, 1 − s],

which is not falsified by any statement while one of Cases 2, 3, or 4 continues to hold.

(By the correctness of the arbitration-tree mechanism, the only statement that may

falsify T [n] = r is 3.p[n, s], which falsifies Case 2 and establishes Case 3.) Therefore,

process r will find T [n] = r at statement 14 if any of Cases 2, 3, or 4 continues to hold,

and will not execute statements 15e and 15g.

From these arguments, it follows that S[p] = true can be established at most twice

while each of Cases 2, 3, and 4 continues to hold. Hence, we have established the

following bound on the number of events that may establish S[p] = true: 1 {Case 1}
+ 2 {Case 2} + 2 {Case 3} + 2 {Case 4} = 7. �

Finally, from Theorem 3.1 and Lemma 3.3, we have the following.

Theorem 3.2 Algorithm F is a correct, starvation-free mutual exclusion algorithm,

with Θ(N) space complexity and Θ(logN) RMR time complexity, on both CC and DSM

systems. �

3.3 Concluding Remarks

We have presented a mutual exclusion algorithm with Θ(N) space complexity and

Θ(log N) RMR time complexity on both CC and DSM systems. Our algorithm was

created by applying a series of simple transformations to Yang and Anderson’s mutual

exclusion algorithm. The transformation used to obtain Algorithm LS may actually

be of independent interest, because it can be applied to convert any algorithm in which

spin variables are dynamically shared into one in which each process has a unique spin

location. The resulting algorithm will be a local-spin algorithm on a DSMmachine with-

out coherent caches as long as the while loops introduced in the transformation cannot

iterate unboundedly. (In Chapter 8, we introduce another transformation method for

obtaining DSM algorithms, which is more general but has greater overhead.)

As described in Section 2.4, Attiya and Bortnikov presented an adaptive non-local-

spin mutual exclusion algorithm under read/write atomicity [24]. Their algorithm

achieves O(M2) space complexity, where M is an a priori upper bound on the number

58

of concurrently active processes. Therefore, it is possible to construct an algorithm with

space complexity independent of N , if one does not insist on local spinning. However,

among local-spin algorithms, our algorithm is clearly optimal, because every process

must have at least one spin variable.

In Chapter 4, we show that, by using Algorithm F as a subroutine, it is possible

to construct an adaptive mutual exclusion algorithm with Θ(N) space complexity and

Θ(min(k, log N)) time complexity, where k is point contention.

CHAPTER 4

Adaptive Mutual Exclusion Under

Read/Write Atomicity∗

In this chapter, we present an adaptive algorithm for N -process mutual exclusion under

read/write atomicity in which all busy waiting is by local spinning. In our algorithm,

each process p performs O(k) remote memory references to enter and exit its criti-

cal section, where k is the maximum point contention experienced by p. The space

complexity of our algorithm is Θ(N), which is clearly optimal. Our algorithm is the

first mutual exclusion algorithm under read/write atomicity that is adaptive under the

RMR (remote-memory-reference) measure.

As described in Section 2.4, several read/write mutual exclusion algorithms have

been presented that are adaptive under various time complexity measures. (As before,

we let k and k′ denote point and interval contention, respectively.) One of the first such

algorithms was an algorithm of Styer that has O(min(N, k′ logN)) step time complexity

and O(min(N, k′ log N)) system response time [78]. Choy and Singh presented an

algorithm with O(N) step time complexity and O(k′) system response time [30]. More

recently, Attiya and Bortnikov presented an algorithm with O(k) step time complexity

andO(log k) system response time [24]. This algorithm was obtained by improving some

of the mechanisms used in Choy and Singh’s algorithm. In other work, Afek, Stupp, and

Touitou [5] constructed an adaptive bakery algorithm, by combining Lamport’s bakery

algorithm [51] with wait-free objects. Their algorithm has O(k4) step time complexity

and O(k4) system response time.

∗The results presented in this chapter have been published in the following paper.
[15] J. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local spinning. In Proceedings of the
14th International Symposium on Distributed Computing, pages 29–43. Lecture Notes in Computer
Science 1914, Springer-Verlag, October 2000.

60

System Step RMR/DSM
response time time Space

Algorithm time complexity complexity complexity

Styer [78] O(min(N, k′ logN)) O(min(N, k′ logN)) ∞ Θ(N)
Choy & Singh [30] O(k′) O(N) ∞ Θ(N)
Attiya & Bortnikov [24] O(log k) O(k) ∞ Θ(N logM)
Attiya & Bortnikov [24] O(log k′) O(k′) ∞ Θ(M logM)
Afek, et al. [5] O(k4) O(k4) ∞ Θ(N3 +M3N)
Afek, et al. [6] O((k′)2) O(min((k′)2, k′ logN)) O(min((k′)2, k′ logN)) Θ(N2)

This chapter
Algorithm A-U O(min(k, logN)) O(min(k, logN)) O(min(k, logN)) ∞
Algorithm A-B O(min(k, logN)) O(min(k, logN)) O(min(k, logN)) Θ(N2)
Algorithm A-LS O(min(k, logN)) O(min(k, logN)) O(min(k, logN)) Θ(N)

Table 4.1: Comparison of known adaptive algorithms. (This table is an extension of
Table 2.1.) In this table, k denotes point contention, k′ denotes interval contention,
and M denotes an upper bound on the maximum number of processes concurrently
active in the system (possibly less than N). (Although [5] uses a bounded number of
variables, some of these variables are unbounded.)

None of the previously-cited adaptive algorithms is a local-spin algorithm, and thus

each has unbounded RMR time complexity, unless write-update caches are assumed.1

Surprisingly, while adaptivity and local spinning have been the predominant themes

in recent work on mutual exclusion, the problem of designing an adaptive, local-spin

algorithm under read/write atomicity has remained open until recently. In this chapter,

we close this problem. In addition, Afek, Stupp, and Touitou [6] have independently

devised another local-spin adaptive algorithm, based on a long-lived implementation of

a splitter element (see Section 4.1.1), with a structure that is similar to our algorithm.

The adaptive algorithms mentioned so far are summarized in Table 4.1.

Our algorithm can be seen as an extension of the fast-path algorithm of Anderson

and Kim [14], mentioned in Section 2.3.2. That algorithm was devised by thinking

about connections between fast-path mechanisms and long-lived renaming [67]. Long-

lived renaming algorithms are used to “shrink” the size of the name space from which

process identifiers are taken. The problem is to design operations that processes may

invoke in order to acquire new names from the reduced name space when they are

needed, and to release any previously-acquired name when it is no longer needed. In

Anderson and Kim’s algorithm, a particular name is associated with the fast path;

to take the fast path, a process must first acquire the fast-path name. Our adaptive

algorithm can be seen as a generalization of Anderson and Kim’s fast-path mechanism

1See the remark in Table 2.1, and the discussion of time-complexity measures on page 31.

61

at most n-1 processes
move right

at most one process
stops

at most n-1 processes
move down

n processes enter

shared variable X: {⊥} ∪ {0..N − 1} initially ⊥;
Y : boolean initially true

private variable dir: {stop, right , down}
1: X := p;
2: if ¬Y then dir := right

else
3: Y := false;
4: if X = p then dir := stop

else dir := down
fi

fi

Figure 4.1: The splitter element and the code fragment that implements it.

in which every name is associated with some “path” to the critical section. The length

of the path taken by a process is determined by the point contention that it experiences.

An informal description of our adaptive algorithm is given in the following section.

A formal correctness proof for the algorithm is given in Appendix A.

4.1 Adaptive Algorithm

In our adaptive algorithm, code sequences from several other algorithms are used. In

Section 4.1.1, we present a review of these other algorithms and discuss some of the basic

ideas underlying our algorithm. Then, in Sections 4.1.2–4.1.4, we present a detailed

description of our algorithm.

4.1.1 Related Algorithms and Key Ideas

At the heart of our algorithm is the splitter element from the grid-based long-lived

renaming algorithm of Moir and Anderson [67]. The splitter element [56], which has

been described in Section 2.3.1, is shown here again in Figure 4.1. As described before,

each process that invokes the splitter code either stops, moves down, or moves right

(the move is defined by the value assigned to the variable dir). The splitter has the

following key properties: if n processes invoke a splitter, then at most one of them can

stop at that splitter, at most n − 1 can move right, and at most n − 1 can move down.

Because of these properties, it is possible to solve the renaming problem by inter-

connecting a collection of splitters in a grid as shown in Figure 4.2(a). (The diagonal

62

1

2

4

7

11

3

5

8

12

6

9

13

10

14

15

4 5 6 7

2 3

1

(b)(a)

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Figure 4.2: (a) Renaming grid (depicted for N = 5). (b) Renaming tree.

numbering scheme depicted here is due to [25].) A name is associated with each split-

ter. If the grid has N rows and N columns, then by induction, every process eventually

stops at some splitter. When a process stops at a splitter, it acquires the name as-

sociated with that splitter. In the long-lived renaming problem [67], processes must

have the ability to release the names they acquire. In the grid algorithm, a process can

release its name by resetting (i.e., reopening) each splitter on the path traversed by

it in acquiring its name. (A splitter is open if it can be acquired once again by some

process, and closed otherwise.) A splitter can be reset by resetting its Y variable to

true. For the renaming mechanism to work correctly, it is important that a splitter be

reset only if there are no processes “downstream” from it (i.e., in the sub-grid “rooted”

at that splitter). In Moir and Anderson’s algorithm, it takes O(N) time to determine

if there are “downstream” processes. This is because each process checks every other

process individually to determine if it is downstream from a splitter. As we shall see,

a more efficient reset mechanism is needed for our adaptive algorithm.

The main idea behind our algorithm is to let an arbitration tree form dynamically

within a structure similar to the renaming grid. This tree may not remain balanced, but

its height is proportional to contention. The job of integrating the renaming aspects of

the algorithm with the arbitration tree is greatly simplified if we replace the grid by a

binary tree of splitters as shown in Figure 4.2(b). (Since we are now working with a tree,

we will henceforth refer to the directions associated with a splitter as stop, left , and

right .) Note that this results in many more names than before. However, this is not a

major concern, because we are really not interested in minimizing the name space. The

arbitration tree is defined by associating a three-process mutual exclusion algorithm

63

with each node in the renaming tree. This three-process algorithm can be implemented

in constant time using the local-spin mutual exclusion algorithm (Algorithm YA-2)

of Yang and Anderson [84], which is described in Section 2.2.2. This algorithm may be

invoked at a node by the process that stopped at that node, and one process from each

of the left and right subtrees beneath that node. This is why a three-process algorithm

is needed.

In our algorithm, a process p performs the following basic steps. (For the moment,

we are ignoring certain complexities that must be dealt with.)

Step 1 p first acquires a new name by moving down from the root of the renaming tree,

until it stops at some node. In the steps that follow, we refer to this node as p’s

acquired node. p’s acquired node determines its starting point in the arbitration

tree.

Step 2 p then competes within the arbitration tree by executing each of the three-process

entry sections on the path from its acquired node to the root.

Step 3 After competing within the arbitration tree, p executes its critical section.

Step 4 Upon completing its critical section, p releases its acquired name by reopening

all of the splitters on the path from its acquired node to the root.

Step 5 After releasing its name, p executes each of the three-process exit sections on the

path from the root to its acquired node.

If we were to use a binary tree of height N , just as we previously had a grid with

N row and N columns, then the total number of nodes in the tree would be Θ(2N).

We circumvent this problem by defining the tree’s height to be logN , which results in

a tree with Θ(N) nodes. (For simplicity, we assume that N is a power of two.) With

this change, a process could “fall off” the end of the tree without acquiring a name.

However, this can happen only if contention is Ω(logN). To handle processes that “fall

off the end,” we introduce a second arbitration tree, which is implemented using the

algorithm presented in Chapter 3. We refer to the two trees used in our algorithm as

the renaming tree and overflow tree, respectively. These two trees are connected by

placing Algorithm YA-2, as illustrated in Figure 4.3(a). Figure 4.3(b) illustrates

the steps that might be taken by a process p in acquiring a new name if contention

is O(log N). Figure 4.3(c) illustrates the steps that might be taken by a process q if

contention is Ω(log N).

64

renaming tree overflow tree

O(log N)

height

two-process
ME algorithm

process p

got name

process q

failed to get name

(b) (c)(b)(a)

Figure 4.3: (a) Renaming tree and overflow tree. (b) Process p gets a name in the
renaming tree. (c) Process q fails to get a name and must compete within the overflow
tree.

A major difficulty that we have ignored until this point is that of efficiently reopening

a splitter, as described in Step 4 above. In Moir and Anderson’s renaming algorithm,

it takes O(N) time to reopen a splitter. To see why reopening a splitter is difficult,

consider again Figure 4.1. If a process does succeed in stopping at a splitter, then

that process can reopen the splitter itself by simply assigning Y := true. On the other

hand, if no process succeeds in stopping at a splitter, then some process that moved

left or right from that splitter must reset it. Unfortunately, because processes are

asynchronous and communicate only by means of atomic read and write operations, it

can be difficult for a left- or right-moving process to know whether some process has

stopped at a splitter.

Anderson and Kim [14] solved this problem in their fast-path mutual exclusion

algorithm by exploiting the fact that much of the reset code can be executed within a

process’s critical section. Thus, the job of designing efficient reset code is much easier

here than when designing a wait-free long-lived renaming algorithm. As mentioned

earlier, in Anderson and Kim’s fast-path algorithm, a particular name is associated

with the fast path; to take the fast path, a process must first acquire the fast-path

name. In our adaptive algorithm, we must efficiently manage acquisitions and releases

for a set of names.

Having introduced the major ideas that underlie our algorithm, we now present a

detailed description of the algorithm and its properties. We do this in three steps. In

Section 4.1.2, we consider a version of the algorithm in which unbounded memory is

used to reset splitters in constant time. Then, in Section 4.1.3, we consider a variant

of the algorithm with Θ(N2) space complexity in which all variables are bounded.

Finally, in Section 4.1.4, we present another variant that has Θ(N) space complexity.

In explaining these algorithms, we actually present proof sketches for some of the key

65

const
L = logN ; /∗ depth of renaming tree = O(logN); for simplicity, we assume N = 2L ∗/
T = 2N − 1 /∗ size of renaming tree = O(N) ∗/

type
Ytype = record free: boolean; rnd : 0..∞ end; /∗ stored in one word ∗/
Dtype = (left , right , stop); /∗ splitter moves ∗/
Ptype = record node: 1..2T + 1; dir : Dtype end /∗ path information ∗/

shared variables
X: array[1..T] of 0..N − 1;
Y , Reset : array[1..T] of Ytype initially (true, 0);
Round : array[1..T][0..∞] of boolean initially false;
Acquired : array[1..T] of boolean initially false

private variables
node: 1..2T + 1;
n: 1..T ;
level , j: 0..L+ 1;
y: Ytype;
dir : Dtype;
path: array[0..L] of Ptype

Figure 4.4: Variables used in Algorithm A-U.

properties of each algorithm. Our intent is to use these proof sketches as a means for

intuitively explaining the basic mechanisms of each algorithm. A formal correctness

proof for the final algorithm is presented in Appendix A.

4.1.2 Algorithm A-U: Unbounded Algorithm

The first algorithm, which we call Algorithm A-U (for adaptive and unbounded), is

shown in Figure 4.5. Variables used in this algorithm are shown in Figure 4.4. Before

describing how this algorithm works, we first examine its basic structure. At the top

of Figure 4.4, definitions of two constants are given: L, which is the maximum level

in the renaming tree (the root is at level 0), and T , which gives the total number of

nodes in the renaming tree. As mentioned earlier, the renaming tree is comprised of

a collection of splitters. These splitters are indexed from 1 to T . If splitter i is not a

leaf, then its left and right children are splitters 2i and 2i+ 1, respectively.

Each splitter i is accessed by three subroutines AcquireNode(i), ReleaseNode(i, dir),

and ClearNode(i). Function AcquireNode(i) determines if the process can acquire split-

ter i by executing a modified version of the splitter code in Figure 4.1, and returns

stop, left , or right depending on its outcome. A process invokes ReleaseNode(i, dir) in

66

process p :: / ∗ 0 ≤ p < N ∗ /
while true do
0: Noncritical Section;
1: node, level := 1, 0;

/∗ descend renaming tree ∗/
repeat

2: dir := AcquireNode(node);
3: path[level] := (node, dir);

if dir = left then
level := level + 1;
node := 2 · node

elseif dir = right then
level := level + 1;
node := 2 · node + 1

fi
until (level > L) ∨ (dir = stop);

if level ≤ L then /∗ got a name ∗/
/∗ compete in the renaming tree,

and then 2-process algorithm ∗/
for j := level downto 0 do

4: Entry3(path[j].node, path[j].dir)
od;

5: Entry2(0)
else /∗ did not get a name ∗/

/∗ compete in the overflow tree,
and then 2-process algorithm ∗/

6: EntryN (p);
7: Entry2(1)

fi;

8: Critical Section;

/∗ reset splitters ∗/
for j := min(level , L) downto 0 do

n, dir := path[j].node, path[j].dir ;
9: ReleaseNode(n, dir)

od;

/∗ execute appropriate exit sections ∗/
if level ≤ L then

10: Exit2(0);
for j := 0 to level do

11: Exit3(path[j].node, path[j].dir) od;
12: ClearNode(node)

else
13: Exit2(1);
14: ExitN (p)

fi
od

function AcquireNode(n: 1..T): Dtype
15: X[n] := p;
16: y := Y [n];

if ¬y.free then return right fi;
17: Y [n] := (false, 0);
18: if X[n] �= p ∨
19: Acquired [n] then

return left
fi;

20: Round [n][y.rnd] := true;
21: if Reset [n] �= y then
22: Round [n][y.rnd] := false;

return left
fi;

23: Acquired [n] := true;
return stop

procedure ReleaseNode(n: 1..T, dir : Dtype)
24: if dir = right then return fi;
25: y := Reset [n];
26: Reset [n] := (false, y.rnd);
27: if dir = stop ∨ ¬Round [n][y.rnd] then
28: Reset [n] := (true, y.rnd + 1);
29: Y [n] := (true, y.rnd + 1)

fi

procedure ClearNode(n: 1..T)
30: Acquired [n] := false

Figure 4.5: Algorithm A-U: Adaptive algorithm with unbounded memory.

67

its exit section (statement 9) if and only if it has invoked AcquireNode(i) in its entry

section and obtained a return value of dir . Similarly, a process invokes ClearNode(i)

in its exit section (statement 12) if and only if it has stopped at splitter i in its entry

section (i.e., its call to AcquireNode(i) returned stop). These two procedures “reopen”

splitter i for future use, as explained in detail later.

Each splitter i is defined by four shared variables and an infinite shared array: X[i],

Y [i], Reset [i], Round [i] (the array), and Acquired [i]. Variables X[i] and Y [i] are as

in Figure 4.1, with the exception that Y [i] now has an additional integer rnd field.

As explained below, Algorithm A-U works by associating “round numbers” with

the various rounds of competition for the name corresponding to each splitter. In

Algorithm A-U, these round numbers grow without bound. The rnd field of Y [i]

gives the current round number for splitter i. Reset [i] is used to reinitialize the rnd field

of Y [i] when name i is released. Round [i][r] is used to identify a potential “winning”

process that has succeeded in acquiring name i in round r. Acquired [i] is set when some

process acquires name i.

Each process descends the renaming tree, starting at the root, until it either acquires

a name or “falls off the end” of the tree, as discussed earlier. A process determines if

it can acquire name i by invoking AcquireNode(i) at statement 2. Statement 3 simply

prepares for the next iteration of the repeat loop (if there is one). In AcquireNode(i),

statements 15–18 correspond to the splitter code in Figure 4.1, and statements 19–

23 are executed as part of a handshaking mechanism that prevents a process that is

releasing a name from adversely interfering with processes attempting to acquire that

name; this mechanism is discussed in detail below.

If a process p succeeds in acquiring a name while descending within the renaming

tree, then it competes within the renaming tree by moving up from its acquired name

to the root, executing the three-process entry sections on this path (statement 4).

Each of these three-process entry sections is denoted “Entry3(n, d),” where n is the

corresponding tree node, and d is the “identity” of the invoking process. The “identity”

that is used is simply the invoking process’s direction out of node n (stop, left , or right)

when it descended the renaming tree. After ascending the renaming tree, p invokes the

two-process entry section “on top” of the renaming and overflow trees (as illustrated

in Figure 4.3(a)) using “0” as a process identifier (statement 5). This entry section is

denoted “Entry2(0).”

If a process p does not succeed in acquiring a name while descending within the

renaming tree, then it competes within the overflow tree (statement 6), which is imple-

68

mented using Yang and Anderson’s N -process arbitration-tree algorithm. The entry

section of this algorithm is denoted EntryN(p). Note that p uses its own process iden-

tifier in this algorithm. After competing within the overflow tree, p executes the two-

process algorithm “on top” of both trees using “1” as a process identifier (statement 7).

This entry section is denoted “Entry2(1).”

After completing the appropriate two-process entry section, process p executes its

critical section (statement 8). It then resets each of the splitters that it visited while

descending the renaming tree by invoking ReleaseNode at statement 9. This reset

mechanism is discussed in detail below. Process p then executes the exit sections

corresponding to the entry sections it executed previously (statements 10–14). The exit

sections are specified in a manner that is similar to the entry sections. (Statement 12

is discussed below.)

We now consider in detail the three subroutines that are executed to acquire or

reset some splitter i. To facilitate this discussion, we will index these statements by i.

For example, when we refer to the execution of statement 17[i] by process p, we mean

the execution of statement 17 by p when its argument n equals i. Throughout this

discussion, we use the following notational conventions.

As in Chapter 3, we use s.p to denote the statement with label s of process p, p.v to

represent p’s private variable v, and p@S to denote that the program counter for process

p equals some value in the set S. Also, as before, we assume that each labeled sequence

of statements is atomic. For example, consider statement 18.p. If 18.p is executed while

X[p.n] = p holds, then it establishes p@{19}. On the other hand, if 18.p is executed

while X[p.n] �= p holds, then it returns left from AcquireNode and establishes p@{3}.
Statements 2, 9, and 12 are considered as branches to each subroutine, and do nothing

but establishing p@{15, 24, 30}, respectively.
We number statements in this manner to reduce the number of cases that must

be considered in the proof. Note that each numbered sequence of statements reads or

writes at most one shared variable. (Because the ENTRY and EXIT routines are assumed

to be correct, we can assume that they execute atomically and do not access any of the

shared variables of Algorithm A-U.)

As explained above, one of the problems with the splitter code is that it is difficult for

a left- or right-moving process at splitter i to know which (if any) process has acquired

name i. In Algorithm A-U, this problem is solved by viewing the computation

involving each splitter as occurring in a sequence of rounds. Each round ends when the

splitter is reset. During a round, at most one process succeeds in acquiring the name of

69

the splitter. Note that it is possible that no process acquires the name during a round.

So that processes can know the current round number at splitter i, an additional rnd

field has been added to Y [i]. In essence, the round number at splitter i is used as a

temporary identifier to communicate with the winning process (if any) at splitter i.

This identifier will increase without bound over time, so the potential winner of each

round can be uniquely identified. Formally, we have the following definitions.

Definition An execution interval is a set of consecutive states in a particular execution

history. It is denoted (e, f), where e is either 0 (indicating that the interval starts with

the initial state) or some event, and f is either ∞ (indicating that the interval never

terminates) or another event that is executed after e. Interval (e, f) contains all states

after the execution of e and before the execution of f . We say that (e, f) is infinite if

f = ∞, and finite otherwise. �

Definition A round of a splitter i is an execution interval H = (e, f) satisfying the

following.

• e is either 0 or an event that writes Y [i] := (true, r), for some r.

• f is either ∞ or another event that writes Y [i] := (true, s), for some s.

• For any event g inside H (excluding e and f), if g writes Y [i], then g writes

Y [i] := (false, 0).

We say that r is the round number of H. (If e = 0, then the round number of H is

0, the initial value of Y [i].rnd .) We also use R(i, r) to denote round r of splitter i. �

In order to show the correctness of Algorithm A-U, we need several properties,

given below. The following property follows immediately from the correctness of the

original splitter code.

Property 1: Let S be the set of processes that execute statement 16[i] during round

R(i, r). Then, at most one process p in S reaches statement 20[i]. �

We say that p is the winner of round R(i, r) if p executes statement 16[i] during

R(i, r) and then stops at splitter i (i.e., returns stop at statement 23[i]). By Property 1,

if a winner exists, then it is uniquely defined.

The following property asserts that Reset [i] correctly indicates the current round

number.

70

Property 2: During round R(i, r), either Reset [i].rnd = r holds, or there exists a

process p satisfying p@{29} ∧ p.n = i (i.e., p is about to execute statement 29[i]).

Moreover, in the latter case, Reset [i].rnd = r + 1 holds.

Proof: Note that Reset [i] is updated only inside ReleaseNode(i). Since we are assuming

that the ENTRY and EXIT calls are correct, invocations of ReleaseNode (by different

processes) cannot overlap. From this, Property 2 easily follows. �

With the added rnd field, a left- or right-moving process at splitter i has a way of

identifying a process that has acquired the name at splitter i. To see how this works,

consider what happens during round R(i, r). By Property 1, of the processes that

execute statement 16[i] during R(i, r), at most one will reach statement 20[i]. A process

that reaches statement 20[i] will either stop at node i by executing statement 23[i] (i.e.,

become the winner of R(i, r)) or be deflected left. This gives us two cases to analyze,

depending on whether R(i, r) has a winner or not. These two cases are considered in

the following two properties.

Property 3: Assume that R(i, r) has a winner p. Then, R(i, r) does not end until p

executes statement 29[i].

Proof: By definition, R(i, r) may end only if some process q executes statement 29[i].

For the sake of contradiction, assume that some other process q �= p executes state-

ment 29[i] during R(i, r) (which would then terminate R(i, r)). Without loss of gen-

erality, assume that R(i, r) is the first round of splitter i in which this happens.

Consider the state at which q executes statement 29[i]. Because p has executed state-

ment 16[i] but has not yet executed statement 29[i], p@{17[i]..23[i], 3..5, 8, 9, 24[i]..29[i]}
holds at that state. Since we are assuming that the ENTRY and EXIT calls are correct, q

cannot execute statement 29[i] while p@{8, 9, 24[i]..29[i]} holds. Also note that state-

ment 29[i].q starts a new round, say, R(i, s′), where s′ > r. Thus, if p executes state-

ment 21[i] after q executes statement 29[i], then 21[i].p is executed during some round

R(i, s), where s ≥ s′ > r. Therefore, by Property 2, p will find either Reset [i].rnd = s

or Reset [i].rnd = s + 1 when it executes statement 21[i]. In either case, we have

Reset [i].rnd > r, and hence p cannot stop at splitter i.

The only remaining possibility is that p@{23[i], 3..5} holds when q executes state-

ment 29[i]. (Note that, in this case, if q were to reopen splitter i then we could end up

71

with two processes concurrently invoking Entry3(i, stop) and Exit3(i, stop) at state-

ments 4 and 11, i.e., both processes use i as a “process identifier.” The Entry and Exit

calls obviously cannot be assumed to work correctly if such a scenario could happen.)

So, assume that q executes statement 29[i] while p@{23[i], 3..5} holds. Note that

the round of splitter i can change only by some process executing statement 29[i]

inside ReleaseNode(i). Since invocations of ReleaseNode (by different processes) cannot

overlap, it follows that q executes statements 25[i]–29[i] during R(i, r). Thus, by

Property 2, q reads Reset [i].rnd = r at statement 25[i].

Thus, for q to execute statement 29[i], it must find q.dir = stop ∨ Round [i][r] =

false at statement 27[i]. First, if q.dir = stop holds, then q has stopped at splitter i,

i.e., q is the winner of round R(i, s), for some s. Combined with our assumption that

q executes statement 29[i] during round R(i, r), it follows that round R(i, s) has ended

(and round R(i, r) has started) before q executes statement 29[i], which contradicts

our assumption that R(i, r) is the first such round.

It follows that q reads Round [i][r] = false at statement 27[i]. For this to happen,

q must execute statement 27[i] before p assigns Round [i][r] := true at statement 20[i].

Hence, statement 26[i] is executed by q before statement 21[i] is executed by p. Thus,

p must find Reset [i] �= p.y at statement 21[i], i.e., it is deflected left at splitter i, a

contradiction. �

The following property pertains to the case when R(i, r) has no winner — in this

case, some process that is deflected left eventually reopens splitter i.

Property 4: Assume that round R(i, r) has no winner. If some process executes

statement 17[i] during R(i, r), then some process eventually executes statement 29[i].

Proof: Let S be the (nonempty) set of processes that execute statement 17[i] during

round R(i, r). We claim that at least one process p in S finds Round [i][r] to be false

at statement 27[i]. We consider two cases.

First, assume that there exists some process p that executes statement 16[i] dur-

ing R(i, r), and subsequently executes statement 20[i]. By Property 1, p is unique.

Since R(i, r) has no winner, p must be deflected left by executing statements 21[i] and

22[i], re-establishing Round [i][r] = false. Thus, p eventually reads Round [i][r] = false

at statement 27[i] (unless some other process has already done so and executed state-

ment 29[i]). Note that, because the ENTRY and EXIT routines are assumed to be correct,

72

and because Algorithm A-U does not contain any busy-waiting loops elsewhere, p

cannot be stalled indefinitely without executing statement 27[i].

Second, assume that there exists no process that executes statement 16[i] during

R(i, r), and then executes statement 20[i]. In this case, since Round [i][r] is initially

false, it remains false throughout the execution of the algorithm. Thus, some process

eventually reads Round [i][r] = false at statement 27[i]. �

By Property 1 and Property 3, if a process p stops at splitter i, then no other

process stops at splitter i, and the splitter remains closed until p finishes execution

of ReleaseNode(i). Note that the assignments to Acquired [i] at statements 23[i] and

30[i] prevent the reopening of splitter i from actually taking effect until after p has

finished executing its exit section. This is the reason we need two separate procedures

ReleaseNode and ClearNode, so that the former is executed effectively within critical

sections and the latter, outside of critical sections.

Note that splitter i is closed if and only if some process establishes Y [i] = (false, 0)

by executing statement 17[i]. Thus, by Property 4, if no process stops at splitter i, and

if splitter i becomes closed, then it is eventually reopened.

Because the splitters are always reset properly, it follows that the ENTRY and EXIT

routines are always invoked properly. If these routines are implemented using Al-

gorithm YA-2, then since that algorithm is starvation-free, Algorithm A-U is as

well.

Having dispensed with basic correctness, we now informally argue that Algo-

rithm A-U is adaptive under the RMR measure. (For the sake of brevity, we give a

rigorous proof of adaptive only for the final algorithm (Algorithm A-LS), given later

in Section 4.1.4.) For a process p to descend to a splitter at level l in the renaming tree,

it must have been deflected left or right at each prior splitter it accessed. Just as with

the original grid-based long-lived renaming algorithm [67], this can only happen if the

point contention experienced by p is Ω(l). Note that the time complexity per level of

the renaming tree is constant. Moreover, with the ENTRY and EXIT calls implemented

using Algorithm YA-2, the Entry2, Exit2, Entry3, and Exit3 calls take constant

time, and the EntryN and ExitN calls take Θ(logN) time. Note that the EntryN and

ExitN routines are called by a process only if its point contention is Ω(log N). Thus,

we have the following.

Lemma 4.1 Algorithm A-U is a correct, starvation-free mutual exclusion algorithm

with O(min(k, log N)) RMR time complexity and unbounded space complexity. �

73

/∗ all constant, type, and private variable declarations are as defined in Figure 4.5
except as noted here ∗/

type
Ytype = record free: boolean; rnd : 0..N − 1 end /∗ stored in one word ∗/

shared variables
X: array[1..T] of 0..N − 1;
Y , Reset : array[1..T] of Ytype initially (true, 0);
Round : array[1..T][0..N − 1] of boolean initially false;
Obstacle: array[0..N − 1] of 0..T initially 0;
Acquired : array[1..T] of boolean initially false

process p :: / ∗ 0 ≤ p < N ∗ /
function AcquireNode(n: 1..T): Dtype
15: X[n] := p;
16: y := Y [n];

if ¬y.free then return right fi;
17: Y [n] := (false, 0);
18: Obstacle[p] := n;
19: if X[n] �= p ∨
20: Acquired [n] then

return left
fi;

21: Round [n][y.rnd] := true;
22: if Reset [n] �= y then
23: Round [n][y.rnd] := false;

return left
fi;

24: Acquired [n] := true;
return stop

procedure ReleaseNode(n: 1..T, dir : Dtype)
25: Obstacle[p] := 0;
26: if dir = right then return fi;
27: Y [n] := (false, 0);
28: X[n] := p;
29: y := Reset [n];
30: Reset [n] := (false, y.rnd);
31: if (dir = stop ∨ ¬Round [n][y.rnd]) ∧
32: Obstacle[y.rnd] �= n then
33: Reset [n] := (true, y.rnd + 1 mod N);
34: Y [n] := (true, y.rnd + 1 mod N)

fi;
35: if dir = stop then Round [n][y.rnd] := false fi

procedure ClearNode(n: 1..T)
36: Acquired [n] := false

Figure 4.6: Algorithm A-B: Adaptive algorithm with Θ(N2) space complexity.
Statements 1–14 are identical to Algorithm A-U and not shown here.

Of course, the problem with Algorithm A-U is that the rnd field of Y [i] that is

used for assigning round numbers grows without bound. We now consider a variant of

Algorithm A-U in which space is bounded.

4.1.3 Algorithm A-B: Bounded Algorithm

In Algorithm A-B (for “adaptive with bounded space”), Y [i].rnd is incremented

modulo-N , and hence does not grow without bound. Algorithm A-B is shown

in Figure 4.6. The only new variable is Obstacle, which acts as an “obstacle” to

prevent Y [i].rnd to cycle modulo-N as long as there is a possibility of “interference,”

as explained below.

74

With Y [i].rnd being incremented modulo-N , the following potential problem arises.

A process p may reach statement 21[i] in Figure 4.6 with y.rnd = r and then be delayed.

While delayed, other processes may repeatedly increment Y [i].rnd (statement 34[i])

until it “cycles back” to r. Another process q could then reach statement 21[i] with

y.rnd = r. This is a problem because p and q may interfere with each other in updating

Round [i][r].

Algorithm A-B prevents such a scenario from happening by preventing Y [i].rnd

from cycling while a process p that stops (or may stop) at splitter i executes within

AcquireNode(i). Informally, cycling is prevented by requiring process p to erect an “ob-

stacle” that prevents Y [i].rnd from being incremented beyond the value p. More pre-

cisely, note that before reaching statement 21[i], process pmust first assignObstacle[p] :=

i at statement 18[i]. Note further that before a process can increment Y [i].rnd from r

to r + 1 mod N (statement 34[i]), it must first read Obstacle[r] (statement 32[i]) and

find it to have a value different from i. This check prevents Y [i].rnd from being incre-

mented beyond the value p while p executes within AcquireNode(i). Note that process

p resets Obstacle[p] to 0 at statement 25. This is done to ensure that p’s own obstacle

does not prevent it from incrementing a splitter’s round number. The discussion so far

is formalized in the following property.

Property 5: If a process p executes statement 16[i] during round R(i, r) and subse-

quently reaches statement 21[i], then R(i, p+1 mod N) does not start until p returns

from AcquireNode(i).

Proof: For the sake of contradiction, assume that a process q executes statements 25[i]–

34[i] during R(i, p), and starts round R(i, p+ 1 mod N), while p@{17[i]..24[i]} holds.

We consider three cases.

First, if q executes statement 28[i] before p executes statement 15[i], then q estab-

lishes Y [i] = (false, 0) at statement 27[i] before p executes statement 16[i]. Moreover,

because we assume the correctness of the Entry and Exit routines, no other process

may reopen splitter i (by establishing Y [i].free = true) until q executes 34[i]. It follows

that p is deflected right at statement 16[i], and does not reach statement 21[i].

Second, assume that q executes statement 28[i] while p@{16[i]..19[i]} holds. In

this case, p finds X[i] �= p at statement 19[i] and is deflected left without reaching

statement 21[i].

Finally, assume that q executes statement 28[i] after p executes statement 19[i]. In

this case, p has executed statement 18[i] and established Obstacle[i] = p, which contin-

75

ues to hold while p executes inside AcquireNode(i). Therefore, q reads Obstacle[p] = i

at statement 32[i], and does not execute statements 33[i] and 34[i]. (Note that, by

Property 2, q reads Reset [n].rnd = p at statement 29[i].) �

Since round numbers cycle modulo-N , we have the following: if a process p executes

statement 16[i] during round R(i, r) and reaches statement 21[i], then Y [i].rnd = r is

not re-established until p returns from AcquireNode(i). Therefore, the recycling of

round numbers does not affect the correctness of Algorithm A-B.

The only statement not explained so far is statement 35, which simply resets the

Round variable to be used again. From the discussion above, we have the following

lemma.

Lemma 4.2 Algorithm A-B is a correct, starvation-free mutual exclusion algorithm

with O(min(k, log N)) RMR time complexity and Θ(N2) space complexity. �

The Θ(N2) space complexity of Algorithm A-B is due to the Round array. We

now show that this Θ(N2) array can be replaced by a Θ(N) linked list.

4.1.4 Algorithm A-LS: Linear-space Algorithm

The final algorithm we present in this chapter is depicted in Figure 4.7. We refer to this

algorithm as Algorithm A-LS (for “adaptive with linear space”). In Algorithm A-

LS, a common pool of round numbers ranging over {1, . . . , S} is used for all splitters in

the renaming tree. As we shall see, O(N) round numbers suffice. In Algorithm A-B,

our key requirement for round numbers was that they not be reused “prematurely.”

With a common pool of round numbers, a process should not choose r as the next

round number for some splitter if there is a process anywhere in the renaming tree that

“thinks” that r is the current round number of some splitter it has accessed.

Fortunately, since each process selects new round numbers within its critical section,

it is fairly easy to ensure this requirement. All that is needed are a few extra data

structures that track which round numbers are currently in use. These data structures

replace the Obstacle array of Algorithm A-B. The main new data structure is a

queue Free of round numbers. In addition, there is a new shared array Inuse, and a

new shared variable Check. We assume that the Free queue can be manipulated by the

following operations.

76

/∗ all constant, type, and private variable declarations are as defined in Figure 4.6
except as noted here ∗/

const
S = T + 2N /∗ number of possible round numbers = O(N) ∗/

type
Ytype = record free: boolean; rnd : 0..S end /∗ stored in one word ∗/

shared variables
X: array[1..T] of 0..N − 1;
Y , Reset : array[1..T] of Ytype;
Round : array[1..S] of boolean initially false;
Free: queue of integers;
Inuse: array[0..N − 1] of 0..S initially 0;
Check : 0..N − 1 initially 0;
Acquired : array[1..T] of boolean initially false

initially
(∀i : 1 ≤ i ≤ T :: Y [i] = (true, i) ∧

Reset [i] = (true, i)) ∧
(Free = (T + 1)→ (T + 2)→ · · · → S)

private variables
ptr : 0..N − 1;
nextrnd : 1..S;
usedrnd : 0..S

process p :: / ∗ 0 ≤ p < N ∗ /
function AcquireNode(n: 1..T): Dtype
15: X[n] := p;
16: y := Y [n];

if ¬y.free then return right fi;
17: Y [n] := (false, 0);
18: Inuse[p] := y.rnd ;
19: if X[n] �= p ∨
20: Acquired [n] then

return left
fi;

21: Round [y.rnd] := true;
22: if Reset [n] �= y then
23: Round [y.rnd] := false;

return left
fi;

24: Acquired [n] := true;
return stop

procedure ReleaseNode(n: 1..T, dir : Dtype)
25: if dir = right then return fi;
26: Y [n] := (false, 0);
27: X[n] := p;
28: y := Reset [n];
29: Reset [n] := (false, y.rnd);
30: if (dir = stop ∨ ¬Round [y.rnd]) then
31: ptr := Check ;
32: usedrnd := Inuse[ptr];
33: if usedrnd �= 0 then

MoveToTail(Free, usedrnd) fi;
34: Check := ptr + 1 mod N ;
35: Enqueue(Free, y.rnd);
36: nextrnd := Dequeue(Free);
37: Reset [n] := (true, nextrnd);
38: Y [n] := (true, nextrnd)

fi;
if dir = stop then

39: Round [y.rnd] := false;
40: Inuse[p] := 0

fi

procedure ClearNode(n: 1..T)
41: Acquired [n] := false

Figure 4.7: Algorithm A-LS: adaptive algorithm with Θ(N) space complexity. State-
ments 1–14 are identical to Algorithm A-U and not shown here.

77

• Enqueue(Free, i: 1..S): Enqueues the integer i onto the end of Free. (We assume

that i is not already contained in Free.)

• Dequeue(Free): 1..S: Dequeues the element at the head of Free, and returns that

element.

• MoveToTail(Free, i: 1..S): If i is in Free, then it is moved to the end of the

queue; otherwise, do nothing.

If the Free queue is implemented as a doubly-linked list, then each of these operations

can be performed in constant time. We stress that all of these operations are executed

only within critical sections, i.e., Free is really a sequential data structure.

The only difference beetweenAlgorithms A-B and A-LS before the critical section

is statement 18[i]: instead of updating Obstacle[p], process p now marks the round

number r it just read from Y [i] as being “in use” by assigning Inuse[p] := r. The

only other differences are in ReleaseNode. Statements 31–34 are executed to ensure

that no round number currently “in use” can propagate to the head of the Free queue.

In particular, if a process p is delayed after having obtained r as the current round

number for some splitter, then while it is delayed, r will be moved to the end of the

Free queue by every N th critical-section execution. (A similar mechanism is used in

the constant-time implementation of load-linked and store-conditional from read and

compare-and-swap of Anderson and Moir [21].) With S = T + 2N round numbers,

this is sufficient to prevent r from reaching the head of the queue while p is delayed.

(Among the S = T + 2N round numbers, T of them are assigned to the splitters. The

Free queue needs 2N round numbers because the calls to Dequeue and MoveToTail can

cause a round number to migrate toward the head of the Free queue by two positions

per critical-section execution.)

Statement 35[i] enqueues the current round number for splitter i onto the Free queue.

Statement 36[i] dequeues a new round number from Free. The mechanism explained

above (statements 31–34) guarantees that the newly dequeued round number is not

used anywhere in the renaming tree. The rest of the algorithm is the same as before.

From the discussion so far, we have the following property.

Property 6: If a process p executes statement 16[i] during round R(i, r) and

subsequently reaches statement 21[i], then the following holds until p returns from

AcquireNode(i).

78

Either round R(i, r) continues, or the round number r is contained in Free.

Moreover, r is not used for any other splitter.

Proof: (Formally, Property 6 is implied by invariants (I5)–(I8) and (I15), stated in

Appendix A.) R(i, r) may end only if a process q starts a new round at splitter i by

executing statement 38[i]. In this case, q enqueues r at statement 35[i].

We now show that r is not used for any other splitter. For the sake of contradiction,

assume that r is used by some other splitter. Moreover, assume that r is the first round

number in which this happens.

Since each splitter initially has a distinct round number, this may happen only if

some process q′ dequeues r from Free at statement 36[h] (for some splitter h), and then

starts R(h, r) at statement 38[h]. Since Free has length 2N , ReleaseNode must have

been executed at least N times since q has enqueued r at statement 35[i]. (Recall that

invocations of ReleaseNode are protected by Entry/Exit calls and do not overlap.)

Moreover, among the last N invocations of ReleaseNode (up to and including the

invocation by q′), no execution must have invoked MoveToTail(Free, r) at statement 33.

Since Check is incremented modulo-N , among these last N invocations of

ReleaseNode, there exists one (by some process q′′) in which statements 31 and 32

are executed while Check = p holds.

First, assume that q′′ executes statement 32 after p executes statement 18[i]. In this

case, q′′ subsequently invokes MoveToTail(Free, r) at statement 33, a contradiction.

Second, if q′′ executes statement 32 before p executes statement 18[i], then due to

statements 26.q′′ and 27.q′′, p must either find Y [i] = (false, 0) at statement 16[i], or

find X[i] �= p at statement 19[i]. (The reasoning for this is the same as in the proof of

Property 5.) Thus, p cannot reach statement 21[i], a contradiction. �

Since round numbers are never reused “prematurely,” it follows thatAlgorithm A-

LS is a correct, starvation-free mutual exclusion algorithm.

Proof of adaptivity. We now prove that Algorithm A-LS is adaptive under the

RMR measure. In our proof, it is necessary to track each process’s current location

in the renaming tree so that we can determine when a process will be deflected left or

right from some splitter. The location of a process p during its entry and exit section

is depicted in Figure 4.8. In its entry section, p can only deflect other processes at

the splitter it is attempting to acquire. Thus, it has a single location (Figure 4.8(a)).

However, at any given instant inside its exit section, p can deflect other processes at

79

p

splitter i splitter i (= p.node):
Acquired[i] = true

p

splitter h (= p.n)

(a) (b)

Acquired[i]
 = true

(c)

q
p

(d)

r
p

splitter h

splitter i

Figure 4.8: Location of a process p during its entry and exit section. (a) p acquires
splitter i: both p and p+N are located at i. (b) In its exit section, p resets each node
h in its path by calling ReleaseNode(h). p is located at h, while p + N is located at
i. (c) Another process q in its entry section descends to splitter i, and is deflected left
because it finds Acquired [i] = true (statement 20[i]). (d) Yet another process r in its
entry section descends to splitter h, and is deflected left or right because p updated
Y [h], X[h], or Reset [h] (statements 26[h].p, 27[h].p, 29[h].p, and 37[h].p).

two splitters — the splitter that it has acquired in its entry section (which is indicated

by p.node) and the splitter it is currently resetting (which is indicated by p.n inside

ReleaseNode; see Figure 4.8(b)). In the former case, other processes may be deflected

because Acquired [p.node] is true (Figure 4.8(c)). In the latter case, p may deflect

other processes by changing the value of Y , X, or Reset (statements 26–29 and 37;

Figure 4.8(d)). In order to facilitate the following discussion, we associate a shadow

process with an identifier of p+N with each process p. When p is in its entry section, p

and p+N are always located at the same splitter indicated by p.node. However, when

p is in its exit section, we say that p is located at the splitter indicated by p.n, while

p+N is located at the splitter indicated by p.node. (Thus, p ascends the renaming tree

in its exit section, while p+N remains stationary until the exit section terminates.)

We define the contention of splitter i, denoted C(i), as the number of processes p

(shadow processes included) that are located at a splitter (or a child of a leaf splitter)

in the subtree rooted at i. Consider a non-root splitter i ≥ 2. If a process p in its entry

section descends into splitter i, then C(i) increases by two (because p and p+N descend

80

splitter i

process p
(deflected left)

location of
some process q

Figure 4.9: Deflection of a process p at splitter i. If p is deflected left (right), then some
process q (or q + N) is located either at i or in the subtree rooted at i’s right (left)
child.

together). When p ascends from i to i’s parent in its exit section, C(i) decreases by

one. Finally, when p finishes its exit section (by executing statement 41), both p and

p + N leave the renaming tree. Since p + N has been located at p’s acquired node

(which is inside the subtree rooted at i), this reduces C(i) by one again. On the other

hand, C(1) increases by two when p starts its execution, and decreases by two when p

finishes its execution. Thus, C(1) equals twice the actual point contention at any given

state.

According to the following property, whenever a process p is deflected left or right,

there exists another process (or a shadow process) q that causes p’s deflection. (See

Figure 4.9.) If p reaches a splitter at level l, then p is deflected l times, and hence there

exist l other processes (or shadow processes) executing concurrently with p. From this,

we can prove that C(1) > l holds at some state.

(Of course, since these l processes may start and finish their execution at different

times, it is not obvious that there should exist a single state satisfying C(1) > l, i.e,

a state at which all of these l processes, or possibly some other set of l processes, are

concurrently active. Property 8, given later, proves that such a state exists.)

Property 7: Consider a process p in its entry section. If p is deflected left (respectively,

right) from a splitter i, then there exists another process (or shadow process) q that is

concurrently located at splitter i, or in a subtree rooted at the right (respectively, left)

child of i.

Proof: Process p may be deflected left or right by one of the following ways: (i) reading

Y [i] = (false, 0) at statement 16, (ii) reading X[i] �= p at statement 19, (iii) reading

Acquired [i] = true at statement 20, and (iv) reading Reset [i] �= p.y at statement 22.

Among these four possibilities, only Case (i) deflects p right.

81

Case (i) may happen in two circumstances. First, a process q may have executed

statement 17. In this case, q either has acquired splitter i, or has been deflected left. In

either case, q is located at splitter i or in the subtree rooted at i’s left child. Moreover,

if q ascends to i’s parent in its exit section, then q must either reopen splitter i by

establishing Y [i].free = true at statement 38[i], or read Round [Reset [i].rnd] = true at

statement 30[i]. However, the latter case may arise only if some other process q′ has

executed statement 21[i], in which case q′ must be located at splitter i or in a subtree

rooted at i’s left child. Continuing in the same way, it follows that the following

property continues to hold while Y [i] = (false, 0) holds: some process other than p is

located at splitter i or in the subtree rooted at i’s left child.

Second, a process q may have executed statement 26. In this case, when p exe-

cutes statement 16, either q is executing within statements 27[i]–38[i] (in which case

q is located at splitter i), or it returned from ReleaseNode without executing state-

ments 30[i]–40[i]. (Note that statement 38[i].q falsifies Y [i] = (false, 0).) However,

the latter case happens only if q reads Round [Reset [i].rnd] = true at statement 30[i],

which in turn happens only if (as shown above) there exists yet another process q′ that

has executed statement 21[i]. The rest of the reasoning is the same as the preceding

paragraph.

Case (ii) may happen only if the following sequence of events happen: p executes

statement 15, some process q executes statement 15[i] or 27[i], and then p executes

statement 19. When q executes either statement, it is located at splitter i. (Of course,

it is entirely possible that q has left splitter i by the time p executes statement 15. To

guard against such a case, we define that p is actually deflected at the instant q executes

statement 15[i] or 27[i], as explained shortly. A similar remark applies to Cases (iii)

and (iv).)

Case (iii) may happen only if some process q has acquired splitter i. Thus, in this

case, q +N is located at splitter i.

Finally, consider Case (iv). Process p may reach statement 22 only if it has read

Y [i] = (true, r) at statement 16. Since Reset is always updated inside ReleaseNode, and

since invocations of ReleaseNode do not overlap, it is easy to see that Y [i] = (true, r)

implies Y [i] = Reset [i]. Therefore, Case (iv) may happen only if the following sequence

of events happen: p reads Y [i] = (true, r) at statement 16, some process q executes

statement 29[i] or 37[i], and then p executes statement 22. When q executes either

statement, it is located at splitter i. �

82

In particular, Property 7 implies the following: if p is deflected from a node h to its

child i, then C(i) < C(h) holds at that instant.

Note that the previous argument is somewhat simplified. In particular, we did not

precisely define when p is deflected left or right. In order to formally prove contention

sensitivity, we need to define p’s location in a rather complicated manner. This is done

in Appendix A by means of auxiliary variables Loc[p] and Loc[p + N]. (For example,

assume that p executes statement 15[i] and stalls until after another process q executes

statement 27[i]. In this case, p is bound to be deflected right at statement 19[i], so we

define that p’s location changes when q writes X[i] := q.) For the sake of simplicity, we

have ignored such details here.

Consider a process p in its entry section. At any given state t, if p is located in the

subtree rooted at i, then we define PC[p, i], the point contention of splitter i experienced

by p, as the maximum value of C(i) since p descended into splitter i up to state t. In

particular, when p moves down to splitter i, PC[p, i] is initialized to be C(i). From that

point onward, PC[p, i] tracks the point contention of the subtree rooted at i as seen by

process p.

The following property states that, even if contention C(i) may vary over time,

the point contention PC[p, i] is always strictly lower than its parent’s point contention

PC[p, �i/2�].

Property 8: If a process p in its entry section is located in a subtree rooted at splitter

i ≥ 2, then PC[p, i] < PC[p, �i/2�].

Proof: Define h = �i/2�. First, consider the time when p descends into splitter i. (Note

that PC[p, i] is not defined before this time.) By Property 7, we have C(i) < C(h).

By definition, PC[p, h] ≥ C(h) holds. Since PC[p, i] is initialized to C(i), the property

follows.

Second, consider the case when PC[p, i] or PC[p, h] is changed while p is already

inside the subtree rooted at i. Since PC[p, i] and PC[p, h] may only increase, it suffices to

consider the case when PC[p, i] increases. However, this may happen only if some other

process q descends into splitter i. By Property 7 again, at that time, C(i) < C(h)

holds. Therefore, if PC[p, i] is updated to the new value of C(i), then we still have

PC[p, h] ≥ C(h) > C(i) = PC[p, i], and hence the property follows. �

We now prove contention sensitivity. (For full proof, see invariant (I61) in Ap-

pendix A.) Assume that a process p has reached splitter i at level l = lev(i). By

83

repeatedly applying Property 8 over all ancestors of i, we have

PC[p, 1] = PC[p, p.path[0].node]

> PC[p, p.path[1].node]
...

> PC[p, p.path[p.level − 1].node]

> PC[p, p.node] = PC[p, i]

> 0.

Given the length of this sequence, we have PC[p, 1] > l, which implies that p has

experienced contention at least l+1 at some point since it started execution. It follows

that Algorithm A-LS is contention-sensitive.

The space complexity of Algorithm A-LS is clearly Θ(N), if we ignore the space

required to implement the ENTRY and EXIT routines. (Although each process has a

Θ(logN) path array, these arrays are actually unneeded, as simple calculations can be

used to determine the parent and children of a splitter.) If the ENTRY/EXIT routines

are implemented using Algorithm YA-N (Section 2.2.2), then the overall space com-

plexity is actually Θ(N log N). This is because in Algorithm YA-N, each process

needs a distinct spin location for each level of the arbitration tree. However, as shown

in Chapter 3, it is quite straightforward to modify the arbitration-tree algorithm so

that each process uses the same spin location at each level of the tree. This modified

algorithm (Algorithm F, illustrated in Figure 3.3) has Θ(N) space complexity. We

conclude this section by stating our main theorem.

Theorem 4.1 N -process mutual exclusion can be implemented under read/write atom-

icity with RMR time complexity O(min(k, log N)) and space complexity Θ(N). �

4.2 Concluding Remarks

We have presented an adaptive algorithm for mutual exclusion under read/write atom-

icity in which all waiting is by local spinning. This is the first read/write algorithm

that is adaptive under the RMR time complexity measure. Our algorithm has Θ(N)

space complexity, which is clearly optimal.

84

In Chapter 5, we establish a lower bound of Ω(log N/ log log N) remote memory

references for mutual exclusion algorithms based on reads, writes, or comparison primi-

tives such as test-and-set or compare-and-swap. In Chapter 6, we also show that that it

is impossible to construct an adaptive algorithm with o(k) RMR time complexity. We

conjecture that Ω(logN) is a tight lower bound (under the RMR measure) for mutual

exclusion algorithms under read/write atomicity, and that Ω(min(k, log N)) is also a

tight lower bound for adaptive mutual exclusion algorithms under read/write atomicity

(in which case Algorithm A-LS of this chapter is optimal). We leave these questions

for further study.

CHAPTER 5

Time-complexity Lower Bound for

General Mutual Exclusion∗

In this chapter, we establish a lower bound of Ω(log N/ log log N) RMRs (remote

memory references) for N -process mutual exclusion algorithms based on reads, writes,

or comparison primitives such as test-and-set and compare-and-swap.

Our lower bound is of importance for two reasons. First, this bound is within a

factor of Θ(log log N) of being optimal, given Yang and Anderson’s algorithm [84]

(Algorithm YA-N, described in Section 2.2.2). Second, our lower bound suggests

that it is likely that, from an asymptotic standpoint, comparison primitives are no

better than reads and writes when implementing local-spin mutual exclusion algorithms.

Thus, comparison primitives may not be the best choice to provide in hardware if one

is interested in scalable synchronization.

As noted in Section 2.6, Anderson and Yang established trade-offs between time

complexity and write- and access-contention for mutual exclusion algorithms in earlier

work [22] (Theorems 2.10, 2.11). The write-contention (access-contention) of a con-

current program is the number of processes that may be simultaneously enabled to

write (access by reading and/or writing) the same shared variable. These results imply

that a trade-off between contention and time complexity exists even if coherent caching

techniques are employed.

Yang and Anderson’s lower bounds are meaningful only for algorithms with limited

write- or access-contention. As noted in Section 2.6, Cypher [33] presented a lower

∗The results presented in this chapter have been published in the following paper.
[17] J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity of mutual exclusion.
Distributed Computing, 15(4):221–253, December 2002.

86

bound of Ω(log logN/ log log logN) under arbitrary access-contention (Theorem 2.16).

His lower bound applies to algorithms using reads, writes, and comparison primitives

such as test-and-set and compare-and-swap. (A comparison primitive, formally defined

later in Section 5.1, conditionally updates a shared variable after first testing that its

value meets some condition.) Given that primitives such as fetch-and-add and fetch-

and-store can be used to implement mutual exclusion in O(1) time, this result pointed

to an unexpected weakness of compare-and-swap, which is still widely regarded as being

one of the most useful of all synchronization primitives to provide in hardware.

In this chapter, we show that Cypher’s lower bound can be improved to Ω(log N/

log log N). Thus, we have almost succeeded in establishing the optimality of Algo-

rithm YA-N. Our result is stronger than Cypher’s in that we allow atomic operations

that may access many local shared variables (i.e., variables that are statically asso-

ciated to a process). Like Cypher’s result, ours is applicable to algorithms that use

comparison primitives (on remote variables), and is applicable to most DSM and CC

systems. The only exception is a system with write-update caches1 in which compari-

son primitives are supported, and with hardware capable of executing failed comparison

primitives on cached remote variables without interconnection network traffic. We call

such a system an LFCU (“Local Failed Comparison with write-Update”) system. For

LFCU systems, we show that O(1) time complexity is possible using only test-and-set

(the simplest of all comparison primitives).2 While this result seemingly suggests that

comparison primitives offer some advantages over reads and writes, it is worth noting

that write-update protocols are almost never implemented in practice [68, page 721].

Our lower bound suggests that it is likely that, for non-LFCU systems, comparison

primitives are no better from an asymptotic standpoint than reads and writes when

implementing local-spin mutual exclusion algorithms. Moreover, the time complexity

gap that exists in such systems between comparison primitives and primitives such as

fetch-and-add and fetch-and-store is actually quite wide. Thus, comparison primitives

1Recall that, in a system with write-update caches, when a processor writes to a variable v that
is also cached on other processors, a message is sent to these processors so that they can update v’s
value and maintain cache consistency.

2Although Cypher established a lower bound of Ω(log log N/ log log log N) for CC machines with
comparison primitives, his cache-coherence model does not encompass write-update caches. According
to his model, if a process p writes a variable v, then the first read of v by any other process q after p’s
write causes network traffic. Thus, if many processes read the value of v written by p, then each such
read counts as a cache miss.

87

may not be the best choice to provide in hardware if one is interested in scalable

synchronization.

The rest of this chapter is organized as follows. In Section 5.1, we present our

model of atomic shared-memory systems. The key ideas of our lower bound proof are

then sketched in Section 5.2. In Section 5.3, the proof is presented in detail. The

O(1) algorithm for LFCU systems mentioned above is then presented in Section 5.4.

Concluding remarks appear in Section 5.5.

5.1 Definitions

In this section, we provide definitions pertaining to atomic shared-memory systems that

will be used in the rest of this chapter and in Chapter 6. In the following subsections,

we define our model of an atomic shared-memory system (Section 5.1.1), state the

properties required of a mutual exclusion algorithm implemented within this model

(Section 5.1.2), and present a categorization of events that allows us to accurately

deduce the network traffic generated by an algorithm in a system with coherent caches

(Section 5.1.3).

5.1.1 Atomic Shared-memory Systems

Our model of an atomic shared-memory system is similar to that used by Anderson

and Yang [22].

An atomic shared-memory system S = (C, P, V) consists of a set of computations

C, a set of processes P , and a set of variables V . A computation is a finite sequence

of events. To complete the definition of an atomic shared-memory system, we must

formally define the notion of an “event” and state the requirements to which events

and computations are subject. This is done in the remainder of this subsection. As

needed terms are defined, various notational conventions are also introduced that will

be used in this chapter and Chapter 6.

Informally, an event is a particular execution of an atomic statement of some process

that involves reading and/or writing of one or more variables. Each variable is local to

at most one process and is remote to all other processes. (Note that we allow variables

that are remote to all processes; thus, our model applies to both DSM and CC systems.)

The locality relationship is static, i.e., it does not change during a computation. A local

variable may be shared; that is, a process may access local variables of other processes.

88

An initial value is associated with each variable. An event is local if it does not access

any remote variables, and is remote otherwise.

Events, informally considered. Below, formal definitions pertaining to events are

given; here, we present an informal discussion to motivate these definitions. An event

is executed by a particular process, and may access at most one variable that is remote

to that process (by reading, writing, or executing a comparison primitive), plus any

number of local (shared) variables.3 Thus, we allow arbitrarily powerful operations on

local variables. Since our proof applies to systems with reads, writes, and comparison

primitives, it is important to formally define what is a comparison primitive. We define

a comparison primitive to be an atomic operation on a shared variable v expressible

using the following pseudo-code.

compare and fg(v, old , new)
temp := v;
if v = old then v := f(old , new) fi;
return g(temp, old , new)

For example, compare-and-swap can be defined by defining f(old , new) = new and

g(temp, old , new) = old . We call an execution of such a primitive a comparison

event . As we shall see, our formal definition of a comparison event, which is given later

in this section, generalizes the functionality encompassed by the pseudo-code above by

allowing arbitrarily many local shared variables to be accessed.

As an example, assume that variables a, b, and c are local to process p and variables

x and y are remote to p. Then, the following atomic statements by p are allowed in

our model.

statement s1: a := a+ 1; b := c+ 1;
statement s2: a := x;
statement s3: y := a+ b;
statement s4: compare-and-swap(x, 0, b)

For example, if every variable has an initial value of 0, and if these four statements

are executed in order, then we will have the following four events.

3We do not distinguish between private and shared variables in our model. In an actual algorithm,
some variables local to a process might be private and others shared.

89

e1: p reads 0 from a, writes 1 to a, reads 0 from c, and writes 1 to b;
/∗ local event ∗/

e2: p reads 0 from x and writes 0 to a; /∗ remote read from x ∗/
e3: p reads 0 from a, reads 1 from b, and writes 1 to y;

/∗ remote write to y ∗/
e4: p reads 0 from x, reads 1 from b, and writes 1 to x

/∗ comparison primitive execution on x ∗/

On the other hand, the following atomic statements by p are not allowed in our

model, because s5 accesses two remote variables at once, and s6 and s7 cannot be

expressed as a comparison primitive.

statement s5: x := y; /∗ accesses two remote variables ∗/
statement s6: a := x; x := 1;

/∗ fetch-and-store (swap) on a remote variable ∗/
statement s7: x := x+ b /∗ fetch-and-add on a remote variable ∗/

Describing each event as in the preceding examples is inconvenient, ambiguous, and

prone to error. For example, if statement s7 is executed when x = 0 ∧ b = 1 holds,

then the resulting event can be described in the same way as e4 is. (Thus, e4 is allowed

as an execution of s4, yet disallowed as an execution of s7.) In order to systematically

represent the class of allowed events, we need a more refined formalism.

Definitions pertaining to events. An event e is denoted [p, Op, R, W], where

p ∈ P (the set of processes). We call Op the operation of event e, denoted op(e). Op

determines what kind of event e is, and can be one of the following: ⊥, read(v), write(v),

or compare(v, α), where v is a variable in V and α is a value from the value domain of

v. Informally, e can be a local event, a remote read, a remote write, or an execution of

a comparison primitive. (The precise definition of these terms is given below.)

The sets R and W consist of pairs (v, α), where v ∈ V . This notation represents an

event of process p that reads the value α from variable v for each element (v, α) ∈ R,

and writes the value α to variable v for each element (v, α) ∈ W . Each variable in R is

assumed to be distinct; the same is true for W . We define Rvar(e), the set of variables

read by e, to be {v: (v, α) ∈ R}, and Wvar(e), the set of variables written by e, to be

{v: (v, α) ∈ W}. We also define var(e), the set of all variables accessed by e, to be

Rvar(e) ∪ Wvar(e). We say that an event e writes (respectively, reads) a variable v if

v ∈ Wvar(e) (respectively, v ∈ Rvar(e)) holds, and that it accesses any variable that

90

it writes or reads. We also say that a computation H contains a write (respectively,

read) of v if H contains some event that writes (respectively, reads) v. Finally, we say

that process p is the owner of e = [p, Op, R, W], denoted owner(e) = p. For brevity,

we sometimes use ep to denote an event owned by process p.

Our lower bound is dependent on the Atomicity property stated below. This as-

sumption requires each remote event to be an atomic read operation, an atomic write

operation, or a comparison-primitive execution.

Atomicity property: Each event e = [p,Op, R,W] must satisfy one of the conditions

below.

• If Op = ⊥, then e does not access any remote variables. (That is, all variables in

var(e) are local to p.) In this case, we call e a local event.

• If Op = read(v), then e reads exactly one remote variable, which must be v, and

does not write any remote variable. (That is, (v, α) ∈ R holds for some α, v is

not in Wvar(e), and all other variables [if any] in var(e) are local to p.) In this

case, e is called a remote read event.

• If Op = write(v), then e writes exactly one remote variable, which must be v, and

does not read any remote variable. (That is, (v, α) ∈ W holds for some α, v is

not in Rvar(e), and all other variables [if any] in var(e) are local to p.) In this

case, e is called a remote write event.

• If Op = compare(v, α), then e reads exactly one remote variable, which must be

v. We say that e is a comparison event in this case. Comparison events must be

either successful or unsuccessful.

– e is a successful comparison event if the following hold: (v, α) ∈ R (i.e., e

reads the value α from v), and (v, β) ∈ W for some β �= α (i.e., e writes to

v a value different from α).

– e is an unsuccessful comparison event if e does not write v, i.e., v /∈ Wvar(e)

holds.

In either case, e does not write any other remote variable. �

Our notion of an unsuccessful comparison event includes both comparison-primitive

invocations that fail (i.e., v �= old in the pseudo-code given for compare and fg above)

91

and also those that do not fail but leave the remote variable that is accessed unchanged

(i.e., v = old ∧ v = f(old , new)). In the latter case, we simply assume that the

remote variable v is not written. We categorize both cases as unsuccessful comparison

events because this allows us to simplify certain cases in the proofs in Section 5.3 and

Chapter 6. (On the other hand, we allow a remote write event on v to preserve the

value of v, i.e., to write the same value as v had before the event.)

Note that the Atomicity property allows arbitrarily powerful operations on local

(shared) variables. For example, if variable v, ranging over {0, . . . , 10}, is remote

to process p, and arrays a[1..10] and b[1..10] are local to p, then an execution of the

following statement is a valid event by p with operation compare(v, 0).

if v = 0 then

v :=
(∑10

j=1 a[j]
)

mod 11;
for j := 1 to 10 do a[j] := b[j] od

else
for j := 1 to v do b[j] := a[j] + v od

fi

In this case, Wvar(e) is {v, a[1..10]} if e reads v = 0 and writes a nonzero value

(i.e., e is a successful comparison event), {a[1..10]} if e reads and writes v = 0, and

{b[1..v]} if e reads a value between 1 and 10 from v.

It is important to note that, saying that an event ep writes (reads) a variable v is

not equivalent to saying that ep is a remote write (read) operation on v; ep may also

write (read) v if v is local to process p, or if p is a comparison event that accesses v.

We say that two events e = [p, Op, R, W] and f = [q, Op′, R′, W ′] are congruent,

denoted e ∼ f , if and only if the following conditions are met.

• p = q;

• Op = Op′, where equality means that both operations are the same with the same

arguments (v and/or α).

Informally, two events are congruent if they execute the same operation on the same

remote variable. For read and write events, the values read or written may be different.

For comparison events, the values read or written (if successful) may be different,

but the parameter α must be the same. (It is possible that a successful comparison

operation is congruent to an unsuccessful one.) Note that e and f may access different

local variables.

92

Definitions pertaining to computations. The definitions given until now have

mostly focused on events. We now present requirements and definitions pertaining to

computations.

The value of variable v at the end of computation H, denoted value(v, H), is the

last value written to v in H (or the initial value of v if v is not written in H). The

last event to write to v in H is denoted writer event(v, H),4 and its owner is denoted

writer(v, H). If v is not written by any event in H, then we let writer(v, H) = ⊥ and

writer event(v, H) = ⊥.

We use 〈e, . . .〉 to denote a computation that begins with the event e, 〈e, . . . , f〉
to denote a computation beginning with event e and ending with event f , and 〈〉 to

denote the empty computation. We use H ◦ G to denote the computation obtained by

concatenating computations H and G. An extension of computation H is a compu-

tation of which H is a prefix. For a computation H and a set of processes Y , H | Y
denotes the subcomputation of H that contains all events in H of processes in Y .5 If

G is a subcomputation of H, then H − G is the computation obtained by removing all

events in G from H. Computations H and G are equivalent with respect to Y if and

only if H | Y = G | Y . A computation H is a Y -computation if and only if H = H | Y .

For simplicity, we abbreviate the preceding definitions when applied to a singleton set

of processes. For example, if Y = {p}, then we use H | p to mean H | {p} and p-

computation to mean {p}-computation. Two computations H and G are congruent,

denoted H ∼ G, if either both H and G are empty, or if H = 〈e〉 ◦H ′ and G = 〈f〉 ◦G′,

where e ∼ f and H ′ ∼ G′.

Until this point, we have placed no restrictions on the set of computations C of an

atomic shared-memory system S = (C, P, V) (other than restrictions pertaining to the

kinds of events that are allowed in an individual computation). The restrictions we

require are as follows.

P1: If H ∈ C and G is a prefix of H, then G ∈ C.

— Informally, every prefix of a valid computation is also a valid computation.

4Although our definition of an event allows multiple instances of the same event, we assume that
such instances are distinguishable from each other. (For simplicity, we do not extend our notion of an
event to include an additional identifier for distinguishability.)

5The subcomputation H | Y is not necessarily a valid computation in a given system S, that is, an
element of C. However, we can always consider H | Y to be a computation in a technical sense, i.e.,
it is a sequence of events.

93

P2: If H ◦ 〈ep〉 ∈ C, G ∈ C, G | p = H | p, and if value(v, G) = value(v, H) holds for

all v ∈ Rvar(ep), then G ◦ 〈ep〉 ∈ C.

— Informally, if two computations H and G are not distinguishable to process

p, if p can execute event ep after H, and if all variables in Rvar(ep) have the same

values after H and G, then p can execute ep after G.

P3: If H ◦ 〈ep〉 ∈ C, G ∈ C, and G | p = H | p, then G ◦ 〈e′p〉 ∈ C for some event e′p
such that ep ∼ e′p.

— Informally, if two computations H and G are not distinguishable to process p,

and if p can execute event ep after H, then p can execute a congruent operation

after G.

P4: For any H ∈ C, H ◦ 〈ep〉 ∈ C implies that α = value(v, H) holds, for all (v, α) ∈
Rvar(ep).

— Informally, only the last value written to a variable can be read.

P5: For any H ∈ C, if both H ◦ 〈ep〉 ∈ C and H ◦ 〈e′p〉 ∈ C hold for two events ep and

e′p, then ep = e′p.

— Informally, each process is deterministic. This property is included in order

to simplify bookkeeping in our proofs.

Property P3 precisely defines the class of allowed events. In particular, if process p

is enabled to execute a certain statement, then that statement must generate the same

operation regardless of the execution of other processes. For example, if a is a local

shared variable and x and y are remote variables, then the following statement is not

allowed.

statement s8: if a = 0 then x := 1 else y := 1 fi

This is because the event generated by s8 may have either write(x) or write(y) as its

operation, depending on the value possibly written to a by other processes.

5.1.2 Mutual-exclusion Systems

We now define a special kind of atomic shared-memory system, namely (atomic) mutual

exclusion systems, which are our main interest. An atomic mutual exclusion system

S = (C, P, V) is an atomic shared-memory system that satisfies the properties below.

94

process p: • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

NCS
(statp = ncs)

Enterp

Entry Section
(statp = entry)

CSp

			

Critical section

Exit Section
(statp = exit)

Exitp

NCS
(statp = ncs)

}
“section” of p}
p-computation}
transition
events of p

Figure 5.1: Transition events of an atomic mutual exclusion system. In this figure,
NCS stands for “noncritical section,” a circle (◦) represents a non-transition event, and
a bullet (•) represents a transition event.

Each process p has a local auxiliary variable statp that represents which section in

the mutual exclusion algorithm p is currently in: statp ranges over ncs (for noncritical

section), entry , or exit , and is initially ncs . (For simplicity, we assume that each critical-

section execution is vacuous.) Process p also has three “dummy” auxiliary variables

ncsp, entryp, and exitp. These variables are accessed only by the following events.

Enterp = [write(entryp), {}, {(statp, entry), (entryp, 0)}, p]

CS p = [write(exitp), {}, {(statp, exit), (exitp, 0)}, p]

Exitp = [write(ncsp), {}, {(statp, ncs), (ncsp, 0)}, p]

Event Enterp cause p to transit from its noncritical section to its entry section.

Event CS p cause p to transit from its entry section to its exit section.6 Event Exitp

cause p to transit from its exit section to its noncritical section. This behavior is

depicted in Figure 5.1.

We define variables entryp, exitp, and ncsp to be remote to all processes. This

assumption allows us to simplify bookkeeping, because it implies that each of Enter p,

CS p, and Exitp is congruent only to itself. (This is the sole purpose of defining these

three variables.)

The allowable transitions of statp are as follows: for all H ∈ C,

H ◦ 〈Enterp〉 ∈ C if and only if value(statp, H) = ncs ;

H ◦ 〈CS p〉 ∈ C only if value(statp, H) = entry ;

H ◦ 〈Exitp〉 ∈ C only if value(statp, H) = exit .

In our proof, we only consider computations in which each process enters and then

exits its critical section at most once. Thus, we henceforth assume that each compu-

6Each critical-section execution of p is captured by the single event CSp, so statp changes directly
from entry to exit .

95

tation contains at most one Enter p event for each process p. In addition, an atomic

mutual exclusion system is required to satisfy the following.

Exclusion: For all H ∈ C, if both H ◦ 〈CS p〉 ∈ C and H ◦ 〈CS q〉 ∈ C hold, then

p = q.

Progress: Given H ∈ C, define X = {q ∈ P : value(stat q, H) �= ncs}. If X is

nonempty, then there exists an X-computation G such that H ◦ G ◦ 〈ep〉 ∈
C, where p ∈ X and ep is either CS p (if value(statp, H) = entry) or Exitp (if

value(statp, H) = exit).

The Exclusion property is equivalent to (mutual) exclusion, which was informally

defined in Chapter 1. Although we assume that each critical-section execution is vac-

uous, we can certainly “augment” the algorithm by replacing each event CS p by a set

of events that represents p’s critical-section execution. If two events CS p and CS q are

simultaneously “enabled” after a computation H, then we can interleave the critical-

section executions of p and q, thus violating mutual exclusion. The Exclusion property

states that such a situation does not arise.

The Progress property is implied by livelock-freedom, although it is strictly weaker

than livelock-freedom. In particular, it allows the possibility of infinitely extending H

such that no active process p executes CS p or Exitp. This weaker formalism is sufficient

for our purposes.

5.1.3 Cache-coherent Systems

On cache-coherent (CC) shared-memory systems, some remote-variable accesses may

be handled locally, without causing interconnection network traffic. Our lower-bound

proofs apply to such systems without modification. This is because we do not count

every remote event, but only certain “critical” events that generate cache misses. (Ac-

tually, as explained below, some events that we consider critical might not generate

cache misses in certain system implementations, but this has no asymptotic impact on

our proof.)

Precisely defining the class of such events in a way that is applicable to the myriad of

cache implementations that exist is exceedingly difficult. We partially circumvent this

problem by assuming idealized caches of infinite size: a cached variable may be updated

or invalidated but it is never replaced by another variable. Note that, in practice, cache

size and associativity limitations should only increase the number of cache misses. In

96

addition, in order to keep the proof manageable, we allow cache misses to be both

undercounted and overcounted. In particular, as explained below, in any realistic

cache system, at least a constant fraction (but not necessarily all) of all critical events

generate cache misses. Thus, a single cache miss may be associated with Θ(1) critical

events, resulting in overcounting up to a constant factor. Note that this overcounting

has no effect on our asymptotic lower bound. Also, an event that generates a cache miss

may be considered noncritical, resulting in undercounting, which may be of more than

a constant factor. Note that this undercounting can only strengthen our asymptotic

lower bound. Therefore, an asymptotic lower bound on the number of critical events is

also an asymptotic lower bound on the number of actual cache misses.

Our definition of a critical event is given below. This definition is followed by a

rather detailed explanation in which various kinds of caching protocols are considered.

Definition: Let S = (C, P, V) be an atomic mutual exclusion system. Let ep be

an event in H ∈ C. Then, we can write H as F ◦ 〈ep〉 ◦ G, where F and G are

subcomputations of H. We say that ep is a critical event in H if and only if one of the

following conditions holds:

Transition event: ep is one of Enter p, CS p, or Exitp.

Critical read: There exists a variable v, remote to p, such that op(ep) = read(v) and

F | p does not contain a read from v.

— Informally, ep is the first event of p that reads v in H.

Critical write: There exists a variable v, remote to p, such that ep is a remote write

event on v (i.e., op(ep) = write(v)), and writer(v, F) �= p.

— Informally, ep is a remote write event on v, and either ep is the first event

that writes to v in H (i.e., writer(v, F) = ⊥), or ep overwrites a value that was

written by another process.

Critical successful comparison: There exists a variable v, remote to p, such that

ep is a successful comparison event on v (i.e., op(ep) = compare(v, α) for some

value of α and v ∈ Wvar(ep)), and writer(v, F) �= p.

— Informally, ep is a successful comparison event on v, and either ep is the first

event that writes to v in H (i.e., writer(v, F) = ⊥), or ep overwrites a value that

was written by another process.

97

Critical unsuccessful comparison: There exists a variable v, remote to p, such

that ep is an unsuccessful comparison event on v (i.e., op(ep) = compare(v, α) for

some value of α and v /∈ Wvar(ep)), writer(v, F) �= p, and either

(i) F | p does not contain an unsuccessful comparison event on v, or

(ii) F can be written as F1 ◦ 〈fq〉 ◦ F2, where fq = writer event(v, F), such that

F2 | p does not contain an unsuccessful comparison event on v.

— Informally, ep must read the initial value of v (if writer(v, F) = ⊥) or a

value that is written by another process q. Moreover, either (i) ep is the first

unsuccessful comparison on v by p in H, or (ii) ep is the first such event by p

after some other process has written to v (via fq).
7 �

Note that state transition events do not actually cause cache misses; these events

are defined as critical events because this allows us to combine certain cases in the

proofs that follow. A process executes only three transition events per critical-section

execution, so defining transition events as critical does not affect our asymptotic lower

bound.

Note that it is possible that the first read of v by p, the first write or successful

comparison event on v by p, and the first unsuccessful comparison event on v by p (i.e.,

Case (i) in the definition above) are all considered critical. Depending on the system

implementation, the second and third of these events to occur might not generate a

cache miss. However, even in such a case, the first such event will always generate a

cache miss, and hence at least a third of all such “first” critical events will actually

incur real interconnect traffic. Hence, considering all of these events to be critical has

no asymptotic impact on our lower bound.

All caching protocols are based on either a write-through or a write-back scheme.

In a write-through scheme, all writes go directly to shared memory. In a write-back

scheme, a remote write to a variable v may create a cached copy of v, so that subsequent

writes to v do not cause cache misses. With either scheme, if cached copies of v exist

on other processors when such a write occurs, then to ensure consistency, these cached

copies must be either invalidated or updated. In the rest of this subsection, we consider

in some detail the question of whether our notion of a critical write and a critical

7This definition is more complicated than those for critical writes and successful comparisons be-
cause an unsuccessful comparison event on v by p does not actually write v. Thus, if a sequence of
such events is performed by p while v is not written by other processes, then only the first such event
should be considered critical.

98

comparison is reasonable under the various caching protocols that arise from these

definitions.

First, consider a system in which there are no comparison events, in which case it

is enough to consider only critical write events. If a write-through scheme is used, then

all remote write events cause interconnect traffic, so consider a write-back scheme.

In this case, a write ep to a remote variable that is not the first write to v by p is

considered critical only if writer(v, F) = q holds for some q �= p, which implies that v

is stored in a local cache line of process q. (Since all caches are assumed to be infinite,

writer(v, F) = q implies that q’s cached copy of v has not been invalidated.) In such a

case, ep must either invalidate or update the cached copy of v (depending on the means

for ensuring consistency), thereby generating interconnect traffic.

Next, consider comparison events. A successful comparison event on a remote vari-

able v writes a new value to v. Thus, the reasoning given above for ordinary writes

applies to successful comparison events as well. This leaves only unsuccessful compar-

ison events. Recall that an unsuccessful comparison event on a remote variable v does

not actually write v. Thus, the reasoning above does not apply to such events.

In the remainder of this discussion, let ep denote an unsuccessful comparison event

on a remote variable v, where Case (ii) in the definition applies. Then, some other

process q writes to v (via a write or successful comparison event, or even a local, read,

or unsuccessful comparison event, if v is local to q) prior to ep but after p’s most recent

unsuccessful comparison event on v, and also after p’s most recent successful comparison

and/or remote write event on v. Consider the interconnect traffic generated, assuming

an invalidation scheme for ensuring cache consistency. In this case, p’s previous cached

copy of v is invalidated prior to ep, so ep must generate interconnect traffic in order

to read the current value of v, unless an earlier read of v by p (after q’s write) exists.

Thus, ep fails to generate interconnect traffic only if there is an earlier read of v by p

(after q’s write), say fp, that does. Note that fp is either a “first” read of v by p or

a noncritical read. The former case may happen at most once per remote variable; in

the latter case, we can “charge” the interconnect traffic generated by fp to ep.

The last possibility to consider is that of an unsuccessful comparison event ep im-

plemented within a caching protocol that uses updates to ensure consistency. In this

case, q’s write in the scenario above updates p’s cached copy, and hence ep may not

generate interconnect traffic. (Note that, for interconnect traffic to be avoided in this

case, the hardware must be able to distinguish a failed comparison event on a cached

variable from a successful comparison event or a failed comparison on a non-cached

99

variable.) Therefore, our lower bound does not apply to a system that uses updates

to ensure consistency and that has the ability to execute failed comparison events on

cached variables without generating interconnect traffic. (If an update scheme is used,

but the hardware is incapable of avoiding interconnect traffic when executing such failed

comparison events, then our lower bound obviously still applies.) Such systems were

termed LFCU (“Local Failed Comparison with write-Update”) systems earlier in this

chapter. An algorithm with O(1) time complexity in such systems is presented in Sec-

tion 5.4. This algorithm shows that LFCU systems fundamentally must be excluded

from our proof.

As a final comment on our notion of a critical event, notice that whether an event

is considered critical depends on the particular computation that contains the event,

specifically the prefix of the computation preceding the event. Therefore, when saying

that an event is (or is not) critical, the computation containing the event must be

specified.

5.2 Lower-bound Proof Strategy

In Section 5.3, we show that for any mutual exclusion system S = (C, P, V), there

exists a computation H such that some process p executes Ω(logN/ log logN) critical

events to enter and exit its critical section, where N = |P |. In this section, we sketch

the key ideas of the proof.

5.2.1 Process Groups and Regular Computations

Our proof focuses on a special class of computations called “regular” computations. A

regular computation consists of events of two groups of processes, “active processes”

and “finished processes.” Informally, an active process is a process in its entry section,

competing with other active processes; a finished process is a process that has executed

its critical section once, and is in its noncritical section. (Recall that we consider only

computations in which each process executes is critical section at most once.) These

properties follow from Condition RF4, given later in this section.

Definition: Let S = (C, P, V) be a mutual exclusion system, and H be a computation

in C. We define Act(H), the set of active processes in H, and Fin(H), the set of finished

100

processes in H, as follows.

Act(H) = {p ∈ P : H | p �= 〈〉 and 〈Exitp〉 is not in H}
Fin(H) = {p ∈ P : H | p �= 〈〉 and 〈Exitp〉 is in H} �

In Section 5.2.2, a detailed overview of our proof is given. Here, we give cursory

overview, so that the definitions that follow will make sense. Initially, we start with a

regular computation in which all the processes in P are active. The proof proceeds by

inductively constructing longer and longer regular computations, until the desired lower

bound is attained. The regularity condition defined below ensures that no participating

process has “knowledge” of any other process that is active.8 This has two consequences:

we can “erase” any active process (i.e., remove its events from the computation) and

still get a valid computation; “most” active processes have a “next” non-transition

critical event. In each induction step, we append to each of the n active processes

(except at most one) one next critical event. These next critical events may introduce

unwanted information flow, i.e., these events may cause an active process to acquire

knowledge of another active process, resulting in a non-regular computation. Informally,

such information flow is problematic because an active process p that learns of another

active process may start busy waiting. If p busy waits via a local spin loop, then it

might not execute any more critical events, in which case the induction fails.

In some cases, we can eliminate all information flow by simply erasing some active

processes. Sometimes erasing alone does not leave enough active processes for the

next induction step. In this case, we partition the active processes into two categories:

“invisible” processes and “promoted” processes. The invisible processes (that are not

erased — see below) will constitute the set of active processes for the next regular

computation in the induction. No process is allowed to have knowledge of another

process that is invisible. The promoted processes are processes that have been selected

to “roll forward.” A process that is rolled forward finishes executing its entry, critical,

and exit sections, and returns to its noncritical section. (Both of these techniques,

erasing and rolling forward, have been used previously to prove other lower bounds

related to the mutual exclusion problem (see Section 2.6), as well as several other lower

bounds for concurrent systems [3, 79].) Processes are allowed to have knowledge of

promoted or finished processes. Although invisible processes may have knowledge of

8A process p has knowledge of another process q if p has read from some variable a value that is
written either by q or another process that has knowledge of q.

101

All Processes

Erased Processes
(perform no events in the

computation under consideration)

Active Processes Finished Processes
(have entered and exited

their CS’s exactly once)

Invisible Processes
(no information flow

among each other)

Promoted Processes
(will be empty for a

regular computation)︸ ︷︷ ︸
Roll-forward Set

✭✭✭✭✭✭✭✭✭
❤❤❤❤❤❤❤❤❤

�
��

❅
❅❅

Figure 5.2: Process groups.

promoted processes, once all promoted processes have finished execution, the regularity

condition holds again (i.e., all active processes are invisible). The various process groups

we consider are depicted in Figure 5.2 (the roll-forward set is discussed below).

The promoted and finished processes together constitute a “roll-forward set,” which

must meet Conditions RF1–RF5 below. Informally, Condition RF1 ensures that an

invisible process is not known to any other processes; RF2 and RF3 bound the number

of possible conflicts caused by appending a critical event; RF4 ensures that the invisible,

promoted, and finished processes behave as explained above; RF5 ensures that we can

erase any invisible process, maintaining that critical events (that are not erased) remain

critical.

Definition: Let S = (C, P, V) be a mutual exclusion system, H be a computation

in C, and RFS be a subset of P such that Fin(H) ⊆ RFS and H | p �= 〈〉 for each

p ∈ RFS . We say that RFS is a valid roll-forward set (RF-set) of H if and only if the

following conditions hold.

RF1: Assume that H can be written as E ◦ 〈ep〉 ◦ F ◦ 〈fq〉 ◦ G.9 If p �= q and there

exists a variable v ∈ Wvar(ep) ∩ Rvar(fq) such that F does not contain a write

to v (i.e., writer event(v, F) = ⊥), then p ∈ RFS holds.

— Informally, if a process p writes to a variable v, and if another process q reads

that value from v without any intervening write to v, then p ∈ RFS holds.

RF2: For any event ep in H and any variable v in var(ep), if v is local to another

process q (�= p), then either q /∈ Act(H) or {p, q} ⊆ RFS holds.

9Here and in similar sentences hereafter, we are considering every way in which H can be so
decomposed. That is, any pair of events ep and fq inside H such that ep comes before fq defines a
decomposition of H into E ◦ 〈ep〉 ◦ F ◦ 〈fq〉 ◦ G, and RF1 must hold for any such decomposition.

102

— Informally, if a process p accesses a variable that is local to another process

q, then either q is not an active process in H, or both p and q belong to the

roll-forward set RFS . Note that this condition does not distinguish whether q

actually accesses v or not, and conservatively requires q to be in RFS (or erased)

even if q does not access v. This is done in order to simplify bookkeeping.

RF3: Consider a variable v ∈ V and two different events ep and fq in H. Assume

that both p and q are in Act(H), p �= q, there exists a variable v such that v ∈
var(ep) ∩ var(fq), and there exists a write to v in H. Then, writer(v, H) ∈ RFS

holds.

— Informally, if a variable v is accessed by more than one processes in Act(H),

then the last process in H to write to v (if any) belongs to RFS .

RF4: For any process p such that H | p �= 〈〉,

value(statp, H) =




entry if p ∈ Act(H) − RFS ,

entry or exit if p ∈ Act(H) ∩ RFS ,

ncs otherwise (i.e., p ∈ Fin(H)).

Moreover, if p ∈ Fin(H), then the last event by p in H is Exitp.

— Informally, if a process p participates in H (H | p �= 〈〉), then at the end of H,
one of the following holds: (i) p is in its entry section and has not yet executed its

critical section (p ∈ Act(H) − RFS); (ii) p is in the process of “rolling forward”

and is in its entry or exit section (p ∈ Act(H) ∩ RFS); or (iii) p has already

finished its execution and is in its noncritical section (i.e., p ∈ Fin(H)).

RF5: For any event ep in H, if ep is a critical write or a critical comparison in H,

then ep is also a critical write or a critical comparison in H | ({p} ∪ RFS).

— Informally, if an event ep in H is a critical write or a critical comparison, then

it remains critical if we erase all processes not in RFS and different from p. �

Condition RF5 is used to show that the property of being a critical write/comparison

is conserved when considering certain related computations. Recall that, if ep is not

the first event by p to write to v, then for it to be critical, there must be a write to

v by another process q in the subcomputation between p’s most recent write (via a

remote write or a successful comparison event) and event ep. Similarly, if ep is not the

first unsuccessful comparison by p on v, then for it to be critical, there must be a write

103

to v by another process q in the subcomputation between p’s most recent unsuccessful

comparison on v and event ep. RF5 ensures that if q is not in RFS , then other process

q′ exists that is in RFS and that writes to v in the subcomputation in question.

Note that a valid RF-set can be “expanded”: if RFS is a valid RF-set of computation

H, then any set of processes that participate in H, provided that it is a superset of

RFS , is also a valid RF-set of H.

The invisible and promoted processes (which partition the set of active processes)

are defined as follows.

Definition: Let S = (C, P, V) be a mutual exclusion system, H be a computation in

C, and RFS be a valid RF-set of H. We define InvRFS (H), the set of invisible processes

in H, and PmtRFS (H), the set of promoted processes in H, as follows.

InvRFS (H) = Act(H) − RFS

PmtRFS (H) = Act(H) ∩ RFS �

For brevity, we often omit the specific RF-set if it is obvious from the context, and

simply use the notation Inv(H) and Pmt(H). Finally, the regularity condition can be

defined as “all the processes we wish to roll forward have finished execution.”

Definition: A computation H in C is regular if and only if Fin(H) is a valid RF-set

of H. �

5.2.2 Detailed Proof Overview

The overall structure of our proof is depicted in Figure 5.3. Initially, we start with

H1, in which Act(H1) = P , Fin(H1) = {}, and each process p has one critical event,

Enterp. We inductively construct longer and longer regular computations until our

lower bound is met. At the jth induction step, we consider a computation Hj such

that Act(Hj) consists of n (≤ N) processes, each of which executes j critical events in

Hj. We show that if j > c log n, where c is a fixed constant, then the lower bound has

already been attained. Thus, in the inductive step, we assume j ≤ c log n. Based on the

existence of Hj, we construct a regular computation Hj+1 such that Act(Hj+1) consists

of Ω(n/ log2 n) processes,10 each of which executes j + 1 critical events in Hj+1. The

104

N

H1: the initial computation
(N active processes,

one critical event each)

induction steps

n

Hj: at the jth induction step
(n active processes,

j critical events each;

plus some finished processes)

Finished processes
= Fin(Hj)

Active processes
(invisible)
= Act(Hj)

Figure 5.3: Induction steps. In this and subsequent figures, a computation is depicted
as a collection of bold horizontal lines, with each line representing the events of a single
process.

construction method, formally described in Lemma 5.7 (in Section 5.3), is explained

below.

Since computation Hj is regular, no active process has knowledge of other active

processes. Therefore, we can “erase” any active process and still get a valid compu-

tation (Lemma 5.1). Moreover, if we choose an active process p and erase all other

active processes, then by the Progress property, p eventually executes CS p, as shown in

Figure 5.4. We claim that every process p in Act(Hj), except at most one, executes at

least one additional critical event before it executes CS p. This claim is formally stated

and proved in Lemma 5.5; here we give an informal explanation.

Assume, to the contrary, that we have two distinct processes, p and q, each of which

may execute its CS event, if executed alone as shown in Figure 5.4, by first executing

only noncritical events. It can be shown that noncritical events of invisible processes

cannot cause any information flow among these processes (Lemma 5.4). That is, an

invisible process cannot become “visible” as a result of executing noncritical events. In

particular, a local event of process p cannot cause information flow, because, by RF2,

no other invisible process can access p’s local variables. In addition, a remote read

event of v by p is noncritical only if p has already read v. If another process q has

written v after p’s last read, then by RF3, the last process to write v is in RFS , i.e., it

is not invisible. Similar arguments apply to remote write or comparison events.

10Recall that we use log2 n to denote (log n)2 (see page 16).

105

n

Hj: at the jth induction step
(n active processes,

j critical events each;

plus some finished processes)

choose any process p
in Act(Hj)

p

CSp

We can extend p s execution until

p executes its critical section.

Figure 5.4: Extending a regular computation. For each active (invisible) process p
in a regular computation, if p runs in isolation (i.e., with only finished processes), p
eventually executes CS p.

It follows that process p is unaware of q until it executes its critical section, and

vice versa. Therefore, we can let both p and q execute concurrently after Hj | ({p, q} ∪
Fin(Hj)) — in particular, we can append Fp◦Fq (or Fq◦Fp), constructing a computation

that may be followed by both CS p and CS q, clearly violating the Exclusion property.11

Thus, among the n processes in Act(Hj), at least n − 1 processes can execute an

additional critical event before entering its critical section. We call these events “next”

critical events, and denote the corresponding set of processes by Y .

The processes in Y collectively execute at most nj critical events in Hj. Let E be

the set of all these events plus all the next critical events. Since we assumed j ≤ c log n,

we have |E| ≤ nj+n ≤ (c log n+1)n. Among the variables accessed by these events, we

identify VHC, the set of variables that experience “high contention,” as those that are

remotely accessed by at least d log2 n critical events in E , where d is another constant

to be specified. Because of the Atomicity property, each event can access at most one

remote variable, so we have |VHC| ≤ (c log n+1)n/(d log2 n) ≤ (c+1)n/(d log n). Next,

we partition the processes in Y depending on whether their next critical events access

a variable in VHC:

PHC = {y ∈ Y : y’s next critical event accesses some variable in VHC},
PLC = Y − PHC.

11It is crucial that both Fp and Fq are free of critical events. For example, if Fq contains a critical
event, then it may read a variable that is written by p in Fp, or write a variable that is read by p in
Fp. In the former case, Fp ◦ Fq causes information flow; in the latter, Fq ◦ Fp does.

106

.
.
.

PLC : processes with
low contention
(subset of Act(Hj))

1
2
3
4
5

Events that are in Hj
(includes j critical
events per process)

Newly appended events
(includes one next critical event
per process, and perhaps some
noncritical events)

.
.
.

Z: saved
processes

1
2
3
4
5

No conflicts among active processes:
ready for the next induction step

: processes that are erased

: processes that are saved

: conflicts
1

2

3

4 5

conflict graph

Figure 5.5: Erasing strategy. For simplicity, processes in Fin(Hj) are not shown in the
remaining figures.

Because Hj is regular and Y ⊆ Act(Hj), we can erase any process in Y . Hence, we

can erase the smaller of PHC and PLC and still have Ω(n) remaining active processes.

We consider these cases separately.

Erasing strategy. Assume that we erased PHC and saved PLC. This situation is de-

picted in Figure 5.5. In order to construct a regular computation, we want to eliminate

any information flow. There are two cases to consider.

If p’s next critical event reads a value that is written by some other active process

q, then information flow clearly arises, and hence must be eliminated, by erasing either

p or q. The other case is more subtle: if p’s next critical event overwrites a value that

is written by q, then although no information flow results, problems may arise later.

In particular, assume that, in a later induction step, yet another process r reads the

value written by p. In this case, simply erasing p does not eliminate all information

flow, because then r would read a value written by q instead. In order to simplify

bookkeeping, we simply assume that a conflict arises whenever any next critical event

accesses any variable that is accessed by a critical event (past or next) of any other

processes. That is, we consider all four possibilities, write followed by read, write

followed by write, read followed by read, and read followed by write, to be conflicts.

Define VLC as the set of variables remotely accessed by the next critical events of PLC.

Then clearly, every variable in VLC is a “low contention” variable, and hence is accessed

by at most d log2 n different critical events (and, hence, different processes). Therefore,

107

.
.
.

Events that are in Hj
(includes j critical
events per process)

Newly appended events
(includes one next critical event
per process, and perhaps
some noncritical events)

For each variable v in VHC,
 arrange the next critical events in order of
 writes / comparison primitives / reads:

writes comparisons reads

“Last Writer” LW(v) “Successful Comparison” SC(v)

information flow

PHC : processes with
high contention
(subset of Act(Hj))

.
.
.

.
.
.

.
.
.

These next critical
events access
remote variable v1

.
.
.

.
.
.

.
.
.

.
.
.

These next critical
events access
remote variable v2

.
.
.

.
.
.

Figure 5.6: Roll-forward strategy. Part I.

the next event by a process in PLC can conflict with at most d log2 n processes. By

generating a “conflict graph” and applying Turán’s theorem (Theorem 5.1), we can find

a set of processes Z such that |Z| = Ω(n/ log2 n), and among the processes in Z, there

are no conflicts. By retaining Z and erasing all other active processes, we can eliminate

all conflicts. Thus, we can construct Hj+1.

Roll-forward strategy. Assume that we erased PLC and saved PHC. This situation

is depicted in Figure 5.6. In this case, the erasing strategy does not work, because elimi-

nating all conflicts will leave us with at most |VHC| processes, which may be o(n/ log2 n).

Every next event by a process in PHC accesses a variable in VHC. For each variable

v ∈ VHC, we arrange the next critical events that access v by placing write, comparison,

and read events in that order. Then, all next write events of v, except for the last one,

are overwritten by subsequent writes, and hence cannot create any information flow.

(That is, even if some other process later reads v, it cannot gather any information of

these “next” writers, except for the last one.) Furthermore, we can arrange comparison

events such that at most one of them succeeds, as follows.

108

Assume that the value of v is α after all the next write events are executed. We first

append all comparison events with an operation that can be written as compare(v, β)

such that β �= α. These comparison events must fail. We then append all the remaining

comparison events, namely, events with operation compare(v, α). The first successful

event among them (if any) changes the value of v. Thus, all subsequent comparison

events must fail.

Thus, among the next events accessing some such v ∈ VHC, the only information flow

that arises is from the “last writer” event LW (v) and from the “successful comparison”

event SC (v) to all other next comparison and read events of v. We define G to be

the resulting computation with the next critical events arranged as above, and define

the RF-set RFS as {LW (v), SC (v): v ∈ VHC} ∪ Fin(Hj). Then, by definition, the

set of promoted processes Pmt(G) consists of LW (v) and SC (v) for each v ∈ VHC.

Because |VHC| ≤ (c + 1)n/(d log n), we have |Pmt(G)| ≤ 2|VHC| ≤ 2(c + 1)n/(d log n).

We then roll the processes in Pmt(G) forward (i.e., schedule only these processes,

and temporarily pause all other processes, until every process in Pmt(G) reaches its

noncritical section) by inductively constructing computations G0, G1, . . . , Gk (where

G0 = G), such that each computation Gj+1 contains one more critical event (of some

process in Pmt(G)) than Gj. (During the inductive construction, we may erase some

active processes in order to eliminate conflicts generated by newly appended events,

as explained below.) The computation G and the construction of G0, . . . , Gk are

depicted in Figure 5.7.

If any process p in Pmt(G) executes at least log n critical events before returning

to its noncritical section, then the lower bound easily follows. (It can be shown that

j + log n = Ω(log N/ log log N). The formal argument is presented in Theorem 5.2.)

Therefore, we can assume that each process in Pmt(G) performs fewer than log n critical

events while being rolled forward. Because |Pmt(G)| ≤ 2(c + 1)n/(d log n), it follows

that all the processes in Pmt(G) can be rolled forward with a total of O(n) critical

events.

Since each process in Pmt(G) is eventually rolled forward and reaches its noncritical

section (see Figure 5.7), we do not have to prevent information flow among these

processes. (Once all processes in Pmt(G) are rolled forward, other processes may freely

read variables written by them— knowledge of another process in its noncritical section

cannot cause an active process to block.) As before, it can be shown that noncritical

events do not generate any information flow that has to be prevented. (In particular,

if a noncritical remote read by a process p is appended, then p must have previously

109

Writes

(none) Comparisons Reads

Writes Comparisons Reads

Last Writer LW(v1) Successful Comparison SC(v1)

Writes Comparisons Reads

info. flow

LW(v2)

SC(v2)

LW(v3)

SC(v3)

Rolling processes forward

Computation G = G0 Inductively construct G
1
, G

2
,

until all processes are rolled forward.

At most log(n) critical events.

Entry CS Exit
NCS

Entry CS Exit

NCS

Pmt(G) :
promoted
processes

erased!

Each critical event may

erase at most one

invisible process.

a critical event

Figure 5.7: Roll-forward strategy. Part II.

read the same variable. By Condition RF3, if the last writer is another process, then

that process is in the RF-set, and hence is allowed to be known to other processes.)

Therefore, the only case to consider is when a critical event of Pmt(G) reads a variable

v that is written by another active process q /∈ Pmt(G), i.e., q ∈ Inv(G).

If there are multiple processes in Act(G) that write to v in G, then Condition RF3

guarantees that the last writer in G belongs to the RF-set, i.e., we have q /∈ Inv(G).

On the other hand, if there is a single process in Act(G) that writes to v in G, then that

process must be q, and information flow can be prevented by erasing q. It follows that

each critical event of Pmt(G) can conflict with, and thus erase, at most one process in

Inv(G).

110

Therefore, the entire roll-forward procedure erases O(n) processes from Inv(G).

Because |Inv(G)| = Θ(n) − |Pmt(G)| and |Pmt(G)| = O(n), we can adjust constant

coefficients so that |Pmt(G)| is at most n multiplied by a small constant (< 1), in

which case Ω(n) processes (i.e., processes in Inv(G)) survive after the entire procedure.

Thus, we can construct Hj+1.

5.3 Detailed Lower-bound Proof

In this section, we present our lower-bound theorem. We begin by stating several

lemmas. Full proofs for Lemmas 5.1–5.6 can be found in Appendix B. In many of these

proofs, computations with a valid RF-set RFS are considered. When this is the case, we

omit RFS when quoting properties RF1–RF5. For example, “H satisfies RF1” means

that “H satisfies RF1 when the RF-set under consideration is RFS .” Throughout this

section, as well as in Appendix B, we assume the existence of a fixed mutual exclusion

system S = (C, P, V).

According to Lemma 5.1, stated next, any invisible process can be safely “erased.”

Lemma 5.1 Consider a computation H and two sets of processes RFS and Y . Assume

the following:

• H ∈ C; (5.1)

• RFS is a valid RF-set of H; (5.2)

• RFS ⊆ Y . (5.3)

Then, the following hold: H | Y ∈ C; RFS is a valid RF-set of H | Y ; an event e in

H | Y is a critical event if and only if it is also a critical event in H.

Proof sketch: Because H satisfies RF1, if a process p is not in RFS , no process other

than p reads a value written by p. Therefore, H | Y ∈ C. Conditions RF1–RF5 can

be individually checked to hold in H | Y , which implies that RFS is a valid RF-set of

H | Y .

To show that an event ep in H | Y is a critical event if and only if it is also a critical

event in H, it is enough to consider critical writes and comparisons. (Transition events

and critical reads are straightforward.) In this case, RF5 implies that ep is critical in

H | Y if and only if it is also critical in H | {p} ∪ RFS , which in turn holds if and only

if it is also critical in H. �

111

The next lemma shows that the property of being a critical event is conserved across

“similar” computations. Informally, if process p cannot distinguish two computations

H and H ′, and if p may execute a critical event ep after H, then it can also execute

a critical event e′p after H ′ ◦ G, where G is a computation that does not contain any

events by p. Moreover, if G satisfies certain conditions, then H ′ ◦G◦ 〈e′p〉 satisfies RF5,
preserving the “criticalness” of e′p across related computations.

Lemma 5.2 Consider three computations H, H ′, and G, a set of processes RFS , and

two events ep and e′p of a process p. Assume the following:

• H ◦ 〈ep〉 ∈ C; (5.4)

• H ′ ◦ G ◦ 〈e′p〉 ∈ C; (5.5)

• RFS is a valid RF-set of H; (5.6)

• RFS is a valid RF-set of H ′; (5.7)

• ep ∼ e′p; (5.8)

• p ∈ Act(H); (5.9)

• H | ({p} ∪ RFS) = H ′ | ({p} ∪ RFS); (5.10)

• G | p = 〈〉; (5.11)

• no events in G write any of p’s local variables; (5.12)

• ep is critical in H ◦ 〈ep〉. (5.13)

Then, e′p is critical inH ′◦G◦〈e′p〉. Moreover, if the following conditions are true,

(A) H ′ ◦ G satisfies RF5;

(B) if ep is a comparison event on a variable v, and if G contains a write to v, then

G | RFS also contains a write to v.

then H ′ ◦ G ◦ 〈e′p〉 also satisfies RF5

Proof sketch: It is enough to consider the following case: ep is a critical write or a

critical comparison on v such that writer(v, H) = q holds for some process q, where

q �= ⊥ and q �= p. (As before, if ep is a transition event or critical read, then the

reasoning is straightforward.) If ep is a critical write, then by applying RF3 to H, we

can show q ∈ RFS . Thus, by (5.10), q also writes to v in H ′ after p’s last write to v.

