Image Geometry Through Multiscale Statistics

by

Terry Seung-Won Yoo

A Dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science.

Chapel Hill

1996

Approved by:

Stephen M. Pizer, advisor

James M. Coggins, rea

J.S. Marron, reader

George D. Stetten, reader

© 1996 Terry S. Yoo ALL RIGHTS RESERVED

Abstract

This study in the statistics of scale space begins with an analysis of noise propagation of multiscale differential operators for image analysis. It also presents methods for computing multiscale central moments that characterize the probability distribution of local intensities. Directional operators for sampling oriented local central moments are also computed and principal statistical directions extracted, reflecting local image geometry. These multiscale statistical models are generalized for use with multivalued data.

The absolute error in normalized multiscale differential invariants due to spatially uncorrelated noise is shown to vary non-monotonically across order of differentiation. Instead the absolute error decreases between zeroth and first order measurements and increases thereafter with increasing order of differentiation, remaining less than the initial error until the third or fourth order derivatives are taken.

Statistical invariants given by isotropic and directional sampling operators of varying scale are used to generate local central moments of intensity that capture information about the local probability distribution of intensities at a pixel location under an assumption of piecewise ergodicity. Through canonical analysis of a matrix of second moments, directional sampling provides principal statistical directions that reflect local image geometry, and this allows the removal of biases introduced by image structure. Multiscale image statistics can thus be made invariant to spatial rotation and translation as well as linear functions of intensity.

These new methods provide a principled means for processing multivalued images based on normalization by local covariances. They also provide a basis for choosing control parameters in variable conductance diffusion.

Acknowledgements

I am indebted to many people for the successful completion of this document. I am grateful for the generous support of my advisor, Dr. Stephen M. Pizer, who has been with me throughout the years as mentor, colleague, editor, and friend. I also extend special thanks to Dr. James M. Coggins who has been an unending source of advice.

I thank the other members of my committee, Dr. Jonathan A. Marshall, Dr. George D. Stetten, Dr. Benjamin Tsui, and especially Dr. J. S. Marron.

This research has been funded in part through the National Institutes of Health, grant number P01 CA 47982 and the National Science Foundation, NSF ASC-89-20219.

There are many other people without whom I would never have made it to the end of a successful graduate career. Thanks to Murray Anderegg for many cups of coffee and countless sanity-preserving hands of cribbage. Thanks to David Harrison who added breadth to my education in important ways. Thanks to Dr. Richard L. Holloway for the many needed distractions, his sharing of life's little important things, but most of all for his valued friendship. Thanks to my life friends Dr. Don and Claire Stone, without whom I would never have reached the home stretch. Thanks to Matt Fitzgibbon, Dr. Mary McFarlane and Dr. Greg Turk for being there when I've needed them the most.

During my graduate student tenure, I have had many gifted advisors and mentors. For their friendship and guidance I would like to thank Dr. Henry Fuchs, Dr. Frederick Brooks, Kathy Tesh, and Linda Houseman. For their contributions as colleagues, coauthors, conspirators, and confidants I thank David T. Chen, Marc Olano, Steven Aylward, Rob Katz, Dr. Bryan Morse, and Dr. Ross Whitaker.

Finally, I owe my greatest debts to my family. I thank my parents for life and the strength and determination to live it. Special thanks to my son, Ross, who reminds me daily that miracles exist everywhere around us. Most of all, I thank my beloved wife, Penny, who shares my burdens and my joys. This dissertation is equally her achievement. For me, it is she who makes all things possible.

Contents

Abstract	i
Acknowledgements	ii
Contents	iv
List of Tables	vii
List of Figures	viii
List of Symbols	xi
Chapter 1 Introduction	1
1.1. A multiscale approach to computer vision	2
1.2. An integrated approach to early vision	3
1.3. Driving issues	4
1.4. Thesis	5
1.5. Overview	6
1.6. Contributions	7
Chapter 2 Background	9
2.1. Notation	9
2.2. Images	9
2.2.1. Images as a 2D manifold in n-space	10
2.2.2. Digital Images	11
2.3. Invariance	12
2.3.1. Gauge Coordinates	13
2.4. Scale Space	14
2.4.1. Differentiation	15
2.4.2. The Gaussian as a unique Regular Tempered Distribution	16
2.4.3. Zoom Invariance	18
2.4.4. Gaussian Scale Space	18
2.5. Image Statistics	19
2.5.1. The Normal Density vs. the Gaussian Filter Kernel	19
2.5.2. Noisy Images	20
2.5.3. Statistical Measures as Invariants: Mahalanobis Distances	20
2.5.4. Calculating Central Moments	21
2.5.5. Characteristic Functions.	23
A Simple University Example (a Caussian Normal Distribution)	23
A Simple Univariate Example (a Gaussian Normal Distribution)	23
2.6 Moment Inverients of Image Functions	25
2.0. Woment invariants of image 1 unctions	20
Chapter 3 Normalized Scale Space Derivatives:	27
3.1. Introduction and Background	27
3.1.1. Scale Space Differential Invariants	28
5.1.2. Reconstruction of Sampled Images via the Taylor Expansion	29
3.1.3. Exploring the Properties of Scale-space Derivatives	