Hence, e′p is critical in H ′ ◦ G ◦ 〈e′p〉.
Assume that ep is a critical comparison. If G contains a write to v, then by (5.11),

ep is the first comparison event on v by p after G, and hence is critical by definition.

On the other hand, if G does not contain a write to v, then by (5.12), we can show

112

that ep and e′p read the same value for each variable they read, and hence by P2 and P5

(given on page 92), we have ep = e′p. Thus, e
′
p is a successful (respectively, unsuccessful)

comparison if and only if ep is also a successful (respectively, unsuccessful) comparison.

As in the case of a critical write, by applying RF3 to H, we can show q ∈ RFS . Using

this fact, the conditions given in the definition of a critical successful/unsuccessful

comparison can be individually checked to hold for e′p.

If Condition (A) holds, then in order to show that H ′ ◦ G ◦ 〈e′p〉 satisfies RF5, it

suffices to consider e′p. Condition (B) guarantees that if e′p is critical because of a write

to v in G, then e′p is also critical in (H ′ ◦ G ◦ 〈e′p〉) | ({p} ∪ RFS). �

The next lemma provides means of appending an event ep of an active process, while

maintaining RF1 and RF2. This lemma is used inductively in order to extend a com-

putation with a valid RF-set. Specifically, (5.20) guarantees that RF2 is satisfied, and

(5.21) forces any information flow to originate from a process in RFS , thus satisfying

RF1. (Note that, if q = ⊥, q = p, or vrem /∈ Rvar(ep) holds, then no information flow

occurs.) The proof of this lemma is mainly technical in nature and is omitted here.

Lemma 5.3 Consider two computations H and G, a set of processes RFS , and an

event ep of a process p. Assume the following:

• H ◦ G ◦ 〈ep〉 ∈ C; (5.14)

• RFS is a valid RF-set of H; (5.15)

• p ∈ Act(H); (5.16)

• H ◦ G satisfies RF1 and RF2; (5.17)

• G is an Act(H)-computation; (5.18)

• G | p = 〈〉; (5.19)

• if ep remotely accesses a variable vrem, then the following hold:

− if vrem is local to a process q, then either q /∈ Act(H) or {p, q} ⊆ RFS , and (5.20)

− if q = writer(vrem, H◦G), then one of the following hold: q = ⊥, q = p, q ∈ RFS ,

or vrem /∈ Rvar(ep). (5.21)

Then, H ◦ G ◦ 〈ep〉 satisfies RF1 and RF2. �

The next lemma gives us means for extending a computation by appending non-

critical events.

Lemma 5.4 Consider a computation H, a set of processes RFS , and another set of

processes Y = {p1, p2, . . . , pm}. Assume the following:

113

• H ∈ C; (5.22)

• RFS is a valid RF-set of H; (5.23)

• Y ⊆ InvRFS (H); (5.24)

• for each pj in Y , there exists a computation Lpj
, satisfying the following:

− Lpj
is a pj-computation; (5.25)

− H ◦ Lpj
∈ C; (5.26)

− Lpj
has no critical events in H ◦ Lpj

, that is, no event in Lpj
is a critical event

in H ◦ Lpj
. (5.27)

Define L to be Lp1 ◦ Lp2 ◦ · · · ◦ Lpm . Then, the following hold: H ◦ L ∈ C, RFS is

a valid RF-set of H ◦ L, and L contains no critical events in H ◦ L.

Proof sketch: For each j, define Lj to be Lp1 ◦ Lp2 ◦ · · · ◦ Lpj
. The lemma can be

proved by induction on j. At each induction step, it is assumed that H ◦Lj ∈ C, RFS

is a valid RF-set of H ◦ Lj, and Lj contains no critical events in H ◦ Lj. Because Lpj+1

contains no critical events in H ◦ Lpj+1
, it can be appended to H ◦ Lj to get H ◦ Lj+1

for the next induction step. (As mentioned at the end of Section 5.2, appending a

noncritical event cannot cause any undesired information flow from invisible processes

to processes in RFS .) �

The next lemma states that if n active processes are competing for entry into their

critical sections, then at least n − 1 of them execute at least one more critical event

before entering their critical sections.

Lemma 5.5 Let H be a computation. Assume the following:

• H ∈ C, and (5.28)

• H is regular (i.e., Fin(H) is a valid RF-set of H). (5.29)

Define n = |Act(H)|. Then, there exists a subset Y of Act(H), where n−1 ≤ |Y | ≤
n, satisfying the following: for each process p in Y , there exist a p-computation Lp and

an event ep by p such that

• H ◦ Lp ◦ 〈ep〉 ∈ C; (5.30)

• Lp contains no critical events in H ◦ Lp; (5.31)

• ep /∈ {Enter p, CS p, Exitp}; (5.32)

• Fin(H) is a valid RF-set of H ◦ Lp; (5.33)

• ep is a critical event by p in H ◦ Lp ◦ 〈ep〉. (5.34)

114

Proof sketch: First, we construct, for each process p in Act(H), a computation Lp

and an event ep that satisfy (5.30) and (5.31). Then, we show that every event ep thus

constructed, except at most one, satisfies (5.32). The other conditions can be easily

proved and will be omitted here.

DefineHp = H | ({p}∪Fin(H)). BecauseH is regular, Fin(H) is a valid RF-set ofH.

Hence, by Lemma 5.1, Hp is in C and Fin(H) is a valid RF-set of Hp. Since p ∈ Act(H),

we have Act(Hp) = {p} and Fin(Hp) = Fin(H). Therefore, by the Progress property,

there exists a p-computation Fp such that Hp ◦ Fp ◦ 〈CSp〉 ∈ C. If Fp has a critical

event, then let e′p be the first critical event in Fp, and let Lp be the prefix of Fp that

precedes e′p (i.e., Fp = Lp ◦ 〈e′p〉 ◦ · · ·). Otherwise, define Lp to be Fp and e′p to be CS p.

Now we have a p-computation Lp and an event e′p by p, such that Hp ◦Lp ◦〈e′p〉 ∈ C,

in which Lp has no critical events and e′p is a critical event. Because Lp has no critical

events in Hp ◦ Lp, it can be shown that H ◦ Lp ∈ C and that Lp has no critical events

in H ◦ Lp. Because H ◦ Lp and Hp ◦ Lp are equivalent with respect to p, by P3, there

exists an event ep by p such that ep ∼ e′p and H ◦ Lp ◦ 〈ep〉 ∈ C.

We now claim that at most one process in Act(H) fails to satisfy (5.32). Because

p ∈ Act(H) and H is regular, ep cannot be Enter p or Exitp. By the Exclusion property,

there can be at most one p ∈ Act(H) such that ep = CS p. �

The following lemma is used to roll processes forward. It states that as long as there

exist promoted processes, we can extend the computation with one more critical event

of some promoted process, and at most one invisible process must be erased due to the

resulting information flow.

Lemma 5.6 Consider a computation H and set of processes RFS . Assume the

following:

• H ∈ C; (5.35)

• RFS is a valid RF-set of H; (5.36)

• Fin(H) � RFS (i.e., Fin(H) is a proper subset of RFS). (5.37)

Then, there exists a computation G satisfying the following.

• G ∈ C; (5.38)

• RFS is a valid RF-set of G; (5.39)

• G can be written as H | (Y ∪ RFS) ◦ L ◦ 〈ep〉, for some choice of Y , L, and ep,

satisfying the following:

− Y is a subset of Inv(H) such that |Inv(H)| − 1 ≤ |Y | ≤ |Inv(H)|, (5.40)

115

− Inv(G) = Y , (5.41)

− L is a Pmt(H)-computation, (5.42)

− L has no critical events in G, (5.43)

− p ∈ Pmt(H), and (5.44)

− ep is critical in G; (5.45)

• Pmt(G) ⊆ Pmt(H); (5.46)

• An event in H | (Y ∪ RFS) is critical if and only if it is also critical in H. (5.47)

Proof sketch: Let H ′ = H | RFS and Z = Pmt(H). Then, by the definition of an

active process, Act(H ′) = (Act(H) ∩ RFS) = Pmt(H) = Z. By Lemma 5.1, H ′ ∈ C

and RFS is a valid RF-set of H ′.

Therefore, by applying the Progress property, we can construct a Z-computation F

such that H ′ ◦ F ◦ 〈ēr〉 ∈ C, where r is a process in Z and ēr is either CS r or Exitr.

If F has a critical event, then let e′p be the first critical event in F , and let L be the

prefix of F that precedes e′p (i.e., F = L ◦ 〈e′p〉 ◦ · · ·). Otherwise, define L to be F and

e′p to be ēr. Because F is a Z-computation, p ∈ Z.

Now we have a Z-computation L and an event e′p by p ∈ Z, such that H ′ ◦L◦〈e′p〉 ∈
C, L has no critical events in H ′ ◦ L ◦ 〈e′p〉, and e′p is a critical event in H ′ ◦ L ◦ 〈e′p〉. It
can be shown that H ◦ L ∈ C and that L has no critical events in H ◦ L. (This follows

because H and H ′ are equivalent with respect to Z.) Because H ◦ L and H ′ ◦ L are

equivalent with respect to p, by P3, there exists an event e′′p by p such that e′′p ∼ e′p and

H ◦ L ◦ 〈e′′p〉 ∈ C.

Because e′p is a critical event in H ′ ◦L◦〈e′p〉 and e′′p accesses the same variables as e′p,

it can be shown that e′′p is a critical event in H ◦ L ◦ 〈e′′p〉. Let v be the remote variable

accessed by e′′p. If v is local to a process q in Inv(H), or if q = writer(v, H ◦ L) is in

Inv(H), then we can “erase” process q and construct a computation G that satisfies

the requirements stated in the lemma. (If both conditions hold simultaneously, then

by RF2, q is identical in both cases.) The event ep that is appended to obtain G is

congruent to e′′p, i.e., ep ∼ e′′p. �

The following theorem is due to Turán [81].

Theorem 5.1 (Turán) Let G = (V, E) be an undirected graph, with vertex set V and

edge set E. If the average degree of G is d, then an independent set12 exists with at

least �|V |/(d+ 1)� vertices. �

116

The following lemma provides the induction step that leads to the lower bound in

Theorem 5.2.

Lemma 5.7 Let H be a computation. Assume the following:

• H ∈ C, and (5.48)

• H is regular (i.e., Fin(H) is a valid RF-set of H). (5.49)

Define n = |Act(H)|. Also assume that

• n > 1, and (5.50)

• each process in Act(H) executes exactly c critical events in H, where c ≤ log n− 1.

(5.51)

Then, one of the following propositions is true.

Pr1: There exist a process p in Act(H) and a computation F in C such that

• F ◦ 〈Exitp〉 ∈ C;

• F does not contain 〈Exitp〉;
• p executes at least (c+ log n) critical events in F .

Pr2: There exists a regular computation G in C such that

• Act(G) ⊆ Act(H); (5.52)

• |Act(G)| ≥ min

(
n

6
− n

2 log n
− 1

2
,

n − 1

2 · (12 log2 n+ 1)

)
; (5.53)

• each process in Act(G) executes exactly (c+ 1) critical events in G. (5.54)

Proof: We first apply Lemma 5.5. Assumptions (5.28) and (5.29) stated in Lemma 5.5

follow from (5.48) and (5.49), respectively. It follows that there exists a set of processes

Y such that

• Y ⊆ Act(H), and (5.55)

• n − 1 ≤ |Y | ≤ n, (5.56)

and for each process p ∈ Y , there exist a computation Lp and an event ep by p, such

that

• H ◦ Lp ◦ 〈ep〉 ∈ C; (5.57)

• Lp is a p-computation; (5.58)

12An independent set of a graph G = (V, E) is a subset V ′ ⊆ V such that no edge in E is incident
to two vertices in V ′.

117

• Lp contains no critical events in H ◦ Lp; (5.59)

• ep /∈ {Enter p, CS p, Exitp}; (5.60)

• Fin(H) is a valid RF-set of H ◦ Lp; (5.61)

• ep is a critical event by p in H ◦ Lp ◦ 〈ep〉. (5.62)

For each p ∈ Y , by (5.58), (5.59), and p ∈ Y ⊆ Act(H), we have

Act(H ◦ Lp) = Act(H) ∧ Fin(H ◦ Lp) = Fin(H). (5.63)

By (5.50) and (5.56), Y is nonempty.

If Proposition Pr1 is satisfied by any process in Y , then the theorem is clearly true.

Thus, we will assume, throughout the remainder of the proof, that there is no process

in Y that satisfies Pr1. Define EH as the set of critical events in H of processes in Y .

EH = {fq in H: fq is critical in H and q ∈ Y }. (5.64)

Define E = EH ∪ {ep: p ∈ Y }, i.e., the set of all “past” and “next” critical events of

processes in Y . From (5.51), (5.55), and (5.56), it follows that

|E| = (c+ 1)|Y | ≤ (c+ 1)n. (5.65)

Now define VHC, the set of variables that experience “high contention” (i.e., those

that are accessed by “sufficiently many” events in E), as follows.

VHC = {v ∈ V : there are at least 6 log2 n events in E that remotely access v}. (5.66)

Since, by the Atomicity property (given on page 90), each event in E can access at most

one remote variable, from (5.51) and (5.65), we have

|VHC| ≤ |E|
6 log2 n

≤ (c+ 1)n

6 log2 n
≤ n

6 log n
. (5.67)

Define PHC, the set of processes whose “next” event accesses a variable in VHC, as

follows.

PHC = {p ∈ Y : ep accesses a variable in VHC}. (5.68)

We now consider two cases, depending on |PHC|.

118

Case 1: |PHC| < 1
2
|Y | (erasing strategy)

— In this case, we start with Y ′ = Y −PHC, which consists of at least (n− 1)/2 active

processes. We construct a “conflict graph” G, made of the processes in Y ′. By applying

Theorem 5.1, we can find a subset Z of Y ′ such that their critical events do not conflict

with each other.

Let Y ′ = Y − PHC. By (5.55), we have

Y ′ ⊆ Act(H). (5.69)

By (5.56) and Case 1, we also have

|Y ′| =
(|Y | − |PHC|) >

(
|Y | − 1

2
Y

)
=

1

2
|Y | ≥ n − 1

2
. (5.70)

We now construct an undirected graph G = (Y ′, EG), where each vertex is a process

in Y ′. To each process y in Y ′ and each variable v ∈ var(ey) that is remote to y, we

apply the following rules.

• R1: If v is local to a process z in Y ′, then introduce edge {y, z}.
• R2: If there exists an event fp ∈ E that remotely accesses v, and if p ∈ Y ′, then

introduce edge {y, p}.
Because each variable is local to at most one process, and since (by the Atomicity

property, given on page 90) an event can access at most one remote variable, Rule R1

can introduce at most one edge for each process in Y . Since y ∈ Y ′, we have y /∈ PHC,

which, by (5.68), implies v /∈ VHC. Hence, by (5.66), it follows that there are at most

6 log2 n − 1 events in E that remotely access v. Therefore, since an event can access at

most one remote variable, Rule R2 can introduce at most 6 log2 n − 1 edges for each

process in Y .

Combining Rules R1 and R2, at most 6 log2 n edges are introduced for each process

in Y . Since each edge is counted twice (for each of its endpoints), the average degree

of G is at most 12 log2 n. Hence, by Theorem 5.1, there exists an independent set Z

such that

Z ⊆ Y ′, and (5.71)

|Z| ≥ |Y ′|
(12 log2 n+ 1)

≥ n − 1

2 · (12 log2 n+ 1)
, (5.72)

where the latter inequality follows from (5.70).

119

Next, we construct a computationG, satisfying Proposition Pr2, such that Act(G) =

|Z|.
Define H ′ as

H ′ = H | (Z ∪ Fin(H)). (5.73)

By (5.69) and (5.71), we have

Z ⊆ Y ′ ⊆ Y ⊆ Act(H), (5.74)

and hence,

Act(H ′) = Z ⊆ Act(H) ∧ Fin(H ′) = Fin(H). (5.75)

We now apply Lemma 5.1, with ‘RFS ’ ← Fin(H) and ‘Y ’ ← Z ∪ Fin(H). Among

the assumptions stated in Lemma 5.1, (5.1) and (5.2) follow from (5.48) and (5.49),

respectively; (5.3) is trivial. It follows that

• H ′ ∈ C, (5.76)

• Fin(H) is a valid RF-set of H ′, and (5.77)

• an event in H ′ is critical if and only if it is also critical in H. (5.78)

Our goal now is to show that H ′ can be extended so that each process in Z has one

more critical event. By (5.75), (5.77), and by the definition of a finished process,

InvFin(H)(H
′) = Act(H ′) = Z. (5.79)

For each z ∈ Z, define Fz as

Fz = (H ◦ Lz) | (Z ∪ Fin(H)). (5.80)

By (5.74), we have z ∈ Y . Thus, applying (5.57), (5.58), (5.59), and (5.61) with

‘p’ ← z, it follows that

• H ◦ Lz ◦ 〈ez〉 ∈ C; (5.81)

• Lz is a z-computation; (5.82)

• Lz contains no critical events in H ◦ Lz; (5.83)

• Fin(H) is a valid RF-set of H ◦ Lz. (5.84)

By P1, (5.81) implies

H ◦ Lz ∈ C. (5.85)

120

We now apply Lemma 5.1, with ‘H’ ← H ◦ Lz, ‘RFS ’ ← Fin(H), and ‘Y ’ ← Z

∪ Fin(H). Among the assumptions stated in Lemma 5.1, (5.1) and (5.2) follow from

(5.85) and (5.84), respectively; (5.3) is trivial. It follows that

• Fz ∈ C, and (5.86)

• an event in Fz is critical if and only if it is also critical in H ◦ Lz. (5.87)

Since z ∈ Z, by (5.73), (5.80), and (5.82), we have

Fz = H ′ ◦ Lz.

Hence, by (5.83) and (5.87),

• Lz contains no critical events in Fz = H ′ ◦ Lz. (5.88)

Let m = |Z| and index the processes in Z as Z = {z1, z2, . . . , zm}. Define L =

Lz1 ◦Lz2 ◦· · ·◦Lzm . We now use Lemma 5.4, with ‘H’ ← H ′, ‘RFS ’ ← Fin(H), ‘Y ’ ← Z,

and ‘pj’ ← zj for each j = 1, . . . , m. Among the assumptions stated in Lemma 5.4,

(5.22)–(5.24) follow from (5.76), (5.77), and (5.79), respectively; (5.25)–(5.27) follow

from (5.82), (5.86), and (5.88), respectively, with ‘z’ ← zj for each j = 1, . . . , m. This

gives us the following.

• H ′ ◦ L ∈ C; (5.89)

• Fin(H) is a valid RF-set of H ′ ◦ L; (5.90)

• L contains no critical events in H ′ ◦ L. (5.91)

To this point, we have successfully appended a (possibly empty) sequence of non-

critical events for each process in Z. It remains to append a “next” critical event for

each such process. Note that, by (5.82) and the definition of L,

• L is a Z-computation. (5.92)

Thus, by (5.75) and (5.91), we have

Act(H ′ ◦ L) = Act(H ′) = Z ∧ Fin(H ′ ◦ L) = Fin(H ′) = Fin(H). (5.93)

By (5.73) and the definition of L, it follows that

• for each z ∈ Z, (H ◦ Lz) | ({z} ∪ Fin(H)) = (H ′ ◦ L) | ({z} ∪ Fin(H)). (5.94)

121

In particular, H ◦ Lz and H ′ ◦ L are equivalent with respect to z. Therefore, by

(5.81), (5.89), and repeatedly applying P3, it follows that, for each zj ∈ Z, there exists

an event e′zj
, such that

• G ∈ C, where G = H ′ ◦ L ◦ E and E = 〈e′z1
, e′z2

, . . . , e′zm
〉; (5.95)

• e′zj
∼ ezj

. (5.96)

By the definition of E,

• E is a Z-computation. (5.97)

By (5.60), (5.93), and (5.96), we have

Act(G) = Act(H ′ ◦ L) = Z ∧ Fin(G) = Fin(H ′ ◦ L) = Fin(H). (5.98)

By (5.60), (5.62), and (5.96), it follows that for each zj ∈ Z, both ezj
and e′zj

access

a common remote variable, say, vj. Since Z is an independent set of G, by Rules R1

and R2, we have the following:

• for each zj ∈ Z, vj is not local to any process in Z; (5.99)

• vj �= vk, if j �= k.

Combining these two, we also have:

• for each zj ∈ Z, no event in E other than e′zj
accesses vj (either locally or re-

motely). (5.100)

We now establish two claims.

Claim 1: For each zj ∈ Z, if we let q = writer(vj, H
′ ◦ L), then one of the

following holds: q = ⊥, q = zj, or q ∈ Fin(H).

Proof of Claim: It suffices to consider the case when q �= ⊥ and q �= zj

hold, in which case there exists an event fq by q in H ′ ◦L that writes to vj.

By (5.73) and (5.92), we have q ∈ Z ∪ Fin(H). We claim that q ∈ Fin(H)

holds in this case. Assume, to the contrary,

q ∈ Z. (5.101)

We consider two cases. First, if fq is a critical event in H ′ ◦ L, then by

(5.91), fq is an event of H ′, and hence, by (5.78), fq is also a critical event

122

in H. By (5.74) and (5.101), we have q ∈ Y . Thus, by (5.64), we have

fq ∈ EH , and hence fq ∈ E holds by definition. By (5.99) and (5.101), vj is

remote to q. Thus, fq remotely writes vj. By (5.101) and zj ∈ Z, we have

{q, zj} ⊆ Z, (5.102)

which implies {q, zj} ⊆ Y ′ by (5.71). From this, our assumption of q �=
zj, and by applying Rule R2 with ‘y’ ← zj and ‘fp’ ← fq, it follows that

edge {q, zj} exists in G. However, (5.102) then implies that Z is not an

independent set of G, a contradiction.

Second, assume that fq is a noncritical event in H ′ ◦L. Note that, by (5.99)

and (5.101), vj is remote to q. Hence, by the definition of a critical event,

there exists a critical event f̄q by q in H ′ ◦ L that remotely writes to vj.

However, this leads to contradiction as shown above. �

Claim 2: Every event in E is critical in G. Also, G satisfies RF5 with

‘RFS ’ ← Fin(H).

Proof of Claim: Define E0 = 〈〉; for each positive j, define Ej to be 〈e′z1
,

e′z2
, . . . , e′zj

〉, a prefix of E. We prove the claim by induction on j, applying

Lemma 5.2 at each step. Note that, by (5.95) and P1, we have the following:

H ′ ◦ L ◦ Ej ◦ 〈e′zj+1
〉 = H ′ ◦ L ◦ Ej+1 ∈ C, for each j. (5.103)

Also, by the definition of Ej, we have

Ej | zj+1 = 〈〉, for each j. (5.104)

At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF5 with ‘RFS ’ ← Fin(H). (5.105)

The induction base (j = 0) follows easily from (5.90), since E0 = 〈〉.
Assume that (5.105) holds for a particular value of j. Since zj+1 ∈ Z, by

(5.74), we have

zj+1 ∈ Y, (5.106)

123

and zj+1 ∈ Act(H). By applying (5.63) with ‘p’ ← zj+1, and using (5.106),

we also have Act(H ◦ Lzj+1
) = Act(H), and hence

zj+1 ∈ Act(H ◦ Lzj+1
). (5.107)

By (5.104), if any event e′zk
in Ej accesses a local variable v of zj+1, then

e′zk
accesses v remotely, and hence v = vk by definition. However, by (5.99),

vk cannot be local to zj+1. It follows that

• no events in Ej access any of zj+1’s local variables. (5.108)

We now apply Lemma 5.2, with ‘H’ ← H ◦Lzj+1
, ‘H ′’ ← H ′ ◦L, ‘G’ ← Ej,

‘RFS ’ ← Fin(H), ‘ep’ ← ezj+1
, and ‘e′p’ ← e′zj+1

. Among the assumptions

stated in Lemma 5.2, (5.5), (5.7), (5.9), (5.11), and (5.12) follow from

(5.103), (5.90), (5.107), (5.104), and (5.108), respectively; (5.8) follows by

applying (5.96) with ‘zj’ ← zj+1; (5.6) and (5.10) follow by applying (5.84)

and (5.94), respectively, with ‘z’ ← zj+1; and (5.4) and (5.13) follow by

applying (5.57) and (5.62), respectively, with ‘p’ ← zj+1, and using (5.106).

Moreover, Assumption (A) follows from (5.105), and Assumption (B) is

satisfied vacuously (with ‘v’ ← vj+1) by (5.100).

It follows that e′zj+1
is critical in H ′ ◦ L ◦ Ej ◦ 〈e′zj+1

〉 = H ′ ◦ L ◦ Ej+1, and

that H ′ ◦ L ◦ Ej+1 satisfies RF5 with ‘RFS ’ ← Fin(H). �

We now claim that Fin(H) is a valid RF-set of G. Condition RF5 was already

proved in Claim 2.

• RF1 and RF2: Define Ej as in Claim 2. We establish RF1 and RF2 by induction

on j, applying Lemma 5.3 at each step. At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF1 and RF2 with ‘RFS ’ ← Fin(H). (5.109)

The induction base (j = 0) follows easily from (5.90), since E0 = 〈〉.
Assume that (5.109) holds for a particular value of j. Note that, by (5.100),

we have writer(vj+1, H
′ ◦ L ◦ Ej) = writer(vj+1, H

′ ◦ L). Thus, by (5.93) and

Claim 1,

• if we let q = writer(vj+1, H
′ ◦ L ◦ Ej), then one of the following holds: q = ⊥,

q = zj+1, or q ∈ Fin(H) = Fin(H ′ ◦ L). (5.110)

124

We now apply Lemma 5.3, with ‘H’ ← H ′◦L, ‘G’ ← Ej, ‘RFS ’ ← Fin(H), ‘ep’ ←
e′zj+1

, and ‘vrem’ ← vj+1. Among the assumptions stated in Lemma 5.3, (5.14),

(5.15), (5.17), (5.19), and (5.21) follow from (5.103), (5.90), (5.109), (5.104), and

(5.110), respectively; (5.16) follows from (5.93) and zj+1 ∈ Z; (5.18) follows from

(5.93) and (5.97); (5.20) follows from (5.99) and (5.93). It follows thatH ′◦L◦Ej+1

satisfies RF1 and RF2 with ‘RFS ’ ← Fin(H).

• RF3: Consider a variable v ∈ V and two different events fq and gr in G. Assume

that both q and r are in Act(G), q �= r, and that there exists a variable v such

that v ∈ var(fq) ∩ var(gr). (Note that, by (5.98), {q, r} ⊆ Z.) We claim that

these conditions can actually never arise simultaneously, which implies that G

vacuously satisfies RF3.

Since v is remote to at least one of q or r, without loss of generality, assume that

v is remote to q. We claim that there exists an event f̄q in E that accesses the

same variable v. If fq is an event of E, we have fq = e′zj
for some zj ∈ Z, and

ezj
∈ E holds by definition; define f̄q = ezj

in this case. If fq is a noncritical event

in H ′ ◦ L, then by definition of a critical event, there exists a critical event f̄q in

H ′ ◦ L that remotely accesses v. If fq is a critical event in H ′ ◦ L, then define

f̄q = fq. (Note that, if f̄q is a critical event in H ′ ◦ L, then by (5.78) and (5.91),

f̄q is also a critical event in H, and hence, by q ∈ Z, (5.74), and the definition of

E , we have f̄q ∈ E .)
It follows that, in each case, there exists an event f̄q ∈ E that remotely accesses v.

If v is local to r, then by Rule R1, G contains the edge {q, r}. On the other hand,

if v is remote to r, then we can choose an event ḡr ∈ E that remotely accesses v,

in the same way as shown above. Hence, by Rule R2, G contains the edge {q, r}.
Thus, in either case, p and q cannot simultaneously belong to Z, a contradiction.

• RF4: By (5.90) and (5.98), it easily follows that G satisfies RF4 with respect to

Fin(H).

Finally, we claim that G satisfies Proposition Pr2. By (5.98), we have Act(G) =

Z ⊆ Act(H), so G satisfies (5.52). By (5.72), we have (5.53). By (5.51), (5.78), and

(5.91), each process in Z executes exactly c critical events in H ′ ◦L. Thus, by Claim 2,

G satisfies (5.54).

Case 2: |PHC| ≥ 1
2
|Y | (roll-forward strategy)

— In this case, we start with PHC, which, by (5.56), consists of at least (n − 1)/2

125

active processes. We first erase the processes in K, defined below, to satisfy RF2.

Appending the critical events ep for each p in S = PHC − K gives us a non-regular

computation G. We then select a subset of PHC, which consists of LW (v) and SC (v)

for each v ∈ VHC, as the set of promoted processes. We roll these processes forward,

inductively generating a sequence of computations G0, G1, . . . , Gk (where G0 = G),

where the last computation Gk is regular. We erase at most n/3 processes during the

procedure, which leaves Θ(n) active processes in Gk.

DefineK, the erased (or “killed”) processes, S, the “survivors,” andH ′, the resulting

computation, as follows.

K = {p ∈ PHC: there exists a variable v ∈ VHC

such that v is local to p} (5.111)

S = PHC − K (5.112)

H ′ = H | (S ∪ Fin(H)) (5.113)

Because each variable is local to at most one process, from (5.67) and (5.111), we

have

|K| ≤ n

6 log n
. (5.114)

By (5.55), (5.68) and (5.112), we have

S ⊆ PHC ⊆ Y ⊆ Act(H), (5.115)

and hence,

Act(H ′) = S ⊆ Act(H) ∧ Fin(H ′) = Fin(H). (5.116)

We now apply Lemma 5.1, with ‘RFS ’ ← Fin(H) and ‘Y ’ ← S ∪ Fin(H). Among

the assumptions stated in Lemma 5.1, (5.1) and (5.2) follow from (5.48) and (5.49),

respectively; (5.3) is trivial. It follows that

• H ′ ∈ C, (5.117)

• Fin(H) is a valid RF-set of H ′, and (5.118)

• an event in H ′ is critical if and only if it is also critical in H. (5.119)

Our goal now is to show that H ′ can be extended to a computation G (defined

later in Figure 5.8), so that each process in S has one more critical event. By (5.116),

126

(5.118), and by the definition of a finished process,

InvFin(H)(H
′) = Act(H ′) = S. (5.120)

For each s ∈ S, define Fs as

Fs = (H ◦ Ls) | (S ∪ Fin(H)). (5.121)

By (5.115), we have s ∈ Y . Thus, applying (5.57), (5.58), (5.59), and (5.61) with

‘p’ ← s, it follows that

• H ◦ Ls ◦ 〈es〉 ∈ C; (5.122)

• Ls is an s-computation; (5.123)

• Ls contains no critical events in H ◦ Ls; (5.124)

• Fin(H) is a valid RF-set of H ◦ Ls. (5.125)

By P1, (5.122) implies

H ◦ Ls ∈ C. (5.126)

We now apply Lemma 5.1, with ‘H’ ← H ◦ Ls, ‘RFS ’ ← Fin(H), and ‘Y ’ ← S

∪ Fin(H). Among the assumptions stated in Lemma 5.1, (5.1) and (5.2) follow from

(5.126) and (5.125), respectively; (5.3) is trivial. It follows that

• Fs ∈ C, and (5.127)

• an event in Fs is critical if and only if it is also critical in H ◦ Ls. (5.128)

Since s ∈ S, by (5.113), (5.121), (5.123), and (5.127), we have

• Fs = H ′ ◦ Ls ∈ C. (5.129)

Hence, by (5.124) and (5.128),

• Ls contains no critical events in Fs = H ′ ◦ Ls. (5.130)

By (5.111) and (5.112), no variable in VHC is local to any process in S. Therefore,

by (5.68) and (5.112),

• for each process s in S, es remotely accesses a variable in VHC. (5.131)

We now show that the events in {Ls: s ∈ S} can be “merged” by applying

Lemma 5.4. We arbitrarily index S as {s1, s2, . . . , sm}, wherem = |S|. (Later, we con-
struct a specific indexing of S to reduce information flow.) Let L = Ls1 ◦Ls2 ◦ · · ·◦Lsm .

Apply Lemma 5.4, with ‘H’ ← H ′, ‘RFS ’ ← Fin(H), ‘Y ’ ← S, and ‘pj’ ← sj for each

127

j = 1, . . . , m. Among the assumptions stated in Lemma 5.4, (5.22)–(5.24) follow from

(5.117), (5.118), and (5.120), respectively; (5.25)–(5.27) follow from (5.123), (5.129),

and (5.130), respectively, with ‘s’ ← sj for each j = 1, . . . , m. This gives us the

following.

• H ′ ◦ L ∈ C; (5.132)

• Fin(H) is a valid RF-set of H ′ ◦ L; (5.133)

• L contains no critical events in H ′ ◦ L. (5.134)

By (5.113) and the definition of L, we also have,

• for each s ∈ S, (H ◦ Ls) | ({s} ∪ Fin(H)) = (H ′ ◦ L) | ({s} ∪ Fin(H)); (5.135)

• for each s ∈ S, (H ′ ◦ L) | s = (H ◦ Ls) | s. (5.136)

We now re-index the processes in S so that information flow among them is min-

imized. The re-indexing method is expressed as an algorithm in Figure 5.8. This

algorithm is described in Claim 3 below. (The event ordering produced by the algo-

rithm was illustrated earlier in Figure 5.6.) The algorithm constructs an indexing (s1,

s2, . . . , sm) of S and two computations G and E, such that

• G ∈ C, where G = H ′ ◦ L ◦ E and E = 〈e′s1 , e′s2 , . . . , e′sm〉; (5.137)

• e′sj ∼ esj . (5.138)

By the definition of E,

• E is an S-computation. (5.139)

By (5.60), (5.134), and (5.138), L◦E does not contain any transition events. More-

over, by the definition of L and E, (L ◦ E) | p �= 〈〉 implies p ∈ S, for each process p.

Combining these assertions with (5.116), we have

Act(G) = Act(H ′ ◦ L) = Act(H ′) = S ∧
Fin(G) = Fin(H ′ ◦ L) = Fin(H ′) = Fin(H).

(5.140)

We now state and prove two claims regardingG. Claim 3 follows easily by examining

the algorithm.

Claim 3: For each v ∈ VHC, the algorithm in Figure 5.8 constructs four

(possibly empty) sets of events, W (v), C1(v), C2(v), and R(v), and a value,

α(v). All events in E that access v appear contiguously, in the following

order.

128

begin
j := 0; E0 := 〈〉;
for each v ∈ VHC do

W (v) := {}; C1(v) := {}; C2(v) := {}; R(v) := {}
od;
for each v ∈ VHC do

for each s ∈ S such that op(es) = write(v) do
append(s); add e′s to W (v)

od;
α(v) := value(v, H ′ ◦ L ◦ Ej);
for each s ∈ S such that op(es) = compare(v, β) for any β �= α(v) do

append(s); add e′s to C1(v)
od;
for each s ∈ S such that op(es) = compare(v, α(v)) do

append(s); add e′s to C2(v)
od;
for each s ∈ S such that op(es) = read(v) do

append(s); add e′s to R(v)
od

od;
E := Em;
G = H ′ ◦ L ◦ E

end

procedure append(s : a process)
Invariant: 0 ≤ j < m = |S|;

Ej = 〈e′s1 , e′s2 , . . . , e′sj 〉;
(s1, s2, . . . , sj) is a sequence of distinct processes in S;
H ′ ◦ L ◦ Ej ∈ C;
e′sk ∼ esk and s �= sk for each k = 1, 2, . . . , j.

sj+1 := s;
— By (5.122), (5.132), (5.136), and Property P3, there exists an

event e′sj+1 such that H ′ ◦ L ◦ Ej ◦ 〈e′sj+1〉 ∈ C and e′sj+1 ∼ esj+1

hold.
Ej+1 := Ej ◦ 〈e′sj+1〉;
j := j + 1

end

Figure 5.8: Algorithm for arranging the events of S so that information flow is suffi-
ciently low.

129

• events in W (v): each event e′s in W (v) satisfies op(e′s) = write(v);

• events in C1(v): each event e′s in C1(v) satisfies op(e′s) = compare(v, βs)

for some βs �= α(v);

• events in C2(v): each event e
′
s in C2(v) satisfies op(e

′
s) = compare(v, α(v));

• events in R(v): each event e′s in R(v) satisfies op(e′s) = read(v).

Moreover, in the computation G, after all events in W (v) are executed, and

before any event in C2(v) is executed, v has the value α(v). All events in

C1(v) (if any) are unsuccessful comparisons. At most one event in C2(v) is

a successful comparison. (Note that a successful comparison event writes a

value other than α(v), by definition. Thus, if there is a successful compar-

ison, then all subsequent comparison events must fail.) For each v ∈ VHC,

define LW (v), the “last write,” and SC (v), the “successful comparison,” as

follows:

LW (v) =

{
the last event in W (v), if W (v) �= {},
writer event(v, H ′ ◦ L), if W (v) = {};

SC (v) =

{
the successful comparison in C2(v), if C2(v) contains one,

⊥, otherwise.

Then, the last process to write to v (if any) is either SC (v) (if SC (v) is

defined) or LW (v) (otherwise). �

Before establishing our next claim, Claim 4, we define RFS as

RFS = Fin(H)

∪ {owner(LW (v)): v ∈ VHC and LW (v) �= ⊥}
∪ {owner(SC (v)): v ∈ VHC and SC (v) �= ⊥}.

(5.141)

By (5.68), (5.111), (5.112), and (5.138), we have the following:

• for each s ∈ S, if e′s remotely accesses v, and if v is local to a process q, then

q /∈ S. (5.142)

Note that “expanding” a valid RF-set does not falsify any of RF1–RF5. Therefore,

using (5.133), (5.140), and Fin(H) ⊆ RFS ⊆ Fin(H) ∪ S, it follows that

• RFS is a valid RF-set of H ′ ◦ L. (5.143)

130

We now establish Claim 4, stated below.

Claim 4: Every event in E is critical in G. Also, G satisfies RF5.

Proof of Claim: Define E0 = 〈〉; for each positive j, define Ej to be

〈e′s1 , e′s2 , . . . , e′sj 〉, a prefix of E. We prove the claim by induction on j,

applying Lemma 5.2 at each step. Note that, by (5.137) and P1, we have

the following:

H ′ ◦ L ◦ Ej ◦ 〈e′sj+1〉 = H ′ ◦ L ◦ Ej+1 ∈ C, for each j. (5.144)

Also, by the definition of Ej, we have

Ej | sj+1 = 〈〉, for each j. (5.145)

At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF5. (5.146)

The induction base (j = 0) follows easily from (5.143), since E0 = 〈〉.
Assume that (5.146) holds for a particular value of j. Since sj+1 ∈ S, by

(5.115), we have

sj+1 ∈ Y, (5.147)

and sj+1 ∈ Act(H). By applying (5.63) with ‘p’ ← sj+1, and using (5.147),

we also have Act(H ◦ Lsj+1) = Act(H), and hence

sj+1 ∈ Act(H ◦ Lsj+1). (5.148)

Also, by (5.142),

• no events in Ej access any of sj+1’s local variables. (5.149)

We use Lemma 5.2 twice in sequence in order to prove Claim 4. First, by

P3, and applying (5.122), (5.132), and (5.136) with ‘s’ ← sj+1, it follows

that there exists an event e′′sj+1 , such that

• H ′ ◦ L ◦ 〈e′′sj+1〉 ∈ C, and (5.150)

131

• e′′sj+1 ∼ esj+1 . (5.151)

We now apply Lemma 5.2, with ‘H’ ← H ◦ Lsj+1 , ‘H ′’ ← H ′ ◦ L, ‘G’ ← 〈〉,
‘RFS ’ ← Fin(H), ‘ep’ ← esj+1 , and ‘e′p’ ← e′′sj+1 . Among the assumptions

stated in Lemma 5.2, (5.5) and (5.7)–(5.9) follow from (5.150), (5.133),

(5.151), and (5.148), respectively; (5.11) and (5.12) hold vacuously by ‘G’ ←
〈〉; (5.4), (5.6), and (5.10) follow by applying (5.122), (5.125), and (5.135),

respectively, with ‘s’ ← sj+1; (5.13) follows by applying (5.62) with ‘p’ ←
sj+1, and using (5.147). It follows that

• e′′sj+1 is critical in H ′ ◦ L ◦ 〈e′′sj+1〉. (5.152)

Before applying Lemma 5.2 again, we establish the following preliminary

assertions. Since Fin(H) ⊆ RFS , by applying (5.125) with ‘s’ ← sj+1, it

follows that

• RFS is a valid RF-set of H ◦ Lsj+1 . (5.153)

We now establish a simple claim.

Claim 4-1: If esj+1 is a comparison event on a remote variable

v, and if Ej contains a write to v, then Ej | RFS also contains a

write to v.

Proof of Claim: If esj+1 is a comparison event on v, then by

(5.138) and Claim 3, we have e′sj+1 ∈ C1(v) ∪ C2(v). By (5.142),

no event in Ej may locally access v. Hence, by Claim 3, if an

event e′
sk (for some k ≤ j) in Ej writes to v, then we have either

e′
sk ∈ W (v) or e′

sk = SC (v). If e′
sk = SC (v), then since sk ∈ RFS

holds by (5.141), Claim 4-1 is satisfied. On the other hand, if

e′
sk ∈ W (v), then W (v) is nonempty. Moreover, since all events in

W (v) are indexed before any events in C1(v)∪C2(v), Ej contains

all events in W (v). Thus, by (5.141) and the definition of LW ,

both Ej and Ej | RFS contain LW (v), an event that writes to

v. �

We now apply Lemma 5.2 again, with ‘H’ ← H ′◦L, ‘H ′’ ← H ′◦L, ‘G’ ← Ej,

‘ep’ ← e′′sj+1 , and ‘e′p’ ← e′sj+1 . Among the assumptions stated in Lemma 5.2,

132

(5.4)–(5.7) and (5.11)–(5.13) follow from (5.150), (5.144), (5.143), (5.143),

(5.145), (5.149), and (5.152), respectively; (5.10) is trivial; (5.8) follows

from (5.151) and by applying (5.138) with ‘sj’ ← sj+1; (5.9) follows from

(5.140) and sj+1 ∈ S. Moreover, Assumption (A) follows from (5.146), and

Assumption (B) follows from Claim 4-1.

It follows that e′sj+1 is critical in H ′ ◦ L ◦ Ej ◦ 〈e′sj+1〉 = H ′ ◦ L ◦ Ej+1, and

that H ′ ◦ L ◦ Ej+1 satisfies RF5. �

We now show that RFS is a valid RF-set of G. Condition RF5 was already proved

in Claim 4.

• RF1 and RF2: Define Ej as in Claim 4. We establish RF1 and RF2 by induction

on j, applying Lemma 5.3 at each step. At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF1 and RF2. (5.154)

The induction base (j = 0) follows easily from (5.143), since E0 = 〈〉.
Assume that (5.154) holds for a particular value of j. Assume that e′sj+1 remotely

accesses variable v.

By Claim 3, if e′sj+1 remotely reads a variable v, then the following holds: e′sj+1 ∈
C1(v)∪C2(v)∪R(v); every event inW (v) is contained in Ej; writer(v,H ′◦L◦Ej) is

one of LW (v) or SC (v) or ⊥. Therefore, by (5.141), we have the following:

• if e′sj+1 remotely reads v, and if we let q = writer(v, H ′ ◦ L ◦ Ej), then either

q = ⊥ or q ∈ RFS holds. (5.155)

We now apply Lemma 5.3, with ‘H’ ← H ′◦L, ‘G’ ← Ej, ‘ep’ ← e′sj+1 , and ‘vrem’ ←
v. Among the assumptions stated in Lemma 5.3, (5.14), (5.15), (5.17), (5.19),

and (5.21) follow from (5.144), (5.143), (5.154), (5.145), and (5.155), respectively;

(5.16) follows from (5.140) and sj+1 ∈ S; (5.18) follows from (5.140) and (5.139);

(5.20) follows from (5.140) and (5.142). It follows that H ′ ◦L◦Ej+1 satisfies RF1

and RF2.

• RF3: Consider a variable v ∈ V and two different events fp and gq in G. Assume

that both p and q are in Act(G), p �= q, that there exists a variable v such

that v ∈ var(fp) ∪ var(gq), and that there exists a write to v in G. Define

r = writer(v, G). Our proof obligation is to show that r ∈ RFS .

133

By (5.140), we have {p, q} ⊆ S. If there exists an event e′s in E that remotely

accesses v, then by Claim 3, writer event(v, G) is either SC (v) (if SC (v) �= ⊥) or

LW (v) (otherwise). (Since we assumed that there exists a write to v, they both

cannot be ⊥.) Thus, by (5.141), we have the following:

• if there exists an event e′s in E such that e′s remotely accesses v, then r ∈
RFS . (5.156)

We now consider three cases.

– Consider the case in which both fp and gq are in H ′ ◦ L.

If there exists an event e′s in E such that v ∈ Wvar(e′s), then we claim that

v is remote to s. Assume, to the contrary, that v is local to s. Since at least

one of p or q is different from s, without loss of generality, assume p �= s.

Since p ∈ S and, by (5.115), S ⊆ Act(H), we have p /∈ Fin(H). Thus, by

(5.133) and by applying RF2 with ‘RFS ’ ← Fin(H) to fp in H ′ ◦L, we have

s /∈ Act(H ′ ◦ L). However, by (5.140), Act(H ′ ◦ L) = S, which contradicts

s ∈ S (which follows from (5.139), since e′s is an event of E). It follows that

v is remote to s, and hence r ∈ RFS by (5.156).

On the other hand, if there exists no event e′s in E such that v ∈ Wvar(e′s)

holds, then we have r = writer(v, H ′ ◦ L). By (5.133) and applying RF3

with ‘RFS ’ ← Fin(H) to fp and gq in H ′ ◦ L, we have writer(v, H ′ ◦ L) ∈
Fin(H) ⊆ RFS .

– Consider the case in which fp is in H ′ ◦ L and gq = e′
sk , for some sk ∈ S.

By (5.140) and our assumption that p and q are both in Act(G), we have

p ∈ Act(H ′◦L) and q ∈ Act(H ′◦L). If v is local to q, then by (5.133), and by

applying RF2 with ‘RFS ’ ← Fin(H) to fp in H ′◦L, we have q /∈ Act(H ′◦L),
a contradiction. Thus, v is remote to q, and hence r ∈ RFS by (5.156).

– Consider the case in which fp = e′sj and gq = e′
sk , for some sj and sk in S.

Since v is remote to at least one of sj or sk, we have r ∈ RFS by (5.156).

• RF4: By (5.60), (5.133), and (5.140), it easily follows that G satisfies RF4 with

respect to RFS .

Therefore, we have established that

• RFS is a valid RF-set of G. (5.157)

134

By (5.140) and (5.141), it follows that PmtRFS (G) consists of processes

owner(LW (v)) and owner(SC (v)), for each variable v ∈ VHC. Thus, clearly

|PmtRFS (G)| ≤ 2|VHC| holds. Hence, from (5.67), we have

|PmtRFS (G)| ≤ n/(3 log n). (5.158)

We now let the processes in Pmt(G) finish their execution by inductively appending

critical events of processes in Pmt(G), thus generating a sequence of computations G0,

G1, . . . , Gk (where G0 = G), satisfying the following:

• Gj ∈ C; (5.159)

• RFS is a valid RF-set of Gj; (5.160)

• Pmt(Gj) ⊆ Pmt(G); (5.161)

• each process in Inv(Gj) executes exactly c+ 1 critical events in Gj; (5.162)

• the processes in Pmt(G) collectively execute exactly |Pmt(G)| · (c + 1) + j critical

events in Gj; (5.163)

• Inv(Gj+1) ⊆ Inv(Gj) and |Inv(Gj+1)| ≥ |Inv(Gj)| − 1 if j < k; (5.164)

• Fin(Gj) � RFS if j < k, and Fin(Gj) = RFS if j = k. (5.165)

At each induction step, we apply Lemma 5.6 to Gj in order to construct Gj+1,

until Fin(Gj) = RFS is established, at which point the induction is completed. The

induction is explained in detail below.

Induction base (j = 0): Since G0 = G, (5.159) and (5.160) follow from

(5.137) and (5.157), respectively. Condition (5.161) is trivial.

By (5.51), (5.119), and (5.134), each process in S executes exactly c critical

events in H ′ ◦ L. Thus, by Claim 4, it follows that each process in S

executes exactly c + 1 critical events in G. Since Inv(G) ⊆ S, G satisfies

(5.162). Since Pmt(G) ⊆ S, G satisfies (5.163).

Induction step: At each step, we assume (5.159)–(5.163). If Fin(Gj) =

RFS , then (5.165) is satisfied and we finish the induction, by letting k = j.

Assume otherwise. We apply Lemma 5.6 with ‘H’ ← Gj. Assump-

tions (5.35)–(5.37) stated in Lemma 5.6 follow from (5.159), (5.160), and

Fin(Gj) �= RFS . The lemma implies that a computation Gj+1 exists satis-

fying (5.159)–(5.165), as shown below.

135

Condition (5.159) and (5.160) follow from (5.38) and (5.39), respectively.

Since Gj satisfies (5.161), by (5.46), Gj+1 also satisfies (5.161). Since

Inv(Gj+1) ⊆ Inv(Gj) by (5.40) and (5.41), by (5.43) and (5.47), and ap-

plying (5.162) to Gj, it follows that Gj+1 satisfies (5.162). By (5.43)–(5.47),

and applying (5.161) and (5.163) to Gj, it follows that Gj+1 satisfies (5.163).

Condition (5.164) follows from (5.40) and (5.41). Thus, the induction is es-

tablished. �

We now show that k < n/3. Assume otherwise. By applying (5.163) toGk, it follows

that there exists a process p ∈ Pmt(G) such that p executes at least c+1+k/|Pmt(G)|
critical events in Gk. Because k ≥ n/3, by (5.158), p executes at least c + 1 + log n

critical events in Gk. From (5.165) and p ∈ Pmt(G) ⊆ RFS , we get p ∈ Fin(Gk).

Hence, by (5.160), and by applying RF4 to p in Gk, it follows that the last event by

p is Exitp. Therefore, Gk can be written as F ◦ 〈Exitp〉 ◦ · · · , where F is a prefix of

Gk such that p executes at least c+ log n critical events in F . However, p and F then

satisfy Proposition Pr1, a contradiction.

Finally, we show that Gk satisfies Proposition Pr2. The following derivation estab-

lishes (5.53).

|Act(Gk)| = |InvRFS (Gk)| {by (5.165), RFS = Fin(Gk), thus Act(Gk) = InvRFS (Gk)}
≥ |InvRFS (G0)| − k {by repeatedly applying (5.164)}
= |Act(G) − RFS | − k {by the definition of “Inv”; note that G = G0}
= |S − RFS | − k {by (5.140)}
= |S − (Pmt(G) ∪ Fin(H))| − k {because RFS = Pmt(G) ∪ Fin(G), and

Fin(G) = Fin(H) by (5.140)}
= |S − Pmt(G)| − k {because S ∩ Fin(H) = {} by (5.140)}
= |(PHC − K) − Pmt(G)| − k {by (5.112)}
≥ |PHC| − |K| − |Pmt(G)| − k

≥ |Y |
2

− n

6 log n
− n

3 log n
− n

3
{by Case 2, (5.114), (5.158), and k < n/3}

≥ n − 1

2
− n

2 log n
− n

3
{by (5.56)}

=
n

6
− n

2 log n
− 1

2
.

136

H1 := 〈Enter1, Enter2, . . . , EnterN 〉; n1 := N ; j := 1;
repeat forever
Loop invariant: Hj ∈ C, Hj is regular, nj = |Act(Hj)|, and each process in

Act(Hj) executes exactly j critical events in Hj .
if j > log nj − 1 then

let k := j, and exit the algorithm
else /∗ j ≤ log n − 1 ∗/

apply Lemma 5.7 with ‘H’← Hj ;
if (Pr1) holds then

let k := j, and exit the algorithm
else /∗ (Pr2) holds ∗/

— There exists a regular computation G in C such that |Act(G)| =
Ω(nj/ log2 nj) and each process in Act(G) executes exactly j + 1 critical
events in G. Define Z = Act(G).
Hj+1 := G; nj+1 := |Z|; j := j + 1

fi fi
od

Figure 5.9: Algorithm for constructing H1, H2, . . . , Hk.

Moreover, by (5.160) and (5.165), we have Act(Gk) = Inv(Gk). Thus, by (5.115),

(5.140), and (5.164), we have Act(Gk) ⊆ Inv(G) ⊆ Act(G) = S ⊆ Act(H), which im-

plies (5.52). Finally, (5.162) implies (5.54). Therefore, Gk satisfies Proposition Pr2. �

Theorem 5.2 For any mutual exclusion system S = (C, P, V), there exist a process p

in P and a computation H in C such that H ◦ 〈Exitp〉 ∈ C, H does not contain Exitp,

and p executes Ω(log N/ log log N) critical events in H, where N = |P |.

Proof: Let H1 = 〈Enter 1, Enter 2, . . . , EnterN〉, where P = {1, 2, . . . , N}. By the

definition of a mutual exclusion system, H1 ∈ C. It is obvious that H1 is regular and

each process in Act(H) = P has exactly one critical event in H1. Starting with H1, we

repeatedly apply Lemma 5.7 and construct a sequence of computations H1, H2, . . . ,

Hk, such that each process in Act(Hj) has j critical events in Hj. The construction

algorithm is shown in Figure 5.9.

For each computation Hj such that 1 ≤ j < k, we have the following inequality:

nj+1 ≥ cnj

log2 nj

≥ cnj

log2 N
,

where c is some fixed constant. This in turn implies

log nj+1 ≥ log nj − 2 log logN + log c. (5.166)

137

By iterating over 1 ≤ j < k, and using n1 = N , (5.166) implies

log nk ≥ log N − 2(k − 1) log logN + (k − 1) log c. (5.167)

We now consider two possibilities, depending on how the algorithm in Figure 5.9

terminates. First, suppose that Hk satisfies k > log nk − 1. Combining this inequality

with (5.167), we have

k >
log N + 2 log logN − log c − 1

2 log logN − log c+ 1
= Θ

(
log N

log logN

)
.

Therefore, each process in Act(Hk) executes Ω(log N/ log log N) critical events in

Hk. By the Progress property, we can extend Hk to construct a computation that

satisfies the theorem.

The other possibility is that k ≤ log nk − 1 holds and Hk satisfies Proposition Pr1.

In this case, a process p and a computation F exist such that F ◦ 〈Exitp〉 ∈ C, F does

not contain 〈Exitp〉, and p executes at least k+log nk critical events in F . By combining

k ≤ log nk − 1 with (5.167), we have

log nk ≥ log N + 4 log logN − 2 log c

2 log logN − log c+ 1
= Θ

(
log N

log logN

)
.

Therefore, computation F satisfies the theorem. �

5.4 Constant-time Algorithm for LFCU Systems

In this section, we present a simple starvation-free mutual exclusion algorithm with

O(1) time complexity in LFCU systems, provided that each event that writes shared

variables generates O(1) interconnect traffic to update cached copies. In bus-based

systems, this is a reasonable assumption, since an update message can be broadcast with

a constant cost. On the other hand, in non-bus-based systems, an update may generate

ω(1) interconnect traffic. However, the complexity involved in broadcasting a word-

sized message in a non-bus-based network, while managing cache coherence, renders

this approach exceedingly problematic. Indeed, we do not know of any commercial

multiprocessor system that has a non-bus-based architecture and that uses a write-

update cache protocol.

138

shared variables
Check : 0..N − 1;
Lock : boolean initially false;
Promoted : array[0..N − 1] of boolean initially false;
Trying : array[0..N − 1] of boolean initially false

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;
1: Trying [p] := true;
2: repeat /∗ null ∗/ until (test-and-set(Lock) = false) ∨ Promoted [p];
3: Promoted [p] := false;
4: Trying [p] := false;
5: Critical Section;
6: s := Check ;
7: Check := s+ 1 mod N ;
8: if Trying [s] then
9: Promoted [s] := true

else
10: Lock := false
od

Figure 5.10: A mutual exclusion algorithm withO(1) time complexity in LFCU systems.
Each shared variable is remote to all processes.

The algorithm, which is shown in Figure 5.10, is a slight modification of the basic

test-and-set lock. Recall that the atomic test-and-set primitive used in the algorithm

is defined by the following pseudo-code (see Section 2.1).

test-and-set(bit : boolean) returns boolean
if bit = false then bit := true; return false
else return true

fi

In the algorithm, two shared variables are used, Check and Lock , and two shared

arrays, Promoted and Trying . We assume that each of these variables is remote to

all processes. Thus, our algorithm does not require the existence of locally-allocated

shared memory as in a DSM system. Variable Trying [p] is true if and only if process p

is executing within statements 2–4 of its entry section. Variable Lock is false if the test-

and-set lock is available, and true otherwise. Variable Promoted [p] is true if and only

if p has been given priority to enter its critical section, as explained below. Variable

Check cycles through 0..N − 1 in order to determine the process to be given priority.

When a process p leaves its noncritical section, it sets Trying [p] = true at state-

ment 1. It then enters the busy-waiting loop at statement 2. Process p may en-

ter its critical section either by performing a successful test-and-set or by finding

139

Promoted [p] = true at statement 2. (Note that we have defined test-and-set to return

false when it succeeds.) The Promoted variables are used to prevent starvation: if other

processes execute concurrently with p, then there is a possibility that p’s test-and-set

always fails. In order to prevent starvation, variable Check cycles through 0..N − 1, as

seen in statements 6 and 7. (Note that these statements are executed before any other

process is allowed to enter its critical section, so Check is incremented sequentially.) If

p continues to wait at statement 2 while other processes execute their critical sections,

then eventually (specifically, after at most N critical-section executions) some process

reads Check = p at statement 6, and establishes Promoted [p] = true at statement 9. To

prevent violations of the Exclusion property, Lock is not changed to false in this case.

(This mechanism that gives priority to processes that might otherwise wait forever is

rather similar to helping mechanisms used in wait-free algorithms [41]. Similar mecha-

nism is also used in Algorithm T (presented in Section 8.3), some adaptive mutual

exclusion algorithms [24, 30], and our recent work on timing-based mutual exclusion

algorithms [48].)

It is straightforward to formalize these arguments and prove that the algorithm of

Figure 5.10 is a correct, starvation-free mutual exclusion algorithm. We now prove that

its time complexity is O(1) per critical-section execution in LFCU systems. Clearly,

time complexity is dominated by the number of remote memory references generated by

statement 2. In an LFCU system, the test-and-set invocations in statement 2 generate

O(1) remote memory references. This is because a failed test-and-set generates a cached

copy of Lock , and any subsequent update of Lock by a process at statement 10 updates

this cached copy. The reads of Promoted [p] in statement 2 also generate O(1) remote

memory references. In particular, the first read of Promoted [p] creates a cached copy. If

Promoted [p] = true, then the loop terminates. If Promoted [p] = false, then subsequent

reads of Promoted [p] are handled in-cache, until Promoted [p] is updated by another

process. Other processes update Promoted [p] only by establishing Promoted [p] = true.

Once this is established, p’s busy-waiting loop terminates. We conclude that the algo-

rithm generates O(1) remote memory references per critical-section execution in LFCU

systems, as claimed.

5.5 Concluding Remarks

We have established a lower bound of Ω(log N/ log log N) remote memory references

for mutual exclusion algorithms based on reads, writes, or comparison primitives; for

140

algorithms with comparison primitives, this bound only applies in non-LFCU systems.

Our bound improves an earlier lower bound of Ω(log logN/ log log logN) established by

Cypher. We conjecture that Ω(logN) is a tight lower bound for the class of algorithms

and systems to which our lower bound applies; this conjecture remains an open issue.

It should be noted that Cypher’s result guarantees that there exists no algorithm

with amortized Θ(log log N/ log log log N) time complexity, while ours does not. This

is because his bound is obtained by counting the total number of remote memory

references in a computation, and by then dividing this number by the number of pro-

cesses participating in that computation (see Theorem 2.16). In contrast, our result

merely proves that there exists a computation H and a process p such that p executes

Ω(log N/ log log N) critical events in H. Therefore, our result leaves open the possi-

bility that the average number of remote memory references per process is less than

Θ(logN/ log logN). We leave this issue for future research.

It is possible to generalize our lower-bound proof for systems with multi-valued

and/or multi-variable comparison primitives. Two-valued compare-and-swap (2VCAS)

and double compare-and-swap (DCAS) are examples of such primitives. 2VCAS uses

two compare values old1 and old2 and two new values new1 and new2; a single variable

v is compared to both and a new value is written to v if either comparison succeeds.

2VCAS(v, old1, old2, new1, new2)
temp := v;
if v = old1 then v := new1
elseif v = old2 then v := new2 fi;
return temp

DCAS operates on two different variables u and v, using two associated compare

values a and b, respectively; new values are assigned to u and v if and only if both u = a

and v = b hold. In order to adapt our proof for systems in which such primitives are

used, only the following change is needed: in the roll-forward strategy, for each variable,

we select O(1) processes with successful comparison events, instead of just one, and

let all other processes execute unsuccessful comparison events. Therefore, we now roll

O(1) processes forward per variable. With this change, our asymptotic lower bound

remains unchanged.13 In Section 8.3, we show that there exists a class of (generalized)

comparison primitives that includes 2VCAS for which a Θ(logN/ log logN) algorithm

13This argument does not apply to primitives that may compare a variable to an arbitrary number of
values, or simultaneously compare an arbitrary number of variables. The existence of O(1) algorithms
for some fetch-and-φ primitives (see Sections 2.2.1 and 8.2) shows that at least some of these primitives
must be excluded from our lower-bound proof.

141

is possible. (To the best of our knowledge, none of the primitives in this class has been

implemented on a real machine. DCAS, which was supported on some generations of

the Motorola 68000 processor family, is not in this class.) Thus, there exist comparison

primitives for which our lower bound is tight.

In Chapter 6, we use proof techniques similar to those presented in this chapter

to establish another lower bound that precludes the possibility of an o(k) adaptive

algorithm based on reads, writes, or comparison primitives, where k is either point or

interval contention. The problem of designing an O(log k) algorithm using only reads

and writes had been mentioned previously in at least two papers [15, 24]. The result

of Chapter 6 shows that such an algorithm cannot exist.

CHAPTER 6

Time-complexity Lower Bound for

Adaptive Mutual Exclusion∗

In this chapter, we consider the RMR (remote-memory-reference) time complexity of

adaptive mutual exclusion algorithms. In Chapter 4, we presented an O(min(k, logN))

adaptive algorithm, based only on reads and writes, where k is point contention. In

Chapter 5, we showed that Ω(logN/ log logN) time is required for any mutual exclusion

algorithm (adaptive or not) based on reads, writes, or comparison primitives. In this

chapter, we establish a lower bound that precludes an o(k) adaptive algorithm based on

reads, writes, or comparison primitives, where k is either point or interval contention.

As defined earlier in Section 2.4, a mutual exclusion algorithm is adaptive if its time

complexity is a function of the number of contending processes [15, 24, 30, 63, 78]. Two

notions of contention have been considered in the literature: “interval contention” and

“point contention” [2]. The interval contention over computation H is the number of

processes that are active in H, i.e., that execute outside of their noncritical sections.

The point contention over H is the maximum number of processes that are active at

the same state in H. Note that point contention is always at most interval contention.

Throughout this chapter, k denotes the point/interval contention experienced by an

arbitrary process while it is active. (In every computation considered in this chapter,

point contention equals interval contention. Hence, the lower bound presented in this

chapter applies to both point and interval contention.)

∗The results presented in this chapter have been published in the following paper.
[46] Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual exclusion. In Pro-
ceedings of the 15th International Symposium on Distributed Computing, pages 1–15. Lecture Notes
in Computer Science 2180, Springer-Verlag, October 2001.

143

The Ω(logN/ log logN) lower bound presented in Chapter 5 does not mention k, so

it tells us very little about time complexity under low contention. The best we can say

is that Ω(log k/ log log k) RMRs are required. In particular, the Ω(log N/ log log N)

lower bound is established by inductively considering longer and longer computations,

the first of which involves N processes, and the last of which may involve fewer pro-

cesses. If we start instead with k process, then a computation is obtained with O(k)

processes (and hence O(k) point contention at each state) in which some process per-

forms Ω(log k/ log log k) RMRs.

If Ω(log N) is a tight lower bound, as conjectured in Chapter 5, then presumably

a lower bound of Ω(log k) would follow as well. This suggests two interesting possi-

bilities: in all likelihood, either Ω(min(k, log N)) is in fact a tight lower bound (i.e.,

Algorithm A-LS, presented in Chapter 4, is optimal), or it is possible to design

an adaptive algorithm with O(log k) time complexity (i.e., Ω(log k) is tight). Indeed,

the problem of designing an O(log k) algorithm using only reads and writes has been

mentioned in at least two papers [15, 24].

In this chapter, we show that an O(log k) algorithm does not exist. In particular,

we prove the following.

Given any k, define N̄ = N̄(k) = (2k + 4)2(2
k−1). For any N ≥ N̄ , and for

any N -process mutual exclusion algorithm based on reads, writes, or com-

parison primitives, a computation exists involving Θ(k) processes in which

some process performs Ω(k) remote memory references to enter and exit its

critical section.

Our proof of this result utilizes techniques used in Chapter 5. The rest of the

chapter is organized as follows. The key ideas of our lower-bound proof are sketched in

Section 6.1. (We use the same system model developed in Chapter 5.) In Section 6.2,

the proof is presented in detail. We conclude in Section 6.3.

6.1 Proof Strategy

In Section 6.2, we show that for any positive k, there exists some N̄ such that, for any

mutual exclusion system S = (C, P, V) with |P | ≥ N̄ , there exists a computation H

such that some process p experiences point contention k and executes at least k critical

events to enter and exit its critical section. In this section, we sketch the key ideas of

the proof.

144

As in Chapter 5, the proof focuses on a special class of computations, namely,

regular computations. (For the definition of a regular computation, see Section 5.2.1.)

Recall that a regular computation consists of events of two groups of processes, “active

processes” and “finished processes.” Informally, an active process is a process in its

entry section, competing with other active processes; a finished process is a process

that has executed its critical section once, and is in its noncritical section.

Definition: Let S = (C, P, V) be a mutual exclusion system, and H be a computation

in C. We define Act(H), the set of active processes in H, and Fin(H), the set of finished

processes in H, as follows.

Act(H) = {p ∈ P : H | p �= 〈〉 and 〈Exitp〉 is not in H}
Fin(H) = {p ∈ P : H | p �= 〈〉 and 〈Exitp〉 is in H} �

As before, the proof proceeds by inductively constructing longer and longer regular

computations, until the desired lower bound is attained. The regularity condition

ensures that no participating process has knowledge of any other process that is active.

This has two consequences. First, we can “erase” any active process (i.e., remove its

events from the computation) and still get a valid computation. Second, “most” active

processes have a “next” critical event.

We begin with a brief discussion of similarities and differences between the proof

of this chapter and that given in Chapter 5. As in Chapter 5, at each induction step,

we start with a regular computation with n active processes, for some value of n. We

then apply either the “erasing” or the “roll-forward” strategy, and construct a longer

regular computation. We guarantee in all cases that Ω(
√
n/k) active processes remain,

each of which executes one more critical event. Moreover, unlike Chapter 5, we also

ensure that the new computation has at most two additional finished processes. Since

an active process have knowledge of only finished processes, its perceived contention

is bounded by the number of finished processes, and increases by at most two at each

induction step. The induction continues until the desired lower bound of k critical

events is achieved, at which point each active process perceives contention of O(k). We

now give a detailed proof overview.

Proof overview. Our proof strategy is very similar to that of Chapter 5. Initially,

we start with a regular computation H1, where Act(H1) = P , Fin(H1) = {}, and each

process has one critical event. We then inductively show that other longer computations

145

exist, the last of which establishes our lower bound. Each computation is obtained by

rolling forward or erasing some processes. We assume that P is large enough to ensure

that enough non-erased processes remain after each induction step for the next step to

be applied. The precise bound on |P | is given in Theorem 6.1.

At the jth induction step, we consider a computation Hj such that Act(Hj) consists

of n processes that execute j critical events each. We construct a regular computation

Hj+1 such that Act(Hj+1) consists of Ω(
√
n/k) processes, each of which executes j + 1

critical events in Hj+1. The construction method, formally described in Lemma 6.1,

is explained below. In constructing Hj+1 from Hj, we may erase some processes and

roll at most two processes forward. (This is the main difference between the proof of

this chapter and that given in Chapter 5.) At the end of step k − 1, we have a regular

computation Hk in which each active process executes k critical events and Fin(Hk) ≤
2(k − 1). Since active processes have no knowledge of each other, we may erase all

but one active process from Hk and obtain a valid computation. This computation has

exactly one active process and at most 2(k−1) finished processes. Thus, its contention

is at most 2k − 1. Moreover, the remaining active process performs k critical events,

proving the desired lower bound.

We now describe how Hj+1 is constructed from Hj. Let n = |Act(Hj)|. As shown in

Lemma 5.5, among the n processes in Act(Hj), at least n− 1 processes can execute an

additional critical event before entering its critical section. We call these events “next”

critical events, and denote the corresponding set of processes by Y . We consider two

cases, based on the variables remotely accessed by these next critical events.

Erasing strategy. Assume that there exist Ω(
√
n) distinct variables that are re-

motely accessed by some next critical events. For each such variable v, we select one

process whose next critical event accesses v. Let Y ′ be the set of selected processes.

This situation is depicted in Figure 6.1. (Note that this situation is nearly identical

to that shown in Figure 5.5.) We now eliminate remaining possible conflicts among

processes in Y ′ by constructing a “conflict graph” G as follows.

Each process p in Y ′ is considered a vertex in G. By induction, process p has j

critical events in Act(Hj) and one next critical event. For each of the j + 1 critical

events of p, (i) if the event accesses the same variable as the next critical event of some

other process q, introduce edge (p, q). In addition, (ii) if the next critical event of p

remotely accesses a local variable of q, also introduce edge (p, q).

146

.
.
.

Y’: subset of Act(Hj)

1
2
3
4
5

Events that are in Hj
(includes j critical
events per process)

Newly appended events
(includes one next critical event
per process, each accessing
a distinct variable, and perhaps
some noncritical events)

.
.
.

Z: saved
processes

1
2
3
4
5

No conflicts among active processes:
ready for the next induction step

: processes that are erased

: processes that are saved

: conflicts
1

2

3

4 5

conflict graph

Figure 6.1: Erasing strategy. For simplicity, processes in Fin(Hj) are not shown.

Since each process in Y ′ accesses a distinct remote variable in its next critical event,

it is clear that each process generates at most j + 1 edges by rule (i) and at most one

edge by rule (ii). By applying Turán’s theorem (Theorem 5.1), we can find a subset Z

of Y ′ such that |Z| = Ω(
√
n/j) and their critical events do not conflict with each other.

By retaining Z and erasing all other active processes, we can eliminate all conflicts.

Thus, we can construct Hj+1.

Roll-forward strategy. Assume that the number of distinct variables that are re-

motely accessed by some next critical events is O(
√
n). This situation is depicted in

Figure 6.2. Since there are Θ(n) next critical events, there exists a variable v that is

remotely accessed by next critical events of Ω(
√
n) processes. Let Yv be the set of these

processes. First, we retain Yv and erase all other active processes. Let the resulting

computation be H ′. We then arrange the next critical events of Yv by placing write,

comparison, and read events in that order. Then, all next write events (of v), except

for the last one, are overwritten by subsequent writes, and hence cannot create any

information flow. (That is, even if some other process later reads v, it cannot gather

any information of these “next” writers, except for the last one.) Furthermore, we can

arrange comparison events such that at most one of them succeeds, as follows.

Assume that the value of v is α after all the next write events are executed. We first

append all comparison events with an operation that can be written as compare(v, β)

such that β �= α. These comparison events must fail. We then append all the remaining

147

.
.
.

Yv: subset of Act(Hj)

Events that are in Hj
(includes j critical
events per process)

Newly appended events
(includes one next critical event
per process, each accessing
variable v, and perhaps
some noncritical events)

Arrange the next critical events in order of
writes / comparison primitives / reads:

writes comparisons reads

Last Writer LW(v) Successful Comparison SC(v)

information flow

Figure 6.2: Roll-forward strategy. For simplicity, processes in Fin(Hj) are not shown.

comparison events, namely, events with operation compare(v, α). The first successful

event among them (if any) changes the value of v. Thus, all subsequent comparison

events must fail. (This situation is very similar to that shown in Figure 5.6, except

that we need to consider only one variable v here.)

Thus, among the next events (that are not erased so far), the only information flow

that arises is from the “last writer” event LW (v) and from the “successful comparison”

event SC (v) to all other next comparison and read events of v.

Let pLW and pSC be the owner of LW (v) and SC (v), respectively. (Depending

on the computation, we may have only one of them, or neither.) We then roll pLW

and pSC forward by generating a regular computation G from H ′ such that Fin(G) =

Fin(H ′) ∪ {pLW, pSC}.
If either pLW or pSC executes at least k critical events before reaching its noncritical

section, then the Ω(k) lower bound easily follows. Therefore, we can assume that either

of pLW and pSC performs fewer than k critical events while being rolled forward. Each

critical event of pLW or pSC that is appended to H ′ may generate information flow only if

it reads a variable v that is written by another process in H ′. Condition RF3 (given on

page 102) guarantees that if there are multiple processes that write to v, the last writer

in H ′ is not active. Because information flow from an inactive process is allowed, a

conflict arises only if there is a single process that writes to v in H ′. Thus, each critical

event of pLW or pSC conflicts with at most one process in Yv, and hence can erase at

most one process. (Appending a noncritical event to H ′ cannot cause any processes

to be erased. In particular, if a noncritical remote read by pLW (respectively, pSC) is

appended, then pLW (respectively, pSC) must have previously read the same variable.

By RF3, if the last writer is another process, then that process is not active.)

148

Therefore, the entire roll-forward procedure erases fewer than 2k processes from

Act(H ′) = Yv. We can assume |P | is sufficiently large to ensure that
√
n > 4k. This

ensures that Ω(
√
n) processes survive after the entire procedure. (Actually, as seen

in Theorem 6.1, we only ensure that Ω(
√
n/k) processes survive, in order to simplify

bookkeeping. This results in a larger bound on |P |. However, it is only of secondary

interest, since our main goal is a lower bound on the number of critical events.) Thus,

we can construct Hj+1.

6.2 Detailed Lower-bound Proof

In this section, we present our lower-bound theorem. Throughout this section, we

assume the existence of a fixed mutual exclusion system S = (C, P, V). The following

lemma provides the induction step that leads to the lower bound in Theorem 6.1.

Lemma 6.1 Let k be a positive integer, and H be a computation. Assume the

following:

• H ∈ C, and (6.1)

• H is regular (i.e., Fin(H) is a valid RF-set of H). (6.2)

Define n = |Act(H)|. Also assume that

• n > 1, and (6.3)

• each process in Act(H) executes exactly c critical events in H. (6.4)

Then, one of the following propositions is true.

Pr1: There exist a process p in Act(H) and a computation F in C such that

• F ◦ 〈Exitp〉 ∈ C;

• F does not contain 〈Exitp〉;
• at most |Fin(H) + 2| processes participate in F ;

• p executes at least k critical events in F .

Pr2: There exists a regular computation G in C such that

• Act(G) ⊆ Act(H); (6.5)

• |Fin(G)| ≤ |Fin(H) + 2|; (6.6)

• |Act(G)| ≥ min(
√
n/(2c+ 3),

√
n − 2k − 3); (6.7)

• each process in Act(G) executes exactly (c+ 1) critical events in G. (6.8)

149

Proof: We first apply Lemma 5.5. Assumptions (5.28) and (5.29) stated in Lemma 5.5

follow from (6.1) and (6.2), respectively. It follows that there exists a set of processes

Y such that

• Y ⊆ Act(H), and (6.9)

• n − 1 ≤ |Y | ≤ n, (6.10)

and for each process p ∈ Y , there exist a computation Lp and an event ep by p, such

that

• H ◦ Lp ◦ 〈ep〉 ∈ C; (6.11)

• Lp is a p-computation; (6.12)

• Lp contains no critical events in H ◦ Lp; (6.13)

• ep /∈ {Enter p, CS p, Exitp}; (6.14)

• Fin(H) is a valid RF-set of H ◦ Lp; (6.15)

• ep is a critical event by p in H ◦ Lp ◦ 〈ep〉. (6.16)

For each p ∈ Y , by (6.12), (6.13), and p ∈ Y ⊆ Act(H), we have

Act(H ◦ Lp) = Act(H) ∧ Fin(H ◦ Lp) = Fin(H). (6.17)

By (6.3) and (6.10), Y is nonempty.

If Proposition Pr1 is satisfied by any process in Y , then the theorem is clearly true.

Thus, we will assume, throughout the remainder of the proof, that there is no process

in Y that satisfies Pr1. Define EH as the set of critical events in H of processes in Y .

EH = {fq in H: fq is critical in H and q ∈ Y }. (6.18)

Define E = EH ∪ {ep: p ∈ Y }, i.e., the set of all “past” and “next” critical events of

processes in Y . From (6.4), (6.9), and (6.10), it follows that

|E| = (c+ 1)|Y | ≤ (c+ 1)n. (6.19)

Define Vnext as the set of variables remotely accessed by some “next” critical events:

Vnext = {v ∈ V : there exists p ∈ Y such that ep remotely accesses v}. (6.20)

We consider two cases, depending on the size of Vnext.

150

Case 1: |Vnext| ≥ √
n (erasing strategy)

— In this case, we construct a subset Y ′ of Y by selecting one process for each variable

in Vnext. Clearly, |Y ′| = |Vnext|. We then construct a “conflict graph” G, where each
vertex is a process in Y ′. By applying Theorem 5.1, we can find a subset Z of Y ′ such

that their critical events do not conflict with each other. By applying Lemma 5.1 to H

and Z ∪Fin(H), and extending the resulting computation H ′ with next critical events,

we construct a computation G that satisfies Proposition Pr2.

By definition, for each variable v in Vnext, there exists a process p in Y such that

ep remotely accesses v. Therefore, we can arbitrarily select one such process for each

variable v in Vnext and construct a set Y ′ of processes such that

• Y ′ ⊆ Y , (6.21)

• if p ∈ Y ′, q ∈ Y ′ and p �= q, then ep and eq access different remote variables,

and (6.22)

• |Y ′| = |Vnext| ≥ √
n. (6.23)

We now construct an undirected graph G = (Y ′, EG), where each vertex is a process

in Y ′. To each process y in Y ′ and each variable v ∈ var(ey) that is remote to y, we

apply the following rules.

• R1: If v is local to a process z in Y ′, then introduce edge {y, z}.
• R2: If there exists an event fp ∈ E that remotely accesses v, and if p ∈ Y ′, then

introduce edge {y, p}.

Because each variable is local to at most one process, and since (by the Atomicity

property, given on page 90) an event can access at most one remote variable, Rule R1

can introduce at most one edge per process. Since, by (6.4), y executes exactly c critical

events in H, by (6.22), Rule R2 can introduce at most c edges per process.

Combining Rules R1 and R2, at most c+1 edges are introduced per process. Since

each edge is counted twice (for each of its endpoints), the average degree of G is at

most 2(c+ 1). Hence, by Theorem 5.1, there exists an independent set Z such that

Z ⊆ Y ′, and (6.24)

|Z| ≥ |Y ′|/(2c+ 3) ≥ √
n/(2c+ 3), (6.25)

where the latter inequality follows from (6.23).

151

(The rest of Case 1 is nearly identical to Case 1 in the proof of Lemma 5.7. We

present the detailed argument here for the sake of completeness.)

Next, we construct a computationG, satisfying Proposition Pr2, such that Act(G) =

|Z|.
Define H ′ as

H ′ = H | (Z ∪ Fin(H)). (6.26)

By (6.9), (6.21), and (6.24), we have

Z ⊆ Y ′ ⊆ Y ⊆ Act(H), (6.27)

and hence,

Act(H ′) = Z ⊆ Act(H) ∧ Fin(H ′) = Fin(H). (6.28)

We now apply Lemma 5.1, with ‘RFS ’ ← Fin(H) and ‘Y ’ ← Z ∪ Fin(H). Among

the assumptions stated in Lemma 5.1, (5.1) and (5.2) follow from (6.1) and (6.2),

respectively; (5.3) is trivial. It follows that

• H ′ ∈ C, (6.29)

• Fin(H) is a valid RF-set of H ′, and (6.30)

• an event in H ′ is critical if and only if it is also critical in H. (6.31)

Our goal now is to show that H ′ can be extended so that each process in Z has one

more critical event. By (6.28), (6.30), and by the definition of a finished process,

InvFin(H)(H
′) = Act(H ′) = Z. (6.32)

For each z ∈ Z, define Fz as

Fz = (H ◦ Lz) | (Z ∪ Fin(H)). (6.33)

By (6.27), we have z ∈ Y . Thus, applying (6.11), (6.12), (6.13), and (6.15) with

‘p’ ← z, it follows that

• H ◦ Lz ◦ 〈ez〉 ∈ C; (6.34)

• Lz is a z-computation; (6.35)

• Lz contains no critical events in H ◦ Lz; (6.36)

• Fin(H) is a valid RF-set of H ◦ Lz. (6.37)

152

By P1 (given on page 92), (6.34) implies

H ◦ Lz ∈ C. (6.38)

We now apply Lemma 5.1, with ‘H’ ← H ◦ Lz, ‘RFS ’ ← Fin(H), and ‘Y ’ ← Z

∪ Fin(H). Among the assumptions stated in Lemma 5.1, (5.1) and (5.2) follow from

(6.38) and (6.37), respectively; (5.3) is trivial. It follows that

• Fz ∈ C, and (6.39)

• an event in Fz is critical if and only if it is also critical in H ◦ Lz. (6.40)

Since z ∈ Z, by (6.26), (6.33), and (6.35), we have

Fz = H ′ ◦ Lz.

Hence, by (6.36) and (6.40),

• Lz contains no critical events in Fz = H ′ ◦ Lz. (6.41)

Let m = |Z| and index the processes in Z as Z = {z1, z2, . . . , zm}. Define L =

Lz1 ◦Lz2 ◦· · ·◦Lzm . We now use Lemma 5.4, with ‘H’ ← H ′, ‘RFS ’ ← Fin(H), ‘Y ’ ← Z,

and ‘pj’ ← zj for each j = 1, . . . , m. Among the assumptions stated in Lemma 5.4,

(5.22)–(5.24) follow from (6.29), (6.30), and (6.32), respectively; (5.25)–(5.27) follow

from (6.35), (6.39), and (6.41), respectively, with ‘z’ ← zj for each j = 1, . . . , m. This

gives us the following.

• H ′ ◦ L ∈ C; (6.42)

• Fin(H) is a valid RF-set of H ′ ◦ L; (6.43)

• L contains no critical events in H ′ ◦ L. (6.44)

To this point, we have successfully appended a (possibly empty) sequence of non-

critical events for each process in Z. It remains to append a “next” critical event for

each such process. Note that, by (6.35) and the definition of L,

• L is a Z-computation. (6.45)

Thus, by (6.28) and (6.44), we have

Act(H ′ ◦ L) = Act(H ′) = Z ∧ Fin(H ′ ◦ L) = Fin(H ′) = Fin(H). (6.46)

By (6.26) and the definition of L, it follows that

153

• for each z ∈ Z, (H ◦ Lz) | ({z} ∪ Fin(H)) = (H ′ ◦ L) | ({z} ∪ Fin(H)). (6.47)

In particular, H ◦ Lz and H ′ ◦ L are equivalent with respect to z. Therefore, by

(6.34), (6.42), and repeatedly applying P3, it follows that, for each zj ∈ Z, there exists

an event e′zj
, such that

• G ∈ C, where G = H ′ ◦ L ◦ E and E = 〈e′z1
, e′z2

, . . . , e′zm
〉; (6.48)

• e′zj
∼ ezj

. (6.49)

By the definition of E,

• E is a Z-computation. (6.50)

By (6.14), (6.46), and (6.49), we have

Act(G) = Act(H ′ ◦ L) = Z ∧ Fin(G) = Fin(H ′ ◦ L) = Fin(H). (6.51)

By (6.14), (6.16), and (6.49), it follows that for each zj ∈ Z, both ezj
and e′zj

access

a common remote variable, say, vj. Since Z is an independent set of G, by Rules R1

and R2, we have the following:

• for each zj ∈ Z, vj is not local to any process in Z; (6.52)

• vj �= vk, if j �= k.

Combining these two, we also have:

• for each zj ∈ Z, no event in E other than e′zj
accesses vj (either locally or re-

motely). (6.53)

We now establish two claims.

Claim 1: For each zj ∈ Z, if we let q = writer(vj, H
′ ◦ L), then one of the

following holds: q = ⊥, q = zj, or q ∈ Fin(H).

Proof of Claim: It suffices to consider the case when q �= ⊥ and q �= zj

hold, in which case there exists an event fq by q in H ′ ◦L that writes to vj.

By (6.26) and (6.45), we have q ∈ Z ∪ Fin(H). We claim that q ∈ Fin(H)

holds in this case. Assume, to the contrary,

q ∈ Z. (6.54)

154

We consider two cases. First, if fq is a critical event in H ′◦L, then by (6.44),

fq is an event of H ′, and hence, by (6.31), fq is also a critical event in H.

By (6.27) and (6.54), we have q ∈ Y . Thus, by (6.18), we have fq ∈ EH ,

and hence fq ∈ E holds by definition. By (6.52) and (6.54), vj is remote to

q. Thus, fq remotely writes vj. By (6.54) and zj ∈ Z, we have

{q, zj} ⊆ Z, (6.55)

which implies {q, zj} ⊆ Y ′ by (6.24). From this, our assumption of q �=
zj, and by applying Rule R2 with ‘y’ ← zj and ‘fp’ ← fq, it follows that

edge {q, zj} exists in G. However, (6.55) then implies that Z is not an

independent set of G, a contradiction.

Second, assume that fq is a noncritical event in H ′ ◦L. Note that, by (6.52)

and (6.54), vj is remote to q. Hence, by the definition of a critical event,

there exists a critical event f̄q by q in H ′ ◦ L that remotely writes to vj.

However, this leads to contradiction as shown above. �

Claim 2: Every event in E is critical in G. Also, G satisfies RF5 with

‘RFS ’ ← Fin(H).

Proof of Claim: Define E0 = 〈〉; for each positive j, define Ej to be 〈e′z1
,

e′z2
, . . . , e′zj

〉, a prefix of E. We prove the claim by induction on j, applying

Lemma 5.2 at each step. Note that, by (6.48) and P1, we have the following:

H ′ ◦ L ◦ Ej ◦ 〈e′zj+1
〉 = H ′ ◦ L ◦ Ej+1 ∈ C, for each j. (6.56)

Also, by the definition of Ej, we have

Ej | zj+1 = 〈〉, for each j. (6.57)

At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF5 with ‘RFS ’ ← Fin(H). (6.58)

The induction base (j = 0) follows easily from (6.43), since E0 = 〈〉.
Assume that (6.58) holds for a particular value of j. Since zj+1 ∈ Z, by

(6.27), we have

155

zj+1 ∈ Y, (6.59)

and zj+1 ∈ Act(H). By applying (6.17) with ‘p’ ← zj+1, and using (6.59),

we also have Act(H ◦ Lzj+1
) = Act(H), and hence

zj+1 ∈ Act(H ◦ Lzj+1
). (6.60)

By (6.57), if any event e′zk
in Ej accesses a local variable v of zj+1, then e′zk

accesses v remotely, and hence v = vk by definition. However, by (6.52), vk

cannot be local to zj+1. It follows that

• no events in Ej access any of zj+1’s local variables. (6.61)

We now apply Lemma 5.2, with ‘H’ ← H ◦Lzj+1
, ‘H ′’ ← H ′ ◦L, ‘G’ ← Ej,

‘RFS ’ ← Fin(H), ‘ep’ ← ezj+1
, and ‘e′p’ ← e′zj+1

. Among the assumptions

stated in Lemma 5.2, (5.5), (5.7), (5.9), (5.11), and (5.12) follow from (6.56),

(6.43), (6.60), (6.57), and (6.61), respectively; (5.8) follows by applying

(6.49) with ‘zj’ ← zj+1; (5.6) and (5.10) follow by applying (6.37) and (6.47),

respectively, with ‘z’ ← zj+1; and (5.4) and (5.13) follow by applying (6.11)

and (6.16), respectively, with ‘p’ ← zj+1, and using (6.59). Moreover, As-

sumption (A) follows from (6.58), and Assumption (B) is satisfied vacuously

(with ‘v’ ← vj+1) by (6.53).

It follows that e′zj+1
is critical in H ′ ◦ L ◦ Ej ◦ 〈e′zj+1

〉 = H ′ ◦ L ◦ Ej+1, and

that H ′ ◦ L ◦ Ej+1 satisfies RF5 with ‘RFS ’ ← Fin(H). �

We now claim that Fin(H) is a valid RF-set of G. Condition RF5 was already

proved in Claim 2.

• RF1 and RF2: Define Ej as in Claim 2. We establish RF1 and RF2 by induction

on j, applying Lemma 5.3 at each step. At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF1 and RF2 with ‘RFS ’ ← Fin(H). (6.62)

The induction base (j = 0) follows easily from (6.43), since E0 = 〈〉.
Assume that (6.62) holds for a particular value of j. Note that, by (6.53), we have

writer(vj+1, H
′◦L◦Ej) = writer(vj+1, H

′◦L). Thus, by (6.46) and Claim 1,

156

• if we let q = writer(vj+1, H
′ ◦ L ◦ Ej), then one of the following holds: q = ⊥,

q = zj+1, or q ∈ Fin(H) = Fin(H ′ ◦ L). (6.63)

We now apply Lemma 5.3, with ‘H’ ← H ′ ◦ L, ‘G’ ← Ej, ‘RFS ’ ← Fin(H),

‘ep’ ← e′zj+1
, and ‘vrem’ ← vj+1. Among the assumptions stated in Lemma 5.3,

(5.14), (5.15), (5.17), (5.19), and (5.21) follow from (6.56), (6.43), (6.62), (6.57),

and (6.63), respectively; (5.16) follows from (6.46) and zj+1 ∈ Z; (5.18) follows

from (6.46) and (6.50); (5.20) follows from (6.52) and (6.46). It follows that

H ′ ◦ L ◦ Ej+1 satisfies RF1 and RF2 with ‘RFS ’ ← Fin(H).

• RF3: Consider a variable v ∈ V and two different events fq and gr in G. Assume

that both q and r are in Act(G), q �= r, and that there exists a variable v such

that v ∈ var(fq) ∩ var(gr). (Note that, by (6.51), {q, r} ⊆ Z.) We claim that

these conditions can actually never arise simultaneously, which implies that G

vacuously satisfies RF3.

Since v is remote to at least one of q or r, without loss of generality, assume that

v is remote to q. We claim that there exists an event f̄q in E that accesses the

same variable v. If fq is an event of E, we have fq = e′zj
for some zj ∈ Z, and

ezj
∈ E holds by definition; define f̄q = ezj

in this case. If fq is a noncritical event

in H ′ ◦ L, then by definition of a critical event, there exists a critical event f̄q in

H ′ ◦ L that remotely accesses v. If fq is a critical event in H ′ ◦ L, then define

f̄q = fq. (Note that, if f̄q is a critical event in H ′ ◦ L, then by (6.31) and (6.44),

f̄q is also a critical event in H, and hence, by q ∈ Z, (6.27), and the definition of

E , we have f̄q ∈ E .)
It follows that, in each case, there exists an event f̄q ∈ E that remotely accesses v.

If v is local to r, then by Rule R1, G contains the edge {q, r}. On the other hand,

if v is remote to r, then we can choose an event ḡr ∈ E that remotely accesses v,

in the same way as shown above. Hence, by Rule R2, G contains the edge {q, r}.
Thus, in either case, p and q cannot simultaneously belong to Z, a contradiction.

• RF4: By (6.43) and (6.51), it easily follows that G satisfies RF4 with respect to

Fin(H).

Finally, we claim that G satisfies Proposition Pr2. By (6.51), we have Act(G) =

Z ⊆ Act(H), so G satisfies (6.5) and (6.6). By (6.25), we have (6.7). By (6.4), (6.31),

and (6.44), each process in Z executes exactly c critical events in H ′ ◦ L. Thus, by

Claim 2, G satisfies (6.8).

157

Case 2: |Vnext| ≤ √
n (roll-forward strategy)

— In this case, there exists a variable v that is remotely accessed by next critical events

of at least
√
n − 1 processes. Let Yv be the set of these processes. We retain Yv and

erase all other active processes. Let the resulting computation be H ′. We then roll

forward processes pLW and pSC of Yv to generate a regular computation G. If either

pLW or pSC executes k or more critical events before finishing its execution, the resulting

computation satisfies Proposition Pr1. Otherwise, fewer than 2k processes are erased

during the procedure, which makes G satisfy Proposition Pr2, with at least
√
n − 2k

active processes.

For each variable vj in Vnext, define Yvj
= {p ∈ Y : ep remotely accesses vj}. By

(6.10) and (6.20), |Vnext| ≤ √
n implies that there exists a variable v in Vnext such that

|Yv| ≥ (n − 1)/
√
n holds. (In the rest of Case 2, we consider v a fixed variable.) Then,

the following holds:

|Yv| ≥ (n − 1)/
√
n >

√
n − 1 (6.64)

(The rest of Case 2 is nearly identical to Case 2 in the proof of Lemma 5.7, except

that we consider a single variable v. We present the detailed argument here for the

sake of completeness.)

Define

H ′ = H | (Yv ∪ Fin(H)). (6.65)

Using Yv ⊆ Y ⊆ Act(H), we also have

Act(H ′) = Yv ⊆ Act(H) ∧ Fin(H ′) = Fin(H). (6.66)

We now apply Lemma 5.1, with ‘RFS ’ ← Fin(H) and ‘Y ’ ← Yv ∪ Fin(H). Among

the assumptions stated in Lemma 5.1, (5.1) and (5.2) follow from (6.1) and (6.2),

respectively; (5.3) is trivial. It follows that

• H ′ ∈ C, (6.67)

• Fin(H) is a valid RF-set of H ′, and (6.68)

• an event in H ′ is critical if and only if it is also critical in H. (6.69)

Our goal now is to show that H ′ can be extended to a computation G (defined

later), so that each process in Yv has one more critical event. By (6.66), (6.68), and by

the definition of a finished process,

InvFin(H)(H
′) = Act(H ′) = Yv. (6.70)

158

For each s ∈ Yv, define Fs as

Fs = (H ◦ Ls) | (Yv ∪ Fin(H)). (6.71)

Since Yv ⊆ Y , we have s ∈ Y . Thus, applying (6.11), (6.12), (6.13), and (6.15) with

‘p’ ← s, it follows that

• H ◦ Ls ◦ 〈es〉 ∈ C; (6.72)

• Ls is an s-computation; (6.73)

• Ls contains no critical events in H ◦ Ls; (6.74)

• Fin(H) is a valid RF-set of H ◦ Ls. (6.75)

By P1, (6.72) implies

H ◦ Ls ∈ C. (6.76)

We now apply Lemma 5.1, with ‘H’ ← H ◦ Ls, ‘RFS ’ ← Fin(H), and ‘Y ’ ← Yv

∪ Fin(H). Among the assumptions stated in Lemma 5.1, (5.1) and (5.2) follow from

(6.76) and (6.75), respectively; (5.3) is trivial. It follows that

• Fs ∈ C, and (6.77)

• an event in Fs is critical if and only if it is also critical in H ◦ Ls. (6.78)

Since s ∈ Yv, by (6.65), (6.71), (6.73), and (6.77), we have

• Fs = H ′ ◦ Ls ∈ C. (6.79)

Hence, by (6.74) and (6.78),

• Ls contains no critical events in Fs = H ′ ◦ Ls. (6.80)

We now show that the events in {Ls: s ∈ Yv} can be “merged” by applying Lemma 5.4.

We arbitrarily index Yv as {s1, s2, . . . , sm}, where m = |Yv|. (Later, we construct

a specific indexing of Yv to reduce information flow.) Let L = Ls1 ◦ Ls2 ◦ · · · ◦ Lsm .

Apply Lemma 5.4, with ‘H’ ← H ′, ‘RFS ’ ← Fin(H), ‘Y ’ ← Yv, and ‘pj’ ← sj for each

j = 1, . . . , m. Among the assumptions stated in Lemma 5.4, (5.22)–(5.24) follow from

(6.67), (6.68), and (6.70), respectively; (5.25)–(5.27) follow from (6.73), (6.79), and

(6.80), respectively, with ‘s’ ← sj for each j = 1, . . . , m. This gives us the follow-

ing.

• H ′ ◦ L ∈ C; (6.81)

• Fin(H) is a valid RF-set of H ′ ◦ L; (6.82)

• L contains no critical events in H ′ ◦ L. (6.83)

159

By (6.65) and the definition of L, we also have,

• for each s ∈ Yv, (H ◦ Ls) | ({s} ∪ Fin(H)) = (H ′ ◦ L) | ({s} ∪ Fin(H)); (6.84)

• for each s ∈ Yv, (H
′ ◦ L) | s = (H ◦ Ls) | s. (6.85)

We now re-index the processes in Yv so that information flow among them is mini-

mized. We place next critical events of Yv by placing write, comparison, and read events

in that order. Furthermore, we can arrange comparison events such that at most one

of them succeeds, as explained in Section 6.1. (Formally, the re-indexing method is

very similar to that given in Figure 5.8, and illustrated in Figure 5.6, except that we

now consider only one variable v.) Let (s1, s2, . . . , sm) be the indexing of Yv thus

constructed, and E be the appended computation that consists of next critical events

by processes in Y . Then, we have the following:

• G ∈ C, where G = H ′ ◦ L ◦ E and E = 〈e′s1 , e′s2 , . . . , e′sm〉; (6.86)

• e′sj ∼ esj . (6.87)

By the definition of E,

• E is an Yv-computation. (6.88)

By (6.14), (6.83), and (6.87), L◦E does not contain any transition events. Moreover,

by the definition of L and E, (L ◦ E) | p �= 〈〉 implies p ∈ Yv, for each process p.

Combining these assertions with (6.66), we have

Act(G) = Act(H ′ ◦ L) = Act(H ′) = Yv ∧
Fin(G) = Fin(H ′ ◦ L) = Fin(H ′) = Fin(H).

(6.89)

We now state and prove two claims regarding G. Claim 3 follows easily from the

re-indexing of Yv and construction of E, described above.

Claim 3: Events in E appear in the following order, where α is a fixed value

in the range of v andW (v), C1(v), C2(v), and R(v) are sets of events.

• events in W (v): each event e′s in W (v) satisfies op(e′s) = write(v);

• events in C1(v): each event e′s in C1(v) satisfies op(e′s) = compare(v, βs)

for some βs �= α;

• events in C2(v): each event e′s in C2(v) satisfies op(e′s) = compare(v, α);

• events in R(v): each event e′s in R(v) satisfies op(e′s) = read(v).

160

Moreover, in the computation G, after all events in W (v) are executed, and

before any event in C2(v) is executed, v has the value α. All events in

C1(v) (if any) are unsuccessful comparisons. At most one event in C2(v) is

a successful comparison. (Note that a successful comparison event writes a

value other than α, by definition. Thus, if there is a successful comparison,

then all subsequent comparison events must fail.) Define LW (v), the “last

write,” and SC (v), the “successful comparison,” as follows:

LW (v) =

{
the last event in W (v), if W (v) �= {},
writer event(v, H ′ ◦ L), if W (v) = {};

SC (v) =

{
the successful comparison in C2(v), if C2(v) contains one,

⊥, otherwise.

Then, the last process to write to v (if any) is either SC (v) (if SC (v) is

defined) or LW (v) (otherwise). �

Before establishing our next claim, Claim 4, we define pLW and pSC as owner(LW (v))

and owner(SC (v)), respectively. If LW (v) (respectively, SC (v)) equals ⊥, then pLW

(respectively, pSC) also equals ⊥. We also define RFS as

RFS = Fin(H) ∪ {p: p ∈ {pLW, pSC} and p �= ⊥}. (6.90)

By the definition of Yv, for each p ∈ Yv, ep remotely accesses v. In particular,

• for each p ∈ Yv, v is remote to p. (6.91)

Note that “expanding” a valid RF-set does not falsify any of RF1–RF5. Therefore,

using (6.82), (6.89), and Fin(H) ⊆ RFS ⊆ Fin(H) ∪ Yv, it follows that

• RFS is a valid RF-set of H ′ ◦ L. (6.92)

We now establish Claim 4, stated below.

Claim 4: Every event in E is critical in G. Also, G satisfies RF5.

Proof of Claim: Define E0 = 〈〉; for each positive j, define Ej to be 〈e′s1 ,

e′s2 , . . . , e′sj 〉, a prefix of E. We prove the claim by induction on j, applying

Lemma 5.2 at each step. Note that, by (6.86) and P1, we have the following:

H ′ ◦ L ◦ Ej ◦ 〈e′sj+1〉 = H ′ ◦ L ◦ Ej+1 ∈ C, for each j. (6.93)

161

Also, by the definition of Ej, we have

Ej | sj+1 = 〈〉, for each j. (6.94)

At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF5. (6.95)

The induction base (j = 0) follows easily from (6.92), since E0 = 〈〉.
Assume that (6.95) holds for a particular value of j. Since sj+1 ∈ Yv ⊆ Y ,

we have

sj+1 ∈ Y, (6.96)

and sj+1 ∈ Act(H). By applying (6.17) with ‘p’ ← sj+1, and using (6.96),

we also have Act(H ◦ Lsj+1) = Act(H), and hence

sj+1 ∈ Act(H ◦ Lsj+1). (6.97)

Also, by (6.91),

• no events in Ej access any of sj+1’s local variables. (6.98)

We use Lemma 5.2 twice in sequence in order to prove Claim 4. First, by

P3, and applying (6.72), (6.81), and (6.85) with ‘s’ ← sj+1, it follows that

there exists an event e′′sj+1 , such that

• H ′ ◦ L ◦ 〈e′′sj+1〉 ∈ C, and (6.99)

• e′′sj+1 ∼ esj+1 . (6.100)

We now apply Lemma 5.2, with ‘H’ ← H ◦ Lsj+1 , ‘H ′’ ← H ′ ◦ L, ‘G’ ← 〈〉,
‘RFS ’ ← Fin(H), ‘ep’ ← esj+1 , and ‘e′p’ ← e′′sj+1 . Among the assumptions

stated in Lemma 5.2, (5.5) and (5.7)–(5.9) follow from (6.99), (6.82), (6.100),

and (6.97), respectively; (5.11) and (5.12) hold vacuously by ‘G’ ← 〈〉; (5.4),
(5.6), and (5.10) follow by applying (6.72), (6.75), and (6.84), respectively,

with ‘s’ ← sj+1; (5.13) follows by applying (6.16) with ‘p’ ← sj+1, and using

(6.96). It follows that

• e′′sj+1 is critical in H ′ ◦ L ◦ 〈e′′sj+1〉. (6.101)

162

Before applying Lemma 5.2 again, we establish the following preliminary

assertions. Since Fin(H) ⊆ RFS , by applying (6.75) with ‘s’ ← sj+1, it

follows that

• RFS is a valid RF-set of H ◦ Lsj+1 . (6.102)

We now establish a simple claim.

Claim 4-1: If esj+1 is a comparison event on v, and if Ej contains

a write to v, then Ej | RFS also contains a write to v.

Proof of Claim: By (6.87) and Claim 3, we have e′sj+1 ∈ C1(v)∪
C2(v). Hence, by Claim 3, if an event e′

sk (for some k ≤ j) in

Ej writes to v, then we have either e′
sk ∈ W (v) or e′

sk = SC (v).

If e′
sk = SC (v), then since sk ∈ RFS holds by (6.90), Claim 4-

1 is satisfied. On the other hand, if e′
sk ∈ W (v), then W (v) is

nonempty. Moreover, since all events in W (v) are indexed before

any events in C1(v)∪C2(v), Ej contains all events in W (v). Thus,

by (6.90), both Ej and Ej | RFS contain LW (v), an event that

writes to v. �

We now apply Lemma 5.2 again, with ‘H’ ← H ′◦L, ‘H ′’ ← H ′◦L, ‘G’ ← Ej,

‘ep’ ← e′′sj+1 , and ‘e′p’ ← e′sj+1 . Among the assumptions stated in Lemma 5.2,

(5.4)–(5.7) and (5.11)–(5.13) follow from (6.99), (6.93), (6.92), (6.92), (6.94),

(6.98), and (6.101), respectively; (5.10) is trivial; (5.8) follows from (6.100)

and by applying (6.87) with ‘sj’ ← sj+1; (5.9) follows from (6.89) and sj+1 ∈
Yv. Moreover, Assumption (A) follows from (6.95), and Assumption (B)

follows from Claim 4-1.

It follows that e′sj+1 is critical in H ′ ◦ L ◦ Ej ◦ 〈e′sj+1〉 = H ′ ◦ L ◦ Ej+1, and

that H ′ ◦ L ◦ Ej+1 satisfies RF5. �

We now show that RFS is a valid RF-set of G. Condition RF5 was already proved

in Claim 4.

• RF1 and RF2: Define Ej as in Claim 4. We establish RF1 and RF2 by induction

on j, applying Lemma 5.3 at each step. At each step, we assume

• H ′ ◦ L ◦ Ej satisfies RF1 and RF2. (6.103)

163

The induction base (j = 0) follows easily from (6.92), since E0 = 〈〉.
Assume that (6.103) holds for a particular value of j. By Claim 3, if e′sj+1 reads

v, then the following holds: e′sj+1 ∈ C1(v) ∪ C2(v) ∪ R(v); every event in W (v) is

contained in Ej; writer(v, H ′ ◦L◦Ej) is one of LW (v) or SC (v) or ⊥. Therefore,

by (6.90), we have the following:

• if e′sj+1 remotely reads v, and if we let q = writer(v, H ′ ◦ L ◦ Ej), then either

q = ⊥ or q ∈ RFS holds. (6.104)

We now apply Lemma 5.3, with ‘H’ ← H ′◦L, ‘G’ ← Ej, ‘ep’ ← e′sj+1 , and ‘vrem’ ←
v. Among the assumptions stated in Lemma 5.3, (5.14), (5.15), (5.17), (5.19),

and (5.21) follow from (6.93), (6.92), (6.103), (6.94), and (6.104), respectively;

(5.16) follows from (6.89) and sj+1 ∈ Yv; (5.18) follows from (6.89) and (6.88);

(5.20) follows from (6.89) and (6.91). It follows that H ′ ◦ L ◦ Ej+1 satisfies RF1

and RF2.

• RF3: Consider a variable u ∈ V and two different events fp and gq in G. Assume

that both p and q are in Act(G), p �= q, that there exists a variable u such

that u ∈ var(fp) ∪ var(gq), and that there exists a write to u in G. Define

r = writer(u, G). Our proof obligation is to show that r ∈ RFS .

By (6.89), we have {p, q} ⊆ Yv. If u = v, then by Claim 3, writer event(u, G) is

either SC (u) (if SC (u) �= ⊥) or LW (u) (otherwise). (Since we assumed that there

exists a write to u, they both cannot be ⊥.) Thus, by (6.90), we have r ∈ RFS .

On the other hand, assume u �= v. We now consider three cases.

– Consider the case in which both fp and gq are in H ′ ◦ L.

If there exists an event e′s in E such that u ∈ Wvar(e′s), then since u �= v,

u is local to s. Since at least one of p or q is different from s, without

loss of generality, assume p �= s. Since p ∈ Yv and Yv ⊆ Act(H), we have

p /∈ Fin(H). Thus, by (6.82) and by applying RF2 with ‘RFS ’ ← Fin(H) to

fp in H ′ ◦L, we have s /∈ Act(H ′ ◦L). However, by (6.89), Act(H ′ ◦L) = Yv,

which contradicts s ∈ Yv (which follows from (6.88), since e′s is an event of

E).

It follows that there exists no event e′s in E such that u ∈ Wvar(e′s) holds.

Thus, we have r = writer(u, H ′ ◦ L). By (6.82) and applying RF3 with

164

‘RFS ’ ← Fin(H) to fp and gq inH ′◦L, we have writer(u,H ′◦L) ∈ Fin(H) ⊆
RFS .

– Consider the case in which fp is in H ′ ◦ L and gq = e′
sk , for some sk ∈ Yv.

By (6.89) and our assumption that p and q are both in Act(G), we have

p ∈ Act(H ′ ◦ L) and q ∈ Act(H ′ ◦ L). Since u �= v, u is local to q. However,

by (6.82), and by applying RF2 with ‘RFS ’ ← Fin(H) to fp in H ′ ◦ L, we

have q /∈ Act(H ′ ◦ L), a contradiction.

– Consider the case in which fp = e′sj and gq = e′
sk , for some sj and sk in Yv.

Since u is remote to at least one of sj or sk, we have u = v, a contradiction.

• RF4: By (6.14), (6.82), and (6.89), it easily follows that G satisfies RF4 with

respect to RFS .

Therefore, we have established that

• RFS is a valid RF-set of G. (6.105)

By (6.89) and (6.90), we have

PmtRFS (G) = {p: p ∈ {pLW, pSC} and p �= ⊥}.

In particular,

|PmtRFS (G)| ≤ 2. (6.106)

We now let the processes in Pmt(G) finish their execution by inductively appending

critical events of processes in Pmt(G), thus generating a sequence of computations G0,

G1, . . . , Gl (where G0 = G), satisfying the following:

• Gj ∈ C; (6.107)

• RFS is a valid RF-set of Gj; (6.108)

• Pmt(Gj) ⊆ Pmt(G); (6.109)

• each process in Inv(Gj) executes exactly c+ 1 critical events in Gj; (6.110)

• the processes in Pmt(G) collectively execute exactly |Pmt(G)| · (c + 1) + j critical

events in Gj; (6.111)

• Inv(Gj+1) ⊆ Inv(Gj) and |Inv(Gj+1)| ≥ |Inv(Gj)| − 1 if j < l; (6.112)

• Fin(Gj) � RFS if j < l, and Fin(Gj) = RFS if j = l. (6.113)

165

At each induction step, we apply Lemma 5.6 to Gj in order to construct Gj+1,

until Fin(Gj) = RFS is established, at which point the induction is completed. The

induction is explained in detail below.

Induction base (j = 0): Since G0 = G, (6.107) and (6.108) follow from

(6.86) and (6.105), respectively. Condition (6.109) is trivial.

By (6.4), (6.69), and (6.83), each process in Yv executes exactly c critical

events in H ′ ◦ L. Thus, by Claim 4, it follows that each process in Yv

executes exactly c + 1 critical events in G. Since Inv(G) ⊆ Yv, G satisfies

(6.110). Since Pmt(G) ⊆ Yv, G satisfies (6.111).

Induction step: At each step, we assume (6.107)–(6.111). If Fin(Gj) =

RFS , then (6.113) is satisfied and we finish the induction, by letting l = j.

Assume otherwise. We apply Lemma 5.6 with ‘H’ ← Gj. Assump-

tions (5.35)–(5.37) stated in Lemma 5.6 follow from (6.107), (6.108), and

Fin(Gj) �= RFS . The lemma implies that a computation Gj+1 exists satis-

fying (6.107)–(6.113), as shown below.

Condition (6.107) and (6.108) follow from (5.38) and (5.39), respectively.

Since Gj satisfies (6.109), by (5.46), Gj+1 also satisfies (6.109). Since

Inv(Gj+1) ⊆ Inv(Gj) by (5.40) and (5.41), by (5.43) and (5.47), and ap-

plying (6.110) to Gj, it follows that Gj+1 satisfies (6.110). By (5.43)–(5.47),

and applying (6.109) and (6.111) to Gj, it follows that Gj+1 satisfies (6.111).

Condition (6.112) follows from (5.40) and (5.41). Thus, the induction is es-

tablished. �

We now show that l < 2k. Assume otherwise. By (6.106), and by applying (6.111)

to Gl, it follows that there exists a process p ∈ Pmt(G) (i.e., p is either pLW or pSC)

such that p executes at least c + 1 + k critical events in Gl. From (6.113) and p ∈
Pmt(G) ⊆ RFS , we get p ∈ Fin(Gl). Let F = Gl | RFS . By Lemma 5.1, and applying

(6.107) and (6.108), we have the following:

• F ∈ C;

• RFS is a valid RF-set of F ;

• p executes at least c+ 1 + k critical events in F .

166

Since p ∈ Fin(Gl), by applying RF4 to p in Gl, it follows that the last event of Gl | p
is Exitp. Since Gl | p = F | p, F can be written as F ◦ 〈Exitp〉 ◦ · · · , where F is a prefix

of F such that p executes at least c + k critical events in F . However, p and F then

satisfy Proposition Pr1, a contradiction.

Finally, we show that Gl satisfies Proposition Pr2. The following derivation estab-

lishes (6.7).

|Act(Gl)| = |InvRFS (Gl)| {by (6.113), RFS = Fin(Gl), thus Act(Gl) = InvRFS (Gl)}
≥ |InvRFS (G0)| − l {by repeatedly applying (6.112)}
= |Act(G) − RFS | − l {by the definition of “Inv”; note that G = G0}
= |Yv − RFS | − l {by (6.89)}
= |Yv − (Pmt(G) ∪ Fin(H))| − l {because RFS = Pmt(G) ∪ Fin(G), and

Fin(G) = Fin(H) by (6.89)}
= |Yv − Pmt(G)| − l {because Yv ∩ Fin(H) = {} by (6.89)}
> |Yv| − 2 − 2k {by (6.106) and l < 2k}
>

√
n − 2k − 3. {by (6.64)}

Moreover, by (6.108) and (6.113), we have Act(Gl) = Inv(Gl). Thus, by (6.89) and

(6.112), we have Act(Gl) ⊆ Inv(G) ⊆ Act(G) = Yv ⊆ Act(H), which implies (6.5). By

(6.90) and (6.113), we have (6.6). Finally, (6.110) implies (6.8). Therefore, Gl satisfies

Proposition Pr2. �

Theorem 6.1 Let N̄(k) = (2k + 4)2(2
k−1). For any mutual exclusion system S =

(C, P, V) and for any positive number k, if |P | ≥ N̄(k), then there exists a computation

H such that at most 2k − 1 processes participate in H and some process p executes at

least k critical operations in H to enter and exit its critical section.

Proof: Let H1 = 〈Enter 1, Enter 2, . . . , EnterN〉, where P = {1, 2, . . . , N} and N ≥
N̄(k). By the definition of a mutual exclusion system, H1 ∈ C. It is obvious that H1 is

regular and each process in Act(H) = P has exactly one critical event in H1. Starting

with H1, we repeatedly apply Lemma 6.1 and construct a sequence of computations

(H1, H2, . . .), such that each process in Act(Hj) has j critical events in Hj. We

repeat the process until either Hk is constructed or some Hj satisfies Proposition Pr1

of Lemma 6.1.

167

If some Hj (j ≤ k − 1) satisfies Proposition Pr1, then consider the first such j.

By our choice of j, each of H1, . . . , Hj − 1 satisfies Proposition Pr2 of Lemma 6.1.

Therefore, since |Fin(H1)| = 0, we have |Fin(Hj)| ≤ 2(j − 1) ≤ 2k − 4. It follows that

computation F ◦〈Exitp〉, generated by applying Lemma 6.1 toHj, satisfies Theorem 6.1.

The remaining possibility is that each of H1, . . . , Hk−1 satisfies Proposition Pr2.

We claim that, for 1 ≤ j ≤ k, the following holds:

|Act(Hj)| ≥ (2k + 4)2(2
k+1−j−1). (6.114)

The induction basis (j = 1) directly follows from Act(H) = P and |P | ≥ N̄(k). In

the induction step, assume that (6.114) holds for some j (1 ≤ j < k), and let nj =

|Act(Hj)|. Note that each active process in Hj executes exactly j critical events. By

(6.114), we also have nj > (2k + 4)2, which in turn implies that
√
nj − 2k − 3 >

√
nj/(2k + 4). Therefore, by (6.7), we have

|Act(Hj+1)| ≥ min(
√
nj/(2j + 3),

√
nj − 2k − 3) ≥ √

nj/(2k + 4),

from which the induction easily follows.

Finally, (6.114) implies |Act(Hk)| ≥ 1, and Proposition Pr2 implies |Fin(Hk)| ≤
2(k − 1). Therefore, select any arbitrary process p from Act(Hk). Define G =

Hk | (Fin(Hk) ∪ {p}). Clearly, at most 2k − 1 processes participate in G. By ap-

plying Lemma 5.1 with ‘H’ ← Hk and ‘Y ’ ← Fin(Hk) ∪ {p}, we have the following:

G ∈ C, and an event in G is critical if and only if it is also critical in Hk. Hence, because

p executes k critical events in Hk, G is a computation that satisfies Theorem 6.1. �

6.3 Concluding Remarks

We have established a lower bound that eliminates the possibility of an O(log k) adap-

tive mutual exclusion algorithm based on reads, writes, or comparison primitives, where

k is either point or interval contention.

We believe that Ω(min(k, log N)) is probably a tight lower bound for the class of

algorithms considered in this chapter (which would imply that Algorithm A-LS is

optimal). One relevant question is whether the results of this chapter can be combined

with those presented in Chapter 5 to come close to an Ω(min(k, logN)) bound, i.e., can

we at least conclude that Ω(min(k, logN/ log logN)) is a lower bound? Unfortunately,

168

the answer is no. We have shown that Ω(k) RMR time complexity is required provided

N is sufficiently large. This leaves open the possibility that an algorithm might have

Θ(k) RMR time complexity for very “low” levels of contention, but o(k) RMR time

complexity for “intermediate” levels of contention. Although our lower bound does not

preclude such a possibility, we find it highly unlikely.

CHAPTER 7

Algorithm and Time-complexity

Lower Bound for Nonatomic

Systems∗

In this chapter, we present an N -process local-spin mutual exclusion algorithm with

Θ(log N) RMR (remote-memory-reference) time complexity, which is based on non-

atomic reads and writes. This algorithm is derived from Yang and Anderson’s atomic

local-spin algorithm (Algorithm YA-N), which was described in Sections 2.2.2 and

3.1, in a way that preserves its time complexity. No atomic read/write algorithm with

better asymptotic worst-case time complexity (under the RMR measure) is currently

known. This suggests that atomic memory is not fundamentally required if one is

interested in worst-case time complexity.

The same cannot be said if one is interested in fast or adaptive algorithms. We

show that such algorithms fundamentally require memory accesses to be atomic. In

particular, we show that for any N -process nonatomic algorithm, there exists a single-

process execution in which the lone competing process accesses Ω(log N/ log log N)

distinct variables to enter its critical section. Thus, fast and adaptive algorithms are

impossible even if caching techniques are used to avoid accessing the processors-to-

memory interconnection network.

∗The results presented in this chapter have been published in the following paper.
[18] J. Anderson and Y.-J. Kim. Nonatomic mutual exclusion with local spinning. In Proceedings of
the 21st Annual ACM Symposium on Principles of Distributed Computing, pages 3–12. ACM, July
2002.

170

In nonatomic algorithms, variable accesses1 are assumed to take place over intervals

of time, and hence may overlap one another. In contrast, each variable access in an

atomic algorithm is viewed as taking place instantaneously. Requiring atomic memory

access is tantamount to assuming mutual exclusion in hardware [51]. Thus, mutual

exclusion algorithms requiring this are in some sense circular.

As discussed in Section 2.5, Anderson devised the first nonatomic local-spin mutual

exclusion algorithm [11]. This algorithm is composed of a collection of constant-time

two-process algorithms, which are used to allow each process to compete individually

against every other process. The resulting algorithm has Θ(N) RMR time complexity,

where N is the number of processes. The correctness of the nonatomic version of the

algorithm is mainly a consequence of the fact that only single-writer, single-reader,

single-bit variables are used. With any nonatomic algorithm, overlapping operations

that access a common variable are the main concern. In Anderson’s algorithm, if two

overlapping operations access the same (single-bit) variable, then one is a read and

the other is a write. The assumption usually made (and made herein) regarding such

overlapping operations is that the read may return any value [51, 55]. Note that if such

a write changes the written variable’s value, then an overlapping read can be linearized

to occur either before or after the write [51]. For example, if a write changes a variable’s

value from 1 to 0, then an overlapping read that returns 1 (0) can be linearized to occur

immediately before (after) the write.2 In Anderson’s algorithm, most writes write new

values, and the structure of the algorithm ensures that those writes that do not have

no adverse impact.

In recent years, there has been much interest in fast and adaptive algorithms (see

Sections 2.3 and 2.4). In a recent paper [16], we presented a “fast-path” mechanism

that improves the contention-free time complexity of Yang and Anderson’s algorithm

to O(1), without affecting its worst-case time complexity. In Chapter 4, we have

presented an extension of this mechanism that results in an adaptive algorithm with

O(min(k, log N)) RMR time complexity, where k is point contention.

As described in Section 2.6, Anderson and Yang [22] established trade-offs between

time complexity and write- and access-contention for mutual exclusion algorithms (The-

orems 2.10, 2.11). The write-contention (access-contention) of a concurrent program

1In this chapter, we only consider algorithms based on reads and writes, unless otherwise indicated.

2Such reasoning must be used with caution; for example, it may be impossible to linearize a sequence
of such overlapping reads by the same process without reordering them.

171

is the number of processes that may be simultaneously enabled to write (access by

reading and/or writing) the same shared variable.

Anderson and Yang showed that any algorithm with write-contention w must have a

single-process execution in which that process executes Ω(logw N) remote operations for

entry into its critical section.3 Further, among these operations, Ω(
√
logw N) distinct

remote variables are accessed. Similarly, any algorithm with access-contention c must

have a single-process execution in which that process accesses Ω(logc N) distinct remote

variables for entry into its critical section. Thus, a trade-off between write-contention

(access-contention) and time complexity exists even in systems with coherent caches.

Because a single-process execution is used to establish these bounds, it follows that

Ω(N ε)-writer variables (for some positive constant ε) are needed for fast or adaptive

algorithms. In other work, Alur and Taubenfeld [9] showed that fast (and hence adap-

tive) algorithms also require variables with Ω(log N) bits (i.e., variables large enough

to hold at least some fraction of a process identifier). (See Theorem 2.13.)

In Chapter 5, we established a lower bound of Ω(logN/ log logN) remote operations

for any mutual exclusion algorithm based on reads and writes. This bound has no

bearing on fast or adaptive algorithms because it results from an execution that may

involve many processes. (In Chapter 6, adaptive atomic algorithms were considered.)

Given the research reviewed above, two questions immediately come to mind:

• Is it possible to devise a nonatomic local-spin algorithm with Θ(log N) time

complexity, i.e., that matches the best atomic algorithm known?

• Is it possible to devise a nonatomic algorithm that is fast or adaptive?

Both questions are answered in this chapter. We answer the first question in the

affirmative by presenting a Θ(log N) nonatomic algorithm, which is derived from Al-

gorithm YA-N by means of simple transformations. On the other hand, the an-

swer to the second question is negative. We show this by proving that any non-

atomic algorithm must have a single-process execution in which that process accesses

Ω(log N/ log log N) distinct variables. Therefore, fast and adaptive algorithms are

impossible even if caching techniques are used to avoid accessing the interconnection

network. Given the prior results summarized above, it follows that any fast or adaptive

algorithm necessarily must use Ω(log N)-bit, Ω(N ε)-writer variables that are accessed

atomically .

3Recall that we only consider algorithms based on reads and writes in this chapter. Thus, the
parameter v stated in Theorems 2.10 and 2.11 equals one.

172

This chapter is organized as follows. In Section 7.1, our nonatomic algorithm is

presented; a correctness proof for it is given in Appendix C. Definitions needed to

establish the above-mentioned lower bound are then given in Section 7.2. The lower-

bound proof is sketched in Section 7.3; a full proof is given in Appendix D. We conclude

in Section 7.4.

7.1 Nonatomic Algorithm

As mentioned earlier, our nonatomic algorithm, denoted as Algorithm NA hereafter,

is derived from Algorithm YA-N. We illustrate both algorithms in Figure 7.1. For

a detailed description of Algorithm YA-N, we refer the reader to Section 3.1.

We now consider the problem of converting Algorithm YA-N into a nonatomic

algorithm. The notion of a nonatomic variable that we assume is that captured by

Lamport’s definition of a safe register [55]: a nonatomic read of a variable returns its

current value if it does not overlap any write of that variable, and any arbitrary value

from the value domain of the variable if it does overlap such a write. These assumptions

are sufficient for our purposes, because our final algorithm precludes overlapping writes

of the same variable.

The most obvious way to convert Algorithm YA-N into a nonatomic algorithm is

to implement each atomic variable using nonatomic ones by applying wait-free register

constructions presented previously [39, 40, 55, 70, 74, 77]. This is in fact the approach

we take for the C and T variables. However, if such constructions are applied to

implement the Q variables, then a read of such a variable necessarily requires that

one or more of the underlying nonatomic variables be written. (This was proved by

Lamport [55].) As a result, the spins in statements 9 and 11 would no longer be local.

As for the C and T variables, the tree structure ensures that C[n][s] can be viewed

as a single-writer, single-reader variable, and T [n] as a two-writer, two-reader variable.

Hence, C[n][s] can be implemented quite efficiently using the single-writer, single-reader

register construction of Haldar and Subramanian [39]. In this construction, eight non-

atomic variables are used, each atomic read requires at most four accesses of nonatomic

variables, and each atomic write at most seven. T [n] is more problematic, as it is

a multi-reader, multi-writer atomic variable. Nonetheless, register constructions are

known that can be used to implement such variables from nonatomic variables with

time and space complexity that is polynomial in the number of readers and writers

[40, 55, 70, 74, 77]. For variable T [n], the number of readers and writers is constant.

173

Algorithm YA-N (The original algorithm in [84])

process p :: /∗ 0 ≤ p < N ∗/
const /∗ for simplicity, we assume N = 2L ∗/

L = logN ;
/∗ (tree depth) + 1 = O(logN) ∗/

Tsize = 2L − 1 = N − 1
/∗ tree size = O(N) ∗/

shared variables
T : array[1..Tsize] of 0..N − 1;
C : array[1..Tsize][0..1] of (0..N − 1, ⊥)

initially ⊥;
Q: array[1..L][0..N − 1] of 0..2

initially 0
private variables

h: 1..L;
node: 1..Tsize;
side: 0..1; /∗ 0 = left, 1 = right ∗/
rival : 0..N − 1

while true do
1: Noncritical Section;

for h := 1 to L do
node :=

⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

2: C[node][side] := p;
3: T [node] := p;
4: Q[h][p] := 0;
5: rival := C[node][1− side];
6: if (rival �= ⊥ ∧ T [node] = p) then
7: if Q[h][rival] = 0 then
8: Q[h][rival] := 1 fi;
9: await Q[h][p] ≥ 1;
10: if T [node] = p then
11: await Q[h][p] = 2 fi

fi
od;

12:Critical Section;
for h := L downto 1 do

node :=
⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

13: C[node][side] := ⊥;
14: rival := T [node];

if rival �= p then
15: Q[h][rival] := 2 fi

od
od

Algorithm NA (New nonatomic algorithm)

process p :: /∗ 0 ≤ p < N ∗/
/∗ all variable declarations are as in ∗/
/∗ Algorithm YA-N, except that ∗/
/∗ P is replaced by the following ∗/
shared variables

Q1, Q2, R1, R2:
array[1..L][0..N − 1] of boolean

private variables
qtoggle, rtoggle, temp: 0..1

while true do
1: Noncritical Section;

for h := 1 to L do
node :=

⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

2: C[node][side] := p;
3: T [node] := p;
4: rtoggle := ¬R1[h][p];
5: R2[h][p] := rtoggle;
6: qtoggle := ¬Q1[h][p];
7: Q2[h][p] := qtoggle;
8: rival := C[node][1− side];
9: if (rival �= ⊥ ∧ T [node] = p) then
10: temp := Q2[h][rival];
11: Q1[h][rival] := temp;
12: await (Q1[h][p] = qtoggle) ∨
13: (R1[h][p] = rtoggle);
14: if T [node] = p then
15: await R1[h][p] = rtoggle fi

fi
od;

16:Critical Section;
for h := L downto 1 do

node :=
⌊
(N + p)/2h

⌋
;

side :=
⌊
(N + p)/2h−1

⌋
mod 2;

17: C[node][side] := ⊥;
18: rival := T [node];

if rival �= p then
19: temp := R2[h][rival];
20: R1[h][rival] := temp fi

od
od

(a) (b)

Figure 7.1: (a) Algorithm YA-N and (b) its nonatomic variant. In (b), reads
and writes of the C and T variables are assumed to be implemented using register
constructions.

174

Thus, it can be implemented using nonatomic variables with constant space and time

complexity.

The need for register constructions to implement the T variables can be obviated by

slightly modifying the algorithm, using a technique first proposed by Kessels [45]. (For

ease of exposition, this is not done in Algorithm NA in Figure 7.1(b).) The idea is

to replace each T [n] variable by two single-bit variables T1[n] and T2[n]; T1[n] (T2[n])

is written by left-side (right-side) processes and read by right-side (left-side) processes

at node n. Left-side processes seek to establish T1[n] = T2[n] and right-side processes

seek to establish T1[n] �= T2[n]. Ties are broken accordingly. Because T1[n] and T2[n]

are both single-writer, single-reader, single-bit variables, it is relatively straightforward

to show that this mechanism still works if variable accesses are nonatomic. In fact,

this very mechanism is used in the nonatomic algorithm of Anderson [11], which was

described in Section 2.5.

The Q variables can be dealt with similarly. In Algorithm YA-N, the condition

Q[h][p] ≥ 1 indicates that process p may proceed past its first await, and the condition

Q[h][p] = 2 indicates that p may proceed past its second await. Because multi-bit

variables are problematic if memory accesses are nonatomic, we implement these con-

ditions using separate variables. In Algorithm NA (see Figure 7.1(b)), variables

Q1[h][p] and Q2[h][p] are used to implement the first condition, and variables R1[h][p]

and R2[h][p] are used to implement the second. The technique used in updating both

pairs of variables is similar to that used in Kessels’ tie-breaking scheme described above.

In particular, process p attempts to establish Q1[h][p] �= Q2[h][p] ∧ R1[h][p] �= R2[h][p]

in statements 4–7 and waits while this condition continues to hold at statements 12–13

(note that qtoggle = Q2[h][p] ∧ rtoggle = R2[h][p] holds while p continues to wait).4

A rival process at node n seeks to establish Q1[h][p] = Q2[h][p] at statements 10–11;

the effect is similar to statements 7–8 in Algorithm YA-N. Statements 15 and 19–20

work in a similar way. As with Kessels’ tie-breaking scheme, because the new variables

being used here are all single-writer, single-reader, single-bit variables, it is relatively

straightforward to show that the algorithm is correct even if variable accesses are non-

atomic. A complete correctness proof for the algorithm is given in Appendix C. This

gives us the following theorem.

Theorem 7.1 The mutual exclusion problem can be solved with Θ(log N) RMR time

complexity using only nonatomic reads and writes. �
4In the preliminary version of the work presented in this chapter [18], statements 6–7 in Figure 7.1(b)

precede statements 4–5, writing Q2 before R2. We found that that version is susceptible to livelock.

175

7.2 Nonatomic Shared-memory Systems

In this section, we present the model of a nonatomic shared-memory system that is used

in our lower-bound proof. Our model of a nonatomic system is similar to that of an

atomic system, given in Section 5.1. However, there are two key differences. First, our

model of a nonatomic shared-memory system does not include comparison primitives or

events that access multiple local (shared) variables, and hence the definition of an event

is greatly simplified. Second, we introduce two classes of events, namely invocation and

response events, in order to represent an execution of a nonatomic write. (As explained

shortly, we assume that all reads execute fast enough to be considered atomic.)

Nonatomic shared-memory systems. A nonatomic shared-memory system S =

(C, P, V) consists of a set of (nonatomic) computations C, a set of processes P , and

a set of shared variables V . A computation is a finite sequence of events. As in

Section 5.1, an initial value is associated with each shared variable. In practice, accesses

of private variables such as program counters usually determine the order in which

shared variables are accessed. For our purposes, the manner in which this access order

is determined is not important. Thus, we do not consider private variables nor events

that access them in our proof.

In all computations considered in our proof, reads execute atomically (i.e., have

zero duration). Writes may execute atomically or nonatomically, but writes to the

same variable never overlap each other. Thus, we have no need to define the effects

of concurrent writes. As stated earlier, the notion of a nonatomic variable that we

assume is that captured by a safe register [55]: a nonatomic read of a variable returns

its current value if it does not overlap any write of that variable, and any arbitrary

value from the value domain of the variable if it does overlap such a write.

We now formally state the definition of an event. An event e has the form of

[p, Op, . . .], where p ∈ P . (The various forms of an event are given in the Atomicity

property below.) As in Section 5.1, we call Op the operation of event e, denoted op(e).

Op can be one of the following: read(v), write(v), invoke(v), or respond(v), where v is

a variable in V . (Informally, e can be an atomic read, an atomic write, an invocation

of a nonatomic write, or a corresponding response of a nonatomic write.) As before,

we sometimes use ep to denote an event owned by process p. The following assumption

formalizes requirements regarding the atomicity of events.

Atomicity property: Each event ep must be of one of the forms below.

176

• ep = [p, read(v), α]. In this case, ep reads the value α from v. We call ep a read

event.

• ep = [p, write(v), α]. In this case, ep writes the value α to v. We call ep an atomic

write event.

• ep = [p, invoke(v), α]. In this case, ep writes the value ; to v, where ; is a special

value that means subsequent reads of v may read any value. We call ep an

invocation event.

• ep = [p, respond(v), α]. In this case, ep writes the value α to v. We call ep a

response event. �

We say that an event ep writes v if op(ep) ∈ {write(v), invoke(v), respond(v)}, and
that ep reads v if op(ep) = read(v). We say that ep accesses v if it writes or reads v. We

also say that a computation H contains a write (respectively, read) of v if H contains

some event that writes (respectively, reads) v.

An atomic write is merely a notational convenience to represent a write that is

executed “fast enough” to be considered atomic. Therefore, we require that a pro-

cess has an enabled atomic write if and only if it has an identical enabled nonatomic

write (Property P6, given later). A nonatomic write is represented by two successive

events, for its beginning (invocation) and its end (response). An example is shown in

Figure 7.2(a). If a process has performed an invocation event, then it may execute

the matching response event (Property P7). As stated before, our lower-bound proof

in Chapter 7 ensures that between a matching invocation and response, no write to

the same variable ever occurs. Therefore, in order to simplify bookkeeping, we allow

response events to be implicit. To be precise, if a process p executes an invocation

event ep, and if another process q executes an event fq that writes v after ep (but be-

fore its matching response event), then the matching response event implicitly occurs

immediately before fq, as shown in Figure 7.2(b). Therefore, in our model, overlapping

writes to the same variable cannot happen.5 (In fact, explicit response events are not

used at all in our proof. Although this may lead to an “open” nonatomic write that

does not terminate, such a write can always be converted into a “proper” nonatomic

write by appending a corresponding explicit response event. Explicit response events

5This does not mean that our lower bound does not apply to systems that allow overlapping writes
to the same variable. Such a system still has a subset of valid computations in which overlapping
writes to the same variable do not happen.

177

Invocation event

[p, invoke(v), a]

Explicit response event

[p, respond(v), a]

An implicit response

event by p

Another event by q
that writes v

Atomic reads of v

A nonatomic write to v

a

b

c

d

Invocation event

[p, invoke(v), a]

(a) (b)

Figure 7.2: Overlapping reads and writes of the same variable. (a) A nonatomic write
to v by p, terminated by an explicit response event. (b) A nonatomic write to v by p,
terminated by another process q’s write to v. In this case, q’s event may be an atomic
write event or an invocation event.

are introduced in this section merely to make our system model easier to understand.)

Thus, as far as overlapping operations are concerned, the only interesting case is that

of a read of a variable overlapping a write of the same variable. In this case, the read

may return any value (Properties P2′ and P4′ below). For example, in Figure 7.2(a),

events a–d may read any value from v.

Notational conventions pertaining to computations. The definitions of value(v,

H), writer event(v, H), writer(v, H) are essentially the same as those given in Sec-

tion 5.1. (Formally, let ep be the last event in H with operation write(v), invoke(v), or

respond(v). We define writer event(v, H) = ep, writer(v, H) = p, and value(v, H)

to be the value written to v by ep. If no such ep exists, then we define writer

event(v, H) = writer(v, H) = ⊥, and value(v, H) to be the initial value of v.) Other

definitions pertaining to atomic computations (given on page 92) also apply to non-

atomic computations.

Properties of nonatomic shared-memory systems. The following properties ap-

ply to any nonatomic shared-memory system. Note that Property P1, given below, is

identical to that given in Section 5.1, while Properties P2′ and P4′ are modified from

P2 and P4 in order to reflect the nonatomic nature of our system model. Properties

P6 and P7 are exclusive to nonatomic systems.

P1: If H ∈ C and G is a prefix of H, then G ∈ C.

— Informally, every prefix of a valid computation is also a valid computation.

178

P2′: Assume that H ◦ 〈ep〉 ∈ C, G ∈ C, G | p = H | p. Also assume that either (i) ep

is not a read event, or (ii) ep reads v and value(v, G) ∈ {value(v, H), ;} holds.

Then, G ◦ 〈ep〉 ∈ C holds.

— Informally, if two computations H and G are not distinguishable to process

p, if p can execute event ep after H, and if a variable read by ep (if any), after G,

has either the value ; or the same value as after H, then p can execute ep after

G. Note that ep may read any value from a variable with value ;, i.e., a variable

that is concurrently being accessed by a nonatomic write.

P4′: For any H ∈ C and a read event ep of v, H ◦ 〈ep〉 ∈ C implies that value(v, H)

is either α or ;.

— Informally, only the last value written to a variable may be read, unless the

last write was an invocation event on that variable.

P6: For any H ∈ C, p ∈ P , v ∈ V , and α, H ◦ 〈[p, write(v), α]〉 ∈ C holds if and only

if H ◦ 〈[p, invoke(v), α]〉 ∈ C holds.

— Informally, p can write to v atomically (via [p, write(v), α]) if and only if p

can start writing to v nonatomically (via [p, invoke(v), α]).

P7: For any H ∈ C, p ∈ P , v ∈ V , and α, H ◦ 〈[p, respond(v), α]〉 ∈ C holds if and

only if writer event(v, H) = [p, invoke(v), α] holds.

— Informally, a response event on v may appear only if preceded by the corre-

sponding invocation event, and only if there is no intervening write to v, since

such a write would entail an implicit response event.

As stated above, our proof does not make use of explicit response events. Therefore,

in the rest of this chapter, we assume that every computation of concern is free of explicit

response events.

Nonatomic one-shot mutual exclusion systems. We now define a special kind

of nonatomic shared-memory system, namely (nonatomic) one-shot mutual exclusion

systems, which are our main interest. Such systems solve a simplified version of the

mutual exclusion problem in which the first process that enters its critical section halts

immediately. Clearly, a lower bound for one-shot mutual exclusion also implies a lower

bound for general mutual exclusion.

179

A nonatomic one-shot mutual exclusion system S = (C, P, V) is a nonatomic shared-

memory system that satisfies the following properties. Each process p ∈ P has two

dummy auxiliary variables, entryp and csp. These variables are accessed only by the

following events: Enter p = [p, write(entryp), 0], and CS p = [p, write(csp), 0].

These events are called transition events, and are allowed in the following situations.

For all H ∈ C,

• if H | p �= 〈〉, then the first event (and only the first event) by p in H is Enter p;

• if H | p = 〈〉, then H ◦ 〈Enterp〉 ∈ C;

• if H contains CS p, then it is the last event of H | p.
We say that a process p is in its entry section if it has executed Enter p but not CS p,

and that p is in its critical section if it has executed both Enter p and CS p. (Processes

of a one-shot mutual exclusion system do not have exit sections.) The remaining

requirements of a one-shot mutual exclusion system are as follows.

Exclusion: For all H ∈ C, if H contains CS p, then it does not contain CS q for any

q �= p.

Progress (of a solo computation): For all H ∈ C, if H is a p-computation and

H does not contain CS p, then there exists a p-computation G such that H ◦ G ◦
〈CS p〉 ∈ C holds.

Note that the Progress property above is much weaker than that usually specified

for the mutual exclusion problem. Clearly, it is satisfied by any livelock-free mutual

exclusion algorithm.

Critical events in nonatomic systems. Since our nonatomic lower bound in Chap-

ter 7 is concerned with the number of distinct variables accessed, in order to facilitate

the proof, we define certain events as critical events. (Since we only have to count the

number of variables, the definition given here is much simpler than that of Section 5.1.)

An event of p in a computation H is critical if it is the first read of some variable v

by p or the first atomic write to v by p. Thus, if p has m critical events in H, then it

accesses at least m/2 distinct variables. Note that Enter p and CS p are critical events

in any computation, since they appear at most once and access new variables (entryp

and csp, respectively).

Consider the solo computation Sp by a process p, in which every write is atomic.

As defined above, the first event in Sp must be Enter p. By the Progress property, p

180

write entryp; /∗ Enterp ∗/
write u;
read v;
read u;
read v;
write u;
write w;
write csp /∗ CSp ∗/
halt

S(p, 1): write entryp; /∗ Enterp ∗/
S(p, 2): write u;
S(p, 3): read v;
S(p, 4): read u; read v; write u;
S(p, 5): write w;
S(p, 6): write csp /∗ CSp ∗/
halt

Figure 7.3: A possible solo computation by a process p. (a) Critical and noncritical
events. Critical events are shown in boldface. u, v, and w denote shared variables.
Private variable accesses are ignored and are not shown. (b) The same computation,
partitioned into solo-execution segments.

eventually executes CS p, and then terminates. (An example is shown in Figure 7.3(a).)

We define ce(p, j) as the jth critical event by p in its solo computation. For example,

in Figure 7.3(a), we have ce(p, 1) = Enter p, ce(p, 2) = [p, write(u), α] (for some α),

ce(p, 3) = [p, read(v), β] (for some β), and so on. Note that, for any process p, its first

and last critical events are Enter p and CS p, respectively.

If ce(p, j) is a critical write event of v, then we also denote its corresponding invoca-

tion event on v by ie(p, j). For example, in Figure 7.3, we have ie(p, 2) = [p, invoke(u), α]

(for some α) and ie(p, 5) = [p, invoke(w), γ] (for some γ), but ie(p, 3) is undefined.

We partition Sp into solo segments S(p, j) (for j = 1, 2, . . .), such that S(p, j)

starts with p’s jth critical event ce(p, j) and ends right before p’s (j+1)st critical event.

We say that a solo segment by p is a transition segment if it contains Enter p or CS p

(i.e., if it is either p’s first or last solo segment). For example, the solo computation by

p in Figure 7.3(b) is divided into six segments, where S(p, 1) and S(p, 6) are transition

segments and the rest are non-transition segments.

7.3 Lower Bound: Proof Sketch

In Appendix D, we show that for any one-shot mutual exclusion system S = (C, P, V),

there exists a computation H such that some process p accesses Ω(log N/ log log N)

distinct variables to enter its critical section, where N = |P |. In this section, we sketch

the key ideas of our proof.

181

7.3.1 Brief Overview

As in Chapters 5 and 6, our proof focuses on a special class of computations called

“regular” computations. However, the definition of a regular computation is different

from these chapters, because the underlying system model is different.

A regular computation H consists of events of two groups of processes, “active

processes” (denoted by Act(H)) and “covering processes” (denoted by Cvr(H)). Infor-

mally, an active process is a process in its entry section, competing with other active

processes; a covering process is a process that has executed some part of its entry

section, and has started (or is ready to start) a nonatomic write (by executing an in-

vocation event) of some variable v in order to “cover” v, so that other processes may

concurrently access v without gaining knowledge of each other.

At the end of this section, a detailed overview of our proof is given. Here, we give cur-

sory overview, so that the definitions that follow will make sense. Initially, we start with

a regular computation H1 in which all the processes in P are active and execute their

first solo segments (i.e., 〈Enter p〉 for each p ∈ P). The proof proceeds by inductively

constructing longer and longer regular computations, until the desired lower bound is

attained. The regularity condition defined below ensures that no participating process

has “knowledge” of any other process that is active.6 This has three consequences:

each process executes the same sequence of events as its solo computation (i.e., as it

does when executed alone); we can “erase” any active process (i.e., remove its events

from the computation) and still get a valid computation; “most” active processes have

a “next” non-transition critical event, and hence, a “next” non-transition solo segment.

In each induction step, we append to each of the n active processes (except at most

one) its next solo segment. These next solo segments may introduce unwanted informa-

tion flow, i.e., they may cause an active process to acquire knowledge of another active

process, resulting in a non-regular computation. Such information flow is problematic

because we are ultimately interested in solo computations.

Information flow among processes is prevented either by covering variables, as de-

scribed above, or by erasing processes — when a process is erased, its events are com-

pletely removed from the computation currently being considered. These basic tech-

niques, covering and erasing, have been previously used to prove other lower bounds

pertaining to concurrent systems ([3, 79]; also see Section 2.6). The erasing strategy

6A process p has knowledge of other processes if it has read a variable with a value (different from 1)
written by another process. If a process p reads a variable with the value 1, then any value can be
returned. We assume the value returned is the same value as in its solo computation.

182

S(p1, 1)
S(p2, 1)

. . .

S(pk, 1)︸ ︷︷ ︸
H1: added at the first step

S(p1, 2)
S(p2, 2)

. . .

S(pk, 2)︸ ︷︷ ︸
H2: added at the second step

· · ·

S(p1, m − 1)
S(p2, m − 1)

. . .

S(pk, m − 1)︸ ︷︷ ︸
Hm−1: added at the last ((m − 1)st) step

Figure 7.4: Structure of a regular computation H after m − 1 induction steps. This
diagram does not show the full structure of H; additional details will be introduced as
needed.

was also used to prove lower bounds in Chapters 5 and 6. However, the particular

covering strategy being used here is different from those applied in earlier papers and

in Chapters 5 and 6, as it strongly exploits the fact that nonatomic writes may occur

for arbitrary durations.

As explained above, at each induction step, we append one solo segment per each

active process (that is not erased). Therefore, after m − 1 induction steps (for some

m > 2), a regular computation H can be decomposed into m − 1 segments H1, H2,

. . . , Hm−1, where each Hj consists of the events that are appended at the jth induction

step (and are not erased so far).7 Thus, the structure of H is as shown in Figure 7.4.

Here, Act(H) = {p1, p2, . . . , pk} is the set of active processes. We also assume

that H satisfies the following property.

• For each variable v, a regular computation H may contain at most one process that

executes “uncovered” write(s) of v. (7.1)

Informally, an uncovered write to v (by a process p) is a write to which the covering

strategy is not applied. Thus, if some other process q reads v later, then they may

gain knowledge of p, which is clearly undesirable. Property (7.1) limits the number

of uncovered writes, so that we can prevent such a case from happening without too

much difficulty, as explained shortly. (This property is also formally stated in R4, given

later.)

As explained above, most active processes have a “next” non-transition solo segment

that can be potentially executed after H. For simplicity, assume that this is the case for

all active processes. Thus, each active process pj has an mth solo segment S(pj, m). We

now present examples that demonstrate why and when the two strategies — covering

and erasing — are necessary.

7We consider the initial computation H1 to have taken one induction step to construct. Thus, a
computation after m − 1 induction steps have m − 1 solo segments per each active process.

183

(a)

S(p1, 1)
S(p2, 1)

. . .

S(pk, 1)

· · ·

S(p1, m − 1)
S(p2, m − 1)

. . .

S(pk, m − 1)︸ ︷︷ ︸
H = H1 ◦ H2 ◦ · · · ◦ Hm−1

S(p1, m)
S(p2, m)

. . .

S(pk, m)︸ ︷︷ ︸
Hm: consists of
newly appended solo segments

(b)

S(p2, 1)
S(p4, 1)

. . .

S(pk, 1)

· · ·

S(p2, m − 1)
S(p4, m − 1)

. . .

S(pk, m − 1)︸ ︷︷ ︸
H, with odd-numbered active processes erased

S(p2, m)
S(p4, m)

. . .

S(pk, m)︸ ︷︷ ︸
Hm

(c)

S(p1, 1)

. . .

S(pk, 1)

· · ·
S(p1, m − 1)

. . .

S(pk, m − 1)︸ ︷︷ ︸
H

S(p1, m)

. . .

S(pk, m)︸ ︷︷ ︸
Hm: each segment
writes v

S(p1, m+ 1)

. . .

S(pk, m+ 1)︸ ︷︷ ︸
Hm+1: each segment
reads and writes v

Figure 7.5: Extensions of H: only relevant details are shown. (a) An ideal case. Each
next critical event ce(pj, m) accesses a distinct variable vj, which is not accessed in H.
(b) Erasing strategy. Each next critical event ce(pj, m) writes variable v�j/2�, which is
not accessed in H. (c) A case in which the covering strategy is necessary. Each next
critical event ce(pj, m) writes the same variable v, and each (m + 1)st critical event
ce(pj, m+1) reads v. Each (m+1)st solo segment S(pj, m+1) also contains noncritical
write(s) of v. Note that this computation incurs information flow.

Example of the erasing strategy. First, we consider an “ideal” case, shown in

Figure 7.5(a), in which each next critical event ce(pj, m) accesses a distinct variable

vj. Moreover, we assume that each vj is not accessed in H. (As explained in detail

later, this condition can be ensured by erasing some processes.) In this case, we simply

append all of the next solo segments. Since each critical event accesses a distinct

variable, they cannot induce information flow. (For now, we ignore the possibility that

noncritical events in these next solo segments may induce information flow. We will

address that issue later.) Thus, we can construct a longer regular computation with a

(partial) structure given in Figure 7.5(a).

184

In this ideal case, no erasing or covering is necessary. However, consider another

case, depicted in Figure 7.5(b), in which k active processes access k/2 distinct variables,

where for simplicity, k is assumed to be even. We assume that each variable vj (for 1 ≤
j ≤ k/2) is written by both ce(p2j−1, m) and ce(p2j, m). In this case, we cannot append

both S(p2j−1, m) and S(p2j, m), because then Property (7.1) would be violated. Thus,

we apply the erasing strategy: we erase, say, every odd-numbered active process, and

construct a regular computation with k/2 active processes, as shown in Figure 7.5(b).

If the next critical events collectively access many distinct variables, then we can

apply this erasing strategy in the obvious way (by selecting one process for each variable

and erasing the rest), and obtain a longer regular computation with enough active

processes. Thus, for each variable v of concern, there exists exactly one process that

accesses v, and hence information flow is precluded and (7.1) is preserved. (As explained

later, we can also ensure that every write to v in H (if any) is properly covered, with

some additional erasing.) However, if the next critical events collectively write only a

small number of variables, this strategy may leave too few active processes, and the

induction may stop before the desired lower bound is achieved. We now consider an

example of such a situation.

Example of the covering strategy. As a stepping stone toward a general covering

strategy, we present here a simplified version of the basic technique. If the majority

of the next critical events are reads, then we may prevent information flow as follows:

(i) we erase each process that has a write as its next critical event, and (ii) for each

variable v that is read by some next critical read event, we erase a process (if any) that

executes uncovered write(s) of v in H. (By (7.1), for each such v, we erase at most one

process.) We thus ensure that each next critical read event reads the initial value of

the variable it accesses.

On the other hand, if the majority of the next critical events are writes, then we

apply the covering strategy. For simplicity, assume that every next critical event writes

v. (That is, ce(pj, m) is a write event of v, for each pj ∈ Act(H).) In this case,

appending all next solo segments as in Figure 7.5(a) may lead to information flow in

further induction steps. To see why, suppose that each pj in our example reads v in

its (m + 1)st critical event ce(pj, m + 1). Moreover, suppose that each (m + 1)st solo

segment S(pj, m + 1) contains noncritical write(s) of v. This situation is depicted in

Figure 7.5(c).

185

In this case, every process, in its (m + 1)st segment, reads from v a value written

by another process. For example, process p1 reads from v the value written by pk in

S(pk, m). Erasing pk will not eliminate this information flow, because then p1 will read

the value written by pk−1 instead.

Information flow may be eliminated by changing some critical writes into invocation

events on the same variable. Since the (m+1)st solo segments contain noncritical writes

of v, we must include an invocation event on v after each (m+ 1)st solo segment (that

is not erased) in order to cover such writes. (We again assume that k is even, for

simplicity.) By stalling half of the active processes (say, the even-numbered ones)

and letting the other half continue their active execution, we append the following

computations at the mth and (m+ 1)st steps, respectively:

Hm = S(p1, m) ◦ S(p3, m) ◦ · · · ◦ S(pk−1, m) ◦ 〈ie(pk, m)〉,
Hm+1 = S(p1, m+ 1) ◦ 〈ie(p2, m)〉 ◦ S(p3, m+ 1) ◦ 〈ie(p4, m)〉 ◦ · · · ◦

S(pk−3, m+ 1) ◦ 〈ie(pk−2, m)〉 ◦ S(pk−1, m+ 1).

Here, Hm consists of the solo segments of all odd-numbered active processes, fol-

lowed by an invocation event by pk on v (so that the following critical read of v in

S(p1, m+1) does not gain knowledge of pk−1). InHm+1, solo segments by odd-numbered

active processes are interleaved with invocation events on v by even-numbered processes,

so that information flow among them is prevented. We thus guarantee that any read

from v by a process pj (for odd j) either reads a value written by pj, or happens con-

currently with a nonatomic write to v (by some covering process). In the latter case,

by our system model, any value may be read. Thus, information flow can be prevented

by assuming that each such process pj reads the same value as in its solo computation.

After appending both Hm and Hm+1, we thus have k/2 active processes (the odd-

numbered ones), plus k/2 covering processes (the even-numbered ones) that have been

used in covering v and do not participate in further induction steps.

Unfortunately, the construction above is somewhat simplified and does not really

work. This is because, in further induction steps (beyond the (m+1)st), we may append

additional solo segments S(pj, l) (for odd j and l > m+1) that contain both noncritical

reads and writes of v. Thus, they too must be interleaved with invocation events on v to

prevent information flow, but we do not have any more “available” covering processes

that may execute these events.

186

In order to solve this problem, we do not stall only half of the active processes,

but “most” of them: for each active process (that is not stalled), we stall s processes

(where s = Ω(log N/ log log N)), so that there are enough invocation events to insert

in further induction steps. (We thus reduce the number of active processes by a factor

of s + 1.) We then insert an invocation event after every solo segment S(pj, l) such

that l ≥ m. (Note that this may introduce a large number of unnecessary invocation

events, as explained shortly.) Thus, segments appended at the mth and later steps may

have the following structure.

Hm = S(p1, m) ◦ 〈ie(p2, m)〉 ◦ S(ps+1, m) ◦ 〈ie(ps+2, m)〉 ◦ · · ·
Hm+1 = S(p1, m+ 1) ◦ 〈ie(p3, m)〉 ◦ S(ps+1, m+ 1) ◦ 〈ie(ps+3, m)〉 ◦ · · ·
Hm+2 = S(p1, m+ 2) ◦ 〈ie(p4, m)〉 ◦ S(ps+1, m+ 2) ◦ 〈ie(ps+4, m)〉 ◦ · · ·

.

(7.2)

Note that some of these invocation events are actually unnecessary. For example,

event ie(p2, m) is unnecessary because the following segment S(ps+1, m) starts with a

write to v (i.e., ce(ps+1, m)), thus overwriting the value written by S(p1, m). Also, for

any l > m, the solo segment S(pj, l) does not necessarily contain a write to v. Thus,

it may be overkill to insert an invocation event after every S(pj, l). We simply include

such unnecessary invocation events to simplify bookkeeping.

A generic description of the covering strategy. The structure depicted in (7.2)

is still simplified, for three reasons. First, solo segments may contain writes to variables

other than v, in which case invocation events on these variables will be placed together

with invocation events on v. Second, in practice, the mth critical events may collectively

access multiple variables. In that case, we have to apply the covering strategy separately

to each variable.

Finally, it may be impossible to index and arrange processes in a regular fashion as

above, since some of these active processes may be erased later. Thus, we need a more

dynamic approach, as depicted in Figure 7.6. Assume that, at the mth induction step,

we find that there are “too many” processes whose mth critical event is a write to v,

as shown in Figure 7.6(a). (In (7.2), these processes comprise all active processes; in

general, they will form a subset of the active processes.) We partition these processes

into two sets: AW m
v , the set of “active writers,” and CW m

v , the set of “covering writers.”

Processes in AW m
v continue active execution, while processes in CW m

v are stalled just

before they execute their critical writes of v, and may later execute invocation events

187

on v (Figure 7.6(b); the “reserve writers” in this figure will be considered later). (For

example, in (7.2), processes p1 and ps+1 belong to AW m
v , while processes p2, p3, p4,

ps+2, ps+3, and ps+4 belong to CW m
v .) We say that we select processes in CW m

v for

covering variable v.

For each process p ∈ AW m
v , we append its mth solo segment S(p, m) to construct

the mth segment. Since S(p, m) contains ce(p, m), a write to v, we have to cover this

write. Thus, we choose a process q from CW m
v and append ie(q, m), q’s invocation

event on v, after S(p, m) (Figure 7.6(b)). We say that we deploy a process q from

CW m
v in order to cover S(p, m).

We now consider the lth induction step, where l > m (Figure 7.6(c)). For each

process p ∈ AW m
v that is active at that point, we append its solo computation S(p, l)

in order to construct the lth segment. Since ce(p, m) writes v, S(p, l) may contain a

write to v. Thus, we choose a process q′ from CW m
v and append ie(q, m) after S(p, l).

As before, we say that we deploy q′ in order to cover S(p, l). (As explained before,

ie(q′, m) may in fact be unnecessary.)

Thus, if yet another process r reads v later, then r cannot read the value written

by p in S(p, l). In particular, if r’s read is concurrent with the nonatomic write by q′,

then by our system model, r may read any value. Otherwise, the nonatomic write by

q′ has been terminated by yet another (atomic or nonatomic) write of v. (Recall that

explicit response events are not used in our proof.) Thus, the value written by p is

already overwritten. By repeating this argument for each reader and covered writer of

v in H, it follows that covered writes cannot cause information flow. (This argument

is formalized in Lemma D.1 in Appendix D.)

Note that, after the construction of the each segment, many processes in CW m
v are

left unused — that is, they are not deployed yet. These processes constitute RW m
v ,

the set of reserve processes (or “reserve writers”). (See Figure 7.6(b) and (c).) The

processes in RW m
v serve two purposes. First, when we inductively construct longer

computation(s), these processes are deployed to cover v after newly appended solo

segments. For example, process q′ is a reserve process in Hm (the computation obtained

at the end of the mth step, depicted in Figure 7.6(b)) but not in Hl (depicted in

Figure 7.6(c)). Second, if some deployed process in (CW m
v −RW m

v) is erased later (due

to a conflict via some other variable), then a process in RW m
v is selected to take its

place. For example, in Figure 7.7 (which is a continuation of Figure 7.6), process q′

is erased, and we choose a process r from RW m
v and use r to take the place of q′ in

covering v.

188

.
.
.

events that are

added up to the

(m-1)st step

a subset

of active

processes

.
.
.

ready to write v:

for each process r,

ce(r, m) is a write to v

(a) right before the mth step

(plus other
 processes) .

.
.

S(p, m)

critical writes to v

(plus other
 processes)

(b) construction of the mth segment

p

.
.
.

continue active execution:

become active writers AWm
v

stalled:

become

reserve writers

RWm
v

become

covering writers

CWm
v

deployed

in the

mth step

.
.
.

S(p, l): may contain write(s) to v

(plus other processes)

(c) at each later (lth) step

p

deployed

in the lth step

events that are

added up to the

(m-1)st step

events that are

added up to the

(l-1)st step

. . .

.
.
.

deployed here

q’
ie(q’, m)

.
.
.

.
.
.

stalled: constitute RWm
v

at the end of the lth induction step

invocation events
on v

invocation events on v

ie(q, m)
q

a subset of AWm
v that are active

at the lth induction step

Figure 7.6: Covering strategy. We only show relevant processes. (In general, the
computation has many other processes that are not depicted here.) Here and in later
figures, horizontal lines depict events of a particular process, black circles (•) depict
a single event, and empty circles (◦) depict an event that is enabled at that point
but not executed. (a) At the mth step, we find “too many” active processes that are
ready to write variable v. (b) At the same step, we stall some of these processes
— these processes constitute the set of “covering writers” CW m

v . The rest of the
processes constitute the set of “active writers” AW m

v — these processes remain active
and continue execution. Some processes among CW m

v are deployed to cover the mth

solo segments. For example, q is deployed to cover S(p, m). The rest of CW m
v remain

undeployed and constitute RW m
v . We thus construct Hm. (c) Construction of Hl at

the lth step (where l > m). In general, a subset of AW m
v is active here. We also deploy

a process q′ from CW m
v to cover S(p, l).

189

.
.
.

S(p, l)

(p l u s o t h e r p r o c e s s e s)

p

deployed

in the lth step

. . .
.
.
.

deployed between the mth and

the (l-1)st step

q’
ie(q’, m)

.
.
.

.
.
.

stalled:

constitute RWm
v

. . .

.
.
.

.
.
.

deployed at or after

the (l+1)st step

active writers

AWm
v

. .

access of some other variable u
causes conflict: q must be now erased

.
.
.

S(p, l)
p

. . .

.
.
.

q’

.
.
.

.
.
.

.
.
.

.
.
.

active writers

AWm
v

. .

(a)

(b)

events that are

added up to the

(m-1)st step

events that are

added up to the

(l-1)st step

events that are

added at or after the

(l+1)st step

events that are

added at the

lth step

q’ can be now

safely erased.

covering writers

CWm
v

r
ie(r, m): r takes over

the role of q’new RWm
v}

(p l u s o t h e r p r o c e s s e s)

covering writers

CWm
v

. .

Figure 7.7: The use of reserve processes to “exchange” two processes before erasing.
(a) After Figure 7.6(c), at some later step, we find that process q′ ∈ CW m

v incurs a
conflict via some other variable u. Thus, we have to erase q′. (b) We choose some
process r from RW m

v , and let r execute its invocation event in place of q′. Process q′

can now be safely erased. Note that |RW m
v | is reduced by one, since r is no longer a

reserve process.

In practice, additional complications arise if a variable is chosen multiple times for

covering throughout the induction. For example, we may find that many processes

write v at the mth induction step, and partition them into two sets AW m
v and CW m

v ,

as described above. Later, at the kth induction step, we may again find that many

processes (that have not written v so far) write v. Since they did not write v at the mth

induction step, they are clearly disjoint from both AW m
v and CW m

v . We thus partition

190

these processes and construct two sets AW k
v and CW k

v . In this case, each active process

that writes v is covered by its corresponding subset of covering processes: if p ∈ AW m
v

and p′ ∈ AW k
v hold, then we cover S(p, l) for each l ≥ m (respectively, S(p′, l′) for each

l′ ≥ k) by deploying some process from CW m
v (respectively, CW k

v).

7.3.2 Formal Definitions

Having outlined some of the basic ideas of our proof, we now define some relevant

notation and terminology. At the core of these definitions is the notion of a regular

computation, mentioned above. After formally defining the class of regular computa-

tions, we give a detailed proof sketch.

A regular computation H has an associated induction number mH , which is the

number of induction steps taken to construct H. Such a computation H can be written

H = H1 ◦H2 ◦ · · · ◦HmH , where Hm is called the mth segment of H. For each segment

index m (1 ≤ m ≤ mH), Hm consists of the events that are appended at the mth

induction step (and are not erased so far), and contains exactly one critical event by

each process that was active at the mth induction step. We now explain the process

groups involved in constructing H in detail.

We define P (H), the set of participating processes in H, as follows:

P (H) = {p ∈ P : H | p �= 〈〉}. (7.3)

Processes in P (H) are partitioned into two sets: Act(H), the active processes, and

Cvr(H), the covering processes.

P (H) = Act(H) ∪ Cvr(H) ∧ Act(H) ∩ Cvr(H) = {}. (7.4)

As explained above, each covering process p is selected to cover some variable v

at some induction step m, and is stalled right before executing its next critical event

ce(p, m), which must be a write to v. In this case, we define the covering index of p,

denoted ci(p), to be m, and the covering variable of p, denoted cv(p), to be v. We also

define the set CW m
v as the set of covering processes (or “covering writers”) that are

selected at the mth induction step to cover v:

CW m
v = {p ∈ Cvr(H): (ci(p), cv(p)) = (m, v)}. (7.5)

191

By definition, we also have the following:

(ci(p), cv(p)) = (m, v) only if ce(p, m) is a write to v. (7.6)

As explained before, a process q in CW m
v may be deployed to cover S(p, l), for some

process p and segment index l ≥ m. In this case, we define cp(q), the process covered

by q, to be p. We let cp(q) = ⊥ if q is not deployed in H.

In our proof, no processes are selected for covering at the first induction step:

ci(p) ≥ 2, for each p ∈ Cvr(H). (7.7)

The covering processes may also be grouped as follows: we define Cvrm(H), the set

of covering processes at the end of the mth segment, as follows:

Cvrm(H) = {p ∈ Cvr(H): ci(p) ≤ m} =
⋃

1≤j≤m, v∈V

CW j
v. (7.8)

Cvrm(H) consists of processes that are selected for covering through the mth induc-

tion step. We similarly define Actm(H), the set of active processes at the end of the

mth segment, as follows:

Actm(H) = P (H) − Cvrm(H). (7.9)

Actm(H) consists of processes that have not been selected for covering, and hence

are active at the end of the mth induction step. A process p in Actm(H) may be

selected for covering in some later, say, lth, induction step, in which case p belongs to

both Actm(H) and Cvrl(H) (see Figure 7.8). Note that if a process q is selected to

cover a variable v at the mth induction step (i.e., q ∈ CW m
v), then q does not become

active again. That is, q ∈ Cvrm(H) implies q /∈ Actm
′
(H), for each m′ ≥ m.

From the description above, we have Cvr(H) = CvrmH (H) and Act(H) = ActmH (H).

Note that, by (7.7), (7.8), and (7.9), the following hold:

Cvr1(H) = {} and Act1(H) = P (H). (7.10)

We now describe the structure of H l, the lth segment of H. We can write H l as

follows:

192

H l = S(p1, l) ◦ C(p1, l;H) ◦ S(p2, l) ◦ C(p2, l;H) ◦ · · · ◦ S(pk, l) ◦ C(p2, l;H),

where {p1, p2, . . . , pk} = Actl(H).

(7.11)

S(p, l), the lth solo segment of p, was already defined in Section 7.2. We call

C(p, l;H) the lth covering segment of p. Computation C(p, l;H) consists of invocation

event(s) that cover writes contained in S(p, l) (see (7.2) for a simple example). When

there is no possibility of confusion, we use C(p, l) as a shorthand for C(p, l; H). We

also define AW l
v, the set of active writers of v at the lth step, as follows:

AW l
v = {p ∈ Actl(H): ce(p, l) is a write to v}. (7.12)

We now describe the structure of C(p, l) in detail. For each m ≤ l, ce(p, m) may be

a write to some variable v (i.e., p ∈ AW m
v holds). If the covering strategy was applied

at the mth induction step, then some processes have been chosen to cover v, that is, we

have CW m
v �= {}. (See Figure 7.6(a).) Thus, as described before, we deploy a process

q from CW m
v , and let q execute its invocation event ie(q, m) on v in C(p, l). C(p, m)

consists of such invocation events, as stated formally in R1 and R2 below. (Thus, the

invocation events depicted in Figure 7.6(b) and (c) are contained in covering segments,

which have been omitted from the figure for simplicity. For example, ie(q, m) and

ie(q′, l) are contained in C(p, m) and C(p, l), respectively.)

We also define RW m
v , the set of reserve processes (or “reserve writers”), to be the

set of processes in CW m
v that are not yet deployed:

RW m
v = {q ∈ CW m

v : q is not deployed in H}
= {q ∈ CW m

v : cp(q) = ⊥}. (7.13)

When we consider multiple regular computations, we also write CW m
v (H), AW m

v (H),

RW m
v (H), ci(p;H), cv(p;H), and cp(p;H) in order to specify the relevant computation

H.

The structure of a regular computation, explained so far, is depicted in Figure 7.8.

We now formally define the notion of a regular computation. Conditions R1–R4 defined

below are discussed after the definition.

Definition: Let S = (C, P, V) be a nonatomic one-shot mutual exclusion system. A

computation H in C is regular if and only if it satisfies the following.

193

.
.
.

Cvr3(H)

H2

Act3(H)

. . .

. . .

. . .

.
.
.

.
.
.

. . .

. . .

Cvr2(H)

. . .

H1 H2

Act2(H)

. . .

.
.
.

Hm-1

.
.
.

CWm
u : ready to write u

CWm
v : ready to write v

CWm
w : ready to write w

.
.
.

Actm-1(H)

Cvrm-1(H)

S(p, m)
p
q

S(q, m)

. . .

C(p, m) C(q, m)

Hm

Actm(H)

Cvrm(H)

ce(p, m) is a write

to v: p Î AWm
v

ce(q, m) is a write

to u: q Î AWm
u

ie(s, m)s

r
ie(r, m)

invocation events
deployed to cover
S(p, m)

.
.
.

Figure 7.8: The structure of a regular computation. The computation is depicted as
a collection of boxes, where the horizontal axis represents sequential order and the
vertical axis represents different processes. A grey-filled box represents a collection of
solo segment(s), and a striped box represents a collection of covering segment(s). For
simplicity, segments H1, . . . , Hm−2 are shown simplified, and segments after Hm

are not shown. The set of covering processes (Cvr1(H), Cvr2(H), . . .) increases, and
the set of active processes decreases, as the segment index increases. We assume that
the covering strategy is used at the mth induction step. Thus, a number of processes
(specifically, those in Cvrm(H)−Cvrm−1(H)) are stalled to cover the variables written
by the mth critical events of processes in Actm(H). Processes in Cvrm(H)−Cvrm−1(H)
are partitioned into disjoints sets CW m

u , CW m
v , CW m

w , etc., and are ready to execute
covering invocation events on the variables u, v, w, etc., respectively. (To save space,
subsets such as CW m

v are depicted with only a few processes, but in reality these sets
are much bigger.) A process p ∈ Actm(H) executes its mth solo segment S(p, m).
S(p, m) is then followed by the covering segment C(p, m), in which invocation events
are executed to cover S(p, m).

194

H can be written as H = H1 ◦H2 ◦ · · · ◦HmH , where Hm is called the mth segment

of H. Segment Hm consists of the events appended at the mth induction step. We call

mH the induction number of H.

Processes in P (H) are partitioned into Cvr(H) and Act(H). These sets, together

with CW m
v (H), Cvrm(H), Actm(H), AW m

v (H), and RW m
v (H) are defined as in (7.3)–

(7.5), (7.8), (7.9), (7.12), and (7.13). Segment Hm can be written as in (7.11). More-

over, H satisfies the following regularity conditions.

R1: For each event eq contained in the covering segment C(p, m), the following hold

for some j ≤ m and variable v: eq = ie(q, j), q ∈ CW j
v, cp(q) = p, and ce(p, j)

is a write to v (i.e., p ∈ AW j
v). (Note that q ∈ CW j

v implies that ie(q, j) is an

invocation event on v.)

R2: For each p ∈ Actm(H) and j ≤ m, if ce(p, j) is a write to some variable v, and

if CW j
v is nonempty, then there is exactly one invocation event on v in C(p, m),

which must be ie(q, j) for some q ∈ CW j
v.

R3: H does not contain CS p for any process p.

R4: Assume that, for some segment indexm (1 ≤ m ≤ mH) and process p ∈ Actm(H),

ce(p, m) is a write to some variable v (i.e., p ∈ AW m
v) and CW m

v is empty. (Note

that, by (7.11), p ∈ Actm(H) implies that Hm contains S(p, m), and hence,

ce(p, m).) Then, for each segment index j and each process q ∈ Actj(H) different

from p, the following hold:

(i) if j < m and ce(q, j) is a write to v, then CW j
v is nonempty (i.e., q’s write to

v is covered);

(ii) if j < m and ce(q, j) is a read of v, then q ∈ Cvrm(H) holds;

(iii) if m ≤ j ≤ mH , then ce(q, j) does not access v. �

Conditions R1 and R2 formally describe the structure of C(p, m). Condition R3

is self-explanatory. We now explain Condition R4, which formalizes the requirement

stated in (7.1). Informally, if a process p executes an “uncovered” critical write of v

in segment Hm, then we require that p be the only uncovered writer of v throughout

H. (Conditions (i) and (iii) of R4 imply that all other critical writes to v are covered.)

In this case, we say that p is the single writer of v in H. The situation is depicted in

Figure 7.9.

195

writes/reads of v by p

reads & covered

writes of v ce(p, m) writes v.

S(p, m)

H1 Hm-1 Hm Hm+1

Figure 7.9: The single-writer case. We assume that p ∈ Actm(H), ce(p, m) is a write
to v (i.e., p ∈ AW m

v), and that CW m
v is empty. Segments H1, H2, . . . , Hm−1 may

contain reads and covered writes of v. In segment Hm and later segments, p is the only
process that may access v.

To see why this is necessary, assume that R4 is violated and H contains two un-

covered writers of v, p and q. If yet another process r reads v in a future induction

step, then erasing p does not eliminate information flow, because then r would read

a value written by q instead. Thus, it becomes difficult to apply the erasing strategy

without erasing too many processes. Condition R4 prevents such a case and simplifies

bookkeeping.

We also require that no process other than p should read v after p writes v, because

then such a process would gain knowledge of p. In particular, consider a process q �= p

that reads v in some earlier segment Hk (where k < m). By the definition of a critical

event, q must execute a critical read of v in or before Hk, i.e., ce(q, j) is a read of v for

some j ≤ k < m. In this case, Condition (ii) of R4 ensures q ∈ Cvrm(H). To see why

this is necessary, assume otherwise, i.e., assume that q ∈ Actm(H) holds. In that case,

Hm would contain S(q, m) (by (7.11)), which may in turn contain a noncritical read

of v. Thus, q may gain knowledge of p by reading v, which is clearly unacceptable.

Finally, in order to simplify bookkeeping, we require that no process other than p

should write v in or after Hm, as stated in Condition (iii) of R4.

We can thus define a “single writer” as follows.

Definition: Given a regular computation H and a variable v, we say that a process p

is the single writer of v if p ∈ AW m
v (H) and CW m

v (H) = {} hold for some m. �

It is easy to see that if a single writer exists, then it is uniquely defined. Assume, to

the contrary, that we have two “single writers” p and q of v. Then, for some m and j,

p ∈ AW m
v , q ∈ AW j

v, and CW m
v = CW j

v = {} hold. Without loss of generality, assume

196

m ≤ j. By (7.12), we have the following: p ∈ Actm(H), q ∈ Actj(H), ce(p, m) writes

v, and ce(q, j) writes v. But this contradicts R4(iii).

Properties of a regular computation. We now define some additional properties

of a regular computation that are used in our proof. In order to guarantee that the

induction can continue, we need to ensure that there are enough covering processes for

each covered variable and for each process writing that variable. Consider a process

p ∈ AW m
v . If p’s write to v is covered (i.e., CW m

v is nonempty), then we need to deploy

a process from CW m
v to cover each of S(p, m), S(p, m + 1), and so on. Since the

induction continues until we construct Θ(log N/ log log N) segments, we may need up

to Θ(log N/ log log N) covering processes in CW m
v in order to cover p.8 Therefore, we

need |AW m
v | · Θ(logN/ log logN) processes in CW m

v to ensure that we do not run out

of covering processes during the induction.

To simplify bookkeeping, we assume some positive integer value c = c(N), satisfying

c = Θ(logN), (7.14)

and require that CW m
v has at least c · |AW m

v | processes. (The exact value of c is

unimportant, since we are interested in an asymptotic lower bound. Throughout our

proof, we assume the existence of a fixed one-shot mutual system, and hence we consider

c as a fixed constant.)

However, this bound on |CW m
v | is still insufficient, since processes in CW m

v may

also be erased in induction steps beyond the mth. (See Figure 7.7 for an example.)

Thus, we actually need to ensure that c · |AW m
v | covering processes survive even after

some such processes are erased in future induction steps. As explained in detail later,

we ensure that at most c processes are erased from CW m
v at any induction step.9 Thus,

at the mth step, we select c · (c−m) additional processes for covering, since we have at

most c − m induction steps beyond the mth.

It follows that we need to select at least c · (|AW m
v | + c − m) covering processes

for CW m
v , at the mth induction step. Since H has taken total mH steps to construct,

c · (mH − m) processes may have already been erased from CW m
v (c processes for each

step between (m + 1)st and mH
th). Therefore, we define req(m, v; H), the required

8If p is not active at the end of H (i.e., p /∈ Act(H)), or if p becomes a covering process at some
future induction step, then p requires fewer covering processes throughout the induction, since it has
fewer solo segments in H or its extensions.

197

number of covering processes for AW m
v (H), as c · (|AW m

v (H)|+ c − m)− c · (mH − m):

req(m, v;H) = c · (|AW m
v (H)| + c − mH). (7.15)

When there is no possibility of confusion, we use req(m, v) as a shorthand for req(m, v;

H).

Given a regular computationH, for each pair (m, v), where 1 ≤ m ≤ mH and v ∈ V ,

we define its rank π(m, v;H) as follows:

π(m, v;H) =




max {0, req(m, v) − |CW m
v (H)|},

if AW m
v (H) �= {} ∧ CW m

v (H) �= {};
0, otherwise.

(7.16)

When there is no possibility of confusion, we use π(m, v) as a shorthand for π(m, v;H).

Note that π(m, v) is always nonnegative.

We also say that a pair (m, v) of a segment index and a variable, where 1 ≤ m ≤ mH

and v ∈ V , is a covering pair if both AW m
v and CW m

v are nonempty. Thus, π(m, v) is

nonzero only if (m, v) is a covering pair. We also define the maximum rank πmax(H)

and the total rank π(H) of a regular computation H to be the maximum and the sum

of its ranks:

πmax(H) = max
1≤m≤mH , v∈V

π(m, v;H); (7.17)

π(H) =
∑

1≤m≤mH , v∈V

π(m, v;H)

=
∑

(m,v): covering pair in H

π(m, v;H).
(7.18)

Informally, a zero rank indicates that we have enough processes in CW m
v to cover

AW m
v throughout the rest of the induction, while a positive rank indicates that CW m

v is

not large enough. We ensure that each induction step results in a regular computation

H with a maximum rank of zero. (Thus, π(m, v;H) is zero for all m and v.) Within

a single the induction step, however, we may obtain intermediate computations with

positive maximum ranks; if π(m, v) becomes too high (for some m and v), then we

erase some processes in AW m
v to decrease req(m, v) and π(m, v).

9In fact, more than c processes may be erased when it is safe to do so, e.g., if CW m
v is “large

enough” to begin with. This will be explained in the detailed proof sketch.

198

7.3.3 Detailed Proof Overview

Initially, we start with a regular computation H1 with induction number 1, in which

Act(H1) = P , Cvr(H1) = {}, and each process p ∈ P executes its first solo segment

〈Enter p〉. At the (m+1)st induction step, we consider a computation Hm = H1 ◦ H2 ◦
· · · ◦ Hm such that Act(Hm) consists of n processes, each of which executes m critical

events. As stated before, we also assume that Hm has a maximum rank of zero. By

erasing some processes in Hm and appending a new (m + 1)st segment (as explained

below), we can construct a regular computation Hm+1 with a maximum rank of zero

and induction number m+1, such that Act(Hm+1) consists of Ω(n/c
3) (= Ω(n/ log3 N))

processes,10 each of which executes m+ 1 solo segments.

By repeating the induction step, we construct a series of regular computations H1,

H2, . . . , Hk. The induction terminates when either k = Θ(c) is established or only

one active process is left. In the former case, by (7.14), we have k = Θ(log N). In

the latter case, by combining the inequality |Act(Hm+1)| = Ω(|Act(Hm)|/ log3 N) over

m = 1, 2, . . . , k − 1, and using |Act(Hk)| = 1, we can show k = Ω(logN/ log logN).

Therefore, in either case, we have k = Ω(log N/ log log N). Since each active process

in Hk executes k solo segments (and hence, k critical events) in Hk, we have our lower

bound.

We now explain the inductive construction method, which is formally described in

Lemmas D.8 and D.9 in Appendix D.

Consider a regular computation H = HmH
with induction number mH , in which n

active processes participate. Moreover, assume

πmax(H) = 0. (7.19)

In the remainder of this section, we construct another regular computation G =

HmH+1, with induction number mH +1 and maximum potential zero, in which Ω(n/c3)

active processes participate.

Every process in Act(H) has executed its first mH solo segments, and hence is ready

to execute its (mH + 1)st. For each p ∈ Act(H), we define its “next” critical event to

be ce(p, mH + 1), the event p is ready to execute after H.

10Recall that we use log n to denote log2 n (base-2 logarithm), and use logk n to denote (log2 n)k

(see page 16).

199

H (mH induction steps)
Cvr(H)

Act(H)

(n processes)

next solo

segments

of Act(H)

.
.
.

.
.
.

<CSp>: at most one process erased

writers

readers

the bigger set becomes Y;

the smaller is erased

Figure 7.10: Construction of Y from Act(H). As in Figure 7.8, the grey-filled region
represents a collection of solo segment(s), and the striped region represents a collection
of covering segment(s). At most one process in Act(H) may execute its transition
segment after H. We partition the rest of Act(H) into readers and writers, let Y be
the larger of the two, and erase other active processes.

By the Exclusion property, it follows that at most one process p in Act(H) may

execute a transition segment 〈CS p〉. Thus, among the n processes in Act(H), at least

n − 1 processes execute a non-transition solo segment after H.

These n − 1 processes can be partitioned into two subsets (one of which may be

empty): the set of readers, which have a next critical event that is a read, and the

set of writers, which have a next critical event that is a write. We define Y to be the

larger of the two, and erase the smaller subset. (Thus, we have |Y | ≥ (n−1)/2 = Θ(n);

see Figure 7.10.) When we erase an active process p, we erase all of its solo segments

S(p, m) (for 1 ≤ m ≤ mH), as well as its covering segments C(p, m). Thus, processes

that are deployed to cover p’s solo segments are turned into reserve processes.

The next critical events by processes in Y may generate conflicts, either with pre-

existing events in H or among themselves. (A process or event conflicts with another

if information flow is possible, or if a regularity condition is violated.) These conflicts

must be eliminated in order to obtain the extended regular computation G.

First, consider conflicts between the next critical events and pre-existing events in

H. In order to determine “who conflicts with whom,” we define a “conflict mapping”

K, defined over Y . For each p ∈ Y , we define K(p) = q if p’s next critical event

ce(p, mH + 1) accesses variable v, and if q (�= p) is the single writer of v in H (as

depicted in Figure 7.9). (If H has no single writer of v, then we define K(p) = ⊥.)

If K(p) = q, then we must erase either p or q, because appending p’s next solo

segment without erasing q would violate R4. Note that P (H) may be partitioned

into three subsets Cvr(H), Y , and Act(H) − Y . The set Act(H) − Y has already

been erased (see Figure 7.10). Thus, we need to consider only two kinds of conflicts:

200

conflicts between Y and Cvr(H), and conflicts among processes in Y . We now eliminate

conflicts between Y and Cvr(H) by erasing each process in CE = {K(p): p ∈ Y and

K(p) ∈ Cvr(H)}, the “Covering processes to be Erased,” as described below.

The chain erasing procedure. Consider a process q ∈ CE . Let m = ci(q) and

v = cv(q). By (7.5), we have q ∈ CW m
v . If q is not yet deployed in H (i.e., q ∈ RW m

v),

then we can safely erase q without creating information flow. On the other hand, if q is

already deployed to cover another process p, then we have to find some reserve process

r ∈ RW m
v , and “exchange” the role of q and r, before erasing q (see Figure 7.7). In this

case, by (7.19), we can show RW m
v �= {} (see Lemma D.5). Hence, we can always find

an (undeployed) reserve process r. Thus, we can erase q. (This “exchange and erase”

strategy is formally described in Lemma D.6.)

Although we can erase q and preserve regularity, erasing q reduces |CW m
v | by one

and hence may increase π(m, v). Informally, a high rank is problematic because there

may not be enough reserve processes to continue further induction steps. Note that

π(m, v) satisfies the following properties, by (7.15) and (7.16).

• Erasing a process from CW m
v increases π(m, v) by at most one. (7.20)

• If we erase a process from AW m
v while π(m, v) = c holds, then π(m, v) = 0 is

established. (7.21)

In order to bound the increase in π(m, v), we apply the “chain erasing” procedure,

as depicted in Figure 7.11; an example is illustrated in Figure 7.12. (This procedure

is formally analyzed in Lemma D.7.) In this procedure, F denotes the computation

being modified. Initially, F is the computation obtained by erasing Act(H)−Y from H

(line 1 of Figure 7.11), and hence, by (7.19), we have πmax(F) = 0. (Note that erasing

an active process cannot increase any rank.)

During the chain erasing procedure, we want to maintain the invariant πmax(F) <

c. (As explained later, this allows us to construct an extended computation with a

maximum rank of zero.) Assume that we erase a process q ∈ CE ∩CW m
v (line 4) while

this invariant holds. If π(m, v) < c − 1 holds before erasing q, then, by (7.20), we

can safely erase q while maintaining the invariant. Otherwise, π(m, v) = c − 1 holds

before erasing q, and π(m, v) = c is established. In this case, after erasing q, we select

some process r from AW m
v (line 6) and erase r (line 7). By (7.21), this will establish

π(m, v) = 0, and thus the covering pair (m, v) now satisfies the invariant. However, if

r is a covering process (at an induction step beyond the mth), then this erasing may in

201

1: F := (the computation obtained by erasing Act(H)− Y from H);
2: for each process p ∈ CE do

/∗ loop invariant: πmax(F) < c ∗/
3: if p ∈ P (F) then /∗ is p not yet erased? ∗/
4: erase p from F ; let the resulting computation be F ;
5: while πmax(F) = c do

/∗ loop invariant: there exists exactly one covering pair (m, v)
satisfying π(m, v; F) = c ∗/

6: choose a process r from AW m
v (F);

7: erase r from F ; let the resulting computation be F
od fi od;

8: H ′′ := F

Figure 7.11: The chain-erasing procedure.

turn increase π(ci(r), cv(r)) by (7.20). If erasing r establishes π(ci(r), cv(r)) = c, then

we have again established πmax(F) = c. Thus, we have to erase yet another process

from AW
ci(r)
cv(r) (by executing lines 6 and 7 again). The chain erasing procedure continues

in this manner as long as necessary.

Figure 7.12 shows two instances of such chain erasing. Note that processes r1, r4,

and 59 belong to multiple subsets: for example, r1 writes w in its second critical event,

and is stalled before writing y at the third induction step. (Thus, we have ci(r1) = 3

and cv(r1) = y.) Processes 1..55 can be safely erased without violating the invariant.

The chain erasing due to 56 is illustrated in insets (c) and (d); another chain erasing

due to 57 is illustrated in insets (e)–(g).

Note that, in some cases, erasing a process q ∈ CE results in erasing another process

in Act(H), if we choose a process r ∈ Act(H) at line 6. If this “worst case” happens

frequently, then the number of erased active processes may approach |CE |, and we may

be left with too few active processes. This is clearly undesirable.

We claim that this worst case does not happen frequently. In fact, we can show that

we erase at most |CE |/(c− 1) active processes. In order to show this, we first need the

following two observations.

• Erasing a process q in CE may increase the total rank π(F) by at most one. (7.22)

• Erasing a process r not in CE decreases π(F) by at least c − 1. (7.23)

In order to prove (7.22), consider a covering pair (m, v). By definition, erasing q

may change π(m, v) only if either q ∈ AW m
v or q ∈ CW m

v holds. If q ∈ AW m
v holds,

then by (7.15), req(m, v) is decreased by c, and hence π(m, v) cannot increase. On the

other hand, if q ∈ CW m
v holds, then by (7.16), π(m, v) may increase by at most one.

202

(a) covering pair (m, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW m
v

{1..29, 56,
s1..s70}

{30..38, 57,
s71..s140} · · · {39..46, r1, r4,

s141..s200} · · · {47..55, 58, 59,
s201..s279} · · ·

|CW m
v | 100 80 · · · 70 · · · 90 · · ·

AW m
v {r1, r2, r3} {r4, r5, r6} · · · {59, r7} · · · {r8, r9, r10, r11} · · ·

req(m, v) 80 80 · · · 70 · · · 90 · · ·
π(m, v) 0 0 · · · 0 · · · 0 · · ·

(b) covering pair (m, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW m
v

{56, s1..s70}
(1..29 erased)

{57, s71..s140}
(30..38 erased)

· · ·
{r1, r4,

s141..s200}
(39..46 erased)

· · ·
{58, 59,

s201..s279}
(47..55 erased)

· · ·

|CW m
v | 71 71 · · · 62 · · · 81 · · ·

AW m
v {r1, r2, r3} {r4, r5, r6} · · · {59, r7} · · · {r8, r9, r10, r11} · · ·

req(m, v) 80 80 · · · 70 · · · 90 · · ·
π(m, v) 9 9 · · · 8 · · · 9 · · ·

(c) covering pair (m, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW m
v

{s1..s70}
(56 erased)

{57, s71..s141} · · · {r1, r4, s141..s200} · · · {58, 59, s201..s279} · · ·
|CW m

v | 70 71 · · · 62 · · · 81 · · ·
AW m

v {r1, r2, r3} {r4, r5, r6} · · · {59, r7} · · · {r8, r9, r10, r11} · · ·
req(m, v) 80 80 · · · 70 · · · 90 · · ·
π(m, v) 10 9 · · · 8 · · · 9 · · ·

(d) covering pair (m, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW m
v {s1..s70} {57, s71..s140} · · · {r4, s141..s200}

(r1 erased)
· · · {58, 59, s201..s279} · · ·

|CW m
v | 70 71 · · · 61 · · · 81 · · ·

AW m
v

{r2, r3}
(r1 erased)

{r4, r5, r6} · · · {59, r7} · · · {r8, r9, r10, r11} · · ·
req(m, v) 70 80 · · · 70 · · · 90 · · ·
π(m, v) 0 9 · · · 9 · · · 9 · · ·

Figure 7.12: An example of chain erasing. In this figure, we assume c = 10 and mH = 5.
Thus, we also have req(m, v) = 10 · |AW m

v | + 50. We only show four covering pairs.
Processes to be erased (i.e., processes in CE) are denoted by sans serif numbers (1..59),
and each other process is denoted as rj (if it belongs to some set of active writers
depicted here) or sj (otherwise). Changes are marked with boldface. We assume that
processes 1..59 are selected at line 2 sequentially. (a) Initial configuration before chain
erasing starts. By (7.19), π(m, v) = 0 holds for all covering pairs. (b) After erasing
processes 1..55. No chain erasing is necessary so far. (c) After erasing 56 (line 4 in
Figure 7.11), we have π(2, w) = 10 = c. Thus, we find πmax(F) = c at line 5. Some
process must be erased from AW 2

w. (d) We choose process r1 at line 6, and erase it to
reduce π(2, w) to zero (line 7). This in turn increases π(3, y) to 9, but we still maintain
π(3, y) < c. Thus, we find πmax(F) < c at line 5, so no more chain erasing is necessary.
(Continued on the next page.)

203

(e) covering pair (m, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW m
v {s1..s70} {s71..s140}

(57 erased)
· · · {r4, s141..s200} · · · {58, 59, s201..s279} · · ·

|CW m
v | 70 70 · · · 61 · · · 81 · · ·

AW m
v {r2, r3} {r4, r5, r6} · · · {59, r7} · · · {r8, r9, r10, r11} · · ·

req(m, v) 70 80 · · · 70 · · · 90 · · ·
π(m, v) 0 10 · · · 9 · · · 9 · · ·

(f) covering pair (m, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW m
v {s1..s70} {s71..s140} · · · {s141..s200}

(r4 erased)
· · · {58, s201..s279}

(59 erased)
· · ·

|CW m
v | 70 70 · · · 60 · · · 80 · · ·

AW m
v {r2, r3} {r5, r6}

(r4 erased)
· · · {r7}

(59 erased)
· · · {r8, r9, r10, r11} · · ·

req(m, v) 70 70 · · · 60 · · · 90 · · ·
π(m, v) 0 0 · · · 0 · · · 10 · · ·

(g) covering pair (m, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·
CW m

v {s1..s70} {s71..s140} · · · {s141..s200} · · · {58, s201..s279} · · ·
|CW m

v | 70 70 · · · 60 · · · 80 · · ·
AW m

v {r2, r3} {r5, r6} · · · {r7} · · · {r9, r10, r11}
(r8 erased)

· · ·
req(m, v) 70 70 · · · 60 · · · 80 · · ·
π(m, v) 0 0 · · · 0 · · · 0 · · ·

(h) covering pair (m, v) (2, w) (2, x) · · · (3, y) · · · (5, z) · · ·

CW m
v {s1..s70} {s71..s140} · · · {s141..s200} · · · {s201..s279}

(58 erased)
· · ·

|CW m
v | 70 70 · · · 60 · · · 79 · · ·

AW m
v {r2, r3} {r5, r6} · · · {r7} · · · {r9, r10, r11} · · ·

req(m, v) 70 70 · · · 60 · · · 80 · · ·
π(m, v) 0 0 · · · 0 · · · 1 · · ·

Figure 7.12: An example of chain erasing, continued. (e) After erasing 57 (line 4), we
have π(2, x) = c, and hence some process must be erased from AW 2

x. (f)We erase r4 to
reduce π(2, x) to zero (line 7), which in turn establishes π(3, y) = c. Hence, we execute
lines 6 and 7 again, and erase 59 to lower π(3, y). (This is an example of a process
in CE being erased at line 7.) However, this in turn establishes π(5, z) = c. (g) We
erase r8 to reduce π(5, z) to zero. If r8 is an active process, then we have established
π(F) < c, and the inner loop (lines 5–7) terminates. Otherwise, π(ci(r8), cv(r8)) has
been incremented by one; if its value reaches c, then the inner loop continues. (h)
Finally, we assign p := 58 at line 2 and erase 58. No further chain erasing is necessary.

Since q ∈ CW m
v holds for at most one covering pair (m, v) (namely, (ci(q), cv(q))), it

follows that erasing q may increase π(F) by at most one.

We now prove (7.23). Note that a process r /∈ CE may be erased only at line 7. In

this case, we have r ∈ AW m
v and π(m, v) = c for some m and v, and by (7.22), π(m, v)

is reduced to zero. (For example, in Figure 7.12(d), erasing r1 from AW (2, w) reduces

π(2, w) from c = 10 to 0.) Thus, by erasing r, the rank of each covering pair (j, w) is

changed as follows:

204

(i) if (j, w) = (m, v), then π(j, w) decreases by c;

(ii) otherwise, if r ∈ AW j
w, then by (7.15) and (7.16), π(j, w) cannot increase;

(iii) otherwise, if r ∈ CW j
w, then by (7.16), π(j, w) increases by at most one;

(iv) otherwise, π(j, w) does not change.

Since r ∈ CW j
w holds for at most one covering pair (j, w), Case (iii) may apply to

at most one covering pair. Note that, by (7.18), π(F) is the sum of the ranks of all

covering pairs. Therefore, by summing over Cases (i)–(iv), we have (7.23).

By (7.22), it follows that π(F), being initially zero, increases by at most |CE |
throughout the execution of the chain erasing procedure. Since π(F) is always nonneg-

ative by definition, by (7.23), processes not in CE may be erased at most |CE |/(c− 1)

times. Since CE ⊆ Cvr(H) by definition, it follows that we erase at most |CE |/(c − 1)

active processes in total.

Elimination of conflicts among active processes. Let H ′′ be the computation

that results when the chain erasing procedure finishes, and let Y ′ be the subset of Y

that was not erased during this procedure. As shown above, we have |Y ′| ≥ |Y | −
|Y |/(c − 1) = Θ(n). By erasing CE , we have eliminated conflicts between Y ′ and the

covering processes. Moreover, the invariant of the chain erasing procedure ensures that

πmax(H
′′) < c holds. By definition (given in (7.15)), for each covering pair (m, v),

req(m, v) is reduced by c when we append the new (mH + 1)st segment. Hence, the

rank π(m, v), being less than c in H ′′, is reduced to zero after appending the new

segment. It follows that all covering pairs in H ′′ will have zero rank in the extended

computation G.

The remaining conflicts are divided into two categories: (A) conflicts between the

next critical events (by processes in Y ′) and pre-existing events by (active) processes

in Y ′, and (B) conflicts among the next critical events. We now eliminate conflicts of

type A by constructing a conflict graph, in which each vertex is a process in Y ′ and each

edge represents a conflict between two processes. That is, for each pair of processes p

and q in Y ′, we introduce edge {p, q} if and only if K(p) = q ∨ K(q) = p holds. (The

definition of K(p) was given on page 199.) Clearly, we introduce at most |Y ′| edges in
total. The construction of G is shown in Figure 7.13.

We now want to find an independent set Z of G, i.e., a subset of the vertices such

that no edge in G is incident to two vertices in Z. It is clear that such a set is free

205

.
.
.

Y’ : active processes

that survived the

chain erasing procedure

1
2
3
4
5

events that are in H’’
(includes mH solo

segments each)
next solo segments

: processes that are erased

: processes that are saved

: conflicts of type A
1 2

3 4 5

.
.
.

Z: saved processes

(no conflicts of

type A)

1
2
3
4
5

conflict graph

Figure 7.13: Construction of the “conflict graph” G. For simplicity, covering processes
are not shown in this figure. In this figure, we assume K(1) = 3, K(2) = 1, K(3) /∈ Y ′,
etc.

of conflicts of type A. Since G has |Y ′| vertices and at most |Y ′| edges, by applying

Turán’s Theorem (Theorem 5.1), we can obtain an independent set Z ⊆ Y ′ with size

Θ(|Y ′|) (= Θ(n)).

The processes in Z collectively execute |Z| = Θ(n) next critical events. Among the

variables that are accessed by these events, we identify VHC, the set of “high contention”

variables, that are accessed by at least 4c2 next critical events. Similarly, we define VLC,

the set of “low contention” variables, as those that are accessed by at least one but less

than 4c2 next critical events. (The constant factor 4 is needed in the covering strategy,

described shortly.) Next, we partition the processes in Z, depending on whether their

next critical events access a variable in VHC or VLC, as follows: PHC = {p ∈ Z: p’s next

critical event accesses some variable in VHC}, and PLC = Z − PHC.

Because Z ⊆ Act(H), we can erase any process in Z and preserve regularity. We now

have to eliminate conflicts of type B (by erasing some processes in Z), and determine

which processes remain active and which processes are selected for covering, in order

to construct the new (mH +1)st segment. Formally, we define two disjoint subsets ZAct

and ZCvr of Z: processes in ZAct become active processes in the extended computation

G, and processes in ZCvr become new covering processes to cover variables written by

processes in ZAct. (That is, we establish Act(G) = ZAct and Cvr(G) = Cvr(H ′′)∪ZCvr.)

Processes in Z − (ZAct ∪ ZCvr) (if any) are simply erased. The construction method is

formally stated in Claim 2 in the proof of Lemma D.8, and is described below. (For

206

each process p ∈ ZAct, we also have to construct its covering segment C(p, mH + 1)

by deploying appropriate processes. The detailed procedure for doing this, formally

presented in Lemma D.9, is rather mechanical and is omitted here.)

Recall that Y consists of either all “writers” or all “readers” (see Figure 7.10). Since

Z ⊆ Y , the same is true for Z. We now consider three cases.

Readers only. If a variable v is read by some process p in Z, then H (the original

computation) satisfies one of the following three cases: (i) v is not written in H, (ii)

all writes to v in H are covered, or (iii) v has a single writer q in H. In the first and

and the second cases, the same conditions hold for H ′′, and hence p’s read of v does

not cause information flow. In the third case, we have K(p) = q, so q is already erased.

In particular, if q ∈ Cvr(H), then we have q ∈ CE by definition, and hence q has been

erased. On the other hand, assume that q ∈ Act(H). Either q is erased in the chain

erasing procedure, or q ∈ Y holds. However, in the latter case, {p, q} = {p, K(p)} is

an edge in G, and hence p ∈ Z implies q /∈ Z.

Therefore, by simply letting ZAct = Z and ZCvr = {}, we can construct G. Each

next critical event by a process in Z reads the initial value of the variable it reads.

Erasing strategy. Assume that Z consists only of “writers,” and that PLC is larger

than PHC. In this case, we can erase PHC and still have Θ(n) remaining active processes.

Define VLC as the set of variables accessed by the next critical events of PLC. Then every

variable in VLC is a “low contention” variable, and hence is accessed by at most 4c2

different next critical events. It follows that VLC contains at least |PLC|/4c2 = Θ(n/c2)

variables. By selecting one process for each such variable, we can create a set Z ′ of

active processes, such that |Z ′| = Θ(n/c2), in which each next critical event accesses a

distinct variable.

For each p ∈ Z ′, we denote by vce(p) the variable written by its next critical event

ce(p, mH + 1). We want each process p ∈ Z ′ to become the single writer vce(p). Note

that H ′′ does not contain a single writer of vce(p), as shown above. In order to satisfy

R4, we still must ensure that no active process in H ′′ reads vce(p). Toward this goal,

we create another conflict graph, as shown in Figure 7.14.

Since each process p in Z ′ executes mH critical events in H, q may read at most mH

different variables. For each variable v read by p, we introduce edge {p, q} if q = vce(p).

Since each vce(p) is distinct (by the construction of Z ′), we introduce at most mH edges

per each process in Z ′. By applying Theorem 5.1 again, we can construct a subset ZAct

207

.
.
.

Z’

1

2

3

4

5

events that are in H’’
(includes mH solo

segments each)

next solo segments

: processes that are erased

: processes that are saved

: conflicts
1 2

3 4 5

.
.
.

ZAct: saved processes

(no conflicts)

1
2
3
4
5

conflict graph

. . .

. . .

read v write v

read v

Figure 7.14: Erasing strategy. For simplicity, covering processes are not shown in this
figure. In this figure, we assume that the next critical event of process 2 writes v (i.e.,
vce(2) = v), and that processes 1 and 5 read v in H ′′.

of Z ′ without any conflicts, such that |ZAct| = Ω(|Z ′|)/mH = Ω(n/c3). (Here we use

mH = O(c); otherwise, our lower bound is already attained.) We then define ZCvr = {}.
Every process p ∈ ZAct becomes the single writer of vce(p) in G.

Covering strategy. Assume that Z consists only of “writers,” and that PHC is larger

than PLC. In this case, we can erase PLC and still have Θ(n) remaining active processes.

Every next critical event by a process in PHC writes a variable in VHC. We now apply the

covering strategy to each variable in VHC (see Figure 7.6). Since each variable v ∈ VHC

is written by at least 4c2 processes in PHC, we can choose active writers AW mH+1
v and

covering writers CW mH+1
v satisfying the following: (i) the number of all active writers

is Ω(|Z|/c2) = Ω(n/c2), and (ii) for each variable v ∈ VHC, the rank π(mH + 1, v) is

zero.

Formally, for each v ∈ VHC, assume that k(v) processes in PHC write v. By as-

sumption, we have k(v) ≥ 4c2. Among these processes, a(v) = �k(v)/c2� − 1 processes

become active writers, and the rest become covering writers. From these two equations,

we have the following inequalities, from which Conditions (i) and (ii) follow.

a(v) >
k(v)

c2
− 2 ≥ k(v)

c2
− k(v)

2c2
=

k(v)

2c2
;

208

|CW mH+1
v | = k(v) − a(v)

≥ c2 · (a(v) + 1) − a(v)

= (c2 − 1) · a(v) + c2

≥ c · a(v) + c · (c − mH)

= req(mH + 1, v).

The collection of all active writers becomes ZAct, and the collection of all covering

writers becomes ZCvr. (Hence, we have ZAct ∪ ZCvr = PHC.) Thus, we can construct

G. �

The argument just explained (and proved formally in Appendix D) establishes the

following theorem.

Theorem 7.2 For any one-shot mutual exclusion system S = (C, P, V), there exist a

p-computation F such that F does not contain CS p, and p executes Ω(logN/ log logN)

critical events in F , where N = |P |. �

7.4 Concluding Remarks

We have presented a nonatomic local-spin mutual exclusion algorithm with Θ(log N)

worst-case RMR time complexity, which matches that of the best atomic algorithm

(Algorithm YA-N) proposed to date. We have also shown that for any N -process

nonatomic algorithm, there exists a single-process execution in which the lone compet-

ing process accesses Ω(log N/ log log N) distinct variables in order to enter its critical

section. These bounds show that fast and adaptive algorithms are impossible if vari-

able accesses are nonatomic, even if caching techniques are used to avoid accessing the

processors-to-memory interconnection network.

CHAPTER 8

Generic Algorithm for fetch-and-φ

Primitives∗

In this chapter, we present a generic fetch-and-φ-based local-spin mutual exclusion

algorithm with O(1) RMR (remote-memory-reference) time complexity. This algorithm

is “generic” in the sense that it can be implemented using any fetch-and-φ primitive of

rank 2N , whereN is the number of processes. As defined later, the rank of a fetch-and-φ

primitive expresses the extent to which processes may “order themselves” using that

primitive. By using an arbitration tree, a Θ(logr N) algorithm can be constructed

using any primitive of rank r, where 2 ≤ r < N . For primitives that meet a certain

additional condition, we present a Θ(logN/ log logN) algorithm, which is time-optimal

for certain primitives of constant rank.

A fetch-and-φ primitive is characterized by a particular function φ (which we assume

to be deterministic), and atomically accesses a single variable var as follows.

fetch-and-φ(var , input)
old := var ;
var := φ(old , input);
return(old)

In this chapter, we distinguish between fetch-and-φ primitives that are comparison

primitives and those that are not. As defined in Section 5.1, a comparison primitive

conditionally updates a shared variable only if its value meets some condition; examples

∗The results presented in this chapter have been published in the following paper.
[19] J. Anderson and Y.-J. Kim. Local-spin mutual exclusion using fetch-and-φ primitives. In Proceed-
ings of the 23rd IEEE International Conference on Distributed Computing Systems, pages 538–547.
IEEE, May 2003.

210

include compare-and-swap and test-and-set, defined in Section 2.1. Noncomparison

primitives update variables unconditionally; examples include fetch-and-increment and

fetch-and-store.

In Chapter 5, we established a time-complexity lower bound of Ω(logN/ log logN)

RMRs for any N -process mutual exclusion algorithm based on reads, writes, or compar-

ison primitives. In contrast, as discussed in Section 2.2.1, several O(1) algorithms are

known that are based on noncomparison fetch-and-φ primitives [23, 32, 38, 59, 61]. This

suggests that noncomparison primitives may be the best choice to provide in hardware,

if one is interested in implementing efficient blocking synchronization mechanisms.

From our earlier discussion of these O(1) algorithms, recall the following.

• The algorithms of T. Anderson [23] and Graunke and Thakkar [38] use fetch-and-

increment and fetch-and-store, respectively, and have O(1) RMR time complexity

only on CC machines.

• Mellor-Crummey and Scott’s algorithm [61] has O(1) RMR time complexity on

both CC and DSM machines, but uses both fetch-and-store and compare-and-

swap.

• Craig [32] and Landin and Hagersten [59] independently proposed the same algo-

rithm, which is based on fetch-and-store. While Landin and Hagersten considered

only CC machines, Craig presented constant-time variants of the algorithm for

both CC and DSM machines.

• In other related work, Huang [42] proposed an algorithm based on fetch-and-store

that has O(1) amortized RMR time complexity on DSM machines.

Base on the existence of these algorithms, a number of intriguing questions were

rasied in Section 1.4.4.

• Is it possible to devise an O(1) algorithm for DSM machines that uses a single

fetch-and-φ primitive other than fetch-and-store?

• Is it possible to automatically transform a local-spin algorithm for CC machines

so that it has the same RMR time complexity on DSM machines?

• Given that the Ω(logN/ log logN) lower bound presented in Chapter 5 applies to

algorithms that use comparison primitives, we know that there exist fetch-and-φ

211

primitives that are not sufficient for constructing O(1) algorithms. For such

primitives, what is the most efficient algorithm that can be devised?

• Can we devise a ranking of synchronization primitives that indicates the singular

characteristic of a primitive that enables a certain RMR time complexity (for

mutual exclusion) to be achieved?

Contributions. In this chapter, these questions are partially addressed. Our main

contribution is a generic N -process fetch-and-φ-based local-spin mutual exclusion al-

gorithm that has O(1) RMR time complexity on both CC and DSM machines. This

algorithm is “generic” in the sense that it can be implemented using any fetch-and-φ

primitive of rank 2N . Informally, a primitive of rank r has sufficient symmetry-breaking

power to linearly order up to r invocations of that primitive. Our generic algorithm

breaks new ground because it shows that O(1) RMR time complexity is possible using a

wide range of primitives, on both CC and DSM machines. Thus, introducing additional

primitives to ensure local spinning on DSM machines, as in [61], is not necessary.

We present our generic algorithm by first giving a variant that is designed for CC

machines, and by then constructing a DSM variant by applying a simple transforma-

tion. This transformation is quite general and can also be applied to the algorithms of

T. Anderson [23] and Graunke and Thakkar [38].

By applying our generic algorithm within an arbitration tree, one can easily con-

struct a Θ(logr N) algorithm using any primitive of rank r, where 2 ≤ r < N . For

the case r = Θ(N), this algorithm is clearly asymptotically time-optimal. However, we

show that there exists a class of primitives with constant rank for which Θ(logr N) is

not optimal. We show this by presenting a Θ(log N/ log log N) algorithm that can be

implemented using any primitive that meets an additional condition, which is described

next.

In designing a generic algorithm, the key issue to be faced is that of resetting

a variable that is repeatedly updated by fetch-and-φ primitive invocations. In our

generic algorithm, variables are reset using simple writes. In our Θ(log N/ log log N)

algorithm, such a reset is performed using the fetch-and-φ primitive itself. That is, this

algorithm requires that a self-resettable primitive (of rank at least three) be used. Using

a self-resettable primitive, the primitive itself can be used to reset a variable that has

been updated using that primitive, and hence the resettting operation may return the

variable’s old value. In our Θ(logN/ log logN) algorithm, this fact is exploited, with a

212

resulting asymptotic improvement in time complexity for primitives of rank o(log N).

It follows from the Ω(log N/ log log N) lower bound presented in Chapter 5 that this

algorithm is time-optimal for certain self-resettable primitives of constant rank.

The rest of this chapter is organized as follows. In Section 8.1, we present needed def-

initions. Then, in Section 8.2, we present our generic algorithm. The Θ(logN/ log logN)

algorithm mentioned above is then presented in Section 8.3. We conclude in Section 8.4.

A formal correctness proof for these two algorithms are given in Appendix E and Ap-

pendix F, respectively.

8.1 Definitions

We assume the existence of a generic fetch-and-φ primitive, as defined earlier. We will

use “Vartype” to denote the type of the accessed variable var . (This type is part of

the definition of such a primitive.) For example, for a fetch-and-increment primitive,

Vartype would be integer, and for a test-and-set primitive, it would be boolean. In our

algorithms, we use ⊥ to denote the initial value of a variable accessed by a fetch-and-φ

primitive. The choice of ⊥ is a part of the definition of the given fetch-and-φ primitive.