3.2.	Noise and Scale	31
3.3.	Variance of Multiscale Derivatives without Normalization	32
	3.3.1. Covariances of 1D Multiscale Derivatives	33
	3.3.2. Covariances of 2D Multiscale Derivatives	35
3.4.	Variance of Normalized Scale Space Derivatives	36
3.5.	Analysis of 1D Scale Space Derivatives	37
3.6.	Analysis of 2D Scale Space Derivatives	
3.7.	Discussion	42
3.8.	Conclusion	43
3.A	. Appendix : Covariance of Scale Space Derivatives	44
Chapte	er 4 Multiscale Image Statistics	49
4.1.	Background and Introduction	49
4.2.	Images and Stochastic Processes	51
	4.2.1. Stochastic Processes	51
	4.2.2. Images as Samples	52
	4.2.3. Ergodicity	53
	4.2.4. Ergodicity and Images	54
4.3	Multiscale Statistics	55
	4.3.1. Multiscale Mean	56
	4.3.2. Multiscale Variance	57
	4.3.3. Multiscale Skewness and Kurtosis	59
	4.3.4. Invariance with respect to linear functions of intensity	61
4.4.	Other Multiscale Central Moments	62
4.5.	Characteristics of Multiscale Image Statistics	62
	4.5.1. Multiscale Statistics vs. Difference of Gaussian Operators	62
	4.5.2. Multiscale Moments of Intensity vs. Moment Invariants of	Image
	Functions	64
4.6.	Measurement Aperture, Object Scale, and Noise	65
	4.6.1. Noise Propagation in Multiscale Statistics of an Ergodic Process	65
	4.6.2. Noise Propagation in Multiscale Statistics of a Piecewise	
	Ergodic Process	66
4.7.	Multiscale Statistics of 2D Images	68
	4.7.1. Multiscale 2D Image Mean	68
	4.7.2. Multiscale 2D Image Variance	68
	4.7.3. Other Multiscale 2D Image Statistics	69
	4.7.4. Some 2D Examples of Multiscale Image Statistics	69
4.8.	An Application: Statistical Nonlinear Diffusion	70
4.9.	Multiscale Statistics of Multivalued Images	72
	4.9.1. The Multiscale Multivalued Mean	73
	4.9.2. Multiscale Multivalued Joint Moments	73
	4.9.3. Multiscale Multivalued Variance	73
4.9.	4. Multiparameter VCD, a foreshadow of future work	74
4.10). Summary and Conclusions	76
Chapte	er 5 Directional Multiscale Image Statistics	79
5.1.	Approaches to Directional Analysis	80
	5.1.1. Steerable Filters	80

5.1.2. Matrices and Differential Geometry
5.1.3. Intensity Invariance vs. Spatially Invariant Directional Analysis81
5.2. Directional Statistics
5.2.1. Multiscale Directional Means
5.2.2. Multiscale Directional Covariances
5.2.3. The Cauchy-Schwarz Inequality for Multiscale Directional
Covariances
5.3. Directional Multiscale Statistics of Sample 2D Images
5.4. The Directional Multiscale Covariance Matrix
5.5. SVD Applied to Directional Multiscale Statistics of 2D Images
5.6. Multiscale Gauge Coordinates of Image Statistics
5.7. Invariants of Directional Multiscale Moments
5.8. Multiscale Directional Statistics of Multivalued Images
5.8.1. Canonical Correlation Analysis of Multivalued Directional Statistics.96
5.8.2. Understanding Canonical Correlations of Multivalued
Directional Statistics
5.9. Covariance between Image Intensity and Space
5.9.1. Directional Analysis of 2D Scalar Images
5.9.2. Canonical Correlation Analysis versus Differential Operators101
5.10. Summary
5.A. Appendix: Singular Value Decomposition of a 2x2 Symmetric Matrix103
Chapter 6 Conclusions and Future Directions
6.1. Contributions and Conclusions
6.2. Future Directions in Multiscale Statistical Theory
6.2.1. Local Differential Geometry and Local Image Statistics
6.2.2. Multiscale Distribution Analysis
6.2.3. Comparing Two Distributions
6.3. Applying Multiscale Image Statistics
6.3.1. Statistical Control of Nonlinear Diffusion
6.3.2. Mixtures in Segmentation111
6.4. Multiscale Image Statistics in Medicine
6.5. Summary113
Bibliography