(For example, if Vartype is boolean, then ⊥ would denote either true or false.) We

now define the notion of a “rank,” mentioned earlier.

Definition: The rank of a fetch-and-φ primitive is the largest integer r satisfying the

following.

For each process p, there exists a constant array αp[0..∞] of input values, such that

if p performs the following sequence of fetch-and-φ invocations

for i := ap to ∞ do fetch-and-φ(v, αp[i]) od

on a variable v (of type Vartype) that is initially ⊥ (for some choice of ⊥), where ap

is some integer value, then in any interleaving of these invocations by the N different

processes, (i) any two invocations among the first r − 1 by different processes write

different values to v, (ii) any two successive invocations among the first r − 1 by the

same process write different values to v, and (iii) of the first r invocations, only the

first invocation returns ⊥.

213

A fetch-and-φ primitive has infinite rank if the condition above is satisfied for arbi-

trarily large values of r. �

As our generic algorithm shows, a fetch-and-φ primitive with rank r has enough

power to linearly order r invocations by possibly different processes unambiguously.

Note that it is not necessary for the primitive to fully order invocations by the same

process, since each process can keep its own execution history.

Examples. An r-bounded fetch-and-increment primitive on a variable v with range

0, . . . , r − 1 is defined by φ(old , input) = min(r − 1, old + 1). (In this primitive, the

input parameter is not used, and hence we may simply assume αp[j] = ⊥ for all p and

j.) If v is initially 0, then any r consecutive invocations on v return distinct values,

0, 1, . . . , r − 1. Moreover, any further invocation (after the rth) returns r − 1, which is

the same as the return value of the rth invocation. Therefore, an r-bounded fetch-and-

increment primitive has rank r, and an unbounded fetch-and-increment primitive has

infinite rank.

For fetch-and-increment primitives, the input parameter α is extraneous. However,

this is not the case for other primitives. Consider a fetch-and-store primitive on a

variable with 2N + 1 distinct values (2N pairs (p, 0) and (p, 1), where p is a process,

and an additional initial value ⊥). By defining αp[j] = (p, j mod 2), it is easily

shown that fetch-and-store has infinite rank. (Informally, each process may write the

information “this is an (even/odd)-indexed invocation by process p” each time.) It also

follows that an unbounded fetch-and-store primitive has infinite rank.

Finally, test-and-set has rank two: only the first test-and-set invocation on a variable

initially false returns its initial value. compare-and-swap also has rank two.

8.2 Constant-time Generic Algorithm

In this section, we present an O(1) mutual exclusion algorithm that uses a generic

fetch-and-φ primitive, which is assumed to have rank at least 2N . In Section 8.2.1, we

present a CC version of this generic algorithm, denoted Algorithm G-CC, which is

illustrated in Figure 8.1. Then, in Section 8.2.2, we present a DSM variant, denoted

Algorithm G-DSM, which is illustrated in Figure 8.3.

214

shared variables
CurrentQueue: 0..1;
Tail : array[0..1] of Vartype initially ⊥;
Position: array[0..1] of 0..2N − 1 initially 0;
Signal : array[0..1][Vartype] of boolean initially false;
Active: array[0..N − 1] of boolean initially false;
QueueIdx : array[0..N − 1] of (⊥, 0..1)

private variables
idx : 0..1;
counter : integer;
prev , self , tail : Vartype;
pos: 0..2N − 1

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: QueueIdx [p] := ⊥;
2: Active[p] := true;
3: idx := CurrentQueue;
4: QueueIdx [p] := idx ;
5: prev := fetch-and-φ(Tail [idx], αp[counter]);

self := φ(prev , αp[counter]);
counter := counter + 1;
if prev �= ⊥ then

6: await Signal [idx][prev];
7: Signal [idx][prev] := false

fi;
8: Entry2(idx);

9: Critical Section;

10: pos := Position[idx];
11: Position[idx] := pos + 1;
12: Exit2(idx);

13: if (pos < N) ∧ (pos �= p) then
14: await ¬Active[pos] ∨
15: (QueueIdx [pos] = idx)

elseif pos = N then
16: tail := Tail [1− idx];
17: Signal [1− idx][tail] := false;
18: Tail [1− idx] := ⊥;
19: Position[1− idx] := 0;
20: CurrentQueue := 1− idx

fi;

21: Signal [idx][self] := true;
22: Active[p] := false
od

Figure 8.1: Algorithm G-CC: Generic fetch-and-φ-based mutual exclusion algorithm
for CC machines.

8.2.1 Algorithm G-CC: A Generic Algorithm for CC Ma-

chines

When trying to implement a mutual exclusion algorithm using a generic fetch-and-φ

primitive with rank r, the primary problem that arises is that if the primitive is invoked

more than r times to access a variable, then it may not be able to provide enough

information for processes to order themselves. Therefore, the algorithm must provide a

means of resetting such a variable before it is accessed r times .

Because we are using a primitive of rank 2N in Algorithm G-CC, we need to

reset a variable accessed by the primitive before it is accessed 2N times. We do this by

using two “waiting queues,” indexed 0 and 1. Associated with each queue j is a “tail

pointer,” Tail [j]. In its entry section, a process enqueues itself onto one of these two

queues by using the fetch-and-φ primitive to update its tail pointer, and waits on its

predecessor, if necessary. At any time, one of the queues is designated as the “current”

215

Queue 0:
 the current queue

Queue 1:
 the old queue

. . .

Tail[0]

Tail[1]

New processes
may enter the
current queue.

2-process
ME algorithm

(a)

processes that have
finished execution

head waiting
processes

Queue 0:
 the current queue

Queue 1:
 the old queue

. . .

. . .

(no active processes)

0 1 N-1 N N+1

(b)

Queue 0:
 the old queue

Queue 1:
 the current queue

. . .

(empty: Tail[1] = ^)

0 1 N-1 N N+1

(c)

Queue 0:
 the current queue

Queue 1:
 the old queue

. . .

0 1 position q

(d)
process q

. . .

Wait for process q
to finish.

Figure 8.2: The structure of Algorithm G-CC. (a) The overall structure. This
figure shows a possible state of execution when the current queue is queue 0. (The
“finished” processes may be duplicated, because a process may execute its critical
section multiple times.) (b) A state just before CurrentQueue is updated. (c) A state
just after CurrentQueue is updated. (d) A process (in its exit section) in the current
queue waiting for another in the old queue.

queue, which is indicated by the shared variable CurrentQueue. The other queue is

called the “old” queue. The algorithm switches between the two queues over time in

a way that ensures that each tail pointer is reset before being accessed 2N times. We

now describe the reset mechanism in detail.

When a process invokes the Acquire routine, it determines which queue is the current

queue by reading the variable CurrentQueue (statement 3 of Figure 8.1), and then

enqueues itself onto that queue using the fetch-and-φ primitive (statement 5). If p is

not at the head of its queue (p.prev �= ⊥), then it waits until its predecessor in the

queue updates the spin variable Signal [p.idx][p.prev] (statement 6), which p then resets

(statement 7).

216

Note that it is possible for a process q to read CurrentQueue before another process

updates CurrentQueue to switch to the other queue. Such a process q will then enqueue

itself onto the old queue. Thus, both queues may possibly hold waiting processes. To

arbitrate between processes in the two queues, an extra two-process mutual exclusion

algorithm is used. A process competes in this two-process algorithm after reaching the

head of its waiting queue using the routines Entry2 and Exit2, with the index of its

queue as a “process identifier” (statements 8 and 12), as illustrated in Figure 8.2(a).

Note that this extra two-process algorithm can be implemented from reads and writes

in O(1) time using Algorithm YA-2 [84], which is described in Section 2.2.2.

As explained above, some process must reset the current queue before it is accessed

2N times. To facilitate this, each queue j has an associated shared variable Position[j].

This variable indicates the relative position of the current head of the queue, starting

from 0. For example, in Figure 8.2(a), the head of queue 0 is at position 2, and hence

Position[0] equals 2. A process in queue j updates Position[j] while still effectively in

its critical section (statements 10 and 11). Thus, Position[j] cannot be concurrently

updated by different processes.

A process exchanges the role of the two queues in its exit section if it is at position

N in the current queue (statements 16–20). (These statements will be explained in

detail shortly.) Figures 8.2(b) and 8.2(c) show the state of the two queues before and

after such an exchange. In order to exchange the queues, we must ensure the following

property.

Property 1 If a process executes its critical section after having acquired position N

of the current queue, then no process is in the old queue.

(A process is considered to be “in” the old queue if it read the index of that queue

from CurrentQueue. In particular, that process may be yet to update the queue’s tail

pointer.) Given Property 1, a process at position N may safely reset the old queue and

exchange the queues. Property 1 is a direct consequence of the following property.

Property 2 If a process executes its critical section after having acquired position pos

of the current queue, and if pos > q, then process q is not in the old queue.

To maintain Property 2, each process p has two associated variables, Active[p] and

QueueIdx [p], which indicate (respectively) whether process p is active, and if so, which

queue it is executing in (statements 1, 2, 4, and 22). If a process p executes at position

217

q < N in the current queue, then in its exit section, p waits until either q finishes

its exit-section execution (i.e., Active[p] = false; statement 14) or enters the current

queue (statement 15). p thus ensures that process q does not execute in the old queue,

and then signals a possible successor (i.e., a process at position q + 1 in the current

queue) that it is now at the head of the current queue (statement 21). This situation

is depicted in Figure 8.2(d).

Although p waits for q, starvation-freedom is guaranteed, because q is in the old

queue, and hence makes progress independently of the current queue. Only the current

queue is stalled until q finishes execution. (The fact that p may have to wait for a

significant duration in its exit section may be a cause for concern. However, such

waiting can be eliminated, if process p instructs process q to signal p’s successor after

q finishes its critical section. Thus, p may finish execution without waiting for q. For

simplicity, this handshake has not been added to Algorithm G-CC.)

We now explain statements 16–20, which are executed in order to exchange the role

of the two queues. Without loss of generality, suppose that a process p executes these

statements with p.idx = 0. (See Figure 8.2(b) and Figure 8.2(c).) Variables Tail [1]

and Position[1] are initialized by statements 18 and 19, respectively. In addition, we

must ensure that each entry of the Signal [1][. . .] array is reset to false. Note that, if

a process q in queue 1 establishes Signal [1][x] = true (where x = q.self) by executing

statement 21, then its successor r (which spins on Signal [1][x] at statement 6) resets

Signal [1][x] by executing statement 7. Thus, by the time p executes statements 16–20,

Property 1 ensures that every entry of Signal [1][. . .] is reset to false, except for the one

set by the last process in queue 1. (Clearly, the last process does not have a successor,

so this entry is not reset.)

Property 1 again ensures that this last entry of queue 1 is indicated by Tail [1].

Therefore, statements 16 and 17 properly reset this entry and thereby complete the

reinitialization of Signal [1][. . .]. Finally, statement 20 exchanges the two queues.

We still must show that using a fetch-and-φ primitive of rank 2N is sufficient.

Suppose that process p acquires position N of queue 0 when it is the current queue.

We claim that at most N−1 processes may be enqueued onto queue 0 after p and before

the queues are exchanged again. For a process q to enqueue itself onto queue 0 after

p, it must have read the value of CurrentQueue before it was updated by p. For q to

enqueue itself a second time onto queue 0, it must read CurrentQueue = 0 again, after

CurrentQueue = 1 was established by p. This implies that the two queues have been

exchanged again. (We remind the reader that, by the explanation above, the queues

218

will not be exchanged again until there are no processes in queue 0.) Thus, after p

establishes that queue 1 is current, and while queue 0 continues to be the old queue,

at most N − 1 processes may be enqueued (after p) onto queue 0. Thus, a rank of 2N

is sufficient.

The busy-waiting loops at statements 6, 14, and 15 in Figure 8.1 are read-only loops

in which variables are read that may be updated by a unique process. On a CC machine,

each such loop incurs O(1) RMR time complexity. It follows that Algorithm G-CC

has O(1) RMR time complexity on CC machines.

A detailed correctness proof of Algorithm G-CC is given in Appendix E. From

the discussion so far, we have the following lemma.

Lemma 8.1 If the underlying fetch-and-φ primitive has rank at least 2N , then Algo-

rithm G-CC is a correct, starvation-free mutual exclusion algorithm with O(1) RMR

time complexity in CC machines. �

8.2.2 Algorithm G-DSM: A Generic Algorithm for DSM Ma-

chines

We now explain how to convert Algorithm G-CC into Algorithm G-DSM, which

is illustrated in Figure 8.3. The key idea of this conversion is a simple transformation

of each busy-waiting loop, which we examine here in isolation. In Algorithm G-CC,

all busy waiting is by means of statements of the form “await B,” where B is some

boolean condition. Moreover, if a process p is waiting for condition B to hold, then

there is a unique process that can establish B, and once B is established, it remains

true, until p’s “await B” statement terminates.

In Algorithm G-DSM, each statement of the form “await B” has been replaced

by the code fragment on the left below (see statements 10–17 and 25–33 in Figure 8.3),

and each statement of the form “B := true” by the code fragment on the right (see

statements 4–8, 39–43, and 44–48).

a: Entry2(J , 0);
b: flag := B;
c: Waiter [J] := if flag then ⊥ else p;
d: Spin[p] := false;
e: Exit2(J , 0);
f: if ¬flag then
g: await Spin[p];
h: Waiter [J] := ⊥

fi

i: Entry2(J , 1);
j: B := true;
k: next :=Waiter [J];
l: Exit2(J , 1);
m: if next �= ⊥ then Spin[next] := true fi

219

/∗ all variable declarations are as defined in Figure 8.1 except as noted here ∗/
shared variables

Waiter1: array[0..N − 1] of (⊥, 0..N − 1);
Waiter2: array[0..1][Vartype] of (⊥, 0..N − 1);
Spin: array[0..N − 1] of boolean initially false

private variables
next : (⊥, 0..N − 1);
flag : boolean;
q: 0..N − 1

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: QueueIdx [p] := ⊥;
2: Active[p] := true;
3: idx := CurrentQueue;
4: Entry2(p, 1);
5: QueueIdx [p] := idx ;
6: q :=Waiter1[p];
7: Exit2(p, 1);
8: if q �= ⊥ then Spin[q] := true fi;

9: prev := fetch-and-φ(Tail [idx], αp[counter]);
self := φ(prev , αp[counter]);
counter := counter + 1;
if prev �= ⊥ then

10: Entry2((idx , prev), 0);
11: flag := Signal [idx][prev];
12: Waiter2[idx][prev] :=

if flag then ⊥ else p;
13: Spin[p] := false;
14: Exit2((idx , prev), 0);
15: if ¬flag then
16: await Spin[p];
17: Waiter2[idx][prev] := ⊥

fi;

18: Signal [idx][prev] := false
fi;

19: Entry2(idx)

20: Critical Section;

21: pos := Position[idx];
22: Position[idx] := pos + 1;
23: Exit2(idx);

24: if (pos < N) ∧ (pos �= p) then
q := pos;

25: Entry2(q, 0);
26: flag :=¬Active[q] ∨
27: (QueueIdx [q] = idx);
28: Waiter1[q] :=

if flag then ⊥ else p;
29: Spin[p] := false;
30: Exit2(q, 0);
31: if ¬flag then
32: await Spin[p];
33: Waiter1[q] := ⊥

fi

elseif pos = N then
34: temp := Tail [1− idx];
35: Signal [1− idx][temp] := false;
36: Tail [1− idx] := ⊥;
37: Position[1− idx] := 0;
38: CurrentQueue := 1− idx

fi;

39: Entry2((idx , self), 1);
40: Signal [idx][self] := true;
41: next :=Waiter2[idx][self];
42: Exit2((idx , self), 1);
43: if next �= ⊥ then Spin[next] := true fi;

44: Entry2(p, 1);
45: Active[p] := false;
46: next :=Waiter1[p];
47: Exit2(p, 1);
48: if next �= ⊥ then Spin[next] := true fi
od

Figure 8.3: Algorithm G-DSM: Generic fetch-and-φ-based mutual exclusion algo-
rithm for DSM machines. Statements different from Figure 8.1 are shown with bold-
face line numbers.

220

The variable Waiter [J] is assumed to be initially ⊥, and Spin[p] is a spin variable used

exclusively by process p (and, hence, it can be stored in memory local to p). Entry2

and Exit2 represent an instance of a two-process mutual exclusion algorithm, indexed

by J . To see that this transformation is correct, assume that a process p executes lines

a–h while another process q executes lines i–m. Since lines b–d and j–k execute within

a critical section, lines b–d precede lines j–k, or vice versa. If b–d precede j–k, and if

B = false holds before the execution of b–d, then p assigns Waiter [J] := p at line c,

and initializes its spin variable at line d. Process q subsequently reads Waiter [J] = p

at line k, and establishes Spin[p] = true at line m, which ensures that p is not blocked.

On the other hand, if lines j–k precede lines b–d, then process q reads Waiter [J] = ⊥
(the initial value) at line k, and does not update any spin variable at line m. Since

process p executes line b after q executes line j, p preserves Waiter [J] = ⊥, and does

not execute lines g and h. Given the correctness of this transformation, we have the

following.

Lemma 8.2 If the underlying fetch-and-φ primitive has rank at least 2N , then Al-

gorithm G-DSM is a correct, starvation-free mutual exclusion algorithm with O(1)

RMR time complexity in DSM machines. �

The transformation above also can be applied to the algorithms of T. Anderson [23]

and Graunke and Thakkar [38], which are described in Section 2.2.1. In each case,

the two-process mutual algorithm actually can be avoided by utilizing the specific

fetch-and-φ primitive used (fetch-and-increment and fetch-and-store, respectively).

If we have a fetch-and-φ primitive with rank r (4 ≤ r < 2N), then we can arrange

instances of Algorithm G-DSM in an arbitration tree, where each process is stati-

cally assigned a leaf node and each non-leaf node consists of an �r/2�-process mutual

exclusion algorithm, implemented using Algorithm G-DSM. Because this arbitra-

tion tree is of Θ(logr N) height, we have the following theorem. (Note that for r = 2

or 3, a Θ(logr N) algorithm is possible without even using the fetch-and-φ primitive;

see Algorithm YA-N in Section 2.2.2.)

Theorem 8.1 Using any fetch-and-φ primitive of rank r ≥ 2, starvation-free mutual

exclusion can be implemented with Θ(max(1, logr N)) RMR time complexity on either

CC or DSM machines. �

221

We can combine this arbitration-tree algorithm with our adaptive algorithm (Al-

gorithm A-LS) presented in Chapter 4. In particular, the height of the renaming

tree is changed from log N to logr N , and EntryN/ExitN calls are replaced by the

fetch-and-φ-based arbitration-tree algorithm. Therefore, we have the following theo-

rem.

Theorem 8.2 Using any fetch-and-φ primitive of rank r ≥ 2, starvation-free adap-

tive mutual exclusion can be implemented with O(min(k, max(1, logr N))) RMR time

complexity on either CC or DSM machines, where k is point contention. �

8.3 Θ(log N/ log log N) Algorithms

The time-complexity bound in Theorem 8.1 is clearly tight for r = Θ(N). In this

section, we show that for some primitives of rank r = o(logN), it is not tight, provided

that r is at least three. This follows from Algorithm T, shown in Figure 8.9, which

has Θ(log N/ log log N) RMR time complexity on both DSM and CC machines. In

this algorithm, it is assumed that the fetch-and-φ primitive used has a rank of at least

three, and is “self-resettable,” as defined below.

Definition: A fetch-and-φ primitive with rank r is self-resettable if the following hold.

• Let αp[0..kp − 1] be defined as in the definition of rank, and let each process

execute the for loop shown in that definition. Then, in any interleaving of an

arbitrary number of these fetch-and-φ primitive invocations by the N different

processes, only the first invocation returns ⊥.

• For each αp[i], there is an associated value βp[i] such that φ(φ(⊥, αp[i]), βp[i]) = ⊥.

That is, if the invocation of the fetch-and-φ primitive on v by process p returns

⊥, and if no other process accesses v, then p may reset the variable by invoking

the primitive again with a “reset” parameter. �

Recall that in the generic algorithms of the previous section, devising a way of

resetting the Tail variables was the key problem to be addressed. Because we could

assume so little of the semantics of the fetch-and-φ primitive being used, simple write

operations were used to reset these variables. If a self-resettable fetch-and-φ primitive

is available, then that primitive itself can be used to perform such a reset.

222

type NodeType = record winner , waiter : (0..N − 1, ⊥) end;
/∗ if winner = ⊥, then waiter = ⊥ also holds. ∗/

process p :: /∗ 0 ≤ p < N ∗/
function AcquireNode(t : NodeType): (WINNER, PRIMARY WAITER, SECONDARY WAITER)
/∗ atomically do the following ∗/

if t = (⊥, ⊥) then
t := (p, ⊥); return WINNER

elseif t.waiter = ⊥ then
t.waiter := p; return PRIMARY WAITER

else
return SECONDARY WAITER

fi

function ReleaseNode(t : NodeType): (SUCCESS, FAIL)
/∗ atomically do the following ∗/

if t.winner �= p then
/∗ error: should not happen ∗/

elseif t = (p, ⊥) then
t := (⊥, ⊥); return SUCCESS

else
return FAIL

fi

Figure 8.4: Definitions of NodeType, AcquireNode, and ReleaseNode. Note that
AcquireNode and ReleaseNode are assumed to execute atomically.

8.3.1 Algorithm T0: A Simple Tree Algorithm

As a stepping stone toward Algorithm T, we present a simpler algorithm, Algo-

rithm T0, with a similar structure. Algorithm T0, which is shown in Figure 8.5,

uses an arbitration tree, each node n of which is represented by a “local variable”

Lock [n] of type NodeType. Such a variable can hold up to two process identifiers and

is accessible ty two atomic operations, AcquireNode and ReleaseNode, as shown in Fig-

ure 8.4, in addition to ordinary read and write operations. (Later, in Algorithm T,

these operations are replaced by invocations of an arbitrary self-resettable fetch-and-φ

primitive of rank at least three.)

Informally, a value of (⊥, ⊥) represents an available node; (p, ⊥), where p �= ⊥,

represents a situation in which process p has acquired the node and no other process

has since accessed that node; (p, q), where p �= ⊥ and q �= ⊥, represents a situation in

which p has acquired the node and another process q is waiting at that node (perhaps

along with some other processes).

223

shared variables
Lock : array[1..MAX NODE] of NodeType initially (⊥, ⊥);
Spin: array[0..N − 1] of boolean;
WaitingQueue: serial waiting queue initially empty;
Promoted : (⊥, 0..N − 1) initially ⊥

private variables
lev , break level : 0..MAX LEVEL;
n, child : 1..MAX NODE;
proc: ⊥, 0..N − 1;
side: 0..1

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: Spin[p] := false;
2: AcquireNode(Lock [Node(p, MAX LEVEL)]);

/∗ automatically acquire its leaf node ∗/
lev := MAX LEVEL − 1;
break level := 0;
repeat

n := Node(p, lev);
3: if AcquireNode(Lock [n]) =

WINNER then
lev := lev − 1

else
break level := lev

fi
until (lev = 0) ∨ (break level > 0);
side := if break level = 0 then 0

/∗ normal entry ∗/
else 1;

/∗ promoted entry ∗/
4: if side = 1 then

await Spin[p]
/∗ wait until promoted ∗/

fi;
5: Entry2(side);

6: Critical Section;

7: Wait(); /∗ wait at the barrier ∗/
8: Exit2(side);

for lev := break level + 1 to
MAX LEVEL − 1 do

/∗ reopen each node p has acquired ∗/
n := Node(p, lev);

9: if Lock [n].winner = p then
10: if ReleaseNode(Lock [n]) = FAIL then
11: Enqueue(WaitingQueue,

Lock [n].waiter);
12: Lock [n] := (⊥, ⊥)

fi fi
od;

13: n := if side = 1 then Node(p, break level)
/∗ promoted at node n ∗/

else 1; /∗ the root node ∗/
14: if Lock [n].waiter = p then
15: proc := Lock [n].winner ;

if n = 1 then
16: Lock [n] := (proc, ⊥)

else
17: Lock [n] := (⊥, ⊥);
18: Enqueue(WaitingQueue, proc)

fi fi;
for each child := (a child of n) do

19: proc := Lock [child].winner ;
20: if (proc �= ⊥) then

Enqueue(WaitingQueue, proc) fi
od;

21: ReleaseNode(Lock [Node(p, MAX LEVEL)]);
/∗ reopen its leaf node ∗/

22: Remove(WaitingQueue, p);
23: proc := Promoted ;

if (proc = p) ∨ (proc = ⊥) then
24: proc := Dequeue(WaitingQueue);
25: Promoted := proc;
26: if proc �= ⊥ then Spin[proc] := true fi

fi;

27: Signal() /∗ open the barrier ∗/
od

Figure 8.5: Algorithm T0: A tree-structured algorithm using a NodeType object.

224

.

Processes (0..N-1)

Critical section

level 1

level MAX_LEVEL

Each node has degree

m = sqrt(log N).

Figure 8.6: Arbitration tree of Algorithms T0 and T.

Arbitration tree and waiting queue. The structure of the arbitration tree is

illustrated in Figure 8.6. The tree is of degree m =
√
log N . Each process is statically

assigned to a leaf node, which is at level MAX LEVEL. (The root is at level 1.) Since the

tree has N leaf nodes, MAX LEVEL = Θ(logm N) = Θ(logN/ log log N).

To enter its critical section, a process p traverses the path from its leaf up to the

root and attempts to acquire each node on this path. If p acquires the root node, then

it may enter its critical section. As explained shortly, p may also be “promoted” to its

critical section while still executing within the tree. (In that case, p may have acquired

only some of the nodes on its path.) In either case, upon exiting its critical section, p

traverses its path in reverse, releasing each node it has acquired.

In addition to the arbitration tree, a serial waiting queue, WaitingQueue, is used.

This queue is accessed by a process only within its exit section. A “barrier” mech-

anism is used that ensures that multiple processes do not execute their exit sections

concurrently (statements 7 and 27 of Figure 8.5). As a result, the waiting queue can be

implemented as a sequential data structure. It is accessible by the usual Enqueue and

Dequeue operations, and also an operation Remove(WaitingQueue, p), which removes

process p from inside the queue, if present; it is straightforward to implement each

of these operations in O(1) time. When a process p, inside its exit section, discovers

another waiting process q, p adds q to the waiting queue. In addition, p dequeues a

process r from the queue (if the queue is nonempty), and “promotes” r to its critical

section. (Similar mechanism is also used in Section 5.4, and in [24, 30, 41, 48]; see the

remark on page 139.)

Arbitration at a node. As mentioned above, associated with each (non-leaf) node

n is a “lock variable” Lock [n], which represents the state of that node. The structure

of such a node is illustrated in Figure 8.7. In its entry section, a process p may try to

225

.

m child nodes.

Lock[n]
Lock[n]

Node is open.

^ ^

Lock[n]

Node has a winner (p).

p ^ Lock[n] p q

Node has a winner (p),

and a primary waiter (q).

p p q

secondary
waiters

Figure 8.7: Structure of a node used in Algorithm T0.

acquire node n only if it has already acquired some child of n. In order to acquire node

n, p executes AcquireNode(Lock [n]). Assume that the old value of Lock [n] is (q, r).

There are three possibilities to consider.

• If q = ⊥ holds, then p has established Lock [n] = (p, ⊥) and has acquired node n.

In this case, p becomes the winner of node n, and proceeds to the next level of

the tree. (Note that r = ⊥ holds by definition in this case.)

• If q �= ⊥ and r = ⊥ hold, then p has established Lock [n] = (q, p), in which case it

becomes the primary waiter at node n. In this case, p stops at node n and waits

until it is “promoted” to its critical section by some other process.

• Otherwise, the value of Lock [n] is not changed, in which case p is a secondary

waiter at node n. In this case, p also waits at node n until it is promoted.

Next, consider the behavior of a process p in its exit section. There are two possi-

bilities to consider, depending on p’s execution history in its entry section.

• If p acquired node n in its entry section, then p has established Lock [n] = (p, ⊥).

In this case, p tries to release node n by executing ReleaseNode(Lock [n]). If no

other process has updated Lock [n] between p’s executions of AcquireNode(Lock [n])

and ReleaseNode(Lock [n]), then node n is successfully released (i.e., Lock [n] tran-

sits to (⊥, ⊥)). In this case, p descends the tree and continues to release other

nodes it has acquired.

On the other hand, if some other process has updated Lock [n] between p’s two

invocations, then let q be the first such process. As explained above, q must

226

have changed Lock [n] from (p, ⊥) to (p, q), thus designating itself as the primary

waiter at node n. In this case, p adds q to the waiting queue. (Note that p

does not enqueue any secondary waiters, i.e., processes that accessed Lock [n]

after q.) Process p then releases node n by writing (not via calling ReleaseNode)

Lock [n] := (⊥, ⊥), and descends the tree.

• If p was promoted at node n, then p has not acquired node n, and hence is

not responsible for releasing node n. Instead, p examines every child of node n

(specifically, Lock [child], where child is a child of n) to determine if any “sec-

ondary waiters” at node n exist. p adds such processes to the waiting queue, and

descends the tree.

The algorithm uses an additional mechanism that ensures the following properties,

as explained shortly.

Property 3 If a process p acquires a non-root node n > 1, and if another process

q later becomes the primary waiter of node n, then q examines every child of node n

after node n is released by p or by some other process on behalf of p (see below).

Property 4 If a process p acquires the root node (node 1), then p examines every

child of node 1 after node 1 is released by p.

(The reason that we need a separate property for the root node is that the winner

of the root node may immediately enter its critical section. Therefore, in order to

maintain the Exclusion property, the root node can be released only by its winner.1

On the other hand, non-root nodes can be released by some other process, as explained

later.)

Assuming these properties, we can easily show that each process eventually either

acquires the root, or is added to the waiting queue by some other process. In particular,

at node n, the winner always proceeds to the next level, and the primary waiter q is

eventually enqueued by the winner or by some other process. (The latter could happen

if waiting processes on q’s path lower in the tree are promoted.) Thus, we only have

to show that a secondary waiter is eventually enqueued. In order for a process r to

become a secondary waiter at node n, it must first acquire a child node n′ of n, and

then execute AcquireNode(Lock [n]) while Lock = (p, q) holds, for some winner p and

1In the preliminary version of the work presented in this chapter [19], the root node is not considered
as a special case. We later found that this can lead to a violation of the Exclusion property.

227

primary waiter q. If n > 1, then Property 3 guarantees that q has yet to examine the

child nodes of n; if n = 1 (i.e., n is the root node), then Property 4 guarantees that

p has yet to examine the child nodes of n. Therefore, in either case, p or q eventually

examines node n′, and adds r to the waiting queue (if it has not already been added

by some other process).

Finally, since the waiting queue is checked every time a process executes its exit

section, it follows that the algorithm is starvation-free.

As explained above, processes exiting the arbitration tree form two groups: the pro-

moted processes and the non-promoted processes (i.e., those that successfully acquire

the root). To arbitrate between these two groups, an additional two-process mutual

exclusion algorithm is used (statements 5 and 8).

Further details. Having explained the basic structure of the algorithm, we now

present a more detailed overview. We begin by considering the shared variables used

in the algorithm, which are listed in Figure 8.5. Lock and WaitingQueue have already

been explained. Spin[p] is a dedicated spin variable for process p. Promoted is used to

hold the identity of any promoted process. This variable is used to ensure that multiple

processes are not promoted concurrently, which is required in order to ensure that the

additional two-process mutual exclusion algorithm is accessed by only one promoted

process at a time.

We now consider Algorithm T0 in some detail. A process p in its entry section

first initializes its spin variable (statement 1), and automatically acquires its leaf node

(statement 2). It then ascends the arbitration tree (the repeat loop at statement 3).

Function Node(p, lev) is used to return the index of the node at level lev in p’s path.

Process p tries to acquire each node it visits by invoking AcquireNode (statement 3).

If it succeeds, then it ascends to the next level; otherwise, it finishes accessing the

arbitration tree. The private variable break level stores the level at which p exited the

repeat loop.

After exiting the loop, the private variable side is assigned the value of 0 if p

successfully acquired the root node, and 1 otherwise. If side = 0, then p executes the

two-process entry section using “0” as a process identifier (statement 5). Otherwise,

p spins until it is promoted by some other process (statement 4), and executes the

two-process entry section using “1” as a process identifier (statement 5).

In its exit section, p waits until the barrier is opened (statement 7) and then executes

the two-process exit section (statement 8). The barrier is specified by two procedures

228

Wait and Signal, which ensure that p waits at statement 7 if another process is ex-

ecuting within statements 8–26. Because Wait is invoked within a critical section, it

is straightforward to implement these procedures in O(1) time. In CC machines, Wait

can be defined as “await Flag ; Flag := false” and Signal as “Flag := true,” where

Flag is a shared boolean variable. In DSM machines, a slightly more complicated

implementation is required, as explained shortly.

Process p then tries to reopen each non-leaf node that it acquired in its entry section

(statements 9–12). For each such node n, p checks if it is still the winner (statement 9);

this may not be the case, if the primary waiter at node n executed statements 15–18

before p entered its critical section, as explained shortly. If p is indeed the winner at

node n, then it tries to reopen node n (statement 10). p may fail to reopen node n

only if node n has a primary waiter, in which case p enqueues the waiter and reopens

the node using an ordinary write (statements 11 and 12).

Statements 13–18 are executed in order to maintain Properties 3 and 4. After that,

statements 19 and 20 are executed to promote the secondary waiters. We now examine

these statements in detail by considering three cases.

• First, assume that p was promoted at node k > 1 (i.e., break level > 1 ∧ side =

1). In this case, statement 13 assigns n := k. p then examines Lock [k] (state-

ment 14). If p finds Lock [k].waiter = p at statement 14, then p is the primary

waiter at k, and was promoted before the winner of node k (say, q, given by

Lock [k].winner) entered its critical section. This can happen because p may ac-

tually have been promoted by a primary waiter at a lower level. In this case, p

resets node k in place of process q, and adds q to the waiting queue (statements 15,

17, and 18).

Note that node k may be thus reset even before q finishes its entry section. If

yet another process r subsequently acquires node k, then we may simultaneously

have two processes q and r, each of which “thinks” that it is the winner of node k.

However, since k is not a root node, this does not violate the Exclusion property.

Moreover, starvation-freedom is ensured as follows. Process q was already added

to the waiting queue by p. Since Lock [k].winner = r holds after r becomes the

new winner of node k, r either acquires the parent node k′ of k and continue

progress, or is eventually discovered by the winner of node k′ (or by some other

process). Therefore, both q and r eventually enter their critical sections.

229

After adding q to the waiting queue, p adds any process that has acquired a child

node of k to the waiting queue (statements 19 and 20). Note that statements 14–

18 ensure that Lock [k] is released at least once before statements 19 and 20 are

executed, thus ensuring that Property 3 holds.

• Second, assume that p successfully acquired the root node (i.e., break level =

0 ∧ side = 0). In this case, statement 13 assigns n := 1. Since p is the winner

of the root node, clearly it is not the primary waiter of the root node. Therefore,

p does not execute statements 15–18. Note that p has already reopened the root

node (together with any other node it has acquired) by executing the for loop at

statements 9–12.

After that, p adds any process that has acquired a child node of the root node to

the waiting queue (statements 19 and 20). Note that statements 9–12 ensure that

Lock [1] is released once before statements 19 and 20 are executed, thus ensuring

that Property 4 holds.

• Finally, assume that p was promoted at the root node (i.e., break level = 1 ∧
side = 1). In this case, statement 13 assigns n := 1. p then examines Lock [1]

(statement 14). If p finds Lock [1].waiter = p at statement 14, then p is the

primary waiter at the root node, and was promoted before the winner (say, q) of

the root node entered its critical section. In this case, p resets only Lock [1].waiter

(statements 15 and 16). Hence, it is maintained that the root node is reset only

by its winner.

After that, p executes statements 19 and 20. (This is in fact unnecessary, since q

will later execute these statements.)

Finally, p resets its leaf node (statement 21), makes sure that it is not contained

in the waiting queue (statement 22), and checks if there is any unfinished promoted

process (statement 23). If not, then p dequeues and promotes a process from the

waiting queue (if one exists) (statements 24–26). As a last step, p opens the barrier

(statement 27).

The barrier mechanism. We now explain how to implement the barrier mechanism

for DSM systems, provided that we have a fetch-and-φ primitive of rank at least two.

Procedures Wait and Signal can be implemented by the code fragments on the left

and right below, respectively. (b, counter , and next are private variables.)

230

a: Waiter := p;
b: Spin ′[p] := false;
c: b := fetch-and-φ(B, αp[counter]);

counter := counter + 1;
if b = ⊥ then

d: await Spin ′[p]
fi;

e: B := ⊥;
f: Waiter := ⊥

g: b := fetch-and-φ(B, αp[counter]);
counter := counter + 1;
if b �= ⊥ then

h: next :=Waiter ;
i: Spin ′[next] := true

fi

If a process p executes Wait, then it establishes B = ⊥ at line e. Thus, if B �= ⊥
holds, then either the barrier is open (i.e., p has executed line g), or there is a process

that has executed line c and is waiting at line d. In the latter case, Waiter indicates

the current waiting process. Spin ′[p] is a spin variable used exclusively by process p

(and, hence, it can be stored in memory local to p). Recall that there exist at most

one process that may execute within a–e (respectively, g–i) at any time. In particular,

lines a–e (statement 7 of Figure 8.5) is protected by Entry2 and Exit2 calls, and

lines g–i (statement 27 of Figure 8.5) is protected by the barrier itself. Therefore, it is

straightforward to establish the correctness of this implementation.

Time complexity. In order to compute the time complexity ofAlgorithm T0, note

that MAX LEVEL = Θ(log N/ log log N) holds. Therefore, the loops at statement 3 and

statements 9–12 iterate O(log N/ log log N) times each. Since the arbitration tree has

degree Θ(
√
log N), the for loop in statements 19–20 iterates Θ(

√
log N) times, which

is asymptotically dominated by Θ(log N/ log log N). Finally, the loop in statement 7

spins on a local spin variable, and hence incurs O(1) RMR time complexity. It follows

that Algorithm T0 has Θ(log N/ log log N) RMR time complexity on both DSM

and CC machines.

8.3.2 Algorithm T: A Generic Tree Algorithm

We now explain the differences between Algorithm T0 and Algorithm T, which

is shown in Figure 8.9.

In order to hide certain low-level details in Algorithm T, we will assume the

availability of two operations, fetch-and-update and fetch-and-reset, illustrated below.

A fetch-and-update operation on a variable v invokes the fetch-and-φ primitive being

used with the parameter αp[counter v] (where counter v is a private counter variable

231

associated with v), increments counter v, and returns the old value of v (i.e., the return

value of the fetch-and-φ primitive) and the new value of v (which can be determined by

φ(v, αp[counter v])). A fetch-and-reset operation on a variable v invokes the fetch-and-φ

primitive with the parameter βp[counter v], and also returns the old and new values of v.

. process p :

function fetch-and-update(v: Vartype): (Vartype, Vartype)
counterv := counterv + 1;
temp := fetch-and-φ(v, αp[counterv]);
retval := (temp, φ(temp, αp[counterv]));
return retval

function fetch-and-reset(v: Vartype): (Vartype, Vartype)
temp := fetch-and-φ(v, βp[counterv]);
retval := (temp, φ(temp, βp[counterv]));
return retval

In Algorithm T, each lock variable is accessed by the fetch-and-update and fetch-

and-reset operations, instead of the AcquireNode and ReleaseNode operations in Fig-

ure 8.4. Each such variable is assumed to have a type (Vartype) that is consistent

with the given fetch-and-φ primitive being used, and is initially ⊥. The main problem

associated with the use of a generic fetch-and-φ primitive is that we cannot use the

same variable as both a lock variable and as a variable for storing process identifiers.

In particular, even if a process p performs a successful fetch-and-update(v) operation,

the value written to v may be completely arbitrary; another process q may not be able

to discover the winning process (i.e., p) by reading v. Therefore, we need a pair of

variables, one for each purpose.

Another problem is that, in its exit section, a winner p (at node n) may fail to

discover the primary waiter. To see why this is so, consider the following scenario:

Lock [n] is initially ⊥; p acquires node n (via a fetch-and-update invocation), thus writing

v1 to Lock [n]; another process q accesses Lock [n], writes v2, and becomes the primary

waiter; yet another process r accesses Lock [n], and writes v1. (This is allowed because

the primitive may have rank three.) Thus, process p cannot detect q and r by reading

Lock [n].

In order to solve this problem, note that such a situation may arise only if there

are multiple waiters (q and r in this case). We exploit this fact by supplying two lock

variables Lock [n][0] and Lock [n][1] to each node n. A separate variable WaiterLock [n]

is used to elect a primary waiter. Thus, we can design the entry section of each node

as follows.

232

shared variables
Lock : array[1..MAX NODE][0..1] of Vartype initially ⊥;
WaiterLock : array[1..MAX NODE] of Vartype initially ⊥;
Winner : array[1..MAX NODE][0..1] of (⊥, 0..N − 1) initially ⊥;
Waiter : array[1..MAX NODE] of (⊥, 0..N − 1) initially ⊥;
Spin: array[0..N − 1] of boolean;
WaitingQueue: serial waiting queue initially empty;
Promoted : (⊥, 0..N − 1) initially ⊥

private variables
lev , break level : 0..MAX LEVEL;
n, child : 1..MAX NODE;
proc: ⊥, 0..N − 1;
result : (PRIMARY WINNER, PRIMARY WAITER,

SECONDARY WINNER, SECONDARY WAITER);
prev , new : Vartype;
lock : array[1..MAX LEVEL] of Vartype;
side: 0..2;
i: 0..1

Figure 8.8: Variables used in Algorithm T.

• First, a process executes fetch-and-update(Lock [n][0]) in order to become the pri-

mary winner at node n.

• If it fails to become the primary winner, then it executes fetch-and-

update(WaiterLock [n]) in order to become the primary waiter.

• If it still fails to become the primary waiter, then it executes fetch-and-

update(Lock [n][1]) in order to become the secondary winner at node n.

• Finally, if it fails to become the secondary winner, then it becomes a secondary

waiter.

A process ascends the tree if it becomes either the primary winner or the secondary

winner. Thus, now two processes can ascend the tree at each node. Note that a process

may become the secondary winner only if it fails to become the primary waiter, i.e.,

only if there already exists a primary waiter. Therefore, if the primary winner (in

its exit section) fails to detect the primary waiter, then some process must become a

secondary winner that knows that there exists a primary waiter. Thus, in this case, the

primary winner may safely descend the arbitration tree without promoting the primary

waiter; the primary waiter is eventually promoted by the secondary winner.

We now explain the structure of Algorithm T in detail.

233

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: Spin[p] := false;
2: Winner [Node(p, MAX LEVEL)][0] := p; /∗ automatically acquire its leaf node ∗/

lev , break level := MAX LEVEL − 1, 0;
repeat

3: result := AcquireNode(lev);
if (result = PRIMARY WINNER) ∨ (result = SECONDARY WINNER) then

lev := lev − 1
else

break level := lev
fi

until (lev = 0) ∨ (break level > 0);
side := if result = PRIMARY WINNER then 0

elseif result = SECONDARY WINNER then 1
else 2;

4: if side = 2 then await Spin[p] fi; /∗ wait until promoted ∗/
5: Entry3(side);

6: Critical Section;

7: Wait(); /∗ wait at the barrier ∗/
8: Exit3(side);

for lev := break level + 1 to MAX LEVEL − 1 do
/∗ reopen each non-leaf node p has acquired ∗/
n := Node(p, lev);

9: if Winner [n][0] = p then /∗ primary winner ∗/
10: Winner [n][0] := ⊥;
11: (prev , new) := fetch-and-reset(Lock [n][0]);

if (n > 1) ∧ (prev �= lock [lev]) then
12: repeat proc :=Waiter [n] until proc �= ⊥;
13: Enqueue(WaitingQueue, proc)

fi;
14: if new �= ⊥ then Lock [n][0] := ⊥ fi
15: elseif Winner [n][1] = p then /∗ secondary winner ∗/
16: Winner [n][1] := ⊥;
17: Lock [n][1] := ⊥;
18: if WaiterLock [n] �= ⊥ then
19: repeat proc :=Waiter [n] until proc �= ⊥;
20: Enqueue(WaitingQueue, proc)

fi fi
od;

Figure 8.9: Algorithm T. (Continued on the next page.)

234

21: n := if side = 2 then Node(p, break level) /∗ promoted at node n ∗/
else 1; /∗ the root node ∗/

22: if Waiter [n] = p then /∗ primary waiter ∗/
23: Waiter [n] := ⊥;
24: WaiterLock [n] := ⊥

fi;
25: if (n > 1) ∧ (Lock [n][0] �= ⊥) then
26: repeat proc :=Winner [n][0] until proc �= ⊥;
27: Winner [n][0] := ⊥;
28: Lock [n][0] := ⊥;
29: Enqueue(WaitingQueue, proc)

fi;
for each child := (a child of n) do

for i := 0 to 1 do
30: proc :=Winner [child][i];
31: if proc �= ⊥ then Enqueue(WaitingQueue, proc) fi

od od;

32: Winner [Node(p, MAX LEVEL)][0] := ⊥; /∗ reopen its leaf node ∗/
33: Remove(WaitingQueue, p);
34: proc := Promoted ;

if (proc = p) ∨ (proc = ⊥) then
35: proc := Dequeue(WaitingQueue);
36: Promoted := proc;
37: if proc �= ⊥ then Spin[proc] := true fi

fi;

38: Signal() /∗ open the barrier ∗/
od

procedure AcquireNode(lev : 1..MAX LEVEL)
n := Node(p, lev);

39: (prev , new) := fetch-and-update(Lock [n][0]);
lock [lev] := new ;
if prev = ⊥ then

40: Winner [n][0] := p;
return PRIMARY WINNER

else
41: (prev , new) := fetch-and-update(WaiterLock [n]);

if prev = ⊥ then
42: Waiter [n] := p;

return PRIMARY WAITER
else

43: (prev , new) := fetch-and-update(Lock [n][1]);
if prev = ⊥ then

44: Winner [n][1] := p;
return SECONDARY WINNER

else
return SECONDARY WAITER

fi fi fi

Figure 8.9: Algorithm T, continued.

235

Each node n is represented by the following variables: Lock [n][0..1], Winner [n][0..1],

WaiterLock [n], and Waiter [n]. Initially, all variables are ⊥, representing an available

node. Variables Lock [n][0..1] and WaiterLock [n] are used as lock variables, and are

accessed by fetch-and-update and fetch-and-reset operations. If a process p invokes

fetch-and-update on a lock variable while it has a value of ⊥, then p “acquires” that

variable. A process that acquires Lock [n][0] (respectively, WaiterLock [n], Lock [n][1])

becomes the primary winner (respectively, primary waiter, secondary winner), and

stores its identity in Winner [n][0] (respectively, Waiter [n], Winner [n][1]).

At each node n (at level lev), process p tries to acquire some variable of that node

by invoking AcquireNode (statements 3, 39–44 in Figure 8.9). If p becomes either the

primary winner or the secondary winner, then it proceeds to the next level of the tree,

as mentioned above. Otherwise, p stops at node n and waits until it is promoted

(statement 4), as in Algorithm T0. If p becomes the primary winner, then it also

stores the new value of Lock [n][0] into a private variable lock [lev] (where lev is the level

of node n; statement 39 inside AcquireNode), to be used in its exit section.

Since the root node may have two winners, we now use a three-process mutual

exclusion algorithm: process identifiers “0,” “1,” and “2” are used by the primary

winner of the root node, the secondary winner of the root node, and a promoted process,

respectively. Also, since each (non-root) node may have two winners, a double for loop

is used to detect and enqueue the winners of child nodes (statements 30 and 31).

The following counterpart of Properties 3 and 4 holds in Algorithm T.

Property 5 If a process p acquires Lock [n][0] at node n > 1, and if another process

q later becomes the primary waiter at node n, then q examines every child of node n

after Lock [n][0] is released by p or by some other process on behalf of p.

Property 6 If a process p acquires Lock [1][0], then p examines every child of node 1

(the root node) after Lock [1][0] is released by p.

We now consider the behavior of a process p in its exit section, at a given node n.

The behavior is slightly more complicated than that in Algorithm T0. (For brevity,

we do not restate properties that are common to both Algorithm T0 and T.)

Case 1: p is a primary/secondary waiter at node n (statements 21–31). In

this case, p is a promoted process. Hence, p.side equals 2, and p.break level equals

the level of node n. (Recall that we use p.v to represent p’s private variable v; see

236

page 51.) Therefore, statement 21 assigns p.n := n. If p is the primary waiter, then it

also releases WaiterLock [n] (statements 22–24). We now examine statements 25–29 by

considering two cases.

• First, assume that n is a non-root node (i.e., n > 1). In this case, p also checks

if the primary winner still exists (statement 25), and if so, obtains the identity

of the primary winner (statement 26), releases Lock [n][0] (statements 27 and 28)

and adds the primary winner to the waiting queue (statement 29). This is done

in order to maintain Property 5, in the same way statements 15, 17, and 18 of

Algorithm T0 maintain Property 3.

Note that, unlike statement 15 of Algorithm T0, statement 26 cannot detect

the primary winner (say, q) by simply executing “proc := Winner [n][0].” This

is because q may have executed statement 39 and is about to execute state-

ment 40. In such a case, Winner [n][0] equals ⊥ until q executes statement 40.

To guard against such a case, statement 26 repeatedly reads Winner [n][0] until

Winner [n][0] �= ⊥ is true. (A simlar remark applies to statements 12 and 19,

which are considered later.)

• Second, if n is the root node (i.e., n = 1), then p skips statements 26–29 and

leaves Lock [n][0] and Winner [n][0] unchanged, in the same way statements 15

and 16 of Algorithm T0 leave Lock [1].winner unchanged.

Process p then examines every child of node n (specifically, Lock [child][0..1], where

child is a child of n) to determine if any secondary waiters at node n exist (statements 30

and 31). p adds such processes to WaitingQueue.

Case 2: p is the primary winner at node n. In this case, p reads Winner [n][0] = p

at statement 9, and then executes statements 10–14.

Process p first resetsWinner [n][0] (statement 10), and then tries to release Lock [n][0]

by invoking fetch-and-reset (statement 11). If the old value of Lock [n][0] (returned

by fetch-and-reset) is different from lock [lev], then there has been at least one other

process, say q1, that invoked fetch-and-update on Lock [n][0] (by executing statement 39)

and failed to acquire that variable. Therefore, q1 must have tried (or is about to try)

to acquire WaiterLock [n] (by executing statement 41).

If q1 succeeds in acquiring WaiterLock [n], then it becomes the primary waiter;

otherwise, there must be another primary waiter q2. We consider two cases.

237

• First, assume that n is a non-root node (i.e., n > 1). At some point of execution,

there exists a primary waiter q (either q1 or q2). We claim that q cannot release

WaiterLock [n] before p executes statements 10–14. For the sake of contradiction,

assume otherwise. Note that WaiterLock [n] may be released only if q executes

statements 22–24. Since statements 8–37 are protected by the barrier, it follows

that q executes statements 22–29 before p executes statements 10–14. In this

case, q reads Lock [n][0] �= ⊥ at statement 25, and then resets Winner [n][0] and

Lock [n][0] at statements 27 and 28. Thus, p reads Winner [n][0] �= p at state-

ment 9 (i.e., p is no longer the primary winner), and hence p cannot execute

statements 10–14, a contradiction.

Therefore, eventually there exists a primary waiter q. Hence, p waits until

Waiter [n] �= ⊥ is established (statement 12), at which point Waiter [n] = q must

hold. It then adds q to the waiting queue (statement 13).

• Second, assume that n is a root node (i.e., n = 1). In this case, the primary

waiter q may already have released WaiterLock [1] by executing statement 24.

(Note that q does not execute statements 26–29 in this case. Thus, p is still

the primary winner.) Therefore, there is no guarantee that a primary waiter

eventually exists. Thus, p skips statements 12 and 13.

Note that, in this case, p later checks every child node of the root node (state-

ments 30 and 31), thus ensuring that Property 6 holds. Since the primary waiter

of the root node (if it exists) is the primary/secondary winner of some child node

of the root node, p eventually detects the primary waiter, if it exists.

On the other hand, if the old value of Lock [n][0] equals lock [lev], then there are two

possibilities: either (i) no other process accessed Lock [n][0] after p acquired it, or (ii)

at least two processes have done so. In either case, the fetch-and-reset operation has

successfully released Lock [n][0]. As explained before, in Case (ii), the primary waiter

of node n will be eventually detected by the secondary winner (if no other process

elsewhere in the tree detects it). Thus, p does not execute statements 12 and 13.

Finally, p checks if the fetch-and-reset operation has established Lock [n] = ⊥, and if

not, establishes this condition by a simple write (statement 14). (Note that the fetch-

and-reset operation is guaranteed to write ⊥ only if Lock [n][0] has the same value as

written by p’s last fetch-and-update operation (i.e., Lock [n][0] = lock [lev] holds), which

may not be the case here.)

238

Case 3: p is the secondary winner at node n. In this case, p reads Winner [n][1] =

p at statement 15, and then executes statements 16–20.

Process p first releases Winner [n][1] and Lock [n][1] by simple writes (statements 16

and 17). Then, p checks if there exists a primary waiter by examining WaiterLock [n]

(statement 18), and if so, adds the primary waiter to WaitingQueue (statements 19

and 20). �

In order to show that the algorithm is starvation-free, we only have to show that

each primary or secondary waiter is eventually enqueued onto the global waiting queue.

First, consider a secondary waiter r. In order for r to become a secondary waiter, at

the time when r invokes fetch-and-update(WaiterLock [n]) (statement 41), there must

be a primary waiter q of n. As shown below, q eventually executes its exit section,

where it examines every child of n and adds r to the waiting queue.

Second, consider a primary waiter q at a node n. In order for q to become the

primary waiter, at the time when q invokes fetch-and-update(Lock [n][0]) (statement 39),

there must be a primary winner p of n. We consider three cases.

• First, if p detects q in its exit section, then p clearly adds q to the waiting queue.

• Second, if p detects another primary waiter r, which enters and then exits its

critical section before q acquires WaiterLock [n], then r examines every child of n

in its exit section. Since q must be a primary or secondary winner of some child

of n, r discovers q and adds it to the waiting queue.

• Third, Assume that p does not detect the existence of the primary waiter in

its exit section. That is, p finds prev = lock [lev] at statement 11, and skips

statements 12 and 13. In this case, there exists another process r that fails

to acquire Lock [n][0]. If r becomes a primary waiter and then exits before q

acquires WaiterLock [n], then r detects q as in the second case. Thus, assume

that r fails to acquire WaiterLock [n]. If r fails because some other process s has

acquired WaiterLock [n], then s has exited before q acquired WaiterLock [n], and

the reasoning is again similar to the second case. On the other hand, if r fails

because q acquires WaiterLock [n] before r, then either r eventually becomes the

secondary winner, or r fails yet again because there exists another process s that

is the secondary winner. In either case, there eventually exists a secondary winner

(r or s) that detects q in its exit section.

239

Finally, note that every busy-waiting loop in Algorithm T is either a local-spin

loop (statement 4) or is executed inside a mutually exclusive region (statements 12,

19, and 26). We can apply the technique in Section 8.2.2 and transform each of these

non-local-spin loops into a local-spin loop (on DSM machines). A detailed correctness

proof of Algorithm T is given in Appendix F. From the discussion so far, we have

the following lemma.

Theorem 8.3 Using any self-resettable fetch-and-φ primitive of rank r ≥ 3, starvation-

free mutual exclusion can be implemented with Θ(logN/ log logN) time complexity on

either CC or DSM machines. �

As in Section 8.2, we can combine Algorithm T with our adaptive algorithm

(Algorithm A-LS) presented in Chapter 4 (see Theorem 8.2). Therefore, we have

the following theorem.

Theorem 8.4 Using any self-resettable fetch-and-φ primitive of rank r ≥ 3, starvation-

free adaptive mutual exclusion can be implemented with O(min(k, log N/ log log N))

RMR time complexity on either CC or DSM machines, where k is point contention. �

It can be shown that the Ω(log N/ log log N) lower bound presented in Chapter 5

applies to certain systems that use fetch-and-φ primitives of constant rank. The proof

of that lower bound inductively extends computations so that information flow among

processes is limited. If, at some induction step, a variable v is accessed by many

processes, then information flow is kept low by ensuring that v may be assigned O(1)

different values during this induction step. Therefore, our lower bound applies to

any fetch-and-φ primitive satisfying the following: any consecutive invocations of the

primitive by different processes can be ordered so that only O(1) different values are

returned. It follows that, for self-resettable fetch-and-φ primitives with a constant

rank of at least three that satisfy this condition, Algorithm T is asymptotically

time-optimal. Examples of such primitives include a fetch-and-increment/decrement

primitive with bounded range 0..2, a variant of compare-and-swap that allows two

different compare values to be specified (2VCAS; see page 140), and the simultaneous

execution of a test-and-set and a write operation on different bits of a variable.

240

8.4 Concluding Remarks

We have shown that any fetch-and-φ primitive of rank r ≥ 2 can be used to imple-

ment a Θ(logmin (r,N) N) mutual exclusion algorithm, on either DSM or CC machines.

Θ(logmin (r,N) N) is clearly optimal for r = Ω(N). For primitives of rank at least three

that are self-resettable, we have presented a Θ(logN/ log logN) algorithm, which gives

an asymptotic improvement in RMR time complexity for primitives of rank o(log N).

This algorithm is time-optimal for certain self-resettable primitives of constant rank.

In designing these algorithms, our main goal was to achieve certain asymptotic time

complexities. In particular, we have not concerned ourselves with designing algorithms

that can be practically applied. Indeed, it is difficult to design practical algorithms

when assuming so little of the fetch-and-φ primitives being used. It is likely that by

exploiting the semantics of a particular primitive, our algorithms could be optimized

considerably.

As noted earlier in Section 1.4.4, we believe that the notion of rank defined in

this chapter may be a suitable way of characterizing the “power” of primitives from

the standpoint of blocking synchronization, much like the notion of a consensus num-

ber , which is used in Herlihy’s wait-free hierarchy [41], reflects the “power” of primi-

tives from the standpoint of nonblocking synchronization. Interestingly, primitives like

compare-and-swap that are considered to be powerful according to Herlihy’s hierarchy

are weak from a blocking synchronization standpoint (since they are subject to the

Ω(log N/ log log N) lower bound presented in Chapter 5). Also, primitives like fetch-

and-increment and fetch-and-store that are considered to be powerful from a blocking

synchronization standpoint are considered quite weak according to Herlihy’s hierarchy.

(They have consensus number two.) This difference arises because in nonblocking al-

gorithms, the need to reach consensus is fundamental (as shown by Herlihy), while in

blocking algorithms, the need to order competing processes is important.

The Θ(logN/ log logN) algorithm in Section 8.3 shows that Ω(logN/ log logN) is a

tight lower bound for some class of synchronization primitives. Unfortunately, we have

been unable to adapt the algorithm to work with only reads, writes, and comparison

primitives. As stated in Chapter 5, we conjecture that Ω(logN) is a tight lower bound

for algorithms based on such operations.

CHAPTER 9

Conclusion

In this dissertation, we have presented many new results on shared-memory mutual

exclusion algorithms. In this chapter, we summarize these results and discuss directions

for future research.

9.1 Summary

In Chapter 3, we presented a mutual exclusion algorithm with Θ(N) space complexity

and Θ(logN) RMR (remote-memory-reference) time complexity on both CC and DSM

systems. This algorithm was created by applying a series of simple transformations to

Yang and Anderson’s mutual exclusion algorithm (Algorithm YA-N) [84].

As described in Section 2.4, Attiya and Bortnikov presented an adaptive non-local-

spin mutual exclusion algorithm under read/write atomicity [24]. Their algorithm

achieves O(n2) space complexity, where n is an a priori upper bound on the number of

concurrently active processes. Therefore, it is possible to construct an algorithm with

space complexity independent of N , if one does not insist on local spinning. However,

among local-spin algorithms, our algorithm is clearly optimal, because every process

must have at least one spin variable.

This space-optimal algorithm is motivated by our work on adaptive mutual exclu-

sion algorithms, presented in Chapter 4. In this chapter, we presented an adaptive

local-spin algorithm for mutual exclusion under read/write atomicity. This is the first

read/write algorithm that is adaptive under the RMR time complexity measure. (As

mentioned earlier, Afek, Stupp, and Touitou [6] independently devised another such

algorithm.) This algorithm (Algorithm A-LS) has Θ(N) space complexity, which is

clearly optimal.

242

In Chapter 5, we established a lower bound of Ω(logN/ log logN) remote memory

references for mutual exclusion algorithms based on reads, writes, or comparison primi-

tives; for algorithms with comparison primitives, this bound only applies in non-LFCU

systems. Our bound improves an earlier lower bound of Ω(log log N/ log log log N)

established by Cypher. Given Algorithm YA-N [84], our bound is within a factor of

Θ(log logN) of being optimal.

Given that constant-time algorithms based on fetch-and-φ primitives exist, this

lower bound points to an unexpected weakness of compare-and-swap, which is widely

regarded as being the most useful of all primitives to provide in hardware. In particular,

this result implies that the best algorithm based on compare-and-swap can have RMR

time complexity that is at most Θ(log log N) times smaller than that of the best

algorithm based on reads and writes.

In Chapter 6, we established a lower bound that eliminates the possibility of an o(k)

adaptive mutual exclusion algorithm based on reads, writes, or comparison primitives,

where k is either point or interval contention. One may ask whether the bounds pre-

sented in Chapters 5 and 6 together imply a lower bound of Ω(min(k, logN/ log logN))

RMRs for mutual exclusion algorithms (adaptive or not). Unfortunately, the answer

is no. We have shown that Ω(k) time complexity is required provided N is sufficiently

large. This leaves open the possibility that an algorithm might have Θ(k) time com-

plexity for very “low” levels of contention, but o(k) time complexity for “intermediate”

levels of contention. Although our lower bound does not preclude such a possibility, we

find it highly unlikely.

In Chapter 7, we presented a nonatomic local-spin mutual exclusion algorithm with

Θ(log N) worst-case RMR time complexity, which matches that of the best atomic

algorithm (Algorithm YA-N) proposed to date. We also showed that for any N -

process nonatomic algorithm, there exists a single-process execution in which the lone

competing process accesses Ω(log N/ log log N) distinct variables in order to enter its

critical section. This bound shows that fast and adaptive algorithms are impossible if

variable accesses are nonatomic, even if caching techniques are used to avoid accessing

the processors-to-memory interconnection network.

Finally, in Chapter 8, we defined the concept of a “rank” for fetch-and-φ prim-

itives, and showed that any fetch-and-φ primitive of rank r can be used to imple-

ment a Θ(logmin (r,N) N) mutual exclusion algorithm, on either DSM or CC machines.

Θ(logmin (r,N) N) is clearly optimal for r = Ω(N). For primitives of rank at least three

that are self-resettable, we presented a Θ(log N/ log log N) algorithm, which gives

243

an asymptotic improvement in RMR time complexity for primitives of rank o(log N).

This algorithm is time-optimal for certain self-resettable primitives of constant rank.

Either algorithm can be combined with the adaptive algorithm presented in Chapter 4

(Algorithm A-LS) to obtain a fetch-and-φ-based adaptive algorithm.

From the lower bound presented in Chapter 5 and the Θ(logN/ log logN) algorithm

in Section 8.3, it follows that Ω(logN/ log logN) is a tight upper and lower bound for

some class of synchronization primitives. As noted earlier on page 239, examples of such

primitives include a fetch-and-increment/decrement primitive with bounded range 0..2,

a variant of compare-and-swap that allows two different compare values to be specified,

and the simultaneous execution of a test-and-set and a write operation on different bits

of a variable.

9.2 Future Work

In this section, we discuss some of the remaining open problems and directions for

further research on shared-memory mutual exclusion.

As explained earlier, the most efficient known local-spin algorithm based on reads

and writes is Algorithm YA-N [84], which has Θ(log N) time complexity. Thus,

in establishing the Ω(log N/ log log N) lower bound presented in Chapter 5, we have

almost succeeded in establishing the optimality of Algorithm YA-N. We conjecture

that Ω(log N) is a tight lower bound for the class of algorithms and systems to which

our lower bound applies.

Conjecture: For any N -process mutual exclusion algorithm using reads, writes, and

conditional primitives, there exists a history in which some process performs Ω(logN)

remote memory references to enter and exit its critical section.

It should be noted that Cypher’s result guarantees that there exists no algorithm

with amortized Θ(log log N/ log log log N) time complexity, while ours does not. This

is because his bound is obtained by counting the total number of remote memory refer-

ences in a computation, and by then dividing this number by the number of processes

participating in that computation. In contrast, our result merely proves that there ex-

ists a computation H and a process p such that p executes Ω(logN/ log logN) critical

events in H. Therefore, our result leaves open the possibility that the average number

of remote memory references per process is less than Θ(log N/ log log N). We leave

this issue for future research.

244

Open Problem: Can Cypher’s amortized lower bound be improved?

Algorithm A-LS, presented in Chapter 4, has O(min(k, logN)) RMR time com-

plexity. On the other hand, Attiya and Bortnikov [24] devised a non-local-spin adaptive

algorithm with O(log k) system response time (see Section 2.4). It would be interesting

to know whether the better features of these two algorithms could be combined. That

is:

Open Problem: Can the mutual exclusion problem be solved with O(k) RMR time

complexity under the DSM model and with O(log k) system response time?

One may instead question if the RMR time complexity ofAlgorithm A-LSmay be

improved. Since the results of Chapter 6 preclude the possibility of an o(k) algorithm,

we conjecture that Ω(min(k, logN)) is indeed a tight lower bound for adaptive mutual

exclusion algorithms based on read, write, or comparison primitives (which would imply

that Algorithm A-LS is optimal).

Conjecture: For any adaptive N -process mutual exclusion algorithm using reads,

writes, and conditional primitives, and for any k ranging over 1 ≤ k ≤ N , there ex-

ists a history in which some process experiences point contention k and generates

Ω(min(k, log N)) remote memory references to enter and exit its critical section.

One drawback of Algorithm A-LS is that every process starts execution by ac-

cessing the same variable. Hence, in practice, Algorithm A-LS may suffer from high

hot-spot contention. Given the lower bounds of Anderson and Yang [22] (see Theo-

rems 2.10 and 2.11), any fast or adaptive algorithm must use Ω(N ε)-writer variables.

Thus, we know that write- and access-contention cannot be completely eliminated in

designing adaptive algorithms. Although there has been work on formal complex-

ity models that takes write/access-contention into account [35, 37], a time-complexity

model that incorporates both memory locality and write/access-contention has not

been devised so far. We leave this issue for future research.

The results of Chapter 7 suggest several avenues for further research. The most

obvious is to close the gap between our Θ(logN) algorithm and our Ω(logN/ log logN)

lower bound. We conjecture that our lower bound can be improved to Θ(logN).

Conjecture: For any N -process mutual exclusion algorithm using nonatomic reads

and writes, there exists a single-process execution in which the lone competing process

accesses Ω(log N) distinct variables in order to enter and exit its critical section.

245

Another interesting question arises from the results of Chapter 7. Our proof hinges

on the ability to “stall” nonatomic writes for arbitrarily long intervals. This gives rise

to the following question: Is it possible to devise a nonatomic algorithm that is fast or

adaptive if each write is guaranteed to complete within some bound ∆? We hope to

resolve this question in future work.

The results of Chapter 8 only partially address the questions raised there regarding

fetch-and-φ-based mutual exclusion algorithms. To remedy the situation, the definition

of rank given in Chapter 8 needs to be justified. Towards this goal, we need to obtain a

lower bound for mutual exclusion algorithms based on a generic fetch-and-φ primitive.

However, assuming so little of the specific semantics of the given primitive, it seems

extremely difficult to prove a nontrivial lower bound. We leave this question for future

research.

In this dissertation, we studied algorithms based on atomic reads and writes (Chap-

ters 3 and 4), nonatomic reads and writes (Chapter 7), and stronger synchronization

primitives (Chapter 8). Most mutual exclusion algorithms presented in the literature

fit within one of these categories, with one notable exception: timing-based algorithms.

These algorithms are devised for semi-synchronous systems, in which the time required

to execute a statement is upper-bounded. Timing-based algorithms exploit such bounds

by allowing processes to delay their execution [7, 10, 56, 58].

In recent work [48], we presented several local-spin timing-based algorithms. Note

that, for asynchronous systems (which are assumed throughout this dissertation), a

lower bound of Ω(logN/ log logN) RMRs is fundamental, as established in Chapter 5.

In [48], we showed that lower RMR time complexity is attainable in semi-synchronous

systems with delay statements.

When assessing the time complexity of delay-based algorithms, the question of

whether delays should be counted arises. We considered both possibilities. Also of

relevance is whether delay durations are upper-bounded. Again, we considered both

possibilities. For each of these possibilities, we presented an algorithm with either Θ(1)

or Θ(log log N) time complexity, and established a matching time-complexity lower

bound. It follows from these results that semi-synchronous systems allow mutual ex-

clusion algorithms with substantially lower RMR time complexities than completely

asynchronous systems, regardless of how one resolves the issues noted above.

The work mentioned above only considered the known-delay model [10, 56, 58], in

which there is a known upper bound, denoted ∆, on the time required to access a shared

variable. The known-delay model differs from the unknown-delay model [7], wherein the

246

upper bound ∆ is unknown a priori, and hence, cannot be used directly in an algorithm.

Presently, we do not know if local-spin mutual exclusion with o(log N) RMR time

complexity is possible for the unknown-delay model. Moreover, it is unknown whether

RMR time complexity is a suitable means of comparing timing-based algorithms. We

leave these questions for future research.

247

APPENDIX A

CORRECTNESS PROOF FOR

ALGORITHM A-LS IN CHAPTER 4

In this appendix, we formally prove that Algorithm A-LS, presented in Chapter 4,

satisfies the Exclusion property (at most one process executes its critical section at any

time). In addition, we establish an invariant that implies that the algorithm is adaptive

under the RMR measure. (The algorithm is easily seen to be starvation-free if the

underlying algorithms used to implement the ENTRY and EXIT calls are starvation-free.)

Our proof makes use of a number of auxiliary variables. In Figure A.1, Algorithm A-

LS is shown with these added auxiliary variables. We have marked the lines of code

that refer to auxiliary variables with a dash “—” to make them easier to distinguish.

We now define several terms that will be used in the proof. Unless stated otherwise,

we assume that i and h range over {1, . . . , T}, and that p and q range over {0, . . . , N −
1}.

Definition: We say that a process p is a candidate to acquire splitter i (1 ≤ i ≤ T) if

the condition A(p, i), defined below, is true.

A(p, i) ≡ p.node = i ∧ p@{3..5, 8..14, 17..22, 24..41} ∧(
p@{17..19} ⇒ X[i] = p

) ∧(
p@{17..22} ⇒ Reset [i] = p.y

) ∧(
p@{3} ⇒ p.dir = stop

)
�

By definition, if p is the winner of some round R(i, r) of splitter i, then p is also a

candidate to acquire splitter i.

Definition: We define i
∗−→ h to be true, where each of i and h (1 ≤ i, h ≤ 2T + 1)

is either a splitter or a “child” of a leaf splitter, if i = h or if h is a descendent of i in

the renaming tree. (When a process “falls off the end” of the renaming tree, it moves

to level L+ 1. The actual leaves of the renaming tree are at level L.) Formally,
∗−→ is

the transitive closure of the relation {(i, i), (i, 2i), (i, 2i+ 1): 1 ≤ i ≤ T}. �

248

/∗ all constant, type, and variable declarations are as defined in Figure 4.7 except as noted here ∗/
shared auxiliary variables

Loc: array[0..2N − 1] of 0..2T + 1 initially 0;
Dist: array[1..S] of (⊥, 0..S − 1);
PC: array[0..N − 1, 1..T] of 0..2N initially 0

private auxiliary variable
m: 1..T

initially (∀j : 1 ≤ j ≤ T :: Dist[j] = ⊥) ∧ (∀j : T < j ≤ S :: Dist[j] = j − T − 1)

process p :: / ∗ 0 ≤ p < N ∗ /

while true do
0: Noncritical Section;
1: node, level := 1, 0;

— for m := 1 to T do PC[p, m] := 0 od;
— UpdateLoc({p}, 1);
/∗ descend renaming tree ∗/
repeat

2: dir := AcquireNode(node);
3: path[level] := (node, dir);

if dir = left then
level , node := level + 1, 2 · node

elseif dir = right then
level , node := level + 1, 2 · node + 1

fi
until (level > L) ∨ (dir = stop);

if level ≤ L then /∗ got a name ∗/
/∗ compete in the renaming tree,

and then 2-process algorithm ∗/
for j := level downto 0 do

4: Entry3(path[j].node, path[j].dir)
od;

5: Entry2(0)
else /∗ did not get a name ∗/

/∗ compete in the overflow tree,
and then 2-process algorithm ∗/

6: EntryN (p);
7: Entry2(1)

fi;

8: Critical Section;

/∗ reset splitters ∗/
for j := min(level , L) downto 0 do

n, dir := path[j].node, path[j].dir ;
9: ReleaseNode(n, dir)

od;

/∗ execute appropriate exit sections ∗/
if level ≤ L then

10: Exit2(0);
for j := 0 to level do

11: Exit3(path[j].node, path[j].dir)
od;

12: ClearNode(node)
else 13:Exit2(1);

14: ExitN (p)
fi;
— Loc[p], Loc[p+N] := 0, 0

od

Figure A.1: Algorithm A-LS with auxiliary variables added. (Continued on the next
page.)

249

function AcquireNode(n: 1..T): Dtype
15: X[n] := p;

— UpdateLoc({q: q@{16..19} ∧
— q.n = n}, 2n);

16: y := Y [n];
if ¬y.free then
— UpdateLoc({p}, 2n+ 1);

return right
fi;

17: Y [n] := (false, 0);
18: Inuse[p] := y.rnd ;
19: if X[n] �= p ∨
20: Acquired [n] then

— UpdateLoc({p}, 2n);
return left

fi;
21: Round [y.rnd] := true;
22: if Reset [n] �= y then
23: Round [y.rnd] := false;

return left
fi;

24: Acquired [n] := true;
return stop

procedure ReleaseNode(n: 1..T, dir : Dtype)
25: if dir = right then return fi;

— Loc[p] := n;
26: Y [n] := (false, 0);
27: X[n] := p;

— UpdateLoc({q: q@{16..19} ∧ q.n = n}, 2n);
28: y := Reset [n];
29: Reset [n] := (false, y.rnd);

— UpdateLoc({q: q@{17..22} ∧ q.n = n}, 2n);
30: if (dir = stop ∨ ¬Round [y.rnd]) then
31: ptr := Check ;
32: usedrnd := Inuse[ptr];
33: if usedrnd �= 0 then

MoveToTail(Free, usedrnd)
fi;

34: Check := ptr + 1 mod N ;
35: Enqueue(Free, y.rnd);
36: nextrnd := Dequeue(Free);
37: Reset [n] := (true, nextrnd);
38: Y [n] := (true, nextrnd)

fi;
if dir = stop then

39: Round [y.rnd] := false;
40: Inuse[p] := 0

fi

procedure ClearNode(n: 1..T)
41: Acquired [n] := false

Figure A.1: Algorithm A-LS with auxiliary variables added, continued.

Definition: We define lev(i) to be the level of splitter i in the renaming tree, i.e.,

lev(i) = �log i�. �

We are now in a position to describe the auxiliary variables used in our proof. They

are as follows.

• Loc[p] is the location of process p within the renaming tree, where 0 ≤ p < 2N .

Note that p.node �= Loc[p] is possible if p is not a candidate to acquire splitter

p.node. (The exact value of Loc[p] is given in invariants (I48)–(I56), stated later.)

• Dist[r] specifies the distance of round number r from the head of Free. If r is not

in Free, then Dist[r] = ⊥. Dist[r] is assumed to be updated within the procedures

Enqueue, Dequeue, and MoveToTail.

One additional definition is needed before we consider the final set of auxiliary

variables.

250

Definition: We define the contention of splitter i, denoted C(i), as the number of

processes p such that Loc[p] equals a splitter (or a child of a leaf splitter) in the subtree

rooted at i. Formally,

C(i) ≡ ∣∣{p : 0 ≤ p < 2N :: i
∗−→ Loc[p]}∣∣. �

The last set of auxiliary variables is as follows.

• PC[p, i] is the point contention experienced by process p in its entry section while

at splitter i or one of its descendents in the renaming tree. In particular, when p

moves down to splitter i, PC[p, i] is initialized to be C(i), the contention of splitter

i. From that point onward, PC[p, i] tracks the point contention of the subtree

rooted at i as seen by process p, i.e., the maximum value of C(i) encountered

since p moved down to spitter i. PC[p, i] is not used if process p is outside its

entry section or if i
∗−→ Loc[p] is false.

The auxiliary procedure UpdateLoc(P, i) is called when a process enters its entry

section (statement 1) and when a set P of processes moves to splitter i while in their

entry sections (statements 15, 16, 20, 27, and 29). This procedure updates the value of

Loc[p] and Loc[p+N] to be i for each p ∈ P (recall that both should have the same value

while p is in its entry section), and sets the value of PC[p, i] as the current contention

of the subtree rooted at i. It also updates the PC values of other processes to reflect

the movement of processes in P .

procedure UpdateLoc(P ⊆ {0..N − 1}, i: 1..T)
u1: for all p ∈ P do Loc[p], Loc[p+N] := i, i od;
u2: for all p ∈ P do PC[p, i] := C(i) od;
u3: for all q, h s.t. q@{2, 3, 15..24} ∧ h

∗−→ Loc[q] do
if PC[q, h] < C(h) then PC[q, h] := C(h) fi

od

Notice that the value of Loc array is changed directly at statements 14.p, 25.p, and

41.p (by our atomicity assumption, each of 14.p and 41.p establishes p@{0} and includes

the assignments to Loc[p] and Loc[p + n] that appear after statement 14.p). Because

these statements are not within p’s entry section, there is no need to update PC[p, i]

(for any i). In addition, statement 25.p updates Loc[p] to move from a splitter to its

ancestor, and statements 14.p and 41.p reinitialize Loc[p] and Loc[p + N] to 0 (i.e., p

is no longer within the renaming tree). Thus, contention does not increase within any

subtree when these statements are executed.

251

A.1 List of Invariants

We will establish the Exclusion and Adaptivity properties by proving that the conjunc-

tion of a number of assertions is an invariant. This proves that each of these assertions

individually is an invariant. These invariants are listed below.

(I) Invariants that give conditions that must hold if a process p is a candidate to acquire

splitter i.

invariant A(p, i) ∧ (
p@{3..8, 18..22, 24} ∨ (p@{9, 25..38} ∧ p.n = i)

) ⇒
Y [i] = (false, 0) (I1)

invariant A(p, i) ∧ (
p@{3..8, 22, 24} ∨ (p@{9, 25..38} ∧ p.n = i)

) ⇒
Round [p.y.rnd] = true (I2)

invariant A(p, i) ∧ (
p@{3..8, 24} ∨ (p@{9, 25..37} ∧ p.n = i)

) ⇒
Reset [i].rnd = p.y.rnd (I3)

invariant
(∃p :: A(p, i) ∧ p@{3..14, 25..41}) = (Acquired [i] = true

)
(I4)

(II) Invariants that prevent “interference” of Round entries. These invariants are used

to show that if p@{20..23} holds and process p is not a candidate to acquire splitter

p.node, then either p.y.rnd is not in the Free queue, or it is “trapped” in the tail region

of the queue. Therefore, there is no way p.y.rnd can reach the head of Free and get

assigned to another splitter.

invariant p@{17..19} ∧ X[p.node] = p ⇒
Reset [p.node] = p.y ∧ Dist[p.y.rnd] = ⊥ ∧
(∀q :: q@{37, 38} ⇒ p.y.rnd �= q.nextrnd) (I5)

invariant p@{20..23} ∧ (∃q :: q@{34}) ⇒
Reset [p.node].rnd = p.y.rnd ∨
Dist[p.y.rnd] > 2N − 2 · ((Check − p) mod N

)− 2 (I6)

invariant p@{20..23} ∧ (∃q :: q@{35, 36}) ⇒
Reset [p.node].rnd = p.y.rnd ∨
Dist[p.y.rnd] > 2N − 2 · ((Check − p − 1) mod N

)− 2 (I7)

invariant p@{20..23} ∧ ¬(∃q :: q@{34..36}) ⇒
Reset [p.node].rnd = p.y.rnd ∨
Dist[p.y.rnd] > 2N − 2 · ((Check − p − 1) mod N

)− 3 (I8)

invariant p@{20..23} ∧ q@{37, 38} ⇒ p.y.rnd �= q.nextrnd (I9)

invariant p@{23} ∧ Reset [p.node].rnd = p.y.rnd ⇒

252

Reset [p.node].free = false (I10)

invariant Y [i].free = true ⇒ Dist[Y [i].rnd] = ⊥ ∧
(∀p :: p@{37, 38} ⇒ Y [i].rnd �= p.nextrnd) (I11)

invariant p@{37} ⇒ (∀i :: Reset [i].rnd �= p.nextrnd) (I12)

invariant p@{38, 39} ⇒ (∀i :: Reset [i].rnd �= p.y.rnd) (I13)

invariant Dist[Reset [i].rnd] = ⊥ ∨
(∃p :: p@{36} ∧ p.n = i ∧ Dist[Reset [i].rnd] = 2N) ∨
(∃p :: p@{37} ∧ p.n = i ∧ Dist[Reset [i].rnd] = 2N − 1) (I14)

invariant i �= h ⇒ Reset [i].rnd �= Reset [h].rnd (I15)

invariant p@{20..23} ∧ q@{33} ∧ (Check = p) ⇒
Reset [p.node].rnd = p.y.rnd ∨ q.usedrnd = p.y.rnd (I16)

(III) Invariants showing that certain regions of code are mutually exclusive.

invariant A(p, i) ∧ A(q, i) ∧ p �= q ⇒
¬[p@{17..20} ∧(

q@{3..8, 17..22, 24} ∨ (q@{9, 25..38} ∧ q.n = i)
)]

(I17)

invariant A(p, i) ∧ A(q, i) ∧ p �= q ⇒
¬(p@{3..14, 21, 22, 24..41} ∧ q@{3..14, 21, 22, 24..41}) (I18)

invariant A(p, i) ∧ q.n = i ⇒ ¬(p@{17..19} ∧ q@{28..38}) (I19)

invariant A(p, i) ∧ q.n = i ⇒ ¬(p@{20, 21} ∧ q@{30..38}) (I20)

invariant A(p, i) ∧ q.n = i ⇒ ¬(p@{3..10, 22, 24} ∧ q@{31..38}) (I21)

invariant A(p, i) ∧ (
p@{3..8, 20..22, 24} ∨ (p@{9, 25..38} ∧ p.n = i)

) ∧
q@{20..23} ∧ p �= q ⇒

p.y.rnd �= q.y.rnd (I22)

(IV) Miscellaneous invariants that are either trivial or follow almost directly from the

Exclusion property (I60). In (I37) and (I38), ‖Free‖ denotes the length of the Free

queue.

invariant p@{29} ⇒ Reset [p.n] = p.y (I23)

invariant p@{30..37} ⇒ Reset [p.n] = (false, p.y.rnd) (I24)

invariant p@{27..38} ⇒ Y [p.n] = (false, 0) (I25)

invariant Y [i].free = true ⇒ Y [i] = Reset [i] (I26)

invariant Reset [i].rnd �= 0 (I27)

invariant p@{17..23} ⇒ p.y.free = true (I28)

253

invariant p@{17..23, 29..40} ⇒ p.y.rnd �= 0 (I29)

invariant p@{19..23} ⇒ Inuse[p] = p.y.rnd (I30)

invariant p@{2, 3, 15..24} ⇒ (0 ≤ p.level ≤ L) ∧ (1 ≤ p.node ≤ T) (I31)

invariant p@{9, 25..40} ⇒
1 ≤ p.n ≤ T ∧ p.n = p.path[p.j].node ∧
p.dir = p.path[p.j].dir ∧ p.j = lev(p.n) (I32)

invariant p@{9, 25..40} ∧ p.dir = stop ⇒ p.n = p.node (I33)

invariant p@{9, 25..40} ∧ p.n = p.node ⇒ p.dir = stop (I34)

invariant p@{2..41} ⇒ (0 ≤ p.level ≤ L+ 1) ∧ (lev(p.node) = p.level) (I35)

invariant p@{39, 40} ⇒ p.n = p.node (I36)

invariant ¬(∃p :: p@{36}) ⇒ ‖Free‖ = 2N (I37)

invariant (∃p :: p@{36}) ⇒ ‖Free‖ = 2N + 1 (I38)

invariant p@{32..34} ⇒ p.ptr = Check (I39)

invariant p@{37, 38} ⇒ Dist[p.nextrnd] = ⊥ (I40)

invariant p@{36} ⇒ Dist[p.y.rnd] = 2N (I41)

invariant p@{37} ⇒ Dist[p.y.rnd] = 2N − 1 (I42)

invariant (1 ≤ i ≤ S) ∧ Round [i] = true ⇒(∃p :: p.y.rnd = i ∧(
p@{3..5, 8, 22..24} ∨ (p@{9, 25..39} ∧ p.n = p.node)

) ∧(
p@{3..5, 8} ⇒ (p.dir = stop ∧ 1 ≤ p.node ≤ T)

))
(I43)

invariant p@{4..14, 25..41} ∧ (p.node ≤ T) ⇒ p.path[p.level] = (p.node, stop) (I44)

invariant p@{2..41} ∧ (2i
∗−→ p.node) ⇒ p.path[lev(i)] = (i, left) (I45)

invariant p@{3} ∧ (p.level > 0) ⇒
p.path[0].node = 1 ∧

(∀l : 0 ≤ l < p.level − 1 :: p.path[l].node
∗−→ p.path[l + 1].node) ∧

p.path[p.level − 1].node
∗−→ p.node (I46)

invariant p@{26..38} ⇒ (p.n = p.node) ∨ (2 · p.n ∗−→ p.node) (I47)

(V) Invariants that give the value of the auxiliary variable Loc.

invariant p@{0, 1} ⇒ Loc[p] = 0 ∧ Loc[p+N] = 0 (I48)

invariant p@{2, 15} ⇒ Loc[p] = p.node ∧ Loc[p+N] = p.node (I49)

invariant p@{16} ⇒(
X[p.node] = p ⇒ Loc[p] = p.node ∧ Loc[p+N] = p.node

) ∧(
X[p.node] �= p ⇒ Loc[p] = 2 · p.node ∧ Loc[p+N] = 2 · p.node) (I50)

invariant p@{17..24} ⇒

254

(
A(p, p.node) ⇒ Loc[p] = p.node ∧ Loc[p+N] = p.node

) ∧(¬A(p, p.node) ⇒ Loc[p] = 2 · p.node ∧ Loc[p+N] = 2 · p.node) (I51)

invariant p@{3} ⇒(
p.dir = stop ⇒ Loc[p] = p.node ∧ Loc[p+N] = p.node

) ∧(
p.dir = left ⇒ Loc[p] = 2 · p.node ∧ Loc[p+N] = 2 · p.node) ∧(
p.dir = right ⇒ Loc[p] = 2 · p.node + 1 ∧

Loc[p+N] = 2 · p.node + 1
)

(I52)

invariant p@{4..14, 25..41} ⇒ Loc[p+N] = p.node (I53)

invariant p@{4..8} ⇒ Loc[p] = p.node (I54)

invariant p@{9, 25} ⇒ p.n
∗−→ Loc[p]

∗−→ p.node (I55)

invariant p@{26..40} ⇒ Loc[p] = p.n (I56)

(VI) Invariants that limit the maximum number of processes allowed within a given

subtree of the renaming tree.

invariant Y [i].free = false ⇒(∃p ::
(
p@{3..8, 18..24} ∨ (p@{9, 25..38} ∧ p.n = i)

) ∧
(p.node = i) ∧ (p@{3} ⇒ p.dir �= right)

) ∨(∃p :: p@{2..9, 15..40} ∧ (2i
∗−→ p.node) ∧

(p@{9, 25..40} ⇒ 2i
∗−→ p.n)

) ∨(∃p :: p@{9, 25..38} ∧ p.n = i ∧ (p@{9, 25} ⇒ 2i
∗−→ Loc[p])

)
(I57)

invariant p@{2, 3, 15..24} ∧ (i
∗−→ Loc[p]) ⇒ PC[p, i] ≥ C(i) (I58)

invariant p@{2, 3, 15..24} ∧ (i
∗−→ Loc[p]) ∧ (2 ≤ i ≤ T) ⇒

PC[p, i] < PC[p, �i/2�] (I59)

(VII) Invariants that prove the Exclusion property and adaptivity under the RMR

measure.

invariant (Exclusion)
∣∣{p :: p@{8..10, 13, 25..40}}∣∣ ≤ 1 (I60)

invariant (Adaptivity) p@{4..8} ⇒ lev(p.node) < PC[p, 1] (I61)

We now prove that each of (I1)–(I61) is an invariant. For each invariant I, we prove

that for any pair of consecutive states t and u, if all invariants hold at t, then I holds at

u. (It is easy to see that each invariant is initially true, so we leave this part of the proof

to the reader.) If I is an implication (which is the case for most of our invariants), then

it suffices to check only those program statements that may establish the antecedent

of I, or that may falsify the consequent if executed while the antecedent holds. The

following lemma is used in several of the proofs.

255

Lemma A.1 If 1 ≤ i ≤ T holds and t and u are consecutive states such that A(p, i)

is false at t but true at u, and if all the invariants stated above hold at t, then the

following are true.

• u is reached from t via the execution of statement 16.p.

• p@{17} is established at u.

• p.node = i ∧ Y [i].free = true holds at both t and u.

Proof: The only statements that could potentially establish A(p, i) are the following.

• 1.p and 3.p, which could establish p.node = i.

• 7.p, 16.p, and 23.p, which establish p@{3..5, 8..14, 17..22, 24..41}.

• 15.p and 27.p, which could establish X[i] = p.

• 19.p, which falsifies p@{17..19}.

• 16.p, 28.p, 29.q, and 37.q, where q is any arbitrary process, which could establish

Reset [i] = p.y.

• 19.p, 20.p, and 22.p, which could falsify p@{17..22}.

• 24.p, which could establish p@{3} ∧ p.dir = stop.

We now show that none of these statements other than 16.p can establish A(p, i),

and 16.p can do so only if the conditions specified in the lemma are met.

Statements 1.p and 15.p establish p@{2, 16}. Therefore, they cannot establish

A(p, i).

Statement 3.p establishes p@{2, 4, 6}. If it establishes p@{2, 6}, then A(p, i) is false

at u. If it establishes p@{4}, then p.dir = stop holds at t. In this case, 3.p can establish

A(p, i) only if p.node = i also holds at t. But this implies that A(p, i) holds at t, which

is a contradiction.

Statement 7.p can establish A(p, i) by establishing p@{8} only if p.node = i holds

at t. However, note that statement 7.p can be executed only if p.level > L holds. By

(I35), this implies p.node > T , a contradiction.

Statement 16.p can establish A(p, i) by establishing p@{17} only if p.node = i ∧
Y [i].free = true holds at t. But then this condition also holds at u.

256

Statement 19.p establishes either p@{3} or p@{20}. If it establishes p@{3}, then
it also establishes p.dir = left , in which case A(p, i) is false at u. If 19.p establishes

p@{20}, then A(p, i) holds at u only if p.node = i ∧ X[i] = p ∧ Reset [i] = p.y holds

at t. But this contradicts our assumption that A(p, i) is false at t.

Statements 20.p and 23.p can establish A(p, i) only if they establish p@{3}. In this

case, they also establish p.dir = left , which implies that A(p, i) is false.

Statement 22.p establishes either p@{23} or p@{24}. If it establishes p@{23}, then
A(p, i) is false at u. On the other hand, if it establishes p@{24}, then A(p, i) holds at

u only if p.node = i ∧ Reset [i] = p.y holds at t. But this contradicts our assumption

that A(p, i) is false at t.

Statements 24.p, 27.p, 28.p, 29.p, and 37.p can establish A(p, i) only if p.node = i

holds at both t and u. But then A(p, i) holds at t, a contradiction.

Statement 29.q, where q �= p, can establish A(p, i) only by establishing Reset [i] = p.y

when p@{17..22} ∧ q.n = i holds. In this case, 29.q establishes Reset [i].free = false.

By (I28), if p@{17..22} holds at t, then p.y.free = true holds at t, and hence also at u.

Therefore, 29.q cannot establish Reset [i] = p.y.

Statement 37.q can establish A(p, i) only by establishing Reset [i] = p.y when the

expression p@{17..22} ∧ p.node = i ∧ q@{37} ∧ q.n = i holds at t. We consider the

two cases p@{17..19} and p@{20..22} separately.

Suppose that p@{17..19} holds at t. In this case, 37.q can establish A(p, i) only if

X[i] = p holds at t. By (I5), this implies that Reset [i] = p.y holds as well. Thus, we

have p@{17..19} ∧ p.node = i ∧ X[i] = p ∧ Reset [i] = p.y at state t, which implies

that A(p, i) is true at t, a contradiction.

Finally, suppose that p@{20..22} holds at t. In this case, by (I9), p.y.rnd �=
q.nextrnd also holds. Therefore, Reset [i].rnd �= p.y.rnd holds after the execution of

37.q, which implies that A(p, i) is false. �

A.2 Proof of the Exclusion Property

We begin by proving those invariants needed to establish the Exclusion property (I60).

invariant A(p, i) ∧ (
p@{3..8, 18..22, 24} ∨ (p@{9, 25..38} ∧ p.n = i)

) ⇒
Y [i] = (false, 0) (I1)

257

Proof: By Lemma A.1, the only statement that can establish A(p, i) is 16.p. However,

if statement 16.p establishes A(p, i), then it also establishes p@{17}. Hence, it cannot
falsify (I1).

The only statements that can establish p@{3..8, 18..22, 24} are 16.p, 17.p, and 23.p.

Statement 17.p establishes the consequent. Statements 16.p and 23.p can establish

p@{18..22, 3..8} only by establishing p@{3}, in which case they also establish p.dir �=
stop. Thus, if these statements establish p@{18..22, 3..8}, then they also falsify A(p, i).

The only statement that can establish p@{9, 25..38} ∧ p.n = i while A(p, i) holds

is 8.p. (Note that A(p, i) implies p.node = i by definition. Thus, if statement 40.p

establishes p@{9}, then p.n �= i holds after its execution.) In this case, the antecedent

holds before the execution of 8.p. Thus, although statement 8.p may preserve the

antecedent, it cannot establish it.

The consequent may be falsified only by statement 38.q, where q is any arbitrary

process. If q = p, then statement 38.q establishes (p@{9} ∧ p.n �= i) ∨ p@{10, 13, 39},
which implies that the antecedent is false. Suppose that q �= p. Statement 38.q can

falsify the consequent only if executed when q.n = i holds. However, by (I19), (I20),

and (I21), the antecedent and q@{38} ∧ q.n = i cannot hold simultaneously. �

invariant A(p, i) ∧ (
p@{3..8, 22, 24} ∨ (p@{9, 25..38} ∧ p.n = i)

) ⇒
Round [p.y.rnd] = true (I2)

Proof: By Lemma A.1, the only statement that can establish A(p, i) is 16.p. However,

if statement 16.p establishes A(p, i), then it also establishes p@{17}. Hence, it cannot
falsify (I2).

The condition p@{3..8, 22, 24} may be established only by statements 16.p, 19.p,

20.p, 21.p, and 23.p. Statement 21.p establishes the consequent. If statements 16.p,

19.p, 20.p, and 23.p establish p@{3..8, 22, 24}, then they also establish p@{3} ∧ p.dir �=
stop, which implies that A(p, i) is false after the execution of each of these statements.

The only statement that can establish p@{9, 25..38} ∧ p.n = i while A(p, i) holds

is 8.p. (Note that A(p, i) implies p.node = i by definition.) In this case, the antecedent

holds before the execution of 8.p. Thus, although statement 8.p may preserve the

antecedent, it cannot establish it.

The consequent may be falsified only by statements 16.p and 28.p (which may change

the value of p.y.rnd) and 23.q and 39.q (which assign the value false to an element

of the Round array), where q is any arbitrary process. Statement 16.p establishes

258

p@{17} ∨ (p@{3} ∧ p.dir = right), which implies that the antecedent is false. If both

the antecedent and p@{28} hold, then by (I3), Reset [i].rnd = p.y.rnd holds. It follows

that statement 28.p cannot change the value of p.y.rnd when the antecedent is true,

and hence cannot falsify (I2).

If q = p, then statement 23.q establishes p@{3} ∧ p.dir = left and statement 39.q

establishes p@{40}, both of which imply that the antecedent is false.

Suppose that q �= p. In this case, statements 23.q and 39.q may falsify the consequent

only if p.y.rnd = q.y.rnd holds. By (I22), p.y.rnd = q.y.rnd ∧ q@{23} implies that

the antecedent of (I2) is false. Thus, statement 23.q cannot falsify (I2).

By (I60), if the antecedent and q@{39} hold, then we have A(p, i) ∧ p@{3..7, 22, 24}.
By the definition of A(p, i), A(p, i) ∧ p@{22} implies that Reset [i].rnd = p.y.rnd holds.

By (I3), A(p, i) ∧ p@{3..7, 24} also implies that Reset [i].rnd = p.y.rnd holds. By (I13),

Reset [i].rnd = p.y.rnd ∧ q@{39} implies that p.y.rnd �= q.y.rnd . Thus, statement 39.q

cannot falsify (I2). �

invariant A(p, i) ∧ (
p@{3..8, 24} ∨ (p@{9, 25..37} ∧ p.n = i)

) ⇒
Reset [i].rnd = p.y.rnd (I3)

Proof: By Lemma A.1, the only statement that can establish A(p, i) is 16.p. However,

if statement 16.p establishes A(p, i), then it also establishes p@{17}. Hence, it cannot
falsify (I3).

The condition p@{3..8, 24} may be established only by 16.p, 19.p, 20.p, 22.p, and

23.p. If statements 16.p, 19.p, 20.p, and 23.p establish p@{3..8, 24}, then they also

establish p@{3} ∧ p.dir �= stop, which implies that A(p, i) is false after the execution of

each of these statements. Statement 22.p can establish the antecedent only if Reset [i] =

p.y holds. Hence, it preserves (I3).

The only statement that can establish p@{9, 25..37} ∧ p.n = i while A(p, i) holds

is 8.p. (Note that A(p, i) implies p.node = i by definition.) In this case, the antecedent

holds before the execution of 8.p. Thus, although statement 8.p may preserve the

antecedent, it cannot establish it.

The consequent may be falsified only by statements 16.p and 28.p (which update

p.y.rnd) and 29.q and 37.q (which update Reset [i].rnd), where q is any arbitrary process.

The antecedent is false after the execution of 16.p (as explained above) and 37.p (which

establishes p@{38}). If statement 28.p or 29.p is executed while the antecedent holds,

then the consequent is preserved.

259

This leaves only statements 29.q and 37.q, where q �= p. By (I23), 29.q cannot change

Reset [i].rnd , and hence, cannot falsify (I3). Statement 37.q may falsify the consequent

only if q.n = i holds. By (I21), q.n = i ∧ q@{37} implies that the antecedent of (I3)

is false. Thus, statement 37.q cannot falsify (I3). �

invariant
(∃p :: A(p, i) ∧ p@{3..14, 25..41}) = (Acquired [i] = true

)
(I4)

Proof: By the definition of A(p, i), the left-hand side of (I4) is equivalent to
(∃p ::

p.node = i ∧ p@{3..5, 8..14, 25..41} ∧ (p@{3} ⇒ p.dir = stop)
)
. Thus, the left-hand

side may be established or falsified only by statements 1.p (which may update p.node),

3.p (which may update p.node and also falsify p@{3}), 16.p, 19.p, 20.p, 23.p, and 24.p

(which may establish p@{3} and also update p.dir), and 7.p, 14.p, and 41.p (which may

establish or falsify p@{3..5, 8..14, 25..41}). 24.p and 41.p are also the only statements

that may establish or falsify the right-hand side of (I4) (p can be any process here).

The left-hand side of (I4) is false before and after the execution of each of 1.p, 16.p,

19.p, 20.p, and 23.p. (Note that, if one of 16.p, 19.p, 20.p, or 23.p establishes p@{3},
then it also establishes p.dir �= stop.) If statement 3.p is executed when p.dir = stop

holds, then it establishes p@{4}, and does not update p.node. Thus, the left-hand side

is true before and after its execution. On the other hand, if statement 3.p is executed

when p.dir �= stop holds, then it establishes p@{2, 6}, and hence the left-hand side is

false before and after its execution. It follows that statement 3.p cannot establish or

falsify the left-hand side.

Statement 24.p establishes the left-hand side if and only if it also establishes the

right-hand side. Statement 41.p falsifies the right-hand side if and only if executed

when p.node = i holds, in which case A(p, i) holds by definition. By (I18), this implies

that the left-hand side of (I4) is falsified.

Statements 7.p and 14.p may be executed only when p.level > L. By (I35), p.level >

L implies that p.node > T . Because i ≤ T (by assumption), this implies that A(p, i) is

false both before and after any of these statements is executed. Thus, these statements

can neither establish nor falsify the left-hand side of (I4). �

invariant p@{17..19} ∧ X[p.node] = p ⇒
Reset [p.node] = p.y ∧ Dist[p.y.rnd] = ⊥ ∧
(∀q :: q@{37, 38} ⇒ p.y.rnd �= q.nextrnd) (I5)

260

Proof: The antecedent may be established only by statements 16.p (which estab-

lishes p@{17..19}), 1.p and 3.p (which update p.node), and 15.p and 27.p (which

may establish X[p.node] = p). However, statements 1.p, 3.p, 15.p, and 27.p estab-

lish p@{2, 4, 6, 16, 28} and hence cannot establish the antecedent. Also, by (I26) and

(I11), if 16.p establishes the antecedent, then it also establishes the consequent.

The consequent may be falsified only by statements 16.p and 28.p (which may change

the value of p.y), 1.p and 3.p (which may update p.node), 36.r (which may establish

r@{37, 38} ∧ p.y.rnd = r.nextrnd), 29.r and 37.r (which may update Reset [p.node]),

and 35.r (which may falsify Dist[p.y.rnd] = ⊥), where r is any arbitrary process. How-

ever, 16.p preserves (I5) as shown above. Furthermore, the antecedent is false after the

execution of 1.p, 3.p, and 28.p and also after the execution of each of 29.r, 35.r, 36.r,

and 37.r if r = p.

Consider statements 29.r, 35.r, and 37.r, where r �= p. If the antecedent and con-

sequent of (I5) both hold, then by (I31), p.node ≤ T holds, and hence A(p, p.node)

holds. Statements 29.r and 37.r may falsify the consequent only if r.n = p.node

holds. Similarly, statement 35.r may falsify the consequent only if r.y.rnd = p.y.rnd .

If r@{35} ∧ r.y.rnd = p.y.rnd and the consequent both hold, then by (I24), we

have Reset [r.n].rnd = Reset [p.node].rnd . By (I15), this implies that r.n = p.node.

Therefore, each of these statements may falsify the consequent only if r.n = p.node

holds. However, by (I19), r.n = p.node ∧ r@{29, 35, 37} ∧ A(p, p.node) implies that

p@{17..19} is false. Thus, these statements cannot falsify (I5).

Finally, statement 36.r may establish p.y.rnd = r.nextrnd only if p.y.rnd is at the

head of Free queue, i.e., Dist[p.y.rnd] = 0. But this implies that Dist[p.y.rnd] = ⊥ is

false. Because (I5) is assumed to hold prior to the execution of 36.r, this implies that

the antecedent of (I5) is false before 36.r is executed. Thus, the antecedent is also false

after the execution of 36.r. �

invariant p@{20..23} ∧ (∃q :: q@{34}) ⇒
Reset [p.node].rnd = p.y.rnd ∨
Dist[p.y.rnd] > 2N − 2 · ((Check − p) mod N

)− 2 (I6)

Proof: The antecedent may be established only by statements 19.p and 33.q, where

q is any process. Statement 19.p may establish the antecedent only if executed when

X[p.node] = p holds, in which case Reset [p.node].rnd = p.y.rnd holds, by (I5).

261

Statement 33.q may establish the consequent only if executed when p@{20..23}
holds. By (I60), q@{33} ∧ p@{20..23} implies that the antecedent of (I8) holds. By

the consequent of (I8),

(
Reset [p.node].rnd = p.y.rnd

) ∨ (Dist[p.y.rnd] > 2N−2·((Check−p−1)mod N
)−3

)
(A.1)

holds as well. Now, consider the following three cases.

• Reset [p.node].rnd = p.y.rnd holds before 33.q is executed. In this case, after

the execution of 33.q, Reset [p.node].rnd = p.y.rnd continues to hold, so (I6) is

preserved.

• Check = p ∧ Reset [p.node].rnd �= p.y.rnd holds before 33.q is executed. In this

case, by (I29), p.y.rnd �= 0 holds, and by (I16), q.usedrnd = p.y.rnd holds. There-

fore, procedure MoveToTail is called. By (I60) and (I37), q@{33} implies that

‖Free‖ = 2N . Thus, statement 33.q establishes Dist[p.y.rnd] = 2N − 1, which

implies the consequent.

• Check �= p ∧ Reset [p.node].rnd �= p.y.rnd holds before 33.q is executed. By (A.1),

this implies Dist[p.y.rnd] > 2N − 2 · ((Check − p − 1) mod N
) − 3. Note that

the value of Dist[p.y.rnd] can decrease by at most one by a call to MoveToTail .

Note also that if Check �= p, then (Check − p) mod N =
(
(Check − p − 1) mod

N
)
+ 1. Therefore, after the execution of 33.q,

Dist[p.y.rnd] >
[
2N − 2 · ((Check − p − 1) mod N

)− 3
]− 1

= 2N − 2 · (((Check − p) mod N) − 1
)− 4

= 2N − 2 · ((Check − p) mod N
)− 2.

The consequent may be falsified only by statements 1.p and 3.p (which may update

p.node), 16.p and 28.p (which may change the value of p.y), 29.r and 37.r (which may

update Reset [p.node].rnd), 33.r, 35.r, and 36.r (which may update Dist[p.y.rnd]), and

34.r (which may change the value of Check), where r is any arbitrary process. However,

p@{20..23} is false after the execution of statements 1.p, 3.p, 16.p, and 28.p. By (I60),

statements 29.r, 33.r, 35.r, 36.r, and 37.r cannot be executed while the antecedent

holds. Finally, by (I60), statement 34.r falsifies the antecedent. �

262

invariant p@{20..23} ∧ (∃q :: q@{35, 36}) ⇒
Reset [p.node].rnd = p.y.rnd ∨
Dist[p.y.rnd] > 2N − 2 · ((Check − p − 1) mod N

)− 2 (I7)

Proof: The antecedent may be established only by statements 19.p and 34.q, where

q is any process. Statement 19.p may establish the antecedent only if executed when

X[p.node] = p holds, in which case Reset [p.node].rnd = p.y.rnd holds, by (I5). State-

ment 34.q can establish the antecedent only if q@{34} ∧ p@{20..23} holds. This implies

that the consequent of (I6) holds before statement 34.q is executed. By (I39), statement

34.q increments the value of Check by 1 modulo-N . Thus, the consequent of (I7) is

established.

The consequent may be falsified only by statements 1.p and 3.p (which may update

p.node), 16.p and 28.p (which may change the value of p.y), 29.r and 37.r (which may

update Reset [p.node].rnd), 33.r, 35.r, and 36.r (which may update Dist[p.y.rnd]), and

34.r (which may change the value of Check), where r is any arbitrary process. However,

p@{20..23} is false after the execution of statements 1.p, 3.p, 16.p, and 28.p. By (I60),

statements 29.r, 33.r, 34.r, and 37.r cannot be executed while the antecedent holds.

Statements 36.r falsifies the antecedent by (I60).

Statement 35.r may update Dist[p.y.rnd] only if executed when Dist[p.y.rnd] = ⊥,

in which case it establishes Dist[p.y.rnd] = 2N , by (I60) and (I37). This implies that

the consequent holds. �

invariant p@{20..23} ∧ ¬(∃q :: q@{34..36}) ⇒
Reset [p.node].rnd = p.y.rnd ∨
Dist[p.y.rnd] > 2N − 2 · ((Check − p − 1) mod N

)− 3 (I8)

Proof: The antecedent may be established only by statements 19.p and 36.q, where

q is any process. Statement 19.p may establish the antecedent only if executed when

X[p.node] = p holds, in which case Reset [p.node].rnd = p.y.rnd holds, by (I5).

Statement 36.q may establish the antecedent only if executed when q@{36} ∧
p@{20..23} holds. If Reset [p.node].rnd = p.y.rnd holds before the execution of 36.q,

then it holds afterward as well, and thus (I8) is not falsified. So, assume that q@{36} ∧
p@{20..23} ∧ Reset [p.node].rnd �= p.y.rnd holds before the execution of 36.q. In this

case, by (I7), Dist[p.y.rnd] > 0 holds. Therefore, the function Dequeue decrements

Dist[p.y.rnd] by 1. Moreover, by (I7), Dist[p.y.rnd] > 2N − 2 · ((Check − p − 1) mod

263

N
) − 2 holds before 36.q is executed, which implies that Dist[p.y.rnd] > 2N − 2 ·(
(Check − p − 1) mod N

)− 3 holds afterward.

The consequent may be falsified only by statements 1.p and 3.p (which may update

p.node), 16.p and 28.p (which may change the value of p.y), 29.r and 37.r (which may

update Reset [p.node].rnd), 33.r, 35.r, and 36.r (which may update Dist[p.y.rnd]), and

34.r (which may change the value of Check), where r is any arbitrary process. However,

p@{20..23} is false after the execution of statements 1.p, 3.p, 16.p, and 28.p. Statement

33.r establishes r@{34}, and hence falsifies the antecedent. By (I23), statement 29.r

does not change the value of Reset [p.node].rnd . Statements 34.r, 35.r, and 36.r cannot

be executed while the antecedent holds.

Finally, statement 37.r may falsify the consequent only if executed when r@{37} ∧
Reset [p.node].rnd = p.y.rnd ∧ p.node = r.n holds. By (I24), this implies that

Reset [r.n].rnd = r.y.rnd holds. Also, by (I42), Dist[r.y.rnd] = 2N − 1 holds. Com-

bining these assertions, we have p.y.rnd = r.y.rnd , and hence Dist[p.y.rnd] = 2N − 1.

This implies that the consequent of (I8) holds after 37.r is executed. �

invariant p@{20..23} ∧ q@{37, 38} ⇒ p.y.rnd �= q.nextrnd (I9)

Proof: The antecedent may be established only by statements 19.p and 36.q. State-

ment 19.p may establish the antecedent only if executed when p@{19} ∧ X[p.node] =

p ∧ q@{37, 38} holds. By (I5), this implies that p.y.rnd �= q.nextrnd holds. Thus, the

consequent of (I9) is true after the execution of 19.p.

Statement 36.q may establish the antecedent of (I9) only if executed when the

antecedent of (I7) holds. By (I60), the third disjunct of (I14) does not hold before

the execution of 36.q. Thus, if Reset [p.node].rnd = p.y.rnd holds before 36.q is ex-

ecuted, then Dist[p.y.rnd] = ⊥ ∨ Dist[p.y.rnd] = 2N holds. On the other hand, if

Reset [p.node].rnd �= p.y.rnd holds before 36.q is executed, then by (I7), Dist[p.y.rnd] >

0 holds. In either case, Dequeue must return a value different from p.y.rnd . Hence, the

consequent of (I9) is established.

The consequent may be falsified only by statements 16.p and 28.p (which may change

the value of p.y) and 36.q (which may update q.nextrnd). However, p@{20..23} is false

after the execution of statements 16.p and 28.p, and statement 36.q preserves (I9) as

shown above. �

264

invariant p@{23} ∧ Reset [p.node].rnd = p.y.rnd ⇒
Reset [p.node].free = false (I10)

Proof: (I10) may be falsified only by statements 22.p (which may establish p@{23}),
16.p and 28.p (which may change the value of p.y.rnd), 1.p and 3.p (which may change

the value of p.node), and 29.q and 37.q (which may update Reset [p.node]), where q

is any arbitrary process. However, p@{23} is false after the execution of statements

1.p, 3.p, 16.p, and 28.p. Statement 22.p establishes the antecedent only if executed

when Reset [p.node] �= p.y ∧ Reset [p.node].rnd = p.y.rnd holds, which implies that

Reset [p.node].free �= p.y.free. By (I28), p.y.free = true. Thus, Reset [p.node].free =

false holds.

If q = p, then each of 29.q and 37.q establishes p@{30, 38}, which implies that the

antecedent is false.

Consider statements 29.q and 37.q, where q �= p. Statement 29.q trivially establishes

or preserves the consequent. Statement 37.q could potentially falsify (I10) only if

executed when p@{23} ∧ q@{37} ∧ q.n = p.node holds. In this case, by (I9), p.y.rnd �=
Reset [p.node].rnd holds after the execution of 37.q. Thus, statement 37.q cannot falsify

(I10). �

invariant Y [i].free = true ⇒ Dist[Y [i].rnd] = ⊥ ∧
(∀p :: p@{37, 38} ⇒ Y [i].rnd �= p.nextrnd) (I11)

Proof: The antecedent may be established only by statement 38.q, where q is any

arbitrary process. However, by (I60) and (I40), if 38.q is executed when q.n = i holds,

then it establishes Dist[Y [i].rnd] = ⊥ ∧ ¬(∃p :: p@{37, 38}).
The consequent may be falsified only by statements 17.q, 26.q, and 38.q (which

may update Y [i].rnd), 35.q (which may falsify Dist[Y [i].rnd] = ⊥), and 36.q (which

may update q.nextrnd , and may also establish q@{37, 38}), where q is any arbitrary

process. Statements 17.q and 26.q falsify the antecedent. Statement 38.q preserves

(I11) as shown above.

Statement 35.q may falsify Dist[Y [i].rnd] = ⊥ only if executed when q@{35} ∧
Y [i].free = true ∧ q.y.rnd = Y [i].rnd holds. In this case, by (I26) and (I24),

Y [i].rnd = Reset [i].rnd and Reset [q.n].rnd = q.y.rnd are both true as well. It fol-

lows that Reset [q.n].rnd = Reset [i].rnd is also true, and hence q.n = i holds, by (I15).

By (I25), this in turn implies that Y [i].free = false holds, a contradiction. It follows

that statement 35.q cannot falsify the consequent while the antecedent holds.

265

If Y [i].free = false holds before statement 36.q is executed, then it holds afterward,

and hence (I11) is not falsified. If Y [i] = true holds before 36.q is executed, then

Dist[Y [i].rnd] = ⊥ holds as well, since (I11) is presumed to hold before the execution of

36.q. Thus, Y [i].rnd is not in the Free queue. This implies that a value different from

Y [i].rnd is dequeued, i.e., Y [i].rnd �= q.nextrnd holds after the execution of 36.q. �

invariant p@{37} ⇒ (∀i :: Reset [i].rnd �= p.nextrnd) (I12)

Proof: The antecedent may be established only by statement 36.p, which may estab-

lish Reset [i].rnd = p.nextrnd only if executed when Dist[Reset [i].rnd] = 0, i.e., when

Reset [i].rnd is at the head of the Free queue. However, this is precluded by (I14).

The consequent may be falsified only by statement 36.p (which may update p.nextrnd),

and statements 29.q and 37.q (which may update Reset [i].rnd), where q is any arbitrary

process. However, statement 36.p preserves (I12) as shown above. By (I23), statement

29.q does not change the value of Reset [i].rnd . By (I60), the antecedent is false after

the execution of statement 37.q. �

invariant p@{38, 39} ⇒ (∀i :: Reset [i].rnd �= p.y.rnd) (I13)

Proof: The antecedent may be established only by statement 37.p. Before its exe-

cution, Reset [i].rnd �= p.nextrnd holds, by (I12), and Reset [p.n].rnd = p.y.rnd holds,

by (I24). We consider two cases. First, suppose that i = p.n holds before 37.p is exe-

cuted. In this case, p.y.rnd �= p.nextrnd is true before the execution of 37.p, and hence

Reset [i].rnd �= p.y.rnd is true after.

Second, suppose that i �= p.n holds before the execution of 37.p. In this case, by

(I15), Reset [i].rnd �= Reset [p.n].rnd holds as well. Because Reset [p.n].rnd = p.y.rnd is

true before 37.p is executed, we have Reset [i].rnd �= p.y.rnd as well. Thus, Reset [i].rnd �=
p.y.rnd holds after the execution of 37.p.

The consequent may be falsified only by statements 16.p and 28.p (which may update

p.y.rnd), and 29.q and 37.q (which may update Reset [i].rnd), where q is any arbitrary

process. However, the antecedent is false after the execution of 16.p and 28.p, and by

(I60), 29.q and 37.q are not enabled while the antecedent holds. �

invariant Dist[Reset [i].rnd] = ⊥ ∨
(∃p :: p@{36} ∧ p.n = i ∧ Dist[Reset [i].rnd] = 2N) ∨
(∃p :: p@{37} ∧ p.n = i ∧ Dist[Reset [i].rnd] = 2N − 1) (I14)

266

Proof: The only statements that may falsify (I14) are 29.q (which may update

Reset [i].rnd), 37.q (which may falsify (∃p :: p@{36, 37} ∧ p.n = i) and may update

Reset [i].rnd), and 33.q, 35.q, and 36.q (which may update Dist[Reset [i].rnd]), where

q is any arbitrary process. By (I23), statement 29.q does not change the value of

Reset [i].rnd .

Statement 37.q may falsify (I14) only if executed when q.n = i holds, in which case

it establishes Dist[Reset [i].rnd] = ⊥, by (I40).

If 33.q is enabled, then by (I60), ¬(∃p :: p@{36, 37}) holds. Since (I14) is presumed

to hold before the execution of 33.q, this implies that Dist[Reset [i].rnd] = ⊥ holds both

before and after 33.q is executed.

Statement 35.q may falsify Dist[Reset [i].rnd] = ⊥ only if executed when q@{35} ∧
q.y.rnd = Reset [i].rnd holds. In this case, by (I24), Reset [q.n].rnd = q.y.rnd holds as

well. This implies that Reset [q.n].rnd = Reset [i].rnd is true, and hence q.n = i holds,

by (I15). Because the Enqueue procedure puts q.y.rnd at the tail of the Free queue,

by (I37) and (I60), 35.q establishes Dist[q.y.rnd] = 2N . Therefore, if statement 35.q

falsifies Dist[Reset [i].rnd] = ⊥, then it establishes the second disjunct of (I14).

Statement 36.q may falsify (I14) only if executed when q@{36} ∧ q.n = i ∧
Dist[Reset [i].rnd] = 2N holds. In this case, the Dequeue decrements Dist[Reset [i].rnd]

by one, establishing the third disjunct of (I14). �

invariant i �= h ⇒ Reset [i].rnd �= Reset [h].rnd (I15)

Proof: The only statements that may falsify (I15) are 29.p and 37.p, where p is any

arbitrary process. By (I23), statement 29.p does not change the value of Reset [i].rnd ,

and hence cannot falsify (I15). Statement 37.p may falsify (I15) only if p.n = h ∧
Reset [i].rnd = p.nextrnd holds prior to its execution. However, this is precluded by

(I12). �

invariant p@{20..23} ∧ q@{33} ∧ (Check = p) ⇒
Reset [p.node].rnd = p.y.rnd ∨ q.usedrnd = p.y.rnd (I16)

Proof: The antecedent may be established only by statements 19.p, 32.q, and 34.r,

where r is any arbitrary process. However, by (I60), statement 34.r cannot be executed

while q@{33} holds.

267

Statement 19.p may establish p@{20} only if executed when X[p.node] = p holds.

By (I5), this implies that Reset [p.node].rnd = p.y.rnd holds both before and after 19.p

is executed.

Statement 32.q may establish the antecedent only if executed when p@{20..23} ∧
q@{32} ∧ Check = p holds. By (I30) and (I39), this implies that both Inuse[p] =

p.y.rnd and q.ptr = p are also true. Thus, statement 32.q establishes q.usedrnd =

p.y.rnd , and hence does not falsify (I16).

The consequent may be falsified only by statements 1.p, 3.p, 16.p, and 28.p (which

may update either p.node or p.y.rnd), 32.q (which may change the value of q.usedrnd),

and 29.r and 37.r (which may update Reset [p.node].rnd), where r is any arbitrary

process. However, p@{20..23} is false after the execution of statements 1.p, 3.p, 16.p,

and 28.p. Statement 32.q preserves (I16), as shown above. By (I60), Statements 29.r

and 37.r cannot be executed while q@{33} holds. �

invariant A(p, i) ∧ A(q, i) ∧ p �= q ⇒
¬[p@{17..20} ∧(

q@{3..8, 17..22, 24} ∨ (q@{9, 25..38} ∧ q.n = i)
)]

(I17)

Proof: By Lemma A.1, the only statement that can establish A(p, i) is 16.p. The only

statements that may falsify the consequent while the antecedent holds are 16.p (which

may establish p@{17..20}), and 16.q and 23.q (which may establish q@{3..8, 17..22, 24} ∨
(q@{9, 25..38} ∧ q.n = i)). Note that if statements 16.q and 23.q establish q@{3}, then
they also establish q.dir �= stop, which implies that A(q, i) is false. Therefore, (I17)

could potentially be falsified only if either 16.p or 16.q is executed, establishing p@{17}
or q@{17}, respectively. Without loss of generality, it suffices to consider only statement

16.p.

If A(q, i) ∧ q@{17..19} holds before 16.p is executed, where q �= p, then by the

definition of A(q, i), X[i] = q holds as well. This implies that X[i] �= p holds both

before and after 16.p is executed. Hence, A(p, i) is false after the execution of 16.p.

Next, suppose that A(q, i) ∧ (
q@{3..8, 20..22, 24} ∨ (q@{9, 25..38} ∧ q.n = i)

)
holds before 16.p is executed, where q �= p. In this case, by (I1), Y [i].free = false. This

implies that 16.p does not establish p@{17}. �

invariant A(p, i) ∧ A(q, i) ∧ p �= q ⇒
¬(p@{3..14, 21, 22, 24..41} ∧ q@{3..14, 21, 22, 24..41}) (I18)

268

Proof: By Lemma A.1, the only statement that can establish A(p, i) is 16.p. However,

if 16.p establishes A(p, i), it also establishes p@{17}, and hence it cannot falsify (I18).

A similar argument applies to 16.q.

By symmetry, when considering statements that might falsify the consequent, it

suffices to consider only 16.p, 19.p, 20.p, and 23.p (which may establish p@{3..14, 21, 22,
24..41}). Statements 16.p, 19.p, and 23.p can establish p@{3..14, 21, 22, 24..41} only by

establishing p@{3}, in which case they also establish p.dir �= stop. This implies that

A(p, i) is false. Thus, these statements cannot falsify (I18). Similar reasoning applies

if statement 20.p establishes p@{3}.
Statement 20.p could also establish p@{3..14, 21, 22, 24..41} by establishing p@{21}.

In this case, we have Acquired [i] = false before its execution. If A(p, i) is false before

20.p is executed, then by Lemma A.1, it is also false afterward, and hence (I18) is not

falsified. So, suppose that A(p, i) is true before 20.p is executed. By (I17), this implies

that A(q, i) ∧ q@{3..8, 21, 22, 24} is false. Thus, 20.p could potentially falsify (I18)

only if executed when A(q, i) ∧ q@{9..14, 25..41} holds. However, in this case, by (I4),

we have Acquired [i] = true. Thus, statement 20.p cannot falsify (I18). �

invariant A(p, i) ∧ q.n = i ⇒ ¬(p@{17..19} ∧ q@{28..38}) (I19)

Proof: By Lemma A.1, the only statement that can establish A(p, i) is 16.p, which

may do so only if Y [i].free = true. By (I25), this implies that q@{28..38} ∧ q.n = i is

false. Therefore, statement 16.p cannot falsify (I19). Any statement that updates q.n

also establishes q@{9, 15}, and hence cannot falsify (I19).

The only other statement that may falsify (I19) is 27.q (which establishes q@{28..38}),
which may do so only if executed when q.n = i holds. In this case, it falsifies X[i] = p,

which implies that A(p, i) ∧ p@{17..19} is false as well. �

invariant A(p, i) ∧ q.n = i ⇒ ¬(p@{20, 21} ∧ q@{30..38}) (I20)

Proof: By Lemma A.1, the only statement that can establish A(p, i) is 16.p, which

establishes p@{17, 3}. Hence, it cannot falsify (I20). Any statement that updates q.n

also establishes q@{9, 15}, and hence cannot falsify (I20).

The only other statements that may falsify (I20) are 19.p (which may establish

p@{20, 21}) and 29.q (which establishes q@{30..38}). Statement 19.p may falsify (I20)

only by establishing p@{20}, which it does only if X[p.node] = p. By (I5), this implies

269

that p@{19} ∧ X[p.node] = p ∧ Reset [p.node] = p.y holds before its execution. Thus,

19.p may potentially falsify (I20) only if executed when A(p, p.node) holds. If i �=
p.node, then A(p, i) is clearly false both before and after the execution of 19.p. If

i = p.node, then A(p, i) holds before 19.p is executed, which implies that q@{30..38} ∧
q.n = i is false, by (I19). Thus, statement 19.p cannot falsify (I20).

Statement 29.q may falsify (I20) only if executed when q.n = i ∧ p@{20, 21} holds.

By (I28), this implies that p.y.free = true holds. Because statement 29.q establishes

Reset [i].free = false, this implies that p@{20, 21} ∧ Reset [i] �= p.y is established, i.e.,

A(p, i) is false after its execution. �

invariant A(p, i) ∧ q.n = i ⇒ ¬(p@{3..10, 22, 24} ∧ q@{31..38}) (I21)

Proof: By Lemma A.1, the only statement that can establish A(p, i) is 16.p. However,

if 16.p establishes A(p, i), then it also establishes p@{17}, and hence cannot falsify

(I21). Any statement that updates q.n also establishes q@{9, 15}, and hence cannot

falsify (I21).

The only other statements that may falsify (I21) are 16.p, 19.p, 20.p, 21.p, and 23.p

(which may establish p@{3..10, 22, 24}), and 30.q (which may establish q@{31..38}).
Statements 16.p, 19.p, 20.p, and 23.p can establish p@{3..10, 22, 24} only by estab-

lishing p@{3}, in which case they also establish p.dir �= stop. This implies that A(p, i)

is false. Statement 21.p can neither establish nor falsify A(p, i). Thus, it may falsify

(I21) only if executed when A(p, i) ∧ q.n = i ∧ q@{31..38} holds, but this is precluded

by (I20).

Statement 30.q may falsify (I21) only if executed when

q@{30} ∧ A(p, i) ∧ p@{3..10, 22, 24} ∧ q.n = i ∧
(q.dir = stop ∨ Round [q.y.rnd] = false)

holds. By (I60), p@{8..10} and q@{30} cannot hold simultaneously. So, assume that

the following assertion holds prior to the execution of 30.q.

q@{30} ∧ A(p, i) ∧ p@{3..7, 22, 24} ∧ q.n = i ∧
(q.dir = stop ∨ Round [q.y.rnd] = false)

(A.2)

If q.dir = stop holds, then by (I33), q.n = q.node. Because q.n = i, this implies that

A(q, i) holds. By (A.2), this implies that A(p, i) ∧ A(q, i) ∧ p@{3..7, 22, 24} ∧ q@{30}
holds. However, this is precluded by (I18).

270

The only other possibility is that

q@{30} ∧ A(p, i) ∧ p@{3..7, 22, 24} ∧ q.n = i ∧ Round [q.y.rnd] = false

holds before 30.q is executed. In this case, Reset [q.n].rnd = q.y.rnd holds, by (I24), and

Reset [i].rnd = p.y.rnd also holds, by the definition of A(p, i) and (I3). Thus, q.y.rnd =

p.y.rnd . In addition, by (I2), Round [p.y.rnd] = true. Thus, Round [q.y.rnd] = true,

which is a contradiction. �

invariant A(p, i) ∧ (
p@{3..8, 20..22, 24} ∨ (p@{9, 25..38} ∧ p.n = i)

) ∧
q@{20..23} ∧ p �= q ⇒

p.y.rnd �= q.y.rnd (I22)

Proof: The only statements that may falsify the consequent are 16.p and 28.p (which

may change the value of p.y.rnd) and 16.q and 28.q (which may change the value of

q.y.rnd). However, the antecedent is false after the execution of 16.q and 28.q. Also,

16.p either establishes p@{17} or p@{3} ∧ p.dir = right . The latter implies that A(p, i)

is false. Thus, statement 16.p cannot falsify (I22).

Statement 28.p may falsify (I22) only if executed when A(p, i) ∧ p.n = i holds. In

this case, Reset [i].rnd = p.y.rnd holds, by (I3). It follows that statement 28.p does not

change the value of p.y.rnd if executed when the antecedent holds.

The antecedent may be established only by statements 16.p (which, by Lemma A.1,

may establish A(p, i) and may also establish p@{3..8, 20..22, 24}), 19.p and 23.p (which

may establish p@{3..8, 20..22, 24}), and 19.q (which may establish q@{20..23}). How-
ever, as shown above, statement 16.p cannot falsify (I22).

Statement 19.q can establish q@{20} only if q@{19} ∧ X[q.node] = q holds. If

i = q.node, then by (I5), A(q, i) holds as well. However, by (I17) (with p and q

exchanged), this implies that the antecedent of (I22) is false. Thus, 19.q cannot falsify

(I22) in this case.

On the other hand, if q@{19} ∧ X[q.node] = q ∧ i �= q.node holds, then we have

q.y = Reset [q.node], by (I5), and Reset [q.node].rnd �= Reset [i].rnd , by (I15). If the

antecedent of (I22) is true, then we have either A(p, i) ∧ p@{3..8, 20..22, 24} ∨
(p@{9, 25..37} ∧ p.n = i) or p@{38}. In the former case, by (I3) and the defini-

tion of A(p, i), we have p.y.rnd = Reset [i].rnd . In the latter case, by (I13), we have

p.y.rnd �= Reset [q.node].rnd . Thus, in either case, p.y.rnd �= q.y.rnd holds. Hence,

statement 19.q cannot falsify (I22).

271

Statements 19.p and 23.p are the remaining statements to consider. Statement 23.p

establishes p@{3} ∧ p.dir = left , which implies that A(p, i) is false. Statement 19.p

establishes either p@{3} ∧ p.dir = left or p@{20}. In the former case, A(p, i) is false.

In the latter case, note that statement 19.p may falsify (I22) only if executed when

q@{20..23} holds. In addition, by Lemma A.1, 19.p can establish A(p, i) ∧ p@{20}
only if executed when A(p, i) ∧ p@{19} ∧ X[i] = p is true. By (I28) and the definition

of A(p, i), we therefore have the following prior to the execution of 19.p.

q@{20..23} ∧ A(p, i) ∧ p@{19} ∧ X[i] = p ∧ p.y = Reset [i] ∧ Reset [i].free = true

(A.3)

By applying (I6), (I7), and (I8) to q@{20..23}, we also have either q.y.rnd =

Reset [q.node].rnd or Dist[q.y.rnd] �= ⊥. This gives us two cases to analyze.

• q.y.rnd = Reset [q.node].rnd . Note that statement 19.p can falsify (I22) only if

executed when the following holds.

p.y.rnd = q.y.rnd (A.4)

By (A.3), (A.4), and our assumption that q.y.rnd = Reset [q.node].rnd holds, we

have Reset [i].rnd = Reset [q.node].rnd . By (I15), this implies that i = q.node.

If q@{20..22} holds before the execution of 19.p, then by (A.3) and (I17), A(q, i)

is false. By the definition of A(q, i) this implies that Reset [i] �= q.y. By (A.3),

this implies that p.y �= q.y. In addition, by (I28), we have q.y.free = true. By

(A.3), this implies that p.y.rnd �= q.y.rnd , which contradicts (A.4).

On the other hand, if q@{23} holds before the execution of 19.p, then we have

Reset [q.node].free = false, by (I10). Because i = q.node, this contradicts (A.3).

• Dist[q.y.rnd] �= ⊥. By Lemma A.1, statement 19.p may establish the antecedent

only if A(p, i) holds before its execution. By (I19), this implies that ¬(∃r ::

r@{36, 37} ∧ r.n = i) holds. Hence, by (I14), Dist[Reset [i].rnd] = ⊥ holds as

well. By (A.3), we therefore have Dist[p.y.rnd] = ⊥. Because Dist[p.y.rnd] = ⊥
and Dist[q.y.rnd] �= ⊥ both hold, we have p.y.rnd �= q.y.rnd . It follows that

statement 19.p cannot falsify (I22). �

invariant p@{29} ⇒ Reset [p.n] = p.y (I23)

invariant p@{30..37} ⇒ Reset [p.n] = (false, p.y.rnd) (I24)

272

invariant p@{27..38} ⇒ Y [p.n] = (false, 0) (I25)

invariant Y [i].free = true ⇒ Y [i] = Reset [i] (I26)

invariant Reset [i].rnd �= 0 (I27)

invariant p@{17..23} ⇒ p.y.free = true (I28)

invariant p@{17..23, 29..40} ⇒ p.y.rnd �= 0 (I29)

invariant p@{19..23} ⇒ Inuse[p] = p.y.rnd (I30)

Proof: By (I60), all writes to Reset (statements 29 and 37) and to Y , except for state-

ment 17 (statements 26 and 38), and all operations involving the Free queue (statements

33, 35, and 36) occur within mutually exclusive regions of code. Given this and the

initial condition (∀i, p :: Y [i] = (true, i) ∧ Reset [i] = (true, i)) ∧ Free = (T + 1) →
· · · → S, each of these invariants easily follows. Note that statement 17 establishes

Y [i] = (false, 0), and hence cannot falsify either (I25) or (I26). Note also that (I25)

implies that statements 29 and 37 cannot falsify (I26). �

invariant p@{2, 3, 15..24} ⇒ (0 ≤ p.level ≤ L) ∧ (1 ≤ p.node ≤ T) (I31)

invariant p@{9, 25..40} ⇒
1 ≤ p.n ≤ T ∧ p.n = p.path[p.j].node ∧
p.dir = p.path[p.j].dir ∧ p.j = lev(p.n) (I32)

invariant p@{9, 25..40} ∧ p.dir = stop ⇒ p.n = p.node (I33)

invariant p@{9, 25..40} ∧ p.n = p.node ⇒ p.dir = stop (I34)

invariant p@{2..41} ⇒ (0 ≤ p.level ≤ L+ 1) ∧ (lev(p.node) = p.level) (I35)

invariant p@{39, 40} ⇒ p.n = p.node (I36)

Proof: These invariants easily follow from the program text and structure of the

renaming tree. �

invariant ¬(∃p :: p@{36}) ⇒ ‖Free‖ = 2N (I37)

invariant (∃p :: p@{36}) ⇒ ‖Free‖ = 2N + 1 (I38)

invariant p@{32..34} ⇒ p.ptr = Check (I39)

invariant p@{37, 38} ⇒ Dist[p.nextrnd] = ⊥ (I40)

invariant p@{36} ⇒ Dist[p.y.rnd] = 2N (I41)

invariant p@{37} ⇒ Dist[p.y.rnd] = 2N − 1 (I42)

273

Proof: Note that every statement that accesses the Free queue (statements 33, 35,

and 36) executes within a mutually exclusive region of code. From this and the ini-

tial condition, ‖Free‖ = 2N , these invariants easily follow. Note also that by (I24), if

p@{35} holds, then p.y.rnd = Reset [p.n].rnd holds. By (I14) and (I60), this in turn im-

plies that Dist[p.y.rnd] = ⊥ holds. Hence, statement 35.p does not enqueue a duplicate

entry onto the Free queue. �

invariant (Exclusion)
∣∣{p :: p@{8..10, 13}}∣∣ ≤ 1 (I60)

Proof: From the specification of the ENTRY and EXIT routines, (I60) could be falsified

only if two processes p and q stop at the same splitter in the renaming tree, i.e., we

have p �= q ∧ p@{4, 5, 8..11} ∧ q@{4, 5, 8..11} ∧ p.node = q.node. However, this is

precluded by (I18). �

A.3 Proof of Adaptivity under the RMR Measure

The remaining invariants are needed to establish adaptivity (I61). These invariants

formalize the following rather intuitive reasoning: for a process p to reach splitter i in

the renaming tree by moving right (left) from i’s parent, some other process must have

either stopped or moved left (right) at i’s parent. From this, it follows that the depth

to which p descends in the renaming tree is proportional to the point contention that

p experiences.

invariant (1 ≤ i ≤ S) ∧ Round [i] = true ⇒(∃p :: p.y.rnd = i ∧(
p@{3..5, 8, 22..24} ∨ (p@{9, 25..39} ∧ p.n = p.node)

) ∧(
p@{3..5, 8} ⇒ (p.dir = stop ∧ 1 ≤ p.node ≤ T)

))
(I43)

Proof: The antecedent may be established only by statement 21.p, which also estab-

lishes the consequent.

Suppose that

p.y.rnd = i ∧ (
p@{3..5, 8, 22..24} ∨ (p@{9, 25..39} ∧ p.n = p.node)

) ∧(
p@{3..5, 8} ⇒ (p.dir = stop ∧ 1 ≤ p.node ≤ T)

) (A.5)

holds. We consider each condition separately. The only statements that may falsify

p.y.rnd = i are 16.p and 28.p. Statement 16.p cannot be executed while (A.5) holds. If

274

statement 28.p is executed while (A.5) holds, then by (I3), it does not change the value

of p.y.rnd .

The only statements that may falsify p@{3..5, 8, 22..24} are 3.p and 8.p. If statement

3.p is executed while (A.5) holds, then by (I35), we also have p.level ≤ L, and hence

statement 3.p establishes p@{4}. Similarly, if statement 8.p is executed while (A.5)

holds, then it establishes p@{9} ∧ p.n = p.node. Thus, these statements cannot falsify

(A.5).

The only statements that may falsify p@{9, 25..39} ∧ p.n = p.node are 25.p, 30.p,

38.p, and 39.p. By (I34), statements 25.p, 30.p, and 38.p establish p@{26, 31, 39}. If

p.y.rnd = i, then statement 39.p falsify the antecedent of (I43).

The only statements that may falsify p@{3..5, 8} ⇒ (p.dir = stop ∧ 1 ≤ p.node ≤
T) are 1.p and 3.p (which may update p.node), 7.p (which establishes p@{3..5, 8}),
and 16.p, 19.p, 20.p, 23.p, and 24.p (which may establish p@{3..5, 8} and also update

p.dir). Statements 1.p, 7.p, 16.p, 19.p, and 20.p cannot be executed while (A.5) holds.

If statement 3.p is executed while p.dir = stop holds, then it does not update p.node. If

p.y.rnd = i, then statement 23.p falsifies the antecedent of (I43). By (I31), statement

24.p establishes p.dir = stop ∧ 1 ≤ p.node ≤ T , and hence preserves (A.5). �

invariant p@{4..14, 25..41} ∧ (p.node ≤ T) ⇒ p.path[p.level] = (p.node, stop) (I44)

Proof: The antecedent of (I44) can only be established by statement 3.p. By (I31), it

does so only if p.level = L ∨ p.dir = stop holds prior to its execution. If p.dir = stop

holds, then 3.p establishes the consequent of (I44). If p.level = L ∧ p.dir �= stop holds

before 3.p is executed, then by (I35), p.node > T holds afterward. No statement can

falsify the consequent of (I44) while the antecedent holds. �

invariant p@{2..41} ∧ (2i
∗−→ p.node) ⇒ p.path[lev(i)] = (i, left) (I45)

Proof: The only statements that may falsify (I45) are 1.p and 3.p. Statement 1.p

establishes p.node = 1, which implies that 2i
∗−→ p.node is false. Statement 3.p may

establish 2i
∗−→ p.node only if it also establishes 2i = p.node, which can happen only if

it is executed when p.node = i ∧ p.dir = left holds. In this case, by (I35), statement

3.p establishes the consequent. �

275

invariant p@{3} ∧ (p.level > 0) ⇒
p.path[0].node = 1 ∧
(∀l : 0 ≤ l < p.level − 1 :: p.path[l].node

∗−→ p.path[l + 1].node) ∧
p.path[p.level − 1].node

∗−→ p.node (I46)

invariant p@{26..38} ⇒ (p.n = p.node) ∨ (2 · p.n ∗−→ p.node) (I47)

Proof: Each iteration of the repeat loop of statements 2–3 descends one level in

the renaming tree, starting with splitter 1 (the root). When descending from level l,

p.path[l] is updated (statement 3) to indicate the splitter visited at level l. From this,

invariant (I46) easily follows.

The repeat loop of statements 2–3 terminates only if p.level ≥ L ∨ p.dir = stop

holds prior to the execution of statement 3.p. If p.dir = stop holds when 3.p is executed,

then when p executes within statements 4–14 and 25–41, p.node equals the splitter at

which it stopped. If p.level ≥ L ∧ p.dir �= stop holds when 3.p is executed, then when

p executes within statements 4–14 and 25–41, p.node equals a splitter at level L + 1

(in which case there is no actual splitter corresponding to p.node). In either case, the

for loop at statement 9 will ascend the renaming tree, visiting only p.node and its

ancestors. The corresponding splitter is indicated by the variable p.n. Moreover, if p

moved right while descending the renaming tree, then p returns from ReleaseNode at

statement 25. If p stopped at that splitter, then p.n = p.node holds. If p moved left

from that splitter, then 2 · p.n ∗−→ p.node holds. From these observations, it should be

clear that (I47) is an invariant. �

invariant p@{0, 1} ⇒ Loc[p] = 0 ∧ Loc[p+N] = 0 (I48)

invariant p@{2, 15} ⇒ Loc[p] = p.node ∧ Loc[p+N] = p.node (I49)

invariant p@{16} ⇒(
X[p.node] = p ⇒ Loc[p] = p.node ∧ Loc[p+N] = p.node

) ∧(
X[p.node] �= p ⇒ Loc[p] = 2 · p.node ∧ Loc[p+N] = 2 · p.node) (I50)

invariant p@{17..24} ⇒(
A(p, p.node) ⇒ Loc[p] = p.node ∧ Loc[p+N] = p.node

) ∧(¬A(p, p.node) ⇒ Loc[p] = 2 · p.node ∧ Loc[p+N] = 2 · p.node) (I51)

invariant p@{3} ⇒(
p.dir = stop ⇒ Loc[p] = p.node ∧ Loc[p+N] = p.node

) ∧(
p.dir = left ⇒ Loc[p] = 2 · p.node ∧ Loc[p+N] = 2 · p.node) ∧(
p.dir = right ⇒ Loc[p] = 2 · p.node + 1 ∧

276

Loc[p+N] = 2 · p.node + 1
)

(I52)

invariant p@{4..14, 25..41} ⇒ Loc[p+N] = p.node (I53)

invariant p@{4..8} ⇒ Loc[p] = p.node (I54)

invariant p@{9, 25} ⇒ p.n
∗−→ Loc[p] (I55)

invariant p@{26..40} ⇒ Loc[p] = p.n (I56)

Proof: These invariants easily follow from the program text and the structure of the

renaming tree. Note that p@{16} is established only if X[p.node] = p holds. Also note

that whenever X[p.node] = p is falsified by either 15.q or 27.q, where q is any arbitrary

process, q also establishes Loc[p] = 2 · p.node ∧ Loc[p+N] = 2 · p.node.
Statement 16.p may establish p@{17} only if executed when Y [p.node].free = true

holds. By (I26), this implies that Y [p.node] = Reset [p.node] holds. From this condition,

the consequent of (I50), and the definition of A(p, i), it follows that if statement 16.p

establishes p@{17}, then the consequent of (I51) is true.

A(p, p.node) potentially could be falsified by some process q �= p only by executing

one of the statements 15.q, 27.q, 29.q, or 37.q. However, by (I24), q@{37} implies that

Reset [q.n].free = false holds. Moreover, by (I28), p@{17..22} implies p.y.free = true.

It follows that statement 37.q cannot change the value of A(p, p.node) from true to

false. If one of 15.q, 27.q, and 29.q falsifies A(p, p.node), then it also assigns the value

2 · p.node to each of Loc[p] and Loc[p+N]. �

invariant Y [i].free = false ⇒
A:
(∃p ::

(
p@{3..8, 18..24} ∨ (p@{9, 25..38} ∧ p.n = i)

) ∧
(p.node = i) ∧ (p@{3} ⇒ p.dir �= right)

) ∨
B: (∃p :: p@{2..9, 15..40} ∧ (2i

∗−→ p.node) ∧
(p@{9, 25..40} ⇒ 2i

∗−→ p.n)
) ∨

C: (∃p :: p@{9, 25..38} ∧ p.n = i ∧ (p@{9, 25} ⇒ 2i
∗−→ Loc[p])

)
(I57)

Proof: Note that we may assume 1 ≤ i ≤ T , because Y [i] is defined only for values of

i in this range.

The only statements that can establish the antecedent are 17.q and 26.q, where

q is any arbitrary process. Statement 17.q establishes disjunct A. If statement 26.q

establishes the antecedent, then disjunct C holds both before and after its execution. We

now consider statements that may falsify each of the three disjuncts of the consequent.

277

Disjunct A: Suppose that the following assertion holds.

(
p@{3..8, 18..24} ∨ (p@{9, 25..38} ∧ p.n = i)

) ∧
(p.node = i) ∧ (p@{3} ⇒ p.dir �= right)

(A.6)

We consider each condition separately. The only statements that may falsify

p@{3..8, 18..24} are 3.p and 8.p. If 3.p is executed while p.node = i ∧ p.dir = stop

holds, then it establishes p@{4} ∧ p.node = i, and hence preserves (A.6). On the

other hand, if 3.p is executed while p.node = i ∧ p.dir = left holds, then it establishes

p@{2, 6} ∧ p.node = 2i, and hence disjunct B is established. If statement 8.p is exe-

cuted while (A.6) holds, then since i ≤ T , by (I35), p.level ≤ L holds before and after

its execution. Thus, in this case, 8.p establishes p@{9} ∧ p.n = i. It follows that these

statements cannot falsify (A.6).

The only statements that may falsify p@{9, 25..38} ∧ p.n = i are 25.p, 30.p, and

38.p. By (I34), statements 25.p and 30.p establish p@{26, 31}. If p.n = i, then state-

ment 38.p falsifies the antecedent of (I57).

The only statements that may update p.node are 1.p and 3.p. Statement 1.p cannot

be executed while (A.6) holds. Statement 3.p preserves (I57) as shown above.

The only statement that may falsify p@{3} ⇒ p.dir �= right is 16.p, which cannot

be executed while (A.6) holds.

Disjunct B: Suppose that the following assertion holds.

p@{2..9, 15..40} ∧ (2i
∗−→ p.node) ∧ (p@{9, 25..40} ⇒ 2i

∗−→ p.n) (A.7)

We consider each condition separately. The only statements that may falsify

p@{2..9, 15..40} are 25.p, 30.p, 38.p, and 40.p (which may return from ReleaseNode and

terminate the for loop at statement 9). However, since 2i
∗−→ p.n implies lev(p.n) > 1,

the for loop must iterate again, establishing p@{9}. If these statements preserve

2i
∗−→ p.n, then (A.7) is preserved. Otherwise, p ascends the renaming tree by a

level, and p@{9} ∧ p.n = i is established. Moreover, by (I55) and (I56), 2i
∗−→ Loc[p]

holds before and after the execution of each of these statements. This implies that

disjunct C holds.

The only statements that may update p.node are 1.p and 3.p. Statement 1.p cannot

be executed while (A.7) holds. Statement 3.p only updates p.node as the renaming tree

is descended. Thus, it cannot falsify 2i
∗−→ p.node.

278

The only statements that may falsify p@{9, 25..40} ⇒ 2i
∗−→ p.n are 8.p (which

may establish p@{9, 25..40} and also update p.n) and 25.p, 30.p, 38.p, and 40.p (which

may return from ReleaseNode and update p.n). If statement 8.p establishes p@{9},
then it also establishes p.n = p.node. Thus, it cannot falsify (A.7). Statements 25.p,

30.p, 38.p, and 40.p preserve (I57) as shown above.

Disjunct C: Suppose that the following assertion holds.

p@{9, 25..38} ∧ p.n = i ∧ (p@{9, 25} ⇒ 2i
∗−→ Loc[p]) (A.8)

This assertion implies that p@{9, 25..38} holds. Thus, it may be falsified only by

statement 25.p (which updates Loc[p] and may falsify p@{9, 25..38} — note that no

other process can modify Loc[p] while p@{9, 25..38} holds), and statements 30.p and

38.p (which may falsify p@{9, 25..38}, establish p@{9, 25}, or modify p.n). Statement

25.p may falsify p@{9, 25..38} only if executed when p.dir = right holds. By (I45) and

(I55), p@{25} ∧ 2i
∗−→ Loc[p] implies p.path[lev(i)] = (i, left) — informally, p moved

left from splitter i when descending the renaming tree. Thus, by (I32), p.dir = left

holds before the execution of 25.p. It follows that statement 25.p establishes p@{26},
and hence it cannot falsify (A.8). Statement 38.p falsifies the antecedent of (I57) if

executed when p.n = i holds.

Statement 30.pmay falsify (A.8) only if executed when Round [p.y.rnd] = true holds.

So, assume that p@{30} ∧ Round [p.y.rnd] = true holds. Then, by (I43), there exists

a process q such that

(
q@{3..5, 8, 22..24} ∨ (q@{9, 25..39} ∧ q.n = q.node)

) ∧(
q@{3..5, 8} ⇒ (q.dir = stop ∧ 1 ≤ q.node ≤ T)

) ∧
q.y.rnd = p.y.rnd .

(A.9)

If q = p, then by (A.9) and our assumption that p@{30} holds, we have p.n =

p.node, which implies, by (I34), that statement 30.p establishes p@{31}, preserving
(A.8).

So, suppose that q �= p. By (I24), we have Reset [i].rnd = p.y.rnd , which by (A.9)

implies that

Reset [i].rnd = q.y.rnd .

In addition, by (I60) and our assumption that p@{30} holds, we have q@{3..5, 22..24}.
We now prove that Reset [q.node].rnd = q.y.rnd holds by considering the two cases

279

q@{22, 23} and q@{3..5, 24} separately. First, suppose that q@{22, 23} holds. Then, by

(I8) and (I60), we have either Reset [q.node].rnd = q.y.rnd or Dist[q.y.rnd] �= ⊥. How-

ever, because Reset [i].rnd = q.y.rnd ∧ p@{30} holds, by (I14) and (I60), Dist[q.y.rnd]

= ⊥ holds. Thus, in this case, we have Reset [q.node].rnd = q.y.rnd .

On the other hand, if q@{3..5, 24} holds, then by (I31) and (A.9), A(q, q.node)

holds as well. By (I3), this implies that Reset [q.node].rnd = q.y.rnd holds.

Putting these assertions together, we have Reset [i].rnd = Reset [q.node].rnd . By

(I15), this implies that q.node = i. Therefore, if q �= p, we have q@{3..5, 22..24} ∧
q.node = i ∧ (q@{3} ⇒ q.dir = stop), which implies that disjunct A holds both

before and after the execution of 30.p. �

The following lemma is used in proving invariants (I58) and (I59).

Lemma A.2 If t and u are consecutive states such that p@{2, 3, 15..24} holds at t, the

condition i
∗−→ Loc[p] holds at u but not at t, and all the invariants in this appendix

hold at t, then the following are true:

• The value of Loc[p] is changed by a call to UpdateLoc(P, i) such that p ∈ P .

• i = Loc[p] ∧ C(�i/2�) > C(i) holds at u.

Proof: The only statements that may establish i
∗−→ Loc[p] while p@{2, 3, 15..24}

holds are 16.p, 19.p, 20.p, 15.q, 27.q, and 29.q, where q is any arbitrary process. It should

be obvious that these statements can update Loc[p] only by calling UpdateLoc(P, i),

where p ∈ P . Now we show that if state u is reached via the execution of any of these

statements, then i = Loc[p] is established.

By using (I50) and (I51), we can tabulate all the possible ways in which Loc[p] can

be changed by one of these statements. Such a tabulation is given below. Note that the

table only shows the ways in which Loc[p] may change value. For example, by (I50), if

p@{16} holds, then Loc[p] is either p.node or 2 · p.node. In both cases, statement 16.p

may change the value of Loc[p] only by establishing Loc[p] = 2 · p.node +1. As another

example, by (I51), if p@{19} holds, then Loc[p] is either p.node or 2 · p.node. Because
19.p can change the value of Loc[p] only by establishing Loc[p] = 2 · p.node, we do not

include an entry for Loc[p] = 2 · p.node in the column for state t.

280

statement at state t at state u

16.p Loc[p] = p.node Loc[p] = 2 · p.node + 1

Loc[p] = 2 · p.node Loc[p] = 2 · p.node + 1

19.p, 20.p Loc[p] = p.node Loc[p] = 2 · p.node
15.q, 27.q Loc[p] = p.node Loc[p] = 2 · p.node

29.q Loc[p] = p.node Loc[p] = 2 · p.node
From this table, we see that there are only three ways in which the value of Loc[p]

can be changed: (i) from a parent (p.node) to its left child (2 · p.node), (ii) from a

parent (p.node) to its right child (2 · p.node +1), and (iii) from a left child (2 · p.node)
to its right sibling (2 · p.node + 1). It follows that i

∗−→ Loc[p] holds at u but not at t

if and only if i = Loc[p] is established in transiting from t to u.

Our remaining proof obligation is to show that C(�i/2�) > C(i) holds at u. Let

h = �i/2�. Note that h is splitter i’s parent. (Note further that, because i
∗−→ Loc[p]

does not hold at t, and because the root is an ancestor of every splitter, splitter i is not

the root, i.e., its parent does exist.) We will establish C(h) > C(i) by showing that

some process “located” within the subtree rooted at h is either at h or in the subtree

rooted at i’s sibling. Note that in each of cases (i) through (iii), we have

h = p.node ∧ (i = 2 · p.node ∨ i = 2 · p.node + 1). (A.10)

We now show that C(�i/2�) > C(i) holds at u by considering each of statements

16.p, 19.p, 20.p, 15.q, 27.q, and 29.q separately. Statement 16.pmay establish Loc[p] = i,

where

i = 2 · p.node + 1 (A.11)

only if executed when Y [h].free = false, in which case the antecedent of (I57) holds.

Thus, one of the three disjuncts of the consequent of (I57) holds.

• If disjunct A holds, then by (I51)–(I53), there exists q such that q@{3..9, 18..38} ∧
(Loc[q +N] = h ∨ Loc[q +N] = 2h).

• If disjunct B holds, then by (I49)–(I53), there exists q such that q@{2..9, 15..40} ∧
2h

∗−→ Loc[q +N].

• If disjunct C holds, then by (I56), there exists q such that (q@{9, 25} ∧ 2h
∗−→

Loc[q]) ∨ (q@{26..38} ∧ Loc[q] = q.n ∧ q.n = h).

281

If q = p, then the condition p@{16} implies that disjunct B must hold. By (A.10),

this implies that 2h = 2 · p.node ∗−→ q.node holds, which contradicts q = p. Hence,

q �= p, and thus (by the program text) statement 16.p does not change the value of

either Loc[q] or Loc[q +N]. Because one of A through C holds before 16.p is executed,

the following assertion holds both before and after the execution of 16.p.

q �= p ∧ (
Loc[q] = h ∨ Loc[q +N] = h ∨ 2h

∗−→ Loc[q] ∨ 2h
∗−→ Loc[q +N]

)
In other words, when 16.p is executed (which moves Loc[p] to the subtree rooted at i),

at least one of Loc[q] and Loc[q +N] is equal to h, or a splitter within the left subtree

of h. Furthermore, because 16.p does not alter Loc[q] or Loc[q + N], this is also true

after 16.p is executed, i.e., in state u. Note that, by (A.10) and (A.11), i is the right

child of h. This implies that C(h) > C(i) holds at state u.

Statement 19.pmay establish Loc[p] = i, where i = 2h, only if executed whenX[h] �=
p holds. However, this implies that A(p, h) is false, and hence Loc[p] = 2h, by (I51).

Therefore, statement 19.p cannot change the value of Loc[p].

Statement 20.p may establish Loc[p] = i, where i = 2h, only if executed when

Acquired [h] = true holds. By (I4), this implies that there exists a process q such that

q@{3..14, 25..41} ∧ A(q, h) holds. Thus, by (I24) and (I53), Loc[q+N] = h holds both

before and after the execution of 20.p. This implies that C(h) > C(i).

Statement 15.q may establish Loc[p] = i, where i = 2h, only if executed when

p@{16..19} ∧ p.node = h ∧ q.node = h holds. In this case, by (I49), Loc[q] = h

holds at t. Because statement 15.q does not update Loc[q], this condition also holds at

u, which implies that C(h) > C(i).

Similarly, statements 27.q and 29.q may establish Loc[p] = i, where i = 2h, only

if executed when p@{16..22} ∧ p.node = h ∧ q.n = h holds. In this case, by (I56),

Loc[q] = h holds at t, and hence at u. This implies that C(h) > C(i). �

invariant p@{2, 3, 15..24} ∧ (i
∗−→ Loc[p]) ⇒ PC[p, i] ≥ C(i) (I58)

Proof: The only statement that can establish p@{2, 3, 15..24} is 1.p. But this es-

tablishes Loc[p] = 1 and PC[p, 1] = C(1). Hence the consequent is established (or

preserved) for i = 1, and the antecedent is falsified for i �= 1.

If p@{2, 3, 15..24} holds, then the only statements that can establish i
∗−→ Loc[p] are

16.p, 19.p, 20.p, 15.q, 27.q, and 29.q, where q is any arbitrary process. By Lemma A.2, if

282

one of these statements establishes i
∗−→ Loc[p], it establishes it by calling UpdateLoc(P, i)

such that p ∈ P . In this case, line u2 of UpdateLoc establishes PC[p, i] = C(i).

The value of PC[p, i] may be changed only by statement 1.p, or by a call to

UpdateLoc. However, statement 1.p establishes the consequent as shown above, and

whenever UpdateLoc updates PC[p, i], it establishes PC[p, i] = C(i).

The value of C(i) may be changed only by statements 14.q, 25.q, and 41.q (by

updating Loc[q] or Loc[q +N] directly), or by a call to UpdateLoc. However, by (I55),

statement 25.q always changes Loc[q] from a splitter to its ancestor. It follows that

statement 25.q cannot cause C(i) to increase for any i. Similarly, statements 14.q and

41.q establishes Loc[q] = 0 ∧ Loc[q + N] = 0, and hence they also cannot cause C(i)

to increase for any i.

The only remaining case is when C(i) is changed by a call to UpdateLoc. However,

line u3 of UpdateLoc ensures that (I58) is always preserved in this case. �

invariant p@{2, 3, 15..24} ∧ (i
∗−→ Loc[p]) ∧ (2 ≤ i ≤ T) ⇒

PC[p, i] < PC[p, �i/2�] (I59)

Proof: The only statement that can establish p@{2, 3, 15..24} is 1.p, but this estab-

lishes Loc[p] = 1, and hence falsifies the antecedent.

The only other statements that may establish the antecedent (by changing the value

of Loc[p]) are 14.p, 16.p, 19.p, 20.p, 25.p, 41.p, 15.q, 27.q, and 29.q, where q is any arbi-

trary process. Statements 14.p, 25.p, and 41.p, falsify the antecedent. The other state-

ments may establish the antecedent only by calling UpdateLoc when p@{2, 3, 15..24}
holds. Similarly, the only statements that may falsify the consequent (by changing the

value of PC[p, i] or PC[p, �i/2�]) are 1.q, 15.q, 16.q, 19.q, 20.q, 27.q, and 29.q, where

q is any arbitrary process. These statements also may falsify (I59) only by calling

UpdateLoc when p@{2, 3, 15..24} holds. Therefore, it suffices to consider such an invo-

cation of UpdateLoc. We consider two cases. Let h be the parent of i, i.e., h = �i/2�.

Case 1: i
∗−→ Loc[p] is established by UpdateLoc(P, f).

By Lemma A.2, i
∗−→ Loc[p] can be established only if p ∈ P ∧ f = i, and in this

case i = Loc[p] ∧ C(�i/2�) > C(i) is also established. Note that line u2 of UpdateLoc

establishes PC[p, i] = C(i). Also, because p@{2, 3, 15..24} holds, line u3 ensures that

PC[p, h] ≥ C(h) holds after the call to UpdateLoc. Thus, PC[p, h] > PC[p, i] holds after

UpdateLoc is called.

283

Case 2: i
∗−→ Loc[p] holds before the call to UpdateLoc(P, f).

In this case, the antecedent of (I59) holds before the call to UpdateLoc, and hence

PC[p, h] > PC[p, i] holds as well. If the value of PC[p, h] is changed by line u2 of

UpdateLoc, then p ∈ P and f = h. But this implies that line u1 establishes Loc[p] = h,

which falsifies the antecedent of (I59). (In fact, such a case can never occur, because

it implies that a process moves upward within the renaming tree while in its entry

section.) If the value of PC[p, h] is changed by line u3, then because line u3 never

causes a PC entry to decrease, the condition PC[p, h] > PC[p, i] cannot be falsified.

The remaining possibility to consider is that the value of PC[p, i] is changed when

UpdateLoc(P, f) is called. Note that, if PC[p, i] is changed, either by line u2 or line u3,

then

PC[p, i] = C(i) (A.12)

is established. From (I58), it follows that the value of PC[p, i] can increase only if

C(i) also increases. By the definition of C(i), this can happen only if UpdateLoc(P, f)

establishes either i
∗−→ Loc[r] or i

∗−→ Loc[r +N] for some r ∈ P . In this case, either

UpdateLoc(P, f) is called by statement 1.r, or r@{2, 3, 15..24} holds before the execution

of the statement calling UpdateLoc(P, f) (this can be seen by examining each call to

UpdateLoc in Figure A.1). However, statement 1.r calls UpdateLoc({r}, 1), and hence

cannot establish i
∗−→ Loc[r] for any i ≥ 2. Therefore, r@{2, 3, 15..24} holds before

UpdateLoc is called. By (I49)–(I52), this implies that Loc[r] = Loc[r + N] also holds.

Therefore, it is enough to consider the case in which i
∗−→ Loc[r] is established.

By Lemma A.2, UpdateLoc(P, f) establishes i
∗−→ Loc[r] only if it also establishes

C(�i/2�) > C(i), i.e., C(h) > C(i). As noted earlier, line u3 ensures that PC[p, h] ≥
C(h) holds after the call to UpdateLoc. Thus, by (A.12), we again have PC[p, h] >

PC[p, i]. �

invariant (Adaptivity) p@{4..8} ⇒ lev(p.node) < PC[p, 1] (I61)

Proof: The antecedent is established only by statement 3.p. We begin by show-

ing that if 3.p establishes the antecedent by establishing p@{4, 6}, then PC[p, 1] ≥
PC[p, p.node] + p.level holds after its execution. Note that 3.p establishes p@{4, 6}
only if executed when p.dir = stop ∨ p.level ≥ L holds. If 3.p is executed when

p.level = 0 ∧ p.dir = stop holds, then by (I35), p.node = 1 holds as well. 3.p does not

update either p.node or p.level in this case, and hence, PC[p, 1] ≥ PC[p, p.node]+p.level

holds after its execution.

284

The remaining possibility to consider is that (p.dir = stop ∧ p.level > 0) ∨ p.level ≥
L holds before 3.p is executed. In this case, by (I46), 3.p establishes the following.

p.path[0].node = 1 ∧ p.path[p.level − 1].node
∗−→ p.node ∧

(∀l : 0 ≤ l < p.level − 1 :: p.path[l].node
∗−→ p.path[l + 1].node).

By (I59), the following is established as well.

PC[p, 1] = PC[p, p.path[0].node]

> PC[p, p.path[1].node]
...

> PC[p, p.path[p.level − 1].node]

> PC[p, p.node].

Given the length of this sequence, we have PC[p, 1] ≥ PC[p, p.node]+p.level , as claimed.

By (I35), this implies that PC[p, 1] ≥ PC[p, p.node] + lev(p.node) holds after 3.p

is executed. Note that p@{4, 6} implies that PC[p, p.node] ≥ 1 holds (the point con-

tention for some process at a splitter must at least include that process). Hence, if 3.p

establishes the antecedent of (I61), then PC[p, 1] > lev(p.node) holds after its execution.

While the antecedent holds, the value of lev(p.node) cannot be changed. Moreover,

if PC[p, 1] is changed within UpdateLoc, then its value is increased. �

Note that PC[p, 1] is initialized by p at statement 1.p to match the current contention

within the renaming tree, assuming that each process q is counted twice, as “q” and

as “q + N .” While p@{2, 3, 15..24} continues to hold, as other processes enter and

leave the renaming tree, if the current contention ever exceeds the current the value of

PC[p, 1], then line u3 of UpdateLoc ensures that PC[p, 1] is updated accordingly. Thus,

if m is the maximum value attained by PC[p, 1] while p@{2, 3, 15..24} holds, then m is

at most twice the actual point contention experienced by p in its entry section.

It should be clear that the number of remote memory references executed by p to

enter and then exit its critical section is Θ(n), where n is the value of lev(p.node) when

p reaches statement 4 or 6. By (I61), we have n < m. Clearly, we also have n ≤ L+1.

Thus, p executes O(min(k, logN)) remote memory references to enter and then exit its

critical section, where k is the point contention it experiences in its entry section.

285

APPENDIX B

DETAILED PROOFS OF

LEMMAS 5.1–5.6

In this appendix, full proofs are presented for Lemmas 5.1–5.6. Throughout this ap-

pendix, we use the definitions stated in Section 5.1. As in Chapter 5, we omit RFS

when quoting properties RF1–RF5 and assume the existence of a fixed mutual exclusion

system S = (C, P, V).

Lemma 5.1 Consider a computation H and two sets of processes RFS and Y . Assume

the following:

• H ∈ C; (B.1)

• RFS is a valid RF-set of H; (B.2)

• RFS ⊆ Y . (B.3)

Then, the following hold: H | Y ∈ C; RFS is a valid RF-set of H | Y ; an event e in

H | Y is a critical event if and only if it is also a critical event in H.

Proof: By (B.2), H satisfies RF1–RF5. Since H satisfies RF1, if a process p is not

in RFS , no process other than p reads a value written by p. Therefore, by inductively

applying P2, we have H | Y ∈ C.

We now prove that RFS is a valid RF-set of H | Y .

• RF1: Assume that H can be written as E ◦ 〈ep〉 ◦ F ◦ 〈fq〉 ◦ G, and that H | Y
can be written as (E | Y) ◦ 〈ep〉 ◦ (F | Y) ◦ 〈fq〉 ◦ (G | Y). Also assume that p �= q

and that there exists a variable v ∈ Wvar(ep) ∩ Rvar(fq) such that F | Y does

not contain a write to v. We claim that F does not contain a write to v, in which

case, by applying RF1 to H, we have p ∈ RFS .

Assume, to the contrary, that F has a write to v. Define gr = writer event(v, F).

Since F | Y does not contain gr, we have r /∈ Y . Since H | Y contains fq, we have

q ∈ Y . Therefore, r �= q. By applying RF1 to gr and fq in H, we have r ∈ RFS ,

which contradicts r /∈ Y .

286

• RF2: Consider an event ep in H | Y , and a variable v in var(ep). Assume that

v is local to another process q (�= p). By applying RF2 to H, we have either

q /∈ Act(H) or {p, q} ⊆ RFS . Since Act(H | Y) ⊆ Act(H), q /∈ Act(H) implies

q /∈ Act(H | Y).

• RF3: Consider a variable v ∈ V and two different events ep and fq in H | Y .

Assume that both p and q are in Act(H | Y), p �= q, there exists a variable v such

that v ∈ var(ep) ∩ var(fq), and there exists a write to v in H | Y . We claim that

writer(v, H | Y) ∈ RFS holds.

By definition, events ep and fq also exist in H, and there exists a write to v in H.

Since Act(H | Y) ⊆ Act(H), both p and q are in Act(H). Therefore, by applying

RF3 to H, we have writer(v, H) ∈ RFS . Thus, since RFS ⊆ Y , the last event

to write to v is identical in both H and H | Y . Hence, writer(v, H | Y) ∈ RFS

holds.

• RF4: From Act(H | Y) ⊆ Act(H), Fin(H | Y) ⊆ Fin(H), and the fact that H

satisfies RF4, it easily follows that H | Y satisfies RF4.

• RF5: If an event ep in H | Y is critical in H | Y , then by the definition of a

critical event, it is also critical in H. (Note that every event that is contained in

H but not in H | Y is executed by some process different from p. Adding such

events to H | Y cannot make ep noncritical.) Thus, by applying RF5 to H, ep is

also critical in H | ({p} ∪ RFS).

Finally, we claim that an event ep in H | Y is a critical event if and only if it is also

a critical event in H. If ep is critical in H | Y , then as shown above (in the reasoning

for RF5), it is also critical in H. On the other hand, if ep is critical in H, then by

applying RF5 to H, it is also critical in H | ({p} ∪ RFS). Since ep is an event of H | Y ,

we have p ∈ Y , and hence {p} ∪ RFS ⊆ Y . Thus, by the definition of a critical event,

ep is also critical in H | Y . �

Lemma 5.2 Consider three computations H, H ′, and G, a set of processes RFS , and

two events ep and e′p of a process p. Assume the following:

• H ◦ 〈ep〉 ∈ C; (B.4)

• H ′ ◦ G ◦ 〈e′p〉 ∈ C; (B.5)

• RFS is a valid RF-set of H; (B.6)

287

• RFS is a valid RF-set of H ′; (B.7)

• ep ∼ e′p; (B.8)

• p ∈ Act(H); (B.9)

• H | ({p} ∪ RFS) = H ′ | ({p} ∪ RFS); (B.10)

• G | p = 〈〉; (B.11)

• no events in G write any of p’s local variables; (B.12)

• ep is critical in H ◦ 〈ep〉. (B.13)

Then, e′p is critical inH ′◦G◦〈e′p〉. Moreover, if the following conditions are true,

(A) H ′ ◦ G satisfies RF5;

(B) if ep is a comparison event on a variable v, and if G contains a write to v, then

G | RFS also contains a write to v.

then H ′ ◦ G ◦ 〈e′p〉 also satisfies RF5.

Proof: First, define

H = H ′ ◦ G ◦ 〈e′p〉. (B.14)

Note that, by (B.9), (B.10) and (B.11), we have the following:

H | p = (H ′ ◦ G) | p, and (B.15)

p ∈ Act(H ′). (B.16)

If Condition (A) is true, then in order to show that H satisfies RF5, it suffices to

consider event e′p. If e
′
p is a critical read or transition event, then it is clearly critical in

H | ({p} ∪ RFS). Thus, our remaining proof obligations are to show

• e′p is critical in H;

• if e′p is a critical write or a critical comparison, and if Condition (B) is true, then e′p
is also a critical write or a critical comparison in H | ({p} ∪ RFS).

We consider four cases, depending on the kind of critical event ep is.

Transition event: If ep is a transition event, then by (B.8) and the definition of

congruence, e′p is also a transition event.

288

Critical read: If ep is a critical read in H ◦〈ep〉, then there exists a variable v, remote

to p, such that op(ep) = read(v) and H | p does not contain a read from v. Thus, by

(B.8) and (B.15), e′p is also a critical read in H.

Before considering the remaining two cases, note that, if ep is a critical write or a

critical comparison in H ◦ 〈ep〉, then there exists a variable v, remote to p, such that

v ∈ var(ep) and

writer(v, H) �= p. (B.17)

Critical write: Assume that ep is a critical write in H ◦ 〈ep〉. We consider two cases.

First, if p does not write v in H, then by (B.15),

• p does not write v in H ′ ◦ G. (B.18)

Thus, we have writer(v, H ′ ◦G) �= p, and hence, by (B.8) and the definition of a critical

write, e′p is a critical write in H. Moreover, by (B.18), we also have writer(v, (H ′ ◦
G) | ({p} ∪ RFS)) �= p. Thus, e′p is also a critical write in H | ({p} ∪ RFS).

Second, if p writes to v in H, then define ēp to be the last event by p that writes

to v in H. Define q = writer(v, H) and fq = writer event(v, H). By (B.17), we have

q �= p and q �= ⊥. If q ∈ Act(H), then by (B.6) and (B.9), and applying RF3 to ēp and

fq in H, we have q ∈ RFS . On the other hand, if q ∈ Fin(H), then clearly q ∈ RFS by

(B.6). Thus, in either case, in H, there exists a write to v (that is, fq) by some process

in RFS after the last write to v by p (that is, ēp). Therefore, by (B.10), the same is

true in H ′, and hence by (B.11), we have writer(v, H ′ ◦ G) �= p. It follows, by (B.8)

and the definition of a critical write, that e′p is a critical write in H.

Moreover, since q ∈ RFS , there also exists a write to v (that is, fq) after the last

write to v by p (ēp) in H | ({p} ∪ RFS). It follows that e′p is also a critical write in

H | ({p} ∪ RFS).

Critical comparison: Assume that ep is a critical comparison on v in H ◦ 〈ep〉. We

consider three cases.

Case 1: If G contains a write to v, then by (B.11) and the definition of a critical

comparison, e′p is clearly a critical comparison in H. Moreover, if (B) is true, then since

G contains a write to v, G | RFS also contains a write to v, and hence e′p is also a

critical comparison in H | ({p} ∪ RFS).

289

Case 2: If p does not access v in H (i.e., for every event fp in H | p, v /∈ var(fp)), then

by (B.15), p does not access v in H ′ ◦G. Thus, by (B.8) and the definition of a critical

comparison, e′p is a critical comparison in H. Moreover, it is clear that p does not access

v in (H ′ ◦ G) | ({p} ∪ RFS). Thus, e′p is also a critical comparison in H | ({p} ∪ RFS).

Case 3: Assume that p accesses v in H, and that G does not contain a write to v.

Then, there exists an event fp in H such that v ∈ var(fp). Moreover, since v is the

only remote variable in var(ep), by (B.12), it follows that

• for each variable u in Rvar(ep), G does not contain a write to u. (B.19)

We now establish two claims.

Claim 1: writer(v, H) = writer(v, H ′) and writer event(v, H) = writer

event(v, H ′). Moreover, either both writer(v, H) and writer(v, H ′) are ⊥,

or both are in {p} ∪ RFS .

Proof of Claim: Suppose that v is written in H and let gqv be the last

event to do so. If qv �= p and if qv ∈ Act(H), then by (B.6) and (B.9), and by

applying RF3 to fp and gqv in H, we have qv ∈ RFS . On the other hand, if

qv ∈ Fin(H), then clearly qv ∈ RFS holds by (B.6). Finally, if qv = p, then

clearly we have qv ∈ {p}∪RFS . Thus, in all cases, we have qv ∈ {p}∪RFS .

Similarly, if gq′v is the last event to write v in H ′, then by (B.7) and (B.16),

we have q′v ∈ {p}∪RFS . Therefore, by (B.10), it follows that the last event

to write v (if any) is the same in H and H ′. Hence, the claim follows. �

Claim 2: For each variable u in Rvar(ep), writer event(u, H) = writer

event(u, H ′) holds.

Proof of Claim: If u is remote to p, then by the Atomicity property, we

have u = v. Thus, in this case, the claim follows by Claim 1.

So, assume that u is local to p. If there exists an event gqu in H that writes

u, then by (B.6) and (B.9), and by applying RF2 to gqu in H, it follows that

either qu = p or qu ∈ RFS holds. Similarly, if an event gq′u writes u in H ′,

then by (B.7) and (B.16), we have either q′u = p or q′u ∈ RFS . Therefore,

by (B.10), it follows that the last event to write u (if any) is the same in H

and H ′. �

290

From (B.19) and Claim 2, it follows that

• for each variable u in Rvar(ep), value(u, H) = value(u, H ′ ◦ G) holds. (B.20)

By (B.4), (B.15), (B.20), and P2, we have H ′ ◦G◦ 〈ep〉 ∈ C. Combining with (B.5),

and using P5, we have ep = e′p. In particular,

• e′p is a successful (respectively, unsuccessful) comparison in H if and only if ep is also

a successful (respectively, unsuccessful) comparison in H ◦ 〈ep〉. (B.21)

Define q = writer(v, H) and gq = writer event(v, H). By (B.17) and Claim 1, we

have

q = ⊥ ∨ q ∈ RFS − {p}, (B.22)

and gq = writer event(v, H ′). Thus, by (B.10),

q �= ⊥ ⇒ H | {p, q} = H ′ | {p, q}. (B.23)

Since G does not contain a write to v, we also have

writer(v, H ′ ◦ G) = q ∧ writer event(v, H ′ ◦ G) = gq. (B.24)

If ep is a critical successful comparison in H ◦ 〈ep〉, then by (B.21), (B.22), (B.24),

and the definition of a critical successful comparison, e′p is clearly a critical successful

comparison in both H and H | ({p} ∪ RFS).

Similarly, if ep is a critical unsuccessful comparison in H ◦ 〈ep〉, then by definition,

either H | p does not contain an unsuccessful comparison event by p on v, or q �= ⊥
and H does not contain an unsuccessful comparison event by p on v after gq. In the

former case, by (B.15), (H ′ ◦ G) | p does not contain an unsuccessful comparison event

on v; in the latter case, by (B.11) and (B.23), H ′ ◦ G does not contain an unsuccessful

comparison event by p on v after gq.

Therefore, In either case, by (B.21), it follows that e′p is a critical unsuccessful

comparison in both H and H | ({p} ∪ RFS). �

Lemma 5.3 Consider two computations H and G, a set of processes RFS , and an

event ep of a process p. Assume the following:

• H ◦ G ◦ 〈ep〉 ∈ C; (B.25)

• RFS is a valid RF-set of H; (B.26)

• p ∈ Act(H); (B.27)

291

• H ◦ G satisfies RF1 and RF2; (B.28)

• G is an Act(H)-computation; (B.29)

• G | p = 〈〉; (B.30)

• if ep remotely accesses a variable vrem, then the following hold:

− if vrem is local to a process q, then either q /∈ Act(H) or {p, q} ⊆ RFS , and (B.31)

− if q = writer(vrem, H◦G), then one of the following hold: q = ⊥, q = p, q ∈ RFS ,

or vrem /∈ Rvar(ep). (B.32)

Then, H ◦ G ◦ 〈ep〉 satisfies RF1 and RF2.

Proof: Define

H = H ◦ G ◦ 〈ep〉. (B.33)

By (B.27) and (B.30), we have

p ∈ Act(H ◦ G). (B.34)

By (B.29), we also have Act(H ◦ G) ⊆ Act(H). Thus, by (B.34),

Act(H) ⊆ Act(H ◦ G) ⊆ Act(H). (B.35)

Now we prove each of RF1 and RF2 separately.

• RF1: Since, by (B.28), H ◦ G satisfies RF1, it suffices to consider the following

case: H can be written as E ◦ 〈fq〉 ◦ F ◦ 〈ep〉; p �= q; there exists a variable v ∈
Wvar(fq) ∩ Rvar(ep); and F does not contain a write to v. Our proof obligation

is to show q ∈ RFS .

If v is local to p, then by (B.28), and applying RF2 to fq in H ◦ G, we have

either p /∈ Act(H ◦ G) or q ∈ RFS . Thus, by (B.34), we have q ∈ RFS . On

the other hand, if v is remote to p, then we have vrem = v, which implies q =

writer(vrem, H ◦G), q �= ⊥, q �= p, and vrem ∈ Rvar(ep). Thus, by (B.32), we have

q ∈ RFS .

• RF2: Consider an event fq in H, and a variable v in var(fq). Assume that v

is local to another process r �= q. Our proof obligation is to show that either

r /∈ Act(H) or {q, r} ⊆ RFS holds.

292

If fq is an event of H ◦ G, then by (B.28), and applying RF2 to fq in H ◦ G, we

have either r /∈ Act(H ◦ G) or {q, r} ⊆ RFS . By (B.35), r /∈ Act(H ◦ G) implies

r /∈ Act(H).

On the other hand, if fq = ep, then we have p = q and vrem = v. By applying

(B.31) with ‘q’ ← r, we have either r /∈ Act(H) or {p, r} = {q, r} ⊆ RFS . By

(B.35), r /∈ Act(H) implies r /∈ Act(H). �

In order to prove Lemma 5.4, we need several more lemmas, presented here. The

next lemma shows that appending a noncritical event of an active process does not

invalidate a valid RF-set.

Lemma B.1 Consider a computation H, a set of processes RFS , and an event ep of

a process p. Assume the following:

• H ◦ 〈ep〉 ∈ C; (B.36)

• RFS is a valid RF-set of H; (B.37)

• p ∈ Act(H); (B.38)

• ep is noncritical in H ◦ 〈ep〉. (B.39)

Then, RFS is a valid RF-set of H ◦ 〈ep〉.

Proof: First, note that Act(H) = Act(H ◦ 〈ep〉) and Fin(H) = Fin(H ◦ 〈ep〉), because
p ∈ Act(H) and ep �= Exitp. If ep remotely accesses a remote variable, then we will

denote that variable as vrem. By (B.39) and the definition of a critical event,

• if ep remotely accesses vrem, then there exists an event ēp in H that remotely accesses

vrem. (B.40)

Thus, by (B.37), and applying RF2 to ēp in H, it follows that

• if ep remotely accesses vrem and vrem is local to another process q, then either q /∈
Act(H) or {p, q} ⊆ RFS holds. (B.41)

Define z = writer(vrem, H) and fz = writer event(vrem, H). We claim that one of

the following holds: z = ⊥, z = p, or z ∈ RFS . Assume, to the contrary, that z �= ⊥,

z �= p, and z /∈ RFS . Then, by (B.37), z /∈ RFS implies z /∈ Fin(H). Since H | z �= 〈〉,
we have z ∈ Act(H). Thus, by (B.38), and applying RF3 to ēp and fz in H, we have

z ∈ RFS , a contradiction. Thus, we have shown that

293

• if ep remotely accesses vrem, and if z = writer(vrem, H), then one of the following

hold: z = ⊥, z = p, or z ∈ RFS . (B.42)

We now consider each condition RF1–RF5 separately.

• RF1 and RF2: Define G = 〈〉. It follows trivially from (B.37) that

• H ◦ G satisfies RF1 and RF2. (B.43)

We now apply Lemma 5.3. Assumptions (B.25)–(B.32) stated in Lemma 5.3

follow from (B.36), (B.37), (B.38), (B.43), G = 〈〉, G = 〈〉, (B.41), and (B.42),

respectively. It follows that H ◦ 〈ep〉 satisfies RF1 and RF2.

• RF3: Consider a variable v ∈ V and two different events fq and gr in H ◦ 〈ep〉.
Assume that both q and r are in Act(H) = Act(H ◦ 〈ep〉), q �= r, that there exists

a variable v such that v ∈ var(fq)∩ var(gr), and that there exists a write to v in

H ◦ 〈ep〉. Let
s = writer(v, H ◦ 〈ep〉). (B.44)

Our proof obligation is to show that s ∈ RFS holds.

– First, assume that v is local to p. Since at least one of q or r is different from

p, by (B.37) and (B.38), and applying RF2 to H, we have p ∈ RFS . If s = p,

then we have s ∈ RFS . On the other hand, if s �= p, then (B.44) implies that

ep does not write v. Hence, we have s = writer(v, H). Therefore, by (B.37)

and (B.38), and applying RF2 to writer event(v, H), we have s ∈ RFS .

– Second, assume that v is remote to p, and consider the case in which both

fq and gr are in H. If v ∈ Wvar(ep), then by (B.39) and (B.44), we have

writer(v, H) = s = p. (Otherwise, ep would be either a critical write or

a critical successful comparison by definition.) On the other hand, if v /∈
Wvar(ep), then clearly we have writer(v, H) = s. Therefore, in either case,

there is a write to v in H. Therefore, by (B.37), and applying RF3 to fq

and gr in H, we have writer(v, H) ∈ RFS , and hence s ∈ RFS .

– Third, assume that v is remote to p, and consider the case in which one of

fq or gr is ep. Without loss of generality, we can assume that fq is in H,

gr = ep, v = vrem, and q �= p. We consider two cases.

If ep writes vrem, then by (B.44), we have s = p. Moreover, by (B.39), we

have writer(vrem, H) = p. (Otherwise, ep would be either a critical write

294

or a critical successful comparison by definition.) Applying RF3 to writer

event(v, H) (by p) and fq in H, we have writer(vrem, H) ∈ RFS , which

implies s ∈ RFS .

Otherwise, if ep does not write vrem, then since vrem ∈ var(ep), we have

vrem ∈ Rvar(ep). By (B.37), (B.38), and (B.40), and applying RF3 to ēp and

fq, we have writer(vrem, H) ∈ RFS . Since ep does not write to vrem, we have

s = writer(vrem, H) ∈ RFS .

• RF4: Since H satisfies RF4, and since ep is not one of Enter p, CS p, or Exitp, it

easily follows that H ◦ 〈ep〉 also satisfies RF4.

• RF5: This condition follows trivially from (B.37) and (B.39). �

Corollary B.1 Consider a computation H, a set of processes RFS , and another

computation L. Assume the following:

• H ◦ L ∈ C; (B.45)

• RFS is a valid RF-set of H; (B.46)

• L is an Act(H)-computation; (B.47)

• L has no critical events in H ◦ L. (B.48)

Then, RFS is a valid RF-set of H ◦ L.

Proof: The proof of Corollary B.1 easily follows by induction on the length of L,

applying Lemma B.1 at each induction step. �

The following lemma shows that if two computationsH andH ′ are “similar enough”

with respect to a process p, and if a noncritical event ep can be appended to H, then

it can also be appended to H ′ without modification.

Lemma B.2 Consider two computations H and H ′, a set of processes RFS , and an

event ep of a process p. Assume the following:

• H ◦ 〈ep〉 ∈ C; (B.49)

• H ′ ∈ C; (B.50)

• RFS is a valid RF-set of H; (B.51)

• RFS is a valid RF-set of H ′; (B.52)

• p ∈ Act(H); (B.53)

• H | ({p} ∪ RFS) = H ′ | ({p} ∪ RFS); (B.54)

295

• ep is noncritical in H ◦ 〈ep〉. (B.55)

Then, the following hold: H ′ ◦ 〈ep〉 ∈ C; RFS is a valid RF-set of both H ◦ 〈ep〉 and
H ′ ◦ 〈ep〉; ep is a noncritical event in H ′ ◦ 〈ep〉.

Proof: By (B.53) and (B.54), we have

p ∈ Act(H ′). (B.56)

First, we prove that H ′ ◦ 〈ep〉 ∈ C holds. Because H | p = H ′ | p, by P2, it suffices

to show that for each variable v in Rvar(ep), writer event(v, H) = writer event(v, H ′).

• If v is local to p, then by (B.51), (B.52), and (B.53), for any event fq in either

H or H ′, by applying RF2 to fq, v ∈ var(fq) implies q ∈ {p} ∪ RFS . Thus, by

(B.54), the last event to write to v is identical in both H and H ′.

• If v is remote to p, then by (B.55) and by the definition of a critical event, there

exists an event ēp by p in H such that v ∈ var(ēp). We consider two cases.

First, assume that there exists a write to v in H. Define q = writer(v, H) and

fq = writer event(v, H). We claim that either q = p or q ∈ RFS . If q ∈ Fin(H),

then by (B.51), q ∈ RFS follows. On the other hand, if q ∈ Act(H) and q �= p

hold, then by (B.51) and (B.53), and applying RF3 to ēp and fq in H, we have

q ∈ RFS .

Similarly, if there exists a write to v in H ′, then define q′ = writer(v, H ′). Since

H | ({p} ∪ RFS) = H ′ | ({p} ∪ RFS), H also contains a write to v if and only if

H ′ contains a write to v, and the last event to write to v is identical in H and H ′.

Thus, we have

H ′ ◦ 〈ep〉 ∈ C. (B.57)

By Lemma B.1, RFS is a valid RF-set of H ◦ 〈ep〉, which establishes our second

proof obligation. Assumptions (B.36)–(B.39) stated in Lemma B.1 follow from (B.49),

(B.51), (B.53), and (B.55), respectively.

We now claim that ep is noncritical in H ′ ◦ 〈ep〉. Assume, to the contrary, that

ep is critical in H ′ ◦ 〈ep〉. Apply Lemma 5.2, with ‘H’ ← H ′, ‘H ′’ ← H (i.e., with

H and H ′ interchanged), ‘G’ ← 〈〉, and ‘e′p’ ← ep. Among the assumptions stated

in Lemma 5.2, (B.4)–(B.7), (B.9), (B.10) follow from (B.57), (B.49), (B.52), (B.51),

(B.56), and (B.54), respectively; (B.8) is trivial; (B.11) and (B.12) follow from G = 〈〉;

296

(B.13) follows from our assumption that ep is critical in H ′ ◦ 〈ep〉. From the lemma, it

follows that ep is a critical event in H ◦ 〈ep〉, a contradiction. Therefore,

• ep is noncritical in H ′ ◦ 〈ep〉. (B.58)

Finally, by applying Lemma B.1 with ‘H’ ← H ′, it follows that RFS is a valid RF-

set of H ′ ◦ 〈ep〉. Assumptions (B.36)–(B.39) stated in Lemma B.1 follow from (B.57),

(B.52), (B.56), and (B.58), respectively. �

Corollary B.2 Consider two computations H and H ′, two sets of processes RFS and

Z, and another computation L. Assume the following:

• H ◦ L ∈ C; (B.59)

• H ′ ∈ C; (B.60)

• RFS is a valid RF-set of H; (B.61)

• RFS is a valid RF-set of H ′; (B.62)

• Z ⊆ Act(H); (B.63)

• H | (Z ∪ RFS) = H ′ | (Z ∪ RFS); (B.64)

• L is a Z-computation; (B.65)

• L has no critical events in H ◦ L. (B.66)

Then, the following hold: H ′ ◦ L ∈ C; RFS is a valid RF-set of both H ◦ L and

H ′ ◦ L; L has no critical events in H ′ ◦ L.

Proof: The proof of Corollary B.2 easily follows by induction on the length of L,

applying Lemma B.2 at each induction step. �

Lemma 5.4 Consider a computation H, a set of processes RFS , and another set of

processes Y = {p1, p2, . . . , pm}. Assume the following:

• H ∈ C; (B.67)

• RFS is a valid RF-set of H; (B.68)

• Y ⊆ InvRFS (H); (B.69)

• for each pj in Y , there exists a computation Lpj
, satisfying the following:

− Lpj
is a pj-computation; (B.70)

− H ◦ Lpj
∈ C; (B.71)

− Lpj
has no critical events in H ◦ Lpj

. (B.72)

Define L to be Lp1 ◦ Lp2 ◦ · · · ◦ Lpm . Then, the following hold: H ◦ L ∈ C, RFS is

a valid RF-set of H ◦ L, and L contains no critical events in H ◦ L.

297

Proof: First, note that (B.69) implies

Y ⊆ Act(H). (B.73)

Define L0 = 〈〉; for each positive j, define Lj to be Lp1 ◦ Lp2 ◦ · · · ◦ Lpj
. We prove

the lemma by induction on j. At each step, we assume

• H ◦ Lj ∈ C, (B.74)

• RFS is a valid RF-set of H ◦ Lj, and (B.75)

• Lj contains no critical events in H ◦ Lj. (B.76)

The induction base (j = 0) follows easily from (B.67) and (B.68), since L0 = 〈〉.
Assume that (B.74)–(B.76) hold for a particular value of j. By definition, Lj | pj+1 =

〈〉, and hence

H | ({pj+1} ∪ RFS) = (H ◦ Lj) | ({pj+1} ∪ RFS). (B.77)

We use Corollary B.2, with ‘H ′’ ← H ◦ Lj, ‘Z’ ← {pj+1}, and ‘L’ ← Lpj+1
. Among

the assumptions stated in Corollary B.2, (B.60)–(B.62) and (B.64) follow from (B.74),

(B.68), (B.75), and (B.77), respectively; (B.63) follows from (B.73) and pj+1 ∈ Y ;

(B.59), (B.65), and (B.66) follow from (B.71), (B.70), and (B.72), respectively, each

applied with ‘pj’ ← pj+1. This gives us the following:

• H ◦ Lj+1 = (H ◦ Lj) ◦ Lpj+1
∈ C;

• RFS is a valid RF-set of H ◦ Lj+1;

• Lpj+1
contains no critical events in H ◦ Lj+1. (B.78)

By (B.76) and (B.78), it follows that Lj+1 contains no critical events in H ◦Lj+1. �

Lemma 5.5 Let H be a computation. Assume the following:

• H ∈ C, and (B.79)

• H is regular (i.e., Fin(H) is a valid RF-set of H). (B.80)

Define n = |Act(H)|. Then, there exists a subset Y of Act(H), where n−1 ≤ |Y | ≤
n, satisfying the following: for each process p in Y , there exist a p-computation Lp and

an event ep by p such that

• H ◦ Lp ◦ 〈ep〉 ∈ C; (B.81)

• Lp contains no critical events in H ◦ Lp; (B.82)

• ep /∈ {Enter p, CS p, Exitp}; (B.83)

• Fin(H) is a valid RF-set of H ◦ Lp; (B.84)

298

• ep is a critical event by p in H ◦ Lp ◦ 〈ep〉. (B.85)

Proof: First, we construct, for each process p in Act(H), a computation Lp and an

event ep that satisfy (B.81) and (B.82). Then, we show that every event ep thus

constructed, except at most one, satisfies (B.83). The other conditions can be easily

proved thereafter.

For each process p in Act(H), define Hp as

Hp = H | ({p} ∪ Fin(H)). (B.86)

We apply Lemma 5.1, with ‘RFS ’ ← Fin(H), and ‘Y ’ ← {p} ∪ Fin(H). Among

the assumptions stated in Lemma 5.1, (B.1) and (B.2) follow from (B.79) and (B.80),

respectively; (B.3) is trivial. It follows that Hp is in C and

• Fin(H) is a valid RF-set of Hp. (B.87)

Since p ∈ Act(H), by (B.86), we have

Act(Hp) = {p} ∧ Fin(Hp) = Fin(H). (B.88)

Thus, by (B.87), and applying RF4 to H, we have

value(stat q, Hp) =

{
ncs , for all q �= p

entry , for q = p.

Therefore, by the Progress property, there exists a p-computation Fp such that

Hp ◦ Fp ◦ 〈CS p〉 ∈ C. If Fp has a critical event in Hp ◦ Fp ◦ 〈CS p〉, then let e′p be

the first critical event in Fp, and let Lp be the prefix of Fp that precedes e′p (i.e.,

Fp = Lp ◦ 〈e′p〉 ◦ · · ·). Otherwise, define Lp to be Fp and e′p to be CS p. By P1, we have

Hp ◦ Lp ◦ 〈e′p〉 ∈ C and Hp ◦ Lp ∈ C.

We have just constructed a computation Lp and an event e′p by p, such that

• Hp ◦ Lp ◦ 〈e′p〉 ∈ C, (B.89)

• Hp ◦ Lp ∈ C, (B.90)

• Lp is a p-computation, (B.91)

• Lp has no critical events in Hp ◦ Lp, and (B.92)

• e′p is a critical event in Hp ◦ Lp ◦ 〈e′p〉. (B.93)

299

The following assertion follows easily from (B.86).

(Hp ◦ Lp) | ({p} ∪ Fin(H)) = (H ◦ Lp) | ({p} ∪ Fin(H)). (B.94)

We now use Corollary B.2, with ‘H’ ← Hp, ‘H
′’ ← H, ‘RFS ’ ← Fin(H), ‘Z’ ← {p},

and ‘L’ ← Lp. Assumptions (B.59)–(B.66) stated in Corollary B.2 follow from (B.90),

(B.79), (B.87), (B.80), (B.88), (B.94), (B.91), and (B.92), respectively. Thus, we have

the following:

• H ◦ Lp ∈ C; (B.95)

• Fin(H) is a valid RF-set of Hp ◦ Lp; (B.96)

• Fin(H) is a valid RF-set of H ◦ Lp; (B.97)

• Lp has no critical events in H ◦ Lp, which establishes (B.82).

Because H ◦Lp and Hp ◦Lp are equivalent with respect to p, by (B.89), (B.95), and

P3, there exists an event ep of p such that

• ep ∼ e′p, and (B.98)

• H ◦ Lp ◦ 〈ep〉 ∈ C, which establishes (B.81).

We now claim that at most one process in Act(H) fails to satisfy (B.83). Because

p ∈ Act(H) and H is regular, by RF4, value(statp, H) = entry holds. Thus, by the

definition of a mutual exclusion system, ep cannot be Enter p or Exitp. It suffices to

show that there can be at most one process in Act(H) such that ep = CS p.

Assume, to the contrary, that there are two distinct processes p and q in Act(H),

such that ep = CS p and eq = CS q. Note that (B.80) implies that InvFin(H)(H) =

Act(H), and hence

{p, q} ⊆ InvFin(H)(H). (B.99)

By applying Lemma 5.4 with ‘RFS ’ ← Fin(H), ‘Y ’ ← {p, q}, ‘Lp1 ’ ← Lp, and

‘Lp2 ’ ← Lq, we have H ◦ Lp ◦ Lq ∈ C. Among the assumptions stated in Lemma 5.4,

(B.67)–(B.69) follow from (B.79), (B.80), and (B.99), respectively; (B.70)–(B.72) follow

from (B.91), (B.95), (B.82), respectively, each with ‘p’ ← p and then ‘p’ ← q.

Since H ◦ Lp is equivalent to H ◦ Lp ◦ Lq with respect to p, and since CS p does

not read any variable, by P2, we have H ◦ Lp ◦ Lq ◦ 〈CS p〉 ∈ C. Similarly, we also

have H ◦ Lp ◦ Lq ◦ 〈CS q〉 ∈ C. Hence H ◦ Lp ◦ Lq violates the Exclusion property, a

contradiction.

300

Therefore, there exists a subset Y of Act(H) such that n − 1 ≤ |Y | ≤ n and each

process in Y satisfies (B.81), (B.82), and (B.83).

We claim that each process p in Y satisfies (B.84). Note that, since p ∈ Y and

Y ⊆ Act(H), by (B.91),

• Lp is a Y -computation. (B.100)

Condition (B.84) now follows from Corollary B.1, with ‘RFS ’ ← Fin(H), and ‘L’ ←
Lp. Assumptions (B.45)–(B.48) stated in the corollary follow from (B.95), (B.80),

(B.100), and (B.82), respectively.

Finally, we prove (B.85). Note that, by (B.88), (B.91), and (B.92), we have

Act(Hp ◦ Lp) = {p}. (B.101)

Condition (B.85) now follows from Lemma 5.2, with ‘H’ ← Hp ◦Lp, ‘H
′’ ← H ◦Lp,

‘G’ ← 〈〉, ‘RFS ’ ← Fin(H), ‘ep’ ← e′p, and ‘e′p’ ← ep. Assumptions (B.4)–(B.13) stated

in Lemma 5.2 follow from (B.89), (B.81), (B.96), (B.97), (B.98), (B.101), (B.94), G =

〈〉, G = 〈〉, and (B.93), respectively. �

Lemma 5.6 Consider a computation H and set of processes RFS . Assume the

following:

• H ∈ C; (B.102)

• RFS is a valid RF-set of H; (B.103)

• Fin(H) � RFS (i.e., Fin(H) is a proper subset of RFS). (B.104)

Then, there exists a computation G satisfying the following.

• G ∈ C; (B.105)

• RFS is a valid RF-set of G; (B.106)

• G can be written as H | (Y ∪ RFS) ◦ L ◦ 〈ep〉, for some choice of Y , L, and ep,

satisfying the following:

− Y is a subset of Inv(H) such that |Inv(H)| − 1 ≤ |Y | ≤ |Inv(H)|, (B.107)

− Inv(G) = Y , (B.108)

− L is a Pmt(H)-computation, (B.109)

− L has no critical events in G, (B.110)

− p ∈ Pmt(H), and (B.111)

− ep is critical in G; (B.112)

• Pmt(G) ⊆ Pmt(H); (B.113)

301

• An event in H | (Y ∪ RFS) is critical if and only if it is also critical in H. (B.114)

Proof: Define Z = Pmt(H). Then, by definition, Z ⊆ Act(H). Define H ′ as

H ′ = H | RFS . (B.115)

Apply Lemma 5.1, with ‘Y ’ ← RFS . Assumptions (B.1)–(B.3) stated in Lemma 5.1

follow from (B.102)–(B.104), respectively.

• RFS is a valid RF-set of H ′. (B.116)

Also, by (B.115), we have

Act(H ′) = Z ∧ Fin(H ′) = Fin(H). (B.117)

Therefore, by (B.116), and applying RF4 to H ′, we have

value(stat q, H
′) =

{
entry or exit , if q ∈ Z,

ncs , if q /∈ Z.

Therefore, by the Progress property, there exists a Z-computation F such that

H ′ ◦ F ◦ 〈fr〉 ∈ C, where r is a process in Z and fr is either CS r or Exitr. If F has a

critical event in H ′ ◦ F ◦ 〈fr〉, , then let e′p be the first critical event in F , and let L be

the prefix of F that precedes e′p (i.e., F = L ◦ 〈e′p〉 ◦ · · ·). Otherwise, define L to be

F and e′p to be fr. By P1, we have H ′ ◦ L ◦ 〈e′p〉 ∈ C and H ′ ◦ L ∈ C. Because F is a

Z-computation, we have p ∈ Z, which implies

• p ∈ Z ⊆ Act(H), and (B.118)

• p ∈ RFS . (B.119)

We have just constructed a computation L and an event e′p by p, such that

• H ′ ◦ L ◦ 〈e′p〉 ∈ C, (B.120)

• H ′ ◦ L ∈ C, (B.121)

• L is a Z-computation, (B.122)

• L has no critical events in H ′ ◦ L, and (B.123)

• e′p is a critical event in H ′ ◦ L ◦ 〈e′p〉. (B.124)

302

The following assertion follows easily from (B.115) and (B.122). (Note that Z ⊆
RFS holds by definition.)

(H ′ ◦ L) | RFS = (H ◦ L) | RFS . (B.125)

We now use Corollary B.2, with ‘H’ ← H ′ and ‘H ′’ ← H. Among the assump-

tions stated in Corollary B.2, (B.59)–(B.63), (B.65), and (B.66) follow from (B.121),

(B.102), (B.116), (B.103), (B.117), (B.122), and (B.123), respectively; (B.64) follows

from (B.125) and Z ⊆ RFS . Thus, we have the following:

• H ◦ L ∈ C; (B.126)

• RFS is a valid RF-set of H ′ ◦ L; (B.127)

• RFS is a valid RF-set of H ◦ L; (B.128)

• L has no critical events in H ◦ L. (B.129)

Note that, by (B.122), (B.129), and Z ⊆ Act(H), we have

Act(H ◦ L) = Act(H) ∧ Fin(H ◦ L) = Fin(H). (B.130)

In particular, by (B.118),

p ∈ Act(H ◦ L). (B.131)

Because H ◦L and H ′ ◦L are equivalent with respect to p, by (B.120), (B.126), and

P3, there exists an event e′′p of p such that

• e′′p ∼ e′p, and (B.132)

• H ◦ L ◦ 〈e′′p〉 ∈ C. (B.133)

We now use Lemma 5.2, with ‘H’ ← H ′ ◦ L, ‘H ′’ ← H ◦ L, ‘G’ ← 〈〉, ‘ep’ ← e′p,

and ‘e′p’ ← e′′p. Among the assumptions stated in Lemma 5.2, (B.4)–(B.8) and (B.11)–

(B.13) follow from (B.120), (B.133), (B.127), (B.128), (B.132), ‘G’ ← 〈〉, ‘G’ ← 〈〉,
and (B.124), respectively; (B.9) follows from (B.118) and (B.123); (B.10) follows from

(B.119) and (B.125). It follows that

• e′′p is critical in H ◦ L ◦ 〈e′′p〉. (B.134)

We now establish (B.105)–(B.114) by considering two cases separately.

Case 1: e′′
p is a transition event. In this case, define Y = Inv(H), ep = e′′p, and

G = H ◦ L ◦ 〈ep〉. Note that, by (B.103), we have

303

H = H | (Y ∪ RFS) ∧ G = H | (Y ∪ RFS) ◦ L ◦ 〈ep〉. (B.135)

We claim that these definitions satisfy (B.105)–(B.114). Conditions (B.105) and

(B.109)–(B.111) follow from (B.133), (B.122), (B.129), and (B.118), respectively. Con-

dition (B.107) is trivial.

We now establish (B.106). Before proving RF1–RF5, we need to prove that Fin(G) ⊆
RFS and that G | q �= 〈〉 holds for each q ∈ RFS . Condition (B.128) implies Fin(H ◦
L) ⊆ RFS . By the definition of G, we have Fin(G) ⊆ Fin(H ◦ L) ∪ {p}. Thus, by

(B.119), we have Fin(G) ⊆ RFS . Condition (B.128) also implies that G | q �= 〈〉 holds

for each q ∈ RFS . We now check each of RF1–RF5.

• RF1, RF2, and RF3: Since appending a transition event does not invalidate

any of RF1, RF2, and RF3, it easily follows, by (B.128), that G satisfies these

conditions.

• RF4: By (B.128), it suffices to show that p satisfies RF4, which follows easily

from (B.119) and (B.131). In particular, if ep = CS p, then p ∈ Pmt(G) and

value(statp, G) = exit hold; if ep = Exitp, then p ∈ Fin(G) and value(statp, G) =

ncs hold. (Note that ep cannot be Enter p, because by (B.128) and (B.131), and

applying RF4 to p in H ◦ L, we have value(statp, H ◦ L) �= ncs .)

• RF5: It suffices to show that ep is also a critical event in G | RFS . However,

since ep is a transition event, this is immediate.

It follows that (B.106) holds.

We now conclude Case 1 by establishing (B.108) and (B.112)–(B.114). By (B.130),

we have Inv(H ◦ L) = (Act(H ◦ L) − RFS) = (Act(H) − RFS) = Inv(H). Moreover,

(B.119) implies that appending ep to H ◦L cannot change the set of invisible processes.

Thus, we have (B.108). Condition (B.112) holds by definition, since ep is a transition

event. In order to prove (B.113), note that any process in Fin(H) is also in Fin(G)

by the definition of a finished process. Thus, we have Pmt(G) = (RFS − Fin(G)) ⊆
(RFS − Fin(H)) = Z. Finally, (B.135) implies that (B.114) is trivially true.

Case 2: e′′
p is not a transition event. In this case, there exists a variable vce (for

“critical event”), remote to p, that is accessed by e′′p. If vce is local to a process in

Inv(H), let xloc be the process that vce is local to; otherwise, let xloc = ⊥. Similarly,

if writer(vce, H ◦ L) ∈ Inv(H) holds, let xw = writer(vce, H ◦ L) and fxw = writer

event(vce, H ◦ L); otherwise, let xw = ⊥ and fxw = ⊥. By definition,

304

• if xloc �= ⊥, then xloc ∈ Inv(H) ⊆ Act(H). (B.136)

• if xw �= ⊥, then xw ∈ Inv(H) ⊆ Act(H). (B.137)

We now establish the following simple claim.

Claim 1: If xloc �= ⊥ and xw �= ⊥, then xloc = xw.

Proof of Claim: Assume, to the contrary, that xloc �= ⊥, xw �= ⊥, and

xloc �= xw hold. Then, fxw remotely writes to vce. Hence, by (B.128), and

applying RF2 to fxw inH◦L, we have either xloc /∈ Act(H◦L) or {xw, xloc} ∈
RFS . However, by (B.130) and (B.136), we have xloc ∈ Act(H ◦ L) and

xloc /∈ RFS , a contradiction. (Note that, by (B.103), xloc ∈ Inv(H) implies

xloc /∈ RFS .) �

We now define Y as follows. By Claim 1, Y is well-defined.

Y =




Inv(H) − {xloc}, if xloc �= ⊥;

Inv(H) − {xw}, if xw �= ⊥;

Inv(H), if xloc = ⊥ and xw = ⊥.

(B.138)

Let G = H | (Y ∪ RFS) ◦ L. (Informally, G is a computation that is obtained by

erasing xloc and xw from H. By erasing xloc, we preserve RF2. By erasing xw, we

preserve RF3 and eliminate potential information flow. Since L has no critical events

in G [see (B.149) below], appending L does not create information flow.) We now

establish a number of assertions concerning G, after which we define G. By (B.122)

and Z ⊆ RFS , we have

G = H | (Y ∪ RFS) ◦ L = (H ◦ L) | (Y ∪ RFS). (B.139)

We now apply Lemma 5.1, with ‘H’ ← H ◦ L and ‘Y ’ ← Y ∪ RFS . Among the

assumptions stated in Lemma 5.1, (B.1) and (B.2) follow from (B.126) and (B.128),

respectively; (B.3) is trivial. Thus, we have the following:

• G is in C, (B.140)

• RFS is a valid RF-set of G, and (B.141)

• an event in G is critical if and only if it is also critical in H ◦ L. (B.142)

By (B.119), we have RFS = {p} ∪ RFS . Thus, by (B.131) and (B.139), we have

the following:

305

• p ∈ Act(G), and (B.143)

• G | ({p} ∪ RFS) = (H ◦ L) | ({p} ∪ RFS). (B.144)

If xloc �= ⊥, then we have xloc /∈ Y by (B.138), and also xloc /∈ RFS , since xloc ∈
Inv(H). Thus, by (B.139), it follows that

• G | xloc = 〈〉, if xloc �= ⊥. (B.145)

Similarly,

• G | xw = 〈〉, if xw �= ⊥. (B.146)

By (B.144), G is equivalent to H ◦ L with respect to p. Therefore, by (B.133),

(B.140), and P3, there exists an event ep such that

• ep ∼ e′′p, and (B.147)

• G ◦ 〈ep〉 ∈ C. (B.148)

Define G to be G ◦ 〈ep〉 = H | (Y ∪ RFS) ◦ L ◦ 〈ep〉. We claim that G satisfies the

lemma. To show this, we need a few additional assertions. By (B.129), (B.139), and

(B.142), it follows that

• L has no critical events in G, and (B.149)

• an event in H | (Y ∪ RFS) is critical if and only if it is also critical in H. (B.150)

Also, by (B.143), and since ep is not a transition event,

Act(G) = Act(G). (B.151)

We now prove that G satisfies the lemma. Each of the conditions (B.105), (B.107),

(B.109), (B.111), and (B.114) follows easily from (B.148), (B.138), (B.122), (B.118),

and (B.150), respectively. Since G is a prefix of G, (B.110) follows from (B.149). By

(B.138), (B.139), and (B.149), the active processes in G include those in Y , which are

invisible, and any promoted processes in RFS ; hence, Act(G)− RFS = Y − RFS = Y .

Moreover, the processes in RFS that are active in H ◦ L are also active in G; hence,

Act(G) ∩ RFS = Act(H ◦ L) ∩ RFS . Thus, by (B.130) and (B.151), we have

Inv(G) = Act(G) − RFS = Act(G) − RFS

= Y − RFS = Y,

306

and

Pmt(G) = Act(G) ∩ RFS = Act(G) ∩ RFS

= Act(H ◦ L) ∩ RFS = Act(H) ∩ RFS = Z,

which imply (B.108) and (B.113).