List of Tables

Table 3.1. Variances of unnormalized scale space derivatives (order 0-6) of noisy 1D
images (variance of input noise = v_0)
Table 3.2. Variances of unnormalized scale space derivatives of noisy 2D images
(variance of input noise = v_0) for partial spatial derivatives to the fourth order
(Adapted from Blom 1992)
Table 3.3. Variances of normalized scale space derivatives (order 0-6) of noisy 1D
images (variance of input noise = v_0)
Table 3.4. Variances of normalized scale space derivatives of noisy 2D images for partial
spatial derivatives to the fourth order (variance of input noise = v_0)
Table 3.5. Variances of both unnormalized and normalized scale space derivatives
(order 0-6) of noisy 2D images (variance of input noise = v_0)

List of Figures

Figure 1.1. A segmentation example. (a) the original digital radiograph, (b) an image most denoting accounts and (c) the algorithm account most showing the
mask denoting segments, and (c) the classified segment mask, showing the
Eisen 2.1. These representations of an increase Error left to violate (a)
Figure 2.1. Inree representations of an image. From left to right: (a) greyscale
representation, (b) intensity surface, and (c) isophotes10
Figure 2.2. The image in Figure 2.1 represented as a digital image with a raster resolution
of 64×64 pixels
Figure 2.3. 2-D Gaussian derivative filter kernels through the 4th order16
Figure 2.4. Top: Characteristic function for a zero mean Gaussian. Maclaurin
approximating polynomials (a) n=2, (b) n=8, (c) n=10, and (d) n=1625
Figure 3.1. Propagated error of unnormalized 1D scale space derivatives (order 0-6).
Each curve represents the ratio of variance of output to input noise of the linear
unnormalized derivative of Gaussian filter vs. scale σ . Plot is on a log-log scale38
Figure 3.2 Plot of the propagated error of normalized 1D scale space derivatives (order 0-
6). Each curve represents the ratio of variance of output to input noise of the linear
normalized derivative of Gaussian filter vs. scale σ . Plot is on a log-log scale
Figure 3.3. Plot of the propagated error of normalized 1D scale-space derivatives (order
0-6). Curve represents the ratio of variance of output to input noise of the linear
unnormalized derivative of Gaussian filter vs. order of differentiation. Plot is on a
log scale
Figure 3.4. Propagated error of unnormalized 2D scale space derivatives (order 0-6).
Each curve represents the ratio of variance of output to input noise of the linear
unnormalized derivative of Gaussian filter vs. scale σ . Plot is on a log-log scale 42
Figure 3.5 Plot of the propagated error of normalized 2D scale space derivatives (order 0-
6) Each curve represents the ratio of variance of output to input noise of the linear
normalized derivative of Gaussian filter vs. scale σ
Figure 2.6 Dist of the propagated error of normalized 2D scale space derivatives (order
Figure 5.0. Flot of the propagated effor of normalized 2D scale-space derivatives (ofder
0-0). Curve represents the fatto of variance of output to input hoise of the linear unnormalized derivative of Caussian filter vs. order of differentiation. Dist is on a
uniformatized derivative of Gaussian filter vs. order of differentiation. Plot is on a
Figure 4.1a. Concerts 1D square galas function D(d, x). Used as the input for concerting
Figure 4.1a. Generic 1D square pulse function $P(d, x)$. Used as the input for generating
pulse transfer functions
Figure 4.1b. ID square pulse functions P (1, x), P (2, x), P (4, x), P (8, x). From left to
right: $d = 1, d = 2, d = 4, d = 8;$ $\lim_{d \to 0} P(d, x) = o(x).$
Figure 4.2. 1D pulse transfer function for the multiscale mean operator $\mu_{P(d,x)}(x \sigma)$.
From left to right: $d = 1$, $d = 2$, $d = 4$, $d = 8$. In all images, $\sigma = 1$. The dashed lines
represent the input pulse function $P(d,x)$. Note the difference in spatial and
intensity ranges in each image
Figure 4.3. 1D pulse transfer function for the multiscale variance operator $u_{D(4,r)}^{(2)}(x \sigma)$.
Example ft to right $d = 1$ $d = 2$ $d = 4$ $d = 9$. In all images $\pi = 1$. Note that
From left to right: $a = 1$, $a = 2$, $a = 4$, $a = 8$. In all images, $\sigma = 1$. Note the difference in anotical and intensity ranges in each image.
unterence in spatial and intensity ranges in each image

Figure 4.4. Comparison of the 1D pulse transfer function for the multiscale variance operator $\mu_{P(d,x)}^{(2)}(x \mid \sigma)$ to the square multiscale gradient magnitude operator. Top row, $\mu_{P(d,x)}^{(2)}(x \mid \sigma)$. Bottom row: $\left(\frac{\partial}{\partial x} P(d,x \mid \sigma)\right)^2$. From left to right: d = 1, d = 2, d = 4, d = 8. In all images, σ = 1. Note the difference in spatial and intensity ranges in Figure 4.5. 1D pulse transfer function of $\mu_{P(d,x)}^{(3)}(x \mid \sigma)$. From left to right: d = 1, d = 2, d = 4, d = 8. In all images, σ = 1. Note the difference in spatial and intensity ranges in row: $\frac{\partial}{\partial x} P(d, x \mid \sigma)$. From left to right: d = 1, d = 2, d = 4, d = 8. In all images, $\sigma =$ Figure 4.7. 1D pulse transfer function of $\mu_{P(d,x)}^{(4)}(x \mid \sigma)$. From left to right: d = 1, d = 2, d = 4, d = 8. In all images, σ = 1. Note the difference in spatial and intensity ranges in Bottom row: $\left(\frac{\partial^2}{\partial x^2} P(d, x \mid \sigma)\right)^2$. From left to right: d = 1, d = 2, d = 4, d = 8. In all images, $\sigma = 1$. Note the difference in spatial and intensity ranges in each image. ...61 Figure 4.9. Comparisons of $\mu_{P(d,x)}^{(2)}(x \mid \sigma)$ with dog(P (d,x); σ_a, σ_b). The input function is a pulse P (d,x). In all cases, d = 1. From left to right: a. $\mu_{P(d,x)}^{(2)}(x \mid \sigma)$ with $\sigma = 1$, b. Dog(P (d,x); σ_a, σ_b) with $\sigma_a = \sigma_b/\sigma_2$, $\sigma_b = 1$, and c. Dog(P (d,x); σ_a, σ_b) with $\sigma_a = \sigma_b/\sigma_2$ $0, \sigma_b = 1......64$ Figure 4.11. A 128 x 128 pixel Teardrop with Signal to Noise of 4:169 Figure 4.13. A test object. The figure contains structures at different scale. The raster resolution of the object is 128 x 128 pixels.....72 Figure 4.14. Results from the modified multiscale statistical approach to vcd (left: initial image, right: after 75 iterations of vcd).....72 Figure 4.15. Early work in statistically driven multivalued vcd. A synthetic multivalued image where the values are subject to significant gaussian white noise and with a strong negative correlation between intensity values. (a) - original two valued input image and its scatterplot histogram. (b) - image after processing with vcd and Figure 5.1. - A test image with SNR of 4:1 with a raster resolution of 256×256 pixels. 87 Figure 5.2. Directional variances of the objects from Figure 5.1. (From left to right: a: $V_{XX} = \mu_{I,xx}^{(2)}(\mathbf{p} \mid \sigma)$, b: $V_{XY} = \mu_{I,xy}^{(2)}(\mathbf{p} \mid \sigma)$, c: $V_{YY} = \mu_{I,yy}^{(2)}(\mathbf{p} \mid \sigma)$). In all images, a grey value is 0, and $\sigma = 2$ pixels. Bright grey to white indicates positive values, and dark grey to black indicates negative values. Each image uses a left handed coordinate system with the origin in the upper left corner, the x-axis oriented to the right, and

Figure 5.3. Eigenvalue images of the object from Figure 5.1, computed with a spatial
aperture or scale σ of 2 pixels. (From left to right: a: λ_1 , b: λ_2). In both of these
images, black is zero and bright indicates positive values
Figure 5.4. Eigenvector image of the object from Figure 5.1, computed with a spatial
aperture or scale σ of 2 pixels. The image reflects only the eigenvector u in the
direction of maximum variance at each pixel; the eigenvector \mathbf{v} in the direction of
minimum variance is perpendicular to the vectors shown. The lengths of the vector
representations indicate relative magnitude92
Figure 5.5. (a) Test figure exhibiting significant directional spatial correlation and (b) the
local anisotropy statistic \hat{Q} where $\sigma = 3$. In both images, the raster resolution is 256
× 256
Figure 6.1. A 2D dual-echo MR image of the head with its scatterplot histogram112
Figure 6.2. MR image of a shoulder acquired using a surface receiving coil. This may
represent the ultimate test for this research114

List of Symbols

Symbols are listed in order of their appearance in the text.