In order to prove (B.112), we apply Lemma 5.2 with ‘H’ ← H ◦ L, ‘H ′’ ← G,

‘G’ ← 〈〉, ‘ep’ ← e′′p, and ‘e′p’ ← ep. Assumptions (B.4)–(B.13) stated in Lemma 5.2

follow from (B.133), (B.148), (B.128), (B.141), (B.147), (B.131), (B.144), ‘G’ ← 〈〉,
‘G’ ← 〈〉, and (B.134), respectively. Moreover, Assumption (A) follows from (B.141),

and (B) holds vacuously by ‘G’ ← 〈〉. It follows that ep is critical in G, i.e., (B.112)

holds, and

• G satisfies RF5. (B.152)

This leaves only (B.106) to be proved. Let x′ = writer(vce, G) and fx′ = writer

event(vce, G). We begin by establishing the following claim.

Claim 2: x′ = ⊥ or x′ ∈ RFS .

Proof of Claim: Assume, to the contrary, that x′ �= ⊥ and x′ /∈ RFS hold.

If fx′ is an event of L, then by (B.122) and the definition of Z, we have

x′ ∈ Z ⊆ RFS , a contradiction. Thus, fx′ is an event of H | (Y ∪ RFS).

Since we assumed x′ /∈ RFS , by (B.138), we have x′ ∈ Y ⊆ Inv(H). If x′ =

writer(vce, H ◦L), then since x′ ∈ Inv(H), we have x′ = xw by the definition

of xw, which is impossible by (B.146). Thus, we have x′ �= writer(vce, H◦L),
which implies

xw �= x′. (B.153)

Note that, by (B.137) and (B.130), we have

xw �= ⊥ ⇒ xw ∈ Act(H ◦ L). (B.154)

Also, since x′ ∈ Inv(H) ⊆ Act(H), by (B.130),

x′ ∈ Act(H ◦ L). (B.155)

307

We now show that writer(vce, H ◦ L) ∈ RFS holds. If xw = ⊥, then since

there exists a write to v (i.e., fx′) in H ◦ L, the definition of xw implies

writer(vce, H ◦L) /∈ Inv(H), which in turn implies writer(vce, H ◦L) ∈ RFS

by (B.128) and (B.130). On the other hand, if xw �= ⊥, then by (B.128),

(B.153), (B.154), (B.155), and by applying RF3 to fx′ and fxw in H ◦L, we

have writer(vce, H ◦ L) ∈ RFS .

Because writer(vce, H ◦L) ∈ RFS holds, by (B.139), the last event to write

to vce is identical in H ◦ L and G. Thus, we have x′ ∈ RFS , a contradic-

tion. �

We now establish (B.106) by showing that RFS is a valid RF-set of G. Condi-

tion RF5 was already proved in (B.152). Before proving RF1–RF4, we need to prove

that Fin(G) ⊆ RFS and that G | q �= 〈〉 holds for each q ∈ RFS . Condition (B.141)

implies Fin(G) ⊆ RFS . Since ep is not a transition event, we have Fin(G) = Fin(G),

and hence Fin(G) ⊆ RFS . Condition (B.141) also implies that G | q �= 〈〉 holds for each
q ∈ RFS . We now check each of RF1–RF4.

• RF1 and RF2: We use Lemma 5.3 to prove these two conditions. First, we

need the following claim.

Claim 3: If vce is local to a process q, then either q /∈ Act(G) or

{p, q} ⊆ RFS holds.

Proof of Claim: If vce is local to a process q, then one of the following

holds: q ∈ Inv(H), q ∈ RFS , or H | q = 〈〉. If q ∈ Inv(H), then q = xloc

by definition, and hence, by (B.145), we have q /∈ Act(G). If q ∈ RFS ,

then by (B.119), we have {p, q} ⊆ RFS . By (B.130) and (B.139), we

have Act(G) ⊆ Act(H ◦ L) = Act(H), and hence H | q = 〈〉 implies

q /∈ Act(G). �

We now use Lemma 5.3, with ‘H’ ← G, ‘G’ ← 〈〉, and ‘vrem’ ← vce. Among the

assumptions stated in Lemma 5.3, assumptions (B.25)–(B.28) follow from (B.148),

(B.141), (B.143), and (B.141), respectively; (B.29) and (B.30) are trivial; (B.31)

follows from Claim 3; (B.32) (with ‘q’ ← x′) follows from Claim 2. It follows that

G satisfies RF1 and RF2.

308

• RF3: Consider a variable v ∈ V and two different events gq and hr in G. Assume

that both q and r are in Act(G), q �= r, that there exists a variable v such

that v ∈ var(gq) ∩ var(hr), and that there exists a write to v in G. Define

s = writer(v, G). Our proof obligation is to show that s ∈ RFS .

Since p ∈ Z ⊆ RFS , it suffices to consider the case in which s �= p, in which case

we also have the following: ep does not write v, s = writer(v, G), and there exists

a write to v in G.

– First, consider the case in which both gq and hr are in G. By (B.151), we

have q ∈ Act(G) and r ∈ Act(G). Thus, by (B.141), and by applying RF3

to gq and hr in G, we have s ∈ RFS .

– Second, consider the case in which one of gq or hr is ep. Without loss of

generality, we can assume that gq is in G and hr = ep. Then, we have

q �= p and r = p. If v is local to p, then by (B.141), (B.143), s �= p, and by

applying RF2 to writer event(v, G) by s in G, we have s ∈ RFS . On the

other hand, if v is remote to p, then by the Atomicity property, we have

v = vce and s = writer(vce, G) = x′, in which case, by Claim 2, we have

s = ⊥ or s ∈ RFS . Since there exists a write to vce in G by assumption, we

have s �= ⊥, and hence s ∈ RFS .

• RF4: Since G satisfies RF4 by (B.141), and since ep is not a transition event,

RF4 follows trivially. �

309

APPENDIX C

CORRECTNESS PROOF FOR

ALGORITHM NA IN Chapter 7

In this appendix, we present a detailed correctness proof of Algorithm NA, presented

in Chapter 7. To simplify the proof, we consider a recursive version of Algorithm NA,

shown in Figure C.1. In particular, only the root node (statements 2–20) is presented

in detail, and the details of the left and right subtrees beneath the root are hidden

in statements 1 and 21. As shown in [12], a nonatomic algorithm can be converted

into an equivalent atomic algorithm by assuming that all reads execute atomically, and

by replacing each nonatomic write v := val (where val is an expression over private

variables) by the following code fragment.1

L: flag := (a nondeterministically selected boolean value);
if flag then

v := (a nondeterministically selected value over the domain of v);
goto L

else
v := val

fi

We assume that the semantics of Algorithm NA is defined in this way. For

example, in Figure C.1, if process p executes statement 5 while p.rtoggle = true holds,

then it may establish one of the following three conditions: (i) R2[p] = true ∧ p@{5},
(ii) R2[p] = false ∧ p@{5}, or (iii) R2[p] = true ∧ p@{6}. Statements 7, 11, and

20 also have similar properties. Note that these four statements are the only writes

of nonatomic variables in Algorithm NA, since variables T and C are implemented

1If a variable is written by multiple processes simultaneously, then this code fragment may not
represent the semantics of the nonatomic variable, depending on the system model. However, in our
nonatomic algorithm, all multi-writer variables are implemented via wait-free register constructions,
in which an atomic variable is implemented using only nonatomic variables. Thus, we may assume
that all nonatomic variables are single-writer variables.

310

shared variables
T : 0..N − 1;
C: array[0..1] of (0..N − 1, ⊥) initially ⊥;
Q1, Q2, R1, R2: array[0..N − 1] of boolean

private variables
qtoggle, rtoggle, temp: boolean;
rival : 0..N − 1

private constant
side = if p < N/2 then 0 else 1 fi

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: if side = 0 then
(enter the left subtree)

else
(enter the right subtree)

fi

2: C[side] := p;
3: T := p;
4: rtoggle := ¬R1[p];
5: R2[p] := rtoggle;
6: qtoggle := ¬Q1[p];
7: Q2[p] := qtoggle;
8: rival := C[1− side];

if (rival �= ⊥ ∧
9: T = p) then
10: temp := Q2[rival];
11: Q1[rival] := temp;
12: await (Q1[p] = qtoggle) ∨
13: (R1[p] = rtoggle);
14: if T = p then
15: await R1[p] = rtoggle fi

fi;

16: Critical Section;

17: C[side] := ⊥;
18: rival := T ;

if rival �= p then
19: temp := R2[rival];
20: R1[rival] := temp

fi;

21: if side = 0 then
(exit the left subtree)

else
(exit the right subtree)

fi
od

Figure C.1: Recursive version of Algorithm NA. Only statements 5, 7, 11, and 20
are executed nonatomically.

using register constructions. Other than statements 5, 7, 11, and 20, we assume that

each labeled sequence of statements in Figure C.1 is atomic. Note that each numbered

sequence of statements (except statements 1 and 21, which are considered below) reads

or writes at most one shared variable.

We establish the correctness of Algorithm NA by induction on the level of the

tree. That is, we prove that if Algorithm NA is correct for an arbitration tree with

l levels, then it is also correct for an arbitration tree with l + 1 levels. By induction,

we may assume that the left and the right subtrees (statements 1 and 21) are correct

mutual exclusion algorithms, and hence we may assume that statements 1 and 21

execute atomically. Moreover, we have the following invariant.

311

invariant
∣∣{p :: p@{2..21} ∧ p.side = s

}∣∣ ≤ 1 (I0)

Invariant (I0) states that at most one process may execute statements 2–21 from

either side at any time. Thus, we need to consider at most two processes executing in

these statements at any given state.

We now prove that each of invariants (I1)–(I16), stated below, is an invariant. In-

variant (I6) establishes the Exclusion property; invariants (I7)–(I16) are used to prove

starvation-freedom. (Many of these invariants are adapted from [84].) For each invari-

ant I, we prove that for any pair of consecutive states t and u, if all invariants hold at

t, then I holds at u. (It is easy to see that each invariant is initially true, so we leave

this part of the proof to the reader.) If I is an implication (which is the case for most

of our invariants), then it suffices to check only those program statements that may

establish the antecedent of I, or that may falsify the consequent if executed while the

antecedent holds.

invariant
(
C[s] = p ∧ p �= ⊥) = (p@{3..17} ∧ p.side = s

)
(I1)

Proof: The only statements that may establish or falsify either side of (I1) are 2.p and

17.p (by establishing or falsifying p@{3..17} and by updating C[s]), and 2.q and 17.q

(by updating C[s]), where q �= p is any arbitrary process. Statement 2.p establishes

both expressions, and statement 17.p falsifies both expressions. Statements 2.q and 17.q

might potentially falsify (I1) only if executed when p@{3..17} ∧ p.side = q.side = s

holds. However, this is precluded by (I0). �

invariant p@{4..20} ∧ q@{4..20} ∧ p �= q ⇒ T = p ∨ T = q (I2)

Proof: The only statements that may establish the antecedent are 3.p and 3.q, which

also establish the consequent. The only statement that may falsify the consequent is

3.r, where r is any arbitrary process different from both p and q. However, by (I0),

r@{3} and the antecedent cannot hold simultaneously. �

invariant p@{9..17} ∧ q@{4..17} ∧ p �= q ⇒ p.rival = q ∨ T = q (I3)

312

Proof: The only statements that may establish the antecedent are 8.p and 3.q. State-

ment 8.p may establish the antecedent only if executed when q@{4..17} holds. By

(I0), p@{8} ∧ q@{4..17} implies p.side = 1 − q.side, and hence, by (I1), we have

C[1 − p.side] = q. Thus, in this case, 8.p also establishes p.rival = q. Statement 3.q

establishes T = q.

The only statements that may falsify the consequent are 8.p, 18.p, and 3.r, where r

is any arbitrary process different from q. Statement 8.p preserves (I3) as shown above.

The antecedent is false after the execution of 18.p. By (I0), statement 3.r cannot be

executed while the antecedent holds. (In particular, r@{3} ∧ p@{9..17} implies r �= p.

But by (I0), at most two processes can be at statements 2–21.) �

invariant p@{5..15} ∧ q@{4..19} ∧ R1[p] = p.rtoggle ∧ p �= q ⇒ T = q (I4)

Proof: The only statements that may falsify (I4) are 4.p (by establishing p@{5..15},
and by updating p.rtoggle), 3.q (by establishing q@{4..19}, and by updating T), 3.r

(by updating T), and 20.q and 20.r (by updating R1[p]), where r is any arbitrary pro-

cess different from q. However, statement 4.p establishes R1[p] �= p.rtoggle, and hence

falsifies the antecedent. Statement 3.q establishes the consequent. The antecedent is

false after the execution of 20.q. By (I0), statements 3.r and 20.r cannot be executed

while the antecedent holds. �

invariant p@{16..20} ∧ q@{4..17} ∧ p �= q ⇒ T = q (I5)

Proof: The only statements that may establish the antecedent are 8.p, 9.p, 14.p, 15.p,

and 3.q. Statement 8.p may establish the antecedent only if executed when q@{4..17}
holds. By (I0), p@{8} ∧ q@{4..17} implies p.side = 1− q.side, and hence, by (I1), we

have C[1−p.side] = q. Thus, in this case, 8.p cannot establish p@{16..20}. Statements

9.p and 14.p may establish the antecedent only if T �= p ∧ q@{4..17} holds, which

implies T = q by (I2). Statement 15.p may establish the antecedent only if R1[p] =

p.rtoggle ∧ q@{4..17} holds, which implies T = q by (I4). Statement 3.q establishes

the consequent.

The only statement that may falsify the consequent is 3.r, where r is any arbitrary

process different from q. Statement 3.r might potentially falsify (I5) only if executed

when r@{3} and the antecedent hold, which is precluded by (I0). �

313

invariant (Exclusion)
∣∣{p :: p@{16}}∣∣ ≤ 1 (I6)

Proof: The only statements that may falsify (I6) are 8.p, 9.p, 14.p, and 15.p, which

may falsify (I6) only if executed when q@{16} holds for some q �= p. First, consider

8.p. By (I0), p@{8} ∧ q@{16} implies p.side = 1− q.side, and hence, by (I1), we have

C[1 − p.side] = q. Thus, in this case, 8.p cannot establish p@{16}.
Statements 9.p, 14.p, and 15.p might potentially falsify (I6) only if executed when

p@{9, 14, 15} ∧ q@{16} holds, in which case, by applying (I5) with ‘p’ ← q and ‘q’ ← p,

we have T = p. Thus, statements 9.p and 14.p cannot establish p@{16}. Statement

15.p may establish the antecedent only if R1[p] = p.rtoggle holds, which implies T = q

by (I4), a contradiction of T = p. �

invariant p@{6..15} ⇒ R2[p] = p.rtoggle (I7)

invariant p@{8..15} ⇒ Q2[p] = p.qtoggle (I8)

Proof: These invariants follow trivially from the structure of the algorithm. �

invariant p@{9..15} ∧ q@{19, 20} ⇒ q.rival = p (I9)

Proof: The only statements that may falsify (I9) are 8.p, 8.q, and 18.q. Statement

8.p may establish the antecedent only if executed when q@{19, 20} holds. By (I0),

p@{8} ∧ q@{19, 20} implies p.side = 1 − q.side, and hence, by (I1), we have C[1 −
p.side] = ⊥. Thus, in this case, 8.p cannot establish p@{9..15}. The antecedent is false
after the execution of 8.q. Statement 18.q may establish the antecedent only if executed

when T �= q ∧ p@{9..15} ∧ q@{18} holds, which implies T = p by (I2). Thus, in this

case, 18.q establishes q.rival = p. �

invariant p@{9..15} ∧ q@{20} ⇒ q.temp = R2[p] (I10)

Proof: The only statements that may establish the antecedent are 8.p and 19.q. State-

ment 8.p cannot establish the antecedent as shown in the proof of (I9) above. By (I9),

if 19.q establishes the antecedent, then it also establishes the consequent.

The only statements that may falsify the consequent are 5.p, 10.q, and 19.q. The

antecedent is false after the execution of 5.p and 10.q. Statement 19.q preserves (I10)

as shown above. �

314

invariant p@{9..15} ∧ R1[p] = ¬p.rtoggle ⇒ (∃q : q �= p :: q@{3..20}) (I11)

Proof: The only statements that may falsify (I11) are 4.p (by updating p.rtoggle), 8.p

(by establishing p@{9..15}), and 18.q and 20.q (by falsifying q@{3..20}), where q is

any arbitrary process. The antecedent is false after the execution of 4.p. Statement

8.p establishes the antecedent only if C[1 − p.side] = q �= ⊥ holds for some q, in which

case the consequent holds by (I1). Statement 18.q might potentially falsify (I11) only

if executed when p@{9..15} ∧ q@{18} holds. However, by applying (I5) with ‘p’ ← q

and ‘q’ ← p, we have T = p, and hence 18.q preserves q@{3..20}. Statement 20.q might

potentially falsify (I11) only if executed when p@{9..15} ∧ q@{20} holds. However,

in this case, 20.q either preserves q@{20} (by nonatomicity) or establishes R1[p] =

p.rtoggle by (I7), (I9), and (I10). �

invariant p@{10..15} ∧ q@{11} ∧ p �= q ⇒ q.temp = Q2[p] ∨ T = p (I12)

Proof: The only statements that may establish the antecedent are 9.p and 10.q. State-

ment 9.pmay establish the antecedent only if T = p holds. Statement 10.q may establish

the antecedent only if executed when p@{10..15} ∧ q@{10} holds, in which case, by

applying (I3) with ‘p’ ← q and ‘q’ ← p, we have q.rival = p ∨ T = p. Moreover, if

q.rival = p holds, then 10.q establishes q.temp = Q2[p].

The only statements that may falsify the consequent are 7.p (by updating Q2[p]),

10.q and 19.q (by updating q.temp), and 3.r (by updating T), where r is any arbitrary

process. The antecedent is false after the execution of 7.p and 19.q. Statement 10.q

preserves (I12) as shown above. By (I0), statement 3.r cannot be executed while the

antecedent holds. �

invariant p@{10..15} ∧ q@{12..15} ∧ p �= q ⇒ Q1[p] = p.qtoggle ∨ T = p (I13)

Proof: The only statements that may establish the antecedent are 9.p and 11.q. State-

ment 9.p may establish the antecedent only if T = p holds. Statement 11.q may estab-

lish the antecedent only if executed when p@{10..15} ∧ q@{11} holds. In this case,

by (I3) (with ‘p’ ← q and ‘q’ ← p), (I8), and (I12), we have q.rival = p ∨ T = p,

Q2[p] = p.qtoggle, and q.temp = Q2[p] ∨ T = p, respectively. Thus, 11.q establishes

the consequent in this case.

The only statements that may falsify the consequent are 6.p, 3.r, and 11.r, where

r is any arbitrary process. The antecedent is false after the execution of 6.p. By (I0),

315

statement 3.r cannot be executed while the antecedent holds. Finally, we consider

11.r. If r = p, then statement 11.r (= 11.p) cannot change Q1[p]. (Note that p.rival

may only hold process identifiers from the other subtree, rather than the subtree that

contains p.) If r = q, then statement 11.r (= 11.q) preserves (I13) as shown above.

If r �= p and r �= q hold, then by (I0), 11.r cannot be executed while the antecedent

holds. �

invariant p@{12, 13} ∧ q@{12, 13} ∧ p �= q ⇒
Q1[p] = p.qtoggle ∨ Q1[q] = q.qtoggle (I14)

Proof: Since T �= p ∨ T �= q is always true, (I14) follows easily from (I13). �

invariant

p@{7..15} ⇒ p@{7..13} ∧ Q1[p] = ¬p.qtoggle ∧ R1[p] = ¬p.rtoggle (D1)

∨ (∃q : q �= p :: q@{11..18}) ∧ R1[p] = ¬p.rtoggle (D2)

∨ (∃q : q �= p :: q@{19} ∧ q.rival = p
) ∧ R1[p] = ¬p.rtoggle (D3)

∨ (∃q : q �= p :: q@{20} ∧ q.rival = p ∧ q.temp = R2[p]
)

(D4)

∨ (∃q : q �= p :: q@{2, 3, 21}) ∧ R1[p] = p.rtoggle (D5)

∨ ¬(∃q : q �= p :: q@{2..21}) ∧ R1[p] = p.rtoggle (D6)

∨ p@{7..13} ∧ (∃q : q �= p :: q@{20}) ∧ Q1[p] = ¬p.qtoggle (D7)

∨ T �= p (D8)

(I15)

Proof: The only statement that may establish the antecedent is 6.p. We consider

three cases. First, if statement 6.p is executed while R1[p] = ¬p.rtoggle holds, then it

establishes (D1). Second, if 6.p is executed while T �= p holds, then (D8) is true after

its execution. Third, if 6.p is executed while R1[p] = p.rtoggle ∧ T = p holds, then by

(I4), we have ¬(∃q : q �= p :: q@{4..19}), and hence, one of (D5), (D6), or q@{20} (for

some q) holds before and after the execution of 6.p. However, if 6.p is executed while

q@{20} holds, then it establishes (D7).

The only statements that may falsify (D1) are 4.p and 6.p (by updating p.qtoggle

or p.rtoggle), 8.p, 9.p, 12.p, and 13.p (by falsifying p@{7..13}), and 11.q and 20.q (by

updating Q1[p] or R1[p]), where q is any arbitrary process. The antecedent is false after

the execution of 4.p. Statement 6.p preserves (I15) as shown above. If statement 8.p or

9.p falsifies (D1), then it also falsifies the antecedent. Statements 12.p and 13.p cannot

falsify p@{7..13} while (D1) holds. If statement 11.q is executed while (D1) holds, then

316

it establishes q@{11, 12}, and hence (D2) is established. Statement 20.q may falsify

(D1) only if it establishes R1[p] = p.rtoggle. Since 20.q also establishes q@{20, 21}, in
this case, either (D5) or (D7) is established.

The only statements that may falsify (D2) are 4.p, 18.q, and 20.r, where r is any

arbitrary process. The antecedent is false after the execution of 4.p. If statement 18.q is

executed while (D2) and the antecedent hold, then by (I0), we have p.side = 1−q.side,

and hence by (I1), we have C[1− q.side] = p. Thus, in this case, 18.q establishes (D3).

By (I0), 20.r cannot be executed while p@{7..15} ∧ q@{11..18} holds.

The only statements that may falsify (D3) are 4.p (by updating p.rtoggle), 8.q and

18.q (by updating q.rival), 19.q (by falsifying q@{19}), and 20.r (by updating R1[p]),

where r is any arbitrary process. The antecedent is false after the execution of 4.p.

Statements 8.q and 18.q cannot be executed while (D3) holds. If statement 19.q is

executed while (D3) holds, then it establishes (D4). By (I0), 20.r cannot be executed

while p@{7..15} ∧ q@{19} holds.

The only statements that may falsify (D4) are 5.p (by updating R2[p]), 8.q and

18.q (by updating q.rival), 10.q and 19.q (by updating q.temp), and 20.q (by falsifying

q@{20}). The antecedent is false after the execution of 5.p. Statements 8.q, 10.q,

18.q, and 19.q cannot be executed while (D4) holds. If statement 20.q is executed

while (D4) holds, then it either preserves (D4) (by preserving q@{20}), or establishes
q@{21} ∧ R1[p] = R2[p]. In the latter case, by (I7), it also establishes (D5).

The only statements that may falsify (D5) are 4.p (by updating p.rtoggle), 3.q and

21.q (by falsifying q@{2, 3, 21}), and 20.r (by updating R1[p]), where r is any arbitrary

process. The antecedent is false after the execution of 4.p. Statement 3.q establishes

(D8). By (I0), if statement 21.q is executed while p@{7..15} holds, then it establishes

¬(∃q : q �= p :: q@{2..21}). Thus, if statement 21.q is executed while (D5) and the

antecedent hold, then it establishes (D6). By (I0), 20.r cannot be executed while

p@{7..15} ∧ q@{2, 3, 21} holds.

The only statements that may falsify (D6) are 4.p, 1.q, and 20.q, where q is any

arbitrary process different from p. The antecedent is false after the execution of 4.p.

If statement 1.q is executed while (D6) holds, then it establishes (D5). Statement 20.q

cannot be executed while (D6) holds.

The only statements that may falsify (D7) are 6.p (by updating p.qtoggle), 8.p,

9.p, 12.p, and 13.p (by falsifying p@{7..13}), 20.q (by falsifying q@{20}), and 11.r (by

updating Q1[p]), where r is any arbitrary process. Statement 6.p preserves (I15) as

shown in the first paragraph of this proof. If statement 8.p or 9.p falsifies (D7), then

317

it also falsifies the antecedent. Statement 12.p cannot falsify p@{7..13} while (D7)

holds. Statement 13.p may falsify (D7) only if executed while q@{20} holds. However,

p@{13} ∧ q@{20} implies q.rival = p ∧ q.temp = R2[p] by (I9) and (I10). Thus, 13.p

establishes (D4) in this case.

Assume that statement 20.q is executed while (D7) holds. If 20.q establishes

R1[p] = ¬p.rtoggle, then it also establishes (D1). On the other hand, if 20.q establishes

R1[p] = p.rtoggle, then it either preserves (D7) (by maintaining q@{20}), or establishes
(D5) (by establishing q@{21}). Finally, by (I0), statement 11.r can be executed while

p@{7..13} ∧ q@{20} only if r = p, in which case 11.r (= 11.p) does not change Q1[p].

(Note that p.rival may only hold process identifiers from the other subtree, rather than

the subtree that contains p.)

The only statement that may falsify (D8) is 3.p. However, the antecedent is false

after its execution. �

invariant p@{15} ∧ T = q ∧ p �= q ⇒ R1[p] = p.rtoggle ∧ q@{4..15} (I16)

Proof: The only statements that may establish the antecedent are 14.p and 3.q. State-

ment 14.p may establish p@{15} only if executed while T = p holds, in which case it

cannot establish the antecedent.

Statement 3.q may establish the antecedent only if executed while p@{15} ∧ q@{3}
holds. If 3.q is executed while p@{15} ∧ q@{3} ∧ T = r ∧ r �= p holds, then by

applying (I16) with ‘q’ ← r, we have r@{4..15}. Thus, we have p@{15} ∧ q@{3} ∧
r@{4..15}, which is impossible by (I0). Therefore, assume that 3.q is executed while

p@{15} ∧ q@{3} ∧ T = p holds. In this case, by (I15), one of disjuncts (D2)–(D5) must

be true. (Disjuncts (D1) and (D7) are precluded by p@{15}; (D6), by q@{3}; (D8),
by T = p.) Moreover, by (I0), we have ¬(∃r : r �= p :: r@{2, 4..21}), which precludes

(D2)–(D4). Thus, we have disjunct (D5). Therefore, statement 3.q establishes the

consequent.

The only statements that may falsify the consequent are 4.p (by updating p.rtoggle),

8.q, 9.q, 14.q, and 15.q (by falsifying q@{4..15}), and 20.r (by updating R1[p]), where

r is any arbitrary process. The antecedent is false after the execution of 4.p. State-

ment 8.q might potentially falsify (I16) only if executed when p@{15} holds. By (I0),

p@{15} ∧ q@{8} implies p.side = 1−q.side, and hence, by (I1), we have C[1−q.side] =

p. Thus, in this case, 8.q cannot falsify q@{4..15}. Statements 9.q and 14.q cannot fal-

sify the consequent while the antecedent holds. Statement 15.q might potentially falsify

318

(I16) only if executed when p@{15} ∧ T = q ∧ R1[q] = q.rtoggle holds. However, this

is impossible, by applying (I4) with ‘p’ ← q and ‘q’ ← p. By (I0), statement 20.r cannot

be executed while p@{15} ∧ q@{4..15} holds. �

We now prove the following unless properties. (A unless B is true if and only if

the following holds: if A holds before some statement execution, then A ∨ B holds

after that execution. Informally, A is not falsified until B is established.)

p@{12..15} ∧ R1[p] = p.rtoggle ∧ (∃q : q �= p :: q@{21})
unless p@{16} ∨ ¬(∃q : q �= p :: q@{2..21}) (U1)

p@{12..15} ∧ R1[p] = p.rtoggle ∧ ¬(∃q : q �= p :: q@{2..21})
unless p@{16} ∨ (∃q : q �= p :: q@{2, 3}) (U2)

p@{12..15} ∧ R1[p] = p.rtoggle ∧ q@{2, 3}
unless p@{16} ∨ (q@{4..15} ∧ T = q) (U3)

p@{12..15} ∧ R1[p] = p.rtoggle ∧ q@{4..15} ∧ T = q

unless p@{16} (U4)

Proof: Our proof obligation is to show that, for each of (U1)–(U4), if its left-hand side

is falsified, then its right-hand side is established. The only statements that may falsify

p@{12..15} are 14.p and 15.p. If they falsify p@{12..15}, then they establish p@{16}.
The only statements that may falsify R1[p] = p.rtoggle are 4.p and 20.q, where q is any

arbitrary process. Statement 4.p cannot be executed while p@{12..15} holds. By (I0),

statement 20.q cannot be executed while the left-hand side of any of (U1)–(U4) holds.

For each of (U1)–(U3), it is obvious that each statement by q either preserves its

left-hand side or establishes its right-hand side. (Note that (I0) and the left-hand side

of (U1) together imply ¬(∃r : r /∈ {p, q} :: r@{2..21}).
We now consider (U4). The only other statements that might potentially falsify the

left-hand side are 8.q, 9.q, 14.q, 15.q, and 3.r, where r is any arbitrary process. We now

claim that these statements cannot in fact falsify the left-hand side.

If statement 8.q is executed while p@{12..15} holds, then by (I0), we have p.side =

1 − q.side, and hence, by (I1), we have C[1 − q.side] = p. Thus, in this case, 8.q

cannot falsify q@{4..15}. Statements 9.q and 14.q cannot falsify q@{4..15} while T = q

holds. Statement 15.q might potentially falsify the left-hand side only if executed when

R1[q] = q.rtoggle holds. However, by applying (I4) with ‘p’ ← q and ‘q’ ← p, it follows

319

that the left-hand side (U4) and R1[q] = q.rtoggle cannot hold simultaneously. By (I0),

3.r cannot be executed while p@{12..15} ∧ q@{4..15} holds. �

Proof of starvation-freedom. We begin by proving livelock-freedom. It suffices

to consider the loops represented by the await statements at statements 12–13 and

statement 15. If only one process p executes one of these loops while all other processes

remain in their noncritical sections or lower in the tree, then (I11) ensures R1[p] =

p.rtoggle, and hence both loops eventually terminate.

We now consider two processes p and q, and assume p@{12, 13, 15} and q@{12, 13, 15}.
We show that either p or q eventually terminates its await statement. Without loss of

generality, it suffices to consider the following three cases.

First, assume p@{12, 13} and q@{12, 13}. By (I14), it follows that either p or q

eventually terminates its await statement.

Second, assume p@{12, 13} and q@{15}. By (I2), we have either T = p or T = q.

If T = q, then by (I13), we have Q1[p] = p.qtoggle, and hence p eventually terminates

its await statement. On the other hand, if T = p, then by applying (I16) with ‘p’ ← q

and ‘q’ ← p, we have R1[q] = q.rtoggle, and hence q eventually terminates its await

statement.

Third, assume p@{15} and q@{15}. By (I2) again, we have either T = p or T = q.

Thus, by (I16), we have either R1[p] = p.rtoggle or R1[q] = q.rtoggle, and hence either

p or q eventually terminates its await statement.2

It follows thatAlgorithm NA is livelock-free. We now show thatAlgorithm NA

is also starvation-free. For the sake of contradiction, assume that process p remains

forever at statements 12–13 or 15. (That is, p@{12, 13, 15} holds indefinitely.) Because

of livelock-freedom, this may happen only if other processes repeatedly enter and exit

their critical sections. Thus, eventually some process q �= p executes statement 18. By

(I5) with ‘p’ ← q and ‘q’ ← p, q finds T = p at statement 18, and hence it executes

statements 19 and 20. Moreover, by (I7), (I9), and (I10), 20.q eventually establishes

R1[p] = p.rtoggle ∧ q@{21}, which equals the left-hand side of (U1). By applying (U1)–

(U4), it follows that R1[p] = p.rtoggle holds continuously until p@{16} is established,

which contradicts our assumption that p@{12, 13, 15} holds indefinitely. It follows that

Algorithm NA is starvation-free.

2In fact, with several more invariants, it can be shown that p@{15} ∧ q@{15} is impossible.

320

APPENDIX D

DETAILED PROOF OF THE

TIME-COMPLEXITY LOWER

BOUND PRESENTED IN

CHAPTER 7

In this appendix, our time-complexity lower bound for nonatomic systems, stated in

Theorem 7.2, is proved in detail. Throughout this appendix, we use the definitions

stated in Section 7.2, and assume the existence of a fixed nonatomic one-shot mutual

exclusion system S = (C, P, V). First, we state some properties that directly follow

from the definition of a regular computation.

• For each m and v, AW m
v (H) and CW m

v (H) are disjoint (see Figure 7.6). (D.1)

• For each m and v, Act(H) and CW m
v (H) are disjoint. (D.2)

• For each m and v, Act(H) and RW m
v (H) are disjoint. (D.3)

• The sets RW m
v (H) are mutually disjoint. (D.4)

• Each invocation event ep in H is the last event in H | p. (D.5)

• For each invocation event ep in H, p ∈ Cvr(H) holds. (D.6)

• Each atomic write or read event fq in H is contained in some active segment

S(q, m). (D.7)

We now present several lemmas. Lemma D.1 asserts that information flow does not

happen in a regular computation.

Lemma D.1 Consider a regular computation H in C, an event ep in H, and a variable

v. Denote H as F ◦ 〈ep〉 ◦ G, where F and G are subcomputations of H. If ep reads v,

then the following holds:

writer(v, F) = p ∨ writer(v, F) = ⊥ ∨ value(v, F) = ;.

321

Proof: Let fq = writer event(v, F). If we have either q = p or q = ⊥, then we are

done. Thus, assume q �= p ∧ q �= ⊥. By the Atomicity property, fq is either an atomic

write event of v or an invocation event on v. If fq is an invocation event, then we have

value(v, F) = ;, and hence we are done.

We claim that fq cannot be an atomic write event. For the sake of contradiction,

assume otherwise. Then, by (D.7),

• fq is contained in solo segment S(q, m), for some m. (D.8)

Thus,

• ce(q, j) is a write to v, for some j ≤ m; (D.9)

• q ∈ AW j
v. (D.10)

By (D.8), H contains S(q, m). Thus, by (7.11),

q ∈ Actm(H). (D.11)

Since ep reads v, by (D.7), and from the fact that ep comes after fp in H, it follows

that

• ep is contained in S(p, l), for some l ≥ m. (D.12)

Therefore, from the structure of H l, given in (7.11), we have p ∈ Actl(H), and

hence, since Actl(H) ⊆ Actm(H) (by (7.8) and (7.9)), we also have

p ∈ Actm(H). (D.13)

Also, since ep reads v,

• ce(p, k) is a read of v, for some k ≤ l. (D.14)

We consider two cases. (Note that j is defined in (D.9).)

First, if CW j
v is nonempty, then by R2, (D.9), and (D.11), C(q, m) contains an

invocation event g on v. Thus, by (D.8) and (D.12), and since ep comes after fq, H can

be written as

H = · · · ◦ S(q, m) ◦ C(q, m) ◦ · · · ◦ S(p, l) ◦ · · · ,

where fq, g, and ep are contained in S(q, m), C(q, m), and S(p, l), respectively. Since

H = F ◦ 〈ep〉 ◦ G, F contains S(q, m) ◦ C(q, m). But then F contains an event that

writes v (namely, g) after fq, which contradicts fq = writer event(v, F).

322

Second, if CW j
v is empty, then by (D.10), (D.14), and applying R4 with ‘p’ ← q,

‘m’ ← j, and ‘j’ ← k, we have p ∈ Cvrj(H). Since j ≤ m (by (D.9)), we also have

Cvrj(H) ⊆ Cvrm(H) (by (7.8)), and hence p ∈ Cvrm(H). However, since Cvrm(H) and

Actm(H) are disjoint (by (7.9)), we have a contradiction of (D.13). �

We now define two “operators” on regular computations, which are used to imple-

ment the erasing strategy. Informally, the operator erasep erases all events by p from

a regular computation. Toward this goal, we erase all active segments S(p, m) (for

each m), and also erase the corresponding covering segments C(p, m), since they are

no longer needed. (Thus, deployed processes that execute their invocation events in

C(p, m) now become reserve processes.) This operation is allowed only if p is either an

active process or a reserve process. Otherwise, p is deployed to cover some variable v,

and hence we cannot apply erasep directly, since that may cause q’s write to v to be “un-

covered” and create information flow. In that case, we first apply operator exchangepq.

Informally, exchangepq is an operator that exchanges the role of a deployed process p

and a reserve process q, if both belong to the same set CW m
v (see Figure 7.7). Thus, p

becomes a reserve process in exchangepq(H), and hence can be safely erased by apply-

ing erasep. (This “erase after exchange” strategy is formally described in Lemma D.6,

given later in this section.)

Definition: Consider a regular computation H in C and a process p. Assume that

either p ∈ Act(H) or p ∈ RW m
v (H) holds for some m and v. If p ∈ Act(H), then H

contains solo segment S(p, j) and covering segment C(p, j) for each segment index

j (1 ≤ j ≤ mH). On the other hand, if p ∈ RW m
v (H) holds, then H contains solo

segment S(p, j) and covering segment C(p, j) for each segment index j (1 ≤ j < m).

(See Figure 7.8; formally, this property follows from (7.5), (7.8), (7.9), (7.11), (7.13).)

We define erasep(H) to be the computation where these segments are erased, i.e.,

erasep(H) = H − (S(p, 1) ◦ C(p, 1)) − (S(p, 2) ◦ C(p, 2)) − · · · − (S(p, m′) ◦ C(p, m′)),

where m′ is defined to be mH (if p is active) or m − 1 (if p ∈ RW m
v (H) holds). �

Definition: Consider a regular computation H in C, and two processes p and q.

Assume that {p, q} ⊆ CW m
v (H), and that p is deployed to cover some solo segment

S(r, m′) while q is not deployed in H (i.e., q ∈ RW m
v (H)). Thus, we can write H as

F ◦ 〈ie(p, m)〉 ◦ G, where ie(p, m) is the invocation event by p on v, contained in the

covering segment C(r, m′).

323

We define the exchange operator exchangepq to be the computation obtained by

replacing ie(p, m) with ie(q, m), i.e., exchangepq(H) = F ◦ 〈ie(q, m)〉 ◦ G. �

Note that these two operators also change the relevant sets of processes. For exam-

ple, if p and q are defined as in the definition of exchangepq, then we have p ∈ RW m
v (H

′)

and cp(q) = r, where H ′ = exchangepq(H).

We claim that these two operators indeed produce valid computations, and that

they preserve regularity and the structure of H (e.g., Act(H), Cvr(H), etc.), with

appropriate changes. This claim is formalized in Lemmas D.2 and D.3.

Lemma D.2 Consider a regular computation H in C with induction number mH , and

two processes p and q. Assume that {p, q} ⊆ CW m
v (H), p is deployed to cover some

solo segment S(r, m′), and that q is not deployed in H (i.e., q ∈ RW m
v (H)). Define

H ′ = exchangepq(H). Then, H ′ is a regular computation in C with induction number

mH , satisfying the following for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), variable w, and

process s:

P (H ′) = P (H); (D.15)

Actj(H ′) = Actj(H); (D.16)

Cvrj(H ′) = Cvrj(H); (D.17)

AW j
w(H

′) = AW j
w(H); (D.18)

CW j
w(H

′) = CW j
w(H); (D.19)

RW j
w(H

′) =

{
(RW j

w(H) ∪ {p}) − {q}, if j = m and w = v

RW j
w(H), otherwise.

(D.20)

Proof: Note that, by the definition of exchangepq, the only difference between H and

H ′ is that ie(p, m) is replaced by ie(q, m). Moreover, both ie(p, m) and ie(q, m) are

invocation events on the same variable v. It follows that processes other than p or q

cannot distinguish between H ′ and H, and hence we have H ′ ∈ C.

Assertions (D.15)–(D.20) follow immediately from the definition of exchangepq.

Since H satisfies (7.3)–(7.13) and R1–R4, by applying (D.15)–(D.20), assertions (7.3)–

(7.13) and R1–R4 follow immediately. It follows that H ′ is also regular. �

Lemma D.3 Consider a regular computation H in C with induction number mH , and

a process p. Assume either of the following:

324

• p ∈ Act(H), or (A)

• p ∈ RW m
v (H) ∧ (AW m

v (H) = {} ∨ |CW m
v (H)| ≥ 2), for some m and v. (B)

Define H ′ = erasep(H). Then, H ′ is a regular computation in C with induction

number mH , satisfying the following for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), variable

w, and process q:

P (H ′) = P (H) − {p}; (D.21)

Actj(H ′) = Actj(H) − {p}; (D.22)

Cvrj(H ′) = Cvrj(H) − {p}; (D.23)

AW j
w(H

′) = AW j
w(H) − {p}; (D.24)

CW j
w(H

′) = CW j
w(H) − {p}; (D.25)

RW j
w(H

′) ⊇ RW j
w(H). (D.26)

Proof: Step 1. First, we show that H ′ is a valid computation in C.

Note that operator erasep completely removes events by p, plus p’s covering segments

(which consist only of invocation events). By (D.5), each such removed event (except

events by p) is the last event by that process. Therefore,

• for each process q such that H ′ | q �= 〈〉, H ′ | q is either H | q, or the subcomputation

of H | q obtained by removing its last event. (D.27)

We use induction on the length of H ′, and inductively apply P2′ to each event in

H ′ in order. Consider an event eq in H ′. By the definition of erasep, eq is also an event

of H. Denote H and H ′ as

H = F ◦ 〈eq〉 ◦ G and H ′ = F ′ ◦ 〈eq〉 ◦ G′, (D.28)

where F and G (respectively, F ′ and G′) are subcomputations of H (respectively, H ′).

Also, by the definition of erasep, and by (D.27), we have the following:

• F ′ is a subcomputation of F ; (D.29)

• F ′ | q = F | q. (D.30)

By induction, we have

F ′ ∈ C. (D.31)

Our proof obligation is to show F ′ ◦〈eq〉 ∈ C. We now establish the following claim.

325

Claim 1: If eq reads a variable u, and if writer event(u, F ′) �= ⊥, then

value(u, F ′) = value(u, F) holds.

Proof of Claim: By (D.7),

• eq is contained in some solo segment S(q, l). (D.32)

Hence, since eq reads u,

• ce(q, j) reads u, for some j ≤ l. (D.33)

Also, by (7.11) and (D.32), we have

q ∈ Actl(H). (D.34)

Note that, by (D.29), writer event(u, F ′) �= ⊥ implies

writer(u, F) �= ⊥. (D.35)

We consider two cases. First, assume that writer(u, F) = q holds. Let

fq = writer event(u, F). By (D.30), fq is also contained in F ′. By (D.29),

this implies that fq = writer event(u, F ′), and hence the claim follows.

Second, assume that writer(u, F) �= q holds. In this case, by (D.35), and

by applying Lemma D.1 with ‘ep’ ← eq and ‘v’ ← u, we have value(u, F) =

;. (The assumptions stated in Lemma D.1 follow from (D.28) and the

assumption of Claim 1.) If we also have value(u, F ′) = ;, then we are done.

For the sake of contradiction, assume otherwise. Define fr as

fr = writer event(u, F ′). (D.36)

(By the assumption of Claim 1, fr �= ⊥ holds.) Since writer(u, F) �= q, we

have r �= q. Since fr writes to u a value different from ;, by the Atomicity

property, fr is an atomic write event on u, and hence, by (D.7),

• fr is contained in some solo segment S(r, l′). (D.37)

Hence, by (7.11),

r ∈ Actl
′
(H). (D.38)

326

Since fr is contained in F ′, by (D.28), (D.29), and the definition of erasep,

• fr precedes eq in H, and (D.39)

• r �= p. (D.40)

Combining (D.32), (D.37), and (D.39), we also have l′ ≤ l. Since fr writes

u,

• ce(r, k) is a write to u for some k ≤ l′. (D.41)

We claim that CW k
u(H) is nonempty. Assume otherwise. Then, by (D.33)

and (D.41), and by applying R4 with ‘m’ ← k, ‘p’ ← r, and ‘v’ ← u, we have

q ∈ Cvrk(H). Since k ≤ l (by (D.41)), we also have Cvrk(H) ⊆ Cvrl(H)

(by (7.8)), and hence we have q ∈ Cvrl(H). However, since Cvrl(H) and

Actl(H) are disjoint (by (7.9)), we have a contradiction of (D.34).

It follows that CW k
u(H) is nonempty, and hence, by (D.38) and (D.41),

and by applying R2 with ‘p’ ← r, ‘m’ ← l′, and ‘j’ ← k, it follows that

C(r, l′; H) contains an invocation event g on u. Thus, by (D.32), (D.37),

and (D.39), H can be written as

H = · · · ◦ S(r, l′) ◦ C(r, l′;H) ◦ · · · ◦ S(q, l) ◦ · · · ,

where fr, g, and eq are contained in S(r, l′), C(r, l′; H), and S(q, l), re-

spectively. By (D.40), and by the definition of erasep, C(r, l′; H) is also

contained in F ′. But then F ′ contains an event that writes u (namely, g)

after fr, which contradicts (D.36). �

The following claim establishes F ′ ◦ 〈eq〉 ∈ C, and hence, by induction, H ′ ∈ C.

Claim 2: F ′ ◦ 〈eq〉 ∈ C.

Proof of Claim: We consider three cases. First, if eq is not a read event,

then by (D.31), and by applying P2′ with ‘H’ ← F , ‘ep’ ← eq, and ‘G’ ← F ′,

the claim follows.

Second, assume that eq reads some variable u, and that writer event(u, F ′) �=
⊥ holds. By Claim 1, we again have value(u, F ′) = value(u, F). Thus,

327

by (D.31), and by applying P2′ with ‘H’ ← F , ‘ep’ ← eq, ‘G’ ← F ′, and

‘v’ ← u, the claim follows.

Third, assume that eq reads some variable u, and that writer event(u, F ′) =

⊥ holds. By (D.7), eq is contained in some solo segment S(q, m). Hence, by

the definition of a solo segment, (F ′ | q) ◦ 〈eq〉 is a valid solo computation,

that is,

(F ′ | q) ◦ 〈eq〉 ∈ C. (D.42)

Since F ′ | q is a subcomputation of F ′, we also have

value(u, F ′ | q) = value(u, F ′) = (initial value of u). (D.43)

By (D.31), (D.42), (D.43), and applying P2′ with ‘H’ ← F ′ | q, ‘ep’ ← eq,

‘G’ ← F ′, and ‘v’ ← u, the claim follows. �

Step 2. We now show that H ′ is regular, and that H ′ satisfies (D.21)–(D.26). Asser-

tions (D.21)–(D.26) follow immediately from the definition of erasep. Since H satisfies

(7.3)–(7.13), by applying (D.21)–(D.26), assertions (7.3)–(7.13) follow easily. We now

show that H ′ satisfies each of R1–R4.

In order to show that H ′ satisfies R1, consider an event eq contained in a covering

segment C(r, l;H ′). By the definition of erasep, we have C(r, l;H ′) = C(r, l;H), q �= p,

and r �= p. Thus, by applying R1 to eq in H, we have the following for some j ≤ l and

variable u: er = ie(q, j), q ∈ CW j
u(H), cp(q; H) = r, and ce(r, j) is a write to u. By

(D.25) and q �= p, we have q ∈ CW j
u(H

′). By r �= p, and by the definition of erasep,

cp(q;H ′) = r also holds. Thus, we have R1.

In order to show that H ′ satisfies R2, consider a process q ∈ Actl(H ′) and a segment

index j ≤ l, such that ce(q, j) writes some variable u and CW j
u(H

′) is nonempty. By

(D.22), we have q ∈ Actl(H) and q �= p. By (D.25), CW j
u(H) is also nonempty. Thus,

by applying R2 to q in H, it follows that C(q, l;H) has exactly one invocation event on

u (plus perhaps some other events), which is ie(r, j) for some r ∈ CW j
u(H). As shown

above, since q �= p, we have C(q, l;H ′) = C(q, l;H). Moreover, since r is deployed to

cover q, we have r �= p. (Note that Conditions (A) and (B) in the statement of the

lemma imply that p is not deployed in H.) Thus, by (D.25), we have r ∈ CW j
u(H

′).

It follows that C(q, l;H ′) contains exactly one invocation event on u (namely, ie(r, j)),

where r ∈ CW j
u(H

′). Thus, we have R2.

Since H ′ is a subcomputation of H, R3 follow easily.

328

Before showing that H ′ satisfies R4, we need the following claim.

Claim 3: If bothAW j
w(H) and CW j

w(H) are nonempty, then so is CW j
w(H

′).

Proof of Claim: We consider two cases. First, if Condition (A) holds, then

since Act(H) and CW j
w(H) are disjoint (by (D.2)), we have p /∈ CW j

w(H).

Therefore, by (D.25), CW j
w(H

′) equals CW j
w(H), and hence is nonempty.

Second, assume that Condition (B) holds. If (j, w) = (m, v), then since

AW j
w(H) is nonempty, we have |CW m

v (H)| ≥ 2, and hence, by (D.25),

CW j
w(H

′) (= CW m
v (H

′)) is nonempty. On the other hand, if (j, w) �=
(m, v), then CW j

w(H) and CW m
v (H) are disjoint by (7.5). Moreover, by

Condition (B), we have p ∈ RW m
v (H) ⊆ CW m

v (H). Thus we have p /∈
CW j

w(H). Therefore, by (D.25), we have CW j
w(H

′) = CW j
w(H), and hence

CW j
w(H

′) is nonempty. �

We now claim that H ′ satisfies R4. Consider some segment index l, process q,

and variable u such that q ∈ AW l
u(H

′) and CW l
u(H

′) is empty. By (D.24), we have

q ∈ AW l
u(H) and q �= p. By Claim 3, CW l

u(H) is also empty. Therefore, by applying

R4 to H with ‘m’ ← l, ‘p’ ← q, and ‘v’ ← u, it follows that, for each segment index j

and each process r ∈ Actj(H) different from q, the following hold:

(i) if j < l and ce(r, j) is a write to u, then CW j
u(H) is nonempty;

(ii) if j < l and ce(r, j) is a read of u, then r ∈ Cvrl(H) holds;

(iii) if l ≤ j ≤ mH , then ce(r, j) does not access u.

By (D.22), r ∈ Actj(H ′) implies r ∈ Actj(H) and r �= p. Note that, if (i) is true,

then r ∈ AW j
u(H) holds by definition. Thus, by Claim 3, it follows that CW j

u(H
′) is

also nonempty. Also note that, since r �= p, if (ii) is true, then r ∈ Cvrl(H) and (D.23)

imply r ∈ Cvrl(H ′). From these assertions, R4 easily follows. �

The next lemma is a simple application of Lemma D.3. It states that we can safely

erase any subset of active processes.

Lemma D.4 Consider a regular computation H in C with induction number mH , and

a subset K = {p1, p2, . . . , ph} of Act(H).

Define H ′ as the result of applying operation erasepi
to H for each pi ∈ K, i.e.,

H ′ = eraseph
(eraseph−1

(· · · erasep2(erasep1(H)) · · ·)).

329

Then, H ′ is a regular computation in C with induction number mH , satisfying the

following:

• πmax(H
′) ≤ πmax(H); (D.44)

• for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), variable w, and process q,

P (H ′) = P (H) − K; (D.45)

Actj(H ′) = Actj(H) − K; (D.46)

Cvrj(H ′) = Cvrj(H); (D.47)

AW j
w(H

′) = AW j
w(H) − K; (D.48)

CW j
w(H

′) = CW j
w(H); (D.49)

RW j
w(H

′) ⊇ RW j
w(H). (D.50)

Proof: By inductively applying Lemma D.3, assertions (D.45)–(D.50) follow easily. (As

for (D.47) and (D.49), note that K ⊆ Act(H) implies K ∩Cvrj(H) = K ∩CW j
w(H) =

{}, for each j and w.)

We now prove that H ′ satisfies (D.44). It suffices to show that, for each covering

pair (j, w) in H ′, we have π(j, w;H ′) ≤ π(j, w;H). Consider each covering pair (j, w)

in H ′. By definition, we have

AW j
w(H

′) �= {} ∧ CW j
w(H

′) �= {}. (D.51)

By (D.48), we have

|AW j
w(H

′)| ≤ |AW j
w(H)|. (D.52)

Thus, since both H and H ′ have induction number mH , by the definition of ‘req’,

given in (7.15), we have

req(j, w;H ′) ≤ req(j, w;H). (D.53)

By (D.49), (D.51), and (D.52), it follows that (j, w) is also a covering pair in H.

Thus, by (7.16), we have π(j, w;H) = max{0, req(j, w;H)− |CW j
w(H)|}. Combining

this with (D.49) and (D.53), assertion (D.44) follows. �

The following lemma ensures that a regular computation with a “low” maximum

potential has “enough” reserve writers, for each covering pair. (Recall that, by (7.16),

the potential π(m, v) of a covering pair (m, v) decreases as the number of covering

processes = |CW m
v | increases.)

330

Lemma D.5 Consider a regular computation H in C with induction number mH .

Assume the following:

• mH ≤ c − 2, and (D.54)

• πmax(H) ≤ c. (D.55)

Then, for each covering pair (j, w) of H, we have

|RW j
w| > |AW j

w|.

Proof: For each covering pair (j, w), by (D.55), and by the definitions of πmax and

‘req’ (given in (7.15)–(7.17)), we have req(j, w;H) − |CW j
w| ≤ c, and hence,

|CW j
w| ≥ req(j, w;H) − c = c · (|AW j

w| + c − mH − 1) > c · |AW j
w|, (D.56)

where the last inequality follows from (D.54).

Note that, by R1 and R2, there exists a one-to-one correspondence between deployed

processes in CW j
w and covering segments C(q, k) such that k ≥ j and q ∈ AW j

w ∩
Actk(H) (see Figure 7.6). Thus,

|RW j
w| = |CW j

w| −
mH∑
k=j

|AW j
w ∩ Actk(H)|

≥ |CW j
w| − (mH − j + 1) · |AW j

w|
≥ |CW j

w| − mH · |AW j
w|

> (c − mH) · |AW j
w| {by (D.56)}

> |AW j
w|, {by (D.54)}

which completes the proof. �

The next lemma is a simple application of Lemmas D.2 and D.3. Given a regular

computation H satisfying πmax(H) ≤ c, and a process p ∈ P (H), we can erase p from

H as follows. If p is either an active or a reserve process, then we apply erasep. On

the other hand, if p is deployed, then πmax(H) ≤ c implies that there exists a reserve

process q that may be exchanged with p by applying exchangepq to H. After applying

exchangepq, p becomes a reserve process, so we can erase p by applying erasep. (Note

that this procedure may increase the maximum potential, by reducing the number of

covering processes.)

331

Lemma D.6 Consider a regular computation H in C with induction number mH , and

a process p. Assume the following:

• mH ≤ c − 2, (D.57)

• πmax(H) ≤ c, and (D.58)

• p ∈ P (H). (D.59)

Then, there exists a regular computation H ′ in C with induction number mH ,

satisfying the following for each segment index j (1 ≤ j ≤ mH) and variable w:

• if AW j
w(H

′) is nonempty and CW j
w(H

′) is empty, then CW j
w(H) is also empty;

(D.60)

• if p ∈ CW j
w(H), then π(j, w;H ′) ≤ π(j, w;H) + 1; (D.61)

• if p /∈ CW j
w(H), then π(j, w;H ′) ≤ π(j, w;H); (D.62)

• the following hold:

P (H ′) = P (H) − {p}; (D.63)

Actj(H ′) = Actj(H) − {p}; (D.64)

Cvrj(H ′) = Cvrj(H) − {p}; (D.65)

AW j
w(H

′) = AW j
w(H) − {p}; (D.66)

CW j
w(H

′) = CW j
w(H) − {p}. (D.67)

Proof: First, we consider the case in which p ∈ Act(H) holds. Let H ′ = erasep(H).

By applying Lemma D.3, assertions (D.63)–(D.67) can be easily shown to be true.

Moreover, for each segment index j and variable w, p ∈ Act(H) implies p /∈ CW j
w(H)

(by (7.4) and (7.5)). Therefore, by (D.67), we have CW j
w(H

′) = CW j
w(H), and hence

(D.60) follows. Combining CW j
w(H

′) = CW j
w(H) with (7.15), (7.16), and (D.66), we

also have π(j, w;H ′) ≤ π(j, w;H), and hence we also have (D.61) and (D.62).

Thus, in the rest of the proof, we may assume p /∈ Act(H). In this case, by (7.4),

(7.5), and (D.59), we have the following:

p ∈ CW m
v (H), for some m (1 ≤ m ≤ mH) and variable v. (D.68)

We now establish the following simple claim.

Claim 1: AW m
v (H) = {} ∨ |RW m

v (H)| ≥ 2.

332

Proof of Claim: If AW m
v (H) is empty, then we are done. Otherwise,

by (D.68), (m, v) is a covering pair in H. Thus, by applying Lemma D.5,

we have |RW m
v (H)| > |AW m

v (H)| ≥ 1, and hence the claim follows. (As-

sumptions (D.54) and (D.55) stated in Lemma D.5 follow from (D.57) and

(D.58), respectively.) �

Since RW m
v (H) ⊆ CW m

v (H) (by (7.13)), Claim 1 implies the following:

AW m
v (H) = {} ∨ |CW m

v (H)| ≥ 2. (D.69)

The rest of the proof consists of two steps. In Step 1, we construct a regular

computation H ′ (in C) with induction number mH , satisfying (D.63)–(D.67). In Step 2,

we show that H ′ also satisfies (D.60)–(D.62).

Step 1. We consider two cases.

First, if p is not deployed in H, then by (D.68), we have p ∈ RW m
v (H). In this

case, let H ′ = erasep(H). By applying Lemma D.3, it follows that H ′ is a regular

computation in C with induction numbermH , satisfying (D.63)–(D.67). (Condition (B)

of Lemma D.3 follows from p ∈ RW m
v (H) and (D.69).)

Second, assume that p is deployed in H to cover some solo segment S(r, l) (i.e., p’s

invocation event is contained in C(r, l;H)). In this case, by applying R1 with ‘q’ ← p,

‘p’ ← r, and ‘m’ ← l, it follows that p ∈ CW j
u(H) and r ∈ AW j

u(H) hold for some

segment index j and variable u. By (7.5) and (D.68), we have (j, u) = (m, v), and

hence we have r ∈ AW m
v (H). Thus,

• AW m
v (H) is nonempty, (D.70)

and by Claim 1, RW m
v (H) is also nonempty. Fix a process q ∈ RW m

v (H), and let H ′′ =

exchangepq(H). By applying Lemma D.2, it follows that H ′′ is a regular computation

in C with induction number mH , satisfying the following for for each j (1 ≤ j ≤ mH),

k (1 ≤ k ≤ mH), and variable w:

P (H ′′) = P (H); (D.71)

Actj(H ′′) = Actj(H); (D.72)

Cvrj(H ′′) = Cvrj(H); (D.73)

AW j
w(H

′′) = AW j
w(H); (D.74)

333

CW j
w(H

′′) = CW j
w(H); (D.75)

RW j
w(H

′′) =

{
(RW j

w(H) ∪ {p}) − {q}, if j = m and w = v

RW j
w(H), otherwise.

(D.76)

By (D.76), we have p ∈ RW m
v (H

′′). Also, by (D.69), (D.70), and (D.75), we have

|CW m
v (H

′′)| ≥ 2. That is,

p ∈ RW m
v (H

′′) ∧ |CW m
v (H

′′)| ≥ 2. (D.77)

Let H ′ = erasep(H
′′). We now apply Lemma D.3 with ‘H’ ← H ′′. (Condition (B)

of Lemma D.3 follows from (D.77).) It follows that H ′ is a regular computation in

C with induction number mH , satisfying the following for each j (1 ≤ j ≤ mH), k

(1 ≤ k ≤ mH), and variable w:

P (H ′) = P (H ′′) − {p}; (D.78)

Actj(H ′) = Actj(H ′′) − {p}; (D.79)

Cvrj(H ′) = Cvrj(H ′′) − {p}; (D.80)

AW j
w(H

′) = AW j
w(H

′′) − {p}; (D.81)

CW j
w(H

′) = CW j
w(H

′′) − {p}. (D.82)

By combining (D.71)–(D.75) with (D.78)–(D.82), it follows that H ′ satisfies (D.63)–

(D.67).

Step 2. We now show that H ′ constructed above satisfies (D.60)–(D.62). We prove

(D.60) by proving its logical equivalent: if CW j
w(H

′) is empty and CW j
w(H) is

nonempty, then AW j
w(H

′) is empty. By (D.67), the antecedent of this implication

implies CW j
w(H) = {p}. However, by (7.5) and (D.68), this implies (j, w) = (m, v),

and hence, by (D.69), it follows that AW j
w(H) is empty. Thus, by (D.66), AW j

w(H
′)

is also empty. It follows that H ′ satisfies (D.60).

Since AW m
v (H) and CW m

v (H) are disjoint (by (D.1)), by (D.68), we have p /∈
AW m

v (H), and hence, by (D.66), we have AW m
v (H

′) = AW m
v (H). Thus, since both H

and H ′ have induction number mH , by the definition of ‘req’ (given in (7.15)), we have

req(m, v;H ′) = req(m, v;H).

Also, by (D.67) and (D.68), we have

334

|CW m
v (H

′)| = |CW m
v (H)| − 1.

Combining these two assertions with the definition of π(m, v) (given in (7.16)),

(D.61) easily follows. (Note that p ∈ CW m
v (H) implies (j, w) = (m, v).)

In order to prove (D.62), consider a segment index j and a variable w such that

(j, w) �= (m, v). If (j, w) is not a covering pair in H ′, then by the definition of π, we

have π(j, w;H ′) = 0 and π(j, w;H) ≥ 0, and hence (D.62) follows easily.

On the other hand, if (j, w) is a covering pair in H ′, then by (7.5), (D.68), and

(j, w) �= (m, v), we have p /∈ CW j
w(H), and hence, by (D.67), we have

CW j
w(H

′) = CW j
w(H).

Also, by (D.66), we have |AW j
w(H

′)| ≤ |AW j
w(H)|, and hence, since both H and

H ′ have induction number mH , by the definition of ‘req’ (given in (7.15)), we have

req(j, w;H ′) ≤ req(j, w;H).

Combining these two assertions with (7.16), assertion (D.62) easily follows. �

We now formally present the chain erasing procedure, described in Section 7.3. Here,

we denote the set of processes to erase by K. The procedure is shown in Figure D.1.

The following lemma proves its correctness.

Lemma D.7 Consider a regular computation H in C with induction number mH , and

a set K of processes. Assume the following:

• mH ≤ c − 2, (D.83)

• πmax(H) = 0, and (D.84)

• K ⊆ P (H). (D.85)

Then, there exists a regular computation H ′ in C with induction number mH ,

satisfying the following:

• πmax(H
′) < c; (D.86)

• |Act(H ′)| ≥ |Act(H) − K| − |K|/(c − 1); (D.87)

• for each segment index j (1 ≤ j ≤ mH) and variable w,

− if AW j
w(H

′) is nonempty and CW j
w(H

′) is empty, then CW j
w(H) is also empty;

(D.88)

335

1: F := H;
2: for i := 1 to h do

/∗ loop invariant:
1. F is a regular computation in C with induction number mH ;
2. πmax(F) < c

∗/
3: if pi ∈ P (F) then
4: erase pi from F by applying Lemma D.6 with ‘H’← F and ‘p’← pi;

let the resulting computation be F ;
5: while πmax(F) = c do

/∗ loop invariant: there exists exactly one covering pair (m, v)
satisfying π(m, v; F) = c ∗/

6: choose a process r from AW m
v (F);

7: erase r from F by applying Lemma D.6 with ‘H’← F and ‘p’← r;
let the resulting computation be F

od fi od
8: H ′ := F

Figure D.1: The chain-erasing procedure to erase processes in K = {p1, p2, . . . , ph}.
We assume that H is a regular computation with πmax(H) = 0, and that K ∈ P (H)
holds. The correctness of this algorithm is formally proved in Lemma D.7.

− the following hold:

P (H ′) ⊆ P (H) − K; (D.89)

Actj(H ′) ⊆ Actj(H) − K; (D.90)

Cvrj(H ′) ⊆ Cvrj(H) − K; (D.91)

AW j
w(H

′) ⊆ AW j
w(H) − K; (D.92)

CW j
w(H

′) ⊆ CW j
w(H) − K. (D.93)

Proof: Arbitrarily index processes in K as K = {p1, p2, . . . , ph}, where h = |K|.
We prove the lemma by applying the algorithm shown in Figure D.1. We claim that

the algorithm preserves the following four invariants after executing line 1.

invariant F is a regular computation in C with induction number mH . (I1)

invariant For each segment index j and variable w, if AW j
w(F) is nonempty and

CW j
w(F) is empty, then CW j

w(H) is also empty. (I2)

invariant πmax(F) ≤ c. (I3)

(Note that (I3) is weaker than the loop invariant πmax(F) < c stated in Figure D.1,

because (I3) holds throughout lines 2–8.) It is easy to see that line 1 establishes these

336

invariants. In particular, (I3) follows from (D.84); the other invariants are trivial. We

now show that, for each line s (2 ≤ s ≤ 7) of the algorithm, if line s is executed while

invariants (I1)–(I3) hold, then they also hold after the execution of line s. This will

establish each of (I1)–(I3) as an invariant. Since F may be updated only by execution

of lines 4 and 7, it suffices to check these two lines to prove the correctness of (I1)–(I3).

First, we claim that we can apply Lemma D.6 at these lines. It suffices to show

that the assumptions (D.57)–(D.59) stated in Lemma D.6 are satisfied before execut-

ing either line 4 or 7. Assumptions (D.57) and (D.58) follow from (D.83) and (I3),

respectively; (D.59) is guaranteed by lines 3 and 6.

We now claim that execution of these lines preserves invariants (I1)–(I3). Let Fold

be the value of F before executing line 4 or 7, and Fnew be the value of F after executing

that line. Lemma D.6 implies that (I1) is preserved. (That is, if Fold satisfies (I1), then

so does Fnew.)

Also, by applying (D.60) and (D.66) with ‘H’ ← Fold and ‘H ′’ ← Fnew, we have the

following for each segment index j and variable w.

• If AW j
w(Fnew) is nonempty and CW j

w(Fnew) is empty, then CW j
w(Fold) is also empty.

(D.94)

• AW j
w(Fnew) ⊆ AW j

w(Fold) holds. In particular, if AW j
w(Fnew) is nonempty, then so

is AW j
w(Fold). (D.95)

By (D.94) and (D.95), it follows that lines 4 and 7 preserve (I2). In particular,

if AW j
w(Fnew) is nonempty and CW j

w(Fnew) is empty, then by (D.94) and (D.95), it

follows that AW j
w(Fold) is nonempty and CW j

w(Fold) is empty. Since Fold satisfies (I2),

this in turn implies that CW j
w(H) is empty.

In order to show that (I3) is an invariant, we need to prove the following assertions.

• The execution of line 4 or 7 may increase π(j, w;F) for at most one pair (j, w) (where

1 ≤ j ≤ mH and w ∈ V). Moreover, if such a pair exists, then p ∈ CW j
w(Fold) ∧

π(j, w; Fnew) = π(j, w; Fold) + 1 holds. (D.96)

• Line 4 is executed only if πmax(Fold) < c holds. (D.97)

• If line 4 establishes πmax(Fnew) = c, then it also establishes the following: there exists

exactly one covering pair (m, v) of Fnew that satisfies π(m, v; Fnew) = c. (D.98)

• Assume that lines 6 and 7 are executed when πmax(Fold) = c holds and that there

exists exactly one covering pair (m, v) of Fold satisfying π(m, v; Fold) = c. In this

case, line 7 establishes the following:

− π(m, v; Fnew) = 0, (D.99)

337

− there exists at most one covering pair (m′, v′) in Fnew that satisfies π(m′, v′;

Fnew) = c, and (D.100)

− πmax(Fnew) ≤ c. (D.101)

Proof of (D.96)–(D.101): Assertion (D.96) easily follows from applying

(D.61) and (D.62) with ‘H’ ← Fold and ‘H ′’ ← Fnew, and from the fact that

p ∈ CW j
w(Fold) holds for at most one pair (j, w), namely, (ci(p), cv(p)).

Assertion (D.97) follows easily by inspecting the algorithm. In particular,

line 1 establishes πmax(F) = 0 by (D.84), and the while loop of lines 5–7

establishes πmax(F) < c upon termination.

We now prove (D.98). By the definition of πmax (given in (7.17)), πmax(Fnew) =

c implies that π(m, v; Fnew) = c holds for some covering pair (m, v). By

(D.96) and (D.97), π(m, v; Fnew) = c may be established for at most one

pair (m, v). We thus have (D.98).

We now prove (D.99). Consider the execution of line 7. By applying (D.66)

with ‘j’ ← m, ‘w’ ← v, ‘H’ ← Fold, ‘H
′’ ← Fnew, and ‘r’ ← p, it follows

that line 7 establishes AW m
v (Fnew) = AW m

v (Fold)−{r}. Since line 6 ensures
r ∈ AW m

v (Fold), we have

|AW m
v (Fnew)| = |AW m

v (Fold)| − 1,

and hence, by the definition of ‘req’ (given in (7.15)), we have

req(m, v; Fnew) = req(m, v; Fold) − c. (D.102)

Moreover, since AW m
v (H) and CW m

v (H) are disjoint (by (D.1)), r ∈
AW m

v (Fold) implies r /∈ CW m
v (Fold), and hence, by applying (D.67) as

above, we have

CW m
v (Fnew) = CW m

v (Fold). (D.103)

Combining (D.102) and (D.103) with the definition of π (given in (7.16)),

and using π(m, v; Fold) = c (from the antecedent of (D.99)–(D.101)), we

have π(m, v; Fnew) = 0, and hence (D.99) follows.

Finally, the antecedent of (D.99)–(D.101) implies that π(j, w; Fold) < c

holds for each pair (j, w) �= (m, v). Hence, (D.100) and (D.101) easily

follow from (D.96), (D.99), and the definition of πmax (given in (7.17)). �

338

We now prove that (I3) is an invariant. First, consider line 4. Combining (D.96)

with the definition of πmax, it follows that line 4 may increase πmax(F) by at most one.

Therefore, by (D.97), line 4 establishes πmax(Fnew) ≤ πmax(Fold) + 1 ≤ c, and hence

preserves (I3).

Next, consider line 7. By combining (D.98), (D.100), and (D.101), it is easy to see

that the loop invariant of the while loop (shown before line 6 in Figure D.1) is indeed a

correct invariant. Since this loop invariant implies the antecedent of (D.101), it follows

that line 7 establishes πmax(Fnew) ≤ c, thereby maintaining (I3).

In order to prove that the algorithm constructs the needed computation H ′, we

have yet to show that the algorithm eventually terminates. Note that, by (D.63), each

application of Lemma D.6 removes a process from P (F). Since P (F) is initially finite,

this procedure cannot continue indefinitely. It follows that the algorithm eventually

terminates.

Invariants (I1) and (I3) imply that, after the algorithm terminates, we obtain a reg-

ular computation H ′ in C with induction number mH , satisfying (D.86). In particular,

note that the while loop of lines 5–7 establishes πmax(F) �= c upon termination. By

(I4), it follows that line 8 establishes πmax(H
′) < c, and hence we have (D.86).

Note that every process pi in K is eventually erased at line 4 (if it has not already

been erased via the execution of line 7 with ‘r’ ← pi). Thus, by inductively applying

(D.63)–(D.67), we have (D.89)–(D.93).

Finally, we claim that H ′ satisfies (D.87). By (7.17) and (D.84), and since a rank is

nonnegative by definition, π(m, v;H) = 0 holds for every covering pair (m, v). Hence,

by (7.18), we have π(H) = 0. It follows that line 1 establishes π(F) = 0. We now

establish the following two properties.

• The execution of line 4 increases π(F) by at most one. (D.104)

• The execution of line 7 decreases π(F) by at least c − 1. (D.105)

Proof of (D.104)–(D.105): Consider the execution of line s, where s is 4

or 7. By (D.96), one of the following holds.

(i) There exists exactly one pair (j, w) (where 1 ≤ j ≤ mH and w ∈ V)

satisfying π(j, w; Fnew) = π(j, w; Fold) + 1. Moreover, for all other pairs

(l, u) �= (j, w) (where 1 ≤ l ≤ mH and u ∈ V), we have π(l, u; Fnew) ≤
π(l, u; Fold).

(ii) For all pairs (l, u) (where 1 ≤ l ≤ mH and u ∈ V), we have π(l, u;Fnew) ≤
π(l, u; Fold).

339

We now prove (D.104). If (i) is true, then

π(Fnew) =
∑

1≤l≤mH , u∈V

π(l, u; Fnew) {by (7.18)}

= π(j, w; Fnew) +
∑

(l,u)
=(j,w)

π(l, u; Fnew)

≤ (
π(j, w; Fold) + 1

)
+

∑
(l,u)
=(j,w)

π(l, u; Fold) {by (i)}

= π(Fold) + 1, {by (7.18)}

and hence we have (D.104). On the other hand, if (ii) is true, then by (7.18),

we have π(Fnew) ≤ π(Fold), which in turn implies (D.104).

We now prove (D.105). By (D.99), there exists a covering pair (m, v) of

Fold satisfying π(m, v; Fold) = c and π(m, v; Fnew) = 0. If (i) is true, then

clearly (j, w) �= (m, v) holds, and hence

π(Fnew) =
∑

1≤l≤mH , u∈V

π(l, u; Fnew) {by (7.18)}

= π(j, w; Fnew) + π(m, v; Fnew) +
∑

(l,u)
=(j,w)
(l,u)
=(m,v)

π(l, u; Fnew)

= π(j, w; Fnew) + 0 +
∑

(l,u)
=(j,w)
(l,u)
=(m,v)

π(l, u; Fnew) {by (D.99)}

≤ (
π(j, w; Fold) + 1

)
+ 0 +

∑
(l,u)
=(j,w)
(l,u)
=(m,v)

π(l, u; Fold) {by (i)}

=
(
π(j, w; Fold) + 1

)
+
(
π(m, v; Fold) − c

)
+

∑
(l,u)
=(j,w)
(l,u)
=(m,v)

π(l, u; Fold)

{by (D.99)}
= π(Fold) − (c − 1), {by (7.18)}

and hence we have (D.105). Similarly, if (ii) is true, then we can easily show

π(Fnew) ≤ π(Fold) − c, which in turn implies (D.105). �

Since line 4 is executed at most h times, (D.104) implies that π(F), being initially

zero, increases by at most h (= |K|) throughout the execution of the algorithm. Since

340

π(F) is always nonnegative (by (7.16) and (7.18)), by (D.105), we have the follow-

ing:

• line 7 may be executed at most |K|/(c − 1) times throughout the execution of the

algorithm. (D.106)

Moreover, by applying (D.64) with ‘j’ ← mH , ‘H’ ← Fold, and ‘H’ ← Fnew, it follows

that the execution of line 4 may only erase a process in K, and that each execution of

line 7 may erase at most one (possibly active) process (i.e., it may reduce |Act(F)| by
at most one). Combining (D.106) with these assertions, (D.87) easily follows. �

In the rest of the proof, we make use of Turán’s Theorem [81], stated here again for

readers’ convenience.

Theorem 5.1 (Turán) Let G = (V, E) be an undirected graph with vertex set V and

edge set E. If the average degree of G is d, then an independent set exists with at least

�|V |/(d+ 1)� vertices. �

Consider a regular computation H. Each process p ∈ Act(H) is ready to execute

its next critical event ce(p, mH + 1). As explained in Section 7.3, in order to extend

a regular computation, we must eliminate “conflicts” that are caused by appending

these critical events. To facilitate this, we define an “conflict-free” computation to be

a regular computation in which these conflicts have been eliminated, as follows.

Definition: Consider a regular computation H. For each process p ∈ Act(H), define

ep to be its next critical event ce(p, mH + 1). For each variable v ∈ V , define Zv(H),

the set of active processes that access v in their next critical events, as

Zv(H) = {p ∈ Act(H): ep accesses v}.

Consider two disjoint subsets ZAct and ZCvr of Act(H). We say that the pair

(ZAct, ZCvr) is conflict-free in H if (D.107) and one of (C1)–(C3), stated below, are

satisfied.

• for each p ∈ ZAct ∪ ZCvr, if ep accesses a variable v, and if H has a single writer q of

v, then either p = q or q ∈ Act(H) − (ZAct ∪ ZCvr) holds. (D.107)

Condition (C1): (erasing strategy)

341

• ZCvr = {};
• for each p ∈ ZAct, ep is an atomic write event, writing a distinct variable;

• for each p ∈ ZAct, ep �= CS p;

• for each p ∈ ZAct, if ep writes a variable v, and if a process q �= p reads v

in H, then q /∈ ZAct.

Condition (C2): (covering strategy)

• For each variable v, if ZAct ∩ Zv(H) is nonempty, then |ZCvr ∩ Zv(H)| ≥
c · |ZAct ∩ Zv(H)| + c2;

• for each p ∈ ZAct ∪ ZCvr, ep is an atomic write event;

• for each p ∈ ZAct ∪ ZCvr, ep �= CS p.

Condition (C3): (readers only)

• ZCvr = {};
• for each p ∈ ZAct, ep is a read event. (In particular, ep �= CS p.)

We also say that H is conflict-free if there exists a partition of Act(H) into two

disjoint sets ZAct(H) and ZCvr(H) (one of which may possibly be empty), such that

Act(H) = ZAct(H)∪ZCvr(H) and the pair (ZAct(H), ZCvr(H)) is conflict-free in H. �
In Lemma D.9, given later, we show that a conflict-free computation H with in-

duction number mH can be extended to obtain another regular computation G with

induction number mH + 1. By extending H, processes in ZAct(H) become active pro-

cesses in the extended computation G, and processes in ZCvr(H) become new covering

processes to cover variables written by processes in ZAct(H). (Formally, we establish

Act(G) = ZAct(H) and Cvr(G) = Cvr(H) ∪ ZCvr(H).)

The following lemma shows that, for any regular computation H, we can choose

“enough” active processes in H and construct a conflict-free computation F with the

same induction number. The strategy chosen to eliminate conflicts determines which

condition is established: each of (C1)–(C3) is established by the erasing strategy, the

covering strategy, and the “readers only” case, respectively.

Lemma D.8 Let H be a regular computation in C with induction number mH . Let

n = |Act(H)|. Assume the following:

• mH ≤ c − 2, (D.108)

• πmax(H) = 0, and (D.109)

342

• n ≥ 2. (D.110)

Then, there exists a regular computation F in C with induction number mH , sat-

isfying the following:

• πmax(F) ≤ c, (D.111)

• F is conflict-free, and (D.112)

• |ZAct(F)| ≥ (c − 2)(n − 1)

48c2(c − 1)(2mH + 1)
. (D.113)

Proof: For each p ∈ Act(H), let ep be its next critical event ce(p, mH + 1). We claim

that ep = CS p holds for at most one process p in Act(H). Assume, to the contrary, that

there exist two distinct processes p and q, such that ep = CS p and eq = CS q. Since CS p

does not read any variable, by applying P2′ with ‘H’ ← H | p, ‘ep’ ← CS p, and ‘G’ ← H,

we have H ◦ 〈CS p〉 ∈ C. By applying P2′ again with ‘H’ ← H | q, ‘ep’ ← CS q, and

‘G’ ← H ◦〈CS p〉, we have H ◦〈CS p,CS q〉 ∈ C. However, this contradicts the Exclusion

property.

Let Y0 = {p ∈ Act(H): ep �= CS p}. As shown above, we have n − 1 ≤ |Y0| ≤ n.

We partition Y0 into the sets of “readers” and “writers,” and choose the bigger of the

two (see Figure 7.10). That is, we choose a set Y such that

Y ⊆ Act(H); (D.114)

ep �= CS p, for all p ∈ Y ; (D.115)

|Y | ≥ (n − 1)/2; (D.116)(∀p : p ∈ Y :: ep is a read event
) ∨ (∀p : p ∈ Y :: ep is an atomic write event

)
.

(D.117)

We now erase processes in Act(H) − Y . Since Act(H) − Y ⊆ Act(H), by applying

Lemma D.4 with ‘K’ ← Act(H)− Y , we can construct a regular computation H ′ in C

with induction number mH , satisfying the following:

• πmax(H
′) ≤ πmax(H); (D.118)

• for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), variable w, and process q,

343

P (H ′) = P (H) − (Act(H) − Y); (D.119)

Actj(H ′) = Actj(H) − (Act(H) − Y); (D.120)

Cvrj(H ′) = Cvrj(H); (D.121)

AW j
w(H

′) = AW j
w(H) − (Act(H) − Y); (D.122)

CW j
w(H

′) = CW j
w(H); (D.123)

RW j
w(H

′) ⊇ RW j
w(H).

By (D.109) and (D.118), and since πmax(H
′) is nonnegative by definition, we also

have

πmax(H
′) = 0. (D.124)

By (D.114), and by applying (D.120) with ‘j’ ← mH , we also have

Act(H ′) = ActmH (H ′) = ActmH (H) − (Act(H) − Y) = Act(H) − (Act(H) − Y) = Y.

(D.125)

We now create a “conflict mapping”K: Y → P (H ′)∪{⊥}, i.e., a mapping indicating

which process conflicts with which process, defined over Y . For each p ∈ Y , define vce(p)

to be the variable accessed by p’s next critical event ep. That is,

• for each p ∈ Y , ep accesses vce(p). (D.126)

For each p ∈ Y , we define K(p) = q if q (�= p) is the single writer of vce(p) in H (see

Figure 7.9). If H has no single writer of vce(p), or if p itself is the single writer of vce(p),

then we define K(p) = ⊥. By definition,

K(p) �= p, for all p ∈ Y . (D.127)

We now eliminate conflicts between Y and Cvr(H ′) by applying the chain erasing

procedure. Define CE , the “covering processes to be erased,” as

CE = {K(p): p ∈ Y ∧ K(p) ∈ Cvr(H ′)}.

Since Cvr(H ′) ⊆ P (H ′) (by (7.4)), we have

|CE | ≤ |{K(p): p ∈ Y }| ≤ |Y |, and (D.128)

CE ⊆ P (H ′). (D.129)

344

We now apply Lemma D.7 with ‘H’ ← H ′ and ‘K’ ← CE . Assumptions (D.83)–

(D.85) stated in Lemma D.7 follow from (D.108), (D.124), and (D.129), respectively.

We thus obtain a regular computation H ′′ in C with induction number mH , satisfying

the following:

• πmax(H
′′) < c; (D.130)

• |Act(H ′′)| ≥ |Act(H ′) − CE | − |CE |/(c − 1); (D.131)

• for each segment index j (1 ≤ j ≤ mH) and variable w,

− if AW j
w(H

′′) is nonempty and CW j
w(H

′′) is empty, then CW j
w(H

′) is also

empty; (D.132)

− the following hold:

P (H ′′) ⊆ P (H ′) − CE ; (D.133)

Actj(H ′′) ⊆ Actj(H ′) − CE ; (D.134)

Cvrj(H ′′) ⊆ Cvrj(H ′) − CE ; (D.135)

AW j
w(H

′′) ⊆ AW j
w(H

′) − CE ; (D.136)

CW j
w(H

′′) ⊆ CW j
w(H

′) − CE .

Since CE ⊆ Cvr(H ′) holds by definition, CE and Act(H ′) are disjoint by (7.4), and

hence, by (D.131), we also have

|Act(H ′′)| ≥ |Act(H ′)| − |CE |/(c − 1). (D.137)

Define

Y ′ = Act(H ′′). (D.138)

By (D.125), and by applying (D.134) with ‘j’ ← mH , we have

Y ′ = ActmH (H ′′) ⊆ ActmH (H ′) − CE = Y − CE . (D.139)

Also, by applying (D.137), (D.125), (D.128), and (D.116) (in that order),

|Y ′| ≥ |Act(H ′)|− |CE |
c − 1

= |Y |− |CE |
c − 1

≥ |Y |− |Y |
c − 1

=
c − 2

c − 1
|Y | ≥ (c − 2)(n − 1)

2(c − 1)
.

(D.140)

We now construct an undirected graph G = (Y ′, EG), where each vertex is a process

in Y ′ (see Figure 7.13). For each process p in Y ′, we introduce edge {p, K(p)} if

345

K(p) ∈ Y ′ holds. Since K(p) �= p (by (D.127)), each edge is properly defined. Since

we introduce at most |Y ′| edges, the average degree of G is at most two. Hence, by

Theorem 5.1, there exists an independent set Z ⊆ Y ′ such that

|Z| ≥ |Y ′|
3

≥ (c − 2)(n − 1)

6(c − 1)
, (D.141)

where the latter inequality follows from (D.140). By (D.139), we also have

Z ⊆ Y ′ ⊆ Y − CE . (D.142)

Since Y ′ = Act(H ′′) ⊆ P (H ′′) (by (7.4) and (D.138)), we have Z ⊆ P (H ′′). Thus,

by (D.133), we have

Z ⊆ P (H ′′) ⊆ P (H ′). (D.143)

We now claim that a process in Z does not conflict with any covering process in

H ′′, or with any other process in Z.

Claim 1: For each p ∈ Z, K(p) ∈ P (H ′′) implies K(p) ∈ Y ′ − Z.

Proof of Claim: Let q = K(p), and assume q ∈ P (H ′′). By (7.4), q is

either in Cvr(H ′′) or Act(H ′′). If q ∈ Cvr(H ′′), then by applying (D.135)

with ‘j’ ← mH , we have q ∈ Cvr(H ′) − CE . But, by the definition of CE ,

we also have K(p) /∈ Cvr(H ′) − CE , a contradiction.

It follows that q ∈ Act(H ′′) holds. Hence, by (D.138) and (D.142), we have

{p, q} ⊆ Y ′. Therefore, the edge {p, q} (= {p, K(p)}) is in G by definition.

Since Z is an independent set of G, p ∈ Z implies q /∈ Z, and hence the

claim follows. �

We now group processes in Z depending on the variables accessed by their next

critical events. For each v ∈ V , define Zv, the set of processes in Z that access v in

their next critical events, as

Zv = {p ∈ Z: vce(p) = v}.

Clearly, the sets Zv form a disjoint partition of Z:

Z =
⋃
v∈V

Zv, and

Zv ∩ Zu �= {} ⇒ v = u.
(D.144)

346

Define VHC, the set of variables that experience “high contention” (i.e., those that

are accessed by “sufficiently many” next critical events), and VLC, the set of variables

that experience “low contention,” as

VHC = {v ∈ V : |Zv| ≥ 4c2}, and

VLC = {v ∈ V : 0 < |Zv| < 4c2}.

Then, we have

|VHC| ≤ |Z|
4c2

. (D.145)

Define PHC (respectively, PLC), the set of processes whose next critical event accesses

a variable in VHC (respectively, VLC), as follows:

PHC =
⋃

v∈VHC

Zv, PLC =
⋃

v∈VLC

Zv. (D.146)

Since the sets Zv partition Z, PHC and PLC also partition Z:

Z = PHC ∪ PLC ∧ PHC ∩ PLC = {}. (D.147)

We now construct subsets ZAct and ZCvr of Z, such that the pair (ZAct, ZCvr) is

conflict-free in H ′′. (Later, by retaining ZAct and ZCvr, and erasing all other active

processes, we construct a conflict-free computation F satisfying ZAct(F) = ZAct and

ZCvr(F) = ZCvr.)

Claim 2: There exist two disjoint subsets ZAct and ZCvr of Z, such that

(ZAct, ZCvr) is conflict-free in H ′′, satisfying the following inequality:

|ZAct| ≥ (c − 2)(n − 1)

48c2(c − 1)(2mH + 1)
. (D.148)

Proof of Claim: By Claim 1, any choice of (ZAct, ZCvr) from Z satis-

fies (D.107). Thus, it suffices to show one of (C1)–(C3). By (D.117) and

(D.142), we have either of the following.

• For each p ∈ Z, ep is a read event. (R)

• For each p ∈ Z, ep is an atomic write event. (W)

347

We consider three cases.

Case 1 (readers only): Condition (R) is true.

Let ZAct = Z and ZCvr = {}. Condition (R) implies Condition (C3). By

(D.141), we have

|ZAct| = |Z| ≥ (c − 2)(n − 1)

6(c − 1)
≥ (c − 2)(n − 1)

48c2(c − 1)(2mH + 1)
,

which establishes (D.148).

Case 2 (erasing strategy): Condition (W) is true, and |PHC| <

|Z|/2 holds.

By (D.141) and (D.147), we have

|PLC| = |Z| − |PHC| > |Z|
2

≥ (c − 2)(n − 1)

12(c − 1)
. (D.149)

Note that, by (D.146), PLC is partitioned into nonempty sets Zv, for each

v ∈ VLC. Moreover, by the definition of VLC, each such Zv contains less than

4c2 processes. Therefore, by (D.149),

|VLC| > |PLC|
4c2

>
(c − 2)(n − 1)

48c2(c − 1)
. (D.150)

By the definition of VLC, Zv is nonempty for each v ∈ VLC. Thus, we can

construct a subset X of PLC that contains exactly one process from each Zv

(for each v ∈ VLC). Then, by (D.142), (D.147), (D.150), and the definition

of Zv, we have the following:

• X ⊆ PLC ⊆ Y ′ (= Act(H ′′)), (D.151)

• |X| = |VLC| > (c − 2)(n − 1)

48c2(c − 1)
, and (D.152)

• vce(p) is distinct for each process p ∈ X. (D.153)

As explained in Section 7.3, we want to find a subset of X in which every

process p becomes the single writer of vce(p). Toward this goal, we now

construct an undirected graph H = (X, EH), where each vertex is a process

in X (see Figure 7.14). For each pair {p, q} of different processes in X,

348

we introduce edge {p, q} if p reads vce(q) in H ′′. By (D.151), each p ∈ X

executes mH critical events in H ′′, and hence reads at most mH distinct

variables in H ′′. Therefore, by (D.153), we collectively introduce at most

|X| ·mH edges. Hence, the average degree of H is at most 2mH . Therefore,

by Theorem 5.1, there exists an independent set X ′ ⊆ X such that

|X ′| ≥ |X|
2mH + 1

>
(c − 2)(n − 1)

48c2(c − 1)(2mH + 1)
, (D.154)

where the latter inequality follows from (D.152). Also, by (D.153),

• vce(p) is distinct for each process p ∈ X ′, (D.155)

and by (D.126) and the definition of H,

• for each p ∈ X ′, if ep writes a variable v, and if a process q �= p reads v

in H ′′, then q /∈ X ′. (D.156)

Also, since by (D.115), (D.139), and (D.151), we have the following:

ep �= CS p, for each p ∈ X ′. (D.157)

We now define ZAct = X ′ and ZCvr = {}. By (D.154), we have (D.148).

By (D.155)–(D.157) and Condition (W), we have Condition (C1). Thus,

Claim 2 follows.

Case 3 (covering strategy): Condition (W) is true, and |PHC| ≥
|Z|/2 holds.

By (D.141), we have

|PHC| ≥ |Z|
2

≥ (c − 2)(n − 1)

12(c − 1)
. (D.158)

By (D.146), PHC is partitioned into subsets Zv, for each v ∈ VHC. Moreover,

by the definition of VHC,

|Zv| ≥ 4c2, for each v ∈ VHC. (D.159)

349

Thus, we can partition each such Zv into two disjoint sets ZAct
v and ZCvr

v ,

such that the following holds:

Zv = ZAct
v ∪ ZCvr

v ∧ ZAct
v ∩ ZCvr

v = {}; (D.160)

|ZAct
v | =

⌊ |Zv|
c2

⌋
− 1. (D.161)

By (D.144) and (D.159)–(D.161), we have the following:

ZAct
v ∩ ZAct

u �= {} ⇒ v = u, for each variable v and u; (D.162)

|ZAct
v | > |Zv|

c2
− 2 ≥ |Zv|

c2
− |Zv|

2c2
=

|Zv|
2c2

; (D.163)

|ZCvr
v | = |Zv|−|ZAct

v | ≥ c2·(|ZAct
v |+1)−|ZAct

v | = (c2−1)·|ZAct
v |+c2. (D.164)

We can now define ZAct and ZCvr as follows:

ZAct =
⋃

v∈VHC

ZAct
v and ZCvr =

⋃
v∈VHC

ZCvr
v . (D.165)

By definition, the sets ZAct and ZCvr partition PHC:

PHC = ZAct ∪ ZCvr ∧ ZAct ∩ ZCvr = {}; (D.166)

Also, we have the following:

|ZAct| =
∣∣⋃

v∈VHC
ZAct

v

∣∣ =∑v∈VHC
|ZAct

v | {by (D.162)}

>
∑

v∈VHC

|Zv|
2c2

{by (D.163)}

=
1

2c2

∣∣⋃
v∈VHC

Zv

∣∣
{since each Zv is disjoint with each other, by (D.144)}

=
1

2c2
|PHC| {by (D.146)}

≥ (c − 2)(n − 1)

24c2(c − 1)
{by (D.158)}

>
(c − 2)(n − 1)

48c2(c − 1)(2mH + 1)
,

350

and hence we have (D.148). Finally, by (D.144) and (D.160), the sets Zv are

mutually disjoint, each partitioned into ZAct
v and ZCvr

v . Thus, by (D.165), it

follows that ZAct (respectively, ZCvr) is a disjoint union of ZAct
v (respectively

ZCvr
v) over variables v ∈ VHC. Hence, we have ZAct

v = ZAct ∩Zv and ZCvr
v =

ZCvr ∩ Zv. Thus, by (D.164), we have

|ZCvr ∩ Zv| ≥ (c2 − 1) · |ZAct ∩ Zv| + c2 > c · |ZAct ∩ Zv| + c2, (D.167)

where the last inequality follows from c = Θ(log N) (given in (7.14)), as-

suming N = ω(1).

Also, since PHC ⊆ Y (by (D.142) and (D.147)), by (D.115), we have the

following:

ep �= CS p, for each p ∈ ZAct ∪ ZCvr. (D.168)

Combining (D.167) and (D.168) with Condition (W), we have Condition (C2),

and hence Claim 2 follows. �

Define Z ′ = ZAct ∪ ZCvr. By (D.142) and Claim 2, we have

ZAct ∪ ZCvr = Z ′ ⊆ Z ⊆ Y ′ ⊆ Y − CE . (D.169)

We now erase processes in Y ′ − Z ′ by applying Lemma D.4 with ‘H’ ← H ′′ and

‘K’ ← Y ′ −Z ′. (Note that Y ′ −Z ′ ⊆ Act(H ′′) holds since Y ′ is defined to be Act(H ′′).)

We thus construct a regular computation F in C with induction number mH , satisfying

assertions (D.170)–(D.175), given below:

• πmax(F) ≤ πmax(H
′′); (D.170)

• for each j (1 ≤ j ≤ mH), k (1 ≤ k ≤ mH), variable w, and process q,

P (F) = P (H ′′) − (Y ′ − Z ′); (D.171)

Actj(F) = Actj(H ′′) − (Y ′ − Z ′); (D.172)

Cvrj(F) = Cvrj(H ′′); (D.173)

AW j
w(F) = AW j

w(H
′′) − (Y ′ − Z ′); (D.174)

CW j
w(F) = CW j

w(H
′′). (D.175)

By (D.138), (D.169), and by applying (D.172) with ‘j’ ← mH , we also have

351

Act(F) = ActmH (F) = ActmH (H ′′) − (Y ′ − Z ′) = Y ′ − (Y ′ − Z ′) = Z ′. (D.176)

We now claim that F satisfies (D.111)–(D.113). By (D.130) and (D.170), we have

(D.111). Since (ZAct, ZCvr) is conflict-free in H ′′ (by Claim 2), it is also conflict-free in

F . Define ZAct(F) = ZAct and ZCvr(F) = ZCvr. Since Z ′ = ZAct ∪ ZCvr by definition,

by (D.176), Act(F) is partitioned into two disjoint sets ZAct(F) and ZCvr(F), such that

(ZAct(F), ZCvr(F)) is conflict-free in F . Thus, F is conflict-free by definition, so we

have (D.112). Finally, by (D.148), we have (D.113). �

The following lemma extends a conflict-free computation, thus providing the induc-

tion step that leads to the lower bound in Theorem 7.2.

Lemma D.9 Let H be a regular computation in C with induction number mH .

Assume the following:

• mH ≤ c − 2, (D.177)

• H is conflict-free, and (D.178)

• πmax(H) ≤ c. (D.179)

Since H is conflict-free, by definition, Act(H) is partitioned into two disjoint sets

ZAct = ZAct(H) and ZCvr = ZCvr(H).

Then, there exists a regular computation G = H ◦ E in C with induction number

mH + 1, where E = GmH+1 is the newly appended (mH + 1)st segment, satisfying the

following:

• πmax(G) = 0, and (D.180)

• Act(G) = ZAct. (D.181)

Proof: As stated above, Act(H) can be partitioned into two disjoint sets ZAct =

ZAct(H) and ZCvr = ZCvr(H), such that (ZAct, ZCvr) is a conflict-free pair in H:

ZAct ∪ ZCvr = Act(H) and ZAct ∩ ZCvr = {}. (D.182)

For each p ∈ Act(H), define ep, p’s next critical event, to be ce(p, mH + 1). Also

define vce(p) to be the variable accessed by ep:

• for each p ∈ Act(H), ep accesses vce(p). (D.183)

352

Define Zv, the set of active processes that access v via their next critical events, as

Zv = {p ∈ Z: vce(p) = v}. Arbitrarily index processes in ZAct as

ZAct = {p1, p2, . . . , pb}, (D.184)

where b = |ZAct|. In order to construct the new (mH+1)st segment E, for each p ∈ ZAct,

we have to construct its “next covering segment” C(p, mH + 1), which we denote by

C(p). We do this by adding the following events to C(p), for each p ∈ ZAct (see

Figure 7.6).

Step 1. For each m (1 ≤ m ≤ mH), if ce(p, m) writes a variable v (i.e., p ∈ AW m
v (H)),

and if CW m
v (H) is nonempty, then we choose a process dp(p, m) from RW m

v , and

deploy dp(p, m) by adding ie(dp(p, m), m), its invocation event on v, to C(p).

(After deployment, dp(p, m) does not belong to RW m
v any more.)

Step 2. If Condition (C2) (from the definition of a conflict-free pair) is true, then let

v = vce(p). We choose a process dp(p,mH+1) from ZCvr such that its next critical

event, edp(p,mH+1), is a write to v. (Thus, we have p ∈ ZAct∩Zv and dp(p,mH+1) ∈
ZCvr ∩ Zv.) We then deploy dp(p, mH + 1) by adding ie(dp(p, mH + 1), mH + 1),

its invocation event on v, to C(p).

We claim that there exist enough reserve processes to deploy throughout the con-

struction of all next covering segments. By Lemma D.5, for each covering pair (m, v)

of H, we have |RW m
v (H)| > |AW m

v (H)|. (Assumptions (D.54) and (D.55) stated in

Lemma D.5 follow from (D.177) and (D.179), respectively.) Thus, H has enough

reserve processes to use in Step 1. Also, if Condition (C2) is true, then we have

|ZCvr ∩ Zv| ≥ c · |ZAct ∩ Zv| + c2 > |ZAct ∩ Zv|, and hence we have enough processes in

ZCvr ∩ Zv to use in Step 2.

We now construct E as follows:

E = S(p1, mH +1)◦C(p1)◦S(p2, mH +1)◦C(p2)◦ · · ·◦S(pb, mH +1)◦C(pb). (D.185)

In order to show that G is a valid computation in C, we first need the following

claim. (Informally, we show that G satisfies Lemma D.1.)

Claim 1: Consider an event fp in G, and a variable v. Denote G as

F1 ◦ 〈fp〉 ◦ F2, where F1 and F2 are subcomputations of G. If fp reads v,

353

then the following holds:

writer(v, F1) = p ∨ writer(v, F1) = ⊥ ∨ value(v, F1) = ;.

Proof of Claim: If fp is an event in H, then by applying Lemma D.1

with ‘H’ ← H and ‘ep’ ← fp, the claim follows. Hence, assume that fp is

an event in E.

Since covering segments consist entirely of invocation events, by the defini-

tion of E (given in (D.185)),

• fp is contained in S(p, mH + 1), (D.186)

and also p ∈ ZAct holds. By (D.182), we also have

p ∈ ZAct ⊆ Act(H). (D.187)

Since fp reads v, p executes a critical read of v in G. Thus,

• ce(p, m) reads v, for some m (1 ≤ m ≤ mH + 1). (D.188)

Let gq = writer event(v, F1). If we have either q = p or q = ⊥, then we

are done. Thus, assume q �= p ∧ q �= ⊥. By the Atomicity property, gq is

either an atomic write event of v or an invocation event on v. If gq is an

invocation event, then we have value(v, F1) = ;, and hence we are done.

We claim that gq cannot be an atomic write event. For the sake of contra-

diction, assume otherwise, i.e., gq is an atomic write event of v. Then, by

(D.7) and (D.185),

• gq is contained in solo segment S(q, l), for some l (1 ≤ l ≤ mH+1). (D.189)

Thus,

• ce(q, j) is a write to v, for some j ≤ l; (D.190)

We consider two cases, depending on the value of j.

Case 1: j = mH + 1.

In this case, by (D.190),

354

• eq = ce(q, mH + 1) is a write to v. (D.191)

Moreover, by (D.189) and (D.190), gq is contained in S(q, mH + 1), and

hence, by (D.184) and (D.185), we have

q ∈ ZAct. (D.192)

Thus, by (D.178), (D.191), and the definition of a conflict-free computa-

tion,

• either Condition (C1) or Condition (C2) is true,

and hence, by (D.187), ep = ce(p, mH + 1) is also a write event. Therefore,

by (D.188), we have m ≤ mH , and hence,

• p reads v in H. (D.193)

By (D.187), (D.191), (D.192), and (D.193), we have a contradiction of (the

last line of) Condition (C1). Thus, assume that Condition (C2) is true. By

(D.183) and (D.191), it follows that Step 2 (in the construction of E) adds

an invocation event h on v to C(q). Therefore, by (D.186), and since gq

precedes fp, E can be written as follows:

E = · · · ◦ S(q, mH + 1) ◦ C(q) ◦ · · · ◦ S(p, mH + 1) ◦ · · · ,

where events gq, h, and fp are contained in S(q, mH + 1), C(q), and

S(p, mH + 1), respectively. Therefore, G contains a write on v (namely,

h) between gq and fp, which contradicts gq = writer event(v, F1).

Case 2: 1 ≤ j ≤ mH.

In this case, by (D.190), q writes v in H, and q ∈ AW j
v(H) holds. We

consider two cases.

First, assume that CW j
v(H) is empty, i.e.,

• q is the single writer of v in H. (D.194)

If 1 ≤ m ≤ mH , then by (D.188), and by applying R4 with ‘p’ ← q, ‘q’ ← p,

and ‘m’ ← j, we have p ∈ Cvrj(H). However, since Cvrj(H) ⊆ Cvr(H) (by

355

(7.8)), and since Act(H) and Cvr(H) are disjoint (by (7.4)), this contradicts

(D.187).

Therefore, by (D.188), m = mH + 1 holds, and ep = ce(p, mH + 1) reads

v. Thus, by (D.107) and (D.194), we have q ∈ Act(H) − (ZAct ∪ ZCvr).

However, this is impossible by (D.182).

Second, assume that q is not the single writer of H, i.e., CW j
v(H) is

nonempty. If l ≤ mH , then by (D.189), and by applying R2 with ‘m’ ← l, it

follows that C(q, l) contains an invocation event h on v. On the other hand,

if l = mH + 1, then by (D.184), (D.185), and (D.189), we have q ∈ ZAct,

and hence, Step 1 adds an invocation event h on v to C(q) = C(q, mH +1).

Therefore, by (D.186), and since gq precedes fp, G can be written as follows:

G = · · · ◦ S(q, l) ◦ C(q, l) ◦ · · · ◦ S(p, mH + 1) ◦ · · · ,

where events gq, h, and fp are contained in S(q, l), C(q, l), and S(p,mH+1),

respectively. Therefore, G contains a write on v (namely, h) between gq and

fp, which contradicts gq = writer event(v, F1). �

Claim 1 implies that each process p ∈ ZAct cannot distinguish its execution in

G = H ◦ E from its solo computation. Thus, each such p can execute its next solo

segment after H. Moreover, all events in the next covering segments are invocation

events, and hence they cannot read any variable. Thus, by inductively applying P2′,

we can easily show that G is a valid computation in C.

We now claim that G is a regular computation with induction number mH + 1,

satisfying the following for each segment index m (1 ≤ m ≤ mH + 1) and variable v:

Actm(G) =

{
Actm(H), if m ≤ mH

ZAct, if m = mH + 1;
(D.195)

Cvrm(G) =

{
Cvrm(H), if m ≤ mH

Cvr(H) ∪ ZCvr, if m = mH + 1;
(D.196)

AW m
v (G) =




AW m
v (H), if m ≤ mH

{}, if m = mH + 1 and Condition (C3) is true

ZAct ∩ Zv, if m = mH + 1 and Condition (C1) or (C2) is true;

(D.197)

356

CW m
v (G) =




CW m
v (H), if m ≤ mH

ZCvr ∩ Zv, if m = mH + 1 and Condition (C2) is true

{}, if m = mH + 1 and Condition (C1) or (C3) is true.

(D.198)

From (D.185) and the construction of the next covering segments, assertions (7.3)–

(7.13) and (D.195)–(D.198) follow immediately. The construction of the next covering

segments ensures that G satisfies R1 and R2. From (D.178) and the definition of a

conflict-free computation, it follows that each next critical event ep (that is in E) is

different from CS p, and hence we have R3.

We now claim that G satisfies R4. Consider some segment index m (1 ≤ m ≤
mH + 1), process p, and variable v, such that p ∈ AW m

v (G) and CW m
v (G) is empty.

We consider two cases.

First, assume m ≤ mH . Note that, in this case, we have AW m
v (G) = AW m

v (H)

and CW m
v (G) = CW m

v (H). (Thus, p is the single writer of v in H by definition.) By

applying R4 to H, it follows that, for each segment index j (1 ≤ j ≤ mH) and each

process q ∈ Actj(G) = Actj(H) different from p, the following hold:

(i) if j < m and ce(q, j) is a write to v, then CW j
v(H) is nonempty;

(ii) if j < m and ce(q, j) is a read of v, then q ∈ Cvrm(H) holds;

(iii) if m ≤ j ≤ mH , then ce(q, j) does not access v.