$ R^n $ n-space of real numbers → maps onto p bold designates vector or tensor quantities I(p) function I of p ∈ is an element of N natural numbers, (i.e., 0, 1, 2, 3,) N ⁿ n-space of natural numbers ⊂ is a subset of L italics designate set notation \overline{V} a vector field V • dot or inner product operator ∇I gradient of I θ Greek lower-case theta, used to designate an angular value ⊗ the convolution operator $G(\sigma, \mathbf{p})$ Gaussian with spatial scale σ . \int integral $\frac{\partial^{\mu}}{\partial k^{\pi}}$ n-th partial derivative with respect to x Σ Greek upper-case sigma, without subscripts, denotes a covariance matrix σ Greek lower-case sigma, used as the scale parameter e the transcendental value e, the natural logarithm π Greek lower-case ji, the transcendental value, pi \mathbf{p}^{T} transpose of the tensor value \mathbf{p} $\nabla \cdot \mathbf{F}$ "del-dot," the divergence of F $I(\mathbf{p} \mid \sigma)$ multiscale measurement: function I(p) at scale σ $\tilde{\mathbf{u}}$ tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\{ \}$ the expectation operation	R	real numbers
$ → maps onto p bold designates vector or tensor quantities I(p) function I of p ∈ is an element of N natural numbers, (i.e., 0, 1, 2, 3,) Nn n-space of natural numbers ⊂ is a subset of L italics designate set notation \vec{V} a vector field V• dot or inner product operator\nabla I gradient of I\theta Greek lower-case theta, used to designate an angular value⊗ the convolution operatorG(\sigma, \mathbf{p}) Gaussian with spatial scale \sigma.\int integral\frac{\partial^n}{\partial x^n} n-th partial derivative with respect to x\Sigma Greek upper-case sigma, without subscripts, denotes a covariance matrix\sigma Greek lower-case sigma, used as the scale parametere the transcendental value e, the natural logarithm\pi Greek lower-case pi, the transcendental value, pi\mathbf{p}^T transpose of the tensor value \mathbf{p}\nabla \cdot \mathbf{F} "del-dot," the divergence of FI(\mathbf{p} \mid \sigma) multiscale measurement: function I(p) at scale \sigma\tilde{\mathbf{u}} tilde over a character denotes random variable\mu Greek lower-case mu, used to designate moments\{ \} the expectation operationu tilde over a character denotes random variable\mu Greek lower-case mu, used to designate moments\{ \} the expectation operationu tilde over a character denotes random variable\mu Greek lower-case mu, used to designate moments\{ \} the expectation operationu tilde over a character denotes random variable\mu Greek lower-case mu, used to designate moments\{ \} the expectation operationu the operationu the spectation operationu the operation$	R ⁿ	n-space of real numbers
pbold designates vector or tensor quantitiesI(p)function I of p \in is an element ofNnatural numbers, (i.e., 0, 1, 2, 3,)N ⁿ n-space of natural numbers \subset is a subset ofLitalics designate set notation \vec{V} a vector field V•dot or inner product operator ∇I gradient of I θ Greek lower-case theta, used to designate an angular value \otimes the convolution operator $G(\sigma, p)$ Gaussian with spatial scale σ . \int integral $\frac{\partial^n}{\partial x^n}$ n-th partial derivative with respect to x Σ Greek lower-case sigma, without subscripts, denotes a covariance matrix σ Greek lower-case sigma, used as the scale parameterethe transcendental value e, the natural logarithm π Greek lower-case pi, the transcendental value, pi \mathbf{p}^T transpose of the tensor value \mathbf{p} $\nabla \cdot \mathbf{F}$ "del-dot," the divergence of \mathbf{F} $(\mathbf{p} \mid \sigma)$ multiscale measurement: function I(p) at scale σ $\tilde{\mathbf{u}}$ Greek lower-case mu, used to designate moments \langle the expectation operation	\rightarrow	maps onto
I(p)function I of p \in is an element ofNnatural numbers, (i.e., 0, 1, 2, 3,)N ⁿ n-space of natural numbersCis a subset ofLitalics designate set notation \vec{V} a vector field V•dot or inner product operator ∇I gradient of I θ Greek lower-case theta, used to designate an angular value \otimes the convolution operator $G(\sigma, \mathbf{p})$ Gaussian with spatial scale σ . \int integral $\frac{\partial^{\mu}}{\partial x^{\mu}}$ n-th partial derivative with respect to x Σ Greek lower-case sigma, without subscripts, denotes a covariance matrix σ Greek lower-case pi, the transcendental value, pi π Greek lower-case pi, the transcendental value, pi p^{T} transpose of the tensor value p $\nabla \cdot F$ "del-dot," the divergence of F $(\mathbf{p} \mid \sigma)$ multiscale measurement: function I(p) at scale σ \hat{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments	р	bold designates vector or tensor quantities
	I(p)	function I of p
Nnatural numbers, (i.e., 0, 1, 2, 3,)N ⁿ n-space of natural numbersCis a subset ofLitalics designate set notation \bar{V} a vector field V•dot or inner product operator ∇I gradient of I θ Greek lower-case theta, used to designate an angular value \otimes the convolution operator $G(\sigma, \mathbf{p})$ Gaussian with spatial scale σ . $\int_{\sigma^n}^{\sigma_n}$ n-th partial derivative with respect to x Σ Greek lower-case sigma, without subscripts, denotes a covariance matrix σ Greek lower-case sigma, used as the scale parameterethe transcendental value e, the natural logarithm π Greek lower-case pi, the transcendental value, pi \mathbf{p}^T transpose of the tensor value \mathbf{p} $\nabla \bullet F$ "del-dot," the divergence of F $I(\mathbf{p} \mid \sigma)$ multiscale measurement: function I(p) at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	E	is an element of
\mathbb{N}^n n-space of natural numbers \mathbb{C} is a subset of L italics designate set notation $\overline{\mathbb{V}}$ a vector field \mathbb{V} •dot or inner product operator \mathbb{V} Igradient of I θ Greek lower-case theta, used to designate an angular value \otimes the convolution operator $G(\sigma, \mathbf{p})$ Gaussian with spatial scale σ . \int integral $\frac{\partial^{\mu}}{\partial x^{\mu}}$ n-th partial derivative with respect to x Σ Greek lower-case sigma, without subscripts, denotes a covariance matrix σ Greek lower-case sigma, used as the scale parameterethe transcendental value e, the natural logarithm π Greek lower-case pi, the transcendental value, pi \mathbf{p}^{T} transpose of the tensor value \mathbf{p} $\nabla \bullet F$ "del-dot," the divergence of F $I(\mathbf{p} \mid \sigma)$ multiscale measurement: function $I(\mathbf{p})$ at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	N	natural numbers, (i.e., 0, 1, 2, 3,)
\Box is a subset of L italics designate set notation \bar{V} a vector field V•dot or inner product operator ∇I gradient of I θ Greek lower-case theta, used to designate an angular value \otimes the convolution operator $G(\sigma, \mathbf{p})$ Gaussian with spatial scale σ . \int integral $\frac{\partial^n}{\partial x^n}$ n-th partial derivative with respect to x Σ Greek upper-case sigma, without subscripts, denotes a covariance matrix σ Greek lower-case sigma, used as the scale parameterethe transcendental value e, the natural logarithm π Greek lower-case pi, the transcendental value, pi \mathbf{p}^T transpose of the tensor value \mathbf{p} $\nabla \bullet F$ "del-dot," the divergence of F $I(\mathbf{p} \mid \sigma)$ multiscale measurement: function $I(\mathbf{p})$ at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	N	n-space of natural numbers
Litalics designate set notation \bar{V} a vector field V•dot or inner product operator ∇I gradient of I θ Greek lower-case theta, used to designate an angular value \otimes the convolution operator $G(\sigma, \mathbf{p})$ Gaussian with spatial scale σ . \int integral $\frac{\partial^n}{\partial x^n}$ n-th partial derivative with respect to x Σ Greek upper-case sigma, without subscripts, denotes a covariance matrix σ Greek lower-case sigma, used as the scale parameterethe transcendental value e, the natural logarithm π Greek lower-case pi, the transcendental value, pi \mathbf{p}^T transpose of the tensor value \mathbf{p} $\nabla \bullet F$ "del-dot," the divergence of F $I(\mathbf{p} \mid \sigma)$ multiscale measurement: function $I(\mathbf{p})$ at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	\subset	is a subset of