Thus, in order to prove that m, p, and v satisfy R4, it suffices to assume j =

mH + 1 and consider a process q ∈ ActmH+1(G). Our proof obligation is to show that

ce(q, mH + 1) does not access v.

For the sake of contradiction, assume otherwise. By (D.178), (ZAct, ZCvr) satisfies

(D.107) with respect to H. By (D.195), we have q ∈ ZAct. Thus, applying (D.107)

with ‘p’ ← q and ‘q’ ← p, and using p �= q and the fact that p is the single writer of v

in H, we have q ∈ Act(H) − (ZAct ∪ ZCvr), but this is impossible by (D.182).

Second, assume that m = mH + 1. Since p ∈ ActmH+1(G), by (D.195), we have

p ∈ ZAct. Since ep = ce(p, mH + 1) writes v and CW m
v (G) is empty, Condition (C1)

must be true. Consider a segment index j (1 ≤ j ≤ mH +1) and a process q ∈ Actj(G)

different from p. Our proof obligation is to show the following three conditions:

(i) if j ≤ mH and ce(q, j) is a write to v, then CW j
v(G) is nonempty;

(ii) if j ≤ mH and ce(q, j) is a read of v, then q ∈ CvrmH+1(G) holds;

(iii) if j = mH + 1, then ce(q, j) does not access v.

357

Proof of (i)–(iii): First, consider (i). For the sake of contradiction, assume

that CW j
v(G) is empty. Thus, q is a single writer of v inH. As shown above,

(ZAct, ZCvr) satisfies (D.107) with respect to H, and hence we have either

p = q or q ∈ Act(H)−(ZAct∪ZCvr). The former contradicts our assumption,

and the latter is impossible by (D.182).

Second, consider (ii). In this case, the last line of Condition (C1) implies

q /∈ ZAct, which in turn implies q ∈ CvrmH+1(G) by (D.182), (D.195), and

(D.196).

Finally, consider (iii). By (D.195), q ∈ ActmH+1(G) implies q ∈ ZAct. Com-

bining this with p ∈ ZAct, and using the second line of Condition (C1), (iii)

follows easily.

Finally, we claim that G satisfies (D.180) and (D.181). From (D.195), we have

(D.181). (Note that ZAct is defined to be ZAct(H).) In order to show (D.180), we must

show π(m, v;G) = 0 for every covering pair (m, v) in G. We consider two cases.

First, if m ≤ mH , then by (D.179), we have

π(m, v;H) ≤ c.

Since m ≤ mH , we have AW m
v (G) = AW m

v (H) and CW m
v (G) = CW m

v (H). Hence,

by (7.15), and since G has an induction number of mH + 1, we also have

req(m, v;G) = req(m, v;H) − c.

Combining these two assertions with the definition of ‘π’ (given in (7.16)), we have

π(m, v;G) = 0.

Second, if m = mH +1, then (m, v) is a covering pair only if ZCvr is nonempty, i.e.,

only if Condition (C2) is true. Moreover, by (D.197) and (D.198), we have AW m
v (G) =

ZAct ∩ Zv and CW m
v (G) = ZCvr ∩ Zv. Hence, by (C2), we have |CW m

v (G)| ≥ c ·
|AW m

v (G)| + c2 > c · (|AW m
v (G)| + c − mH) = req(m, v;G), and hence π(m, v;G) = 0

follows. �

Theorem 7.2 For any one-shot mutual exclusion system S = (C, P, V), there exist a

p-computation F such that F does not contain CS p, and p executes Ω(logN/ log logN)

critical events in F , where N = |P |.

358

Proof: Let H1 = S(1, 1) ◦ S(2, 1) ◦ · · · ◦ S(N, 1) = 〈Enter 1, Enter 2, . . . , EnterN〉,
where P = {1, 2, . . . , N}. By the definition of a mutual exclusion system, H1 ∈ C.

In H1, each process p becomes a “single writer” of its auxiliary variable entryp. By

checking conditions (7.3)–(7.13) and R1–R4 individually, it follows that H1 is a regular

computation with induction number 1.

We repeatedly apply Lemma D.8 and Lemma D.9, and we can construct a sequence

of computations H1, H2, . . . , Hk, such that each computation Hm has induction

number m. We stop the induction at step k when assumption (D.108) or (D.110) of

Lemma D.8 is not satisfied.

Define nm = |Act(Hm)| for each m. Applying Lemma D.8 with ‘H’ ← Hm, we

construct a conflict-free computation Fm satisfying

|ZAct(Fm)| ≥ (c − 2)(nm − 1)

48c2(c − 1)(2m+ 1)
.

(This inequality follows from (D.113).) Applying Lemma D.9 with ‘H’ ← Fm, we con-

structHm+1 such that Act(Hm+1) = ZAct(Fm) (by (D.181)). Combining these relations,

we have

nm+1 ≥ (c − 2)(nm − 1)

48c2(c − 1)(2m+ 1)
,

and hence, by (7.14), (D.108), and (D.110),

nm+1 ≥ a′nm

m log2 N
≥ anm

log3 N
,

where a and a′ are some fixed constants. This in turn implies

log nm+1 ≥ log nm − 3 log logN + log a.

Therefore, by iterating over 1 ≤ m < k, and using n1 = N , we have

log nk ≥ log N − 3(k − 1) log logN + (k − 1) log a. (D.199)

If we stop the induction at step k because assumption (D.108) is not satisfied, then

we have k = c−2, and hence, by (7.14), k = Θ(logN) holds. On ther other hand, if we

stop the induction because assumption (D.110) is not satisfied, then we have nk ≤ 1,

and hence, by (D.199),

359

0 ≥ log N − 3(k − 1) log logN + (k − 1) log a,

which in turn implies

k ≥ log N

3 log logN − log a
+ 1 = Θ

(
log N

log logN

)
.

Therefore, in either case, we have k = Ω(log N/ log log N). Since Hk−1 satisfies

(D.110), we can choose a process p from Act(Hk−1). Since p executes exactly k−1 solo

segments (and hence, k − 1 critical events) in Hk−1, Hk−1 | p is a solo computation that

satisfies the theorem. �

360

APPENDIX E

CORRECTNESS PROOF FOR

ALGORITHM G-CC IN

SECTION 8.2.1

In this appendix, we formally prove thatAlgorithm G-CC, presented in Section 8.2.1,

satisfies the Exclusion and Starvation-freedom properties. Our proof makes use of a

number of auxiliary variables. In Figure E.1, Algorithm G-CC is shown with these

added auxiliary variables, which are accessed only by statements 5 and 18. We begin

with a description of these variables.

Private auxiliary variable p.position keeps track of p’s position in the queue; as

shown by invariants (I14), (I15), (I26), and (I27) given below, when p is in its exit

section, p.position equals the non-auxiliry variable p.pos .

For i = 0 or 1, HistLen[i], Hist[i][0..∞], and Param[i][0..∞] keep the history of queue i

since the last time it was initialized. (As explained in Section 8.2.1, each queue is

accessed at most 2N times before it is re-initialized. Thus, only finite prefixes of

Hist[i][. . .] and Param[i][. . .] are actually used.)

Example. Assume that queue i is initially empty. Then, initially we have the follow-

ing.

Tail [i] = ⊥;

HistLen[i] = 0;

Hist[i] =
(⊥, ⊥, ⊥, . . .

)
;

Param[i] =
(⊥, ⊥, ⊥, . . .

)
.

Now suppose that processes p, q, r, and p execute statement 5 (in that order), and

that the private variables p.counter , q.counter , and r.counter initially equal 0, 3, and

5, respectively.

361

shared variables
CurrentQueue: 0..1;
Tail : array[0..1] of Vartype initially ⊥;
Position: array[0..1] of 0..2N − 1 initially 0;
Signal : array[0..1][Vartype] of boolean initially false;
Active: array[0..N − 1] of boolean initially false;
QueueIdx : array[0..N − 1] of (⊥, 0..1)

type
ParamType = record

proc: 0..N − 1;
counter : integer

end

shared auxiliary variables
HistLen: array[0..1] of 0..∞ initially 0;
Hist: array[0..1][0..∞] of Vartype initially ⊥;
Param: array[0..1][0..∞] of ParamType initially ⊥

private variables
idx : 0..1;
counter : integer;
prev , self , tail : Vartype;
pos: 0..2N − 1

private auxiliary variable
position: 0..∞

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;

1: QueueIdx [p] := ⊥;
2: Active[p] := true;
3: idx := CurrentQueue;
4: QueueIdx [p] := idx ;

5: /∗ atomically execute lines 5a–5h ∗/
5a: prev := Tail [idx];
5b: self := φ(prev , αp[counter]);
5c: Tail [idx] := self ;
5d: position := HistLen[idx];
5e: Param[idx][position] := (p, counter);
5f: Hist[idx][position+ 1] := self ;
5g: HistLen[idx] := position+ 1;
5h: counter := counter + 1;

if prev �= ⊥ then
6: await Signal [idx][prev];
7: Signal [idx][prev] := false

fi;
8: Entry2(idx);

9: Critical Section;

10: pos := Position[idx];
11: Position[idx] := pos + 1;
12: Exit2(idx);

13: if (pos < N) ∧ (pos �= p) then
14: await ¬Active[pos] ∨
15: (QueueIdx [pos] = idx)

elseif pos = N then
16: tail := Tail [1− idx];
17: Signal [1− idx][tail] := false;

18: /∗ atomically execute lines 18a–18d ∗/
18a: Tail [1− idx] := ⊥;
18b: HistLen[1− idx] := 0;
18c: forall j do Param[1− idx][j] := ⊥ od;
18d: forall j do Hist[1− idx][j] := ⊥ od;

19: Position[1− idx] := 0;
20: CurrentQueue := 1− idx

fi;

21: Signal [idx][self] := true;
22: Active[p] := false
od

Figure E.1: Algorithm G-CC with auxiliary variables added.

362

If the underlying fetch-and-φ primitive is fetch-and-store with 2N + 1 distinct val-

ues (as defined on page 213), then we have the following after these four fetch-and-φ

invocations take place.

Tail [i] = (p, 1);

HistLen[i] = 4;

Hist[i] =
(⊥, (p, 0), (q, 1), (r, 1), (p, 1), ⊥, ⊥, . . .

)
;

Param[i] =
(
(p, 0), (q, 3), (r, 5), (p, 1), ⊥, ⊥, . . .

)
.

On the other hand, if the underlying fetch-and-φ primitive is fetch-and-increment

(where we define ⊥ = 0), then Tail [i] and Hist[i] have the following final value, while

the other two variables hold the same values as above.

Tail [i] = 4;

Hist[i] =
(⊥ (= 0), 1, 2, 3, 4, ⊥, ⊥, . . .

)
.

E.1 List of Invariants

We will establish the Exclusion property by proving that the conjunction of a number

of assertions is an invariant. This proves that each of these assertions individually is

an invariant. These invariants are listed below. Unless stated otherwise, we assume

the following: i ranges over 0 and 1; h, j, k, and l range over 0..∞; x and y range over

Vartype; p, q, and r range over 0..N − 1.

invariant (Exclusion)
∣∣{p :: p@{9..12}}∣∣ ≤ 1 (I1)

invariant
∣∣{p :: p@{7..21} ∧ p.idx = i

}∣∣ ≤ 1 (I2)

invariant p@{6..22} ∧ p.idx = i ∧ p.position = h ⇒
HistLen[i] > h ∧ p.prev = Hist[i][h] ∧ p.self = Hist[i][h+ 1] (I3)

invariant 0 < HistLen[i] < 2N ⇒ Tail [i] �= ⊥ (I4)

invariant p@{8..21} ∧ p.idx = i ⇒ (∀x :: Signal [i][x] = false) (I5)

invariant Signal [i][x] = true ⇒ x = Hist[i][Position[i]] (I6)

invariant Signal [i][x] = Signal [i][y] = true ⇒ x = y (I7)

invariant p@{7} ∧ p.idx = i ⇒ Signal [i][p.prev] = true (I8)

invariant
∣∣{p :: p@{6, 7} ∧ p.idx = i ∧ p.prev = x

}∣∣ ≤ 1 (I9)

363

invariant Position[i] = q + 1 ⇒
q@{0..3} ∨ q.idx = i ∨ (∃p :: p@{12..20} ∧ p.idx = i) (I10)

invariant q + 1 < Position[i] ≤ N ⇒ q@{0..3} ∨ q.idx = i (I11)

invariant p@{11..13} ∧ p.idx = i ∧ p.pos = N ⇒
CurrentQueue = i ∧ (∀q :: q@{0..3} ∨ q.idx = i) (I12)

invariant p@{16..20} ∧ p.idx = i ⇒
CurrentQueue = i ∧ (∀q :: q@{0..3} ∨ q.idx = i) (I13)

invariant p@{11} ∧ p.idx = i ⇒ Position[i] = p.pos (I14)

invariant p@{12..21} ∧ p.idx = i ⇒ Position[i] = p.pos + 1 (I15)

invariant HistLen[i] > h ∧ Param[i][h] = (p, c) ⇒
Hist[i][h+ 1] = φ(Hist[i][h], αp[c]) (I16)

invariant Tail [i] = Hist[i][HistLen[i]] (I17)

invariant Hist[i][0] = ⊥ (I18)

invariant 0 ≤ j < k < HistLen[i] ∧
Param[i][j] = (p, c1) ∧ Param[i][k] = (p, c2) ∧
(∀l : j < l < k :: Param[i][l].proc �= p) ⇒

c2 = c1 + 1 (I19)

invariant 0 ≤ j < HistLen[i] ∧
Param[i][j] = (p, c) ∧
(∀k : j < k < HistLen[i] :: Param[i][k].proc �= p) ⇒

(p.counter = c+ 1 ∧ p@{4..22} ∧ p.idx = i) ∨
(p.counter = c+ 1 ∧ p@{0..3}) ∨
(p@{0..3} ∧ CurrentQueue = 1 − i) ∨
(p@{4..22} ∧ p.idx = CurrentQueue = 1 − i) (I20)

invariant 0 ≤ HistLen[i] ≤ 2N (I21)

invariant 0 ≤ Position[i] ≤ 2N (I22)

invariant HistLen[i] = 0 ⇒ (∀x :: Signal [i][x] = false) (I23)

invariant p@{18} ∧ p.idx = i ⇒ (∀x :: Signal [1 − i][x] = false) (I24)

invariant p@{17} ∧ p.idx = i ⇒ p.tail = Tail [1 − i] (I25)

invariant p@{7..11} ∧ p.idx = i ⇒ Position[i] = p.position (I26)

invariant p@{12..21} ∧ p.idx = i ⇒ Position[i] = p.position + 1 (I27)

invariant
[

HistLen[i] − Position[i] =
∣∣{p :: p@{6..11} ∧ p.idx = i

}∣∣] ∨
(∃p :: p@{19} ∧ p.idx = 1 − i) (I28)

invariant
∣∣{p :: p@{6..21} ∧ p.idx = i ∧ p.position = h

}∣∣ ≤ 1 (I29)

invariant CurrentQueue = i ⇒

364

∣∣{p :: p@{4, 5} ∧ p.idx = 1 − i
}∣∣ ≤ 2N − HistLen[1 − i] (I30)

invariant Position[i] = N + 1 ⇒
CurrentQueue = 1 − i ∨
(∃p :: p@{12..20} ∧ p.idx = i ∧ p.pos = N) (I31)

invariant Position[i] > N + 1 ⇒ CurrentQueue = 1 − i (I32)

invariant Active[p] = p@{3..22} (I33)

invariant p@{5..22} ∧ p.idx = i ⇒ QueueIdx [p] = i (I34)

invariant p@{2..4} ⇒ QueueIdx [p] = ⊥ (I35)

invariant Position[i] ≤ N ⇒
CurrentQueue = i ∨
(∃p :: p@{20} ∧ p.idx = 1 − i) ∨(
Position[i] = 0 ∧ (∀q :: q@{0..3} ∨ q.idx = 1 − i)

)
(I36)

invariant 1 ≤ Position[i] ≤ N ⇒ CurrentQueue = i (I37)

invariant p@{4, 5} ∧ p.idx = i ⇒ HistLen[i] < 2N (I38)

invariant p@{19, 20} ∧ p.idx = i ⇒ HistLen[1 − i] = 0 (I39)

invariant p@{20} ∧ p.idx = i ⇒ Position[1 − i] = 0 (I40)

invariant Position[i] ≤ h < HistLen[i] ⇒
(∃p :: p@{6..11} ∧ p.idx = i ∧ p.position = h) (I41)

invariant Position[i] = h > 0 ⇒
Signal [i][Hist[i][h]] = true ∨(∃p :: p@{12..21} ∧ p.idx = i ∧ p.position = h − 1

) ∨(∃q :: q@{8..11} ∧ q.idx = i ∧ q.position = h
)

(I42)

invariant 0 < j < k ≤ HistLen[i] ∧ k < 2N ∧
Param[i][j − 1].proc �= Param[i][k − 1].proc ⇒

Hist[i][j] �= Hist[i][k] (I43)

invariant 0 < j ≤ HistLen[i] ∧ j < 2N ⇒ Hist[i][j] �= ⊥ (I44)

invariant 0 < j < k ≤ HistLen[i] ∧ k < 2N ∧
Param[i][j − 1] = (p, c) ∧ Param[i][k − 1] = (p, c+ 1) ⇒

Hist[i][j] �= Hist[i][k] (I45)

invariant Position[i] ≤ h < HistLen[i] ∧ Param[i][h].proc = p ⇒
p@{6..11} ∧ p.idx = i ∧ p.position = h (I46)

invariant p@{6} ∧ p.idx = i ⇒ Position[i] ≤ p.position (I47)

invariant Position[i] ≤ j < k < HistLen[i] ⇒ Hist[i][j] �= Hist[i][k] (I48)

365

E.2 Proof of the Exclusion Property

We now prove that each of (I1)–(I48) is an invariant. For each invariant I, we prove

that for any pair of consecutive states t and u, if all invariants hold at t, then I holds at

u. (It is easy to see that each invariant is initially true, so we leave this part of the proof

to the reader.) If I is an implication (which is the case for most of our invariants), then

it suffices to check only those program statements that may establish the antecedent of

I, or that may falsify the consequent if executed while the antecedent holds.

invariant (Exclusion)
∣∣{p :: p@{9..12}}∣∣ ≤ 1 (I1)

Proof: Since the Entry2 and Exit2 routines (statements 8 and 12) are assumed to be

correct, (I1) follows easily from (I2). �

invariant
∣∣{p :: p@{7..21} ∧ p.idx = i

}∣∣ ≤ 1 (I2)

Proof: The only statements that may potentially falsify (I2) are 5.p and 6.p. Statement

5.p may falsify (I2) by establishing p@{7..21} ∧ p.idx = i only if executed when

p.idx = i ∧ Tail [i] = ⊥ ∧ q@{7..21} ∧ q.idx = i

holds, where q is any arbitrary process, different from p. (In this case, process p transits

from statement 5 to statement 8.) By (I4) and (I38), p@{5} ∧ p.idx = i ∧ Tail [i] = ⊥
implies HistLen[i] = 0. However, by applying (I3) with ‘p’ ← q, we have HistLen[i] >

q.position ≥ 0, a contradiction. Thus, statement 5.p cannot falsify (I2).

Statement 6.pmay falsify (I2) by establishing p@{7..21} ∧ p.idx = i only if executed

when

p.idx = i ∧ Signal [i][p.prev] = true ∧ q@{7..21} ∧ q.idx = i,

holds, where q is any arbitrary process, different from p. By (I5), we have q@{7}.
Thus, by (I8), we have Signal [i][q.prev] = true, which in turn implies p.prev = q.prev

by (I7). However, by (I9), this implies p = q, a contradiction. Thus, statement 6.p

cannot falsify (I2). �

invariant p@{6..22} ∧ p.idx = i ∧ p.position = h ⇒
HistLen[i] > h ∧ p.prev = Hist[i][h] ∧ p.self = Hist[i][h+ 1] (I3)

366

Proof: The only statement that may establish the antecedent is 5.p, which may do so

only if executed when p.idx = i ∧ HistLen[i] = h holds. In this case, 5.p establishes

HistLen[i] = h+1 ∧ p.self = Hist[i][h+1]. Moreover, by (I17), Tail [i] = Hist[i][h] holds

before 5.p is executed, and hence, p.prev = Hist[i][h] holds afterward.

The only statements that may falsify the consequent are 5.q and 18.q, where q is

any arbitrary process. As shown above, statement 5.p cannot falsify (I3). For q �= p, if

statement 5.q is executed when HistLen[i] > h holds, then it preserves HistLen[i] > h,

and does not update either Hist[i][h] or Hist[i][h + 1]. Thus, statement 5.q preserves

(I3).

Statement 18.q may falsify the consequent only if executed when q.idx = 1−i holds.

However, by applying (I13) with ‘p’ ← q and ‘i’ ← 1−i, this implies p@{0..3} ∨ p.idx =

1−i. Thus, in this case, the antecedent is false before and after the execution of 18.q. �

invariant 0 < HistLen[i] < 2N ⇒ Tail [i] �= ⊥ (I4)

Proof: Invariant (I4) follows easily by applying (I44) with ‘j’ ← HistLen[i], and using

(I17). �

invariant p@{8..21} ∧ p.idx = i ⇒ (∀x :: Signal [i][x] = false) (I5)

Proof: The only statements that may establish the antecedent are 5.p and 7.p. State-

ment 5.p may establish the antecedent only if executed when p.idx = i ∧ Tail [i] = ⊥
holds. In this case, by (I4) and (I38), we have HistLen[i] = 0. Hence, by (I23), the

consequent is true before and after the execution of 5.p.

Statement 7.p may establish the antecedent only if executed when p@{7} ∧ p.idx =

i holds. In this case, by (I7) and (I8), Signal [i][p.prev] is the only entry among

Signal [i][. . .] that is true. Thus, statement 7.p establishes the consequent.

The only statement that may falsify the consequent is 21.q, where q is any arbitrary

process. Statement 21.q may potentially falsify (I5) only if executed when p@{8..21} ∧
p.idx = i ∧ q@{21} ∧ q.idx = i holds, which implies p = q by (I2). Thus, 21.q falsifies

the antecedent in this case. �

invariant Signal [i][x] = true ⇒ x = Hist[i][Position[i]] (I6)

367

Proof: The only statement that may establish the antecedent is 21.p, which may

do so only if p.idx = i ∧ p.self = x holds. In this case, before 21.p is executed,

Position[i] = p.position + 1 and p.self = Hist[i][p.position + 1] hold, by (I27) and (I3),

respectively. Thus, the consequent is true before and after the execution of 21.p.

The only statements that my falsify the consequent are 5.p and 18.p (which may

update Hist[i][Position[i]]) and 11.p (which may update Position[i]), where p is any

arbitrary process. Statement 5.p may update Hist[i][Position[i]] only if executed when

p@{5} ∧ p.idx = i (E.1)

holds. In this case, 5.p updates only one entry of Hist[i][. . .], namely, Hist[i][h + 1],

where h is the value of HistLen[i] before its execution. Moreover, by (I28), either

h ≥ Position[i] holds, or there exists a process q satisfying q@{19} ∧ q.idx = 1− i. In

the former case, statement 5.p does not update Hist[i][Position[i]], and hence preserves

(I5). In the latter case, by (I13), we have p@{0..3} ∨ p.idx = 1 − i, which contradicts

(E.1). It follows that the latter case in fact cannot arise.

Statement 18.p may update Hist[i][Position[i]] only if executed when p.idx = 1 −
i holds, in which case, by (I24), the antecedent of (I6) is false before and after its

execution. Similarly, statement 11.p may update Position[i] only if executed when

p.idx = i holds, in which case, by (I5), the antecedent is false before and after its

execution. �

invariant Signal [i][x] = Signal [i][y] = true ⇒ x = y (I7)

Proof: This invariant follows trivially from (I6). �

invariant p@{7} ∧ p.idx = i ⇒ Signal [i][p.prev] = true (I8)

Proof: The only statement that may establish the antecedent is 6.p, which may do so

only if the consequent holds.

The only statements that may falsify the consequent are 7.q and 17.q, where q is

any arbitrary process. Statement 7.q may potentially falsify (I8) only if executed when

p@{7} ∧ p.idx = i ∧ q@{7} ∧ q.idx = i holds. In this case, by (I2), we have p = q,

and hence 7.q falsifies the antecedent. Statement 17.q may falsify the consequent only

if executed when q.idx = 1−i holds, which implies that p@{0..3} ∨ p.idx = 1−i holds,

by (I13). Thus, the antecedent is false before and after the execution of 17.q. �

368

invariant
∣∣{p :: p@{6, 7} ∧ p.idx = i ∧ p.prev = x

}∣∣ ≤ 1 (I9)

Proof: Assume the following.

p@{6, 7} ∧ q@{6, 7} ∧ p.idx = q.idx = i ∧ p.prev = q.prev = x.

Our proof obligation is to show p = q. Define j = p.position and k = q.position.

By (I3), we have (p.prev = Hist[i][j] = x) ∧ (j < HistLen[i]). Similarly, we also have

(q.prev = Hist[i][k] = x) ∧ (k < HistLen[i]). Moreover, by (I26) and (I47), we have

j ≥ Position[i] and k ≥ Position[i].

Combining these assertions, by (I48), we have j = k. By (I29), this implies p = q. �

invariant Position[i] = q + 1 ⇒
q@{0..3} ∨ q.idx = i ∨ (∃p :: p@{12..20} ∧ p.idx = i) (I10)

Proof: The only statements that may establish the antecedent are 11.r and 19.r, where

r is any arbitrary process. Statement 11.r may establish the antecedent only if executed

when r.idx = i holds, in which case it establishes the last disjunct of the consequent. If

19.r updates Position[i], then it establishes Position[i] = 0, and hence cannot establish

the antecedent. (Recall that q is assumed to range over 0..N − 1.)

The only statement that may falsify q@{0..3} ∨ q.idx = i is 3.q, which may do

so only if executed when CurrentQueue = 1 − i holds, which in turn implies that

Position[i] = 0 ∨ Position[i] > N holds, by (I37). Thus, since 0 ≤ q < N , the an-

tecedent is false before and after 3.q is executed.

The only statements that may falsify p@{12..20} ∧ p.idx = i are 13.p, 14.p, 15.p,

and 20.p. Assume that the antecedent holds before the execution of each of these

statements. By (I15), we have p.pos = q < N , and hence statement 13.p establishes

p@{14}, and statement 20.p cannot be executed (since p.pos = N holds when it is

executed).

Statement 14.pmay falsify p@{12..20} only if executed when Active[q] = false holds.

By (I33), this implies that q@{0..2} holds, and hence the consequent of (I10) holds after

14.p is executed. Statement 15.p may falsify p@{12..20} ∧ p.idx = i only if executed

when QueueIdx [q] = i holds. By (I34) and (I35), this implies q@{0, 1} ∨ q.idx = i,

and hence the consequent of (I10) holds after its execution. �

invariant q + 1 < Position[i] ≤ N ⇒ q@{0..3} ∨ q.idx = i (I11)

369

Proof: The only statements that may establish the antecedent are 11.r and 19.r, where

r is any arbitrary process. Statement 11.r updates Position[i] only if executed when

r.idx = i holds, in which case, by (I14), it increments Position[i] by one. Therefore,

statement 11.r may establish the antecedent only if executed when Position[i] = q + 1

holds. In this case, by (I10), either the consequent holds, or there exists a process p

satisfying p@{12..20} ∧ p.idx = i, before the execution of 11.r. However, since we have

r@{11} ∧ r.idx = i, the latter is precluded by (I2). Therefore, the consequent is true

before 11.r is executed, and hence it is also true afterward.

If statement 19.r updates Position[i], then it establishes Position[i] = 0, and hence

cannot establish the antecedent.

The only statement that may falsify the consequent is 3.q, which may do so only if

CurrentQueue �= i holds. In this case, by (I37), the antecedent is false before and after

the execution of 3.q. �

invariant p@{11..13} ∧ p.idx = i ∧ p.pos = N ⇒
CurrentQueue = i ∧ (∀q :: q@{0..3} ∨ q.idx = i) (I12)

Proof: The only statement that may establish the antecedent is 10.p, which may do

so only if executed when

p@{10} ∧ p.idx = i ∧ Position[i] = N (E.2)

holds. By (I37), this implies that CurrentQueue = i holds before and after 10.p is

executed.

In order to prove that (∀q :: q@{0..3} ∨ q.idx = i) holds after the execution of 10.p,

we consider two cases, depending on the value of q. If 0 ≤ q < N − 1, then by (I11),

q@{0..3} ∨ q.idx = i holds before and after the execution of 10.p. On the other hand,

if q = N −1, then since Position[i] = N , by (I10), either q@{0..3} ∨ q.idx = i holds, or

there exists a process r (different from p) satisfying r@{12..20} ∧ r.idx = i. However,

the latter is precluded by (E.2) and (I2).

The only statement that may falsify CurrentQueue = i is 20.r (where r is any

arbitrary process), which may do so only if executed when r.idx = i holds. Taken

together with the antecedent, this implies that r = p holds, by (I2). Thus, statement

20.r falsifies the antecedent in this case.

The only statement that may falsify q@{0..3} ∨ q.idx = i is 3.q. However, if 3.q

is executed when the consequent is true, then 3.q establishes q.idx = i, and hence

preserves the consequent. �

370

invariant p@{16..20} ∧ p.idx = i ⇒
CurrentQueue = i ∧ (∀q :: q@{0..3} ∨ q.idx = i) (I13)

Proof: The only statement that may establish the antecedent is 13.p, which may do

so only if executed when p.idx = i ∧ p.pos = N holds. In this case, by (I12), the

consequent holds before and after the execution of statement 13.p.

The only statements that may falsify the consequent are 3.q and 20.q (where q is

any arbitrary process). However, each preserves the consequent as shown in the proof

of (I12). �

invariant p@{11} ∧ p.idx = i ⇒ Position[i] = p.pos (I14)

invariant p@{12..21} ∧ p.idx = i ⇒ Position[i] = p.pos + 1 (I15)

Proof: The only statement that may establish the antecedent of (I14) (respectively,

(I15)) is 10.p (respectively, 11.p), which clearly establishes the corresponding conse-

quent.

The only other statements that may falsify either consequent are 11.q and 19.q,

where q is any arbitrary process. Statement 11.q may falsify either consequent only

if executed when q.idx = i holds. Taken together with either antecedent, this implies

that q = p holds, by (I2). Thus, statement 11.q falsifies the antecedent of (I14), and

establishes the antecedent and consequent of (I15).

Statement 19.q may falsify either consequent only if executed when q.idx = 1− i ∧
q.pos = N holds. By (I13), this implies that p@{0..3} ∨ p.idx = 1 − i holds. Hence,

the antecedents of (I14) and (I15) are false before and after the execution of 19.q. �

invariant HistLen[i] > h ∧ Param[i][h] = (p, c) ⇒
Hist[i][h+ 1] = φ(Hist[i][h], αp[c]) (I16)

Proof: The only statement that may establish the antecedent is 5.q, where q is any

arbitrary process. (Note that statement 18.q assigns HistLen[1− q.idx] := 0, and hence

cannot establish the antecedent.)

Statement 5.q may establish the antecedent only if executed when HistLen[i] =

h ∧ q.idx = i holds. In this case, by (I17), 5.q establishes

Hist[i][h+ 1] = q.self = φ(Hist[i][h], αq[c
′]) and Param[i][h] = (q, c′),

where c′ is the value of q.counter before the execution of 5.q. Thus, the antecedent is

established only if q = p and c = c′, in which case the consequent easily follows.

371

The only statements that may falsify the consequent are 5.q and 18.q, where q is

any arbitrary process. Statement 5.q may falsify the consequent only if executed when

q.idx = i ∧ (HistLen[i] = h−1 ∨ HistLen[i] = h) holds. If HistLen[i] = h−1 holds before

its execution, then HistLen[i] = h holds after its execution, and hence the antecedent is

false. On the other hand, if HistLen[i] = h holds before its execution, then statement

5.q preserves (I16) as shown above.

Statement 18.q may falsify the consequent only if executed when q.idx = 1−i holds,

in which case it establishes HistLen[i] = 0, and hence the antecedent is false after its

execution. �

invariant Tail [i] = Hist[i][HistLen[i]] (I17)

invariant Hist[i][0] = ⊥ (I18)

Proof: These invariants follow trivially from inspecting the code. In particular,

lines 5c, 5f and 5g, as well as lines 18a and 18d, ensure that (I17) is maintained.

Also, since HistLen[i] is always nonnegative (by (I21)), line 5f cannot update Hist[i][0],

and hence (I18) is maintained. �

invariant 0 ≤ j < k < HistLen[i] ∧
Param[i][j] = (p, c1) ∧ Param[i][k] = (p, c2) ∧
(∀l : j < l < k :: Param[i][l].proc �= p) ⇒

c2 = c1 + 1 (I19)

Proof: The only statement that may establish the antecedent is 5.q, where q is any

arbitrary process. (Note that statement 18.q assigns HistLen[1 − 1.idx] := 0 and does

not update any entry of Param.) Since 5.q increments HistLen[q.idx] by one, it may

establish the antecedent only if executed when q.idx = i ∧ HistLen[i] = k holds. Note

that 5.q establishes Param[i][k] = (q, c) in this case, where c is the value of q.counter

before the execution of 5.q. Thus, 5.q may establish the antecedent only if executed

when the following holds.

q = p ∧ c2 = q.counter ∧ q@{5} ∧ q.idx = i ∧
0 ≤ j < k = HistLen[i] ∧
Param[i][j] = (p, c1) ∧
(∀l : j < l < k :: Param[i][l].proc �= p).

Thus, by applying (I20) with ‘c’ ← c1, the first disjunct of the consequent of (I20)

follows, and hence we have c2 = q.counter = c1 + 1. �

372

invariant 0 ≤ j < HistLen[i] ∧
Param[i][j] = (p, c) ∧
(∀k : j < k < HistLen[i] :: Param[i][k].proc �= p) ⇒

(p.counter = c+ 1 ∧ p@{4..22} ∧ p.idx = i) ∨ A
(p.counter = c+ 1 ∧ p@{0..3}) ∨ B
(p@{0..3} ∧ CurrentQueue = 1 − i) ∨ C
(p@{4..22} ∧ p.idx = CurrentQueue = 1 − i) D

(I20)

Proof: The only statement that may establish the antecedent is 5.q, where q is any

arbitrary process. (As with (I19), 18.q need not be considered here.) Since 5.q in-

crements HistLen[q.idx] by one, it may establish the antecedent only if executed when

q.idx = i ∧ HistLen[i] = j holds. Note that 5.q establishes Param[i][k] = (q, c′), where

c′ is the value of q.counter before the execution of 5.q. Thus, the antecedent may be es-

tablished only if q = p ∧ c′ = c holds. It follows that statement 5.q establishes disjunct

A in this case.

Disjunct A may be falsified only by statements 5.p (which may update p.counter)

and 22.p (which may falsify p@{4..22}). If statement 5.p is executed while the an-

tecedent holds, then it establishes Param[i][HistLen[i]−1] = (p, c+1), and hence falsifies

the last conjunct of the antecedent. Statement 22.p establishes disjunct B if executed

when disjunct A holds.

Disjunct B may be falsified only by statement 3.p, which establishes either dis-

junct A or disjunct D, depending on the value of CurrentQueue.

Disjunct C may be falsified only by statements 3.p and 20.q, where q is any arbi-

trary process. Statement 3.p establishes disjunct D if executed when disjunct C holds.

Statement 20.q may falsify disjunct C only if executed when q.idx = 1− i. In this case,

by (I39), HistLen[i] = 0 holds before and after the execution of 20.q, and hence the

antecedent of (I20) is false before and after its execution.

Disjunct D may be falsified only by statements 22.p and 20.q, where q is any arbi-

trary process. Statement 22.p establishes disjunct C if executed when disjunct D holds.

As shown above, the antecedent is false after the execution of 20.q. �

invariant 0 ≤ HistLen[i] ≤ 2N (I21)

Proof: The only statement that may potentially falsify (I21) is 5.p, where p is any

arbitrary process. Since 5.p increments HistLen[p.idx] by one, it may falsify (I21) only

373

if executed when p.idx = i ∧ HistLen[i] = 2N holds. However, this is precluded by

(I38). �

invariant 0 ≤ Position[i] ≤ 2N (I22)

Proof: The only statement that may potentially falsify (I22) is 11.p (where p is any

arbitrary process), which may do so only if executed when p.idx = i. In this case,

by (I14) and (I26), statement 11.p establishes Position[i] = p.pos + 1 = p.position + 1.

Moreover, by (I3) and (I21), p.position < HistLen[i] ≤ 2N holds before 11.p is executed.

Thus, statement 11.p preserves (I22). �

invariant HistLen[i] = 0 ⇒ (∀x :: Signal [i][x] = false) (I23)

Proof: The only statement that may establish the antecedent is 18.p, where p is any

arbitrary process. Statement 18.p may establish the antecedent only if executed when

p@{18} ∧ p.idx = 1 − i holds. In this case, by (I24), the consequent holds before and

after 18.p is executed.

The only statement that may falsify the consequent is 21.p, where p is any arbitrary

process. Statement 21.p may falsify the consequent only if executed when p.idx =

i holds. In this case, by (I3), HistLen[i] > p.position holds before and after 21.p is

executed. Thus, the antecedent is false before and after the execution of 21.p. �

invariant p@{18} ∧ p.idx = i ⇒ (∀x :: Signal [1 − i][x] = false) (I24)

Proof: The only statement that may establish the antecedent is 17.p, which may do

so only if p.idx = i holds. Assume that Signal [1 − i][x] = true holds for some x before

the execution of 17.p. It suffices to show x = p.tail .

By (I6), we have

x = Hist[1 − i][Position[1 − i]]. (E.3)

Also, by (I13), we have

(∀q :: q@{0..3} ∨ q.idx = i). (E.4)

Moreover, by (I2), p@{17} ∧ p.idx = i implies

¬(∃r :: r@{19} ∧ r.idx = i). (E.5)

374

Combining (E.4) and (E.5), and applying (I28) with ‘i’ ← 1− i, we have HistLen[1−
i] = Position[1 − i]. Hence, by (E.3) and (I17), we have

x = Hist[1 − i][HistLen[1 − i]] = Tail [1 − i].

Thus, by (I25), x = p.tail holds.

The only statement that may falsify the consequent is 21.q, where q is any arbitrary

process. Statement 21.q may falsify the consequent only if executed when q.idx = 1− i

holds. However, when the antecedent holds, q@{21} ∧ q.idx = 1−i is false, by (I13). �

invariant p@{17} ∧ p.idx = i ⇒ p.tail = Tail [1 − i] (I25)

Proof: The only statement that may establish the antecedent is 16.p, which may do

so only if p.idx = i holds. In this case, 16.p establishes the consequent.

The only statements that may falsify the consequent are 5.q and 18.q, where q is

any arbitrary process. Statement 5.q may falsify the consequent only if executed when

q.idx = 1 − i holds, which implies that the antecedent is false, by (I13). Similarly,

statement 18.q may falsify the consequent only if executed when q.idx = i holds, which

implies that the antecedent is false, by (I2). �

invariant p@{7..11} ∧ p.idx = i ⇒ Position[i] = p.position (I26)

Proof: The only statements that may establish the antecedent are 5.p and 6.p. State-

ment 5.p may establish the antecedent only if executed when

p@{5} ∧ Tail [i] = ⊥ ∧ p.idx = i (E.6)

holds. In this case, by (I4) and (I38), we have HistLen[i] = 0. Thus, statement 5.p

establishes p.position = 0. By (I28), HistLen[i] = 0 also implies that either Position[i] =

0 or (∃q :: q@{19} ∧ q.idx = 1 − i) holds. In the former case, the consequent is

established. In the latter case, by applying (I13) with ‘p’ ← q and ‘i’ ← 1 − i, we have

p@{0..3} ∨ p.idx = 1 − i, which contradicts (E.6). It follows that the latter case in

fact cannot arise.

Statement 6.p may establish the antecedent only if executed when

p@{6} ∧ p.idx = i ∧ Signal [i][p.prev] = true (E.7)

375

holds. By (I6), this implies p.prev = Hist[i][Position[i]]. Let k = p.position. By

(I3) (with ‘h’ ← k) and (I47), we have p.prev = Hist[i][k] and Position[i] ≤ k <

HistLen[i]. If k > Position[i], then by applying (I48) with ‘j’ ← Position[i], we

have Hist[i][Position[i]] �= Hist[i][k], a contradiction. It follows that Position[i] = k =

p.position holds before the execution of 6.p. Thus, it also holds after its execution.

The only statements that may falsify the consequent are 11.q and 19.q, where q is

any arbitrary process. Statement 11.q may falsify the consequent (when the antecedent

holds) only if executed when q.idx = i holds. Taken together with the antecedent, this

implies that q = p holds, by (I2). Thus, statement 11.q falsifies the antecedent.

Statement 19.q may falsify the consequent only if executed when q.idx = 1−i holds.

By applying (I13) with ‘p’ ← q and ‘i’ ← 1 − i, this implies p@{0..3} ∨ p.idx = 1 − i.

Hence, the antecedent is false before and after the execution of 19.q. �

invariant p@{12..21} ∧ p.idx = i ⇒ Position[i] = p.position + 1 (I27)

Proof: The only statement that may establish the antecedent is 11.p, which may do so

only if p.idx = i holds. In this case, by (I14) and (I26), 11.p establishes the consequent.

The only statements that may falsify the consequent (while the antecedent holds)

are 11.q and 19.q, where q is any arbitrary process. Statement 11.q may falsify the

consequent only if executed when q@{11} ∧ q.idx = i holds. In this case, if q = p, then

statement 11.p preserves (I27) as shown above. If q �= p, then by (I2), the antecedent

is false before and after the execution of 11.q.

The proof that 19.q preserves (I27) is similar to that given in the proof of (I26). �

invariant
[

HistLen[i] − Position[i] =
∣∣{p :: p@{6..11} ∧ p.idx = i

}∣∣] ∨
(∃p :: p@{19} ∧ p.idx = 1 − i) (I28)

Proof: Define

X =
∣∣{p :: p@{6..11} ∧ p.idx = i

}∣∣ .
The only statements that may potentially falsify (I28) are 5.q (which may modify

HistLen[i] and X), 11.q (which may modify Position[i] and X), 18.q (which may modify

HistLen[i]), and 19.q (which may modify Position[i] and also falsify the second disjunct),

where q is any arbitrary process.

Statements 5.q and 11.q may modify HistLen[i], Position[i], or X only if executed

when q.idx = i holds. In this case, 5.q increments both HistLen[i] and X by one, and

376

hence preserves (I28). Similarly, by (I14), 11.q increments Position[i] and decrements

X by one, and hence preserves (I28).

Statement 18.q may update HistLen[i] only if executed when p.idx = 1− i, in which

case it establishes the second disjunct. Statement 19.q may falsify the second disjunct

only if executed when q.idx = 1 − i. In this case, by (I13) and (I39) (with ‘p’ ← q

and ‘i’ ← 1− i), we have X = 0 and HistLen[i] = 0, respectively. Since 19.q establishes

Position[i] = 0, it establishes the first disjunct of (I28). �

invariant
∣∣{p :: p@{6..21} ∧ p.idx = i ∧ p.position = h

}∣∣ ≤ 1 (I29)

Proof: Assume that there exists a process p satisfying p@{6..21} ∧ p.idx = i ∧
p.position = h. By (I3), this implies HistLen[i] > h.

The only statement that may potentially falsify (I29) is 5.q, where q is any arbitrary

process different from p. Statement 5.q may falsify (I29) only if executed when q.idx = i

holds. However, since HistLen[i] > h, statement 5.q establishes q.position > h, and hence

cannot increase the left-hand side of (I29). �

invariant CurrentQueue = i ⇒∣∣{p :: p@{4, 5} ∧ p.idx = 1 − i
}∣∣ ≤ 2N − HistLen[1 − i] (I30)

Proof: The only statement that may establish the antecedent is 20.q, where q is any

arbitrary process. Let X denote the value of

∣∣{p :: p@{6..11} ∧ p.idx = 1 − i
}∣∣

prior to the execution of 20.q. Statement 20.q may establish the antecedent only if

executed when

q@{20} ∧ q.idx = 1 − i (E.8)

holds, which also implies the following.

∣∣{p :: p@{6..11, 20} ∧ p.idx = 1 − i
}∣∣ ≥ X + 1

By (E.8), and by applying (I13) with ‘p’ ← q and ‘i’ ← 1 − i, ¬(∃r :: r@{19} ∧
r.idx = i) holds, and hence, by (I28), we have

HistLen[1 − i] − Position[1 − i] = X.

377

Also, since 20.q may be executed only if q.pos = N holds, by applying (I15) with

‘p’ ← q and ‘i’ ← 1 − i, we have

Position[1 − i] = N + 1.

Combining these assertions, we have the following.

∣∣{p :: p@{4, 5} ∧ p.idx = 1 − i
}∣∣ ≤ N − X − 1

= N − (HistLen[1 − i] − Position[1 − i]) − 1

= N − (HistLen[1 − i] − N − 1) − 1

= 2N − HistLen[1 − i].

Thus, the consequent holds before the execution of 20.q, and hence it also holds after

its execution.

The only statements that may falsify the consequent are 3.q (which may increment

X) and 5.q (which may increment HistLen[1 − i]), where q is any arbitrary process. If

statement 3.q is executed while the antecedent holds, then it establishes q.idx = i, and

hence cannot increment X. Statement 5.q may increment HistLen[1 − i] (by one) only

if executed when q.idx = 1 − i holds, in which case it also decrements X by one, and

hence preserves the consequent. �

invariant Position[i] = N + 1 ⇒
CurrentQueue = 1 − i ∨
(∃p :: p@{12..20} ∧ p.idx = i ∧ p.pos = N) (I31)

Proof: The only statement that may establish the antecedent is 11.q, where q is any

arbitrary process. However, if 11.q establishes the antecedent, then by (I14), it also

establishes the second disjunct of the consequent.

The only statements that may falsify the consequent are 20.q (which may update

CurrentQueue) and 13.p, 14.p, 15.p, and 20.p (which may falsify p@{12..20} ∧ p.idx =

i ∧ p.pos = N), where q is any arbitrary process. Statement 20.q may falsify the

consequent only if executed when q.idx = 1−i holds. In this case, by (I40), Position[i] =

0 holds before and after the execution of 20.q. Thus, the antecedent is false before and

after 20.q is executed.

Since p.pos = N , statement 13.p establishes p@{16}, and statements 14.p and 15.p

cannot be executed. If statement 20.p is executed when p.idx = i holds, then it estab-

lishes CurrentQueue = 1 − i, and hence preserves the consequent. �

378

invariant Position[i] > N + 1 ⇒ CurrentQueue = 1 − i (I32)

Proof: The only statement that may establish the antecedent is 11.p, where p is any

arbitrary process. By (I14), 11.p may establish the antecedent only if executed when

p@{11} ∧ p.idx = i ∧ Position[i] = N + 1 holds. In this case, by (I2) and (I31), we

have the consequent.

The only statement that may falsify the consequent is 20.q, where q is any arbitrary

process. As shown in the proof of (I31), if 20.q falsifies the consequent, then the

antecedent is false after its execution. �

invariant Active[p] = p@{3..22} (I33)

invariant p@{5..22} ∧ p.idx = i ⇒ QueueIdx [p] = i (I34)

invariant p@{2..4} ⇒ QueueIdx [p] = ⊥ (I35)

Proof: These invariants follow trivially from inspecting Algorithm G-CC. �

invariant Position[i] ≤ N ⇒
CurrentQueue = i ∨ A
(∃p :: p@{20} ∧ p.idx = 1 − i) ∨ B(
Position[i] = 0 ∧ (∀q :: q@{0..3} ∨ q.idx = 1 − i)

) C
(I36)

Proof: The only statements that may establish the antecedent are 11.r and 19.r, where

r is any arbitrary process. However, if statement 11.r updates Position[i], then by (I14),

it increments Position[i] by one. It follows that, although statement 11.r may preserve

the antecedent, it cannot establish it. Statement 19.r may establish the antecedent

only if executed when r.idx = 1 − i holds, in which case it establishes disjunct B.
The only statement that may falsify disjunct A is 20.r, where r is any arbitrary

process. Statement 20.r may falsify disjunct A only if executed when r.idx = i ∧
r.pos = N holds, which implies that Position[i] = N + 1 holds, by (I15). Thus, in this

case, the antecedent is false before and after the execution of 20.r.

The only statement that may falsify disjunct B is 20.p, which establishes disjunct A.

The only statements that may falsify disjunct C are 3.q and 11.q, where q is

any arbitrary process. Statement 3.q may falsify disjunct C only if executed when

CurrentQueue = i holds, in which case disjunct A holds before and after its execution.

Statement 11.q may falsify disjunct C only if executed when q@{11} ∧ q.idx = i holds,

which is precluded when disjunct C holds. �

379

invariant 1 ≤ Position[i] ≤ N ⇒ CurrentQueue = i (I37)

Proof: By (I36), the antecedent implies one of the following.

A : CurrentQueue = i,

B : (∃p :: p@{20} ∧ p.idx = 1 − i), or

C : Position[i] = 0 ∧ (∀q :: q@{0..3} ∨ q.idx = 1 − i).

By (I40), B implies Position[i] = 0. Also, C clearly implies Position[i] = 0. Thus,

both are precluded by the antecedent. It follows that A is true. �

invariant p@{4, 5} ∧ p.idx = i ⇒ HistLen[i] < 2N (I38)

Proof: For the sake of contradiction, assume

p@{4, 5} ∧ p.idx = i ∧ HistLen[i] ≥ 2N. (E.9)

By applying (I30) with ‘i’ ← 1 − i, we have CurrentQueue �= 1 − i, i.e.,

CurrentQueue = i. (E.10)

Thus, by (I32), we have

Position[i] ≤ N + 1. (E.11)

Also, (E.9) implies

∣∣{q :: q@{6..11} ∧ q.idx = i
}∣∣ ≤ N − 1.

Hence, by (I28), we have

HistLen[i] − Position[i] ≤ N − 1 ∨ (∃r :: r@{19} ∧ r.idx = 1 − i).

However, if there exists a process r satisfying r@{19} ∧ r.idx = 1− i, then by (I13)

(with ‘p’ ← r and ‘i’ ← 1 − i), we have p@{0..3} ∨ p.idx = 1 − i, which contradicts

(E.9). Therefore, we have HistLen[i] − Position[i] ≤ N − 1.

Note that the only common solution to HistLen[i] ≥ 2N (given in (E.9)), (E.11),

and HistLen[i] − Position[i] ≤ N − 1 is HistLen[i] = 2N and

Position[i] = N + 1.

380

By (E.10) and (I31), this implies that (∃r :: r@{12..20} ∧ r.idx = i) holds. From

this and (E.9), we have

∣∣{q :: q@{6..11} ∧ q.idx = i
}∣∣ ≤ N − 2.

Hence, by (I28), we have

HistLen[i] − Position[i] ≤ N − 2 ∨ (∃r :: r@{19} ∧ r.idx = 1 − i).

The second disjunct is precluded by (I13) as shown above, and hence we have

HistLen[i] − Position[i] ≤ N − 2. However, this cannot hold simultaneously with (E.9)

and (E.11). Thus, we have reached a contradiction. �

invariant p@{19, 20} ∧ p.idx = i ⇒ HistLen[1 − i] = 0 (I39)

Proof: The antecedent may be established only by statement 18.p, which may do so

only if p.idx = i holds. In this case, 18.p also establishes the consequent.

The only statement that may falsify the consequent is 5.q, where q is any arbitrary

process. Statement 5.q may potentially falsify (I39) only if executed when

p@{19, 20} ∧ p.idx = i ∧ q@{5} ∧ q.idx = 1 − i

holds. However, this contradicts (I13). �

invariant p@{20} ∧ p.idx = i ⇒ Position[1 − i] = 0 (I40)

Proof: The antecedent may be established only by statement 19.p, which may do so

only if p.idx = i holds. In this case, 19.p also establishes the consequent.

The only statement that may falsify the consequent is 11.q, where q is any arbitrary

process. Statement 11.q may potentially falsify (I40) only if executed when p@{20} ∧
p.idx = i ∧ q@{11} ∧ q.idx = 1 − i holds. However, this contradicts (I13). �

invariant Position[i] ≤ h < HistLen[i] ⇒
(∃p :: p@{6..11} ∧ p.idx = i ∧ p.position = h) (I41)

381

Proof: The only statements that may establish the antecedent are 5.q and 18.q (which

may modify HistLen[i]) and 11.q and 19.q (which may modify Position[i]), where q

is any arbitrary process. Statement 5.q may establish HistLen[i] > h only if executed

when q.idx = i ∧ HistLen[i] = h holds, in which case it establishes the consequent.

If statement 18.q modifies HistLen[i], then it establishes HistLen[i] = 0, and hence

falsifies the antecedent.

Statement 11.q may modify Position[i] only if executed when q.idx = i holds. In

this case, by (I14), it increments Position[i] by one. Hence, although 11.q may preserve

the antecedent, it cannot establish it.

Statement 19.q may establish Position[i] ≤ h only if executed when q.idx = 1 − i

holds, in which case, by (I39), it establishes Position[i] = HistLen[i] = 0. Thus, the

antecedent is false after its execution.

The only statement that may falsify the consequent is 11.p, which may do so only

if executed when p.idx = i ∧ p.position = h holds. In this case, by (I14) and (I26),

statement 11.p establishes Position[i] = h+ 1, and hence falsifies the antecedent. �

invariant Position[i] = h > 0 ⇒
Signal [i][Hist[i][h]] = true ∨ A(∃p :: p@{12..21} ∧ p.idx = i ∧ p.position = h − 1

) ∨ B(∃q :: q@{8..11} ∧ q.idx = i ∧ q.position = h
) C

(I42)

Proof: The only statement that may establish the antecedent is 11.p, where p is any

arbitrary process. By (I14) and (I26), statement 11.p may establish the antecedent

only if executed when p.idx = i ∧ p.position = h− 1 holds, in which case it establishes

disjunct B.
The only statements that may falsify disjunct A are 5.p, 7.p, and 18.p, where p is

any arbitrary process. Statement 5.p may falsify disjunct A only if executed when

p@{5} ∧ p.idx = i ∧ HistLen[i] = h − 1 (E.12)

holds. Combining this with the antecedent, and using (I28), this implies (∃q :: q@{19} ∧
q.idx = 1 − i). Hence, by applying (I13) with ‘p’ ← q and ‘i’ ← 1 − i, we have

p@{0..3} ∨ p.idx = 1 − i, which contradicts (E.12). It follows that statement 5.p

cannot falsify disjunct A while the antecedent holds.

382

Statement 7.p may falsify disjunct A only if executed when p.idx = i holds, in which

case, by (I26), we have p.position = Position[i] = h. Hence, statement 7.p establishes

disjunct C in this case.

Statement 18.p may falsify disjunct A only if executed when p.idx = 1− i holds. In

this case, by (I24), disjunct A is already false before 18.p is executed.

The only statement that may falsify disjunct B is 21.p (where p is any arbitrary

process), which may do so only if executed when p.idx = i ∧ p.position = h − 1 holds.

In this case, by (I3), p.self = Hist[i][h] holds before its execution. Thus, statement 21.p

establishes disjunct A.

The only statement that may falsify disjunct C is 11.p (where p is any arbitrary

process), which may do so only if executed when p.idx = i ∧ p.position = h holds. In

this case, by (I14) and (I26), 11.p establishes Position[i] = h + 1, and hence falsifies

the antecedent. �

invariant 0 < j < k ≤ HistLen[i] ∧ k < 2N ∧
Param[i][j − 1].proc �= Param[i][k − 1].proc ⇒

Hist[i][j] �= Hist[i][k] (I43)

invariant 0 < j ≤ HistLen[i] ∧ j < 2N ⇒ Hist[i][j] �= ⊥ (I44)

invariant 0 < j < k ≤ HistLen[i] ∧ k < 2N ∧
Param[i][j − 1] = (p, c) ∧ Param[i][k − 1] = (p, c+ 1) ⇒

Hist[i][j] �= Hist[i][k] (I45)

Proof: Invariants (I43)–(I45) follow easily from invariants (I16), (I17), (I18), and (I19),

together with the assumption that the underlying fetch-and-φ primitive has rank at

least 2N . In particular, (I43) states that any two invocations (among the first 2N − 1)

by different processes write different values to Tail [i]; (I44) states that each of the first

2N − 1 invocations writes to Tail [i] a value different from ⊥; (I45) states that any two

successive invocations (among the first 2N − 1) by the same process write different

values to Tail [i]. �

invariant Position[i] ≤ h < HistLen[i] ∧ Param[i][h].proc = p ⇒
p@{6..11} ∧ p.idx = i ∧ p.position = h (I46)

Proof: The only statements that may establish the antecedent are 5.q and 18.q (which

may update HistLen[i] and Param[i][h].proc) and 11.q and 19.q (which may update

Position[i]), where q is any arbitrary process.

383

Statement 5.q may establish h < HistLen[i] ∧ Param[i][h].proc = p only if executed

when HistLen[i] = h ∧ p = q ∧ q.idx = i holds, in which case it establishes the an-

tecedent.

Statement 18.q may update HistLen[i] or Param[i][h] only if q.idx = 1 − i, in which

case it establishes HistLen[i] = 0. Thus, the antecedent is false after its execution.

Statement 11.q may update Position[i] only if executed when q.idx = i holds. In

this case, by (I14), it increments Position[i] by one. Hence, although 11.q may preserve

the antecedent, it cannot establish it.

Statement 19.q may establish Position[i] ≤ h only if executed when q.idx = 1 − i

holds, in which case, by (I39), it establishes Position[i] = HistLen[i] = 0. Thus, the

antecedent is false after its execution.

The only statement that may falsify the consequent is 11.p, which may do so only

if executed when p.idx = i ∧ p.position = h holds. In this case, by (I14) and (I26),

statement 11.p establishes Position[i] = h + 1, and hence the antecedent is false after

its execution. �

invariant p@{6} ∧ p.idx = i ⇒ Position[i] ≤ p.position (I47)

Proof: The only statement that may establish the antecedent is 5.p, which may do so

only if p.idx = i. Let h be the value of HistLen[i] before the execution of 5.p. By (I28),

we have either Position[i] ≤ h or (∃q :: q@{19} ∧ q.idx = 1− i). However, by applying

(I13) with ‘i’ ← 1 − i, the latter implies p@{0..3} ∨ p.idx = 1 − i, which implies that

the antecedent is false. On the other hand, if Position[i] ≤ h holds before the execution

of 5.p, then Position[i] ≤ h = p.position is established.

The only statement that may falsify the consequent (while the antecedent holds) is

11.q (where q is any arbitrary process), which may do so only if q.idx = i. In this case,

by (I14), 11.q increments Position[i] by one, and hence it may falsify the consequent

only if executed when Position[i] = p.position holds. By applying (I26) with ‘p’ ← q,

we also have Position[i] = q.position. Combining these assertions with the antecedent,

and using (I29), we have p = q. However, in this case, the antecedent is false after the

execution of 11.q. �

invariant Position[i] ≤ j < k < HistLen[i] ⇒ Hist[i][j] �= Hist[i][k] (I48)

Proof: The only statements that may establish the antecedent are 5.p and 18.p (which

may update HistLen[i], Hist[i][j], or Hist[i][k]) and 11.p and 19.p (which may update

Position[i]), where p is any arbitrary process.

384

Statement 5.p may establish the antecedent only if executed when p.idx = i ∧
Position[i] ≤ j < k = HistLen[i] holds. In this case, by (I38),

Position[i] ≤ j < k = HistLen[i] < 2N (E.13)

holds before its execution. We consider two cases.

• If j = 0, then by (I18), we have Hist[i][j] = ⊥. Also, by applying (I44) with

‘j’ ← k, and using (E.13), we have Hist[i][k] �= ⊥. Hence, the consequent of (I48)

holds before and after the execution of 5.p.

• If j > 0, then let (q, c1) denote the value of Param[i][j − 1] and (r, c2) denote the

value of Param[i][k − 1] prior to the execution of 5.p. If q �= r, then by (E.13) and

(I43), the consequent holds before and after the execution of 5.p.

Therefore, assume that q = r. Let ql denote the value of Param[i][l−1].proc prior

to the execution of 5.p, for each 0 < l ≤ k. Then, we have q = qj = qk.

For each l satisfying Position[i] < l ≤ k, by applying (I46) with ‘p’ ← ql and

‘h’ ← l − 1, and using (E.13), we have ql.position = l − 1 prior to the execution

of 5.p. In particular, we have q.position = qk.position = k − 1, and

(∀l : Position[i] < l < k :: ql �= q). (E.14)

Since qj = q, this implies that Position[i] < j < k is false. Thus, by (E.13), we

have j = Position[i]. Combining this with (E.14), we also have

(∀l : j < l < k :: Param[i][l − 1].proc �= q)

prior to the execution of 5.p.

Therefore, by applying (I19) with ‘p’ ← q, ‘j’ ← j −1, and ‘k’ ← k−1, and using

(E.13) and the assertions above, we have c2 = c1+1. Combining this with (E.13),

and using (I45), it follows that the consequent holds both before and after the

execution of 5.p.

If statement 18.p updates HistLen[i], then it establishes HistLen[i] = 0, and hence

the antecedent is false after its execution.

If statement 11.p updates Position[i], then by (I14), it increments Position[i] by

one. Hence, although 11.p may preserve the antecedent, it cannot establish it.

385

Statement 19.p may establish Position[i] ≤ j only if executed when q.idx = 1 − i

holds, in which case, by (I39), it establishes Position[i] = HistLen[i] = 0. Thus, the

antecedent is false after its execution.

The only statement that may falsify the consequent is 5.p (which may update either

Hist[i][j] or Hist[i][k]), where p is any arbitrary process. Statement 5.p may update

Hist[i][j] only if executed when p.idx = i ∧ HistLen[i] = j − 1 holds, in which case

it establishes HistLen[i] = j. Thus, in this case, the antecedent is false after 5.p is

executed. Similar reasoning applies to Hist[i][k]. �

E.3 Proof of Starvation-freedom

We begin with proving the following unless and leads-to properties. (A leads-to B is

true if and only if the following holds: if A holds at some state, then eventually B

holds at either the same state or some later state. Leads-to properties must hold only

in fair histories. Recall that A unless B is true if and only if the following holds: if

A ∧ ¬B holds before some statement execution, then A ∨ B holds after that execution.

Informally, A is not falsified until B is established.) Informally, (U1) states that if a

process p is waiting at statement 6, and if the busy-waiting condition is established,

then it holds continuously until p exits the busy-waiting loop. (L1) (respectively, (L2))

is used to prove that, if p has entered the current queue (respectively, the old queue),

and waits at statement 6, then the busy-waiting condition is eventually established.

Throughout this section, we assume that the Entry2 and Exit2 routines are starvation-

free.

p@{6} ∧ p.idx = i ∧ Signal [i][p.prev] = true unless p@{7} (U1)

Proof: The only statement that may falsify p@{6} ∧ p.idx = i is 6.p, which establishes

p@{7}.
Signal [i][p.prev] = true may be falsified only if some process q (�= p) executes state-

ment 7.q when q.idx = i ∧ q.prev = p.prev holds. However, if the left-hand side of

(U1) is true, then this is precluded by (I9). �

CurrentQueue = i ∧ p@{6} ∧ p.idx = i ∧ p.position = h ∧ Position[i] = k

leads-to (Signal [i][p.prev] = true ∨ Position[i] = k + 1) (L1)

CurrentQueue = 1 − i ∧ p@{6} ∧ p.idx = i ∧ p.position = h ∧ Position[i] = k

leads-to (Signal [i][p.prev] = true ∨ Position[i] = k + 1) (L2)

386

Proof: We prove (L1) and (L2) by induction on h. Since their proofs are nearly

identical, we simply say the “left-hand side” when the argument applies to both (L1)

and (L2).

First, assume h = 0. The assertion p@{6} ∧ p.idx = i ∧ p.position = h may be

established only if statement 5.p is executed when HistLen[i] = 0 holds. However, by

(I17) and (I18), this implies that Tail [i] = Hist[i][0] = ⊥ holds. Thus, statement 5.p

establishes p@{8}, and cannot establish the left-hand side. It follows that (L1) and

(L2) hold vacuously for h = 0.

Now assume that h > 0, and that (L1) and (L2) hold for smaller values of h.

Consider a state t that satisfies the left-hand side.

By (I13), the left-hand side implies ¬(∃q :: q@{19} ∧ q.idx = 1−i). Thus, by (I28),

and using p@{6} ∧ p.idx = i, we have k < HistLen[i]. By applying (I41) with ‘h’ ← k,

this in turn implies that a process q exists such that

q@{6..11} ∧ q.idx = i ∧ q.position = Position[i] = k. (E.15)

We consider two cases, depending on the value of k.

Case 1: k = 0. If k = 0, then by (I18), and by applying (I3) with ‘p’ ← q and ‘h’ ← k,

we have q.prev = Hist[i][0] = ⊥. Because q@{6, 7} ⇒ q.prev �= ⊥ is (trivially) an

invariant, this implies that q@{8..11} holds. Thus, q eventually executes statement 11

while q.idx = i ∧ q.position = k holds. In this case, by (I14) and (I26), 11.q establishes

Position[i] = k + 1, and hence the right-hand side of (L1)/(L2) is established.

Case 2: k > 0. Let x be the value of Hist[i][k] at state t. By (I42), (E.15) implies

that one of the following holds at state t, where r is some process.

A : Signal [i][x] = true,

B : r@{12..21} ∧ r.idx = i ∧ r.position = k − 1, or

C : r@{8..11} ∧ r.idx = i ∧ r.position = k.

Moreover, by (I3), q.prev = x also holds at state t. We now prove that, in each of

the three cases given by A–C, the right-hand side of (L1)/(L2) is eventually established.

Toward this goal, we prove the following three claims.

Claim 1: If A is true at state u, where u is either t or some later state,

then the right-hand side of (L1)/(L2) is true at either t or some later state.

387

Claim 2: If B is true at state t, then A is true at either t or some later

state u.

Claim 3: If C is true at state t, then the right-hand side of (L1)/(L2) is

true at either t or some later state.

Proof of Claim 1: First, if (E.15) is false at state u, then since it holds at

state t, the execution of statement 11.q occurs between state t and state u.

Note that q.idx and q.position do not change while q@{6..11} holds. Hence,

by (I14) and (I26), q.position = q.pos = Position[i] = k holds before the ex-

ecution of 11.q. Therefore, 11.q establishes the right-hand side of (L1)/(L2).

On the other hand, assume that (E.15) is true at state u. Then, by (I3),

q.prev = x holds at state u. Moreover, by (U1), if q@{6} ∧ q.prev = x holds

at state u, then A continues to hold until q@{7} is established. It follows

that q eventually executes statement 11.q, which establishes the right-hand

side of (L1)/(L2) as shown above. �

Proof of Claim 2: Assume that B holds at state t. In this case, by

(I3), r.self = Hist[i][k] = x holds at state t. Hence, if r eventually executes

statement 21, then 21.r establishes A.

Thus, it suffices to show that statement 21.r is eventually executed. Since

r@{12..21} holds at state t, it suffices to show the following.

If r@{14, 15} holds at state u, where u is either t or some later

state, then r@{21} is eventually established.

Clearly, r@{14, 15} implies 0 ≤ r.pos < N , which is true at state t (where

B holds) as well as state u. Thus, by (I15), 1 ≤ Position[i] = r.pos+1 ≤ N

holds at state t. Hence, by (I37), CurrentQueue = i holds at state t. Thus,

if the left-hand side of (L2) is true at state t, then B is false at state t.

On the other hand, if the left-hand side of (L1) is true at state t, then by

(L7), given later, r@{21} is eventually established. (Note that the proof of

(L2) does not depend on (L7). As explained shortly, this is necessary in

order to avoid circular reasoning.) �

388

Proof of Claim 3: Clearly, r eventually executes statement 11.r if C holds.

Thus, by (I14) and (I26), 11.r establishes Position[i] = k+1, and hence the

right-hand side of (L1)/(L2) is established. �

Finally, from these three claims, (L1) and (L2) follow. �

The reader may wonder why we have two separate properties (L1) and (L2), when

they can be proved in essentially the same way. The reason is that the proof of (L7),

given later, indirectly depends on (L2). Since the proof of (L1) depends on (L7), (L1)

and (L2) must be kept separate to avoid circular reasoning.

The following properties are consequences of (U1), (L1), and (L2).

CurrentQueue = i ∧ p@{6} ∧ p.idx = i leads-to p@{7} (L3)

CurrentQueue = 1 − i ∧ p@{6} ∧ p.idx = i leads-to p@{7} (L4)

Proof: Since Position[i] is bounded by (I22), by inductively applying (L1) and (L2),

respectively, we have the following.

CurrentQueue = i ∧ p@{6} ∧ p.idx = i leads-to

Signal [i][p.prev] = true;
(E.16)

CurrentQueue = 1 − i ∧ p@{6} ∧ p.idx = i leads-to

Signal [i][p.prev] = true.
(E.17)

Assume that the left-hand side of (L3) holds at some state t. By (E.16),

Signal [i][p.prev] = true is eventually established at some later state u. If p@{7} is

established before state u, then (L3) holds. Otherwise, p@{6} continues to hold from

state t to u. Thus, p.idx = i also continues to hold from state t to u. Therefore, the

left-hand side of (U1) holds at state u. By (U1), Signal [i][p.prev] = true is not falsi-

fied until p@{7} is established, and hence p eventually establishes p@{7} by executing

statement 6.

The reasoning for (L4) is similar, except that (E.17) is used instead of (E.16). �

Note that the proof of (L3) indirectly depends on (L7), while the proof of (L4) does

not.

The following properties state that, if a process p is waiting for process q at state-

ments 14 and 15, then the busy-waiting condition is eventually established. (Note that

q@{0} implies Active[q] = false by (I33), and q@{6} ∧ q.idx = i implies QueueIdx [q] =

i by (I34).)

389

p@{14, 15} ∧ p.idx = i ∧ p.pos = q

leads-to q@{0} ∨ (q@{6} ∧ q.idx = i) ∨ p@{21} (L5)

p@{14, 15} ∧ p.idx = i ∧ p.pos = q ∧ q@{1}
leads-to (q@{6} ∧ q.idx = i) ∨ p@{21} (L6)

Proof: Assume that the left-hand side of either (L5) or (L6) holds at state t. By (I2),

one of the following holds at t.

A : q@{3..22} ∧ q.idx = 1 − i;

B : q@{22} ∧ q.idx = i;

C : q@{0};
D : q@{1..3};
E : q@{4, 5} ∧ q.idx = i;

F : q@{6} ∧ q.idx = i.

Also, by (I15), Position[i] = q + 1 holds at state t, and hence, by (I37),

CurrentQueue = i also holds at state t.

If p@{21} is established at some future state, then (L5) and (L6) both hold. Thus,

in the rest of the proof, we assume that p@{14, 15} ∧ p.idx = i holds continuously at

and after state t. We claim that CurrentQueue = i also holds at all future states. Note

that CurrentQueue = imay be falsified only by statement 20.r (where r is any arbitrary

process), which may do so only if executed when r.idx = i holds. However, by (I2), this

is precluded when p@{14, 15} ∧ p.idx = i holds. Thus, we have the following.

• p@{14, 15} ∧ p.idx = i ∧ CurrentQueue = i holds at t and all later states. (E.18)

Note that the left-hand side of (L6) implies D, and F implies the right-hand side

of (L6). Hence, in order to prove (L6), it suffices to prove the following.

• If D ∨ E holds at state u, where u is either t or some later state, then F is established

at some state after u. (E.19)

Also, since C ∨ F implies the right-hand side of (L5), in order to prove (L5), it

suffices to prove the following claim in addition to (E.19).

• If A ∨ B holds at state u, where u is either t or some later state, then C is established

at some state after u. (E.20)

We prove (E.19) and (E.20) by considering each of A, B, D, and E .

390

• Assume that A holds at state u. We claim that, in this case, B is eventually

established.

It suffices to show that the busy-waiting loops at statement 6 and statements 14

and 15 eventually terminate for q. By applying (L4) with ‘p’ ← q and ‘i’ ← 1− i,

and using CurrentQueue = i (given in (E.18)), it follows that the former loop

eventually terminates. If q@{14, 15}, then by (I15), we have Position[1 − i] =

q.pos+1. Also, by (E.18) and (I37), we have Position[1−i] = 0 ∨ Position[1−i] >

N . Combining these two assertions, we have q.pos = Position[1 − i] − 1 ≥ N ,

and hence q@{14, 15} is false. It follows that q in fact does not execute the

busy-waiting loop at statements 14 and 15 while A holds.

• Assume that B holds at state u. Clearly, C is eventually established.

• Assume that D holds at state u. Then, by (E.18), E is eventually established.

• Assume that E holds at state u. In this case, q eventually executes statement 5.

By (I38), HistLen[i] < 2N holds before the execution of 5.q. Moreover, by (E.18)

and (I3), HistLen[i] > p.position ≥ 0 also holds. (Note that HistLen[i] is always

nonnegative by (I21). Since p.position is updated only by line 5d, it follows that

p.position is always nonnegative.) Combining these two assertions with (I4), we

have Tail [i] �= ⊥. It follows that statement 5.q establishes F .

From the reasoning above, assertions (E.20) and (E.19) follow. Therefore, we have

(L5) and (L6). �

Note that the proofs of (L5) and (L6) do not depend on (L7).

The following property states that the busy-waiting loop at statements 14 and 15

eventually terminates.

p@{14, 15} leads-to p@{21} (L7)

Proof: For the sake of contradiction, assume that p@{21} is never established. Let i =

p.idx and q = p.pos . By (L5), q@{0} ∨ (q@{6} ∧ q.idx = i) is eventually established.

First, assume that q@{0} is established. If q remains in its noncritical section

forever, then by (I33), Active[q] = false holds forever. Thus, p eventually establishes

p@{21} by executing statement 14, a contradiction.

On the other hand, if q enters its entry section again, then it establishes q@{1}. In
this case, by (L6), q eventually establishes q@{6} ∧ q.idx = i.

391

It follows that q@{6} ∧ q.idx = i is eventually established. By (I5), and using

p@{14, 15}, it follows that q@{6} remains true forever. But then, by (I34), p eventually

establishes p@{21} by executing statement 15, a contradiction. �

Finally, by (L3), (L4), and (L7), it follows that each await statement in Algo-

rithm G-CC eventually terminates. Thus, Algorithm G-CC is starvation-free.

392

APPENDIX F

CORRECTNESS PROOF FOR

ALGORITHM T IN SECTION 8.3

In this appendix, we formally prove that Algorithm T, presented in Section 8.3,

satisfies the Exclusion and Starvation-freedom properties. Our proof makes use of

an auxiliary array AccessCount. For each node i, AccessCount[i] counts the number

of fetch-and-update invocations on Lock [i][0] since it was last reset. In Figure E.1,

Algorithm T is shown with AccessCount added. In addition, in order to facilitate

the proof, several statements are changed to equivalent (but more explicit) ones.

First, the syntax of the for loop at line 29b has been changed. Recall that m =

Θ(
√
log N) is the degree of the arbitration tree, and that the root node has index 1.

We leave it to the reader to verify that the children of node i consist precisely of nodes

indexed from ((i − 1) · m+ 2) to (i · m+ 1) (inclusive).

Second, the fetch-and-update and fetch-and-reset statements at statements 11

and 39 have been changed in order to expose their low-level details (as defined on

page 231). Variable p.counter [l] is a private counter variable that is used when p ac-

cesses Lock [Node(p, l)][0]. Of course, the fetch-and-update statements at statements 41

and 43 also use a separate set of counter variables, which are not explicitly shown in

Figure E.1.

We now explain in detail how AccessCount is used.

Initially, Lock [i][0] equals ⊥, and hence AccessCount[i] equals 0. Afterwards, each

time fetch-and-update is invoked on Lock [i][0], AccessCount[i] is also incremented (state-

ment 39). On the other hand, if fetch-and-reset is invoked on Lock [i][0] (statement 11),

then we have two cases to consider. First, if fetch-and-reset successfully resets Lock [i][0]

to ⊥, then AccessCount[i] is also reset to zero. Otherwise, the behavior of fetch-and-

reset and any future fetch-and-update operations (if any) is undefined. In order to indi-

cate this, AccessCount[i] is changed to a special value ;. (Later, statement 14 manually

resets both Lock [i][0] and AccessCount[i].)

393

shared auxiliary variable
AccessCount: array[1..MAX NODE] of (0..∞, 1) initially 0

process p :: /∗ 0 ≤ p < N ∗/
while true do
0: Noncritical Section;
1: Spin[p] := false;
2: 2a: Winner [Node(p, MAX LEVEL)][0] := p; /∗ automatically acquire its leaf node ∗/

2b: lev , break level := MAX LEVEL − 1, 0;
repeat

3: 3a: result := AcquireNode(lev);
3b: if (result = PRIMARY WINNER) ∨ (result = SECONDARY WINNER) then
3c: lev := lev − 1

else
3d: break level := lev

fi
3e: until (lev = 0) ∨ (break level > 0);
3f: side := if result = PRIMARY WINNER then 0

elseif result = SECONDARY WINNER then 1
else 2;

4: if side = 2 then await Spin[p] fi; /∗ wait until promoted ∗/
5: Entry3(side);
6: Critical Section;
7: Wait(); /∗ wait at the barrier ∗/
8: 8a: Exit3(side);

8b: for lev := break level + 1 to MAX LEVEL − 1 do
/∗ reopen each non-leaf node p has acquired ∗/

8c: n := Node(p, lev);
9: if Winner [n][0] = p then /∗ primary winner ∗/
10: Winner [n][0] := ⊥;
11: /∗ (prev , new) := fetch-and-reset(Lock [n][0]); ∗/

prev := Lock [n][0];
new := φ(prev , βp[counter [lev]]); Lock [n][0] := new ;

AccessCount[n] := if (new = ⊥) then 0 else 1;
if (n > 1) ∧ (prev �= lock [lev]) then

12: repeat proc :=Waiter [n] until proc �= ⊥;
13: Enqueue(WaitingQueue, proc)

fi;
14: if new �= ⊥ then

Lock [n][0] := ⊥;
AccessCount[n] := 0 fi

15: elseif Winner [n][1] = p then /∗ secondary winner ∗/
16: Winner [n][1] := ⊥;
17: Lock [n][1] := ⊥;
18: if WaiterLock [n] �= ⊥ then
19: repeat proc :=Waiter [n] until proc �= ⊥;
20: Enqueue(WaitingQueue, proc)

fi fi
od;

Figure F.1: Algorithm T with auxiliary variables added. Non-auxiliary variables are
as defined in Figure 8.9. (Continued on the next page.)

394

21: n := if side = 2 then Node(p, break level) /∗ promoted at node n ∗/
else 1; /∗ the root node ∗/

22: if Waiter [n] = p then /∗ primary waiter ∗/
23: Waiter [n] := ⊥;
24: WaiterLock [n] := ⊥

fi;
25: 25: if (n > 1) ∧ (Lock [n][0] �= ⊥) then
26: repeat proc :=Winner [n][0] until proc �= ⊥;
27: Winner [n][0] := ⊥;
28: Lock [n][0] := ⊥;

AccessCount[n] := 0;
29: 29a: Enqueue(WaitingQueue, proc)

fi;
29b: for child := ((n − 1) · m+ 2) to (n · m+ 1) do

/∗ equivalent to “for each child := (a child of n) do” ∗/
/∗ m = degree of the arbitration tree ∗/

29c: for i := 0 to 1 do
30: proc :=Winner [child][i];
31: if proc �= ⊥ then Enqueue(WaitingQueue, proc) fi

od od;

32: Winner [Node(p, MAX LEVEL)][0] := ⊥; /∗ reopen its leaf node ∗/
33: Remove(WaitingQueue, p);
34: proc := Promoted ;

if (proc = p) ∨ (proc = ⊥) then
35: proc := Dequeue(WaitingQueue);
36: Promoted := proc;
37: if proc �= ⊥ then Spin[proc] := true fi

fi;

38: Signal() /∗ open the barrier ∗/
od

Figure F.1: Algorithm T with auxiliary variables added, continued. (Continued on
the next page.)

As before, we assume that each labeled sequence of statement(s) is atomic. (Some

statements span multiple lines; line numbers in the sans serif font are used only for the

purpose of description.) To avoid possible confusion, we give here a detailed account

of several statements that are rather complicated. If a process p executes statement 3,

then p executes lines 3a and L1, and establishes p@{39}. Note that lines 3b–3f are not

executed in this case. On the other hand, if p executes statement 40, then p executes

lines L6, L7, and some of 3b–3f, and establishes either p@{3} or p@{4}. Statements 42

and 44 are executed similarly.

As a last example, assume that p executes statement 43. If Lock [p.n][1] = ⊥ holds

before its execution, then p executes lines L12 and L13, and establishes p@{44}. (In

this case, p becomes a secondary winner.) Otherwise, p executes lines L12, L13, L16,

395

procedure AcquireNode(lev : 1..MAX LEVEL)
L1: n := Node(p, lev);

39: /∗ (prev , new) := fetch-and-update(Lock [n][0]); ∗/
L2a: counter [lev] := counter [lev] + 1;
L2b: prev := Lock [n][0];
L2c: new := φ(prev , αp[counter [lev]]);
L2d: Lock [n][0] := new ;
L3: if AccessCount[n] �= 1 then AccessCount[n] := AccessCount[n] + 1 fi;
L4: lock [lev] := new ;
L5: if prev = ⊥ then

40: L6: Winner [n][0] := p;
L7: return PRIMARY WINNER

else
41: L8: (prev , new) := fetch-and-update(WaiterLock [n]);

L9: if prev = ⊥ then
42: L10: Waiter [n] := p;

L11: return PRIMARY WAITER
else

43: L12: (prev , new) := fetch-and-update(Lock [n][1]);
L13: if prev = ⊥ then

44: L14: Winner [n][1] := p;
L15: return SECONDARY WINNER

else
L16: return SECONDARY WAITER

fi fi fi

Figure F.1: Algorithm T with auxiliary variables added, continued.

3b, 3d, 3e, and 3f, and establishes p@{4} (i.e., p becomes a secondary waiter and exits

the repeat loop).

The following definitions are used in the proof.

Definition: We define lev(i) to be the level of node i in the tree. In particular, node 1

(the root node) is at level 1 (i.e., lev(1) = 1), and each leaf node is at level MAX LEVEL. �

Definition: Assume that i = Node(p, l) and j = Node(p, l + 1) holds for some level l.

(That is, i is the node at level l that is visited by process p, and j is a child node of

i (at level l + 1) that is visited by process p.) We define the condition W (p, i, j, s)

to be true if and only if Winner [j][s] = p ∧ p@{3, 4, 39..44} ∧ Dk(p, i, j, s) holds for

some k (1 ≤ k ≤ 7), where conditions D1–D7 are defined as follows. (For brevity, we

sometimes use Dk to denote Dk(p, i, j, s).)

D1 = (∃q :: q@{25..29} ∧ q.n = i),

D2 = (∃q :: q@{30, 31} ∧ q.n = i ∧ (q.child , q.i) < (j, s)),

396

D3 = (∃q :: q@{30} ∧ q.n = i ∧ (q.child , q.i) = (j, s)),

D4 = (∃q :: q@{31} ∧ q.proc = p),

D5 = (p ∈ WaitingQueue),

D6 = (∃q :: q@{36, 37} ∧ q.proc = p), and

D7 = (Spin[p] = true).

�

Condition W (p, i, j, s) is used to prove starvation-freedom. As shown later, if p is

either the primary winner or the secondary winner of node j and is waiting at node i,

then W (p, i, j, s) is eventually established. Moreover, once W (p, i, j, s) is established,

D7 is also eventually established (i.e., p is promoted to its critical section).

F.1 List of Invariants

We will establish the Exclusion property by proving that the conjunction of a number

of assertions is an invariant. This proves that each of these assertions individually is

an invariant. These invariants are listed below. Unless stated otherwise, we assume

the following: i and j range over the set of node indices; l ranges over 1..MAX LEVEL; s

ranges over 0..1; p, q, and r range over 0..N − 1.

invariant (Exclusion)
∣∣{p :: p@{6..8}}∣∣ ≤ 1 (I1)

invariant
∣∣{p :: p@{8..38}}∣∣ ≤ 1 (I2)

invariant p@{4..10} ∧ p.side = 0 ⇒ Winner [1][0] = p (I3)

invariant p@{4..16} ∧ p.side = 1 ⇒ Winner [1][1] = p (I4)

invariant p@{5..36} ∧ p.side = 2 ⇒ Promoted = p (I5)

invariant p@{10} ⇒ Winner [p.n][0] = p (I6)

invariant p@{16} ⇒ Winner [p.n][1] = p (I7)

invariant p@{23} ⇒ Waiter [p.n] = p (I8)

invariant p@{40} ⇒ Lock [p.n][0] �= ⊥ ∧ Winner [p.n][0] = ⊥ (I9)

invariant p@{44} ⇒ Lock [p.n][1] �= ⊥ ∧ Winner [p.n][1] = ⊥ (I10)

invariant p@{42} ⇒ WaiterLock [p.n] �= ⊥ ∧ Waiter [p.n] = ⊥ (I11)

invariant p@{2..4, 39..44} ∧ Spin[p] = true ⇒ Promoted = p (I12)

invariant Lock [i][s] = ⊥ ∧ lev(i) < MAX LEVEL ⇒ Winner [i][s] = ⊥ (I13)

397

invariant WaiterLock [i] = ⊥ ⇒ Waiter [i] = ⊥ (I14)

invariant
∣∣{p :: p@{40} ∧ p.n = i

}∣∣ ≤ 1 (I15)

invariant
∣∣{p :: p@{44} ∧ p.n = i

}∣∣ ≤ 1 (I16)

invariant
∣∣{p :: p@{42} ∧ p.n = i

}∣∣ ≤ 1 (I17)

invariant p@{11, 28} ⇒
Lock [p.n][0] �= ⊥ ∧ Winner [p.n][0] = ⊥ ∧
¬(∃q :: q@{40} ∧ q.n = p.n) (I18)

invariant p@{12..14} ∧ p.new �= ⊥ ⇒
Lock [p.n][0] �= ⊥ ∧ Winner [p.n][0] = ⊥ ∧ AccessCount[p.n] = ; ∧
¬(∃q :: q@{40} ∧ q.n = p.n) (I19)

invariant p@{17} ⇒
Lock [p.n][1] �= ⊥ ∧ Winner [p.n][1] = ⊥ ∧
¬(∃q :: q@{44} ∧ q.n = p.n) (I20)

invariant p@{24} ⇒
WaiterLock [p.n] �= ⊥ ∧ Waiter [p.n] = ⊥ ∧
¬(∃q :: q@{42} ∧ q.n = p.n) (I21)

invariant p@{27} ⇒ Winner [p.n][0] = p.proc �= ⊥ (I22)

invariant p@{40} ∧ Lock [p.n][0] �= p.lock [lev(p.n)] ∧ p.n > 1 ⇒
(∃q :: q@{25, 26, 41} ∧ q.n = p.n) ∨ WaiterLock [p.n] �= ⊥ (I23)

invariant Winner [i][0] = p ∧ Lock [i][0] �= p.lock [lev(i)] ∧
(1 < lev(i) < MAX LEVEL) ⇒

(∃q :: q@{25..27, 41} ∧ q.n = i) ∨ WaiterLock [i] �= ⊥ (I24)

invariant p@{11} ∧ Lock [p.n][0] �= p.lock [lev(p.n)] ∧ p.n > 1 ⇒
(∃q :: q@{41} ∧ q.n = p.n) ∨ WaiterLock [p.n] �= ⊥ (I25)

invariant p@{12} ⇒ (∃q :: q@{41} ∧ q.n = p.n) ∨ WaiterLock [p.n] �= ⊥ (I26)

invariant p@{19} ⇒ WaiterLock [p.n] �= ⊥ (I27)

invariant WaiterLock [i] �= ⊥ ⇒
(∃p :: p@{24, 42} ∧ p.n = i) ∨ Waiter [i] �= ⊥ (I28)

invariant p@{26} ⇒ Lock [p.n][0] �= ⊥ (I29)

invariant Lock [i][0] �= ⊥ ∧ lev(i) < MAX LEVEL ⇒
(∃p :: p@{11, 28, 40} ∧ p.n = i) ∨
Winner [i][0] �= ⊥ ∨
(∃p :: p@{12..14} ∧ p.n = i ∧ p.new �= ⊥) (I30)

invariant (AccessCount[i] = 0) = (Lock [i][0] = ⊥) (I31)

invariant Winner [i][0] = p ∧ lev(i) < MAX LEVEL ⇒

398

(p@{3, 39..44} ∧ p.lev < lev(i)) ∨
(p@{4..8} ∧ p.break level < lev(i)) ∨
(p@{9..20} ∧ p.lev < lev(i)) ∨
(p@{9, 10} ∧ p.lev = lev(i)) (I32)

invariant Winner [i][1] = p ⇒
(p@{3, 39..44} ∧ p.lev < lev(i)) ∨
(p@{4..8} ∧ p.break level < lev(i)) ∨
(p@{9..20} ∧ p.lev < lev(i)) ∨
(p@{9, 15, 16} ∧ p.lev = lev(i)) (I33)

invariant Winner [i][1] = p ⇒ Winner [i][0] �= p (I34)

invariant Waiter [i] = p ⇒
p@{4..23} ∧ p.break level = lev(i) ∧ p.side = 2 ∧
(p@{22, 23} ⇒ p.n = i) (I35)

invariant AccessCount[i] = 1 ⇒
(∃p :: p@{11, 40} ∧ p.n = i ∧ p.lock [lev(i)] = Lock [i][0]) ∨
(∃p :: Winner [i][0] = p ∧ p.lock [lev(i)] = Lock [i][0]) ∨
(∃q :: q@{28} ∧ q.n = i) (I36)

invariant AccessCount[i] = 2 ⇒
(∃p :: p@{11, 40} ∧ p.n = i ∧ p.lock [lev(i)] �= Lock [i][0]) ∨
(∃p :: Winner [i][0] = p ∧ p.lock [lev(i)] �= Lock [i][0]) ∨
(∃q :: q@{28} ∧ q.n = i) (I37)

invariant p@{41} ∧ p.n = i = Node(p, l) ∧ j = Node(p, l + 1) ∧
Winner [j][s] = p ∧ WaiterLock [i] = ⊥ ∧ i > 1 ⇒

W (p, i, j, s) ∨ AccessCount[i] = 2 ∨
(∃q : q �= p :: q@{12, 41} ∧ q.n = i) (I38)

invariant AccessCount[i] ≥ 2 ∧ WaiterLock [i] = ⊥ ∧ i > 1 ⇒
(∃p :: p@{25..28, 41} ∧ p.n = i) (I39)

invariant p@{13} ⇒ Waiter [p.n] �= ⊥ (I40)

invariant p@{14} ∧ p.n > 1 ∧ p.new �= ⊥ ⇒ Waiter [p.n] �= ⊥ (I41)

invariant p@{42} ∧ p.n = i = Node(p, l) ∧ j = Node(p, l + 1) ∧
Winner [j][s] = p ∧ i > 1 ⇒

W (p, i, j, s) ∨ AccessCount[i] = 2 ∨ Lock [i][1] �= ⊥ ∨
(∃q : q �= p :: q@{12, 18, 19, 41, 43} ∧ q.n = i) (I42)

invariant p@{4} ∧ Waiter [i] = p ∧
i = Node(p, l) ∧ j = Node(p, l + 1) ∧

399

Winner [j][s] = p ∧ i > 1 ⇒
W (p, i, j, s) ∨ AccessCount[i] = 2 ∨ Lock [i][1] �= ⊥ ∨
(∃q : q �= p :: q@{12, 18, 19, 41, 43} ∧ q.n = i) ∨
(∃q : q �= p :: q@{13, 20} ∧ q.proc = p) (I43)

invariant
[
(p@{43} ∧ p.n = i) ∨

(p@{4} ∧ p.result = SECONDARY WAITER ∧ p.break level = l)
] ∧

i = Node(p, l) ∧ j = Node(p, l + 1) ∧
Winner [j][s] = p ∧ WaiterLock [i] = ⊥ ∧ i > 1 ⇒

W (p, i, j, s) (I44)

invariant
[
(p@{41..43} ∧ p.n = 1) ∨ (p@{4} ∧ p.break level = 1)

] ∧
j = Node(p, 2) ∧ Winner [j][s] = p ⇒

W (p, 1, j, s) ∨ Lock [1][0] �= ⊥ ∨
(∃q :: q@{9..25} ∧ q.break level = 0) (I45)

invariant p ∈ WaitingQueue ⇒ p@{3..33, 39..44} (I46)

invariant p@{13, 20, 27..29, 31, 36} ∧ p.proc = q ∧ p �= q ⇒ q@{3..7, 39..44} (I47)

invariant Promoted = p ⇒ p@{3..36, 39..44} (I48)

invariant p@{36} ⇒ p.proc �= p (I49)

invariant ‖WaitingQueue‖ > 0 ⇒
(∃p :: p@{3, 4, 39..44} ∧ Spin[p] = true) ∨
(∃p :: p@{5..35}) ∨
(∃p, q :: p@{3, 4, 39..44} ∧ q@{36, 37} ∧ q.proc = p) (I50)

invariant Promoted = p ∧ Spin[p] = false ⇒ (∃q :: q@{37} ∧ q.proc = p) (I51)

invariant
[
(p@{3, 39..44} ∧ p.lev < l) ∨ (p@{4} ∧ p.break level < l)

] ∧
i = Node(p, l) ⇒

Winner [i][0] = p ∨ Winner [i][1] = p ∨
(∃q :: q@{28, 29, 36, 37} ∧ q.proc = p) ∨
p ∈ WaitingQueue ∨
Spin[p] = true (I52)

invariant p@{9..20, 39..44} ⇒
p.n = Node(p, p.lev) ∧ p.lev = lev(p.n) < MAX LEVEL (I53)

invariant p@{4..38} ⇒ [
(p.break level > 0) = (p.side = 2)

]
(I54)

invariant p@{35, 36} ⇒ Promoted = p ∨ Promoted = ⊥ (I55)

invariant p@{37} ⇒ p.proc = Promoted (I56)

invariant p@{22..31} ⇒ lev(p.n) < MAX LEVEL (I57)

invariant Winner [i][s] = p ∨ Waiter [i] = p ⇒ i = Node(p, lev(i)) (I58)

400

invariant Winner [i][0] = p ∧ lev(i) = MAX LEVEL ⇒ p@{3..32, 39..44} (I59)

invariant AccessCount[i] = ; ⇒ (∃p :: p@{12..14} ∧ p.n = i ∧ p.new �= ⊥) (I60)

invariant p@{22..31} ∧ p.break level = 0 ⇒ p.n = 1 (I61)

invariant p@{3, 39..44} ⇒ p.lev > 0 ∧ p.break level = 0 (I62)

invariant Winner [i][1] �= ⊥ ⇒ lev(i) < MAX LEVEL (I63)

invariant (Winner [i][0] = p ∧ lev(i) < MAX LEVEL) ∨
(p@{11, 40} ∧ p.n = i) ⇒

p.lock [lev(i)] = φ(⊥, αp[p.counter [lev(i)]]) (I64)

invariant Lock [i][1] �= ⊥ ⇒ (∃p :: p@{17, 44} ∧ p.n = i) ∨ Winner [i][1] �= ⊥ (I65)

invariant p@{4} ∧ p.result = PRIMARY WAITER ⇒
Waiter [Node(p, p.break level)] = p (I66)

F.2 Proof of the Exclusion Property

We now prove that each of (I1)–(I66) is an invariant. For each invariant I, we prove

that for any pair of consecutive states t and u, if all invariants hold at t, then I holds at

u. (It is easy to see that each invariant is initially true, so we leave this part of the proof

to the reader.) If I is an implication (which is the case for most of our invariants), then

it suffices to check only those program statements that may establish the antecedent of

I, or that may falsify the consequent if executed while the antecedent holds.

To facilitate the proofs, we will index statements 9–20, 22–31, and 39–44 by the

node being accessed (i.e., the private variable n). For example, 40[i].p denotes the

execution of statement 40 by p when its private variable p.n equals i.

invariant (Exclusion)
∣∣{p :: p@{6..8}}∣∣ ≤ 1 (I1)

Proof: Since the Entry3 and Exit3 routines (statements 5 and 8) are assumed to be

correct, (I1) follows easily from (I3), (I4), and (I5). �

invariant
∣∣{p :: p@{8..38}}∣∣ ≤ 1 (I2)

Proof: Since the Wait and Signal routines (statements 7 and 38) are assumed to be

correct, (I2) follows easily from (I1). �

invariant p@{4..10} ∧ p.side = 0 ⇒ Winner [1][0] = p (I3)

401

Proof: The only statements that may establish the antecedent are 40.p, 42.p, 43.p,

and 44.p. (Note that statement 3.p establishes p@{39}.) However, the antecedent (in

particular, p.side = 0) may be established only if line 3f is executed when p.result =

PRIMARY WINNER holds. Thus, only statement 40.p may establish the antecedent.

In this case, p first executes lines L6, L7, 3b, 3c, and 3e. By (I62), p.break level = 0

holds throught the execution of these lines. Thus, p may establish p@{4} (by exiting

the repeat loop and executing line 3f) only if p.lev = 0 holds when line 3e is executed.

Due to line 3c, it follows that statement 40.p may establish p@{4} only if executed

when p.lev = 1 holds.

By (I53), this also implies p.n = Node(p, 1) = 1. Thus, statement 40.p establishes

the consequent in this case.

The only statements that may falsify the consequent are 2.q, 10[1].q, 27[1].q, 32.q,

and 40[1].q, where q is any arbitrary process. Statements 2.q and 32.q access a leaf

node, and hence cannot update Winner [1][0].

By (I6), Winner [1][0] = q holds before the execution of 10[1].q. Taken together with

the consequent, we have p = q, and hence statement 10[1].q falsifies the antecedent.

Statement 27.q is executed only if q.n > 1. Thus, statement 27.q is never executed

when q.n = 1 holds.

By (I9), the consequent is false before the execution of statement 40[1].q. Thus,

statement 40[1].q cannot falsify the consequent. �

invariant p@{4..16} ∧ p.side = 1 ⇒ Winner [1][1] = p (I4)

Proof: The only statements that may establish the antecedent are 40.p, 42.p, 43.p, and

44.p. However, the antecedent (in particular, p.side = 1) may be established only if

line 3f is executed when p.result = SECONDARY WINNER holds. Thus, only statement 44.p

may establish the antecedent. By an argument similar to that in the proof of (I3),

it follows that statement 44.p may establish the antecedent only if executed when

p.lev = 1 holds. By (I53), this also implies p.n = Node(p, 1) = 1. Thus, statement 44.p

establishes the consequent in this case.

The only statements that may falsify the consequent are 16[1].q and 44[1].q, where

q is any arbitrary process.

By (I7), Winner [1][1] = q holds before the execution of 16[1].q. Taken together with

the consequent, we have p = q, and hence statement 16[1].q falsifies the antecedent.

402

By (I10), the consequent is false before the execution of statement 44[1].q. Thus,

statement 44[1].q cannot falsify the consequent. �

invariant p@{5..36} ∧ p.side = 2 ⇒ Promoted = p (I5)

Proof: The only statement that may establish the antecedent is 4.p, which may do so

only if Spin[p] = true holds. By (I12), this in turn implies the consequent.

The only statement that may falsify the consequent is 36.q. By (I55), Promoted =

q ∨ Promoted = ⊥ holds before its execution. Taken together with the consequent, we

have p = q, and hence statement 36.q falsifies the antecedent. �

invariant p@{10} ⇒ Winner [p.n][0] = p (I6)

Proof: The only statement that may establish the antecedent is 9.p, which may do so

only if the consequent is true.

Note that p.n cannot change while the antecedent holds. Thus, the only statements

that may falsify the consequent while the antecedent holds are 2.q, 10[i].q, 27[i].q, 32.q,

and 40[i].q, where i = p.n and q is any arbitrary process. By (I53), the antecedent

implies lev(p.n) < MAX LEVEL. Since statements 2.q and 32.q access a leaf node, they

cannot update Winner [p.n][0] while p@{10} holds.

By (I2), if statement 10[i].q is executed while the antecedent holds, then we have

p = q. Thus, statement 10[i].q falsifies the antecedent. Also, by (I2), statement 27[i].q

cannot be executed while the antecedent holds.

By (I9), the consequent is false before the execution of statement 40[i].q. Thus,

statement 40[i].q cannot falsify the consequent. �

invariant p@{16} ⇒ Winner [p.n][1] = p (I7)

Proof: The only statement that may establish the antecedent is 15.p, which may do

so only if the consequent is true.

Note that p.n cannot change while the antecedent holds. Thus, the only statements

that may falsify the consequent while the antecedent holds are 16[i].q and 44[i].q, where

i = p.n and q is any arbitrary process. By (I2), if statement 16[i].q is executed while the

antecedent holds, then we have p = q. Thus, statement 16[i].q falsifies the antecedent.

By (I10), the consequent is false before the execution of statement 44[i].q. Thus,

statement 44[i].q cannot falsify the consequent. �

403

invariant p@{23} ⇒ Waiter [p.n] = p (I8)

Proof: The only statement that may establish the antecedent is 22.p, which may do

so only if the consequent is true.

Note that p.n cannot change while the antecedent holds. Thus, the only statements

that may falsify the consequent while the antecedent holds are 23[i].q and 42[i].q, where

i = p.n and q is any arbitrary process. By (I2), if statement 23[i].q is executed while the

antecedent holds, then we have p = q. Thus, statement 23[i].q falsifies the antecedent.

By (I11), the consequent is false before the execution of statement 42[i].q. Thus,

statement 42[i].q cannot falsify the consequent. �

invariant p@{40} ⇒ Lock [p.n][0] �= ⊥ ∧ Winner [p.n][0] = ⊥ (I9)

Proof: The only statement that may establish the antecedent is 39.p, which may do

so only if executed when Lock [p.n][0] = ⊥ holds. In this case, by the semantics of

fetch-and-update, statement 39.p establishes Lock [p.n][0] �= ⊥. Also, By (I53), p@{39}
implies lev(p.n) < MAX LEVEL, and hence, by applying (I13) with ‘i’ ← p.n and ‘s’ ← 0,

Winner [p.n][0] = ⊥ holds before and after the execution of statement 39.p.

Let i = p.n. Note that p.n cannot change while the antecedent holds. Thus, the

only statements that may falsify the consequent while the antecedent holds are 11[i].q,

14[i].q, and 28[i].q (which may establish Lock [p.n][0] = ⊥) and 2.q and 40[i].q (which

may establish Winner [p.n][0] �= ⊥), where q is any arbitrary process. (Note that state-

ment 39[i].q cannot establish Lock [p.n][0] = ⊥, since we assume that the underlying

fetch-and-φ primitive is self-resettable.) By applying (I18) with ‘p’ ← q and ‘q’ ← p,

it follows that statements 11[i].q and 28[i].q cannot be executed while the antecedent

holds. Statement 14[i].q updates Lock [p.n][0] only if q.new �= ⊥ holds, which contra-

dicts the antecedent by (I19) (with ‘p’ ← q and ‘q’ ← p).

By (I53), the antecedent implies lev(i) < MAX LEVEL. Since statement 2.q accesses a

leaf node, it cannot update Winner [i][0] while the antecedent holds.

By (I15), if statement 40[i].q is executed while the antecedent holds, then we have

p = q. Thus, statement 40[i].q falsifies the antecedent. �

invariant p@{44} ⇒ Lock [p.n][1] �= ⊥ ∧ Winner [p.n][1] = ⊥ (I10)

404

Proof: The only statement that may establish the antecedent is 43.p, which may do

so only if executed when Lock [p.n][1] = ⊥ holds. In this case, by the semantics of

fetch-and-update, statement 43.p establishes Lock [p.n][1] �= ⊥. Also, By (I53), p@{43}
implies lev(p, n) < MAX LEVEL, and hence, by applying (I13) with ‘i’ ← p.n and ‘s’ ← 1,

Winner [p.n][1] = ⊥ holds before and after the execution of statement 43.p.

Let i = p.n. Note that p.n cannot change while the antecedent holds. Thus, the only

statements that may falsify the consequent while the antecedent holds are 17[i].q (which

may establish Lock [p.n][1] = ⊥) and 44[i].q (which may establish Winner [p.n][1] �= ⊥),

where q is any arbitrary process. By applying (I20) with ‘p’ ← q and ‘q’ ← p, it follows

that statement 17[i].q cannot be executed while the antecedent holds. By (I16), if

statement 44[i].q is executed while the antecedent holds, then we have p = q. Thus,

statement 44[i].q falsifies the antecedent. �

invariant p@{42} ⇒ WaiterLock [p.n] �= ⊥ ∧ Waiter [p.n] = ⊥ (I11)

Proof: The only statement that may establish the antecedent is 41.p, which may do

so only if executed when WaiterLock [p.n] = ⊥ holds. In this case, by the semantics

of fetch-and-update, statement 41.p establishes WaiterLock [p.n] �= ⊥. Also, by (I14),

Waiter [p.n] = ⊥ holds before and after the execution of statement 41.p.

Let i = p.n. Note that p.n cannot change while the antecedent holds. Thus, the only

statements that may falsify the consequent while the antecedent holds are 24[i].q (which

may establishWaiterLock [p.n] = ⊥) and 42[i].q (which may establishWaiter [p.n] �= ⊥),

where q is any arbitrary process. By applying (I21) with ‘p’ ← q and ‘q’ ← p, it follows

that statement 24[i].q cannot be executed while the antecedent holds. By (I17), if

statement 42[i].q is executed while the antecedent holds, then we have p = q. Thus,

statement 42[i].q falsifies the antecedent. �

invariant p@{2..4, 39..44} ∧ Spin[p] = true ⇒ Promoted = p (I12)

Proof: The only statements that may establish the antecedent are 1.p and 37.q, where

q is any arbitrary process. However, statement 1.p assigns Spin[p] := false, and hence

cannot establish the antecedent. Statement 37.q may establish the antecedent only if

q.proc = p holds, in which case, by (I56), the consequent holds as well.