Va vector field V•dot or inner product operator ∇I gradient of I θ Greek lower-case theta, used to designate an angular value \otimes the convolution operator $G(\sigma, \mathbf{p})$ Gaussian with spatial scale σ . \int integral $\frac{\partial^n}{\partial x^n}$ n-th partial derivative with respect to x Σ Greek upper-case sigma, without subscripts, denotes a covariance matrix σ Greek lower-case sigma, used as the scale parameterethe transcendental value e, the natural logarithm π Greek lower-case pi, the transcendental value, pi \mathbf{p}^T transpose of the tensor value \mathbf{p} $\nabla \bullet F$ "del-dot," the divergence of F $I(\mathbf{p} \mid \sigma)$ multiscale measurement: function $I(\mathbf{p})$ at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	L	italics designate set notation
• dot or inner product operator ∇I gradient of I θ Greek lower-case theta, used to designate an angular value \otimes the convolution operator $G(\sigma, \mathbf{p})$ Gaussian with spatial scale σ . \int integral $\frac{\partial^n}{\partial x^n}$ n-th partial derivative with respect to x Σ Greek upper-case sigma, without subscripts, denotes a covariance matrix σ Greek lower-case sigma, used as the scale parameter e the transcendental value e, the natural logarithm π Greek lower-case pi, the transcendental value, pi \mathbf{p}^T transpose of the tensor value \mathbf{p} $\nabla \cdot \mathbf{F}$ "del-dot," the divergence of \mathbf{F} $I(\mathbf{p} \mid \sigma)$ multiscale measurement: function I(p) at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	V	a vector field V
$\begin{array}{llllllllllllllllllllllllllllllllllll$	•	dot or inner product operator
$\begin{array}{llllllllllllllllllllllllllllllllllll$	∇I	gradient of I
	θ	Greek lower-case theta, used to designate an angular value
$G(\sigma, \mathbf{p})$ Gaussian with spatial scale σ . \int integral $\frac{\partial^n}{\partial x^n}$ n-th partial derivative with respect to x Σ Greek upper-case sigma, without subscripts, denotes a covariance matrix σ Greek lower-case sigma, used as the scale parameter e the transcendental value e , the natural logarithm π Greek lower-case pi, the transcendental value, pi \mathbf{p}^T transpose of the tensor value \mathbf{p} $\nabla \cdot F$ "del-dot," the divergence of F $I(\mathbf{p} \mid \sigma)$ multiscale measurement: function $I(p)$ at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	\otimes	the convolution operator
$ \begin{cases} & \text{integral} \\ \frac{\partial^n}{\partial x^n} & \text{n-th partial derivative with respect to x} \\ \Sigma & \text{Greek upper-case sigma, without subscripts, denotes a covariance matrix} \\ \sigma & \text{Greek lower-case sigma, used as the scale parameter} \\ e & \text{the transcendental value e, the natural logarithm} \\ \pi & \text{Greek lower-case pi, the transcendental value, pi} \\ \mathbf{p}^T & \text{transpose of the tensor value } \mathbf{p} \\ \nabla \bullet \mathbf{F} & \text{"del-dot," the divergence of F} \\ \mathbf{I}(\mathbf{p} \mid \sigma) & \text{multiscale measurement: function I(p) at scale } \sigma \\ \tilde{u} & \text{tilde over a character denotes random variable} \\ \mu & \text{Greek lower-case mu, used to designate moments} \\ \langle \rangle & \text{the expectation operation} \end{cases} $	$G(\sigma, \mathbf{p})$	Gaussian with spatial scale σ .
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ſ	integral
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\frac{\partial^n}{\partial x^n}$	n-th partial derivative with respect to x
σ Greek lower-case sigma, used as the scale parameterethe transcendental value e, the natural logarithm π Greek lower-case pi, the transcendental value, pi p^T transpose of the tensor value p $\nabla \bullet F$ "del-dot," the divergence of F $I(\mathbf{p} \sigma)$ multiscale measurement: function $I(p)$ at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	Σ	Greek upper-case sigma, without subscripts, denotes a covariance matrix
ethe transcendental value e, the natural logarithm π Greek lower-case pi, the transcendental value, pi \mathbf{p}^{T} transpose of the tensor value \mathbf{p} $\nabla \bullet F$ "del-dot," the divergence of FI($\mathbf{p} \mid \sigma$)multiscale measurement: function I(p) at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	σ	Greek lower-case sigma, used as the scale parameter
π Greek lower-case pi, the transcendental value, pi \mathbf{p}^{T} transpose of the tensor value \mathbf{p} $\nabla \bullet \mathrm{F}$ "del-dot," the divergence of F $\mathrm{I}(\mathbf{p} \mid \sigma)$ multiscale measurement: function I(p) at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	e	the transcendental value e, the natural logarithm
\mathbf{p}^{T} transpose of the tensor value \mathbf{p} $\nabla \bullet F$ "del-dot," the divergence of F $I(\mathbf{p} \mid \sigma)$ multiscale measurement: function I(p) at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	π	Greek lower-case pi, the transcendental value, pi
$\begin{array}{lll} \nabla \bullet F & \text{``del-dot,'' the divergence of } F \\ I(\mathbf{p} \mid \sigma) & \text{multiscale measurement: function } I(p) \text{ at scale } \sigma \\ \tilde{u} & \text{tilde over a character denotes random variable} \\ \mu & \text{Greek lower-case mu, used to designate moments} \\ \langle \ \rangle & \text{the expectation operation} \end{array}$	\mathbf{p}^{T}	transpose of the tensor value p
$I(\mathbf{p} \mid \sigma)$ multiscale measurement: function I(p) at scale σ \tilde{u} tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments $\langle \rangle$ the expectation operation	$\nabla \bullet F$	"del-dot," the divergence of F
 tilde over a character denotes random variable μ Greek lower-case mu, used to designate moments the expectation operation 	$I(\mathbf{p} \mid \boldsymbol{\sigma})$	multiscale measurement: function I(p) at scale σ
 μ Greek lower-case mu, used to designate moments the expectation operation 	ũ	tilde over a character denotes random variable
$\langle \rangle$ the expectation operation	μ	Greek lower-case mu, used to designate moments
	$\langle \rangle$	the expectation operation
$N_{\mu,\mu^{(2)}}(\tilde{u})$ Standard Normal distribution of \tilde{u} , with mean μ and variance $\mu^{(2)}$.	$N_{\mu,\mu^{(2)}}(\tilde{u})$	Standard Normal distribution of \tilde{u} , with mean μ and variance $\mu^{(2)}$.
$\mu_{n}^{(n)}$ n-th central moment	$\mu_{n}^{(n)}$	n-th central moment
$\sum_{j=1}^{n} f(j) $ summation of $f(0) + f(1) + + f(n)$	$\sum_{j=1}^{n} f(j)$	summation of $f(0) + f(1) + + f(n)$
<i>i</i> imaginary value $\sqrt{-1}$	i	imaginary value $\sqrt{-1}$
$\overline{M}(u,v)$ the u-v spatial moment of an image function	$\overline{\mathbf{M}}(\mathbf{u},\mathbf{v})$	the u-v spatial moment of an image function
L _{xⁿy^m} multiscale partial derivative $\frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m} G(\sigma, \mathbf{p}) \otimes I(\mathbf{p})$	$L_{x^ny^m}$	multiscale partial derivative $\frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m} G(\sigma, \mathbf{p}) \otimes I(\mathbf{p})$
$\hat{L}_{x^n y^m} \qquad \text{normalized multiscale partial derivative } \sigma^{n+m} \frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m} G(\sigma, \mathbf{p}) \otimes I(\mathbf{p})$	$\hat{L}_{x^ny^m}$	normalized multiscale partial derivative $\sigma^{n+m} \frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m} G(\sigma, \mathbf{p}) \otimes I(\mathbf{p})$
7 into com	-	integers

\forall	for all
V(ũ)	variance of ũ
M(ũ)	mean of ũ
$Cov(\tilde{u})$	covariance of ũ
$\prod_{k=1}^{n} f(k)$	product of $f(0) + f(1) + + f(n)$
<u>F</u>	stochastic process F
$f(x) \xrightarrow[a \to \infty]{a \to \infty} c$	f(x) approaches c as a goes to infinity
$\lim_{d\to 0} P(d)$	limit of P(d) as d approaches 0
erf(x)	standard error function: $\operatorname{erf}(x) = \int_{-\infty}^{x} G(1,\tau) d\tau$
$ \mathbf{p} $	norm of \mathbf{p} : $\mathbf{p} \bullet \mathbf{p}$
Ţ	perpendicular to
$\max_{-\infty < x < \infty} (S(x))$	global maximum of $S(x)$ over the interval $-\infty < x < \infty$