The only statement that may falsify the consequent is 36.q, where q is any arbitrary

process. If 36.q is executed when the antecedent holds, then q �= p. In this case, by

405

(I55), the consequent is false before the execution of 36.q. It follows that statement 36.q

cannot falsify the consequent. �

invariant Lock [i][s] = ⊥ ∧ lev(i) < MAX LEVEL ⇒ Winner [i][s] = ⊥ (I13)

Proof: The only statements that may establish the antecedent are 11[i].p, 14[i].p,

and 28[i].p (for s = 0) and 17[i].p (for s = 1), where p is any arbitrary process. The

consequent is true before and after the execution of each of 11[i].p, 17[i].p, and 28[i].p,

by invariants (I18), (I20), and (I18), respectively.

Statement 14[i].p may establish the antecedent only if p.new �= ⊥ holds, which

implies the consequent by (I19).

The only statements that may falsify the consequent are 40[i].p (for s = 0) and and

44[i].p (for s = 1), where p is any arbitrary process. By (I9) and (I10), these statements

cannot be executed while the antecedent holds. �

invariant WaiterLock [i] = ⊥ ⇒ Waiter [i] = ⊥ (I14)

Proof: The only statement that may establish the antecedent is 24[i].p, where p is any

arbitrary process. By (I21), the antecedent is true before and after its execution.

The only statement that may falsify the consequent is 42[i].p, where p is any ar-

bitrary process. However, by (I11), statement 42[i].p cannot be executed while the

antecedent holds. �

invariant
∣∣{p :: p@{40} ∧ p.n = i

}∣∣ ≤ 1 (I15)

invariant
∣∣{p :: p@{44} ∧ p.n = i

}∣∣ ≤ 1 (I16)

invariant
∣∣{p :: p@{42} ∧ p.n = i

}∣∣ ≤ 1 (I17)

Proof: Invariant (I15) might be potentially falsified only if a process p executes state-

ment 39[i] while q@{40} ∧ q.n = i holds for some process q �= p. However, by applying

(I9) with ‘p’ ← q, this implies that Lock [i][0] �= ⊥, and hence statement 39[i].p cannot

establish p@{40}.
The proofs for invariants (I16) and (I17) are similar, except that (I10) and (I11) are

used instead of (I9). �

406

invariant p@{11, 28} ⇒
Lock [p.n][0] �= ⊥ ∧ Winner [p.n][0] = ⊥ ∧
¬(∃q :: q@{40} ∧ q.n = p.n) (I18)

Proof: Let i = p.n. The only statements that may establish the antecedent are 10.p

and 27.p. Statement 10.p establishes Winner [i][0] = ⊥. Moreover, by (I6) and (I53),

Winner [i][0] = p �= ⊥ ∧ lev(i) < MAX LEVEL holds before the execution of 10.p. There-

fore, by (I13) (with ‘s’ ← 0), Lock [i][0] �= ⊥ holds before and after its execution. Also,

by (I9), and using Winner [i][0] �= ⊥, it follows that ¬(∃q :: q@{40} ∧ q.n = i) also

holds before, and hence after, the execution of 10.p. It follows that the consequent

holds after its execution.

Statement 27.p establishes Winner [i][0] = ⊥. Moreover, by (I22) and (I57),

Winner [i][0] = p.proc �= ⊥ ∧ lev(i) < MAX LEVEL holds before the execution of 27.p.

Therefore, by (I13) (with ‘s’ ← 0), Lock [i][0] �= ⊥ holds before and after its execution.

Also, by (I9), and using Winner [i][0] �= ⊥, it follows that ¬(∃q :: q@{40} ∧ q.n = i)

also holds before, and hence after, the execution of 27.p. It follows that the consequent

holds after its execution.

Note that p.n cannot change while the antecedent holds. Thus, the only statements

that may falsify the consequent while the antecedent holds are 11[i].q, 14[i].q, and

28[i].q (which may establish Lock [i][0] = ⊥), 40[i].q (which may establishWinner [i][0] �=
⊥), and 39[i].q (which may establish q@{40} ∧ q.n = i), where q is any arbitrary

process. By (I2), if statements 11[i].q and 28[i].q are executed while the antecedent

holds, then we have p = q. Thus, these statements falsify the antecedent. Also, by (I2),

statement 14[i].q cannot be executed while the antecedent holds.

Statement 40[i].q cannot be executed while the consequent holds. Statement 39[i].q

may falsify the consequent only if executed when Lock [i][0] = ⊥ holds, which implies

that the consequent is already false before its execution. �

invariant p@{12..14} ∧ p.new �= ⊥ ⇒
Lock [p.n][0] �= ⊥ ∧ Winner [p.n][0] = ⊥ ∧ AccessCount[p.n] = ; ∧
¬(∃q :: q@{40} ∧ q.n = p.n) (I19)

Proof: Let i = p.n. The only statement that may establish the antecedent is 11.p.

Note that the consequent of (I18) is true before the execution of 11.p. Moreover, if

statement 11.p establishes p.new �= ⊥, then AccessCount[i] = ; ∧ Lock [i][0] �= ⊥ holds

after its execution. Thus, statement 11.p establishes the consequent.

407

Note that p.n cannot change while the antecedent holds. Thus, the only state-

ments that may falsify the consequent while the antecedent holds are 11[i].q, 14[i].q,

and 28[i].q (which may update Lock [i][0] and AccessCount[i]), 40[i].q (which may es-

tablish Winner [i][0] �= ⊥), and 39[i].q (which may establish q@{40} ∧ q.n = i and

also update Lock [i][0] and AccessCount[i]), where q is any arbitrary process. By (I2),

if statements 11[i].q, 14[i].q, and 28[i].q are executed while the antecedent holds, then

we have p = q. As shown above, statement 11.p preserves (I19). Also, the antecedent

is false after the execution of either 14.p or 28.p.

Statement 40[i].q cannot be executed while the consequent holds. Statement 39[i].q

cannot falsify Lock [i][0] �= ⊥ or AccessCount[i] = ;. Moreover, it may establish q@{40}
only if executed when Lock [i][0] = ⊥ holds, which implies that the consequent is already

false before its execution. �

invariant p@{17} ⇒
Lock [p.n][1] �= ⊥ ∧ Winner [p.n][1] = ⊥ ∧
¬(∃q :: q@{44} ∧ q.n = p.n) (I20)

Proof: Let i = p.n. The only statement that may establish the antecedent is 16.p,

which establishes Winner [i][1] = ⊥. Moreover, by (I53) and (I7), lev(i) < MAX LEVEL ∧
Winner [i][1] = p �= ⊥ holds before its execution. Therefore, by (I13) (with ‘s’ ←
1), Lock [i][1] �= ⊥ holds before and after its execution. Moreover, by (I10), ¬(∃q ::

q@{44} ∧ q.n = i) also holds before and after its execution. It follows that the conse-

quent holds after the execution of 16.p.

Note that p.n cannot change while the antecedent holds. Thus, the only statements

that may falsify the consequent while the antecedent holds are 17[i].q (which may

establish Lock [i][1] = ⊥), 44[i].q (which may establish Winner [i][1] �= ⊥), and 43[i].q

(which may establish q@{44} ∧ q.n = i), where q is any arbitrary process. By (I2),

if statement 17[i].q is executed while the antecedent holds, then we have p = q. Thus,

statement 17[i].q falsifies the antecedent.

Statement 44[i].q cannot be executed while the consequent holds. Statement 43[i].q

may falsify the consequent only if executed when Lock [i][1] = ⊥ holds, which implies

that the consequent is already false before its execution. �

invariant p@{24} ⇒
WaiterLock [p.n] �= ⊥ ∧ Waiter [p.n] = ⊥ ∧
¬(∃q :: q@{42} ∧ q.n = p.n) (I21)

408

Proof: The proof of (I21) is very similar to that of (I20). Let i = p.n. The only

statement that may establish the antecedent is 23.p, which establishes Waiter [i] =

⊥. Moreover, by (I8), Waiter [i] = p �= ⊥ holds before its execution. Therefore, by

(I14), WaiterLock [i] �= ⊥ holds before and after its execution. Moreover, by (I11),

¬(∃q :: q@{42} ∧ q.n = i) also holds before and after its execution. It follows that the

consequent holds after the execution of 23.p.

Note that p.n cannot change while the antecedent holds. Thus, the only statements

that may falsify the consequent while the antecedent holds are 24[i].q (which may

establish WaiterLock [i] = ⊥), 42[i].q (which may establish Waiter [i] �= ⊥), and 41[i].q

(which may establish q@{42} ∧ q.n = i), where q is any arbitrary process. By (I2),

if statement 24[i].q is executed while the antecedent holds, then we have p = q. Thus,

statement 24[i].q falsifies the antecedent.

Statement 42[i].q cannot be executed while the consequent holds. Statement 41[i].q

may falsify the consequent only if executed when WaiterLock [i] = ⊥ holds, which im-

plies that the consequent is already false before its execution. �

invariant p@{27} ⇒ Winner [p.n][0] = p.proc �= ⊥ (I22)

Proof: The only statement that may establish the antecedent is 26.p; the consequent

clearly holds after its execution.

Let i = p.n. Note that p.n and p.proc do not change while the antecedent holds.

Thus, the only statements that may falsify the consequent while the antecedent holds

are 2.q, 10[i].q, 27[i].q, 32.q, and 40[i].q, where q is any arbitrary process. By (I57),

the antecedent implies lev(i) < MAX LEVEL. Since statements 2.q and 32.q access a leaf

node, they cannot update Winner [i][0].

By (I2), statement 10[i].q cannot be executed while the antecedent holds. Also, by

(I2), if statement 27[i].q is executed while the antecedent holds, then we have p = q.

Thus, statement 27[i].q falsifies the antecedent.

By (I9), the consequent is false before the execution of statement 40[i].q. Thus,

statement 40[i].q cannot falsify the consequent. �

invariant p@{40} ∧ Lock [p.n][0] �= p.lock [lev(p.n)] ∧ p.n > 1 ⇒
(∃q :: q@{25, 26, 41} ∧ q.n = p.n) ∨ WaiterLock [p.n] �= ⊥ (I23)

409

Proof: Let i = p.n. The only statements that may establish the antecedent are 39.p

(which may establish p@{40} and also update p.lock [lev(p.n)]), 3.p, 8.p, 14.p, 15.p, 18.p,

20.p, and 21.p (which may update p.n), and 11[i].q, 14[i].q, 28[i].q, and 39[i].q (which

may update Lock [i][0]), where q is any arbitrary process, different from p. Statement

39.p establishes Lock [i][0] = p.lock [lev(i)]. Hence, the antecedent is false after its exe-

cution.

The antecedent is false after the execution of each of 3.p, 8.p, 14.p, 15.p, 18.p, 20.p,

and 21.p.

By applying (I18) with ‘p’ ← q and ‘q’ ← p, it follows that statements 11[i].q and

28[i].q cannot be executed while p@{40} holds. Statement 14[i].q may update Lock [i][0]

only if executed when q.new �= ⊥ holds. However, this contradicts p@{40} by (I19)

(with ‘p’ ← q and ‘q’ ← p).

Statement 39[i].q may establish the antecedent only if executed when p@{40} holds.

By (I9), this implies that Lock [i][0] �= ⊥. Thus, statement 39[i].q establishes q@{41} ∧
q.n = i in this case, which in turn implies the consequent.

Note that p.n cannot change while the antecedent holds. Similarly, q.n cannot

change while q@{25, 26, 41} holds. Thus, the only statements that may falsify the

consequent while the antecedent holds are 25[i].q, 26[i].q, and 41[i].q (which may falsify

q@{25, 26, 41}), and 24[i].q (which establishes WaiterLock [i] = ⊥), where q is any

arbitrary process. Statement 24[i].q establishes q@{25} ∧ q.n = i.

If statement 25[i].q is executed while the antecedent holds, then by (I9), we have

Lock [i][0] �= ⊥, and hence statement 25[i].q establishes q@{26}.
Statement 26[i].q may falsify q@{26} only if executed when Winner [i][0] �= ⊥. By

(I9), this implies that the antecedent is false.

Finally, by the semantics of fetch-and-update, after the execution of statement 41[i].q,

we have WaiterLock [i] �= ⊥, which implies the consequent. �

invariant Winner [i][0] = p ∧ Lock [i][0] �= p.lock [lev(i)] ∧
(1 < lev(i) < MAX LEVEL) ⇒

(∃q :: q@{25..27, 41} ∧ q.n = i) ∨ WaiterLock [i] �= ⊥ (I24)

Proof: The only statements that may establish the antecedent are 2.p and 40[i].p

(which may establish Winner [i][0] = p), 11[i].q, 14[i].q, 28[i].q, and 39[i].q (which may

410

update Lock [i][0]), and 39.p (which may update p.lock [lev(i)]), where q is any arbi-

trary process. However, since lev(i) < MAX LEVEL, statement 2.p cannot establish the

antecedent.

Statement 40[i].p may establish the antecedent only if Lock [i][0] �= p.lock [lev(i)]

holds, in which case the antecedent of (I23) holds. (Note that lev(i) > 1 implies i > 1.)

Thus, the consequent is true before and after the execution of 40[i].p.

By (I18), statements 11[i].q and 28[i].q cannot be executed while Winner [i][0] =

p �= ⊥ holds. Statement 14[i].q may update Lock [i][0] only if executed when q.new �= ⊥
holds. However, this implies that Winner [i][0] = ⊥ �= p by (I19).

Statement 39[i].q may establish the antecedent only if executed when Winner [i][0] =

p �= ⊥ holds. Since lev(i) < MAX LEVEL, by (I13) (with ‘s’ ← 0), we have Lock [i][0] �= ⊥.

Thus, statement 39[i].q establishes q@{41} ∧ q.n = i in this case, which in turn implies

the consequent.

Statement 39.p may potentially establish the antecedent by updating p.lock [lev(i)]

only if executed when Winner [i][0] = p ∧ p.lev = lev(i) ∧ lev(i) < MAX LEVEL holds.

However, by (I32), this and p@{39} cannot hold simultaneously.

Note that q.n cannot change while q@{25..27, 41} holds. Thus, the only state-

ments that may falsify the consequent are 25[i].q, 27[i].q, and 41[i].q (which may falsify

q@{25..27, 41}), and 24[i].q (which establishes WaiterLock [i] = ⊥), where q is any ar-

bitrary process. Statement 24[i].q establishes q@{25} ∧ q.n = i.

If statement 25[i].q is executed while the antecedent holds, then by (I13) (with

‘s’ ← 0), we have Lock [i][0] �= ⊥, and hence the statement establishes q@{26}. State-
ment 27[i].q falsifies the antecedent.

Finally, by the semantics of fetch-and-update, after the execution of statement 41[i].q,

we have WaiterLock [i] �= ⊥, which implies the consequent. �

invariant p@{11} ∧ Lock [p.n][0] �= p.lock [lev(p.n)] ∧ p.n > 1 ⇒
(∃q :: q@{41} ∧ q.n = p.n) ∨ WaiterLock [p.n] �= ⊥ (I25)

Proof: Let i = p.n. The only statements that may establish the antecedent are 10.p

(which establishes p@{11}), 3.p, 8.p, 14.p, 15.p, 18.p, 20.p, and 21.p (which may update

p.n), and 11[i].q, 14[i].q, 28[i].q, and 39[i].q (which may update Lock [i][0], and also

p.lock , if q = p), where q is any arbitrary process. Statement 10.p may establish the

antecedent only if executed when Lock [i][0] �= p.lock [lev(i)] holds. Moreover, by (I6),

411

Winner [i][0] = p holds before the execution of 10.p. By (I53), we also have lev(i) <

MAX LEVEL, and hence, by (I24), the following holds before the execution of 10.p:

(∃q :: q@{25..27, 41} ∧ q.n = i) ∨ WaiterLock [i] �= ⊥.

By (I2), p@{11} precludes (∃q :: q@{25..27}), and hence we have the consequent.

The antecedent is false after the execution of each of 3.p, 8.p, 14.p, 15.p, 18.p, 20.p,

and 21.p.

If p = q, then the antecedent is false after the execution of each of statements 11[i].q,

14[i].q, 28[i].q, and 39[i].q. Thus, assume q �= p.

Statements 11[i].q, 14[i].q, and 28[i].q may establish the antecedent only if executed

when p@{11} holds, which is precluded by (I2).

Statement 39[i].q may establish the antecedent only if executed when p@{11} holds.

By (I18), this implies that Lock [i][0] �= ⊥. Thus, statement 39[i].q establishes q@{41} ∧
q.n = i in this case, which in turn implies the consequent.

Note that p.n cannot change while the antecedent holds. Similarly, q.n cannot

change while q@{41} holds. Thus, the only statements that may falsify the consequent

while the antecedent holds are 41[i].q and 24[i].q, where q is any arbitrary process.

By (I2), statement 24[i].q cannot be executed while the antecedent holds. After the

execution of 41[i].q, we have WaiterLock [i] �= ⊥, which implies the consequent. �

invariant p@{12} ⇒ (∃q :: q@{41} ∧ q.n = p.n) ∨ WaiterLock [p.n] �= ⊥ (I26)

Proof: Let i = p.n. The only statement that may establish the antecedent is 11.p,

which may do so only if executed when Lock [i][0] �= p.lock [p.lev] ∧ i > 1 holds. By

(I53), this is equivalent to Lock [i][0] �= p.lock [lev(i)] ∧ i > 1. Thus, by (I25), the

consequent is true before and after the execution of 11.p.

Note that p.n cannot change while the antecedent holds. Thus, the only statements

that may falsify the consequent while the antecedent holds are 41[i].q and 24[i].q, where

q is any arbitrary process. By (I2), statement 24[i].q cannot be executed while the

antecedent holds. After the execution of 41[i].q, we have WaiterLock [i] �= ⊥, which

implies the consequent. �

invariant p@{19} ⇒ WaiterLock [p.n] �= ⊥ (I27)

412

Proof: The only statement that may establish the antecedent is 18.p, which may do

so only if the consequent holds. The only statement that may falsify the consequent

is 24.q, where q is any arbitrary process. However, by (I2), statement 24.q cannot be

executed while the antecedent holds. �

invariant WaiterLock [i] �= ⊥ ⇒
(∃p :: p@{24, 42} ∧ p.n = i) ∨ Waiter [i] �= ⊥ (I28)

Proof: The only statement that may establish the antecedent is 41[i].p, where p is

any arbitrary process. However, if statement 41[i].p is executed when the antecedent

is false, then it establishes p@{42} ∧ p.n = i, which implies the consequent.

The only statements that may falsify the consequent are 23[i].p, 24[i].p, and 42[i].p.

Statement 23[i].p establishes p@{24} ∧ p.n = i. Statement 24[i].p falsifies the an-

tecedent. Statement 42[i].p establishes Waiter [i] �= ⊥. �

invariant p@{26} ⇒ Lock [p.n][0] �= ⊥ (I29)

Proof: The only statement that may establish the antecedent is 25.p, which may do

so only if the consequent holds. The only statements that may falsify the consequent

are 11[i].q, 14[i].q, 28[i].q, and 39[i].q, where q is any arbitrary process. By (I2), state-

ments 11[i].q, 14[i].q, and 28[i].q cannot be executed while the antecedent holds. By

the semantics of fetch-and-update, statement 39[i].q cannot falsify the consequent. �

invariant Lock [i][0] �= ⊥ ∧ lev(i) < MAX LEVEL ⇒
(∃p :: p@{11, 28, 40} ∧ p.n = i) ∨
Winner [i][0] �= ⊥ ∨
(∃p :: p@{12..14} ∧ p.n = i ∧ p.new �= ⊥) (I30)

Proof: The only statements that may establish the antecedent are 11[i].p and 39[i].p.

By (I18), the antecedent is already true before the execution of statement 11[i].p. If

statement 39[i].p is executed while the antecedent is false (i.e., Lock [i][0] = ⊥), then it

establishes p@{40} ∧ p.n = i, which implies the consequent.

The only statements that may falsify the first disjunct of the consequent are

11[i].p, 28[i].p, and 40[i].p. If the antecedent holds after the execution of 11[i].p, then

p@{12, 14} ∧ p.n = i ∧ p.new �= ⊥ also holds after its execution, which implies the

413

third disjunct. The antecedent is false after the execution of 28[i].p. After the execution

of 40[i].p, Winner [i][0] �= ⊥ holds.

The only statements that may falsify Winner [i][0] �= ⊥ are 10[i].p and 27[i].p. Both

establish the first disjunct.

The only statement that may falsify the third disjunct is 14.p, where p is a process

satisfying p.n = i ∧ p.new �= ⊥. In this case, the antecedent is false after the execution

of 14.p. �

invariant (AccessCount[i] = 0) = (Lock [i][0] = ⊥) (I31)

Proof: The only statements that may update AccessCount[i] or Lock [i][0] are 11[i].p,

14[i].p, 28[i].p, and 39[i].p, where p is any arbitrary process. After the execution of

each of these statements, either both sides of (I31) are true, or both sides of (I31) are

false. �

invariant Winner [i][0] = p ∧ lev(i) < MAX LEVEL ⇒
(p@{3, 39..44} ∧ p.lev < lev(i)) ∨ A
(p@{4..8} ∧ p.break level < lev(i)) ∨ B
(p@{9..20} ∧ p.lev < lev(i)) ∨ C
(p@{9, 10} ∧ p.lev = lev(i)) D

(I32)

Proof: The only statement that may establish the antecedent is 40[i].p. By (I53),

p.lev = lev(i) holds before its execution. In this case, p first executes lines L6, L7, 3b,

3c, and 3e. By (I62), p.break level = 0 holds throught the execution of these lines.

Note that, due to line 3c, p.lev = lev(i)−1 holds when line 3e is executed. We consider

two cases.

First, if p.lev = 0 holds when line 3e is executed, then we have lev(i) = 1. In

this case, p executes line 3f and establishes p@{4} ∧ p.break level = 0 < lev(i), which

implies disjunct B.
Second, if p.lev > 0 holds when line 3e is executed, then p establishes p@{3} ∧

p.lev = lev(i) − 1 by executing line 3e. Thus, disjunct A is established.

It is straightforward to show the following: (i) if disjunct A is falsified, then dis-

junct B is established; (ii) if disjunct B is falsified when lev(i) < MAX LEVEL holds, then

414

disjunct C or D is established; (iii) if disjunct C is falsified when lev(i) < MAX LEVEL

holds, then disjunct D is established.

The only statement that may falsify disjunct D is 10.p. By (I58), the antecedent

of (I32) implies Node(p, lev(i)) = i. Hence, if statement 10.p is executed when both

the antecedent and disjunct D hold, then by (I53), we have p.n = i. This implies that

statement 10.p falsifies the antecedent. �

invariant Winner [i][1] = p ⇒
(p@{3, 39..44} ∧ p.lev < lev(i)) ∨ A
(p@{4..8} ∧ p.break level < lev(i)) ∨ B
(p@{9..20} ∧ p.lev < lev(i)) ∨ C
(p@{9, 15, 16} ∧ p.lev = lev(i)) D

(I33)

Proof: The only statement that may establish the antecedent is 44[i].p. (The following

argument is very similar to that given for 40[i].p, in the proof of (I32).) By (I53),

p.lev = lev(i) holds before its execution. In this case, p first executes lines L14, L15,

3b, 3c, and 3e. By (I62), p.break level = 0 holds throught the execution of these lines.

Note that, due to line 3c, p.lev = lev(i)−1 holds when line 3e is executed. We consider

two cases.

First, if p.lev = 0 holds when line 3e is executed, then we have lev(i) = 1. In

this case, p executes line 3f and establishes p@{4} ∧ p.break level = 0 < lev(i), which

implies disjunct B.
Second, if p.lev > 0 holds when line 3e is executed, then p establishes p@{3} ∧

p.lev = lev(i) − 1 by executing line 3e. Thus, disjunct A is established.

By (I63), the antecedent implies lev(i) < MAX LEVEL. Thus, it is straightforward to

show the following: (i) if disjunct A is falsified, then disjunct B is established; (ii) if

disjunct B is falsified when the antecedent holds, then disjunct C or D is established;

(iii) if disjunct C is falsified when the antecedent holds, then disjunct D is established.

The only statements that may falsify disjunct D are 9.p, 15.p, and 16.p. By (I58),

the antecedent of (I33) implies Node(p, lev(i)) = i. Hence, if both the antecedent and

disjunct D hold, then by (I34) and (I53), we have

Winner [i][0] �= p ∧ p.n = i. (F.1)

415

If statement 9.p (respectively, 15.p) is executed when both the antecedent and dis-

junct D hold, then by (F.1), it establishes p@{15} (respectively, p@{16}), preserving
disjunct D.

Finally, if statement 16.p is executed when both the antecedent and disjunct D hold,

then by (F.1), it falsifies the antecedent. �

invariant Winner [i][1] = p ⇒ Winner [i][0] �= p (I34)

Proof: The only statement that may establish the antecedent is 44[i].p. By (I53),

p@{44} ∧ p.n = i implies p.lev = lev(i) < MAX LEVEL. Thus, by (I32), the consequent

holds before and after the execution of 44[i].p.

The only statement that may falsify the consequent is 40[i].p. However, by (I33),

the antecedent and p@{40} imply p.lev < lev(i), which precludes p.n = i by (I53). �

invariant Waiter [i] = p ⇒
p@{4..23} ∧ p.break level = lev(i) ∧ p.side = 2 ∧
(p@{22, 23} ⇒ p.n = i) (I35)

Proof: The only statement that may establish the antecedent is 42[i].p. In this case, p

first executes lines L10, L11, 3b, 3d, and 3e. By (I53), line 3d establishes p.break level =

lev(i). Note that lev(i) > 0 holds by definition, since the root node is at level 1. Thus,

p exits the repeat loop, executes line 3f, and establishes p@{4}. Moreover, due to

line L11, line 3f assigns p.side := 2. It follows that statement 42[i].p establishes the

consequent.

The only statements that may falsify the consequent are 21.p, 22.p, and 23.p. By

(I58), the antecedent implies Node(p, lev(i)) = i. Hence, If statement 21.p is executed

while p.break level = lev(i) ∧ p.side = 2 holds, then it establishes p.n = i, preserving

the consequent.

If statement 22.p is executed while both the antecedent and the consequent hold,

then it establishes p@{23}, preserving the consequent. Finally, if statement 23.p is

executed while p.n = i holds, then the antecedent is false after its execution. �

416

invariant AccessCount[i] = 1 ⇒
(∃p :: p@{11, 40} ∧ p.n = i ∧ p.lock [lev(i)] = Lock [i][0]) ∨ A
(∃p :: Winner [i][0] = p ∧ p.lock [lev(i)] = Lock [i][0]) ∨ B
(∃q :: q@{28} ∧ q.n = i) C

(I36)

Proof: The only statement that may establish the antecedent is 39[i].p (where p is any

arbitrary process), which may do so only if executed when AccessCount[i] = 0 holds.

By (I31), this implies that Lock [i][0] = ⊥. Also, by (I53), p.lev = lev(i) holds before

and after the execution of 39[i].p. It follows that disjunct A is true after the execution

of 39[i].p.

We now consider each disjunct of the consequent in turn.

• Disjunct A. Assume that there exists a process p satisfying

p@{11, 40} ∧ p.n = i ∧ p.lock [lev(i)] = Lock [i][0]. (F.2)

The only statement that may falsify (F.2) while the antecedent holds are 11[i].p

and 40[i].p (which may falsify p@{11, 40}), and 11[i].q, 14[i].q, 28[i].q, and 39[i].q

(which may update Lock [i][0]), where q is any arbitrary process. (Note that p.n

and p.lock [lev(i)] do not change while p@{11, 40} holds.)

The antecedent is false after the execution of statement 11[i].p. If statement 40[i].p

is executed when (F.2) holds, then disjunct B holds after its execution.

The antecedent is false after the execution of either 11[i].q or 28[i].q. If state-

ment 14[i].q updates Lock [i][0], then the antecedent is false after its execution.

If statement 39[i].q is executed when the antecedent holds, then it increments

AccessCount[i], thus falsifying the antecedent.

• Disjunct B. Assume that there exists a process p satisfying

Winner [i][0] = p ∧ p.lock [lev(i)] = Lock [i][0]. (F.3)

The only statements that may falsify (F.3) are 2.q, 10[i].q, 27[i].q, 32.q, and

40[i].q (which may update Winner [i][0]), 39.p (which may update p.lock [lev(i)]),

and 11[i].q, 14[i].q, 28[i].q, and 39[i].q (which may update Lock [i][0]), where q

417

is any arbitrary process. Since AccessCount[i] = 1 is established only if i is a

non-leaf node, statements 2.q and 32.q cannot update Winner [i][0].

By (I6), Winner [i][0] = q holds before the execution of 10[i].q. Taken together

with (F.3), we have p = q, and hence disjunct A is true after the execution of

statement 10[i].q.

Disjunct C is true after the execution of statement 27[i].q. By (I9), statement 40[i].q

cannot be executed while (F.3) holds.

Statement 39.p may update p.lock [lev(i)] only if executed when p.lev = lev(i)

holds. Also, by (I53), p@{39} implies p.lev < MAX LEVEL. However, by (I32),

these assertions imply Winner [i][0] �= p.

As stated above, each of statements 11[i].q, 14[i].q, 28[i].q, and 39[i].q falsifies the

antecedent, if executed when the antecedent holds.

• Disjunct C. The only statements that may falsify the assertion q@{28} ∧ q.n = i

is 28[i].q, which falsifies the antecedent. �

invariant AccessCount[i] = 2 ⇒
(∃p :: p@{11, 40} ∧ p.n = i ∧ p.lock [lev(i)] �= Lock [i][0]) ∨ D
(∃p :: Winner [i][0] = p ∧ p.lock [lev(i)] �= Lock [i][0]) ∨ E
(∃q :: q@{28} ∧ q.n = i) F

(I37)

Proof: The only statement that may establish the antecedent is 39[i].r (where r is any

arbitrary process), which may do so only if executed when AccessCount[i] = 1 holds.

In this case, the consequent of (I36) holds before the execution of 39[i].r.

First, assume that some process p satisfies disjunct A of (I36) before the execution

of 39[i].r. Since p@{11, 40} holds, we have r �= p. Moreover, AccessCount[i] = 1 im-

plies that there was exactly one fetch-and-update invocation on Lock [i][0] since it was

last reset to ⊥. Since the underlying fetch-and-φ primitive has rank at least three,

statement 39[i].r must change the value of Lock [i][0]. Thus, it establishes disjunct D
of (I37).

Second, assume that some process p satisfies disjunct B of (I36) before the execution

of 39[i].r. By (I53), r@{39} ∧ r.n = i implies

r.lev = lev(i) < MAX LEVEL.

418

Thus, by (I32), we also have

p@{39} ⇒ p.lev < lev(i).

Combining these two assertions, and using r@{39}, we again have r �= p. As shown

above, if statement 39[i].r is executed when AccessCount[i] = 1 holds, then it changes

the value of Lock [i][0], and thus establishes disjunct E of (I37).

If disjunct C of (I36) holds before the execution of 39[i].r, then clearly disjunct F
of (I37) holds before and after its execution.

The reasoning for statements that may falsify the consequent is the same as in the

proof of (I36). �

The following lemma is used in the proof of several invariants, and also in proving

starvation-freedom.

Lemma F.1 Assume that i = Node(p, l) and j = Node(p, l+ 1) holds for some level l

(i.e., node j is a child of node i). Also assume that t and u are consecutive states such

that Winner [j][s] = p ∧ p@{3, 4, 39..44} holds at both t and u, and Dk(p, i, j, s) (for

some 1 ≤ k ≤ 7) holds at state t.

If all of the invariants listed in this appendix hold at t, then Dk′(p, i, j, s) holds at

state u, for some k′ ≥ k.

Proof: It suffices to consider statements that may falsify each Dk.

The only statements that may falsify D1 are 25[i].q and 29[i].q, where q is any

arbitrary process. Statement 25[i].q either preservesD1 by establishing q@{26} ∧ q.n =

i, or establishes

q@{30} ∧ q.n = i ∧ q.child = ((i − 1) · m+ 2) ∧ q.i = 0. (F.4)

Note that node (i − 1) · m + 2 is the leftmost child of node i. Since node j is a

child of node i, this in turn implies that (q.child , q.i) ≤ (j, s). Thus, statement 25[i].q

establishes either D2 or D3 in this case.

Statement 29[i].q also establishes (F.4) by executing lines 29a–29c. Thus, it also

establishes either D2 or D3.

The only statement that may falsify D2 is 31[i].q, where q is a process satisfying

(q.child , q.i) < (j, s). Define (̂, ŝ) to be the value of (q.child , q.i) before its execution.

We consider three cases.

419

• First, if ̂ = j, then D2 implies ŝ = 0 ∧ s = 1. In this case, statement 31[i].q

establishes q@{30} ∧ (q.child , q.i) = (̂, 1) = (j, s), and hence D3 is established.

• Second, if ̂ < j ∧ ŝ = 0 holds, then statement 31[i].q establishes q@{30} ∧
(q.child , q.i) = (̂, 1) < (j, s), and hence D2 is preserved.

• Third, if ̂ < j ∧ ŝ = 1 holds, then since node j is a child of node i, we have

̂ < j ≤ (i · m + 1). (Note that node i · m + 1 is the rightmost child of node i).

Thus, statement 31[i].q establishes q@{30} ∧ (q.child , q.i) = (̂ + 1, 0) ≤ (j, s),

and hence D2 ∨ D3 holds after its execution.

The only statement that may falsify D3 is 30[i].q, where q is a process satisfying

(q.child , q.i) = (j, s). Since we assume that Winner [j][s] = p holds, statement 30[i].q

establishes D4.

The only statement that may falsify D4 is 31.q, where q is a process satisfying

q.proc = p. In this case, statement 31.q establishes D5.

The only statements that may falsify D5 are 33.p and 35.q, where q is any arbi-

trary process. Since we assume that p@{3, 4, 39..44} holds, statement 33.p cannot be

executed. If statement 35.q falsifies D5, then it establishes D6.

The only statement that may falsify D6 is 37.q, where q is a process satisfying

q.proc = p. In this case, statement 37.q establishes D7.

The only statement that may falsify D7 is 1.p, which cannot be executed while

p@{3, 4, 39..44} holds. �

The following two corollaries are direct consequences of Lemma F.1.

Corollary F.1 Assume that i = Node(p, l) and j = Node(p, l + 1) holds for some

level l. Also, assume that t and u are consecutive states such that Winner [j][s] =

p ∧ p@{3, 4, 39..44} holds at both t and u. If W (p, i, j, s) holds at t, then it also holds

at u. �

Corollary F.2 Assume that i = Node(p, l) and j = Node(p, l+1) holds for some level

l. Also, assume that Winner [j][s] = p ∧ p@{3, 4, 39..44} ∧ Dk(p, i, j, s) holds at some

state t, for some 1 ≤ k ≤ 7.

Define h to be 5 if 1 ≤ k ≤ 5, and 7 if k is 6 or 7. If Winner [j][s] = p ∧
p@{3, 4, 39..44} continues to hold, then Dh(p, i, j, s) is eventually established.

420

Proof: Assume that Winner [j][s] = p ∧ p@{3, 4, 39..44} continues to hold. Since

statements 25–31 contain no busy-waiting loops, each of D1–D4 is eventually falsified.

(Note that, by (I2), each of D1–D4 implies that exactly one process is executing in

statements 8–38. Thus, we can consider that process as fixed.) As shown in the proof

of Lemma F.1, in this case, D5 is eventually established.

Similarly, D6 is eventually falsified, in which case D7 is established. �

invariant p@{41} ∧ p.n = i = Node(p, l) ∧ j = Node(p, l + 1) ∧
Winner [j][s] = p ∧ WaiterLock [i] = ⊥ ∧ i > 1 ⇒

W (p, i, j, s) ∨ AccessCount[i] = 2 ∨
(∃q : q �= p :: q@{12, 41} ∧ q.n = i) (I38)

Proof: The only statements that may establish the antecedent are 39[i].p (which may

establish p@{41} ∧ p.n = i), 2.p, 40[j].p, and 44[j].p (which may establishWinner [j][s] =

p), and 24[i].q (which may establish WaiterLock [i] = ⊥), where q is any arbitrary pro-

cess.

First, consider statement 39[i].p. Let x be the value of AccessCount[i] before its

execution. We consider four cases.

• If x = 0, then by (I31), statement 39[i].p establishes p@{40}. Thus, it cannot

establish the antecedent.

• If x = 1, then statement 39[i].p establishes AccessCount[i] = 2, which implies the

consequent.

• Assume x ≥ 2. Statement 39[i].p may establish the antecedent only if

Winner [j][s] = p ∧ WaiterLock [i] = ⊥ ∧ i > 1 (F.5)

holds. In this case, by (I39), there exists a process q satisfying q@{25..28, 41} ∧
q.n = i. Since p@{39}, we have q �= p.

If q@{25..28} holds, then D1 holds before and after the execution of 39[i].p. Taken

together with (F.5), this implies W (p, i, j, s). On the other hand, if q@{41} holds,

then the last disjunct of the consequent holds before and after the execution of

39[i].p.

421

• If x = ;, then by (I60), there exists a process q satisfying q@{12..14} ∧ q.n =

i ∧ q.new �= ⊥. Since p@{39}, we have q �= p.

If q@{12} holds, then the last disjunct of the consequent holds before and after

the execution of 39[i].p. On the other hand, if q@{13, 14} holds, then by (I40) and

(I41), respectively, we have Waiter [i] �= ⊥. (Note that the antecedent of (I38)

implies i > 1.) Hence, by (I14), we have WaiterLock [i] �= ⊥, which contradicts

the antecedent.

The antecedent is false after the execution of each of 2.p, 40[j].p, and 44[j].p. State-

ment 24[i].q establishes D1. Taken together with p@{41} ∧ Winner [j][s] = p, it follows

that W (p, i, j, s) holds after its execution.

By Corollary F.1, W (p, i, j, s) cannot be falsified while the antecedent holds. Hence,

the only statements that may falsify the consequent while the antecedent holds are

11[i].q, 14[i].q, 28[i].q, and 39[i].q (which may update AccessCount[i]), and 12[i].q and

41[i].q (which may falsify q@{12, 41} ∧ q.n = i), where q is any arbitrary process,

different from p.

Statement 11[i].q may potentially falsify (I38) only if executed when both the an-

tecedent and AccessCount[i] = 2 hold. In this case, by applying (I18) with ‘p’ ← q, we

have

Winner [i][0] = ⊥ ∧ ¬(∃r :: r@{40} ∧ r.n = i).

Moreover, by (I2), q@{11} implies

¬(∃r :: r@{28}) ∧ (r@{11} ⇒ r = q).

Combining these assertions, and using (I37), it follows that q@{11} ∧ q.n = i ∧
q.lock [lev(i)] �= Lock [i][0] holds before the execution of 11[i].q. Since i > 1 (by the

antecedent) and q.lev = lev(i) (by (I53)), it follows that statement 11[i].q establishes

q@{12} ∧ q.n = i, thus preserving the consequent.

Statement 14[i].q may falsify the consequent only if executed when q.new �= ⊥
holds. In this case, by (I19), AccessCount[i] = ; holds before its execution, and hence

statement 14[i].q cannot falsify AccessCount[i] = 2.

Statement 28[i].q establishes D1. Hence, if it is executed while the antecedent

holds, then W (p, i, j, s) holds after its execution. By (I31), AccessCount[i] = 2 implies

Lock [i][0] �= ⊥. Thus, if executed when AccessCount[i] = 2 holds, statement 39[i].q

establishes q@{41} ∧ q.n = i, which implies the consequent. (Recall that q �= p.)

422

Statement 12[i].q may falsify the consequent only if executed when Waiter [i] �= ⊥.

By (I14), this implies WaiterLock [i] �= ⊥, and hence the antecedent of (I38) is false

before and after its execution. Finally, WaiterLock [i] �= ⊥ holds after the execution of

statement 41[i].q, which implies that the antecedent is false. �

invariant AccessCount[i] ≥ 2 ∧ WaiterLock [i] = ⊥ ∧ i > 1 ⇒
(∃p :: p@{25..28, 41} ∧ p.n = i) (I39)

Proof: The only statements that may establish the antecedent are 24[i].p and 39[i].p,

where p is any arbitrary process. Statement 24[i].p establishes p@{25} ∧ p.n = i.

Statement 39[i].p may establish the antecedent only if executed when AccessCount[i] =

1 holds. By (I31), this implies Lock [i] �= ⊥. Hence, statement 39[i].p establishes

p@{41} ∧ p.n = i in this case.

The only statements that may falsify the consequent are 25[i].p, 28[i].p, and 41[i].p.

Since i > 1, statement 25[i].p may falsify the consequent only if Lock [i][0] = ⊥ holds,

which implies that AccessCount[i] ≥ 2 is false, by (I31). The antecedent is false after

the execution of each of 28[i].p and 41[i].p. �

invariant p@{13} ⇒ Waiter [p.n] �= ⊥ (I40)

Proof: The only statement that may establish the antecedent is 12.p, which may do

so only if the consequent holds.

Note that p.n cannot change while the antecedent holds. Thus, the only statement

that may falsify the consequent while the antecedent holds is 23.q, where q is any

arbitrary process. However, by (I2), statement 23.q cannot be executed while the

antecedent holds. �

invariant p@{14} ∧ p.n > 1 ∧ p.new �= ⊥ ⇒ Waiter [p.n] �= ⊥ (I41)

Proof: Let i = p.n. The only statements that may establish the antecedent are 11.p

and 13.p. Statement 11.pmay potentially establish the antecedent only if executed when

Lock [i][0] = p.lock [p.lev] ∧ i > 1 holds. In this case, by (I53), we have p.lev = lev(i).

Thus, by (I64), we have

Lock [i][0] = p.lock [lev(i)] = φ(⊥, αp[p.counter [lev(i)]]).

423

Since the underlying fetch-and-φ primitive is self-resettable, statement 11.p estab-

lishes

p.new = φ
(
φ(⊥, αp[p.counter [lev(i)]]), βp[p.counter [lev(i)]]

)
= ⊥,

and hence the antecedent is false after its execution.

By (I40), the consequent is true before and after the execution of statement 13.p.

Note that p.n cannot change while the antecedent holds. Thus, the only statement

that may falsify the consequent while the antecedent holds is 23.q, where q is any

arbitrary process. However, by (I2), statement 23.q cannot be executed while the

antecedent holds. �

invariant p@{42} ∧ p.n = i = Node(p, l) ∧ j = Node(p, l + 1) ∧
Winner [j][s] = p ∧ i > 1 ⇒

W (p, i, j, s) ∨ AccessCount[i] = 2 ∨ Lock [i][1] �= ⊥ ∨
(∃q : q �= p :: q@{12, 18, 19, 41, 43} ∧ q.n = i) (I42)

Proof: The only statements that may establish the antecedent are 41[i].p (which

may establish p@{42} ∧ p.n = i), and 2.p, 40[j].p, and 44[j].p (which may estab-

lish Winner [j][s] = p). Statements 2.p, 40[j].p, and 44[j].p cannot establish p@{42}.
Statement 41[i].p may establish the antecedent only if executed when Winner [j][s] =

p ∧ WaiterLock [i] = ⊥ holds. In this case, by (I38), the consequent holds before its

execution. Clearly, the consequent also holds afterwards. (Note that, by Corollary F.1,

statement 41[i].p cannot falsify W (p, i, j, s) if executed when Winner [j][s] = p holds.)

By Corollary F.1, W (p, i, j, s) cannot be falsified while the antecedent holds. Hence,

the only statements that may falsify the consequent while the antecedent holds are

11[i].q, 14[i].q, 28[i].q, and 39[i].q (which may update AccessCount[i]), 17[i].q (which

may establish Lock [i][1] = ⊥), and 12[i].q, 18[i].q, 19[i].q, 41[i].q, and 43[i].q (which

may falsify q@{12, 18, 19, 41, 43} ∧ q.n = i), where q is any arbitrary process, different

from p.

The reasoning for statements 11[i].q, 14[i].q, 28[i].q, and 39[i].q is similar to that

given in the proof of (I38). Statement 17[i].q establishes q@{18} ∧ q.n = i.

Statements 12[i].q and 19[i].q may falsify the consequent only if executed when

Waiter [i] �= ⊥. Similarly, statements 18[i].q and 41[i].q may falsify the consequent only

if executed when WaiterLock [i] = ⊥ holds. However, by (I11), neither is possible while

the antecedent holds.

424

Finally, after the execution of 43[i].q, Lock [i][1] �= ⊥ is true, which implies the

consequent. �

invariant p@{4} ∧ Waiter [i] = p ∧
i = Node(p, l) ∧ j = Node(p, l + 1) ∧
Winner [j][s] = p ∧ i > 1 ⇒

W (p, i, j, s) ∨ AccessCount[i] = 2 ∨ Lock [i][1] �= ⊥ ∨
(∃q : q �= p :: q@{12, 18, 19, 41, 43} ∧ q.n = i) ∨
(∃q : q �= p :: q@{13, 20} ∧ q.proc = p) (I43)

Proof: The only statements that may establish the antecedent are 2.p (which may

establish Winner [j][s] = p) and 40.p, 42.p, 43.p, and 44.p (which may establish p@{4},
Waiter [i] = p, or Winner [j][s] = p). Statement 2.p establishes p@{3}, and hence can-

not establish the antecedent.

By (I35), Waiter [i] = p is false before the execution of each of 40.p, 42.p, 43.p, and

44.p. Thus, only statement 42[i].pmay establish the antecedent, which may do so only if

Winner [j][s] = p holds. In this case, by (I42), the consequent holds before the execution

of 42[i].p. Clearly, the consequent also holds afterwards. (Note that, by Corollary F.1,

statement 42[i].p cannot falsify W (p, i, j, s) if executed when Winner [j][s] = p holds.)

By Corollary F.1, W (p, i, j, s) cannot be falsified while the antecedent holds. Hence,

the only statements that may falsify the consequent while the antecedent holds are

11[i].q, 14[i].q, 28[i].q, and 39[i].q (which may update AccessCount[i]), 17[i].q (which may

establish Lock [i][1] = ⊥), 12[i].q, 18[i].q, 19[i].q, 41[i].q, and 43[i].q (which may falsify

q@{12, 18, 19, 41, 43} ∧ q.n = i), and 13.q and 20.q (which may falsify q@{13, 20} ∧
q.proc = p), where q is any arbitrary process, different from p.

The reasoning for statements 11[i].q, 14[i].q, 28[i].q, and 39[i].q is similar to that

given in the proof of (I38). Statement 17[i].q establishes q@{18} ∧ q.n = i.

Statements 12[i].q and 19[i].q establish q@{13, 20} ∧ q.proc = p if executed when

the antecedent holds. Statements 18[i].q and 41[i].q may falsify the consequent only if

executed when WaiterLock [i] = ⊥ holds, which contradicts the antecedent by (I14).

After the execution of 43[i].q, Lock [i][1] �= ⊥ is true, which implies the consequent.

Statements 13[i].q and 20[i].q may falsify the consequent only if executed when

q.proc = p holds, in which case D5 holds after the execution of either statement. Taken

together with the antecedent, this implies W (p, i, j, s). �

425

invariant
[
(p@{43} ∧ p.n = i) ∨

(p@{4} ∧ p.result = SECONDARY WAITER ∧ p.break level = l)
] ∧

i = Node(p, l) ∧ j = Node(p, l + 1) ∧
Winner [j][s] = p ∧ WaiterLock [i] = ⊥ ∧ i > 1 ⇒

W (p, i, j, s) (I44)

Proof: The only statements that may establish the antecedent are 41[i].p (which

may establish p@{43} ∧ p.n = i), 43.p (which may establish p@{4} ∧ p.result =

SECONDARY WAITER ∧ p.break level = l), 2.p, 40[j].p, and 44[j].p (which may establish

Winner [j][s] = p), and 24[i].q (which may establish WaiterLock [i] = ⊥), where q is any

arbitrary process.

After the execution of 41[i].p, WaiterLock [i] �= ⊥ holds, and hence the antecedent is

false. Statement 43.p may establish the antecedent only if executed when p.lev = l ∧
Winner [j][s] = p ∧ WaiterLock [i] = ⊥. Using i = Node(p, l), and applying (I53), we

also have p.n = i, and hence the antecedent of (I44) already holds before the execution

of 41[i].p. It follows that statement 41[i].p cannot establish the antecedent.

Statement 2.p establishes p@{3}, and hence cannot establish the antecedent. State-

ment 40[j].p establishes either p@{3} or p@{4} ∧ p.result = PRIMARY WINNER, and

hence cannot establish the antecedent.

Statement 24[i].q establishes D1. Taken together with p@{4, 43} ∧ Winner [j][s] =

p, it follows that W (p, i, j, s) holds after its execution.

By Corollary F.1, the consequent cannot be falsified while p@{4, 43} ∧
Winner [j][s] = p holds. �

invariant
[
(p@{41..43} ∧ p.n = 1) ∨ (p@{4} ∧ p.break level = 1)

] ∧
j = Node(p, 2) ∧ Winner [j][s] = p ⇒

W (p, 1, j, s) ∨ Lock [1][0] �= ⊥ ∨
(∃q :: q@{9..25} ∧ q.break level = 0) (I45)

Proof: The only statements that may establish the antecedent are 39[1].p (which

may establish p@{41..43} ∧ p.n = 1), and 2.p, 40.p, 42.p, 43.p, and 44.p (which may

establish p@{4} ∧ p.break level = 1 or Winner [j][s] = p). By the semantics of fetch-

and-update, after the execution of statement 39[1].p, we have Lock [1][0] �= ⊥, which

implies the consequent.

Statement 2.p establishes p@{3}, and hence cannot establish the antecedent. By

(I62), p.break level = 0 holds before the execution of either 40.p or 44.p. Since they

426

execute line 3c instead of 3d, statements 40.p and 44.p establish either p@{3} or

p@{4} ∧ p.break level = 0. Thus, they cannot establish the antecedent.

Statements 42.p and 43.pmay establish the antecedent only if executed when p.lev =

1 ∧ Winner [j][s] = p holds. In this case, by (I53), we also have p.n = 1, and hence

the antecedent already holds before the execution of either statement. It follows that

these statements cannot establish the antecedent.

By applying Corollary F.1 with ‘i’ ← 1 and ‘l’ ← 1, it follows that W (p, 1, j, s)

cannot be falsified while the antecedent holds. (Note that Node(p, 1) = 1 is true by

definition.) Hence, the only statements that may falsify the consequent while the

antecedent holds are 11[1].q, 14[1].q, and 28[1].q (which may establish Lock [1][0] = ⊥),

and 25.q (which falsifies q@{9..25}), where q is any arbitrary process.

By (I53), q.lev = lev(1) = 1 holds before the execution of statements 11[1].q and

14[1].q. Clearly, this is possible only if q.break level = 0. (See the loop condition for

the for loop of statements 9–20.) Thus, q@{9..25} ∧ q.break level = 0 holds before

and after the execution of either 11[1].q or 14[1].q.

Since statement 28.q can be executed only if q.n > 1 holds, statement 28.q is never

executed when q.n = 1 holds.

Statement 25.q may falsify the consequent only if q.break level = 0 holds. By (I61),

this implies that q.n = 1, and hence statement 25.q establishes q@{30} ∧ (q.child , q.i) =

(2, 0). Since node j is a child of the root node, we have 2 ≤ j ≤ m + 1, which in turn

implies that (q.child , q.i) ≤ (j, s). Hence, either D2(p, 1, j, s) or D3(p, 1, j, s) holds after

the execution of 25.q. Taken together with the antecedent, it follows that W (p, 1, j, s)

holds after its execution. �

invariant p ∈ WaitingQueue ⇒ p@{3..33, 39..44} (I46)

Proof: The only statements that may establish the antecedent are 13.q, 20.q, 29.q,

and 31.q (where q is any arbitrary process), which may do so only if q.proc = p holds.

If q = p, then clearly the consequent holds before and after the execution of each of

these statements. On the other hand, if q �= p, then by applying (I47) with ‘p’ ← q and

‘q’ ← p, the consequent holds before and after the execution of each of these statements.

The only statement that may falsify the consequent is 33.p, which also falsifies the

antecedent. �

invariant p@{13, 20, 27..29, 31, 36} ∧ p.proc = q ∧ p �= q ⇒ q@{3..7, 39..44} (I47)

427

Proof: The only statements that may establish the antecedent are 12.p, 19.p, 26.p,

30.p, and 35.p. Statements 12.p and 19.p may establish the antecedent only if executed

when Waiter [p.n] = q holds, in which case, by applying (I35) with ‘p’ ← q, we have

q@{4..23}. Taken together with p@{12, 19}, and using (I2), we have q@{4..7}, which
implies the consequent.

Statements 26.p and 30.p may establish the antecedent only if executed when

Winner [j][s] = q, for some node j and s ∈ {0, 1}. If s = 0, then by (I32) and

(I59), we have q@{3..32, 39..44}. On the other hand, if s = 1, then by (I33), we

have q@{3..20, 39..44}. Taken together with q@{26, 30}, and using (I2), we have the

consequent.

Statement 35.p may establish the antecedent only if executed when q ∈
WaitingQueue holds. In this case, by (I46), and by applying (I2) as above, we have the

consequent.

The only statement that may falsify the consequent is 7.q. However, by the correct-

ness of the barrier (statements 7 and 38), statement 7.q cannot falsify the consequent

while the antecedent holds. �

invariant Promoted = p ⇒ p@{3..36, 39..44} (I48)

Proof: The only statement that may establish the antecedent is 36.q (where q is any

arbitrary process), which may do so only if executed when q.proc = p holds. By (I49),

this implies that q �= p. Thus, by applying (I47) with ‘p’ ← q and ‘q’ ← p, q.proc = p

implies that the consequent holds.

The only statement that may falsify the consequent is 36.p, which falsifies the an-

tecedent by (I49). �

invariant p@{36} ⇒ p.proc �= p (I49)

Proof: The only statement that may establish the antecedent is 35.p. By (I46),

p /∈ WaitingQueue holds before its execution. Thus, statement 35.p establishes the

consequent. The consequent cannot be falsified while the antecedent holds. �

428

invariant ‖WaitingQueue‖ > 0 ⇒
(∃p :: p@{3, 4, 39..44} ∧ Spin[p] = true) ∨ A
(∃p :: p@{5..35}) ∨ B
(∃p, q :: p@{3, 4, 39..44} ∧ q@{36, 37} ∧ q.proc = p) C

(I50)

Proof: The only statements that may establish the antecedent are 13.p, 20.p, 29.p,

and 31.p, where p is any arbitrary process. Disjunct B is true after the execution of

each of these statements.

We now consider each disjunct of the consequent in turn.

• Disjunct A. Assume that there exists a process p satisfying

p@{3, 4, 39..44} ∧ Spin[p] = true. (F.6)

The only statements that may falsify (F.6) are 1.p and 4.p. Statement 1.p cannot

be executed while (F.6) holds. Disjunct B is true after the execution of 4.p.

• Disjunct B. The only statement that may falsify disjunct B is 35.p, where p is

any arbitrary process. Statement 35.p establishes

p@{36} ∧ p.proc = q, (F.7)

for some q. By (I46), q@{3..33, 39..44} holds before the execution of 35.p. More-

over, p@{35} implies p �= q, and hence, by (I2), q@{3..7, 39..44} holds before and

after the execution of 35.p.

If q@{5..7} holds, then q satisfies disjunct B before and after the execution of

35.p. On the other hand, if q@{3, 4, 39..44} holds, then by (F.7), disjunct C (with

‘p’ ← q and ‘q’ ← p) holds after the execution of 35.p.

• Disjunct C. The only statements that may falsify disjunct C are 4.p and 37.q,

where p and q are arbitrary processes satisfying q.proc = p. If statement 4.p

falsifies disjunct C, then disjunct B is true after its execution. Statement 37.q

establishes Spin[p] = true if executed when q.proc = p holds, and hence also

establishes disjunct A. �

invariant Promoted = p ∧ Spin[p] = false ⇒ (∃q :: q@{37} ∧ q.proc = p) (I51)

429

Proof: The only statements that may establish the antecedent are 1.p and 36.q, where q

is any arbitrary process. By (I48), Promoted �= p holds before and after the execution

of 1.p, and hence statement 1.p cannot establish the antecedent. If statement 36.q

establishes the antecedent, then it also establishes the consequent.

The only statement that may falsify the consequent is 37.q, in which case it also

falsifies the antecedent. �

invariant
[
(p@{3, 39..44} ∧ p.lev < l) ∨ (p@{4} ∧ p.break level < l)

] ∧
i = Node(p, l) ⇒

Winner [i][0] = p ∨ Winner [i][1] = p ∨
(∃q :: q@{28, 29, 36, 37} ∧ q.proc = p) ∨
p ∈ WaitingQueue ∨
Spin[p] = true (I52)

Proof: Throughout the proof of (I52), we assume i = Node(p, l).

The only statements that may establish the antecedent are 2.p, 40.p, 42.p, 43.p, and

44.p. Statement 2.p may establish the antecedent only if l equals MAX LEVEL, in which

case it also establishes Winner [i][0] = p.

Statement 40.p decrements p.lev by one (by executing line 3c). Let n̂ and l̂ be the

values of p.n and p.lev , respectively, before its execution. If l̂ < l, then the antecedent

already holds before the execution of 40.p. Thus, assume l̂ ≥ l. Since l = lev(i) (which

follows from i = Node(p, l)), we have l ≥ 1.

By (I62), p.break level = 0 holds before the execution of 40.p. Thus, statement 40.p

establishes either p@{3} ∧ p.lev = l̂ − 1 (if l̂ > 1) or p@{4} ∧ p.break level = 0 (if

l̂ = l = 1). In either case, statement 40.p establishes the antecedent if and only if l̂ = l,

which in turn implies that n̂ = Node(p, l̂) = i, by (I53). Thus, if 40.p establishes the

antecedent, then it also establishes Winner [i][0] = p.

A similar argument shows that, if statement 44.p establishes the antecedent, then

it also establishes Winner [i][1] = p.

Statements 42.p and 43.p may establish the antecedent (by establishing p@{4} ∧
p.break level < l) only if executed when p.lev < l holds, which implies that the an-

tecedent is already true. Hence, these statements cannot establish the antecedent.

The only statements that may falsify the consequent are 2.q, 10[i].q, 27[i].q, 32.q,

and 40[i].q (which may update Winner [i][0]), 16[i].q and 44[i].q (which may update

Winner [i][1]), 29.q and 37.q (which may falsify q@{28, 29, 36, 37} ∧ q.proc = p), 33.p

430

and 35.q (which may falsify p ∈ WaitingQueue), and 1.p (which falsifies Spin[p] = true),

where q is any arbitrary process.

Statements 2.q and 32.q update q’s dedicated leaf node. Since i = Node(p, l) (i.e.,

i is a node on p’s path), clearly i is not q’s leaf node. Thus, these statements cannot

update Winner [i][0].

By (I6), Winner [i][0] = q holds before the execution of 10[i].q. Therefore, state-

ment 10[i].q may falsify the consequent only if p = q, in which case the antecedent is

false before and after its execution.

By (I22), if statement 27[i].q falsifies Winner [i][0] = p, then it establishes q@{28} ∧
q.proc = p.

By (I9), Winner [i][0] = p is false before the execution of 40[i].q. Thus, state-

ment 40[i].q cannot falsify Winner [i][0] = p.

By (I7), Winner [i][1] = q holds before the execution of 16[i].q. Therefore, state-

ment 16[i].q may falsify the consequent only if p = q, in which case the antecedent is

false before and after its execution.

By (I10), Winner [i][1] = p is false before the execution of 44[i].q. Thus, state-

ment 44[i].q cannot falsify Winner [i][1] = p.

Statements 29.q and 37.q may falsify the consequent only if executed when q.proc =

p, in which case they establish either p ∈ WaitingQueue or Spin[p] = true. Thus, these

statements preserve the consequent.

Statements 1.p and 33.p cannot be executed while the antecedent holds. Finally, if

statement 35.q falsifies the consequent, then it establishes q@{36} ∧ q.proc = p, and

hence preserves the consequent. �

invariant p@{9..20, 39..44} ⇒
p.n = Node(p, p.lev) ∧ p.lev = lev(p.n) < MAX LEVEL (I53)

Proof: Whenever the antecedent is established, p executes either line 8c or L1. Hence,

p.n = Node(p, p.lev) is also established, which also implies p.lev = lev(p.n). Moreover,

the loop condition of the for loop of statements 9–20 ensures that, if p@{9..20} holds,

then p.lev < MAX LEVEL also holds. Similarly, lines 2b and 3c ensure that, if p@{39..44}
holds, then p.lev < MAX LEVEL also holds.

The consequent cannot be falsified while the antecedent holds. �

invariant p@{4..38} ⇒ [
(p.break level > 0) = (p.side = 2)

]
(I54)

431

Proof: The only statements that may establish the antecedent are 40.p, 42.p, 43.p, and

44.p. If p executes either 40.p or 44.p, then p establishes the antecedent if and only if it

executes lines 3b, 3c, 3e, and 3f, in which case line 3f establishes p.side �= 2. Moreover,

by (I62), p.break level = 0 holds before and after the execution of either 40.p or 44.p.

Thus, in this case, the consequent holds after the execution of either 40.p or 44.p.

By (I62), p.lev > 0 holds before the execution of either 42.p or 43.p. Thus, state-

ment 42.p establishes p.break level > 0 ∧ p.side = 2 by executing lines L10, L11, 3b, and

3d–3f. Therefore, the consequent holds after its execution. Similarly, statement 43.p

may establish the antecedent only if it executes lines L12, L13, L16, 3b, and 3d–3f, in

which case it also establishes p.break level > 0 ∧ p.side = 2, and hence, the consequent.

The consequent cannot be falsified while the antecedent holds. �

invariant p@{35, 36} ⇒ Promoted = p ∨ Promoted = ⊥ (I55)

invariant p@{37} ⇒ p.proc = Promoted (I56)

Proof: Note that the only statement that may update Promoted is statement 36. Since

executions of statements 8–38 are serialized by the barrier (see (I2)), invariants (I55)

and (I56) follow easily by inspecting statements 34–36. �

invariant p@{22..31} ⇒ lev(p.n) < MAX LEVEL (I57)

Proof: The only statement that may establish the antecedent is 21.p.

Note that process p may update p.break level only via the execution of line 2b or 3d.

Clearly, p.break level < MAX LEVEL holds after the execution of line 2b. Since line 3d is

always executed as a part of statement 42.p or 43.p, by (I53), p.break level < MAX LEVEL

also holds after the execution of line 3d.

It follows that p.break level < MAX LEVEL holds before the execution of statement 21.p.

Hence, the consequent holds after its execution.

The consequent cannot be falsified while the antecedent holds. �

invariant Winner [i][s] = p ∨ Waiter [i] = p ⇒ i = Node(p, lev(i)) (I58)

Proof: Since process p visits only the nodes on its path (i.e., Node(p, l) for 1 ≤ l ≤
MAX LEVEL), this invariant follows easily. �

432

invariant Winner [i][0] = p ∧ lev(i) = MAX LEVEL ⇒ p@{3..32, 39..44} (I59)

Proof: The only statements that may establish the antecedent are 2.p and 40[i].p.

Statement 2.p establishes the consequent. By (I53), statement 40[i].p cannot be exe-

cuted if lev(i) = MAX LEVEL.

The only statement that may falsify the consequent is 32.p. By (I58), the antecedent

implies i = Node(p, MAX LEVEL). Thus, statement 32.p falsifies the antecedent. �

invariant AccessCount[i] = ; ⇒ (∃p :: p@{12..14} ∧ p.n = i ∧ p.new �= ⊥) (I60)

Proof: The only statement that may establish the antecedent is 11[i].p, where p is any

arbitrary process. If statement 11[i].p establishes the antecedent, then it also establishes

the consequent.

The only statement that may falsify the consequent is 14[i].p (where p is any arbi-

trary process), which may do so only if executed when p.new �= ⊥ holds. In this case,

statement 14[i].p also falsifies the antecedent. �

invariant p@{22..31} ∧ p.break level = 0 ⇒ p.n = 1 (I61)

Proof: The only statement that may establish the antecedent is 21.p, which may do so

only if p.break level = 0 holds. By (I54), this implies p.side �= 2. Thus, statement 21.p

establishes the consequent in this case.

The consequent cannot be falsified while the antecedent holds. �

invariant p@{3, 39..44} ⇒ p.lev > 0 ∧ p.break level = 0 (I62)

Proof: This invariant follows easily by inspecting lines 2b, 3c, 3d, and 3e. �

invariant Winner [i][1] �= ⊥ ⇒ lev(i) < MAX LEVEL (I63)

Proof: The only statement that may establish the antecedent is 44[i].p. By (I53),

statement 44[i].p may be executed only if the consequent is true. �

invariant (Winner [i][0] = p ∧ lev(i) < MAX LEVEL) ∨
(p@{11, 40} ∧ p.n = i) ⇒

p.lock [lev(i)] = φ(⊥, αp[p.counter [lev(i)]]) (I64)

433

Proof: The only statements that may establish the antecedent are 40[i].p (which may

establish Winner [i][0] = p ∧ lev(i) < MAX LEVEL), and 10[i].p and 39[i].p (which may

establish p@{11, 40} ∧ p.n = i). However, the antecedent is already true (specifically,

its second disjunct) before the execution of 40[i].p. Similarly, by (I6) and (I53), the

antecedent is already true before the execution of 10[i].p. Hence, these statements

cannot establish the antecedent.

Statement 39[i].p may establish the antecedent only if executed when Lock [i][0] = ⊥
holds. By (I53), p@{39} ∧ p.n = i implies p.lev = lev(i), and hence statement 39[i].p

establishes the consequent in this case.

The only statement that may falsify the consequent while the antecedent holds is

39.p (which may update p.lock [lev(i)] and p.counter [lev(i)]), which may do so only if

p.lev = lev(i) holds. Taken together with the antecedent, we have

Winner [i][0] = p ∧ p.lev = lev(i) < MAX LEVEL ∧ p@{39}.

However, this is precluded by (I32). �

invariant Lock [i][1] �= ⊥ ⇒ (∃p :: p@{17, 44} ∧ p.n = i) ∨ Winner [i][1] �= ⊥ (I65)

Proof: The only statement that may establish the antecedent is 43[i].p, where p is

any arbitrary process. However, if statement 43[i].p is executed when the antecedent

is false, then it establishes p@{44} ∧ p.n = i, which implies the consequent.

The only statements that may falsify the consequent are 16[i].p (which may fal-

sify Winner [i][1] �= ⊥) and 17[i].p and 44[i].p (which may falsify the first disjunct

of the consequent), where p is any arbitrary process. Statement 16[i].p establishes

p@{17} ∧ p.n = i. Statement 17[i].p falsifies the antecedent. Statement 44[i].p estab-

lishes Winner [i][1] �= ⊥. �

invariant p@{4} ∧ p.result = PRIMARY WAITER ⇒
Waiter [Node(p, p.break level)] = p (I66)

Proof: The only statement that may establish the antecedent is 42.p. By (I53),

p.n = Node(p, p.lev) holds before its execution. Thus, statement 42.p establishes the

consequent (via the execution of lines L10 and 3d).

Let i = Node(p, p.break level). Note that p.break level cannot be updated while the

antecedent holds. Hence, the only statements that may falsify the consequent while

434

the antecedent holds are 23[i].q and 42[i].q, where q is any arbitrary process. By (I8),

statement 23[i].q may falsify the consequent only if q = p. In this case, the antecedent

is false before and after its execution.

By (I11), statement 42[i].q cannot be executed while the consequent holds. �

This completes the proof of the Exclusion property.

F.3 Proof of Starvation-freedom

In order to prove starvation-freedom, we must show that each busy-waiting loop at

statements 4, 12, 19, and 26 eventually terminates. Toward this goal, we first prove

the following lemma. (Statement 4 is considered later.)

Lemma F.2 The busy-waiting loops at statements 12, 19, and 26 each eventually

terminate.

Proof: Statement 12: If a process p is busy-waiting at statement 12[i], then by

(I26), either there exists a process q satisfying q@{41} ∧ q.n = i, or WaiterLock [i] �= ⊥
holds. In the former case, q eventually executes statement 41[i]. Thus, in either case,

WaiterLock [i] �= ⊥ is eventually established at some state t.

At state t, by (I28), either there exists a process r satisfying r@{24, 42} ∧ r.n = i,

or Waiter [i] �= ⊥ holds. Since p@{12} holds, r@{24} is precluded by (I2). Moreover,

if r@{42} ∧ r.n = i holds, then r eventually executes statement 42[i]. Thus, in either

case, Waiter [i] �= ⊥ is eventually established at some later state u.

Finally, Waiter [i] �= ⊥ may be falsified only by statement 23.q, where q is any

arbitrary process. By (I2), statement 23.q cannot be executed while p@{12} holds. It

follows that Waiter [i] �= ⊥ holds continuously from state u, and hence p eventually

establishes p@{13} by executing 12.p.

Statement 19: Assume that, at state t, a process p is busy-waiting at statement 19[i].

By (I27), WaiterLock [i] �= ⊥ holds at state t. The rest of the reasoning is the same as

for statement 12.

Statement 26: If a process p is busy-waiting at statement 26[i], then by (I29) and

(I57), we have Lock [i][0] �= ⊥ ∧ lev(i) < MAX LEVEL. Thus, by (I2) and (I30), and using

p@{26}, we have the following: either there exists a process q satisfying q@{40} ∧ q.n =

i, or Winner [i][0] �= ⊥ holds. In the former case, q eventually executes statement 40[i].

Thus, in either case, Winner [i][0] �= ⊥ is eventually established.

435

Winner [i][0] �= ⊥ may be falsified only by statements 10.q, 27.q, and 32.q, where q is

any arbitrary process. By (I2), none of these statements can be executed while p@{26}
holds. It follows that Winner [i][0] �= ⊥ holds continuously, and hence p eventually

establishes p@{27} by executing 26.p. �

We now prove that the busy-waiting loop at statement 4 eventually terminates.

Toward this goal, we first prove the following leads-to properties. (See page 385 for

the definition of A leads-to B.) Property (L1) states that, if a process p, enqueued

onto WaitingQueue, is waiting at statement 4, then eventually some process q executes

statement 35 and dequeues a process from WaitingQueue.

p@{4} ∧ p ∈ WaitingQueue leads-to p@{5} ∨ (∃q : q �= p :: q@{35}) (L1)

Proof: If p@{5} is eventually established, then (L1) is proven. Thus, in the rest of the

proof, we assume that p@{4} holds indefinitely.

Since the left-hand side of (L1) implies ‖WaitingQueue‖ > 0, by (I50), one of the

following holds, for some processes q and r.

A: q@{3, 4, 39..44} ∧ r@{36, 37} ∧ r.proc = q,

B: q@{3, 4, 39..44} ∧ Spin[q] = true,

C: q@{5..33}, or
D: q@{34, 35}.

First, if A ∧ ¬B is true, then eventually r establishes B by executing statement 37.r.

Note that Spin[q] = true can be falsified only by statement 1.q. Hence, Spin[q] =

true cannot be falsified while B holds. Therefore, if B is true, then eventually q estab-

lishes C by executing statement 4.q.

If C is true, then by Lemma F.2, q eventually establishes D by executing state-

ment 33.q.

It follows that, in all cases, D is eventually established. Since p@{4} continues to

hold, we have q �= p. Hence, if q@{35} holds, we have the right-hand side of (L1).

Thus, assume that q@{34} holds. Eventually, q executes statement 34.q. Let t be the

state just before the execution of statement 34.q. We consider two cases.

First, if Promoted ∈ {q,⊥} holds at state t, then q establishes q@{35}, which implies

the right-hand side of (L1).

Otherwise, Promoted = r �= ⊥ holds for some process r �= q. By (I2), q@{35}
implies (∀r′ :: ¬r′@{37}). Thus, by applying (I51) with ‘p’ ← r, we have Spin[r] = true.

436

Also, by applying (I48) with ‘p’ ← r, we have r@{3..36, 39..44}. By (I2) and q@{35},
this in turn implies that

• r@{3..7, 39..44} holds at state t. (F.8)

Note that Spin[r] = true cannot be falsified while r@{3..7, 39..44} holds. Thus,

r makes progress at statement 4, and eventually establishes r@{7}. After that, by

Lemma F.2, r executes statements 7–33 and eventually establishes r@{34}.
We claim that Promoted = r is not falsified until r executes statement 34. The only

statement that may falsify Promoted = r is 36.r′, where r′ is any arbitrary process.

However, by (I55), 36.r′ may falsify Promoted = r only if r′ = r. Also, by (F.8),

statement 36.r cannot be executed (after state t) until r executes statement 34.r.

It follows that Promoted = r holds when r executes statement 34. Hence, r estab-

lishes r@{35}. By our assumption that p@{4} holds indefinitely, we have r �= p, and

hence r@{35} implies the right-hand side of (L1). �

The following property is a simple application of (L1).

p@{4} ∧ p ∈ WaitingQueue leads-to p@{5} ∨ Spin[p] = true (L2)

Proof: If p@{5} is eventually established, then (L2) holds. Thus, assume that p@{4}
holds indefinitely. In this case, by (L1), some process q1 eventually executes state-

ment 35, and dequeues a process r from WaitingQueue. If r = p, then q1 establishes

Spin[p] = true by executing statement 37. Otherwise, the left-hand side of (L2) con-

tinues to hold, and hence some process q2 eventually executes statement 35. Since

the queue is finite, continuing in this manner, eventually some process qi (for some i)

dequeues process p by executing statement 35, and then establishes Spin[p] = true at

statement 37. �

We now prove the following two leads-to properties. In proving (L3) and (L4), we

use induction on l. In particular, when we prove (L3) and (L4) for a particular value

of l, we assume that (L3) and (L4) hold for all smaller values of l. In addition, when

we prove (L4), we assume that (L3) holds for the same value of l.

p@{4} ∧ p.side = 2 ∧ p.break level = l leads-to

p ∈ WaitingQueue ∨ Spin[p] = true ∨ p@{5} (L3)

p@{4} ∧ p.side = 2 ∧ p.break level = l leads-to p@{5} (L4)

437

Proof of (L3): By (I54), it suffices to assume p.break level > 0. Consider a state t in

which the left-hand side of (L3) is true.

Let

i = Node(p, l) ∧ j = Node(p, l + 1). (F.9)

By applying (I52) with ‘l’ ← l+1 and ‘i’ ← j, it follows that at state t and at every

subsequent state until p@{4} is falsified, one of the following propositions holds.

(P1) Winner [j][0] = p ∨ Winner [j][1] = p,

(P2) there exists a process q satisfying q@{28, 29, 36, 37} ∧ q.proc = p,

(P3) p ∈ WaitingQueue, and

(P4) Spin[p] = true.

If either (P3) or (P4) is true at some subsequent state, then (L3) holds. If (P2) is

true at some subsequent state, then eventually q executes either statement 29 or 37,

establishing (P3) or (P4).

The only remaining case is when (P1) ∧ ¬(P2) is true at state t and at all subsequent

states. In this case,

• Winner [j][s] = p holds at state t, for some s ∈ {0, 1}. (F.10)

For the sake of contradiction, we further assume that the right-hand side of (L3)

is not eventually established. Hence, at t and at all subsequent states, we have the

following.

¬(∃q :: q@{28, 29, 36, 37} ∧ q.proc = p), (F.11)

p /∈ WaitingQueue, (F.12)

Spin[p] = false, and (F.13)

p@{4}. (F.14)

Our goal now is to derive a contradiction from (F.11)–(F.14). Throughout the rest

of the proof, all propositions are assumed to apply to state t and all subsequent states,

unless stated otherwise. We start with the following claims.

Claim 1: Winner [j][s] = p.

Proof of Claim: At state t, Winner [j][s] = p holds by (F.10). The only

statements that may falsify Winner [j][s] = p are 2.q, 10[j].q, 27[j].q, 32.q,

438

and 40[j].q (if s = 0), and 16[j].q and 44[j].q (if s = 1), where q is any

arbitrary process. By (F.14), we have q �= p.

Statements 2.q and 32.q update q’s dedicated leaf node. Since j = Node(p, l+

1) by (F.9) (i.e., j is a node in p’s path), clearly j is not q’s leaf node. Thus,

these statements cannot update Winner [j][0].

By (I6), Winner [j][0] = q holds before the execution of 10[j].q. Thus, be-

cause q �= p, Winner [j][0] = p is already false prior to its execution.

By (I22), if statement 27[j].q falsifies Winner [j][0] = p, then it establishes

q@{28} ∧ q.proc = p, which contradicts (F.11).

By (I9), Winner [j][0] = p is false before the execution of 40[j].q. Thus,

statement 40[j].q cannot falsify Winner [j][0] = p.

By (I7), Winner [j][1] = q holds before the execution of 16[j].q. Thus, be-

cause q �= p, Winner [j][1] = p is already false prior to its execution.

By (I10), Winner [j][1] = p is false before the execution of 44[j].q. Thus,

statement 44[j].q cannot falsify Winner [j][1] = p. �

Claim 2: For all k (1 ≤ k ≤ 7), ¬Dk(p, i, j, s). (In particular, ¬W (p, i, j, s).)

Proof of Claim: If Dk(p, i, j, s) at some state u, then by (F.14) and

Claim 1, W (p, i, j, s) holds. Hence, by Corollary F.2, p ∈ WaitingQueue ∨
Spin[p] = true is eventually established. But this contradicts (F.12) and

(F.13). �

We now consider three cases, depending on the value of l.

Case 1: l = 1. Since l = 1, we have i = 1 and j = Node(p, 2). By (I45) and Claims 1

and 2, at state t and at all subsequent states, we have one of the following.

(P5) Lock [1][0] �= ⊥, and

(P6) there exists a process q satisfying q@{9..25} ∧ q.break level = 0.

We first prove the following claim.

Claim 3: (P5) leads-to (P6).

439

Proof of Claim: Assume that (P5) holds at some state. By applying (I30)

with ‘i’ ← 1, either there exists a process q satisfying

q@{11..14, 28, 40} ∧ q.n = 1, (F.15)

or Winner [1][0] �= ⊥ holds. In the latter case, by applying (I32) with ‘i’ ←
1, and using lev(1) = 1, it follows that there exists a process q satisfying

q@{4..8} ∧ q.break level = 0, or (F.16)

q@{9, 10} ∧ q.lev = 1. (F.17)

(Note that q.lev < 1 is always false while q@{9..20} holds; hence, the other

two disjuncts in the consequent of (I32) are precluded.)

Since statement 28.q can be executed only if q.n > 1 holds, (F.15) implies

q@{11..14, 40} ∧ q.n = 1. Also, by (I53), (F.17) implies q.n = 1. Combin-

ing these assertions, there exists a process q satisfying one of the following.

(P7) q@{40} ∧ q.n = 1,

(P8) q@{4..8} ∧ q.break level = 0, and

(P9) q@{9..14} ∧ q.n = 1.

We claim that, if any of (P7)–(P9) holds, then eventually (P6) holds. First,

assume that (P7) holds at some state. By (I53) and (I62), (P7) implies

q.lev = 1 ∧ q.break level = 0. Hence, eventually q establishes (P8) by

executing statement 40.

Second, assume that (P8) holds at some state. By (I54), (P8) implies

p.side �= 2, and hence q does not busy-wait at statement 4. It follows that

q eventually establishes (P9).

Finally, if (P9) holds at some state, then by (I53), we also have q.lev =

1. Due to the loop condition of for loop at lines 9–20, this implies that

q.break level = 0. This in turn implies (P6). �

By Claim 3, in all cases, eventually (P6) is established. Hence, by Lemma F.2,

eventually the following holds: q@{25} ∧ q.break level = 0. By (I61), this in turn

440

implies q.n = 1. However, q@{25} ∧ q.n = 1 implies D1(p, i, j, s), which contradicts

Claim 2. Thus, we have reached contradiction.

Case 2: l > 1 ∧ p.result = PRIMARY WAITER. In this case, since l > 1, we have

i > 1. (F.18)

By (I66), we also have

Waiter [i] = p. (F.19)

Hence, by (I43) and Claims 1 and 2, at state t and all subsequent states, one of the

following holds.

(P10) AccessCount[i] = 2,

(P11) (∃q : q �= p :: q@{41, 43} ∧ q.n = i),

(P12) Lock [i][1] �= ⊥,

(P13) (∃q : q �= p :: q@{12, 18, 19} ∧ q.n = i), and

(P14) (∃q : q �= p :: q@{13, 20} ∧ q.proc = p.

We claim that, in all cases, eventually (P14) holds. Toward this goal, we prove the

following claims. (Recall that A unless B is true if and only if the following holds: if

A ∧ ¬B holds before some statement execution, then A ∨ B holds after that execution.

Informally, A is not falsified until B is established.)

Claim 4: (P10) unless (P11) ∨ (P13).

Proof of Claim: It suffices to consider statements that may falsify (P10).

Consider a state u at which (P10) holds.

By Claim 2, for each process q, we have ¬(q@{28} ∧ q.n = i). (Otherwise,

D1(p, i, j, s) would hold.) Therefore, by (I37), there exists a process q

satisfying the following:

q.lock [lev(i)] �= Lock [i][0], and (F.20)

(q@{11, 40} ∧ q.n = i) ∨ Winner [i][0] = q. (F.21)

The only statements that may falsify (P10) are 11[i].r, 14[i].r, 28[i].r, and

39[i].r, where r is any arbitrary process.

441

Before the execution of either statement 11[i].r or 28[i].r, by (I18) (with

‘p’ ← r) and (F.21), q@{11} must hold. Thus, by (I2), statement 28[i].r

cannot be executed while (P10) holds, and statement 11[i].r may be exe-

cuted only if r = q. In the latter case, by (F.18) and (F.20), statement 11[i].r

establishes q@{12} ∧ q.n = i, which in turn implies (P13). (Note that

q@{12} implies q �= p by (F.14).)

Statement 14[i].r may falsify (P10) only if executed when r.new �= ⊥ holds.

In this case, by (I19) (with ‘p’ ← r) and (F.21), q@{11} must hold. How-

ever, this contradicts r@{14} by (I2).

Finally, Before the execution of statement 39[i].r, by (I31), (P10) implies

Lock [i][0] �= ⊥. Thus, statement 39[i].r establishes r@{41} ∧ r.n = i, which

in turn implies (P11) (with ‘q’ ← r). (Note that r@{41} implies r �= p by

(F.14).) �

Claim 5: (P10) leads-to (P11) ∨ (P13).

Proof of Claim: Due to Claim 4, it suffices to show that (P10) is eventually

falsified. As shown in the proof of Claim 4, (P10) implies that there exists

a process q satisfying (F.21). Thus, we have one of the following.

A: q@{40} ∧ q.n = i,

B: Winner [i][0] = q, and

C: q@{11} ∧ q.n = i.

We claim that q eventually executes 11[i].q, thus falsifying (P10). First, if

A holds, then eventually q executes statement 40[i], establishing B.
Second, assume that B holds. We establish the following claims.

Claim 5-1: B unless C.
Proof of Claim: The only statements that may falsify B are 2.r,

10[i].r, 27[i].r, 32.r, and 40[i].r, where r is any arbitrary process.

Statements 2.r and 32.r update r’s dedicated leaf node. Since

i = Node(p, l) by (F.9) (i.e., i is a node in p’s path), clearly i is not

r’s leaf node. Thus, these statements cannot update Winner [i][0].

By (I6), Winner [i][0] = r holds before the execution of 10[i].r.

Thus, statement 10[i].r can falsify B only if r = q, in which case

it establishes C.

442

Before the execution of 27[i].r, D1(p, i, j, s) holds by definition,

which contradicts Claim 2. Hence, statement 27[i].r cannot be

executed.

By (I9), Winner [i][0] = ⊥ holds before the execution of 40[i].r.

Thus, statement 40[i].r cannot falsify B. �

Claim 5-2: B leads-to C.
Proof of Claim: Due to Claim 5-1, it suffices to show that B is

eventually falsified. By (I32), B implies that one of the following

holds for some process q. (Note that, since node i has a child

node j, we have lev(i) < MAX LEVEL.)

D: q@{3, 39..44} ∧ q.lev < lev(i),

E : q@{4..8} ∧ q.break level < lev(i),

F : q@{9..20} ∧ q.lev < lev(i), and

G: q@{9, 10} ∧ q.lev = lev(i).

First, if D holds, q.lev may only decrease while q@{3, 39..44}
holds. Moreover, by (I62), q.break level = 0 holds while D holds.

Hence, when q@{4..8} is established, either q.break level = 0 is

preserved, or q assigns q.break level := q.lev by executing line 3d.

In either case, E is established.

Second, assume that E holds. Since lev(i) = l (by (F.9)), by our

inductive assumption, (L4) holds for ‘l’ ← q.break level . Thus, in

this case, q eventually executes statement 8 and establishes either

F or G. (Note that, since node i has a child node j, we have

lev(i) < MAX LEVEL. Therefore, statement 8.q cannot establish

q@{21}.)
Third, if F holds, then by Lemma F.2, q eventually establishes

G.
It follows that, in all cases, G is eventually established. By (I58),

B implies i = Node(q, lev(i)). Thus, by (I53), G implies q.n = i.

Hence, if executed when B ∧ G holds, statement 9.q establishes

q@{10}, and statement 10.q falsifies B. �

It follows that, in all cases, C is eventually established. Hence, q eventually

executes statement 11[i].q, which falsifies (P10). �

443

Claim 6: (P11) leads-to (P12).

Proof of Claim: If (P11) holds, then eventually a process q executes

either 41[i].q or 43[i].q. Before the execution of 41[i].q, by (F.19) and (I14),

WaiterLock [i] �= ⊥ holds. Hence, statement 41[i].q establishes q@{43} ∧
q.n = i. Thus, in either case, q eventually executes statement 43[i].q. After

its execution, we have (P12). �

Claim 7: (P12) leads-to (P13).

Proof of Claim: The proof of Claim 7 is similar to that of Claim 5. If

(P12) holds, then by (I65), there exists a process q satisfying one of the

following.

A: q@{44} ∧ q.n = i,

B: Winner [i][1] = q, and

C: q@{17} ∧ q.n = i.

We claim that q eventually executes 17[i].q, thus establishing (P13). First,

if A holds, then eventually q executes statement 44[i], establishing B.
Second, assume that B holds. We establish the following claims.

Claim 7-1: B unless C.
Proof of Claim: The only statements that may falsify B are

16[i].r and 44[i].r, where r is any arbitrary process.

By (I7), Winner [i][1] = r holds before the execution of 16[i].r.

Thus, statement 16[i].r can falsify B only if r = q, in which case

it establishes C.
By (I10), Winner [i][1] = ⊥ holds before the execution of 44[i].r.

Thus, statement 44[i].r cannot falsify B. �

Claim 7-2: B leads-to C.
Proof of Claim: Due to Claim 7-1, it suffices to show that B is

eventually falsified. By (I33), B implies that one of the following

holds, for some process q.

D: q@{3, 39..44} ∧ q.lev < lev(i),

E : q@{4..8} ∧ q.break level < lev(i),

444

F : q@{9..20} ∧ q.lev < lev(i), and

G: q@{9, 15, 16} ∧ q.lev = lev(i).

As shown in the proof of Claim 5-2, if one of D, E , and F holds,

then G is eventually established. By (I34) and (I58), B implies

Winner [i][0] �= q ∧ i = Node(q, lev(i)). Thus, by (I53), G implies

q.n = i. Hence, if executed when B ∧ G holds, statement 9.q es-

tablishes q@{15}, statement 15.q establishes q@{16}, and state-

ment 16.q falsifies B. �

It follows that, in all cases, C is eventually established. Hence, q eventually

executes statement 17[i].q, which establishes (P13). �

By (F.19) and (I14), Waiter [i] = p ∧ WaiterLock [i] �= ⊥ holds at state t and all

subsequent states. Hence, it is straightforward to prove (P13) leads-to (P14). Taken

together with Claims 5–7, it follows that (P14) is eventually established. Therefore,

some process q eventually executes either 13.q and 20.q while q.proc = p holds, estab-

lishing p ∈ WaitingQueue. However, this contradicts (F.12).

Case 3: l > 1 ∧ p.result
= PRIMARY WAITER. In this case, clearly p is a sec-

ondary waiter (i.e., p.result = SECONDARY WAITER). Hence, by (I44), (F.9), Claim 1,

and Claim 2, WaiterLock [i] �= ⊥ holds at state t and all subsequent states.

Therefore, by (I28), there exists a process q satisfying one of the following. (The

following reasoning is similar to the proofs of Claims 5 and 7.)

A: q@{42} ∧ q.n = i,

B: Waiter [i] = q, and

C: q@{24} ∧ q.n = i.

We claim that q eventually executes 24[i].q, thus establishing q@{25} ∧ q.n = i.

This in turn implies D1, which contradicts Claim 2.

First, if A holds, then eventually q executes statement 42[i], establishing B.
Second, assume that B holds. We establish the following claims.

Claim 8: B unless C.
Proof of Claim: The only statements that may falsify B are 23[i].r and

42[i].r, where r is any arbitrary process.

445

By (I8), Waiter [i] = r holds before the execution of 23[i].r. Thus, state-

ment 23[i].r can falsify B only if r = q, in which case it establishes C.
By (I11), Waiter [i] = ⊥ holds before the execution of 42[i].r. Thus, state-

ment 42[i].r cannot falsify B. �

Claim 9: B leads-to C.
Proof of Claim: Due to Claim 8, it suffices to show that B is eventually

falsified. By (I35), B implies

q@{4..23} ∧ q.break level = lev(i) ∧ q.side = 2 ∧ q@{22, 23} ⇒ q.n = i.

(F.22)

Note that B may be established only by statement 42.q, which also es-

tablishes q.result = PRIMARY WAITER. Thus, by using Case 2 above (which

is already proven) with ‘p’ ← q, it follows that q eventually establishes

q@{5..23}. Hence, by Lemma F.2, q eventually establishes q@{22, 23}.
If B continues to hold, then statement 22.q establishes q@{23}. By (F.22),

if B continues to hold, then statement 23.q falsifies B. �

It follows that, in all cases, C is eventually established. Hence, q eventually exe-

cutes statement 24[i].q, which establishes q@{25} ∧ q.n = i. However, this in turn

implies D1(p, i, j, s), which contradicts Claim 2. Thus, we have reached the desired

contradiction. �

We now prove (L4).

p@{4} ∧ p.side = 2 ∧ p.break level = l leads-to p@{5} (L4)

Proof: If the left-hand side of (L4) holds, then by (L3), eventually the right-hand side

of (L3) holds. If p@{5}, then (L4) holds. Otherwise, we have either Spin[p] = true

or p ∈ WaitingQueue. By (L2), if p@{4} ∧ p ∈ WaitingQueue holds, then eventually

either p@{5} or Spin[p] = true holds. Thus, it suffices to assume Spin[p] = true.

If Spin[p] = true holds, then it cannot be falsified while p@{4} holds. Thus, p

eventually executes statement 4, thus establishing p@{5}. �

Finally, by combining Lemma F.2 with (L4), it follows that Algorithm T is

starvation-free.

446

BIBLIOGRAPHY

[1] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Adaptive long-lived
renaming using bounded memory. Unpublished manuscript, 1999.

[2] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renam-
ing made adaptive. In Proceedings of the 18th Annual ACM Symposium on
Principles of Distributed Computing, pages 91–103. ACM, May 1999.

[3] Y. Afek, P. Boxer, and D. Touitou. Bounds on the shared memory requirements
for long-lived and adaptive objects. In Proceedings of the 19th Annual ACM
Symposium on Principles of Distributed Computing, pages 81–89. ACM, July
2000.

[4] Y. Afek and M. Merritt. Fast, wait-free (2k − 1)-renaming. In Proceedings of the
18th Annual ACM Symposium on Principles of Distributed Computing, pages
105–112. ACM, May 1999.

[5] Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive collect with applications.
In Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, pages 262–272. IEEE, October 1999.

[6] Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive splitter and applications.
Distributed Computing, 15(2):67–86, 2002.

[7] R. Alur, H. Attiya, and G. Taubenfeld. Time-adaptive algorithms for synchro-
nization. In Proceedings of the 26th Annual ACM Symposium on Theory of
Computing, pages 800–809. ACM, May 1994.

[8] R. Alur and G. Taubenfeld. Results about fast mutual exclusion. In Proceedings
of the 13th IEEE Real-Time Systems Symposium, pages 12–21. IEEE, 1992.

[9] R. Alur and G. Taubenfeld. Contention-free complexity of shared memory algo-
rithms. Information and Computation, 126(1):62–73, April 1996.

[10] R. Alur and G. Taubenfeld. Fast timing-based algorithms. Distributed Computing,
10(1):1–10, 1996.

[11] J. Anderson. A fine-grained solution to the mutual exclusion problem. Acta In-
formatica, 30(3):249–265, May 1993.

[12] J. Anderson and M. Gouda. Atomic semantics of nonatomic programs. Information
Processing Letters, 28(2):99–103, June 1988.

447

[13] J. Anderson, R. Jain, and K. Jeffay. Efficient object sharing in quantum-based real-
time systems. In Proceedings of the 19th IEEE Real-Time Systems Symposium,
pages 346–355. IEEE, December 1998.

[14] J. Anderson and Y.-J. Kim. Fast and scalable mutual exclusion. In Proceedings of
the 13th International Symposium on Distributed Computing, pages 180–194,
September 1999.

[15] J. Anderson and Y.-J. Kim. Adaptive mutual exclusion with local spinning. In
Proceedings of the 14th International Symposium on Distributed Computing,
pages 29–43. Lecture Notes in Computer Science 1914, Springer-Verlag, Octo-
ber 2000.

[16] J. Anderson and Y.-J. Kim. A new fast-path mechanism for mutual exclusion.
Distributed Computing, 14(1):17–29, January 2001.

[17] J. Anderson and Y.-J. Kim. An improved lower bound for the time complexity of
mutual exclusion. Distributed Computing, 15(4):221–253, December 2002.

[18] J. Anderson and Y.-J. Kim. Nonatomic mutual exclusion with local spinning. In
Proceedings of the 21st Annual ACM Symposium on Principles of Distributed
Computing, pages 3–12. ACM, July 2002.

[19] J. Anderson and Y.-J. Kim. Local-spin mutual exclusion using fetch-and-φ primi-
tives. In Proceedings of the 23rd IEEE International Conference on Distributed
Computing Systems, pages 538–547. IEEE, May 2003.

[20] J. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion: Major
research trends since 1986. Distributed Computing, 16(2–3):75–110, September
2003.

[21] J. Anderson and M. Moir. Universal constructions for multi-object operations. In
Proceedings of the 14th Annual ACM Symposium on Principles of Distributed
Computing, pages 184–193. ACM, August 1995.

[22] J. Anderson and J.-H. Yang. Time/contention tradeoffs for multiprocessor syn-
chronization. Information and Computation, 124(1):68–84, January 1996.

[23] T. Anderson. The performance of spin lock alternatives for shared-memory multi-
processors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6–16,
January 1990.

[24] H. Attiya and V. Bortnikov. Adaptive and efficient mutual exclusion. In Pro-
ceedings of the 19th Annual ACM Symposium on Principles of Distributed
Computing, pages 91–100. ACM, July 2000.

448

[25] H. Attiya and A. Fouren. Adaptive wait-free algorithms for lattice agreement and
renaming. In Proceedings of the 17th Annual ACM Symposium on Principles
of Distributed Computing, pages 277–286. ACM, July 1998.

[26] H. Attiya and A. Fouren. Adaptive long-lived renaming with read and write op-
erations. Technical Report CS0956, Faculty of Computer Science, Technion,
Haifa, 1999.

[27] H. Buhrman, J. Garay, J. Hoepman, and M. Moir. Long-lived renaming made
fast. In Proceedings of the 14th Annual ACM Symposium on Principles of
Distributed Computing, pages 194–203. ACM, August 1995.

[28] J. Burns and N. Lynch. Mutual exclusion using indivisible reads and writes. In
Proceedings of the 18th Annual Allerton Conference on Communication, Con-
trol, and Computing, pages 833–842, 1980.

[29] J. Burns and N. Lynch. Bounds on shared memory for mutual exclusion. Infor-
mation and Computation, 107(2):171–184, December 1993.

[30] M. Choy and A. Singh. Adaptive solutions to the mutual exclusion problem.
Distributed Computing, 8(1):1–17, 1994.

[31] P. Courtois, F. Heymans, and D. Parnas. Concurrent control with readers and
writers. Communications of the ACM, 14(10):667–668, 1971.

[32] T. Craig. Queuing spin lock algorithms to support timing predictability. In Pro-
ceedings of the 14th IEEE Real-Time Systems Symposium, pages 148–156, De-
cember 1993.

[33] R. Cypher. The communication requirements of mutual exclusion. In Proceedings
of the Seventh Annual Symposium on Parallel Algorithms and Architectures,
pages 147–156, June 1995.

[34] E. Dijkstra. Solution of a problem in concurrent programming control. Commu-
nications of the ACM, 8(9):569, 1965.

[35] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms.
Journal of the ACM, 44(6):779–805, November 1997.

[36] S. Fu and N.-F. Tzeng. A circular list-based mutual exclusion scheme for large
shared-memory multiprocessors. IEEE Transactions on Parallel and Dis-
tributed Systems, 8(6):628–639, June 1997.

[37] P. Gibbons, Y. Matias, and V. Ramachandran. Efficient low-contention parallel
algorithms. In Proceedings of the Sixth Symposium on Parallel Algorithms and
Architectures, pages 236–247. ACM, June 1994.

449

[38] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory mul-
tiprocessors. IEEE Computer, 23:60–69, June 1990.

[39] S. Haldar and P. Subramanian. Space-optimum conflict-free construction of 1-
writer 1-reader multivalued atomic variable. In Proceedings of the Eighth In-
ternational Workshop on Distributed Algorithms, pages 116–129. Lecture Notes
in Computer Science 857, Springer-Verlag, 1994.

[40] S. Haldar and K. Vidyasakar. Constructing 1-writer multireader multivalued
atomic variables from regular variables. Journal of the ACM, 42(1):186–203,
1995.

[41] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124–149, 1991.

[42] T.-L. Huang. Fast and fair mutual exclusion for shared memory systems. In Pro-
ceedings of the 19th IEEE International Conference on Distributed Computing
Systems, pages 224–231, June 1999.

[43] T.-L. Huang and C.-H. Shann. A comment on “A circular list-based mutual ex-
clusion scheme for large shared-memory multiprocessors”. IEEE Transactions
on Parallel and Distributed Systems, 9(4):415–416, April 1998.

[44] T. Johnson and K. Harathi. A prioritized multiprocessor spin lock. IEEE Trans-
actions on Parallel and Distributed Systems, 8(9):926–933, September 1997.

[45] J. Kessels. Arbitration without common modifiable variables. Acta Informatica,
17:135–141, 1982.

[46] Y.-J. Kim and J. Anderson. A time complexity bound for adaptive mutual ex-
clusion. In Proceedings of the 15th International Symposium on Distributed
Computing, pages 1–15. Lecture Notes in Computer Science 2180, Springer-
Verlag, October 2001.

[47] Y.-J. Kim and J. Anderson. A space- and time-efficient local-spin spin lock. In-
formation Processing Letters, 84(1):47–55, September 2002.

[48] Y.-J. Kim and J. Anderson. Timing-based mutual exclusion with local spinning.
In Proceedings of the 17th International Symposium on Distributed Comput-
ing, pages 30–44. Lecture Notes in Computer Science 2848, Springer-Verlag,
October 2003.

[49] D. Knuth. Additional comments on a problem in concurrent programming control.
Communications of the ACM, 9(5):321–322, 1966.

[50] L. Kontothanassis, R. Wisniewski, and M. Scott. Scheduler-conscious synchroniza-
tion. ACM Transactions on Computer Systems, 15(1):3–40, February 1997.

450

[51] L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM, 17(8):453–455, August 1974.

[52] L. Lamport. A new approach to proving the correctness of multiprocess programs.
ACM Transactions on Programming Languages and Systems, 1(1):84–97, July
1979.

[53] L. Lamport. The mutual exclusion problem: Part I - A theory of interprocess
communication. Journal of the ACM, 33(2):313–326, 1986.

[54] L. Lamport. The mutual exclusion problem: Part II - Statement and solutions.
Journal of the ACM, 33(2):327–348, 1986.

[55] L. Lamport. On interprocess communication: Part II - Algorithms. Distributed
Computing, 1:86–101, 1986.

[56] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1):1–11, February 1987.

[57] D. Lehman, A. Pnueli, and J. Stavi. Impartiality, justice, and fairness: The ethics
of concurrent termination. In Proceedings of the 8th ICALP. Lecture Notes in
Computer Science, Vol. 115, Springer Verlag, July 1981.

[58] N. Lynch and N. Shavit. Timing based mutual exclusion. In Proceedings of the
13th IEEE Real-Time Systems Symposium, pages 2–11. IEEE, December 1992.

[59] P. Magnussen, A. Landin, and E. Hagersten. Queue locks on cache coherent mul-
tiprocessors. In Proceedings of the 8th International Parallel Processing Sym-
posium, pages 26–29, April 1994.

[60] E. Markatos. Multiprocessor synchronization primitives with priorities. In Pro-
ceedings of the 1991 IFAC Workshop on Real-Time Programming, pages 1–7.
Pergamon Press, 1991.

[61] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems,
9(1):21–65, February 1991.

[62] J. Mellor-Crummey and M. Scott. Scalable reader-writer synchronization for
shared-memory multiprocessors. In Proceedings of the Third ACM Symposium
on Principles and Practice of Parallel Programming, pages 106–113. ACM,
April 1991.

[63] M. Merritt and G. Taubenfeld. Speeding Lamport’s fast mutual exclusion algo-
rithm. Information Processing Letters, 45:137–142, 1993.

451

[64] M. Merritt and G. Taubenfeld. Computing with infinitely many processes. In Pro-
ceedings of the 14th International Symposium on Distributed Computing, pages
164–178. Lecture Notes in Computer Science 1914, Springer-Verlag, October
2000.

[65] M. Michael and M. Scott. Fast mutual exclusion, even with contention. Technical
Report TR-460, University of Rochester, Rochester, NY, 1993.

[66] M. Moir and J. Anderson. Fast, long-lived renaming. In Proceedings of the 8th
International Workshop on Distributed Algorithms, pages 141–155, September
1994.

[67] M. Moir and J. Anderson. Wait-free algorithms for fast, long-lived renaming.
Science of Computer Programming, 25(1):1–39, October 1995.

[68] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The
Hardware/software Interface. Morgan Kaufmann Publishers, 2nd edition,
1997.

[69] G. Peterson. Myths about the mutual exclusion problem. Information Processing
Letters, 12(3):115–116, June 1981.

[70] G. Peterson and J. Burns. Concurrent reading while writing II: The multi-writer
case. In Proceedings of the 28th Annual ACM Symposium on Foundation of
Computer Science. ACM, 1987.

[71] G. Pfister and V. Norton. “Hot spot” contention and combining in multistage
interconnection networks. IEEE Transactions on Computers, C-34(10):943–
948, October 1985.

[72] M. Raynal. Algorithms for Mutual Exclusion. The MIT Press, Cambridge, Mas-
sachusetts, 1986.

[73] I. Rhee and C.-Y. Lee. An efficient recovery-based spin lock protocol for pre-
emptive shared-memory, multiprocessors. In Proceedings of the 15th Annual
ACM Symposium on the Principles of Distributed Computing, pages 77–86,
May 1996.

[74] R. Schaffer. On the correctness of atomic multi-writer registers. Technical Report
MIT/LCS/TM-364, Laboratory for Computer Science, MIT, Cambridge, 1988.

[75] M. Scott. Non-blocking timeout in scalable queue-based spin locks. In Proceedings
of the 21th Annual ACM Symposium on Principles of Distributed Computing,
pages 31–40. ACM, July 2002.

[76] M. Scott and W. Scherer. Scalable queue-based spin locks with timeout. In Pro-
ceedings of the Eighth Annual ACM Symposium on Principles and Practice of
Parallel Programming, pages 44–52. ACM, June 2001.

452

[77] A. Singh, J. Anderson, and M. Gouda. The elusive atomic register. Journal of the
ACM, 41(2):311–339, 1994.

[78] E. Styer. Improving fast mutual exclusion. In Proceedings of the 11th Annual ACM
Symposium on Principles of Distributed Computing, pages 159–168. ACM, Au-
gust 1992.

[79] E. Styer and G. Peterson. Tight bounds for shared memory symmetric mutual
exclusion. In Proceedings of the 8th Annual ACM Symposium on Principles of
Distributed Computing, pages 177–191. ACM, August 1989.

[80] Y.-K. Tsay. Deriving a scalable algorithm for mutual exclusion. In Proceedings of
the 12th International Symposium on Distributed Computing, pages 393–407.
Springer Verlag, September 1998.

[81] P. Turán. On an extremal problem in graph theory (in Hungarian). Mat. Fiz.
Lapok, 48:436–452, 1941.

[82] R. Wisniewski, L. Kontothanassis, and M. Scott. Scalable spin locks for mul-
tiprogrammed systems. In Proceedings of the Eighth International Parallel
Processing Symposium, pages 26–29, April 1994.

[83] R. Wisniewski, L. Kontothanassis, and M. Scott. High performance synchroniza-
tion algorithms for multiprogrammed multiprocessors. In Proceedings of the
Fifth ACM Symposium on Principles and Practices of Parallel Programming,
pages 199–206. ACM, July 1995.

[84] J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Dis-
tributed Computing, 9(1):51–60, August 1995.

[85] X. Zhang, Y. Yan, and R. Castañeda. Evaluating and designing software mutual
exclusion algorithms on shared-memory multiprocessors. IEEE Parallel and
Distributed Technology, pages 25–42, Spring Issue, 1996.

